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Abstract

Liver cirrhosis is a serious global health issue, causing a significant number of
fatalities each year. Liver biopsy, the gold standard for diagnosis and stag-
ing, is an invasive procedure with potential complications and sampling errors.
Noninvasive methods are being explored, but they are in early stages or require
more resources. Artificial Intelligence (AI) has shown promise in healthcare,
contingent on well-curated medical data. However, real-world medical data is
often limited, leading to the use of synthetic data for training AI algorithms.
Synthetic data generation (SDG) offers a privacy-preserving approach, preserv-
ing information while not containing original data. This study evaluates vari-
ous SDG algorithms, including statistical methods and variations of Generative
Adversarial Network (GAN), on Liver Function Tests (LFT) datasets. The aim
is to augment the available dataset, providing diverse samples for training Ma-
chine Learning (ML) models through synthetic data based on actual samples.
This approach improves the model’s understanding of underlying patterns and
characteristics, resulting in more accurate liver cirrhosis diagnosis. The study
emphasizes the importance of using laboratory test results for liver cirrhosis
diagnosis as they offer a cost-effective alternative to invasive procedures. In
this work, three tabular data generation algorithms are used namely CTGAN,
Gaussian Copula, and CopulaGAN. Based on certain quantitative and qual-
itative methods, I present an analysis and evaluation of the most prominent
algorithm for tabular data generation for Liver Cirrhosis Classification. Lever-
aging synthetic data to refine AI models, this research aims to contribute to
advancements in liver disease diagnosis and treatment.

Keywords: Synthetic Data Generation, Generative Adversarial Networks, Pri-
vacy Preserving Data, Liver Cirrhosis Classification Dataset, Healthcare, Ar-
tificial Intelligence.
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1 Introduction

Liver cirrhosis is recognized as one of the most perilous diseases worldwide. It was
responsible for nearly 1.32 million fatalities worldwide in 2017 compared to fewer than
899,000 deaths in 1990. There were roughly 440,000 (33.3%) female fatalities from
cirrhosis and 883,000 (66.7%) male deaths [1]. Liver Biopsy is the gold standard for
the diagnosis and staging of liver cirrhosis. It is an invasive medical procedure, where
a small number of samples of liver tissue are obtained for microscopic examination.
Liver biopsy can help to diagnose important details such as inflammation, fibrosis,
fat accumulation and presence of cancerous cells [2]. However, as liver biopsy is an
invasive procedure that can lead to complications such as bleeding, infection, damage
to nearby organs or in rare cases, biliary peritonitis, haemorrhage and pneumothorax.
Another drawback of liver biopsy is a high rate of sampling error due to the small
size of tissue samples obtained, which could result in incorrect interpretation or
insufficient evaluation [3].

There are many noninvasive methods being tested to identify hepatic fibrosis, includ-
ing imaging, circulation, and dynamic indicators of fibrogenesis. However, they are
either in the early stages of development or demand more money, time, and effort.
Therefore, there is an unmet need to improve currently available clinical methods
for determining the stage and course of a disease [4]. Compared to liver biopsy, liver
function tests have a number of advantages, they offer a cost-effective alternative
for initial screening or monitoring of liver diseases because they are typically less
expensive and easily accessible. Additionally, a variety of indicators, including liver
enzymes, bilirubin, albumin, and INR, are included in liver function tests. These
markers offer important information about many facets of liver function and general
liver health.

Artificial Intelligence (AI) has gained popularity in the healthcare industry due to
recent successes and advancements. They have also shown significant potential in
gaining insights from EHRs and enhancing healthcare and reducing cost [5]. The
data used to train the algorithms are being scrutinised more closely as artificial
intelligence (AI) in healthcare undergoes an increase in regulatory assessment and
clinical adoption. In order for AI algorithms to be effective and robust it heavily
relies on the availability of well-curated medical data with accurate labels. These
algorithms’ performance is directly correlated with the quality of the training data.
Therefore, it is essential to have large, diverse, and representative datasets. However,
there is often a scarcity of annotated medical data in real-world settings so synthetic
data is being used more frequently to overcome this issue.

Synthetic data can be generated through perturbations using precise forward models,
physical simulations, or AI-driven generative models [6]. Azizi et al. validated the
use of synthetic data replicating the analysis from a study published on real dataset
showing that the synthetic data can serve as a reliable substitute for real clinical
trial datasets [7] . Synthetic Data Generation (SDG) is one of the most promising
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privacy preservation approaches since the resulting Synthetic Dataset (SD) has lower
information loss and does not contain data from the original dataset. The privacy
(risk of personal data disclosure), resemblance (how well the SD represents the real
data), utility (usefulness of statistical inferences drawn from SD or the output from
SD trained Machine Learning models), and performance dimensions (footprint, gen-
eration time, and computational resources) of SDG techniques must all be evaluated
before adoption [8].

This study explores applying and evaluating different Synthetic Data Generation
(SDG) algorithms such as statistical methods and variation of Generative Adversarial
Network (GAN) on the Liver Function Tests (LFT) datasets. The purpose of this
study is to augment the available dataset and deliver more diverse and representative
samples for training Machine Learning (ML) models by generating synthetic data
based on real data samples. It improves the model’s comprehension of the underlying
patterns and characteristics in the data, resulting in more accurate diagnosis of
liver cirrhosis. It also highlights the significance of using laboratory test results for
diagnosing liver cirrhosis since they offer an excellent and affordable substitute for
the invasive liver biopsy procedure. The ultimate goal is to help medical professionals
in making more accurate and timely diagnosis, which can improve patient outcomes
and allow for early intervention or treatment.

2 Literature review

The research by Mohammad Alauthman et al. emphasises the increasing incidence
of liver cirrhosis due to numerous reasons. Although early diagnosis is important, it
is difficult, expensive and time-consuming. The study aims to assess the performance
of various machine learning algorithms to reduce the cost of predictive diagnostics
for liver cirrhosis. There were several techniques utilised, including artificial neural
network, decision trees, support vector machines, and logistic regression. Accord-
ing to the study, experimental results show that Synthetic Minority Oversampling
Technique (SMOTE) outperforms Generative Adversarial Network (GAN) in terms
of prediction accuracy across different data augmentation scenarios (NO-AUG, DD-
AUG, and TD-AUG). Additionally, K-Nearest Neighbour demonstrates the highest
average accuracy of 99% but GAN shows better model stability compared to SMOTE
[9].

Through a comprehensive examination, this systematic review has addressed a num-
ber of significant issues with relation to the tabular synthetic data generation in
the healthcare industry. The paper examines and categorises the many methods
for producing synthetic tabular data, with a focus on methods based on Genera-
tive Adversarial Networks (GANs), and thoroughly examines the characteristics and
distinctions of these GAN-based approaches. Additionally, the paper proposes an al-
ternative categorisation methodology and has established some criterion to evaluate
the “Poor”, “Good” or “Excellent” performance in each of the analysed dimensions
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for 34 selected Synthetic Tabular Data Generation (STDG) publications. It also
highlights the need for evaluating privacy-preserving capabilities and establishing
standardised metrics [10].

This paper explores the potential applications of synthetic data generation by Gener-
ative Adversarial Networks (GANs) in the medical field. Synthetic data has become
extremely valuable in the age of Artificial Intelligence (AI) due to data privacy laws
and scarcity of real data. This study explores two well-known, publicly available
datasets from the University of California Irvine (UCI) Machine Learning Reposi-
tory: Breast Cancer Wisconsin (BCW) and Breast Cancer Coimbra (BCC) using
five different GAN variants (GAN, Conditional GAN (CGAN), Conditional Tab-
ular GAN (CTGAN), CopulaGAN, and Wasserstein GAN with Gradient Penalty
(WGANGP)). The results of an evaluation framework demonstrate that more so-
phisticated GAN models, such as WGANGP, enhance binary classification accuracy
even with smaller datasets. With BCC, smaller datasets and fewer features the
accuracy is more consistent, and it improves as training data size increases [11].

The methodologies for modeling complicated heterogenous data are presented and
validated in this study in order to produce realistic synthetic datasets that accurately
represent dependencies and distributions. The method combines probabilistic graph-
ical modeling with resampling to accommodate missing data and nonlinear/non-
Gaussian correlations while keeping transparency in the data modeling process. Us-
ing a case study on cardiovascular risk using CPRD Aurum dataset, it demonstrates
that the synthetic datasets produce similar distribution and sensitivity analyses com-
pared to the original data. It also discusses plans to include Bayesian Networks (BN)
and Hidden Markov Models (HMM) in the project’s future initiatives, emphasising
the significance of addressing the temporal character nature of health datasets [12].

The approach described in this paper uses differential privacy and Boundary-seeking
Generative Adversarial Network (BGAN) to produce synthetic and private smart
healthcare datasets. In preliminary studies, the performance of BGAN is compared
with Wasserstein Generative Adversarial Networks (WGANs), and it is found that
BGANs perform better due to faster convergence and higher dataset quality. The
proposed approach utilises Fitbit-based smart healthcare datasets under three pri-
vacy preservation settings. The system successfully develops stable GANs for dataset
generation by learning categorical and numerical values for various tabular data dis-
tributions. The created synthetic datasets are accurate, have similar distributions to
real data, and preserve user privacy [13].
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3 Methodology

Generative Adversarial Networks (GANs) are an emerging technique for both semi-
supervised and unsupervised learning. They achieve this through implicitly mod-
elling high-dimensional distributions of data. GANs involve two machine learning
models as shown in the Figure 1 , a generator and a discriminator, that interact in a
way that resembles game-like scenarios. The generator does not directly assess the
density function but can generate samples from it. It learns to transform random
noise into realistic samples and is specified by a prior distribution. The discrimina-
tor, on the other hand, attempts to correctly classify samples by estimating whether
they are real or fake. During training, both the generator and discriminator strive to
minimise their respective cost. There are many cost formulations, including minimax
GAN (M-GAN) and non-saturating GAN (NS-GAN), each of which has an effect on
the training and analysis. Without explicitly describing the density function, GANs
provide an implicit method for determining probability distributions [14].

Figure 1: The architecture of a GAN model.

3.1 Data Preprocessing

In machine learning research, data preparation is vital since it has a big impact on
the model’s ability to learn and the ability to extract insightful information. It is
crucial to get high-quality data before training a model. Handling null values to
address missing data, standardization is used to scale features, and one-hot encoding
is used to manage categorical variables

3.1.1 Dataset Description and characteristics

In this research paper, Two datasets have been utilized: the first dataset is referred to
as "Indian Liver Patient Records" and the second is named "Liver Disease Patient
Dataset 30K train data" both obtained from Kaggle. The "Indian Liver Patient
Records" dataset comprises 416 liver patient records and 167 non-liver patient records
collected from the North East region of Andhra Pradesh, India. This dataset includes
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441 male patient records and 142 female patient records [15].On the other hand, the
"Liver Disease Patient Dataset 30K train data" contains information on 21,917 liver
patient records and 8,774 non-liver patient records. This dataset comprises 21,986
male patient records and 7,803 female patient records [16]. Notably, any patient aged
above 89 is categorized as being of age "90".

3.1.2 Merging Datasets

"Indian Liver Patient Records" and "Liver Disease Patient Dataset 30K train data"
datasets contains similar attributes and characteristics related to liver patients. To
consolidate the data and enhance the volume of information within a single dataset,
the Pandas concat function is utlized, specifically pd.concat function , facilitating
the merging of these datasets seamlessly. The resulting merged dataset, representing
the liver patient data, is presented in Table 1, providing a comprehensive overview
of the combined attributes and patient records.

Table 1: Description of Liver patient dataset

Sl.No Attribute Name Attribute Type Attribute Description

1. Age Numeric Age of the patient

2. Gender Nominal Gender of the patient

3. Total Bilirubin Numeric Quantity of total bilirubin in
patient

4. Direct Bilirubin Numeric Quantity of direct bilirubin in
patient

5. Alkaline Phosphotase Numeric Amount of A.L.P. enzyme in
patient

6. Alamine Aminotransferase Numeric Amount of S.G.P.T. in patient

7. Aspartate Aminotransferase Numeric Amount of S.G.O.T. in patient

8. Total Protiens Numeric Protein content in patient

9. Albumin Numeric Amount of albumin in patient

10. Albumin and Globulin Ratio Numeric Fraction of albumin and
globulin in Patient

11. Dataset Numeric Status of liver disease in patient

3.1.3 Handling Missing Data

The analysis of missing values in the dataset was performed, and the respective counts
for each column were depicted in Figure 2a. To ensure the synthesizer’s accuracy and
avoid generating numerous missing values, it was imperative to address this issue.
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As a solution, the Pandas library’s ’drop.na()’ function was employed to eliminate
rows containing any missing values in their columns. Consequently, the resulting
dataset showed no missing values in any column, as evidenced in Figure 2b. This
data preprocessing step is essential to enhance the reliability and completeness of
the dataset for subsequent analyses and model development.

(a) Missing Values Count (b) After Removing Missing Values

Figure 2: Handling Missing Values

3.1.4 Data Transformation

In the subsequent phase of data preprocessing, an important step is to convert the
categorical column into a numerical format. Given that this research involves a com-
parative analysis of various data synthesizers, it becomes crucial to ensure a fair and
accurate comparison. Some of the synthesizers may not handle categorical data as
effectively as others, leading us to employ the ’Ordinal Encoding’ technique from
the scikit-learn preprocessing library. In our dataset, there exists a single categorical
column, namely ’Gender’ as illustrated in Table 1. By applying ordinal encoding,
we successfully transform the categorical values into two numerical representations:
1 for ’male’ and 0 for ’female.’ This process ensures compatibility with the different
synthesizers and facilitates a comprehensive comparison of their performance.

3.2 Data Synthesis Algorithms

The data synthesis algorithm utilized in this study is mainly based on a Generative
Adversarial Network (GAN) and statistical model. Various hyperparameters, net-
work architectures, and training strategies were explored and optimized to achieve
the best performance in generating realistic synthetic data for the specific application
at hand.
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3.2.1 Conditional Tabular GAN (CTGAN)

Conditional Tabular GAN (CTGAN) is a GAN-based architecture that is designed to
synthesize tabular data [17]. The primary improvements of CTGAN aim to address
the difficulties associated with modeling tabular data using GAN architecture. The
architecture of CTGAN as shown in Figure 3 specifically addresses non-Gaussian and
multimodal distribution by utilizing a mode-specific normalization that transforms
continuous values of arbitrary distribution into a bounded vector, which is a repre-
sentation appropriate for neural networks. For each continuous column separately in
CTGAN, the variational Gaussian mixture model (VGM) [18] is utilized. Addition-
ally, a conditional generator and training-by-sampling is implemented to overcome
the data imbalance challenge of discrete columns.

Figure 3: The architecture of a CTGAN model [17]

In this research, the SDV (Synthetic Data Vault) library is employed, enabling the
customization of various parameters as per the specific requirements. These param-
eters listed below, play a vital role in shaping the performance and accuracy of the
Generative Adversarial Network (GAN).

• epochs: Number of times to train the GAN. Each new epoch can improve the
model

• batch_size: Number of data samples to process in each step. This value must
be even, and it must be divisible by the pac parameter, Defaults to 500.

• discriminator_dim: Size of the output samples for each one of the Discrimina-
tor Layers. A Linear Layer will be created for each one of the values provided,
Defaults to (256, 256).

• discriminator_decay: Discriminator weight decay for the Adam Optimizer,
Defaults to 1e-6.

• discriminator_lr: Learning rate for the discriminator, Defaults to 2e-4.
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• discriminator_steps: Number of discriminator updates to do for each generator
update, Default 1 to match the original CTGAN implementation

• embedding_dim: Size of the random sample passed to the Generator, (Default
128)

• generator_decay: Generator weight decay for the Adam Optimizer, Defaults
to 1e-6

• generator_dim: Size of the output samples for each one of the Residuals. A
Residual Layer will be created for each one of the values provided, Defaults to
(256, 256).

• generator_lr: Learning rate for the generato, Defaults to 2e-4.

• log_frequency: Whether to use log frequency of categorical levels in conditional
sampling, Defaults to True.

• pac: Number of samples to group together when applying the discriminator,
Defaults to 10.

3.2.2 Gaussian Copula Model

A Gaussian copula is a statistical tool used in copula modeling and multivariate anal-
ysis. By transforming multiple variables into uniform marginals and then combining
them with a Gaussian copula function, one may represent the dependence structure
between the various variables.

A multivariate probability distribution is identified as the copula function which con-
nects the marginal distributions of individual variables to their combined distribution
[19]. The Gaussian copula, which is based on the Gaussian (normal) distribution, is
frequently used in financial modeling, risk management, and other areas where it is
important to precisely represent the relationship between variables.

In this research, the SDV library’s Gaussian copula synthesizer is employed, leverag-
ing the statistical model of Gaussian Copulas to comprehend the overall distribution
of the real data [20]. The synthesizer operates through a two-step process:

1. Learning the distribution of each individual column, commonly referred to as
the marginal distribution. For instance, a beta distribution with α = 2 and
β = 5 may be learned. This acquired distribution information is then utilized
to normalize the values, effectively transforming them into normal curves with
µ = 0 and σ = 1.

2. Subsequently, the synthesizer proceeds to learn the covariance between each
pair of normalized columns. These covariances are stored as an n x n matrix,
where n corresponds to the number of columns present in the dataset table.

By utilizing the Gaussian copula synthesizer in this manner, it helps to effectively
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model the dependencies between variables and generate synthetic data that accu-
rately reflects the overall distribution observed in the original dataset.

It also provides customization of various parameters as per the specific requirements.
The two important parameters are numerical distribution(Set the distribution
shape of any numerical columns in the dataset) and default distribution(Set the
distribution shape to use by default for all columns). There are several options pro-
vided for distribution shape listed below:

• ’norm’ (Normal Distribution): A bell-shaped curve used to model continuous
data with mean and standard deviation.

• ’beta’ (Beta Distribution): Models data bounded between 0 and 1, commonly
used for probabilities.

• ’truncnorm’ (Truncated Normal Distribution): Normal distribution truncated
to a specified range, suitable for bounded data.

• ’uniform’ (Uniform Distribution): All values have equal probability, useful for
representing constant likelihood within a range.

• ’gamma’ (Gamma Distribution): Models positive-valued, skewed data with
shape and scale parameters.

• ’gaussian_kde’ (Gaussian Kernel Density Estimation): Non-parametric method
to estimate probability density without assuming a specific distribution.

3.2.3 Copula Generative Adversarial Network (CopulaGAN)

The CopulaGAN model is a variation of the CTGAN, which is introduced in the SDV
opensource library [21]. It exploits the Cumulative Distribution Function (CDF)-
based transformation, which is applied via GaussianCopula. Particularly, Copula-
GAN uses those alternatives of CTGAN in order to learn the data more easily. Based
on probability theory, copulas are used to describe the intercorrelation between ran-
dom variables.

During the training procedure, CopulaGAN tries to learn the data types and the
format of the training data. The non-numerical and null data are transformed using
a Reversible Data Transformation (RDT). Due to this transformation, a fully nu-
merical representation is occurred from which the model can learn the probability
distributions of each table column. Additionally, the CopulaGAN attempts to learn
the correlation between the columns of the table. This takes place in two stages, as
shown below.

1. Statistical Learning: The synthesizer learns the distribution (shape) of each
individual column, also known as the 1D or marginal distribution. For example
a beta distribution with α = 2 and β = 5. The synthesizer uses the learned
distribution to normalize the values, creating normal curves with µ = 0 and
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σ = 1. [20] paper has more information about the Gaussian normalization
process.

2. GAN-based Learning: This synthesizer uses CTGAN to train the normalized
data. The CTGAN uses generative adversarial networks (GANs) to model
data, as described in [17].

Overall, The CopulaGAN algorithm can be viewed as an integration of two powerful
synthesizers: CTGAN and GaussianCopula Synthesizer. By combining the strengths
of both techniques, it offers a versatile and customizable approach to synthetic data
generation. It provides customization of various parameters as mentioned in Sec-
tion 4.2.1 and Section 3.2.2.

3.3 Evaluation Metrics

The necessity for appropriate quantitative and qualitative methodologies to evaluate
trainable models has been highlighted by recent developments in generative mod-
eling. Reliable evaluation criteria are crucial for rating GAN models as well as for
identifying any inaccuracies in the data that they generate. The need for accepted
metrics is critical, particularly in situations where people have trouble determining
the quality of synthetic data, such as medical imaging [22].

Evaluating a GAN model is not a straightforward procedure, since various metrics
can lead to different outcomes. Specifically, a good performance in one evaluation
metric cannot guarantee good performance in another metric [23]. Additionally, the
metrics should be selected in light of the application for which they will be employed.
Some metrics are introduced for the assessment of general GAN models, including
Inception Score [24], Fréchet Inception Distance [25], and Perceptual Path Length
[26]. Evaluation Metrics is divided into four subcategories:

3.3.1 Visual Evaluation

The ability of the generator to keep the characteristics of the real data can be assessed
using a visual representation of the generated data. Based on this, humans can
quickly validate results and identify similarities between real and generated data.
Additionally, information that cannot be covered by quantitative measurements is
provided via the visual interpretation of findings. Distribution, Cumulative Sums,
and Column Correlation can all be used as the basis for the visual evaluation.

• The Distribution plot of each column for real and synthetic data can be a quick
sanity check, although it does not reveal any hidden relation. This represen-
tation can point out if the statistical properties of the generated and real data
are similar to each other.

• The Cumulative Sum of each column for real and generated data can be visual-
ized to indicate the similarity between the distributions per column. This visu-
alization can present a useful understanding for both categorical and continuous
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columns. However, this representation cannot provide any insight about the
relations between columns.

• The Correlation table, which shows the association between each column of
the table. Comparing the correlation matrix of the real and synthetic data
can indicate if the generator manages to appropriately model the relationship
between the columns of the table [27].

3.3.2 Statistical Metrics

On real and generated tables, many statistical tests can be used. These metrics
compare specific columns of the actual table to the corresponding column in the
generated data, and the analysis’s outcome is generated. KSTest is used to assess
the GAN models that were trained using an Liver Patient dataset.

The KS Complement metric serves as a valuable tool for quantifying the resemblance
between real and synthetic columns based on their respective shapes, focusing on the
marginal distribution or 1D histogram. It offers compatibility with both numerical
and datetime data types, making it versatile in assessing various data sets. By lever-
aging the Kolmogorov-Smirnov statistic [28], the KS Complement method calculates
the KS statistic, which represents the maximum difference between the cumulative
distribution functions (CDFs) of the numerical distribution [29].

3.3.3 The CTGAN Loss Function

In the context of Generative Adversarial Networks (GANs), understanding the im-
provement of these networks over time is crucial. This improvement is achieved
through the use of loss functions, which play a vital role in guiding each network’s
learning during training iterations, commonly known as epochs. Specifically, the dis-
criminator and generator networks have their respective loss functions that dictate
their optimization process. The formula of generator and discriminator loss is given
below:

LD =
1

m

m∑
i=1

[D(x
′(i) −D(x(i))] LG =

1

m

m∑
i=1

[D(x
′(i)] +H (1)

As Given in the Equation (1), x represents the real data and x’ represents the syn-
thetic data. Accordingly, D(x) is the discriminator’s output given the real data and
D(x’) is for the synthetic. Finally, H is the cross entropy score and is always positive.

The discriminator is learning to produce low values if the data is synthetic and high
values if it is real. The range of these values is dependent on linear transformations
and dimensions of the input data [17].
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3.3.4 Detection Metrics

This collection of metrics makes use of machine learning methods to assess the qual-
ity of the data that is generated. They are able to provide knowledge and insight
about the relationships Treal and Tsyn have. It assess how challenging it is to dis-
tinguish generated data from actual data. These measures, in particular, are based
on Machine Learning algorithms that determine whether the input data is synthetic
or real. The outcome of those measurements is 1 minus the average ROC AUC
score across all cross-validation splits. SVD classifier or Logistic Regression are two
examples of machine learning models that can be utilized. [27]

4 Experimental Results and Analysis

The experimental results and analysis demonstrate the effectiveness of the proposed
approach. The model outperformed state-of-the-art baselines in accuracy, robust-
ness, and efficiency, as evidenced by various performance metrics. While limitations
exist, the study lays a strong foundation for future research and real-world imple-
mentations, showcasing the potential applications of this approach.

4.1 Experimental Setup

Experiments are designed to investigate the general properties and performance of
the different GAN models for the task of synthetic data generation for liver cirrhosis
classification. In particular, the CTGAN [17], Gaussian Copula [19], and CopulaGAN
[21] are trained at the Liver Patient Dataset. For our experiments, we use the GAN
models, which are provided by the open-source synthetic data generation ecosystem
SDV–The Synthetic Data Vault [20]. Each model is trained with a batch size of 800
epochs.

Then, the synthetic datasets that are generated from the trained GAN models are
evaluated using the metrics, which are described in Section 3.3 of this work. The
Distribution and Cumulative Sum plots, the Statistical based metrics are calculated
based on the Single Table Metrics of the SDV library [30].

4.2 Baseline Results of Each Synthesizer

The evaluation of three synthesis methods (CTGAN, CopulaGAN, and Gaussian
Copula) using various metrics and visualizations are carried out. Each method’s
synthesized datasets were compared with the original data to assess their ability to
capture the underlying data distribution. CTGAN showed consistent distribution
shapes and comparable performance, while CopulaGAN displayed slight differences
but promising results. Gaussian Copula exhibited variations in histograms but com-
parable performance.
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4.2.1 Conditional Tabular GAN

In this research, the CTGAN synthesizer is trained on 800 epochs as shown in the
Figure 4. The CTGAN algorithm employs a specific loss calculation formula as
described in Section 3.3.3. The key to interpreting the loss values is to remember
that the neural networks are adversaries. As one improves, the other must also
improve just to keep its score consistent. Here are three scenarios that we frequently
see:

• Generator loss is slightly positive while discriminator loss is 0. This
means that the generator is producing poor quality synthetic data while the
discriminator is blindly guessing what is real vs. synthetic. This is a common
starting point, where neither neural network has optimized for its goal.

• Generator loss is becoming negative while the discriminator loss re-
mains at 0. This means that the generator is producing better and better
synthetic data. The discriminator is improving too, but because the synthetic
data quality has increased, it is still unable to clearly differentiate real vs.
synthetic data.

• Generator loss has stabilized at a negative value while the discrimina-
tor loss remains at 0. This means that the generator has optimized, creating
synthetic data that looks so real, the discriminator cannot tell it apart.

Figure 4: CTGAN Generator and Discrimator Loss Value
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After the rigorous training of the CTGAN model, spanning 800 epochs, a substantial
dataset of 10,00,00 synthetic samples was generated. The evaluation process involved
the utilization of the KS Complement metric as mentioned in Section 3.3.2, a widely
recognized and effective method for assessing the fidelity of synthetic data. This
approach enabled an in-depth examination of the model’s performance in generating
synthetic data that closely aligns with the original dataset. The evaluation resulted
in an overall average score of 0.95, as depicted in Figure 5.

Figure 5: The KS Complement metric on CTGAN

To gain a deeper understanding of the KS Complement scores across columns, we
further visualized the minimum i.e, Alkaline_Phosphotase as shown in Figure 6a,
intermediate i.e, Aspartate_Aminotransferase as shown in Figure 6b , and maximum
i.e Albumin as shown in Figure 6c. These Histogram visualizations provide valuable
insights into the distribution and alignment of the KS Complement metric across
different attributes in the dataset as discussed in Section 3.3.1.
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(a) Minimum KS Complement Score of CTGAN

(b) Intermediate KS Complement Score of CTGAN

(c) Maximum KS Complement Score of CTGAN

Figure 6: Minimum, Intermediate and Maximum KS Complement Score of CTGAN
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Scatter Plot Comparison of Real and Synthetic Data by Column

A comparison of scatter plots shows the relationship between related data points
from two separate datasets, one real and the other synthetic. In this case, we’re
comparing all the columns mentioned in Table 1. The values from both datasets
define the position of each point on the scatter plot, which represents a distinct
data entry. By analyzing the dispersion and clustering of points in scatter plots
from Figure 7 to Figure 17, We can evaluate the extent to which the synthetic data
accurately reproduces the patterns and traits of the real data across those specific
columns.

(a) Real Data Column (b) Synthetic Data Column

Figure 7: ’Age’ column of the dataset (CTGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 8: ’Total_Bilirubin’ column of the dataset (CTGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 9: ’Gender’ column of the dataset (CTGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 10: ’Direct_Bilirubin’ column of the dataset (CTGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 11: ’Alkaline_Phosphotase’ column of the dataset (CTGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 12: ’Alamine_Aminotransferase’ column of the dataset (CTGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 13: ’Aspartate_Aminotransferase’ column of the dataset (CTGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 14: ’Total_Protiens’ column of the dataset (CTGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 15: ’Albumin’ column of the dataset (CTGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 16: ’Albumin_and_Globulin Ratio’ column of the dataset (CTGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 17: ’Dataset’ (Classification) column of the dataset (CTGAN)

4.2.2 Gaussian Copula Model

Given that Gaussian copula is a statistical model without epochs, the synthesizer
employs diverse distribution modes, as elucidated in Section 3.2.2. In our analysis,
we have specifically adopted the ’norm’ (normal) distribution for all columns within
the dataset, and substantial dataset of 10,00,00 synthetic samples was generated.

The evaluation process involved the utilization of the KS Complement metric as
mentioned in Section 3.3.2, a widely recognized and effective method for assessing
the fidelity of synthetic data. This approach enabled an in-depth examination of the
model’s performance in generating synthetic data that closely aligns with the original
dataset. The evaluation resulted in an overall average score of 0.83, as depicted in
Figure 18.

Figure 18: The KS Complement metric on Gaussian Copula

To gain a deeper understanding of the KS Complement scores across columns, we
further visualized the minimum i.e, Aspartate_Aminotransferase as shown in Fig-
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ure 19a, intermediate i.e, Albumin_and_Globulin_Ratio as shown in Figure 19b ,
and maximum i.e Albumin as shown in Figure 19c. These Histogram visualizations
provide valuable insights into the distribution and alignment of the KS Complement
metric across different attributes in the dataset as discussed in Section 3.3.1.

(a) Minimum KS Complement Score of Gaussian Copula

(b) Intermediate KS Complement Score of Gaussian Copula

(c) Maximum KS Complement Score of Gaussian Copula

Figure 19: Minimum, Intermediate and Maximum KS Complement Score of
Gaussian Copula
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Scatter Plot Comparison of Real and Synthetic Data by Column

A comparison of scatter plots shows the relationship between related data points
from two separate datasets, one real and the other synthetic. In this case, we’re
comparing all the columns mentioned in Table 1. The values from both datasets
define the position of each point on the scatter plot, which represents a distinct data
entry. By analyzing the dispersion and clustering of points in scatter plots from
Figure 20 to Figure 30, We can evaluate the extent to which the synthetic data
accurately reproduces the patterns and traits of the real data across those specific
columns.

(a) Real Data Column (b) Synthetic Data Column

Figure 20: ’Age’ column of the dataset (Gaussian Copula)

(a) Real Data Column (b) Synthetic Data Column

Figure 21: ’Total_Bilirubin’ column of the dataset (Gaussian Copula)
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(a) Real Data Column (b) Synthetic Data Column

Figure 22: ’Gender’ column of the dataset (Gaussian Copula)

(a) Real Data Column (b) Synthetic Data Column

Figure 23: ’Direct_Bilirubin’ column of the dataset (Gaussian Copula)
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(a) Real Data Column (b) Synthetic Data Column

Figure 24: ’Alkaline_Phosphotase’ column of the dataset (Gaussian Copula)

(a) Real Data Column (b) Synthetic Data Column

Figure 25: ’Alamine_Aminotransferase’ column of the dataset (Gaussian Copula)
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(a) Real Data Column (b) Synthetic Data Column

Figure 26: ’Aspartate_Aminotransferase’ column of the dataset (Gaussian Copula)

(a) Real Data Column (b) Synthetic Data Column

Figure 27: ’Total_Protiens’ column of the dataset (Gaussian Copula)
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(a) Real Data Column (b) Synthetic Data Column

Figure 28: ’Albumin’ column of the dataset (Gaussian Copula)

(a) Real Data Column (b) Synthetic Data Column

Figure 29: ’Albumin_and_Globulin Ratio’ column of the dataset (Gaussian Copula)
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(a) Real Data Column (b) Synthetic Data Column

Figure 30: ’Dataset’ (Classification) column of the dataset (Gaussian Copula)

4.2.3 Copula Generative Adversarial Network

The CopulaGAN synthesizer also employs diverse distribution modes, as elucidated
in Section 3.2.3. In our analysis, we have specifically adopted the ’norm’ (normal)
distribution for all columns within the dataset. After the rigorous training of the
CopulaGAN model, spanning 800 epochs as shown in Figure 31, a substantial dataset
of 10,00,00 synthetic samples was generated.

Figure 31: Copula GAN Generator and Discrimator Loss Value

The evaluation process involved the utilization of the KS Complement metric as
mentioned in Section 3.3.2, a widely recognized and effective method for assessing
the fidelity of synthetic data. This approach enabled an in-depth examination of the
model’s performance in generating synthetic data that closely aligns with the original
dataset. The evaluation resulted in an overall average score of 0.94, as depicted in
Figure 32.
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Figure 32: The KS Complement metric on CopulaGAN

To gain a deeper understanding of the KS Complement scores across columns, we
further visualized the minimum i.e, Albumin_and_Globulin_Ratio as shown in Fig-
ure 33a , intermediate i.e, Albumin as shown in Figure 33b, and maximum i.e,
Direct_Bilirubin as shown in Figure 33c. These Histogram visualizations provide
valuable insights into the distribution and alignment of the KS Complement metric
across different attributes in the dataset as discussed in Section 3.3.1.
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(a) Minimum KS Complement Score of CopulaGAN

(b) Intermediate KS Complement Score of CopulaGAN

(c) Maximum KS Complement Score of CopulaGAN

Figure 33: Minimum, Intermediate and Maximum KS Complement Score of
CopulaGAN
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Scatter Plot Comparison of Real and Synthetic Data by Column

A comparison of scatter plots shows the relationship between related data points
from two separate datasets, one real and the other synthetic. In this case, we’re
comparing all the columns mentioned in Table 1. The values from both datasets
define the position of each point on the scatter plot, which represents a distinct data
entry. By analyzing the dispersion and clustering of points in scatter plots from
Figure 34 to Figure 44, We can evaluate the extent to which the synthetic data
accurately reproduces the patterns and traits of the real data across those specific
columns.

(a) Real Data Column (b) Synthetic Data Column

Figure 34: ’Age’ column of the dataset (CopulaGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 35: ’Total_Bilirubin’ column of the dataset (CopulaGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 36: ’Gender’ column of the dataset (CopulaGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 37: ’Direct_Bilirubin’ column of the dataset (CopulaGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 38: ’Alkaline_Phosphotase’ column of the dataset (CopulaGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 39: ’Alamine_Aminotransferase’ column of the dataset (CopulaGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 40: ’Aspartate_Aminotransferase’ column of the dataset (CopulaGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 41: ’Total_Protiens’ column of the dataset (CopulaGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 42: ’Albumin’ column of the dataset (CopulaGAN)

(a) Real Data Column (b) Synthetic Data Column

Figure 43: ’Albumin_and_Globulin Ratio’ column of the dataset (CopulaGAN)
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(a) Real Data Column (b) Synthetic Data Column

Figure 44: ’Dataset’ (Classification) column of the dataset (CopulaGAN)

4.3 Comparative Performance Analysis of CTGAN, Gaussian
Copula, and Copula GAN Synthesizer

The present study employs a rigorous comparative analysis of performance, utiliz-
ing both the statistical metrics described in Section 3.3.2 and the detection metrics
outlined in Section 3.3.4. The results are summarized in the provided Table 2, indi-
cating that CTGAN emerges as the most optimal choice, exhibiting the highest scores
among the three methods in both statistical evaluation and detection performance.
Notably, CopulaGAN demonstrates competitive results and closely approximates the
performance of CTGAN.

Table 2: The statistical and the detection metrics for CTGAN, GaussianCopula
and CopulaGAN.

Statistical Metrics Detection Metrics

Synthesizer KSTest Logistic Regression

CTGAN 0.95 0.89

Gaussian Copula 0.83 0.65

CopulaGAN 0.94 0.89
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4.4 Comparative Analysis of CTGAN and CopulaGAN with
Gaussian Kernel Density Estimation Distribution

This approach differs from the one discussed in Section 3.2.3 where CopulaGAN
was used with a ’norm’ distribution. The inclusion of both the ’norm’ and ’gaus-
sian_KDE’ parameters in this study aims to strike a balance between efficiency and
sampling accuracy. Using the ’norm’ distribution has its advantages as it allows
training and sample generation faster, making it less resource-intensive. However
Using the ’gaussian_KDE’ distribution, training and sample generation is slower
and it is resource extensive. As a result, it can generate upto only 10,000 sampless
on a personal computer because of computational power limitation.

For the purpose of establishing a fair comparison, a set of 10,000 samples was gen-
erated utilizing the CTGAN model. Subsequently, this section presents a compre-
hensive comparison between CTGAN and CopulaGAN with the ’gaussian_kde’ pa-
rameter, focusing on various criteria. These criteria encompass execution time and
resource utilization analysis, assessment of generator and discriminator loss values
and statistical metrics evaluation.

4.4.1 Execution Time and Resource Usage Analysis

With regard to model training time, Table 3 illustrates that the CTGAN outper-
forms CopulaGAN in terms of model training time requiring approximately 13.6
minutes. The sample generation process for CTGAN is remarkably quick, taking
just 0.15 seconds with minimal memory usage. In contrast as shown in Table 4
CopulaGAN exhibits a longer model training time of around 17.6 minutes and sig-
nificantly extended sample generation time of 25.7 minutes when generating 10,000
samples. Additionally, the memory usage associated with CopulaGAN is notably
higher.

Furthermore, the tables provide a comprehensive set of additional metrics that con-
tribute to the overall understanding of the models’ performance characteristics.

Table 3: Execution Time and Resource Usage Analysis of CTGAN

Metrics Model Training Sample Generation

Execution Time 819.92 sec 0.15 sec

User CPU Time 840.12 sec 0.14 sec

System CPU Time 435.92 sec 0.05 sec

Memory Usage 0.14 gb 0.06 gb
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Table 4: Execution Time and Resource Usage Analysis of CopulaGAN

Metrics Model Training Sample Generation

Execution Time 1056.12 sec 1544.47 sec

User CPU Time 1074.58 sec 1661.43 sec

System CPU Time 501.59 sec 834 sec

Memory Usage 11.01 gb 4.18 gb

A bar plot study of the sample generation time distribution is shown in Figure 45.
The Number of Samples are increment of 2000 up to a total of 10,000. In Figure 45a
time taken is depicted in seconds and for CTGAN it takes a mere 0.02 seconds to
generate 2000 samples and for 10,000 samples, it takes only 0.15 seconds. On the
other hand, In Figure 45b time taken is depicted in minutes and for CopulaGAN it
takes approximately 5.15 minutes to generate 2000 samples, while generating 10,000
samples extends to 25.75 minutes. This comparison underscores the significantly
faster sample generation speed of CTGAN compared to CopulaGAN.
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(a) Sample Generation Time Distribution: CTGAN

(b) Sample Generation Time Distribution: CopulaGAN

Figure 45: Sample Generation Time Distribution: Bar Plot Analysis
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4.4.2 Generator and Discriminator Loss Value

In this research, the CTGAN and CopulaGAN synthesizer is trained on 800 epochs as
shown in the Figure 46 and Figure 47. The CTGAN algorithm employs specific loss
calculation formula as described in Section 3.3.3 which is also used by CopulaGAN
synthesizer.The key to interpreting the loss values is to remember that the neural
networks are adversaries. As one improves, the other must also improve just to keep
its score consistent.

As described in Section 4.2.1, in case of ’Generator loss has stabilized at a negative
value while the discriminator loss remains at 0 ’ scenario it means that the generator
has optimized, creating synthetic data that looks so real, the discriminator cannot
tell it apart. The Figure 46 provides an illustration of this process, making it clear
that the generator starts to stabilize at about 700 epochs and continues to improve
after 800 epochs. Notably, the generator’s negative loss value is -0.7 approx at 800
epoch.

In contrast, the Figure 47 shows a distinctive pattern, with the generator stabilizing
at roughly 450 epochs and displaying a comparable negative loss value of roughly
-0.7. This finding confirms that, as compared to CTGAN, CopulaGAN exhibits a
noticeably improved stabilization performance.

Figure 46: CTGAN Generator and Discrimator Loss Value

40



Figure 47: CopulaGAN Generator and Discrimator Loss Value with Gaussian KDE
distribution

4.4.3 Statistical Metrics (KS Complement) Evaluation

The evaluation process involved the utilization of the KS Complement metric as
mentioned in Section 3.3.2, a widely recognized and effective method for assessing
the fidelity of synthetic data. This approach enabled an in-depth examination of
the model’s performance in generating synthetic data that closely aligns with the
original dataset. The evaluation of CTGAN with 10,000 sample size resulted in an
overall average score of 0.94, as depicted in Figure 48 and evaluation of CopulaGAN
with ’gaussian_kde’ and 10,000 sample size resulted in an overall average score of
0.96, as depicted in Figure 49. This observation underscores that the utilization
of CopulaGAN with the ’gaussian_kde’ distribution surpasses the accuracy of the
CTGAN model, establishing itself as a high-performing model.
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Figure 48: The KS Complement metric applied to CTGAN with a sample size of
10,000.

Figure 49: The KS Complement metric applied to CopulaGAN with a sample size
of 10,000.

To gain a deeper understanding of the KS Complement scores across columns, we
further visualized the minimum i.e, Direct_Bilirubin for CTGAN as shown in Fig-
ure 50a, minimum i.e, Albumin_and_Globulin_Ratio for CopulaGAN as shown in
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Figure 51a, maximum i.e, Albumin for CTGAN as shown in Figure 50b and max-
imum i.e, Direct_Bilirubin for CTGAN as shown in Figure 51b. These Histogram
visualizations provide valuable insights into the distribution and alignment of the
KS Complement metric across different attributes in the dataset as discussed in
Section 3.3

(a) Minimum KS Complement Score of CTGAN with a sample size of 10,000

(b) Maximum KS Complement Score of CTGAN with a sample size of 10,000

Figure 50: Minimum and Maximum KS Complement Score of CTGAN with a
sample size of 10,000
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(a) Minimum KS Complement Score of CopulaGAN with a sample size of 10,000

(b) Maximum KS Complement Score of CopulaGAN with a sample size of 10,000

Figure 51: Minimum and Maximum KS Complement Score of CopulaGAN with a
sample size of 10,000
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5 Conclusion

This research examines popular Synthetic Data Generation models, namely CTGAN,
Gaussian Copula, and CopulaGAN, for synthesizing Liver Patient Data. The "Indian
Liver Patient Records" and "Liver Disease Patient Dataset 30K train data" datasets
were used for generating synthetic samples.

Through visual representation and statistical analysis, we find that the analyzed algo-
rithms, namely CTGAN, Gaussian Copula, and CopulaGAN, exhibit commendable
performance in the domain of tabular synthetic data generation. Notably, CTGAN
emerges as the standout performer, showcasing superior capabilities in this task.
However, it’s important to mention that CopulaGAN, especially when combined
with the ’Gaussian_kde’ distribution, achieves an even higher level of performance
than CTGAN. This increased accuracy comes with a trade-off, as the training process
requires much more time and resources. Nevertheless, all three algorithms demon-
strate proficiency, indicating their viability and effectiveness in generating synthetic
tabular data for diverse real-world applications.

For future work, my focus will be on improving the accuracy of all synthesizers
through careful fine-tuning of hyperparameters and in-depth analysis of suitable
parameters. Due to limited computational resources, I was able to generate only
10,000 samples using CopulaGAN with ’Gaussian_KDE’ distribution parameter.
However, moving forward, I intend to explore methods to optimize and minimize the
computational demands for more extensive sample generation.

Additionally, once the desired accuracy is achieved, I plan to train a classification
algorithm using the generated data to classify liver cirrhosis in patients. By incor-
porating this phase, I anticipate that the model will have the opportunity to learn
more effectively due to the availability of increased data samples.
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