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Abstract

Powered by advancements of information and Internet technologies, there has been

a rapid development in network based applications in recent years. Meanwhile, it is

recognized that more attentions need to be paid to the issue of cybersecurity. The

security of the network environment plays a vital role in stable functioning of the

society.

Research on cybersecurity has become more active lately. Researchers have pro-

posed a number of approaches to protect the network. Among them, a broadly prac-

ticed approach is the intrusion detection system (IDS). Building a powerful and robust

intrusion detection system is long-established as it can provide effective protection to

prevent Internet from intrusions and attacks. Through pattern or rules matching, the

intrusion detection system can filter out harmful traffics. However, traditional rule-

based intrusion detection systems are unqualified to acclimate to the ever-changing

network environments because rules are drawn up manually. Thus, a significant num-

ber of research works are focused on the development of novel methods to handle the

new challenges. Benefiting from the vigorous development of machine learning and

artificial intelligence, researchers have been actively deploying these new technologies

to handle network traffic analytics, data processing and feature engineering, which

are important modules in building the intrusion detection system. Machine learning

techniques have already achieved substantial success in the area of cybersecurity.

Reinforcement learning (RL) is one of the most significant and compelling method-

ologies of machine learning. It is used to describe and solve the problem of the agent

in the process of interaction with the environment through learning the strategies to
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maximize returns or achieve specific goals. RL has achieved considerable accomplish-

ments in a multitude of fields, such as games, robotics and autonomous systems. For

example, RL has been shown as the most promising method in designing game AI

agents. In some games, RL agents have outcompeted top professional players. In-

spired by the success of RL in other areas, in this work, we intend to study how it can

be utilized in designing the intrusion detection system to improve the cybersecurity.

This thesis is mainly divided into two parts. Chapter 3 includes an empirical

study of Proximal Policy Optimization Algorithm (PPO), one of the most well-known

reinforcement learning algorithms. During this empirical study, we can further under-

stand how RL algorithms work in game AI, and hope to find common ideas between

game AI and the cybersecurity research. This way, we can apply the reinforcement

learning framework to solve the intrusion detection tasks. Hence, the second part

is focused on designing intrusion detection systems (IDS) based on reinforcement

learning. The approaches are categorized into packet-based and flow-based, which

are separately addressed in Chapter 4 and Chapter 5. In this part, network traffic

data are firstly processed using different methods, and subsequently, reinforcement

learning algorithms are developed as the overall framework of the intrusion detection

system.
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Chapter 1

Introduction

1.1 Background

Network is the substantial underpinning for developing a modernized economy. The

progression of all professions and trades, including business, scientific research, enter-

tainment as well as education, requires the assistance of a reliable and secure network

system. However, numerous network security problems have also emerged, causing

tremendous damages to individuals or the collective. For example, in April 2020,

World Health Organization (WHO) announced that it had encountered an increased

number of cyber attacks, with about 450 email addresses and passwords of WHO

and thousands of related staff exposed. If the network infrastructure is damaged

and destroyed, not only will personal information be leaked, but the whole society

will be thrown into chaos. Therefore, the research of cybersecurity is crucial for the

successful and stable development of the whole society.

To protect the network infrastructure and confidentiality of data, a series of ap-

proaches are proposed by researchers. For example, most computers are equipped

with firewalls that can impede some malicious traffics. An intrusion detection system

(IDS) is a type of network security equipment that monitors the network transmission

in real-time and gives an alarm or takes active reaction measures when the suspicious

transmission is found. IDS is a proactive security technique to protect IT infras-

tructure from being destroyed by malicious attacks. Conventional intrusion detection
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systems depend on pattern matching, for which specific filtering rules are determined

in advance manually [1].

Seeing the rapid development and the success of artificial intelligence (AI) attained

in research areas such as computer vision, natural language processing and robotics,

an increasing number of network engineers and researchers start exploring the ap-

plications of artificial intelligence techniques in cybersecurity. As mentioned above,

conventional intrusion detection systems rely on user-defined filtering rules, under

which the matched network traffic will be filtered. However, this filtering method has

severe defects [2]. Firstly, it is difficult to set up faultless filtering rules, even if the

rules are specified by experts. In the face of tremendous network traffic, along with a

huge variety of attacks, limited artificial rules are unable to cover the characteristics

of these different types of network traffic. Secondly, from hackers’ perspective, rules

are formulated by people, so hackers can easily figure out the pattern of those rules by

certain tests. Hence, it is straightforward for them to launch attacks that can bypass

those rules. Thirdly, the update of rules is inefficient. Because the malicious network

attacks are evolving quickly, intrusion detection systems also require frequent updates

and upgrades to detect these attacks. However, it is time-consuming and laborious to

determine what kind of outdated rules should be discarded and to lay down pivotal

regulations.

Employing artificial intelligence approaches in intrusion detection systems can mit-

igate the problems mentioned earlier [3–6]. When using machine learning based model

as the IDS to detect malicious network attacks, the filter rules are rendered automat-

ically. Machine learning models, such as deep neural networks (DNNs) [7], can learn

representative features of different network attacks efficiently and then implement

classification or detection, hence manual rules are not required anymore. Because

neural networks are a type of black box to everyone, hackers can not acquire what

kind of patterns and relationships are captured by the neural networks. Therefore, it

is much harder for hackers to launch novel attacks that can bypass the detection.
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Reinforcement learning research [8] has been booming during recent years. In-

corporating with deep neural networks (DNNs), reinforcement learning algorithms

outperform in many fields in comparison to traditional deep learning approaches,

such as games, recommendation systems and many scientific fields. Some well-known

reinforcement learning algorithms including Deep Q-Learning (DQN) [9] and Proxi-

mal Policy Optimization (PPO) [10], have already been widely used in many areas.

AlphaGo [11] is one of the most representative achievements of RL in games. In

addition, many enterprises, such as YouTube [12], and Alibaba [13], etc., are explor-

ing novel RL based recommendation techniques. Also, RL has found many great

applications and research value in various engineering fields. Studies [14] use deep re-

inforcement learning algorithms to solve the autonomous underwater vehicles (AUVs)

low-level control problem. Many researchers [15, 16] apply reinforcement leaning algo-

rithms, especially PPO for unmanned aerial vehicles (UAVs) control. These successful

applications demonstrate that reinforcement learning is at the stage of rapid growth.

1.2 Motivation

Motivated by the importance of the cybersecurity issue and the promising results

of RL in many applications, we conduct research mainly on these two topics in this

thesis.

Policy gradient methods, such as Asynchronous Advantage Actor-Critic (A3C) [17],

Trust Region Optimization (TRPO) [18], and Proximal Policy Optimization (PPO),

are widely applied in RL in devising game agents, including both discrete-action and

continuous-action games. Among these methods, PPO stands out by achieving high

scores in many test beds, such as Atari games and MuJoCo [19]. The core innovation

of PPO is the clipped surrogate objective. However, studies [20–23] indicate that

the high achievements of PPO result from some additional code-level optimizations,

instead of its key idea in clipped surrogate objective. Thus, further understanding of

these code-level optimizations is essential for applying PPO to tackle more problems,
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such as the intrusion detection.

Reinforcement learning and intrusion detection are remarkably compatible in many

aspects. Reinforcement learning algorithms are used for solving Markov problems [24].

Essentially, network flow is a special type of dynamic process, which can be modelled

by a Markov process (See Chapter 4 and 5). Besides, when making a decision related

to current state, the RL agent can consider foresighted states by introducing discount

factors when calculating the cumulative reward (See Chapter 2). This is also con-

ducive to intrusion detection. The network flow consists of a sequence of different

packets. When the current packet is examined, those packets behind it in the same

flow can also provide useful information. Treat a packet as a state, by using the

cumulative reward with the discount factor, reinforcement learning algorithms can be

employed to take the features of future packets into account. Furthermore, intrusion

detection can be considered as a special game (See Chapter 4 and 5). Hence, it is

feasible to formulate and solve the intrusion detection problem in the reinforcement

learning framework. Motivated by these pertinent aspects, we attempt to study how

to improve the performance of intrusion detection by using the RL methods.

1.3 Thesis Organization and Contribution

The thesis is organized as follows with five chapters and three main research directions.

Chapter 2 is a general introduction of reinforcement learning (RL) algorithms and

intrusion detection systems (IDS) research. RL and IDS are two essential topics in

this thesis.

Chapter 3 conducts a thorough study of a representative RL algorithm, namely the

Proximal Policy Optimization (PPO). We study the properties of PPO in this chapter

with Atari games. PPO is well-known for its core idea (clipped surrogate objective)

and code-level optimization skills. It has already achieved high performance in many

scenarios, including playing Atari games. Through a series of experiments, we hope

to figure out what factors inside the algorithm contribute to the high performance of

4



PPO on playing Atari games.

Chapter 4 investigates the formulation and application of reinforcement learning

in building intrusion detection systems at packet-level. In this chapter, we propose

a novel embedding approach to encode the network traffic. In this way, we can

integrate flow statistics with packet information and convert intrusion detection tasks

to image-associated tasks. In addition, we design a reinforcement learning module,

incorporating deep neural networks (DNNs) to train the intrusion detection system.

The experiments are conducted on an up-to-date dataset DDoS2019 [25].

Chapter 5 conducts improved experiments on the basis of chapter 4 but from an-

other angle. It investigates how to incorporate reinforcement learning in intrusion

detection systems at the flow-level. We devise a novel RL algorithm. A feature learn-

ing module using Stacked autoencoder (SAE) [26] is designed to reduce the dimension

of network data. More importantly, an exploration module is designed to facilitate

training. Conditional GAN (CGAN) [27] and ε-greedy policy are employed for the

exploration purpose. Meanwhile, CGAN can generate new traffics to help simulate

a more realistic network environment. The validation experiments are conducted on

both the NSL-KDD [28] and the DDoS2019 dataset.

Finally the thesis is summarized in Chapter 6 with some concluding remarks.
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Chapter 2

Review of Preliminaries

2.1 Reinforcement Learning

2.1.1 Introduction

As an important method of machine learning, reinforcement Learning (RL) is based on

agents learning strategies to maximize returns or achieve specific goals while exploring

and interacting with the environment. The basic framework of reinforcement learning

is shown in Figure 2.1. In general, a reinforcement learning framework consists of an

agent and the interaction environment. The agent sends actions to the environment,

and then the environment moves to a new state and generates rewards, which are

sent back to the agent for the next step. The state represents the observation of the

environment, and the rewards evaluate the outcome of the current action.

Similar to the controller in a control system, the agent is responsible for taking

actions and interacting with the environment. An agent is controlled by its policy. As

shown in Table 2.1, the policy function takes the states/observations as the input and

generates the action for the agent at the current step. In the actual implementation,

deep neural networks (DNNs) are commonly employed to realize the policy function.

Input Output Transformation Function

State Action Action = Function (State) Deep Neural Networks

Table 2.1: The explanation of policy.
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Figure 2.1: Reinforcement Learning Framework. The agent interacts with the en-
vironment to collect training data. The environment can be real or simulated. For
example, in the unmanned aerial vehicle (UAV) control, an UAV (agent) flies in a
simulation environment to collect data.

In many cases, we need to define the reward feedback rules manually. The rewards

are used for updating the policy (See section 2.1.5 and 2.1.4). After the policy is

updated, it then takes the current state as the input to issue new actions. In short

the policy can be considered as a function that maps states to actions, and is subject

to changes according to rewards, as shown in Table 2.1. The objective of RL is to

learn the optimal policy for the agent to take the best action at each step.

2.1.2 Formulation

When interacting with the environment, an agent always follows a certain behavior

pattern during the entire procedure. For example, when running a maze, an agent

always goes left, which is a kind of behavior pattern. This kind of behavioral choice

is defined by the policy, denoted by π. When the agent takes an action a, the
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environment provides the agent with a reward feedback r and moves to a new state

s. It is always desirable for the agent to get maximum reward at every step or over

the long term. This interaction can be modelled by a Markov process.

In general, reinforcement learning algorithms are applied for solving problems

which can be described by the Markov process. Its objective is to learn a policy

that the agent can receive maximum reward by following this policy throughout the

whole process. Given a Markov process starting from s0:

s0
π−→ a0, s0, a0

p−→ r0, s1

s1
π−→ a1, s1, a1

p−→ r1, s2

· · ·

si−1
π−→ ai−1, si−1, ai−1

p−→ ri−1, si

si
π−→ ai, si, ai

p−→ ri, si+1

· · ·

where s denotes the state, a the action, p the transition function, π the policy, r the

reward, and i is the step. The transition (probability) function can be further written

as p(ri, si+1|si, ai), which is the conditional probability that the environment returns

reward ri and reach the new state si+1 under the current state si, after action ai is

taken. However, in real world, the actual transition function is always unknown. We

can use sample-based approaches, such as Monte Carlo methods (MC) and Temporal

Difference (TD) Learning [8], to approximate the transition function.

As mentioned above, we define the behaviour pattern as the policy, also named

the actor π(a|s). π(a|s) is the conditional probability of taking a under current s.

The actor can directly guide the agent to take the optimal action at each step. In

addition to the actor, the critic is another mechanism which guides the agent to make

the optimal decision. Define the value function V (s) at step i as:

V (si) = E[Gi|si]
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and the state value function (i.e. Q function) Q(s, a) at step i as:

Q(si, ai) = E[Gi|s = si, a = ai]

where Gi is the expected discounted accumulative reward at step i, defined as:

Gi = ri+1 + γri+2 + γ2ri+3 + ... =
∞∑︂
t=0

γiri+t+1

The value function and the state value function are two types of dominating critics.

They can evaluate the quality of the action taken in current state. The value function

represents the expected reward that can be obtained beyond the current state. The

state value function represents the expected reward that can be obtained after action

a is taken in the current state. The discount factor is denoted by γ, and γ ∈ [0, 1].

By increasing the value of γ, we can force the agent to consider more farsighted states.

In continuous tasks which have no terminal states, γ can not be 1. Otherwise, Gt

does not converge. Only episodic task is considered in this thesis, which means that

there is a terminal state in each episode.

2.1.3 RL Algorithms

In Figure 2.2 some frequently-used reinforcement learning algorithms are shown. As

mentioned earlier, we can optimize a policy by directly learning an actor or indirectly

learning a critic instead. According to different learning targets, reinforcement learn-

ing algorithms can be divided into three main categories: policy-based algorithms,

such as Proximal Policy Optimization (PPO) [10] and Trust Region Policy Opti-

mization (TRPO) [18]; value-based algorithms, such as Q-Learning [29]; policy and

value based algorithms, such as Actor-Critic (A2C) [30] and Asynchronous Advantage

Actor-Critic (A3C) [31]. Policy-based algorithms train an actor which makes deci-

sions directly while value-based algorithms train a critic which can evaluate current

decisions. Policy and value based algorithms utilize both the critic and the actor to

train the agent.
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Figure 2.2: Classification of Reinforcement Learning Algorithms

Another important classification basis is the type of actions taken by the agent.

In real implementation, actions can be either discrete or continuous. For exam-

ple, the actions taken in Atari games are transferred to discrete values, but in Mu-

JoCo games [19] actions are transferred to continuous values or vectors. In addition,

Q-Learning is employed in the discrete domain. PPO and TRPO are suitable for

both discrete domain and continuous domain. Deep Deterministic Policy Gradient

(DDPG) [32] and Soft Actor-Critic (SAC) [33] are specifically devised for the contin-

uous domain.

2.1.4 Q-Learning

Q-Learning [29] is a widely used model free1 value-based reinforcement learning algo-

rithm, and it always works in the discrete domain. In this algorithm, the Q function

Q(s, a) works as the critic, which is devised to evaluate the quality of the action taken

in the current state. Its value, also called the Q-value, is updated by the following

1Model free indicates that model planning is not considered.
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equation:

Qnew(si, ai)← Q(si, ai)⏞ ⏟⏟ ⏞
Current V alue

+ α⏞⏟⏟⏞
Learning Step

(ri + γmax
a

Q(si+1, ai+1)−Q(si, ai)⏞ ⏟⏟ ⏞
TD Learning

) (2.1)

This equation demonstrates the idea of the temporal difference (TD) learning, which

relies on the one-step bootstrapping technique [34] to update the values. Once up-

dated, Q values are stored in a tabular form. The Q value is being updated until it

stops changing or only changes slightly. After learning the Q values of all existing

state and action pairs, we can generate the optimal policy under the following rule:

a = argmaxQ(s, a) (2.2)

Deep Q-Learning (DQN) [9] is an advanced version of Q-Learning, where deep neural

networks (DNNs) are introduced to estimate Q values. Although Q-Learning is pow-

erful and widely adopted, it can only estimate the Q values of those existing state and

action pairs, which have appeared during training. For a problem with a large state

space, it is almost impossible to store each value into a tabular form. Incorporating

Q-Learning with DNNs can solve the problem. Given a state-action pair as the in-

put, the deep neural network can estimate the Q values. Even if the state-action pair

has never appeared in the training stage, the deep neural network can still output

an appropriate value. Compared with traditional tabular Q-Learning method, the

generality of DQN is superior. DQN has several improved versions, such as Double

DQN [35] and Dueling DQN [36].

DQN and its improved versions have been successfully applied in the game control.

Researchers [9] have employed a variant of DQN to play seven Atari 2600 from the

Arcade Learning Environment. The state is the game screen in the image form and

thus convolutional neural networks (CNNs) are adopted to estimate the Q values.

Experience replay is proposed to reduce the correlation among the training data.

Results show that DQN outperforms almost all previous approaches when playing

Atari games, including Sarsa [8] and human experts. However, in many cases, Q
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values tend to be overestimated by DQN. To handle this problem, Double DQN [35]

is proposed. Studies [35] compare the DQN with the Double DQN on Atari games

and find that the Double DQN can generate much more appropriate Q values while

DQN always overestimats them, and this is the reason why Double DQN outperforms

DQN in most Atari games.

2.1.5 Policy Gradient

Policy gradient method [37] is a type of policy-based reinforcement learning technique,

which can be applied in both discrete and continuous domains. Policy gradient meth-

ods can directly optimize the parameterized policies πθ
2 by maximizing the long-term

cumulative reward Eπ[Gi] based on the gradient ascent approach. The policy gradi-

ent method has many advantages over other reinforcement learning algorithms. It

can make the polices’ convergence more greedy over time autonomously. Further-

more, in comparison with Q-Learning and its variants, the policy gradient method

can work effectively in continuous control problems. The policy gradient estimator

can be expressed in the following form:

ĝ = Êπθ

[︂
∇θ log πθ (ai | si) Ψ̂i

]︂
where πθ is a parameterized policy with respect to parameter θ, Ψi

ˆ is a function related

to rewards and Êπθ
is the mean over a finite batch of samples collected under πθ. As

shown in Table 2.2, there are several expressions of Ψi adopted by different policy-

based algorithms. Specially, the advantage function and the TD-error are widely

applied. The average function measures how much reward can be gained by taking

the action ai in the current state si, compared to the average reward. As shown in

Table 2.3, the TD-error calculates the difference between the estimated accumulative

reward to be received starting at given time step i and the actual accumulative reward

received starting at step i, and the algorithm acts to reduce such error.

2π denotes the policy and θ denotes the parameter of the policy. For example, if the policy is
deep neural networks (DNNs), θ denotes the parameters of DNNs.
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Expression Explanation∑︁∞
i=0 ri total trajectory reward∑︁∞
i′=i ri′ total reward after taking ai∑︁∞

i′=i ri′ − b add a baseline (constant)

Qπ(si, ai) state-action value function

Qπ(si, ai)− V π(si) advantage function

ri + V π(si+1)− V π
si

TD error

Table 2.2: Multiple Expressions of Ψ̂

Expression Explanation

ri instant reward at step i

V π(si+1) estimated accumulative reward starting at step i+ 1

ri + V π(si+1) actual accumulative reward starting at step i

V π(si) estimated accumulative reward starting at step i

Table 2.3: TD-error

Several RL algorithms are developed from the policy gradient method, includ-

ing the well-known Trust Region Policy Optimization (TRPO) and Proximal Policy

Optimization (PPO), which have already been successfully implemented in many ar-

eas. Particularly, PPO has been extensively applied to game AI research and solving

control problems. PPO is a type of off-policy3 reinforcement learning algorithm ap-

plicable for both continuous and discrete environments. The core idea of PPO is the

clipped surrogate objective. PPO not only attains high scores in test-beds like Atari

and MuJoCo [19], but also solves complex problems such as DOTA [38, 39] and Glory

of Kings [40]. The well-known StarCraft agent AlphaStar [41] and Mahjong agent

Suphx [42] are also trained with PPO. Additionally PPO has also be exploited to

solve control problems, such as unmanned aerial vehicles (UAVs) control [15, 16] and

3Off policy means that the agent used for interaction and the agent used to update the policy
are different. On-policy means that the agent used for interaction and the agent used to update the
policy is the same one.
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autonomous underwater vehicles (AUVs) control [14].

2.2 Packet-level and Flow-level Intrusion Detec-

tion

Packet-level and flow-level analyses are two fundamental methods for designing intru-

sion detection systems. In the packet-level intrusion detection, messages and headers

transported by network packets are primarily extracted for detecting malignant traf-

fics [3, 4]. In the flow-level intrusion detection, the characteristics of the traffic flow,

which usually contains numerous packets, are extracted for detecting attacks [5, 6].

SOURCE PACKET DESTINATION

IP 1 Packet 4, Packet 3, Packet 2, Packet 1 IP 2

Port 1 −→ (one direction) Port 2

TCP or UDP Connection

Table 2.4: An example of a flow. It consists of four packets, which travel from the
source IP and port to the destination IP and port. The transportation protocol is
TCP or UDP.

Intrusion detection systems at flow-level extract and analyze flow knowledge. Flow

knowledge includes the statistics of a flow, such as the number of packets, the dura-

tion, the average packet size, etc. Table 2.4 shows an example flow, which contains

four packets traveling from the source to the destination. A flow is defined by a 5-tuple

knowledge [43]: (source IP, source port, transportation protocol, destination IP and

destination port). Many important features can be extracted from a flow. For exam-

ple, the number of packets in the flow is a useful feature. The work in [5] contains the

evidence that some attacks, such as Denial of Service (DoS) and distributed denial of

service (DDoS) attacks tend to transmit a large number of packets in a short time.

The duration of the flow, the average packet size in the flow and the transportation

protocol can also be considered as important features. Recently a great number of

datasets have been collected and published for the purpose of flow-level intrusion de-
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tection research. NSL-KDD [28] is one of the most well-known datasets in this area.

In the NSL-KDD dataset, 41 flow-level features are extracted from TCP or UDP

connections. Some of those features are time-based traffic features, and this type of

features are usually analysed within a time interval (i.e. a window). For example,

by fixing the destination and source host, we test the flow data using a window of

2 seconds’ length and store statistical information associated with the protocol and

service, etc.

Packet-level intrusion detection systems analyze and extract features from the net-

work packet data through transmissions for intrusion detection. As shown in Ta-

ble 2.5, a network packet travels across five layers, including an application layer,

a transportation layer, a network layer, an Ethernet layer and a physical layer (not

considered in the thesis) [2]. A packet structure consists of messages generated in

the application layer and three headers generated in the remaining three layers. The

content of messages generated in the application layer is different with respect to

different protocols. For example, HTTP generates special HTTP request messages.

Different headers carry different knowledge. In the transportation layer, TCP and

UDP are two most common protocols with TCP and UDP headers as the most com-

mon ones in this layer. In the network layer, IP is the most common protocol with

the IP header. Similarly, in the Ethernet layer, an Ethernet header is generated. The

knowledge carried inside headers is called field (See Chapter 4).

Packet-level and flow-level techniques approach the intrusion detection problem

from two different directions. Packet-level research studies the data knowledge carried

inside packets but ignores the relationship among different packets. On the contrary,

flow-level research focuses on flow knowledge and attempts to capture the relationship

among packets, but ignores data transported inside a packet. Both approaches have

their own advantages and disadvantages [44], so in our study (in Chapter 4), we

attempt to combine the packet-level approach with the flow-level one, and build a

more robust intrusion detection system.
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Layer Main Protocol Packet Structure

Application Layer FTP HTTP Messages

Transportation Layer TCP UDP TCP/UDP Header+Messages

Network Layer IP IP Header+TCP/UDP Header

+Messages

Ethernet Layer Ethernet Ethernet Header + IP Header

(Data Link Layer) + TCP/UDP Header + Messages

Physical Layer Not Considered Not Considered

Table 2.5: Network Layers and Packet Structure

Step Training Detection

0 Collect Network for Training Collect Network for Detection

1 Feature Engineering Feature Extraction

2 Data Preprocessing Data Preprocessing

3 Train AI Models Monitored by IDS

4 Apply AI Model as IDS Evaluate Detection Results

Table 2.6: Intrusion Detection Framework

2.3 ML-Based Intrusion Detection

In recent years, machine learning algorithms are broadly adopted in the studies of cy-

bersecurity [3–6]. Some well-known machine learning algorithms, such as random for-

est (RF) [45], support vector machine (SVM) [46], and deep neural networks (DNNs),

have shown promising results in the area of cybersecurity. In the thesis, we mainly

focus on supervised learning based approaches, such as deep neural networks.

Table 2.6 shows the fundamental supervised learning based intrusion detection

framework [2]. The entire procedure of intrusion detection can be divided into two

stages: training stage and detection stage.

For the training stage, in step 1, feature engineering is first conducted on the

network traffics. It is important to design appropriate features of traffics to improve
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the performances of intrusion detection systems. In flow-based research, for most

datasets available online, certain standard flow-level features have already been given,

so the feature engineering step is not mandatory. However for the packet-based

research, it is often necessary to conduct feature engineering and extract features

from raw network traffics. In this case, the quality of features is the key to the

successful application of the intrusion detection system.

In step 2, data preprocessing is necessary for both flow-level and packet-level re-

search. The features always contain three different value types: continuous value,

categorical value, and discrete value. In order for the features to be processed by

machine learning models, we need to transform the categorical and discrete values

into certain suitable formats.

In step 3, we need to select an appropriate machine learning model. This step is

of great importance to the final performance of the IDS [2]. With respect to different

tasks, we select the most suitable model according to different rules (See Chapter 4).

For example, if the input data is image, convolutional neural networks (CNNs) [47]

are often the optimal choice. If it is time series data, we can choose the 1D-CNN [48]

and the long-Short Term Memory (LSTM) network [49]. Afterward we perform the

training of the model and tuning of hyperparameters. Finally in step 4, we apply the

optimal model as the intrusion detection system.

For the detection stage, we are able to extract features engineered at the training

stage from raw network traffics and conduct data preprocessing on these features.

Subsequently, we feed the preprocessed data into the trained intrusion detection sys-

tem. In order to evaluate the quality of the IDS, we need to adopt proper metrics for

the machine learning model, such as the accuracy, precision, recall and F1 measures,

etc.
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Chapter 3

What Matters in PPO1

3.1 Introduction

Reinforcement learning (RL) has made considerable advancements in numerous re-

search and application areas recently. Policy gradient methods, such as REIN-

FORCE [8], Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Op-

timization (TRPO), and Proximal Policy Optimization (PPO) have been widely ap-

plied in both discrete and continuous domains. Especially PPO has been developed

as one of the most popular algorithms due to its excellent performance and simple

implementation.

The core idea of PPO is the clipped surrogate objective. Studies [20–23] indicate

that PPO is a fragile algorithm and its high performance actually comes from several

auxiliary code-level optimizations, rather than the core idea. These studies are all

conducted in the continuous domain. Considering that many complex problems are

essentially discrete, a further understanding of these optimizations in the discrete

domain would be crucial for applying PPO to more practical problems, such as the

intrusion detection.

Moreover, studies [20–23] indicate that code-level optimizations have significant

impacts on the final performance of PPO, thus it is natural to figure out what is the

1The results in this Chapter are also included in the project report ”An Empirical Study of
PPO”, co-authored with Hongming Zhang, Yan Wang and Xueying Zhang for CMPUT 655 at Univ.
of Alberta.
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real functionality of the clipped surrogate objective. To our best knowledge, there

is insufficient information in the literature studying this problem. Studies [21] inves-

tigate this problem in the continuous domain, but the authors draw the conclusion

based on the best learning rate. Since the clipped surrogate objective is used to limit

update steps, the performance at the best learning rate may not reflect its effects.

To further analyse the property of the clipped surrogate objective, we evaluate the

performances of PPO over a wide range of learning rates.

In this chapter, we focus on both the code-level optimizations and the clipped sur-

rogate objective. We develop our own PPO implementation using the OpenAI source

code [50] to identify all the code-level optimizations. The optimizations are mainly

classified into two groups: environmental optimizations and algorithmic optimiza-

tions. At first, we conduct comparative experiments to study the overall effects of

the two groups. Then we conduct comparative experiments on commonly adopted op-

timizations to study their effects individually in the Atari environments. Our results

indicate that among different optimizations, reward clipping has the most significant

effect. We further investigate into the reward clipping and have discovered that its

effect is influenced by the reward clipping scale (see Section 3.4.3). To comprehen-

sively understand the core idea of PPO, we compare the performances of PPO with

and without the clipped surrogate objective at different learning rates. We find that

the clipped surrogate objective makes PPO less sensitive to learning rates.

3.2 Background

Policy gradient becomes a popular optimization method in recent years. It parame-

terizes the policy π and uses the gradient ascent method to maximize the expected

return Eπ[Rt] under policy π. In general, the policy gradient estimator is given as,

ĝ = Êπθ

[︂
∇θ log πθ (ai | si) Âi

]︂
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where πθ is a parameterized policy with regard to θ, Ât is an estimator of the advan-

tage function and Êπθ
is the mean over a finite batch of samples collected under πθ.

ĝ can be obtained by differentiating the following objective function:

LPG(θ) = Êπθ
[log πθ(ai|si)Âi].

In order to improve the sample efficiency and make the policy update more nu-

merically stable, Trust Region Policy Optimization(TRPO) [18] and Proximal Policy

Optimization (PPO) [10] use importance sampling to achieve off-policy learning and

use surrogate objectives to obtain monotonic improvement.

More specifically, the importance sampling calculates the average rewards under

the target policy πθ from trajectories generated by following a different policy called

the behavior policy πθold . Let ri(θ) =
πθ(ai|si)

πθold
(ai|si) denote the importance sampling ratio,

we have

Êπθ
[Ai] = Êπθold

[︃
πθ (ai | si)
πθold (ai | si)

Âi

]︃
= Êπθold

[︂
ri(θ)Âi

]︂
.

Without any constraints, the maximization of Êπθ
[At] would lead to exceedingly

large update steps, which will jeopardize the monotonic improvement of the target

policy when using function approximation. To tackle this problem, Trust Region

Policy Optimization(TRPO) [18] maximizes the objective function with a trust region

constraint

LTRPO(θ) = max
θ

Êπθold
[ri(θ)Âi − βKL[πθold(·|si), πθ(·|si)]],

for some coefficient β. Here, πθold is the old policy and πθ is the new policy. The

Kullback-Leibler divergence term KL[πθold(·|si), πθ(·|si)] is called the trust region con-

straint between the new policy and the old policy.

PPO inherits the same idea of TRPO but simplifies the trust region constraint

with a clip operator. The clipped surrogate objective introduced by PPO is

LPPO(θ) = Êπθold
[min(ri(θ)Âi, clip(ri(θ), 1− ϵ, 1 + ϵ)Âi)].
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The clip operator removes the value that is outside the interval [1 − ϵ, 1 + ϵ], and is

defined as

clip(ri(θ), 1− ϵ, 1 + ϵ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− ϵ, ri(θ) ≤ 1− ϵ

1 + ϵ, ri(θ) ≥ 1 + ϵ

ri(θ), else

,

Here 0 < ϵ < 1 is the hyperparameter controlling the extent of clipping.

3.3 Optimization Details

Table 3.1 lists the terms of reinforcement learning corresponding to the actual signif-

icance of the Atari game. The RL agent aims to receive maximum episode reward.

Through the transformation, we can use PPO to train our game agent. In addition

to the basic transformation, some optimizations are also applied in PPO for facilitat-

ing training. Table 3.2 lists all the Atari environments related optimizations applied

in OpenAI implementation [50]. The optimizations which modify the conditions of

environments are classified as the environmental optimizations, and the others are

classified as the algorithmic optimizations.

RL Atari Game Implementation

State (s) Game Screen Image1

Action (a) Game Operation Discrete Numbers2

Reward (r) Bonus System Discrete Numbers3

Episode Game Round s0, s1, ..., si, si+1, ...st
4

Agent Game User Convolutional Neural Networks
1 Images are acquired by screenshot.

2 The operations in the game are discretized in real implementation.
3 Bonus system is designed by game developers. The reward is represented by discrete numbers.

4 An episode starts with s0 (initial game screen) and ends with st (terminated game screen).

Table 3.1: Reinforcement Learning for Atari Game Control
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Algorithmic Environmental

value loss clip(×) No-op Reset(×)

global gradient clip(×) Max And Skip(×)

orthogonal initialization(×) Reward Clip(×)

normalized advantage(×) Episodic Life Reset(×)

Adam learning rate annealing(✓) Stack Frames(×)

generalized advantage estimation (✓) Resize Frames(×)

loss function with entropy(✓) Observation Normalization(×)
1 Optimizations not mentioned in paper [10] are denoted by (×), otherwise denoted by (✓)

Table 3.2: Optimizations1 in PPO

3.3.1 Algorithmic Optimizations

The following shows the main elements of the algorithmic optimization (for the Ope-

nAI implementation of PPO):

• Value Loss Clip: Original PPO [10] treats the Mean Squared Error (MSE)

shown in Eqn. (3.1) as the value loss function.

LV = (Vθ − Vtarget)
2 . (3.1)

However, the OpenAI implementation [50] uses a clipped MSE:

LV
clip = max

[︁
(Vθ − Vtarget)

2 , (clip (Vθ, Vθold − ε, Vθold + ε)− Vtarget)
2]︁ ,

where Vθ is the new value estimate, Vθold is the old value estimate and Vtarget is

target value estimate.

• Global Gradient Clip: The maximum of gradients are bounded within 0.5

under l2-norm for each update to prevent gradient explosion.

• Orthogonal Initialization: The network is initialized with the orthogonal

initializer [51] instead of the default uniform initializer.
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• Normalized Advantage: The advantage vector is normalized by subtracting

the mean and being divided by the standard deviation of each mini-batch.

• Adam Learning Rate Annealing: The learning rate of Adam [52] is linearly

annealed during the training process.

• Generalized Advantage Estimation (GAE): Generalized advantage esti-

mation [53] is an effective variance reduction method for policy gradient meth-

ods. It has been a default method to estimate advantages.

• Loss Function With Entropy: An entropy loss term is added to the loss

function to keep the agent exploring while learning.

3.3.2 Environmental Optimizations

The following shows the main elements of the environmental optimization (for the

Atari game):

• No-op Reset: This wrapper2 takes no actions for a random number of steps

in the beginning of each game, producing a randomized initial state.

• Max And Skip: This wrapper skips several steps and returns the larger value

of the latest two states for each pixel.

• Reward Clip: This wrapper returns +1 for positive rewards, -1 for negative

rewards and leaves 0 unchanged.

• Episodic Life Reset: This wrapper ends the current episode when the agent

loses a life.

• Fire Reset: This wrapper resets the environment by firstly firing a couple of

bullets.

2The wrapper denotes the encapsulated programming module which can realize the corresponding
functionality.
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• Stack Frames: This wrapper stacks the latest k frames such that the agent

can infer the velocities and directions of the moving objects.

• Resize Frames: This wrapper resizes the observations to 84× 84.

• Observation Normalization: This wrapper normalizes the observations to

[0, 1] by dividing 255 for each pixel.

3.4 Experiments on Code-level Optimizations

Studies [20–23] indicate that the great performances of PPO in the Mujoco envi-

ronments is the consequence of several code-level optimizations. Inspired by their

work, we hypothesize that code-level optimizations are essential for PPO to attain

high performances in discrete environments as well. We use the OpenAI’s PPO code

bases [50, 54] to develop our own implementation to reproduce the algorithm of PPO,

and we select Alien, a classic Atari video maze game, as our experiment environment.

In order to draw statistically valid conclusions, each experiment is run with 30

different random seeds to reduce random errors. We use the mean score3 as the

performance metric. For accurate comparisons, the 95% confidence interval of each

experiment is evaluated on the last-iteration mean scores4. Our default hyperparam-

eter settings are consistent with the original PPO paper [10] and given in Table ??.

We define the fully optimized PPO with default hyperparameters as the BASELINE

configuration.

3Whenever an episode ends, we save the score of this episode into a queue of size 100. When the
queue is full, old scores will be replaced. Before each training iteration, we calculate the mean score
of the episodes in the queue as the current performance.

4Last-iteration mean score is the mean score of the last 100 episode of each run. We have 30 runs
for each experiment, so there are 30 last-iteration mean scores for each experiment.
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Hyperparameter Value

Horizon 128

Adam stepsize 2.5e-4 ×α

Num. epochs 3

Minibatch size 256

Discount (γ) 0.99

GAE parameter (λ) 0.95

Number of actors 8

Clipping parameter ϵ 0.1 ×α

Value coefficient 1

Entropy coefficient 0.01

Table 3.3: PPO hyperparameters used in Atari experiments. α is linearly annealed
from 1 to 0 over the course of learning.

3.4.1 Overall Study on Environmental and Algorithmic Op-
timizations

We first run the BASELINE configuration with 30 random seeds on Alien to repro-

duce the results presented by the PPO paper [10]. Then we perform comparative

studies by 1) running PPO-M: removing both the environmental and the algorithmic

optimizations5, 2) running PPO-M-W: removing only the algorithmic optimizations,

to compare the effects of the two groups.

As seen in Figure 3.1(a), the gap between the three configurations are significant.

Table 3.4 lists the proportions of performance decline of PPO-M and PPO-M-W com-

pared with BASELINE, which is 70.13% and 26.13% respectively. The results indicate

that code-level optimizations, including algorithmic and environmental optimizations,

contribute remarkably to the performance of PPO in the discrete domain.

5Only optimizations not mentioned in the PPO paper [10] are removed, same below.
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Figure 3.1: All results are averaged over 30 runs with different random seeds. (a):
Overall performance comparison among BASELINE, PPO-M, PPO-M-W. (b): Per-
formance comparison among different configurations.

3.4.2 Preliminary Study on Selected Optimizations

Recent studies [20, 21, 55] show that rewarding clipping, GAE [53], value loss clip and

orthogonal initialization [51] have significant impacts on the performance of PPO in

continuous control problems. To investigate whether these optimizations matters or

not in the discrete domain, we perform experiments with the following configurations:

PPO-NoV: remove value loss clip; PPO-P: replace GAE [53] with plain advantage

function [17]; PPO-NoR: remove reward clipping; PPO-X: replace orthogonal ini-

tialization [51] with Xavier initialization [56].

Experimental results in Figure 3.1(b) show that PPO-NoV, PPO-P, PPO-NoR and

PPO-X all experience severe performance degradation, especially PPO-NoR. Thus,

reward clipping, value loss clip, orthogonal initialization and GAE can significantly

improve the performance of PPO in Alien. Studies [21] indicate that the value loss clip

does not have substantial influence in continuous domain. The discrepancy between

our results and that in paper [21] demonstrates that a specific optimization may have

different effects in discrete and continuous domains.

As seen in Table 3.4, the performance of PPO-NoR is 45.14% worse than BASE-
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Configuration Last-iteration Mean Score Difference with BASELINE

BASELINE 1411.917 [1296.935, 1526.898] -

PPO-M 421.79 [393.561, 450.019] -70.13%

PPO-M-W 1042.968 [966.957, 1118.980] -26.13%

PPO-NoV 1103.503 [1037.946,1169.061] -21.84%

PPO-NoR 774.5233 [721.3818, 827.6649] -45.14%

PPO-X 1137.52 [1004.209,1270.831] -19.43%

PPO-P 1266.7 [1191.503,1341.897] -10.29%

Table 3.4: Comparison among different configurations at the default learning rate.
All results are averaged over 30 runs with different random seeds. The last-iteration
mean score with 95% confidence interval is shown in table.

LINE, which reveals that reward clipping is the most significant one among our se-

lected optimizations. In the next section, we perform in-depth studies on the reward

clipping.

3.4.3 Study on Reward Clip

Our case studies show that PPO-NoR experiences severe performance degradation

compared to BASELINE. Since the score settings of different Atari games are quite

different, studies[19] use reward clipping to normalize all positive rewards to 1, all

negative rewards to -1, and 0 remains unchanged. However, there is no evidence

supporting that ‘1’ is the best reward clipping scale6. We assume that the performance

gain from reward clipping changes with the clipping scale. To further improve the

performance of PPO, and figure out whether the reward clipping scale matters or not,

we conduct a series of experiments.

Starting from BASELINE (x = 1), the clipping scale is increased and decreased by

a factor of 2. We observe that the most frequent positive score returned in Alien is

10. Since it is unreasonable to enlarge the clipped scores beyond the original scores,

6We define reward clipping scale to be x (x > 0), that is, positive rewards are clipped to be x
and negative rewards are clipped to be −x, 0 remains unchanged.
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Configuration Learning Rate Last-iteration Mean Score Difference

BASELINE 2.5× 10−4 1411.917 [1296.935, 1526.898]

PPO-0.5R 5.0× 10−4 1630.890 [1517.629, 1744.151] +13.42%

PPO-1.0R 10× 10−4 1437.933 [1304.700, 1571.167] +1.84%

PPO-0.2R 5.0× 10−4 1426.590 [1308.464, 1544.716] +1.04%

PPO-2.0R 10× 10−4 1321.837 [1208.267, 1435.404] -6.38%

PPO-0.1R 2.5× 10−4 1290.427 [1187.946, 1392.907] -8.63%

PPO-4.0R 5.0× 10−4 1077.013 [970.775, 1183.250] -23.72%

PPO-NoR 2.5× 10−4 774.523 [721.382, 827.665] -45.14%

Table 3.5: Last-iteration mean scores are averaged over 30 runs with different random
seeds with 95% confidence interval. Difference is compared with BASELINE.

we stop increasing the clipping scales at 10. Correspondingly, we stop decreasing the

clipping scales at 0.1. For in-depth studies, a learning rate sweep from 6.25 × 10−5

to 4× 10−3 is also performed. Starting from the learning rate 2.5× 10−4 proposed in

the original PPO paper [10], we increase and decrease the learning rate by a factor

of 2. Other hyperparameters are given in Table ??.

In Figure 3.2, we plot the mean scores generated from 30 runs at the best learn-

ing rate during the learning rate sweep. The best learning rate selection is shown

in Figure A.1 in the Appendix. Figure 3.2(a) shows that PPO-0.5R generates the

best performance among all the tested scales in our experiments, including PPO-1R

whose scale is the same as BASELINE. Figure 3.2(b) suggests that the performance

changes with the clipping scale. An inappropriate scale can diminish the effect of

reward clipping. In addition, as shown by the mean score curves in Figure 3.2(c), the

performance of PPO-0.5R is consistently better than BASELINE and PPO-1R over

the entire training iteration. According to Table 3.5, the last-iteration mean score of

PPO-0.5R is improved by 13.42% compared to BASELINE and by 11.83% compared

to PPO-1R. Our experimental results confirm that the reward clipping scale plays an

important role in PPO. It is also shown that the default reward clipping scale is not
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Figure 3.2: All results are averaged over 30 runs with different random seeds. PPO-
xR is defined as the configuration with the reward clipping scale x at the best learning
rate. (a): Mean score curve comparison among configurations. PPO-0.5R outper-
forms all other configurations. (b): Bell-shaped curve of the last-iteration mean
scores. 0.5 is the best reward clipping scale among our selected scales. (c): Mean
score curves of BASELINE, PPO-1R and PPO-0.5R.

optimal. As a result, the performance of PPO can be further improved.

3.5 Experiments on Clipped Surrogate Objective

To explore the properties of the clipped surrogate objective, we run the following

experiments: 1) run PPO without the clipped surrogate objective (PPO-NoClip) in

the Alien environment with 30 random seeds. 2) run the original fully optimized PPO

(PPO) in the Alien environment with 30 random seeds. The 95% confidence intervals

are evaluated for the last-iteration mean scores.

This problem is also studied in continuous control environments but their con-

clusion is drawn at the best learning rate[21]. Since the clipped surrogate objective

is used to constrain the size of policy updates [10], we hypothesize that its effect

will be more significant at higher learning rates. Therefore, a learning rate sweep is

conducted for in-depth comparisons. The sweep range for this section is extended to

1.6× 10−2.

Our results are listed in Table 3.6 and Figure 3.4. We find that with relatively small

learning rates, the clipped surrogate objective does not provide too much performance

gain. The large overlapping confidence band in Figure 3.4 between PPO and PPO-

NoClip implies that the PPO does not have statistical advantages over the PPO-
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LR PPO PPO-NoClip

0.625× 10−4 949.283 [907.806, 990.760] 1009.337 [960.743, 1057.930]

1.25× 10−4 1185.063 [1109.453, 1260.674] 1309.510 [1197.965, 1421.055]

2.5× 10−4 1411.917 [1296.935, 1526.898] 1523.153 [1416.938, 1629.369]

5× 10−4 1395.097 [1280.438, 1509.756] 1578.670 [1421.375, 1735.965]

10× 10−4 1437.933 [1304.700, 1571.167] 994.863 [914.478, 1075.249]

20× 10−4 1403.713 [1295.376, 1512.050] 641.357 [555.116, 727.598]

40× 10−4 947.483 [828.336, 1066.631] 280.247 [209.095, 351.398]

80× 10−4 362.067 [272.284, 451.849] 260.167 [250.221, 270.113]

160× 10−4 262.607 [ 249.198, 276.016] 250.640 [244.696, 256.584]

Table 3.6: Comparison of last-iteration mean scores with 95% confidence intervals
at different learning rates. Results are averaged over 30 runs with different random
seeds.

NoClip. This is because, at relatively small learning rates, the policy πθ is less likely

to be updated with large steps astray from the vicinity of the current policy. As

demonstrated by Figure 3.3(b), the clip fractions7 at learning rate 2.5 × 10−4 are

more skewed to the left compared to those at learning rate 20×10−4, which indicates

that there are fewer large update steps at relatively small learning rates.

On the other hand, as the learning rate increases, the performance gain from the

clipped surrogate objective becomes more and more significant, which agrees with

our hypothesis. The plateau in Figure 3.3(a) spanning from 2.5× 10−4 to 20× 10−4

implies that the clipped surrogate objective plays an important role in stabilizing the

performance of PPO over a wide range of learning rates.

However, we also observe that if the learning rate grows beyond 20 × 10−4, the

performance of PPO starts to degrade quickly until all performance gain from the

clipped surrogate objective is offset. According to Figure 3.3(a), at learning rate

160× 10−4, both the original PPO and the PPO without clipped surrogate objective

7Clip fractions are calculated by dividing the total number of steps with the number of clipped
steps.
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Figure 3.3: All results are averaged over 30 runs with different random seeds. (a)
The last-iteration mean scores of PPO and PPO-NoClip at different learning rates.
(b) The Complementary Cumulative Density Functions (CCDF) of clip fractions at
learning rates 20× 10−4 and 2.5× 10−4. It shows the distribution of clip fractions of
PPO. (c) The mean score curves of PPO-NoClip and PPO-NoClip-Nolr at learning
rate 2.5× 10−4.

do not work properly. This performance degradation can be explained by PPO’s

defect in limiting the first update step of each training iteration. Studies [21] briefly

discuss this defect. Herein we provide a more detailed discussion of the problem.

In PPO, we use the sample average to represent the expectation in the clipped

surrogate objective. In general, we compute the gradient of the clipped surrogate

objective as:

∇θL
PPO(θ) = Êπθold

[∇θ min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

=

⎧⎨⎩ Êπθold
[∇θrt(θ)Ât], if L1 or L2,

0, Otherwise

where rt(θ) = πθ(at|st)
πθold

(at|st) , L1 : {rt(θ) ≤ 1 + ϵ and At
ˆ > 0} and L2 : {rt(θ) ≥ 1 −

ϵ and At
ˆ < 0}. πθ is the new policy and πθold is the old policy.

By the clipping steps with rt(θ) ≥ 1 + ϵ for At
ˆ > 0 or rt(θ) ≤ 1 − ϵ for At

ˆ < 0,

the current policy is protected from significant changes in order to guarantee the

monotonic improvement [18]. But the above gradient formula tells us that PPO

will not limit the update steps for the first update of each iteration. It is because

we initialize πθ to πθold before the first update so that the ratio rt(θ) will be 1 in

this case, which may result in an arbitrary large update to the current policy [21]
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and disrupt the monotonic improvement of the current policy, especially at relatively

large learning rates.

In addition, Figure 3.4 also reveals that with relatively small learning rates, PPO

significantly outperforms PPO-NoClip in early iterations but PPO-NoClip catches

up and exceeds PPO quickly in late iterations. Considering that the Adam learning

rate linearly decreases as the training iteration increases, we hypothesize that the

Adam learning rate annealing is one of the reasons that facilitate the faster training

of PPO-NoClip in the late iterations.

Figure 3.4: All results are averaged over 30 runs with different random seeds. The
shade of the curve is the confidence band with 1 std.

To verify our hypothesis, we run PPO-NoClip without Adam learning rate an-

nealing (PPO-NoClip-Nolr) with 30 random seeds in the Alien environment. The

mean score curves of PPO-NoClip and PPO-NoClip-Nolr plotted in Figure 3.3(c)

confirm our hypothesis. In early iterations, the confidence bands of PPO-NoClip and
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PPO-NoClip-Nolr are overlapped so they have similar performance. As the iteration

increases, the performance of PPO-NoClip grows steadily while that of PPO-NoClip-

Nolr barely grows in late iterations, causing their performance to be statistically

different. Our experimental results illustrate that PPO-NoClip is sensitive to learn-

ing rates, and Adam learning rate annealing is a significant factor to facilitate its

training.

3.6 Conclusion

In this chapter, we first study the effects of code-level optimizations for the PPO

algorithm in the discrete domain. Based on the results of our case studies, both

the environmental and algorithmic optimizations improve the performance of PPO.

Then, we delve into four code-level optimizations: reward clipping, value loss clip,

orthogonal initialization [51] and GAE [53]. Our results show that they all play

important roles in attaining high scores, especially the reward clipping which gives

the best outcome. Our detailed studies on reward clipping demonstrate that its effect

changes remarkably with the reward clipping scale.

In addition, we study the properties of the clipped surrogate objective. Results

indicates that at relatively small learning rates, the clipped surrogate objective does

not have significant impacts on PPO’s performance. However, as the learning rate

increases, the performance of PPO without clipped surrogate objective declines dra-

matically while that of the original PPO still remains high. Thus, the clipped surro-

gate objective stabilizes the performance of PPO over a wider range of learning rates.

We also observe that PPO’s performance degrades substantially at larger learning

rates. This degradation can be explained by PPO’s defect in limiting the first update

step of each training iteration.

Most importantly, the research conducted in this chapter provides many valuable

guiding ideas for the following chapter 4 and 5, where we conduct research on intru-

sion detection with reinforcement learning. For example, we will attempt to treat the
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intrusion detection task as a special game, and adopt the same transformation method

to solve the intrusion detection problem with reinforcement learning approaches. In

addition, the studies of reward clip are also beneficial to the intrusion detection re-

search, providing insights for designing the reward system. The importance of the

reward scale to the reinforcement learning framework will be further studied in de-

vising a proper reward system to facilitate training for the RL.
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Chapter 4

Packet-Level Intrusion Detection
Based on Reinforcement Learning

4.1 Introduction

In this chapter, we conduct research on intrusion detection at packet-level with re-

inforcement learning approaches. Packet headers transported by network packets

though the transmission will be extracted for training and evaluating the intrusion

detection system.

4.1.1 TCP/IP Model and Packet Switches

In this section, we introduce how a packet traverses from the source host to the

destination host. Furthermore, important knowledge carried by the packets through

the entire transmission trip will be introduced in details.

Figure 4.1 [57] shows a classical TCP/IP network model1 and the path of a packet

traveling from the source host to the destination host. The TCP/IP model consists

of an application layer, a transportation layer, a network layer, a data link layer

(Ethernet layer) and a physical layer. The physical layer is not considered in the

thesis. We explain the procedure of packet transmission [57] from a client side such

as a browser.

1TCP/IP is a set of communication protocols used to realize network interconnection. Internet
network architecture is based on TCP/IP.
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Figure 4.1: TCP/IP Model and Packet Switches. M represents the application mes-
sages generated in the application layer. Ht, Hn, Hl represent transportation layer
header, network layer header and data link layer header, respectively.

First of all, the client launches an HTTP2 request in the application layer. The

client creates a socket and sends the HTTP request message to the transportation

layer through the socket3.

Both TCP and UDP protocols operate in the transportation layer, and HTTP

can launch the TCP connection for transportation. After receiving HTTP messages

from the application layer, the transportation layer creates a logic TCP connection

with the transportation layer of the server through three-way handshaking4. Then,

the transportation layer generates a TCP header (Ht), and adds it to the message,

composing a TCP segment. The most important knowledge carried in the TCP

2Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed, collabora-
tive, and hypermedia information systems. HTTP is the basis of data communication on the World
Wide Web.

3The socket is an endpoint for two-way communication between application processes on different
hosts in the network. It provides a mechanism for application layer processes to exchange data using
network protocols.

4Three-way handshaking is not required in UDP connections.
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header is the source port and destination port. The port identifies the application

process, and different ports are bound with different application protocols. In our

case, HTTP is bound with the port 80. Subsequently, the TCP segment is sent to

the network layer for routing and forwarding.

After receiving the TCP segment from the transportation layer, the network layer

generates and adds an IP header (Hn) to the TCP segment, composing the IP data-

gram. The most important knowledge transported in the IP header is the source IP

address and destination IP address. IP address indicates the start and the end net-

work address of a packet trip. Then, the IP datagram is sent to the data link layer.

In addition to IP protocol, ICMP and ARP protocols also operate in the network

layer.

In most cases, Ethernet protocol is used in the data link layer, so the data link

layer is also named the Ethernet layer. After receiving the IP datagram, the data link

layer generates and adds an Ethernet header (Hl) to the IP segment, composing the

Ethernet frame. Finally the frame is sent to the server-side. Similarly, the procedure

of receiving a packet on the server-side is the reverse of sending a packet as described

in the above.

In general, we take advantage of the quintuple, i.e. source IP address, destina-

tion IP address, source port, destination port, and the transportation protocol, to

distinguish between multiple packet transmissions. In the following experiments, we

attempt to adopt these properties to split network traffics.

4.1.2 Packet Headers and Fields

As stated previously, in this chapter, the knowledge transported by packet headers

will be extracted for the purpose of packet-level intrusion detection.

As shown in Table 2.5 in Chapter 2, the application layer generates application

messages, and the remaining three layers generate special headers. A packet header

consists of different type of fields to store the most representative knowledge of each
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layer. Table 4.1 lists some common headers and fields. Taking the TCP header

as an example, a TCP header consists of various types of fields, including source

and destination port, sequence number, acknowledgement number, review window,

header length, options and flag. The successful operation of TCP protocol requires the

support of these filed knowledge [57]. Since fields store the most essential knowledge

of headers, it is natural to adopt fields knowledge to establish a stable intrusion

detection system. Fields are stored in the binary form in bytes, and in the following

study, we use this property to transfer fields into pixels.

Header Field

IP Header Version Number, Header Length, Type of Service,

Datagram Length, Identifier, Flags, Fragmentation Offset,

Time-to-Live, Protocol, Header Checksum,

Source and Destination IP, Options

TCP Header Source and Destination Port, Sequence Number,

Acknowledgement Number, Receive Window,

Header Length, Options, Flag

UDP Header Source and Destination Port, Length, Checksum

Ethernet Header Source and Destination Address, Type, CRC, Preamble

Table 4.1: Headers and Fields

Packet headers and application messages are recorded in ‘pcap’ (packet capture)

files, which can be acquired by ‘wireshark’ [58], a commonly used network analysis

tool. In the experiment, after selecting the network card of the network device on

‘wireshark’, it can automatically capture all the packets (Ethernet frames) traveling

through the network card in chronological order and record these packets in ‘pcap’

files in a hexadecimal format. We can then use ‘pyshark’ [59] to read packets from

‘pcap’ files. In our case studies, we adopt the DDoS2019 package [25], which contains

raw ‘pcap’ files for the packet-level IDS research.
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4.1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) [47] are a type of feed forward neural networks

with a deep structure facilitating convolutional computations. It is one of the most

representative algorithms of deep learning. CNN is widely applied in the area of

computer vision, such as image classification [60, 61]. The name of CNN indicates

that the network utilizes the convolution operation extensively. A basic CNN consists

of convolutional layers, pooling layers and fully connected layers. CNN gains in

popularity because of its affine invariance property, which is achieved by receptive

field, shared weights and pooling.

A convolutional layer conducts feature extraction on images with convolution ker-

nels, through which the receptive field and shared weights can be employed. The

receptive field signifies that a neuron in the CNN is required to sense information

of a part of the image, which can considerably reduces the number of parameters

connected to a neuron. This is beneficial considering that the local correlation of an

image is relatively stronger. By shared weights, different neurons can share the same

convolution kernels, which can further reduce the number of parameters required

for training. As shown in Figure 4.2b, a kernel (feature detector) is performing the

convolution operation on the image to extract image features. Different kernels can

extract different type of features. The output of the convolutional layer is called the

feature map. Notably, one kernel generates one feature map.

A pooling layer can reduce the dimensionality of the data. As a general rule,

the pooling layer is sandwiched between continuous convolutional layers, and it can

compress the amount of data/parameters and prevent over-fitting. In this work,

we adopt two pooling methods, the maximum pooling and the average pooling, to

perform down-sampling on each feature map.

The other commonly used CNN is 1D-CNN [48]. 1D-CNN is especially efficient

when extracting essential features from shorter and fixed-length segments of the over-
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(a) 1D-CNN (b) CNN

Figure 4.2: Convolutional Operation Comparison. (a): 1D-CNN convolutional oper-
ation example. (b): CNN convolutional operation example.

all data set, and when the feature within the segment is not of high relevance. Ac-

cordingly, 1D-CNN is a good choice for analyzing sensor time-series data [62]. There

are two main differences between the 1D-CNN and the CNN. First, the input di-

mensions are different, and second, the convolution kernel traverses the input data in

different ways, as shown in Figure 4.2. As displayed in Figure 4.2a, assuming that the

input is a sentence, each word can be transferred into a vector by word embedding

approaches. We can treat the convolution kernel as the feature detector. The feature

detector in 1D-CNN always covers the whole word, and scans from the start position

to the final position. For example, in Figure 4.2a, the height of the detector is 2, and

it moves from the top to the bottom with the step of 1. With respect to CNN, as

shown in Figure 4.2b, the input is a batch of 2D images. Using a square window, the

convolution kernel slides both horizontally and vertically across the image. As shown

in Figure 4.2b, the feature detector operates in a 2x2 window.

4.1.4 Related Works

Packet-level approaches, combined with machine learning algorithms and deep neu-

ral networks, have already been broadly applied in various areas of cybersecurity,
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Module Sub-Module Function

Data Preprocessing None Data Transformation and Feature Engineering

Reinforcement Interaction Collect batch data and store in replay buffer1

Learning Training Train the RL agent with batch data

Anomaly Detection None Detect attacks blind to the training module
1 Replay buffer is used to facilitate training. It stores batch data when agent is interacting with

the environment. At training stage, training data is sampled from replay buffer.

Table 4.2: Intrusion Detection Framework at Packet-level

including intrusion detection, and traffic classification, etc.

In studies [3], an LSTM-based IDS is designed for detecting malicious traffics in raw

network traffics at packet-level. The fields carried by packet headers are extracted and

processed for experiments. They treat a field, such as IP version in the IP header, and

TCP source port in the TCP header, as a word. A packet represents a sentence which

consists of these fields (words). A novel word embedding approach has been given by

researchers in this field. They have produced a dictionary to map these words into

integers. In this manner, one can transfer fields knowledge into 64-dimension vectors

in the integer format. After implementing data extraction and word embedding, a

3-layer LSTM model with dropout layers is established for detection.

Studies [4] also employ packet-level knowledge for detecting malicious traffics in

IoT environment. Similarly, they conduct feature extraction on raw traffic flow. Field

information is extracted from separated packets and each field represents a feature.

The authors concentrate on header fields, including frame, IP and TCP/UDP associ-

ated information and exploit one-hot encoding to encode those categorical features.

After implementing feature extraction and data preprocessing, they design a three-

layer fully connected neural network with the sparse cross-entropy loss function for

multi-class classification.
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4.2 Methods and Procedures

In this section, we elaborate the novel intrusion detection framework proposed at

packet-level. The whole framework is shown in Table 4.2. The framework consists

of two major modules and a number of sub-modules. The preprocessing module is

devised for data transformation and feature engineering. The reinforcement learning

module is devised for training the intrusion detection system with RL approaches.

This module further comprises a training module and an interaction module. An

additional anomaly detection module is deployed to detect those attacks which are

blind to the training module. We introduce each module in the following sections in

details.

Step Process (Input −→ Method −→ Output)

1 Raw Network Traffic −→ Session-based Rule −→ Separated Sessions

2 Separated Sessions −→ Image Embedding −→ Session Images

3 Session Images −→ Labeling with Log Files −→ Images and Label

4 Images and Label −→ Normalization −→ Applicable Dataset

Table 4.3: The Data Preprocessing Module at Packet-level

4.2.1 The Data Preprocessing Module

Motivated by the extensively used embedding approaches such as word2vec [63], we

propose a novel embedding method, namely the image embedding for the RL based

IDS developed in this chapter. In this method, several designated transformations

are performed to convert the network packets into images.

Table 4.3 show the main steps of the data preprocessing module. In the following,

we explain these steps in details.

In step 1, we split the vast network traffic recorded in the ‘pcap’ files into sepa-

rated and small traffic files according to specific rules, such as the session-based and

flow-based partition rules. The difference between a session and a flow is shown in
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Source Flow I Destination

IP 1 Packet 4, Packet 3, Packet 2, Packet 1 IP 2

Port 1 −→ (one direction) Port 2

TCP or UDP Connection

Destination Flow II Source

IP 1 Packet 4, Packet 3, Packet 2, Packet 1 IP 2

Port 1 ←− (one direction) Port 2

TCP or UDP Connection

Source/Des. Session I Des./Source

IP 1 Packet 4, Packet 3, Packet 2, Packet 1 IP 2

Port 1 ⇐⇒ (bi-direction) Port 2

TCP or UDP Connection

Table 4.4: Session and Flow. Flow I and Flow II both belong to Session I.

Table 4.4. The packet transmission directions in the same session can be opposite, but

the directions must be the same in the same flow. The common rule of session-based

and flow-based partition is that if two packets share the same 5-tuple knowledge

(source IP, source port, destination IP, destination port, transportation protocol),

then these two packets will be categorized in the same session or flow. As explained

previously, such 5-tuple knowledge determines the travel route of a packet, thus, we

can use this rule for flow or session categorization. A session or a flow always contains

numerous packets. In our experiments, we use the session-based rule for partition.

After partition, we can obtain several separated sessions stored in ‘pcap’ files; each

session contains various packets recorded in the order of capture time.

In step 2, we conduct image embedding on these separated sessions. The struc-

ture of a network packet can be found in Figure 2.5. Generally, a network packet

consists of an Ethernet header, a TCP or UDP header, an IP header and application

messages. We only extract fields stored in packet headers in this work. We discard
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(a) Image Embedding I

(b) Image Embedding II. The number of im-
ages M is calculated by: [(N − 1)/54] + 1.
Operation [] represents rounding down.

Figure 4.3: Procedure of Image Embedding. (a): Transfer packets to an image. (b):
Transfer a session to a batch of images.

application messages because the length of a packet header is fixed, while the length

of the application messages is not. The fixed embedding length is conducive to image

embedding since we can fix the size of the input image. The whole procedure of image

embedding is shown in Figure 4.3. The fields transported by the packets are stored

in bytes, so they can be converted to base 10 form with a range of 0 to 255, and

one byte represents one pixel. Hence one packet represents a line of an image. With

simple calculations, we find that the total length of a packet header is 54 bytes. Thus,
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we choose the standard image format with a fixed size of 54×54, meaning that an

image consists of only 54 packets. Some sessions may contain more than 54 packets,

in this case, we can use more images to embed the extra packets. If the number of

remaining packets is less than 54, we fill in the missing parts with zeros. Packets

are embedded in the order in which they are captured. This way, we can also attach

session knowledge into the packet-level experiments.

In step 3, after conducting image embedding, we label each session by matching

the time stamp given in the log file provided by the raw dataset.

In step 4, we perform the normalization on these images by dividing 255. All

pixels of images are then normalized into [0, 1] from [0, 255].

4.2.2 The Reinforcement Learning Module

Before developing our reinforcement learning module, it is necessary to first trans-

fer the intrusion detection problem to a RL-based problem. For this purpose, we

compare the intrusion detection problem to the Atari games studied in chapter 3, by

considering the intrusion detection as a special game. The comparison is shown in

Table 4.5.

RL Atari IDS IDS Space

State Image(s) Image Images in dataset

Action Game Operation Prediction Label Space {0, 1, 2...}

Reward Game Feedback Reward Mechanism {+1, -1}

Episode Game Round Session -

Agent Game User Classifier -

Table 4.5: Comparison between Atari game and the intrusion detection game.

Sessions identified in an intrusion detection game correspond to game rounds in an

Atari Game. When the agent is playing the game, it takes the following trajectory:

s0, a1, r1, s1, a2, r2 ... st
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where s represents the game screen, a represents the game operation and r represents

the game reward. The game agent repeats until it reaches the terminated state st

(game over) of an episode. Similarly, the intrusion detection agent can also take the

above trajectory until it reaches the end (last image) of a session.

The state is the game screen (in image format) in the Atari games, and in intrusion

detection, the state is also an image after we conduct image embedding on the sessions.

The action space of Atari games contains game operations, which can be expressed

as discrete numbers, e.g. 0 (one step left), 1 (one step right), 2 (one step up), etc.

The action space of the intrusion detection game contains the types of the traffic

class, which can also be expressed as discrete numbers like 0 (normal), 1 (attack 1),

2 (attack 2), etc.

However, the reward system is different for the above two problems. The reward

mechanism of Atari games has been devised by game developers. For the intrusion

detection problem, we need to carefully design the reward system. Referring to the

research conducted in Chapter 3, we have found that the reward scale has a significant

impact on the performance of reinforcement learning algorithms. Thus, inspired by

reward clip for the code-level optimization implemented in the Atari game agent, we

design the following reward feedback rule: if the prediction made by the agent is

correct, the reward is 1; otherwise, the reward is -1.

In Chapter 3, PPO is the main algorithm used for solving the discrete problem.

In this chapter, we apply Deep Q-Learning algorithm, rather than PPO. Deep Q-

Learning is also an excellent choice for solving discrete problems, and it is much easier

to implement compared to PPO. Later in this chapter, we show in a comparison case

study that the Deep Q-Learning outperforms policy gradient methods in the intrusion

detection task.

After identifying these essential reinforcement learning ingredients, we start de-

signing our reinforcement learning module. Convolutional neural networks (CNNs)

are chosen as the network structure of the intrusion detection agent since the input
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IDS Language Model

Input Session Sentence

Element Packet Word

Embedding Image Embedding Word2vec

Input Format [batch, len, dim] [batch, Len, Dim]

Table 4.6: Comparison between the intrusion detection system and the language
model. len and Len represent the length of the session and the sentence, respectively;
dim and Dim represent the embedding dimension of the packet and word, respectively.

states are images. It should be noted that, contrasting to Atari games and other

computer vision tasks, 1D-CNN is also appropriate in our intrusion detection system.

One reason is that we treat session images as a type of time-series data since packets

embedded in the image are arranged in chronological order according to the capture

time. Most importantly, as shown in Table 4.6, the intrusion detection problem also

has similarities with the language model, where 1D-CNN is widely applied. Gen-

erally, sentences consist of different words and have different lengths. Similarly, a

packet can be treated as a word, and a session can be treated as a sentence. When

dealing with language tasks, we take advantage of word2vec approaches to conduct

data preprocessing, while in our IDS we use the proposed image embedding to con-

duct data preprocessing for packets. Due to the above, we are motivated to adopt

the 1D-CNN in our experiments for the proposed IDS.

The main structure of the two RL agents, i.e. DQN-CNN and DQN-1D-CNN,

is shown in Figure 4.4. The input states (s) of the RL agents are a finite batch of

images. CNN and 1D-CNN are applied for feature extraction on DQN-CNN and

DQN-1D-CNN, respectively. An additional fully connected layer is deployed for final

classification and detection. The output is Q-values of the current state s, and the

prediction/action (a) is decided based on Eqn. (2.2) with the Q-values.

As discussed in the above, the RL module in the IDS has two sub-modules, the

interaction module and the training module. The complete procedure of the interac-
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Figure 4.4: Main structure of two reinforcement learning agents DQN-CNN and DQN-
1D-CNN. For DQN-CNN, the structure of the feature learning part is CNN. For
DQN-1D-CNN, the structure of the feature learning part is 1D-CNN.

tion module is shown in Algorithm 1. In the beginning, we randomly sample a session

from the dataset. A session contains numerous images and each image represents a

state s. If the current image is not the last image in the session, we store s, r, s

and a into the replay buffer and continue. If the current image is the last image, we

store s, r, and a into the replay buffer and randomly sample another session from the

dataset.

The complete procedure of the training module is shown in Figure 4.5. As men-

tioned above, Deep Q-Learning algorithm is employed in our experiments. Two net-

works (the Update and the Target) operate together to achieve the approximate

regression. The functionality of the target network is to improve the training sta-

bility[64] by fixing the regression target in N steps. The structure of the update

network is the same as the agent we have introduced above (See Figure 4.4). The

target network copies the structure from the update network and is initialized with

the parameters of the update network. The update network is updated through back

propagation, and the target network is updated by copying the parameters from the

update network every N times.

The training module and the interaction module work alternately. For example,

once the replay buffer is full, we can start training for several iterations. After training,
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Algorithm 1 Interaction Module

Start Interacting
for interaction process do
Randomly sample a session and get its label
Take first image in the session as current state s
Feed s into agent and obtain action (prediction)
Feed a and label into reward mechanism, get reward r
for each episode do
if Last image in the session then
Store (s, r, a, None) into replay buffer
break

else
Take next image in the session as next state s
Store (s, r, a, s ) into replay buffer
Set s = s

end if
end for

end for

we can use the new agent to interact with the environment and store the new data into

the replay buffer and remove the old data. The complete pack-level IDS algorithm

including both the interaction module and training module is shown in Algorithm 2.

4.2.3 The additional Anomaly Detection Module

We deploy an anomaly detection model to detect attacks which are blind to the

training set, by considering them as an anomaly class. This is important to a robust

intrusion detection system because it is impossible to include all types of attacks in

the training set.

As shown in Figure 4.6, we output a confidence score and set a threshold λ man-

ually. In the experiment, we add a Softmax layer at the end of the agent and view

the output of the Softmax layer (Q-values) as the confidence score of each class. As

shown in Eqn. (4.1), if all confidence scores are smaller than λ, the input will be

determined as the ‘anomaly’ attack. Conversely, the class that belongs to the max
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Figure 4.5: Deep Q-Learning Training Module. Update network is updated through
back propagation. Target network is initialized with the parameters of update net-
work, and updates are made every N times through copying the parameters from
update network. The mean squared error (MSE) is used as the objective function for
the approximate regression problem.

Figure 4.6: The work flow of anomaly detection model.

confidence score is the expected detection result.

f(s) =

⎧⎨⎩
argmax

a
Q(s, a) if max

a∈χ
Q(s, a) > λ

anomaly if max
a∈χ

Q(s, a) ≤ λ
(4.1)
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Algorithm 2 Deep Q-Learning Framework for Detection at Packet-level

Extract sessions from raw traffic file
Split sessions based on session-based rule
Conduct image embedding on each session
Initialize Q-function Q for agent, target Q-function Q̂ = Q
for each episode: do
Randomly choose a session from the dataset.
for each image within session, t ∈ [0, N ] do
Given image st, take action at based on Q
Compare at with true label, obtain reward rt and r̄t
Derive next state st+1: the image behind current state
Store st, at, rt, st+1 into agent replay buffer

end for
Sample a batch st, at, rt, st+1 from agent replay buffer
Target y = rt + γmaxa Q̂(st+1, a)
Update Q through back propagation to make Q(st, at) close to y
Every C steps reset Q̂ = Q

end for

4.2.4 Dataset

We select the published DDoS2019 as our major dataset for packet-level experiments.

DDoS2019 is a relatively new dataset [25] which is collected for DDoS and packet-

level research. The distributed denial of service (DDoS) attack denotes that multiple

attackers in different locations simultaneously attack one or more targets, or one at-

tacker takes control of multiple machines in different locations and uses them to attack

victims simultaneously. The originating points of the attack are distributed in differ-

ent places in DDoS attacks, and there can be multiple attackers. DDoS attacks can

cause great damages to the society. There are various types of DDoS attacks, posing

huge challenges for intrusion detection systems. In such circumstances, DDoS2019

was collected to facilitate the DDoS research.

There are eight traffic types collected in the training set: Normal, PortMap, Net-

BIOS, LDAP, MSSQL, UDP, UDP-Lag, SYN. These are multiple types of DDoS

attacks which have come up frequently in recent years. DDoS2019 is a balanced and

sufficient dataset. Each attack contains at least 10000 samples. The test set con-
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tains 12 types of traffic. In addition to the eight types collected in the training set,

other four types have been included: NTP, DNS, WebDDoS, TFTP. These additional

attacks put forward higher requirements to the generality of the intrusion detection

system because they are blind to our intrusion detection system at the training stage.

For this problem, we deploy an anomaly detection model to detect these four addi-

tional attacks, by considering them as an anomaly class.

Figure 4.7: Images after image embedding for each class.

Traffic Class Session Max Session Len Average Session Len Image

Normal (0) 20000 786 71 31256

PortMap (1) 20000 687 54 25258

NetBIOS (2) 20000 556 69 29564

LDAP (3) 20000 456 34 23102

MSSQL (4) 20000 632 56 27695

UDP (5) 20000 346 53 25210

UDP-Lag (6) 20000 452 43 24750

SYN (7) 20000 563 60 27610

Table 4.7: Dataset Details
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4.3 Results and Discussions

4.3.1 Evaluation Metrics

We adopt four metrics, including the accuracy, precision, recall and F1 score to eval-

uate the intrusion detection system.

Predicted
Actual

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Table 4.8: Confusion Matrix

Metric Calculation

Accuracy (TP+TN)/(TP+FP+FN+TN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1 (2*Recall*Precision)/(Recall+Precision)

Table 4.9: Evaluation Metrics

The definition of these four metrics are shown in Table 4.8 and Table 4.9. These

evaluation metrics are regularly used in two-class classification problems. As men-

tioned above, we have more than two categories in our experiments. When calculating

TP, FP, FN and TN with respect to each traffic class, we consider the current class as

the positive one, and the remaining classes as the negative one. With the assistance

of these machine learning metrics, we can comprehensively evaluate our intrusion

detection system.

4.3.2 Experiment Results

We use Deep Q-Learning algorithm combined with CNN and 1D-CNN for our IDS

experiments. In our IDS, we devise two agents based on DQN-CNN and DQN-1D-
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CNN. As a comparison, we devise another two agents PG-CNN and PG-1D-CNN,

which are trained with policy gradient methods. The sessions are extracted from raw

network traffic data in ‘pcap’ files and split according to the session-based rule. The

dataset is split in a ratio of 4:1 (16000 sessions for training and 4000 sessions for

validation). During the partition, we ensure that the session length distribution of

the training set and validation set is consistent, thus the image ratio can also reach

approximately 4:1. After partition, the statistics of the dataset is shown in Table 4.10.

Traffic Class Training Images Validation Images

Normal 25012 6256

PortMap 20200 5058

NetBIOS 23652 5912

LDAP 18019 5083

MSSQL 22986 4709

UDP 19159 6051

UDP-Lag 19552 5198

SYN 22640 4970

Table 4.10: Training and Validation Set Details

Experiments are conducted on the computer configured as RTX2070, i5-9600k and

32GB Memory. We compare three discount values γ, including 0.1, 0.5 and 0.9 on

four agents. We use the value of accuracy averaged over each class on validation set

to evaluate the performance and select the optimal discount value. The experiment

results are shown in Table 4.11. We notice that when γ equals to 0.1, all of the

four agents attains the highest performance. With regard to reinforcement learning

algorithms, DQN-1D-CNN slightly outperforms PG-1D-CNN over all discount fac-

tors, and DQN-CNN also marginally outperforms PG-CNN over all discount factors.

Meanwhile, it is observed that PG-based agents are more sensitive to discount factors.
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Overall results indicate that Deep Q-Learning is a relatively better algorithm than

policy gradient methods in our experiments. Hence in the following case studies, we

assume that the discount value is fixed as 0.1, and mainly adopt Deep Q-Learning

algorithms for the agent.

Discount Factor Val Acc (DQN-1D-CNN) Val Acc (DQN-CNN)

0.1* 98.78% 96.07%

0.5 95.21% 93.22%

0.9 87.12% 86.24%

Discount Factor Val Acc (PG-1D-CNN) Val Acc (PG-CNN)

0.1 96.17% 96.03%

0.5 90.15% 87.12%

0.9 79.68% 70.69%

Table 4.11: Performances of different discount values on four agents

Detailed experiment results of DQN-1D-CNN with discount value γ equal to 0.1

are shown in Table 4.12. As shown in the table, our detection system can reach

high accuracy at 98.78%. With respect to each class, 100% of normal traffic can be

detected. The detection rate (Recall) of MSSQL is the least among all eight types,

but still reaching 97.30%. Table 4.13 lists the validation results of DQN-CNN. It is

seen that the performance of DQN-CNN is slightly worse than that of DQN-1D-CNN,

but still reach a high accuracy at 96.07%. The experimental results prove that both

DQN-1D-CNN and DQN-CNN can achieve high performances when dealing with

image tasks. In addition, in our experiments, the image can also be readily treated

as the time series data, and DQN-1D-CNN can perform much better in this case.

Afterwards we evaluate our DQN-1D-CNN agent on the test set. In this stage, we

are required to set another important hyperparameter: λ. λ controls the detection

performance of (unknown) anomaly traffic. We treat the known eight types of attacks

as the negative class, and the anomaly traffic as the positive class. We use precision
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and recall to evaluate the performances and select the optimal λ. Results are shown

in Table 4.15. As λ is increasing, the precision is decreasing, which means that an

increasing volume of network traffic is classified as the anomaly type. Conversely,

as λ is increasing, the recall is also increasing, meaning that an increasing amount

of anomaly traffic is detected. We can determine the value of λ based on actual

requirements of the intrusion detection system. In our experiments, we fix the λ as

0.7, which is a trade-off between 0.5 and 0.9.

Finally, we evaluate our intrusion detection system on the test set with γ = 0.1 and

λ = 0.7. Results are shown in Table 4.16. Due to the existence of anomaly traffic,

the general accuracy has declined greatly to 84.27% compared with the validation

accuracy at 96.07%. With respect to all classes, the DQN-1D-CNN agent can attain

relatively high performances on those known types. With regard to anomaly types,

although these anomaly types are completely blind to our system, 71.05% of them

can still be detected.

Traffic Class Accuracy1 Precision Recall F1 Score

Normal 98.78% 99.32% 100% 99.66%

PortMap 98.78% 98.04% 98.95% 98.49%

NetBIOS 98.78% 98.87% 99.26% 99.06%

LDAP 98.78% 98.85% 98.37% 98.61%

MSSQL 98.78% 98.47% 97.30% 97.86%

UDP 98.78% 98.95% 99.62% 99.28%

UDP-Lag 98.78% 98.02% 98.31% 98.61%

SYN 98.78% 98.64% 97.83% 98.23%

Average 98.78% 98.65% 98.71% 98.73%
1 According to the calculation formula displayed in Table 4.9, accuracy is the general metric of a
intrusion detection system, so the accuracy value of each category is the same, and it represents

the overall accuracy of the system.

Table 4.12: Validation results of DQN-1D-CNN with discount value γ = 0.1. The
computation time for detection is 0.112s.
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Traffic Class Accuracy Precision Recall F1 Score

Normal 96.07% 96.91% 99.68% 98.27%

PortMap 96.07% 95.67% 93.53% 94.59%

NetBIOS 96.07% 97.35% 95.75% 96.55%

LDAP 96.07% 95.76% 96.95% 96.35%

MSSQL 96.07% 95.06% 96.03% 95.54%

UDP 96.07% 95.32% 96.00% 95.66%

UDP-Lag 96.07% 95.05% 94.92% 94.99%

SYN 96.07% 97.14% 94.87% 95.99%

Average 96.07% 96.03% 95.97% 95.99%

Table 4.13: Validation results of DQN-CNN with discount value γ = 0.1. The com-
putation time for detection is 0.071s.

4.3.3 Comparison with Deep Learning Approaches

In this section, we compare the performance of our approach with traditional 1D-CNN

and CNN approaches (without the reinforcement learning framework). We evaluate

the performances using two metrics. The first one is the detection rate (Recall), which

measures how many attacks are correctly detected. The other one is the false alarm

rate, which measures how many normal traffics are classified as malignant types.

Anomaly attacks are excluded in this experiment.

Results are shown in Table 4.17. It can be seen that traditional deep learning

methods can also achieve relatively high performances on the test set, which supports

that image embedding is a useful data preprocessing approach for network traffic

analysis. Most importantly, the proposed RL-based approach still outperforms these

traditional approaches in both detection rate and false alarm rate Without increasing

the computation time.
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Traffic Class Session Max Session Len Average Session Len Image

Normal 5000 691 65 9514

Portmap 5000 578 59 8768

NetBIOS 5000 612 54 6978

LADP 5000 531 41 6013

MSSQL 5000 598 61 9143

UDP 5000 408 46 6784

UDP-Lag 5000 425 39 6102

SYN 5000 601 55 7035

Anomaly 5000*4 752 57 29260

Table 4.14: Test Set Details

λ1 Precision Recall λ2 Precision Recall λ3 Precision Recall

0.5 93.94% 19.17% 0.7* 85.13% 71.05% 0.9 43.21% 86.86%

Table 4.15: Anomaly Detection λ Selection

Traffic Class Accuracy Precision Recall F1 Score

Normal 84.27% 88.81% 93.64% 91.16%

PortMap 84.27% 86.83% 91.38% 89.05%

NetBIOS 84.27% 84.62% 90.69% 87.55%

LDAP 84.27% 82.36% 88.31% 85.23%

MSSQL 84.27% 88.24% 92.14% 90.14%

UDP 84.27% 83.55% 89.40% 86.38%

UDP-Lag 84.27% 82.07% 87.92% 84.90%

SYN 84.27% 84.67% 89.57% 87.05%

Anomaly 84.27% 81.12% 71.05% 75.75%

Average 84.27% 84.70% 88.23% 86.36%

Table 4.16: Test results of DQN-1D-CNN with discount value γ = 0.1 and λ = 0.7.
The computation time for detection is 0.143s.
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Approach Detection Rate False Alarm Detection Time

1D-CNN 92.12% 5.12% 0.096s

CNN 90.68% 6.44% 0.084s

DQN-1D-CNN* 97.69% 0.12% 0.101s

DQN-CNN 95.14% 3.50% 0.079s

Table 4.17: Comparison with deep learning approaches (anomaly types in the test
set are excluded)

4.4 Conclusion

In this chapter, we conduct an investigation on intrusion detection at packet-level

with raw traffic files provided by DDoS2019, and in devising the intrusion detection

system, we also incorporate some ideas from the flow-based research, which will be

discussed in details in Chapter 5.

First of all, we design a novel image embedding approach. By means of image

embedding, we can transfer raw traffic files, which are generally difficult to process

by artificial intelligence techniques, to images. This is significant because there are

many artificial intelligence techniques which can achieve high performance on image

tasks. In addition, those packets classified in the same session are arranged in the

chronic order of the capture time. This way we can extend the the image-based task

to the time-series based task, where supplementary AI techniques such as 1D-CNN

and LSTM, can also be applied.

Secondly, we use Markov process to model the dynamic process of network session.

Therefore, we can devise a reinforcement learning framework to train the system.

By introducing discount value γ, we can make the agent to consider more farsighted

information. This property is also important to the intrusion detection problem.

Assuming that we encounter a malignant flow, if we force agent to consider more

farsighted, the agent can detect the intrusion earlier.

Thirdly, we design an additional anomaly detection system to detect those un-
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known attacks, and propose the idea of the confidence score. Owing to this anomaly

detection module, we are able to detect some unknown and novel attacks. It is crucial

because the real network environment is complicated and ever-changed, and hackers

will continue to launch novel attacks which are blind to intrusion detection systems.

Our experimental results show that, with the assistance of CNN, 1D-CNN and

reinforcement learning algorithms, the intrusion detection system can attain high

detection rate and maintain low false alarm rate.

4.5 Future Work

More research works can be done in the future on the basis of our reinforcement

learning framework.

Firstly, we can introduce GAN into the reinforcement learning framework. Since

we have already transformed the traffic data into images, we can use GAN to generate

some novel flows or sessions. Furthermore, we can use GAN to simulate a dynamic

network environment for interaction.

Secondly, we can devise a more robust and high-accuracy anomaly detection sys-

tem. In our experiments, we treat the Q-value as the confidence score. Nevertheless,

it is difficult to adjust the value of λ. One possibility is to train the agent to learn

the confidence score by itself.

Thirdly, we can introduce the idea of exploration into our reinforcement learning

framework. Some exploration approaches, such as ε-greedy policy, are widely adopted

in RL. Incorporating a simulation interaction environment, we can attempt to employ

the exploration policy to capture more states in the interaction space.

Last but not the least, we may consider locating the malignant packet. In our

experiments, the intrusion detection system can detect the malignant image, but can

not identify its specific position. One possible option is to employ a N -to-N LSTM

model to solve the problem.

It should be noted that several of the aforementioned research ideas are investigated
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in Chapter 5, the RL based flow-level intrusion detection.
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Chapter 5

Flow-Level Intrusion Detection
Based on Reinforcement Learning

5.1 Introduction and Preliminaries

In this chapter, we conduct the research on flow-level intrusion detection with re-

inforcement learning approaches. We design a novel RL based flow-level intrusion

detection framework. In this framework, a sample agent is specially devised for the

purpose of adversarial training, and the conditional GAN (CGAN) and ε-greedy pol-

icy are employed for data augmentation and state exploration. Then we evaluate our

framework on two data sets, the NSL-KDD and DDoS2019.

5.1.1 Generative Adversarial Networks

The generative adversarial network (GAN) is a novel deep learning model [65], and

one of the most promising unsupervised learning methods for data with complex dis-

tributions. GAN has achieved great success in data augmentation, image generation

and feature extraction.

In the framework of GAN, outputs are generated through the mutual game learning

of at least two modules: the generator (G) and the discriminator (D). In the original

GAN theory, G and D are not necessarily built by neural networks. Functions that

can fit the corresponding generation and discrimination rules are also applicable. But

in practice, deep neural networks are generally used as G and D. Thus, in this work,
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Figure 5.1: The Generator Work Flow. Normal distribution is denoted by Pz.

we consider G and D as two neural networks.

Min
G

Max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (5.1)

The objective function of GAN is shown in Eqn. 5.1. The generator G and the

discriminator D are trained alternately via the above min-max problem. The gener-

ator defines a probability distribution PG, as shown in Figure 5.1. It generates fake

samples with the input sampled from the normal distribution or other simple and

known distributions. The goal of the generator is to transfer the normal distribution

(or other known distributions) to PG, which is as close as possible to the distribution

of data, Pdata. In this fashion, we can sample data from known distributions to im-

plement the desired data augmentation. The generator aims to solve the following

optimization problem:

G∗ = argmin
G

Div(PG, Pdata)

where Div(PG, Pdata) stands for the divergence between distributions PG and Pdata,

which can be measured by different methods.

From the discriminator’s perspective, its function is to distinguish between true

samples from the real distribution and fake samples produced by the generator. Es-

sentially, the discriminator is a binary classifier. The objective function for the dis-
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criminator is:

V (G,D) = Ex∼Pdata
[logD(x)] + Ex∼PG

[log(1−D(x))]

where G is fixed. The discriminator aims to solve the optimization problem:

D∗ = argmax
D

V (D,G)

In fact, the maximum objective value of V (D,G) is related to Jensen-Shannon (JS)

divergence, thus we can use it to replace Div(PG, Pdata) and obtain:

G∗ = Min
G

Max
D

V (D,G)

Thus, by training G and D alternately, we can obtain a robust generative model.

The original GAN is known to have several disadvantages. It is unstable and diffi-

cult to converge through training [66]. On the basis of the original GAN, WGAN [66]

and WGAN-GP [67] are proposed. These two versions of GAN employ Wasserstein

divergence [68] to replace Jensen-Shannon divergence [69]. Further, for the stability

through training, on the basis of WGAN, WGAN-GP utilizes gradient clip to limit

the update. In comparison to GAN, WGAN and WGAN-GP tend to be more sta-

ble during the training process. Thus, WGAN and WGAN-GP are frequently used

substitutes for GAN.

The impact of GAN in the area of computer vision has already been discovered.

StyleGAN [70] has been developed as the best face image generator. In this work,

a style-based generator is proposed to generate face images, and it is able to con-

trol the high-level attributes of the generated image, such as hairstyles, freckles, etc.

StyleGAN has following innovations. Firstly, the style-based generator utilizes a non-

linear mapping network to replace the traditional input layer. Secondly, researchers

adopt mixing regularization to control the style generation. Thirdly, researchers use

Gaussian noise as the input to implement stochastic variation to mimic randomly dif-

ferent properties of human faces. The generated images attain high scores on several

evaluation criteria.
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In addition to the well-known applications in the area of computer vision, many

researchers have been exploring the potential of GAN in the area of cybersecurity.

Researchers in [71] apply GAN to generate flow-based network traffic. The generated

traffic contains all typical attributes of network traffic. They also propose a novel

embedding approach, namely IP2Vec to assist GAN in solving other tasks than just

the continuous values problem. The IP2Vec approach can learn good representations

of categorical attributes. By using IP2Vec embedding, those IP addresses that occur

frequently in similar contexts are mapped close to one another in the feature space.

Basically, IP2Vec is a fully connected neural network with a single hidden layer.

They use all IP addresses, destination ports and transport protocol that appear in

the dataset to define an input vocabulary. One-hot encoding is applied to represent

these values. After training the IP2Vec, the weights of the m-dimensional hidden

layer can be extracted. These one-hot vectors can be transferred into continuous

m-dimension vectors. After transformation, they use WGAN-GP to generate the

network traffic.

5.1.2 Stacked Autoencoder

Stacked autoencoder (SAE) is a stacked-version of auto encoders [26]. An autoen-

coder (AE) is an unsupervised artificial neural network. As shown in Figure 5.2a, its

functionality is to perform representation learning on the input by taking the input

itself as the learning target. Autoencoder has already gained enormous interests in

the areas of dimension reduction and anomaly detection.

A typical AE consists of an encoder and a decoder, which are symmetrical. As

shown in Figure 5.2a, the encoder compresses the input X to the latent space Y ,

and the decoder then attempts to reconstruct ˜︁X from Y . The objective of an AE is

to minimize the reconstruction error ||X − ˜︁X|| through backward propagation (BP)

[72]. Through the iterative training, ˜︁X is forced to eventually converge to X. This

process ensures that Y retains the most significant information of X, thus one can
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(a) Auto Encoder (b) Stacked Autoencoder (AE)

Figure 5.2: Autoencoder (AE) versus Stacked Autoencoder (SAE) (a): Auto encoder
only has one hidden layer. (b): Stacked autoencoder can have many hidden layers
(denoted by ...... in the figure).

use Y to replace the raw input X, which not only reduces the burden of the neural

network, but also achieves dimension reduction.

The stacked autoencoder adds a number of hidden layers into the encoder and

decoder, as shown in 5.2b. By adding these hidden layers, SAE can handle more

complex tasks and learn better representations.

AE and SAE have also been applied to build intrusion detection systems. In [73],

the sparse AE, where sparsity constraints are applied to the weight matrix, is incor-

porated with the support vector machine (SVM) for intrusion detection. The authors

establish a single-layer SAE for feature learning and add sparsity constraints on the

SAE model. Subsequently, the features extracted from the SAE model are sent to

the SVM classifier with Radial Basis Function (RBF) kernel. Another SAE-based re-

search [74] proposes a semi-supervised and unsupervised framework SU-IDS for flow

level intrusion detection. The core innovation of SU-IDS is to incorporate clustering

and classification approaches with the AE. Likewise, they make use of AE for learning

the representative features. At first they pre-train an AE with unlabeled data, then
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the features extracted by the AE are fed into the clustering or classification module.

The parameters of the clustering/classification networks are shared with the encoder

layer in the pre-trained AE.

5.1.3 Bayesian Search

Bayesian search [75] adopts Bayesian Optimization [75] to address the automatic

hyperparameter search problem. It gains popularity in exploring optimal hyperpa-

rameters because of its high efficiency.

The hyperparameter search problem can be expressed as an optimization problem.

Given a function f : x −→ R, the following optimization problem needs to be solved:

x∗ = argmin
x∈X

f(x)

When f is a convex function and the domain X is also convex, convex optimization

solutions can be obtained. However, f may not be convex in complex problems, and

it is often a black-box function, such as neural networks. Bayesian optimization can

solve this type of problems in an efficient way. Sequential Model-based Optimization

(SMBO) [76] is the simplest form of Bayesian optimization. The complete algorithm

is shown in algorithm 3.

Algorithm 3 Sequential Model-Based Optimization

Input: f,X, S,M
D ← InitSamples(f,X)
for i← |D| to T do
p(y|X,D)← FitModel(M,D)
xi ← argmaxx∈X S(x, p(y|x,D))
yi ← f(xi)
D ← D ∪ (xi, yi)

end for

Since Bayesian search can facilitate searching for optimal parameters, in our ex-

periments, we create a search space for the Bayesian search program to identify the

optimal parameters automatically. It is much more accurate and efficient than setting

the values of hyperparameters by hand.
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5.1.4 Related Work

In view of the fact that there are a larger number of datasets accessible for flow-level

intrusion detection studies, the flow-based IDS research are more predominant than

the packet-based IDS research.

Studies [5] compare the performances of several traditional machine learning algo-

rithms, such as random forest (RF), K-nearest neighbors (KNN) and Support vector

machine (SVM) in DDoS detection for Internet of Things (IoT) devices. To un-

derstand the difference between DDoS traffic and normal traffic, the authors devise

several user-defined features, instead of directly using features provided by avail-

able datasets. Features are classified into two main categories: namely, the stateful

features and stateless features. Stateless features represent flow-independent charac-

teristics of individual packets, such as the packet size and protocol. Stateful features

describe how traffic evolves over time, such as the bandwidth and IP destination

address cardinality and novelty. These features are fed into five machine learning

models: RF, decision tree (DT), SVM, DNN and KNN. They have launched an ex-

periment with Raspberry Pi to collect DDoS traffic and then created a dataset for

testing. All of the five algorithms obtain high detection accuracy, higher than 99%.

Studies [6] use two stacked bidirectional LSTM with a 20% dropout rate applied

between each layer for anomaly detection. Bi-LSTM is a type of black-box time-

series model which works well with natural language processing (NLP) problems.

For this reason, the authors transfer the intrusion detection problem to a type of

NLP problems. By treating the flow as a sentence and the packet as a word. They

apply Bi-LSTM to capture the relationships among different words (packets), and

predict the communications between two IP addresses. Experiment results show

great performance on the ISCX IDS [77] dataset.
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Module Sub-Module Function

Data Preprocessing None Data transformation and Feature Extraction

Reinforcement Interaction Store batch data into replay buffer

Learning Training Train the agent and the sample agent

Exploration None A sub-module of Interaction Module

Table 5.1: Functions of each module defined in Figure 5.3.

5.2 Methods and Procedures

In this section, we elaborate the novel intrusion detection framework proposed at flow-

level. The whole framework is shown in Figure 5.3 and Table 5.1. The framework

consists of two major modules and a number of sub-modules. The data preprocessing

module is devised for data transformation and dimension reduction. The reinforce-

ment learning module is devised for training the intrusion detection system with RL

approaches. This module further comprises a training module and an interaction

module. Additionally, an agent and a sample agent are designed in the training

module. Finally an exploration module is designed for the interaction process. We

introduce each module in the following sections in details.

Step Process (Input −→ Method −→ Output)

1 Raw Dataset −→ Encoding −→ Encoded Dataset

2 Encoded Dataset −→ Normalization −→ Applicable Dataset

3 Applicable Dataset −→ Feature Learning (PreTrain) with SAE

Table 5.2: Data Preprocessing Module at Flow-level

5.2.1 The Data Preprocessing Module

The complete data preprocessing module is shown in Table 5.2. The dataset col-

lected for flow-level research always involves some discrete and categorical features,

such as protocols and packet size. In step 1, we need to convert discrete and categor-
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Figure 5.3: Intrusion Detection Framework at Flow-level

ical features into continuous features that can be processed by deep neural networks

(DNNs).

With regard to the transformation of categorical features, the most simple and

common approach is one hot encoding. As shown in Figure 5.3, one hot encoding is a

type of positional encoding. If a categorical variable takesK values, we encode it with

a K-dimension vector. For example, the protocol has three values: TCP, UDP and

others, we can use positional coding on this attribute, as shown in Table 5.3. One hot

encoding has many advantages over other encoding approaches, one of which being

the easy implementation.

With regard to the transformation of discrete features, we propose a N -bit binary
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Protocol Encoding Position Encoding Vector

TCP 0 [1, 0, 0]

UDP 1 [0, 1, 0]

OTHERS 2 [0, 0, 1]

Table 5.3: One Hot Encoding for Feature Protocol

encoding approach. A discrete feature has its maximum value. Based on the maxi-

mum value, we can determine the value of N , which ensures that N -bit binaries can

encode all values of this attribute. For example, if the maximum value of a discrete

feature is 120, we can use 7-bit binary to encode this feature.

In step 2, after we obtain the encoded dataset, we carry out max-min normaliza-

tion on it, converting all values to [0, 1].

Notably, after implementing one hot encoding and binary encoding, the dimension

of data considerably increases. In step 3, we propose an SAE-based approach to

conduct dimension reduction, as well as feature extraction. As previously noted,

SAE is efficient in feature extraction and dimension reduction. We pre-train the SAE

model and then extract the encoder as the primary structure of the RL agent.

5.2.2 The Reinforcement Learning Module

Similarly as in Chapter 4, we describe the important elements before developing

the flow-level intrusion detection systems. Likewise, in the analysis we consider the

flow-level intrusion detection as a special game. The comparison between packet-

level intrusion detection game and flow-level intrusion detection game is shown in

Table 5.4.

As shown in Table 5.4, there are both similarities and differences between the

packet-level and the flow-level intrusion detection problems. In both cases, the action

represents the prediction performed by the agent. Furthermore, the flow-level reward

mechanism is the same with that of packet-level. However, the state and episode are
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RL Packet-level Flow-level Flow-level Space

State Image Feature Vector Traffic Features

Action Prediction Prediction Label Space {0, 1, 2}

Reward Reward Mechanism Reward Mechanism {+1, -1}

Episode Session User Defined None

Agent Classifier Classifier None

Table 5.4: Comparison between Packet-level and Flow-level Intrusion Detection

defined differently. At packet-level, we split raw ‘pcap’ files into separated sessions,

then through image embedding we transform these sessions into images, which are the

states. However, at flow-level, we directly use traffic features provided by the dataset

as the states, and the main structure of the update module is fully connected neural

networks. Moreover, at packet-level, packets embedded in the image and images in a

session are both arranged in chronological order (capture time), thus we can view a

session as an episode. Nonetheless, at flow-level, all the data collected in the dataset

has been shuffled, so there is no obvious chronological order. The length of the episode

needs to be determined, and it is assumed to be fixed in the interaction process.

In the proposed flow-level intrusion detection system, in addition to the normal

agent, we also design a sample agent to facilitate the adversarial training. As shown

in Table 5.5, there are some major differences between the agent and the sample

agent. The agent performs the correct prediction (the action) by achieving maximum

rewards. The sample agent provides guidance (the action) for the next class to be

sampled from. To improve the variability, the sample agent tends to counteract the

agent. It chooses a class that is most likely to be misclassified and suggests it as the

class to be sampled from for the next state. For this reason, the reward feedback

of the agent and the sample agent are opposite. If the prediction of the agent is

wrong, the reward feedback of the sample agent is 1; Otherwise, if the prediction of

agent is correct, the reward feedback of sample agent is -1. This way, the sample
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agent functions as the adversarial training agent. The objective of the sample agent

is to ensure that those state-action pairs with high classification errors rates can be

adequately trained.

State Action Reward

Agent Current Features Prediction Reward Mechanism

Sample Agent Current Features Next Sample Class Contrary Reward

Table 5.5: Agent and Sample Agent

Figure 5.4: Interaction Module

In the interaction stage, we should also create a simulation environment. We take

the preprocessed dataset as the simulation environment. In our experiments, we focus

on episodic tasks, hence we fix the length of an episode in advance. The complete

interaction module is shown in Figure 5.4. All of the traffic features collected in the
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dataset can be considered as the states. In the beginning, a state is randomly sampled

from dataset. Feeding the state into the agent (classifier), the agent then outputs the

prediction (action) of the current state. Feeding the action-label pair into the reward

mechanism, we can obtain the reward. If the current state is not reaching the end

of the present episode, we also feed the current state to the sample agent and obtain

the next sample class. Afterwards, we sample the next state which belongs to this

class from the dataset. Next, we store state, action, reward and next state into the

replay buffer. Subsequently, treat the next state as the current state and repeat the

above process. It should be noted that if the current state is reaching the end of

the episode, we store state, action, reward into the replay buffer and then randomly

sample a state from the dataset, which indicates that a new episode is launched.

The whole training module is shown in Figure 5.5. The main structure of the

update network and target network in the training module is shown in Table 5.6.

The agent and the sample agent are trained concurrently, as shown in Algorithm 4.

Encoder Decoder

InputLayer−→ HiddenLayer−→ LatentSpace−→ HiddenLayer−→ OutputLayer

Agent

InputLayer−→ HiddenLayer−→ LatentSpace−→ FCN
Softmax−−−−−→ Q-values

SampleAgent

InputLayer−→ HiddenLayer−→ LatentSpace−→ FCN
Softmax−−−−−→ Q̄-values

Table 5.6: Stacked Autoencoder (Encoder and Decoder), Agent and Sample Agent.
The encoder is shared with agent and sample agent.

5.2.3 The Exploration Module

In our flow-level IDS, we attempt to employ both the ε-greedy policy and conditional

GAN (CGAN) to execute the exploration.

Eqn. (5.2) displays ε-greedy policy which is applied to the sample agent, and ε

controls the exploration degree. ε-greedy policy is a commonly used exploration
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Figure 5.5: Deep Q-Learning Training Module. Update network is updated through
back propagation. Target network is initialized with the parameters of update net-
work, and updates are made every N times through copying the parameters from the
update network. The mean squared error (MSE) is used as the objective function for
the approximate regression problem.

approach in Deep Q-Learning, which encourages the agent to explore novel states

through interacting. The action based on ϵ-greedy policy is determined as follows,

a =

⎧⎨⎩argmax
a

Q̄(s, a) with probability of 1-ε

any action with probability of ε
(5.2)

The other exploration approach is conducted by CGAN. A fixed dataset is actually

not appropriate for simulating a complicated and ever-changing network environment.

Thus, by means of conditional GAN, we attempt to generate some novel attack flows

for each class. As shown in Figure 5.6a, the conditional GAN takes the label and

noise as the input and outputs a state which belongs to the class.

Exploration is conductive to solve imbalance problems. Because the vast majority
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Figure 5.6: (a): Conditional GAN (b): Discriminator (c): Generator

of traffic in real-world is normal traffic, it is easier to collect normal traffic than

malignant traffic. This results in a bad consequence that most datasets collected for
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intrusion detection are unbalanced. Conditional GAN can help mitigate the problem

by generating some attack traffic for training. We employ the CGAN exploration rate

Γ to control the extent of the exploration. It means that with the probability of Γ,

the state comes from the dataset; with the probability of 1−Γ, the state is generated

from CGAN.

Conditional GAN comprises a discriminator and a generator. The discriminator

is a two-binary classifier, as shown in Figure 5.6b. An embedding layer is deployed

to expand the label and the embed label is concatenated with a generated or true

sample, composing the complete input which is fed into the classifier. The output is

a numerical value ranging in [0, 1]. If the output is larger than 0.5, the prediction is

a real sample; otherwise, the prediction is a generated sample. The cross entropy loss

function is applied for this purpose. The generator is revealed in Figure 5.6c, and the

functionality of the generator is to generate simulated states which can deceive the

discriminator. The label is expanded by the embedding layer and concatenated with

noises. The output is the simulated state.

The evaluation of generated samples is a challenging problem in our experiments

because we can not judge the quality of generated samples manually. For tackling

this problem, we train an additional simple classifier for the dataset. If most of

the generated samples can be correctly classified by the classifier, we consider the

generator as a good model. We use WGAN-GP in our experiments. The complete

algorithm of Deep Q-Learning with an exploration module is shown in Algorithm 4.

5.2.4 Dataset

NSL-KDD [28] and DDoS2019 [25] are adopted in our flow-level experiments in this

chapter. These two datasets are briefly introduced in the following.

NSL-KDD has been upgraded and improved based on KDD-99, in which superflu-

ous records of KDD-99 are eliminated. This way the bias of frequent records in the

dataset can be significantly reduced. However, as shown in Table 5.7, NSL-KDD is an
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Algorithm 4 Deep Q-Learning for Detection with CGAN at Flow-level (RL-CGAN)

Conduct preprocessing on dataset
Pretrain a stacked auto encoder
Train a conditional GAN
Initialize Q-function Q for agent, Q-function Q̄ for sample agent
Initialize the agent replay buffer and the sample agent replay buffer for training
the agent and the sample agent, respectively.
Copy parameters to Q and Q̄ from encoder

Set target Q-function Q̂ = Q, Q̂̄ = Q̄
for each episode: do
Randomly choose s0 from the dataset.
for each sample within episode, t ∈ [0, N ] do
Given state st, take action at based on Q
Given state st, take action āt based on Q̄ (ε-greedy)
Compare at with true label, obtain reward rt and r̄t
Derive next state: choose st+1 whose true label is āt from dataset or CGAN,
with probability of 1− Γ and Γ, respectively
Store st, at, rt, st+1 into agent replay buffer
Store st, āt, r̄t, st+1 into sample agent replay buffer
Sample a batch st, at, rt, st+1 from agent replay buffer
Target y = rt + γmaxa Q̂(st+1, a)
Update Q through back propagation to make Q(st, at) close to y
Sample a batch st, āt, r̄t, st+1 from sample agent replay buffer

Target ȳ = r̄t + γmaxa Q̂̄(st+1, a)
Update Q̄ through back propagation to make Q̄(st, āt) close to ȳ

Every C steps reset Q̂ = Q, Q̂̄ = Q̄
end for

end for

unbalanced dataset, in which some classes may not have sufficient data for training.

Taking the class U2R as an example, there are only 22 U2R samples collected in the

training set and 17 U2R samples collected in the testing set.

NSL-KDD gathers 41 features, including 38 continuous variables and three cat-

egorical variables. In the preprocessing stage, we normalize continuous features to

the range of [0, 1] and apply one-hot encoding on the categorical features. After

transformation, the dataset consists of totally 122 features, including 38 continuous

and 84 binary variables. The dataset has 23 different labels, which can be grouped

into four main attack types, as seen in Table 5.8. We use the main class as the label
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Main Class Train Sample Test Sample Class

Normal 67434 11449 0

DoS 45927 7456 1

Probe 11656 2102 2

R2L 934 1520 3

U2R 22 17 4

Table 5.7: Train set and Test set. We treat Normal as 0, DoS as 1, Probe as 2, R2L
as 3 and U2R as 4.

Main Class Sub Class

Dos back, land, neptune, pod, smurf, teardrop, mailbomb,

apache2, processtable, udpstorm

PROBE ipsweep, nmap, portsweep, satan, mscan, saint

R2L ftp write, guess passwd, imap, multihop, phf, spy,

warezclient, warezmaster, sendmail, named,

snmpgetattack, snmpguess, xlock, xsnoop, worm

U2R buffer overflow, loadmodule, perl, rootkit, httptunnel,

ps, sqlattack, xterm

Table 5.8: Attack Sub Categories of NSL-KDD

in our experiments, but not the subclass.

The other dataset used for the experiment is DDoS2019. We have adopted this

dataset in Chapter 4. In packet-level research, we extract features from raw network

traffics recorded in ‘pcap’ files. DDoS2019 also provides researchers with the flow-level

dataset. Entirely 79 features are extracted in the dataset, and some of the features

are listed in Table 5.9.

There are totally three types of features collected in DDoS2019, including con-

tinuous, discrete and categorical features. We still conduct one-hot encoding on

categorical features. With regard to the transformation of discrete features, we adopt
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Type Feature (Part) Encoding

Continuous Flow Duration, Average Packet Size None

Discrete Total Fwd Packets, Total Backward Packets, Binary Encoding

Total Length of Fwd Packets,

Fwd Packet Length Max

Categorical Protocol One-hot Encoding

Table 5.9: DDoS2019 Features and transformation

the binary transformation approach, with which we can transfer discrete features to

a 9-bit binary to encode the value from 0 to 1023, which is sufficient for the dataset.

Continuous features are not required to be transformed.

The statistics of DDoS2019 are listed in Table 5.10. DDoS2019 is a huge dataset

with millions of flows stored for each type. We extract 25000 flows for each traffic

type. In this flow-based IDS experiment, we exclude anomaly attacks considered in

chapter 4.

Traffic Class Train Set Validation Set Test Set Class

Normal 20000 5000 5000 0

Portmap 20000 5000 5000 1

NetBIOS 20000 5000 5000 2

LADP 20000 5000 5000 3

MSSQL 20000 5000 5000 4

UDP 20000 5000 5000 5

UDP-Lag 20000 5000 5000 6

SYN 20000 5000 5000 7

Table 5.10: DDoS2019 Description
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Figure 5.7: Stacked autoencoder performances on NSL-KDD

5.3 Results and Discussion

5.3.1 Evaluation Metrics

In our experiments, we utilize accuracy, precision, recall, and F1 score to evaluate the

performance. The definitions of these metrics are shown in Table 4.8 and Table 4.9.

Accuracy can evaluate the general quality of the system. Recall can evaluate how

many attacks are detected. Precision expresses how many of the traffic judged to be

in a certain category are correct. The F1 score is a trade-off between the two metrics,

recall and precision.

5.3.2 NSL-KDD Experiment Results

In our experiments, we discard U2R traffics because 22 samples can not provide any

helpful information. We pretrain a stacked autoencoder for the remaining data. The

structure of the stacked autoencoder is shown in Table 5.6. The dimension of the

input layer, hidden layer and latent space is 122, 60, 15, respectively. The dimension

of the fully connected layer is four, equal to the number of classes. We split the

training set in the ratio of 8:2, 80% for train and 20% for validation.

Experiments are conducted on the computer configured as RTX2070, i5-9600k

81



and 32GB Memory. As shown in Table 5.6, the encoder is extracted as the main

structure of the RL agent. Meanwhile, the parameters are also migrated to the agent.

An additional Softmax layer is added to implement classification. Furthermore, the

sample agent takes the same structure as the agent, and the first three layers are

shared with the agent at the beginning. We define the length of the episode as 512.

The maximum reward of an episode is 512 (all states are correctly predicted); the

minimum reward of an episode is -512 (all states are wrongly predicted).

In the first stage, we explore the influence of epsilon ε and gamma γ. The ex-

periments results are shown in Figure 5.8 and Table 5.13. Figure 5.8 shows great

performances with small discount value γ and small exploration value ε. The epsilon-

gamma pair is obtained by Bayesian search program. We can discover that the

intrusion detection system can achieve excellent performance with small value of γ

(smaller than 0.1) and ε (smaller than 0.1) in most cases. As shown in Figure 5.8,

ruling out an extreme case, all of the epsilon-gamma pairs can receive more than

400 points in an episode. The optimal epsilon-gamma pair can reach more than 500

points. From the perspective of accuracy, most agents can reach the classification

accuracy of 90%. Some agents can reach the peak of the accuracy and episode reward

at around 250 episodes. Table 5.13 extracts some important information from the

figure. The mean episode reward and validation accuracy are the mean value of last

10 episodes. The optimal mean validation accuracy can reach 98.25%, with the γ of

0.085 and ε of 0.024.

We create three search spaces for the Bayesian search program and compare the

performances on different values of γ and ε. We record the optimal parameters of

each search round in Table 5.12. It is shown that the discount value has a significant

impact on the performance while the influence of the exploration rate is relatively

trivial. In addition, a smaller γ is more suitable for the intrusion detection system.

In the second stage, we strengthen the intrusion detection system with CGAN to

simulate a more realistic network environment with the optimal parameter discovered
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(a)

(b)

Figure 5.8: Performances on validation set on NSL-KDD. The averaged computation
time for training on each episode is 8.9s.

in the first stage. We test the final intrusion detection system on the test set, as shown

in Figure 5.13. The experiment results are shown in Table 5.13. We use accuracy,
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γ ε Mean Episode Reward Mean Val Accuracy

0.085 0.024 485.0 98.25%

0.090 0.071 442.0 97.82%

0.009 0.085 427.6 97.98%

0.096 0.099 402.0 94.60%

0.076 0.096 180.6 72.33%

Table 5.11: Experiments results (averaged over last 10 episodes) without CGAN

γ ε MeanEpisodeReward MeanValAccuracy

0.085 (0, 0.1) 0.024 (0, 0.1) 485.0 98.25%

0.485 (0.4, 0.6) 0.098 (0, 0.1) 387.0 89.84%

0.912 (0.9, 1) 0.065 (0, 0.1) 175.0 68.97%

0.094 (0, 0.1) 0.567 (0.4, 0.6) 425.6 96.43%

Table 5.12: Performances (averaged over last 10 episodes) on validation set. (a, b)
denotes the search space for Bayesian search program.

precision, recall and F1 score for evaluation. The definitions of these metrics are

shown in Table 4.8 and Table 4.9.

Results are shown in Table 5.13. Obviously, CGAN can contribute to the robust-

ness of the intrusion detection system. In general, CGAN can improve the overall

accuracy of the intrusion detection system, improving from 85.98% to 88.50%. Con-

cerning different traffic types, CGAN contributes a lot to the detection of normal

and Dos traffics, but not works in the remaining two types. There could be many

reasons resulting in the outcome. Firstly, the training samples of Probe and R2L are

not sufficient for training a great generator to generate high-quality Probe and R2L

traffics. Secondly, the test set is limited, which may not reflect the advantages of

CGAN.
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Exploration Rate Γ: 0.0 Overall Accuracy: 85.98%

Time1: 0.087s

Class Precision Recall2 F1

Normal 89.08% 90.01% 89.54%

Dos 88.79% 82.15% 85.34%

Probe 73.93% 80.40% 77.03%

R2L 70.38% 82.24% 75.85%

Exploration Rate Γ: 0.5 Overall Accuracy: 88.50%

Time: 0.131s

Class Precision Recall F1

Normal 89.90% 95.14% 92.45%

Dos 96.08% 84.92% 90.16%

Probe 75.09% 78.45% 76.73%

R2L 71.04% 76.18% 73.52%
1 The computation time for detection.

2 Precision and recall are used in two-class classification, one class is positive and the other is
negative. In our experiments we view current class as the positive and other three classes as

negative.

Table 5.13: Performances on test set with RL-CGAN

5.3.3 DDoS2019 Experiment Results

The same experiments are conducted on DDoS2019. The complete experiment pro-

cedure is the same as what we have done on NSL-KDD. After data preprocessing,

the dimension of the state is 97. The structure of the stacked autoencoder is shown

in Table 5.6. The dimension of the input layer, hidden layer and latent space is 97,

60, 25, respectively. The dimension of the fully connected layer is eight, equal to the

number of classes. Figure 5.9 shows the performance of the stacked autoencoder. As

shown in Figure 5.9, the performance of the stacked autoencoder is also excellent on

DDoS2019.

In the first stage, we explore the influence of epsilon ε and gamma γ. We also fix
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Figure 5.9: Performances of stacked autoencoder on DDoS2019

γ ε Mean Episode Reward Mean Val Accuracy

0.034 0.066 477.3 98.86%

0.041 0.001 471.3 98.48%

0.070 0.170 449.8 97.73%

0.061 0.059 22.2 54.47%

0.036 0.088 -410.6 10.10%

Table 5.14: Experiments results (averaged over last 10 episodes) without CGAN

the length of the episode as 512. The experiment results are shown in Figure 5.10.

We create a search space (0, 0.2) for both ε and γ. From the plots we can find that

despite some anomaly pairs generate worse performances, most pairs associated with

relatively small ε and γ can reach high accuracy and obtain high episode reward. We

extract some statistics from Figure 5.10 and store in Table 5.14. The optimal pair is

γ-0.034, ε-0.066, reaching 98.86% on validation set. The worst pair is γ-0.036, ε-0.088.

We can discover that a small variance of parameters can have a significant impact on

performance. Thus, the Bayesian search program is necessary for our experiments.

Afterward, we create another two search spaces for the pair γ and ε and record

the optimal results in Table 5.15. The results inform that a large gamma γ is not
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(b)

Figure 5.10: Performances on validation set on DDoS2019. The averaged computation
time for training on each episode is 6.9s.

appropriate for our intrusion detection system. If we adjust γ to a relatively small

value, we can ensure that the intrusion detection system can always achieve good
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performances.

In the second stage, we strengthen the intrusion detection system with CGAN for

exploration and data augmentation. Experiments results on the test set are shown in

Table 5.16. Using CGAN, the intrusion detection system attains better performance,

improving from 93.67% to 96.43%. The enhancement achieved by CGAN prove that

we can simulate a more realistic network environment through CGAN.

γ ε MeanEpisodeReward MeanValAccuracy

0.034 (0, 0.2) 0.066 (0, 0.2) 477.3 98.86%

0.529 (0.4, 0.6) 0.062 (0, 0.2) 462.9 96.82%

0.804 (0.8, 1) 0.102 (0, 0.2) 40.9 54.22%

0.015 (0, 0.2) 0.596 (0.4, 0.6) 472.6 98.49%

Table 5.15: Performances (averaged over last 10 episodes) on validation set. (a, b)
denotes the search space for Bayesian search program.

5.3.4 Comparison with Machine Learning Approaches

In this section, we compare our RL-CGAN-based approach to some other frequently

used machine learning algorithms, including random forest, support vector machine,

adaboost [78], FCN and LSTM on NSL-KDD and DDoS2019. We use one-hot encod-

ing to encode the NSL-KDD dataset and conduct max-min normalization on it. Sim-

ilarly, we use one-hot encoding and binary transformation to encode the DDoS2019

dataset, and then scale all values to [0, 1]. We compare the performances of different

algorithms on the test set, and the results are shown in Table 5.17 and Table 5.18.

With respect to NSL-KDD, as shown in Table 5.17, our approach outperforms all

other algorithms. Ensemble approaches may undertake overfitting on the training

set. Support vector machine performs slightly better than ensemble approaches, but

it consumes more time for training. Neural Networks perform better than traditional

machine learning approaches. 3-Layer LSTM performs marginally better than 3-layer
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Exploration Rate Γ: 0.0 Overall Accuracy: 93.67%

Time1: 0.059s

Class Precision Recall F1

Normal 96.23% 95.52% 95.87%

PortMap 93.79% 93.96% 93.88%

NetBIOS 92.14% 96.12% 94.09%

LDAP 92.53% 92.72% 92.63%

MSSQL 91.48% 95.50% 93.44%

UDP 93.67% 89.98% 91.79%

UDP-Lag 93.92% 91.70% 92.79%

SYN 95.79% 93.82% 94.80%

Exploration Rate Γ: 0.5 Overall Accuracy: 96.42%

Time: 0.083s

Class Precision Recall F1

Normal 98.11% 97.54% 97.82%

PortMap 96.45% 97.14% 96.79%

NetBIOS 95.45% 98.20% 96.81%

LDAP 95.98% 95.44% 95.71%

MSSQL 94.86% 96.76% 95.80%

UDP 96.52% 93.68% 95.08%

UDP-Lag 96.75% 95.76% 96.25%

SYN 97.29% 96.80% 97.04%
1 The computation time for detection.

Table 5.16: Performances on test set with RL-CGAN

FCN, but LSTM has much more parameters to train than fully connected neural

networks.

We exclude anomaly types in the test set of DDoS2019 as we have done earlier.

As shown in Table 5.18, in comparison to NSL-KDD, DDoS2019 is a much more bal-

anced and sufficient dataset, so the general performances on DDoS2019 are relatively
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better. Ensemble methods, including random forest and adaboost, achieve great per-

formances on DDoS2019. Support vector machine is the worst one among all models,

and it takes the longest time to train and detectio. Neural networks, including fully

connected neural networks and LSTM, also attain great performances. Our approach

still outperforms all other models listed in Table 5.18 without increasing much com-

putation time.

In conclusion, our proposed RL-CGAN-based approach, which incorporates with

an exploration module and a sample agent, can improve the performances of intrusion

detection systems.

Approach Accuracy Precision Recall F11 Time2

Random Forest 79.56% 83.80% 58.55% 60.87% 1.695s

Adaboost 61.36% 72.19% 48.94% 58.33% 2.012s

SVM 79.71% 82.35% 61.98% 70.73% 9.211s

3-Layer FCN 82.09% 85.14% 70.03% 76.85% 0.058s

3-Layer LSTM 84.34% 84.91% 72.45% 78.19% 0.349s

RL-CGAN 88.50% 83.02% 83.67% 83.22% 0.102s
1 Precision, recall and F1 are the averaged value of each class.

2 The computation time for detection.

Table 5.17: Comparison among different approaches on NSL-KDD

Approach Accuracy Precision Recall F1 Time

Random Forest 95.42% 96.72% 94.12% 95.40% 1.751s

Adaboost 94.79% 93.98% 95.11% 94.54% 2.610s

SVM 90.12% 92.15% 88.98% 90.54% 10.019s

3-Layer FCN 94.12% 93.09% 95.24% 94.15% 0.034s

3-Layer LSTM 93.90% 94.01% 91.99% 92.99% 0.192s

RL-CGAN 96.42% 96.43% 96.42% 96.41% 0.092s

Table 5.18: Comparison among different approaches on DDoS2019
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5.4 Conclusions

In this chapter, we conduct comprehensive research on intrusion detection at the flow-

level with two datasets. Our approach has numerous advantages and innovations over

other traditional machine learning methods.

In the first place, we incorporate stacked autoencoder into our reinforcement learn-

ing module. This feature learning step is crucial for the success of detection. We can

learn a more simple but purposeful vector for final detection or classification. As

mentioned previously, stacked autoencoder has already been widely applied to cy-

bersecurity and achieved accomplishments. Our experiments strongly support this

conclusion.

Secondly, we take full advantage of reinforcement learning algorithms. We intro-

duce discount factor γ into our intrusion detection systems. In such a way, we can

take back states into account when examining the current state. We also create a

simulation environment for interaction. For adapting to complicated real network

environments, we make use of conditional GAN to strengthen the simulation environ-

ments.

Thirdly, we design a sample agent in our experiments as the adversarial training

agent. Through the sample agent, we can force our classifier (agent) to give greater

attention to those incorrectly predicted action-state pairs. Cooperating with ε-greedy

algorithm, Q values of all states can be appropriately learned.

In addition, we adopt the Bayesian search program in our experiments. Rein-

forcement learning is sensitive to hyperparameters, which indicates that setting these

hyperparameters manually may lead to incorrect solutions. Besides, the Bayesian

search program also helps save time on finding optimal hyperparameters.

5.5 Future Work

In future research, we wish to focus more on the application of GAN.
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Firstly, we attempt to apply GAN to generate more realistic traffic. In chapter 4,

we transfer sessions into images. It is known to all that GAN performs greatly on

generating images [70]. Generating novel session images for traffic generation is a

potential research direction. Moreover, we can add some constraints to the generator.

Attack traffics may have some specific and fixed features, which can be learnt through

training. In addition, some features may only take integer values. We can try to use

reinforcement learning approaches to train GAN [79].

Secondly, we can make further developments on the reinforcement learning module.

For example, the reward mechanism can be detailed devised. When playing Atari

games, game developers set different scores for the different operations of game users.

We can also design a comprehensive reward feedback system. For example, we can

give a larger penalty point to the intrusion detection system when some malignant

traffics are not detected by the system because this may cause severe loss.

Thirdly, we can use some other reinforcement learning algorithms to solve the

discrete problem. We use Deep Q-Learning in our experiments because it is simple

to implement and appropriate for solving discrete problems. However, there are a

great number of algorithms that can also be applied into the discrete domain, such as

Policy Gradient methods and Double Deep Q-Learning algorithms. It is reasonable

to compare the performances of these algorithms.
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Chapter 6

Conclusions

The thesis mainly focuses on two popular and promising areas, one is reinforcement

learning algorithms, and the other is cybersecurity. Over a series of experiments, we

successfully extend the reinforcement learning application to cybersecurity.

In chapter 3, we study the properties of PPO on the discrete domain. Since PPO

has already achieved great performances on controlling Atari games, we study further

on the core idea (clipped surrogate objective) and some code level skills applied on

PPO to figure out whether they have significant impacts on the final performances

of PPO. We firstly conduct a series of comparative experiments on code level skills.

Experiments results indicate that most code level skills, including value loss clip,

orthogonal initialization, GAE and reward clip can significantly improve the perfor-

mances of PPO on selected Atari games. Most importantly, reward clip has a most

considerable impact on the performances, thus we conduct in-depth experiments on

reward clip and find that a small reward scale is conducive to the final performances.

In addition, we study the functionality of clipped surrogate objective in a large range

of learning rates. Experiment results indicate that the clipped surrogate objective

can stabilize the performances of PPO over a relatively larger range of learning rates.

In the following two chapters, the main applied reinforcement learning algorithm

is Deep Q-Learning. The Deep Q-Learning algorithm is also one of the most accepted

reinforcement learning algorithms. Different from PPO, Deep Q-Learning is not suit-
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able for continuous tasks, but it is an excellent tool for solving discrete problems. We

explore the value of Deep Q-Learning in the area of cybersecurity in the following

two chapters.

In chapter 4, we explore the potential value of reinforcement learning on build-

ing intrusion detection systems at the packet-level.We propose a novel embedding

approach, namely image embedding, to encode the network traffics. Utilizing image

encoding, raw network traffics, which are difficult to tackle by machine learning mod-

els, can be converted to images. Thus, convolutional neural networks can be applied

in the experiments. In addition, packets embed in images are arranged in time order.

In this way, we can engineer some flow-level features into packet-level experiments.

Meanwhile, 1D-CNN can also be applied in the experiments. With respect to the rein-

forcement learning framework, we compare the packet-level intrusion detection game

to Atari games and transform the cybersecurity problem to a reinforcement learning

based problem. We select the Deep Q-Learning algorithm in our experiments, and

design a training module and an interaction module. Experiments results indicate

that our RL-image-based approach can attain high performance on raw DDoS traffics

provided by DDoS2019 and outperforms other traditional deep learning approaches.

In chapter 5, we study the potential value of reinforcement learning on building

intrusion detection systems at the flow-level. On the basis of packet-level intrusion

detection framework, we establish the intrusion detection system from the flow angle

and make some enhancements. We use two datasets NSL-KDD and DDoS2019 for

our experiments. We pretrain a stacked autoencoder for a first-step feature learning

and dimension reduction. Besides, we devise a sample agent as the adversarial train-

ing agent to ensure that all states can be learned adequately. We also implement

an exploration policy in our experiments. The first exploration policy is ε-greedy

policy. This is a widely used exploration policy of Deep Q-Learning, which can en-

sure that most states that occurred in the environment can learn their values. The

other exploration approach is conducted by conditional GAN, which can help stim-
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ulate a more realistic interaction environment by generating novel traffics. We also

employ a Bayesian search program to facilitate finding the optimal hyperparameters

automatically. Experiment results show that our RL-CGAN-based approach with

exploration can attain great scores on NSL-KDD and DDoS2019 and outperforms

other traditional machine learning approaches.
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[23] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier,
L. Hussenot, M. Geist, O. Pietquin, M. Michalski, et al., “What matters in
on-policy reinforcement learning? a large-scale empirical study,” in ICLR 2021-
Ninth International Conference on Learning Representations, 2021.

97



[24] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, “The infinite hidden markov
model,” Advances in Neural Information Processing Systems, vol. 1, pp. 577–
584, 2002.

[25] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing
realistic distributed denial of service (ddos) attack dataset and taxonomy,”
in 2019 International Carnahan Conference on Security Technology (ICCST),
IEEE, 2019, pp. 1–8.

[26] D. Bank, N. Koenigstein, and R. Giryes, Autoencoders, 2021. arXiv: 2003.05991
[cs.LG].

[27] M. Mirza and S. Osindero, Conditional generative adversarial nets, 2014. arXiv:
1411.1784 [cs.LG].

[28] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of
the kdd cup 99 data set,” in 2009 IEEE symposium on computational intelli-
gence for security and defense applications, IEEE, 2009, pp. 1–6.

[29] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[30] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in
Neural Information Processing Systems, Citeseer, 2000, pp. 1008–1014.

[31] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Reinforcement
learning through asynchronous advantage actor-critic on a gpu,” arXiv preprint
arXiv:1611.06256, 2016.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in In-
ternational Conference on Machine Learning, PMLR, 2018, pp. 1861–1870.

[34] R. Wehrens, H. Putter, and L. M. Buydens, “The bootstrap: A tutorial,”
Chemometrics and intelligent laboratory systems, vol. 54, no. 1, pp. 35–52, 2000.

[35] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 30, 2016.

[36] Y. Huang, G. Wei, and Y. Wang, “Vd d3qn: The variant of double deep q-
learning network with dueling architecture,” in 2018 37th Chinese Control Con-
ference (CCC), IEEE, 2018, pp. 9130–9135.

[37] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Advances
in Neural Information Processing Systems, 2000, pp. 1057–1063.

[38] OpenAI, Openai five, https://blog.openai.com/openai-five/, 2018.

98

https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/1411.1784
https://blog.openai.com/openai-five/


[39] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D.
Farhi, Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep
reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.

[40] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu, Q. Guo,
Q. Chen, Y. Yin, H. Zhang, T. Shi, L. Wang, Q. Fu, W. Yang, and L. Huang,
“Mastering complex control in moba games with deep reinforcement learning,”
in AAAI, 2020.

[41] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in
starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019.

[42] J. jie Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao, T. Qin, T. Liu,
and H. Hon, “Suphx: Mastering mahjong with deep reinforcement learning,”
ArXiv, vol. abs/2003.13590, 2020.

[43] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,” in 2017
IEEE International Conference on Intelligence and Security Informatics (ISI),
IEEE, 2017, pp. 43–48.

[44] S. A. Salloum, M. Alshurideh, A. Elnagar, and K. Shaalan, “Machine learning
and deep learning techniques for cybersecurity: A review.,” in AICV, 2020,
pp. 50–57.

[45] G. Biau, “Analysis of a random forests model,” The Journal of Machine Learn-
ing Research, vol. 13, pp. 1063–1095, 2012.

[46] W. S. Noble, “What is a support vector machine?” Nature Biotechnology, vol. 24,
no. 12, pp. 1565–1567, 2006.

[47] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer Vision,
Springer, 1999, pp. 319–345.

[48] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1d
convolutional neural networks and applications: A survey,” Mechanical systems
and signal processing, vol. 151, p. 107 398, 2021.

[49] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing
with lstm recurrent networks,” Journal of machine learning research, vol. 3,
no. Aug, pp. 115–143, 2002.

[50] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schul-
man, S. Sidor, Y. Wu, and P. Zhokhov, Openai baselines, https://github.com/
openai/baselines, 2017.

[51] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” CoRR, vol. abs/1312.6120,
2014.

99

https://github.com/openai/baselines
https://github.com/openai/baselines


[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[53] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438,
2015.

[54] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.

[55] M. Tomar, L. Shani, Y. Efroni, and M. Ghavamzadeh, “Mirror descent policy
optimization,” arXiv preprint arXiv:2005.09814, 2020.

[56] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” Journal of Machine Learning Research - Proceedings
Track, vol. 9, pp. 249–256, Jan. 2010.

[57] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach
(6th Edition), 6th. Pearson, 2012, isbn: 0132856204.

[58] U. Lamping and E. Warnicke, “Wireshark user’s guide,” Interface, vol. 4, no. 6,
p. 1, 2004.

[59] H. Li and S. Qin, “Optimization and implementation of industrial control sys-
tem network intrusion detection by telemetry analysis,” in 2017 3rd IEEE Inter-
national Conference on Computer and Communications (ICCC), IEEE, 2017,
pp. 1251–1254.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[62] W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein, “Rethink-
ing 1d-cnn for time series classification: A stronger baseline,” arXiv preprint
arXiv:2002.10061, 2020.

[63] Y. Goldberg and O. Levy, “Word2vec explained: Deriving mikolov et al.’s
negative-sampling word-embedding method,” arXiv preprint arXiv:1402.3722,
2014.

[64] H. Hasselt, “Double q-learning,” Advances in Neural Information Processing
Systems, vol. 23, pp. 2613–2621, 2010.

[65] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural
Information Processing Systems, vol. 27, 2014.

[66] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017. arXiv: 1701.
07875 [stat.ML].

[67] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Im-
proved training of wasserstein gans,” arXiv preprint arXiv:1704.00028, 2017.

100

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875


[68] J. Wu, Z. Huang, J. Thoma, D. Acharya, and L. Van Gool, “Wasserstein diver-
gence for gans,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 653–668.

[69] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space em-
bedding,” in International Symposium onInformation Theory, 2004. ISIT 2004.
Proceedings., IEEE, 2004, p. 31.

[70] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gen-
erative adversarial networks,” CoRR, vol. abs/1812.04948, 2018. arXiv: 1812.
04948. [Online]. Available: http://arxiv.org/abs/1812.04948.

[71] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network traffic gen-
eration using generative adversarial networks,” Computers & Security, vol. 82,
pp. 156–172, 2019.

[72] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural
networks for perception, Elsevier, 1992, pp. 65–93.

[73] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep learning ap-
proach combining sparse autoencoder with svm for network intrusion detec-
tion,” IEEE Access, vol. 6, pp. 52 843–52 856, 2018.

[74] E. Min, J. Long, Q. Liu, J. Cui, Z. Cai, and J. Ma, “Su-ids: A semi-supervised
and unsupervised framework for network intrusion detection,” in International
Conference on Cloud Computing and Security, Springer, 2018, pp. 322–334.

[75] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” arXiv preprint arXiv:1206.2944, 2012.

[76] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based opti-
mization for general algorithm configuration,” in International conference on
learning and intelligent optimization, Springer, 2011, pp. 507–523.

[77] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing
a systematic approach to generate benchmark datasets for intrusion detection,”
computers & security, vol. 31, no. 3, pp. 357–374, 2012.

[78] R. E. Schapire, “Explaining adaboost,” in Empirical inference, Springer, 2013,
pp. 37–52.

[79] M. Sarmad, H. J. Lee, and Y. M. Kim, “Rl-gan-net: A reinforcement learning
agent controlled gan network for real-time point cloud shape completion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 5898–5907.

101

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948


Appendix A:

Figure A.1: All results are averaged over 30 runs with different random seeds. (a):
Mean score curves at different learning rates and clipping scales. (b): Bell-shaped
curves of the last-iteration mean scores for each scale. Our best learning rate selection
is based on (a) and (b).
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