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Abstract

Cooperative control of multi-agent systems (MASs) has been a hot topic

in control and communication community since it was proposed in last two

decades. Cooperative control is applied to a wide range of real world problems,

such as search and rescue, resource allocation and multiple robot formation.

In order to realize a cooperative goal, a communication network is introduced

to facilitate the information flow among MASs, which brings network-induced

imperfections at the same time. In addition, the energy of onboard sensors

and microprocessors, and the bandwidth of communication networks are lim-

ited. It is preferred to reduce the frequency of controller updates and data

transmissions. Motivated by the above concerns, this thesis focuses on inves-

tigating the robustness of MASs against network-induced imperfections and

proposing event-triggered mechanisms (ETMs) to reduce the network load

and/or energy consumptions.

Four research topics are considered. Firstly, an affine formation under

fixed and switching topologies is studied. An ETM is proposed, such that the

controller updates and data transmissions occur only when it is necessary to

maintain system stability. To guarantee Zeno-freeness, an absolute term is

introduced in the price of introducing steady-state errors. Secondly, a cooper-

ative output regulation (COR) problem is studied. The problem is formulated

in a hybrid system framework. By proposing a novel Lyapunov function, ro-

bustness against asynchronous samplings and time-varying delays are given in
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terms of maximally allowable transmission intervals (MATIs) and maximally

allowable delays (MADs). Thirdly, a formation tracking problem of multi-

ple nonholonomic systems without velocity measurements is considered. Two

kinds of communication, namely, pull-based communication (PULC), which is

enabled by agents’ onboard sensors, and push-based communication (PUSC),

which is realized by data transmissions through networks, are considered sepa-

rately. A periodic event-triggered mechanism (PETM) is proposed for PUSC,

such that the closed-loop sampled-data system is robust to asynchronous

samplings, at the same time, continuous monitoring and Zeno-behavior are

avoided. In addition, a hierarchical structure is proposed, according to which,

the followers are divided into two levels. Strongly integral input-to-state sta-

bility (iISS) is established for the closed-loop system. Finally, a distributed

optimization-based formation problem is studied. The control protocol is de-

sign based on a modified Lagrangian-based (MLB) algorithm, under which,

the agents can reach the global optimal solution and converge to the desirable

formation structure simultaneously. A dynamic ETM is proposed to reduce

network load. To guarantee Zeno-freeness in the presence of disturbances, an

auxiliary variable is introduced to estimate the influence of disturbances. The

closed-loop system is proved to be input-to-state exponentially stable (ISES)

w.r.t. the disturbances.

The effectiveness of the proposed methods are illustrated by numerical ex-

amples. Under the proposed ETMs, unnecessary data transmissions and/or

controller updates can be efficiently reduced. Zeno-freeness is guaranteed by

event separation properties or computable positive minimum inter-event times.

In addition, the proposed methods improve the robustness of closed-loop sys-

tems against network-induced imperfections.
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Chapter 1

Introduction

In this chapter, the research background for cooperative control of multi-

agent systems (MASs) under communication networks is introduced and a

literature survey is provided to summarize the recent development in this

area. Thereafter, the contributions of the thesis are listed, followed by a

thesis outline.

1.1 Research Background

Due to potential applications in search and rescue, monitoring and con-

trol, and cooperative localization, MASs have drawn a lot of attention in the

areas of control and communication since last two decades [1, 2]. Adapted

to different application backgrounds, the fundamental topics in MASs include

consensus, flocking, containment, formation, cooperative output regulation

(COR) and distributed optimization.

1.1.1 General Topics in Multi-Agent Systems

As one of the basic topics, formation control is suitable for various ap-

plications [3]. According to how the desirable formation is defined, most of

the existing results on formation control can be classified as distance-based

[4, 5, 6, 7], bearing-based [8, 9] and position-based [10, 11] methods. The for-

mation structures defined by the first two kinds are invariant under rotation

and scaling, and fixed in the position-based one. It can be seen that, in the
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aforementioned results, the formation structures were equipped with at most

one degree of freedom (DOF), and as a consequence, the manuverability of

the MAS was constrained. This concern was tackled by an affine formation

method in [12] and [13] recently, where the formation was invariant under

affine transformation. Since the affine transformation can be represented by a

combination of rotation, scaling, shearing and translation, more DOF can be

provided into the corresponding formation.

Most of the above results are only available when the MASs are composed

by subsystems with identical dynamics. To deal with heterogenous systems,

COR has been extensively studied since it was proposed [14]. By a well-

designed interactive protocol, COR aims at rendering a set of agents to achieve

asymptotic tracking or disturbance rejection of an exogenous signal [14, 15].

Significant application potential of COR lies in its generality to include some

typical problems in MASs, such as leader-follower formation [3], consensus [1]

and flocking [16].

In order to quantitatively evaluate system performance, the distributed

optimization problem (DOP) has become a hot topic since it was proposed in

[17]. In DOP, we aim to find the optimal point of a global object function

by a bunch of network-connected components (agents) who can communicate

with each other and be aware of only their local object functions. DOPs were

solved in a discrete-time manner in [18] and [19]; while considering that the

dynamics of physical systems are generally described by differential equations,

they were also solved in a continuous-time manner in [20], [21], [22], and [23].

1.1.2 Network-Induced Imperfections in Multi-Agent
Systems

In order to accomplish collaborative operations, a shared network is intro-

duced to facilitate information flow among agents. Communication network

allows information to be shared among subsystems, which means that tra-

ditional point-to-point wiring in the installation of a control system may be

avoided. However, the introduction of networks always comes with inevitable
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network-induced imperfections that will degrade the performance properties

or even cause instability. The common network-imperfections can be classified

into the following five types [24, 25]:

• quantization errors in the signals transmitted over networks due to finite

word length of packets;

• packet dropouts caused by unreliability of the networks;

• time-varying sampling/transmission intervals;

• time-varying communication delays;

• communication constraints caused by sharing of networks by multiple

nodes and the fact that only one node is allowed to transmit its packet

per transmission.

Among all communication imperfections, asynchronous transmissions and time-

varying delays are fundamental and critical for MASs. Due to the indepen-

dence among agents and the inherently digital feature of networked commu-

nication, it is hard to synchronize their transmission instants according to a

common clock. Therefore, asynchronous transmissions are inevitable. In ad-

dition, since signals cannot be transmitted continuously and instantaneous,

transmission delays would influence the real-time capability of system opera-

tions. Besides the above, another concern in MASs is time-varying topologies.

Data transmissions through communication networks can be interrupted by

cyber attacks, and the ones that are carried out by detection from onboard

sensors are limited by sensing ranges and influenced by the blocks in the con-

cerned areas. As a result, it is more practical to consider the cooperative

control problem under switching topologies.

1.1.3 Event-Triggered Mechanism

Cooperative control relies on computations by agents’ onborad micropro-

cessors and communications through a shared network. Restricted onboard

3



energy and communication resources need to be taken into account. There-

fore, the scheduling of controller updates and data transmissions has become

a critical and practical issue in MASs. The scheduling can be done in a time-

triggered or an event-triggered fashion. For the first kind, the sampling peri-

ods are predetermined which should guarantee the system performance over

a wide range of operating conditions [26]. These off-line designed sampling

periods might be conservative, resulting in unnecessary controller updates

and data transmissions. High-frequency sampling might cause traffic conges-

tion in the network and increase packet dropouts [27]. Frequent updates and

transmissions also cause extra energy consumption [28], which might reduce

the lifespan of agents. In light of this concern, event-triggered mechanisms

(ETMs) were proposed, which replaced the predetermined sampling periods

by an online detected criterion depending on a measurement or time depen-

dent threshold. The controller updates and data transmissions are generated

sporadically, only when it is essential for maintaining the system performance.

As a result, less communication and energy consumption are required, with

some comparable system performance.

The exclusion of Zeno behavior, in the sense that infinite events happen in

a finite time interval, is a critical and challenging problem when implementing

ETMs. In [29], the authors have pointed out that many existing ETMs would

exhibit Zeno behavior when there is disturbance and/or in an output feedback

scenario. The Zeno-freeness is usually demonstrated by the event-separation

property, where the number of events must be finite within any finite interval,

or there exists a computable positive minimum inter-event time.

1.2 Literature Review

Considering unavoidable communication imperfections, researchers focused

on investigating the robustness against different types of communication im-

perfections. To reduce onboard energy and communication resources con-

sumption, a variety of ETMs were proposed. Some of them also provided a

4



rigorous analysis on Zeno-freeness. This section presents a detailed literature

survey on the recent development of such methods.

1.2.1 Research on Robustness Against Network-Induced
Imperfections

The introduction of networks always comes with communication imperfec-

tions such as asynchronous transmissions, time-varying delays, quantization

errors, packet dropouts, and communication constraints [24, 30, 31], which

can degrade the system performance or even cause instability. This makes the

control problems of MASs under communication networks more challenging

compared with their single-plant counterparts. Besides improving the network

infrastructure, the focus is also on figuring out the effects of these imperfec-

tions and providing a guideline to the system designers. This topic has been

widely investigated in the area of networked control systems (NCSs) with one

or multiple communication imperfections under consideration [24, 31, 32, 33].

In NCSs, only one node may have access to the network at a transmission in-

stant; thus a proper communication scheduling protocol is necessary to grant

the access of the nodes to the network [34]. The scheduling protocol can be

static, like Round-Robin (RR) protocols, or dynamic, like Try-Once-Discard

(TOD) protocols. The stability under communication constraint was inves-

tigated in [34], [35], [24] and [36]. Quantization errors are another network-

induced issue, which can be caused by analog-to-digital coders before the data

are released to the network. The error between the actual analog value and

the converted digital one is usually unavoidable due mainly to the operation of

rounding or truncation [37]. Considering different types of quantizers, system

performance was investigated for NCSs in [35], [38], and for MASs in [39], [40].

For MASs, the research on data dropouts can be found in [41], [42], which con-

sidered stochastic packet dropout; and attack-induced packet dropouts were

studied in [43]. Based on the method proposed in [24], the influence of data

dropouts can be included in the ones of time-varying delays.

Due to the independence among agents and the inherently digital feature of
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network communication, asynchronous transmissions are inevitable. In NCSs,

this problem was solved in a hybrid system framework, and an emulation-

based approach [44] was used to derive the upper bounds of maximally al-

lowable transmission intervals (MATIs) [24, 45], such that the transmission

instants in each node could be decided independently as long as the trans-

mission interval was smaller than MATIs. Following this method, the authors

solved a consensus problem under asynchronous transmissions for the MASs

with single integrators in [46] and for general linear systems in [47].

Considering time-varying delays, a discrete Lyapunov method was used in

[48] and [49] to solve consensus problems for single and double integrators,

respectively. Synchronous sampling was assumed in the aforementioned re-

sults, in a way that all agents broadcast local information to their neighbors

at the same instants. In [24], an emulation-based approach was used to com-

pute the bounds on MATIs and maximally allowable delays (MADs), which

can characterize the tolerance of NCSs both on the asynchronous transmis-

sions and time-varying delays. In [50], this method was extended to solve a

consensus problem for MASs. Asynchronous transmissions and time-varying

delays were tackled simultaneously for MASs with single integrators [51] or

marginally stable dynamics [52] in a time-delay approach. However, asyn-

chronous transmissions among agents lift the dimension of system matrices,

which brings higher complexities in analysis.

1.2.2 Event-Triggered Mechanism and Zeno-Freeness

The implementation of cooperative control depends on the development

of onboard sensors and microprocessors, which only have limited energy re-

sources. Thus, wasted energy consumption would shorten the lifespan of

MASs. Under this background, how to efficiently schedule the transmis-

sions among sensors and actuators becomes a critical issue. The classical

time-triggered fashion is an open-loop mechanism, where a fixed transmis-

sion period is predetermined in spite of the system states. This fixed period
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is a bit conservative and results in unnecessary transmissions and updates

[26]. On the contrary, the event-triggered fashion can reduce consumption of

communication resources by replacing the predetermined transmission period

by a closed-loop scheduling mechanism. Specifically, the transmission inter-

val is decided by an online detected criterion with a measurement-dependent

[53, 54] or time-dependent [55, 56] threshold. Benefited from that, the fre-

quency of sensor detection and actuator update is reduced, which further re-

sults in less utilization of computation and communication resources in some

circumstances [27, 28].

A key challenge in adopting ETMs is the exclusion of Zeno behavior, which

can be guaranteed by ensuring a positive lower bound of inter-event times or by

event-separation properties. The authors in [29] have pointed out that, many

existing results in ETM would exhibit Zeno behavior when there is disturbance

in systems and/or in an output feedback scenario. A straightforward way to

solve this problem is choosing an absolute threshold in the event-triggering

(ET) function [22], but with the price of loosing asymptotic stability. In [57]

and [58], a time decaying term was introduced to ensure Zeno-freeness for

disturbance-free MASs. Considering the situation of unknown disturbances,

this problem was tackled by a periodic ETM (PETM) in [51] and [59], and by

a time regularization method in [60] and [61], which introduced a pre-specified

lower bound to the inter-event times. However, as static ETMs were imple-

mented in the aforementioned results, the transmission behavior were often

reduced to approximately periodic communication when the state was close to

the origin [32]. Alternatively, dynamic ETMs were considered in [32], [62] and

[63] for NCSs. By introducing a dynamic variable to the ET condition, the

dynamic ETMs were more robust to unknown disturbances and could provide

larger average inter-event times. A similar idea was applied in [50], [47] and

[46] to solve the consensus problem of MASs. In addition, the pre-specified

minimum inter-event times in time regularization methods are usually calcu-

lated in a conservative way [64]; hence, it is better to design ETMs with some
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worst-case transmission performance guarantee, which is independent of any

pre-specified minimum inter-even times. In [65] and [23], this guarantee was

obtained by using an auxiliary variable to estimate the average influence of

external disturbances. Single-loop systems were considered in [65] and MASs

with undirected underlying graphs were considered in [23].

1.3 Thesis Contributions

Motivated by wide application backgrounds of MASs and the unavoid-

able communication imperfections, this thesis studies varieties of cooperative

control problems and proposes some novel control and communication proto-

cols to guarantee the performance of closed-loop sampled-data systems. The

major contributions in this thesis that distinguish them from other work are

summarized as follows:

1. Investigate an affine formation tracking problem of general nonholo-

nomic systems on the special Euclidean group (SE(3)) under fixed and

switching topologies. A distributed algorithm is proposed to reconstruct

a k-rooted graph when some edges are lost. An ETM is proposed such

that the affine formation problem can be solved with discontinuous con-

troller updates and data transmissions. However, in order to exclude

Zeno behavior, we use an absolute threshold in the ET condition, which

sacrifices the asymptotic stability, and the underlying graph is assumed

to be acyclic to avoid event accumulation.

2. Investigate a sampled-data COR problem of heterogeneous systems un-

der asynchronous transmissions, time-varying delays and unknown dis-

turbances. The problem is formulated and solved in a hybrid system

framework. A novel Lyapunov function candidate is proposed for MASs,

based on which, a more intuitive analysis on the trade-off relationship

between MATIs and MADs can be given compared with the ones given

in [50].
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3. Investigate a formation tracking problem for nonholonomic systems with-

out measurements of the leader’s velocity. A hierarchical structure is

used to divide the followers into two levels, which removes the acyclic

assumptions in [66] and [67]. The problem is formulated and solved in a

hybrid system framework. An information flow architecture is proposed

such that two kinds of communication networks, which enable pull-based

communication (PULC) and push-based communication (PUSC), can be

considered separately according to their distinct features. The concept

of strongly integral input–to–state stability (iISS) in a hybrid system

framework and a novel Lyapunov function are proposed to treat the

higher order couplings in the closed-loop system. A hybrid-triggered

formation control protocol for multi–robot systems is proposed, such

that the ET conditions are checked discretely and asynchronously, and

the closed-loop system is strongly iISS w.r.t. disturbances.

4. Propose an event-triggered control protocol to solve the optimization-

based formation problem. Compared with the existing results in [68],

the algorithm considered in this work can guarantee that the MASs

converge exactly to the desirable optimal configuration. In addition, the

ETM proposed in this work is a dynamic one, where an auxiliary variable

is introduced to estimate the average influence of external disturbances.

As a result, the closed-loop system can be input–to–state exponentially

stable (ISES) w.r.t. unknown disturbances and at the same time, Zeno-

freeness is guaranteed by a computable positive minimum inter-event

time.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, an affine formation tracking problem is investigated. Section

2.1 gives an overview of the research work of this chapter. Section 2.2 considers

the affine formation tracking problem of general nonholonomic systems on
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SE(3). Some preliminaries and problem formulation are given in Section 2.2.1.

The problem under fixed topologies is solved in Section 2.2.2. In Section 2.2.3,

a distributed algorithm is proposed to reconstruct a k-rooted graph when some

edges in the graph are lost; thereafter, the problem is solved under switching

topologies. Some numerical examples are given in Section 2.2.4 to illustrate the

effectiveness of the proposed method. In Section 2.3, an ETM is proposed such

that the controller updates and data transmissions are generated discretely

only when it is necessary to maintain system stability. A numerical example

is given in Section 2.3.3 to verify the validity of the proposed mechanism,

followed by conclusion remarks in Section 2.4.

In Chapter 3, a COR problem with time-varying delays, asynchronous

transmissions and external disturbances is considered. Section 3.1 gives an

overview of the research work in this chapter. Some preliminaries are given in

Section 3.2.1. In Section 3.2.2, we formulate the COR problem under commu-

nication imperfections and external disturbances and reformulate it in a hy-

brid system framework in Section 3.2.3. The robustness against asynchronous

transmissions and time-varying delays are evaluated in terms of MATIs and

MADs in Section 3.3. Numerical examples are provided in Section 3.4 to fur-

ther illustrate the effectiveness of the method, and conclusions are drawn in

Section 3.5.

In Chapter 4, we investigate a formation tracking problem without veloc-

ity measurement under a hybrid triggered mechanism. Section 4.1 gives an

overview of the research work in this chapter. Preliminaries are given in Sec-

tion 4.2.1. In Section 4.2.2, we formulate the problem in a continuous-time

framework. The information flow architecture is set up in Section 4.2.3. Ac-

cording to the hierarchical structure constructed in Section 4.2, control and

estimation strategies are given, respectively, to the agents that belong to dif-

ferent levels in Section 4.3. In Section 4.4, we reformulate the problem in a

hybrid system framework. The main results are given in Section 4.5, where

finite time convergence, input-to-state stability (ISS) and strongly iISS are
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provided for the subsystems that belong to different levels. Numerical ex-

amples are given in Section 4.6 to illustrate the effectiveness of the results,

followed by concluding remarks in Section 4.7.

In Chapter 5, we investigate a distributed optimization-based formation

control problem under ETMs. Section 5.1 gives an overview of the research

work in this chapter. Some preliminaries on graph theory and convex functions

are given in Section 5.2.1. The event-triggered optimization-based formation

problem is formulated in Section 5.2.2. In Section 5.3, we propose an event-

triggered optimization algorithm with rigorous proofs on Zeno-freeness and

ISS w.r.t. disturbances of the closed-loop system. By a different ETM design,

we discuss the trade-off between network load and computation complexity in

Section 5.4. Numerical examples are presented in Section 5.5 and conclusions

are drawn in Section 5.6.

In Chapter 6, concluding remarks and some potential directions of future

work are provided.
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Chapter 2

Affine Formation Control under
Switching Graphs and
Event-Triggered Mechanism∗

2.1 Overview

In this chapter, we consider an affine formation tracking problem of MASs.

The motivation of investigating an affine formation method is to increase the

manuverability of MASs concerning the fact that the formation structure de-

fined by classical methods, such as distance-based, bearing-based and position-

based methods, are equipped with at most one DOF. Different from classical

methods, generalized Laplacian matrices are used in the affine formation meth-

ods. Besides the interaction topology, the elements in the generalized Lapla-

cian matrices are determined by a nominal configuration [13], which describes

a typical geometric pattern of the formation. In this way, the generalized

Laplacian matrix can be designed with k+1 zero eigenvalues in k dimensional

(kD) spaces, which results in k + 1 DOF in the corresponding formation. In

[13], the affine formation problem was studied in a consensus sense, that is, the

affine formation problem was solved when all agents converged to an unspec-

∗A version of this chapter has been published as: J. Yang, F. Xiao, and T. Chen, Formation
tracking of nonholonomic systems on the special Euclidean group under fixed and switching
topologies: An affine formation strategy. SIAM Journal on Control and Optimization,
vol. 59, no. 4, pp. 2850–2874, 2021. A preliminary version has been published as: J. Yang,
H. Yu, and T. Chen. Affine formation maneuver control of event-triggered multi-agent
systems. IFAC PapersOnLine, vol. 53, no. 2, pp. 3391–3396, 2020.
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ified affine span of the nominal configuration. On the other hand, a different

affine formation tracking problem is considered in this work, which was first

proposed in [12]. Specifically, the agents could form a time-varying structure,

with the centroid of them moving along a specific trajectory. In addition, the

formation could be determined with only a small portion of the agents being

aware of the desirable formation. Thus, one essential contribution in [12] was

to specify an affine span by steering the trajectories of a part of agents.

In Section 2.2, an affine formation tracking problem of general nonholo-

nomic systems is studied. This kind of system model covers most of the

mechanical systems such as aerial vehicles, robotics and satellites. However,

due to the nonlinearities and nonholonomic constraints, the control and state

estimation for this kind of systems are technically challenging. A geometric

control method is used in this work. Compared with linear controllers and

nonlinear controllers that are based on Euler angles and quaternions, the pro-

posed controller can avoid singularities and it can guarantee almost global

convergence of the closed-loop systems [69]. In addition, the controller pro-

posed in this work is designed directly on the Lie algebra of SE(3), which

enables a more general representation [70, 71] compared with the ones in [12]

and [13].

A critical issue in the existing results on affine formation methods is the

requirement of centralized computation when the associated Lapalacian ma-

trices are designed. In [13], the design was formulated as an optimization

problem when the graph was universally rigid. For a directed rooted graph,

the associated Laplacian matrix could be constructed locally; however, cen-

tralized computation was still required to design a stabilizing matrix which

guaranteed the semi-positive definiteness of the associated Laplacian [13, 72].

Inspired by [12], a control protocol, which solves the affine formation track-

ing problem without semi-positive definite Laplacian matrices, is proposed.

Hence, for undirected graphs, a globally rigid condition, instead of the uni-

versally rigid condition in [13] and [12], is assumed; for directed graphs, the
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edge weights can be calculated locally by each agent. By taking advantage

of local calculation on weights, the proposed control protocol can be further

extended to the case of switching topologies. In addition, to make formation

problems realizable in practice, an algorithm, which aims to locally reconstruct

a k-rooted graph when some edges in a graph are lost, is proposed. To the

best of the authors’ knowledge, the affine formation problem under switching

topologies has not been investigated in the literature.

In Section 2.3, to reduce network load, an ETM is proposed for affine for-

mation maneuver control problems of single integrators. Benifited from that,

the controller updates and information broadcasting are generated only when

it is necessary to maintain the system behavior. The practical convergence is

guaranteed for the closed-loop system and Zeno behavior is excluded.

2.2 Formation Tracking of General Nonholo-

nomic Systems on the Special Euclidean

Group

2.2.1 Preliminaries and Problem Formulation

The special orthogonal group is denoted by SO(3) = {R ∈ R3×3 : RTR =

I3, det(R) = 1}. The special Euclidean group is denoted by SE(3), which can

be represented by a matrix as

T =

[
R p
0 1

]
∈ R4×4. (2.1)

Here, R ∈ SO(3), and p ∈ R3. The Lie algebra of SE(3) is denoted by se(3),

which is defined by

se(3)x =

{
X ∈ R4×4| ∃ ω, v ∈ R3 : X =

[
ω× v
0 0

]}
. (2.2)

Here ω× represents a mapping from R3 to R3×3 associated with ω. Let ω =

[ωx ωy ωz]
T , then ω× is defined by

Ω = ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (2.3)
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Furthermore, since the mapping (·)× is bijective, denote the inverse mapping

by (·)∨. Then we have Ω∨ = ω. The adjoint operator is a mapping Ad :

SE(3) × se(3) → se(3) defined as AdTX : TXT−1, where X ∈ se(3), and

T ∈ SE(3), and can be given by

AdTX =

[
(Rω)× −(RΩ)×p+Rv

0 0

]
. (2.4)

It acts to change the frame of reference T associated with an element in Lie

algebra X.

Let G = (V , E) represent the interaction graph of MASs, where V =

{1, ..., n} is the node set and E ⊆ V × V is the edge set. (j, i) ∈ E if and

only if i can detect the relative information from j. Ni = {j ∈ V : (j, i) ∈ E}

represents the neighbor set of i, and its cardinality is denoted as |Ni|. A

configuration in Rd of the nodes in V is denoted as p = [pT1 , · · · , pTn ]T , where

p ∈ Rnd, pi ∈ Rd, i = 1, · · · , n. Based on above, a formation in Rd is given

by a graph G and the corresponding configuration p, and is denoted as (G, p).

Given a nominal configuration, denoted as r ∈ Rnd, r = [rT1 , ..., r
T
n ]T , with

ri ∈ Rd, the nominal formation is denoted as (G, r).

Notations: The Euclidean norm of a vector x ∈ Rn is denoted as ‖x‖.

x× y denotes the cross product of vectors x ∈ Rn and y ∈ Rn. The Euclidean

induced matrix norm of A ∈ Rn×m is denoted by ‖A‖. A ⊗ B denotes the

Kronecker product of matrix A and B. R denotes the reals and N denotes

the natural numbers. |Ω| denotes the cardinality of the set Ω. For two sets

Ω1,Ω2 ⊂ Rn, define Ω1\Ω2 := {x ∈ Rn|x ∈ Ω1, x /∈ Ω2}. diag(· · · ) denotes

a diagonal matrix. For a real number s, dse denotes the smallest integer

larger than or equal to s. Let {I} represent the inertial frame attached to

the earth, and {Bi} represent the body-fixed frame attached to agent i. The

state expressed in {I} is denoted as pi; then its expression in {Bi} is denoted

as p̄i. The relative state of agent j with respect to agent i is defined as

pij = pi − pj, if pi, pj ∈ R3; and p̄ij represents the corresponding state

given in {Bi}. In ∈ Rn×n is the identity matrix and 1n ∈ Rn is the vector

with all entries equal to 1. For a function f : R≥0 → Rn, f(r−) and f(r+)
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denote, respectively, the limit from below and above at the point r ∈ R≥0,

i.e., f(r−) = limt↗r f(t) and f(r+) = limt↘r f(t). tr(·) represents the trace of

a square matrix.

Definition 1 (Affine Image). ([13]) The affine image of the nominal configu-

ration r ∈ Rnd in Rd of n nodes is defined by

A(r) = {p ∈ Rnd : p = (In ⊗ A)r + 1n ⊗ b, A ∈ Rd×d, b ∈ Rd}.

Definition 2 (Target Formation). ([12]) The time-varying target formation

of the nominal configuration r ∈ Rnd in Rd of n nodes is defined by

p∗(t) = [In ⊗ A∗(t)]r + 1n ⊗ b∗(t). (2.5)

Here A∗(t) ∈ Rd×d and b∗(t) ∈ Rd are continuous w.r.t. t.

For a directed graph G, a node i is said to be k-reachable from a non-

singleton set U if there exists a path from a node in U to i after removing any

k − 1 nodes except for i. In addition, G is k-rooted if there exists a subset of

k nodes called roots, from which every other node is k-reachable.

Definition 3 (Graph Laplacian). For a nominal formation (G, r) in Rd con-

taining n nodes, L is its associated graph Laplacian if it satisfies (L⊗Id)r = 0,

and

[L]ij =

{ 0, i 6= j, (j, i) 6∈ E
−aij, i 6= j, (j, i) ∈ E∑
k∈Ni aik, i = j.

(2.6)

Here, [L]ij represents the (i, j)-th entry in matrix L and aij is the edge weight

of (i, j). Furthermore, if G is undirected, the symmetric matrix L is called a

stress matrix.

Assumption 1. The undirected graph G is globally rigid.†

Assumption 2. The directed graph G is (d+ 1)-rooted.

† The definition of global rigidity follows the one used in [73].
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Lemma 1. ([73]) Consider an undirected graph G containing n nodes with a

generic configuration p in Rd, n ≥ d + 2. Under Assumption 1, there always

exists a stress matrix L of (G, p) with its kernel of dimension d+ 1.

Lemma 2. ([13]) Consider a directed graph G containing n nodes with a

generic configuration p in Rd, n ≥ d + 2. Under Assumption 2, there always

exists an associated Laplacian matrix L of (G, p) with its kernel of dimension

d+ 1.

Lemma 3. ([74]) Every singular value λ of a matrix A ∈ Rn×m satisfies

(1 + ‖A‖p)−1 ≤ |λ| ≤ ‖A‖p. (2.7)

Here ‖A‖p stands for the p norm of A.

Consider an MAS containing n mobile agents maneuvering on SE(3). Each

agent is modeled as an underactuated dynamic rigid body as follows

ṗi = ui,

Ṙi = RiΩ̄i, i = 1, · · · , n.
(2.8)

Here, pi ∈ R3 represents the position of the i-th agent, Ri ∈ SO(3) represents

the attitude, ui ∈ R3 represents the linear velocity, and Ω̄i ∈ R3×3 satisfies

Ω̄i = (ω̄i)×, with ω̄i ∈ R3 representing the angular velocity given in body-fixed

frame {Bi} to be designed. In addition, each agent obeys the nonholonomic

constraint

ui = RiEivi. (2.9)

Here Ei ∈ R3×q is determined by the mechanical structure of the system.

More specifically, if the rigid body can provide one independent direction in

translation along the first axis of Ri, then q = 1, and Ei = e1; and if it can

provide two independent directions in translation along the second and third

axes of Ri, then q = 2, and Ei = [e2 e3]. Here ej ∈ R3 is an unit vector with

the j-th element being 1. vi ∈ Rq is the magnitude of the linear velocity along

each independent axis to be designed.
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Assume that the MAS is connected by a graph G = (V , E). Choose nl

agents as leaders and the rest nf = n− nl agents are considered as followers.

Denote Vl = {1, ..., nl} as the leader set and Vf = {nl + 1, ..., n} as the fol-

lower set, satisfying V = Vl∪Vf . pl = [pT1 , ..., p
T
nl

]T represents the states of the

leaders and pf = [pTnl+1, ..., p
T
n ]T represents the states of the followers. Cor-

respondingly, p∗l = [p∗T1 , ..., p∗Tnl ]T represents the leaders’ target configuration

and p∗f = [p∗Tnl+1, ..., p
∗T
n ]T represents the followers’ target configuration. Then,

we have p = [pTl , p
T
f ]T and p∗ = [p∗Tl , p

∗T
f ]T . The affine formation tracking

problem considered in this work is defined as follows.

Problem 1 (Affine formation tracking). Given a nominal formation (G, r) in

R3, choose nl agents as leaders moving along specific trajectories p∗l (t) deter-

mined by the target formation p∗(t). Design the associated Laplacian matrix

L and design the control protocols for the rest agents (followers), under which,

the trajectories of the followers pf (t) converge to the target configuration p∗f (t).

Definition 4 (Affine localizability). ([12]) The nominal formation (G, r) is

affinely localizable by the leaders if for any p = [pTl , p
T
f ]T ∈ A(r), pf can be

uniquely determined by pl.

Given a set of points {pi}ni=1 in Rd, the affine span of these points, denoted

by S, is

S =

{
n∑
i=1

aipi : ai ∈ R ,
n∑
i=1

ai = 1

}
.

The affine span S can always be translated to contain the origin, which forms

a linear space. The dimension of the linear space is defined as the dimension

of the affine span, and we say points {pi}ni=1 affinely span Rd if the dimension

of its affine span is d.

Assumption 3. For nominal configuration r = [rT1 , · · · , rTn ]T with ri ∈ Rd,

{ri}ni=1 affinely span Rd.

Lemma 4. ([12]) Under Assumptions 1 and 3, the nominal formation (G, r)

is affinely localizable by the leaders if and only if (iff) {ri}i∈Vl affinely span

Rd.
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Lemma 5. ([75]) Under Assumptions 2 and 3, the nominal formation (G, r) is

affinely localizable by the leaders iff all the roots are chosen from the leaders

set Vl.

Referring to Definition 4, affine localizability indicates that given a nom-

inal formation (G, r), the configuration of the MAS can be manipulated by only

a part of the agents’ (leaders’) states pl. Referring to Definition 2, the target

formation p∗(t) is determined by the nominal configuration r as well as the

transformation matrix A∗(t) and the translation vector b∗(t). Since r is given,

in order to specify p∗(t) by p∗l (t), the mapping from p∗l to (A∗, b∗) must be

bijective, which can be guaranteed by Assumption 1 and Assumption 3, or

Assumption 2 and Assumption 3. More details can be found in [75] and [12].

2.2.2 Affine Formation under Fixed Topologies

In this section, we consider the affine formation tracking problem under

fixed topologies. Since the controllers are designed directly on se(3), we in-

troduce auxiliary variables Tij ∈ SE(3) and Xij ∈ se(3) as follows

Tij =

[
I3 p̄ij
0 1

]
, Xij =

[
Ω̄T
i

˙̄pij − ūi
0 0

]
, (2.10)

where p̄ij and ˙̄pij represent the relative position and velocity measured in body-

fixed frame {Bi}, respectively; and ūi = RT
i ui represents the linear velocity of

agent i measured in {Bi}. Let Ri = [axi ayi azi], with axi, ayi, azi ∈ R3, be

the attitude of agent i expressed in inertial frame {I}, Rdi ∈ SO(3) represent

the desirable attitude of agent i expressed in {I}, and Ri
di = RT

i Rdi represent

the desirable attitude of agent i expressed in {Bi}, where Ri
di = [b̄xi b̄yi b̄zi]

with b̄xi, b̄yi, b̄zi ∈ R3 the corresponding vectors to be designed. Consider-

ing the underauctuated property, we assume the rigid body can provide one

independent direction in translation alone azi. Then, Ri
di is given as follows:

b̄zi =
B̄zi

‖B̄zi‖
, b̄xi =

b̄zi × B̄xi

‖b̄zi × B̄xi‖
, b̄yi = b̄xi × b̄zi. (2.11)
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Here B̄zi, B̄xi ∈ R3; B̄zi = V̄i with

V̄i =
∑
i∈Ni

lij(kcp̄ij + UT
1 (AdTijXij)U2) (2.12)

aiming to regulate axis azi to direct at the target configuration; U1 = [I3,03]T ,

U2 = [0, 0, 0, 1]T , and lij is (i, j)-th element in the associated Laplacian matrix

L; and B̄xi can be designed based on the objective of the operation. Based on

above, the control protocol in frame {Bi} is given as

ω̄i = −kReRi − (Ωi
di)
∨, vi = − 1

γi
ET
i V̄i, (2.13)

where Ωi
di = Ri

di
dRidi
dt
− Ω̄i, and eRi = (RiT

di − Ri
di)
∨ is defined as the attitude

error of agent i. Since all information required in controller (2.13) is included

in matrices Tij and Xij, which can be obtained by the detections of agent i via

its onboard sensor, no global reference nor communication device is needed.

In addition, the relative velocity information required in controller (2.13) is

also expressed in local coordinate frames.

Remark 1. It should be noted that the desirable attitude (2.11) is given

for the situation when the underactuated rigid body has one independent

direction in translation. It is easy to generalize (2.11) to the case when the

number of independent directions is two. For example, suppose system (2.8)

can move independently along axi and ayi. Then, Ri
di can be given as

b̄xi =
B̄xi

‖B̄xi‖
, b̄zi =

B̄zi × b̄xi
‖B̄zi × b̄xi‖

, b̄yi = b̄xi × b̄zi . (2.14)

Here, B̄zi = V̄i, and B̄xi ∈ R3 can be any vector which is not perpendicular to

B̄zi.

In the following, we will show that the affine formation tracking problem

is solved by controller (2.13), with Ri converging to the desirable attitude Rdi

given in (2.11) and position pf (t) converging to the target configuration p∗f (t)

for all the followers.

Attitude Convergence:
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First, we discuss the attitude convergence of each agent in its body-fixed

frame {Bi}. Consider Lyapunov function VRi = tr[I −RiT
di ]. Using Rodrigues’

formula, it can be shown that VRi = 1− cos ‖xi‖, and

‖eRi‖2 = sin2 ‖xi‖ = (2− VRi)VRi. (2.15)

Here, RiT
di = e(xi)× , with xi ∈ R3. Let ‖xi‖ ∈ (−π, π]. Then, VRi ≥ 0, VRi = 0

iff ‖xi‖ = 0, which implies Ri
di = I, or equivalently, Rdi = Ri. Furthermore,

assume ‖xi‖ 6= π. Then, there exists a Φi < 2 satisfying 0 < VRi ≤ Φi and

1

2
‖eRi‖2 ≤ VRi ≤

1

2− Φi

‖eRi‖2. (2.16)

Refer to [69] for more details.

Taking the derivatives on both sides, and combining with (2.8), one has

V̇Ri = tr[−(Ṙdi)
TRi −RT

diṘi] = tr[−(RdiΩ
d
di)

TRi −RT
diRiΩ̄i]

= tr[−Ri
diΩ

d
di −RiT

di Ω̄i].
(2.17)

Here Ωd
di = (ωddi)×, with ωddi ∈ R3 representing the angular velocity of Rdi

expressed in Rdi. Under controller (2.13), we have

V̇Ri = tr[−RiT
di (−kR(eRi)− (Ωi

di)
∨)× −Ri

diΩ
d
di]

= tr[RiT
di kR(eRi)× +RiT

di (R
i
diR

i
diΩ

d
di)−Ri

diΩ
d
di]

= tr[RiT
di kR(eRi)×] = −kReTRieRi = −kR‖eRi‖2.

(2.18)

By (2.16) we have

V̇Ri ≤ −kΦVRi . (2.19)

Here, kΦ = min
i

(2− Φi)kR. Since Φi < 2, we have kΦ > 0. The attitude error

of agent i almost globally exponentially converges to zero except for xi(0) = π.

Position convergence:

In order to evaluate the convergence of pf to the target configuration p∗f ,

the dynamics of all the agents needs to be evaluated in a common frame, which

is chosen as inertial frame {I} in this case. Referring to (2.8) and (2.9), under

local controller (2.13), the dynamics in {I} is in the form of

ṗi = RiEivi = − 1

γi
RiEiE

T
i V̄i, i ∈ Vf . (2.20)
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Since

˙̄pij =
d(RT

i pij)

dt
= RT

i ṗij + ṘT
i pij = RT

i (ui − uj) + Ω̄T
i R

T
i pij

= ūi −RT
i uj + Ω̄T

i p̄ij,

(2.21)

combining with (2.12) leads to

V̄i =
∑
i∈Ni

lij(kcp̄ij −RT
i uj). (2.22)

Substituting (2.22) into (2.20), we have

ṗi=−
1

γi
RiEiE

T
i R

T
i

∑
j∈Ni

lij(kcpij − uj) = − 1

γi
RiEiE

T
i R

T
i

∑
j∈Ni

lij(kcpij − ṗj)

=− 1

γi

∑
j∈Ni

lij(kcpij−ṗj)+
1

γi

∑
j∈Ni

lij(kcpij − ṗj)−
1

γi
RiEiE

T
i R

T
i

∑
j∈Ni

lij(kcpij − ṗj).

(2.23)

Referring to (2.11), we have

ṗi = − 1

γi

∑
j∈Ni

lij(kcpij − ṗj) +
1

γi
(RdiEi −RiEiE

T
i R

T
i RdiEi)‖δi‖, (2.24)

where δi =
∑
j∈Ni

lij(kcpij − ṗj). Let εi =
∑

j∈Ni lijpij, i ∈ Vf , represent the

formation error of agent i, and multiply γi on both sides of (2.24). We have

ε̇i = −kcεi + [RdiEi −RiEiE
T
i R

T
i RdiEi]‖δi‖

= −kcεi +Ri[R
T
i Rdi −RT

diRi]Ei‖δi‖

= −kcεi +Ri(−eRi)×Ei‖δi‖.

(2.25)

Consider Lyapunov function Vp = 1
2
εTi εi. Taking the derivatives on both sides

gives

V̇p = −kcεTi εi + εTi Ri(−eRi)×Ei‖δi‖

≤ −kc‖εi‖2 + ‖εi‖‖e′Ri‖(kc‖εi‖+ |Ni|limvim)

≤ −(1− ‖e′Ri‖)kc‖εi‖2 + |Ni|limvim‖eRi‖‖εi‖.

(2.26)

Here vim = max(‖vj‖), and e′Ri = eRiEi. Since xi ∈ (−π, π), ‖e′Ri‖ =

‖eRiEi‖ < 1, there always exist positive constants kε and kr satisfying (1 −

‖e′Ri‖)kc − kε > 0 and

V̇p ≤ −((1− ‖e′Ri‖)kc − kε)‖εi‖2 + kr‖eRi‖2. (2.27)
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As a result, εi is ISS w.r.t. the attitude error. Since eRi is almost globally

exponentially stable, εi globally converges to zero as t→∞ except for xi(0) =

π.

Based on the above discussion, the first main result of this work is sum-

marized as follows.

Theorem 1. Consider the MAS in (2.8), with four agents chosen as leaders

moving along the target configuration p∗l (t) and the rest of agents considered

as followers driven by controller (2.13). If (i) the nominal configuration (G, r)

satisfies Assumptions 1 and 3 and (ii) leaders’ nominal configuration {ri}i∈Vl
affinely spans R3, then the followers’ state pf (t) converges to the target con-

figuration p∗f (t) = −(Lff ⊗ I3)−1(Lfl⊗ I3)p∗l (t) almost globally. Here, Lff and

Lfl are obtained by the decomposition of the Laplacian matrix

L =

[
Lll Llf
Lfl Lff

]
, (2.28)

where Lll ∈ Rnl×nl represents the submatrix corresponding to the leaders, and

Lff , Lfl, and Llf have compatible dimensions.

Proof. Referring to Definition 1, A(r) ∈ ker(L⊗ Id), and dim(A(r)) = d2 + d.

By Lemma 1, dim(ker(L ⊗ Id)) = d2 + d. Thus, A(r) = ker(L ⊗ Id). Since

{ri}i∈Vl affinely span R3, by Lemma 4, for p(t) ∈ A(r), pf (t) is uniquely

determined by pl(t). In addition, p(t) ∈ A(r) implies p(t) ∈ ker(L⊗ Id). Then

we have

(Lff ⊗ I3)p∗f (t) + (Lfl ⊗ I3)p∗l (t) = 0. (2.29)

Since p∗f (t) is unique, Lff must be nonsingular, and the follower’s target con-

figuration p∗f (t) can be written as

p∗f (t) = −(Lff ⊗ I3)−1(Lfl ⊗ I3)p∗l (t). (2.30)

By (2.27), εi, i ∈ Vf , globally converges to zero as t→∞, except for xi(0) = π.

Then,

lim
t→∞

∑
j∈Ni

lij(pi(t)− pj(t)) = 0. (2.31)
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Since Lff is nonsingular, and leaders move along the target configuration p∗l (t),

(2.31) can be written as

lim
t→∞

pf (t) = −(Lff ⊗ I3)−1(Lfl ⊗ I3)p∗l (t). (2.32)

Compared (2.32) with (2.30), the proof is completed.

Remark 2. Theorem 1 can be established under Assumption 2 and Assump-

tion 3 with all the roots of G chosen from the leader set Vl when the underlying

graph G is directed.

Remark 3. Compared with the existing results in [75] and [12], controller

(2.13) does not include global information even when leaders’ velocities are

time-varying; and compared with [76] and [77], which required leaders to move

along some prescribed polynomial trajectories, there is no restriction on lead-

ers’ trajectories. In addition, taking advantage of the geometric controller

design, the singularity problem in [12] is avoided in this thesis.

Remark 4. Assumptions 1 and 2 are milder than the ones in [13], [12] and

[75], respectively. Specifically, for an undirected graph, the globally rigid

condition in Assumption 1 is milder than the universally rigid condition in [13],

[12]. For a k-rooted graph, no centralized computation is needed to guarantee

the semi-positive definiteness of the Laplacian matrices. Since the nominal

configuration r is predetermined and the graph is directed, the associated

Laplacian matrices can be calculated locally by∑
j∈Ni

lijrij = 0.

2.2.3 Affine Formation under Switching Topologies

One advantage of the proposed method is the exclusion of centralized com-

putation when the edge weights are selected for the associated Laplacian ma-

trix of a rooted graph (Remark 4). Inspired by this property, we study the

affine formation under switching topologies in this section.
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Consider an MAS containing n agents in Rd. Suppose that there exist an

infinite sequence of non-overlapped time intervals [tq, tq+1), q ∈ N, satisfying

t0 = 0, 0 < τ0 < tq+1 − tq < τ1. During each time interval, the topology

is fixed; and at each time instant tq the topology switches. τ0 is called the

minimum dwell time. Let s(t) : [0,∞) → {1, ...,m} denote the switching

signal, and let Ĝ := {G1, ...,Gm} represent the set of all possible topologies of

the MAS, where Gs(t) ∈ Ĝ represents the graph at time t.

Assumption 4. Each graph Gi ∈ Ĝ satisfies Assumption 2.

Since the number of agents is finite, under Assumption 4, the number

of possible graphs in Ĝ is finite. In practice, it is hard to predetermine the

underlying graph for each time interval, especially when the MAS manuevers

in an unknown environment. The d-rooted graph constructed at initial time

might face edge loss caused by blocking or range limitation. Therefore, before

giving the main result, a reconstruction method which can preserve the d-

rooted property against unexpected edge loss is proposed in Algorithm 1.

Algorithm 1 Reconstruction of a d-rooted graph

1: Initial: Construct a d-rooted graph G = (V , E). Denote the root set
R = {r1, r2, ..., rd}. Assume i ∈ V\R, j ∈ V , (j, i) ∈ E .

2: while Edge lost: (j, i) is removed from E . do
3: ∀q ∈ V\R, q 6= i
4: if (i, q) ∈ E and (j, q) /∈ E then
5: add (j, q) to E .
6: end if

pick one node p ∈ V and (p, i) /∈ E , add edge (p, i) to E .
7: end while

An example of reconstructing a 4-rooted graph by Algorithm 1 is shown in

Figure 2.1. It can be seen that the 4-rooted property is maintained. Referring

to Algorithm 1, when an edge (e.g., (j, i)) is lost, for any node which does

not belong to the root set, it needs to know only whether i or j belongs to its

neighbor set. Therefore, the d-rooted graph is reconstructed locally.

Proposition 1. Following Algorithm 1, graph G preserves the d-rooted prop-

erty.
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Figure 2.1: Reconstruction of a 4-rooted graph, with R = {1, 2, 3, 4}. The
graphs are labeled as Gi, i = 1, 2, 3, 4, clockwise.

Proof. The essential to prove the d-rooted property remains for graph G after

reconstruction is to provide that there still exist d disjoint paths from the node

set R to every other node belonging to V\R.

After removing edge (j, i) from E , for a node that does not need (j, i) to

complete a path from R, it is still d-reachable from R.

For node q that needs (j, i) to complete a path lq from R, denote Vq as

the set which includes all the nodes in this path and lq
′
q as the segment of lq

which starts from q′ and ends at q. Consider the following cases:

1. Remove d− 1 nodes from V\Vq

When (j, i) is removed, j is still d-reachable from R. Thus, in this case,

j is still reachable from R. If node q is directly connected to i, by line 5,

an edge (j, q) has been added ( (j, q) /∈ E in the original graph) and node

q is reachable from R through j. If node q is not directly connected to i,

path lq leads it to a node q′ which is directly connected to i; then, node

q is reachable from R through (j, q′)→ lq
′
q .

2. Remove d− 1 nodes from V , at least one of which belongs to Vq

At least one node is removed from Vq, and thus at most d− 2 nodes are

removed from the rest of the graph. For the rest of the graph, there exist

d − 1 disjoint paths through which node q is reachable from R. Thus,

in this case, q is still reachable from R.
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For node i, if (j, i) is needed to complete a path from R, we consider the

same two cases as follows:

1. Remove d− 1 nodes from V\Vi

Since every node other than i is d-reachable after line 5 in Algorithm 1,

line 6 makes node i reachable through p.

2. Remove d− 1 nodes from V , at least one of which belongs to Vi

The proof is similar to case 2 for node q above.

The above analysis covers all kinds of nodes in V\R, and thus, the recon-

structed graph is d-reachable.

After the d-rooted graph is reconstructed, the edge weights of the associ-

ated Laplacian matrix need to be recalculated locally by
∑

j∈Ni rij = 0. For

agent i, it only needs to know who belongs to its neighbor set Ni and the

nominal configuration r. Since both the d-rooted graph and the associated

Laplacian matrix can be reconstructed locally, the study of affine formation

under switching topologies is of practical significance.

Denote the reconstructed graph at current time instant as G̃. Then the

value of switching signal s(t) is determined by

i := {j ∈ {1, · · · ,m}|G̃ = Gj}, (2.33)

and the associated Lapacian matrix is denoted by L(s(t),t) ∈ R. L0 represents

the associated Laplacian matrices at t0.

According to Theorem 1, during t ∈ [tq, tq+1), the formation error is ISS

w.r.t. attitude error. Therefore, in order to guarantee the convergence to the

target configuration, the magnitude of attitude error needs to be small, which

is provided in the following Lemma.

Lemma 6. Consider the attitude dynamics described in (2.8), with the an-

gular velocity given in (2.13). The length of time intervals, during which the

27



attitude error ‖eRi‖ is larger than a, 0 < a < 1, is uniformly upper bounded

by a positive constant ha given by

ha =
2
√

1− a2

kRa2
. (2.34)

Proof. Referring to (2.15), we have

VRi = 1−
√

1− ‖eRi‖2 , 0 ≤ VRi ≤ 1; VRi = 1 +
√

1− ‖eRi‖2 , 1 < VRi < 2.

(2.35)

By (2.18) and (2.35), for 1 < VRi < 2, we have

d
√

1− ‖eRi‖2

dt
≤ −kR‖eRi‖2. (2.36)

The time h1
a1

for VRi to travel from an initial VRi(t0) > 1 to 1 is equal to the one

for ‖eRi‖ to increase from a constant a1 < 1 to 1. Let Vi =
√

1− ‖eRi‖2, h1
a1

is equal to the time for Vi to go from
√

1− a1
2 to zero. For Vi ∈ (0,

√
1− a1

2],

we have

dVi
dt

= −kR(1− V 2
i ) ≤ −kR(1− (1− a1

2))

Vi(t)− Vi(t0) ≤ −kRa1
2(t− t0).

(2.37)

Then, h1
a1

can be estimated by

0−
√

1− a1
2 ≤ −kRa1

2(h1
a1
− 0)

h1
a1
≤
√

1− a1
2

kRa1
2
.

(2.38)

Similarly, for 0 ≤ VRi ≤ 1, the time h2
a2

for VRi to go from 1 to VRi(t
′) < 1 is

equal to the time for ‖eRi‖ to drop from 1 to a constant a2, and it is upper

bounded by

h2
a2
≤
√

1− a2
2

kRa2
2
. (2.39)

Thus, for VRi(t0) ∈ (1, 2), ‖eRi‖ will first increase to 1, and then decrease,

and the period of time during which ‖eRi‖ > a is ha = h1
a + h2

a ≤ 2
√

1−a2

kRa2 .

For VRi(t0) ∈ [0, 1], ‖eRi‖ will decrease directly, and the time during which

‖eRi‖ > a is upper bounded by ha = h2
a ≤

√
1−a2

kRa2 .

To summarize, for any VRi ∈ [0, 2), we have ha ≤ 2
√

1−a2

kRa2 .
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Consider piecewise Lyapunov function Vε(t) = 1
2
εqT εq, t ∈ [tq, tq+1), which

is quadratic of the position error under current topology Gs(t) and the associ-

ated Laplacian Lq. Take the derivatives of both sides

V̇ε = −kcεqT εq + εqT eε

≤ −(1− ‖e′Rm‖)kc‖ε
q‖2 + nfNm‖e′Rm‖‖ε

q‖

≤ −(1− ‖e′Rm‖)kc‖ε
q‖2 + kqr‖e′Rm‖

2 + kqε‖εq‖2

= −((1− ‖e′Rm‖)kc + kqε )‖εq‖2 + kqr‖e′Rm‖
2.

(2.40)

Here, ‖e′Rm(t)‖ = max
i∈Vf
‖e′Ri(t)‖, Nm = max

i∈Vf ,t∈[tq ,tq+1)
Ni(t),

Ni(t) = |Ni(t)|vim(t)lim(t), and 2
√
kqrk

q
ε = nfNm. The above equation implies

the ISS property of the formation error εq w.r.t. the attitude error ‖eRi‖ when

there exist positive constants kqε and kqr that guarantee (1 − ‖e′Rm‖)kc + kqε is

positive. Such kqr and kqε always exist since ‖e′Rm‖ < 1. In addition, by (6),

during each time interval, ‖e′Rm‖ is upper bounded by a constant a, a < 1 for

at least τ0−ha duration if τ0 > ha. Let kqp = (1−a)kc +kqε , for a large enough

τ0, then, the formation error ε is ensured to converge with a rate higher than

kqp for a certain period.

In the above, the dynamics during each time interval is discussed. Now,

we focus on the system behavior at each switching instant. Assume the leader

set Vl is fixed; then, at each switching instant tq,

Vε(t
+
q ) =

1

2
εq

+T
εq

+

=
1

2

(
(Lq

+

ff ⊗ I3)ef (t
+
q )
)T (

(Lq
+

ff ⊗ I3)ef (t
+
q )
)
, (2.41)

and

Vε(t
−
q ) =

1

2
εq
−T
εq
−

=
1

2

(
(Lq

−

ff ⊗ I3)ef (t
−
q )
)T (

(Lq
−

ff ⊗ I3)ef (t
−
q )
)
, (2.42)

where ef (t) = pf (t)−p∗f (t). Since the nominal formation is affinely localizable

by leaders, p∗f (t
+
q ) = p∗f (t

−
q ) and ef (t

+
q ) = ef (t

−
q ) = ef (tq), which imply

Vε(t
+
q ) =

1

2

(
(Lq

+

ff ⊗ I3)(Lq
−

ff ⊗ I3)−1εq
−
)T (

(Lq
+

ff ⊗ I3)(Lq
−

ff ⊗ I3)−1εq
−
)

≤ f qLVε(t
−
q ).

(2.43)
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Figure 2.2: Trajectory of Vε(t) under switching topologies

Here f qL = (λq−1,q
f )2, and λq−1,q

f is the maximum eigenvalue of Lq
+

ff (Lq
−

ff )−1.

Combining the convergence property during each time interval and the

transient effect at each switching instant, the essential to guarantee the con-

vergence of the formation error is to make sure that the dwell time τ0 is long

enough, so that the decrease during each interval can dissipate the transient

effect at the switching instant (see Figure 2.2).

Theorem 2. Consider the MAS in (2.8) with four agents chosen as leaders

moving along the target configuration p∗l (t) and the rest of agents considered as

followers and driven by controller (2.13). Assume (i) the nominal configuration

r satisfies Assumption 3, (ii) the set Ĝ satisfies Assumption 4 with the roots

for each Gi ∈ Ĝ chosen from the leader set, and the switching signal s(t) is

generated by (2.33), (iii) the dwell time τ0 satisfies

τ0 > (1 +
2kε
kp

)ha +
lnλf
kp

+
δ0

2kp
, (2.44)

where δ0 > 0 is a constant, λf = max
q≥1

λq−1,q
f , kp = min

q
kqp, k

q
p = (1− a)kqc + kqε ,

kqc − kqε > 0, kε = max
q
kqε ,

ha =
2
√

1− a2

kRa2
, (2.45)

0 < a < 1 is a constant, and 2
√
kqrk

q
ε = nfNm. Then the followers’ state

pf (t) converges into a small ball centered at the target configuration p∗f (t) =
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−(Lff0
⊗I3)−1(Lfl0⊗I3)p∗l (t) almost globally. Here Lff0

and Lfl0 are obtained

by the decomposition of the Laplacian matrix at initial time t0 as follows:

L0 =

[
Lll0 Llf0

Lfl0 Lff0

]
, (2.46)

where Lll0 ∈ Rnl×nl represents the submatrix corresponding to the leaders,

and Lff0
, Lfl0 , and Llf0

have compatible dimensions.

Proof. Consider the following piecewise Lyapunov function candidate

Vε(t) =
1

2
εqT εq, t ∈ [tq, tq+1). (2.47)

Separate the time interval [tq, tq+1) into two parts; namely [t1q, t
2
q) during which

the attitude error ‖e′Rm‖ ≥ a, and [tq, tq+1)\[t1q, t2q) during which the ISS prop-

erty of the formation error is guaranteed with a lower bounded convergence

rate.

If [tq, t
1
q) 6= ∅, for t ∈ [tq, t

1
q),

Vε(t) ≤ e−2kqp(t−tq)Vε(t
+
q ) + kqr

∫ t

tq

e−2kqp(t−τ)‖e′Rm‖
2(τ)dτ

≤ e−2kqp(t−tq)Vε(t
+
q ) + a2kqr

∫ t

tq

e−2kqp(t−τ)dτ

= f qε1(t)Vε(t
+
q ) + ∆q

ε1
(t),

(2.48)

where f qε1(t) = e−2kqp(t−tq), ∆q
ε1

(t) = a2kqr
2kqp

(1 − e−2kqp(t−tq)). In addition, f qε1(t) =

f qε1(t1q), ∆q
ε1

(t) = ∆q
ε1

(t1q) for t ∈ [t1q,∞); f qε1(t) = 1, ∆q
ε1

(t) = 0 for t ∈ [t0, tq).

If [t1q, t
2
q) 6= ∅, for t ∈ [t1q, t

2
q), we have

V̇ε ≤ kqr‖e′Rm‖
2 + kqε‖εs(t)‖2

Vε(t) ≤ e2kqε (t−t1q)Vε(t
1
q) + kqr

t∫
t1q

e2kqε (t−τ)‖e′Rm(τ)‖2dτ

≤ f qΦ(t)Vε(t
1
q) + ∆q

Φ(t) ≤ F q
Φ(t)Vε(t

+
q ) + ∆q

Φ
′(t),

(2.49)

where f qΦ(t) = e2kqε (t−t1q), ∆q
Φ(t) = kqr

2kqε
(e2kqε (t−t1q) − 1), F q

Φ(t) = f qΦ(t)f qε1(t1q) and

∆q
Φ
′(t) = f qΦ(t)∆q

ε1
(t1q)+∆q

Φ(t). In addition, f qΦ(t) = f qΦ(t2q) and ∆q
Φ(t) = ∆q

Φ(t2q)

for t ∈ [t2q,∞); f qΦ(t) = 1 and ∆q
Φ(t) = 0 for t ∈ [t0, t

1
q).
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Similarly, if [t2q, tq+1) 6= ∅, for t ∈ [t2q, tq+1),

Vε(t) ≤ f qε2(t)Vε(t
2
q) + ∆q

ε2
(t) ≤ F q

ε2
(t)Vε(t

+
q ) + ∆q

ε2
′(t), (2.50)

where f qε2(t) = e−2kqp(t−t2q), ∆q
ε2

(t) = a2kqr
2kqp

(1− e−2kqp(t−t2q)), F q
ε2

(t) = f qε2(t)F q
Φ(t2q),

and ∆q
ε2
′(t) = f qε2(t)∆q

Φ
′(t2q) + ∆q

ε2
(t). In addition, f qε2(t) = f qε2(tq+1), ∆q

ε2
(t) =

∆q
ε2

(tq+1) for t ∈ [tq+1,∞); f qε2(t) = 1, ∆q
ε2

(t) = 0 for t ∈ [t0, t
2
q).

By Lemma 6, t2q − t1q ≤ ha, (2.50) satisfies

Vε(t) ≤ fε2(t)e2kqεhaf qε1(t1q)V (t+q ) + ∆q
ε2
′(t)

≤ e−2kqp

(
(t−t2q)+(t1q−tq)

)
+2kqεhaV (t+q ) + ∆q

ε2
′(t).

(2.51)

As a result, if tq+1 is large enough, for any µ ∈ (0, 1), there exists a τ(µ), such

that for any t ∈ [tq, tq + τ(µ)),

Vε(t) ≤ µV (t+q ) + ∆q
ε2
′(t), (2.52)

and by (2.51), τ(µ) can be computed by

e−2kqp(τ−ha)+2kqεha ≤ µ, τ ≥ lnµ

2kqp
+ (

kqε
kqp

+ 1)ha. (2.53)

In addition, since

f qε1(t) ≤ F q
Φ(t) ≤ f qΦ(t) ≤ e2kqεha and F q

ε2
(t) ≤ F q

Φ(t) ≤ f qΦ(t) ≤ e2kqεha , (2.54)

for any t ∈ [tq, tq+1), q ≥ 1, Vε(t) is upper bounded by

Vε(t) ≤ e2kqεhaVε(t
+
q ) + ∆q ′(t), (2.55)

where ∆q ′(t) = ∆q
ε1

(t) for t ∈ [tq, t
1
q); ∆q ′(t) = ∆q

Φ
′(t) for t ∈ [t1q, t

2
q); and

∆q ′(t) = ∆q
ε2
′(t) for t ∈ [t2, tq+1).

At each switching instant tq, by (2.43), we have Vε(t
+
q ) ≤ f qLVε(t

−
q ). Com-

bine with (2.52), for the dwell time τ0 satisfies (2.44)

Vε(t
+
q ) ≤ e−(δ0+2kεha)V (t+q−1) + ∆q−1, (2.56)
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where ∆q−1 = f qL∆q−1
ε2

′
(tq). Then, for any t ∈ [tq, tq+1),

Vε(t) ≤ e2kεhaVε(t
+
q ) + ∆q ′(t)

≤ e−δ0Vε(t
+
q−1) + e2kεha∆q−1 + ∆q ′(t)

≤ e−(2δ0+2kεha)V (t+q−2) + e−δ0∆q−2 + e2kεha∆q−1 + ∆q ′(t)

≤ e−(qδ0+(q−1)2kεha)V (t+0 ) + ∆(t),

(2.57)

where ∆(t) = e−((q−1)δ0+(q−2)2kεha)∆0+e−((q−2)δ0+(q−3)2kεha)∆1+· · ·+e2kεha∆q−1+

∆q ′(t). In addition, since V 0
ε (t+0 ) = V 0

ε (t−0 ) = V 0
ε (t0), let V0 = V 0

ε (t0) represent

the initial value of Vε(t). We have

Vε(t) ≤ e−(qδ0+(q−1)2kεha)V0 + ∆(t). (2.58)

For t ∈ [t0, t1), referring to (2.48), (2.49) and (2.50), Vε increases during t ∈

[t10, t
2
0) and decreases during t ∈ [t0, t

1
0) ∪ [t20, t1). By Lemma 6, Vε is bounded.

Then for any dwell time τ0 satisfies (2.44), we have

Vε(t
+
1 ) ≤ e−δ0V0 + ∆0. (2.59)

The convergence property is guaranteed for t ∈ [t0,∞). In addition, ∆(t) is

bounded for all t ∈ [t0,∞), and the formation error converges to a small ball

entered at the origin almost globally. Based on the above analysis, we reach

the conclusion that the followers can gather around the target configuration

with the convergence error determined by ∆(t). The proof is completed.

Remark 5. Referring to (2.43), centralized computations are required for f qL

at each switching instant. Since the possible choices of L
(s(t),t)
ff are infinite, it

is difficult to give a precise bound on f qL. By constraining the magnitude of lij

as |lij| ≤ l̄ for all i, j ∈ Vf , an estimation of f qL can be given based on Lemma

3 as

1

1 + nf l̄
≤ λiff ≤ nf l̄, (2.60)

and

f qL ≤ nf l̄(1 + nf l̄). (2.61)
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Remark 6. According to (2.52), the lower bound of dwell time τ0 is given by

τ 0 = (1 +
2kε
kp

)ha +
lnλf
kp

+
δ0

2kp
.

Here kp is the convergence rate of ε when the attitude error ‖e′Rm‖ is smaller

than a, and ha is the maximum duration when the attitude error is larger than

a. Both of them are determined by system dynamics, and a higher convergence

rate leads to a smaller lower bound of τ0. A smaller τ 0 can also be obtained by

a smaller kε, which is introduced by using the Young’s inequality. However, by

(2.40), a smaller kε leads to a larger kqr ; and by (2.48)–(2.50), it further results

in larger convergence error. As a result, there exists a trade-off between the

bound on dwell times and convergence errors.

2.2.4 Simulation Results

In this section, we use some simulation examples to further demonstrate

the effectiveness of the proposed control protocol. Consider an MAS con-

taining several agents maneuvering on SE(3). Each agent is modeled as an

underactuated system as in (2.8), with one independent direction in transla-

tion along its third axis. Four of them are chosen as leaders, moving along

the pre-determined trajectories and the others are followers, governed by the

proposed control protocol in (2.13).

Case I: Affine formation under the fixed graph

In this case, the agents are connected by a 4-rooted graph with nominal

configuration r1 = [4, 0, 3]T , r2 = [−2, −2.5√
3
,−4

6
]T , r3 = [2,− 2√

3
,−1]T , r4 =

[0, 4√
3
,−2

5
]T , r5 = [−1

3
,−2

3
, 4.5√

3
]T , r6 = [1

3
,−1

3
, 2√

3
]T . The corresponding nomi-

nal formations are shown in Figure 2.3. The leaders move along some specific

trajectories and the followers need to track the time-varying formation deter-

mined by leaders. The initial states for the agents are given by p1 = [15, 15, 0]T ,

p2 = [−15,−15, 0]T , p3 = p5 = [15,−15, 0]T , p4 = p6 = [−15, 15, 0]T .

The trajectories of the agents are shown in Figure 2.4 (a). The dynamic

tracking as well as time-varying formation structures are realized. The for-

mation errors and attitude errors are shown in Figure 2.5. After a transient
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process, the attitude errors converge to zero, which means that the axis along

which the thrust is provided, has been directed at the target configuration.

The formation errors converge to zero as well.

Case II: Affine formation under the switching graph

In this case, the agents are connected by a switching graph with the switch-

ing signal s(t) = mod (q, 4) + 1, t ∈ [tq, tq+1), and the possible graphs

Ĝ = {G1,G2,G3,G4} as shown in Figure 2.1. The nominal configuration

r is given by r1 = [0, 1,−3]T , r2 = [−1,−3, 1/2]T , r3 = [1,−3,−1/2]T ,

r4 = [0, 2, 1]T , r5 = [−1/2,−1/2,−2]T , r6 = [1/2,−1/2,−4]T , r7 = [1/4, 0, 4]T .

The parameters in (2.44) are chosen to be kc = 4, a = 0.4, δ0 = 0.1, kε = 0.01,

kR = 8. The initial positions are given by p1 = p3 = p5 = p7 = [15,−15, 0]T ,

p2 = p4 = [15,−15, 0]T , p6 = [−15,−15, 0]T . Figure 2.4 (b) shows the tra-

jectories of the agents, which tells that dynamic tracking of a time-varying

formation is realized. The formation errors and attitude errors are shown in

Figure 2.6. The attitude errors have a jump at each switching instant and

converge very quickly after the switching; while the formation errors converge

to a small ball centered at zero.

Figure 2.3: Nominal formation for the 4-rooted graph. Here, the arrows rep-
resent the directed edges in the graph and the edge weights are labeled aside.
The nonzero eigenvalues of the associated Laplacian matrices are −8.9898 and
10.9084.
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(a) Trajectories of the agents under the 4-rooted graph.

(b) Trajectories of the agents under the switching topology.

Figure 2.4: Trajectories of the agents. Here, the solid lines represent the
trajectories of the followers, the dash lines represent the trajectories of the
leaders; the squares represent the initial positions of the agents and the circles
represent the positions of the agents at a same time instant. The long arrows
in (a) represent the edges among agents.
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Figure 2.5: Convergence errors of the followers under the 4-rooted graph.

(a) (b)

(c)

Figure 2.6: Convergence errors of the followers under the switching topology.
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2.3 Affine Formation under Event-Triggered

Mechanism

An ETM for affine formation control of single integrators is presented in

the following. The motivation of the following work is derived from a resource-

efficient concern.

2.3.1 Problem Formulation

Consider a group of N agents in Rd with single-integrator dynamics under

a signed directed graph G = (V , E):

ṗi(t) = ui(t), i ∈ V = {1, 2, . . . , N}, (2.62)

where pi ∈ Rd denotes the position of agent i and ui is the control input. The

initial condition of the configuration is given as p(0) = p0 ∈ RNd. Furthermore,

assume that d ≥ 2 and N ≥ d+2. The first problem considered in this section

is described as follows:

Problem 2. Design event-triggered control protocols ui(t), i ∈ Vf , such that

the position pf (t) of followers can track the target configuration p∗f (t) =

[p∗TNl+1, . . . , p
∗T
N ]T practically, i.e., there is a constant ε > 0 satisfying

lim supt→∞
∥∥p∗f (t)− pf (t)∥∥ < ε.

The emulation-based approach is used to design ETM for the system

in (2.62). First, a continuous-time control protocol is introduced to ensure

asymptotic tracking of the target formation. Then it will be transformed into

an event-triggered one.

In the rest of this chapter, we always assume the conditions of Lemma 5

are satisfied and the weights are selected based on (2.6). Then, the associated

signed Laplacian can be expressed as

L =

[
0

(d+1)×(d+1)
ll 0

(d+1)×(N−d−1)
lf

L
(N−d−1)×(d+1)
fl L

(N−d−1)×(N−d−1)
ff

]
. (2.63)
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By using Lemma 5, one has that L̄ff is nonsingular, and

L̄flp
∗
l (t) + L̄ffp

∗
f (t) = 0, (2.64)

where L̄fl = Lfl ⊗ Id and L̄ff = Lff ⊗ Id.

Lemma 7 ([75]). Under the following continuous control protocols:

ui(t) = − 1

Lii

∑
j∈Ni

aij[pi(t)− pj(t)− ṗj(t)], (2.65)

where Lii 6= 0 is the (i, i)-th element of Laplacian L, the tracking error δf (t) =

pf (t)− L̄−1
ff L̄flp

∗
l (t) of followers converges globally and exponentially to zero.

Notice that there are two different parts in (2.65), namely, the (com-

bined) relative position information yi(t) =
∑

j∈Ni aij[pi(t) − pj(t)] and the

in-neighbor’s absolute velocity information ṗj(t), j ∈ Ni. For these two kinds

of information, different ETMs are designed as follows.

Since yi(t) can be deemed as local information, agent i is able to measure

it continuously. At each triggering instant tiki , ki ∈ N and i ∈ Vf , the relative

position information will be sent to the local controller to update the control

signal ui. The ET condition is given as

‖εi(t)‖2 ≤ σ1, i ∈ Vf , (2.66)

where σ1 > 0 is a threshold constant, and the measurement error εi(t) =

ŷi(t)− yi(t), t ≥ 0, with ŷi(t) = yi(t
i
ki

), t ∈ [tiki , t
i
ki+1).

The velocity information ṗi(t), i ∈ V , is difficult to be continuously ob-

tained by out-neighbors. Therefore, agent i will first measure its local velocity,

then at each triggering instant τ iki , ki ∈ N, broadcast its own velocity infor-

mation to its out-neighbors for their controller updates. The ET condition

is

‖ei(t)‖2 ≤ σ2, i ∈ V , (2.67)

with a threshold constant σ2 > 0, the broadcast error ei(t) = ˆ̇pi(t)−ṗi(t), t ≥ 0,

and ˆ̇pi(t) = ṗi(τ
i
ki

), t ∈ [τ iki , τ
i
ki+1). Then, the event-triggered control protocols
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can be described by

ui(t) =− 1

Lii
ŷi(t) +

1

Lii

∑
j∈Ni

aij ˆ̇pj(t)

=− 1

Lii

[
yi(t) + εi(t)−

∑
j∈Ni

aij(ṗj(t) + ej(t))

]
, i ∈ Vf .

(2.68)

Due to the discontinuity of ṗi(t), i ∈ Vf , under the event-triggered controller in

(2.68), it is difficult to ensure a positive minimum inter-event time for the ET

condition in (2.67). Hence, we consider the following triggering performance

called “separated events”.

Problem 3. Show that the ET conditions in (2.66) and (2.67) yield separated

events. That is, for any given initial state p0 ∈ RNd, there exist constants

Ty ∈ (0,∞) and Tṗ ∈ (0,∞) satisfying, respectively,

lim sup
t→∞

∣∣{tiki}∞ki=1 ∩ [0, t]
∣∣

t
< Ty ∈ (0,∞), i ∈ Vf ,

and

lim sup
t→∞

∣∣{τ iki}∞ki=1 ∩ [0, t]
∣∣

t
< Tṗ ∈ (0,∞), i ∈ V .

Remark 7. The event-separation property means that there are a finite num-

ber of triggering instants in any finite time interval, thus, it implies Zeno-

freeness of the triggering time sequences. Moreover, it further ensures that

the average triggering frequency can be upper bounded as the time goes to

infinity. Note that if there is a positive lower bound for inter-event times, then

the corresponding triggering sequence must be separated.

2.3.2 Main Result

In this section, the main results will be given to solve Problems 2 and

3. First, the following theorem characterizes the tracking performance of the

event-triggered controllers.

Theorem 3. The practical tracking property in Problem 2 can be ensured by

the event-triggered controller in (2.68) and the ET conditions in (2.66) and

(2.67).
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Proof. By substituting (2.68) into (2.62), one has for each follower i ∈ Vi,

ẏi(t) = −yi(t)− εi(t) +
∑
j∈Ni

aijej(t). (2.69)

Define ε(t) := [εTd+2, . . . , ε
T
N ]T, e(t) := [eT

1 , . . . , e
T
N ]T and w(t) = L̄ffδf (t) with

the tracking error δf given in Lemma 7. Then, (2.69) can be rewritten in the

following compact form:

ẇ(t) = −w(t)− ε(t) +Afe(t), (2.70)

where Af denotes the last (n − d − 1) rows of the adjacency matrix A. Ac-

cording to the ET conditions in (2.66) and (2.67), we have

‖ε(t)‖2 ≤ |Vf | σ1, and ‖Afe(t)‖2 ≤ N ‖Af‖2 σ2.

Let V (t) = 1
2
wT(t)w(t), then, its derivative along the solutions of (2.62) and

(2.68) satisfies

V̇ (t) ≤− 2V (t) + ‖w(t)‖ ‖ε(t)‖+ ‖w(t)‖ ‖Afe(t)‖

≤ − V (t) + |Vf | σ1 +N ‖Af‖2 σ2,

which implies that the w-system is Lyapunov stable and

lim sup
t→∞

V (t) ≤ 2(|Vf | σ1 +N ‖Af‖2 σ2) =
1

2
σ2

0.

The fact that L̄ff is nonsingular further leads to

lim sup
t→∞

‖δf (t)‖ ≤
∥∥L̄−1

ff

∥∥ σ0, (2.71)

and the proof is completed.

To study the triggering performance, we introduce the following assump-

tions.

Assumption 5. For leaders i ∈ Vl, its velocity ṗi(t), t ∈ [0,∞), is upper

bounded by M0.

Assumption 6. The graph G is an acyclic graph, i.e., there is no path that

begins at a node i ∈ V and ends in one of the in-neighbors j ∈ Ni.
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For the events of relative position information, we can provide positive

minimum inter-event times in the following theorem.

Theorem 4. For a given initial state p0, the triggering instants generated by

the ET condition in (2.66) satisfy

inf
ki∈N

(tiki+1 − tiki) ≥ T0, i ∈ Vf ,

with some positive lower bound T0 > 0.

Proof. By definitions, we have

yf =

 yd+2
...
yN

 =
[
L̄fl L̄ff

] [ pl
pf

]
= L̄ffδ = w.

Thus, according to Theorem 3, for any given p0, there is M1(p0) such that

‖w(t)‖ ≤M1, t ∈ R≥0. Consequently,

‖ẏf (t)‖ = ‖w(t) + ε(t)−Afe(t)‖

≤M1 +
√
|Vf | σ1 +

√
N ‖Af‖2 σ2

=ϕ0.

Since ‖ẏi(t)‖ ≤ ‖ẏf (t)‖ and
∥∥εi(tiki)∥∥ = 0 for all i ∈ Vf and ki ∈ Z≥0, one

can obtain that the inter-event times of the ET condition in (2.66) are lower

bounded by
√
σ1

ϕ0
, and therefore, the proof is completed.

For the analysis of the ET conditions in (2.67), we introduce the following

graph partition algorithm in Algorithm 2.

Recall that both leaders and followers need to broadcast their velocity

information. Thus, all nodes in the graph G are considered in the partition.

In an acyclic directed graph, there always exists at least one node that does not

have in-neighbors. Hence, the m-th layer Lm contains all the agents without

in-neighbors in the m-th acyclic subgraph Gm. Since there are a finite number

of agents in the acyclic graph G, Algorithm 2 must reach an end with finite

layers, and denote the last layer as q ∈ N≥1. An example is illustrated in

Figure 2.7. Furthermore, we have the following simple facts of the partition.
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Algorithm 2 Partition of nodes in G
1: Initial m = 0, V0 = V , E0 = E and G0 = G(V0, E0);
2: Select all leaders as the 0-th layer of agents, i.e., L0 = {i ∈ Vl} as the 0-th

layer;
3: while Vm 6= Lm
4: m = m+ 1;
5: Generate a subgraph Gm(Vm, Em) where

Vm ={i ∈ V|i /∈ ∪m−1
s=0 Ls},

Em ={(i, j) ∈ E|i, j ∈ Vm}.

6: Define the new m-th layer of agents:

Lm = {i ∈ Vm|Ni ∩ Vm = ∅}.

7: end while
8: end

1

2

3

4

5

6

7

4

5

6

7

6

7

7

(a) (b) (c) (d)

Figure 2.7: An illustration of Algorithm 2. G0(V0, E0) in (a) decides L0 =
{1, 2, 3}; G1(V1, E1) in (b) with V1 = {4, 5, 6, 7} yields L1 = {4, 5}; G2(V2, E2)
in (c) with V2 = {6, 7} yields L2 = {6}; and finally G3(V3, E3) in (d) with
V3 = L3 = {7} ends the algorithm.
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Proposition 2. For the layers of agents generated by Algorithm 2,

1. V = ∪qm=0Lm;

2. for any m ∈ {1, 2, . . . , q}, ∪i∈LmNi ⊂ ∪m−1
j=0 Lj.

Based on the analysis above, the event separation property for triggering

sequences {τ iki}
∞
ki=0, i ∈ V , is summarized as follows:

Theorem 5. Suppose that Assumptions 5 and 6 hold for the plant in (2.62)

associated with the graph G. For a given initial state p0, the triggering condi-

tion in (2.67) generates separated events for all i ∈ V .

Proof. First, for the leader i ∈ L0 = Vl, the boundedness of ṗi(t), t ∈ [0,∞)

guarantees a positive lower bound of inter-event times, which can be given as

inf
ki∈N

(τ iki+1 − τ iki) ≥
√
σ2

M0

, i ∈ L0,

with M0 defined in Assumption 5.

Assumption 6 ensures the feasibility of Algorithm 2; hence, we consider

the agents in L1 ⊂ Vf . According to the event-triggered controller in (2.68),

for any i ∈ Vf , the events from the ET condition in (2.67) only occur when the

relative position information of agent i or the absolute velocity information

of its in-neighbors j ∈ Ni is updated, i.e., τ iki , ki ∈ Z≥0 belongs to {tiki}
∞
ki

or

{τ jkj}
∞
kj=0 with j ∈ Ni.

Based on Theorem 4 and item (2) in Proposition 2, one has, for any given

interval [a, b] with a ≥ b ≥ 0,

∣∣[a, b] ∩ {tiki}∞ki ∣∣ <⌈(b− a)ϕ0√
σ1

⌉
+ 1, i ∈ L1;∣∣∣[a, b] ∩ {τ jkj}∞ki ∣∣∣ <⌈(b− a)M0√

σ2

⌉
+ 1, j ∈ Ni, i ∈ L1.

Hence, it can be obtained that, for i ∈ L1,∣∣[a, b] ∩ {τ iki}∞ki ∣∣ <χp(b− a) +
∑

j∈L0∩Ni

χ0,j
v (b− a)

=χ1,i
v (b− a),
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where χp(s) =
⌈
sϕ0√
σ1

⌉
+ 1 and χ0,j

v (s) =
⌈
sM0√
σ2

⌉
+ 1, j ∈ L0 for s ≥ 0. The

subscript “p” means position while “v” represents velocity. The superscript

(l, i) stands for agent i in layer Ll. Thus, the events for agent i ∈ L1 are

separated. In detail, we have that for i ∈ L1,

lim sup
t→∞

∣∣{τ iki}∞ki=1 ∩ [0, t]
∣∣

t
<

ϕ0√
σ1

+ |L0 ∩Ni|
M0√
σ2

. (2.72)

Suppose that the event-separation property holds for the agents in the

layers {L0, . . . ,Lm} with m ≤ q − 1 and q being the total number of layers.

Specifically, for any given a ≥ b ≥ 0,∣∣[a, b] ∩ {τ iki}∞ki ∣∣ ≤ χs,iv (b− a) (2.73)

holds for all i ∈ Ls and s ∈ {1, . . . ,m}.

Now consider the agent i ∈ Lm+1. From Theorem 4,∣∣[a, b] ∩ {tiki}∞ki ∣∣ < χp(b− a), i ∈ Lm+1. (2.74)

Since Ni ⊂ ∪mj=0Lj, i ∈ Lm+1 from Proposition 2, combining (2.73) and (2.74)

leads to ∣∣[a, b] ∩ {τ iki}∞ki ∣∣ <χp(b− a) +
m∑
t=0

∑
j∈Lt∩Ni

χj,tv (b− a)

=χm+1,i
v (b− a).

(2.75)

By recursively applying (2.72) to (2.75), one can show that the events caused

by the ET condition in (2.67) of agent i ∈ Lm+1 are separated. The analysis

above can be extended to all the agents in the graph G due to item (1) in

Proposition 2; and therefore, the proof is completed.

Remark 8. According to Theorems 3-5, the ET conditions in (2.66) and

(2.67) provide a trade-off between the tracking performance and the trigger-

ing performance. Smaller thresholds σ1 and σ2 could lead to higher tracking

accuracy but increases the number of events.

Remark 9. The events of an agent in a higher layer would be triggered

more frequently than those in a lower layer. This property demonstrates the

relationship between the system size and the communication load.
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Remark 10. When there exist cycles in the graph, such as, between agents i

and j, each of the agents can be regarded as the lower layer of the other one.

In this case, a “positive feedback” effect on their events of absolute velocity

information may happen. The events in agent i would promote the events

in agent j, which could conversely accelerate the triggering of agent i. As

a result, the events would not be separated as they are triggered faster and

faster.

2.3.3 Simulation

In this section, the effectiveness of the event-triggered control protocol is

illustrated by simulations. The interaction network among agents is shown as

in Figure 2.7(a). The nominal formation r and the associated signed Laplacian

are chosen the same as the ones used in [75]. The thresholds in (2.66) and

(2.67) are chosen as σ1 = 0.05 and σ2 = 0.1, respectively. The trajectories of

the agents are shown in Figure 2.8, with the steady-state errors given in Table

2.1. Here, δx and δy represent the tracking errors along x axis and y axis,

respectively. The number of events are shown in Table 2.2. The agents in the

higher layer are triggered more frequently than those in the lower layer, which

coincides with the analysis in Remark 9. In addition, the tracking errors of the

agents in the higher layer are larger than the ones in the lower layer. This is

reasonable, since the control protocol relies on the information collected from

the agents in the lower layers. The tracking errors are accumulated layer by

layer.

Table 2.1: Steady-state tracking errors

Agent A4 A5 A6 A7

Steady-state error δx 0.6063 0.5925 1.4063 1.9263
Steady-state error δy 0.0131 0.0156 0.0126 -0.0731
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Figure 2.8: Trajectories of the agents, with dash (solid) lines representing
leaders’ (followers’) trajectories.

Table 2.2: Number of events

Agent A1 A2 A3 A4 A5 A6 A7

Updates of relative position - - - 373 424 943 1386
Broadcasting of velocity 44 29 49 168 182 333 342

2.4 Summary

An affine formation tracking problem was studied in this chapter. First,

we solved the problem for nonholonomic systems on SE(3) under fixed and

switching topologies. The geometric control method together with graph the-

ory were used to design the control protocol. The proposed controller was

constructed directly on the Lie algebra of SE(3) and only relied on local in-

formation. No global reference is required. An algorithm was proposed to

reconstruct the k-rooted graph when some edges in the graph were lost. We

showed that the system converged to the target configuration under fixed

topologies and converged into a small ball centered at the target configuration

under switching topologies. Theoretical proof and simulations were given to

demonstrate the effectiveness of the proposed controller.

After that, an ETM was proposed for affine formation of MASs mod-

eled by single integrators. Under the proposed control protocol, the followers

practically tracked the target configuration. In addition, Zeno behavior was

excluded when the MAS was connected by an acyclic graph.
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Chapter 3

Cooperative Output Regulation
with Communication
Imperfections∗

3.1 Overview

In this chapter, the COR problem with communication imperfections is

investigated. As one of the fundamental problems in MASs, COR has been

extensively studied since it was proposed [14]. By a well-designed interactive

protocol, COR aims at rendering a set of agents to achieve asymptotic track-

ing or disturbance rejection of an exogenous signal. In order to accomplish a

cooperative goal, agents need to exchange their local information through a

shared communication network. The introduction of networks always comes

with communication imperfections such as asynchronous transmissions, time-

varying delays, quantization errors, packet dropouts and communication con-

straints. The effects of these imperfections have been widely investigated in

the area of NCSs with one or multiple communication imperfections under

consideration (see [24, 25]). Following the method proposed in [24], we solve

a COR problem with asynchronous samplings and time-varying delays in a

hybrid system framework. Compared with the results in [48] and [49], which

∗A version of this chapter has been published as: J. Yang, H. Yu, and T. Chen, Cooperative
Output Regulation with Asynchronous Transmissions and Time-Varying Delays. IEEE
Transactions on Automatic Control, early access.
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tackled the asynchronous samplings for MASs by a time-delay approach, the

method proposed in this work can capture different transmission instants with-

out increasing the dimension of the system.

In NCSs, we assume only one node has access to the network at a trans-

mission instant and a scheduling protocol is implemented to grant the access

of the nodes to the network [34]. The performance of the protocol is evaluated

by a parameter λ. While in the considered sampled-data MASs, local infor-

mation of an agent could be packaged and broadcast to its neighbors entirely

at a transmission instant, thereby, λ is always set to zero. Since the Lyapunov

candidate used in [24] was not consistent when λ approached to zero, sim-

ply extending it to sampled-data MASs leads λ to be a redundant variable.

Considering the distinction between the sample-data setting in MASs and the

protocol used in NCSs, a novel Lyapunov function candidate, with λ being

excluded, is proposed in this work. Benefited from that, a more straightfor-

ward interpretation on the trade-off design between MATIs and MADs can be

given, which can serve as a better guideline for network designers.

The main contributions of this work are summarized as follows:

1. A sampled-data COR problem of heterogeneous systems is solved under

asynchronous transmissions, time-varying delays and unknown distur-

bances. To the best of the authors’ knowledge, this is the first time

that the above problem is solved in a uniform framework. A hybrid sys-

tem model is used to incorporate both asynchronous transmissions and

time-varying delays. Based on this model, results on universal global

asymptotic stability (UGAS) and L2 (L∞) stability are provided.

2. A novel Lyapunov function candidate is proposed for MASs, based on

which, a more intuitive analysis on the relationship between MATIs and

MADs can be given compared with the ones given in [50].

The effectiveness of the proposed method is verified by numerical examples.
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3.2 Preliminaries and Problem Formulation

3.2.1 Definitions and Preliminaries

Preliminaries and notations on graph theory are same as the ones in Section

2.2.1. Let 0 denote a vector with all the elements being 0 with appropriate

dimensions and 0n denote an n × n matrix with all elements being zero. A

function α : R≥0 → R≥0, is said to be of class K if it is continuous, strictly

increasing and α(0) = 0; it is said to be of class K∞ if it is of class K and

unbounded. A function β : R≥0×R≥0 → R≥0, is said to be of class KL if it is

continuous, and β(·, t) is of class K for each t ≥ 0, limt→∞ β(s, t) = 0 for each

s ≥ 0. A function β: R≥0 × R≥0 × R≥0 → R≥0, is said to be of class KLL if

it is continuous, and β(·, r, ·), β(·, ·, r) are class KL functions for each r ≥ 0.

A hybrid system H is of the form

ξ̇ = F (ξ, ω), ξ ∈ C,

ξ+ ∈ G(ξ), ξ ∈ D,
(3.1)

where F describes the flow dynamics, G the jump dynamics, C the flow set

and D the jump set. The solution of (3.1) is expressed as ξ(t, j) and defined

on the hybrid time domain dom ξ, where the elements (t, j) with t ∈ R≥0

and j ∈ N record the elapse of time and number of jumps, respectively. For

conciseness, we omit the mathematical definitions on some notations in hybrid

systems, and refer the readers to [78].

The L2 norm of a function ξ defined on a hybrid time domain dom ξ =

∪J−1
j=0 ([tj, tj+1], j) with J possibly ∞ and/or tJ =∞ is given by

‖ξ‖L2 =

√√√√J−1∑
j=0

∫ tj+1

tj

‖ξ(t, j)‖2dt, (3.2)

and its L∞ norm is given by

‖ξ‖L∞ = ess sup(t,j)∈dom ξ‖ξ(t, j)‖, (3.3)

when the right hand side of (3.2) and (3.3) exist and are finite. Furthermore,

we say ξ ∈ Lp, p ∈ {2,∞}, when ‖ξ‖Lp is finite.
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3.2.2 Cooperative Output Regulation

Consider a heterogeneous MAS containing N agents, each of them is mod-

eled as a general linear system as follows

ẋi = Aixi +Biui + Eiv +Giωi

ei = Cixi +Diui + Fiv, i = 1, · · · , N,
(3.4)

where xi ∈ Rni , ui ∈ Rmi , ei ∈ Rpi and ωi ∈ Rri represent the system state,

control input, tracking error and unknown disturbance, respectively, and Ai,

Bi, Ci, Di, Ei, Fi, Gi are constant matrices with compatible dimensions.

v ∈ Rq represents the exogenous signal to be tracked or rejected, which is

labelled as agent 0 and follows the dynamics

v̇ = Sv +G0ω0. (3.5)

Here S ∈ Rq×q, G0 ∈ Rq×r0 are constant matrices, and ω0 ∈ Rr0 represents the

disturbance. It should be noted that, the disturbances ωi introduced in (3.4)

and (3.5) cannot be merged into the exogenous signal v, as v is deemed as a

signal generated by an exosystem with known dynamics while ωi is unknown

disturbances to be attenuated.

The MAS in (3.4) and the exosystem in (3.5) are connected by a commu-

nication network. Associate the two systems with a graph Ḡ = (V̄ , Ē), where

(i, j) ∈ Ē iff node j can receive information from node i through the network.

Ni is defined as the neighbor set of agent i, where j ∈ Ni iff (j, i) ∈ Ē . Let

L̄ ∈ R(N+1)×(N+1) be the Laplacian matrix of graph Ḡ, where [L̄]ij = −aij,

if i 6= j; and [L̄]ii =
∑N

j=0,j 6=i aij with aij = 1, if (j, i) ∈ Ē , and aij = 0,

otherwise. Here [L̄]ij represents the (i, j)-th element of the Laplacian L̄. For

COR problem, the Laplacian L̄ can be decomposed as follows

L̄ =

[
0 0TN
a0 H

]
.

Here a0 = [a10, a20, ..., aN0]T , andH ∈ RN×N is a submatrix of L̄ corresponding

to the interconnection among follower agents.
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Remark 11. It should be noted that edge (0, i) ∈ Ē represents the network

connection between agent i and the exosystem. Referring to (2.8), their phys-

ical connection is described by matrix Ei. These two kinds of connections are

not influenced by each other.

A distributed controller was introduced in [14] to solve the COR problem

under continuous communication:

η̇i = Sηi + µ(
∑
j∈Ni

aij(ηj − ηi) + ai0(v − ηi)), (3.6)

ui = K1ixi +K2iηi. (3.7)

Here, K1i, K2i and µ are the feedback gains to be designed; ηi ∈ Rq is intro-

duced as a compensator.

Due to the network constraints, ηi and v are transmitted intermittently in a

sampled-data manner. Denote the transmission instants of ηj, j = 1, · · · , N ,

and v by tj0, tj1, · · · and t00, t01, · · · , respectively, and assume there exists a

δ > 0 such that the transmission intervals satisfy δ ≤ tiki+1 − tiki ≤ τ imati for

all ki ∈ N, i = 0, · · · , N . Here, the (sufficiently small) constant δ is used to

exclude Zeno behavior; and τ imati denote the MATI for agent i to be designed

later. Furthermore, transmission delays, τ iki ∈ [0, τ imad] are considered for the

broadcast of ηi (reference v), where τ imad is the MAD for agent i (reference

v). Referring to [32], [78] and [24], small delay case is considered in this work,

that is, the broadcast data of a node is received by its neighbors before the

next transmission. More specifically, the time delays satisfy τ iki ≤ tiki+1 − tiki
resulting in τ imad ≤ τ imati.

In order to cope with the communication imperfections, compensator (3.6)

will be implemented in a model-based fashion [79] in between the adjacent

updates (i.e. t ∈ [tiki + τ iki , t
i
ki+1 + τ iki+1)). In detail, (3.6) is transformed into

the following form:

η̇i(t)=Sηi(t) + µ(
∑
j∈Ni

aij(η̄j(t)− η̄i(t)) + ai0(v̄(t)− η̄i(t))), (3.8)
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where η̄i and v̄ satisfy

˙̄ηi(t) = Sη̄i(t), t ∈ [tiki + τ iki , t
i
ki+1 + τ iki+1),

˙̄v(t) = Sv̄(t), t ∈ [t0k0
+ τ 0

k0
, t0k0+1 + τ 0

k0+1),

η̄i((t
i
ki

+ τ iki)
+) = ηi(t

i
ki

),

v̄((t0k0
+ τ 0

k0
)+) = v(t0k0

),

and we set

η̄i(t) = 0, t ∈ [0, ti1 + τ i1), and v̄(t) = 0, t ∈ [0, t01 + τ 0
1 ), (3.9)

to generate the control input before receiving the initial broadcast signal from

neighbors. Denote εi, as the measurement errors with ε0 = v − v̄ and εi =

ηi − η̄i, i = 1, · · · , N , and ηei = ηi − v as the compensator error of agent

i. In addition, let η = [ηT1 , · · · , ηTN ]T , v̂ = 1N ⊗ v, ηe = [ηTe1 , · · · , η
T
eN

]T ,

ε = [εT1 , · · · , εTN ]T , ε̂0 = 1N⊗ε0, ω̂0 = 1N⊗ω0 be the corresponding augmented

vectors. Then, the compensator error follows the dynamics:

η̇e = S̄eηe + H̄eε− H̄0ε̂0 − Ḡ0ω̂0, (3.10)

and the errors ε and ε̂0 follow

ε̇ = S̄ηε− H̄eηe − H̄0ε̂0,

˙̂ε0 = Ḡ0ω̂0,
(3.11)

where S̄e = IN ⊗ S − µ(H ⊗ Iq), H̄e = µ(H ⊗ Iq), S̄η = IN ⊗ S + µ(H ⊗ Iq),

H̄0 = µ diag([a10, · · · , aN0])⊗ Iq, and Ḡ0 = µ diag([a10, · · · , aN0])⊗G0.

Some commonly used assumptions for COR problems [14] are introduced

as follows.

Assumption 7. The pairs (Ai, Bi) are stabilizable, i = 1, 2, ..., N .

Assumption 8. There exist solution pairs (Xi, Ui) for the following linear

matrix equations

XiS = AiXi +BiUi + Ei

0 = CiXi +DiUi + Fi, i = 1, 2, ..., N.
(3.12)
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Assumption 9. The topology of the MAS is directed and contains a spanning

tree with the reference signal as a root.

Next, we introduce the following results of COR problem when no network

constraints are considered, i.e., all signals can be transmitted continuously.

Lemma 8. ([14]) Consider the MAS in (3.4), with reference signal in (3.5)

and distributed controllers in (3.6) and (3.7). Under Assumptions 7–9, let

K1i, i = 1, 2, · · · , N , satisfy that Ai +BiK1i is Hurwitz, and K2i be defined as

K2i = Ui −K1iXi, i = 1, · · · , N, (3.13)

where Ui and Xi are the solutions of (3.12). Then, in the disturbance-free case

(i.e., ωj = 0rj , j = 0, · · · , N), the COR can be solved asymptotically with a

sufficiently large number µ in the sense of lim
t→∞
‖ei‖ → 0.

According to Lemma 8, controller (3.6) and (3.7) solves the COR problem

without communication constraints. To deal with asynchronous transmissions

and time-varying delays, the emulation-based approach is applied in this work,

that is, for the gains µ, K1i and K2i, i ∈ 1, · · · , N , selected from Lemma 8,

constrain the MATIs and MADs for each agent and the exosystem such that

some closed-loop stability is preserved.

Let exi = xi −Xiv, by (3.4)–(3.8),

ėxi = (Ai +BiK1i)xi + (BiK2i −XiS)v +BiK2iηei −Xiω0 +Giωi.

For K1i, K2i selected by Lemma 8, by (3.12) and (3.13), we have

ėxi = (Ai +BiK1i)exi +BiK2iηei −Xiω0 +Giωi.

Then, the tracking error ei can be written as

ei = (Ci +DiK1i)exi +DiK2iηei.

Subsequently, the MAS in (3.4) under controller (3.7) and (3.8), with K1i, K2i

selected by Lemma 8 can be represented in terms of ex, ηe with a tracking
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error e as

ėx = Āex + B̄ηe − X̄ω̂0 + Ḡω,

η̇e = S̄eηe + H̄eε− H̄0ε̂0 − Ḡ0ω̂0,

e = C̄ex + D̄ηe,

(3.14)

where

Ā = diag(A1 +B1K11, · · · , AN +BNK1N), B̄ = diag(B1K21, · · · , BNK2N),

C̄ = diag(C1 +D1K11, · · · , CN +DNK1N), D̄ = diag(D1K21, · · · , D1K2N),

X̄ = diag(X1, · · · , XN), Ḡ = diag(G1, · · · , GN), ex=[eTx1
, · · · , eTxN]T ,

e=[eT1 , · · · , eTN]T , and ω=[ωT1 , · · · , ωTN]T .

3.2.3 Reformulation in a Hybrid System Framework

In this subsection, a hybrid system model as developed in [32] and [24] is

established for the system in (3.14). Introduce auxiliary variables li ∈ {0, 1},

si ∈ Rq, ki ∈ N, τi ∈ R≥0, i = 0, · · · , N , for agent i. The variable li is a

Boolean that keeps tracking whether the next event of agent i is a transmission

(li = 0) or an update (li = 1); si is introduced as a memory variable that stores

the value −εi(tiki) at tiki [24]. ki is a counter that keeps tracking the number

of transmissions for agent i, and τi is a timer to record the time elapsed

since the last transmission. Then, the state vector for hybrid system HMAS is

introduced as ξ := (ex, ηe, ε, ε0, s, τ, k, l) ∈ X where

X =
{

(ex, ηe, ε, ε0, s, τ, k, l) ∈ R(n1+···+nN )× RqN

×RqN×Rq×Rq(N+1)×RN+1
≥0 ×NN+1×{0, 1}N+1

}
,

s = [sT0 , · · · , sTN ]T , τ = [τ0, · · · , τN ]T , k = [k0, · · · , kN ]T , l = [l0, · · · , lN ]T .
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Combining state vector ξ with dynamics (3.14), the flow dynamics has the

form of

F (ξ, ω0, ω) =



Āex + B̄ηe − X̄ω̂0 + Ḡω
S̄eηe + H̄eε− H̄0ε̂0 − Ḡ0ω̂0

S̄ηε− H̄eηe − H̄0ε̂0
G0ω0

0N+1

1N+1

0N+1

0N+1


. (3.15)

The corresponding flow set is given by

C = ∩Ni=0Ci, (3.16)

where for i = 0, · · · , N , Ci = {ξ ∈ X|((0 ≤ τi ≤ τ imati) ∧ li = 0) ∨ ((0 ≤ τi ≤

τ imad) ∧ li = 1)}.

The jump dynamics is in the form of

G(ξ) = ∪Ni=0Gi(ξ), Gi(ξ) =


{G0,i(ξ)}, ξ ∈ Di ∧ li = 0
{G1,i(ξ)}, ξ ∈ Di ∧ li = 1
∅, ξ /∈ Di

, (3.17)

and

G0,i(ξ) =



ex
ηe
ε
ε0

Σ̄i[−εT0 ,−εT ]T + (Iq(N+1) − Σ̄i)s
(IN+1 − Σi)τ
k + Σi1N+1

l + Σi1N+1


,

G1,i(ξ) =



ex
ηe

Σ̄is+ [εT , εT0 ]T

(Iq(N+1) − Σ̄i)s
τ
k

l − Σi1N+1


.

(3.18)

Here, Σ̄i = Σi ⊗ Iq, and Σi ∈ R(N+1)×(N+1) is an diagonal matrix with the

(i+ 1, i+ 1)-th element being 1 and others being 0. The corresponding jump
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set is given by

D = ∪Ni=0Di, (3.19)

where for i = 0, · · · , N , Di = {ξ ∈ X|((δ ≤ τi ≤ τ imati) ∧ li = 0) ∨ ((δ ≤

τi ≤ τ imad) ∧ li = 1)}. Without loss of generality, assume all agents transmit

local information at initial instant t = 0, then we have ti1 = 0 and li(0, 0) = 1.

Combining with (3.9), the initial condition is given by ξ(0, 0) ∈ X0, with

X0 = {ξ ∈ X|ε = η, ε0 = v0, s = [−εT0 ,−εT ]T , l = 1}.

According to the conditions give in [78], one can easily check that the hybrid

system in (3.15)-(3.19) is well-posed.

Collecting all the transmission instants (tiki) and update instants (tiki + τ iki)

and rearranging them in an ascending order, a new time sequence is obtained,

which is denoted by {tk}∞k=0. The solution domain for the hybrid systemHMAS

(eq. (3.15)-(3.19)) is defined as dom ξ = ∪J−1
j=0 ([tj, tj+1], j) with J possibly ∞

and/or tJ =∞.

Definition 5. ([24]) For the hybrid system HMAS with ω0 = 0 and ω = 0, the

set given by E = {ξ ∈ X|ξe = 0} is said to be uniformly globally asymptotically

stable (UGAS) if there exists a function β ∈ KLL such that, for any initial

condition ξ(0, 0) ∈ X0, all corresponding solutions ξ satisfy

‖ξe(t, j)]‖ ≤ β(‖ξe(0, 0)‖, t, j),

for all (t, j) ∈ dom ξ, where ξe = [eTx , η
T
e ]T .

In the presence of ωi, we are interested in bounding their influences on the

tracking error e in (3.14), which is measured by the L2 gain when ωi ∈ L2,

or by the L∞ gain when ωi ∈ L∞. Combining the hybrid model HMAS with

output e, the expanded hybrid system is denoted by He
MAS.

Definition 6. ([24]) The hybrid system He
MAS is said to be Lp-stable, p ∈

{2,∞}, from input ωi to output e with an Lp-gain less than or equal to θ, if
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there exists a K∞-function β such that for any exogenous input ω0, ω ∈ Lp
and any initial condition ξ(0, 0) ∈ X0, the solution to HMAS satisfies

‖e‖Lp ≤ β(‖ξe(0, 0)‖) + θ‖[ωT0 , ωT ]T‖Lp .

Therefore, the main interest of this work is to solve the sampled-data COR

problem with asynchronous transmissions and time-varying delays. Specifi-

cally, for sufficiently large µ and control gains K1i, K2i, i = 1, · · · , N , selected

from Lemma 8, the bounds of τ imad, τ
i
mati for agent i will be given such that (i)

the hybrid system HMAS in (3.15)-(3.19) is UGAS; (ii) the expanded hybrid

system He
MAS is L2 ( L∞ ) stable.

3.3 Stability and Performance Analysis

In this subsection, we will first analyze the stability of the closed-loop

system without disturbances. Then, the robustness of closed-loop systems

(with L2 or L∞ performance) is considered.

Initially, we introduce an auxiliary function Wi(li, εi, si) as

Wi(li, εi, si) =

{
‖εi‖, li = 0
‖εi + si‖, li = 1

, i = 0, · · · , N. (3.20)

For convenience, sometimes we will omit (some of) the arguments in Wi(li, εi, si)

if there is no confusion from the context.

Lemma 9. The auxiliary function in (3.20) satisfies

W+
i = 0, li = 0; and W+

i = Wi, li = 1, (3.21)

for the jump dynamics in (3.18), and

Ẇi(li, εi, si) ≤ ‖S̄ηiε− H̄eiηe − H̄0i ε̂0‖, i = 1, · · · , N,

Ẇ0(l0, ε0, s0) ≤ ‖G0ω0‖,
(3.22)

for the flow dynamics in (3.15). Here, S̄ηi , H̄ei and H̄0i represent the sub-

matrices composed by the ((i− 1)q + 1)-th to (iq)-th rows of S̄η, H̄e and H̄0,

respectively.
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Proof. According to the jump dynamics in (3.18), we have

W+
j = Wj(1, εj,−εj) = ‖εj − εj‖ = 0, lj = 0,

W+
j = Wj(0, εj + sj, 0) = ‖εj + sj‖ = Wi(1, εj, sj)

= Wj, lj = 1.

(3.23)

For the flow dynamics in (3.15), since ṡj = 0, we have

Ẇj =
d‖εj‖
dt
≤ ‖ε̇j‖, lj = 0;

Ẇj =
d‖εj + sj‖

dt
≤ ‖ε̇j‖+ ‖ṡj‖ = ‖ε̇j‖, lj = 1,

(3.24)

where j = 0, · · · , N . Combining with the third and fourth equations in (3.15),

we establish the inequalities in (3.22) and complete the proof.

In addition, introduce the following differential equations for agent i, i =

0, · · · , N ,

φ̇i(τi) = −γi(φ2
i (τi) + 1),

˙̂
φi(τi) = −γi(φ̂2

i (τi) + 1), (3.25)

where γi > 0 are real constants to be designed. It can be noticed that the

solutions to (3.25) are strictly decreasing when φi and φ̂i are nonnegative.

Next, we will show that under well-designed γi and initial conditions of φi(0)

or φ̂i(0), the time for φi or φ̂i to drop to a relative small value can be used to

formulate the constraints on transmission intervals or time delays.

Condition 1. Assumptions 7–9 are satisfied and the control gains µ and K1i,

K2i, i = 1, · · · , N , are selected according to Lemma 8.

Condition 2. The transmission intervals and time delays for agent i, i =

0, · · · , N , satisfy

φ̂i(0) ≤ φi(τi), δ ≤ τi ≤ τ imati;

φ̂i(τi) > 0, 0 ≤ τi ≤ τ imad.
(3.26)
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Condition 3. There exist positive definite matrix P ∈ RNq×Nq, constants

γi > 0, i = 0, · · · , N , ρw > 0, ρ > 0, ρε > 0 and ρε0 > 0, such that the

following linear matrix inequality (LMI) hold Aηe+ρIqN PH̄e+2H̄T
e S̄η −PH̄0+2H̄T

e H̄0 −PḠ0

∗ Aε−Γ+ρεIqN −2S̄ηH̄T
e 0Nq×Nq

∗ ∗ Aε0−Γ0+ρε0Iq 0q×Nq
∗ ∗ ∗ Aw−ρwIqN

 ≤ 0, (3.27)

where Aηe = PS̄e + S̄Te P + 2H̄T
e H̄e, Aε = 2S̄Tη S̄η, Aε0 = 2H̄T

0 H̄0, Aω = ḠT
0 Ḡ0,

Γ = diag(γ1, · · · , γN)⊗ Iq, Γ0 = γ0 ⊗ Iq.

Theorem 6. Consider the hybrid system HMAS in (3.15)-(3.19) with no dis-

turbances (i.e., ω0 = 0, ω = 0). The set E is UGAS, if Conditions 1, 2 hold

and Condition 3 is satisfied with ρω = 0 and Ḡ0 = 0.

Proof. Consider a storage function

U(ξ̃)=V +
N∑
i=0

(γiφiW
2
i (li, εi, si) + liγiφ̂iW

2
i (0, εi, si)), (3.28)

where V = ηTe Pηe and ξ̃ = [ηTe , ε
T , εT0 , s

T , τT , kT , lT ]T . With some abuse of

notations, we write Wi(0, εi, si) as W0,i, and Wi(1, εi, si) as W1,i.

According to Lemma 9, on the flow domain, we have〈
OU(ξ̃), F (ξ̃, ω0)

〉
≤V̇ +

N∑
i=0

(
2γiφiWli,i‖ε̇i‖ − γ2

i (φ
2
i + 1)W 2

li,i

+ li(2γiφ̂iW0,i‖ε̇i‖ − γ2
i (φ

2
i + 1)W 2

0,i)
)
.

Combining with (3.15), we have〈
OU(ξ̃), F (ξ̃, ω0)

〉
≤

−
∑
i∈L0

(γiφi‖εi‖ − ‖ε̇i‖)2 −
∑
i∈L1

γ2
iW

2
i + [ ηTe , ε

T , εT0 , ω̂
T
0 ]Ξ[ ηTe , ε

T , εT0 , ω̂
T
0 ]T

−
∑
i∈L1

(
(γiφiWi − ‖ε̇i‖)2 + (γiφ̂i‖εi‖ − ‖ε̇i‖)2

)
,

where Lj = {i ∈ {0, · · · , N}| li = j}, and

Ξ =

[
Aηe PH̄e+2H̄T

e S̄η −PH̄0+2H̄T
e H̄0 −PḠ0

∗ Aε−Γ −2S̄ηH̄T
e 0Nq×Nq

∗ ∗ Aε0−Γ0 0q×Nq
∗ ∗ ∗ Aw

]
.
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From Condition 3 we have〈
OU(ξ̃), F (ξ̃, ω0)

〉
≤− ρ‖ηe‖2 − ρ2

ε‖ε‖2 − ρε0‖ε0‖2 + ρω‖ω̂0‖2 −
∑
i∈L1

γ2
iW

2
1,i

≤− ρ‖ηe‖2 −
N∑
i=0

αi(Wi) + ρω‖ω̂0‖2

(3.29)

where αi is a class-K∞ function.

When there is a reset caused by a transmission event of agent i, referring

to Lemma 9 and the first inequality in (3.26), we have

U(ξ̃+)− U(ξ̃) =

γiφi(0)W 2
i (1, εi,−εi) + γiφ̂i(0)W 2

i (0, εi,−εi)− γiφi(τi)W 2
i (0, εi, si) < 0.

(3.30)

Similarly, when there is a reset caused by an update event of agent i, we have

U(ξ̃+)− U(ξ̃)

=γiφi(τi)W
2
i (0, εi + si, 0)− γiφi(τi)W 2

i (1, εi, si)− γiφ̂i(τi)W 2
i (0, εi, si)

≤− γiφ̂i(τi)W 2
i (0, εi, si) < 0.

(3.31)

When ωi = 0, i = 0, · · · , N , (3.29)–(3.31) imply

〈
OU(ξ̃), F (ξ̃, ω0)

〉
≤ −ρ‖ηe‖2 −

N∑
i=0

αi(Wi), ξ ∈ C;

U(ξ̃+)− U(ξ̃) < 0, ξ ∈ D.

(3.32)

According to Lemma 8, Ā is Hurwitz; there always exist positive definite

matrices Pe, Qx and Qη such that[
PeĀ+ĀTPe+Qx PeB̄

B̄TPe −Qη

]
< 0. (3.33)

Let the minimum eigenvalues of Qx and Qη be λx and λη, respectively. Con-

sider a Lyapunov candidate

Ue(ξ) = Ve + αeU(ξ̃), (3.34)
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where Ve = eTxPeex, αe = 2λη
ρ

. According to (3.15) and (3.32), on the flow

domain, we have

〈OUe, F (ξ,0,0)〉

=eTx (PeĀ+ ĀTPe)ex + 2eTxPeB̄ηe − αe(ρ‖ηe‖2 +
N∑
i=0

αi(Wi))

≤− λx‖ex‖2 − λη‖ηe‖2 − αe
N∑
i=0

αi(Wi).

Referring to (3.18) and (3.32), U+
e ≤ Ue on the jump domain.

Using the standard Lyapunov arguments in [78], we have

Ue(t, j) ≤ β(‖Ve0, V0,W0‖, t, j), (3.35)

where Ve0, V0 and W0 represent the initial value of Ve, V and
N∑
i=0

Wi at t = 0,

respectively. By (3.20), we have for ξ(0, 0) ∈ X0, W0 = 0. Then

Ue(t, j) ≤ β(‖Ve0, V0‖, t, j).

Furthermore, by the definition of V and Ve, we have ᾱ‖ηe‖2 ≤ V ≤ α‖ηe‖2

and ᾱe‖ex‖2 ≤ Ve ≤ αe‖ex‖2, where ᾱ, α and ᾱe, αe represent the maximum

and minimum eigenvalues of P and Pe, respectively; and since Ve+αeV ≤ Ue,

(3.35) can be written as

‖ξe(t, j)‖ ≤
1

αξ
β(ᾱξ‖ξe(0, 0)‖2, t, j) = β1(ξe(0, 0), t, j) (3.36)

where β1 is a class–KLL function, ᾱξ = max{ᾱ, ᾱe} and αξ = min{α, αe}. By

Definition 5, E is UGAS and the proof is completed.

Remark 12. Referring to Lyapunov candidate (3.28), the effect of time delay

is described by γiφ̂iW
2
i and the effect of transmission intervals is described by

γiφiW
2
i . Thereby, the first inequality in Condition 2 characterizes (i) the MA-

TIs due to φi(τi) > 0 for all τi ∈ [0, τ imati], and (ii) how much transmission per-

formance can be sacrificed to cope with delays by requiring φi(τ
i
mati) ≥ φ̂i(0).

The second inequality gives the MADs by ensuring the positive definiteness of

U . The LMI in (3.27) in Condition 3 is used to ensure the Lyapunov candidate
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decreases during the flow domain, and (3.27) always holds when ρω and γi,

i = 0, · · · , N , are large enough.

Theorem 7. Consider the hybrid system He
MAS with HMAS given in (3.15)-

(3.19) and output e in (3.14). He
MAS is finite gain L2 (L∞) stable under L2

(L∞) disturbances (i.e. ω0, ω ∈ L2 (L∞) ) if Conditions 1–3 are satisfied.

Proof. Consider the same Lyapunov candidate as in (3.34), referring to (3.29),

on the flow domain, we have

〈OUe(ξ), F (ξ, ω, ω̂0)〉

≤eTx (PeĀ+ ĀTPe)ex + 2eTxPeB̄ηe + 2eTxPeX̄ω̂0 − 2eTxPeḠω̂

− αe(ρ‖ηe‖2 +
N∑
i=0

αi(Wi)− ρω‖ω̂0‖2).

By (3.33), there always exist positive constants λxe, λη, λω and λ0 such that

〈OUe, F (ξ, ω, ω̂0)〉

≤ − λxe‖ex‖2 − λη‖ηe‖2 − αe
N∑
i=0

αi(Wi) + λω‖ω‖2 + λ0‖ω̂0‖2,

and by (3.18) and (3.32), U+
e ≤ Ue on the jump domain.

Using the standard Lyapunov arguments in [78] and following a similar

procedure as in Theorem 6, there exist a class–K∞ function β2 and a positive

constant θ such that for ω, ω̂0 ∈ L2, we have

‖ξe‖L2 ≤ β2(‖(ξe(0, 0)‖) + θ‖[ωT , ω̂T0 ]T‖‖L2 . (3.37)

Furthermore, by (3.14),

‖e‖ ≤ λC‖ex‖+ λD‖ηe‖,

where λC and λD are the maximum singular values of matrix C̄ and D̄, re-

spectively. Then,

‖e‖L2 ≤ λ‖ξe‖L2 ≤ βx(‖e(0, 0)‖) + θx‖[ωT , ω̂T0 ]T‖L2 ,
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where λ = max{λC , λD}, θx is a positive constant and βx is a class–K∞ func-

tion. Then, by Definition 6, we come to the conclusion that He
MAS is L2–stable

with ω0 and ω as inputs.

Following similar arguments, the conclusion for L∞–stability can be ob-

tained. The proof is completed.

Remark 13. The UGAS property with asynchronous transmissions and time-

varying delays have been studied in [50] for MASs as well. However, the

method used in [50] followed the one proposed in [32] and [24], which was

unable to cover the framework proposed in this work. In their method, the

auxiliary function W̃i satisfied ((17a), (17b) in [24])

W̃+
i ≤ λW̃i, li = 0; and W̃+

i ≤ W̃i, li = 1,

and the constraints on MATIs and MADs are derived according to

γ̂iφ̂i(0) ≤ λ2γiφi(τi), 0 ≤ τi ≤ τ imati,

γ̂iφ̂i(τi) ≥ γiφi(τi), 0 ≤ τi ≤ τ imad,

with γ̂i = M1γiλW
λ

((48) in [24]) replacing γi for the dynamics of φ̂ in (3.25).

Therefore, when λ approaches to zero (sampled-data case), γ̂i approaches to

infinity, which means φ̂i decreases very fast and results in a very small MAD.

This is inconsistent with the intuition that a better transmission protocol

(smaller λ) usually results in fewer restrictions on the communication infras-

tructure (e.g., MADs and MATIs). According to the novel Lyapunov candi-

date proposed in this work, the upper bounds of MADs are derived by the

second inequality in Condition 2 and are independent of γ̂i. As a result, the

inconsistency at λ = 0 can be avoided. In addition, compared with the W̃i

used in [24] (Eq. (46)), the auxiliary function Wi in this work (Eq. (3.20))

has a simpler form and a smaller value. Thus, the complexity in analyzing the

stability and deriving the results is relived.

Another merit of the method proposed in this work is that after excluding

the redundant variable λ, a more intuitive analysis on the trade-off between

MATIs and MASs for MASs can be provided.
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Figure 3.1: Analysis of MATIs and MADs

Remark 14. Referring to Condition 2 and (3.25), the MATIs and MADs can

be expressed explicitly as

τ imad =
1

γi
arctan

1− σi/φ̂i(0)

1/φ̂i(0) + σi
,

τ imati =
1

γi
arctan

1− φ̂i(0)/φi(0)

1/φi(0) + φ̂i(0)
,

(3.38)

where σi represents a user-specified lower bound of φ̂i. It can be seen that,

a smaller γi is preferred, which results in larger MATIs and MADs. This

could be achieved by solving the LMI in (3.27) with minimizing the objective

function trace(Γ). In addition, a larger initial value of φi(0) leads to a larger

MATI without affecting MADs. Thus, a sufficiently large φi(0) can be chosen

at first. For MAD, it can be tuned by the initial value φ̂i(0). However, based

on the small delay assumption, MADs must be smaller than MATIs.

Consider a bunch of hybrid systems HMAS with different system matrices

(i.e. Ā, B̄). Assume γi for eachHMAS satisfies the corresponding LMI in (3.27)

with minimizing trace(Γ). Then, by tuning φ̂i(0), trade-off curves between

MADs and MATIs are illustrated in Figure 3.1(a). A larger initial value

of φ̂i(0) increases the MAD but decreases the MATI, and the intersection
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Figure 3.2: Topology of the MAS

always happens at φ̂i(0) = 1 in spit of γi. Therefore, φ̂i(0) should be upper

bounded by 1 and the corresponding τ imad serves as the upper bound of MAD.

The maximum value of MATIs happens when MADs approach to zero. The

relationship between γi and the maximum values of MATI and MAD is shown

in Figure 3.1(b).

3.4 Simulation Results

In this section, we use some simulation examples to show the UGAS and

the L2 (L∞) performance of the hybrid system HMAS and He
MAS, respectively.

Consider a heterogeneous MAS containing 4 agents and an exosystem v con-

nected by a communication network as shown in Figure 3.2. The matrices for

system (3.4) are given as

A1 = 1, A2=
[

0 1 0
0 0 1
0 0 −10

]
, A3=

[
0 1 0
0 0 1
0 −10 −2

]
, A4=

[
0 1 0
0 0 1
0 −1 −2

]
, B1 = 1, B2 = [0 0 2]T ,

B3 = B4 = [0 0 1]T , C1 = [ 1
−1 ] , E1 = [0,−1], F1 = [ 1 1

−1 −1 ] , G1 = 1,

Ci = [ 1 0 0
0 1 0 ] , Ei =

[ −0.5i 0
−1 0.5i
0 0

]
, Fi =

[ −1 0
−0.5i −1

]
, Gi = 13,

S = [ 0 1
−1 0 ] , Gv = 12, i = 2, · · · , 4.

Based on Lemma 8, the feedback matrices are given as K11 = −3, K1i =

[−1 − 1 − 1], i = 2, · · · , 4, K21 = [−1 2], K22 = [2 1], K23 = [17.5 11], and

K24 = [5 2]. The initial values and lower bound are chosen as φ̂i(0) = π/5,

φi(0) = 10000 and σi = 0.0001.

First, we consider the case without disturbances. The MATIs and MADs

computed by (3.38) are shown in Table 3.1. The tracking errors are shown in
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Table 3.1: MATIs and MADs for UGAS

Agent/Reference 1 2 3 4 v
MATI 0.0780 0.0525 0.0454 0.0579 0.0553
MAD 0.0308 0.0207 0.0179 0.0228 0.0218
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0
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(a) Tracking errors without disturbances
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0
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(b) Tracking errors with L∞ disturbances
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(c) Tracking errors with L2 disturbances

Figure 3.3: Tracking errors of MASs

Figure 3.3(a), which converge to zero as we expect.

Assume He
MAS is subject to L∞ disturbances, with ‖ωi‖L∞ ≤ 0.1, i =

0, · · · , N . The MATIs and MADs computed by (3.38) are shown in Table 3.2.

The tracking errors are shown in Figure 3.3(b), which are L∞ stable, with

Table 3.2: MATIs and MADs for L∞/L2 stability

Agent/Reference 1 2 3 4 v
MATI 0.0617 0.0519 0.0430 0.0508 0.0497
MAD 0.0244 0.0205 0.0170 0.0200 0.0196

steady state errors shown in Table 3.3.

For the case whenHe
MAS is subject to L2 disturbances, we assume ‖ωi(t)‖ =

0.1e−10(t−t0). The corresponding MATIs and MADs are the same with the L∞
case. The tracking errors are shown in Figure 3.3(c), which are L2 stable.
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Table 3.3: Steady-state tracking errors

Agent 1 2 3 4
Steady-State Errors 0.0103 0.0696 0.0339 0.0178

In addition, by assigning a zero initial value to the tracking error e, we use

θ = (
∫ tf
t0
‖e‖dt)/(

∫ tf
t0
‖[ωT , ω0]T‖dt) to estimate the L2 gain in a simulation

sense. The simulated L2 gain is given by θ = 3.9010.

3.5 Summary

A sampled-data COR problem with asynchronous transmissions and time-

varying delays was investigated in this chapter. We formulated the problem

in a hybrid system framework and proposed a new method to establish the

constraints on MATIs and MADs. It was proved that if these constraints were

satisfied, both UGAS and L2 (L∞) stability could be guaranteed. In addition,

we proposed a novel Lyapunov candidate, based on which, MATIs and MADs

could be computed in a more straightforward way. Therefore, more intuitive

trade-off curves between MATIs and MADs could be given. The effectiveness

of the method was also illustrated by a simulation example.
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Chapter 4

Formation Tracking Without
Velocity Measurements under
Hybrid-Triggered Mechanism∗

4.1 Overview

This chapter focuses on solving the leader-follower formation tracking prob-

lem of multiple mobile robots under a hybrid-triggered mechanism without

leader’s velocity measurements. In order to accomplish this collaborative goal,

the communication among agents is critical, and can be carried out by the de-

tections from agents’ on-board sensors or the transmissions via some embedded

wireless devices. The first kind is implemented in an active way in a sense

that each agent decides when to detect relative information from its neighbors

by itself, and defined as PULC; while in the second kind, each agent passively

receives the transmitted information from its neighbors, resulting in PUSC.

Some situations like cooperative localization require both of them. However,

the existing results processed the obtained information from different kinds

in a same way [80, 81] which actually ignored the unique features of different

communication.

∗A version of this chapter has been accepted as: J. Yang, H. Yu, and F. Xiao, Hybrid-
triggered formation tracking control of mobile robots without velocity measurements. In-
ternational Journal of Robust and Nonlinear Control. A short version has been accepted as
J. Yang, H. Yu and F. Xiao, Strong integral-input-to-state stability for cascade-connected
systems. 5th International Conference on Control and Fault-Tolerant Systems, Sept. 29th,
30th and Oct. 1st, 2021, Saint-Raphael, France.

69



In practice, the leader’s velocity is hard to be measured accurately. More-

over, for mobile robots which will be studied in this work, their velocity es-

timations are challenging due to the nonholonomic constraints. Because of

the unmeasurable leader’s velocity, a high gain observer is adopted to esti-

mate leader’s velocity with arbitrarily small estimation errors in finite time.

Compared with [77], which required the leader’s trajectories to follow some

predetermined polynomials, we only constrain the upper bounds of leader’s

velocities and accelerations. According to the detection capacity to leader’s

information, we formulate the MAS in a hierarchical structure, where an agent

belongs to the middle level if it has access to the leader directly, and belongs

to the bottom level otherwise. Benefited from this, the cyclic accumulation of

estimation errors among followers are cut off at the middle level, resulting in

the relaxation of the acyclic assumption in [66].

Two kinds of communication networks are considered separately in this

work. The detected information by PULC is used directly. In order to re-

duce network load, PETC is used for PUSC, in a way that the transmitted

data is evaluated by a predetermined ET condition, and updated only when

the condition is satisfied. Since PETC is only used for PUSC, the mecha-

nism implemented here is considered as a hybrid-triggered one. However, the

separate analysis on PULC and PUSC indicates that the classical Lyapunov

function candidates used in [47] and [82], which considered only one kind of

communication networks cannot be applied directly in this work. As alter-

natives, new Lyapunov candidates are proposed to analyze the sampled-data

MAS connected by the above networks. Specifically, for agents in the mid-

dle level, a novel Lyapunov candidate is proposed to determine the MASPs

for detecting relative information from the leader, achieving a small enough

estimation error and short enough convergence time. Their explicit expres-

sions reveal the trade-off between better estimation performance and larger

MASPs. For the agents in the bottom level, the estimation of leader’s velocity

and position relies on both PULC and PUSC. MASPs and MACPs are deter-
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mined with well-designed PETMs to ensure the stability of the sampled-data

system. By investigating the closed-loop dynamics, we reconstruct the system

into a cascade-connected structure. Based on that, the problem is tackled by

introducing the concept of strongly iISS [83] in a hybrid system framework, in

a sense that the sampled-data system is ISS when external disturbances are

bounded by a predetermined threshold, while it is iISS otherwise; and a novel

Lyapunov method is introduced to solve the problem. Numerical examples

are presented to illustrate the effectiveness of the proposed methods.

It should be noted that, although the leader-follower formation tracking

of mobile robots is a specific problem, the methods proposed in this work

are summarized in general forms, which may enable their utilization in other

relevant problems.

4.2 Preliminaries and Problem Formulation

In this section, we first introduce some preliminaries; then, the formation

tracking problem of multiple mobile robots in a continuous-time framework is

introduced; after that, considering the inherent discrete-time property of data

transmissions and detections among agents, we propose a novel information

flow architecture for the MAS.

4.2.1 Preliminaries

Some preliminaries on graph theory are the same as those in Section 2.2.1,

and the definitions of Laplacian matrix and hybrid systems are the same as

those in Section 3.2.1. Given a set Ξ ⊂ Rn and x ∈ Rn, we define the distance

from x to Ξ by |x|Ξ = infy∈Ξ |x− y|.

Definition 7 (Locally strongly iISS). For the hybrid system in (3.1), the

set Ξ ⊂ X is said to be locally strongly iISS w.r.t. ς if there exist R > 0,

β ∈ KLL and σ1, σ2, σ3, σ4 ∈ K∞ such that for all ς ∈ Rnς , ξ(0, 0) ∈ X1 ⊂ X
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and (t, j) ∈ dom ξ, the corresponding solutions ξ satisfy

|ξ(t, j)|Ξ ≤β(|ξ(0, 0)|Ξ, t, j) + σ1

J−1∑
i=0

(

∫ ti+1

ti

σ2(‖ς(s, i)‖)ds+ σ4(‖ς(ti+1, i+ 1)‖))

+ σ1

∫ t

tJ

σ2(‖ς(s, J)‖)ds,

|ξ(t, j)|Ξ ≤β(|ξ(0, 0)|Ξ, t, j) + σ3(|ς|(t,j)), |ς|(t,j) ≤ R,

where |ς|(t,j) represents the supremum norm of ς up to the hybrid time (t, j)

(see the reference [84] for a precise definition); J could be ∞ and/or tJ =∞.

Furthermore, when R = ∞ (X1 = X), the set Ξ is said to be ISS (globally

strongly iISS).

4.2.2 Continuous-Time Formation Tracking Problem

Consider a MAS consisting of (n + 1) mobile robots moving on a plane,

with the dynamics of the i-th robot Ri given by

ẋi = vi cos(Φi), ẏi = vi sin(Φi), Φ̇i = ωi, i = 0, · · · , n, (4.1)

and i = 0 stands for the leader’s dynamics. Assume the robots are connected

by a graph G, where each node i represents a mobile robot and the edge

(i, j) represents the information flow among the MAS. Assume that the first

nm followers can detect relative information directly from the leader, and the

rest of nf = n − nm followers can only detect relative information from their

neighbouring followers. Then, the followers are divided into two groups, where

Nm is defined as the middle level set and Nf is defined as the bottom level

set; i ∈ Nm, if agent i can detect information directly from the leader; and

i ∈ Nf otherwise. An example of a MAS consisting of six agents with two of

them having access to the leader is shown in Figure 4.1.

Assume the available measurements are relative distance dij, bearing angle

βij and heading angle γij, which satisfy

dij =
√

(xi − xj)2 + (yi − yj)2, βij = arctan
yi − yj
xi − xj

− Φi, γij = Φi − Φj.

(4.2)
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Figure 4.1: Distributed control and estimation based on a sensor network
and communication network. Here solid lines and dashed lines represent the
topologies of the sensor network and communication network, respectively;
and the variables without and with a hat represent the detected relative in-
formation and transmitted local estimation, respectively.

Then, the primary objective of this paper is to solve the formation tracking

problem: Consider a multi-robot system described in (4.1), with R0 moving

at a given velocity (v0(t), ω0(t)). For follower Ri, i = 1, ..., n, the desirable

formation is given by (d̄i0, β̄i0) w.r.t. the leader. Assume the velocities and

accelerations are bounded by ‖v0‖L∞ ≤ vM , ‖ω0‖L∞ ≤ ωM , ‖v̇0‖L∞ ≤ av and

‖ω̇0‖L∞ ≤ aω. Design a control input (vi, ωi), under which, the relative state

(di0, βi0)→ (d̄i0, β̄i0) as t→∞.

Notice that the desirable formation is specified w.r.t. the leader. As a

result, the stability of the MAS needs to be examined w.r.t. a common

coordinate frame, which, in this work, is chosen as the leader’s coordinate

frame. According to the reference paper [66], the above formation track-

ing problem is solved when the formation error in leader’s coordinate frame

δi = C i
3(γi0, βi0)[ di0 d̄i0 ]T satisfies δi(t)→ 0 as t→∞. Here

C i
3(α1, α2) =

[
sin(α1+α2) − sin(α1+β̄i0)

− cos(α1+α2) cos(α1+β̄i0)

]
is a function of α1 and α2. Combining (4.1) and (4.2), we have

δ̇i = C i
4(γi0)ui + [0,−1]Tv0 + C i

2(δi)ω0, (4.3)

where ui = [vi, ωi]
T is the control input,

C i
2(p) = [ 0 1

−1 0 ] p
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is a function of p, and

C i
4(α) =

[
− sinα −d̄i0 cos(α+β̄i0)

cosα −d̄i0 sin(α+β̄i0)

]
,

is a function of α which has the same interpretation as the one in Eq. (11) of

reference [66].

4.2.3 Information Flow Architecture

Assume that the agents are connected by a sensing network and a com-

munication network which have the same topology. For i ∈ Nm, agent i only

takes inflow from the leader and the information flow is one-way out, from

itself to agents in Nf ; while for agent i, i ∈ Nf , it takes inflow from agent j,

j ∈ N . Then, the Laplacian matrix can be expressed as follows

L =

 0 0Tnm 0Tnf
1nm Lmm Lmf
0nf Lfm Lff

 , (4.4)

where Lmm = 0nm×nm , Lmf = 0nm×nf and Lff ∈ Rnf×nf , Lfm ∈ Rnf×nm .

Assumption 10. The underlying graph contains a spanning tree with the

leader R0 as a root.

We consider two kinds of information flows which are PUSC and PULC.

For PULC, the relative information is detected at sampling instant sisi in an

active way; and we assume that the detected information is used immediately

after each sampling instant. For PUSC, as the information is received in a

passive way, a PETM is designed for agent i ∈ Nf such that the ET condition

is checked in a discrete-time manner at checking instant T πipπi and a transmis-

sion event is generated at a transmission instant tiki if the ET condition is

satisfied. Here πi is a symbol representing the signal to be checked by the

concerned ET condition. For example, if the ET condition is related to δi,

then the checking instant is given by T δipδi
; and the selections of π will be spec-

ified in the next section. In addition, we assume whenever an ET condition

related to a state πi is met, all the local information of agent i is packaged
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and broadcast together, which means that the transmission sequence ti1, t
i
2, · · ·

is a subsequence of the union of the checking sequences of all states πi. The

information flow architecture is shown in Figure 4.2. Four kinds of units are

Figure 4.2: Detection and transmission behavior among agents

introduced to facilitate the information flow among MASs. A PULL-IN unit is

considered as a detection unit, which collects relative measurements from its

neighbors at each sampling instant sisi ; an ETM U is a decision unit used to

check the ET condition at T uipui and activate the controller update at tuikui
. For

agent i ∈ Nf , an ETM S is another decision unit used to activate PUSH-OUT

unit to broadcast local information at tiki when the ET condition checked at

T πipπi is satisfied; in addition, a PUSH-IN unit is used to receive and store trans-

mitted information from the neighbors of agent i. While for agent i ∈ Nm, a

PUSH-OUT unit is used to collect and transmit local information periodically

at tiki . The properties of the units are summarized in Table 4.1. It should be
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Table 4.1: Description of units

Unit Information Network Device Function Agents
PULL-IN relative Detection onboard sensor detection i ∈ N

PUSH-OUT local Communication wireless devices collecting and transmission i ∈ N
PUSH-IN local Communication wireless devices receiving and storage i ∈ Nf
ETM S local & relative - † micro-processor activate PUSH-OUT unit i ∈ Nf
ETM U local & relative - micro-processor drive controller update i ∈ N

noted that the sampling intervals are non-uniform and the checking instants

are asynchronous. As a result, instead of giving a fixed sampling period,

MASPs and MACPs are determined to maintain some stability properties af-

ter introducing the above information flow architecture. The definitions of

different time sequences are summarized in Table 4.2. Here τ imasp, τ
πi
macp and

Table 4.2: Notation of sampling instants

Notation Agents Action Information Constraint
sisi i ∈ N ‡ relative τ0 ≤ sisi+1 − sisi ≤ τ

i
masp

tiki i ∈ Nf § local ET condition
tiki i ∈ Nm ¶ local τ0 ≤ tiki+1 − tiki ≤ τ

i
matp

tuikui
i ∈ N ‖ local ET condition

Tπipπi
i ∈ Nf ∗∗ local τ0 ≤ Tπipπi+1 − Tπipπi ≤ τ

πi
macp

Tuipui
i ∈ N †† local τ0 ≤ Tuipui+1 − Tuipui ≤ τ

ui
macp

τuimacp represent, respectively, the MASPs and MACPs related to state πi and

ui; τ
i
matp represents the maximally allowable transmission periods (MATPs)

for agent i ∈ Nm; and τ0 > 0 is a small constant introduced to avoid Zeno

behavior.

4.3 Estimation and Control Strategy

According to the system dynamics and information flow setup, the esti-

mation and control strategies are different for the agents in different groups.

† - represents a null element
‡ detection instant of PULL-IN unit
§ transmission instant of PUSH-OUT unit
¶ transmission instant of PUSH-OUT unit
‖ update instant of actuator
∗∗ checking instant of ET condition related to state πi
†† checking instant of ET condition related to input ui

76



For agents in Nm, high-gain observers are used to estimate the leader’s veloc-

ity according to the relative information δi0 and γi0 detected from the leader;

PETM is proposed for controller update; and the local information is trans-

mitted periodically within some MATPs. For agents in Nf , in order to realize

the formation tracking in the leader’s coordinate frame, the agents need to

estimate leader’s velocity as well as their relative poses w.r.t. the leader. Lo-

cal estimation is updated according to the relative measurements as well as

the information received from the neighbors, and PETMs are implemented

to govern the transmissions and controller updates. The ET conditions for

different estimations are checked at different time instants (e.g., T aipai 6= T bipbi
,

where ai and bi represent different signals of agent i).

4.3.1 Estimation and Control Strategies For the Middle
Level

High Gain Observer for Velocity Estimation

Only PULC is required for the high gain observers proposed in this sub-

section. The estimation of angular velocity is given as{
˙̂γi = lη1(γ̄i0 − γ̂i) + ω̂i − ωi,
˙̂ωi = lη2(γ̄i0 − γ̂i).

(4.5)

Here γ̂i and ω̂i represent the local estimation of γi0 and ω0, respectively; γ̄i0 is

the relative heading angle detected at sampling instant tsi ; ωi represents the

angular velocity of agent i; and lη1 , lη2 > 0 are feedback gains to be designed.

Implementing PULC and the model-based strategy borrowed from [85] we

have

γ̄i0(t) = γi0(t), t = sisi ; ˙̄γi0 = lη1(γ̄i0 − γ̂i) + ω̂i − ωi, t ∈ [sisi , s
i
si+1).

Let ηi = [∆γi
εη
,∆ωi]

T , where ∆γi = γi0 − γ̂i, ∆ωi = ω0 − ω̂i represent the

estimation errors, and εη > 0 is a small constant introduced to constrain the

estimation errors and convergence time. Let Sγi = γi0 − γ̄i0 represent the

sampling error. Then[
η̇i
Ṡγi

]
=

1

εη

[
Aη Bη

Cη 0

] [
ηi
Sγi

]
+

[
[0, ω̇0]T

0

]
, (4.6)
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where Aη =
[
−αη1 1
−αη2 0

]
, Bη =

[
−αη1/εη
−αη2/εη

]
, Cη = [0, εη], αη1 = εηlη1 and αη2 =

ε2ηlη2 .

Let δxi and δyi represent, respectively, the projection of δi along x and y

axes in the leader’s coordinate frame, and then the high gain observer for

leader’s linear velocity estimation is proposed as follows
˙̂
δyi = lχ1(δ̄yi − δ̂

y
i ) + v̂i + C i

4(γ̄i)(2,:)(ui) + δ̄xi ω̂i,
˙̂vi = lχ2(δ̄yi − δ̂

y
i ),

δ̄i(t) = δi(t), t = sisi ,
˙̄δi(t) = C i

4(γ̄i0(t))ui(t) + [δ̄yi (t),−δ̄xi (t)]T ω̂i(t) + [0, 1]T v̂i(t), t ∈ [sisi , s
i
si+1),

(4.7)

where δ̂yi and v̂i are the estimations of δyi and v0; and δ̄xi , δ̄yi represent the

projections of δ̄i along x and y axes, respectively. Let χi = [
∆δyi
εχ
,∆vi]

T , where

∆δyi = δyi − δ̂
y
i , and ∆vi = v0−v̂i represent the estimation errors, and εχ > 0 be

a small constant introduced to constrain the estimation errors and convergence

time. Sδi = δi − δ̄i represents the sampling error. Then[
χ̇i
Ṡδi

]
=

1

εχ

[
Aχ Bχ

Cχ Dχ

] [
χi
Sδi

]
+

[
ς iχ1

+ 1
εχ
ς iχ2

ς iS

]
, (4.8)

where

Aχ =
[
−αχ1 1
−αχ2 0

]
, Bχ =

[
0 −αχ1

εχ

0 −αχ2
εχ

]
, Cχ =

[
0 0
0 −εχ

]
, Dχ = εχω̂i [

0 1
−1 0 ] ,

ς iχ1
= [ 0

v̇0
] , ς iχ2

=
[

(∆ωiδ
x
i +∆Ci4(γ̄i0,γi0)(2,:)ui)

0

]
, ς iS = ∆C i

4(γ̄i0, γi0)ui +
[
δyi
−δxi

]
∆ωi,

∆C i
4(γ̄i0, γi0) = C i

4(γi0)− C i
4(γ̄i0) and αχ1 =

lχ1

εχ
, αχ2 =

lχ2

εχ
.

Event-Triggered Controller

Since high gain observers are used to estimate leader’s velocity, to prevent

the peaking phenomenon from affecting the robot dynamics, input saturation

is implemented [86]. Consider a compact set

Vi = {δi : ‖δi‖ < cδ}, (4.9)

where cδ > 0 is a user-specified constant that affects the convergence range of

the system. The controller is designed as

uit = C i
4

−1
(γi0)(−cδi + [0, 1]T v̂i), (4.10)
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where c > 0 is a feedback gain to be designed. Let Ui = sup
δi∈Vi
‖uit(v0, ω0, γi0, δi)‖+

∆u, where ∆u is introduced to cover the uncertainty caused by the estima-

tion error ∆vi and ∆ωi, which will be specified later. The saturated control

input is given as uis = satUi(uit(δi, γi0, v̂i, ω̂i)), where the saturation function

is defined by

satUi(uit) =

{
sign(uit)Ui, ‖uit‖ ≥ Ui,

uit, ‖uit‖ < Ui.
(4.11)

Implementing PETM on controller updates, we have

ui(t) = uis(t
ui
kui

), t ∈ [tuikui
, tuikui+1), (4.12)

where tuikui
is generated by tui0 = 0, tuikui+1 = inf{t ∈ {T uik }∞k=0, t > tuikui

|

hui(eui , δi, t) ≥ 0}, and eui = C i
4(γi0)(uis − ui) is defined as the measurement

error of control inputs. Then, the dynamics of the system can be represented

by {
δ̇i = −cδi + [0, 1]∆vi + eui + [−δyi , δxi ]Tω0,

ėui =
∂Ci4(γi0)

∂γi0
(ω0 − ωi)(ui − uis) + C i

4(γi0)u̇is,
(4.13)

where u̇is is determined by the system states γi0, δi, ∆vi. ∆ωi and leader’s

velocities ω0, v0.

Periodic Broadcasting of Local Information

Since the agents in the bottom level cannot access information directly

from the leader, their estimates of leader’s position and velocity rely on the

transmitted information δ̄i0, γ̄i0, v̂i and ω̂i from agents i ∈ Nm. A discrete

broadcasting strategy is implemented with the MATP as follows,

tiki = 0, tiki+1 ∈ [tiki + τ0, t
i
ki

+ τ imatp). (4.14)

As the control and estimation of agent i ∈ Nm only rely on active detections

from the leader and its local information, τ imatp is determined based on agent’s

initial conditions and its own dynamics in (4.5), (4.7) and (4.13). On the other

hand, since the dynamics of agents i ∈ Nm are affected by leader’s dynamics,

the design of τ imatp depends on a user-specified constant rm > 0. Furthermore,
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in order to take advantage of the finite time convergence provided by high

gain observers in (4.5) and (4.7), the design of MATPs will be divided into

two phases: before and after convergence (see Subsection 4.5.3 for detailed

analysis).

4.3.2 Event-Triggered Distributed Observer-Based Con-
trol Strategy For the Bottom Level

For the agents that cannot access the leader, distributed observers are

proposed to estimate leader’s velocity and position. In order to reduce the

occupation of communication networks, the data transmissions and controller

updates are generated by PETMs.

Estimation of Leader’s Velocities Under PUSC

A consensus-based algorithm is implemented to estimate leader’s angular

velocity under PUSC as follows

˙̂ωi = −cω
∑
j∈Ni

aij(ω̂i(t
i
ki

)− ω̂j(tjkj)), (4.15)

where ω̂i represents the local estimation of ω0 given by agent i and cω is a

feedback gain to be designed. The transmission is generated at ti0 = 0, tiki+1 =

inf{t ∈ {T ωik }∞k=0, t > tiki |hωi(eωi , qωi , t) ≥ 0}, where eωi(t) = ω̂i(t
i
ki

) − ω̂i(t)

and qωi(t) =
∑
j∈Ni

aij(ω̂i(t) − ω̂j(t
j
kj

)). The dynamics of the system can be

represented as
∆ω̇i = −cω

∑
j∈Ni

aij(∆ωi(t)−∆ωj(t) + eωi(t)− eωj(t))− ω̇0(t),

ėωi = − ˙̂ωi = cω
∑
j∈Ni

aij(∆ωi −∆ωj + eωi − eωj).
(4.16)

The observer for linear velocity v0 follows the same structure as in (4.15)

under a feedback gain cv, with the state given by v̂i and ET function denoted

by hvi(evi , qvi , t) ≥ 0; then the errors evi , ∆vi have the same dynamics as in

(4.16).

Estimation of Leader’s Coordinate Frame under PUSC and PULC

In order to realize the formation under the leader’s coordinate frame, a

consensus algorithm under both PUSC and PULC is proposed to estimate the
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relative heading angle w.r.t. the leader as follows

˙̂γi(t) = −cγ
∑
j∈Ni

aij(γ̂i(t)− γ̃j(t)− γ̄ij(t)) + ω̂i(t)− ωi(t), t ∈ [0,∞),

γ̃j(t) = γ̂j(t), t = tjkj ,

˙̃γj(t) = ω̂j(t
j
kj

)− ωj(t
uj
kuj

), t ∈ [tiki , t
i
ki+1),

γ̄ij(t) = γij(t), t = sisi ,

˙̄γij(t) = ωj(t
uj
kuj

)− ωi(tuikui ), t ∈ [sisi , s
i
si+1),

(4.17)

where γ̂i represents the local estimate of γi0; and γ̃j, γ̄ij are the estimates

given by model-based mechanisms between adjacent transmission instant tiki

and detection instant sisi , respectively. The transmission instants generated

by PETM satisfies ti0 = 0, tiki+1 = inf{t ∈ {T γik }∞k=0, t > tiki |hγi(eγi , qγi , t) ≥ 0},

where eγi(t) = γ̃i − γ̂i and qγi(t) =
∑
j∈Nf

aij(γ̂i − γ̃j − γ̄ij). Furthermore, the

sampling error is denoted by Sγi = −
∑
j∈Ni

aij(γ̄ij − γij) and the estimation

error is denoted by ∆γi = γ̂i − γi0. Then
∆γ̇i = −cγ

∑
j∈Ni

aij(∆γi −∆γj + eγi − eγj) + cγSγi + ∆ωi + eγi ,

ėγi = cγ
∑
j∈Ni

aij(∆γi −∆γj + eγi − eγj)− cγSγi ,

Ṡγi = 0.

(4.18)

Event-Triggered Observer-Based Controller for the Bottom Level

According to the above estimations, an event-triggered observer-based con-

trol protocol is proposed as follows
˙̂
δi(t) = −

∑
j∈Ni

aij(δ̂i(t
i
ki

)− δ̂j(tjkj)− δ̄ij(t)) + pδi(t),

uit = C i
4
−1

(γ̂i)(−cδ̂i + [0, 1]v̂i),

ui(t) = uit(t), t = tuikui
.

(4.19)

Here δ̂i represents the estimation of δi; t
i
ki

represents transmission instant

of agent i generated by the PETM ti0 = 0, tiki+1 = inf{t ∈ {T δik }∞k=0, t >

tiki |hδi(eδi , qδi , t) ≥ 0}, where eδi(t) = δ̂i(t
i
ki

)− δ̂i(t) and qδi(t) = δ̂i(t); and the

controller is updated at tui0 = 0, tuikui+1 = inf{t ∈ {T uik }∞k=0, t > tiki

|hui(eui , qui , t) ≥ 0}, where eui(t) = C i
4(γ̂i(t))(ui − uit) and qui(t) = δ̂i(t). pδi
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is introduced to compensate the dynamics of δi, which is designed by

pδi(t) =C i
4(γ̂i(t))ui(t

ui
kui

)− [0, 1]T v̂i(t) + [δ̂yi (t),−δ̂xi (t)]T ω̂i(t)

=− cδ̂i + eui + [δ̂yi ,−δ̂xi ]T ω̂i;

and δ̄ij represents the estimated displacement in the leader’s coordinate frame,

and implements in a model-based fashion in between adjacent measurements
δ̄ij(t) = δ̄ijt(t), t = sisi ,
˙̄δij(t) = C i

4(γ̂i(t))ui(t
ui
kui

)− Cj
4(γ̂j(t

j
kj

))uj(t
ui
kui

)

+

[
δ̂yi (tiki

)−δ̂yj (tjkj
)

−δ̂xi (tiki
)+δ̂xj (tjkj

)

]
ω̂i, t ∈ [sisi , s

i
si+1),

(4.20)

where δ̄ijt = C i
4(γ̂i)δ̄

i
ij; δ̄

i
ij represents the displacement measured in the body-

fixed frame of agent i; and δ̄ijt is the estimated displacement in the leader’s

frame according to the estimated relative heading angle γ̂i. Combining with

(4.20), we can tell that the difference between the real value δij and the esti-

mated one δ̄ij is introduced by the estimation error of γ̂i and the intermittent

detection of δ̄ij, which are denoted by Dij = δ̄ijt − δij and Sδij = δ̄ij − δ̄ijt,

respectively. Let Dc(γi) =
∂Ci4(γi)

∂γi
C i

4(γi)
−1 and D∆i

γi
= C i

4(γ̂i)C
i
4(γi)

−1 − 1. It

can be computed that the Frobenius norm of Dc is bounded by 1. Therefore,

D∆i
γi

=
∫ ∆γi

0
Dc(s)ds ≤ |∆γi|, and Dij = δ̄ijt − δij = D∆i

γi
δij ≤ |∆γi|‖δij‖.

Then,

Ṡδij =(−Cj
4(γ̂j(t

j
kj

)) + C i
4(γ̂i)C

i−1
4 (γi0)Cj

4(γj0))uj(t
u
kuj

)− (Ĉ i
4(γ̂i)C

i−1
4 (γi0)− 1)

×
[

δyi −δ
y
j

−δxi +δxj

]
ω0 +

[
∆δyi +eδi

y−∆δyj−e
δ
j
y

−∆δxi −eδi
x
+∆δxj +eδj

x

]
ω̂i +

[
δyi −δ

y
j

−δxi +δxj

]
∆ωi,

|Ṡδij| ≤(|∆γi|+ |∆γi∆γj|+ |∆γj|)(‖ − cδ̂j + [0, 1]T v̂j + euj ‖) + |eγj |‖euj‖

+ |∆γi|
∥∥∥[ δyi −δ

y
j

−δxi +δxj

]
ω0

∥∥∥+
∥∥∥[ ∆δyi +eδi

y−∆δyj−e
δ
j
y

−∆δxi −eδi
x
+∆δxj +eδj

x

]
ω̂i

∥∥∥+
∥∥∥[ δyi −δ

y
j

−δxi +δxj

]
∆ωi

∥∥∥ ,
(4.21)

where ∆δi = δ̂i− δi represents the estimation error of δi. According to (4.19)–

(4.21), the dynamics of the formation error can be written as

δ̇i =C i
4(γi0)ui(t

u
kui

)− [0, 1]Tv0 + [δyi ,−δxi ]Tω0 − cδ̂i + [0, 1]T∆v0 + eui

+ [δyi ,−δxi ]Tω0,
(4.22)
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and the estimation error satisfies

˙̂
δi = −cδ

∑
j∈Ni

aij(δ̂i − δ̂j − δij + eδi − eδj −Dij) + cδSδi + kδi

= −cδ̂i + [0, 1]T∆v0 + eui + [δyi ,−δxi ]Tω0,

(4.23)

where Sδi =
∑
j∈Ni

Sδij represents the sampling error of agent i. The dynamics

of estimation error follows

∆δ̇i = −cδ
∑
j∈Ni

aij(∆δi −∆δj + eδi − eδj −Dij) + cδSδi + ∆kδi , (4.24)

where ∆kδi = kδi − δ̇i = (C i
4(γ̂i)−C i

4(γi0))ui(t
ui
kui

) + [0, 1]T∆vi + [δ̂yi ,−δ̂xi ]T ω̂i−

[δyi ,−δxi ]Tω0. By (4.19)–(4.24), the transmission error eδi and control input

error eui satisfy {
ėδi = − ˙̂

δi,

ėui =
∂Ci4(γ̂i)

∂γ̂i
˙̂γi(ui − uit)− C i

4(γ̂i)u̇it.
(4.25)

According to the above estimation and control strategies, the possible choices

of the symbol π considered in this work are π ∈ {γ, δ, ω, v, χ, η, m}.

The estimation and control strategies proposed in this section are imple-

mented based on the transmitted data by PUSC and the relative information

detected by PULC. Thus, the information flows among agents are typical

discrete-time dynamics. While for the agents in the MAS, their motions fol-

low the Newton’s law, which are typical continuous-time dynamics. This kind

of systems fit into the class of hybrid dynamical systems. Therefore, the

performance of closed-loop MAS under the control and estimation strategies

proposed in this section will be studied in a hybrid system framework in the

next section.

4.4 Problem Formulation in a Hybrid System

Framework

In this section, we reformulate the formation tracking problem introduced

in Section 4.2 in a hybrid system framework. Some auxiliary states and no-
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tations are introduced as follows. For agent i ∈ N , introduce auxiliary vari-

ables τui , τsi ∈ R≥0 to record the time elapsed since the last checking in-

stant T uipui , and the last detection instant sisi , respectively; kui , kti ∈ N, as

counters that keep tracking the numbers of controller updates and informa-

tion transmissions; let τu, τs, ku, kt represent the corresponding augmented

vectors built upon all followers; in addition, ei = [eωi , evi , eγi , e
T
δi

]T ∈ R5,

Si = [Sγi , S
T
δi

]T ∈ R3, and et, S represent the corresponding augmented vec-

tors and eu represent the augmented vector of eui ∈ R2.

For agent i ∈ Nf , let τπi ∈ R≥0 represent the time elapsed since the last

checking instant T πipπi , τti = [τωi , τvi , τγi , τδi ]
T ∈ R4, xfi = [∆ωi,∆vi,∆γi, δ

T
i ,

∆δTi ]T ∈ R7, and τtf , xf be the corresponding augmented vectors; while for

agent i ∈ Nm, introduce τti ∈ R≥0 to record the time elapsed since the last

transmission instant tiki , xhi = [ηTi , χ
T
i ]T ∈ R4, xmi = [δTi ,∆δ

T
i ]T ∈ R4, and

τtm , xh, xm represent the corresponding augmented vectors. In addition, let

x = [xTh , x
T
m, x

T
f ]T , e = [eTt , e

T
u ]T , τt = [τTtm , τ

T
tf

]T , τe = [τTt , τ
T
u ]T , k = [kTt , k

T
u ]T .

Then the state vector can be written as ξ = (x, e, S, k, τe, τs) ∈ X, X ∈

{R8nm+7nf × R5n × R3n × R2n × R4nf+nm+n × Rn}.

Considering the hybrid system in (3.1), a jump dynamics is caused by a

detection or a checking event, which we denote by Gs and (Gt, Gu), respec-

tively (See Figure 4.3 (a)). Then, on jump domain, the set-valued mapping

[78] is given by

G(ξ) = Gs(ξ) ∪Gt(ξ) ∪Gu(ξ), ξ ∈ D, D = Dt ∪Ds ∪Du. (4.26)

Since at each detection instant sisi , the agent detects all the relative informa-

tion (i.e., γij, δij, ∀j ∈ Ni), we have

Gs(ξ) = ∪i∈NGsi(ξ), ξ ∈ Ds; Ds = ∪i∈NDsi ,

Gsi(ξ) =

 x
e

(I−Λ̄si )S
k
τe

(I−Λsi )τs

 , ξ ∈ Dsi ; Dsi = {ξ ∈ X|τ0 ≤ τsi ≤ τ imasp},
(4.27)

where τ imasp represents the MASP for detecting relative information. When-

ever an ET function hπi is checked or a transmission event is generated, we
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(a)

(b)

Figure 4.3: (a) Set-valued mapping G for MAS in a hybrid system framework.
(b) Cascade Structure of MAS on flow domain

have

Gt(ξ) = ∪i∈NGti(ξ), ξ ∈ Dt; Dt = ∪i∈NDti ,

Gti(ξ) =


x

(I−Γti(eti ,qti ,ki)Λ̄
t
i)et

eu
S

kt+Γti(eti ,qti ,ki)Λi
ku
τm

(1−Γti)(I−Λ̄tiΛ̄
t
π)τt

τu
τs

 , ξ ∈ Dti ;

Dti = ∪π=ω,v,γ,δDπi , Dπi = {ξ ∈ X|τ0 ≤ τπi ≤ τπimacp}, i ∈ Nf ;

Dti = {ξ ∈ X|τ0 ≤ τti ≤ τ imatp}, i ∈ Nm,

(4.28)

where τ imatp represents the MATP for agent i ∈ Nm, τπimacp is the MACP for

checking the ET condition hπi of agent i ∈ Nf , and qti(xi) is a locally Lipschitz
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function of state xi. Gu represents a checking event of hui , which satisfies

Gu(ξ) = ∪i∈NGui(ξ), ξ ∈ Du, Du =
∑
i∈N

Dui ; Gui(ξ) =


x
et

(I−Γui (eui ,qui ,kui )Λ̄
u
i )eu

S
kt

ku+Γui (eui ,qui ,kui )Λi
τt

(I−Λi)τu
τs

 ,

ξ ∈ Dui , Dui = {ξ ∈ X|τ0 ≤ τui ≤ τuimacp},
(4.29)

where τuimacp represents the MACP for checking the ET condition hui , and

qui(xi) is a locally Lipschitz function of state xi. In (4.27)–(4.29), Λ̄i = Λi ⊗

I3, Λ̄u
i = Λi ⊗ I2, Λ̄t

π =
[
Inm 0

0 Inf⊗Λπj

]
; and Λ̄t

i =
[

Λmi 0
0 0

]
, i ∈ Nm, Λ̄t

i =[
0 0
0 Λfi ⊗I4

]
, i ∈ Nf ; where Λi ∈ Rn×n, Λπ

i ∈ R4×4, Λm
i ∈ Rnm×nm , Λf

i ∈ Rnf×nf ,

are diagonal matrices with the i-th ((i − nm)-th for Λf
i ) element being 1 and

others being 0; Γti = {1}, i ∈ Nm; and Γti : Ret × Ret × R ⇒ {0, 1}‡‡, i ∈ Nf ,

indicates whether a transmission for an agent in the bottom level occurs and

Γui : Reu × Reu × R ⇒ {0, 1} indicates whether a controller update occurs,

which depends on the ET condition as follows

Γti(eti , qti , t) =


{0}, ∩π=w,v,γ,δhπi(eπi , qπi , t) < 0

{1}, ∪π=w,v,γ,δhπi(eπi , qπi , t) > 0,

{0, 1}, otherwise

i ∈ Nf ,

Γui (eui , qui , t) =


{0}, hui(eui , qui , t) < 0

{1}, hui(eui , qui , t) > 0

{0, 1}, hui(eui , qui , t) = 0

, i ∈ N .

(4.30)

By (4.30), a transmission event is generated when one of the ET conditions is

violated (i.e. hπi ≤ 0), and at the same time all the local information of agent

i is packaged and broacast entirely.

In order to capture the flow dynamics of the system, we participate the

closed-loop MAS in (4.1) into subsystems Sη, Sχ, Sω, Sv, Sγ, and Sδ. Then,

on flow domain, the dynamics can be described as follows

F (ξ, ς) =(fh(ξ̃h, ς), fa(ξ̃a, ξh, ς), fb(ξ̃b, ξh, ξ̃a, ς), gea(ξ̃a, ξh, ς), geb(ξ̃b, ξh, ξ̃a, ς),

gsm(ξ̃h, ς), gsγ , gsb(ξ̃b, ξ̃h, ξ̃a, ς),0, 1, 1), ξ ∈ C,
(4.31)

‡‡ ⇒ represents a set-valued mapping [78].
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where ς = [ω0, v0, ω̇0, v̇0, rm]T represents the external disturbances. It should

be noted that, except from the disturbances introduced by leader’s dynamics,

rm is introduced by the periodic transmission strategy of agent i ∈ Nm, which

is independent of leader’s dynamics and is tunable according to the MATPs.

The state vectors are summarized as in Table 4.3. Here, the stabilization

Table 4.3: Structure of the cascade–connected systems

Group Subsystem Internal State Stabilization State Agent

Sh Sη ξη = (ξ̃η, eωm , eγm , τsm) ξ̃η = [ηTm, S
T
γm ]T i ∈ Nm

Sχ ξχ = (ξ̃χ, evm , eδm , τsm) ξ̃χ = [χTm, S
T
δm

]T *§§

Sa

Sm ξm = (ξ̃m, kum , τum) ξ̃m = [δTm, e
T
um ]T *

Sω ξω = (ξ̃ω, kf , τω) ξ̃ω = [∆ωTf , e
T
ωf

]T i ∈ Nf
Sv ξv = (ξ̃v, kf , τv) ξ̃v = [∆vTf , e

T
vf

]T *

Sγ ξγ = (ξ̃γ , kf , τγ , τω, τsf ) ξ̃γ = [∆γTf ,∆ω
T
f , e

T
γf
, eTωf , Sγf ]T *

Sb Sδ ξδ = (ξ̃δ, τδ, kf , kuf , τuf , τsf ) ξ̃δ = [δTf ,∆δ
T
f , e

T
δf
, eTuf , Sf ]T *

states ξ̃π include the components of ξπ whose stabilities are relevant to the

stabilization set Ξ in Definition 7; ξπi , ξ̃πi are the corresponding states of

agent i; πm and πf represent the corresponding augmented vectors of πi for

i ∈ Nm and i ∈ Nf , respectively, with π determined by the relevant state

(e.g., η, δ). Furthermore, according to the inherent cascade property, we

divide the subsystems into three groups, namely, Sh, Sa and Sb, with the

corresponding state vectors ξh = [ξTη , ξ
T
χ ]T , ξa = [ξTm, ξ

T
ω , ξ

T
v , ξ

T
γ ]T and ξb = ξδ.

More specifically, the dynamics of Sh only depends on its own states and

the external disturbances. Besides the states of its own and the external

disturbances, the dynamics of Sa is also influenced by the states of Sh; and

the dynamics of Sb depends on the states of Sa and Sh (See Figure 4.3 (b)). In

addition, fΠ1 , geΠ2
and gsΠ3

with Π1 ∈ {h, a, b}, Π2 ∈ {a, b}, Π3 ∈ {m, γf , b}

in (4.31) are given by the differential equations in (4.6), (4.8), (4.13), (4.15),

(4.18), (4.23), (4.24), (4.25) and (4.21), accordingly. The corresponding flow

§§ * in a table represents the same element with the above cells.
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domain is given by

C = Ct ∩ Cs ∩ Cu, Ct = ∩i∈NCti , Cu = ∩i∈NCui ;

Csi = {ξ ∈ X|0 ≤ τsi ≤ τ imasp}, Cui = {ξ ∈ X|0 ≤ τui ≤ τuimacp};

Cti = ∩π=ω,v,γ,δCπi , Cπi = {ξ ∈ X|0 ≤ τπi ≤ τπimacp}, i ∈ Nf ;

Cti = {ξ ∈ X|0 ≤ τti ≤ τ imatp}, i ∈ Nm.

(4.32)

Define ξ̃ = [ξ̃Th , ξ̃
T
a , ξ̃

T
b ]T , then based on the hybrid system model in (4.26)–

(4.32), the problem considered in this work is to prove that the set Ξ = {ξ ∈

X|‖ξ̃T‖ = 0} is strongly iISS w.r.t. disturbances ς. According to the cascade-

connected structure, we solve the problem step by step as follows:

• For subsystem Sh, determine the bound on τ imasp, such that the estima-

tion errors ∆vi, ∆ωi converge to small balls centered at the origin with

pre-specified small radius in pre-specified short time.

• For subsystem Sa, determine the upper bounds on τ imasp, τ
πi
macp, i ∈ Nf

and τuimacp, i ∈ N , as well as the corresponding ET functions hπi , hui ,

such that the set Ξa = {ξ ∈ X|‖ξ̃a‖ = 0} is ISS w.r.t. ς and ξ̃h.

• For subsystem Sb, determine the upper bounds on τ imasp, τ
ui
macp, τ

δi
macp,

i ∈ Nf ; the functions in ET conditions hui and hδi , such that the set

Ξb = {ξ ∈ X|‖ξ̃Tb ‖ = 0} is ISS w.r.t. ς, ξ̃h and ξ̃a.

4.5 Main Results

In this section, the event-triggered formation tracking problem is solved

in a hybrid system framework. The upper bounds on MASPs, MATPs, and

MACPs are determined along with well-designed PETMs for detections, trans-

missions and controller updates. For generalizing the analysis, in each sub-

section, we will first provide a technical lemma for some general systems, and

then, apply it to the concerned one (Sh, Sa, or Sb).
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4.5.1 Finite Time Convergence of Subsystem Sh

Consider a hybrid system with state vector ξ = (ξ̃, τ) ∈ X, where ξ̃ =

[xT , ST ]T , X = {(x, S, τ) ∈ Rnx × Rns × R≥0}. On flow domain C = {ξ ∈

X|0 ≤ τ ≤ τmasp}, its dynamics is described by differential equation F (ξ, ς),

ξ̇ = F (ξ̃, τ, ς) = (f(ξ̃, ς), 1), ξ ∈ C;

f(ξ̃, ς) =
1

ε
f0(ξ̃) + [ET

1 , 0]Tf1(ς1) +
1

ε
[ET

2 , 0]Tf2(ς2) + [0, ET
s ]Tfs(ςs),

(4.33)

where τmasp > 0 is the MASP to be determined, f0 : Rnx+ns → Rnx+ns ,

fi : Rnςi → Rni are locally Lipschitz functions; ς = [ςT1 , ς
T
2 , ς

T
s ]T represents the

disturbances, with ςi ∈ Rnςi bounded by ‖ςi‖∞ ≤ ri; Ei ∈ Rnx×ni , i = 1, 2, s;

and ε > 0 is a small constant. On jump set D = {ξ ∈ X|τ0 ≤ τ ≤ τmasp}, we

have

[x+T , S+T , τ+T ]T = [xT ,0T ,0T ]T , ξ ∈ D. (4.34)

Introduce an auxiliary variable φ with dynamics satisfying

φ̇ = −l(φ2 +
αs
ε

)− 2Lφ, φ(0) = ρ̄, φ(τ) ∈ [ρ, ρ̄], ∀τ ∈ [0, τmasp), (4.35)

where l, αs, L, ρ̄ > ρ > 0 are positive constants to be designed.

Lemma 10. The maximum value of τmasp satisfies (4.35) can be computed

explicitly as

τmasp =


1

l
√
α
ε
−L2

l2

arctan (θ
√

α
ε
− L2

l2
), L

l
<
√

α
ε

1
l
θ, L

l
=
√

α
ε

1

l
√
L2

l2
−α
ε

arctan (θ
√

L2

l2
− α

ε
), L

l
>
√

α
ε

, (4.36)

where θ =
ρ̄−ρ

α
ε

+ρ̄ρ+L
l

(ρ̄+ρ)
. Especially, when L = 0, τmasp =

√
εα
l

arctan

√
ε/α(ρ̄−ρ)

1+ε/αρ̄ρ
.

Proof. The results can be obtained by solving the differential equation in

(4.35).

The following condition is introduced to provide the finite time convergence

of subsystem Sh.
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Condition 4. Consider the hybrid system in (4.33)–(4.34). There exist locally

Lipschitz functions W (S) : Rns → R≥0, V (x) : Rnx → R≥0, a differential

equation φ(t) : [0, τs) → R≥0 satisfying (4.35), and positive constants ᾱ >

α > 0, α > 0 such that

• α‖ξ̃‖2 ≤ U(ξ) ≤ ᾱ‖ξ̃‖2,

• 〈OU(ξ), F (ξ, ς)〉 ≤ −1
ε
αU(ξ) + (β1(‖ς1‖) + 1

ε
β2(‖ς2‖))

√
U(ξ) + βs(‖ςs‖),

ξ ∈ C,

• U+(ξ)− U(ξ) ≤ 0, ξ ∈ D,

where U(ξ) = V (x) + lφW 2(S), β1, β2 and βs are K∞ functions.

Lemma 11. Consider the hybrid system described by (4.33)–(4.34). If Con-

dition 4 is satisfied and τmasp satisfies (4.36), then for any ξ(0, 0) ∈ X, the

hybrid system converges to set Ξ = {ξ(t, j)| ‖ξ̃‖ ≤ 1
α
rU}, within the finite

time Tx = 1
αU

ln U0

r2
U
, where rU = 2

α
(εβ1(‖ς1‖∞) + β2(‖ς2‖∞)), αU = α

2ε
− βs(‖ςs‖)

r2
U

and U0 represents the initial value of U(ξ(0, 0)).

Proof. Let XU = {ξ(t, j)|U(ξ) ≤ r2
U}. By the second item in Condition 4, for

all ξ ∈ X\XU we have

〈OU(ξ(t, j), F (ξ(t, j), ς(t, j))〉 ≤ − α
2ε
U(ξ) + βs(‖ξs‖) ≤ −αUU(ξ), ξ(t, j) ∈ C,

U(ξ(t, j + 1))− U(ξ(t, j)) ≤ 0, ξ(t, j) ∈ D.

For (t, j) ∈ [tk, tk+1]× {k}, k ∈ N, we have

t− tk ≤
1

αU
ln
U(tk, k)

U(t, k)
, (4.37)

and when (t, j) = (tk+1, k + 1), U(ξ(tk+1, k + 1)) − U(ξ(tk+1, k)) ≤ 0. As

a result, for any initial condition ξ(0, 0) ∈ X, after a limited number j of

time intervals, U(t, j − 1) ≤ r2
U . Furthermore, according to (4.37), t can be

calculated by t ≤ 1
αU

ln U(ξ(0,0))

r2
U

, and by the first two items in Condition 4, we

have Ξ ∈ XU . The proof is completed.
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Theorem 8. Consider subsystem Sh, and assume the following conditions

hold:

(i) the initial state δi(0) ∈ Vi with Vi given as in (4.9), and the input

saturation satisfies (4.11);

(ii) for subsystem Sπ, there exist positive definite matrices Pπ and Qπ, where

ᾱπ ≥ λ(Pπ) ≥ απ > 0, λ(Qπ) ≥ αsπ > 0; positive constants απ, lπ > 0

and ρ̄πi > ρπ
i
> 0, such that

ATπPπ + PπAπ ≤ −Qπ,
[
−Qπ+[ 0 0

0 επ ] PπBπ

∗ −l2παsπ

]
≤ −απI,

απ < lπρ
π

i
< lπρ̄

π
i < ᾱπ.

(4.38)

Here, π is replaced with η and χ for subsystems Sη and Sχ, respectively;

(iii) the MASP is upper bounded by τ imasp ≤ min{τ ηimasp, τχimasp}, where τπimasp

is calculated by (4.36), with ε = επ, l = lπ, αs = αsπ, L = Lπ, Lη = 0

and Lχ = |ωM + rω|.

Then, there exist small enough εη, εχ > 0 such that ξ̃ηi and ξ̃χi converge into

a small ball centered at the origin with radius rω, rv within time Tω, Tv,

where rω =
4εηᾱ2

η

αsηα
1.5
η
aω, Tω = 2εη

αη
ln Uη(ξη(0,0))

r2
ω

, rv =
4εχᾱ2

χ

αχα2
χ

(max {ciχ1
, ciS} +

ciχ2

εχ
)

and Tv = 2εχ
αχ

ln Uχ(ξχ(0,0))

r2
v

with ciχ1
= av, c

i
χ2

= rω(c + Ui√
1+d̄2

i0

max (1, d̄i0)),

ciS = Ui√
1+d̄2

i0

max (1, d̄i0) + crω.

Proof. The proof is provided in Appendix A.1.

Remark 15. According to (4.6) and (4.8), subsystem Sh satisfies (4.33)–

(4.34). The small constant ε > 0 is introduced to guarantee a small con-

vergence error and a fast convergence rate as shown in Lemma 11. However,

referring to (4.36), a smaller ε also results in a smaller upper bound on MASP,

which means a sufficiently large sampling frequency. Benefited from the hi-

erarchical structure proposed in Subsection 4.2.3, only a few agents i ∈ Nm
are involved in Sh; and since the convergence errors of Sh will propagate to

Sa and Sb, we choose to sacrifice the cost on some high performance sensors

to provide better convergence properties for Sh.
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4.5.2 ISS of Subsystem Sa

Consider a hybrid system with state vector ξ = (ξ̃, k, τe, τS) ∈ X, where

ξ̃ = [xT , eT , ST ]T ,X =
{

(x, e, S, k, τe, τS) ∈ Rnnx× Rnne×Rnns×Nn×Rn
≥0×Rn

≥0

}
,

x = [xT1 , · · · , xTn ]T , e = [eT1 , · · · , eTn ]T , S = [ST1 , · · · , STn ]T ,

τe = [τe1 , · · · , τen ]T , τs = [τs1 , · · · , τsn ]T , k = [k1, · · · , kn]T .

(4.39)

On the flow domain, the differential equation is given by

F (ξ, ς) = (f(ξ̃, ς), ge(ξ̃, ς), gs(ξ̃, ς),0,1), ξ ∈ C, (4.40)

where ge(ξ̃, ς) = (ge1(ξ̃, ς), · · · , gen(ξ̃, ς)), gs(ξ̃, ς) = (gs1(ξ̃, ς), · · · , gsn(ξ̃, ς)); ς ∈

Rnς represents the disturbances. The corresponding flow set C is given by

C = ∩ni=1Ci, Ci = {ξ ∈ X|(0 ≤ τsi ≤ τ imasp) ∨ (0 ≤ τei ≤ τ imacp)}, where τ imacp

and τ imasp represent the MACP for checking the ET condition and MASP

for detection, respectively. On the jump domain, the set-valued mapping G

satisfies

G(ξ) = Gs(ξ) ∪Ge(ξ), ξ ∈ D, (4.41)

where Gs and Ds are in the same forms as (4.27); Ge and De are in the same

forms as in (4.29), with em = ef = kf = τm = τf = 0, eu = e, τu = τe,

Γui = Γi, Λ̄u
i = Λ̄e

i ; and Λ̄e
i = Λi⊗ Ine , Λi ∈ Rn×n is a diagonal matrix with the

i-th diagonal elements being 1 and others being 0 and hi(ei, qi, t) is the ET

function to be specified later.

The following conditions are introduced to provide the ISS property for

the hybrid system in (4.40)–(4.41).

Condition 5. ([82, 87]) Consider the hybrid system in (4.40)–(4.41). For each

i = 1, · · · , n, there exist a locally Lipschitz function W π
i : Rnπ × N→ R≥0, a

continuous function Hπ
i : Rnx × Rnπ → R≥0 and απWi

, ᾱπWi
∈ K∞ such that

the following hold:

• For any πi ∈ Rnπ and ki ∈ N, απWi
(‖πi‖) ≤ W π

i (πi, ki) ≤ ᾱWi
(‖πi‖).
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• For almost all πi ∈ Rnπ , all ki ∈ N and (x, ς) ∈ Rnx × Rnς ,〈
∂Wi(πi,ki)

∂πi
, gπi (ξ̃, ς)

〉
≤ Hπ

i (ξ̃, ς).

Here π and πi are replaced with e (ei) and s (si) when the functions are related

to e (ei) and s (si), respectively.

Condition 6. ([82, 87]) There exist a locally Lipschitz function Vx : Rnx →

R≥0, αV , ᾱV , αV , απW , σVi ∈ K∞, locally Lipschitz functions Ψi : Rne → R≥0

satisfying Ψi(0) = 0, continuous functions Ji : Rnx×Rne×Rnς → R≥0, lπi > 0,

i ∈ Vf , such that the following hold:

• For all x ∈ Rnnx , αV (‖x‖) ≤ Vx ≤ ᾱV (‖x‖).

• For almost all x ∈ Rnx and all (e, S, ς) ∈ Rnne × RnnS × Rnς ,〈
OVx(x), f(ξ̃, ς)

〉
≤ −αV (‖x‖)− αW (‖[eT , ST ]T‖)

+
n∑
i=1

(
(σVi(ς) +

∑
π=e,π=S

(
lπi

2W π
i

2(πi, ki)−Hπ
i

2(ξ̃, ς)
)
− Ji(ξ̃, ς)−Ψi(qi(x))

)
,

where qi(x) is a locally Lipschitz function of x with fqi(ξ̃, ς) = ∂qi(x)
∂x

f(ξ̃, ς);

W π
i and Hπ

i are the same as in Condition 5.

• For almost all x ∈ Rnx and all (e, S, ς) ∈ Rnne × RnnS × Rnς ,〈
OΨi(qi), fqi(ξ̃, ς)

〉
≤ LiΨ(qi) +He

i
2(ξ̃, ς) + Ji(ξ̃, ς).

According to Conditions 5 and 6, the ET function in (4.41) is designed as

hi(ei, qi, t) = leiW
e
i

2(ei, ki)− λiρiΨi(qi), (4.42)

where ρi =
leiλi

1−λiLi , λi is introduced as a user-specified parameter to tune

MACPs and event numbers and constrained by λi ∈ [0, λ∗i ), with

λ∗i =

{
1, Li ≤ −lei

min{1, 1
Li+lei

}, Li > −lei
.

Lemma 12. ([82, 87]) Consider the hybrid system in (4.40)-(4.41) with ET

function given by (4.42). If (i) τ imacp = 1
lei

arctan 1/ρi−ρi
2

, (ii) τ imasp = 1
lsi

arctan
ρ̄i−ρi
1+ρ̄iρi

,

with ρ̄i > ρ
i
> 0, (iii) Conditions 5 and 6 hold; then the set Ξ : {ξ ∈ X|‖ξ̃‖ =

0} is globally ISS w.r.t. ς.
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Proof. Consider Lyapunov candidate

U(ξ) = Vx +
∑
i∈Nf

(lsiφsiW
s
i

2 + max {leiφeiW e
i

2, λiψi}),

where φei and φsi are auxiliary variables introduced, respectively, as
φ̇ei = −lei(φei2 + 1)

φei(0) = ρ̄ei
φei(τ) ∈ [ρe

i
, ρ̄ei ]

and


φ̇si = −lsi(φsi2 + 1)

φsi (0) = ρ̄i

φsi(τ) ∈ [ρ
i
, ρ̄i].

(4.43)

Here lei and lsi are positive constants. The bound on φei satisfies ρe
i
≥ ρi and

ρ̄ei ≤ 1
ρi

. Let Vsi = lsiφsiW
s
i

2, we have

〈OVsi , F (ξ, ς)〉 ≤ 2lsiφsiW
s
i (|Hs

i |)− (1 + φsi
2)(lsiW

s
i )2. (4.44)

Let Vei = max {leiφeiW e
i

2, λiψi}. Denote V0(t, j) as the set includes the agents

satisfying leiφeiW
e
i

2 ≥ λiΨi, and V1(t, j) = V\V0(t, j). On flow domain, for

i ∈ V0,

〈OVei , F (ξ, ς)〉 ≤ 2leiφeiW
e
i (|He

i |)− (1 + φei
2)(leiW

e
i )2;

and for i ∈ V1,

〈OVei , F (ξ, ς)〉 ≤ λi(LiΨi + Ji +He
i

2).

Combining with Condition 6,

〈OU(ξ), F (ξ, ς)〉 ≤

− αV (‖x‖)− αW (‖[eT , ST ]T‖) +
N∑
i=1

σVi(‖ς‖) +
∑
i∈V1

(
(leiW

e
i )2 − (1− λiLi)Ψi

)
.

(4.45)

According to (4.42), we have

(leiW
e
i )2 − (1− λiLi)Ψi < 0,

and

〈OU(ξ), F (ξ, ς)〉 ≤ −αV (‖x‖)− αW (‖[eT , ST ]T‖) +
N∑
i=1

σVi(‖ς‖).
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On jump domain, for ξ ∈ Ge
i , when there is no transmission, Vei

+ =

max {leiφeiW e
i

2, λiΨi}. According to (4.42), leiW
e
i

2 ≤ λiρiΨi, lei
1
ρi
W e
i

2 ≤

λiΨi. Since φei ≤ ρ̄ei ≤ ρi, we have leiφeiW
e
i

2 ≤ λiΨi. Then,

Vei
+ = λiΨi = Vei .

When there is a transmission,

W e
i

+ = 0, Vei
+ = λiΨi ≤ max{leiφeiW e

i
2, λiΨi} ≤ Vei .

For ξ ∈ Gs
i , we have Vsi

+ = 0 ≤ Vsi . Combining the above, when ξ ∈ G,

U+ ≤ U . Using the standard Lyapunov arguments in [87], [78] and [82], the

set Ξ is ISS w.r.t. ς.

Remark 16. Conditions 5 and 6 are similar to Assumptions 1 and 2 in [82].

However, only PUSC was considered in the paper [82]; while, in order to

include PULC, auxiliary variables τsi and measurement error S are introduced

in hybrid model (4.40)–(4.41). Subsequently, a different Lyapunov function

candidate is proposed in the proof of Lemma 12 to provide the stability for

the hybrid system under both PUSC and PULC.

According to (4.13), (4.15) and (4.18), the subsystems belong to Sa satis-

fying the dynamics in (4.40)–(4.41), which results in the following theorems

to illustrate the ISS of Sa.

Theorem 9. Consider the subsystem Sm, if

(i) the initial state δi(0, 0) ∈ Xi1 , where Xi1 = {ξmi |U(ξmi) ≤ αuc
2
δ};

(ii) there exist positive constants ε2, αδ, αe, lu, ψu, Lu > 0, such that the

following LMI is established −(2c(1−ψu)+(I−Lu)ψu+εΨ−αδ)I+(1+ψu)

 0 0
0 1

ε22

 (1−ψu)I

(1−ψu)I −(l2u−αe)I

 = Qm < 0;

(4.46)
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(iii) the MACP is upper bounded by τuimacp <
1
lu

arctan
ρ̄ui −ρui

2
, where ρ̄ui <

1
ρu

,

ρu
i
> ρu; ρu and λu are determined by (4.42), with lei = lu, Li = 0; and

the ET function is given by hui(eui , δi, t) = lue
2
ui
− λuρuψuδ2

i ;

(iv) items (i)–(iii) in Theorem 8 are satisfied;

then, there exist sufficiently small εη > 0 and εχ > 0 such that the steady

state error of ξ̃mi is given by rδ =
√

ᾱu
αu
cδ, where ᾱu = max{1+λuψu

αδ
,
luρ̄ui
αe
} and

αu = min{1 + λuψu
2
,
luρui

2
}.

Proof. Detailed proof is provided in Appendix A.2.

Remark 17. The constant cδ in (4.9) determines the convergence range of

subsystem Sm. According to (4.10), a lager cδ results in a larger Ui, which

further leads to a larger convergence error rv. As a result, the trade-off be-

tween estimation performance and constraints on initial errors needs to be

considered.

Theorem 10. For subsystem Sπ, where π is replaced by ω or v for the state

ξ̃ω or ξ̃v, respectively, the set Ξπ = {ξ ∈ X|‖ξ̃Tπ ‖ = 0} is globally ISS w.r.t. ς

and ξh if

(i) Assumption 10 is satisfied;

(ii) there exist positive constants επ, επj , j = 0, 1, 2, Lπi , lπi , ψπi , αWπ , αVπ ,

επe and positive definite matrix Pπ such that the following LMI can be

established

Aπ − Aψπ − (I − Lω)ψπ

[
(Lff−Dfl)T

−ATff

]
[(Lff −Dfl) − Aff ]

−
[

(επe−αVπ )I 0

0 l2π−αWπ I

]
= Qπ ≤ 0;

(4.47)

here, Lπ = diag(Lπnm+1 , · · · , Lπn), lπ = diag(lπnm+1 , · · · , lπn), ψπ =

diag(ψπnm+1 , · · · , ψπn),

Aπ =−
[

Pπ
0(nf ,nf )

]
[cπ(Lff −

ε2π
2
I)−

ε2π0

2
I, Lff ] + [∗∗]T ,

Aψπ =
[

(Lff−Dfl)T

−ATff

]
ψπ
(
− cπDf [Lff − ε2π1

(Lff −Dfl), Lff − ε2π1
Aff ]

+ ε2π2
[(Lff −Dfl), −Aff ]

)
+ [∗∗]T ,

96



and Df , Dfl ∈ Rnf×nf are diagonal matrices with diagonal elements

[Df ](i,i) =
∑

j∈Nf aij and [Dfl](i,i) =
∑

j∈Nm aij, respectively;

(iii) the MACP for ET function hπi is upper bounded by τπimacp <
1
lπi

arctan
ρ̄πi −ρπi

2
,

where ρ̄πi <
1
ρπi

, ρπ
i
> ρπi and ρπi satisfies (4.42), with lei = lπi , Li = Lπi ;

and the ET function is designed by hπi = lπi‖eπi‖2 − λπiρπiψπi‖qπi‖2,

where qπi =
∑

j∈Nf aij(π̂i(t)− π̂j(t
j
kj

)).

Proof. Detailed proof is provided in Appendix A.3.

The following matrices and parameters are defined to facilitate the analysis

of subsystem Sγ. Let

Qγf =−
(
Aγ − Aψγ − (1− Lγ)ψγ

[
(Lff−Dfl)T

−ATff
−I

]
[(Lff −Dfl) − Aff − I]

−

[
(εγe−αVγ )I 0 0

0 lγ
2−αWγ I 0

0 0 lsγ
2−αWγ I

] )
(4.48)

where Lγ = diag(Lγnm+1 , · · · , Lγn), lγ = diag(lγnm+1 , · · · , lγn) and

lsγ = diag(lsγnm+1
, · · · , lsγn);

Aγ = cγ

[ Pγ
0(nf ,nf )

0(nf ,nf )

]
[−Lff + (ε2γ +

ε2ω
cγ

)I,−Lff , I] + [∗∗]T ,

Qγ =
[
aQγf 0

0 bQω−aβωγ I

]
, βωγ =

2

ε2ω
+

2

ε2γ2

λ̄(ψγLff ),

Aψγ =cγ

[
(Lff−Dfl)T

−ATff
−I

]
ψγ
(
[Lff + Aff ][−Lff − Lff I]

+ ε2γ2
[(Lff −Dfl) − Aff − I]

)
+ [∗∗]T .

Theorem 11. For subsystem Sγ, the set Ξγ = {ξ ∈ X|‖ξ̃Tγ ‖ = 0} is globally

ISS w.r.t. ς and ξh if

(i) there exist positive constants εγ, εω, εγ2 , εγe , lγi , l
s
γi

, Lγi , ψγi , αVγ , αWγ and

positive definite matrix Pγ, such that Qγf ≥ 0, and positive constants a

and b such that Qγ > 0;
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(ii) the MASP satisfies τ γimasp = 1
lsγi

arctan
ρ̄i−ρi

2
and the MACP satisfies

τ γimacp = 1
lγi

arctan
ρ̄γi −ρ

γ
i

2
, with ρ̄γi ≤ 1

ργi
, ρi

γ
≥ ργi and ργi satisfying (4.42);

and ET condition is designed by hγi(eγi , qγi , t) = lγie
2
γi
− λγiργiψγiq

2
γi

,

where eγi(t) = γ̃i − γ̂i and qγi(t) =
∑
j∈Nf

aij(γ̂i − γ̃j − γ̄ij).

(iii) items in Theorem 10 are satisfied.

Proof. Detailed proof is provided in Appendix A.4.

Combining the results in Theorems 9–11, for subsystem Sa, the set Ξa =

{ξ ∈ X |‖ξ̃Ta ‖ = 0} is ISS with respect to ς and ξh.

4.5.3 Strongly iISS of Subsystem Sb

Consider the hybrid system with the state vector given by (4.39). The

elements in ξ are participated into ξa = (ξ̃a, k, τa, τs) and ξb = (ξ̃b, k, τb, τs)

according to a cascade structure, where xi = [xTai , x
T
bi

]T , ei = [eTai , e
T
bi

]T , Si =

[STai , S
T
bi

]T , τei = [τai , τbi ], with xπ = [xTπ1
, · · · , xTπn ]T , xπi ∈ Rnxπ ,

eπ = [eTπ1
, · · · , eTπn ]T , eπi ∈ Rneπ , Sπ = [STπ1

, · · · , STπn ]T , Sπi ∈ Rnsπ , ξ̃π =

[xTπ , e
T
π , S

T
π ]T , τπ = [τπ1 , · · · , τπn ], π = {a, b}. On the flow domain, the differ-

ential equation is given by
ξ̇ = F (ξ, ς) = (f(ξ̃, ς), ge(ξ̃, ς), gs(ξ̃, ς),0,1),

ξ̇a = Fa(ξa, ς) = (fa(ξ̃a, ς), gea(ξ̃a, ς), gsa(ξ̃a, ς),0,1),

ξ̇b = Fb(ξ, ς) = (fb(ξ̃, ς), geb(ξ̃, ς), gsb(ξ̃, ς),0,1),

(4.49)

with flow set C given by C = ∩ni=1Ci, Ci = {ξ ∈ X|(0 ≤ τsi ≤ τ imasp) ∨ (0 ≤

τeai ≤ τaimacp) ∨ (0 ≤ τebi ≤ τ bimacp)}. The set-valued mapping G and jump

domain D are given by

G(ξ) = Gs(ξ) ∪Ge(ξ), ξ ∈ D, (4.50)

where Gs and Ds have the same forms as in (4.27); Ge and De have the same

forms as Gt and Dt in (4.28), with eu = ku = τu = 0, et = e, τt = τe, Γti = Γi,

Λt
i = Λi, Λ̄t

i = Λ̄e
i , Λ̄t

π = Λ̄π; and Λ̄e
i = Λi ⊗ Ine , Λ̄π = In ⊗ Λπ

j , Λi ∈ Rn×n,

Λπ
i ∈ R2×2 are diagonal matrices with the i-th diagonal elements being 1, and

others being 0.
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Condition 7. Consider the hybrid system in (4.49)–(4.50). If there exist

positive definite matrices Pa(τa, τs, k), Pb(τb, τs, k) and positive constants ᾱa ≥

αa > 0, αb ≥ ᾱb > 0 such that

(i) αaI ≤ Pa ≤ ᾱaI and αbI ≤ Pb ≤ ᾱbI hold for all τai ∈ [0, τaimacp),

τbi ∈ [0, τ bimacp), τsi ∈ [0, τ imasp) and k ∈ N;

(ii) there exists a positive definite matrix Qb, such that storage function

Ub(ξb) = ξ̃Tb Pbξ̃b satisfies

〈OUb(ξb), Fb(ξ, ς)〉 ≤

− ξ̃Tb Qbξ̃b +

nb∑
kb=1

‖ξ̃a‖2kb ξ̃Tb Qkb ξ̃b +
na∑
ka=1

αka‖ξ̃a‖2ka + σb(‖ς‖), ξ ∈ C,

U+
b (ξb)− Ub(ξb) ≤ 0, ξ ∈ D,

(4.51)

where Qkb is either a positive definite matrix or a zero matrix, αka ≥ 0

is a constant, and σb is a K∞ function;

(iii) there exists a positive definite matrix Qa and a K∞ function σa such

that storage function Ua(ξa) = ξ̃Ta Paξ̃a satisfies

〈OUa(ξa), Fa(ξa, ς)〉 ≤ −ξ̃TaQaξ̃a + σa(‖ς‖), ξ ∈ C;

U+
a (ξa)− Ua(ξa) ≤ 0, ξ ∈ D;

(4.52)

(iv) there exist positive constants εk1, εk2, · · · , εk(jk−1), ∀ k ∈ O, where

O = ∪i∈NOi, O0 = {k| k ≤ max{ka, kb}&(Qk 6= 0|αk 6= 0)}, Oi =

{k|k = 2k0 − 2jk0 , k0 ∈ Oi−1}, such that kαa − εk − βk −
∑
i∈Sk

εi ≥ 0.

Here jk satisfies 2jk−1 < k ≤ 2jk , εk = (k
2
εk1)2 +

ε2k2

2ε2k1
+ · · ·+

ε2
k(jk−1)

2ε2k1···ε
2
k(jk−2)

,

εi =
ε2iji

2ε2i1···ε2i(ji−1)

, and i ∈ Sk if 2i − 2ji = k, αa = min{λ ∈ R : det(Qa −

λPa) = 0, ∀τai ∈ [0, τaimacp), τ
i
s ∈ [0, τ imasp), i = 1, · · · , n}, βk = λk + αk,

with λk = max{λ ∈ R : det(Qk − λPb) = 0, ∀τbi ∈ [0, τ bimacp), τsi ∈

[0, τ imasp), i = 1, · · · , n}.

Lemma 13. (Strongly iISS of cascade systems) Consider the hybrid

system in (4.49)–(4.50). If Condition 7 is satisfied, then the set Ξ : {ξ ∈

X| ‖ξ̃‖ = 0} is globally strongly iISS w.r.t. ς.
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Proof. Consider a Lyapunov candidate U(ξ) = ln (1 + Ub(ξb)) +
ka∑
k=1

Uk
a (ξa).

According to (4.51) and (4.52), when ξ ∈ C, we have

〈OU(ξ), F (ξ, ς)〉 =
〈OUb(ξb), Fb(ξ, ς)〉

1 + Ub(ξb)
+

ka∑
k=1

∂Uk
a (ξa)

∂Ua(ξa)
〈OUa(ξa), Fa(ξa, ς)〉 .

(4.53)

For Uk
a (ξa), we have

∂Uk
a (ξa)

∂Ua(ξa)
〈OUa(ξa), Fa(ξa, ς)〉 ≤

k
(
(−αa + εk)‖ξ̃a‖2k + εk‖ξ̃a‖2(2k−2jk ) + εσkσ

2jk
a (‖ς‖)

)
,

(4.54)

where εσk = 1
ε2k1···ε

2
kjk

. Then,

〈OU(ξ), F (ξ, ς)〉 ≤ − ξ̃Tb Qbξ̃b

1 + ξ̃Tb Pbξ̃b
+

ka∑
k=1

αk‖ξ̃a‖2k + σb(‖ς‖)

+
∑
k∈O

k
(
(−αa + εk)‖ξ̃a‖2k + εk‖ξ̃a‖2(2k−2jk ) + εσkσ

2jk
a (‖ς‖)

)
≤− ξ̃Tb Qbξ̃b

1 + ξ̃Tb Pbξ̃b
+
∑
k∈O

(
k(−αa + εk) + (αk +

∑
i∈Sk

iεi)
)
‖ξ̃a‖2k

+
∑
k∈O

kεσkσ
2jk
a (‖ς‖) + σb(‖ς‖)

≤− λF +
λF

1 + ξ̃Tb Pbξ̃b
−
∑
k∈O

λLk‖ξ̃a‖2k

+
∑
k∈O

kεσkσ
2jk
a (‖ς‖) + σb(‖ς‖),

(4.55)

where λF = min{λ ∈ R| det (Qb − λPb) = 0, ∀τbi ∈ [0, τ bimacp), τsi ∈ [0, τ imasp), k ∈

N, i = 1, · · · , N}, λLk = k(−αa+εk)+(αk+
∑
i∈Sk

iεi), σ(‖ς‖) =
∑
k∈O

kεσkσ
2jk
a (‖ς‖)+

σb(‖ς‖). Since Pb and Qb are positive definite, λF > 0; and according to the

forth item in Condition 7, λLk > 0. Therefore, there exist W , Wb ∈ K, and σ,

Wa ∈ K∞ such that

〈OU(ξ), F (ξ, ς)〉 ≤ −Wa(‖ξ̃a‖)−Wb(‖ξ̃b‖) + σ(‖ς‖) ≤ −W (‖ξ̃‖) + σ(‖ς‖).
(4.56)
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While on jump domain ξ ∈ D,

U+(ξ)− U(ξ) ≤ 0. (4.57)

Case I. iISS:

By (4.56), there exists a positive definite function αU such that

〈OU(ξ), F (ξ, ς)〉 ≤ −αU(U(ξ)) + σ(‖ς‖), and U+(ξ) ≤ U(ξ).

Let U(t, j) = U(t, j)−‖Vt‖∞, t ∈ [tj, tj+1], where Vt =
∫ t

0
σ(‖ς‖)dt. According

to [88], we have

U̇(t, j) ≤ −αU(max{U(t, j) + V (t), 0}).

Then, there exists β ∈ KL satisfies

β(s, 0) = s, β(β(s, t1), t2) = β(s, t1 + t2),

U(t, j) ≤ max{β(U(tj, j), t− tj), ‖Vt‖∞}.
(4.58)

In addition

U(tj, j − 1) = U(tj, j − 1) +

∫ tj

0

σ(‖ς(s)‖)ds

≥ U(tj, j) +

∫ tj

0

σ(‖ς(s)‖)ds = U(tj, j),

U(tj, j − 1) ≤ max{β(U(tj−1, j − 1), tj − tj−1), ‖Vtj‖∞}

≤ max{β(U(tj−1, j − 1), tj − tj−1), ‖Vt‖∞}.

(4.59)

Substitute (4.59) into (4.58),

U(t, j) ≤ max{β(max{β(U(tj−1, j − 1), tj − tj−1), ‖Vt‖∞}, t− tj), ‖Vt‖∞}

= max{β(β(U(tj−1, j − 1), tj − tj−1), β(‖Vt‖∞, tj − tj−1), ‖Vt‖∞}

≤ max{β(U(tj−1, j − 1), t− tj−1), ‖Vt‖∞}.
(4.60)

Repeat (4.58)–(4.60) until t0 = 0, U(t, j) ≤ max{β(U(0, 0), t), ‖Vt‖∞}. Since

U(t, j) = U(t, j) + ‖Vt‖∞, we have U(t, j) ≤ β(U(0, 0), t) + 2
∫ t

0
σ(‖ς‖)ds.

Furthermore, since we have finite agents, and the sampling intervals for each
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agent are lower bounded by τ0 > 0, there always exist finite ε0 and ε1 such

that ε0j ≤ t+ ε1, t ∈ [tj, tj+1]. Let

β̄(s, t) =

{
e−tβ(s, 0), t < 0
β(s, t), t ≥ 0.

(4.61)

Then, β̄(s, t) is decreasing and U(t, j) ≤ β̄(U(0, 0), 0.5t+ 0.5ε0j − 0.5ε1). Let

β̂(s, t, j) = β̄(s, 0.5t+ 0.5ε0j − 0.5ε1), we have β̂(s, t, j) ∈ KLL and U(t, j) ≤

β̂(U(0, 0), t, j) + 2
∫ t

0
σ(‖ς(s)‖)ds. Then for all (t, j) ∈ dom ξ, there exists

βξ ∈ KLL such that

ξ̃(t, j) ≤ βξ(ξ̃(0, 0), t, j) + σ1

i=I−1∑
i=0

∫ ti+1

ti

σ2(‖ς(s, i)‖)ds+ σ1

∫ t

tI

σ2(‖ς(s, I)‖)ds.

(4.62)

Case II: ISS when |ς|(t,j) < R:

There exist α, ᾱ, W ∈ K, such that α(‖ξ̃‖) ≤ U(ξ) ≤ ᾱ(‖ξ̃‖). By (4.55),

Wb(∞) = λF . Let R = σ−1(λF ) and ε(‖ς‖) = 1
2
(1 − σ(‖ς‖)

λF
). Then, when

|ς|(t,j) < R, ∀‖ξ̃‖ ≥ W−1(
σ(|ς|(t,j))

1−ε(|ς|(t,j))
) = r(|ς|(t,j)) we have

〈OU(ξ), F (ξ, ς)〉 ≤ −ε(‖ς‖)Wξ(‖ξ̃‖) ≤ −ε(|ς|(t,j))Wξ(‖ξ̃‖), (4.63)

and there exists a αξ ∈ K such that, 〈OU(ξ), F (ξ, ς)〉 ≤ −αξ(ξ̃). Then, for all

ξ ∈ X, Xr = {ξ|‖ξ̃‖ > r},

U(ξ(t, j)) ≤ U(ξ(tk, k))− αξ(r)(t− tk), t ∈ [tk, tk + 1);

U(ξ(t, k + 1)) ≤ U(ξ(t, k)), t = tk+1.

In addition, since the system is Zeno-free, for any ξ(0, 0) ∈ Xr, there exists a

T > 0 such that

U(ξ(t, j)) ≤ U(ξ(0, 0))− αξ(r)T ≤ U(α(r)),

‖ξ̃(t, j)‖ ≤ α−1 ◦ (ᾱ(r)) = rξ,

where T = U(ξ(0,0))−U(α(r))
αξ(r)

. Denote the first time when ξ reach set Xξ : {‖ξ̃‖ ≤

rξ} as Tr. Since rb ≥ r, 〈OU(ξ), F (ξ, ς)〉 < 0 on the boundary of Xξ, Xξ is an
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invariant set. Combining the above facts with similar arguments in (4.61)–

(4.62), there exists a class KLL function β such that

‖ξ̃(t, j)‖ ≤ β(ξ̃(0, 0), t, j), t ∈ [0, Tr), tj ∈ [0, Tr),

‖ξ̃(t, j)‖ ≤ α−1 ◦ ᾱ(|r(ς)|(t,j)), t ∈ [Tr,∞), tj+1 ∈ [Tr,∞),

which leads to

‖ξ̃(t, j)‖ ≤ β(ξ̃(0, 0), t, j) + α−1 ◦ ᾱ(|r(ς)|(t,j)), ∀(t, j) ∈ dom ξ. (4.64)

Combining (4.62) and (4.64), one comes to the conclusion that the set Ξ is

strongly iISS in the sense of Definition 7.

Remark 18. In Condition 7, the second item is used to reflect the cascade

relationship between subsystems Sa and Sb. By (4.51), higher order couplings

exist, which introduce difficulties to provide the stability for the system. The

third item is used to ensure the convergence of subsystem Sa, and the forth

item gives the constraints on the strengths of different order couplings. These

constraints are determined by the inherent dynamics of subsystems Sa and Sb.

Notice that, strongly iISS is determined for the closed-loop system in Lemma

13. The higher order couplings between subsystems make it hard to find a

Lyapunov candidate decaying with a K∞ function of the states to provide ISS.

As a result, a K function is used to provide strongly iISS.

Finally, we can provide the overall stability results for the system in (4.26)–

(4.32) in the following theorem, where the expressions of some parameters and

matrices are defined as follows.

Items in Theorem 12–(i)

Aδ0 =


−c(I−ψ̄)− 1

2

(
(I−L̄ψ̄)+αVδ

I
)

−cI+ψ̄(cδLff+c)+(I−L̄ψ̄) cδψ̄Lff −ψ̄ −cδψ̄

∗§§ −cδ(I−ψ̄)Lff+cψ̄− 1
2

(
(I−L̄ψ̄)+αV∆

I
)
−cδ(I−ψ̄)Lff −ψ̄ cδ(I−ψ̄)

∗ ∗ 1
2

(−l2δ+αWe I) ∗ ∗
∗ ∗ ∗ 1

2
(−l2u+αWu I) ∗

∗ ∗ ∗ ∗ 1
2

(−lsδ
2+αWs I)


+ [∗ ∗ ¶¶]T

(4.65)
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Aσ1 =

[
1

ε27
∗ ∗

∗ 1

ε22
+ 1

ε24
+ 1

ε25
+ 1

ε26
∗

∗ ∗ ∗

]
+ [∗∗]T , Aσ2 =

1

2ε28
(

[ [
cδψ̄Lfl

cδ(1−ψ̄)Lfl

]
[∗∗]T ∗

∗ ∗

]
+ [∗∗]T ),

Aσ3 =
13

2
(
[
∗ ω2

0(1+ε23)[Anf ,Anf ,Anf ][∗∗]T ∗ ∗
∗ ∗ ∗ ∗

]
+ [∗∗]T ),

ψ̄ = ψδ+ψu
2

, L̄ = Lδ+Lu
2

, lπ = diag(lπnm+1 , · · · , lπn), Lπ = diag(Lπnm+1 , · · · , Lπn),

ψπ = diag(ψπnm+1 , · · · , ψπn), lsδ = diag(lsδnm+1
, · · · , lsδn).

Items in Theorem 12–(ii)

επ2 = ε2π21
, επ4 = 4ε2π41

+
ε2π42

2ε2π41

;

for π = ω, βω1 = αω0 + αω1 + λω1 , βω2 = αω2 ;

for π = v,m, βπ1 = απ1 , βπ2 = απ2 ;

for π = γ, βγ1 = αγ0 + αγ1 + λγ1 , βγ2 = αγ2 + λγ2 , βγ4 = αγ4 .

λπk = max{λ ∈ R : det(Qπ
k − λPf ) = 0, ∀τδi ∈ [0, τ δimacp), τsi ∈ [0, τ imasp), i ∈

Nf}, k = 0, 1, 2;

απ = min{λ ∈ R : det(Qπ − λPπ), ∀τπi ∈ [0, τπimacp), τsi ∈ [0, τ imasp), i ∈ N};

αω0 =
λω0

2

2ε2ω0

, αγ0 =
λγ0

2

2ε2γ0

, αω1 = 13 (r2
vσ

2(Anl) + rδmσ
2(Anl)),

αω2 = 13 (ε2ωσ
4(Anl) + ε29rδmσ

4(Anl)), α
v
1 = ε24, αv2 =

ε22
ε210

+ 13 1
4ε2f
σ2(Aff ),

αγ1 = ε25v
2
M + 13(vM + rv)

2σ2(Lfl), α
γ
2 = ε22ε

2
10 + 13(ε2γn

2
l + v2

Mσ
2(Aff )),

αγ4 = 13ε2fσ
2(Aff ), αm1 = ε28 + 13ω2

M(1 + 1
4ε23

)σ2(Anl), α
m
2 = 13λ2(Am);

Qω
0 =

[
ε21I 0 0

0 1

ε21
I 0

0 0 0

]
, Qγ

0 = σ(A1)I, Qω
1 = (1 + 1

4ε29
)

 ATnfATnf
ATnf

[∗∗]T 0

0 0

,

Qγ
1 = 13

[
ω2

0 [ATnfAnf ] 0 0

0 ATffAff 0

0 0 0

]
, Qγ

2 = 13


[
−cATff
−cATff

]
[∗∗]T 0

[
−cATff
−cATff

]
Aff 0

0 0 0 0
ATff [−cAff , −cAff ] 0 ATffAff 0

0 0 0 0

 ,
Pf =

[
I 0 0 0
0 lδφδ 0 0
0 0 luφu 0
0 0 0 lsδφ

s
δ

]
, φδ = diag(φδnm+1 , · · · , φδn),

φu = diag(φunm+1 , · · · , φun), φsδ = diag(φsδnm+1
, · · · , φsδn),

Qπ and Pπ are the same as the ones in Theorems 8–11.

§§ ∗ in a matrix represents zero matrix with compatible dimensions
¶¶ ∗∗ represents a copy of the matrix on its left side.
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Theorem 12. Consider the hybrid system in (4.26)–(4.32), for sufficiently

small εη and εχ, the set Ξδ = {ξ ∈ X|‖ξ̃T‖ = 0} is locally strongly iISS w.r.t.

ς if:

(i) for subsystem Sδ, there exist positive constants εk, k = 2, · · · , 8, ψπi , lπi ,

lsδi , αVδ , αV∆
, αWπ , αWs , π = δ, u, such that the following LMI can be

established: Aδ = Aδ0 + Aσ1 + Aσ2 + Aσ3 ≤ 0;

(ii) there exist positive constants επpq , π = γ, ω, v,m, p = 2, 4, q = 1, 2, such

that

απ − βπ1 ≥ 0, 2απ − επ2 − βπ2 ≥ 0, π = ω, v,m;

απ − βπ1 ≥ 0, 2απ − επ2 − βπ2 ≥ 0, 4απ − επ4 − βπ4 ≥ 0, π = γ;

(4.66)

(iii) the MASP satisfies τ imasp = min{τπimasp| π = δ, γ, v, ω}, with τπimasp =

1
lsπi

arctan
ρ̄i−ρi

2
;

(iv) for i ∈ Nf , the MACP satisfies τπimacp ≤ 1
lπi

arctan
ρ̄πi −ρπi

2
, with ρ̄πi ≤ 1

ρπi
,

ρi
π
≥ ρπi and ρπi satisfying (4.42); and ET functions are designed by

hπi(eπi , qπi , t) = lπi‖eπi‖2 − λπiρπiψπiq2
πi

, where qπi = δ̂i, π = u, δ;

(v) for i ∈ Nm, the MATP satisfies τ imati ≤ rm
κ1
, t ∈ [0, Tv); τ

i
mati ≤ rm

κ2
, t ∈

[Tv,∞). Here,

κ1 = max {lη2ωM , lχ2vM , (1 + d̄i0)Ui + vM + cδωM , ωM + Ui},

κ2 = max {lη2rω, lχ2rv, (1 + d̄i0)Ui + vM + cδωM , ωM + Ui};

(vi) the items in Theorems 8–11 are established.

Proof. Detailed proof is given in Appendix A.5.

Remark 19. The closed-loop MAS in (4.1) follows a cascade dynamics as

described in Table. 4.3 and Figure 4.3 (b). Theorems 8–11 provide the finite

time convergence of subsystem Sh and the ISS of subsystem Sa. According

to the cascade connection, when we analyse the dynamics of Sb, the effects

of Sh are considered as an L∞ disturbances bounded by rω and rv after short
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convergence time Tω and Tv; the influences of subsystem Sa are analyzed based

on the novel Lyapunove function candidate proposed in Lemma 13; and the

strongly iISS of the cascade system is provided. More specifically, the closed-

loop system is proved to be ISS under a disturbance bounded by a computable

threshold R, and is iISS otherwise. Since the amplitude of the disturbance is

determined by the convergence error of Sh, the inherent dynamics of Sa and

Sb, and the coupling strength between them, the threshold R can be served

as a criterion when designing the event-triggered controller and the network

infrastructure.

4.6 Simulations

In this section, we provide a numerical example to illustrate the effec-

tiveness of the proposed method. Consider an MAS with one leader, six

followers and a network as shown in Figure 4.1. The initial states and ex-

pected formation w.r.t. the leader are given by d(0) = [1, 1, 4, 6, 6, 6], β(0) =

[ π
12
,− π

12
, π

12
,− π

12
, 0], γ(0) = [ π

12
,− π

12
, π

12
,− π

12
, π

12
, π

12
] and d0 = [1.5, 1.5, 3, 3, 4, 4],

β0 = [π
6
,−π

6
,−π

5
, π

5
,−π

8
, π

8
], respectively. The leader’s velocities are given

by v0(t) = 0.45 + 0.05 cos(t), w0(t) = 0.1 cos(t); the constant is chosen as

rm = 0.05, and the input saturation for i ∈ Nm is selected as Ui = 2.

First, we show the finite time convergence of subsystem Sh. The

constants in (4.6) and (4.8) are chosen as εη = 0.005 and εχ = 0.08. The

MASPs calculated by Lemma 10 and the MATPs before and after convergence

are shown in Table 4.4. The simulation results are shown in Figure 4.4. Here,

we divide each curve into two parts according to the time domain, where the

left column illustrates the finite time convergence and the right column shows

the convergence error. The values of convergence error and convergence time

calculated by Theorem 8 and obtained by simulations are shown in Table 4.5.

For subsystems Sa, Sb, the corresponding MASPs calculated by Theorems

8 and 9 are summarized in Table 4.4, which shows that fast samplings are only
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Table 4.4: MASPs of agents

Level i ∈ Nm i ∈ Nf
Agent 1 2 3 4 5 6

MASP (10−2) 0.34× 10−2 0.34× 10−2 2.04 1.47 1.18 1.31
MATP(10−2),t ∈ (0, 1.2] 0.125 0.125 - - - -

MATP(10−2),t ∈ (1.2,∞) 1.1 1.1 - - - -

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

0.2 5 10 15
0

2

4

6

8 10-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

0.15 5 10 15
0

0.5

1

1.5

Figure 4.4: Finite-time convergence of subsystem Sh

Table 4.5: Convergence errors and convergence times of Sh

Subsystem Agent Computation Simulation
Error Time Error Time

Sη
1 0.0059 0.4275 0.0016 0.2093
2 0.0059 0.4188 0.0015 0.1484

Sχ
1 1.2590 1.1806 0.9183 0.1458
2 1.2590 0.9759 0.9188 0.1456

Table 4.6: MACPs and average inter-event times of agents

Group Subsystem Level State MACP (10−2) Inter-Event Time (10−2) Distribution(%)
Agent 1(3) 2(4) 5 6 1(3) 2(4) 5 6 3 4 5 6

Sa
Sm i ∈ Nm ui 1.12 1.12 - - 1.31 1.36 - - - - - -
Sω i ∈ Nf ω̂i 1.62 0.97 0.78 3.5 0.41 0.36 0.35 0.40 19.0 26.1 24.5 0
Sv * v̂i 1.62 0.97 0.78 3.5 * * * * 1.7 1.9 1.1 0
Sγ * γ̂i 1.86 0.55 0.42 0.44 * * * * 6.4 38.4 50.2 5.7

Sb Sδ
* δ̂i 0.48 0.59 0.50 0.40 * * * * 72.8 43.4 24.1 94.3
* ui 2.4 1.80 1.09 2.09 4.92 3.57 2.22 4.09

requested for agent i ∈ Nm. Table 4.6 gives the MACPs for each state and the

average inter-event times for each agent obtained by simulation. Since when

an ET condition is satisfied, the agent transmits all the local information, the
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Table 4.7: Steady-state error of Sa and Sb

Group State Level Steady-state error
Agent 1(3) 2(4) 5 6

Sa
δi i ∈ Nm 0.0099 0.0097 - -

∆ωi i ∈ Nf 0.0892 0.0890 0.0885 0.0878
∆vi * 0.0435 0.0434 0.0432 0.0428
∆γi * 0.0011 0.0013 0.0018 0.0026

Sb
δi * 0.2489 0.0594 0.2415 0.1105

∆δi * 0.0935 0.1443 0.1200 0.1516

distributions of the source that generates a transmission are also summarized

in Table 4.6. The control inputs are shown in Figure 4.5, which are only

updated at each triggering instant. The trajectories of the states belongs to

subsystem Sa and Sb are shown in Figure 4.6 and Figure 4.7, respectively,

with the steady-state errors summarized in Table 4.7.

The steady-state errors of Sa and Sb are with different numerical magni-

tudes, which coincide with the cascade structure in a sense that the errors are

accumulated in each level. The trajectories of all the agents in the MAS are

shown in Figure 4.8, which shows that the formation in the leader’s coordinate

frame is realized.

The following example is used to discuss the conservativeness of the re-

sults. In this case, we increase amplitude of the external disturbances as

v0(t) = 2 + 0.5 cos(t), ω0(t) = 0.25 + 0.5 cos(1.5t). The simulation results are

given in Figures 4.9–4.11. From Figures 4.9–4.10, we can tell that the finite

time convergence for subsystem Sh and the ISS property of subsystem Sa are

preserved. However, by Figure 4.11, subsystem Sb diverges because the exter-

nal disturbances exceed the threshold to guarantee the ISS property, which

means the strongly iISS might be the “best” stability result we can obtain for

the closed-loop system.

4.7 Summary

A leader-follower formation tracking problem without velocity measure-

ments has been solved in this chapter. PETMs were introduced for both
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Figure 4.5: Control inputs to the agents

communication and controller updates, where continuous measurements were

avoided. By reformulating the problem in a hybrid system framework, asyn-

chronous samplings and checking instants among agents were analyzed without

increasing the dimension of the system matrix. In addition, the underlying

communication network was managed separately for PULC and PUSC, which

took into account of their distinct features. The MAS was subject to a hierar-

chical structure, benefited from which, the acyclic assumption was removed.

Novel Lyapunov function candidates were proposed to illustrate different sta-

bility properties of three subsystems, and by reconstructing the system into

a cascade-connected structure, strongly iISS was provided for the overall sys-
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Figure 4.6: Trajectories of the states in subsystem Sa
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Figure 4.7: Trajectories of the states in subsystem Sb
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Figure 4.8: Trajectories of the agents. Here the solid lines represent the
trajectories of agents in Nm and the dashed lines represent the trajectories of
agents in Nf .

tem. The effectiveness of the proposed methods were further illustrated by a

numerical example.
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Figure 4.9: Finite-time convergence of subsystem Sh with larger disturbances
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Figure 4.10: Trajectories of the states in subsystem Sa with larger disturbances
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Figure 4.11: Trajectories of the states in subsystem Sb with larger disturbances
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Chapter 5

Distributed Optimization-Based
Formation Control under
Event-Triggered Mechanism∗

5.1 Overview

This chapter investigates an ETM for distributed optimization-based for-

mation problems of MASs under directed graphs. In most of existing results

[21, 22, 23], DOP was solved in a consensus sense, such that all agents in

MASs shared an identical optimal solution. In order to cope with certain

circumstances, like formation control of mobile robots [89], we consider the

situation where the optimal points of agents form some specific configura-

tions. The optimization-based formation problems were considered in [90]

and [68] as well. However, in these results, the equality constraint introduced

by formation configuration was treated as a penalty term in the global object

function; therefore, the transformed DOP was only equivalent to the original

one when the coefficient on the penalty term approached to infinity. In our

work, the optimization-based formation problem is solved by the modified La-

grangian based (MLB) algorithm [22]. The formation errors are estimated by

each agent locally, and a proportional-integral feedback structure is used to

∗A version of this chapter has been submitted to IEEE Transactions on Cybernetics as: J.
Yang, H. Yu, and T. Chen, Distributed optimization-based formation control: a dynamic
event-triggered approach.
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guarantee asymptotic stability of the closed-loop system.

In order to reduce network load, an ETM is proposed. Considering the

situation where MASs are subject to unknown disturbances, an auxiliary vari-

able was introduced to estimate the average influence of external disturbances

in [65] and [23]. Single-loop systems were considered in [65] and MASs with

connected underlying graphs were considered in [23]. However, their ETMs

cannot be extended trivially to the case that the underlying graph is directed.

Since the transmitted signals from neighbors are included explicitly in the con-

troller, the auxiliary variable introduced in [65] and [23] might not be continu-

ous between adjacent agent transmissions, which may lead to arbitrarily small

inter-event times. Motivated by this, a novel dynamic ETM is implemented

where a buffer variable is introduced to record the historical local informa-

tion including the average values of measurement errors over one transmission

interval. Subsequently, the transmission performance can be evaluated by a

computable positive minimum inter-event time and the closed-loop MAS is

proved to be ISES w.r.t. unknown disturbances.

Furthermore, two kinds of ET functions are investigated. By changing the

input to the buffer variables, which leads to different requirements on integra-

tion capacity, we show the trade-off between network load and computation

complexity. The effectiveness of the proposed method is verified by numerical

examples.

5.2 Preliminaries and Problem Formulation

5.2.1 Preliminaries

Some preliminaries and notations on graph theory are the same as those in

Section 2.2.1, and definition of L∞ norm and properties of system stabilities

are the same as those in Section 3.2.1. λ̄(·) and λ(·) represent the maximum

and minimum eigenvalues of a symmetric matrix, respectively.

Definition 8. ([91]) A differentiable function f : Rn → R is ν-strongly convex
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if for any x, y ∈ Rn,

f(y) ≥ f(x) + Of(x)T (y − x) +
ν

2
‖x− y‖2;

and it is µ-smooth if for any x, y ∈ Rn,

‖Of(x)− Of(y)‖ ≤ µ‖x− y‖,

where Of(x) stands for the gradient of f at point x.

A digraph G is strongly connected if for every pair of nodes there exists

a directed path connecting them, and it is weight-balanced if
∑n

j=1 aij =∑n
k=1 aki, i ∈ N and aij ≥ 0, ∀i, j ∈ N . Let di =

∑n
j=1 aij represent the

out-degree of node i; and L ∈ Rn×n be the Laplacian matrix of diagraph G,

where [L]ij = −aij if i 6= j, and [L]ii =
∑

j∈Ni aij

Lemma 14. ([57, 92]) For a strongly connected and weight-balanced digraph

G with n nodes and Laplacian matrix L, one has

• L+ LT ≥ 0 and 0 is a simple eigenvalue;

• Lx = 0 iff x ∈ Rn and all the elements in x are the same;

• there exists a nonnegative constant εL satisfying

1

2
εL(L+ LT ) ≥ 1

4
(LT − L)(L− LT );

• there exists a matrix Γ > 0 such that L+LT

2
Γ = ΓL+LT

2
= Π with Π =

In − 1
n
1n1

T
n .

Lemma 15. ([23]) Consider the function m(t) = ave[t0,t](|s|), t > t0, with a

given initial instant t0, a nonnegative signal s : R → R≥0 and ave[t0,t](s) =∫ t
t0

1
t−t0 s(τ)dτ , then the following two equations hold: limt→t+0

m(t) = s(t0);

and ṁ(t) = − 1
t−t0m(t) + 1

t−t0 s(t), t > t0.
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5.2.2 Event-Triggered Optimization-Based Formation Con-
trol

Consider a MAS with n agents modeled by single integrators subject to

unknown disturbances

ẋi = ui + ωi, i = 1, · · · , n, (5.1)

where xi ∈ R is the state, ωi ∈ R is the unknown disturbance, and ui ∈ R

is the control input to be designed. Each agent i is only aware of its local

object function fi(xi) : R → R, which is not shared with others, and can

communicate with each other via the interaction network described by G.

The goal of the MAS is to minimize a global object function

f(x) =
∑
i∈N

fi(xi), x = [x1, · · · , xn]T , (5.2)

and, at the same time, converge to the formation given by

L(x− h) = 0, (5.3)

where L is the Laplacian matrix associated with G and h = [h1, · · · , hn]T ∈ Rn

is the desirable configuration known to all agents.

Assumption 11. The local objective function fi(x) is µi-smooth and νi-

strongly convex.

Assumption 12. The underlying digraph G is strongly connected and weight-

balanced.

Under Assumption 11, the optimization problem in (5.2) and (5.3) has an

unique optimal solution. The corresponding Lagrange function is given by

L(x, λ) =
∑

i∈N fi(xi) + λTL(x − h) with a Lagrange multiplier λ ∈ Rn; and

the constrained optimization problem is solved iff the Karush–Kuhn–Tucker

condition

Lx∗ =

 Of1(x∗1)
...

Ofn(x∗n)

+ LTλ = 0 (5.4)
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is satisfied, where x∗ = [x∗1, · · · , x∗n]T ∈ Rn is the optimal solution.

Assuming agents can transmit local information continuously, controller ui

is designed according to the MLB algorithm as{
ui = −αOfi(xi)− β

∑
j∈Ni aij(xi − xj − hi + hj)− vi,

v̇i = γ
∑

j∈Ni aij(xi − xj − hi + hj).
(5.5)

When ωi = 0, the equilibrium point in (5.1) and (5.5) satisfies{∑
j∈Ni aij(xi − xj − hi + hj) = 0

−αOfi(xi)− vi = 0.
(5.6)

Under Assumption 12,
∑

i∈N v̇i = 0. If
∑

i∈N vi(0) = 0, we have
∑

i∈N vi(t) =

0. Since span{LT} ⊥ 1n, there always exists a λ satisfying v = LTλ and (5.4),

where v = [v1, . . . , vn]T is decided from (5.6). Therefore, the goal in (5.2) and

(5.3) is achieved if the state x can converge to the equilibrium decided by

(5.6).

Remark 20. It should be noted that using the Kronecker product on Lapla-

cian matrix L, the MAS in (5.1) can be generalized to the case where xi, ui, ωi ∈

Rm. For notational simplicity, we only consider the scalar case in this work.

Since the communication among MASs is inherently discrete in digital

channels, in this paper, we focus on designing an ETM for system (5.1) and

(5.5) such that agents only transmit local information when some predeter-

mined ET conditions are violated. Let x̂i represent the value of xi at its latest

transmission instants; then the dynamics of the event-triggered system can be

represented as
ẋi = ui + ωi

ui = −αOfi(xi)− β
∑

j∈Ni aij(x̂i − x̂j − hi + hj)− vi
v̇i = γ

∑
j∈Ni aij(x̂i − x̂j − hi + hj),

(5.7)

under the initial condition constraint
∑

i∈N vi(0) = 0, where{
x̂i(t) = xi(t), t = tiki
x̂i(t) = xi(t

i
ki

), t ∈ [tiki , t
i
ki+1),
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and tiki represents the transmission instant of agent i generated by the following

dynamic ETM:

tiki+1 = inf{t > tiki |gi(t) < 0}. (5.8)

Here, gi : R≥0 → R is an auxiliary (buffer) variable to be specified later.

In the subsequent section, we will provide a detailed design for the ETM

in (5.8) such that the closed-loop system in (5.7) is ISES w.r.t. disturbances.

Furthermore, Zeno-freeness is ensured by a computable positive minimum

inter-event time.

5.3 Event-Triggered Optimization Algorithm

Inspired by [65] and [23], we introduce an auxiliary average variable ηi to

estimate the effects of unknown disturbances

ηi =
1

t− tiki
max

{
‖x̂i − xi‖ −

∫ t

tiki

‖αOfi

+ β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj) + vi‖dτ, 0
}
, i ∈ N .

(5.9)

Then, a novel dynamic ETM is proposed based on the following buffer variable:

ġi =− pigi − ai‖x̂i − xi‖2 +mi(αOfi + vi)
2

+ li
(
β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj)
)2

+ ciη
2
i ,

(5.10)

with gi(0) = 0, where ai, pi, mi, ci > 0 are parameters to be determined later.

The following lemma discusses Zeno-freeness of the closed-loop system with

the ETM described in (5.8)–(5.10).

Lemma 16. For each agent i, the ETM given in (5.8)–(5.10) admits a positive

minimum inter-event time ∆Ti satisfying

∆T 2
i e

pi∆Ti =
min{li,mi, ci}

2ai
.
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Proof. Let eti = x̂i − xi represent the measurement error of agent i with

the augmented vector et = [et1 , · · · , etn ]T . By (5.7), eti is differentiable and

bounded for t ∈ (tiki , t
i
ki+1). According to L’Hospital’s rule, we have

lim
t→(tiki

)+

‖eti(t)‖
t− tiki

is well defined and finite. Similar arguments are applied to

lim
t→(tiki

)+

∫ t
tiki
‖β
∑

j∈Ni aij(x̂i − x̂j − hi + hj) + αOfi + vi‖dτ

t− tiki
.

As a result, according to (5.9), for t ∈ [tiki , t
i
ki+1), we have

‖eti‖ ≤
∫ t

tiki

‖β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj) + αOfi + vi‖dτ + (t− tiki)ηi.

Use Cauchy-Schwartz inequality

‖eti‖2 ≤2(t− tiki)
2η2
i + 2(t− tiki)ξi(t).

where

ξi(t) =

∫ t

tiki

(β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj) + αOfi + vi
)2
dτ.

Integrate on both sides,∫ t

tiki

‖eti‖2dτ ≤
∫ t

tiki

(
2(τ − tiki)

2η2
i + 2(τ − tiki)ξi(τ)

)
dτ

≤2(t− tiki)
2

∫ t

tiki

η2
i dτ + (t− tiki)

2ξi(t)

≤2(t− tiki)
2

∫ t

tiki

η2
i dτ + 2(t− tiki)

2

×
∫ t

tiki

(β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj))
2 + (αOfi + vi)

2dτ,

(5.11)

By (5.10), we have∫ tiki+1

tiki

epi(τ−t
i
ki

)ai‖eti(τ)‖2dτ

=

∫ tiki+1

tiki

epi(τ−t
i
ki

)(li(β∑
j∈Ni

aij(x̂i − x̂j − hi + hj))
2 +mi(αOfi + vi)

2 + ciη
2
i

)
dτ.
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Then,∫ tiki+1

tiki

ai‖eti(τ)‖2dτ ≥

e−pi∆T
i
ki

∫ tki+1

tki

(
li(β

∑
j∈Ni

aij(x̂i − x̂j − hi + hj))
2 +mi(αOfi + vi)

2 + ciη
2
i

)
dτ,

(5.12)

where ∆T iki = tiki+1 − tiki . Combining (5.11) and (5.12), the minimum inter-

event time can be calculated from

∆T 2
i e

pi∆Ti =
min{li,mi, ci}

2ai
. (5.13)

The stability of the system is shown in Theorem 13. In order to guarantee

ISES w.r.t. unknown disturbances, a Lyapunov method is used to facilitate

the selection of parameters in auxiliary variable (5.10) and the feedback gains

in (5.7).

Theorem 13. Consider the sampled-data system in (5.7) under ETM in (5.8–

5.10); for any given pi > 0, there always exist small enough li, mi, ci > 0, large

enough α, β, ai, i ∈ N , and well designed γ > 0, such that the closed-loop

system is ISES w.r.t. unknown disturbance ω = [ω1, · · · , ωn]T .

Proof. By (5.7), we have

‖ėti‖ ≤ ‖αOfi(xi) + β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj) + vi‖+ ‖ωi‖. (5.14)

Integrate on both sides,

‖eti(t)‖ ≤
∫ t

tiki

‖αOfi(xi) + β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj) + vi‖dτ +

∫ t

tiki

‖ωi‖dτ.

Combining with (5.8) and (5.9), we have

‖ηi‖ ≤ ‖ωi‖∞. (5.15)
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Let exi = xi − x∗i , evi = vi − v∗i , i ∈ N , with the corresponding augmented

vector ex = [ex1 , · · · , exn ]T , ev = [ev1 , · · · , evn ]T , and g =
∑n

i=1 gi. Consider a

Lyapunov function

V =
1

2

(
aeTx ex + (bex + ev)

TΓ(bex + ev)
)

+ g, (5.16)

where a, b are positive constants to be specified later. When there is no event,

the derivative of (5.16) can be represented as

V̇ =
1

2
a
(
eTx (−αq − βL(et + ex)− ev + ω) + (−αq − βL(et + ex)− ev + ω)T ex

)
+

1

2
(bex + ev)

TΓ(b(−αq − βL(et + ex)− ev + ω) + γL(et + ex)) + ġ

+
1

2
(b(−αq − βL(et + ex)− ev + ω) + γL(et + ex))

TΓ(bex + ev)
)

=
1

2
eTx
(
− aβ(L+ LT ) + b(γ − bβ)(ΓL+ LTΓ)

)
ex + eTv (−Γ)ev

+ eTx
(
− a− b2Γ + (γ − bβ)LTΓ

)
ev

+ eTx
(
− aβL+ b(γ − bβ)ΓL

)
et + eTv (γ − bβ)ΓLet

+ eTx (a+ b2Γ)(−αq + ω) + eTv bΓ(−αq + w) + ġ

where ω = [ω1, · · · , ωn]T . Under Assumption 12, according to Lemma 14, we

have

eTv ΓLex =eTv Γ(
L+ LT

2
)ex + eTv Γ(

L− LT

2
)ex

=eTv (I − 1

N
1N1TN)ex + eTv Γ(

L− LT

2
)ex

=eTv ex + eTv Γ(
L− LT

2
)ex

≤eTv ex + eTv Γ

√
εL(

L+ LT

2
)ex.

Under Assumption 11, let a = γ−bβ. Then, by introducing some free parame-

ters δk1 , k1 ∈ {1, 2, 3, 4, 5, 6}, δk2
ω , k2 ∈ {x, v}, based on the Young’s inequality,
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we have

V̇ ≤(
− aαν +

δxω
2

(a+ b2λ(Γ)) +
δ3

2
b2λ̄(Γ) +

δ4

2
aβλ̄(L) + a(

δ2

2
+ b+

δ5

2
b)λM

)
eTx ex

+
(
− λ(Γ) + bλ̄(Γ)

δvω
2

+ (
2

δ3

b2 + αbµ)λ̄(Γ) + (
2

δ2

+
δ6

2
)aλM +

1

2δ1

λ̄(Γ)2
)
eTv ev

+
(
aβλ̄(L)

2

δ4

+ (
2

δ5

b+
2

δ6

a)λM
)
eTt et + (

2

δvω
bλ̄(Γ) +

2

δxω
(a+ b2λ̄(Γ)))ωTω

+ eTx
(
− aβ +

δ1

2
εLa
)
(
LT + L

2
)ex + ġ.

Here λM = λ̄(Γ)λ̄(L), ν and µ represent the minimum and maximum of νi

and µi for all i ∈ N , respectively. Therefore, for any given a, δ3, δ5 > 0, there

always exist large enough α, β, δ1, δ2 > 0 and small enough b, δxω, δvω, δ4,

δ6 > 0 such that
−aαν + δxω

2
(a+ b2λ̄(Γ)) + δ4

2
aβλ̄(L) + a( δ2

2
+ b+ δ5

2
b)λM + δ3

2
b2λ̄(Γ) = −ε′x

< 0

−λ(Γ) + bλ̄(Γ) δ
v
ω

2
+ ( 2

δ3
b2 + αbµ)λ̄(Γ) + ( 2

δ2
+ δ6

2
)aλM + 1

2δ1
λ̄(Γ)2 = −ε′v < 0

−aβ + δ1
2
εLa < 0.

Then, we have γ = a+ bβ, and

V̇ ≤ −ε′xeTx ex − ε′veTv ev + ε′te
T
t et + ε′ω‖ω‖2

∞ + ġ, (5.17)

where

ε′t = aβλ̄(L)
2

δ4

+ (
2

δ5

b+
2

δ6

a)λM

ε′ω =
2

δvω
bλ̄(Γ) +

2

δxω
(a+ b2λ̄(Γ)).

According to (5.10) and (5.15), we have

V̇ ≤− ε′x‖ex‖2 − ε′v‖ev‖2 + ε′t‖et‖2 + ε′ω‖ω‖2
∞+
∑
i∈N

(
− pigi − ai‖eti‖2

+mi(αqi + evi)
2 + ciη

2
i + li

(
β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj)
)2)

≤(−ε′x + 8l̄β2d̄2 + 2α2 max
i∈N
{miµ

2
i })‖ex‖2 + (−ε′v + 2m̄)‖ev‖2

+ (−a+ ε′t + 8l̄β2d̄2)‖et‖2 − pg + (c̄+ ε′ω)‖ω‖2
∞,

(5.18)
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where l̄, d̄ and m̄ represent the maximum of li, di and mi for all i ∈ N ,

respectively; and c, p and a represent the minimum of ci, pi and ai for all

i ∈ N , respectively. By (5.18), the parameters in (5.10) can be designed

based on the following condition

−ε′x + 8l̄β2d̄2 + 2α2 max
i∈N
{miµ

2
i } = −εx < 0

−ε′v + 2m̄ = −εv < 0

−a+ ε′t + 8l̄β2d̄2 = −εt < 0.

According to (5.16), we have

V ≤ 1

2

(
a+ b2λ̄(Γ) + bλ̄(Γ)

)
‖ex‖2 +

1

2

(
1 + bλ̄(Γ)

)
‖ev‖2 + g

V ≥ 1

2
(a+ λ(Γ)(1− 1

δv
)b2)‖ex‖2 +

1

2
λ(Γ)(1− δv)‖ev‖2 + g,

(5.19)

where 0 < δv < 1 and satisfies a+ λ(Γ)(1− 1
δv

)b2 > 0. Then,

V̇ ≤ −εV + εω‖ω‖2
∞, (5.20)

where ε = min{ 2εx
a+b2λ̄(Γ)+bλ̄(Γ)

, 2εv
1+bλ̄(Γ)

, p} and εω = c̄+ ε′ω. When agent i trans-

mits its local information at tiki , we have V (ti+ki ) = V (tiki). Therefore, the

closed-loop system is proved to be ISES w.r.t. w from (5.20).

Remark 21. Event-triggered DOP was considered in [23] under connected

graphs. Since the underlying graph was undirected, the feedback gain β in

(5.7) could be set as zero, which means that agents would not be directly af-

fected by neighbors’ transmitted information. As a result, the ETM proposed

in [23] was in the following static form independent of any buffer variables:

tiki+1 = inf
{
t > tiki | ‖x̂i − xi‖ > max{bi‖µ̄i‖, ci‖η̄i‖}

}
, (5.21)

where bi, ci > 0 were constants, µ̄i was a vector related to its own state xi,

and η̄i was the auxiliary variable introduced following a similar motivation as

ηi in (5.9):

η̄i=
max{‖x̂i − xi‖−ai(t− tiki) max{‖µ̄i(t)‖, ‖x̂i − xi‖}, 0}

mi(t− tiki)
, (5.22)
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with ai, mi > 0 to be designed. Since (5.21) and (5.22) only depended on

agent’s own state, η̄i is always continuous before the next transmission instant

tiki+1. However, the underlying graph considered in this work is directed. In

order to ensure stability, β must be positive resulting in explicit dependence of

ui on neighbors’ broadcast information. Since the transmissions among MASs

are asynchronous and independent, we use an integral term in (5.9) and a

buffer state gi in (5.10) to record the transmitted information from agent’s

neighbors before the next transmission instant tiki+1.

Remark 22. The ETM proposed in this work is applied to the distributed

formation problem with time-varying desirable configuration h considered in

[68]. In that case, the dynamics of h is estimated by auxiliary variable ηi, and

the closed-loop system is ISES w.r.t. disturbances and ḣ.

5.4 ETM with Less Computation Complexity

The auxiliary variable in (5.9) includes integration of a piece-wise con-

stant term
∑

j∈Ni aij(x̂i− x̂j) and continuous terms αOfi and vi. Clearly, the

computation complexity for the first one is much less than the second. In

order to reduce the load on microprocessors, we consider another design of

the auxiliary average variable ηi as

ηi =
1

t− tik
max{‖x̂i − xi‖ −

∫ t

tiki

‖β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj)‖dτ, 0}. (5.23)

Correspondingly, the ETM is given by

tiki+1 = min{tiki + T, t̃iki+1},

t̃iki+1 = inf{t > t̃iki : gi(t) < 0}.
(5.24)

Here, T > 0 is a user-specified upper bound of inter-event times, and the

buffer signal is given as

ġi =− pigi − ai‖x̂i − xi‖2 + li
(
β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj)
)2

+ ciη
2
i , (5.25)
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with gi(0) = 0, where pi, li, ai, ci > 0 are positive constants to be specified

later. Consequently, the analytical solutions of ηi and gi can be obtained in a

piece-wise form.

Theorem 14. Consider the sampled-data system in (5.7) under ETM in

(5.23)–(5.25). For any given pi > 0, there always exist small enough ci, li > 0,

large enough α, β, ai, i ∈ N , and well designed γ > 0, such that the closed-

loop system is ISES w.r.t. unknown disturbance ω = [ω1, · · · , ωn]T . Further-

more, Zeno-freeness is guaranteed by a computable minimum inter-event time

satisfying inf{tik+1 − tik} ≥ min{T,∆Ti}, with ∆Ti being the unique positive

solution of

∆T 2
i e

pi∆Ti =
min{li, ci}

2ai
.

Proof. The Zeno-free behavior can be proved following a similar line in Lemma

16. By (5.7), (5.8) and (5.23) we have

‖ηi‖ ≤ ave[tik,t]
‖αqi‖+ ave[tik,t]

‖evi‖+ ‖ωi‖∞. (5.26)

For notational convenience, in the following, we drop the subscript [tiki , t] in

ave(·)[tiki
,t] if there is no ambiguity. Considering a storage function as in (5.16),

when there is no event, the derivative of (5.16) can be represented as

V̇ ≤− ε′x‖ex‖2 − ε′v‖ev‖2 + ε′t‖et‖2 + ε′ω‖ω‖2
∞ +

∑
i∈N

(
− pigi + ciη

2
i

− ai‖eti‖2 + li
(
β
∑
j∈Ni

aij(x̂i − x̂j − hi + hj)
)2)

≤(−ε′x + 8l̄β2d̄2)‖ex‖2 − ε′v‖ev‖2 + (−a+ ε′t + 8l̄β2d̄2)‖et‖2

− pg + ε′ω‖ω‖2
∞ +

∑
i∈N

ci
(
(1 + δωx + δxv)ave‖exi‖2

+(1 +
1

δωv
+

1

δxv
)ave‖evi‖2 +(1 +

1

δωx
+ δωv)ave‖ωi‖2

)
≤− εxeTx ex − εveTv ev − εteTt et − pg + εω‖ω‖2

∞

+
∑
i∈N

ci
(
(1 + δx)α

2µ2
i ave‖exi‖2 + (1 + δv)ave‖evi‖2

)
,

where ε′x, ε
′
v, ε

′
t and ε′ω have the same expressions as in (5.17) and δx =

δωx + δxv, δv = 1
δωv

+ 1
δxv

, εx = ε′x − 8l̄β2d̄2, εv = ε′v, εt = a − ε′t − 8l̄β2d̄2
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and εω = 1 + ε′ω + 1
δωx

+ δωv. According to (5.19), we have

V̇ = −εV + εω‖ω‖2
∞ +

∑
i∈N

ci
(
(1 + δx)α

2µ2
i ave‖exi‖2 + (1 + δv)ave‖evi‖2

)
,

where ε has the same expression as in (5.20). According to (5.19), when

V ≥ max
i∈N

{
1

2
(a+ λ̄(Γ)(1− 1

δv
)b2)ave‖exi‖2,

1

2
λ̄(Γ)(1− δv)ave‖evi‖2

}
,

the derivative of V satisfies

V̇ ≤− εV + εω‖ω‖2
∞ +

(
c̄
∑
i∈N

(1 + δx)α
2µ2

i

2V

a+ λ̄(Γ)(1− 1/δv)b2

)
+ c̄n(1 + δv)

2V

λ̄(Γ)(1− δv)
.

(5.27)

As a result, when

ε

2c̄
≥
∑
i∈N

(1 + δx)α
2µ2

i + c̄n(1 + δv), (5.28)

we have

V̇ ≤ − ε
2
V + εω‖ω‖2

∞, (5.29)

and there always exist small enough ci, i ∈ N , such that the condition in

(5.28) can be established.

Consider a Lyapunov function as

O(t) = max
i∈N

{
V,

1

4
(a+ λ̄(Γ)(1− 1

δv
)b2)ave‖exi‖2,

1

4
λ̄(Γ)(1− δv)ave‖evi‖2

}
.

Case I: O(t) = V (t). When there is no jump, we have (5.29).

Case II: O(t) = 1
4
(a+ λ̄(Γ)(1− 1

δv
)b2)ave‖exi‖2 and

ave‖exi‖2 ≥ 4V (t)

a+ λ̄(Γ)(1− 1/δv)b2
≥ 2eTx ex ≥ 2eTxiexi .

Then, it follows from the user-specified upper bound T of inter-event times

that

Ȯ(t) ≤ − 1

t− tiki
(O(t)− O(t)

2
) ≤ − 1

2T
O(t).
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Case III: O(t) = 1
4
λ̄(Γ)(1− δv)ave‖evi‖2. This is similar to Case II.

When agent i transmits its local information at tiki , we have V (ti+ki ) =

V (tki). When O(tiki) = 1
4
(a + λ̄(Γ)(1 − 1

δv
)b2)ave‖exi‖2, according to Lemma

15, we have

lim
t→ti+ki

O(t) =
1

4
(a+ λ̄(Γ)(1− 1

δv
)b2)‖exi(tiki)‖

2 ≤ 1

2
V (tiki).

Similar conclusions can be applied when O(t) = 1
4
λ̄(Γ)(1− δv)ave‖evi‖2. As a

result O(ti+ki ) = O(tiki). Combining the cases above with

Ȯ(t) ≤ −min

{
ε

2
,

1

2T

}
O(t) + εω‖ω‖2

∞,

one can prove ISES of the closed-loop system w.r.t. w.

Remark 23. Comparing equations (5.8)–(5.10) and (5.23)–(5.25), the inter-

event time in the second method is upper bounded by a user-specified con-

stant T . In addition, besides ωi, the upper bounds on ηi in (5.23) is related to

ave(evi) and ave(exi). As a result, the ETM in (5.24) would be more conser-

vative than the one in (5.8). This reveals the trade-off between computation

complexity and network load.

5.5 Simulations

Numerical examples are used to illustrate the effectiveness of the proposed

methods in this section. Consider a MAS with four agents. The underlying

graph is described by the Laplacian matrix

L =

[
0.5 0 0 −0.5
−0.5 0.5 0 0

0 −0.5 0.5 0
0 0 −0.5 0.5

]
.

The desirable formation is give as h = [−1,−0.5, 0, 0.5]T , and the local object

functions are f1 = x2 +ln(x2 +1), f2 = x2−2x, f3 = (x−4)2 and f4 = 1.25x2.

The optimal values are x∗ = [0.316, 0.816, 1.314, 1.814]T . The gains in con-

troller (5.7) are chosen as α = 5, β = 8, γ = 0.48, and the parameters of

auxiliary variables ηi and gi in (5.9) and (5.10) are chosen as pi = 1, ai = 50,
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Figure 5.1: Trajectories under the ET function in (5.9) and (5.10) without
disturbances

li = 0.016, mi = 0.005 and ci = 1.

Figure 5.1 shows the simulation result without disturbances and Figure

5.3 shows the corresponding inter-event times with the minimum, average and

theoretical inter-event times listed in Table 5.1. Figure 5.2 shows the simula-

tion result subject to disturbances ωi(t) = 0.1 cos(0.5t), and the steady-state

error is ‖ex‖ = 0.1183. Figure 5.4 shows the corresponding inter-event times

with the minimum and average inter-event times listed in Table 5.1, which il-

lustrates that (i) Zeno behavior can be excluded in the absence and presence of

disturbances, (ii) the existence of disturbances generates more transmissions,

and (iii) our proposed ETM can adaptively allocate communication resources

based on the on-line demands.

Table 5.1: Statistic properties of inter-event times under the ET function in
(5.9) and (5.10)

Agents 1 2 3 4
No Minimum 0.0151 0.0085 0.0085 0.0117

Disturbances Average 4.0988 2.5388 2.8033 3.5590
With Minimum 0.0043 0.0077 0.0065 0.0114

Disturbances Average 0.8422 0.6721 0.4701 0.8980
Theoretical Minimum 0.0040
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Figure 5.2: Trajectories under the ET function in (5.9) and (5.10) with dis-
turbances
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Figure 5.3: Inter-event times under the ET function in (5.9) and (5.10) without
disturbances
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Figure 5.4: Inter-event times under the ET function in (5.9) and (5.10) with
disturbances

The parameters of auxiliary variables ηi and gi in (5.23) and (5.25) are

chosen as ai = 50, li = 0.016, ci = 0.0001 and T = 20. Figures 5.5 and

5.6 show the simulation results without disturbances and with disturbances

ωi(t) = 0.1 cos(0.5t), respectively. The steady-state error for the disturbed

case is ‖ex‖ = 0.1190. Some statistic properties of inter-event times are sum-

marized in Table 5.2. Comparing the results given in Tables 5.1 and 5.2, the

Table 5.2: Statistic properties of inter-event times under the ET function in
(5.23) and (5.25)

Agents 1 2 3 4
No Minimum 0.0031 0.0022 0.0057 0.0058

Disturbances Average 1.4304 1.1802 1.3764 1.8707
With Minimum 0.0022 0.0022 0.0022 0.0022

Disturbances Average 0.0907 0.2392 0.0600 0.3469
Theoretical Minimum 0.0010

inter-event times of the first method in Section 5.3 are larger than the ones of

the second method in Section 5.4. This supports the discussions in Remark

23.
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Figure 5.5: Trajectories under the ET function in (5.23) and (5.25) without
disturbances
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Figure 5.6: Trajectories under the ET function in (5.23) and (5.25) with
disturbances
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5.6 Summary

In this chapter, we proposed an ETM to solve a distributed optimization-

based formation problem under strongly connected and weight-balanced di-

agraph. Under the proposed method, MASs could minimize a global object

function and converge to a desirable configuration simultaneously. An aux-

iliary average variable was introduced to estimate the influence of unknown

disturbances between adjacent transmissions, and a novel dynamic ETM was

used to deal with asynchronous transmissions among agents. Benefited from

the novel ETM, the closed-loop system is ISES w.r.t. unknown disturbances,

and Zeno-freeness is guaranteed for each agent by a computable positive min-

imum inter-event time. Furthermore, the trade-off between network load and

computation complexity was discussed by constructing different ETMs that

used different signals in the auxiliary variables. The effectiveness of the meth-

ods was verified by numerical examples.
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Chapter 6

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are pointed out for future work.

6.1 Conclusions

This thesis studies a variety of cooperative control problems for MASs. To

reduce network load and energy consumption, ETMs are proposed to generate

data transmissions and/or controller updates for the considered problems. The

outcomes of the work in this thesis are summarized as follows:

1. An affine formation of general nonholonomic systems on the SE(3) is

studied. A distributed control protocol is proposed, under which, MASs

can converge to the desirable configuration. The control protocol only

relies on relative information detected by agents’ onboard sensors, and

the configuration of MASs can be manipulated by only a few agents in

the system. In addition, a distributed algorithm is proposed to recon-

struct a k-rooted graph when some edges are lost. Taking the advantage

of that, the proposed control protocol can be implemented under switch-

ing graphs. Furthermore, an ETM is proposed, such that the controller

updates and data transmissions occur only when it is necessary to main-

tain system stability. To guarantee Zeno-freeness, an absolute term is

introduced to the ET function with some sacrifice of system performance.
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2. A COR problem is studied in a hybrid system framework. Consider-

ing inevitable network-induced imperfections, robustness against asyn-

chronous transmissions and time-varying delays are analyzed in terms

of MATIs and MADs, respectively. A novel Lyapunov candidate is pro-

posed to facilitate stability analysis, by which, a more intuitive trade-off

relationship between MATIs and MADs is given.

3. A formation tracking of nonholonomic systems without velocity mea-

surements is studied. The information flow through detection networks

and communication networks are considered separately. The first kind is

defined as PULC, and we assume that the detected information is used

directly; while the second kind is defined as PUSC, and PETMs are

proposed to generate transmission events. Furthermore, a hierarchical

structure is proposed to remove the acyclic assumption. Based on this

structure, estimation and control strategies are proposed to the agents

in different levels. The closed-loop MAS follows a cascade structure, and

novel Lyapunov candidates are proposed to facilitate stability analysis,

where finite time convergence, ISS and strongly iISS are provided for

the corresponding subsystems.

4. A distributed optimization-based formation problem is studied, where

each agent is only aware of its local object function and can communi-

cate with its neighbors. A distributed control protocol is proposed based

on MLB algorithms, such that the MAS can agree on the global optimal

solution and converge to the desirable formation. An ETM is proposed

to generate transmission events. To guarantee Zeno-freeness under dis-

turbed cases, an auxiliary variable is introduced to estimate the average

effect of disturbances to the MAS. Furthermore, the closed-loop system

is proved to be ISES w.r.t the disturbances.

The effectiveness and applicability of the proposed methods are validated

by case studies using numerical examples.
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6.2 Future Work

This thesis studied several cooperative control problems of MASs, in-

cluding affine formation control, COR, foramtion tracking and distributed

optimization-based formation. Considering inevitable network-induced im-

perfections, the robustness against asynchronous samplings and time-varying

delays was investigated. To reduce network load and energy consumption,

ETMs were proposed, such that the controller updates and/or data trans-

missions only occurred when some predetermined thresholds were violated.

However, the robust analysis and ETM designs were proposed for the MASs

with specific dynamics. A method that is available to general MASs is still

required. In addition, as one of the most critical problem in ETMs, Zeno-

behavior has not been solved systematically. To meet the demands in some

general and systematic methods to analyze the influence of network-induced

imperfections and facilitate Zeno-free ETM designs, the following promising

directions deserve efforts for future work.

Robustness Against Network-Induced Imperfections for
MASs with General Dynamics

Cooperative control of MASs relies on the information flow among agents.

However, the introduction of communication networks comes with network-

induced imperfections inevitably, such as asynchronous samplings, time-varying

delays, quantization errors, communication constraints and data dropouts.

There are plenty of literature focusing on investigating the influence of these

imperfections on NCSs, and most of them formulated and solved the problem

in a hybrid system framework. But the Lyaounov function used in the ex-

isting results on NCSs ignored some distinct features of sampled-data MASs,

which would led to some inconsistency and unintuitive analysis. In Chap-

ter 3, we studied the robustness against network-induced imperfections for

a COR problem under a hybrid system framework. The tolerance of asyn-

chronous transmissions and time-varying delays were given in terms of MATIs
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and MADs. A novel Lyapunov function candidate was proposed to facilitate

the analysis of system stability, which led to a more intuitive trade-off design

of MATIs and MASs. In practice, several types of communication imperfec-

tions always come simultaneously and the system dynamics are more complex.

Therefore, a method which can cope with different types of communication

imperfections and be applied to general system dynamics is required.

Zeno-Free Event-Triggered Mechanism for MASs

In order to reduce network load and energy consumption, ETMs are pro-

posed as an improvement over the classical time-triggered mechanisms. Con-

sequently, the exclusion of Zeno-behavoir needs to be taken into consideration.

In Chapter 2, an absolute term was used to guarantee Zeno-freeness in the

price of sacrificing asymptotic convergence. In Chapter 3, PETCs were ap-

plied, the continuous measurements and Zeno-behavior were excluded simul-

taneously. However, the system might degrade to classical periodic sampling

when there exist disturbances. In Chapter 4, a dynamic ETM was proposed

and an auxiliary variable was introduced to estimate the influence of distur-

bances. The closed-loop system was Zeno-free and ISES w.r.t. disturbances.

But the robustness against network-induced imperfections was not provided,

and continuous monitoring of system states was required. Based on the above

analysis, it is worthy to investigate a systemic method that can provide ISS

property against external disturbances with guaranteed Zeno-freeness, and at

the same time, be free of continuous monitoring and robust to network-induced

imperfections.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 8

Step 1: Convergence of subsystem Sη.

According to (4.6), the hybrid system model of Sη can be represented as

in (4.33)–(4.34) with state vector ξη, disturbances ς1 = ςη = [0, ω̇0]T , ς2 =

ςs = 0. Introduce auxiliary variable φη as in (4.35). Since Aη is Hurwitz,

the positive definite matrices Pη, Qη satisfying (4.38) always exist for a small

enough εη. Then, the MASP can be calculated by Lemma 10. Consider

Lyapunov candidate Uη(ξηi) = ηTi Pηηi + lηφηS
2
ηi

, on flow domain, we have

〈OUη(ξηi)〉 ≤
1

εη
ξ̃Tηi

[
−Qη+

[
0 0
0 εη

]
PηBη

∗ −l2ηαsη

]
ξ̃ηi + 2ηTi Pη [ c0ω̇0

] . (A.1)

By the LMI in (4.38), we have 〈OUη(ξηi), F (ξηi , ςη)〉 ≤ −
αη
εη
‖ξ̃ηi‖2+2ᾱη‖ω̇0‖‖ηi‖.

On jump domain, Uη(ξηi)
+ ≤ Uη(ξηi). Then, Condition 4 is satisfied with

• αη‖ξ̃ηi‖2 ≤ Uη(ξηi) ≤ ᾱη‖ξ̃ηi‖2

• 〈OUη(ξηi), F (ξηi , ςη)〉 ≤ − 1
εη

αηαη
ᾱη

Uη + 2āω
ᾱη√
αη

√
Uη, ξηi ∈ C

• Uη(ξηi)+ ≤ Uη(ξηi), ξηi ∈ D

By Lemma 11, the convergence error and convergence time can be calculated

as rω =
4εηᾱ2

η

αsηα
1.5
η
aω and Tω = 2εη

αη
ln Uη(ξη(0,0))

r2
ω

, respectively.

Step 2: Convergence of subsystem Sχ.
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According to (4.8), the hybrid system model of subsystem Sχ can be rep-

resented as in (4.33)–(4.34) with state vector ξχ and disturbances ς1 = ς iχ1
,

ς2 = ς iχ2
, ςs = ς is. Introduce auxiliary variable φχ as in (4.35). Since Aχ is Hur-

witz, the positive definite matrices Pχ and Qχ satisfying (4.38) always exist

for a small enough εχ and the MASP can be calculated by (4.36). Consider a

Lyapunov candidate Uχ(ξχi) = χi
TPχχi + lχφχS

2
χi

, on flow domain, we have

〈OU(ξχi), F (ξχi , ςχi)〉 ≤
1

εχ
ξ̃Tχi

[
−Qχ+

[
0 0
0 εχ

]
PχBχ

∗ −l2χαsχI

]
ξ̃χi

+ 2
χTi Pχ
εχ

ς iχ2
+ 2χTi Pχς

i
χ1

+ 2lχφχSχς
i
s.

(A.2)

Referring to (4.8), the disturbances ς iχ2
and ς is involve the convergence error

∆ωi, formation error δi, sampling error Sηi and control input ui. Since the

control input is saturated by (4.11) and Vi is an open set, if δi(0) ∈ Vi,

there exists a (Tc, jc) 6= (0, 0) such that for all (t, j) ∈ Tm = {(t, j)|t ∈

[tj, tj+1), j = 0, · · · , jc − 1}, ξmi(t, j) ∈ Xi, where Xi = {ξmi |δi ∈ Vi}. By the

convergence property in Step 1, for a small enough εη, we have Tω < Tc. Then

for (t, j) ∈ Tm ∩ Tω, where Tω = {(t, j)|t ∈ [tk, tk+1), tk ≥ Tω}, we have

‖ς iχ2
‖ ≤ rη(c+

Ui√
1 + d̄2

i0

max (1, d̄i0)) = ciχ2

and

‖ς is‖ ≤
Ui√

1 + d̄2
i0

max (1, d̄i0) + crη = ciS.

Combining with the LMI in (4.38), we have〈
OU(ξχi), F (ξ̃χi , ςχi)

〉
≤ −αχ

εχ
‖χTi , STχi‖

2 +2ᾱχ(
1

εχ
ciχ2

+ciχ1
)‖χi‖+2ᾱχc

i
S‖Sχi‖.

On jump domain, Uχ(ξχi)
+ ≤ Uχ(ξχi). Then, Condition 4 is satisfied with

• αχ‖ξ̃χi‖2 ≤ U(ξχi) ≤ ᾱχ‖ξ̃χi‖2

• 〈OUη(ξχi), F (ξχi , ςχ)〉 ≤ − 1
εχ

αχαχ
ᾱχ

Uχ + 2 ᾱχ√
αχ

(max {ciχ1
, ciS}+ 1

εχ
ciχ2

)
√
Uχ,

ξχi ∈ C

• U+
χ (ξχi) ≤ Uχ(ξχi), ξχi ∈ D
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According to Lemma 11, the convergence error and convergence time can be

calculated by rv =
4εχᾱ2

χ

αχα2
χ

(max {ciχ1
, ciS} +

ciχ2

εχ
) and Tv = 2εχ

αχ
ln Uχ(ξχ(0,0))

r2
v

. By

a small enough εχ, we have Tv < Tc. Furthermore, since at each detection

instant, the agent collects all the relative information from its neighbors, the

MASP of agent i is given as τ imasp = min{τ ηimasp, τχimasp}.

A.2 Proof of Theorem 9

According to (4.13), the hybrid model of subsystem Sm can be represented

in the form of (4.40)–(4.41) with state vector ξm. Let W e
i = ‖eui‖, Vx =

Vδi = δTi δi, Ψi = Ψui with Ψui = ψuδ
T
i δi. By (4.13), there always exists an

He
i (ξ̃mi , ξ̃h, ς) such that Ẇ e

i ≤ He
i (ξ̃mi , ξ̃h, ς). Let

Ji(ξ̃mi , ξ̃h, ς) = Ψ̇ui − LuΨui −He
i + εΨδ

2
i .

According to Theorem 8, for (t, j) ∈ Tm, ξmi(t, j) ∈ Xi; for (t, j) ∈ T1 =

Tm ∩Tω ∩Tv, ‖ξ̃ηi‖ ≤ rω and ‖ξ̃χi‖ ≤ rv. Assume ∆u in (4.11) satisfies ∆u ≥√
2(d2

i0 + 1)rv, and there is no input saturation during T1. Then, combining

with (4.46), the following inequalities can be established with σv(ξh) = (1 +

ψu)ε
2
2‖∆vi‖2:

V̇δi ≤− aδ‖δi‖2 − ae‖ei‖2 + σv(ξh, ς) + lu‖eui‖2 −He
i (ξ̃mi , ξh, ς)

− Ji(ξ̃mi , ξh, ς)−Ψui(δi),

Ψ̇ui ≤LuΨui(δi) +He
i (ξ̃mi , ξh, ς) + Ji(ξ̃mi , ξh, ς).

(A.3)

Then, Conditions 5 and 6 are satisfied during (t, j) ∈ T1. Consider Lyapunov

candidate

U(ξmi) = δTi δi + max {luφue2
ui
, λuψuδ

2
i },

if τ imacp <
1
lu

arctan
ρ̄ui −ρui

2
, on flow domain,〈

OU(ξmi), F (ξ̃mi , ξh, ς)
〉
≤ −αδ‖δi‖2 − αe‖ei‖2 + (1 + ψu)ε

2
2r

2
v, (A.4)

during (t, j) ∈ T1. Let cδ1 =
√

(1 + ψu)ε2rv, and cδ1 < min{√αδ,
√
αe}
√

αu
ᾱu
cδ,

which can always be satisfied with a small enough εχ. In addition, let Xi1 =
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{ξmi |U(ξmi) ≤ αuc
2
δ}, and Xi2 = {ξmi |ξmi ∈ Xi, ξmi /∈ Xi1}. Then, Xi =

Xi1∪Xi2 and Xi1∩Xi2 = ∅. When ξmi ∈ Xi1 , according to (A.4), U(ξmi) might

increase. Since the control input is bounded, ξmi will enter Xi2 before it exceeds

Xi. When ξmi ∈ Xi2 , U(ξmi) decrease, ξmi never exceeds Xi1 for all (t, j) ∈dom

ξmi . On jump domain, U+(ξmi) ≤ U(ξmi). As a result, Xi1 is an invariant

set. Furthermore, U(ξmi) decreases when ξmi reaches the boundary of Xi1 .

Therefore, the steady state error of ‖ξ̃mi‖ can be calculated by rδ =
√

ᾱu
αu
cδ.

A.3 Proof of Theorem 10

According to (4.15), the dynamics of subsystem Sπ can be written in the

form of (4.40)–(4.41) with ξ = ξπ. By (iii) in Theorem 10, the MACP for hπi

is upper bounded by τπimacp <
1
lπi

arctan
ρ̄πi −ρπi

2
. Let Ψπi = ψπiq

2
πi

, W e
πi

= ‖eπi‖,

and Vπ = ∆πTf Pπ∆πf be the storage function. By (4.15), on flow domain, we

have

V̇π =− cω
(

∆πTf (PπLff + LTffPπ)∆πf + 2∆πTf Pπ(Lffeπf + Lfleπm + Lfl∆πm)

)
− 2∆πTf Pπ1nπ̇0

≤[∆πTf , e
T
πf

]Aπ

[
∆πf
eπf

]
+
cπ
ε2π
σ2
M(Lfl)(‖eπm‖+ ‖∆πm‖)2 +

1

ε2π0

n2
f‖aπ‖2.

In addition, let Ψπ =
∑
i∈Nf

Ψπi , we have

Ψ̇π ≤[∆πTf eTπf ]A
ψ
π

[
∆πf
eπf

]
+

2cπ
ε2π1

(σM(ψπDfLfl)
2(‖eπm‖+ ‖∆πm‖)2

+
2

ε2π2

(σM(ψπ(Lff −Dfl))nfaπ)2.

(A.5)

By (4.15), there always exists an Hπi such that Ẇ e
πi
< Hπi . Let Ji = Ψ̇πi −

LπiΨπi −H2
πi

+ επe∆π
2
i . Combining with the LMI in (4.47), Conditions 5 and

6 are satisfied with αW = αWπ , αV = αVπ , which lead to the conclusion that

the set Ξπ := {ξ ∈ X|‖ξ̃π‖ = 0} is ISS w.r.t. ς and ξh.
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A.4 Proof of Theorem 11

According to (4.18), subsystem Sγ can be represented in the form of

(4.40)–(4.41). Introduce auxiliary variables φγi and φsγi as in (4.43), then,

the MACP and MASP can be calculated by τ γimacp ≤ 1
lγi

arctan
ρ̄γi −ρ

γ
i

2
, τ γimasp ≤

1
lsγi

arctan
ρ̄i−ρi
1+ρ̄iρi

. In addition, let W e
i = a‖eγi‖ + b‖eωi‖, Ψi = Ψγi = ψγiq

2
γi

,

W s
i = ‖Sγi‖ and Vx = aVγ + bVω, Vγ = ∆γf

TPγ∆γf . By (4.18), there always

exists He
γi

, such that W e
i ≤ He

γi
. Let

Ji = Jγi := Ψ̇γi − LγiΨγi −He
γi

2 + εγ2∆γ2
i .

Combining with the LMI in (4.48), Conditions 5 and 6 can be checked with

σγ(ς, ξh) = b(σv + σv0) + aβmγ e
2
γm , βmγ = 2 cγ

ε2γ
σ2
M(Lfl),

σv =
(
cπ
ε2π
σ2
M(Lfl) + 2cπ

ε2π1

σ2
M(ψπDfLfl)

)
(‖evm‖+ ‖∆vm‖)2,

σv0 =
(

1
ε2π0

+ 2
ε2π2

σ2
M(ψπ(Lff −Dfl))

)
n2
f‖av‖2.

A.5 Proof of Theorem 12

Due to the dependency of the conditions in Theorems 8 and 9, the stability

in this theorem can be only ensured in a local sense.

Step 1: The set Ξb = {ξ ∈ X|‖ξ̃Tb ‖ = 0} is ISS w.r.t. ξ̃a and ς

According to (4.23) and (4.24), the hybrid system model of subsystem

Sb can be written in the form of (4.49)–(4.50) with state vector ξδ shown in

Table 4.7. Introduce auxiliary variables φπi and φsδi satisfying (4.43), then,

the MACP and MASP can be calculated by τπimacp ≤ 1
lπi

arctan
ρ̄πi −ρπi

2
, τ δimasp ≤

1
lsδi

arctan
ρ̄i−ρi
1+ρ̄iρi

. Let W e
πi

= ‖eπi‖, W s
δi

= ‖Sδi‖, Ψπi = ψπiq
2
πi

, Vδf = δTf δf +

∆δTf ∆δf and consider Lyapunov candidate

Uδf = Vδf +
∑
i∈Nf

(
lsδiφ

s
δi
W s
δi

2 + max {lδiφδiW e
δi

2}+ max {luiφuiW e
ui

2}
)
.

Then, we have Uδf = ξ̃TδfPf ξ̃δf . In addition, by (4.23) and (4.24), there always

exists an He
πi

such that Ẇ e
πi
≤ He

πi
. Let Jπi = Ψ̇πi − LπΨπi − He

πi
2 + επeπ

2
i .

Since Sh converges to rv and rω in a finite time, combining item (i) with the
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matrix in (4.65), Conditions 5 and Condition 6 are satisfied with

σδ = βV (δf ,∆δf , eδf , euf , Sδf )σVδ + σV0 + σVf , where

βV σVδ ≤ξ̃Tδf
(
‖ξ̃ω‖Qω

0 + ‖ξ̃ω‖2Qω
1 + ‖ξ̃γ‖Qγ

0 + ‖ξ̃γ‖2Qγ
1 + ‖ξ̃γ‖4Qγ

2

)
ξ̃δf ,

σV0 ≤αω1 ‖ξ̃ω‖2 + αω2 ‖ξ̃ω‖4 + αv1‖ξ̃v‖2 + αv2‖ξ̃v‖4 + αγ1‖ξ̃γ‖2 + αγ2‖ξ̃γ‖4

+ αγ4‖ξ̃γ‖8 + αm1 ‖ξ̃δm‖2 + αm2 ‖ξ̃δm‖4,

σVf ≤ r2
vc

2
δσ

2(Lfl)(ε
2
6(1 + ψ2

M) + ε27ψ
2
M) + 13

(
ε2mrm

2 + ω2
Mσ

2(Anl)r
2
v

)
,

(A.6)

and ψM represents the maximum value of matrix ψ̄. Then, when ξ ∈ C,〈
OUδf , F (ξδf , ξ̃a, ξ̃h, ς)

〉
≤ −ξ̃TδfAδ ξ̃δf + σδ; and when ξ ∈ D, U+

δf
− Uδf ≤ 0 .

By using the standard Lyapunov arguments, the set Ξb is ISS w.r.t. ξ̃a and ς.

Step 2: The set Ξ = {ξ ∈ X|‖ξ̃T‖ = 0} is strongly iISS w.r.t. ς

Let

Um = Vm +
∑
i∈Nm

max {luiφuiW e
ui

2, λuiψui},

Uπ = Vπ +
∑
i∈Nf

max {lπiφπiW e
πi

2, λπiψπi}, π = v, ω,

and

Uγ = Vγ +
∑
i∈Nf

(lsγiφ
s
γi
W γi
s

2 + max {lγiφγiW e
γi

2, λγiψγi}).

According to Theorems 9–11, the first item in Condition 7 is satisfied. By

step 1, the second term is satisfied and the third term can be established by

〈
OUγ(ξγ), Fγf (ξ̃γf , ξ̃h, ς), Fω(ξ̃ω, ξ̃h, ς)

〉
≤ −ξ̃Tγ Qγ ξ̃γ + σγ(ςγ); ξγ ∈ Cγ;

Uγ(ξ̃γ)
+ ≤ Uγ(ξ̃γ), ξγ ∈ Dγ,〈

OUm(ξm), Fm(ξ̃m, ξ̃h, ς)
〉
≤ −ξ̃TδmQmξ̃δm + σm(ςδm), ξm ∈ ∩i∈NmCui ;

U+
m(ξδm) ≤ Uδm , ξm ∈ ∪i∈NmDui ,〈
OUω(ξω), Fω(ξ̃ω, ξ̃h, ς)

〉
≤ −ξ̃TωQω ξ̃ω + σω(ςω), ξω ∈ Cω;

U+
ω (ξω) ≤ Uω, ξω ∈ Dω,〈
OUv(ξv), Fv(ξ̃v, ξ̃h, ς)

〉
≤ −ξ̃Tv Qv ξ̃v + σv(ςv), ξv ∈ Cv;

U+
v (ξv) ≤ Uv, ξv ∈ Dv,

(A.7)
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where σM = (1 + ψu)ε
2
2r

2
v, σV =

(
cπ
ε2π
σ2
M(Lfl) + 2cπ

ε2π1

σ2
M(ψπDfLfl)

)
(rm + rv)

2 +

σv0 , σΩ =
(
cω
ε2ω
σ2
M(Lfl) + 2cω

ε2ω1

σ2
M(ψωDfLfl)

)
(rm + rω)2 + σω0 , σΓ = b(σV +

σv0) + aβmγ r
2
m. Furthermore, the last item can be checked by the inequalities

in (4.66). Then, strongly iISS of set Ξδ = {ξ ∈ X|‖[ξ̃Ta , ξ̃Tb ]T‖ = 0} w.r.t. ς, ξ̃h

can be proved. Finally, by Theorem 8, since ξ̃h converges to a small ball with

a radius related to ς in a finite time, we have that Ξ = {ξ ∈ X|‖ξ̃T‖ = 0} is

locally strongly iISS w.r.t. ς.

Step 3: Determine the threshold R of disturbances.

Consider Lyapunov candidate

U(ξa, ξb) = lnU(ξb) +
∑

π=ω,v,m

(
∑
kπ=1,2

Ukπ(ξπ)) +
∑

kγ=1,2,4

Ukγ (ξγ).

According to step 1, λF = min{λ ∈ R| det(Aδ − λP̄f ) = 0} and

P̄f =

[
I 0 0 0
0 leρ̄e 0 0
0 0 luρ̄u 0
0 0 0 lsδ ρ̄s

]
,

where ρ̄π represents the diagonal matrix with the i-th element being ρ̄πi for

π = e, u, and ρ̄i for π = s. The disturbances in the closed-loop system

are introduced by the dynamics of the leader and the constant rm related

to the MATPs. On flow domain, the disturbances have an influence on the

differential equation 〈OU(ξa, ξb)〉 by σf , where

σf = σVf +
∑

(Π,π)=(Ω,ω),(V,v),(M,m),(Γ,γ)

(σΠ +
1

ε2π21

σΠ) +
1

ε2γ41
ε2γ42

σΓ.

By similar arguments to the proof of Lemma 13, the system is ISS when

σf ≤ λF . As a result, the threshold R = λF .
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