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Abstract 

The earth’s crust and mantle is known to be anisotropic to the propagation of seismic waves.  

Despite this knowledge, the analysis and processing of seismic data still primarily assumes 

isotropy, an assumption that, in the context of active source seismic imaging, is   an over-

simplification that can result in flawed interpretations. Most work on seismic anisotropy has 

focused on improving seismic imaging by more properly accounting wave propagation paths. The 

incidence and azimuthal angle variations in reflectivity from anisotropic formations, however, 

remain poorly understood.  Most analyses using structurally-constrained approximations for 

transversely isotropic half-spaces that are not always representative of real geological formations 

in the earth’s crust.  The work in this thesis seeks to contribute further by both analytic and physical 

modelling of the reflectivity from the contact between anisotropic half-spaces.  This is primarily 

accomplished by carrying out laboratory measurements of the acoustic reflectivity from variously 

tilted blocks of a weakly-orthotropic composite phenolic grade CE.  This material has 

characteristics reminiscent of fractured and layered formations in the earth.  Following the lead of 

earlier researchers, we repeated measurements of reflectivity with respect to the angle of incidence 

at four azimuths from each of the four blocks studied.   As expected, the reflectivity varied with 

both incidence and azimuth, but it could not be explained using plane-wave, Zoeppritz-type, 

solutions.   Interpreting the results required, first, development of the appropriate understanding of 

the expected plane-wave reflectivity and, second, tools to account for the propagation and 

reflectivity of finite beams in the geometry of the laboratory.   The first issue was overcome by 

solving the general problem for the reflections originating from the welded-contact between two 

half-spaces of any symmetry and arbitrary orientation with respect to one another.   This solution 

was then developed into an open-source and readily available algorithm entitled Anisotropic 
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Reflectivity and Transmissivity calculator (ARTc). The second issue was addressed by the 

development of a second algorithm that, following earlier work of others, models the propagation 

and reflection of a spatially and temporally ‘bounded’ ultrasonic pulse within a water column 

overlying a flat interface.  The program propagates the launched bounded pulse through the water 

to the interface and modulates in the 2-D Fourier domain the amplitude and phase of each of the 

pulse’s component plane waves, before returning the pulse to the point of observation.  This 

algorithm successfully reproduced the complicated features of the post-critical angle reflectivity 

from isotropic test samples in the laboratory. More importantly, however, we were able to 

reproduce the reflectivities observed from the anisotropic block’s in the laboratory; this strong 

match between observation and modelling points validates the theory within ARTc. Further, the 

peak of the observed reflectivity curves does not coincide with that for the plane-wave solution 

which occurs at the critical angle. There are two implications of this work with respect to field 

investigations of azimuthal and incidence angle dependent seismic reflectivity.  First, the azimuthal 

variations were not strong and this may suggest caution when attempting to deconvolve such 

variations out of more complicated and noisy field seismic data.  Second, since all real seismic 

sources may deviate strongly from the plane wave assumptions normally employed, in field studies 

of seismic reflectivity workers may need to take account of this departure more fully.  
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1 Chapter 1 

Introduction 

 

1.1 Background 

It is now well known that much of the Earth’s crust, its mantle, and even its inner core displays 

elastic anisotropy, which could have fundamental effects on seismic data interpretation, [e.g., 

Backus, 1965; Savage, 1999; Belonoshko et al., 2008; Schijns et al., 2012a; Walker and Wookey, 

2012a]. Henceforth, the study of elastic wave propagation and the elastic wave properties in 

anisotropic media is crucial to global and exploration seismologists. First, identifying elastic 

anisotropy can hold the key to inferring rock fabrics whether they are controlled by fractures [e.g., 

Gray et al., 2002; Ekanem et al., 2013], layering, or mineralogical textures [e.g., Boness and 

Zoback, 2004]. Second, understanding the state of elastic anisotropy of the Earth increases the 

fidelity of seismic images of subsurface and the location of earthquakes and microseisms.  

Despite the fact that the importance of anisotropy is widely recognized, there are few tools to 

properly investigate and incorporate it in seismic analysis; and usually rely on numerous 

simplifying assumptions and approximations to account for it in wave propagation and reflectivity. 

Such approaches have promoted a more general acceptance of seismic anisotropy into analyses, 

but suffer to provide suitable answers for more complicated or realistic geological structures such 

as would be encountered for cases of tilted media with low anisotropic symmetry. This is becoming 

increasingly true in the application techniques that use the variations in seismic reflectivity with 
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incidence angle and azimuth to reveal information about stress, fracture sets, or deposition 

alignments, after [Chen et al., 2001; Zheng and Ding, 2014].  

Elastic wave propagation in anisotropic media has been studied extensively over the last century 

as it is of fundamental concern to condensed matter physicists and of practical consequence to 

geophysicists and material engineers. There are numerous discussions of the sources of anisotropy 

in the literature which show that it can result from preferred orientations of the constituent minerals 

[e.g., Wenk, 1999], from layering [e.g., Backus, 1962], or from aligned fractures and cracks [e.g., 

Stewart et al., 2013]. To review briefly, in any given propagation direction through an anisotropic 

material there will be three distinct and orthogonal wave modes: one quasi-longitudinal mode (qP) 

and two quasi-transverse modes (qS1 and qS2) with respective polarizations nearly parallel or 

perpendicular to the propagation direction. Generally, the wave speeds of quasi-P wave (VqP) is 

greater than shear waves velocities (VqS1 and VqS2) in following order VqP>VqS1≥VqS2, where the 

speeds of the two shear modes usually only matching along the material’s symmetry direction 

where they are degenerate. One further point to emphasize is that for a given direction of 

propagation the phase speed (i.e. mono-frequency plane wave) must be distinguished from its 

corresponding group (i.e., ray) speed [see Gassmann, 1964]. 

A number of textbooks [e.g., Musgrave, 1970a; Auld, 1973], were developed by the pioneers of 

elastic anisotropy analysis in the middle of the last century, which mostly discuss the theory of 

elastic wave propagation in anisotropic media, and how the polarization and slowness of each wave 

mode is defined. Because of the mathematical complexity and lack of powerful computers at the 

time, various authors decided to simplify these systems of nonlinear equations to more affordable 

linear sets of equations. The mathematical complexity to find wave properties in anisotropic media 
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was computationally expensive for the processing of real seismic data. Consequently, researchers 

developed approximations in simpler anisotropic media. Weak elastic anisotropy was first 

introduced by [Thomsen, 1986a] to minimize amount of calculation required to solve for wave 

speeds in transversely isotropic media. Similar approaches were later applied to orthorhombic 

materials [Tsvankin, 1997]. 

The study of seismology, however, relies often on more than knowledge of the wave speeds in 

materials.  The reflectivity and transmissivity of the interface, taken to be a welded contact, 

between two materials is an important problem for study.  For two elastic but isotropic media a 

focus has been on the study of the variations in the reflected wave amplitudes from such intefaces, 

and within the applied geophysics community this has come to be known as Amplitude variation 

versus offset (AVO).  The character of reflectivity with angle of incidence (or in the parlance of 

applied reflection seismology ‘offset’) provides invaluable information about the differences in the 

elastic parameters of the isotropic media on either side of the interface. Closed form solutions to 

this problem were provided by [Knott, 1899] for energy fluxes and by [Zoeppritz, 1919] who gave 

expressions for the amplitudes of 14 different possible reflections and transmissions from the 

interface (remembering that the out of the plane shear wave, SH mode, is decoupled from P-SV). 

This was provided to the community as a program by [Young and Braile, 1976], and developed 

into a more convenient scattering matrix form by [Aki and Richards, 1980]. Simplified, but 

incomplete, forms of these Zoeppritz equations have been provided by numerous authors [e.g., 

Bortfeld, 1961; McCamy et al., 1962; Aki and Richards, 1980; Shuey, 1985] for use in the analysis 

of real data.  

Linearized forms of these approximations for the PP reflections have been pivotal to the 

development of quantitative seismic assessments that employ variations of the reflected amplitudes 

with the angle of incidence to infer changes in elastic properties across a geological contact [e.g., 

Ostrander, 1984]). These techniques are alternately referred to as amplitude versus offset (AVO) 

or amplitude versus angle (AVA) analysis [e.g., Castagna and Backus, 1993; Dvorkin et al., 2014; 

Shadlow, 2014].  



 

  4  
 

More recently, there is interest in using reflectivity to predict subsurface anisotropy particularly 

in the search for reservoirs containing preferential joint or fracture sets. These techniques are often 

called amplitude variation versus azimuth (AVAZ) because they must look for changes in the 

reflectivity with both offset and azimuth. The introduction of anisotropy increases the level of 

complexity significantly over the isotropic case of Zoeppritz, and because of this, algebraic 

solutions for reflectivity have only been developed for a few special situations. [Gassmann, 1964] 

examined the complexities of the reflected wavefront. [Musgrave, 1970a] reviewed the 

complexities associated with reflectivity between anisotropic media and sketched the direction 

towards a general solution. He also calculated the amplitudes of internal waves reflected from the 

free surface of transversely isotropic medium revealing unexpected behaviors [Musgrave, 1970a; 

Auld, 1973] obtained the solutions for reflectivity within the symmetry planes of various cases. 

[Daley and Hron, 1977a; Daley, 1979] derived all 24 possible reflection and transmission 

coefficients (including the free surface condition) from the interface between transversely isotropic 

layers the axes of symmetry of which are oriented perpendicular to the interface. Today the two 

half-spaces of their solution are said to be vertical transversely isotropic (VTI). [Graebner, 1992] 

revisited the problem of reflectivity in transversely isotropic media and provided an analytic 

solution for P-wave reflectivity. [Hood and Schoenberg, 1992] reformulated the problem into one 

that employed a series of impedance matrices. [Liang et al., 2009] developed exact and 

approximate expressions for reflectivity in tilted transversely isotropic media (TTI).  

As just noted, solution of the general problem of reflectivity is complicated by the often 

unexpected aspects of wave propagation in anisotropic media and this has led to a variety of 

simplifications. [Thomsen, 1986a] linearized [Daley and Hron, 1977a] solutions using a ‘weak 

boundary contrast’ assumption. Various researchers extended this approach for PP (P-wave 

incident and reflected) approximations in weak elastic anisotropy and weak boundary contrast in 

transverse isotropy and orthorhombic media, which are also employed by many others [e.g., Ursin 

and Haugen, 1996; Ruger, 1997; Ruger, 1998; Vavrycuk and Pšenčík, 1998; Zillmer et al., 1998; 

Vavrycuk, 1999; Klimes, 2003; Behura and Tsvankin, 2006; Farra and Pšenčík, 2010; Golikov and 

Stovas, 2010]. 
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Along with theoretical advances in seismic anisotropy, general anisotropic media were 

physically modeled by numerous researchers [e.g., Arts et al., 1991; Cheadle, 1991; Jech, 1991; 

Vestrum, 1994; Mah and Schmitt, 2001a; Mahmoudian et al., 2015]. In these studies, velocity and 

amplitude of reflected and transmitted waves from laser or ultrasonic sources and samples with 

different anisotropic symmetry were monitored. These techniques are able to calculate elastic 

coefficients in any anisotropic material by sampling phase or group velocities of all three wave 

modes in wide acquisition angles. There have also been attempts to physically model the 

reflectivity from anisotropic media in the laboratory. Techniques developed by [Bouzidi and 

Schmitt, 2006, 2008b] carried out measurements of reflectivity from anisotropic phenolic blocks 

with various tilted symmetries. [Mahmoudian et al., 2015] measured the azimuthal variations of 

reflectivity from the interface between isotropic Plexiglas and anisotropic phenolic, which she then 

inverted to obtain estimates of the material’s properties.  The work presented here was motivated 

by the need to better understand these laboratory observations without having to be rely solely on 

the existing approximate relations.  

1.2 Motivation and Contributions 

In this thesis, we started by introducing an algorithm that calculates the plane-wave reflectivity 

from the contact separating any two anisotropic media. This algorithm is not limited by the 

symmetry or orientation of the anisotropy on either side of the interface.  Our reasons for 

developing this program are to provide a robust toolbox to research more realistic cases that are 

not limited by any approximations. The algorithm is able to solve for wave polarization, slowness 

and amplitude ratios of all wave modes generated from a welded interface bounding two 

homogenous anisotropic slabs of arbitrary symmetry and orientation. 

Also, we noticed that the plane-wave theory is unable to explain the laboratory measured 

acoustic reflectivity from water-solid interfaces. We worked on a hybrid approach to model the 

reflected wavefield using the phase-advanced wave equation migration and the analytic reflectivity 

algorithm by ARTc. This algorithm can successfully explain the null reflection at the far off-set 

Rayleigh angle and the critical reflection at the acoustic critical angle. 
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The key question is to understand more about the elastic properties of the low-symmetric media 

from its reflectivity response. We examine this idea by measuring and analyzing the complete 

reflectivity dataset from four tilted Phenolic grade CE blocks and analyzing the reflectivity’s 

variation with incident angle and azimuthal direction. From the reflection amplitude variation with 

azimuth and incident angle data we are able to understand the fracture orientations based on critical 

angle. 

The main contributions of this thesis are summarized as: 

 Introducing an algorithm to calculate reflectivity and transmissivity from general elastic 

anisotropic media. 

 Collecting and releasing complete a reflectivity dataset from water-solid interfaces 

isotropic (aluminum, copper alloy) and anisotropic (phenolic CE, Quartz crystal) 

material. 

 Proposed a new hybrid forward modeling algorithm to predict reflected wavefield from 

a pseudo –planar bounded pulse. 

 Investigating and analyzing the reflected wavefield from water-phenolic CE with 

orthotropic anisotropic symmetry. 

 

1.3 Thesis outline 

It is crucial that we be able to properly account for wave propagation and reflectivity to carry out 

the final work in analyzing our laboratory reflectivity studies.  In Chapter 2 we develop an 

algorithm that provides, first, the anisotropic wave slowness and corresponding particle 

polarizations for any propagation direction and, second, the solutions for the reflection and 

transmission coefficients of a welded interface bounding two homogeneous anisotropic slabs of 

arbitrary symmetry and orientation. Chapter 2 begins with a brief review of seismic anisotropy 

followed by the theory of plane-wave propagation; and a number of supporting programs are 

created to do this. This algorithm provides the full solution to velocity, polarization and amplitude 

ratios of all wave modes. The key and novel part of this Chapter, however, is the creation of code 

that allows for the calculation of both reflectivity and transmissivity of the interface between two 
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anisotropic half-spaces of both arbitrary symmetry and relative orientation. This program 

essentially provides the plane wave reflectivities to this problem.  To illustrate the capabilities of 

the developed algorithm, we presented a variety of challenging tests and show the calculated 

reflectivity results and their application to seismic data processing and interpretations. 

Plane waves do not exist in the real world of seismic observations and, most particularly, 

in laboratory experiments of finite dimensions.  As such, the plane wave solution by itself from 

Chapter 2 cannot be used to properly study reflectivity in the laboratory.  This is because the 

ultrasonic energy in the laboratory is in the form of a ‘bounded pulse’ that can only be described 

by a distribution of plane waves; and consequently this strongly influences the observed reflections.  

In order to account for this experimental limitation, in Chapter 3, we investigate the effect of source 

with bounded pulse on the reflected wavefield from water-solid interface. This hybrid technique, 

implements the numerical reflectivity calculator described in Chapter 2 and phase advanced wave 

propagation technique, and calculates the reflected wavefield. We compared numerical results with 

acoustic reflectivity measurements from water-aluminum and copper interface. The bounded pulse 

reflectivity modeling enables us to explain the null reflection at the Rayleigh angle known as the 

Schoch shift.  That we were able to faithfully reproduce our complicated observed reflections, 

proved the validity of this approach to studying ultrasonic reflectivity.  

The goals of the thesis, however, were to better understand reflectivity from real anisotropic 

media.  In Chapter 4, we investigated reflectivity from a series of physical models that are 

representative of densely oriented fracture sets that might be found in the earth. Phenolic grade CE 

blocks, a manmade layered composite with weak orthorhombic symmetry, with four different 

tilting angles were used for laboratory measurements. The observed reflectivity variations of 

acoustic reflectivity with both incidence angles and azimuthal directions show distinct patterns. 

Using the reflection variation with azimuth and tilting angle, we show how to use critical reflection 

coefficients to understand the fracture orientations and estimate phase velocity in the phenolic 

sample. We also investigated the acoustical reflectivity variation in vicinity of critical angle using 

the approach described in chapter 3. We show that the properties of the bounded pulse determine 

the shape of acoustical reflectivity around qP-wave critical angle. 
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In Chapter 5, we summarize the key results from the thesis and propose potential future 

research directions.  
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2 Chapter 2 

ARTc: Anisotropic Reflectivity and Transmissivity 

Calculator 

2.1 Introduction 

The evidence that the Earth’s crust (e.g., [Lin et al., 2011],[Ozacar and Zandt, 2009]), mantle 

(e.g., [Di Leo et al., 2014; Bao et al., 2016]), and inner core (e.g., [Belonoshko et al., 2008])  are 

anisotropic to seismic waves  has grown significantly in the last half-century. Despite this, seismic 

observations are still largely interpreted assuming that the media through which seismic waves pass 

are isotropic or, occasionally, transversely isotropic (e.g., [Ozacar and Zandt, 2004; Schijns et al., 

2012b]). 

Incorporating elastic anisotropy into seismic data analysis will have two significant 

advantages.  First, elastic anisotropy exists once the structural symmetry at any scale is broken; and 

generally less symmetry implies higher degrees of anisotropy. Examples of anisotropic structures at 

various scales that illustrate these different sources of anisotropy are shown in Figure 2-1. The 

character and degree of anisotropy are apparent in traditionally varying wave speeds and 

anomalous polarization.  Consequently such observations can   tell us about i) mineralogical 

textures (e.g., [Kaarsberg, 1959; Gassmann, 1964; Mainprice and Nicolas, 1989]; ii) layering 

(e.g., Helbig 1994; Backus 1962), and iii) fracturing and stress regimes of the region (e.g. Sayers 

et al. 2015; Crampin 1985; Stewart et al. 2013), or iv) combination of them (e.g., Far et al. 2013; 

Schijns et al. 2012).  

Second, the transit times and travel paths of seismic rays moving through anisotropic layers 

can differ significantly from those through isotropic structures, (e.g., [Merkulov, 1963; Kendall and 

Thomson, 1989; Ben-Menahem and Sena, 1990; Behura and Tsvankin, 2009]. Ignoring this deviation 

in the patterns of reflection and refraction introduces error in seismic imaging (e.g., [Isaac and 

Lawton, 1999]); considering it in the processing scheme results in improvements in the veracity of 

seismic imaging. There is no need to emphasize the potential use of this algorithm in addition to 
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the applications in exploration seismology including but not limited to the computation of the 

synthetic receiver function in global and local seismology, to its use as a key component of a ray 

tracer for general anisotropic layered media and the construction of the synthetic seismic data as 

implemented by (e.g., Kendall & Thomson 1989; Guest et al. 1993). 

The Chapter begins with a review of studies of reflectivity, continues through the essential 

mathematical background, provides a description of the programs provided, and ends with some 

examples of the application of the program to cases of increasing complexity. 

2.1.1 Background of elastic anisotropy 

There are many sources, which are linked to elastic anisotropy, which can be categorized as 

mineralogical or structural. Figure 2-1 a, b show how the preferred orientation of minerals in the rock, 

as well as very finely deposited layers of rocks which are very common in the Earth, reflects elastic 

anisotropy in seismic data. Satellite picture from Utah, United States, which shows two sets of 

fractures occuring in large-scale also could represent two different elastic anisotropic media in the 

very close proximity, after [Far et al., 2013]. 

Elastic wave propagation in anisotropic media has been studied extensively over the last 

century as it is of fundamental concern to condensed matter physicists and of practical consequence 

to geophysicists and material engineers. A number of textbooks exist that cover the mathematics 

in details (e.g., Auld 1973; Helbig 1994; Musgrave 1970). Despite the fact that the importance of 

anisotropy is widely recognized, there are rather few tools to properly deal with it in seismology; 

and usually, we rely on numerous simplifying assumptions and approximations that have made 

including anisotropy more palatable, such as the weak anisotropy formulations introduced by 

[Thomsen, 1986a] for transversely isotropic (TI) and later for orthorhombic materials by [Ruger, 

1997; Tsvankin, 1997; Rüger, 1998] as well as many others. Such approaches have promoted the 

more general acceptance of seismic anisotropy, but they usually cannot provide suitable answers 

for more realistic geological structures that may be less symmetric. This is becoming increasingly 

vital in the techniques, which use the variations in seismic properties with respect to the direction 

of propagation to understand how the stress regime, fracture orientation, spacing, or deposition 

alignments are around the point of interest deep underground. 
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Figure 2.1. Structural deformation or crystallographic orientation of minerals are two 

main sources of elastic anisotropy in the hard rock environment. a) and b) depict two 

media with microscopic scale preferred orientation of minerals and deposition of the 

minerals, respectively; which would create elastic anisotropy. c) Displays two sets 

of large-scale fractures on the surface with different orientation on North from South 

of the Freshwater Spring River in Utah. In the North part fractures are almost 

orthogonal which could create orthorhombic anisotropy, however in the Southern part 

of the river non-orthogonal fractures may represent monoclinic or triclinic elastic 

anisotropy, Malehmir and Schmitt [2016] after [Far et al., 2013]. 

Our primary objective in this thesis is to provide to the community a program that provides 

the general solution for the reflection and transmission from all wave-modes and welded interface 

bonding two homogeneous anisotropic slabs with arbitrary symmetry and orientation. Our 

motivation stems from our need to properly interpret laboratory reflectivity tests first described in 

[Ortiz-osornio and Schmitt, 2011b]. The program calculates the plane-wave reflection and 

transmission coefficients for the welded interface between two arbitrarily oriented anisotropic half 

spaces A number of requisite subsidiary programs that determine directionally dependent wave 

speeds, ray paths, and particle motion polarizations are also included.  
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2.1.2 Early modeling of seismic anisotropy 

To briefly review, for any given propagation direction through an anisotropic material there are 

three distinct and orthogonal wave-modes. Of these, one is a quasi-longitudinal mode (qP) and two 

are quasi-transverse modes (qS1 and qS2), where ‘quasi’ indicates that the particle polarizations 

are no longer perfectly parallel or perpendicular to the propagation direction, respectively. One 

further point to emphasize is that for a given direction of propagation the phase velocity (i.e. mono-

frequency plane wave) must be distinguished from its corresponding group (i.e. ray) velocity (refer 

to (Auld 1973; Musgrave 1970; Gassmann 1964) for more details). The mathematical complexity 

to calculate wave properties in general anisotropic media makes it computationally expensive for 

the processing of real seismic data. Consequently, researchers developed approximate solutions in 

simpler anisotropic symmetries since the 1980’s. Weak elastic anisotropy was first introduced by 

[Thomsen, 1986a] to linearize the calculations that are required to solve for wave speeds in 

transversely isotropic media. Similar approaches were later introduced for orthorhombic materials 

by [Tsvankin, 1997].  

The variation in seismic reflectivity from the interface between two differing materials with 

both angle and azimuth is a second important problem. Amplitude variation versus offset (AVO) 

provides invaluable information about elastic parameters of isotropic media. The classic solutions 

for the reflectivity problem between two elastically isotropic layers was provided nearly a century ago 

by [Knott, 1899] for energy fluxes and by [Zoeppritz, 1919] for the amplitudes of fourteen possible 

reflections and transmissions from the interface. Within the geophysical community, these are 

commonly referred to as the Zoeppritz’s equations. [Young and Braile, 1976] provided a Fortran-

based code in this journal to carry out this calculation and [Aki and Richards, 1980] solved it using 

a convenient scattering matrix form.  

Numerous authors have developed approximate solutions to Zoeppritz’s equations, [Bortfeld, 

1961; McCamy et al., 1962; Aki and Richards, 1980; Shuey, 1985]. Linear forms of these 

approximations for the PP (P-wave incident, and P-wave reflected) reflections have been pivotal to 

the development of quantitative seismic assessments leading from [Ostrander, 1984] suggestion, that 

the variation of the reflected amplitudes with angle of incidence could be used to indicate changes 

in the elastic properties across a geological contact. Today the practice of amplitude versus offset 
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(AVO) or amplitude versus angle of incident (AVA) is a well-developed tool (e.g., Castagna & 

Backus 1993; Dvorkin et al. 2014; Shadlow 2014). 

More recently, there is an interest to further extend the use of reflectivity to predict 

subsurface anisotropy particularly in the search for petroleum reservoirs with preferential joints or 

fracture sets. These techniques are often called amplitude variation versus azimuth (AVAz) or 

velocity variation versus azimuth (VVAz) because they must look for changes in the reflectivity 

with both offset and azimuth. The introduction of anisotropy increases the level of mathematical 

complexity significantly, over the isotropic case, and because of this algebraic solution for 

reflectivity have only been developed for a few special situations particularly for vertical (VTI) and 

horizontal (HTI) transversely isotropic media. (Musgrave 1970) reviewed these complexities in 

anisotropic media and sketched the direction towards a general solution. He also calculated the 

amplitudes of internal waves reflected from the free surface of arbitrarily tilted transversely isotropic 

medium revealing unexpected behaviors. [Auld, 1973] obtain the solutions for reflectivity within 

the symmetry planes of various cases of elastic anisotropy.  

[Daley and Hron, 1977b; Daley, 1979] derived all twenty-four possible reflection and 

transmission coefficients (including the free surface condition) from the boundary between two 

VTI layers the axes of symmetry of which are oriented perpendicular to the interface.[Mallick 

and Frazer, 1991] modeled the azimuthal variations in seismic reflectivity from a fractured 

seabed that required them to solve the problem for a liquid over a HTI elastic solid [Guest and 

Thomson, 1992] calculated synthetic seismograms to extract anomalous converted SH-mode 

reflections from the interface between an isotropic layer and a HTI half-space. [Hood and 

Schoenberg, 1992] revisited the problem of reflectivity in transversely isotropic media and provided 

an analytic solution for P-wave reflectivity which is calculated from series of impedance matrices. 

Motivated by the need to explain the generation of shear waves observed within deep crustal 

seismic surveys that employed air gun sources, [Guest et al., 1993] developed a ray-based approach 

that estimated the anisotropic reflection and transmission coefficients. [Carcione, 1997] developed 

anelastic formulae for the reflectivity and transmissivity for two VTI half-spaces. [Li, 2008] 

provided corrected solutions for the scattering between an isotropic and a triclinic medium. 

[Liang et al., 2009] developed exact and approximate expressions for reflectivity in tilted 
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transversely isotropic media (TTI). 

Solution of the general problem of reflectivity is complicated by the unexpected aspects of 

wave propagation that occurs in anisotropic media, which has led to a variety of simplifications. 

[Thomsen, 1986b] linearized [Daley and Hron, 1987] solutions using a weak boundary contrast 

assumption. Various authors extended this approach for PP approximations in weak elastic 

anisotropy and weak boundary contrast in transverse isotropic and orthorhombic media were also 

employed by other researchers (e.g., [Ursin and Haugen, 1996; Ruger, 1997; Rüger, 1998; Vavrycuk 

and Pšenčík, 1998; Zillmer et al., 1998; Vavrycuk, 1999; Klimeš, 2003; Behura and Tsvankin, 2006; 

Farra and Pšenčík, 2010; Golikov and Stovas, 2010].  

More general problems have also been considered. [Keith and Crampin, 1977] developed a 

methodology for determining the energy reflection coefficients for the interface between two 

generally anisotropic media and carried out calculations within symmetry planes for TI and 

orthorhombic cases. [Rokhlin, 1986] provide the full solution for the scattering between two 

arbitrary anisotropic half-spaces the algorithm developed here builds on this work. 

[Chattopadhyay et al., 2015] describe calculations made using the general solution. 

Along with theoretical advances in seismic anisotropy, general anisotropic media were 

physically modeled by numerous researchers in lab to better understand wave propagation inside 

the anisotropic medium with known elastic coefficients (e.g., [Arts et al., 1991; Cheadle, 1991; 

Jech, 1991; Vestrum and Brown, 1994; Mah and Schmitt, 2001b]). In these studies, the velocity 

and amplitude of a reflected and transmitted wave from ultrasonic sources and the samples with 

different anisotropic symmetry are monitored. These techniques are able to calculate elastic 

coefficients in any anisotropic material by sampling phase or group velocities of all three wave-

modes in wide acquisition angles. Also, there have been attempts to physically model the 

reflectivity from anisotropic media in the laboratory. Following techniques developed for the precise 

study of reflectivity in the laboratory (e.g., [Bouzidi and Schmitt, 2006, 2012; Ortiz-osornio and 

Schmitt, 2011b]), we carried out measurements of reflectivity from anisotropic phenolic blocks 

with various tilted symmetries and a large single quartz crystal sheet. [Mahmoudian, 2013; 

Innanen and Mahmoudian, 2015] also physically modeled the azimuthal variations of reflectivity 

from the interface between isotropic Plexiglas and anisotropic phenolic.  
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The algorithm presented in this Chapter was motivated by the need to better understand these 

laboratory observations without having to rely solely on the existing approximate relations. In the 

next section, mathematical insights behind a general solution to wave properties in anisotropic 

media are explained in detail. 

2.2 Theory 

The theoretical basis upon which the program relies is given in this section. Before beginning, 

however, it is useful to review the salient characteristics of wave propagation in anisotropic media 

so that it is clear what needs to be input and what is calculated. There are essentially two sets of 

algorithms, i) subroutines to first determine propagation dependent velocities and particle 

polarizations given material properties and geometries of the layers, and with this information ii) 

subroutines to determine angles, speeds, polarizations, and amplitudes of the waves upon reflection 

and refraction from the interface between the two materials. 

The orthogonal x1-x2-x3 co-ordinate system (Figure 2-2) with the x1-x2 plane co-incident 

with the planar interface between the two materials is employed. For any given propagation 

direction through the material n there will, in general, be three independent wave-modes. The first 

set of subroutines describes the propagation of a single plane wave-mode. The polarizations ξ of 

these three modes are mutually orthogonal to one another with, one longitudinal mode qP and two 

transverse modes qS1 and qS2. The q prefix indicates that these are quasi-longitudinal or shear 

modes because their individual polarization ξ will not necessarily be parallel or perpendicular to 

the wave propagation direction described by the unit vector n. The speed of these three modes also 

depends on the elastic properties and density of the material; which must be specified. Hence, with 

the inputs of the elastic coefficients Cij  (with up to 21 independent components) the density ρ, and 

the propagation direction n, the first component of the program calculates the three phase 

velocities (v) and their corresponding polarizations ξ. It must be noted that stiffness matrix of the 

anisotropic media which we use for this algorithm are rotated from crystallographic principle to 

the coordinate system, for more information readers can refer to [Guest and Kendall, 1993; 

Walker and Wookey, 2012a] for more details. 
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a) 

 

b) 

Figure 2.2. Schematic wave-mode generation from a welded boundary separating two 

anisotropic media. θ and φ represent inclination and azimuthal direction of incident wave. 

b) Shows sagittal plane, which includes incident wave and all generated wave-modes 

from the horizontal welded boundary. 

 

The second component describes the reflection and transmission of a given incident wave-

mode to the welded interface between two elastically anisotropic half-spaces. This requires a 

number of different inputs provided by the first set of subroutines that includes the incident wave’s 

mode, propagation direction n, phase velocity v, and particle polarization ξ.   The densities and the 

stiffnesses Cij appropriately rotated into the co-ordinate axis of Figure 2-2 the incident and 

refracted half-spaces define the problem. Generally, the incident wave energy is partitioned into 

three reflected and three refracted waves. The algorithm determines the propagation directions, 
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polarizations, amplitude ratios of all six scattered wave-modes. 

 

2.2.1 General anisotropic elastic wave equation 

There are now numerous texts in which the solution to the wave equation through anisotropic 

media is described in details; here we only cover the components that are essential to the 

understanding of the algorithm. First, we assume that the problem is fully elastic and that the 

generalized Hooke’s law constitutive relation between stress and strain holds as described in 

Equation 2-1. 

σij = Cijkl εkl     (2-1), 

where Cijkl is fourth order stiffness matrix of the medium with up to twenty-one independent elastic 

modulus that is properly rotated into the co-ordinate axis, and, σ, ε  are tensors of stress and strain, 

respectively. The elastic stiffness matrix in Equation 2-1 is symmetric and stationary.  As is well-

known, the requisite number of independent elastic coefficients decreases as the symmetry of the 

medium increases ranging from only two elastic coefficients for the isotropic case to as many as 

twenty-one for the least symmetric triclinic medium (see recent discussion in [Schmitt, 2015]). With 

this form of Hooke’s law, we recall the full elastic wave Equation 2-2. 

ρüi = Cijkl  ∂ /∂xl (∂uk/∂xl + ∂ul/∂xk)    (2-2) 

where u and x are displacement vector and co-ordinate frame reference. For simplicity and 

better understanding, the [Voigt, 1887] conversion form of elastic coefficients will be used for the 

rest of the thesis. 

2.2.2 Christoffel’s solution for velocity and polarization 

It is important to review the process by which the directionally dependent wave speeds and 

polarizations are determined. In order to find slowness and polarization of a wave mode in given 

direction, a plane-wave solution is assumed of the form Equation 2-3. 

u = A ξ e−ik(n.r−vt)                                              (2-3) 

where, u is displacement, A is amplitude of incident wave, ξ is particle polarization vector, 

k wave number, n normal to the wave-front, r position vector and v phase velocity. The Eikonal 

Equation 2-4, more often referred to as Christoffel’s equation [Christoffel, 1877] is then used to 
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find the velocity and particle polarization of all wave-modes using 

[Λik− ρv2δik ] ξk = 0                                            (2-4) 

where δ is Kronecker operator and Λ is calculated directly from Equation 2-5 (Musgrave 

1970). We solve this problem as an eigenvector and eigenvalue system of equations, for more 

details about this technique, please refer to [Aki and Richards, 1980]. 
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, (2-5) 

By solving Equation 2-4, which includes general case of anisotropy (up to triclinic), we get 

the phase velocities of all three wave-modes, each associated with their corresponding polarization. 

So far, we were able to calculate v and ξ of all three orthogonal wave-modes, (qP, qS1, qS2). The 

polarization of the qP wave is sub-parallel to n. The polarizations of the two shear wave-modes are 

sub-perpendicular to n and we are categorizing qS1 and qS2 based which is faster and slower, 

respectively. 

 

2.2.3 Reflectivity and Transmissivity 

In this section, the general problem of determining the reflectivity and transmissivity is developed.  

To avoid confusion and maintain consistency, we assume that incident wave propagating in the 

direction n impinges the boundary from upper medium. Consider a qP, qS1 or qS2 plane-wave 

travelling obliquely downward through an arbitrary elastic anisotropic half-space (Figure 2-2).  Upon 

incidence with the boundary six wave-modes are considered, where half will reflect back to the 

top upper medium and the other half will transmit into the lower medium. In order to calculate 

amplitude ratio of each generated wave-mode, we first need to know their propagation direction 

and then satisfy the welded boundary conditions. The subroutine “ChrisKel” is defined to calculate 

velocity and polarization for all generated waveforms, the main body of subroutine “ChrisKels is 

as follows. 
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2.2.4 Direction of generated waves 

We quantify the direction of propagation of generated wave modes by their corresponding 

slowness vector nα = sα /|sα|, which we assign superscripts α for the reflected waves of 1 (qPR), 2 

(qS1R), and 3 (qS2R) and for the transmitted waves 4 (qPT), 5 (qS1T), and 6 (qS2T).  The subscript 

‘I’ and α=0, are assigned to the incoming wave regardless of its mode. According to the generalized 

Snell’s law the horizontal slowness component sh
α (i.e. parallel to the interface) of all of these seven 

modes are equal and lie in the sagittal plane that includes n and the interface normal (Musgrave 

1970; Rokhlin 1986).  Since all the horizontal slownesses (sh
α) are equal, 

sh
α = sh

0 |  α =1:6.     (2-6) 

the problem is now being reduced to finding the vertical slowness of the reflected and 

refracted wave-modes.  Following [Rokhlin, 1986] we first define a shorthand Ω𝑖𝑘 in Equation 2-7, 

function [vel,pol]=chrisKel(n1,n2,n3,c,ro) 

% c is the stiffness matrix 

% rho is the density of the medium 

% n1, n2, n3 are the direction of the wave-mod 

 

L11 = n1^2*c(1,1) + n2^2*c(6,6) + n3^2*c(5,5) + 2*n2*n3*c(5,6) + 

2*n3*n1*c(1,5) + 2*n1*n2*c(1,6); 

 

L22 = n1^2*c(6,6) + n2^2*c(2,2) + n3^2*c(4,4) + 2*n2*n3*c(2,4) + 

2*n3*n1*c(4,6) + 2*n1*n2*c(2,6); 

 

L33 = n1^2*c(5,5) + n2^2*c(4,4) + n3^2*c(3,3) + 2*n2*n3*c(3,4) + 

2*n3*n1*c(3,5) + 2*n1*n2*c(4,5); 

  

L23 = n1^2*c(5,6) + n2^2*c(2,4) + n3^2*c(3,4) + n2*n3*(c(2,3)+c(4,4)) + 

n3*n1*(c(3,6)+c(4,5)) + n1*n2*(c(2,5)+c(4,6)); 

 

L13 = n1^2*c(1,5) + n2^2*c(4,6) + n3^2*c(3,5) + n2*n3*(c(3,6)+c(4,5)) + 

n3*n1*(c(1,3)+c(5,5)) + n1*n2*(c(1,4)+c(5,6)); 

 

L12 = n1^2*c(1,6) + n2^2*c(2,6) + n3^2*c(4,5) + n2*n3*(c(2,5)+c(4,6)) + 

n3*n1*(c(1,4)+c(5,6)) + n1*n2*(c(1,2)+c(6,6)); 

  

L = [L11 L12 L13; 

     L12 L22 L23; 

     L13 L23 L33]; 

  

[pol,ev] = eigs(L); 

vel = sqrt(diag(ev)/ro); 
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Ω𝑖𝑘  =  
𝑪𝑖𝑗𝑘𝑙 𝒔𝑗  𝒔𝑙

𝜌
  ,     (2-7) 

which allows Equation 2-4 to be recast in terms of the slowness vector with unknown 

vertical slowness (s3), 

[Ωik − δik ] ξk = 0,                                                   (2-8) 

To find vertical slowness of both reflected and transmitted wave-modes, the algorithm 

needs to solve the Equation 2-8. [Rokhlin, 1986] suggested to zero the determinant of the matrix in 

Equation 2-8, to find vertical slowness of all wave-modes. The subroutine “ChrsKel_RT”, is 

implemented to find vertical slowness of each medium.  The code, initially calculate the 

coefficients of the quadratic form of Ω in the vector format, Ωik = [aik, bik, cik ] × [s3
2, s3

1, s3
0]T; 

where a, b, c are calculated from Equation 2-5. The algorithm, forms polynomial equation based 

on determinant of the matrix in Equation 2-8 and quadratic format of Ω. We reach two sixth-degree 

polynomial equations for reflected and refracted waves, in which vertical s3 is the only unknown. 

Only three of six roots are physically possible, which we select them based on the geometry of the 

boundary. We implemented convolutional theorem to form sixth-order polynomial equation of s3 

with faster speed. The main body of the MATLAB® subroutine “ChrsKel_RT” is as follows. 
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After determining vertical slowness of all wave-modes from the previous step, we calculate 

the direction nα of each wave mode is calculated by 

nα = sα/|sα|      (2-9) 

Now that we know the direction of all generated wave-mode, ARTc uses nα in subroutine 

“chrisKel” to calculate velocity and polarization of each wave-mode.  

 

1     function s3 = ChrstKel RT(c,s1,s2,rho) 

2     % c is the stiffness matrix 

3     % rho is the density of the medium 

4     % s1 & s2 are horizontal slowness values 

5     c=c./rho; % density normalizing the stiffness matrix 

6     % s1 & s2 are horizontal slowness values 

7     %Omega11: 

8     O11=[c(5,5),2*s1*c(1,5)+2*s2*c(5,6),s1ˆ2*c(1,1)+s2ˆ2*c(6,6)+... 

9     2*s1*s2*c(1,6)-1]; 

10     %Omega22: 

11     O22=[c(4,4),2*s1*c(4,6)+2*s2*c(2,4),s1ˆ2*c(6,6)+s2ˆ2*c(2,2)+... 

12     2*s1*s2*c(2,6)-1]; 

13     %Omega33: 

14     O33=[c(3,3),2*s1*c(3,5)+2*s2*c(3,4),s1ˆ2*c(5,5)+s2ˆ2*c(4,4)+... 

15     2*s1*s2*c(4,5)-1]; 

16     %Omega23: 

17     O23=[c(3,4),s1*(c(3,6)+c(4,5))+s2*(c(2,3)+c(4,4)),s1ˆ2*c(5,6)+... 

18     s2ˆ2*c(2,4)+s1*s2*(c(2,5)+c(4,6))]; 

19     %Omega13: 

20     O13=[c(3,5),s1*(c(1,3)+c(5,5))+s2*(c(3,6)+c(4,5)),s1ˆ2*c(1,5)+... 

21     s2ˆ2*c(4,6)+s1*s2*(c(1,4)+c(5,6))]; 

22     %Omega12: 

23     O12=[c(4,5),s1*(c(1,4)+c(5,6))+s2*(c(2,5)+c(4,6)),s1ˆ2*c(1,6)+... 

24     s2ˆ2*c(2,6)+s1*s2*(c(1,2)+c(6,6))]; 

25     % Creating 6th-degree polynomial equation: 

26     % p=a0 s3ˆ0 +a1 s3ˆ1 +a2 s3ˆ2 +a3 s3ˆ3 +a4 s3ˆ4 +a5 s3ˆ5 +a6 s3ˆ6 

27     p=conv(O11,(conv(O22,O33)-conv(O23,O23)))-conv(O12,(conv(O12,O33)-... 

28     conv(O13,O23)))+conv(O13,(conv(O12,O23)-conv(O13,O22))); 

29     % Solution to polynomial equation is calculation by roots.m function. 

30     s3 = roots(p); 
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2.2.5 Welded boundary conditions 

At this step, we have all the required information about the incident and generated wave-modes, we 

can calculate amplitude ratios of generated wave-modes. To solve for reflectivity and 

transmissivity, two main boundary conditions must be satisfied; first, continuity of displacements 

on the interface, Equation 2-10, where u is calculated from uα = ξ αA α. 

∑ (𝐮𝛼3

α=1
) + ∑ (𝐮𝛼6

α=4
) = 𝐮0,                                    (2-10) 

Second welded boundary condition which has to be satisfied is continuity of traction 

force (τ ) formulated as 

∑ (𝝉𝛼
3

α=1
) + ∑ (𝝉𝛼

6

α=4
) = 𝝉0

 ,                                (2-11) 

where for the convenience we  introduced τα  = Cij  ηj  s
α ξ α Aα, η is the normal to the boundary.  

The only unknown in the system of Equations of 2-10 and 2-11, is amplitude of the generated 

wave-modes (Aα) and the amplitude of the incident wave (A0), but we rearrange them to find the 

amplitude ratios (Aα /A0). 

The subroutines “boundary_condition” and “traction” uses Equation 2-10 and Equation 2-

11 to form and solve the system of linear equations with the kernel matrix of G and vector of 

displacement and traction force from incident wave I, and the vector X, with unknown amplitude 

ratios. The matrix representation of this system of equations is 

G X = I.      (2-12) 

We reach amplitude ratio by inverting the boundary condition kernel matrix Equation 2-13.  

X = G−1 I,     (2-13) 

The code block of the subroutines “boundary_condition” and “traction” are followed. 

 

 

%% function traction3.m 

function T3j= traction3 (C,p,s) 

% Calculate normal traction force to the boundary given: 

% C, stiffness tensor, p: polarization vector and S, slowness vector 

p1 = p(1); p2 = p(2); p3 = p(3); 

k1 = s(1); k2 = s(2); k3 = s(3); 

ps33 = [p1*k1 ; p2*k2  ;  p3*k3 ; (p2*k3 + p3*k2) ; (p3*k1 + p1*k3) ; 

(p1*k2 + p2*k1)]; 

T3j = C(3:5,:) * ps33; 

end  
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The mathematical and programing implementation of (Rokhlin 1986; Musgrave 1970) in 

defining the polynomial equation for vertical slowness and extending the [Rokhlin, 1986] to the 

general case of anisotropy with up to twenty-one elastic modules in addition to rotation is one of 

the advantages of the mathematical and physical novelties in ARTc package. The ARTc solves the 

amplitude ratios problem by least square inversion to avoid numerical error caused beyond post 

critical angles, which makes it easier for the users to get reliable results from all possible direction. 

2.2.6 Testing the algorithm 

The programs are tested for a number of different cases. The first example consists of an 

imaginary virtual interface existing within a whole space filled with water, a liquid with no shear 

modulus. By construction, there are no differences in the physical properties of the water on either 

side of the imaginary interface and no reflections or refractions should be generated. Application of 

the programs to this trivial example showed that no reflected waves were generated at the interface 

at any angle of incidence. Numerical errors did exist at the level of 10−15. In the first example the 

incident P-wave travels through the virtual boundary and is fully transmitted without generating 

any shear wave-mode, reflection or refraction. 

In the second trivial test, an imaginary interface was defined within a complex triclinic 

medium. Here too, no new converted waves were generated by qP, qS1, or qS2 modes incident to 

function R = boundary_condition(cu,cl,pi,si,pr,sr,pt,st) 

% pr, sr polarization & slowness matrix of reflected wave-modes 

% pt,st polarization & slowness matrix of transmitted wave-modes 

% pi,si polarization & slowness vector of incident wave 

DIS = [-pr(1,1) -pr(1,2) -pr(1,3) pt(1,1) pt(1,2) pt(1,3); 

       -pr(2,1) -pr(2,2) -pr(2,3) pt(2,1) pt(2,2) pt(2,3); 

       -pr(3,1) -pr(3,2) -pr(3,3) pt(3,1) pt(3,2) pt(3,3)]; 

% incident wave 

 DIS0 = pi; 

%% conservation of traction force on the surface 

 

for i=1:3 % for reflected waves 

    T3_R(:,i) = traction3(cu,pr(:,i),sr(:,i));% for reflected waves 

    T3_T(:,i) = traction3(cl,pt(:,i),st(:,i));% for transmitted waves 

end 

% incident wave 

T3_0 = traction3(cu,pi,si); 

 

%% forming the G matrix form equations 10 , 11 

 

G = [  DIS; -T3_R T3_T]; 

I = [ DIS0;  T3_0]; 

R = inv(G)*I; 

 



 

  24  
 

this virtual surface again to the same level. These trivial tests confirmed that the program created 

no ghost. 

In the third test, we compared the results of our algorithm directly to Zoepprit’s equations 

(using [Aki and Richards, 1980] scattering matrix approach) to the interface between water and 

Copper metal. We used this high contrast water-Copper model to test the accuracy of the program 

to the Zoeppritz’s direct analytic solution for PPR, reflection and PST, PPT transmission in all 

possible scattering directions. The numerical implementation matched the analytic solution within 

the numerical machine error of the calculations (10−15), (Figure 2-3). The reader will find 

explanations on how to use the programs in the Appendix 2-A. 

 

 

Figure 2.3. Amplitude ratios of reflected PP and transmitted PP and PS waves are 

calculated from high contrast water-Copper alloy boundary from a P-wave incident 

angle in all scattering angles (θ = 0° to 90°). Results are showed from the ARTc 

(circles) and Zoeppritz (solid lines) solution, which matches perfectly within the 

computers precision. 

2.3 Case Examples 

A number of example calculations are presented in this section to illustrate the capabilities. 

First, the variations of slownesses and polarizations within a single anisotropic medium are calculated. 

Next, the reflectivity and transmissivity programs are used to replicate some existing solutions.  

Finally, the reflectivities from example boundaries from progressively complex cases are 

presented. In these calculations we use the stiffnesses and densities for single mineral crystals of 
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differing symmetries (Table 1-1) as extracted from [Bass, 1995; Schmitt, 2015] compilation. 

 

Table 2.1. Elastic coefficients of anisotropic media used for modeling, ISO, VTI, 

HTI, ORT, MON, TRI stand for isotropic, vertical transverse isotropic, horizontal 

transverse isotropy, orthorhombic, monoclinic and triclinic anisotropic symmetry in 

GPa, and their respective density in (gr/cc), after [Bass, 1995; Schmitt, 2015]. 

 

 Water ISO VTI HTI ORT MON TRI 

ρ 1.0 2.7 2.0 2.2 2.1 3.5 4 

C11 2.19 5.12 10.0 7.56 20.56 18.58 41.42 

C12 2.19 1.49 2.00 4.53 1.34 6.85 7.41 

C13 2.19 1.49 2.00 4.53 1.78 7.07 7.98 

C14 0.00 0.00 0.00 0.00 0.00 0.00 0.11 

C15 0.00 0.00 0.00 0.00 0.00 0.98 -0.30 

C16 0.00 0.00 0.00 0.00 0.00 0.00 1.92 

C22 2.19 5.12 10.0 9.00 9.72 18.1 37.23 

C23 2.19 1.49 6.00 3.22 1.39 6.26 7.45 

C24 0.00 0.00 0.00 0.00 0.00 0.00 0.24 

C25 0.00 0.00 0.00 0.00 0.00 0.94 0.19 

C26 0.00 0.00 0.00 0.00 0.00 0.00 1.57 

C33 2.19 5.12 15.0 9.00 12.7 23.44 41.27 

C34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C35 0.00 0.00 0.00 0.00 0.00 2.14 -1.10 

C36 0.00 0.00 0.00 0.00 0.00 0.00 0.34 

C44 0.00 1.81 2.50 2.89 4.66 6.29 14.97 

C45 0.00 0.00 0.00 0.00 0.00 0.00 0.63 

C46 0.00 0.00 0.00 0.00 0.00 0.77 0.47 

C55 0.00 1.81 2.50 2.65 4.92 5.10 15.82 

C56 0.00 0.00 0.00 0.00 0.00 0.00 0.20 

C66 0.00 1.81 2.00 2.65 4.33 4.74 15.24 
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2.3.1 Velocity and Polarizarion 

The ARTc is able to calculate slownesses of the modes propagating at all possible azimuths (φ 

= 0° to 360°) and incidence angles (θ = 0° to 90°) for different degrees of anisotropy from isotropic 

to triclinic are shown in Figure 2-4.   Further, as mentioned in general the polarization and 

propagation directions are not perfectly parallel or perpendicular for longitudinal and transverse 

modes, respectively.  This is illustrated in Figure 2-5 where the deviation of the qP particle 

polarization ξ from the normal to the wave-front n is imaged over all possible incidence and 

azimuths.  As expected for the isotropic case the polarization and the wave-front normal are always 

parallel and no derivations appear at any angle. However as the symmetry decreases through 

transversely isotropic to monoclinic ξ can deviate quite substantially from n and appears with 

increasingly complex patterns. 

 

Figure 2.4. This figures depicts slowness variation inside four major anisotropic media in all 

possible azimuthal and scattering angles directions. a) Inside an isotropic medium, P-wave, and 
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other two shear waves have constant slowness in all directions. b) With transverse isotropic (TI) 

medium, all three the wave-modes travel faster in the plane of symmetry and become slower up 

to the perpendicular direction. Inside the c) orthorhombic and d) monoclinic anisotropic media, 

the slowness variation with direction shows more complex pattern. 

 

Figure 2.5. This figure shows the deviation of P-wave particle polarization from 

normal to the wave-front. This angular variation is calculated for cases of a) isotropic 

b) horizontal transverse isotropy (TI) c) orthorhombic d) monoclinic media. By 

looking into the patterns, we could see strong correlation between angular deviation 

pattern and symmetry of the anisotropic medium, by decreasing symmetry of the 

medium; the deviation pattern also shows less symmetry. 
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2.3.2 Reflectivity variation with direction 

ARTc is applied to calculate the PP reflectivity for a variety of different cases.  It must 

be noted that the following figures required iterative application of the ARTc to cover both 

azimuthal and incidental direction with high resolution.  

The first case considers the contact between a topmost TI medium over an orthorhombic half-

space.  The TI medium is variously tilted in the three examples with VTI at 0° (Figure 2-6a), at 30° 

(Figure 2-6b), and at 60° (Figure 2-6c). One clear feature of all of these panels is the locus of the 

PP critical angles indicated by the warm red color ribbon. For the VTI case the pattern is controlled 

primarily by the symmetry of the underlying orthorhombic medium. This is because the VTI 

medium is rotationally symmetric and does not change with azimuth. The reflectivity for the second 

case with a 30° tilt displays asymmetry as would be expected as the rotational symmetry is broken. 

The final 60° case is again more symmetric. This is somewhat unexpected as we might expect to 

see the greatest difference as the HTI case is approached.  One should note that the critical angles 

are largely indicative of the generally higher wave speeds in the tilted TI medium but the apparent 

increase in symmetry for this case is probably somewhat co-incidental and dependent on the choice 

of the elastic constants.  
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Figure 2.6. This figure depicts calculated PP reflectivity from TI-ORT boundary in all 

possible directions. Location of warm color ribbon, which represents critical angle for P-wave 

reflection, varies with azimuth. The pattern for ψ = 0° shows two planes of symmetries where 

located at azimuthal direction φ = 0° and 90° degrees. However, planes of symmetry of the TI 

medium is rotated to (b) ψ = 30° and c) ψ = 60° degrees about the x1 axis. 

The second, more challenging, case places stacks monoclinic over triclinic materials.  This 

requires knowledge of 34 original elastic coefficients. Here the one symmetry axis of the 

monoclinic material is aligned parallel to x3 and it is rotated around this axis through angles of 0° 

(Figure 2-7a), 45° (Figure 2-7b), and 60° (Figure 2-7c).  The reflectivity pattern for this case is 

oddly shaped as might be expected from the lack of symmetry in both of the materials.  The rotation 

of the pattern, however is apparent.  
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Figure 2.7.  This figure shows how calculated PP amplitude ratio from monoclinic (top 

layer) and triclinic anisotropy (base layer) varies with direction. Warm color ribbon 

indicates PP critical angle reflection, changes with azimuthal direction, as we would 

have imagined, but the pattern is highly non-symmetric. To emphasize the effect of 

medium orientation on reflectivity, it is also calculated for angular orientation about 

x1 axis with b) ψ = 45° and c) ψ = 60° degrees rotations about the x1 axis. Patterns 

show significant difference in amplitude variation with the non-rotated model (a). 

2.4 Discussion and Conclusion 

In this Chapter, we describe an algorithm, which is able to calculate velocity, particle 

polarization and amplitude variations with direction in all anisotropic media up to triclinic 

symmetry. We have carried out some basic tests to ensure that it does not produce spurious errors, 
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and that it can reproduce some previous results. We can see how the velocity varies with direction 

inside an elastic anisotropic media which shows a very complex behavior when propagates within 

the least symmetric ones as illustrated in Figure. 2-4. Accurate calculation of the velocity of all 

wave-modes is important in being able to extract additional information from seismic data sets via 

inversion and to understand possible complex behavior by forward modeling.  

The deviations of the particle polarizations (Figure 2-5) reveal complex patterns. 

Observations of particle motions are key to investigations of earthquake focal mechanisms and 

shear wave splitting.  Such studies are mostly carried out under the presumption that the observed 

particle motions follow those expected through an isotropic medium.  However, these deviations 

from the isotropic case may carry additional useful information about the subsurface textures and 

structures. 

The most important implication of this program is that it will allow workers to more readily 

investigate seismic reflectivity in complex cases.  As noted in the literature review, most studies 

have studied special cases (e.g. two stacked VTI media) or have relied on approximations that often 

remain valid only at small angles of incidence.  The program here is not restricted in this way and 

will allow workers to more readily test more sophisticated hypotheses with regards to the Earth’s 

structure.  

It is now well-known that seismic anisotropy is often more the rule than the exception at all 

scales from the laboratory to the Earth’s mantle. The tools available to the research community to 

study seismic reflectivity, particularly for cases of lower symmetry, are limited. The algorithm 

presented in this Chapter should be considered an advanced tool for t h e  quantitative analysis of 

plane-wave propagation in elastic anisotropic media. We expect it will find particular use in 

studies seeking to better understand seismic reflectivity in complex geological geometries.  

 

2.5 Appendix 2-A.  Guide to use the software 

The set of subroutines which ARTc are written using MATLAB®.  Figure 2-A1, shows the 

flowchart of the ARTC packager and how and when the subroutines are called. All subroutines can 

be used as a stand-alone functions to solved related parameters, e.i. ChrisKel is used to create 
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velocity and polarization figures 2-4 and 2-5.  We also designed a MATLAB® GUI (intentionally 

similar to conventional calculators) that solves for wave properties (velocity and polarization) in a 

general anisotropic medium, and, more importantly solves for amplitude ratio of generated wave-

modes from two slabs of anisotropic medium with arbitrary orientation. ARTc has a great potential 

for developers to extended it to multi-layered scenario. The following list, shows the table of 

subroutines and their corresponding application in the calculations. 
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%%funct i on OUT=ARTC( C u ,ρ u , C l ,ρ l , ,θ ,φ , k ,ψ u ,ψ l ) 

Begin 

%%Read media parameters: 
(Cu ρu,ψu Cl,ρl,ψl) 

%%Read incident wave 
properties (θ,φ,k) 

%%Rotate the Cij  
Cu = ROT_PSI(Cu,PSIu) 
 Cl =ROT_PSI(Cl,PSIl) 

%%Calculate n 
n = Nfinder(θ,φ); 

%%Select the mode of incident 
wave (k) from pol and vel: 

VI = vel(k); 
PI = pol(:,k); 

%%Calculate slowness of 
incident  

SI = n / VI(k); 

%% function [vel,pol]=chriskel(C,ρ,n) 
 

 

%%Calculate vertical slowness of 
reflected wave-modes 

S3R= ChrisKel_RT(Cu/ρu ,SI(1),SI(2)); 
SR=[SI(1),SI(2),S3R] 

%%Calculate vertical slowness of 
transmitted wave-modes 

S3T= ChrisKel_RT(Cl  /ρl , SI(1), SI(2)); 
ST=[SI(1),SI(2), S3T] 

%%Normalize SR 
nR = SR / |SR|; 

%%Normalize ST 
nT = ST / |ST|; 

%%Calculate velR, polR 
[VR, PR] = chrisKel(Cu , ρu,nR); 

%%Calculate velT, polT 
[VT, PT] = chrisKel(Cl , ρl ,nT); 

%%Calculate parameters of Boundary conditions  

%Traction Force(τ) 
%Displacement (u) 

for α = 0:6 

Next wave-mode 

τα =Cij,u
 SRl

α PRk
α    α<4 

τα =Cij,l STl
α PTk

α    

Yes 

No 

G(1:3,α) = uα;  
G(4:6,α) = τα;  

uα=PTα 

uα=PRα 

G(1:3,α) = -uα;  
G(4:6,α) = -τα;  

α==0 τα =Cij,u
 SIl PIk    

Yes 

 

No uα=PRα 

I(1:3)=uα 

I(4:6)=τα 

Next wave-mode 

%% X=[rp rs1 rs2 tp ts1 ts2] 

 
X = G \ I;   

Λik=Cijkl nj nl ;%Eq.5 

[ev,pol]=eigs(Λ) 

vel=sqrt(ev/ρ); 

return [vel,pol]; 

%% function s3=chriskel_RT(C,s1,s2) 
 

 
Ωik=Cijkl sj sl ;%Eq.7 

%% creating polynomial with 
convolution theorem(*) 

P= (T11*( (T22*T33)- (T23*T23)))- 
  (T12*( (T12*T33)- (T13*T23)))+ 
 (T13*( (T12*T23)- (T13*T22))); 

α<4 

s3=roots(P)<0 

s3=roots(P)>0 
Yes 

No 

return s3 ; 

OUT=[SI PI SR PR X(1:3) X(4:6)]; 
return OUT; 

%%Calculate, velocity and 
polarization of incident wave  
[vel,pol]=chrisKel(Cu, ρu,n); 
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Figure 2.A1. Displays the flowchart of the ARTC main function. Dashed block diagram 

illustrate subroutines ‘ChrisKel’, ‘ChrisKel_RT’, and ‘Boundary_Condition’ and their 

corresponding role in the ARTc algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure of input.i files dictates the model parameters of the media on top and base of 

the boundary, ‘t’, ‘b’ suffix indicate top and base medium, respectively. 

Subroutine Application 

ARTc.m Main function 

Nfinder.m Converts angular direction to vector direction 

ChrisKel.m Solves for velocity and polarization. (Eqn. 2-4 & 2-5) 

ChrisKel_RT.m Find vertical Slowness of reflected and refracted waves (Eqn.2-8) 

Boundary_condition.m Form boundary condition system of Eqn. (2-10,2-13) 

ph2gr.m Calculate group velocity from phase velocity 

stiff.m Preset elastic coefficients of popular anisotropic symmetries 

run_artc.m run ARTC calculator with given parameters 

traction3.m Calculate traction force at the boundary, Eqn.(2-11) 

REFLECTIVITY.fig GUI designed to easily calculate wave properties 

input.i input file to run run_artc. 

Output.mat, .ascii Includes v, ξ, amplitude ratios and direction of all generated waves 
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The subroutine “stiff” has several sample cases of anisotropy which could be used to in the 

“run_artc” to quickly run the algorithm. The structure of the output of the ARTC includes 

Reflectivity; Slowness; polarization, angle of generated waves from the boundary; that could be 

easily saved in “.mat” or “.ascii” format via MATLAB built in functions. 

There are three ways that user can work with the ARTc. Directly running ARTc.m file in 

MATLAB®, is imperative, in addition we have developed a bash file which reads the input file(s) 

and performs the calculation on the parallel computers. To run the ARTc with the input file, one need 

to run the bash file, runARTc.sh. Where the structure of the runARTc.sh is: 

 

 

We also designed a GUI in MATLAB ® to run and monitor the algorithm visually as 

displayed in Figure 2-A2 The user has options to modify the elastic stiffnesses and densities in 

1     % 't' and 'b' suffix stands for properties of top and base layers. 

2     % Cij is stifness of the medium 

3     % rho: density 

4     % psi: represents angular rotation about x1 axis. 

5     wavetype % mode of the incident wave; 1=qP, 2=qS1, 3=qS2 

6     theta phi % direction of propagation 

7     c11t c12t c13t c14t c15t c16t % top layer elastic coefficients 

8     c22t c23t c24t c25t c26t 

9     c33t c34t c35t c36t 

10     c44t c45t c46t 

11     c55t c56t 

12     c66t 

13     rhot % density of the top layer 

14     psit % orientation of the top layer 

15     c11b c12b c13b c14b c15b c16b % base layer elastic coefficients 

16     c22b c23b c24b c25b c26b 

17     c33b c34b c35b c36b 

18     c44b c45b c46b 

19     c55b c56b 

20     c66b 

21     rhob % density of the base layer 

22     psib % orientaiton of the base layer 

   #!/bin/bash 

matlab -nojvm -r run_artc.m & 
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Panels 1 and 2. Information about the incident wave’s mode and incidence inclination and azimuth 

angles are in Panel 3.  Execution buttons are contained in Panel 4 and the final results displayed in 

Panel 5. You might take the advantage of MATLAB ® built in parfor loop to use run_artc.m 

in a parallel form on multiprocessor machine. 

 

Figure 2.A2. We designed the GUI to easily calculate and monitor wave properties in two-

layered anisotropic model. Panels 1 and 2 describes elastic coefficients and densities of the top 

and base layer, panel 3 describes the input wave-mode properties. Panel 4 includes executive 

buttons and panel 5 displays the results. Defaults in the GUI represents orthorhombic (top) 

triclinic (base) layer model with P-wave incident wave-mode.  
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Index 

 

ρ  Bulk density 

v  Phase velocity 

V  Group velocity 

ξ  Particle polarization 

θ  Inclination angle from x3 axis 

φ  Azimuthal angle from x1 axis 

ψ  Rotational angle from about x1 axis 

u  Particle displacement vector 

C Rotated fourth order stiffness tensor, 

Λ Elastic coefficients multiplied by n 

Ω Density-normalized elastic coefficients multiplied by n 

τ  Stress tensor 

ε  Strain tensor 

s  Slowness vector 

η  Normal vector to the boundary 

 n Normal to the wave-front vector  

δ  Kronecker operator 

A  Amplitude of the plane-wave 
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3 Chapter 3 

An Algorithm for Quantitatively Modeling 

Reflected Ultrasonic Bounded Pulses and Beams 

 

3.1 Introduction 

Bounded ultrasonic pulses are used in the study of many problems in acoustics, 

nondestructive testing, metrology, and seismic physical modeling. A full understanding of how 

these bounded pulses propagate and scatter in such laboratory tests is essential for the proper 

interpretation of the observations.  Modeling ultrasonic bounded pulse propagation remains 

challenging, and in many cases, analyses depend on various simplifying assumptions. The most 

common of these presumes that a simple plane wave sufficiently describes the observations.  In 

reality, however, a bounded pulse is composed of a distribution of wavenumbers with differing 

directions and frequencies; and its behavior can be much more complicated. Such effects include 

beam diffraction and apparent non-specular reflectivity near the Rayleigh critical incidence angle. 

 Here we focus on the specific problem of the reflectivity of a bounded pulse from the flat 

interface between liquid and solid half-spaces in support of parallel experimental work [Malehmir 

and Schmitt, 2017].  In general homogeneous elastic media, the reflection coefficients from a plane-

wave incoming wave are calculated by applying the Christoffel [1877] equation together with the 

boundary conditions on stresses and displacements [e.g. Musgrave, 1970; Rokhlin, 1986]. What all 

of these reflectivity methods have in common is the assumption that the wavefront of the incoming 

wave and reflected waves are planar. However, creating a physical ultrasonic source to generate or 

mimic a plane-wave front is quite challenging [Jocker and Smeulders, 2007]. 

Often in ultrasonic reflection goniometry, theoretical plane wave solutions do not describe 

the observed reflected amplitudes, particularly in the vicinity of critical angles.  For example, the 

plane wave solutions predict a sharp, discontinuous peak at the longitudinal mode (P) critical angle. 
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Observed reflectivity curves are, in contrast,  smooth and of lower amplitude near these critical 

angles (e.g., [Alhussain, 2007; Bouzidi and Schmitt, 2008b; Mahmoudian et al., 2015; Malehmir 

and Schmitt, 2016b]).  This is one of the consequences of the fact that a real beam is constituted of 

the distribution of manifold plane waves having wavenumbers some of which are oriented with 

incidences both larger and smaller than that of the main components of the transducer’s beam. One 

manifestation of this is that the plane wave solution by itself fails to describe the reflectivity at the 

longitudinal P-wave critical angle.  

Further, at larger incidence angles approaching the Rayleigh critical angle (R) the 

amplitude of a reflected wave appears to significantly decrease, a phenomenon which cannot be 

replicated by the plane-wave reflectivity equations [Zoeppritz, 1919]. This phenomenon 

contributes to the apparent non-specular shift of the reflected beam as first observed by [Schoch, 

1952b] using Schlieren photography. [Brekhovskikh, 1960] observed displacement along the 

interface, where it is at its maxima post shear-wave critical angle. Diachok [Diachok, 1970] 

attributed this null in the reflected wave to the conversion of the incoming wave to the surface 

Rayleigh wave. Tamir and Bertoni [Tamir and Bertoni, 1971; Bertoni and Tamir, 1973] proposed 

an analytic solution for the reflection of the Gaussian ultrasonic wave. They invoked the generation 

of a leaky surface wave at the Rayleigh angle to explain this phenomenon.  

More recently, [Bouzidi and Schmitt, 2008a, 2008b] successfully modeled the amplitudes, 

including near the P-wave critical angle and the Schoch shift null, obtained in a series of ultrasonic 

bounded pulse reflection tests on well-characterized elastic and porous solids.   One important point 

is that their modeling considers only the appropriate complex reflectivity of the interface to 

reconstitute the reflected bounded pulse.  Importantly, it does this without invoking the generation 

of inhomogeneous interface modes near critical angles explicitly as this behavior appears to arise 

from direct use of the complex reflectivities. 

Here we review these developments, but provide a computer program that calculates the 

propagation and reflection of a bounded pulse from the flat interface between liquid and elastic 

solid half spaces.  As inputs, the program requires i)  the wavefield of the just-launched bounded 

pulse, ii) the wave speeds of the liquid and of the reflecting solid, and iii) the appropriate angle-of-

incidence dependent complex reflectivity. In the program, each of the source wavefield’s 
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components is propagated to the interface, modulated by the appropriate reflectivity function, and 

finally propagated back upwards to the observation point. We test this algorithm against laboratory 

measurements to show that it can accurately reproduce the complicated acoustic reflectivities 

observed near both the longitudinal P-wave and transverse S-wave critical angles and including the 

complex behavior near the Rayleigh angle.  Our purpose here, however, is not to study directly 

these counterintuitive phenomena but to provide a tool useful to investigations in ultrasonic 

goniometry.  

3.2 Modeling of the bounded beam 

Many researchers have worked to understand the reflectivity from imperfect and non-planar 

wavefronts. Spherical spreading wavefronts are a special case in which the constant phase surface 

of the wave increases equally in all directions; the wavefront may be constructed from an ensemble 

of plane waves propagating in all direction from the central source.   Weyl [1919], for example, 

estimated the reflectivity of this spherical wavefront by contour integrating over all the plane-

waves.  

Plona [Plona, 1976] quantitatively explained the bounded beam effect on reflectivity from 

the liquid-solid interface using Tamir and Bertoni’s [Tamir and Bertoni, 1971] description. Later, 

Leroy and Poirèe [Leroy and Poirèe, 1988] showed that the homogenous plane-wave could not 

account for the observed Rayleigh angle null reflection, however, they could reproduce the 

bounded beam effect around the Rayleigh angle by defining the bounded beam as an 

inhomogeneous wave. 

The incoming inhomogeneous wave could create a special wavefield, in which the 

amplitude and oscillation phase are varying in each direction [Wielandt, 1993; Pedersen, 2006]. 

Pedersen [2006] describes the non-plane wave as a summation of many plane-waves with different 

amplitude, speeds, and propagation directions, which their interferences could potentially create 

capricious phases and amplitudes variation. Hence, in the case of reflectivity from a boundary, 

different wavenumbers are inciting at a different incoming angle to the reflecting interface.  

 Breazeale [Breazeale et al., 1977; Ngoc and Mayer, 1979] and Ngoc and Mayer 

[1979] were among the first to provide a quantitative description of the non-specular reflection 
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from the bounded beam in the range of frequencies and beam widths. Declerq and coworkers 

[Declercq et al., 2005; Declercq, 2006] provide a historical review of the inhomogeneous wave 

theory and application to null reflection at Rayleigh angle from Gaussian beam. In this Chapter, 

we present a modified algorithm following the method described by Bouzidi and Schmitt [Bouzidi 

and Schmitt, 2008b] to model the propagation and reflection of a bounded beam at any angle of 

incidence.  

3.3 Theory 

To better understand and interpret the recorded data in the lab, sometimes it is useful to model the 

data based on different properties and degrees of symmetries of the subsurface material. The one 

that shows the best match to the recorded data will be a good representative of subsurface 

properties. 

3.3.1 Geometry of the Problem 

In this Chapter, we implemented a hybrid algorithm that combines propagation of the 

bounded pulse with complex reflectivity functions (Rpp()) appropriate to the case under study. The 

geometry of the problem is described in Figure 3-1, where the bounded pulse propagation is 

modeled inside the box and its reflection is calculated from the water-solid boundary. The top 

halfspace is liquid with constant velocity (v) and density (ρ), while the lower halfspace is a general 

elastic medium be it isotropic liquid or solid or anisotropic solid.  Later, we provide examples of 

reflectivity curves from isotropic elastic solids but as long as the correct Rpp() is input to the 

algorithm any of these problems can be addressed (e.g., [Bouzidi and Schmitt, 2012; Malehmir and 

Schmitt, 2017]). 

The bounded pulse is launched from the profile of the transmitting transducer (yellow line 

in Figure 3-1) centered at (xo,zo=0) within the upper liquid medium. The transmitter is located such 

that its center extends to the midway point to the receiving transducer (pink box in Figure 3-1) 

which its center lies at (xr,zo=0). 
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Figure 3.1. The geometry of the bounded beam reflectivity algorithm from the water-

solid interface. The algorithm propagates the bounded pulse from the transducer 

(yellow box) and reflects it from the boundary (z=h) and then propagates it to the 

receiving transducer (pink box) where it reads the amplitude envelope of the specular 

reflected bounded beam (overlaid in the background) at the same incident angle (). 

The background color indicates the amplitude of the bounded beam at  x, z point when 

the beam crosses that point. 

 

To explain the methodology, consider a 2D discretized model with two layers with size (Nz, 

Nx) where Nz is the number of grids in the z-direction and Nx is the number of grids in the x direction, 

as depicted in Figure 3-1. The number of the gridding points in x- and z- directions is set to 

minimize the spatial aliasing as well as available memory for computation. The two-dimensional 

representation of the bounded pulse propagation from the flat and horizontal interface between 

water-solid significantly reduces the number of calculations without losing valuable information 

of the wavefield inside the sagittal plane. 
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3.3.2 The Properties of the Source Wavefield 

The transmitter centered at (x0,z0=0) launches the bounded pulse the wavefield of which is 

described by s(x,z0,t) in the temporal domain, this wavefield is a necessary input to the algorithm. 

Later, an example of the launched bounded pulse is provided but the reader can either measure or 

model their own without any limitation to the algorithm.  

While the algorithm takes as input the temporal s(x0,z0=0,t) it carries out all of its calculations in 

the frequency-wavenumber (f-k) domain. D(kx,z0,ω) is the 2D Fourier domain representation of 

s(x,z0,t) as calculated using the discrete 2D fast Fourier transform (2D FFT).  D(kx,z0,ω) 

alternatively represents the wavefield in terms of an 2D amplitude spectrum describing the energy 

associated with each component wavenumber and the 2D phase spectrum connected to the original 

phase and later phase advance with propagation in space domain.  

3.3.3 Phase Advance Propagation of the Wavefield 

In the construction of the beam, the original s(x,z0,t) propagates into the medium and is 

defined at later times by s(x,z,t). We use here a phase advance technique to propagate the wavefield 

as originally introduced to seismic modeling by Clearbout (1985). In order to propagate the source 

wavefield centered at (x0,z0), to the point in space with the center of (x,z=z0+Δz), the phase advance 

wavefield propagation theory suggests changing the phase of the source wavefield by convolving 

it with 𝛿(𝑥, 𝑡 −
𝛥𝑧

𝒗(𝑧𝑜)
), in the frequency domain this is effected by, 

𝐷(𝑘𝑥, 𝑧0 + ∆𝑧,𝜔) = 𝐷(𝑘𝑥, 𝑧0, 𝜔) 𝑒𝑖 k𝑧 ∆𝑧,   (3-1) 

where kz is the vertical wavenumber: 

𝒌𝒛 = √(
𝝎

𝒗(𝑧𝑜)
)
2

− 𝒌𝑥
2  .     (3-2) 

 for the component propagating with speed v in the water. Similarly, to effect propagation of the 

bounded pulse at the angle of incidence θ (Figure 3-1)  D (kx, z,ω) is advanced by: 

 𝐷𝜃(𝑘𝑥, 𝑧𝑜 + ∆𝑧,𝜔) = 𝐷(𝑘𝑥,  𝑧𝑜 , 𝜔) 𝑒𝑖 k𝑧 cos(𝜃)∆𝑧.   (3-3) 

When  Δz = h – zo the wavefield D (kx, h,ω) has reached the interface between the two halfpaces 

with z = h.   At this point each of the components of D is multiplied by its appropriate horizontal 
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wavenumber dependent reflection co-efficient Rpp(kx) to obtain the incipiently reflected wavefield 

D
R(kx,z=h,ω) through the element by element multiplication of Rpp(kx) with D(kx,z=h, ω).  It is 

important to note that Rpp(kx) is in general complex with the complex component introducing a 

discrete phase shift as necessary to describe fully post-critical reflection behavior.  

This reflected wavefield is then upward continued to the measurement surface by 

applying the phase advance technique:  

D
R(kx, z=h-z, ) = Rpp(kx) ˟  D (kx, z=h, ) e-i kz cos() z,   (3-4) 

It must be noted that the shift is applied with a negative sign (i.e. e(-i kz cos() z)) to move the bounded 

pulse upward. The measurement surface is reached when Δz =  h  (i.e., D
R(kx,z=0,ω)) whereupon 

the inverse 2D FFT transforms DR to its reconstructed x-z-t representation dR(x,z=0,t).   The 

resulting time series amplitude response from the point x = xr and z= 0 gives the response expected 

along the locus of the specular reflection. Here, because we use a small receiver as described 

shortly, this time series is directly compared to the laboratory tests.  More usually the aperture of 

the receiving transducers is larger and its response must be integrated over the appropriate width 

of dR(x,z=0,t). 

 

3.3.4 Applying Complex Reflectivity 

As noted above appropriate knowledge of the angle of incidence dependent reflectivity Rpp 

is needed.  The algorithm is intentionally designed to be independent of the calculation of Rpp, 

allowing users to input their reflectivity functions as appropriate. RPP might be provided as a closed 

form expression such as exists for the interface from an isotropic elastic solid (e.g. Zoeppritz 

(1919), Bertoni and Tamir (1985)), a liquid saturated porous medium (e.g. Bouzidi and Schmitt, 

2012), or suitably oriented anisotropic solids (Christoffel`s (1877), Rokhlin (1986)).  In more 

complicated situations, such as the reflectivity from an arbitrarily oriented anisotropic solid, Rpp 

might only be obtained through numerical means (e.g.,[Malehmir and Schmitt, 2016a]). 

Although the algorithm takes Rpp() as an input function of incident angle to the normal to 

the boundary, the dot product is performed in wavenumber domain (kx). So, the calculation of 

reflection coefficients as a function of the angle of incidence () and/or horizontal wavenumber 
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(kx) is the next step. In order to map input reflectivity into wavenumber domain, Rpp(kx), the 

algorithm first finds its corresponding incidence angle using  

(kx)=sin-1(kx v(z) -1),     (3-4) 

 then it searches for the corresponding reflectivity from  Rpp(). In next section, the MATLAB® 

software flowchart of the bounded beam-modeling algorithm is described. 

3.4 Computer program 

A flowchart outlining the algorithm as based on the theory above is provided in Figure 3-

2 and the various subroutines listed in Table 3-1.  
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Figure 3.2. Flowchart of the bounded pulse reflectivity algorithm. 



 

  61  
 

Table 3-1. Necessary input arguments required for modeling bounded beam reflectivity from a 

water-solid interface. 

Subroutine Description 

Bpp.m Main function, 

Rpp.mat Input complex acoustic reflectivity Rpp() 

SRC.mat Input source wavefield of the transducer s(x,z0,t) 

Mpp.mat Laboratory Measured Reflectivity (optional) 

Bpp.mat Output reflectivity using bounded pulse algorithm, 

Bpp.gif Animation of the bounded pulse propagation (XZ domain) 

 

We provide our MATLAB® code that implements parallel computing power from multi-node 

processors, which can be extended to graphical processing units for increasing the calculating 

speed. A version of this algorithm is available in https://www.github.com/malehmir/beam under 

Apache 2.0 license. In order to run the software, you need MATLAB 2015b (v 8.6) or higher with 

a minimum 8GB of memory, by executing the main file ‘BBM.m’ in MATLAB, which will invoke 

necessary subroutines as described in the above flowchart, Figure 3-2. Several animations that 

show the propagation of  the  wavefield from the water-aluminum interface and water-Copper 

interface both in temporal and spatial coordinates, measured reflectivities along with the code of 

the algorithm are all available from the above shared URL and supplementary materials to this 

Chapter. 

To test our algorithm, we repeated measurements of the angle of incidence dependent 

reflectivities from thick plates of aluminum and copper alloys immersed in water.  We chose these 

to provide examples of reflectivities near the critical angles for the longitudinal, shear (transverse), 

and Rayleigh wave modes. These observed results are then compared with the modelled output 

waveform as a test of the algorithm’s validity.  

https://www.github.com/malehmir/beam
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3.5 Experimental Configuration 

The acoustic goniometer with its specially constructed transmitting and receiving 

transducers, details of data acquisition, and the calibration procedures are described in detail 

[Bouzidi and Schmitt, 2008a] and only a brief overview is necessary here.  

The large ultrasonic transmitter is constructed using a rectangular sheet (80 mm X 100 mm) 

of piezoelectric PZT ceramic. In contrast, the receiver contains a near-point like PZT receiver 

whose dimensions (100µm X 100µm) are smaller than the ~1 to 2 mm wavelengths of the bounded 

pulse in water. Because of the size of the source and other spatial limitations, the allowed incidence 

angles ranged from 12° to 80°. It is important to note that this study employed a different and 

smaller transmitter than previous studies [Bouzidi and Schmitt, 2008a] and as such, the laboratory 

reflectivities here will differ slightly due to this variance in geometry.  

The reflectivity measurements consist of acquiring a suite of waveforms across a range of 

angles of incidence and reflection () from 12° to 80° in increments of 0.25°.   The reflecting face 

of the test block is aligned horizontally and then centered in the goniometer (Figure 3-3). The small 

point-shaped receiver is placed at the opposite angle along the central beam axis following the 

expected direct specular reflection path. A 25μJ step provided a pulse with 300 voltage by a 

Panametrics-NDT® 5800  at a repetition rate of 100Hz activates the transmitter launching the 

bounded pulse. The waveforms are temporally sampled at 5 ns (nano seconds) using a Tektronix 

TDS 2000B oscilloscope controlled by a MATLAB® based in-house software. To reduce noise, 

the final waveform used in the analysis is the average of 1280 individually acquired pulses.  

Prior to the measurements, this bounded pulse is recorded laterally every 2 mm. by scanning 

the receiver a distance of 2 cm for a length of 100 mm along the transmitter’s face. The captured 

wavefield (Figure 3-4c) is mostly planar but exhibits diffractions at its edges.  This source 

wavefield is used as the input s(x,z0,t) to the algorithm after proper amplitude normalization and 

resampling with respect to the model parameters (Nx, and Nz), refer to Figure 3-1. 
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Figure 3.3. Photograph of the laboratory setup for ultrasonic reflectivity measurement 

with the solid copper alloy sample block and transducers (source and receiver) 

completely immersed in the water tank.  The transmitter and the receiver are moved 

manually to the exact incidence angles () every 0.25° from 12° to 80° and the 

reflected wavefield is then recorded on the computer. 
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Figure 3.4. a) Example of a comparison between the directly measured waveform 

(solid line) with one reflected at   = 15° (dashed line) from the aluminum block. b) 

Amplitude spectra calculated for the waveforms in a) indicating a dominant frequency 

of ƒ=0.7 MHz. c) Observed bounded pulse s(x,z0,t) as obtained directly by scanning 

the receiver along the x-axis at a distance of 2 cm from the transmitter (black 

rectangle) along the x-axis. 

The elastic properties of the isotropic materials that we have used in the experiment and the 

modeling of the reflected waves are shown is Table 3-2 following Bouzidi and Schmitt [Bouzidi 

and Schmitt, 2008b]. 
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Table 3.2. Elastic properties of the aluminum, copper alloy and water used for the 

reflectivity modeling and laboratory experiment, after [Bouzidi and Schmitt, 2008b]. 

Solid 

Material 

Water 

density 

(kg/m3) 

Water 

Vp 

(m/s) 

Solid 

density 

(Kg/m3) 

Solid 

Vp 

(m/s) 

Solid 

Vs 

(m/s) 

P-critical 

angle 

(deg) 

S critical 

angle(deg) 

Rayleigh 

angle(deg) 

Rayleigh 

VR(m/s) 

Aluminum 995 ± 1 
1495 

± 5 

2695 ± 

30 

6432 

± 30 

3134 

± 2 
13.3°±0.1° 

28.6° ± 

0.1° 

29.57 

±0.1° 
2938±14 

Copper 

Alloy 
995 ±1 

1495 

±5 

8900 ± 

47 

4857 

± 18 

2296 

± 7 

17.3° ± 

0.25° 

38.3° ± 

0.25 ° 

43.7° ± 

0.5° 

2930  ±  

4 

 

3.6 Results  

The suites of reflected waveforms obtained from the aluminum the copper alloys over the 

range of incidence angles from 12° to 80° are displayed in Figure 3-5a and 3-6a, respectively. The 

laboratory measured reflectivity data are available in the electronic supplementary material. The 

corresponding observed amplitude MPP of each reflected waveform, as determined using the 

amplitude envelope as described above, is plotted versus the angle of incidences in Figure 3-5b and 

Figure 3-6b, as open squares.  These are compared against the classic plane wave elastic reflectivity 

PPP (dashed line) calculated using the well-known elastic expressions of Zoepprtiz (1919) and those 

BPP (continuous line) modeled with the algorithm developed here. Both PPP and BPP are calculated 

using the material values in Table 3-2. The difference between the observed MPP and modeled BPP  

reflectivities is also shown in histogram form.  
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Figure 3.5. a) Waveforms recorded upon reflection from the water-aluminum 

boundary with the angle of incidence.  b) Comparison between the experimentally 

observed reflectivity (Mpp), the calculated theoretical plane wave reflectivity (Ppp),  

and the modeled bounded beam reflectivity (Bpp). The percentile error (Epp) is 

calculated from the difference between Mpp and Bpp is shown in black bar-plot with a 

bin for each angle of incidence measured.  
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Figure 3.6. a) Waveforms recorded upon reflection from the water-copper alloy 

boundary with angle of incidence.  b) Comparison between the experimentally 

observed reflectivity (Mpp), the calculated theoretical plane wave reflectivity (Ppp),  

and the modeled bounded beam reflectivity (Bpp). The error (Epp) as a percentage 

difference between Mpp and Bpp is shown in black bar with a bin for each angle of 

incidence measured.  

It is useful to first discuss the differences between the measured reflectivity Mpp and the 

classic plane-wave solution Ppp calculated using the Zoeppritz, [1919] expressions.  PPP displays a 

sharp, discontinuous peak at the P-wave critical angle that is just apparent in Figure 3-5b and more 

so in Figure 3-6b.  The observed MPP is of lower amplitude and is significantly more rounded.   

Between the P-wave and S-wave critical angles, the plane wave and observed reflectivities diverge 

significantly for the aluminum plate while there is a relatively good agreement for the copper plate. 

This difference is likely related to the impedances between the two materials with density playing 

the major factor.  As such, any reflection from the dense copper plate is already close to unity and 

the relative divergence is small.  In contrast, more character is apparent in the aluminum curves 

and the two reflectivities diverge significantly.   Past the S-wave critical angle, however, PPP and 

MPP diverge more radically for both samples. PPP, as expected, is unity indicating the total 

reflection of the plane wave past the S-critical angle.  In contrast, MPP shows a null near the critical 
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angle that is associated with the Rayleigh wave speed. The effect is related to the non-specular 

Schoch shift [Schoch, 1950, 1952a]. Bouzidi and Schmitt [2008b] explained that the unaccounted 

drop in the amplitude of the reflected wave around the Rayleigh angle (R) is due to the phase shifts 

of the reflected waves compared to the incoming wave, which creates a destructive interference 

and a non-specular reflection.   As such, the existence of this null is well known and, as already 

reviewed in the introduction, is a part of the complex behavior of observed laboratory reflectivities 

that has been discussed for some time by many authors.  Past this zone the observed reflectivities 

MPP are close to but oscillate beneath the constant PPP value of unity.    

The divergence of the observed from the plane wave theory is expected. More practically, 

however, this makes it difficult to apply the simpler plane wave theory to the interpretation of 

observed reflectivity curves. An important goal, for example, might be to use the observed 

reflectivity to determine the elastic properties of the test solid, this is often used in reflection 

seismology to infer in situ fluid-saturation states for example.  Blind application of the plane wave 

expressions to the observed MPP over the range of incidences from the P-wave critical angle to the 

S-wave critical angle for aluminum (Figure 3-5b) could not return correct values for these elastic 

properties. 

Developing a correct experimental reflectivity curve that can be used in quantitative 

analysis is a key motivation for this work.   The modeled BPP and observed MPP reflectivities are 

also compared in Figure 3-5b and 3-6b, they show good agreement to angles of 65°. At greater 

incidences the observed waveforms become contaminated with various additional arrivals scattered 

within the goniometer; and these amplitudes could not be used for analysis.  At smaller incidences, 

however, the agreement is generally better than 93%.  Even the small bumps at post Rayleigh 

critical angles are reproduced as is seen, for example, centered at 56° for the copper allow 

reflectivity (Figure 3-6b). At post-Rayleigh angles, series of high and low reflectivity pattern are 

observed in the data (Figure 3-5b and Figure 3-6b) that we initial thought might be from acoustic 

energy scattered from the laboratory setup. Surprisingly, these small amplitude bumps are well 

modelled. This is another proof for the integrity of the algorithm in modeling of the reflected 

wavefield from liquid-solid interfaces.  
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Another notable difference that exists at the minima for the nulls near the Rayleigh angle 

(R), where the observed reflectivities are slightly lower than the calculated acoustic reflectivity by 

this algorithm. Since this difference is relatively constant between the results from water-aluminum 

and water-Copper, we would attribute this to the temporal and spatial properties of the emitting 

transducer that might have missed in the sampling of the source (s(x,z=0,t)). This would create a 

larger interference at the Rayleigh angle, which we couldn`t predict it in the bounded pulse 

algorithm using the sampled source. 

Overall, however, the agreement between the observed and the modeled reflectivities is 

more reliable than direct plane-wave reflectivity solution.  This, in turn, suggests that the bounded 

pulse modeling can be used as a tool to invert observed reflectivities for material properties.  

3.7 Conclusions 

In this Chapter, we reinforced the long-standing observations that the plane-wave solution for the 

acoustic reflectivity cannot predict the ultrasonic response from bounded beam reflection from a 

water-solid boundary. We provide an algorithm that propagates the observed source signal to a 

receiver after refection.  This program accurately reproduces the complicated angle of incidence 

dependent reflectivity seen in two laboratory tests.  The algorithm predicts the blunted reflectivity 

curve near the longitudinal critical angle as well as the non-intuitive nonspecular behavior near the 

shear and Rayleigh critical angles.  The good agreement between the observed and modelled 

reflectivities suggests the program could be applied to the determination of more complex material 

anisotropic or viscoelastic properties.   Indeed, we are currently applying this program to the study 

of the acoustic reflectivity of general anisotropic media as proxies for fractured rock formations in 

the earth.  
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4 Chapter 4 

Acoustic Reflectivity from Variously Oriented 

Orthorhombic Media: Analogies to Seismic 

Responses from a Fractured Anisotropic Crust  

4.1 Introduction 

Many, if not most, rocks and rock masses are anisotropic to the propagation of seismic 

waves. Conversely, observations of seismic anisotropy inform us about the in-situ metamorphic 

strain textures  [e.g., Mainprice and Nicolas, 1989; Kern and Wenk, 1990; Godfrey et al., 2000; 

Almqvist et al., 2010; Ji et al., 2013], layering  [e.g., Backus, 1962; Brown et al., 1991; Kebaili and 

Schmitt, 1997; Grech et al., 2002], and properties of the natural and induced fracture’s network 

[e.g., Sayers and Kachanov, 1995; Nakagawa et al., 2003; Grechka and Tsvankin, 2004; Yousef 

and Angus, 2016]. This information is a key to understanding in-situ geological structures and 

processes, but properly obtaining it requires knowledge of the seismic wavefield behavior in 

anisotropic media that are addressed both experimentally and numerically. 

Observations of seismic waves from different parts of the solid Earth, confirm that elastic 

anisotropy is a dominant phenomenon, Belonoshko et al. [2008] reported about inner core radial 

anisotropy, Leary et al. [1990] and later Bao et al. [2016] and many others, showed that preferred 

alignment of fractures in the crust, under certain conditions, could also create an anisotropic 

medium, in addition, if the fractures are embedded in an anisotropic rock mass it would exhibit an 

even more complex anisotropic behavior [e.g., Nishizawa and Kanagawa, 2010; Schijns et al., 

2012]. Reflected seismic transit times [e.g., Wang and Tsvankin, 2013] and amplitudes carry 

valuable information about the underlying elasticity and its directional dependency are the key to 

the understanding of elastic anisotropy [e.g., Guest et al., 1993; Sayers and Dean, 2001; Hall and 

Kendall, 2003; Landrø and Tsvankin, 2006; Ekanem et al., 2013; Far et al., 2013].  
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The variation in the reflectivity with the angle of incidence from the interface between two 

isotropic formations is now being used routinely to estimate in situ elastic moduli and fluid content. 

Observed data are usually evaluated using various levels of approximation of Zoeppritz's [1919] 

original solution for the reflectivity of plane waves from the interface between two isotropic half-

spaces. Many researchers  [e.g., Ostrander, 1984; Mallick and Frazer, 1991] have shown that the 

analysis of the reflected amplitude variation with its corresponding angle of incidence, known as 

amplitude versus offset (AVO), could reveal important information about the elastic properties of 

the media. More recently AVO methods have attempted to estimate density by improving the 

inversion using longer offset (i.e. greater incidence angles) past the compressional wave critical 

incidence. 

However, the use of seismic reflectivity to study anisotropy is less developed. The 

amplitudes of reflected seismic waves from an anisotropic formations depend not only on the 

incident angle (θ) of the incoming wave but also on its azimuthal direction (); a number of 

theoretical studies for various situations exist [Daley, 1979; Thomsen, 1986b; Schoenberg, 1997; 

Vavrycuk, 1999]. In practice, Amplitude versus Azimuth (AVAz) or Amplitude versus 

Angle/Amplitude versus Offset (AVA/AVO)  investigates the directional dependencies of reflected 

wavefield to understand the subsurface state of the in-situ or induced stress regime, fracture 

orientation [e.g., Mallick et al., 1998; Shen et al., 2002; Zheng, 2006; Aleardi and Mazzotti, 2014].  

The analysis of data obtained in AVAz field studies are mostly limited to the highly 

symmetric case of horizontal transverse isotropy (HTI) [Rüger, 1997; Behura and Tsvankin, 2006]) 

that might be expected for a geological formation containing a  parallel sets of vertically oriented 

fractures (titling at   = 90°) breaking through the otherwise elastically isotropic rock.  The 

popularity of this geometry stems from the relative simplicity of the approximate expressions 

describing the small angle reflectivity under the weakly anisotropic material assumption [Thomsen, 

1986b].  These simplified expressions have been used extensively [e.g., Innanen and Mahmoudian, 

2015] although questions remain as to its range of validity [e.g., Mallick et al., 1998]. These two 

cases do not rigorously apply should the symmetry planes of the TI rock mass be tilted which is 

likely to be encountered more often in real geological situations.   
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There are also many cases in which we would expect the symmetry of the rock mass to be 

less than transversely isotropic. Metamorphic rocks displaying both strong lineation and foliation 

are expected to have orthorhombic symmetry [e.g., Christensen, 1965; Schijns et al., 2012]. So are 

isotropic rocks containing uniformly oriented orthogonal microcracks subject to anisotropic stress 

states [e.g., Sayers and Dean, 2001], and rocks or rock masses containing multiple fracture sets  

[e.g., Hall and Kendall, 2003]. Reflectivity from orthorhombic materials, however, remains poorly 

studied and the few solutions that do exist remain limited to cases aligned with the principal 

symmetry axes in analogy to the VTI-HTI geometries. As such, extending AVAz studies beyond 

the classic transversely isotropic geometries to more realistic situations that consider lower 

symmetry formations is necessary, and of the available possibilities, orthorhombic symmetry may 

be the most representative, [Bakulin et al., 2000].  

Here, we describe and model a series of laboratory reflectivity measurements from blocks 

orthorhombic material.  The symmetry of the blocks are variously tilted making an analogy to a 

geological formation containing coherent fracture sets with different dips.   First, we review the 

theory of elastic wave propagation and its reflection in anisotropic materials, and then describe the 

laboratory setup and properties of the anisotropic samples. We repeated measurements of ultrasonic 

acoustic reflectivity from thick blocks of a composite material with orthorhombic symmetry 

following the original reflectivity observations of Ortiz-osornio and Schmitt [2009, 2010a, 2010b, 

2011a, 2011b].  These measurements were carried out on samples with a variety of tilt angles (ψ) 

of the symmetry axis beam incidence angles (θ), and azimuthalangles ().  We go further 

describing a method to model the observed reflectivities that accounts for the effects related to real 

beam propagation at both pre- and post-critical incidence angles.  The modeling, which 

incorporates a recent solution for reflectivity from anisotropic media, reproduces well the observed 

reflectivities.  The observations illustrate the potential importance of including critical angle 

information. However, this must be done with the realization that once past a limited range of steep 

pre-critical angles of incidence the real observations will diverge from the theoretical plane wave 

solutions, solutions that are almost exclusively used to analyze reflectivity in the field. This has 

long been known but usually ignored in practice, and the current laboratory observations reinforce 
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that the characteristics of the wave field emitted from a real seismic source need to be considered 

as the critical angle is approached and exceeded.  

4.2 Theory 

In this experiment, the acoustic reflectivity of a bounded ultrasonic pulse from blocks of 

orthorhombic material is measured. A proper analysis of the observations requires, first, that the 

complex plane-wave reflectivity is properly calculated and, second, that the real beam diffraction 

effects are properly accounted for. A real-valued plane-wave solution is usually believed to suffice 

at small angles of incidence, but in a real world situation where the source has a finite aperture, the 

plane-wave solution fails even well before the first critical angle is reached. A proper quantitative 

modeling of the observed responses necessitates that the complex reflectivities be incorporated to 

the beam propagation. The details may be found in the recent descriptions [Malehmir et al., 2017] 

but are briefly discussed here; however, the main contribution here is focusing on the experimental 

observations. 

4.2.1 Essential Concepts of Elastic Wave Anisotropy 

The theory describing the propagation and reflection of mechanical waves in anisotropic 

elastic media is well developed with numerous resources available [e.g., Musgrave, 1970; Auld, 

1973] and only the essential elements need be provided. We assume Hooke’s elastic law holds 

whereby the stresses τ are related to strains ε in Voigt’s reduced notation within the principal 

material reference coordinate frame x-y-z (Figure 4-1a) is: 

ij = Cijkl  kl      (4-1) 

with elastic tensor stiffnesses Cijkl in the reduced CIJ form according to the cyclical indicial 

shorthand notation 11→1, 22→2, 33→3, 23→4, 13→5, 12 →6. For the orthorhombic material 

studied here with the number of independent stiffnesses reduces to nine. The solution of the wave 

equation with the constitutive Equation 4-1 leads to a Christoffel’s theorem: 

[Λij – ρ v2 ij ] [ξj] = 0     (4-2)  

with Christoffel matrix Λ that depends on the stiffness and direction  (refer to [Auld, 1973]), mass 

density ρ, phase wave speed v, and polarization direction component ξ. Equation 4-2 is a standard 

eigenvalue, eigenvector problem the solution of which is given for any propagation direction 
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through the material gives, and as is well known in general, three distinct wave phase speeds with 

corresponding particle motion polarizations, these modes are associated with plane wave 

propagation. Usually, this gives one wave-mode that has nearly longitudinal and two other modes 

that are nearly transverse and referred to as q-P, q-S1, and 1-S2, respectively. Algorithms to 

calculate these directionally controlled phase wave speeds and polarizations are readily available  

[e.g., Walker and Wookey, 2012], an example of such variations calculated using the algorithms in 

[Malehmir and Schmitt, 2016a] for the material studied here is given in Figure 4-1 b-d. One 

additional key aspect of elastic wave propagation in anisotropic media is that generally in any 

direction within the anisotropic medium in addition to the three phase or plane wave, modes there 

is associated at least 3 corresponding group (or ray) speeds the directions and magnitudes of which 

differ. 
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Figure 4.1.a) Orthorhombic material within its x-y-z coordinate frame. Remaining 

panels show directionally dependent waves speeds (km per second) calculated for the 

material used in the measurements plotted on an equal area (0.2°) polar projection 

with z-axis vertical and x-axis at 0° for modes b) qP, c) qS1, and d) qS2.  

 

The material co-ordinates x-y-z do not necessarily align with the global coordinates X-Y-Z 

with the reflecting interface contained within the X-Y plane (Figure 4-2). The stiffness matrix C 

must be rotated into the global coordinate system providing C rot [Swokowski, 1979]: 

Crot = R C RT      (4-3) 

where the transformations matrix R is calculated from the tilt cosine matrix: 
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𝒓𝑦 = [
cos𝜓 0 𝑠𝑖𝑛 𝜓

0 1 0
−𝑠𝑖𝑛𝜓 0 𝑐𝑜𝑠𝜓

]     (4-4) 

 

 

Figure 4.2. The relationship between material’s coordinates x-y-z and experimental 

coordinates X-Y-Z with the reflecting plane coinciding with plane X-Y. The incoming 

plane wave of amplitude A is incident at angle θ with azimuth φ. For the specific 

geometry of the measurements, the Y and y-axes coincide around which the material 

tilt angle ψ is given. 

 

4.2.2 Reflectivity from Anisotropic Media 

An appropriate full solution to the reflectivity between two arbitrarily oriented anisotropic 

half-spaces is needed in order to properly compare the observations to theory. The complete plane-

wave solution to this problem has been described earlier [e.g., Henneke, 1972; Keith and Crampin, 

1977; Rokhlin, 1986] and for the most general case of two welded anisotropic half spaces there are 

in total 36 combinations of incident and converted transmission and reflection plane wave solutions 
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possible. The continuity of both displacements and stress across the welded interface, set the 

boundary conditions. Knott [1899] and  Zoeppritz [1919] used the same boundary conditions to 

solve for two elastically isotropic half-spaces. 

 For the general anisotropic case, however, the boundary conditions are further complicated 

by additional scattered modes that must be considered, the problems of finding reflection and 

refraction angles, and the general misalignment between particle polarizations and propagation 

directions. The solution is described in Chapter 2. The open source algorithm ARTc provides the 

plane-wave reflectivities and transmissivities as functions of incidence θ and azimuth φ for all 

modes incident to the welded interface. This algorithm is employed here to model the observations. 

Conversely, the observations serve to test this algorithm’s adequacy. 

In the experiments, the uppermost medium is liquid water that admits only a pure 

longitudinal P-wave and only this single reflection is of concern for analysis of the data. For 

incident plane waves from the liquid layer there are four possible scattered plane waves: one is a 

reflected P-wave which travels back into the liquid, and three are transmitted into the solid as qP-, 

qS1-, and qS2-waves, this problem has been studied by numerous researchers [e.g., Nayfeh, 1989; 

Descamps and Hosten, 1991]. The solid material consists of blocks with differing tilts ψ for which 

the appropriately, rotated stiffnesses must be input. The pattern of plane-wave reflectivity PPP from 

this water-solid interface is calculated for the complete set angles of incidence 0 ≤ θ ≤ π/2 and 

azimuth 0 ≤ φ ≤ 2π in terms of the reflected particle motion reflectivity RPP and corresponding 

phase shifts Δpp (Figure 4-3). The compressional wave critical angle (θc) depends on both azimuth 

φ and tilt ψ and at this incidence RPP (θc) = 1. Because the reflectivity is purely real before its 

critical angle, the phase shift (Δpp) is zeros however it only takes on nontrivial values past critical 

angle as the reflectivity becomes complex, [Knott, 1899; Aki and Richards, 1980]. RPP also is 

independent of frequency where the elastic case assumed. The theoretical plane wave critical angle 

(θc) will become an important point of discussion later. 
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Figure 4.3. Calculated plane wave reflection  phase shift ΔPP(θ,φ) (top) and amplitude  

RPP(θ,φ) (bottom) for tilts ψ of a) 0°, b) 30°, c) 40°, and d) 90° shown on an equal 

angle polar projection down the Z axis with the X and Y axes aligned with 0° and 90° 

respectively. Only 1 quadrant need be shown due to rotational symmetry around Z-

axis. The locus of P-P critical angles is traced in red where RPP(θ,φ) near to 1. 

 

4.2.3 Theory of Bounded Pulse Propagation and Reflection 

It is important to stress that the experiment is carried out under real but not ideal plane wave 

conditions with a transmitter of finite size. In other words, it is impossible to fully observe the plane 

wave reflectivity of Figure 4-3, but these difficulties can be accounted for. The transmitter, even 

though much larger than normally employed in ultrasonic testing [see review in Bouzidi and 

Schmitt, 2006], provides a ‘bounded pulse’ that is limited both spatially and temporally. This has 

a number of implications for the pulse’s spreading and reflectivity.  

 Bouzidi and Schmitt [2008a, 2008b] suggested that the pulse can essentially be considered 

as the summation of a distribution of plane waves of differing propagation directions and 

frequencies; this may alternatively be interpreted as a distribution of wave numbers. This means 
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that even though most of the energy of the pulse consists of plane waves propagating at the desired 

incidence θ it also must contain plane-waves with both larger and smaller incidences. All of these 

component plane waves are also reflected and transmitted as the bounded pulse strikes the 

interface. An unavoidable consequence is that some of the component plane waves will already be 

post-critical before the primary incidence θ. The phase of these post-critical components (Figure 

4-3) is shifted upon reflection and at the observation point interfere causing in distortion of the 

observed waveform such that the amplitudes are modified so that what is actually observed will be 

here referred to as an observed effective reflectivity denoted PPP(θ). Similarly, if θ is post-critical 

there are still components of the pulse that will be at the pre-critical incidence and PPP still differs 

from RPP.  

Such effects have been long known in the acoustics community and produce a variety of 

unexpected behaviors.  For example, past the shear wave critical angle the beam appears to be 

displaced relative to its expected specular reflection as first observed by Schoch [1950] and now 

referred to as the Schoch shift.  Declercq et al. [2005] provided a relatively recent overview of the 

topic. In seismology, the similar problem of the effective reflection coefficients observed from a 

point source reappears periodically in the geophysical literature [see Krail and Brysk, 1983] for a 

survey up to that time) but these nontrivial effects are usually ignored in the analysis of seismic 

reflectivity. As will be shown shortly in comparisons between the theoretical plane wave RPP and 

the observed PPP, these effects are manifest here by smoothing of the observed reflectivity in the 

vicinity of and past θc. 

A full description of how PPP(θ) is quantitatively modeled including the algorithm 

developed is given by Malehmir et al. [2017] adapted after [Bouzidi and Schmitt, 2008b] for an 

anisotropic media with preferred anisotropic symmetry. Briefly, however, the algorithm models 

the propagation of the bounded pulse launched from the source to the interface and finally the 

receiver by phase advance for each of its component plane waves [Gazdag, 1978; Claerbout, 1985]. 

During the propagation, each component is modulated by its appropriate complex RPP. Finally, the 

reflected wavefield is reconstructed and from this step, the time series of the pressure at the location 

of the receiver is extracted that we hereafter refer to as the modeled effective reflectivity MPP. This 

is not, perhaps, the most elegant solution and it is computationally expensive as a large number of 
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wavenumbers must be used. This cost, however, is offset in that it allows us to make a fully 

quantitative calculation of the reflected response without any limiting assumptions or 

approximations [e.g., Bertoni and Tamir, 1973]. It must be pointed out that it requires knowledge 

of the experimental geometry as well as the spatial and temporal profile of the bounded pulse in 

order to calculate its propagation. The algorithm also relies on having knowledge of the complex 

plane wave reflection coefficients, RPP(θ), as provided by the algorithm described earlier in Chapter 

2, [Malehmir and Schmitt, 2016a].  

4.3 Description of the Anisotropic Samples 

 In this research, custom made tiles cut from a large block of Phenolic CE of orthotropic 

anisotropic symmetry [e.g., Brown et al., 1991; Mah and Schmitt, 2001] were used as the 

experimental samples. Figure 4-4 displays the zero tilt (ψ = 0°) experimental Phenolic block with 

enlarged microscopic pictures from different sections which show the composition of canvas fabric 

that glued with phenolic resin. We re-used the four rectangular blocks machined  by Ortiz-osornio 

and Schmitt [2009] ( 5 cm thick by 12.5 cm) each with  different tilt angles ψ denoted PT0 (ψ = 0°), 

PT30 (ψ = 30°), PT45 (ψ = 45°), and PT90 (ψ = 90°)  as shown in Figure 4-5. There have only been a 

limited number of similar studies that have attempted to quantitatively measure the reflectivity 

from tilted composites  [e.g., Descamps and Hosten, 1991; Rokhlin and Wang, 1992; Innanen and 

Mahmoudian, 2015] but to our knowledge, no studies have examined tilts other than 0° or 90°. A 

thin layer of water-resistant lacquer was sprayed to seal the samples against water damage. 
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Figure 4.4.  The texture of CE canvas fabric phenolic laminate with views along a) x-

axis displaying warp and layering, b) y-axis displaying layering and weft, and c) z-

axis displaying warp and weft. Arrows in each panel are 2 cm in length. d) Block of 

zero tilted (ψ = 0°) Phenolic sample that is 5 cm ˟ 12.5 cm ˟ 12.5 cm. 

 

The measured mass density of the sample is 1393 kg/m3, and Mah and Schmitt [2001] 

reported that the thickness of the fabric and resin are about 0.4mm and 1-2.5mm, respectively. The 

latest revision of the stiffness tensor that we measured for the phenolic sample which has been 

immersed in water is calculated and given: 

𝐶 =

[
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 GPa    (4-5) 

which the arrangement of elastic modules indicates that the samples possess orthotropic anisotropic 

symmetry, [Musgrave, 1970]. 
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Figure 4.5. Side view of the four Phenolic CE blocks stacked on top of each other for 

purposes of comparison of the various tilts that were used in the laboratory reflectivity 

measurements with a) = 90° b) =30°, c) =45° and d) =0°. 

 

4.4 Experimental Setup 

The acoustic goniometer technique which we employed here has long been employed in 

the acoustics community for fundamental studies of reflectivity and transmissivity, although focus 

mostly on reflections from thin plates [e.g., Plona, 1976; Declercq, 2006] and determination of 

elastic properties [e.g., Mann et al., 1980]. The measurements here employ the acoustic goniometer 

described by Bouzidi and Schmitt [2006] and developed initially to quantitatively test theories 

related to the reflectivity of a liquid-saturated porous material, [Bouzidi and Schmitt, 2012]. This 

apparatus was further modified by incorporating a horizontal rotating stage [Ortiz-osornio and 

Schmitt, 2010b] that allows the blocks to be rotated around the Z-axis providing ready access to 

the complete range of azimuths 0 ≤ φ ≤ 2π. The transmitter and receiver are mounted within the 

vertical circular rim, perpendicular to the rotating stage, and aligned with the receiver along the 



 

  97  
 

expected specular travel path at the incident angle (θ) originating from the center of the transmitter 

(Figure 4-6b). The source- receiver distance is 21.3cm remains unchanged throughout the 

experiment.  

The goniometer is immersed in a deionized water bath, and the measurements are carried 

out at standard pressure and the room temperature of 22°C. 

 

 

Figure 4.6. a) Photograph of the acoustic goniometer showing (1) the transmitter, (2) 

the rotating stage, (3) the adjusting pillars, (4) the receiver and vertical goniometer, b) 

side view schematic of the laboratory setup. 

 

The system is further novel in that it employs a large transmitter (50 mm × 60 mm) but only 

a small receiver (2 mm×2 mm). There are a number of reasons for configuration. First, the larger 

transmitter produces a strong bounded pulse whose wavefront remains substantially planar, as seen 

in Figure 4-7c, over the length of the travel paths of the experiment. Second, the small transducer 

acts as a near point receiver. This combination significantly reduces the complicating corrections 



 

  98  
 

necessary for proper quantitative analysis of the most usual configuration that uses two transducers 

with the same dimensions for the transmitter and receiver [e.g., Alhussain et al., 2008; 

Mahmoudian et al., 2014].  We note that the transmitter employed here is smaller than that used in 

Ortiz-osornio and Schmitt [2009, 2010a] initial studies allowing waveforms to be acquired here 

over a larger range of incidence angles. On each of the four samples with differing tilts we collected 

the reflected amplitudes in the four azimuthal directions of φ= 0°, 30°, 60°, and 90°   over the range 

of incidence angles from 15° to 60° at increments of 0.25°; this produced 181 individual ultrasonic 

traces at each azimuth. 

The transmitter was activated by a voltage spike of 2.8 Volts repeated at 100 Hz. The 

resulting voltages produced by the receiver were sampled with a rate of 40 ns/sample for a total of 

2500 samples (i.e. 100 µs). Examples of records obtained directly from the transmitter to the 

receiver during calibration and upon reflection (Figure 4-7 a,b) show the loss of amplitude due to 

reflection. The shapes of amplitude spectra of the two records also do not change upon reflection, 

the peak frequency of 0.70 MHz is close to the resonant thickness frequency of the piezoelectric 

ceramic sheet that comprises the transmitter’s central element. The apparent reflectivities PPP 

reported later are the ratio of the peak values of the amplitude envelopes as calculated using the 

Hilbert transform between the reflected and the direct (i.e. non-reflected) waveforms.  
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Figure 4.7. a) Comparison of direct and reflected (PT0 at θ = 15° and φ = 0°) waveform 

records in the time domain with the Hilbert amplitude envelope of the reflected 

waveform is shown b) Corresponding amplitude spectrum for the records in a. c) 

Scanned profile of the launched bounded pulse as recorded at 20 mm from the 

transmitter face. The aperture of the transmitter is shown. High-frequency noise 

generated when the transmitter is activated is muted for the first 100 ns. 

The wavelengths of the insonifying sound waves must be considered. As we expect the 

wave speed in the water to be close to 1483 m/s under the laboratory conditions then predominant 

wavelengths in the water will be ~ 2 mm. This is important as it means that the ratio between the 

scales of the wavelengths to the layering (~ 0.4 mm) (Figure 4-3) is well above two; this indicates 

that for purposes of these measurements the phenolic acts as an effective medium [Liu and Schmitt, 

2006]. 
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As indicated above, the modeling requires that the actually bounded pulse launched towards 

the sample be obtained. This is accomplished by scanning the receiver across the width of the 

transmitter with the results (Figure 4-7c) illustrating the mostly planar wavefront. The end 

diffractions show the departure of the bounded pulse from a plane wave. 

 

4.5 Results and Discussion 

 As noted, the raw data set consists of 16 individual suites each of 181 ultrasonic waveforms 

obtained at four azimuths (φ) on each of the four blocks of different tilts (ψ). The raw data together 

with the corresponding values of the theoretical and observed reflectivities are publicly available 

[Malehmir and Schmitt, 2016b]1.  

 

4.5.1  Observed vs Theoretical Plane Wave Reflectivity 

 A suite of raw waveform records (Figure 4-8a) and their corresponding Hilbert amplitude 

envelopes (Figure 4-8b) collected over the range 15° ≤ θ ≤ 60° highlight the variation in both 

amplitude and phase of the reflected waveform that causes an apparent time shift [see Bouzidi and 

Schmitt, 2008a, 2008b]. Already at about 55° directly arriving diffractions from the edge of the 

transmitter begin to interfere with and contaminate the reflections. 

The apparent reflectivities PPP are obtained from the peak amplitude of each record in 

Figure 4-8b and compared to the theoretical plane wave RPP (Figure 4-8c) calculated using the 

procedures described earlier. RPP predicts PPP to better than 92% over the incidence ranges of 15° 

to 24° but the two diverge past this point with PPP initially increasing and reaching a peak at θE = 

27.2°± 0.25°. As expected the calculated RPP reaches a peak value of 1 at the plane wave critical 

angle θc = 28.73°. The difference in the two peaks was unexpected, and it further emphasizes that 

great care must be taken in trying to interpret amplitude peaks observed in real data as being at the 
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critical angle. The discrepancy continues to larger angles of incidence indicating that plane wave 

calculations cannot adequately describe the observed reflectivity at shallower angles of incidence.   

 

 

Figure 4.8. Reflected waveforms obtained from block PT0 at φ = 0° over a range of 

incident angles from 15° to 60° displayed as a) directly recorded voltage time series 

and b) corresponding color representation of the normalized reflected waveform. 

About incident angle of 60° interferences from direct arrival is observed and are 

excluded from the amplitude analysis. Displayed waveforms records are windowed to 

isolate the pulse c) comparison of observed effective reflectivity waveform amplitudes 

of amplitude envelope against calculated plane wave reflectivity RPP and with the 

modeled effective reflectivity MPP. 
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The entire set of collected reflection coefficients (Figure 4-8) from 16 suites of PPP (θ,φ) 

displays the strong influence of both azimuth φ and material tilt ψ and confirm the earlier 

observations by Ortiz-osornio and Schmitt [2009, 2010a] with the variations due to the differing 

experimental configurations kept in mind.  The corresponding theoretical plane wave RPP (θ, φ) are 

also given for the sake of comparison. A number of observations can be made: Following the 

example of Figure 4-8c, RPP agrees well with PPP for steep incidences (small θ) but the two diverge 

well before the critical angle θc. RPP does appear to predict PPP for cases at post critical angles but 

this is not true in general and at ψ = 0° they do not match. The maxima of the PPP(θ, φ) does follow 

the order of the expected from the critical angles seen for RPP(θ, φ).  

It is clear from Figure 4-9 that the value of the critical angle changes with tilt and azimuth. 

The variation with azimuth becomes increasingly larger with tilt ψ. According to Snell’s law, 

shifting of such maxima with the angle of incidence indicates significant change of the impedance 

contrast. As the incidence medium in our measurements is always the same water, therefore 

variations in the critical angle indicate velocity variations in the anisotropic sample. Consequently, 

the larger the critical angle, the slower the refracted propagation velocity of the sample. For the 

different reflectivity curves we observe that, as anticipated, those of the zero tilted sample (as seen 

in Figure 4-9) remain nearly the same for the different azimuths, which confirms the conclusion 

that Phenolic CE is weakly orthorhombic. 

At a tilt of ψ= 30° the reflectivity displays a greater dependence on the azimuth although 

the largest variations are in the post-critical amplitudes, there is also some amplitude variation just 

before the critical angle. In this case, θc (critical incident angle) spreads between 28° and 32.5° and 

it increases as we increase φ. A similar set of features can be observed for phenolic sample ψ = 45° 

(Figure 4-9c), but now the spreading zone for θc goes from 28° to 32.5°, also the transition from 

pre-critical to post-critical reflections is smoother, and amplitude variation is larger and more 

prominent in the post-critical zone. Finally sample ψ= 90° showed, as it was expected, the largest 

azimuthal variation of the reflectivity (Figure 4-9d), the spreading zone of θc is increased to more 

than 10° as it spreads from 27.75° to 39.25°, and the error between θc  and the peak PPP is small at 

larger azimuths and impressively increases as we decrease the azimuth. This data set also shows 

the largest variation of the amplitude at post-critical reflections. Furthermore, the incident angle of 
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the critical longitudinal reflection from the interface decreases with azimuthal direction. This 

means that the velocity of the samples increases with the azimuthal direction of the measurement, 

which is in agreement with Figure 4-3. For a given tilt ψ there is not a strong variation in PPP(θ,φ) 

(≈RPP(θ,φ))  with θ or φ at steep angles of incidence. 

4.5.2 Bounded Pulse Modelling of Observed Reflectivity 

The last section demonstrated that the theoretical plane wave reflectivity RPP only predicts 

that observed PPP at small angles of incidence well before the critical angle. At face value, this 

could be interpreted as an error in the calculation of RPP, an experimental deficiency while 

obtaining PPP, or even a failure of both. In this section, we demonstrate that both the experimental 

observations and the algorithm used to calculate the plane wave reflectivity are valid. This is 

accomplished by directly modeling the reflected wave field of the reflected bounded pulse as 

described earlier in order to obtain the modeled effective reflectivity MPP (θ, φ) and contrasting it 

with the observed PPP (θ, φ). 
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Figure 4.9. Complete set of observed apparent reflectivities PPP compared with the 

corresponding calculated plane wave reflectivities MPP for tilts a) 0°, b) 30°, c) 45°, 

and d) 90°. 
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The observed and modeled (Figure 4-10) responses from block ψ = 30° at azimuth φ are 

difficult to distinguish from one another. The corresponding observed PPP(θ) and modeled MPP(θ) 

apparent reflectivities (Figure 4-8c) agree well differing from each other by at most 4.75% (Figure 

4-7d). This good comparison extends to the entire data set (Figure 4-10).  

 

 

Figure 4.10. Wiggle trace representation of observed (black wiggle) and modeled (red 

wiggle) waveforms from the water-phenolic TI30° sample in the azimuthal direction 

of 60°.  



 

  106  
 

 

Figure 4.11. Complete set of observed apparent reflectivities RPP compared with 

corresponding bounded pulse modeled MPP reflectivities for tilts a) 0°, b) 30°, c) 45°, 

and d) 90°. 
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The results summarized in Figure 4-11 are significant for two reasons. First and more 

pragmatically, they show that the methodologies established earlier by Bouzidi and Schmitt [2008b] 

for modeling of the reflections of bounded pulses can be applied to the case of reflectivity from an 

anisotropic medium. For more details about bounded pulse modeling, see [Malehmir et al, 2017]. 

Second and more fundamentally, however, they demonstrate that the forward calculation of the 

complex RPP is accurate and as such provides experimental evidence that the solution to this 

problem is valid. This is comforting as we have largely accepted such solutions to be legitimate 

without empirical proof. 

 

4.6 Implications for Seismological Investigations 

AVAz investigations seek to find the directions of anisotropy that in turn could be 

interpreted in terms of orientations of metamorphic texture, fractures or stress. The present 

laboratory tests, even though having a geometry is not exactly that one would expect when 

recording seismic reflections in the earth, do provide some insight into field experiments.  

 

4.6.1 Insensitivity of Reflectivity to Azimuth 

 One, perhaps unexpected, observation is that for a given tilt there the theoretical plane wave 

reflectivity RPP does not depend strongly on the azimuth φ. This occurs despite the large azimuthal 

variations in acoustic wave speed that one can encounter around the X-Y plane even for the most 

extreme case with the tilt of 90° and similar results are observed by Alhussain et al. [2007] in 

numerical models of HTI reflectivity. In a field situation, these relatively small azimuthal variations 

make properly detecting such variations challenging given a noisy environment and the additional 

corrections that must be applied to such data. The changes in the observed effective reflectivity RPP 

with φ are also not large but do vary significantly more, and this would allow for more robust 

inversions of the data. The ostensible success of real AVAz operations may rely more on this effect 

if it also applies to real wavefields produced by surface point sources. 
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4.6.2 Exploiting the Critical Angle 

 The azimuthal variations in the critical angles and correspondingly the peak values for the 

observed RPP(θ,φ) are the most distinctive feature of these data (Figure 4-11). As such, these 

variations must contain important information. To review, for isotropic materials the critical angle 

is well understood to be the incidence at which the plane wave is refracted horizontally along the 

interface with a refraction angle of 90° and is simply obtained using Snell’s law: 

𝜃𝑐 = 𝑠𝑖𝑛 −1(
𝑣𝑖

𝑣𝑟
),      (4-7) 

where vi and vr are the compressional wave speeds in half-spaces of incidence and refraction, 

respectively. Determinations of θc by reflection have long been employed in the acoustics 

community as a means to obtain the wave speeds in isotropic materials [Ngoc and Mayer, 1979].  

They attributed the blunting of observed RPP in the vicinity of the θc to non-specular reflection and 

were successfully able to model it using a numerical procedure. Henneke and Jones [1976] tested 

this concept and confirmed that his observed θc could be used to find the refracted wave speed. 

More recently, in a series of tests on blocks of well characterized isotropic solids, Bouzidi and 

Schmitt [2008a] too found a very small discrepancy between the peak of their observed effective 

reflectivities PPP and the θc predicted applying Eq.4-7, with the known water and the material wave 

speeds. Critically, their RPP (θ) curves were rounded in the vicinity of θc similarly to those observed 

here (Figure 4-11) but the peak of these curves aligned with θc. The PPP(θ) were also well 

reproduced by the calculated MPP(θ) establishing the robustness of the modeling procedures also 

employed here. 

However, to understand the critical reflection in anisotropic media, we refer to [Henneke, 

1972; Henneke and Jones, 1976], who pointed out that more generally θc occurs not when θr = 90° 

for the phase velocity along the interface, but for the phase velocity whose corresponding energy-

flux follows the interface. Consequently, for this anisotropic case, one cannot simply use observed 

critical angle (θE) and Eq. 4-7, to determine the phase speed parallel to the interface. This difference 

between θE and θc may be another example of phenomena arising because of the differences 

between the group and phase speeds in anisotropic materials. For the anisotropic case, it cannot be 

found without prior knowledge of the material’s stiffnesses thus negating the utility of using θc to 

find vr. This concern together with our observations that θE ≠ θc suggests that attempting to 
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determine in-situ elastic constants on the basis of observed critical angles would require extreme 

caution. Alhussain et al. [2008] and Innanen and Mahmoudian [2015] also reported the difference 

between θE and θc from an anisotropic layer, by using identical round transducers for source and 

receiver. 

Another important factor that we need to consider in the analysis of θE, is the effect that 

size of the source has on the observed reflected amplitudes. As discussed before, the small size 

source may not satisfy plane-wave propagation, in the pre-critical reflection, near θc the signal that 

is generated from the sides of the transducer (Figure 4-7c), are critically reflected, while the 

wavenumbers from the center of the beam are in pre-critical condition. Also, when the 

wavenumbers from the center of the source are inciting the boundary at the critical angle, the others 

are in post-critical angle. 

Nevertheless, we are able to model the observed reflectivity data (Figure 4-10 and 4-11) by 

using the combination of full waveform propagation of the pulse (Figure 4-6c) and then producing 

the reflected beam by combining the individually calculated reflection of each wavenumber. This 

technique is computationally expensive and requires a detailed understanding of the elasticity of 

the medium, geometry of the acquisition and properties of the source signal as discussed earlier.  

4.6.3 Qualitative Analogies to Fractured Formations 

 One of the most important implications of studying the reflectivity from these anisotropic 

blocks is to provide a laboratory analog for field studies of seismic reflectivity from fractured 

formations. Orthogonal sets of fractures in the layered medium are considered to produce an elastic 

anisotropic medium with orthotropic symmetry, and in the case of non-orthogonal fracture sets, 

would create a lower symmetric elastic anisotropic medium, where the fracture spacing and 

layering thickness are bigger than the elastic wavelength.  

Obtaining knowledge of the tilt (or dipping angle) and azimuth of fracture sets in the earth 

is important in many fields. Having prior information on fractures orientations in hydrocarbon or 

geothermal systems would allow us to efficiently produce oil, gas or steam. In the present 

reflectivity data set, with having the access to four tilting angles and long offset coverage of 

reflectivity, one can use the critical reflectivity data and find their associated velocities and map 

out the faster and slower direction for which the wave propagates in the phenolic sample. 
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Considering that elastic waves propagate faster along the direction of fractures, is a great attribute 

to find the azimuthal orientation of a fracture. 

First, we recorded the observed critical angle from Figure 4-9, and created Table 4-1. 

Simply by rearranging the Eq.6, we calculate the apparent refracted velocity traveling horizontally 

through the phenolic medium at the critical angle of qP wave reflection, [Skopintseva and 

Alkhalifah, 2013]. Figure 4-12, displays the calculated apparent horizontal velocity variation with 

azimuth and tilt from the critical angle of RPP and PPP in Table 4-1. 

 

Table 4-1.Observed apparent critical angle (angle of peak amplitude in observed 

reflectivity profiles) of the qP-wave reflection from water-Phenolic CE sample in 

different azimuth () and tilt () direction. 

 ψ = 0° ψ = 30° ψ = 45° ψ = 90° 

φ = 0° 29.0 ± 0.25° 31.5 ± 0.25° 35.0 ± 0.25° 39.5 ± 0.25° 

φ = 30° 28.5 ± 0.25° 30.5 ± 0.25° 32.0 ± 0.25° 35.0 ± 0.25° 

φ = 60° 27.5 ± 0.25° 28.5 ± 0.25° 29.0 ± 0.25° 30.0 ± 0.25° 

φ = 90° 27.5 ± 0.25° 28 .0± 0.25° 28.0 ± 0.25° 28.0 ± 0.25° 

 

 

Evidently, the direction which qP-wave travels faster in the anisotropic medium, at all tilt 

angles is at  = 90°, that matches with the micro-layering (or fractures) direction of the phenolic 

samples. We observe a significant azimuthal velocity variation at ψ = 90°, of 26.3% compared to 

the 4.63% at ψ = 0°. This substantial difference between the velocity variations implies that within 

the same medium, the 90° tilt shows strongest velocity and amplitude variation with azimuth (VVAz 

and AVAz), hence has a better application to understand the orientation of anisotropic features, 

compared to tilt 0°. 
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Figure 4.12. Displays the apparent horizontal phase velocity (Vhr) in the Phenolic 

sample variation with a) tilt () and b) azimuth (), which are calculated from the 

critical angle of the observed reflectivity (RPP) and plane-wave solution (PPP) 

reflectivity. It is clear that the direction of which qP-wave travels quickest is along the 

azimuth of  = 0° and slowest in azimuth  = 90°. Also we observe the biggest 

variation in apparent velocity at  = 90°, at around 26.3%, compared to the 4.63% at 

 = 0°. 

Unfortunately, in most wide azimuthally acquired seismic reflection data, we are unable to 

collect or locate critical reflection, due to acquisition geometry or poor signal–to-noise ratio at the 

far offset. Furthermore, if in such a rare condition, we would be able to collect seismic data from 

post-critical reflection, we can only find the azimuth of the fast and slow direction, which it would 

not be sufficient to find the tilt angle of a fractured medium (known as dipping angle). Because, 

naturally, we can only collect seismic data from the subsurface medium, from a single tilt angle.  

However, as explained in the previous section, quantitative calculation of the elastic coefficients 
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of the anisotropic media, from the calculated apparent phase velocity, requires further detailed 

study.  

4.7 Conclusion 

, We observed and modeled as functions of the angles of incidence and azimuth the acoustic 

reflectivity from the interface between water and orthotropic composite material samples at four 

different tilt angles. These ultrasonic reflectivities display  complex patterns first observed, but not 

fully explained, by Ortiz-osornio and Schmitt [2009, 2010a]. 

The only difference between the four blocks was the tilt of the composite layering with 

respect to their surfaces.  Nevertheless, the observed angle-of-incidence dependent reflecitivities 

collected along constant azimuth angle profiles display variations in amplitude and, most 

noticeably, large shifts in their maximum value.  The observed reflectivities could not be described 

by a previously developed plane-wave solution alone. However, this solution when employed 

together with a model that accounts for the full geometry and character of the bounded ultrasonic 

pulses along their reflection propagation path.  This convergence of theory and observation 

validates the general anisotropic reflectivity algorithm developed earlier in Chapter 2.  This 

algorithm should be useful to real field seismic studies that consider azimuthal and incidence angle 

amplitudes, often referred to as AVAz in the literature, providing complementary solutions the 

structurally limited approximations used in common practice.  

The results of the laboratory measurements may also highlight some difficulties inherent to 

field studies that are intended to provide quantitative information on in situ fracture networks.  For 

one,  at small angles of incidence well before the critical angle, the variations with azimuth while 

measurable are not large.  This suggests that properly extracting azimuthal variations in noisy field 

data needs to be carried out carefully.  On top of this, it may be difficult to extract any information 

about the tilt of fracture sets from the observed seismic responses even with a complete set of data 

at all azimuths and incidences.   Additional geological knowledge about in situ fractures and rock 

anisotropy should be included in order to avoid overinterpretation of the data.  Too, workers should 

take care when associating the peak value of reflectivity observed in real field data directly to the 

critical angle obtained from plane wave solutions.     
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 Despite these caveats, however, qualitative observations of the apparent critical angles 

from field data do align along projections to the surface of the material’s principal symmetry 

directions; that is one can infer slow and fast directions.  This information is insufficient to 

determine the dips of fracture sets of geological layers but one can in principal infer dip azimuth.   

This alone can be of substantial value towards understanding subsurface structures.   
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5 Chapter 5 

Conclusions and directions for future research 

 

5.1 Contributions of Work Described Here 

 

It has long been known that large proportions of the Earth’s crust, mantle, and inner core are 

anisotropic, and that this anisotropy must influence seismic wave propagation, transmission, and 

reflection.  Despite this, seismic transmissivity and reflectivity is usually described using either 

Zoeppritz’s isotropic formulae or approximations valid only for specifically oriented transversely 

isotropic substrates. This over-simplification may create artifacts in the seismic image, target mis-

positioning and hence flawed interpretation.  This thesis seeks to better understand the behavior of 

reflected seismic waves in anisotropic formations.  

This thesis makes three distinct contributions by providing i) an algorithm that calculates the 

reflectivity from the welded interface between any two anisotropic elastic solids and ii) an 

algorithm to model the propagation and reflection of a bounded beam from a water-solid interface, 

and by iii) carrying out and fully modelling a set of reflectivities from anisotropic media obtained 

in laboratory experiments.    

First, we contribute an algorithm that solves for the reflectivity and transmissivity from the 

interface between two anisotropic slabs of arbitrary orientation and symmetry up to and including 

triclinic. The algorithm solves the full elastic wave equation and yields the polarizations, slowness 

and amplitudes of all six of the possible wave-modes generated at the welded interface between 

two anisotropic half-spaces. The utility of the algorithm, provided as a series of MATLAB® based 

programs called Anisotropic Reflectivity Transmissivity calculator (ARTc) is illustrated in a 

number of different cases of increasing complexity. ARTc is coded in MATLAB® and bundled 

with an interactive GUI and bash script to run on single or multi-processor computers. 
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Second, the study of the reflected acoustic waves plays an important role in our understanding of 

media. We provide an algorithm to propagate the ultrasonic bounded beam source and study its 

reflection from any horizontal and homogenous water-solid boundary. This algorithm implements 

a hybrid combination of the phase-advance wavefield continuation in the frequency domain and 

the complex analytic solution for the acoustic reflectivity. The peak amplitude of the specularly 

reflected beam is in agreement with the laboratory measured acoustic reflection from water-

Aluminum and water-Copper alloy boundaries. The algorithm is able to model the observed critical 

reflection as well as the null in the amplitude at the Rayleigh critical angle from the acoustic wave. 

This algorithm is a crucial tool to understand the full reflected wave from material immersed in 

water in any azimuthal or incidental angles. The software of this algorithm and acoustic reflectivity 

from both solid materials are provided.  This algorithm will be of interest to both the Geophysical 

and Nondestructive Testing communities.  

The variations in the strength of seismic reflections with both angles of incidence and 

azimuth are being used to constrain the orientations and degrees of mechanical anisotropy of 

geological formations.  This information is often used in turn to infer the directions of fracturing 

and stress usually assuming simplified geological structures that in many cases are not realistic.  In 

order to further understand this problem, the reflectivities from a set of variously titled samples cut 

from a single block of a common anisotropic composite material are measured with both angles of 

incidence and azimuth in the laboratory.  Each sample is analogous to a formation in which the 

fracture sets increasingly dip.   The observed responses differ from plane wave theory due to the 

finite nature of the experiment, but the deviations are well accounted for by modeling the expected 

responses for the behavior of a bounded pulse.  As expected, the reflectivities vary with the sample 

tilt, the angle of incidence, and the azimuth at which the measurements are made.  However, some 

of these responses, such as the pre-critical reflectivities, do not appear to strongly vary with azimuth 

for a given sample.  Critical angle phenomena, too, must be used cautiously as the observed peaks 

do not lie at the exact critical angle.   These results suggest that reflectivities do provide important 

information with regards to orientations of anisotropy but may not be able to provide further details 

without making assumptions with regards to the structure of the formation.  Although these are 

laboratory observations,  their interpretation may impact field practice.  
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5.2 Suggestions for future research 

Much of this thesis required us to develop tools for the study of anisotropic reflectivity and for 

bounded beam propagation.  The latter will provide workers with a new tool to assist in the 

interpretation of laboratory beam propagation and reflection.  This certainly will be valuable to 

the specialist nondestructive test community although there is potential to extend the method to 

some forms of modeling of seismic responses.  The former, however, by providing a relatively 

straightforward manner to determine the reflectivity and transmissivity of an otherwise rather 

complex problem opens a number of future potential research studies.  The following is a list of 

activities that we did not have time to complete, but remain to be done: 

 We studied the role of elastic anisotropy on the acoustical reflectivity variation with 

incidental and azimuthal direction (chapter 2) and expressed a hybrid method to consider 

source mechanism on the post-critical reflectivity and Schoch shift effect from liquid-solid 

interface (chapter 3). There is a great potential to study the properties of the quasi-shear wave 

in anisotropic medium by analyzing the converted waves in the transmission. 

 Investigate the application of the Reflectivity and transmissivity calculator (ARTc-chapter 

2) in ray-tracing of the layered subsurface model and its application on seismic data 

migration. 

 We studied the role of fractured medium on the acoustic reflectivity (chapter 4) using blocks 

of phenolic with grade CE with different tilting angles. Additionally, 3D-printed blocks of 

isotropic material could be implemented with difference fracture density and spacing and 

filling to investigate their role on reflected wavefield. 

 We have studied the role of trigonal symmetric anisotropy from a z-cut single crystal alpha-

quartz on acoustic reflectivity. Our measured acoustic reflectivity from water-quartz 

interface displays a complex pattern in which we observed double null reflection at far 

incident angles. To the best knowledge of the author, this pattern has never been reported in 

the scientific community, and we will use this dataset to understand the role of the elastic 

anisotropy and the bounded beam on the double Schoch shifts.
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