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Abstract

Cooperative control of multi-agent systems (MASs) has been a hot topic
in control and communication community since it was proposed in last two
decades. Cooperative control is applied to a wide range of real world problems,
such as search and rescue, resource allocation and multiple robot formation.
In order to realize a cooperative goal, a communication network is introduced
to facilitate the information flow among MASs, which brings network-induced
imperfections at the same time. In addition, the energy of onboard sensors
and microprocessors, and the bandwidth of communication networks are lim-
ited. It is preferred to reduce the frequency of controller updates and data
transmissions. Motivated by the above concerns, this thesis focuses on inves-
tigating the robustness of MASs against network-induced imperfections and
proposing event-triggered mechanisms (ETMs) to reduce the network load
and /or energy consumptions.

Four research topics are considered. Firstly, an affine formation under
fixed and switching topologies is studied. An ETM is proposed, such that the
controller updates and data transmissions occur only when it is necessary to
maintain system stability. To guarantee Zeno-freeness, an absolute term is
introduced in the price of introducing steady-state errors. Secondly, a cooper-
ative output regulation (COR) problem is studied. The problem is formulated
in a hybrid system framework. By proposing a novel Lyapunov function, ro-

bustness against asynchronous samplings and time-varying delays are given in
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terms of maximally allowable transmission intervals (MATIs) and maximally
allowable delays (MADs). Thirdly, a formation tracking problem of multi-
ple nonholonomic systems without velocity measurements is considered. Two
kinds of communication, namely, pull-based communication (PULC), which is
enabled by agents’ onboard sensors, and push-based communication (PUSC),
which is realized by data transmissions through networks, are considered sepa-
rately. A periodic event-triggered mechanism (PETM) is proposed for PUSC,
such that the closed-loop sampled-data system is robust to asynchronous
samplings, at the same time, continuous monitoring and Zeno-behavior are
avoided. In addition, a hierarchical structure is proposed, according to which,
the followers are divided into two levels. Strongly integral input-to-state sta-
bility (iISS) is established for the closed-loop system. Finally, a distributed
optimization-based formation problem is studied. The control protocol is de-
sign based on a modified Lagrangian-based (MLB) algorithm, under which,
the agents can reach the global optimal solution and converge to the desirable
formation structure simultaneously. A dynamic ETM is proposed to reduce
network load. To guarantee Zeno-freeness in the presence of disturbances, an
auxiliary variable is introduced to estimate the influence of disturbances. The
closed-loop system is proved to be input-to-state exponentially stable (ISES)
w.r.t. the disturbances.

The effectiveness of the proposed methods are illustrated by numerical ex-
amples. Under the proposed ETMs, unnecessary data transmissions and/or
controller updates can be efficiently reduced. Zeno-freeness is guaranteed by
event separation properties or computable positive minimum inter-event times.
In addition, the proposed methods improve the robustness of closed-loop sys-

tems against network-induced imperfections.
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Chapter 1

Introduction

In this chapter, the research background for cooperative control of multi-
agent systems (MASs) under communication networks is introduced and a
literature survey is provided to summarize the recent development in this
area. Thereafter, the contributions of the thesis are listed, followed by a

thesis outline.

1.1 Research Background

Due to potential applications in search and rescue, monitoring and con-
trol, and cooperative localization, MASs have drawn a lot of attention in the
areas of control and communication since last two decades [1, 2]. Adapted
to different application backgrounds, the fundamental topics in MASs include
consensus, flocking, containment, formation, cooperative output regulation

(COR) and distributed optimization.

1.1.1 General Topics in Multi-Agent Systems

As one of the basic topics, formation control is suitable for various ap-
plications [3]. According to how the desirable formation is defined, most of
the existing results on formation control can be classified as distance-based
[4, 5, 6, 7], bearing-based [8, 9] and position-based [10, 11] methods. The for-
mation structures defined by the first two kinds are invariant under rotation

and scaling, and fixed in the position-based one. It can be seen that, in the



aforementioned results, the formation structures were equipped with at most
one degree of freedom (DOF), and as a consequence, the manuverability of
the MAS was constrained. This concern was tackled by an affine formation
method in [12] and [13] recently, where the formation was invariant under
affine transformation. Since the affine transformation can be represented by a
combination of rotation, scaling, shearing and translation, more DOF can be
provided into the corresponding formation.

Most of the above results are only available when the MASs are composed
by subsystems with identical dynamics. To deal with heterogenous systems,
COR has been extensively studied since it was proposed [14]. By a well-
designed interactive protocol, COR aims at rendering a set of agents to achieve
asymptotic tracking or disturbance rejection of an exogenous signal [14, 15].
Significant application potential of COR lies in its generality to include some
typical problems in MASs, such as leader-follower formation [3], consensus [1]
and flocking [16].

In order to quantitatively evaluate system performance, the distributed
optimization problem (DOP) has become a hot topic since it was proposed in
[17]. In DOP, we aim to find the optimal point of a global object function
by a bunch of network-connected components (agents) who can communicate
with each other and be aware of only their local object functions. DOPs were
solved in a discrete-time manner in [18] and [19]; while considering that the
dynamics of physical systems are generally described by differential equations,

they were also solved in a continuous-time manner in [20], [21], [22], and [23].

1.1.2 Network-Induced Imperfections in Multi-Agent
Systems

In order to accomplish collaborative operations, a shared network is intro-
duced to facilitate information flow among agents. Communication network
allows information to be shared among subsystems, which means that tra-
ditional point-to-point wiring in the installation of a control system may be

avoided. However, the introduction of networks always comes with inevitable



network-induced imperfections that will degrade the performance properties
or even cause instability. The common network-imperfections can be classified

into the following five types [24, 25]:

e quantization errors in the signals transmitted over networks due to finite

word length of packets;
e packet dropouts caused by unreliability of the networks;
e time-varying sampling/transmission intervals;
e time-varying communication delays;

e communication constraints caused by sharing of networks by multiple
nodes and the fact that only one node is allowed to transmit its packet

per transmission.

Among all communication imperfections, asynchronous transmissions and time-
varying delays are fundamental and critical for MASs. Due to the indepen-
dence among agents and the inherently digital feature of networked commu-
nication, it is hard to synchronize their transmission instants according to a
common clock. Therefore, asynchronous transmissions are inevitable. In ad-
dition, since signals cannot be transmitted continuously and instantaneous,
transmission delays would influence the real-time capability of system opera-
tions. Besides the above, another concern in MASs is time-varying topologies.
Data transmissions through communication networks can be interrupted by
cyber attacks, and the ones that are carried out by detection from onboard
sensors are limited by sensing ranges and influenced by the blocks in the con-
cerned areas. As a result, it is more practical to consider the cooperative

control problem under switching topologies.

1.1.3 Event-Triggered Mechanism

Cooperative control relies on computations by agents’ onborad micropro-

cessors and communications through a shared network. Restricted onboard



energy and communication resources need to be taken into account. There-
fore, the scheduling of controller updates and data transmissions has become
a critical and practical issue in MASs. The scheduling can be done in a time-
triggered or an event-triggered fashion. For the first kind, the sampling peri-
ods are predetermined which should guarantee the system performance over
a wide range of operating conditions [26]. These off-line designed sampling
periods might be conservative, resulting in unnecessary controller updates
and data transmissions. High-frequency sampling might cause traffic conges-
tion in the network and increase packet dropouts [27]. Frequent updates and
transmissions also cause extra energy consumption [28], which might reduce
the lifespan of agents. In light of this concern, event-triggered mechanisms
(ETMs) were proposed, which replaced the predetermined sampling periods
by an online detected criterion depending on a measurement or time depen-
dent threshold. The controller updates and data transmissions are generated
sporadically, only when it is essential for maintaining the system performance.
As a result, less communication and energy consumption are required, with
some comparable system performance.

The exclusion of Zeno behavior, in the sense that infinite events happen in
a finite time interval, is a critical and challenging problem when implementing
ETMs. In [29], the authors have pointed out that many existing ETMs would
exhibit Zeno behavior when there is disturbance and /or in an output feedback
scenario. The Zeno-freeness is usually demonstrated by the event-separation
property, where the number of events must be finite within any finite interval,

or there exists a computable positive minimum inter-event time.

1.2 Literature Review

Considering unavoidable communication imperfections, researchers focused
on investigating the robustness against different types of communication im-
perfections. To reduce onboard energy and communication resources con-

sumption, a variety of ETMs were proposed. Some of them also provided a



rigorous analysis on Zeno-freeness. This section presents a detailed literature

survey on the recent development of such methods.

1.2.1 Research on Robustness Against Network-Induced
Imperfections

The introduction of networks always comes with communication imperfec-
tions such as asynchronous transmissions, time-varying delays, quantization
errors, packet dropouts, and communication constraints [24, 30, 31|, which
can degrade the system performance or even cause instability. This makes the
control problems of MASs under communication networks more challenging
compared with their single-plant counterparts. Besides improving the network
infrastructure, the focus is also on figuring out the effects of these imperfec-
tions and providing a guideline to the system designers. This topic has been
widely investigated in the area of networked control systems (NCSs) with one
or multiple communication imperfections under consideration [24, 31, 32, 33].
In NCSs, only one node may have access to the network at a transmission in-
stant; thus a proper communication scheduling protocol is necessary to grant
the access of the nodes to the network [34]. The scheduling protocol can be
static, like Round-Robin (RR) protocols, or dynamic, like Try-Once-Discard
(TOD) protocols. The stability under communication constraint was inves-
tigated in [34], [35], [24] and [36]. Quantization errors are another network-
induced issue, which can be caused by analog-to-digital coders before the data
are released to the network. The error between the actual analog value and
the converted digital one is usually unavoidable due mainly to the operation of
rounding or truncation [37]. Considering different types of quantizers, system
performance was investigated for NCSs in [35], [38], and for MASs in [39], [40].
For MASs, the research on data dropouts can be found in [41], [42], which con-
sidered stochastic packet dropout; and attack-induced packet dropouts were
studied in [43]. Based on the method proposed in [24], the influence of data
dropouts can be included in the ones of time-varying delays.

Due to the independence among agents and the inherently digital feature of



network communication, asynchronous transmissions are inevitable. In NCSs,
this problem was solved in a hybrid system framework, and an emulation-
based approach [44] was used to derive the upper bounds of maximally al-
lowable transmission intervals (MATIs) [24, 45], such that the transmission
instants in each node could be decided independently as long as the trans-
mission interval was smaller than MATIs. Following this method, the authors
solved a consensus problem under asynchronous transmissions for the MASs
with single integrators in [46] and for general linear systems in [47].
Considering time-varying delays, a discrete Lyapunov method was used in
[48] and [49] to solve consensus problems for single and double integrators,
respectively. Synchronous sampling was assumed in the aforementioned re-
sults, in a way that all agents broadcast local information to their neighbors
at the same instants. In [24], an emulation-based approach was used to com-
pute the bounds on MATIs and maximally allowable delays (MADs), which
can characterize the tolerance of NCSs both on the asynchronous transmis-
sions and time-varying delays. In [50], this method was extended to solve a
consensus problem for MASs. Asynchronous transmissions and time-varying
delays were tackled simultaneously for MASs with single integrators [51] or
marginally stable dynamics [52] in a time-delay approach. However, asyn-
chronous transmissions among agents lift the dimension of system matrices,

which brings higher complexities in analysis.

1.2.2 Event-Triggered Mechanism and Zeno-Freeness

The implementation of cooperative control depends on the development
of onboard sensors and microprocessors, which only have limited energy re-
sources. Thus, wasted energy consumption would shorten the lifespan of
MASs. Under this background, how to efficiently schedule the transmis-
sions among sensors and actuators becomes a critical issue. The classical
time-triggered fashion is an open-loop mechanism, where a fixed transmis-

sion period is predetermined in spite of the system states. This fixed period



is a bit conservative and results in unnecessary transmissions and updates
[26]. On the contrary, the event-triggered fashion can reduce consumption of
communication resources by replacing the predetermined transmission period
by a closed-loop scheduling mechanism. Specifically, the transmission inter-
val is decided by an online detected criterion with a measurement-dependent
[53, 54] or time-dependent [55, 56] threshold. Benefited from that, the fre-
quency of sensor detection and actuator update is reduced, which further re-
sults in less utilization of computation and communication resources in some
circumstances [27, 28].

A key challenge in adopting ETMs is the exclusion of Zeno behavior, which
can be guaranteed by ensuring a positive lower bound of inter-event times or by
event-separation properties. The authors in [29] have pointed out that, many
existing results in ETM would exhibit Zeno behavior when there is disturbance
in systems and/or in an output feedback scenario. A straightforward way to
solve this problem is choosing an absolute threshold in the event-triggering
(ET) function [22], but with the price of loosing asymptotic stability. In [57]
and [58], a time decaying term was introduced to ensure Zeno-freeness for
disturbance-free MASs. Considering the situation of unknown disturbances,
this problem was tackled by a periodic ETM (PETM) in [51] and [59], and by
a time regularization method in [60] and [61], which introduced a pre-specified
lower bound to the inter-event times. However, as static ETMs were imple-
mented in the aforementioned results, the transmission behavior were often
reduced to approximately periodic communication when the state was close to
the origin [32]. Alternatively, dynamic ETMs were considered in [32], [62] and
[63] for NCSs. By introducing a dynamic variable to the ET condition, the
dynamic ETMs were more robust to unknown disturbances and could provide
larger average inter-event times. A similar idea was applied in [50], [47] and
[46] to solve the consensus problem of MASs. In addition, the pre-specified
minimum inter-event times in time regularization methods are usually calcu-

lated in a conservative way [64]; hence, it is better to design ETMs with some



worst-case transmission performance guarantee, which is independent of any
pre-specified minimum inter-even times. In [65] and [23], this guarantee was
obtained by using an auxiliary variable to estimate the average influence of
external disturbances. Single-loop systems were considered in [65] and MASs

with undirected underlying graphs were considered in [23].

1.3 Thesis Contributions

Motivated by wide application backgrounds of MASs and the unavoid-
able communication imperfections, this thesis studies varieties of cooperative
control problems and proposes some novel control and communication proto-
cols to guarantee the performance of closed-loop sampled-data systems. The
major contributions in this thesis that distinguish them from other work are

summarized as follows:

1. Investigate an affine formation tracking problem of general nonholo-
nomic systems on the special Euclidean group (SE(3)) under fixed and
switching topologies. A distributed algorithm is proposed to reconstruct
a k-rooted graph when some edges are lost. An ETM is proposed such
that the affine formation problem can be solved with discontinuous con-
troller updates and data transmissions. However, in order to exclude
Zeno behavior, we use an absolute threshold in the ET condition, which
sacrifices the asymptotic stability, and the underlying graph is assumed

to be acyclic to avoid event accumulation.

2. Investigate a sampled-data COR problem of heterogeneous systems un-
der asynchronous transmissions, time-varying delays and unknown dis-
turbances. The problem is formulated and solved in a hybrid system
framework. A novel Lyapunov function candidate is proposed for MASs,
based on which, a more intuitive analysis on the trade-off relationship
between MATIs and MADs can be given compared with the ones given
in [50].



3. Investigate a formation tracking problem for nonholonomic systems with-
out measurements of the leader’s velocity. A hierarchical structure is
used to divide the followers into two levels, which removes the acyclic
assumptions in [66] and [67]. The problem is formulated and solved in a
hybrid system framework. An information flow architecture is proposed
such that two kinds of communication networks, which enable pull-based
communication (PULC) and push-based communication (PUSC), can be
considered separately according to their distinct features. The concept
of strongly integral input—to—state stability (iISS) in a hybrid system
framework and a novel Lyapunov function are proposed to treat the
higher order couplings in the closed-loop system. A hybrid-triggered
formation control protocol for multi-robot systems is proposed, such
that the ET conditions are checked discretely and asynchronously, and

the closed-loop system is strongly iISS w.r.t. disturbances.

4. Propose an event-triggered control protocol to solve the optimization-
based formation problem. Compared with the existing results in [68],
the algorithm considered in this work can guarantee that the MASs
converge exactly to the desirable optimal configuration. In addition, the
ETM proposed in this work is a dynamic one, where an auxiliary variable
is introduced to estimate the average influence of external disturbances.
As a result, the closed-loop system can be input-to—state exponentially
stable (ISES) w.r.t. unknown disturbances and at the same time, Zeno-
freeness is guaranteed by a computable positive minimum inter-event

time.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.
In Chapter 2, an affine formation tracking problem is investigated. Section
2.1 gives an overview of the research work of this chapter. Section 2.2 considers

the affine formation tracking problem of general nonholonomic systems on



SE(3). Some preliminaries and problem formulation are given in Section 2.2.1.
The problem under fixed topologies is solved in Section 2.2.2. In Section 2.2.3,
a distributed algorithm is proposed to reconstruct a k-rooted graph when some
edges in the graph are lost; thereafter, the problem is solved under switching
topologies. Some numerical examples are given in Section 2.2.4 to illustrate the
effectiveness of the proposed method. In Section 2.3, an ETM is proposed such
that the controller updates and data transmissions are generated discretely
only when it is necessary to maintain system stability. A numerical example
is given in Section 2.3.3 to verify the validity of the proposed mechanism,
followed by conclusion remarks in Section 2.4.

In Chapter 3, a COR problem with time-varying delays, asynchronous
transmissions and external disturbances is considered. Section 3.1 gives an
overview of the research work in this chapter. Some preliminaries are given in
Section 3.2.1. In Section 3.2.2, we formulate the COR problem under commu-
nication imperfections and external disturbances and reformulate it in a hy-
brid system framework in Section 3.2.3. The robustness against asynchronous
transmissions and time-varying delays are evaluated in terms of MATIs and
MADs in Section 3.3. Numerical examples are provided in Section 3.4 to fur-
ther illustrate the effectiveness of the method, and conclusions are drawn in
Section 3.5.

In Chapter 4, we investigate a formation tracking problem without veloc-
ity measurement under a hybrid triggered mechanism. Section 4.1 gives an
overview of the research work in this chapter. Preliminaries are given in Sec-
tion 4.2.1. In Section 4.2.2, we formulate the problem in a continuous-time
framework. The information flow architecture is set up in Section 4.2.3. Ac-
cording to the hierarchical structure constructed in Section 4.2, control and
estimation strategies are given, respectively, to the agents that belong to dif-
ferent levels in Section 4.3. In Section 4.4, we reformulate the problem in a
hybrid system framework. The main results are given in Section 4.5, where

finite time convergence, input-to-state stability (ISS) and strongly iISS are
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provided for the subsystems that belong to different levels. Numerical ex-
amples are given in Section 4.6 to illustrate the effectiveness of the results,
followed by concluding remarks in Section 4.7.

In Chapter 5, we investigate a distributed optimization-based formation
control problem under ETMs. Section 5.1 gives an overview of the research
work in this chapter. Some preliminaries on graph theory and convex functions
are given in Section 5.2.1. The event-triggered optimization-based formation
problem is formulated in Section 5.2.2. In Section 5.3, we propose an event-
triggered optimization algorithm with rigorous proofs on Zeno-freeness and
ISS w.r.t. disturbances of the closed-loop system. By a different ETM design,
we discuss the trade-off between network load and computation complexity in
Section 5.4. Numerical examples are presented in Section 5.5 and conclusions
are drawn in Section 5.6.

In Chapter 6, concluding remarks and some potential directions of future

work are provided.
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Chapter 2

Affine Formation Control under
Switching Graphs and
Event-Triggered Mechanism*®

2.1 Overview

In this chapter, we consider an affine formation tracking problem of MASs.
The motivation of investigating an affine formation method is to increase the
manuverability of MASs concerning the fact that the formation structure de-
fined by classical methods, such as distance-based, bearing-based and position-
based methods, are equipped with at most one DOF. Different from classical
methods, generalized Laplacian matrices are used in the affine formation meth-
ods. Besides the interaction topology, the elements in the generalized Lapla-
cian matrices are determined by a nominal configuration [13], which describes
a typical geometric pattern of the formation. In this way, the generalized
Laplacian matrix can be designed with k-+ 1 zero eigenvalues in k& dimensional
(kD) spaces, which results in £ + 1 DOF in the corresponding formation. In
[13], the affine formation problem was studied in a consensus sense, that is, the

affine formation problem was solved when all agents converged to an unspec-

xA version of this chapter has been published as: J. Yang, F. Xiao, and T. Chen, Formation
tracking of nonholonomic systems on the special Euclidean group under fixed and switching
topologies: An affine formation strategy. SIAM Journal on Control and Optimization,
vol. 59, no. 4, pp. 2850-2874, 2021. A preliminary version has been published as: J. Yang,
H. Yu, and T. Chen. Affine formation maneuver control of event-triggered multi-agent
systems. IFAC PapersOnlLine, vol. 53, no. 2, pp. 3391-3396, 2020.

12



ified affine span of the nominal configuration. On the other hand, a different
affine formation tracking problem is considered in this work, which was first
proposed in [12]. Specifically, the agents could form a time-varying structure,
with the centroid of them moving along a specific trajectory. In addition, the
formation could be determined with only a small portion of the agents being
aware of the desirable formation. Thus, one essential contribution in [12] was
to specify an affine span by steering the trajectories of a part of agents.

In Section 2.2, an affine formation tracking problem of general nonholo-
nomic systems is studied. This kind of system model covers most of the
mechanical systems such as aerial vehicles, robotics and satellites. However,
due to the nonlinearities and nonholonomic constraints, the control and state
estimation for this kind of systems are technically challenging. A geometric
control method is used in this work. Compared with linear controllers and
nonlinear controllers that are based on Euler angles and quaternions, the pro-
posed controller can avoid singularities and it can guarantee almost global
convergence of the closed-loop systems [69]. In addition, the controller pro-
posed in this work is designed directly on the Lie algebra of SE(3), which
enables a more general representation [70, 71] compared with the ones in [12]
and [13].

A critical issue in the existing results on affine formation methods is the
requirement of centralized computation when the associated Lapalacian ma-
trices are designed. In [13], the design was formulated as an optimization
problem when the graph was universally rigid. For a directed rooted graph,
the associated Laplacian matrix could be constructed locally; however, cen-
tralized computation was still required to design a stabilizing matrix which
guaranteed the semi-positive definiteness of the associated Laplacian [13, 72].
Inspired by [12], a control protocol, which solves the affine formation track-
ing problem without semi-positive definite Laplacian matrices, is proposed.
Hence, for undirected graphs, a globally rigid condition, instead of the uni-

versally rigid condition in [13] and [12], is assumed; for directed graphs, the
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edge weights can be calculated locally by each agent. By taking advantage
of local calculation on weights, the proposed control protocol can be further
extended to the case of switching topologies. In addition, to make formation
problems realizable in practice, an algorithm, which aims to locally reconstruct
a k-rooted graph when some edges in a graph are lost, is proposed. To the
best of the authors’ knowledge, the affine formation problem under switching
topologies has not been investigated in the literature.

In Section 2.3, to reduce network load, an ETM is proposed for affine for-
mation maneuver control problems of single integrators. Benifited from that,
the controller updates and information broadcasting are generated only when
it is necessary to maintain the system behavior. The practical convergence is

guaranteed for the closed-loop system and Zeno behavior is excluded.

2.2 Formation Tracking of General Nonholo-
nomic Systems on the Special Euclidean
Group

2.2.1 Preliminaries and Problem Formulation

The special orthogonal group is denoted by SO(3) = {R € R¥3 : RTR =
I3,det(R) = 1}. The special Euclidean group is denoted by SFE(3), which can

be represented by a matrix as

0 1

Here, R € SO(3), and p € R3. The Lie algebra of SFE(3) is denoted by se(3),
which is defined by

T = {R p} e RV, (2.1)

56(3)&:2{X€R4X4|EIW,U€R3: X:l%x 8}} (2.2)

Here wy represents a mapping from R3? to R3*? associated with w. Let w =

[w, wy w,]T, then wy is defined by

0 —w, wy
D=wyx =1 w, 0 —w, |. (2.3)
—Wy Wy 0
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Furthermore, since the mapping (-) is bijective, denote the inverse mapping
by (-)¥. Then we have QY = w. The adjoint operator is a mapping Ad :
SE(3) x se(3) — se(3) defined as AdrX : TXT™!, where X € se(3), and
T € SE(3), and can be given by

(RW>>< _(RQ) «p + Rv

AdrX = 0 0

(2.4)

It acts to change the frame of reference T associated with an element in Lie
algebra X.

Let G = (V,€) represent the interaction graph of MASs, where V =
{1,...,n} is the node set and € C V x V is the edge set. (j,7) € & if and
only if ¢ can detect the relative information from j. N; ={j € V: (j,i) € £}
represents the neighbor set of 4, and its cardinality is denoted as |[N;|. A
configuration in R? of the nodes in V is denoted as p = [p?,--- ,pl]¥, where
peR™ p, € R ¢ =1,---,n. Based on above, a formation in R? is given
by a graph G and the corresponding configuration p, and is denoted as (G, p).
Given a nominal configuration, denoted as r € R™, r = [rI . rI|T with
r; € R?, the nominal formation is denoted as (G, 7).

Notations: The Euclidean norm of a vector € R” is denoted as ||z||.
x X y denotes the cross product of vectors x € R™ and y € R". The Euclidean
induced matrix norm of A € R™™ is denoted by [|A||. A ® B denotes the
Kronecker product of matrix A and B. R denotes the reals and N denotes
the natural numbers. |Q| denotes the cardinality of the set Q. For two sets
01,0y C R, define Q\Qy := {z € R"|z € O,z ¢ Q}. diag(---) denotes
a diagonal matrix. For a real number s, [s]| denotes the smallest integer
larger than or equal to s. Let {Z} represent the inertial frame attached to
the earth, and {B;} represent the body-fixed frame attached to agent i. The
state expressed in {Z} is denoted as p;; then its expression in {B;} is denoted
as p;. The relative state of agent j with respect to agent i is defined as
pi; = pi —pj» if pi, p;j € R3 and p,; represents the corresponding state
given in {B;}. I, € R™" is the identity matrix and 1, € R" is the vector
with all entries equal to 1. For a function f : Ry — R™, f(r~) and f(r")
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denote, respectively, the limit from below and above at the point r € R,
ie., f(r7) =limy » f(t) and f(r*) =limy, f(t). tr(-) represents the trace of

a square matrix.

Definition 1 (Affine Image). ([13]) The affine image of the nominal configu-

ration 7 € R™ in R? of n nodes is defined by
Ar)={peR™:p=(I,® A)r +1,®b, A€ R™ becR?}.

Definition 2 (Target Formation). ([12]) The time-varying target formation

of the nominal configuration r € R™ in R? of n nodes is defined by
pr(t) = [I, @ A*(t)]r + 1,, @ b*(1). (2.5)
Here A*(t) € R™? and b*(t) € R? are continuous w.r.t. t.

For a directed graph G, a node 7 is said to be k-reachable from a non-
singleton set U if there exists a path from a node in i/ to i after removing any
k — 1 nodes except for i. In addition, G is k-rooted if there exists a subset of

k nodes called roots, from which every other node is k-reachable.

Definition 3 (Graph Laplacian). For a nominal formation (G, r) in R¢ con-

taining n nodes, L is its associated graph Laplacian if it satisfies (L ® I;)r = 0,

and
0, i#3j, (J,0) €€
[L]Z] = —(lij7 ’L 7£ j, (], Z) & 5 (26)
ZkeM Ak 1= ]

Here, [L];; represents the (i, j)-th entry in matrix L and a;; is the edge weight
of (,7). Furthermore, if G is undirected, the symmetric matrix L is called a

stress matrix.
Assumption 1. The undirected graph G is globally rigid."

Assumption 2. The directed graph G is (d 4 1)-rooted.

T The definition of global rigidity follows the one used in [73].
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Lemma 1. ([73]) Consider an undirected graph G containing n nodes with a
generic configuration p in R, n > d + 2. Under Assumption 1, there always

exists a stress matrix L of (G, p) with its kernel of dimension d + 1.

Lemma 2. ([13]) Consider a directed graph G containing n nodes with a
generic configuration p in R?, n > d + 2. Under Assumption 2, there always
exists an associated Laplacian matrix L of (G, p) with its kernel of dimension

d+1.

Lemma 3. ([74]) Every singular value A of a matrix A € R"*™ satisfies
(L4 [1All) 7" < 1AL < (1Al (2.7)
Here || A||, stands for the p norm of A.

Consider an MAS containing n mobile agents maneuvering on SE(3). Each

agent is modeled as an underactuated dynamic rigid body as follows
pi = Uy,

. _ (2.8)
RZ:RzQ“ ’l:l, ,n.

Here, p; € R? represents the position of the i-th agent, R; € SO(3) represents
the attitude, u; € R3 represents the linear velocity, and Q; € R**3 satisfies
Qi = (@;)x, with @; € R3 representing the angular velocity given in body-fixed
frame {B;} to be designed. In addition, each agent obeys the nonholonomic
constraint

Here E; € R3*7 is determined by the mechanical structure of the system.
More specifically, if the rigid body can provide one independent direction in
translation along the first axis of R;, then ¢ = 1, and E; = e;; and if it can
provide two independent directions in translation along the second and third
axes of R;, then ¢ = 2, and E; = [eq e3]. Here e; € R? is an unit vector with
the j-th element being 1. v; € R? is the magnitude of the linear velocity along

each independent axis to be designed.
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Assume that the MAS is connected by a graph G = (V,£). Choose n;
agents as leaders and the rest ny = n — n; agents are considered as followers.

Denote V; = {1,...,m} as the leader set and Vy = {n; + 1, ...,n} as the fol-

lower set, satisfying V =V, UV;. p, = [p], ...,pZZ]T represents the states of the

leaders and py = [p} ,,...,p,]" represents the states of the followers. Cor-

respondingly, p; = [pi”, ..., p;I]" represents the leaders’ target configuration

and ps = [pilyq, 0"
}T

represents the followers’ target configuration. Then,
we have p = [p/,p7]" and p* = [p;”",p}"]". The affine formation tracking

problem considered in this work is defined as follows.

Problem 1 (Affine formation tracking). Given a nominal formation (G, r) in
R3, choose n; agents as leaders moving along specific trajectories pj(t) deter-
mined by the target formation p*(¢). Design the associated Laplacian matrix
L and design the control protocols for the rest agents (followers), under which,

the trajectories of the followers py(t) converge to the target configuration p}(t).

Definition 4 (Affine localizability). ([12]) The nominal formation (G,r) is
affinely localizable by the leaders if for any p = [p/",p}]" € A(r), py can be
uniquely determined by py.

Given a set of points {p;}"_, in R? the affine span of these points, denoted

by S, is

Sz{iaipi:aieR, Zn:aizl}.
i=1 i=1

The affine span S can always be translated to contain the origin, which forms
a linear space. The dimension of the linear space is defined as the dimension
of the affine span, and we say points {p;}?*_, affinely span R? if the dimension

of its affine span is d.

Assumption 3. For nominal configuration r = [rT .- +T]T with r; € R,

r'n

{r;}, affinely span R%.

Lemma 4. ([12]) Under Assumptions 1 and 3, the nominal formation (G, r)
is affinely localizable by the leaders if and only if (iff) {r;}icy, affinely span
R,
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Lemma 5. ([75]) Under Assumptions 2 and 3, the nominal formation (G, r) is
affinely localizable by the leaders iff all the roots are chosen from the leaders

set V.

Referring to Definition 4, affine localizability indicates that given a nom-
inal formation (G, r), the configuration of the MAS can be manipulated by only
a part of the agents’ (leaders’) states p;. Referring to Definition 2, the target
formation p*(t) is determined by the nominal configuration r as well as the
transformation matrix A*(¢) and the translation vector b*(t). Since r is given,
in order to specify p*(t) by pj(t), the mapping from p; to (A*,b*) must be
bijective, which can be guaranteed by Assumption 1 and Assumption 3, or

Assumption 2 and Assumption 3. More details can be found in [75] and [12].

2.2.2 Affine Formation under Fixed Topologies

In this section, we consider the affine formation tracking problem under
fixed topologies. Since the controllers are designed directly on se(3), we in-
troduce auxiliary variables T;; € SE(3) and X;; € se(3) as follows

Iy pi Qf piyj—w
Tm:{o?’ f},Xi:[o o | (2.10)

where p;; and p;; represent the relative position and velocity measured in body-
fixed frame {B;}, respectively; and @; = R u; represents the linear velocity of
agent i measured in {B;}. Let R; = [ay ay; az)], with az, ay, a; € R3, be
the attitude of agent i expressed in inertial frame {Z}, Ry € SO(3) represent
the desirable attitude of agent i expressed in {Z}, and R}, = R! Ry; represent
the desirable attitude of agent i expressed in {B;}, where RY, = [b,; Byi b.i]
with by, I_)yi, b.; € R? the corresponding vectors to be designed. Consider-
ing the underauctuated property, we assume the rigid body can provide one

independent direction in translation alone a.;. Then, R, is given as follows:

— Bzi - Bzz BLL‘Z 7 7 1
e B BB g Gy
| B 102 X Baill
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Here B,;, B,; € R?; B,;, = V; with
Vi = 1ij(kepyj + U (Ade, Xi5)Us) (2.12)
ieN;
aiming to regulate axis a.; to direct at the target configuration; U; = [I3, 03],
Us = [0,0,0,1]7, and I;; is (i, j)-th element in the associated Laplacian matrix
L; and B,; can be designed based on the objective of the operation. Based on

above, the control protocol in frame {B;} is given as

: 1 -
i = —kgrer, — ()", vi=——E]V, (2.13)
i

where ), = R}, —&

Lol —Qy, and eg; = (R — RY;)Y is defined as the attitude

error of agent 7. Since all information required in controller (2.13) is included
in matrices 7;; and X;;, which can be obtained by the detections of agent ¢ via
its onboard sensor, no global reference nor communication device is needed.
In addition, the relative velocity information required in controller (2.13) is

also expressed in local coordinate frames.

Remark 1. It should be noted that the desirable attitude (2.11) is given
for the situation when the underactuated rigid body has one independent
direction in translation. It is easy to generalize (2.11) to the case when the
number of independent directions is two. For example, suppose system (2.8)
can move independently along a,; and a,;. Then, R’ can be given as

7 Bzz 7 Bzz X Bzz 7

i = T=—T, i — ==, l:l_jmz XBZ" 214
1Bl 1B X bl : (214)

Here, B,; = V;, and B,; € R? can be any vector which is not perpendicular to

B.;.

In the following, we will show that the affine formation tracking problem
is solved by controller (2.13), with R; converging to the desirable attitude Ry;
given in (2.11) and position py(t) converging to the target configuration p}(t)
for all the followers.

Attitude Convergence:
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First, we discuss the attitude convergence of each agent in its body-fixed
frame {B;}. Consider Lyapunov function Vx; = tr[I — Ril]. Using Rodrigues’

formula, it can be shown that Vg; = 1 — cos ||z;]|, and
leril* = sin® [|z;]| = (2 — Vi) V. (2.15)

Here, R} = e(®)x with ; € R3. Let ||z € (=7, 7). Then, Vg; > 0, Vg, = 0
iff ||z;]| = 0, which implies R, = I, or equivalently, Ry = R;. Furthermore,

assume ||z;|| # m. Then, there exists a ®; < 2 satisfying 0 < Vg; < ®; and

1
ZSVRiSZ

— <I>-“€RiH2' (2.16)

_1H
R,
g 17

Refer to [69] for more details.

Taking the derivatives on both sides, and combining with (2.8), one has

Vi, = tr[—(R4)TR; — RER;] = tr[—(RuQ%) ' R; — RL R:Q] 2.17)
_ 2.17
= tr[— Ry — Ry 4.

Here Q4. = (w%)x, with w? € R3 representing the angular velocity of Ry

expressed in Rgy. Under controller (2.13), we have

Vi, = tr[— R (—kg(eg,) — (Q5,)Y)x — R Q%]

7

= tr[Ry; kr(er:)« + Ry (Ry; Ry, ;) — Ry 2] (2.18)
= tr[Ri kr(eri)x] = —kreher = —kglleri|*.
By (2.16) we have
Vi, < —kaVi,. (2.19)

Here, kg = min(2 — ®;)kg. Since ®; < 2, we have kg > 0. The attitude error
of agent 1 almzost globally exponentially converges to zero except for z;(0) = 7.

Position convergence:

In order to evaluate the convergence of py to the target configuration p7,
the dynamics of all the agents needs to be evaluated in a common frame, which
is chosen as inertial frame {Z} in this case. Referring to (2.8) and (2.9), under
local controller (2.13), the dynamics in {Z} is in the form of

pi = RiEv; = —i'sz'EiE;rVia eV (2.20)

)
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Since

: d(RTpm) T, ST T OT pT
B: = i — RTp.. T — R (ws — ws) + QTR ..
Dij dt Rz Dij + Rz Dij Rz (ul ’LL]) + ) Rz Dij (221>
= u; — Rl uj + Q by,
combining with (2.12) leads to
Vi= D li(kepi = Rl'wj). (2.22)
ieN;
Substituting (2.22) into (2.20), we have
-:——R EE[RI " lij(kepi; — uj) = R E.E[RI> " bij(kepi; — b5)
JEN; JEN;
- Z Lij(kepij—pj )+ Z Lij(kepi; — pj)— R Li ETRT Z lij(Kepij — Dy)-
T jen, Vi jen; JEN;
(2.23)

Referring to (2.11), we have
= Z lij(kepij — p5) L(RdiEi — RiE,E{ R{ Ry E)|6]l,  (2.24)
]EN i
where 0, = Z lij(kepi; — pj). Let ¢ = ZjeM- lijpij, © € Vy, represent the
formation eri"f)j;/iof agent i, and multiply 7; on both sides of (2.24). We have
= —kee; + [RuE; — RiE;EF R Ry B4 |04
= —kee; + Ri[R! Ryi — RL R E; |64 (2.25)
= —kee; + Ri(—eri)« Ei| 6|
Consider Lyapunov function V), = —e ¢;. Taking the derivatives on both sides
gives
V, = —keele; + €L Ri(—eps) x Fil| 04|
< —kelleill® + lleillllef | (Relleil] + NG imvinm) (2.26)
< —(1 = llewlDkelleill® + WNillimvimllersl [ e:ll-
Here v, = max(||vj]|), and e, = erE;. Since z; € (—m,m), ||ey] =
leriEi]| < 1, there always exist positive constants k. and k, satisfying (1 —

||€§Ri||)k5c — k. > 0 and

Vo < —((1 = llegalDke = klleill + & ller:l. (2.27)
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As a result, ¢ is ISS w.r.t. the attitude error. Since eg; is almost globally
exponentially stable, €; globally converges to zero as t — oo except for x;(0) =
.

Based on the above discussion, the first main result of this work is sum-

marized as follows.

Theorem 1. Consider the MAS in (2.8), with four agents chosen as leaders
moving along the target configuration pj(¢) and the rest of agents considered
as followers driven by controller (2.13). If (i) the nominal configuration (G, r)
satisfies Assumptions 1 and 3 and (ii) leaders’ nominal configuration {r;};ecy,
affinely spans R?, then the followers’ state p;(t) converges to the target con-
figuration p}(t) = —(Lysf ® I3)"' (L @ I3)p; (t) almost globally. Here, Ly and
Ly are obtained by the decomposition of the Laplacian matrix

Ly Ly
L= : 2.98
[ Lp Lyy (2.28)

where L;; € R™*™ represents the submatrix corresponding to the leaders, and

L¢s, L, and Ly have compatible dimensions.

Proof. Referring to Definition 1, A(r) € ker(L ® 1), and dim(A(r)) = d* + d.
By Lemma 1, dim(ker(L ® I)) = d* + d. Thus, A(r) = ker(L ® I,). Since
{ri}icy, affinely span R* by Lemma 4, for p(t) € A(r), ps(t) is uniquely
determined by p;(t). In addition, p(t) € A(r) implies p(t) € ker(L ® 1;). Then
we have

(Lff &® Ig)pj;(t) -+ (Lﬂ (029 Ig)p?(t) = 0. (229)

Since p}(t) is unique, L;; must be nonsingular, and the follower’s target con-

figuration p}(t) can be written as
pi(t) = —(Lgy ® Is) " (L @ I3)p (1) (2.30)

By (2.27), €, i € Vy, globally converges to zero as t — oo, except for z;(0) = .
Then,

lim 37 (pi(t) — (1)) = 0. 231)
JEN;
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Since L is nonsingular, and leaders move along the target configuration p; (¢),

(2.31) can be written as

lim py(t) = =(Lyy ® I5) "' (L @ Is)p] (¢). (2.32)
Compared (2.32) with (2.30), the proof is completed. O

Remark 2. Theorem 1 can be established under Assumption 2 and Assump-
tion 3 with all the roots of G chosen from the leader set V; when the underlying

graph G is directed.

Remark 3. Compared with the existing results in [75] and [12], controller
(2.13) does not include global information even when leaders’ velocities are
time-varying; and compared with [76] and [77], which required leaders to move
along some prescribed polynomial trajectories, there is no restriction on lead-
ers’ trajectories. In addition, taking advantage of the geometric controller

design, the singularity problem in [12] is avoided in this thesis.

Remark 4. Assumptions 1 and 2 are milder than the ones in [13], [12] and
[75], respectively. Specifically, for an undirected graph, the globally rigid
condition in Assumption 1 is milder than the universally rigid condition in [13],
[12]. For a k-rooted graph, no centralized computation is needed to guarantee
the semi-positive definiteness of the Laplacian matrices. Since the nominal
configuration r is predetermined and the graph is directed, the associated
Laplacian matrices can be calculated locally by

Z lijrij = 0.

JEN;
2.2.3 Affine Formation under Switching Topologies

One advantage of the proposed method is the exclusion of centralized com-
putation when the edge weights are selected for the associated Laplacian ma-
trix of a rooted graph (Remark 4). Inspired by this property, we study the

affine formation under switching topologies in this section.
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Consider an MAS containing n agents in R%. Suppose that there exist an
infinite sequence of non-overlapped time intervals [¢,,%,+1), ¢ € N, satisfying
to = 0,0 < 719 < tyy1 —t; < 1. During each time interval, the topology
is fixed; and at each time instant ¢, the topology switches. 7 is called the
minimum dwell time. Let s(t) : [0,00) — {1,...,m} denote the switching
signal, and let G := {G',...,G™} represent the set of all possible topologies of
the MAS, where G*() € G represents the graph at time ¢.

Assumption 4. Each graph G' € G satisfies Assumption 2.

Since the number of agents is finite, under Assumption 4, the number
of possible graphs in G is finite. In practice, it is hard to predetermine the
underlying graph for each time interval, especially when the MAS manuevers
in an unknown environment. The d-rooted graph constructed at initial time
might face edge loss caused by blocking or range limitation. Therefore, before
giving the main result, a reconstruction method which can preserve the d-

rooted property against unexpected edge loss is proposed in Algorithm 1.

Algorithm 1 Reconstruction of a d-rooted graph

1: Initial: Construct a d-rooted graph G = (V,€). Denote the root set
R ={ri,r2,...,7q}. Assume i € V\R, j €V, (j,i) € £.
while Edge lost: (j,4) is removed from €. do

Vg e V\R, q #£i

if (i,q) € € and (j,q) ¢ £ then

add (7, q) to &.

end if

pick one node p € V and (p,i) ¢ &, add edge (p,i) to &.
7. end while

An example of reconstructing a 4-rooted graph by Algorithm 1 is shown in
Figure 2.1. It can be seen that the 4-rooted property is maintained. Referring
to Algorithm 1, when an edge (e.g., (j,%)) is lost, for any node which does
not belong to the root set, it needs to know only whether ¢ or j belongs to its

neighbor set. Therefore, the d-rooted graph is reconstructed locally.

Proposition 1. Following Algorithm 1, graph G preserves the d-rooted prop-
erty.
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Remove (6,5)
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Remove (6,5) @
9.@
Figure 2.1: Reconstruction of a 4-rooted graph, with R = {1,2,3,4}. The

graphs are labeled as G¢, i = 1,2, 3, 4, clockwise.

Add (7,5)

Proof. The essential to prove the d-rooted property remains for graph G after
reconstruction is to provide that there still exist d disjoint paths from the node
set R to every other node belonging to V\R.

After removing edge (7,4) from &, for a node that does not need (j,4) to
complete a path from R, it is still d-reachable from R.

For node ¢ that needs (j,7) to complete a path [, from R, denote V, as
the set which includes all the nodes in this path and lg/ as the segment of [,

which starts from ¢’ and ends at ¢. Consider the following cases:

1. Remove d — 1 nodes from V\V,

When (j,1) is removed, j is still d-reachable from R. Thus, in this case,
J is still reachable from R. If node ¢ is directly connected to ¢, by line 5,
an edge (j, ¢) has been added ( (4, ¢) ¢ £ in the original graph) and node
q is reachable from R through j. If node ¢ is not directly connected to i,
path [, leads it to a node ¢’ which is directly connected to ¢; then, node

q is reachable from R through (j,¢') — lg/.

2. Remove d — 1 nodes from V, at least one of which belongs to V,

At least one node is removed from V,, and thus at most d — 2 nodes are
removed from the rest of the graph. For the rest of the graph, there exist
d — 1 disjoint paths through which node ¢ is reachable from R. Thus,

in this case, ¢ is still reachable from R.
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For node i, if (j,4) is needed to complete a path from R, we consider the

same two cases as follows:

1. Remove d — 1 nodes from V\V;

Since every node other than i is d-reachable after line 5 in Algorithm 1,

line 6 makes node ¢ reachable through p.

2. Remove d — 1 nodes from V), at least one of which belongs to V;

The proof is similar to case 2 for node ¢ above.

The above analysis covers all kinds of nodes in V\'R, and thus, the recon-

structed graph is d-reachable. O]

After the d-rooted graph is reconstructed, the edge weights of the associ-
ated Laplacian matrix need to be recalculated locally by > jen; Tiy = 0. For
agent 4, it only needs to know who belongs to its neighbor set N; and the
nominal configuration r. Since both the d-rooted graph and the associated
Laplacian matrix can be reconstructed locally, the study of affine formation
under switching topologies is of practical significance.

Denote the reconstructed graph at current time instant as é Then the

value of switching signal s(¢) is determined by
= {j S {17"' 7m}|g~:gj}> (233)

and the associated Lapacian matrix is denoted by LM € R. L, represents
the associated Laplacian matrices at .

According to Theorem 1, during ¢ € [t,,t,+1), the formation error is ISS
w.r.t. attitude error. Therefore, in order to guarantee the convergence to the
target configuration, the magnitude of attitude error needs to be small, which

is provided in the following Lemma.

Lemma 6. Consider the attitude dynamics described in (2.8), with the an-
gular velocity given in (2.13). The length of time intervals, during which the
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attitude error ||eg,|| is larger than a, 0 < a < 1, is uniformly upper bounded
by a positive constant h, given by

2v1 — a?

he =
kRCLQ

(2.34)

Proof. Referring to (2.15), we have

VRizl_\/1_||€R¢||2 ,OSVRigl; VRi:1+\/1_|leR¢||2 71<VR¢<2‘

(2.35)
By (2.18) and (2.35), for 1 < Vg, < 2, we have

dy/1— HGRi 2

dt

< —klle, | (2.36)

The time h, for Vg, to travel from an initial Vi, (tg) > 1 to 1 is equal to the one
for ||e,|| to increase from a constant a; < 1 to 1. Let V; = /1 — [[en,[%, hy,
is equal to the time for V; to go from /1 — a,2 to zero. For V; € (0, /1 — a1?],
we have

dvi

= ka1 = V) < —kal = (1 - @)

V;(t) — V;(t()) S —k;Ra12(t — to)

(2.37)

Then, h}, can be estimated by

0—+/1—a? < —kgai*(h), — 0)
< m. (2.38)

“ 7 kpay?

Similarly, for 0 < Vg, < 1, the time k2, for Vi, to go from 1 to Vg, (¢') < 11is

equal to the time for |leg,|| to drop from 1 to a constant as, and it is upper

bounded by
ey

h? 2.39
< Vioe (2.39)
Thus, for VRz(tO) S (172)7 ”eRi
and the period of time during which |leg,|| > a is h, = h} + h2 < 2=

kR(lz
For VRi(tO) € [071]7 HeRi

will first increase to 1, and then decrease,

will decrease directly, and the time during which
V1—a?

kra? °

ler,|| > a is upper bounded by h, = h2 <
2v/1—a? ] ]

kra?

To summarize, for any Vz, € [0,2), we have h, <
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Consider piecewise Lyapunov function V,(t) = 3% €%, ¢ € [t,, t411), which
is quadratic of the position error under current topology G*® and the associ-

ated Laplacian L. Take the derivatives of both sides
V. = —k,eTe? + ¢1Te,
< —(1 = [len,, IDkellell® +ny Nl Nl] (2.40)
< —(1 = llen,, IDkellell® + kElleR, 1P + k]l |

—((1 = llef,, ke + ED N + kEler,, |1

Here, e, (8] = max [ (O] N = | maxc Ni(o),
Ni(t) = |N; ()| vim (t)lim (t), and 2vkTkE = n;N,,,. The above equation implies
the ISS property of the formation error €? w.r.t. the attitude error ||eg, || when
there exist positive constants k¢ and k¢ that guarantee (1 — ||e, ||)k. + AZ is
positive. Such &k and k¢ always exist since ||e; || < 1. In addition, by (6),
during each time interval, ||e%; || is upper bounded by a constant a, a < 1 for
at least ) — h, duration if 7y > h,. Let Icg = (1 —a)k.+ k2, for a large enough
To, then, the formation error € is ensured to converge with a rate higher than
ki for a certain period.

In the above, the dynamics during each time interval is discussed. Now,

we focus on the system behavior at each switching instant. Assume the leader

set V) is fixed; then, at each switching instant ¢,

V(th) = %Eq”gw _ % e fg)ef(t;>)T (2 @ L)est])),  (241)
and
Vity) = e e = 2 (W @ Lesty) (L © Bestty)), (242

where ey (t) = ps(t) —p}(t). Since the nominal formation is affinely localizable
by leaders, p3(t)) = pj(t;) and e;(t]) = ef(t,) = es(t,;), which imply

L at a 1\ at a ~1_q~
Vs(tq)—§<(Lff®I3)(Lff®]3) € ) <(Lff®13)(Lff®]3) € )

< fEVe(ty).
(2.43)
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rising interval

V(%)
Vo) )
V.5) transient effect
V(&)

()

Figure 2.2: Trajectory of V,(¢) under switching topologies

Here f{ = (A4""%)2 and AY""7 is the maximum eigenvalue of L%(L(}})_l.
Combining the convergence property during each time interval and the
transient effect at each switching instant, the essential to guarantee the con-
vergence of the formation error is to make sure that the dwell time 7y is long
enough, so that the decrease during each interval can dissipate the transient

effect at the switching instant (see Figure 2.2).

Theorem 2. Consider the MAS in (2.8) with four agents chosen as leaders
moving along the target configuration pj(¢) and the rest of agents considered as
followers and driven by controller (2.13). Assume (i) the nominal configuration
r satisfies Assumption 3, (ii) the set G satisfies Assumption 4 with the roots
for each G € G chosen from the leader set, and the switching signal s(t) is

generated by (2.33), (iii) the dwell time 7, satisfies

2k, A &
1 __'ha YRR
To > ( + /{Zp ) + /{Zp + 2/{Zp

(2.44)

where ¢y > 0 is a constant, Ay = max )\;Ic—lﬁq’ k, = mqin kL, ki = (1 —a)ki+k,
kd — k2 >0, ke = max kZ,
q

21— a2
hy= Y2 "9 (2.45)
kRa2

0 < a < 1is a constant, and 2vkikd = nyN,,. Then the followers’ state

ps(t) converges into a small ball centered at the target configuration p}(t) =
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—(Lyp,®13)" 1Ly, ®13)p; (t) almost globally. Here Lys and Ly, are obtained
by the decomposition of the Laplacian matrix at initial time ¢y as follows:
Lo = { Lo Lag, 1 , (2.46)
Lpy, Ly,
where Lj, € R™*™ represents the submatrix corresponding to the leaders,

and Lyy,, Ly, and Ly, have compatible dimensions.

Proof. Consider the following piecewise Lyapunov function candidate
1 qT q
‘/G(t) = 56 €, te [ttbthrl)' (247)

Separate the time interval [t, t,11) into two parts; namely [t;, 2) during which

the attitude error ||e, || > a, and [tq, t411)\[t], t2) during which the ISS prop-

qQ’7q

erty of the formation error is guaranteed with a lower bounded convergence

rate.

If [(b q)%(b fOI'tE[tq,tq)

t
Ve(t) S e—2kg(t—tq)‘/€(t;-) + k,g/ —2k( He HQ(T)dT
tq

t
< 6—2kg(t—tq)‘/€(tt—zl—)+a2kg/ 6—2kg(t—7)d7_ (248>
t

q

= fL(OV(t]) + AL (1),

€1

where fd(t) = e7 (=t A4 (¢) = “;k’%g(l — e72(=t))  In addition, f4(t) =
4 (tl) () (tl) fort € [t}l,oo); a(t) =1, AL (t) =0 for t € [to,t,).

If [t1,t2) # 0, for ¢ € [t},12), we have

q’7q q’7q

Ve < Klllep, |I” + k2l
t

Vilt) < Ve 4 k[ ey ()P (2.49)
< fat)Ve(ty) + A%(t) < FRt)Ve(t)) + AL (1),
where f(t) = e2k(~t) AL (t) = Zk—é(e%g(t*t‘l’) — 1), Fg(t) = f§(t) 14 (t;) and

AG (1) = fa()AL (1) +A%(t). Inaddition, f3(t) = f3(t7) and AG(t) = AG(t3)
for t € [t7,00); fg(t) =1 and A§(t) = 0 for t € [to,1,).
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Similarly, if [t7,t,41) # 0, for t € [t7,t441),

Vi) < FLOVAR) + AL < FAOVAE) + AL, (250
where eq2<t) _ 6—2kg(t—t3)’ Agz (t) = a;g“i(l _ 6—2kg(t—t2)) Fq( ) = ( ) &1)( )
and AZ'(t) = f2(t)AL (t2) + A2 (t). In addition, f2(t) = f2(te11), AL(t) =
A (tgg) for t € [tgr1,00); fo(t) =1, A% (t) =0 for t € [to,17).

By Lemma 6, t2 — t} < hq, (2.50) satisfies
Vi(t) < fa (D f2 1)V () + AL'(1)
(2.51)

R e (O RNA)

As a result, if ¢, is large enough, for any p € (0, 1), there exists a 7(x), such
that for any t € [t,,t, + 7(1)),

Ve(t) < pV (ty) + AL'(1), (2.52)
and by (2.51), 7(u) can be computed by
e~ 2P (r—ha)+2eha <y 7 > Inp + (—g + 1D)hyg. (2.53)
In addition, since
(1) < Fa(t) < fA(1) < e and FA(t) < F(t) < fa(t) < ™M, (2.54)
for any ¢ € [t,, t,+1), ¢ > 1, Vi(t) is upper bounded by
Vi(t) < eereV(th) + A7 (1), (2.55)

where AY(t) = A (t) for t € [tg,t1); AY(t) = AL(t) for ¢ € [t),12); and
AY(t) = AL'(t) for t € [ta, tgi1).

At each switching instant t,, by (2.43), we have V.(t}) < f}Vc(t,). Com-
bine with (2.52), for the dwell time 7 satisfies (2.44)

Vi(tt

q

) < e CotZkeha)y/ (¢ ) 4 AT (2.56)
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where A1 fLA‘g;l/(tq). Then, for any t € [t;, to41),

V(1) < V(1) + AT (1)

< e OVi(t] ) + AT 4 AT(t)
(2.57)

IN

e~ P02kl V(11 ) + e PATE 4 2R AT L AT ()

< e—(q60+(q—l)2k5ha)v<ta-) —|—A(t),

where A(t) e—((a=1)%0+(a=2)2kcha) A4 o—((a=2)00+(a=3)2keha) A1 4. . . | e2kcha AT—1 4
A?(t). In addition, since V2(t5) = VO (ty) = VO(to), let Vo = V2(t,) represent
the initial value of V.(¢). We have

V(1) < e~ (@otla—D2keha) i A(1). (2.58)

For t € [ty, 1), referring to (2.48), (2.49) and (2.50), V, increases during ¢ €
[t4,t2) and decreases during t € [tg, t5) U [t2,t1). By Lemma 6, V, is bounded.

Then for any dwell time 7y satisfies (2.44), we have
V.(t) < eV, + AL, (2.59)

The convergence property is guaranteed for ¢ € [tg, 00). In addition, A(t) is
bounded for all ¢ € [ty, 00), and the formation error converges to a small ball
entered at the origin almost globally. Based on the above analysis, we reach
the conclusion that the followers can gather around the target configuration

with the convergence error determined by A(t). The proof is completed. ]

Remark 5. Referring to (2.43), centralized computations are required for f{

D4 are infinite, it

at each switching instant. Since the possible choices of L(S
is difficult to give a precise bound on f. By constraining the magnitude of I;;

as |l;;] < for all i,j € V;, an estimation of ff can be given based on Lemma

3 as
# < )\ < nyl. 2.60
1+nff_ I ( ) )
and
I < npl(1+ ngl). (2.61)
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Remark 6. According to (2.52), the lower bound of dwell time 7 is given by

2k, In); b

(14 2 .
o=+ AT

Vha +

Here k, is the convergence rate of ¢ when the attitude error ||e}; || is smaller
than a, and h, is the maximum duration when the attitude error is larger than
a. Both of them are determined by system dynamics, and a higher convergence
rate leads to a smaller lower bound of 7. A smaller 7, can also be obtained by
a smaller k., which is introduced by using the Young’s inequality. However, by
(2.40), a smaller k. leads to a larger k9; and by (2.48)—(2.50), it further results
in larger convergence error. As a result, there exists a trade-off between the

bound on dwell times and convergence errors.

2.2.4 Simulation Results

In this section, we use some simulation examples to further demonstrate
the effectiveness of the proposed control protocol. Consider an MAS con-
taining several agents maneuvering on SE(3). Each agent is modeled as an
underactuated system as in (2.8), with one independent direction in transla-
tion along its third axis. Four of them are chosen as leaders, moving along
the pre-determined trajectories and the others are followers, governed by the
proposed control protocol in (2.13).

Case I: Affine formation under the fixed graph

In this case, the agents are connected by a 4-rooted graph with nominal

configuration 71 = [4,0,3]7, ry = [—2,%,—%?, ry = [2,—\%,—1]T, ry =
[0, \%, —%]T, ry = [—%, —%, %]T, re = [%, —%, \%]T The corresponding nomi-

nal formations are shown in Figure 2.3. The leaders move along some specific
trajectories and the followers need to track the time-varying formation deter-
mined by leaders. The initial states for the agents are given by p; = [15, 15, 0],
p2 = [—15, —1570]Ta p3 = ps = [15, —15a0]T7 ps = ps = [—15, 15>0]T-

The trajectories of the agents are shown in Figure 2.4 (a). The dynamic
tracking as well as time-varying formation structures are realized. The for-

mation errors and attitude errors are shown in Figure 2.5. After a transient
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process, the attitude errors converge to zero, which means that the axis along
which the thrust is provided, has been directed at the target configuration.
The formation errors converge to zero as well.

Case II: Affine formation under the switching graph

In this case, the agents are connected by a switching graph with the switch-

ing signal s(t) = mod (q,4) + 1, t € [ty t4+1), and the possible graphs
G = {G',G?,G3,G*} as shown in Figure 2.1. The nominal configuration
s given by o= [0717_3]T? Ty = [_17_371/2]T7 r3 = [17_37_1/2]T7

ry=[0,2, 17, rs = [-1/2,—1/2, 2] r¢ = [1/2, —1/2, =47, r; = [1/4,0,4].
The parameters in (2.44) are chosen to be k. = 4, a = 0.4, o = 0.1, k. = 0.01,
kr = 8. The initial positions are given by p; = p3 = ps = pr = [15, —15,0]7,
pa = py = [15,-15,0]7, pg = [-15,—15,0]T. Figure 2.4 (b) shows the tra-
jectories of the agents, which tells that dynamic tracking of a time-varying
formation is realized. The formation errors and attitude errors are shown in
Figure 2.6. The attitude errors have a jump at each switching instant and
converge very quickly after the switching; while the formation errors converge

to a small ball centered at zero.

T5; = 8.0598

5 3.0143

Lo — oW

2 I52 = 10.0000 Is3 = —6.9640
log = ~2.6646 ™3

0 2 0.0441
y < 2 4

Figure 2.3: Nominal formation for the 4-rooted graph. Here, the arrows rep-
resent the directed edges in the graph and the edge weights are labeled aside.
The nonzero eigenvalues of the associated Laplacian matrices are —8.9898 and
10.9084.
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(a) Trajectories of the agents under the 4-rooted graph.
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(b) Trajectories of the agents under the switching topology.

———
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Figure 2.4: Trajectories of the agents. Here, the solid lines represent the
trajectories of the followers, the dash lines represent the trajectories of the
leaders; the squares represent the initial positions of the agents and the circles
represent the positions of the agents at a same time instant. The long arrows
in (a) represent the edges among agents.
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Figure 2.5: Convergence errors of the followers under the 4-rooted graph.
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Figure 2.6: Convergence errors of the followers under the switching topology.
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2.3 Affine Formation under Event-Triggered
Mechanism

An ETM for affine formation control of single integrators is presented in
the following. The motivation of the following work is derived from a resource-

efficient concern.

2.3.1 Problem Formulation

Consider a group of N agents in R? with single-integrator dynamics under

a signed directed graph G = (V, €):

where p; € R? denotes the position of agent i and w; is the control input. The
initial condition of the configuration is given as p(0) = py € RV, Furthermore,
assume that d > 2 and N > d+2. The first problem considered in this section

is described as follows:

Problem 2. Design event-triggered control protocols w;(t),i € Vg, such that
the position ps(t) of followers can track the target configuration p}(t) =

[p}‘\}fﬂ, o, piE]T practically, i.e., there is a constant e > 0 satisfying

lim sup, ., ||p}(t) — ps(t)|| <e.

The emulation-based approach is used to design ETM for the system
in (2.62). First, a continuous-time control protocol is introduced to ensure
asymptotic tracking of the target formation. Then it will be transformed into
an event-triggered one.

In the rest of this chapter, we always assume the conditions of Lemma 5
are satisfied and the weights are selected based on (2.6). Then, the associated

signed Laplacian can be expressed as

O(d+1)><(d+1) O(d+1)><(Nfd71)
L= L i (2.63)
L(N—d—l)x(d—H) ‘ L(N—d—l)x(N—d—l) . .
fl ff
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By using Lemma 5, one has that L is nonsingular, and
Ly (t) + Lygpy(t) = 0, (2.64)
where Efl = Lfl X Id and Eff = Lff X Id.

Lemma 7 ([75]). Under the following continuous control protocols:

1 .
wi(t) = =7 ) ailpi(t) = p;(t) — p;(t)], (2.65)
[ JEN;
where L;; # 0 is the (4, 4)-th element of Laplacian L, the tracking error §¢(t) =
ps(t) — E;}E 7P} (t) of followers converges globally and exponentially to zero.

Notice that there are two different parts in (2.65), namely, the (com-
bined) relative position information y;(t) = >_;cx. aij[pi(t) — p;(t)] and the
in-neighbor’s absolute velocity information p;(t),j € N;. For these two kinds
of information, different ETMs are designed as follows.

Since y;(t) can be deemed as local information, agent i is able to measure
it continuously. At each triggering instant t}'%, k; € N and 7 € Vg, the relative
position information will be sent to the local controller to update the control

signal u;. The ET condition is given as
lei(®)])> < ov,i € Vy, (2.66)

where o7 > 0 is a threshold constant, and the measurement error ¢;(t) =
Gi(t) = wi(t),t > 0, with gi(t) = y;(t},),t € [th,, th,11)-

The velocity information p;(t),7 € V, is difficult to be continuously ob-
tained by out-neighbors. Therefore, agent ¢ will first measure its local velocity,
then at each triggering instant T,ii, k; € N, broadcast its own velocity infor-
mation to its out-neighbors for their controller updates. The ET condition
is

les(t)]) < o2, €V, (2.67)
with a threshold constant o5 > 0, the broadcast error e;(t) = p;(t)—p;(t),t > 0,

and p;(t) = pi(7h, ).t € [7, 7 1) Then, the event-triggered control protocols
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can be described by

1 1 N
ui(t) = — —L”yi(t) T E ai;p;(t)
k42 K42 ]ENZ (2 68)

- _ Li yi(t) + € (t) — Z ai; (p; () +&;() |, i€ Vy.
“ JEN;

Due to the discontinuity of p;(t), 7 € V¢, under the event-triggered controller in
(2.68), it is difficult to ensure a positive minimum inter-event time for the ET
condition in (2.67). Hence, we consider the following triggering performance

called “separated events”.

Problem 3. Show that the ET conditions in (2.66) and (2.67) yield separated
events. That is, for any given initial state py € RY?, there exist constants

T, € (0,00) and T} € (0, 00) satisfying, respectively,

|{t,}7m N [0.1]

lim sup ; <T, € (0,00),i € Vy,
t—o00
and .
T, M0, ¢
lim sup |{ b b O H <Ty € (0,0),i € V.
t—o0 t

Remark 7. The event-separation property means that there are a finite num-
ber of triggering instants in any finite time interval, thus, it implies Zeno-
freeness of the triggering time sequences. Moreover, it further ensures that
the average triggering frequency can be upper bounded as the time goes to
infinity. Note that if there is a positive lower bound for inter-event times, then

the corresponding triggering sequence must be separated.

2.3.2 Main Result

In this section, the main results will be given to solve Problems 2 and
3. First, the following theorem characterizes the tracking performance of the

event-triggered controllers.

Theorem 3. The practical tracking property in Problem 2 can be ensured by
the event-triggered controller in (2.68) and the ET conditions in (2.66) and
(2.67).
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Proof. By substituting (2.68) into (2.62), one has for each follower i € V;,
git) = —yit) — ei(t) + > age;(t). (2.69)
JEN;
Define €(t) := [eh,0, .-, ex] ", e(t) :=[e],...,ey]T and w(t) = Ly6;(t) with
the tracking error d; given in Lemma 7. Then, (2.69) can be rewritten in the

following compact form:
w(t) = —w(t) — e(t) + Age(t), (2.70)

where A denotes the last (n —d — 1) rows of the adjacency matrix A. Ac-
cording to the ET conditions in (2.66) and (2.67), we have

le@)I* < [Vilow, and [ Aze(®)]* < N Ayl o2

Let V(t) = sw™ (¢t)w(t), then, its derivative along the solutions of (2.62) and

(2.68) satisfies
V(t) < =2V (1) + [[w(@) [le()]| + l[w()]] || Aze()]
< —V(t) +|Viloy+ N || Af]* o,

which implies that the w-system is Lyapunov stable and

1
limsup V'(t) < 2(|V¢|o1 + N ||Af||202) = 50(2).

t—o0

The fact that L;; is nonsingular further leads to
lirtnsupH(Sf(t)H < HE;;HO’O, (2.71)
—00
and the proof is completed. O

To study the triggering performance, we introduce the following assump-

tions.

Assumption 5. For leaders i € V), its velocity p;(t),t € [0,00), is upper
bounded by M,.

Assumption 6. The graph G is an acyclic graph, i.e., there is no path that
begins at a node 7 € V and ends in one of the in-neighbors 7 € ;.
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For the events of relative position information, we can provide positive

minimum inter-event times in the following theorem.

Theorem 4. For a given initial state pg, the triggering instants generated by
the ET condition in (2.66) satisfy

inf (¢, 1 —t,) > To,i

kliréN( k;+1 kl) = 4o,? S Vf’

with some positive lower bound T > 0.

Proof. By definitions, we have

Ya+2
. P ml_y
vi=| ¢+ | =[Ln Lff}[p ]—LfffS—w-
f
Yn
Thus, according to Theorem 3, for any given pg, there is M;(py) such that
|lw(t)]| < My, t € Rsg. Consequently,

19, = [lw(t) + €(t) = Age(®)]

<My + 4/ [Vylo1+ /N [ e

Since ||9:(t)]] < [|y¢(t)]| and HEZ(t?@)” =0 for all © € V; and k; € Z>, one
can obtain that the inter-event times of the ET condition in (2.66) are lower

bounded by %, and therefore, the proof is completed. n

For the analysis of the ET conditions in (2.67), we introduce the following
graph partition algorithm in Algorithm 2.

Recall that both leaders and followers need to broadcast their velocity
information. Thus, all nodes in the graph G are considered in the partition.
In an acyclic directed graph, there always exists at least one node that does not
have in-neighbors. Hence, the m-th layer £,, contains all the agents without
in-neighbors in the m-th acyclic subgraph G,,. Since there are a finite number
of agents in the acyclic graph G, Algorithm 2 must reach an end with finite
layers, and denote the last layer as ¢ € N>;. An example is illustrated in

Figure 2.7. Furthermore, we have the following simple facts of the partition.
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Algorithm 2 Partition of nodes in ¢

L: Initial m =0, Vy =V, & = &€ and Gy = GV, &);

2: Select all leaders as the 0-th layer of agents, i.e., Lo = {i € V;} as the 0-th
layer;

3. while V,, % Lo

m=m-+1;

Generate a subgraph G,,,(V,,, &) where

Vm ={i € V]i ¢ UL,

6: Define the new m-th layer of agents:
Loy ={i € VNNV, =0}

end while
end

®
Q)
@
(a) (b) (c) (d)

Figure 2.7: An illustration of Algorithm 2. Gy(V, &) in (a) decides £y =
{1,2,3}; gl(Vl,El) in (b) with V; = {4,5,6,7} yields £, = {4,5}; g2(V2,€2)
in (c) with Vo = {6,7} yields Lo = {6}; and finally G3(Vs5,&;) in (d) with
V3 = L3 = {7} ends the algorithm.
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Proposition 2. For the layers of agents generated by Algorithm 2,
L. V=Ul_oLu;
2. for any m € {1,2,...,q}, Uier, N; C U;”;()lﬁj.

Based on the analysis above, the event separation property for triggering

sequences {7} }72°_g, 7 € V, is summarized as follows:

Theorem 5. Suppose that Assumptions 5 and 6 hold for the plant in (2.62)
associated with the graph G. For a given initial state pg, the triggering condi-

tion in (2.67) generates separated events for all i € V.

Proof. First, for the leader i € Ly = V), the boundedness of p;(t),t € [0, c0)

guarantees a positive lower bound of inter-event times, which can be given as

. ; ; Vo2 .
kliIéfN(T,ziH —T,) = VO,Z € Lo,

with Mj defined in Assumption 5.

Assumption 6 ensures the feasibility of Algorithm 2; hence, we consider
the agents in £ C Vy. According to the event-triggered controller in (2.68),
for any i € Vy, the events from the ET condition in (2.67) only occur when the
relative position information of agent ¢ or the absolute velocity information
of its in-neighbors j € N is updated, i.e., 7, k; € Zx belongs to {t; }7° or
{i }72_o with j € N;.

Based on Theorem 4 and item (2) in Proposition 2, one has, for any given
interval [a, b] with a > b >0,

a5 N (L)) < [m} Cliel

N
(b — Q)MO

NG

Hence, it can be obtained that, for ¢ € L4,

o, )] N {7} <0 —a)+ > XV (b—a)
JELONN

:lejﬂ (b - CL),

44

‘[a,b}ﬂ{T,zj Z:"<{ —‘+1,j€./\fi,i€£1.



0
Jor Joz
subscript “p” means position while “v” represents velocity. The superscript

where x,(s) = [E‘P——‘ + 1 and x%7(s) = {%W +1,j € Ly for s > 0. The

(I,7) stands for agent i in layer £;. Thus, the events for agent i € Ly are

separated. In detail, we have that for ¢ € £;,

e N0t M,
lim sup ‘{ b= O H < o + [ Lo NN -0
t—00 t VA% vV 02

Suppose that the event-separation property holds for the agents in the

(2.72)

layers {Lo, ..., Ly} with m < ¢ — 1 and ¢ being the total number of layers.
Specifically, for any given a > b > 0,

Ha, bl N {7‘,; §| < Xs’i(b —a) (2.73)

v

holds for all i € L, and s € {1,...,m}.

Now consider the agent ¢ € L,,,11. From Theorem 4,
lla, o] N {t), 30| < xp(b—a),i € Lopsr. (2.74)
Since N C UJL4L;, i € Loy from Proposition 2, combining (2.73) and (2.74)
leads to

o, 0] N {7 32| <xplb—a)+ > > xib—a)

t=0 jeLNN; (2-75)

=Xy (b~ a).
By recursively applying (2.72) to (2.75), one can show that the events caused
by the ET condition in (2.67) of agent ¢ € L,,,1 are separated. The analysis
above can be extended to all the agents in the graph G due to item (1) in

Proposition 2; and therefore, the proof is completed. n

Remark 8. According to Theorems 3-5, the ET conditions in (2.66) and
(2.67) provide a trade-off between the tracking performance and the trigger-
ing performance. Smaller thresholds o; and oy could lead to higher tracking

accuracy but increases the number of events.

Remark 9. The events of an agent in a higher layer would be triggered
more frequently than those in a lower layer. This property demonstrates the

relationship between the system size and the communication load.
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Remark 10. When there exist cycles in the graph, such as, between agents ¢
and j, each of the agents can be regarded as the lower layer of the other one.
In this case, a “positive feedback” effect on their events of absolute velocity
information may happen. The events in agent i would promote the events
in agent 7, which could conversely accelerate the triggering of agent 7. As
a result, the events would not be separated as they are triggered faster and

faster.

2.3.3 Simulation

In this section, the effectiveness of the event-triggered control protocol is
illustrated by simulations. The interaction network among agents is shown as
in Figure 2.7(a). The nominal formation r and the associated signed Laplacian
are chosen the same as the ones used in [75]. The thresholds in (2.66) and
(2.67) are chosen as o1 = 0.05 and oy = 0.1, respectively. The trajectories of
the agents are shown in Figure 2.8, with the steady-state errors given in Table
2.1. Here, 4, and 0, represent the tracking errors along x axis and y axis,
respectively. The number of events are shown in Table 2.2. The agents in the
higher layer are triggered more frequently than those in the lower layer, which
coincides with the analysis in Remark 9. In addition, the tracking errors of the
agents in the higher layer are larger than the ones in the lower layer. This is
reasonable, since the control protocol relies on the information collected from
the agents in the lower layers. The tracking errors are accumulated layer by

layer.

Table 2.1: Steady-state tracking errors

Agent Ay As Ag Aq
Steady-state error 6, 0.6063 0.5925 1.4063 1.9263
Steady-state error ¢, 0.0131 0.0156 0.0126 -0.0731
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Figure 2.8: Trajectories of the agents, with dash (solid) lines representing
leaders’ (followers’) trajectories.

Table 2.2: Number of events

Agent Al AQ Ag A4 A5 A6 A7
Updates of relative position - - - 373 424 943 1386
Broadcasting of velocity 44 29 49 168 182 333 342

2.4 Summary

An affine formation tracking problem was studied in this chapter. First,
we solved the problem for nonholonomic systems on SE(3) under fixed and
switching topologies. The geometric control method together with graph the-
ory were used to design the control protocol. The proposed controller was
constructed directly on the Lie algebra of SE(3) and only relied on local in-
formation. No global reference is required. An algorithm was proposed to
reconstruct the k-rooted graph when some edges in the graph were lost. We
showed that the system converged to the target configuration under fixed
topologies and converged into a small ball centered at the target configuration
under switching topologies. Theoretical proof and simulations were given to
demonstrate the effectiveness of the proposed controller.

After that, an ETM was proposed for affine formation of MASs mod-
eled by single integrators. Under the proposed control protocol, the followers
practically tracked the target configuration. In addition, Zeno behavior was

excluded when the MAS was connected by an acyclic graph.
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Chapter 3

Cooperative Output Regulation
with Communication
Imperfections®

3.1 Overview

In this chapter, the COR problem with communication imperfections is
investigated. As one of the fundamental problems in MASs, COR has been
extensively studied since it was proposed [14]. By a well-designed interactive
protocol, COR aims at rendering a set of agents to achieve asymptotic track-
ing or disturbance rejection of an exogenous signal. In order to accomplish a
cooperative goal, agents need to exchange their local information through a
shared communication network. The introduction of networks always comes
with communication imperfections such as asynchronous transmissions, time-
varying delays, quantization errors, packet dropouts and communication con-
straints. The effects of these imperfections have been widely investigated in
the area of NCSs with one or multiple communication imperfections under
consideration (see [24, 25]). Following the method proposed in [24], we solve
a COR problem with asynchronous samplings and time-varying delays in a

hybrid system framework. Compared with the results in [48] and [49], which

*xA version of this chapter has been published as: J. Yang, H. Yu, and T. Chen, Cooperative
Output Regulation with Asynchronous Transmissions and Time-Varying Delays. IEEE
Transactions on Automatic Control, early access.
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tackled the asynchronous samplings for MASs by a time-delay approach, the
method proposed in this work can capture different transmission instants with-
out increasing the dimension of the system.

In NCSs, we assume only one node has access to the network at a trans-
mission instant and a scheduling protocol is implemented to grant the access
of the nodes to the network [34]. The performance of the protocol is evaluated
by a parameter \. While in the considered sampled-data MASs, local infor-
mation of an agent could be packaged and broadcast to its neighbors entirely
at a transmission instant, thereby, A is always set to zero. Since the Lyapunov
candidate used in [24] was not consistent when A approached to zero, sim-
ply extending it to sampled-data MASs leads A to be a redundant variable.
Considering the distinction between the sample-data setting in MASs and the
protocol used in NCSs, a novel Lyapunov function candidate, with A being
excluded, is proposed in this work. Benefited from that, a more straightfor-
ward interpretation on the trade-off design between MATIs and MADs can be
given, which can serve as a better guideline for network designers.

The main contributions of this work are summarized as follows:

1. A sampled-data COR problem of heterogeneous systems is solved under
asynchronous transmissions, time-varying delays and unknown distur-
bances. To the best of the authors’ knowledge, this is the first time
that the above problem is solved in a uniform framework. A hybrid sys-
tem model is used to incorporate both asynchronous transmissions and
time-varying delays. Based on this model, results on universal global

asymptotic stability (UGAS) and £y (L) stability are provided.

2. A novel Lyapunov function candidate is proposed for MASs, based on
which, a more intuitive analysis on the relationship between MATIs and

MADs can be given compared with the ones given in [50].

The effectiveness of the proposed method is verified by numerical examples.
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3.2 Preliminaries and Problem Formulation

3.2.1 Definitions and Preliminaries

Preliminaries and notations on graph theory are same as the ones in Section
2.2.1. Let 0 denote a vector with all the elements being 0 with appropriate
dimensions and 0,, denote an n X n matrix with all elements being zero. A
function a : R>o — Ry, is said to be of class K if it is continuous, strictly
increasing and «(0) = 0; it is said to be of class Ko, if it is of class K and
unbounded. A function 8 : Rso X R>g — R>, is said to be of class KL if it is
continuous, and [3(-,t) is of class IC for each ¢t > 0, lim;_,, 5(s,t) = 0 for each
s > 0. A function 8: Rsop X R5p x R>g — R, is said to be of class KLL if
it is continuous, and S(-,r,-), B(-,-,r) are class KL functions for each r > 0.

A hybrid system H is of the form

{=F(w), E€C,

3.1
§TeGé), €e€D, .

where F' describes the flow dynamics, G the jump dynamics, C' the flow set
and D the jump set. The solution of (3.1) is expressed as (¢, j) and defined
on the hybrid time domain dom &, where the elements (t,j) with ¢ € Rxg
and j € N record the elapse of time and number of jumps, respectively. For
conciseness, we omit the mathematical definitions on some notations in hybrid
systems, and refer the readers to [78].

The L5 norm of a function ¢ defined on a hybrid time domain dom ¢ =

Uj;ol([tj,tjﬂ],j) with J possibly oo and/or t; = oo is given by

JZL et
€le = | S / €t ) 2, (3.2)
j=0 71

and its L., norm is given by

€]l = €8S suP( j)cdom ¢lI€(E ), (3:3)

when the right hand side of (3.2) and (3.3) exist and are finite. Furthermore,
we say & € L, p € {2,00}, when [|{]|z, is finite.
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3.2.2 Cooperative Output Regulation

Consider a heterogeneous MAS containing N agents, each of them is mod-

eled as a general linear system as follows

(3.4)
eZ:Cle—i—DluZ—i—Flv, 221,,N

)
where z; € R™ u; € R™, ¢; € RPi and w; € R" represent the system state,
control input, tracking error and unknown disturbance, respectively, and A;,
B;, C;, D;, E;, F;, G; are constant matrices with compatible dimensions.
v € R? represents the exogenous signal to be tracked or rejected, which is

labelled as agent 0 and follows the dynamics
v = Sv + GOWO- (35)

Here S € R G, € R9*™ are constant matrices, and wy € R" represents the
disturbance. It should be noted that, the disturbances w; introduced in (3.4)
and (3.5) cannot be merged into the exogenous signal v, as v is deemed as a
signal generated by an exosystem with known dynamics while w; is unknown
disturbances to be attenuated.

The MAS in (3.4) and the exosystem in (3.5) are connected by a commu-
nication network. Associate the two systems with a graph G = (V, £), where
(1,7) € & iff node j can receive information from node i through the network.
N is defined as the neighbor set of agent i, where j € N iff (j,i) € £. Let
L € RWHDX(N+D) he the Laplacian matrix of graph G, where [L];; = —ay;,
if i # j; and [L]i = Y0, a; with ay; = 1, if (j,i) € &, and a; = 0,
otherwise. Here [L];; represents the (i, j)-th element of the Laplacian L. For
COR problem, the Laplacian L can be decomposed as follows

L- [ 0 0y ] .
ag H
Here ag = [a1g, g, ..., ano]”, and H € RV*Y is a submatrix of L corresponding

to the interconnection among follower agents.
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Remark 11. It should be noted that edge (0,7) € € represents the network
connection between agent ¢ and the exosystem. Referring to (2.8), their phys-
ical connection is described by matrix E;. These two kinds of connections are

not influenced by each other.

A distributed controller was introduced in [14] to solve the COR problem

under continuous communication:

n; = Sn; + M(Z aij(1j = 1) + aio(v — 1)), (3.6)
JEN;
u; = Kz + Koim;. (3'7)

Here, Ky;, K5; and p are the feedback gains to be designed; n; € R? is intro-
duced as a compensator.

Due to the network constraints, 7; and v are transmitted intermittently in a
sampled-data manner. Denote the transmission instants of n;, j = 1,--- | N,
and v by ), t], -~ and 19, 9, -, respectively, and assume there exists a

for

6 > 0 such that the transmission intervals satisfy § <t} ., — ¢} < 7).

all k; € N, i =0,---,N. Here, the (sufficiently small) constant ¢ is used to

exclude Zeno behavior; and 72 .. denote the MATT for agent i to be designed

matt
later. Furthermore, transmission delays, 7, € [0,7},,4] are considered for the
broadcast of n; (reference v), where 7, is the MAD for agent i (reference
v). Referring to [32], [78] and [24], small delay case is considered in this work,
that is, the broadcast data of a node is received by its neighbors before the
next transmission. More specifically, the time delays satisfy 7, <t} ., — t}.

<7'

resulting in 7, S atic

mad

In order to cope with the communication imperfections, compensator (3.6)
will be implemented in a model-based fashion [79] in between the adjacent
updates (i.e. t € [t} +7(,t, .1 + 7. 1)). In detail, (3.6) is transformed into
the following form:

0= (1) + (D aii(0;(t) — m(1)) + aw (0(t) — Wi(t))), (3.8)
JEN;
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where 7; and v satisfy
7;(t) = Sni(t), te [ﬁc + T;ii, ?cri—l + T;ii+1),
0(t) = So(t), € [ty + Thys thosr T Thpst)s
i((t, + 7)) = ma(th,),

(£ + 7hy)T) = v(tr,),

<

and we set
n:(t) =0, t € [0, +71), and v(t) = 0, t € [0, + 77, (3.9)

to generate the control input before receiving the initial broadcast signal from

neighbors. Denote ¢;, as the measurement errors with ¢ = v — v and ¢; =

n — 7, © = 1,---,N, and 1., = 1; — v as the compensator error of agent
i. In addition, let n = [nf,---,n8]", 0 = Iy @ v, ne = [0, nl 1",
e=lel, - eL]T, ép = Iy Rey, Wy = 1y ®wy be the corresponding augmented

vectors. Then, the compensator error follows the dynamics:
7?6 = 767]6 —+ HBE — .Hoé() — Goc:)(], (310)

and the errors € and €y follow
€= 5776 - I_{ene — Hoéo,
L (3.11)
€0 = Gowo,
where S, = In® S —uw(H® 1,), Ho = p(H ® 1,), S, = In ® S + u(H ® 1),
H() = U diag([alg, cee ,GN()D & Iq, and GO = U diag([alo, tee ,(IN()]) X G().
Some commonly used assumptions for COR problems [14] are introduced

as follows.
Assumption 7. The pairs (A;, B;) are stabilizable, i =1,2,..., N.

Assumption 8. There exist solution pairs (X, U;) for the following linear

matrix equations

(3.12)
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Assumption 9. The topology of the MAS is directed and contains a spanning

tree with the reference signal as a root.

Next, we introduce the following results of COR problem when no network

constraints are considered, i.e., all signals can be transmitted continuously.

Lemma 8. ([14]) Consider the MAS in (3.4), with reference signal in (3.5)
and distributed controllers in (3.6) and (3.7). Under Assumptions 7-9, let
Ky, 1=1,2,---, N, satisfy that A; + B; K1; is Hurwitz, and K»; be defined as

Ko = Ui = KiXi, i=1,-- N, (3.13)

where U; and X; are the solutions of (3.12). Then, in the disturbance-free case
(ie,w; =0,.,7=0,---,N), the COR can be solved asymptotically with a

sufficiently large number p in the sense of tlim lles]] — 0.
—00

According to Lemma 8, controller (3.6) and (3.7) solves the COR problem
without communication constraints. To deal with asynchronous transmissions
and time-varying delays, the emulation-based approach is applied in this work,
that is, for the gains p, Ky; and Ky, @ € 1,--- | N, selected from Lemma 8§,
constrain the MATIs and MADs for each agent and the exosystem such that
some closed-loop stability is preserved.

Let e,; = x; — X,v, by (3.4)—(3.8),
€ai = (A + BiKyi)w; + (BiKa — XiS)v + BiKaine; — Xiwo + Giw;.
For Ky;, Ky selected by Lemma 8, by (3.12) and (3.13), we have
éri = (Ai + BiKii)eq + BiKoinei — Xiwo + Giw;.
Then, the tracking error e; can be written as
e; = (Ci + DiKy;)ewi + DiKaine;.

Subsequently, the MAS in (3.4) under controller (3.7) and (3.8), with K7y;, Ky,

selected by Lemma 8 can be represented in terms of e,, n. with a tracking
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error € as

é, = Ae, + Bne — X&o + Gu,

e = Sene + Hee — Hoég — Goo, (3.14)

e = C’ez + Dne,

A = diag(Ay + B1 K1, , Ay + ByKin), B = diag(B1Ka1, -, ByKan),
C = dlag(C’l + DlKlla e ,CN + DNK].N)7 D = diag(DlKgl, s 7D1K2N)7
X = dlag<X1a 7XN)7 G - dlag<G1a 7GN)7 61’:[6517"' aegN]Ta

T T]T
1

;oo ,en, and w:[wf,n- ,wﬂT.

3.2.3 Reformulation in a Hybrid System Framework

In this subsection, a hybrid system model as developed in [32] and [24] is
established for the system in (3.14). Introduce auxiliary variables I; € {0, 1},
si € R, ke N1, € Rog, 2 =0,---, N, for agent i. The variable [; is a
Boolean that keeps tracking whether the next event of agent ¢ is a transmission
(I; = 0) or an update (I; = 1); s; is introduced as a memory variable that stores
the value —e;(t], ) at tj [24]. k; is a counter that keeps tracking the number
of transmissions for agent i, and 7; is a timer to record the time elapsed
since the last transmission. Then, the state vector for hybrid system H 49 is

introduced as £ = (eg, e, €, €0, S, T, k, 1) € X where

X = {(ex,ne, €, €0, 5, T, k, 1) € RIT+nv) o Ral
SRV % R x RINV+D) o RV XNV {0, 137+ }7

s = [Sga"' 75%]’117 T = [7-07"' aTN]T7 k= [k07"' 7kN]T7 [ = [l(]?"' alN]T'
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Combining state vector ¢ with dynamics (3.14), the flow dynamics has the

form of

Ae, +_Bne — X&o + ?w

geﬁej‘ Hee_— [_{Qéo_— Godjo
S77€ — HeT]e — Hoéo
F6,wo0,w) = Clown - (3.15)
Oni1
1n41
On1
Oni1
The corresponding flow set is given by
C =n¥,C;, (3.16)

where for i =0,--- N, C; ={£ e X|(0< <72 i) ANli=0)V((0<7; <

7irzad) A ll = 1)}

The jump dynamics is in the form of

{Go,i(@}, f - l)z A ll =0
G(&) = UL Gi(€), Gi€) = § {Gri(©)}, €eDinli=1, (3.17)
and
€z
Tle
€
€
Goi(§) = gi[_EOT7 _GT]T +0(Iq(N+1) . ii)s )
(Iny1 — 2)T
kE+2Xilna
I+ 31N (3.18)
€z
Tle

Gri(€) = | (gav+r) — Xi)s

[ —3iln
Here, 3; = ¥, ® I,, and %; € RWVHDX(VHD g an diagonal matrix with the

(1 + 1,7+ 1)-th element being 1 and others being 0. The corresponding jump
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set is given by
D =UN,D;, (3.19)

where for i = 0,--- N, D; = {£ e X|[(6 < <7t JNL =0)V (6 <

i < T,

ta) ANl = 1)}, Without loss of generality, assume all agents transmit

local information at initial instant ¢ = 0, then we have ¢, = 0 and /;(0,0) = 1.

Combining with (3.9), the initial condition is given by £(0,0) € X, with
Xo={{eXle=ne =vo,5=[—¢,—€|",1=1}.

According to the conditions give in [78], one can easily check that the hybrid
system in (3.15)-(3.19) is well-posed.

Collecting all the transmission instants (¢}, ) and update instants (¢}, +7;)
and rearranging them in an ascending order, a new time sequence is obtained,
which is denoted by {#}72,. The solution domain for the hybrid system H 45
(eq. (3.15)-(3.19)) is defined as dom & = Uj;ol([tj,tjﬂ],j) with J possibly oo

and/or t; = oo.

Definition 5. ([24]) For the hybrid system Hyas with wy = 0 and w = 0, the
set given by € = {¢ € X|¢. = 0} is said to be uniformly globally asymptotically
stable (UGAS) if there exists a function 5 € KLL such that, for any initial
condition £(0,0) € X, all corresponding solutions £ satisfy

1€t DI < B(IIE(0,0)[], ¢, 5),
for all (¢,) € dom &, where & = [el, nT]T.

In the presence of w;, we are interested in bounding their influences on the
tracking error e in (3.14), which is measured by the L, gain when w; € Lo,
or by the £, gain when w; € L,,. Combining the hybrid model H ;45 with
output e, the expanded hybrid system is denoted by H¢, 45-

Definition 6. ([24]) The hybrid system #§,,¢ is said to be L,-stable, p €

{2, 00}, from input w; to output e with an £,-gain less than or equal to 6, if
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there exists a K -function 8 such that for any exogenous input wy,w € L,

and any initial condition £(0,0) € X, the solution to Hjsas satisfies

lellz, < BIE0,0)11) + Olllwg , "Il -

Therefore, the main interest of this work is to solve the sampled-data COR
problem with asynchronous transmissions and time-varying delays. Specifi-
cally, for sufficiently large p and control gains Ky;, Ko, 0 = 1,--- , N, selected

from Lemma 8, the bounds of 7,4, 7! ..; for agent 7 will be given such that (i)

mad>

the hybrid system Hjyas in (3.15)-(3.19) is UGAS; (ii) the expanded hybrid
system H, 45 1 Lo ( Lo ) stable.

3.3 Stability and Performance Analysis

In this subsection, we will first analyze the stability of the closed-loop
system without disturbances. Then, the robustness of closed-loop systems
(with Ly or Lo performance) is considered.

Initially, we introduce an auxiliary function W;(l;, €;, s;) as

Wi(lheiasi) = { ||€l||7 gz (::

i=0,--- N 3.20
e + sl (3:20)

For convenience, sometimes we will omit (some of) the arguments in W;(l;, €;, s;)

if there is no confusion from the context.

Lemma 9. The auxiliary function in (3.20) satisfies
VV{‘— = 0, lz = O, and VV{‘— = VVZ', lz = ]., (321)

for the jump dynamics in (3.18), and
Wi(lz’,eia si) < ||5m-6 - Heme - Hoi€0||7 i=1,---, N,
. (3.22)
WO(ZOJ €0, 80) S HGOWOH7

for the flow dynamics in (3.15). Here, S,,, H,., and H,, represent the sub-
matrices composed by the ((i — 1)g + 1)-th to (ig)-th rows of S,, H. and H,

respectively.
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Proof. According to the jump dynamics in (3.18), we have

Wi =Wl e, —€) = |le; — ¢l =0, 1; =0,

J

Wi =W;(0,¢; +55,0) = [le; + 55l = Wi(L, ¢, 5) (3.23)

J

:Wj, lj - ]_

For the flow dynamics in (3.15), since $; = 0, we have

=Ml g, =0
£ (3.24)
. €, i . . .
;= sl e sl = el 1y =1,

where j = 0,--- , N. Combining with the third and fourth equations in (3.15),
we establish the inequalities in (3.22) and complete the proof. O

In addition, introduce the following differential equations for agent 7, i =

0,---, N,

$i(7:) = =@} (r:) + 1), i) = =77 (m) + 1), (3.25)
where v; > 0 are real constants to be designed. It can be noticed that the
solutions to (3.25) are strictly decreasing when ¢; and ¢El are nonnegative.
Next, we will show that under well-designed ~; and initial conditions of ¢;(0)
or qgi(O), the time for ¢; or ngSZ to drop to a relative small value can be used to

formulate the constraints on transmission intervals or time delays.

Condition 1. Assumptions 7-9 are satisfied and the control gains pu and Ky;,

Ky, i=1,--- N, are selected according to Lemma 8.

Condition 2. The transmission intervals and time delays for agent ¢, i =

0,---, N, satisfy

$i(0) < (1), 6 <73 < T

X | (3.26)
gbz(ﬂ) > 0, 0< 7 < Trznad‘
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Condition 3. There exist positive definite matrix P € RY9*N4  constants
vi >0,71=0,---,N, p, >0, p>0, p. >0 and p.,, > 0, such that the
following linear matrix inequality (LMI) hold

Ane+PIqN PHE-FQHgSn —PHO"FQHEHO —PGO

* A67F+pEIqN 725'7]HGT 0Nq><Nq < 2
* * Aeg—To+pegly  OgxNg - O’ (3 7>
* * * Aw—pwlgn

where A, = PS, + 5P + 20" H,, A, = 2575, A, = 2H! Hy, A, = G1G,,
I'= diag(’h, s ,WN) ® Iq, IFo=7%® Iq‘

Theorem 6. Consider the hybrid system H as in (3.15)-(3.19) with no dis-
turbances (i.e., wp = 0, w = 0). The set &£ is UGAS, if Conditions 1, 2 hold
and Condition 3 is satisfied with p, = 0 and Gy = 0.

Proof. Consider a storage function

v+§jv@z (L €6, 51) + LW (0, €6, 54)), (3.28)

where V = T Pn. and € = [T, €7, €L, 7,77, kT, I"]T. With some abuse of
notations, we write W;(0, €;, s;) as Wy, and W;(1,¢;, s;) as Wy ;.

According to Lemma 9, on the flow domain, we have

il =i (o + D,

N
(VUE), F(&,wo)) <V + > (2%0:Wis
1=0

+ li(2’7i§zgiw[),i||éi” - %2(@2 + 1)W021)>

Combining with (3.15), we have

(VU (), F(éwn)) <
- Z(%@HEZH HEZ“ ZVEVV; ne? ) GE)F) (DT ]E[nza ET’ 657 (Dg ]T

i€Lg i€l

=D ((utiWs = ll&l)? + (udilleal = ll&l))?),

ielq
where L; = {i € {0,--- ,N}| [, = j}, and
* AT —QSUHST ONgxNg

* * AEO —I'g Ogx Ng
* * * Aw

(1]

[A% PH.+2HT'S, —PHo+2HI Hy —PGy
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From Condition 3 we have

(VU(). F(&,w0))

< = pllnell® = P2llell® = peolleoll* + pulicoll* = >~ A7WE
= (3.29)

N
< = pllnel® = ai(Wi) + policoll”
1=0

where «; is a class-K function.
When there is a reset caused by a transmission event of agent i, referring

to Lemma 9 and the first inequality in (3.26), we have
UEH) -U(E) =

i (OVWA(L, €5, —€:) + 70 (0)W2(0, €, —€;) — vidi(T)WE(0, €4, 1) < 0.
(3.30)

Similarly, when there is a reset caused by an update event of agent ¢, we have
UED) -U(©)
I’Yz'(ﬁi(Ti)WiZ(O, € +5i,0) — %@(Ti)wf(l, €i Si) — 'yz-czg,-(n)Wf(O, €,5:) (3.31)
< — 70 (T)WH0, €, 8;) < 0.

When w; =0,:=0,---, N, (3.29)—(3.31) imply

(VU@ PEw)) < —plnel* = 3 eu(Wi), €€ C:

U(E") -UE€) <0, £€D.

(3.32)

According to Lemma 8, A is Hurwitz; there always exist positive definite

matrices P, ), and @), such that

P.A+ATP.4+Q. P.B
sre. Lo | <0 (3.33)

Let the minimum eigenvalues of ), and @, be A, and ), respectively. Con-

sider a Lyapunov candidate

Ue(§) = Ve +a.U(E), (3.34)
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where V, = el P.e,, a, = 2’;“. According to (3.15) and (3.32), on the flow

domain, we have

(vU., F(£,0,0))

N
e T(PA+ AP, + 2P By, — onlplmlP + 3 ou(1)
=0
N
<= Aolex ] = )‘aneHz - aezai(VVi)'
=0

Referring to (3.18) and (3.32), U} < U, on the jump domain.

Using the standard Lyapunov arguments in [78], we have
Ue(t7j> Sﬁ(”‘/e(),%,WOHat»j)a (335)

N
where V.o, Vo and Wy represent the initial value of V., V and > W; at t = 0,
i=0
respectively. By (3.20), we have for £(0,0) € Xy, Wy = 0. Then

Ue(taj) S B(“%Oa%”at)])

Furthermore, by the definition of V' and V., we have a|n.||*> <V < aln.|]?
and @.lle.|* < V. < a,|le.||?, where @, a and a., a, represent the maximum
and minimum eigenvalues of P and P., respectively; and since V, + .V < U.,
(3.35) can be written as
. L, : .
||£8(t7])|| < a_ﬁ(a§||£e<07 O>H27 ta]) = 61(56(07 O)? t7j) (336>
Qe

where 3 is a class-KLL function, ag = max{a, a.} and o = min{a, a, }. By

Definition 5, £ is UGAS and the proof is completed. n

Remark 12. Referring to Lyapunov candidate (3.28), the effect of time delay
is described by ’yi@VVf and the effect of transmission intervals is described by
v:6;W2. Thereby, the first inequality in Condition 2 characterizes (i) the MA-
TIs due to ¢;(7;) > 0 for all 7; € [0, 7!, ,;], and (ii) how much transmission per-
formance can be sacrificed to cope with delays by requiring ¢;(7%_,.) > ¢;(0).
The second inequality gives the MADs by ensuring the positive definiteness of

U. The LMI in (3.27) in Condition 3 is used to ensure the Lyapunov candidate
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decreases during the flow domain, and (3.27) always holds when p, and ~;,

1=0,---, N, are large enough.

Theorem 7. Consider the hybrid system HS, g With Haras given in (3.15)-
(3.19) and output e in (3.14). HS, 45 is finite gain Lo (L) stable under Lo
(L) disturbances (i.e. wy, w € Ly (Lo) ) if Conditions 1-3 are satisfied.

Proof. Consider the same Lyapunov candidate as in (3.34), referring to (3.29),

on the flow domain, we have

<VU€(§)) F(é.? w, d}()>>
<el(P,A+ ATP, )ex +2eL'P.Bn. + 2L P.X &y — 2¢X P.G&

— ac(pllne|® + ZOQ i) = pulloll?).

By (3.33), there always exist positive constants e, A, A, and Ao such that

(VU,, F(&,w,))
N
< - /\erem”Q - )‘n”ne”2 — Qe Z O‘Z(VVZ) + /\WHWH2 + )‘0||d)0||27

i=0
and by (3.18) and (3.32), U < U, on the jump domain.

Using the standard Lyapunov arguments in [78] and following a similar
procedure as in Theorem 6, there exist a class—/C,, function f5 and a positive

constant 6 such that for w, Wy € Lo, we have

€l 22 < Ba(ll(Ee (0, 0)1) + Oll[w”, g T [H] 2 (3.37)

Furthermore, by (3.14),
lell < Acllexll + Anllell

where A\¢ and A\p are the maximum singular values of matrix C' and D, re-

spectively. Then,

lellc, < AMéelle. < Ba(lle(0,0)[1) + Oallw”, @5 1" |l ..
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where A = max{A¢, Ap}, 0, is a positive constant and f, is a class—KC,, func-
tion. Then, by Definition 6, we come to the conclusion that H, o4 is Lo—stable
with wy and w as inputs.

Following similar arguments, the conclusion for £, —stability can be ob-

tained. The proof is completed. n

Remark 13. The UGAS property with asynchronous transmissions and time-
varying delays have been studied in [50] for MASs as well. However, the
method used in [50] followed the one proposed in [32] and [24], which was
unable to cover the framework proposed in this work. In their method, the

auxiliary function W satisfied ((17a), (17b) in [24])
VT/;F S )\VT/M ll = 07 and VT/Z‘+ S VT/% ll = 17

and the constraints on MATIs and MADs are derived according to

4i0i(0) < Nyigi(ri), 0< 7 < 7sis

Aioi(T) > Yiti(mi), 0 <75 < Tho,
with 4, = MWT“\W ((48) in [24]) replacing ~; for the dynamics of ¢ in (3.25).
Therefore, when A\ approaches to zero (sampled-data case), 4; approaches to
infinity, which means gzgz decreases very fast and results in a very small MAD.
This is inconsistent with the intuition that a better transmission protocol
(smaller A) usually results in fewer restrictions on the communication infras-
tructure (e.g., MADs and MATIs). According to the novel Lyapunov candi-
date proposed in this work, the upper bounds of MADs are derived by the
second inequality in Condition 2 and are independent of 7;. As a result, the
inconsistency at A = 0 can be avoided. In addition, compared with the W;
used in [24] (Eq. (46)), the auxiliary function W; in this work (Eq. (3.20))
has a simpler form and a smaller value. Thus, the complexity in analyzing the

stability and deriving the results is relived.

Another merit of the method proposed in this work is that after excluding

the redundant variable A\, a more intuitive analysis on the trade-off between

MATTIs and MASs for MASs can be provided.
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(a) Trade-off curves of MATTs and MADs (b) Maximum values of MATTs and MADs
Figure 3.1: Analysis of MATIs and MADs

Remark 14. Referring to Condition 2 and (3.25), the MATIs and MADs can

be expressed explicitly as

; 1 1 —0;/:(0)

Tmad = — arctan — ,
‘ 1 1—¢,;(0)/9;(0
Trati = — arctan 9:(0)/6:(0)

i 1/6:(0) + 6;(0)

where o; represents a user-specified lower bound of ggz It can be seen that,
a smaller ~; is preferred, which results in larger MATIs and MADs. This
could be achieved by solving the LMI in (3.27) with minimizing the objective
function trace(I'). In addition, a larger initial value of ¢;(0) leads to a larger
MATTI without affecting MADs. Thus, a sufficiently large ¢;(0) can be chosen
at first. For MAD, it can be tuned by the initial value ¢;(0). However, based
on the small delay assumption, MADs must be smaller than MATTIs.

Consider a bunch of hybrid systems H ;45 with different system matrices
(i.e. A, B). Assume ~; for each H g satisfies the corresponding LMI in (3.27)
with minimizing trace(I'). Then, by tuning ¢;(0), trade-off curves between
MADs and MATIs are illustrated in Figure 3.1(a). A larger initial value
of $;(0) increases the MAD but decreases the MATI, and the intersection
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Figure 3.2: Topology of the MAS

always happens at ¢El(0) = 1 in spit of ~;. Therefore, g&(O) should be upper
bounded by 1 and the corresponding 7., serves as the upper bound of MAD.
The maximum value of MATIs happens when MADs approach to zero. The
relationship between ~; and the maximum values of MATT and MAD is shown

in Figure 3.1(b).

3.4 Simulation Results

In this section, we use some simulation examples to show the UGAS and
the Lo (L) performance of the hybrid system Hyas and HG, 4g, respectively.
Consider a heterogeneous MAS containing 4 agents and an exosystem v con-
nected by a communication network as shown in Figure 3.2. The matrices for
system (3.4) are given as

. . 01 O . 01 0 . 01 0 . . T
Al—l,Aa—[ggglo] ,As—[gfqo 32] ,A4—[gglg } ,Bi=1, B,=[002]",

[\

BS:B4:[001]T701:[—11]7 Elz[O,—l], F1:[11—11]7 G, =1,

Ci frd [(]5(1)8] 7Ei = [79152 005Z:| 7E frd [—6151 _01:| 7Gi — 137
0 0 :
S:[_()l(l)],Gv:12,i:2,... ’4_
Based on Lemma 8, the feedback matrices are given as Ky = —3, Ky; =

(1 =1 —1],i=2,- 4 Ko = [=1 2], Koy = [2 1], K53 = [17.5 11], and
Ky = [5 2]. The initial values and lower bound are chosen as ¢;(0) = 7/5,
:(0) = 10000 and o; = 0.0001.

First, we consider the case without disturbances. The MATIs and MADs

computed by (3.38) are shown in Table 3.1. The tracking errors are shown in
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Table 3.1: MATIs and MADs for UGAS

Agent /Reference 1 2 3 4 v
MATI 0.0780 0.0525 0.0454 0.0579 0.0553
MAD 0.0308 0.0207 0.0179 0.0228 0.0218
6 6

(=1

0 1‘0 2‘0 3‘0 40 50 60 7 0 10 20 30, 40 50 60 70
t(s t(s)

(a) Tracking errors without disturbances (b) Tracking errors with L., disturbances

(=)

(=}

0 lb 26 30_,/_ ( 8)40 50 66 70

(¢) Tracking errors with Lo disturbances

Figure 3.3: Tracking errors of MASs

Figure 3.3(a), which converge to zero as we expect.
Assume HS, ¢ is subject to L, disturbances, with |lw;|lz., < 0.1, ¢ =
0,---,N. The MATIs and MADs computed by (3.38) are shown in Table 3.2.

The tracking errors are shown in Figure 3.3(b), which are L., stable, with

Table 3.2: MATIs and MADs for £L../L, stability

Agent/Reference 1 2 3 4 v
MATI 0.0617 0.0519 0.0430 0.0508 0.0497
MAD 0.0244 0.0205 0.0170 0.0200 0.0196

steady state errors shown in Table 3.3.
For the case when H¢, 44 is subject to £, disturbances, we assume ||w;(t)|| =
0.1e~19¢=%)  The corresponding MATIs and MADs are the same with the £

case. The tracking errors are shown in Figure 3.3(c), which are £, stable.
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Table 3.3: Steady-state tracking errors

Agent 1 2 3 4
Steady-State Errors 0.0103 0.0696 0.0339 0.0178

In addition, by assigning a zero initial value to the tracking error e, we use
0 = (ftif HeHdt)/(ﬁif |[[w?, wo]"||dt) to estimate the L, gain in a simulation

sense. The simulated £y gain is given by 8 = 3.9010.

3.5 Summary

A sampled-data COR problem with asynchronous transmissions and time-
varying delays was investigated in this chapter. We formulated the problem
in a hybrid system framework and proposed a new method to establish the
constraints on MATIs and MADs. It was proved that if these constraints were
satisfied, both UGAS and £, (L) stability could be guaranteed. In addition,
we proposed a novel Lyapunov candidate, based on which, MATIs and MADs
could be computed in a more straightforward way. Therefore, more intuitive
trade-off curves between MATIs and MADs could be given. The effectiveness

of the method was also illustrated by a simulation example.
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Chapter 4

Formation Tracking Without
Velocity Measurements under
Hybrid-Triggered Mechanism*

4.1 Overview

This chapter focuses on solving the leader-follower formation tracking prob-
lem of multiple mobile robots under a hybrid-triggered mechanism without
leader’s velocity measurements. In order to accomplish this collaborative goal,
the communication among agents is critical, and can be carried out by the de-
tections from agents’ on-board sensors or the transmissions via some embedded
wireless devices. The first kind is implemented in an active way in a sense
that each agent decides when to detect relative information from its neighbors
by itself, and defined as PULC; while in the second kind, each agent passively
receives the transmitted information from its neighbors, resulting in PUSC.
Some situations like cooperative localization require both of them. However,
the existing results processed the obtained information from different kinds
in a same way [80, 81] which actually ignored the unique features of different

communication.

xA version of this chapter has been accepted as: J. Yang, H. Yu, and F. Xiao, Hybrid-
triggered formation tracking control of mobile robots without velocity measurements. In-
ternational Journal of Robust and Nonlinear Control. A short version has been accepted as
J. Yang, H. Yu and F. Xiao, Strong integral-input-to-state stability for cascade-connected
systems. 5th International Conference on Control and Fault-Tolerant Systems, Sept. 29th,
30th and Oct. 1st, 2021, Saint-Raphael, France.
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In practice, the leader’s velocity is hard to be measured accurately. More-
over, for mobile robots which will be studied in this work, their velocity es-
timations are challenging due to the nonholonomic constraints. Because of
the unmeasurable leader’s velocity, a high gain observer is adopted to esti-
mate leader’s velocity with arbitrarily small estimation errors in finite time.
Compared with [77], which required the leader’s trajectories to follow some
predetermined polynomials, we only constrain the upper bounds of leader’s
velocities and accelerations. According to the detection capacity to leader’s
information, we formulate the MAS in a hierarchical structure, where an agent
belongs to the middle level if it has access to the leader directly, and belongs
to the bottom level otherwise. Benefited from this, the cyclic accumulation of
estimation errors among followers are cut off at the middle level, resulting in
the relaxation of the acyclic assumption in [66].

Two kinds of communication networks are considered separately in this
work. The detected information by PULC is used directly. In order to re-
duce network load, PETC is used for PUSC, in a way that the transmitted
data is evaluated by a predetermined ET condition, and updated only when
the condition is satisfied. Since PETC is only used for PUSC, the mecha-
nism implemented here is considered as a hybrid-triggered one. However, the
separate analysis on PULC and PUSC indicates that the classical Lyapunov
function candidates used in [47] and [82], which considered only one kind of
communication networks cannot be applied directly in this work. As alter-
natives, new Lyapunov candidates are proposed to analyze the sampled-data
MAS connected by the above networks. Specifically, for agents in the mid-
dle level, a novel Lyapunov candidate is proposed to determine the MASPs
for detecting relative information from the leader, achieving a small enough
estimation error and short enough convergence time. Their explicit expres-
sions reveal the trade-off between better estimation performance and larger
MASPs. For the agents in the bottom level, the estimation of leader’s velocity
and position relies on both PULC and PUSC. MASPs and MACPs are deter-
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mined with well-designed PETMSs to ensure the stability of the sampled-data
system. By investigating the closed-loop dynamics, we reconstruct the system
into a cascade-connected structure. Based on that, the problem is tackled by
introducing the concept of strongly iISS [83] in a hybrid system framework, in
a sense that the sampled-data system is ISS when external disturbances are
bounded by a predetermined threshold, while it is iISS otherwise; and a novel
Lyapunov method is introduced to solve the problem. Numerical examples
are presented to illustrate the effectiveness of the proposed methods.

It should be noted that, although the leader-follower formation tracking
of mobile robots is a specific problem, the methods proposed in this work
are summarized in general forms, which may enable their utilization in other

relevant problems.

4.2 Preliminaries and Problem Formulation

In this section, we first introduce some preliminaries; then, the formation
tracking problem of multiple mobile robots in a continuous-time framework is
introduced; after that, considering the inherent discrete-time property of data
transmissions and detections among agents, we propose a novel information

flow architecture for the MAS.

4.2.1 Preliminaries

Some preliminaries on graph theory are the same as those in Section 2.2.1,
and the definitions of Laplacian matrix and hybrid systems are the same as
those in Section 3.2.1. Given a set = C R™ and x € R", we define the distance

from x to = by |z|z = infyez |z — y|.

Definition 7 (Locally strongly iISS). For the hybrid system in (3.1), the
set Z C X is said to be locally strongly iISS w.r.t. ¢ if there exist R > 0,
p € KLL and 01, 09, 03, 04 € Ko such that for all ¢ € R, £(0,0) € X; C X
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and (t,7) € dom &, the corresponding solutions ¢ satisfy

(el <8060, 0z.t.3)+ o0 [ oalls DD + oulltei+ DI

+m/®%@MW&

ty
€, 7)1z <B(I€(0,0)[z, 1, 7) + os(lslwq)s Islesy < R,
where || ;) represents the supremum norm of ¢ up to the hybrid time (¢, 7)
(see the reference [84] for a precise definition); J could be oo and/or t; = oco.
Furthermore, when R = oo (X; = X), the set = is said to be ISS (globally
strongly iISS).

4.2.2 Continuous-Time Formation Tracking Problem

Consider a MAS consisting of (n + 1) mobile robots moving on a plane,

with the dynamics of the i-th robot R; given by
i = vy cos(®;), g = visin(®;), &y =w;, i=0,---,n, (4.1)

and ¢ = 0 stands for the leader’s dynamics. Assume the robots are connected
by a graph G, where each node ¢ represents a mobile robot and the edge
(i,7) represents the information flow among the MAS. Assume that the first
n,, followers can detect relative information directly from the leader, and the
rest of ny = n — n,, followers can only detect relative information from their
neighbouring followers. Then, the followers are divided into two groups, where
N, is defined as the middle level set and N is defined as the bottom level
set; i € N,,, if agent 7 can detect information directly from the leader; and
i € Ny otherwise. An example of a MAS consisting of six agents with two of
them having access to the leader is shown in Figure 4.1.

Assume the available measurements are relative distance d;;, bearing angle

Bi; and heading angle +;;, which satisty

dij = \/(az:Z — ;)% + (i —y;)?, Bi;j = arctan Vi ;. vij =P — Dy
Ty — Ty
(4.2)
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Figure 4.1: Distributed control and estimation based on a sensor network
and communication network. Here solid lines and dashed lines represent the
topologies of the sensor network and communication network, respectively;
and the variables without and with a hat represent the detected relative in-
formation and transmitted local estimation, respectively.

Then, the primary objective of this paper is to solve the formation tracking
problem: Consider a multi-robot system described in (4.1), with Ry moving
at a given velocity (vo(t),wo(t)). For follower R;, i = 1,...,n, the desirable
formation is given by (dio, B0) w.r.t. the leader. Assume the velocities and
accelerations are bounded by ||vo|lz.. < var, ||wollze < war, [P0z, < @, and
llol| 2., < aw. Design a control input (v;,w;), under which, the relative state
(dio, Bio) — (dio, Bin) as t — oco.

Notice that the desirable formation is specified w.r.t. the leader. As a
result, the stability of the MAS needs to be examined w.r.t. a common
coordinate frame, which, in this work, is chosen as the leader’s coordinate
frame. According to the reference paper [66], the above formation track-
ing problem is solved when the formation error in leader’s coordinate frame

8 = Ci(vio, Bio)[ dio dio | satisfies §;(t) — 0 as t — co. Here

i . sin(a1+az) —sin(a1+Bi0)
O3, az) = —cos(a1+az) cos(ai+Bio) ]

is a function of oy and ay. Combining (4.1) and (4.2), we have
Si = CZ(’)@Q)UZ + [07 —1]T"U0 + Cé(éi)wo, (43)

where u; = [v;,w;]T is the control input,

C%(P) = [—01 %)] p
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is a function of p, and

C’i(a) _ |:7sina 7@0 COS(aJﬁ@O)

cosa —d;osin(a+Bi0) |’

is a function of o which has the same interpretation as the one in Eq. (11) of

reference [66].

4.2.3 Information Flow Architecture

Assume that the agents are connected by a sensing network and a com-
munication network which have the same topology. For ¢ € N,,, agent 7 only
takes inflow from the leader and the information flow is one-way out, from
itself to agents in Ny; while for agent i, i € Ny, it takes inflow from agent 7,

j € N. Then, the Laplacian matrix can be expressed as follows

0 o, 0
L= 1., Lum Lums |. (4.4)
0., Lm Lyy

where L = On, xn, s me = Onanf and Lff € Rxns, Lfm e R >nm

Assumption 10. The underlying graph contains a spanning tree with the

leader R as a root.

We consider two kinds of information flows which are PUSC and PULC.
For PULC, the relative information is detected at sampling instant sfg in an
active way; and we assume that the detected information is used immediately
after each sampling instant. For PUSC, as the information is received in a
passive way, a PETM is designed for agent i € Ny such that the ET condition
is checked in a discrete-time manner at checking instant 7T ;;’i and a transmis-
sion event is generated at a transmission instant tié if the ET condition is
satisfied. Here m; is a symbol representing the signal to be checked by the
concerned ET condition. For example, if the ET condition is related to d;,
then the checking instant is given by Tlf;i; and the selections of 7 will be spec-
ified in the next section. In addition, we assume whenever an ET condition

related to a state m; is met, all the local information of agent 7 is packaged
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and broadcast together, which means that the transmission sequence ¢, ¢}, - -
is a subsequence of the union of the checking sequences of all states m;. The

information flow architecture is shown in Figure 4.2. Four kinds of units are
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Figure 4.2: Detection and transmission behavior among agents

introduced to facilitate the information low among MASs. A PULL-IN unit is
considered as a detection unit, which collects relative measurements from its

i - an ETM_U is a decision unit used to

Si7

neighbors at each sampling instant s
check the ET condition at T;)fji and activate the controller update at t}c‘;l For
agent i € Ny, an ETM_S is another decision unit used to activate PUSH-OUT
unit to broadcast local information at t};i when the ET condition checked at
T ;; is satisfied; in addition, a PUSH-IN unit is used to receive and store trans-
mitted information from the neighbors of agent 7. While for agent i € N,,, a
PUSH-OUT unit is used to collect and transmit local information periodically

at t}c The properties of the units are summarized in Table 4.1. It should be
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Table 4.1: Description of units

Unit Information Network Device Function Agents
PULL-IN relative Detection  onboard sensor detection ieN
PUSH-OUT local Communication wireless devices collecting and transmission i € N
PUSH-IN local Communication wireless devices  receiving and storage i € Ny
ETM_.S local & relative -1 micro-processor activate PUSH-OUT unit i € Ny
ETM_U local & relative - micro-processor  drive controller update i€ N

noted that the sampling intervals are non-uniform and the checking instants
are asynchronous. As a result, instead of giving a fixed sampling period,
MASPs and MACPs are determined to maintain some stability properties af-
ter introducing the above information flow architecture. The definitions of

7 and

. . . . 74
different time sequences are summarized in Table 4.2. Here 7, ¢, Thuep

Table 4.2: Notation of sampling instants

Notation Agents Action Information Constraint
sy, 1eN T relative 70 < sty — 5L < Thag
t ieNy 8 local ET condition
i, ieN, I local 70 <ty o1 —th < Thatp
i ieN local ET condition
T;:,:i ieN; local 79 < T;:ﬁ‘l =T < Thacp
Tw e Nt local 719 < T;:‘i w1 - T < Ty

TU  represent, respectively, the MASPs and MACPs related to state m; and

macp

Ui; Tpay, Tepresents the maximally allowable transmission periods (MATPs)
for agent i € N,,; and 79 > 0 is a small constant introduced to avoid Zeno

behavior.

4.3 Estimation and Control Strategy

According to the system dynamics and information flow setup, the esti-

mation and control strategies are different for the agents in different groups.

1 - represents a null element

I detection instant of PULL-IN unit

§ transmission instant of PUSH-OUT unit

§ transmission instant of PUSH-OUT unit

|| update instant of actuator
xx checking instant of ET condition related to state m;
11 checking instant of ET condition related to input wu;
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For agents in N,,, high-gain observers are used to estimate the leader’s veloc-
ity according to the relative information ;o and ;o detected from the leader;
PETM is proposed for controller update; and the local information is trans-
mitted periodically within some MATPs. For agents in Ny, in order to realize
the formation tracking in the leader’s coordinate frame, the agents need to
estimate leader’s velocity as well as their relative poses w.r.t. the leader. Lo-
cal estimation is updated according to the relative measurements as well as
the information received from the neighbors, and PETMs are implemented
to govern the transmissions and controller updates. The ET conditions for
different estimations are checked at different time instants (e.g., T;;‘i £ Tbi

Py,

where a; and b; represent different signals of agent ).

4.3.1 Estimation and Control Strategies For the Middle
Level

High Gain Observer for Velocity Estimation
Only PULC is required for the high gain observers proposed in this sub-
section. The estimation of angular velocity is given as
i = by, (Gio — 9:) + @i — wy,
{@z = Uy, (Yio — ¥1)-

Here 4; and @; represent the local estimation of ;9 and wy, respectively; 7o is

(4.5)

the relative heading angle detected at sampling instant ¢,,; w; represents the
angular velocity of agent 4; and [,,, {,, > 0 are feedback gains to be designed.
Implementing PULC and the model-based strategy borrowed from [85] we

have
Fio(t) = vio(t), t = 5;3 Yio = by (a0 — %) + @ —wi, t € [5;7 Sii+1)‘
Let n; = [%”—i,Awi]T, where Av; = vio — %, Aw; = wy — @; represent the
n
estimation errors, and ¢, > 0 is a small constant introduced to constrain the

estimation errors and convergence time. Let S,, = 7,0 — ¥ represent the

sampling error. Then
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where A, = |20 |, By = [T ], ¢y = 0.6 @y = ey, and ay,
eglng.

Let 67 and ¢Y represent, respectively, the projection of §; along = and y
axes in the leader’s coordinate frame, and then the high gain observer for

leader’s linear velocity estimation is proposed as follows

0¥ = 1, (87 — 6Y) + 0; + Ch(T) (2 (wi) + 6F i,

éi = lX2(SZZ.” - Szy)v

0i(t) = i(t), t = si,

0;(t) = Ci(Fao(t))ua(t) + [07 (), =07 ()] " (8) + [0, 1] 03(t), t € [sh,, 5%,41),

(4.7)
where 0¢ and #; are the estimations of 6! and wvo; and 67, 6/ represent the
projections of §; along x and y axes, respectively. Let x; = [Ae_i%" AT, where
A8 = §Y -6, and Av; = vg—1; represent the estimation errors, and e, > 0 be
a small constant introduced to constrain the estimation errors and convergence

time. S5, = 0; — §; represents the sampling error. Then
xi | 1[A B, Xi i+ ¢,
A = + x , 4.8
[ Ssi | €x [ Cy Dy Ss, s (48)

i 0 1
_ | mox 1 _ €x _ [0 O _ AT 001
AX_|:_O‘X2O ’BX_{OW}’CX_[OEX]7 DX_GXWZ[—lo]’

X

i [Q ], giz — |:(Awﬂ;f-‘rACiEjiO7'}’2‘0)(2,;)“2’):| , gg = ACX(_io,’YiO)Ui + [—6:5?] Aw;,
i(= i i (= !
AC(Fio, vio) = Ci(vio) — Ci(Fio) and v, =
Event-Triggered Controller
Since high gain observers are used to estimate leader’s velocity, to prevent

the peaking phenomenon from affecting the robot dynamics, input saturation

is implemented [86]. Consider a compact set
Vi ={di : 6| < cs}, (4.9)

where cs > 0 is a user-specified constant that affects the convergence range of

the system. The controller is designed as
;—1 N
ui = Cy (vi0) (—cd; + [0, 1]70;), (4.10)
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where ¢ > 0 is a feedback gain to be designed. Let U; = sup ||uy(vo, wo, Yio, 0:)||+
A,, where A, is introduced to cover the uncertainty 62:2%sed by the estima-
tion error Av; and Aw;, which will be specified later. The saturated control
input is given as w;s = saty, (ui (9, Yio, 05, w;)), where the saturation function

is defined by

' it) Ui it = Ui,
saty, (uig) = sign(ui) lual (4.11)
Uit l|lwie|| < Us.
Implementing PETM on controller updates, we have
ui(t) = Uis(tZi)a te [tZZ;,tZ;H)a (4.12)

where t;" is generated by t;° = 0,t," .| =inf{t € {T}"}32,, t >t

hu,(eu,,0i,t) > 0}, and e,, = Ci(vi0)(uis — u;) is defined as the measurement
error of control inputs. Then, the dynamics of the system can be represented

by

_ 5 (. A ) (4.13)
Cu; = aoélT(Zfo)(wo - wz)<uz - uis) + Ci(%’o)uis,

{@- = —cb; + [0, 1]Av; + ey, + [-0Y, 67 wo,
where 1,5 is determined by the system states 7,9, 9;, Av;. Aw; and leader’s
velocities wy, vg.

Periodic Broadcasting of Local Information
Since the agents in the bottom level cannot access information directly
from the leader, their estimates of leader’s position and velocity rely on the

transmitted information &, %0, ¥; and @; from agents i € N,,. A discrete

broadcasting strategy is implemented with the MATP as follows,
Zi - 0’ t;ﬂﬁ-l € [t;ﬁ + 705 t;% + T’rinatp)' (414)

As the control and estimation of agent i € N,, only rely on active detections

from the leader and its local information, 7°

: . ;
matp 18 determined based on agent’s

initial conditions and its own dynamics in (4.5), (4.7) and (4.13). On the other
hand, since the dynamics of agents i € N, are affected by leader’s dynamics,

the design of 77, depends on a user-specified constant r,, > 0. Furthermore,

atp
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in order to take advantage of the finite time convergence provided by high
gain observers in (4.5) and (4.7), the design of MATPs will be divided into
two phases: before and after convergence (see Subsection 4.5.3 for detailed

analysis).

4.3.2 Event-Triggered Distributed Observer-Based Con-
trol Strategy For the Bottom Level

For the agents that cannot access the leader, distributed observers are
proposed to estimate leader’s velocity and position. In order to reduce the
occupation of communication networks, the data transmissions and controller
updates are generated by PETMs.

Estimation of Leader’s Velocities Under PUSC

A consensus-based algorithm is implemented to estimate leader’s angular
velocity under PUSC as follows

O = —cw Y ai(@i(ty,) — @;(H,)), (4.15)

JEN;
where w; represents the local estimation of wy given by agent ¢ and ¢, is a
feedback gain to be designed. The transmission is generated at t{ = 0, ti:i 1=
inf{t € {1,/ }720, t > 1, |hw,(€w;s Gu,;, 1) > 0}, where e, (t) = @i(t],) — i(t)
and q,(t) = > ai;(@i(t) — @j(tij)). The dynamics of the system can be

JEN;
represented as

sz = —Cyp z (IZJ<ACL)1(15> — A(A)j (t) + Cuw; (t) — ewj (t)) — w()(t),

. I (4.16)

buw; = —Wi = Cu Y, G (Aw; — Awj + ey, — ey,).

JEN;
The observer for linear velocity vy follows the same structure as in (4.15)
under a feedback gain c¢,, with the state given by v; and ET function denoted
by hy, (€, Gu,,t) > 0; then the errors e,,, Av; have the same dynamics as in
(4.16).
Estimation of Leader’s Coordinate Frame under PUSC and PULC

In order to realize the formation under the leader’s coordinate frame, a

consensus algorithm under both PUSC and PULC is proposed to estimate the
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relative heading angle w.r.t. the leader as follows

/ -

Fi(t) = —cy Z/\/ aij(Yi(t) — 4 (t) — 3i; (1)) + @i(t) — wi(t), te€]0,00),
JEN;
75(t) = 3;(1), t=1t,,
i) = wj(ty,) —wi(ty, ), t € [ths ths1)s
Fij () = i (), t=si,
| 7i(t) = wj(tZij) —wi(ty, ), telst, st 1),

(4.17)

where 4; represents the local estimate of v;0; and 7;, 7;; are the estimates
given by model-based mechanisms between adjacent transmission instant t}c

and detection instant s’ , respectively. The transmission instants generated

vi(€yis Gyin t) > 0},

where e, (t) =4, — % and ¢.,(¢t) = > a;j(% —3; — %i;). Furthermore, the
jENf
sampling error is denoted by S,, = — > a;;(7;; — 7i;) and the estimation
JEN;

error is denoted by Avy; = 4; — vio. Then

Si?

by PETM satisfies t{, = 0, _,, = inf{t € {T})'}32,, t > 1},

AY; = —cy Y aij(Av — Ay + ey, —ey,) + 6,5, + Aw; + ey,

JEN;

€y = Cy Zj;/ aij(Av — Ay + ey —ey,) — ¢85, (4.18)
JEN;

S, =0.

k3

Event-Triggered Observer-Based Controller for the Bottom Level
According to the above estimations, an event-triggered observer-based con-

trol protocol is proposed as follows

'<>:— ; aij (:(tL,) — 85(t1,) = 85(1)) + s, (1),
uy = Ci (3;) (—cd; + [0, 1]8;), (4.19)
(®),

()—ult b=t

Here SZ represents the estimation of J;; t}'% represents transmission instant
of agent i generated by the PETM ¢ = 0,¢ ,, = inf{t € {T}'}2,, t >
ti |hs(es,, a5, t) > 0}, where eg, (t) = ;(t},) — 0;() and g5,(t) = 0;(t); and the
controller is updated at iy* = 0,47 ., = inf{t € {T;7"}32,, ¢ > t,

ha (€u,s qu,, 1) = 0}, where e, (£) = Ci(3:(8)) (u; — ugy) and qu. () = 6:(t). ps,
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is introduced to compensate the dynamics of 9;, which is designed by
ps;(t) =Ca(h(®)wi(ty, ) — 0,17 0i(t) + [0} (1), =07 ()] " @i?)
= — ¢b; + ey, + [0Y, 62Ty
and &j represents the estimated displacement in the leader’s coordinate frame,

and implements in a model-based fashion in between adjacent measurements

()
(t)

0ije(t), t = sk,

Ci(Au(0)uilty ) — CF (A (H,)us (E ) (4.20)
Sg(t}‘ci)_gﬁ(tij) i, t i gl
_Sf(t}g )+Sf(ti]) Wi = [Ssi’ SSH—I):

i

where gijt = O}l(’%)gz N

i 5% represents the displacement measured in the body-
fixed frame of agent 7; and Sijt is the estimated displacement in the leader’s
frame according to the estimated relative heading angle 4;. Combining with
(4.20), we can tell that the difference between the real value d;; and the esti-
mated one &j is introduced by the estimation error of 4; and the intermittent
detection of 51-]-, which are denoted by D;; = l-jt — 0,5 and Sfj = (i-j — gijt,
respectively. Let D.(vy;) = %Cﬁ(%)_l and D2 = Ci(%:)Ci(v) ' — 1. It
can be computed that the Frobenius norm of D, is bounded by 1. Therefore,
D2 = [2V D.(s)ds < |Av|, and Di; = & — 65 = D26y < |Avl[|dy]]-
Then,

ng :(—CZ(%(%J-)) + Ci(3)C  (10) O (vj0) ) ( Z;) — (Ci(3)C (o) — 1)

5Y—5Y AsY+elV—AsY—elY T . 59 —5Y
(3 7 7 2 J 7 . (3 7 .
X [—5;%;} Wo + [fASffeferAé;?Jregm} wi + [—5%5}“’} Aw;,

(S5 SA%] + 1A% A] + 1A% (1] = d; + [0, 1179 + efl]) + les,lllew,

5Y_sY ASY+edV —A§Y—e3Y T . 5Y_sY
Zac ]ac w() + . 5T J ]51 wi + Zac ]:t sz 9
— 67 +08° —A6F el "+ AT +ed —07 +3

(4.21)

+ | Ayl

where AG; = 6; — 0, represents the estimation error of ¢;. According to (4.19)—

(4.21), the dynamics of the formation error can be written as
5i :CZI(’YZO)u1<tZu) - [0, ].]TU() + [(53, —5f]TWQ — C&' + [0, ]_]TAUO + el

"(4.22)
+ [(53, —(5?]TCL)O,
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and the estimation error satisfies
Si = —Cs Z (Iij(&' — Sj — 57;]' + 6? — 6? — D”) + C(;S&i + ]{351.
JEN; (423)

= —cb; + [0,1]T Avg + €% + [6Y, =67 Two,

where S5, = ) S, represents the sampling error of agent . The dynamics
JEN;
of estimation error follows

A(Sl = —cC5 Z Qi (Aél — A5] + 6? — 6? — DZ]) + C(;Sgi + A/{,‘gi, (424)

JEN;
where Aks, = ks, — 6; = (Ci(5:) — Cl(vi0))ui (£4%) + [0, 17 Av; + [6Y, 6717, —
(67, =67 wo. By (4.19)—(4.24), the transmission error es; and control input

error e, satisfy

ééi = _S’h
{ T e (4.25)

Cu, = —g5, ViU — i) — C4 (A ).
According to the above estimation and control strategies, the possible choices
of the symbol 7 considered in this work are m € {7, d, w, v, x, 1, m}.

The estimation and control strategies proposed in this section are imple-
mented based on the transmitted data by PUSC and the relative information
detected by PULC. Thus, the information flows among agents are typical
discrete-time dynamics. While for the agents in the MAS, their motions fol-
low the Newton’s law, which are typical continuous-time dynamics. This kind
of systems fit into the class of hybrid dynamical systems. Therefore, the
performance of closed-loop MAS under the control and estimation strategies
proposed in this section will be studied in a hybrid system framework in the

next section.

4.4 Problem Formulation in a Hybrid System
Framework

In this section, we reformulate the formation tracking problem introduced

in Section 4.2 in a hybrid system framework. Some auxiliary states and no-
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tations are introduced as follows. For agent i € A, introduce auxiliary vari-
ables 7,,, 7, € Ry to record the time elapsed since the last checking in-

stant T , and the last detection instant s

s,» respectively; k., k;, € N, as
counters that keep tracking the numbers of controller updates and informa-
tion transmissions; let 7,, 7, k., k: represent the corresponding augmented
vectors built upon all followers; in addition, e; = [ewi,evi,e%,eg;]T € R,
Si =[5y, Sg;]T € R3, and e, S represent the corresponding augmented vec-
tors and e, represent the augmented vector of e,, € R%

For agent i € Ny, let 7, € Rs represent the time elapsed since the last
checking instant 777" . 7, = [T, To, Ty Ts:) L € RY, g, = [Awy, Avy, Ay, 67,
A§]" € R7, and 7, x5 be the corresponding augmented vectors; while for
agent i € N, introduce 7, € R>q to record the time elapsed since the last
transmission instant ¢, , x5, = [}, x7]7 € RY, p, = [07,A6]]" € R, and
Tty Th, Ty represent the corresponding augmented vectors. In addition, let

T = [Tt’i,fgj]T, 1. = [tL, 717, k = [k, k1T,

T .7 T]T
u t "V

T = [z}, Ty, Ty I eIt

ye=le; e,
Then the state vector can be written as & = (z,e,5,k,7.,75) € X, X €
{RBm+Tns 5 R x R37 x R2™ x RAnsTnmtn R}

Considering the hybrid system in (3.1), a jump dynamics is caused by a
detection or a checking event, which we denote by G and (G, G,), respec-

tively (See Figure 4.3 (a)). Then, on jump domain, the set-valued mapping
[78] is given by

G(E) = GL(E) UGHE) UGw(€), €€D, D=D,UD,UD,.  (4.26)

Since at each detection instant sii, the agent detects all the relative informa-

tion (i.e., vij, 0ij, Vi € N;), we have

Gs(g) = Uie/\sti(g): g € Ds; Ds = UiENDsia

T

G ©)=| ") ¢cen,; D, ={eeX|n<n, <1

masp }7

(4.27)
(I—kf)Ts

where 7}, represents the MASP for detecting relative information. When-

ever an ET function h,, is checked or a transmission event is generated, we
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Figure 4.3: (a) Set-valued mapping G for MAS in a hybrid system framework.
(b) Cascade Structure of MAS on flow domain

have

Gi(&) = Uien Gy, (§), € € Dy; Dy = Ujen Dy,

x —
(I-T%(et;,qt; ki) AL )er
€y
. S
_ ke+T% (et ,qe; ki) N .
th(g)_ ku ? geDt,ﬂ
T™m (428)
(- R
Tu
Ts

= Uncwury,sDris Doy = {8 € X|mo < 7, <750}, 1 € N

Dt- macp
atp}7i S Nm?

7

D, ={¢eX|np<m, <1

m

represents the MATP for agent ¢« € N,,, 7%  is the MACP for

i
where T, I

matp

checking the ET condition h,, of agent i € Ny, and ¢, (x;) is a locally Lipschitz

85



function of state z;. G, represents a checking event of h,,,, which satisfies

T
€t

(I_F;L (eui sQu; 7kui )‘/_\?)eu
S

Gu(g) = UiENGUi(g)’ 6 S Du’ Dy, = ZDW; Guz(g) = kuy+TY% (e b ku, )A;
ieN wTly u}.r;qui’ w; ) IV
(I—=Ay)Tu

macp

(4.29)
where 70 . represents the MACP for checking the ET condition h,,, and
qu,(2;) is a locally Lipschitz function of state ;. In (4.27)—(4.29), A; = A; ®
Iy, A = Ay @ I, AL = [’%m ,nf‘;A;]; and At = [0, i€ N, A =
[8 A{f’m} i € Ny where A; € R™", AT € R¥*4, Am € Rimxnm S ¢ Rrrxns,
are diagonal matrices with the i-th ((i — n,,)-th for A7) element being 1 and
others being 0; I't = {1}, i € N,,;; and T} : R* x R x R = {0, 1}, i € N},
indicates whether a transmission for an agent in the bottom level occurs and
'Y R x R x R = {0,1} indicates whether a controller update occurs,
which depends on the ET condition as follows

{0}, Nr=w,vy,60r; (€xy Grin t) <0
Cile,, qin t) = < {1}, Un—wwry.6hm (€xis @min t) > 0, @ € N,
{0,1}, otherwise
{0}, hu(eus qus ) <0
I (ew; Gus» t) = < {1}, B, (€usy Gu;yt) >0, i € N.
{0.1}, hu,(eu,, Gu,, ) =0

By (4.30), a transmission event is generated when one of the ET conditions is

(4.30)

violated (i.e. h,, <0), and at the same time all the local information of agent
1 is packaged and broacast entirely.

In order to capture the flow dynamics of the system, we participate the
closed-loop MAS in (4.1) into subsystems S,, S, S., Sy, S, and Ss. Then,

on flow domain, the dynamics can be described as follows

F(S? §) :(fh(gha §), fa(éaa gha §), fb(gba gha gaa C), gea(gaa §h7 §), geb(gba Sha gaa §),

s, (gh, §), Gs.» gs;;(éba gh: §a7 §), 0, ]-a ]-)7 € € Ca
(4.31)

11 = represents a set-valued mapping [78].
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where ¢ = [wp, v, Wo, Vo, Tm]? represents the external disturbances. It should
be noted that, except from the disturbances introduced by leader’s dynamics,
T is introduced by the periodic transmission strategy of agent ¢ € N,,,, which
is independent of leader’s dynamics and is tunable according to the MATPs.

The state vectors are summarized as in Table 4.3. Here, the stabilization

Table 4.3: Structure of the cascade—connected systems

Group Subsystem Internal State Stabilization State Agent
Sh Sy &y = (£n7ew‘m7e"/m77—5m) fn 1 5175'3;] i € N
SX EX (§X76Um7667n’7-57n) gx [va SJ } *88
Sm gm - (gﬂy Um, I Tum) §m - [671717» Z; ]T *
Su fw:(ngkfaﬂu) fw—[AwT T ]T iGNf
Sa Sv §v~:(€v7kf;7v> B [Avf7 ’Uf]T *
S’y g’Y:(g'Y’kf’T’Y7Tw7TSf) f’y: [A'V?,Awfa zf’ u)f,S')’f] *
Sb 85 55: (féaT(s?kf?ka?TUf?TSf) 55 [§T A(;T e(Sf, 'u,f7Sf} *

states ér include the components of &, whose stabilities are relevant to the
stabilization set = in Definition 7; &, ém. are the corresponding states of
agent ¢; m,, and 7y represent the corresponding augmented vectors of m; for
i € N, and i € Ny, respectively, with 7 determined by the relevant state
(e.g., m, ). Furthermore, according to the inherent cascade property, we
divide the subsystems into three groups, namely, S,, S, and &,, with the
corresponding state vectors &, =[], &0]7, & = [£F,€0, 60,017 and & = &.
More specifically, the dynamics of S, only depends on its own states and
the external disturbances. Besides the states of its own and the external
disturbances, the dynamics of S, is also influenced by the states of S; and
the dynamics of S, depends on the states of S, and Sy, (See Figure 4.3 (b)). In
addition, fr1,, gey, and gs,, with Iy € {h,a,b}, Iy € {a,b}, Iz € {m,;,b}
in (4.31) are given by the differential equations in (4.6), (4.8), (4.13), (4.15),
(4.18), (4.23), (4.24), (4.25) and (4.21), accordingly. The corresponding flow

88 * in a table represents the same element with the above cells.
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domain is given by

C - Ct m CS ﬂ C"lL? Ct - miGNCti7 CV’LL - mlGNCUZ7

CSi = {f € X|O S Tsi S Ta,fnasp}7 Cuz = {g € X|O S T’ui S T#ziacp};

(4.32)
Cti = Mr—ww7,0Crs Oy ={ €X|0 < 7y ST, ) T € Ny
Cti = {5 < X|0 S T, S T’rinatp}7 1 E Nm

Define & = [5}{, Z“’ég“]T’ then based on the hybrid system model in (4.26)-
(4.32), the problem considered in this work is to prove that the set = = {{ €
X|||€7|| = 0} is strongly iISS w.r.t. disturbances ¢. According to the cascade-

connected structure, we solve the problem step by step as follows:

e For subsystem Sy, determine the bound on 77, such that the estima-
tion errors Av;, Aw; converge to small balls centered at the origin with

pre-specified small radius in pre-specified short time.

Ux

e For subsystem §,, determine the upper bounds on Tfnasp, Thiveps @ € N
and 74 i € N, as well as the corresponding ET functions h,, h,,

macp)

such that the set Z, = {¢ € X|||&,]| = 0} is ISS w.r.t. ¢ and &,.

7o

Tl
macp?

e For subsystem &y, determine the upper bounds on 7, Iacp:

asp’

i € Ny; the functions in ET conditions h,, and hg,, such that the set
=, = {€ e X|||F|| = 0} is ISS w.r.t. <, & and &,.

4.5 Main Results

In this section, the event-triggered formation tracking problem is solved
in a hybrid system framework. The upper bounds on MASPs, MATPs, and
MACPs are determined along with well-designed PETMs for detections, trans-
missions and controller updates. For generalizing the analysis, in each sub-
section, we will first provide a technical lemma for some general systems, and

then, apply it to the concerned one (Sj, S, or Sp).
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4.5.1 Finite Time Convergence of Subsystem §;,

Consider a hybrid system with state vector £ = (£,7) € X, where £ =
[T, ST)T, X = {(2,5,7) € R™ x R"™ x Rso}. On flow domain C' = {£ €
X|0 <7 < Tinasp ) its dynamics is described by differential equation F'(¢,¢),

E=F(7.9) = (f(9)1), E€C;

e 1 c T T 1 T T T (433)
f(£7g> = Efo(g) + [El 70] fl(gl) + E[EQ 70] f2(§2) + [07 Es] fs(gs)a

where Tasp > 0 is the MASP to be determined, fo : R™ ¥ — R%H7s
fi : R™i — R™ are locally Lipschitz functions; ¢ = [¢{, I, cT]" represents the
disturbances, with ¢; € R bounded by ||si||co < 745 B € R 4 =1,2)s;
and € > 0 is a small constant. On jump set D = {€ € X|190 < T < Tinasp ), We

have

[+, ST 1T = [, 07,077, ¢ € D. (4.34)
Introduce an auxiliary variable ¢ with dynamics satisfying

¢ = _l(¢2 + %) - 2L¢7 ¢(0) =P, ¢(T) S [pa ﬁ]a VT € [O’ Tmasp)a (435)

where [, o, L, p > p > 0 are positive constants to be designed.

Lemma 10. The maximum value of 7,4, satisfies (4.35) can be computed

explicitly as

L2y L
e arctan (04/% — %), 7 < \/g
€ 1
Tmasp = %0’ % - \/? ’ (436>
2
; L}_g arctan (0\/% - %), % > \/§
1 €
o N Ve/a(p=p)

where 0 = &

P : _ _
St L) Especially, when L = 0, Ty05p =

Proof. The results can be obtained by solving the differential equation in

(4.35). 0

The following condition is introduced to provide the finite time convergence

of subsystem &j,.
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Condition 4. Consider the hybrid system in (4.33)(4.34). There exist locally
Lipschitz functions W(S) : R™ — Rso, V(z) : R™ — Ry, a differential
equation ¢(t) : [0,75) — Rs¢ satisfying (4.35), and positive constants & >

a >0, a > 0 such that
o ofl¢* < UE) < allgl?,

o (VU(S), F(&,9)) £ —caU(©) + (Billlall) + B2l VU () + Bs(llss ),
66 C>

e UT(§)-U() =<0, (€D,
where U(&) = V(z) + loW?(S), B, 52 and B, are K, functions.

Lemma 11. Consider the hybrid system described by (4.33)—(4.34). If Con-
dition 4 is satisfied and 7,4, satisfies (4.36), then for any £(0,0) € X, the
hybrid system converges to set = = {£(¢, )] ||€]] < L7y}, within the finite
time T, = iln 7{]—25, where 1y = 2(e81([[c1]|oc) + Ba(ll2]|c)), v = & — Bols=1l)

€ TU
and Uy represents the initial value of U(£(0,0)).

Proof. Let Xy = {£(t,7)|U(€) < 1% }. By the second item in Condition 4, for
all £ € X\Xy we have

«

<VU(§(t,j),F(f(t,j),§(t,j))> S —%U(f) +6s(||§5”) S _OZUU(g)v g(tm]) € Ca
For (¢,7) € [tk, trs1] X {k}, k € N, we have

1
t—t, < —1In Ults, k)

R Trne (4.37)

and when (¢,5) = (tka1, b+ 1), U(§(tha1, b + 1)) — U(E(tgyr, k) < 0. As
a result, for any initial condition £(0,0) € X, after a limited number j of
time intervals, U(t,j — 1) < r#. Furthermore, according to (4.37), ¢ can be
calculated by t < % In %g,o))’ and by the first two items in Condition 4, we

have = € Xy. The proof is completed. O
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Theorem 8. Consider subsystem &, and assume the following conditions

hold:

(i) the initial state §;,(0) € V; with V; given as in (4.9), and the input

saturation satisfies (4.11);

(ii) for subsystem S, there exist positive definite matrices P, and @, where
ar > MPr) > a, >0, \M(Qr) > ai > 0; positive constants a,, I, > 0
and pi > p7 > 0, such that

0
ATP, + PA, < —Q,, [@toalme] < o1
* —lro (4.38)
a, < ZWE: < lzp; < Qp.

Here, 7 is replaced with 1 and x for subsystems S, and S, respectively;

(iii) the MASP is upper bounded by 7., < min{7} . 7X % where 77

is calculated by (4.36), with e = €;, | =, as =0, L=L,, L, =0
and L, = |wp + 7).

Then, there exist small enough €,, e, > 0 such that ém. and £x¢ converge into

a small ball centered at the origin with radius r,, r, within time 7, Tv,

where 7, = —;162:;7”5%, T, = ii:ln —U"(é;’éo’o)), r, = L::zg (max {c, s} + XQ)

and T, = 26"1 M with ¢ = a,, ¢! = r,(c+ max (1, dy)),
2 X1 T X2 V1 +dl ‘

¢t = —4 max(l dio) + cr. 0

S m ) w

Proof. The proof is provided in Appendix A.1. n

Remark 15. According to (4.6) and (4.8), subsystem S, satisfies (4.33)—
(4.34). The small constant ¢ > 0 is introduced to guarantee a small con-
vergence error and a fast convergence rate as shown in Lemma 11. However,
referring to (4.36), a smaller € also results in a smaller upper bound on MASP,
which means a sufficiently large sampling frequency. Benefited from the hi-
erarchical structure proposed in Subsection 4.2.3, only a few agents i € N,
are involved in &p; and since the convergence errors of S, will propagate to
S, and &, we choose to sacrifice the cost on some high performance sensors

to provide better convergence properties for Sy,.
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4.5.2 1SS of Subsystem §,
Consider a hybrid system with state vector & = (£, k, 7., 7g) € X, where

€= [z, el ST7 X = {(a:, e, S, k,Te, Tg) € R™= x R"e x R™> anngongo},

r = ["Er{7 "'L‘Z]T7 €= [6?7"' 7€Z]T7 S = [Sip> ’Sfrj;]T7

Te = [7—617 e 7Ten]T7 Ts = [Ts17 T 7Tsn]T7 k= [kh e 7kn]T'
(4.39)

On the flow domain, the differential equation is given by
F(&,) = (f(€,9),96(€,6),95(£,6),0,1), £€C, (4.40)

where g.(£,¢) = (g5(£,9), . 95(€,9)), 95(&,6) = (g5(€,9), -+ . g5(€.9)); < €

R"s represents the disturbances. The corresponding flow set C' is given by
C=nCi, Ci={€X|(0 <7, < Thap) V(0 <7, < 7Thep) ), Where 7

macp

and 7/, represent the MACP for checking the ET condition and MASP

for detection, respectively. On the jump domain, the set-valued mapping G

satisfies
G(f) = Gs(f) U Ge(f)v 5 € Da (441>

where G4 and D; are in the same forms as (4.27); G, and D, are in the same
forms as in (4.29), with e,, = ef = kf =7, =7 =0, €, =€, T, = T,
I =Ty, AY = A% and AY = A; @ I,,, A; € R™™ is a diagonal matrix with the
i-th diagonal elements being 1 and others being 0 and h;(e;, g;,t) is the ET
function to be specified later.

The following conditions are introduced to provide the ISS property for
the hybrid system in (4.40)—(4.41).

Condition 5. ([82, 87]) Consider the hybrid system in (4.40)—(4.41). For each
t=1,---,n, there exist a locally Lipschitz function W : R"* x N — R, a
continuous function H] : R™ x R"" — Ry¢ and agy,, aj, € K such that

the following hold:

e For any m € R™ and k; € N, ofy, ([|mi]|]) < Wi (mi, ki) < aw,(

mill)-
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e For almost all m; € R", all k; € N and (z,¢) € R™ x R™,
(Brsh) gn(€,6)) < HF(€,5).
Here 7 and 7; are replaced with e (e;) and s (s;) when the functions are related
to e (e;) and s (s;), respectively.
Condition 6. ([82, 87]) There exist a locally Lipschitz function V, : R™ —
Rso, oy, av, ay, afy, oy, € Ku, locally Lipschitz functions ¥; : R" — R
satisfying W;(0) = 0, continuous functions J; : R xR™ xR" — Rx, l;, > 0,

© € V¢, such that the following hold:

e For all z € R™=, ay(||z|]) < Vi < av(]z]).

e For almost all z € R™ and all (e, S,¢) € R x R™s x R,

(vVal@) 1E:)) < —av(llz]) = aw (Il S7)"1)
+2 ((m(q) + 30 (WP k) = HP(E06)) = (€ o) — %(qi(x))) ,

T=e,m=S

where ¢;(z) is a locally Lipschitz function of z with f, (f ,S) = a‘gff) f (é ,S);

W and H] are the same as in Condition 5.
e For almost all z € R™ and all (e, S,¢) € R™e x R™s x R",
(V@) fu(€:9)) < L) + HE(E ) + J(E )

According to Conditions 5 and 6, the ET function in (4.41) is designed as

hi(es, gint) = L, W (i, ki) = XipiVali), (4.42)
where p; = ll_ei\z\’Lz, A; is introduced as a user-specified parameter to tune
MACPs and event numbers and constrained by \; € [0, A¥), with

N { . L, L; < -l
i min{1, ﬁl%}, L; > —l,,
Lemma 12. ([82, 87]) Consider the hybrid system in (4.40)-(4.41) with ET
function given by (4.42). If (i) 7,0, = li arctan Y22 (i) 7l = li arctan ﬁ;iji,

with p; > p. > 0, (iii) Conditions 5 and 6 hold; then the set =: {{ € X[||€]| =
0} is globally ISS w.r.t. <.
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Proof. Consider Lyapunov candidate

UE) =Vat+ > (L0, W7 + max {le, e, W1, Mithi}),
’iE./\ff

where ¢., and ¢,, are auxiliary variables introduced, respectively, as

Q.Sei - _lei(¢ei2 + 1) ¢sl - lsi(¢si2 + 1)
90,(0) = ¢ and 3 63(0) = (4.43)
¢€i (T) S [B:a ﬁze] QSS;( ) [217 ﬁZ]

Here [, and [, are positive constants. The bound on ¢, satisfies p5 = pi and

pi < 5o Let Vi, = = l,,¢5,W??, we have
(Vi F(§,9)) < 20,00 W (H|) = (14 64,%) (1, 7). (4.44)

Let V,, = max {l., ¢, W*, M\itb; }. Denote Vy(t, j) as the set includes the agents
satisfying lo, 0., W2 > Ny, and Vi (t,5) = V\V(t, ). On flow domain, for
1€V,
(VVer, F(€,6)) < 20e,0e W HE]) — (14 e %) (1e, W)
and for i € V),
(VVeis F(€:6)) < N(LiWi + J; + HE?).

Combining with Condition 6,

(VU(E), F(€,<)) <
— av((lall) — aw(l[[e", ST +ZUV

((Le,W5)? = (1= NLy) ).
%1

(4.45)

According to (4.42), we have
(I, W) — (1 — L)V, < 0,

and

(VU(&), F(&,9)) < —av(ll=]) — aw(ll[e", ST]"I) + Zaw(
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On jump domain, for £ € G¢, when there is no transmission, V., = =
max {le, ¢, Wi, AW}, According to (4.42), L, We* < NipiWy, 1,2 W <
N ;. Since ¢, < p§ < p;, we have I, ¢, We? < \;¥;. Then,

Ve =0 =V,
When there is a transmission,
Wit =0, Ve, " = N0 < max{le, ¢, W72, MW} < V.

For £ € G5, we have V,,© = 0 < V,,. Combining the above, when ¢ € G,
U* < U. Using the standard Lyapunov arguments in [87], [78] and [82], the
set = is ISS w.r.t. <. O

Remark 16. Conditions 5 and 6 are similar to Assumptions 1 and 2 in [82].
However, only PUSC was considered in the paper [82]; while, in order to
include PULC, auxiliary variables 75, and measurement error S are introduced
in hybrid model (4.40)—(4.41). Subsequently, a different Lyapunov function
candidate is proposed in the proof of Lemma 12 to provide the stability for
the hybrid system under both PUSC and PULC.

According to (4.13), (4.15) and (4.18), the subsystems belong to S, satis-
fying the dynamics in (4.40)—(4.41), which results in the following theorems
to illustrate the ISS of S,.

Theorem 9. Consider the subsystem S,,, if

(i) the initial state 6;(0,0) € X;,, where X;, = {&»,

U(&m,) < 65}

(ii) there exist positive constants €, as, e, ly, ¥y, L, > 0, such that the

following LMI is established

0 0
(25(1¢u)+(1Lu)¢u+€\p045)I+(1+¢'u)|: O €i2 :| (1*%)1 — Qm < O,
2
(1=vu)l —(2—ae)l

(4.46)
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iii) the MACP is upper bounded b, < Larctan 224 , where p* < L,
PP y T macp A 2 pZ Pu

£ > pu; pu and A, are determined by (4.42), with ., = [, L; = 0; and
the ET function is given by Ay, (ey,, 0;,t) = lue2 — Auputbudy;

(iv) items (i)—(iii) in Theorem 8 are satisfied;

then, there exist sufficiently small ¢, > 0 and €, > 0 such that the steady
state error of Em is given by rs = , / g—:c(;, where a,, = max{%, lfx—ﬁu} and

luB;*

0, = min{l + R bt

Proof. Detailed proof is provided in Appendix A.2. ]

Remark 17. The constant c¢s in (4.9) determines the convergence range of
subsystem S,,. According to (4.10), a lager cs results in a larger U;, which
further leads to a larger convergence error r,. As a result, the trade-off be-
tween estimation performance and constraints on initial errors needs to be

considered.

Theorem 10. For subsystem S, where 7 is replaced by w or v for the state
£, or &,, respectively, the set =, = {£ € X|||€7|| = 0} is globally ISS w.r.t. ¢
and &, if

(i) Assumption 10 is satisfied;

(ii) there exist positive constants e, €x;, 7 = 0,1,2, Ly, lx;, ¥r,, aw,, av,,

€. and positive definite matrix P, such that the following LMI can be

e

established
Ag = A% = (I = L) | 50" [ [(Lgy = D) = Ayl
— {(eﬂe—smf li_sml] — Q. <0:
here, L, = diag(Ls, .., ,Lx,), lr = diag(ls, ., . lx,), ¥x =
diag(Vr,,, o107 5 Pma )y

(4.47)

2 2
Pr €n o
A== oo | exlLys = 51 = T2, Lyg] o],
(L D
AY = [ L f;l } Un( = exDy[Lyy — €2, (Lys = D), Lys — €7, Ayy]

+ e, [(Lys = Dp), —Agg]) + [+5]7,
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and D¢, Dy € R"*" are diagonal matrices with diagonal elements

[Diliiy = 2 jen, @i and [Dplaa) = 3 jen;, i respectively;

ST ‘e

Py —p;
< li arctan ==+,
Lr

(iii) the MACP for ET function h,, is upper bounded by 77

acp
where pIf < #, P7 > pr; and pr, satisfies (4.42), with le, = lr,, Ly = Ly,;
and the ET function is designed by h., = L, |lex||> — Ar, Pr;Un, 16 |2

where gr, = 35 e v, aii(7i(t) — 7 (1,).
Proof. Detailed proof is provided in Appendix A.3. O

The following matrices and parameters are defined to facilitate the analysis

of subsystem S,,. Let

. (Lys=Dg)"
@y = — (Av — Al - (1= L), —A%; (Lys = Dg) —Agp —1]

(eﬁefo‘Vay)I 0 0
0 Iy2—aw, I 0 )
I

0 0 152 —aw,
(4.48)
where L, = diag(L-, .., --,L,,), [, = diag(l,, ..,---,l,,) and
I3 = diag(linmﬂ, )
P, 62
Ay=¢ [0(”1"’%‘)} (=Lys+ (€ + ), =Ly 1]+ []"
Ofngnyg) c
Fog v
aQ~ 0 w 2 2 -
Qv = [ 0 ! wa—aﬁi‘,’I:| ’67 = 6_2 + ETA(¢7Lff)a
w Y2
(Lyg=Dyg)"
Ay =c, { *Al?f 1 Uy ([Lpy+ Apsll=Lpy — Lyg 1]

+ €Ly = Dp) = Agp = 1)) + [#4]".

Theorem 11. For subsystem S,, the set =, = {{ € X|||€$|| = 0} is globally
ISS w.r.t. ¢ and &, if

(i) there exist positive constants €,, €y, €, €., by, I3, Ly, Psy5 a, oy, and
positive definite matrix P, such that @,, > 0, and positive constants a

and b such that @), > 0;
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(ii) the MASP satisfies 70 = -+ arctan P £ and the MACP satisfies

masp lfyl 2

, with p] < -

)
P

~y

o) —pY
i o= L Pi 8
Tmacp = 1T, arctan —;

Bi > p,, and p,, satistying (4.42);
and ET condition is designed by h., (e, ¢y, 1) = 1,2 — Ay pythy, @3,

where e,,(t) =% — % and ¢, (t) = > ai;(% — 7 — Vi)-
jGNf
(iii) items in Theorem 10 are satisfied.

Proof. Detailed proof is provided in Appendix A.4. O

Combining the results in Theorems 9-11, for subsystem S,, the set =, =

{€ e X [||€T|| = 0} is ISS with respect to ¢ and &,.

4.5.3 Strongly iISS of Subsystem S,

Consider the hybrid system with the state vector given by (4.39). The
elements in & are participated into &, = (éa,k,Ta,Ts) and & = (éb,k,Tb,TS)
according to a cascade structure, where z; = [x] 2] |7, e; = [l ,e[]", S; =

a
[Scjl;’ S;:]T) Tei = [TaNTbi]’ Wlth Tr = [1'3;1, e "T?;n]

€r = [eT el ]Ta er, € Rneﬂ—’ Sy = [ST 7SZn]T? Sm € Rnsﬂa éﬂ' =

™) ) T 3 T

i
T n
y T, eR Ty

T 6T ST]T

[r,er, So1' T = [Tayy -+ s Tr,], ™ = {a,b}. On the flow domain, the differ-

ential equation is given by
§=F(€¢) = (F(£,9),9:(6,9),9:(£,9), 0, 1),
€o = Fa(€ar <) = (fa(€ar€)s Gea (a5 S): G50 (€ar €), 0, 1), (4.49)
& = Fi(&, <) = (/s(£,9): 96,(€, ). 95,(§,6), 0, 1),

with flow set C' given by C' = N, C;, C; = {€ € X|(0 < 7, < 7}y

Tea, < Traep) V (0 < 7, < b

a; — 'macp macp

)V (0 <
)}. The set-valued mapping G and jump

domain D are given by
G(f) - Gs(g) U Ge(€)7 5 €D, (450)

where G and Dy have the same forms as in (4.27); G, and D, have the same
forms as Gy and D, in (4.28), with e, =k, =7, =0,¢, = e, , = 7, [t =T,
A=Ay, A= AS AL = Ay and AY = Ay ® 1, Ar = I, @ AT, A; € R,
AT € R**? are diagonal matrices with the i-th diagonal elements being 1, and

others being 0.
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Condition 7. Consider the hybrid system in (4.49)-(4.50). If there exist
positive definite matrices P,(7,, 7, k), Py(7s, 75, k) and positive constants @, >

a, >0, ay > ay > 0 such that

(i) a,f < Py < agl and o] < Py < @l hold for all 7, € [0,75%,.,),
T, € (0,75, ), 7, € 10,7 ,,,) and k € N;

» "“macp ’ “masp

(ii) there exists a positive definite matrix @), such that storage function
Up(&) = ébTPbgb satisfies
<VUb(€b)7 Fb(gv §)> <
np Na
— Q&+ )&l Qués + D an lI&al® e + v (lIsl]). € € C,

fpe1 Faml
U, (&) —Uy(&) <0, £ €D,
(4.51)

where @)y, is either a positive definite matrix or a zero matrix, ax, > 0

is a constant, and oy is a K, function;

(iii) there exists a positive definite matrix @), and a K. function o, such

that storage function U,(&,) = éfPaéa satisfies
(VUa(&), Fulba: ) € =€ Qula + aa(lls])), € € C;

e | (4.52)
Ug (&) —Ua(&) <0, £ € Dy

(iv) there exist positive constants €1, €x2, =<+, €xio—1), V & € O, where
O = Uien0;, O = {k| k < max{k,, k}&(Qr # Olag # 0)}, O; =
{klk = 2ko — 270 ko € O;_1}, such that ka, — e — B — > & > 0.

1€Sk

. . Gr—1 j k 2 Gig ei(jkfl)
Here jj, satisfies 2+ 71 < k < 2%, ¢ = (Fer1)° + 2ttt P I S
JE—2)
2 .
g = #, and i € S, if 20 — 29 =k, o, = min{\ € R : det(Q, —
i1 -1) . '
)\Pa) = 07 VTaz‘ < [077—757;(10]))77—52 € [077_7316151))72 - 17 T 7n}7 Bk’ = )\k +

with A\, = max{\ € R : det(Qr — A\P,) = 0, V1, € [0,75%,.),7s, €

» I'macp
[O,Tﬁmsp),i =1,---,n}

Lemma 13. (Strongly iISS of cascade systems) Consider the hybrid
system in (4.49)—(4.50). If Condition 7 is satisfied, then the set = : {{ €
X[ [|€]| = 0} is globally strongly iISS w.r.t. <.
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ka
Proof. Consider a Lyapunov candidate U(§) = In (1 + Uy(&)) + > UF(E,).
k=1
According to (4.51) and (4.52), when & € C, we have

(VUL(&), Fb(£,9)) | x= OUL(E)
1+ Up(&) * " AU, (£,) (VUa(&a), Ful§ar$)) -

(4.53)

(VU(E), F(§,¢)) =

For UF(&,), we have

Uy (6a)
5Ua(§a) <VUa(€a)v Fa(g(m §)> < (454>

F((=aa + en)lléal™ + il &all ) + eg,02™ (<)),

where &, = ﬁ Then,

k17 €k

&L Qv o
RS 2k
(U FlE.0) <= T E D aull + )

3 k((—a + &l + eullEal?) + 20, 02" (le]))

keO
51, Qs , 52k
< - +)  (k(—aq +ex) + (e + > igy)) ||l
1+ ﬁbTPbﬁb kezo ( zezsk )
+ 3 koo (ol + ou(lsl)
keO
<= Ap+————= _Z Lk"ga‘Qk

1+§bTPb§b heO
+ 3 kena?*(lsl) + on(ls ],

ke®
(4.55)
where Ap = min{\ € R| det (Qp, — AP,) =0, V1, € [O,Tmacp> Ts; € [O,Tmasp) ke
Nyi=1,-++ N} Arp = k(—aat+ep)+(art > igi), o([<]]) = Z ke, o2 (||<)+
1€Sk

op(|ls]]). Since P, and @ are positive definite, Ar > 0; and accordlng to the
forth item in Condition 7, Ay, > 0. Therefore, there exist W, W;, € I, and o,
W, € K4 such that

(VU(€), F(£,9)) < =Walll&all) = Wo(ll& ) + o (lisl) < =W (lIE]]) + U(II(GII)- |
4.56
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While on jump domain £ € D,

Ut(§) U <0. (4.57)

Case 1. 1ISS:

By (4.56), there exists a positive definite function oy such that

(VU(&), F(&,9)) < —au(U(€)) + o([ls])), and UT(§) < U(E).

Let U(t, /) = U(t, )~ [ Villoos £ € [t5,551], where V; = [ o({ls|}dt. According
to [88], we have

U(t,j) < —ap(max{U(t,j) + V(t),0}).

Then, there exists § € KL satisfies

6(570) =5, ﬁ(ﬁ(svtl)ah) = B(Satl + t2)>

(4.58)
U(t.7) < max{ Bt 7).t — 1), [Villoo)-
In addition
Ultyf—1) = Ut j - 1) + / ’ o(lls(s)lds
> U.)+ [ olls(s) s = Ut,.9) (4.59)

Uty j—1) <max{BU(tj—1,7 — 1),t; — tj—1), [|Vi;lloo}
< max{B(U(tj—1,5 — 1),t; — t;—1), |Villoo}-
Substitute (4.59) into (4.58),

U(t,j) < max{B(max{B(U(t;-1,j — 1), t; — tj1), IVillo}s t — ;) [[Villoo}
= max{B(B(U(tj-1,7 — 1), t; — tj-1), B[Villoos tj — ti=1), [ Villoo}

<max{BU(tj-1,7 —1),t —t;-1), [Villoo }-
(4.60)

Repeat (4.58)—(4.60) until ¢, = 0, U(t, j) < max{B(U(0,0),?), ||Vi|l}- Since
Ut,j) = Ut.5) + [IVilloe, we have U(t,j) < BU(0,0),t) + 2 [y o(ll<])ds.

Furthermore, since we have finite agents, and the sampling intervals for each

101



agent are lower bounded by 75 > 0, there always exist finite ¢y and €; such

that on S t+ €1, te [tj,tj+1]. Let

= [ e"B(s,0), t <0
Then, B(s,t) is decreasing and U(t, j) < B(U(0,0),0.5t + 0.5¢05 — 0.5¢1). Let
B(s,t,7) = B(s,0.5t + 0.5e0j — 0.5¢1), we have ((s,t,§) € KLL and U(L, j) <
B(U(0,0),t,5) + 2f0 a(|[s(s)|)ds. Then for all (t,j) € dom &, there exists
Be € KLL such that

i=I—1

.0 < B€0.00t )+ 3o [ aallsls. s +r [ onll(s DIDs

i=0 tr

(4.62)

Case II: ISS when [c| ;) < R:

There exist a, &, W € K, such that Q(Hé”) <U(¢ )
Wy(00) = Ap. Let R = o Y(\p) and €(|/s]|) = 5(1 —
[Slesy < R VIIEN = W (Z)y = (o], ) we have

1—e(lsl(, 5

||§||)- By (4.55),
) Then, when

(VU(€), F(&,9)) < —e(ll<NWellEll) < —e(I<]ep)We €D, (4.63)

and there exists a o € K such that, (VU (€), F(£,5)) < —ae(€). Then, for all
£eX, X, = {¢llI€] > r},
U(&(t, 7)) < U(E(tk, k) — ag(r)(t — i), t € [te, tr + 1);
Ut k+1)) SUE(RE)), t=ti.

In addition, since the system is Zeno-free, for any £(0,0) € X, there exists a

T > 0 such that
U((t, 7)) < U(£(0,0)) — ag(r)T < Ula(r)),
€I < ™t o (alr) =re,

where T' = %. Denote the first time when ¢ reach set X : {||€]| <

re} as T,. Since 1, > 7, (VU(E), F(€,5)) < 0 on the boundary of X, X is an
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invariant set. Combining the above facts with similar arguments in (4.61)-

(4.62), there exists a class KLL function § such that

which leads to

1€, D < BE©,0),1,5) +a o al|r(s)lg), (¢, j) € dom & (4.64)

Combining (4.62) and (4.64), one comes to the conclusion that the set = is

strongly iISS in the sense of Definition 7. O

Remark 18. In Condition 7, the second item is used to reflect the cascade
relationship between subsystems S, and S,. By (4.51), higher order couplings
exist, which introduce difficulties to provide the stability for the system. The
third item is used to ensure the convergence of subsystem S,, and the forth
item gives the constraints on the strengths of different order couplings. These
constraints are determined by the inherent dynamics of subsystems S, and Sp.
Notice that, strongly iISS is determined for the closed-loop system in Lemma
13. The higher order couplings between subsystems make it hard to find a
Lyapunov candidate decaying with a ., function of the states to provide ISS.

As a result, a K function is used to provide strongly iISS.

Finally, we can provide the overall stability results for the system in (4.26)—
(4.32) in the following theorem, where the expressions of some parameters and
matrices are defined as follows.

Items in Theorem 12—(i)

As, =
—e(I-9)— L (I-Ld)+ay;I) —eI+4(es Ly p+e)+(I—La) csBLyy - —c5

88 —es(I=D)Lys+ed—5 (I-Ld)tay, I) —cs(I—F)Lys —p cs (I—1)

* * %(—lg-}—awcl) * *

* * * S (=12 +ow, I) *

* * * * %(—lgz-&-aws I)

—+ [* % qw]T

(4.65)
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1 cs¥Ly
+ [**]Tv Aoz = ?( |: |:05(1 )Lfl:|[**]T >|<‘| + [**]T)u
8

*

)

A0'3 — _([* w3 (14€3)[Any, Anf Ap [T : :] + [**]T>

= votlu [ = Lotlu § = diag(le, \vo  slny)s L = diag(Le, 1vo s Lay),
Yr = diag(¢ﬂnm+l7 T ,@Z)wn), lg = diag(lgnm+1a T 7l§n)

Items in Theorem 12—(ii)

€2
7"42 .

2
1
2€W41

for m =w, By, =af +af + A, Bu, =«

2
21

€ry = €2, , €r, =42+
for m = v, m, ﬂm = 0471T7 571'2 = Oég;

_ . v ¥ 7 v 7
forﬂ—7,671—040+041+)\,572—0@—1—)\,&74—044.

AT = max{\ € R:det(QF — APy) =0, V75, € [0,70000)s Ts; € [0, Tnsp)s t €

9 macp ) Tmasp
Nf}, k=0,1,2;
ar =min{\ € R: det(Q7r Pr), V7r, € [0, 7500), Tss € 10,70 04p): 1 € N
w )\w2 )\

Gy = 260_3)07 oy = 252 , 0f = 13( (Anl) + 75,0 (Anl))a

oy = 13 (20U (Ay) + €irs, 0 (An)), a¥ = €3, ab = i + 134%02(/4”),
al = vy + 13(var +1,)%0% (L), a3 = e3€f, + 13(6 ”l +vi0(Ayyp)),
ay = 13e50%(Ayg), o' = 6§ + 13w}, (1 + é)O'Q(Anl), alt = 13X2(A,);

0 0 n

I 0 0 ) j:;f -
Q= | 0 410 Qh =oAL Qf = (L+ ) | |70

T 0 0 T
—cA A
WAL, Anf] 0 0 _or [T 0 A0
~ 13 0l npinf v 13 cAff cAff
1 = 0 AffAff 01, 2 — 0 0 0 0 )
0 0 0 A?f[chff’ 7CAff] 0 AffAff 0
0 0 0 0
fig, 8 8
5ps .
Pr=10"0 tuga 0 |> s = diag(ds, .., ¢s,.),
00 0 1563
_ 1 S __ 3 S S
¢u - dlag( Unp+17 7¢un)v ¢6 - dlag(qs&anv T 7¢6n)’

Q- and P, are the same as the ones in Theorems 8-11.

8§ * in a matrix represents zero matrix with compatible dimensions
99 =« represents a copy of the matrix on its left side.
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Theorem 12. Consider the hybrid system in (4.26)-(4.32), for sufficiently
small ¢, and €, the set Z5 = {¢ € X|||€7|| = 0} is locally strongly iISS w.r.t.

¢ if:

(i) for subsystem Sy, there exist positive constants e, k =2,--- |8, ¥, L.,
l5., avy, av,, aw,, aw,, ™ = 0,u, such that the following LMI can be

established: As = A5, + Ay, + Apy, + Aoy, < 0;
(ii) there exist positive constants €rpgy T =7, w,v,m, p=2,4,q=1,2, such
that
ap — Bry 20, 200 — €y — By > 0,1 = w,v,m;

aﬂ_ﬂmzo’ 2a”_€”2_6ﬂ220’ 4047"_6#4_5#4207 ™=

(4.66)
(iti) the MASP satisfies 7,,,, = min{7J, | T = d,7,v,w}, with 77; =

Pi—p,
- arctan == ;

s
T

ST e

(iv) for i € Ny, the MACP satisfies 777, < - arctan 25 with pF < -1

macp = I, 2 P

Y

Bﬁr > pr, and pr, satisfying (4.42); and ET functions are designed by

hm(ema qr; t) = lm- €r; 2 - Awipﬂi@bquria where dr; = 51'7 T = U, 6;

(v) for i € N,,, the MATP satisfies 7/

mati <5, L E0,T); Ty < 0, €
[T, 00). Here,

mati
K1 = Imax {l,,QwM, ZXZUM, (1 + Jlo)Uz + Vm -+ CsWpr, Whr + Ul},
Ko = max {l,,7w, L,Tv, (1+ dio)Us + vy + cswar, war + Uik
(vi) the items in Theorems 8-11 are established.
Proof. Detailed proof is given in Appendix A.5. n

Remark 19. The closed-loop MAS in (4.1) follows a cascade dynamics as
described in Table. 4.3 and Figure 4.3 (b). Theorems 8-11 provide the finite
time convergence of subsystem S, and the ISS of subsystem S,. According
to the cascade connection, when we analyse the dynamics of S, the effects

of §;, are considered as an L., disturbances bounded by 7, and r, after short
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convergence time 7T, and 7T;,; the influences of subsystem S, are analyzed based
on the novel Lyapunove function candidate proposed in Lemma 13; and the
strongly iISS of the cascade system is provided. More specifically, the closed-
loop system is proved to be ISS under a disturbance bounded by a computable
threshold R, and is iISS otherwise. Since the amplitude of the disturbance is
determined by the convergence error of Sy, the inherent dynamics of S, and
Sy, and the coupling strength between them, the threshold R can be served
as a criterion when designing the event-triggered controller and the network

infrastructure.

4.6 Simulations

In this section, we provide a numerical example to illustrate the effec-
tiveness of the proposed method. Consider an MAS with one leader, six
followers and a network as shown in Figure 4.1. The initial states and ex-
pected formation w.r.t. the leader are given by d(0) = [1, 1,4, 6,6, 6], 5(0) =
[z, -z x —Z 0,70 =[5, ~&, = —Z T Tlanddy = [1.5,1.5,3,3,4,4],
Bo =[5 —% —% & —%> g5, respectively. The leader’s velocities are given
by wvo(t) = 0.45 + 0.05cos(t), wo(t) = 0.1cos(t); the constant is chosen as
rm = 0.05, and the input saturation for ¢ € N,, is selected as U; = 2.

First, we show the finite time convergence of subsystem S;,. The
constants in (4.6) and (4.8) are chosen as ¢, = 0.005 and ¢, = 0.08. The
MASPs calculated by Lemma 10 and the MATPs before and after convergence
are shown in Table 4.4. The simulation results are shown in Figure 4.4. Here,
we divide each curve into two parts according to the time domain, where the
left column illustrates the finite time convergence and the right column shows
the convergence error. The values of convergence error and convergence time

calculated by Theorem 8 and obtained by simulations are shown in Table 4.5.

For subsystems S,, Sy, the corresponding MASPs calculated by Theorems

8 and 9 are summarized in Table 4.4, which shows that fast samplings are only
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Table 4.4: MASPs of agents

Level i €N, i€ Ny
Agent 1 2 3 4 5 6
MASP (10~2) 0.34 x 1072 0.34 x 1072[2.04 1.47 1.18 1.31
MATP(lO’Q),t € (0,1.2] 0.125 0.125 - - - -
MATP(1072),t € (1.2, 00) 1.1 1.1 - - - -
50 Cm}vergenc‘e time of i ‘ %1073 Convergence error of 7;

40 /2R -2
30

201

0 0.05 0.1 ¢(s)0.15 0.2 0.25 0.3

Convergence time of x; convergence error of x;

0 02 04 06¢s)08 1 12 14 0.15 5 is) 10 15

Figure 4.4: Finite-time convergence of subsystem &y,

Table 4.5: Convergence errors and convergence times of S,

Subsystem | Agent | Computation Simulation
Error Time Error Time

S 1 0.0059 | 0.4275 | 0.0016 | 0.2093
g 2 0.0059 | 0.4188 | 0.0015 | 0.1484
S 1 1.2590 | 1.1806 | 0.9183 | 0.1458
X 2 1.2590 | 0.9759 | 0.9188 | 0.1456

Table 4.6: MACPs and average inter-event times of agents

Group|Subsystem| Level | State| MACP (10-2) Inter-Event Time (10~2) Distribution(%)
Agent|[1(3) 2(4) 5 6 |1(3) 2(4) 5 6 3 4 5 6
Sm i €Nm| w [1.12 112 - - |1.31 1.36 - - - - - -

Sa Sw ieNy| @ |1.620.97 0.78 3.5|0.41 0.36 0.35  0.40 19.0 26.1 245 O
Sy * v; [1.62 0.97 0.78 3.5 | * * * * 1.7 19 1.1 0

Sy * 4; |1.86 0.55 0.42 0.44| * * * * 6.4 38.4 50.2 5.7

S S * 5; |0.48 0.59 0.50 0.40| * * * * 72.8 43.4 24.1 94.3

b g * Ui 2.4 1.80 1.09 2.09(4.92 3.57 2.22 4.09

requested for agent i € N,,. Table 4.6 gives the MACPs for each state and the
average inter-event times for each agent obtained by simulation. Since when

an ET condition is satisfied, the agent transmits all the local information, the
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Table 4.7: Steady-state error of S, and S,

Group | State | Level Steady-state error

Agent 1(3) 2(4) 5 6

0 i €N, | 0.0099 0.0097 - -
Sa Aw; | i€ Ny | 0.0892 0.0890 0.0885 0.0878

Av; * 0.0435 0.0434 0.0432 0.0428

Ay * 0.0011 0.0013 0.0018 0.0026

s 5; * 0.2489 0.0594 0.2415 0.1105
b A6; * 0.0935 0.1443 0.1200 0.1516

distributions of the source that generates a transmission are also summarized
in Table 4.6. The control inputs are shown in Figure 4.5, which are only
updated at each triggering instant. The trajectories of the states belongs to
subsystem S, and S, are shown in Figure 4.6 and Figure 4.7, respectively,
with the steady-state errors summarized in Table 4.7.

The steady-state errors of S, and &, are with different numerical magni-
tudes, which coincide with the cascade structure in a sense that the errors are
accumulated in each level. The trajectories of all the agents in the MAS are
shown in Figure 4.8, which shows that the formation in the leader’s coordinate
frame is realized.

The following example is used to discuss the conservativeness of the re-
sults. In this case, we increase amplitude of the external disturbances as
vo(t) = 2+ 0.5 cos(t), wo(t) = 0.25 4 0.5 cos(1.5t). The simulation results are
given in Figures 4.9-4.11. From Figures 4.9-4.10, we can tell that the finite
time convergence for subsystem S; and the ISS property of subsystem S, are
preserved. However, by Figure 4.11, subsystem &, diverges because the exter-
nal disturbances exceed the threshold to guarantee the ISS property, which
means the strongly iISS might be the “best” stability result we can obtain for

the closed-loop system.

4.7 Summary

A leader-follower formation tracking problem without velocity measure-

ments has been solved in this chapter. PETMs were introduced for both
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Angular Velocities for Agent i € NV, A?gular Velocities for Agent i € N, During ¢ € [0, 1.5]
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Figure 4.5: Control inputs to the agents

communication and controller updates, where continuous measurements were
avoided. By reformulating the problem in a hybrid system framework, asyn-
chronous samplings and checking instants among agents were analyzed without
increasing the dimension of the system matrix. In addition, the underlying
communication network was managed separately for PULC and PUSC, which
took into account of their distinct features. The MAS was subject to a hierar-
chical structure, benefited from which, the acyclic assumption was removed.
Novel Lyapunov function candidates were proposed to illustrate different sta-
bility properties of three subsystems, and by reconstructing the system into

a cascade-connected structure, strongly iISS was provided for the overall sys-
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Formation Errors of Agent i € N, Estimation Error of Agular Velocity for Agent i € Ny

0.6
—[o1]
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Figure 4.6: Trajectories of the states in subsystem S,

Estimation Error Ad; for Agent i € Ny Formation Error of Agent i € Ny
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8 4
6 3
4 25
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0 25 5 t(s) 75 10 12.5 15 0 25 5 t(s) 7.5 10 12.5 15

Figure 4.7: Trajectories of the states in subsystem &,

Trajectories of the Agents

Figure 4.8: Trajectories of the agents. Here the solid lines represent the
trajectories of agents in N,, and the dashed lines represent the trajectories of
agents in Ny.

tem. The effectiveness of the proposed methods were further illustrated by a

numerical example.

110



Convergence error of 7; Convergence error of y;

50 7

40 ) or -xel]
5

30
4

20
3

10 2

0 1 : ;

0 0.1 t(s) 0.2 0.3 0 5 t(s) 10 15

Figure 4.9: Finite-time convergence of subsystem &;, with larger disturbances
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Figure 4.10: Trajectories of the states in subsystem S, with larger disturbances
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Figure 4.11: Trajectories of the states in subsystem S, with larger disturbances
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Chapter 5

Distributed Optimization-Based
Formation Control under
Event-Triggered Mechanism*®

5.1 Overview

This chapter investigates an ETM for distributed optimization-based for-
mation problems of MASs under directed graphs. In most of existing results
21, 22, 23], DOP was solved in a consensus sense, such that all agents in
MASSs shared an identical optimal solution. In order to cope with certain
circumstances, like formation control of mobile robots [89], we consider the
situation where the optimal points of agents form some specific configura-
tions. The optimization-based formation problems were considered in [90]
and [68] as well. However, in these results, the equality constraint introduced
by formation configuration was treated as a penalty term in the global object
function; therefore, the transformed DOP was only equivalent to the original
one when the coefficient on the penalty term approached to infinity. In our
work, the optimization-based formation problem is solved by the modified La-
grangian based (MLB) algorithm [22]. The formation errors are estimated by

each agent locally, and a proportional-integral feedback structure is used to

xA version of this chapter has been submitted to IEEE Transactions on Cybernetics as: J.
Yang, H. Yu, and T. Chen, Distributed optimization-based formation control: a dynamic
event-triggered approach.
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guarantee asymptotic stability of the closed-loop system.

In order to reduce network load, an ETM is proposed. Considering the
situation where MASs are subject to unknown disturbances, an auxiliary vari-
able was introduced to estimate the average influence of external disturbances
in [65] and [23]. Single-loop systems were considered in [65] and MASs with
connected underlying graphs were considered in [23]. However, their ETMs
cannot be extended trivially to the case that the underlying graph is directed.
Since the transmitted signals from neighbors are included explicitly in the con-
troller, the auxiliary variable introduced in [65] and [23] might not be continu-
ous between adjacent agent transmissions, which may lead to arbitrarily small
inter-event times. Motivated by this, a novel dynamic ETM is implemented
where a buffer variable is introduced to record the historical local informa-
tion including the average values of measurement errors over one transmission
interval. Subsequently, the transmission performance can be evaluated by a
computable positive minimum inter-event time and the closed-loop MAS is
proved to be ISES w.r.t. unknown disturbances.

Furthermore, two kinds of ET functions are investigated. By changing the
input to the buffer variables, which leads to different requirements on integra-
tion capacity, we show the trade-off between network load and computation
complexity. The effectiveness of the proposed method is verified by numerical

examples.
5.2 Preliminaries and Problem Formulation

5.2.1 Preliminaries

Some preliminaries and notations on graph theory are the same as those in
Section 2.2.1, and definition of L., norm and properties of system stabilities
are the same as those in Section 3.2.1. A(-) and A(-) represent the maximum

and minimum eigenvalues of a symmetric matrix, respectively.

Definition 8. ([91]) A differentiable function f : R” — R is v-strongly convex
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if for any z,y € R",

F) 2 J(@) + I @) (g - 2) + Sl -yl

and it is p-smooth if for any x,y € R",

IVf(z) = Vi) < pllz—yll,
where V f(z) stands for the gradient of f at point x.

A digraph G is strongly connected if for every pair of nodes there exists
a directed path connecting them, and it is weight-balanced if Z?Zl a;; =
Sor_i ki, @ € N and a;; > 0, Vi,j € N. Let d; = Z?:l a;; represent the
out-degree of node 7; and L € R™"™ be the Laplacian matrix of diagraph G,
where [L];; = —aj;; if i # j, and [L];; = 35 ayj

Lemma 14. ([57, 92]) For a strongly connected and weight-balanced digraph

G with n nodes and Laplacian matrix L, one has

L+ LT >0 and 0 is a simple eigenvalue;

e Lz =0 iff xr € R" and all the elements in x are the same;

there exists a nonnegative constant €, satisfying

%EL@ L IT) > T D)L - 1Y)

1 =

there exists a matrix I' > 0 such that %F = F% = II with II =

I, — 11,17

Lemma 15. ([23]) Consider the function m(t) = avep, 4(|s|),t > to, with a
given initial instant ¢y, a nonnegative signal s : R — R and avey, 4(s) =
ftz = 5(7)dr, then the following two equations hold: lim, .+ m(t) = s(to);

and m(t) = —ﬁm(t) + ﬁs(t), t > to.
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5.2.2 Event-Triggered Optimization-Based Formation Con-
trol

Consider a MAS with n agents modeled by single integrators subject to

unknown disturbances
x'i:ui—kwi, izl,---,n, (51)

where z; € R is the state, w; € R is the unknown disturbance, and u; € R
is the control input to be designed. Each agent ¢ is only aware of its local
object function f;(z;) : R — R, which is not shared with others, and can
communicate with each other via the interaction network described by G.
The goal of the MAS is to minimize a global object function
flx) = filxs), @ = [e1,--- ], (5.2)
ieN

and, at the same time, converge to the formation given by
L(x —h) =0, (5.3)

where L is the Laplacian matrix associated with G and h = [hy,- -+ , h,]T € R®

is the desirable configuration known to all agents.

Assumption 11. The local objective function f;(x) is p;-smooth and ;-

strongly convex.

Assumption 12. The underlying digraph G is strongly connected and weight-

balanced.

Under Assumption 11, the optimization problem in (5.2) and (5.3) has an
unique optimal solution. The corresponding Lagrange function is given by
L(z,\) = > cn filz:) + ATL(z — h) with a Lagrange multiplier A € R"; and
the constrained optimization problem is solved iff the Karush-Kuhn—Tucker
condition

v fi(z7)
Ly = : + LA =0 (5.4)

V fuly,)
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is satisfied, where z* = [z7,--- ,2%]T € R" is the optimal solution.

Assuming agents can transmit local information continuously, controller u;

is designed according to the MLB algorithm as

U; = —OCVfZ(.Z'Z) — sze/\& aij(mi — flfj — hl + hj> — Uy, (55)
T'JZ' = szej\fi CLij(SL’i — LU]' — hz + hj)
When w; = 0, the equilibrium point in (5.1) and (5.5) satisfies
2 jen; @ij(Ti — x5 = hi 4+ hy) = 0 (5.6)
—av fi(z;) — v = 0.

Under Assumption 12, > .\ 0, = 0. If Y.\ v;(0) = 0, we have ).\ v;(t) =
0. Since span{LT} 1 1,,, there always exists a A satisfying v = LT\ and (5.4),
where v = [vy,...,v,]7 is decided from (5.6). Therefore, the goal in (5.2) and

(5.3) is achieved if the state x can converge to the equilibrium decided by

(5.6).

Remark 20. It should be noted that using the Kronecker product on Lapla-
cian matrix L, the MAS in (5.1) can be generalized to the case where z;, u;, w; €

R™. For notational simplicity, we only consider the scalar case in this work.

Since the communication among MASs is inherently discrete in digital
channels, in this paper, we focus on designing an ETM for system (5.1) and
(5.5) such that agents only transmit local information when some predeter-
mined ET conditions are violated. Let Z; represent the value of z; at its latest
transmission instants; then the dynamics of the event-triggered system can be

represented as

.’i’z‘ = U; + w;
up = —av fi(x;) — ﬁzj@\g aij(Zi — &5 — hi + hy) — v, (5.7)
Ui = D jen, @i (& — T3 — hi + hy),

under the initial condition constraint ). ., v;(0) = 0, where

{gi"i(t) —5,(t), t=t,
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and t}w represents the transmission instant of agent ¢ generated by the following

dynamic ETM:
th, o = inf{t > ¢} |g;(t) < 0}. (5.8)

Here, ¢; : R5o — R is an auxiliary (buffer) variable to be specified later.

In the subsequent section, we will provide a detailed design for the ETM
in (5.8) such that the closed-loop system in (5.7) is ISES w.r.t. disturbances.
Furthermore, Zeno-freeness is ensured by a computable positive minimum

inter-event time.

5.3 Event-Triggered Optimization Algorithm

Inspired by [65] and [23], we introduce an auxiliary average variable n; to
estimate the effects of unknown disturbances

1
t— t}lﬁ

—i—ﬁZam(@ —jj —hi—th) +’Ui||d7',0}, 1 GN.
JEN;

t
m = max {||&: — @] / lav s,
4,

(5.9)

Then, a novel dynamic ETM is proposed based on the following buffer variable:
gi = = pigi — ail| & — x> + mi(av fi + v;)?
+1;(B Z a;;(T; — &5 — hi + hj))2 + ez, (5.10)
JEN;
with ¢;(0) = 0, where a;, p;, m;, ¢; > 0 are parameters to be determined later.
The following lemma discusses Zeno-freeness of the closed-loop system with

the ETM described in (5.8)—(5.10).

Lemma 16. For each agent i, the ETM given in (5.8)—(5.10) admits a positive

minimum inter-event time AT} satisfying

AT?ePiATi _ mln{li, m;, Ci}
¢ 20,1‘
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Proof. Let e;, = %; — x; represent the measurement error of agent ¢ with
the augmented vector e; = [e;,, -+ ,e;,]7. By (5.7), e, is differentiable and

bounded for t € (t ,t} ;). According to L'Hospital’s rule, we have

e

(g )t T — tzi
is well defined and finite. Similar arguments are applied to
t . .
1' ft?c ||62]€M aij(l‘i—l’j—hi—th)—i‘OéVfi—FUinT
1m L .

t=(t, )+ t— tfﬂ_

As a result, according to (5.9), for ¢ € [t} .t} ), we have

||eti

t
S / ||ﬁ Z aij(ii — i’j — hz + h]) + OéVfZ‘ + UinT -+ (t — t;%)?]z
n

ki JEN;

Use Cauchy-Schwartz inequality
llee |I* <2t = ,)%n7 + 2(t = 1,)&(2).

where .
E(t) = / (B @y — & — hi+ hy) + av fi +v;)dr.
ey JEN;
Integrate on both sides,

t t
/ lew|%dr < / (2(r — ti )P0 + 207 — £)6(r)) dr
ti ti

<alt ) [ wpdr + (¢~ 1,600

t}cl_
t

<2(t — t;'ﬁ)2/ nidr +2(t — )
ti

k

. i
X / (5 Z aij(iri — i’j — hz + hj))2 + (O[sz + U,‘)QdT,
i jeN;

(5.11)

k.

K3

By (5.10), we have

o _
/ C TR gy e, (7)) Pdr
ti

k.

i
7

bg+1 (ot
= [T E Y a8 = b+ )P+ iV )+ i)
ti

ky JEN;
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Then,

- 2
[ alewtliar >
tl

L5

; li;+1
ek / (Li(B Z aij (& — &5 — hi + hy))? + mi(av fi + ) + en?) dr,
tk. ]GM
(5.12)
where AT} =t ,, — t;.. Combining (5.11) and (5.12), the minimum inter-
event time can be calculated from
min{l;, m;, ¢;}

2 pi AT, _
AT’e =
2@1‘

(5.13)

]

The stability of the system is shown in Theorem 13. In order to guarantee
ISES w.r.t. unknown disturbances, a Lyapunov method is used to facilitate
the selection of parameters in auxiliary variable (5.10) and the feedback gains

in (5.7).

Theorem 13. Consider the sampled-data system in (5.7) under ETM in (5.8~
5.10); for any given p; > 0, there always exist small enough I;, m;, ¢; > 0, large
enough «, 3, a;, © € N, and well designed v > 0, such that the closed-loop

system is ISES w.r.t. unknown disturbance w = [wy, -+, w,|T.
Proof. By (5.7), we have

ée |l < Nlav fila:) + 8 aij(@; — &5 — hi + hy) + vill + [Jwill. (5.14)
JEN;

Integrate on both sides,

t t
len(®)] < / N fiw) + BY aslE — £ — hi + hy) + villdr + / el

b, JEN; i
Combining with (5.8) and (5.9), we have

17l < Nlewilloo- (5.15)
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— * —
Let e;, = x; — 27, €, = v; — v

% 7

i € N, with the corresponding augmented

T

_ _ T _ N\ :
vector e, = [eg,, €z, €y = [y, - ,€p,]", and g = >, g;. Consider a

Lyapunov function

V = —(aele, + (bey + €,) T(be, +€,)) + g, (5.16)

l\')l»—t

where a, b are positive constants to be specified later. When there is no event,

the derivative of (5.16) can be represented as

V =3a(el(~aq = BL(es + ) — ey +) +(~ag = BL{er + ) — ¢y +w)Ter)
+ 5 (bes e D((—ag — BL{er + ) — e ) +1L{er 1))+
+%@(aq—ﬁMq+aﬂ—&dﬂﬂ+7ﬂa+€ﬁfﬂ%m+gn
;A—w@+EWM(—wmm+ﬂmmﬁ£}D%

+el(—a—bT+(y—bB)L'T)e,
+el (—aBL+b(y—bB)I'L)e; + e, (v — bB)I Le;
+el(a+ b°T)(—aq +w) + el bl (—aq +w) + ¢

where w = [wy, -+ ,w,]T. Under Assumption 12, according to Lemma 14, we

have

LT

5 e

L— LT
2

L+ LT
2

1
=el (I — NlNlﬁ)ex + eI (
L—-LT
2

eITLe, =elT|( Jee + eI T(

)€

:efez + eZF( )er

L+ LT
2

<ele, + el T/ er(

)ey.

Under Assumption 11, let a = v—b5. Then, by introducing some free parame-

ters 0y, k1 € {1,2,3,4,5,6} 5’“2 ky € {x,v}, based on the Young’s inequality,

) w 7
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we have
V<
o 5 93 9 04 =~
(—aav + 2 5 “(a+b"\TI)) + 5 =B A\(T) + —aﬁ)\(L) a(=
o - 2 5
(20 + abp)A(T) + (= + 2
03 52

2 2
b+ —a)Au)e; e+ (—bAT) +
06 oY

52 55 T
5 —l—b—i—Eb))\ M)€nes

T 2\ T
)a)\M—i- 261>\( )*)e. e,

2 2 T
5_35(6‘ + M) w’ w

w

+ (= AT) + b)\(F)

2

(54 ((55
01

+e (—a@—i—?qa)(

+ (aBA(L) =

LT+ L
2

Jex + g

Here A\yy = MT)A(L), v and u represent the minimum and maximum of
and p; for all 1 € NV, respectively. Therefore, for any given a, d3, d5 > 0, there
always exist large enough «a, 3, 41, d2 > 0 and small enough b, 07, 97, 04,
0¢ > 0 such that

—aav + % (a + BPMI)) + ZaBA(L) + a(%2 + b+ 2b)Ay + LA(D) = —¢,

<0

~A(T) + DAD)% + (26% + abp)A() + (2 + 2)ady + 5 MI)? = —¢, < 0
—af+ 2 Sera < 0.

Then, we have v = a + bf3, and

V< —éele, —eele, +eele, + e w2 + g, (5.17)
where
—aBND) 2 (2t Za)
€& =0a 54 55 56& M
2 < 2
¢ = 5—@1))\(1“) + 57(@ + b \(I)).

According to (5.10) and (5.15), we have

V< —ellel® = e lle]® + elled® + eLllwllZ - (= pigi — ailles,|I”
ieN

+mi(ag; + ey, + e + (B Y ay(d; — d; — hi + 1y))°)
Z 19

<=, + 8IB°d" + 20” ma{mipg})ea|” + (=€, + 2m)les ||
S

+(—a+ e + 8B [led|* — pg + (¢ + €,) |wll2,
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where [, d and m represent the maximum of I;, d; and m; for all i € N,
respectively; and ¢, p and a represent the minimum of ¢;, p; and a; for all
i € N, respectively. By (5.18), the parameters in (5.10) can be designed

based on the following condition
— 4+ 8IB%d* + 202 rzré%({mlu?} =—€<0
—€, +2m = —¢, <0
—a+ ¢, + 813 d* = —¢, < 0.

According to (5.16), we have

V < 2 (a4 PAE) + AW el + 5 (14 03D el + -
V2 A - DRl + 2Ol e
where 0 < §, < 1 and satisfies a + A(I')(1 — é)b2 > (. Then,
V< eV + eulwll, (5.20)

2€, 2¢ey
atb2X(T)FOA(L) ? THOA(D)

mits its local information at ¢} , we have V(t}:j) = V(t},). Therefore, the

where € = min{ p} and €, = ¢+ ¢,. When agent 4 trans-

closed-loop system is proved to be ISES w.r.t. w from (5.20). H

Remark 21. Event-triggered DOP was considered in [23] under connected
graphs. Since the underlying graph was undirected, the feedback gain S in
(5.7) could be set as zero, which means that agents would not be directly af-
fected by neighbors’ transmitted information. As a result, the ETM proposed

in [23] was in the following static form independent of any buffer variables:
thopr = inf {t >t [ |2 — 2] > max{ba|| ], cillmill} } (5.21)

where b;, ¢; > 0 were constants, fi; was a vector related to its own state x;,
and 7; was the auxiliary variable introduced following a similar motivation as

n; in (5.9):

- max{|| & — @i —ai(t — ) max{]| (@), |4 — @i}, 0}

i= =) (5.22)
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with a;, m; > 0 to be designed. Since (5.21) and (5.22) only depended on

agent’s own state, 7; is always continuous before the next transmission instant

2 4+1- However, the underlying graph considered in this work is directed. In

order to ensure stability, 5 must be positive resulting in explicit dependence of
u; on neighbors’ broadcast information. Since the transmissions among MASs
are asynchronous and independent, we use an integral term in (5.9) and a
buffer state ¢g; in (5.10) to record the transmitted information from agent’s

neighbors before the next transmission instant ¢, ;.

Remark 22. The ETM proposed in this work is applied to the distributed
formation problem with time-varying desirable configuration h considered in
[68]. In that case, the dynamics of h is estimated by auxiliary variable 7;, and

the closed-loop system is ISES w.r.t. disturbances and .

5.4 ETM with Less Computation Complexity

The auxiliary variable in (5.9) includes integration of a piece-wise con-
stant term JeN; a;;(#; — ;) and continuous terms aV f; and v;. Clearly, the
computation complexity for the first one is much less than the second. In
order to reduce the load on microprocessors, we consider another design of

the auxiliary average variable n; as

1 ) ‘ o
n = max{|[&; — wil| - / 18" aij(@: — &5 — hy + hy)|dr,0}. (5.23)
k t

kg JEN;
Correspondingly, the ETM is given by

- ~ (5.24)
k1 = inf{t >t g;(t) < 0}.

Here, T" > 0 is a user-specified upper bound of inter-event times, and the

buffer signal is given as

. . S 2
Gi = — pigi — aill&; — x| + L (8 Z aij (& — &5 — hi + hy))” + cin?, (5.25)
JEN;
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with ¢;(0) = 0, where p;, l;, a;, ¢; > 0 are positive constants to be specified
later. Consequently, the analytical solutions of 7; and g; can be obtained in a

piece-wise form.

Theorem 14. Consider the sampled-data system in (5.7) under ETM in
(5.23)—(5.25). For any given p; > 0, there always exist small enough ¢;, I; > 0,
large enough «, 3, a;, 1 € N, and well designed v > 0, such that the closed-
loop system is ISES w.r.t. unknown disturbance w = [wy, -+ ,w,]T. Further-
more, Zeno-freeness is guaranteed by a computable minimum inter-event time
satisfying inf{t_, — ¢} > min{T, AT;}, with AT; being the unique positive
solution of

ATZ2ePiAT — M

¢ 2a;

Proof. The Zeno-free behavior can be proved following a similar line in Lemma

16. By (5.7), (5.8) and (5.23) we have
lmil] < avepy gllagill + avep: gllew || + llwillo- (5.26)

For notational convenience, in the following, we drop the subscript [t}'ﬂ, t] in
ave(-)[t;c 4 if there is no ambiguity. Considering a storage function as in (5.16),
when there is no event, the derivative of (5.16) can be represented as
V < =€ lesl® = e llenl® + flledl” + eLllwllZ + D (= pigi + cn
ieN
A 2
— aiHetiHQ + ll(ﬁ Z CLZ']'<£CZ' — .fL'j — hl -+ h])) )
JEN;
(=€ + 81828 [|ea|* — € lleu]|* + (—a + e + 8I8°d)[|ex|?

—Ppg+ eLllwlZ + Z Ci((l + O + O )ave| g, ||
ieN

1 1 1
HL g avelle, [ HL 4=t Buu)avelle )

5&)1’
< — ezefew — EUGZGU - ete?et —pg -+ 6wHWHgo

+ 3 ¢i((1+ 8,) o ptavel|eg, |2 + (1 + 8, )ave] ey, |[2),
iEN

/
v

where €., €/, € and €, have the same expressions as in (5.17) and 0, =

Owz + Opp, Oy = ﬁ + i, € = €, —8IB*2, €, = €, ¢ = a — ¢, — 813>

v
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and e, =1+¢ + ﬁ + duy- According to (5.19), we have

V= —eV +e,|w]/% + Z i (14 0,)a” piave| ey, || + (1 + d,)ave| e,

ieN

2)7

where € has the same expression as in (5.20). According to (5.19), when

vznmx{5a+war—%w%mmwaﬁéwar—@m%wmw},

the derivative of V satisfies

. 2V
V<V +elwl? = 1+ 8,)a2u? -
S -V telwli+ (@3 (1 +0)a M A (1 - 1/5v)b2)
ieN (527)
+en(l+9 )L
IO =5)
As a result, when
€
— > 212 + ¢
2 = Z(l + 0z)a”p; + en(1 + 0y), (5.28)
iEN
we have
V<=5V +elwl, (5.29)

and there always exist small enough ¢;, i € N, such that the condition in
(5.28) can be established.

Consider a Lyapunov function as

. L O PN ,
010) = V. Ja-+ AN = 2P paveles |, AT = S avel e 2}

Case I: O(t) = V(t). When there is no jump, we have (5.29).
Case II: O(t) = ;(a+ A(D)(1 — 5-)b%)avel|e,,[|* and

4V (1)
2> _ > 2¢le, > 2T e, .
= At AMD)(1—1/5,)p2 = = o

avel||e,,

Then, it follows from the user-specified upper bound 7' of inter-event times

that




Case III: O(t) = 1 \(T)(1 — d,)avel|e,,||?. This is similar to Case II.

T
When agent ¢ transmits its local information at ¢, , we have V(t}j) =
V(tr,). When O(t;,) = 3(a + AT)(1 — §)b*)ave|le,, ||, according to Lemma
15, we have

lim O(t) = %m LA (-4

t—>t};:’ Oy

V(t:).

k3

N —

o) llea, (8, )II* <

Similar conclusions can be applied when O(t) = 1 A(D)(1 — &,)ave| e, ||>. As a

result O(t;F) = O(t}, ). Combining the cases above with

. e 1
t) < —min< =, — t 2
O(t) < m1n{2,2T}O( )+ eullw||Z,
one can prove ISES of the closed-loop system w.r.t. w. n

Remark 23. Comparing equations (5.8)—(5.10) and (5.23)—(5.25), the inter-
event time in the second method is upper bounded by a user-specified con-
stant 7. In addition, besides w;, the upper bounds on 7; in (5.23) is related to
ave(e,,) and ave(e,,). As a result, the ETM in (5.24) would be more conser-
vative than the one in (5.8). This reveals the trade-off between computation

complexity and network load.

5.5 Simulations

Numerical examples are used to illustrate the effectiveness of the proposed
methods in this section. Consider a MAS with four agents. The underlying
graph is described by the Laplacian matrix

The desirable formation is give as h = [—1,—0.5,0,0.5]7, and the local object
functions are f; = 2> +1n(a?+1), fo = 2* — 2z, f3 = (v —4)* and fy = 1.252%
The optimal values are z* = [0.316,0.816,1.314,1.814]7. The gains in con-
troller (5.7) are chosen as « = 5, f = 8, 7 = 0.48, and the parameters of
auxiliary variables n; and g; in (5.9) and (5.10) are chosen as p; = 1, a; = 50,
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Figure 5.1: Trajectories under the ET function in (5.9) and (5.10) without
disturbances

[; = 0.016, m; = 0.005 and ¢; = 1.

Figure 5.1 shows the simulation result without disturbances and Figure
5.3 shows the corresponding inter-event times with the minimum, average and
theoretical inter-event times listed in Table 5.1. Figure 5.2 shows the simula-
tion result subject to disturbances w;(t) = 0.1 cos(0.5¢), and the steady-state
error is ||e;|| = 0.1183. Figure 5.4 shows the corresponding inter-event times
with the minimum and average inter-event times listed in Table 5.1, which il-
lustrates that (i) Zeno behavior can be excluded in the absence and presence of
disturbances, (ii) the existence of disturbances generates more transmissions,
and (iii) our proposed ETM can adaptively allocate communication resources

based on the on-line demands.

Table 5.1: Statistic properties of inter-event times under the ET function in

(5.9) and (5.10)

Agents 1 2 3 4
No Minimum | 0.0151 0.0085 0.0085 0.0117
Disturbances | Average | 4.0988 2.5388 2.8033 3.5590
With Minimum | 0.0043 0.0077 0.0065 0.0114
Disturbances | Average | 0.8422 0.6721 0.4701 0.8980
Theoretical | Minimum 0.0040
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Figure 5.2: Trajectories under the ET function in (5.9) and (5.10) with dis-
turbances
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Figure 5.3: Inter-event times under the ET function in (5.9) and (5.10) without

disturbances
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Figure 5.4: Inter-event times under the ET function in (5.9) and (5.10) with
disturbances

The parameters of auxiliary variables 7; and g¢; in (5.23) and (5.25) are
chosen as a; = 50, [; = 0.016, ¢; = 0.0001 and 7" = 20. Figures 5.5 and
5.6 show the simulation results without disturbances and with disturbances
wi(t) = 0.1cos(0.5t), respectively. The steady-state error for the disturbed
case is ||ez|| = 0.1190. Some statistic properties of inter-event times are sum-
marized in Table 5.2. Comparing the results given in Tables 5.1 and 5.2, the

Table 5.2: Statistic properties of inter-event times under the ET function in
(5.23) and (5.25)

Agents 1 2 3 4
No Minimum | 0.0031 0.0022 0.0057 0.0058
Disturbances | Average | 1.4304 1.1802 1.3764 1.8707
With Minimum | 0.0022 0.0022 0.0022 0.0022
Disturbances | Average | 0.0907 0.2392 0.0600 0.3469
Theoretical | Minimum 0.0010

inter-event times of the first method in Section 5.3 are larger than the ones of
the second method in Section 5.4. This supports the discussions in Remark

23.
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5.6 Summary

In this chapter, we proposed an ETM to solve a distributed optimization-
based formation problem under strongly connected and weight-balanced di-
agraph. Under the proposed method, MASs could minimize a global object
function and converge to a desirable configuration simultaneously. An aux-
iliary average variable was introduced to estimate the influence of unknown
disturbances between adjacent transmissions, and a novel dynamic ETM was
used to deal with asynchronous transmissions among agents. Benefited from
the novel ETM, the closed-loop system is ISES w.r.t. unknown disturbances,
and Zeno-freeness is guaranteed for each agent by a computable positive min-
imum inter-event time. Furthermore, the trade-off between network load and
computation complexity was discussed by constructing different ETMs that
used different signals in the auxiliary variables. The effectiveness of the meth-

ods was verified by numerical examples.
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Chapter 6

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are pointed out for future work.

6.1 Conclusions

This thesis studies a variety of cooperative control problems for MASs. To
reduce network load and energy consumption, ETMs are proposed to generate
data transmissions and /or controller updates for the considered problems. The

outcomes of the work in this thesis are summarized as follows:

1. An affine formation of general nonholonomic systems on the SE(3) is
studied. A distributed control protocol is proposed, under which, MASs
can converge to the desirable configuration. The control protocol only
relies on relative information detected by agents’ onboard sensors, and
the configuration of MASs can be manipulated by only a few agents in
the system. In addition, a distributed algorithm is proposed to recon-
struct a k-rooted graph when some edges are lost. Taking the advantage
of that, the proposed control protocol can be implemented under switch-
ing graphs. Furthermore, an ETM is proposed, such that the controller
updates and data transmissions occur only when it is necessary to main-
tain system stability. To guarantee Zeno-freeness, an absolute term is

introduced to the ET function with some sacrifice of system performance.
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2. A COR problem is studied in a hybrid system framework. Consider-
ing inevitable network-induced imperfections, robustness against asyn-
chronous transmissions and time-varying delays are analyzed in terms
of MATIs and MADs, respectively. A novel Lyapunov candidate is pro-
posed to facilitate stability analysis, by which, a more intuitive trade-off

relationship between MATIs and MADs is given.

3. A formation tracking of nonholonomic systems without velocity mea-
surements is studied. The information flow through detection networks
and communication networks are considered separately. The first kind is
defined as PULC, and we assume that the detected information is used
directly; while the second kind is defined as PUSC, and PETMs are
proposed to generate transmission events. Furthermore, a hierarchical
structure is proposed to remove the acyclic assumption. Based on this
structure, estimation and control strategies are proposed to the agents
in different levels. The closed-loop MAS follows a cascade structure, and
novel Lyapunov candidates are proposed to facilitate stability analysis,
where finite time convergence, ISS and strongly iISS are provided for

the corresponding subsystems.

4. A distributed optimization-based formation problem is studied, where
each agent is only aware of its local object function and can communi-
cate with its neighbors. A distributed control protocol is proposed based
on MLB algorithms, such that the MAS can agree on the global optimal
solution and converge to the desirable formation. An ETM is proposed
to generate transmission events. To guarantee Zeno-freeness under dis-
turbed cases, an auxiliary variable is introduced to estimate the average
effect of disturbances to the MAS. Furthermore, the closed-loop system
is proved to be ISES w.r.t the disturbances.

The effectiveness and applicability of the proposed methods are validated

by case studies using numerical examples.
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6.2 Future Work

This thesis studied several cooperative control problems of MASs, in-
cluding affine formation control, COR, foramtion tracking and distributed
optimization-based formation. Considering inevitable network-induced im-
perfections, the robustness against asynchronous samplings and time-varying
delays was investigated. To reduce network load and energy consumption,
ETMs were proposed, such that the controller updates and/or data trans-
missions only occurred when some predetermined thresholds were violated.
However, the robust analysis and ETM designs were proposed for the MASs
with specific dynamics. A method that is available to general MASs is still
required. In addition, as one of the most critical problem in ETMs, Zeno-
behavior has not been solved systematically. To meet the demands in some
general and systematic methods to analyze the influence of network-induced
imperfections and facilitate Zeno-free ETM designs, the following promising

directions deserve efforts for future work.

Robustness Against Network-Induced Imperfections for
MASs with General Dynamics

Cooperative control of MASs relies on the information flow among agents.
However, the introduction of communication networks comes with network-
induced imperfections inevitably, such as asynchronous samplings, time-varying
delays, quantization errors, communication constraints and data dropouts.
There are plenty of literature focusing on investigating the influence of these
imperfections on NCSs, and most of them formulated and solved the problem
in a hybrid system framework. But the Lyaounov function used in the ex-
isting results on NCSs ignored some distinct features of sampled-data MASSs,
which would led to some inconsistency and unintuitive analysis. In Chap-
ter 3, we studied the robustness against network-induced imperfections for
a COR problem under a hybrid system framework. The tolerance of asyn-

chronous transmissions and time-varying delays were given in terms of MATTs
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and MADs. A novel Lyapunov function candidate was proposed to facilitate
the analysis of system stability, which led to a more intuitive trade-off design
of MATIs and MASs. In practice, several types of communication imperfec-
tions always come simultaneously and the system dynamics are more complex.
Therefore, a method which can cope with different types of communication

imperfections and be applied to general system dynamics is required.

Zeno-Free Event-Triggered Mechanism for M ASs

In order to reduce network load and energy consumption, ETMs are pro-
posed as an improvement over the classical time-triggered mechanisms. Con-
sequently, the exclusion of Zeno-behavoir needs to be taken into consideration.
In Chapter 2, an absolute term was used to guarantee Zeno-freeness in the
price of sacrificing asymptotic convergence. In Chapter 3, PETCs were ap-
plied, the continuous measurements and Zeno-behavior were excluded simul-
taneously. However, the system might degrade to classical periodic sampling
when there exist disturbances. In Chapter 4, a dynamic ETM was proposed
and an auxiliary variable was introduced to estimate the influence of distur-
bances. The closed-loop system was Zeno-free and ISES w.r.t. disturbances.
But the robustness against network-induced imperfections was not provided,
and continuous monitoring of system states was required. Based on the above
analysis, it is worthy to investigate a systemic method that can provide ISS
property against external disturbances with guaranteed Zeno-freeness, and at
the same time, be free of continuous monitoring and robust to network-induced

imperfections.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 8

Step 1: Convergence of subsystem S,,.

According to (4.6), the hybrid system model of S, can be represented as
n (4.33)-(4.34) with state vector &,, disturbances ¢ = ¢, = [0,w0]", &2 =
gs = 0. Introduce auxiliary variable ¢, as in (4.35). Since A, is Hurwitz,
the positive definite matrices P,, @, satisfying (4.38) always exist for a small
enough €,. Then, the MASP can be calculated by Lemma 10. Consider

Lyapunov candidate Uy (&,,) = n/ Pyn; + ly¢y Sy, on flow domain, we have
Qn+[8 60 ] Pan
o) < ~6 | Bal me 6 paria)

By the LMI in (4.38), we have (VU, (&), (€, ) < — 52115, |*+2a ol 1]
On jump domain, U, (&)t < U,(&,,). Then, Condition 4 is satisfied with

? S Un(frh) S 0777”5772 2

b Qn“&h

d <VU77(5771')?F(577¢7§77)> S _e%]a;fnUU -+ de%1 /Uv777 5771‘ c C’
* Un(gni)Jr < Uﬂ(&h‘)v gm €D

By Lemma 11, the convergence error and convergence time can be calculated

depa2 2 U, 0,0 .
as r, = S" 1"5 a, and T,, = ai: In %, respectively.

Step 2. Convergence of subsystem S,.
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According to (4.8), the hybrid system model of subsystem S, can be rep-
resented as in (4.33)(4.34) with state vector &, and disturbances ¢ = ¢},
G = Sk, Ss = b Introduce auxiliary variable ¢, as in (4.35). Since A, is Hur-
witz, the positive definite matrices P, and @, satisfying (4.38) always exist
for a small enough €, and the MASP can be calculated by (4.36). Consider a
Lyapunov candidate U, (&,,) = xi* Pyxi + ngzSXSfa, on flow domain, we have

(VU6 Fleros)) <€ |~ 10a] 28 g

—lia;]
A2
x; P (4.2)

+ 25X+ 2x] Pocl, + 2Ly Syl

€x
Referring to (4.8), the disturbances ¢!, and ¢} involve the convergence error
Aw;, formation error ¢;, sampling error S,, and control input u,;. Since the
control input is saturated by (4.11) and V; is an open set, if §;(0) € V,,
there exists a (7., j.) # (0,0) such that for all (t,j) € T,, = {(¢,5)|t €
[tj,tj41),5 =0, je — 1}, &mi(t, ) € X, where X; = {&,[0; € V;}. By the
convergence property in Step 1, for a small enough ¢,, we have T;, < T,. Then

for (t,7) € T, VT, where T, = {(¢,))|t € [tk,tx+1),tx > T, }, we have

. Ui 7 i
HC;QH < Tn(c+ ———=—max (1,dyp)) = ¢

/1 + d?() X2

and
l6ill < 2 ma (1, dig) + ery = ¢
Ssll = — max (1, d;o Ccr, = Cgq.
T+ & n s

Combining with the LMI in (4.38), we have

g - L i ~ i
<VU(£X1‘)7F(€XH§X1')> > _6_X||X;'F>S§i||2+2ax(6_cxz+Cx1)”XiH+2O‘XCS”Si .
X X

On jump domain, U, (&,,)" < U,(&,). Then, Condition 4 is satisfied with

2 < U(E,) < ayllél?

hd gx”&Xi

hd <VU77(€X1')7F(€X1‘7§X)> < _i%ljx"i‘?%(max {Ciavcg}"i‘ éci(z)\/ Uys
&, €0

b U;r(gxz) <Uy(y), éw €D
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According to Lemma 11, the convergence error and convergence time can be

dexa i i < 2 Uy (£4(0,0
calculated by r, = cff:i‘ (max {c} ,cs} + %X?) and T, = o%ln X(gfg( ) By

a small enough €,, we have T, < T.. Furthermore, since at each detection
instant, the agent collects all the relative information from its neighbors, the

o . ni X
- mln{TmZasp ) 7—mlasp} .

MASP of agent i is given as 77,

asp

A.2 Proof of Theorem 9

According to (4.13), the hybrid model of subsystem S,,, can be represented
in the form of (4.40)-(4.41) with state vector &,. Let W¢ = |ley]l, Vo =
Vs, = 616, U, = U, with ¥,, = ,076;. By (4.13), there always exists an
HE(Em,» En,y <) such that We < HE(Em,, En,<). Let

Ji(gmmgh7§) = \Iluz - Lu\ljuz - Hze + 6‘1’512

According to Theorem 8, for (¢,5) € Ty, &n,(t,7) € Xy for (t,j) € Ty =
T,, N Ty Ny, (1€l < 70 and [|€,, || < 7p. Assume A, in (4.11) satisfies A, >

2(d2, + 1)r,, and there is no input saturation during T;. Then, combining
with (4.46), the following inequalities can be established with ¢, (&) = (1 +
W) €3] A |-
? = Hi(&me: €:5)

= Jillmis <) = Wa, (65), (A3)

Wy LW (00) + Hf (Emr 1, 6) + JilEmir €0:).

Vs, < = as]|il1” = aclleill* + ou(&, <) + Lullew,

Then, Conditions 5 and 6 are satisfied during (¢, j) € T;. Consider Lyapunov

candidate
U(&m:) = 67 0 + max {ludue], , Mthud} },
if T,imcp < ll arctan ;Bi , on flow domain,

(TU(En)s F(&ms€0:9)) < =l = acllesl® + (1 +p)erd,  (A4)

during (¢, 7) € Ty. Let cs;, = /(1 + 1y )eary, and ¢5; < min{,/as, /a4 /%65,

which can always be satisfied with a small enough €,. In addition, let X; =
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{&m|U(Em,) < a3}, and Xy, = {&n)ém: € Xi, &, ¢ X} Then, X; =
X;, UX;, and X;; NX;, = 0. When ¢, € X,,, according to (A.4), U(,,,) might
increase. Since the control input is bounded, &,,, will enter X;, before it exceeds
X;. When &,,, € X,,, U(&,,,,) decrease, &, never exceeds X;, for all (¢, j) €dom
Em;- On jump domain, UT(&,,,) < U(&y,). As a result, X;, is an invariant
set. Furthermore, U(&,,,) decreases when &, reaches the boundary of X;,.

Therefore, the steady state error of ||&,, || can be calculated by 75 = | /Ly,

A.3 Proof of Theorem 10

According to (4.15), the dynamics of subsystem S, can be written in the
form of (4.40)—(4.41) with £ = &,;. By (iii) in Theorem 10, the MACP for h,,

. ) pr—pr
is upper bounded by 77 . < ﬁ arctan ——5=-. Let W, =2, WE = [lex,],
1

and V,; = AW?P,,AW be the storage function. By (4.15), on flow domain, we

have

VW = — Cy (ATF?(PﬂLff + L?fPW)Aﬂ'f + QAW?PW(LffGWf + Lfleﬁm + LﬂAT{'m))

— 2A7} Prl,7
AT Cr 1
<IATF el [ | Gt + AT + 5o
Tf T o
In addition, let ¥, = > W, we have
iENf
' T Ty | AT 2¢x 2 2
Uy <A E1AY | 0T 4 S 0 (W Dy L)l | + ATl
REE (A.5)

+ 2 (oarlibn(Lys — Dy))nsaz)®

T2
By (4.15), there always exists an H,, such that W,fi < H,,. Let J; =1V, —
LV — H? 4 €;, An?. Combining with the LMI in (4.47), Conditions 5 and
6 are satisfied with aw = aw,_, ay = ay,, which lead to the conclusion that

the set Z, 1= {¢ € X|||&]| = 0} is ISS w.r.t. ¢ and &,.
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A.4 Proof of Theorem 11

According to (4.18), subsystem S, can be represented in the form of
(4.40)—(4.41). Introduce auxiliary variables ¢,, and ¢ as in (4.43), then,
the MACP and MASP can be calculated by 77, < z_ arctan 722
Farctanﬁ In addition, let Wy = alle,|| + bllew, ||, ¥; = V., = t,,¢2,

We =||S.,|| and V, = aV, + bV,,, V,, = Ay;TP,Av;. By (4.18), there always
exists Hji, such that W¢ < Hs Let

Vi
2 7_mlasp —

Ji = ‘]%' = \II’W - L%\Il%' - H§i2 + 672A'7z’2'

Combining with the LMI in (4.48) Conditions 5 and 6 can be checked with
0,(5, &) = b(oy + 00,) + af'e2 , BT = 26” 2Ly,

N C it + - 2202, D1 L)) (e | + 1A

Ty = ( z Ta o3 (Un(Lyy — Dfl))) n||a,||>.

A.5 Proof of Theorem 12

Due to the dependency of the conditions in Theorems 8 and 9, the stability
in this theorem can be only ensured in a local sense.

Step 1: The set 5, = {¢ € X|||¢]]| = 0} is ISS w.r.t. & and ¢

According to (4.23) and (4.24), the hybrid system model of subsystem
Sy can be written in the form of (4.49)—(4.50) with state vector & shown in
Table 4.7. Introduce auxiliary variables ¢, and ¢35 satisfying (4.43), then,

7'r e

the MACP and MASP can be calculated by 77, < 7 - arctan Qpl Ty <
Farctan 1+-£"’. Let We = |lex,|l, = [|Ss, |, ¥r, = me.qm, Vs, = 5?5]‘ +
AéTAé s and consider Lyapunov candidate

= Vs, + Z 32 + max {I5,05, W5 >} + max {l,, ., W< ?}) .

ieNy

Then, we have Us, = ééTf Pfé;f. In addition, by (4.23) and (4.24), there always
exists an H¢, such that W¢ < H¢. Let Jn, = ¥, — L.V, — HE? + €, 72,

Since S}, converges to r, and 7, in a finite time, combining item (i) with the
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matrix in (4.65), Conditions 5 and Condition 6 are satisfied with

05 = By (05, Dby, e5,, €u;, S5, )0v; + Ovy + 0, Where

Brov, <&, (I8 + IEIPQY + IE1QF + 11707 + 11'Q) &,
vy Sof [l + oS ull* + ot € N1* + asllull* + 116117 + a3 1 11
+ &1 + a1, 17 + a5 l1és,. 1
vy < racso(La)(eg(1+vy) + equiy) + 13 (rm” + wio(Au)ry) |
(A.6)
and ), represents the maximum value of matrix ¢. Then, when ¢ € C,
(VUsy F(€s;,606,5) ) < —€F Asi, + 05 and when € € D, U, — Uy, <0,
By using the standard Lyapunov arguments, the set =, is ISS w.r.t. £, and .
Step 2: The set = = {¢ € X|||€7|| = 0} is strongly iISS w.r.t. <
Let

i€ENm

Up =V, + Z max {lr,¢m, WE?, At b, ™= 0, w,
ieNF

and

U'Y = V’Y + Z (lffzqsilwgzz + max {l7i¢7iW“f¢27 /\%wwb
iG/\/f

According to Theorems 9-11, the first item in Condition 7 is satisfied. By
step 1, the second term is satisfied and the third term can be established by

(

S

VU6 By (&0 )s ol 60 9)) € —E1 Q06 + 0 & € O
(&) <U(&), & € Dy,

VU (m)s Fon (Eons:6) ) < —EF Qi + 0 (55, €m € Nienin Cus
Upt(&6.) < Us,y &m € Uiens, D,

VU(E), Fullu 60:6) ) < —E0Qué + 0u(), & € Cus

Ui (€) < Usy & € Do,

VUL(E)s (o, n,9) ) < —ETQu60 +00(0), & € Ci

(U (&) < U, & € Dy,

S

\\

(A7)
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where oy = (14 )2, ov = (503, (L) + %203, (e Dy L) ) (i +7)° +
Oups 0Q = (i—ga?w(Lﬂ) + 32%“;0]2\4(15wa[/]00> (T + T0)? + Ouys o1 = bloy +
Oy,) + afy'ry,. Furthermore, the last item can be checked by the inequalities
in (4.66). Then, strongly iISS of set Z5 = {¢ € X|||[€T, &I]T|| = 0} w.r.t. <, &,
can be proved. Finally, by Theorem 8§, since éh converges to a small ball with
a radius related to < in a finite time, we have that = = {¢ € X|||€7|| = 0} is
locally strongly ilSS w.r.t. <.
Step 3: Determine the threshold R of disturbances.

Consider Lyapunov candidate

U6 &) =mU&) + D> () U+ DY UM(E).

T=w,v,m kr=1,2 k~y=1,2,4

According to step 1, Ar = min{\ € R| det(As — AP;) = 0} and

BN

> ePe

Pf: 0 0 lypu O 3
00 0 Igps

where p, represents the diagonal matrix with the i-th element being p for
™ = e,u, and p; for m = s. The disturbances in the closed-loop system
are introduced by the dynamics of the leader and the constant r,, related
to the MATPs. On flow domain, the disturbances have an influence on the

differential equation (VU (&,,&)) by oy, where

1 1
ar :O'Vf + Z (UH+2—UH)+ 5 62 or.
(IL,m)=(Q,w),(V,v),(M,m),(T,y) 21 Y41 Y42

By similar arguments to the proof of Lemma 13, the system is ISS when

of < Ap. As aresult, the threshold R = Ap.
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