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AяѠѡџюѐѡ
Widely spaced data sets from drilling are used in the mining and petroleum industries to

model subsurface resources. These data sets have high associated economic and environ-

mental costs. Maximizing the use of information contained in data while minimizing the

amount of data required to achieve acceptable understanding of risk and uncertainty is crit-

ical in this context. These data sets usually consists of spatially correlated categorical and

continuous variables that are modeled using geostatistics, which is a branch of statistics

particularly applicable to spatiotemporal variables.

Categorical variables are usually modeled first and utilized to define stationary do-

mains for the modeling of the continuous variables. As a result, the categorical variables

are key for the accurate modeling of aĴributes such as ore concentrations, metallurgical re-

coveries and structural stability. Each one of these variables are affected in different ways

by different combinations of categorical variables. Limitations of existing techniques force

the merging of multiple categorical variables into a single variable causing the loss of in-

formation and deteriorating the quality of predictions.

Amongst the existing techniques for categorical modeling, truncated pluri-Gaussian

simulation (TPGS) is one of the most flexible. The utilization of underlying Gaussian la-

tent variables for the simulation of categories allows for the use of the well established

techniques for the simulation of Gaussian random functions (GRFs). The truncation rules

utilized to map the continuous variables to the categorical variable allow the introduction

of geological constraints. These geological constraints assist the generation of models that

are more realistic and accurate. The practical application of TPGS is often limited to the uti-

lization of no more than three Gaussian latent variables. This is mostly aĴributed to the cur-
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rent practice on the definition of truncation rules using truncation masks. This limitation

is addressed in this thesis with the development the hierarchical truncated pluri-Gaussian

(HTPG). HTPG utilizes a tree structure for the truncation of the Gaussian latent variables

facilitating its definition based on geological expertise. The developed methodology al-

lows for the utilization of an arbitrary number of latent variables to model an arbitrary

number of categories. As a result, the developed method beĴer explores the potential of

the truncated Gaussian method.

The HTPG framework developed in this thesis is extended to the modeling of multiple

categorical variables. The extension is achieved by allowing correlation between the latent

Gaussian variables defining each categorical variable. This improves the utilization of the

information available by preventing the merging of multiple categorical variables into a

single set. It is demonstrated that the developed technique leads to significant improve-

ment of the prediction of aĴributes that depends on the multivariate relationship between

the categorical variables.

The research work of this thesis also led to significant contributions in other aspects of

the truncated Gaussian methods, such as the numerical derivation of the latent variables

variograms and the imputation of the latent variables. Significant contributions are also

made on the multiple data imputation for application with multivariate transformations

in advanced geostatistical methods.
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Cѕюѝѡђџ 1

IћѡџќёѢѐѡіќћ
This chapter provides an overview of the problem seĴing that motivates the research sub-

ject of this thesis as well a description of the contributions and the thesis outline. Section 1.1

gives a brief description of the current state of categorical and continuous variable model-

ing. The motivations and contributions of this thesis are provided in Section 1.2. A thesis

statement is given in Section 1.3. The outline of this thesis with a brief summary of each

chapter is also provided in Section 1.3.

1.1 Problem SeĴing

Modeling spatially correlated variables have been focus of geostatistics since its develop-

ment in the 1960’s by Matheron (1962). Even though geostatistics was developed in a min-

ing context, its application has spread to many other fields of research including petroleum,

hydrology, forestry, geography, oceanography, agriculture and environmental sciences.

Geostatistical methods are particularly applicable to the modeling of spatiotemporal data

(Chilès and Delfiner, 1999).

The economic and environmental cost of acquiring samples in the mining and

petroleum industries leads to sparse sampling that usually only covers a billionth (Chilès

and Delfiner, 1999) of the domain of interest. These scarce data sets are used to model sub-

surface resources and to support decisions. Maximizing the use of information contained

in data while minimizing the amount of data required to achieve acceptable understanding

of risk and uncertainty is critical in these circumstances.

Geostatistics uses features and properties observed in the data (e.g. first and second

order statistics) to generate equally probable numerical models through stochastic simu-

lation (Goovaerts, 1997). These models reproduce the data at their locations and are built

to reproduce observed spatial features, allowing accurate assessment of uncertainty. Most

recent developments in geostatisitics are focused on improving the usage of available in-

formation and reproduction of observed features.

1
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Geological variables are often divided into two major types: categorical and continu-

ous. Categorical variables are defined as labels or names such as rock types or facies, while

continuous variables represent quantifiable aĴributes such as metal concentration or poros-

ity. The current modeling paradigm is hierarchical with respect to these types. Categorical

variables are modeled first followed by the modeling of continuous variables within each

category. The continuous variables are assumed to be independent between different cat-

egories and each category is often assumed to represent a stationary domain (Pyrcz and

Deutsch, 2014; Rossi and Deutsch, 2014).

1.1.1 Modeling of Categorical Variables

The stationary domains defined by categorical variables are the main control on the dis-

tribution of continuous variables (Rossi and Deutsch, 2014) and the greatest source of risk

(Snowden et al., 2002) in mining projects. There are several methodologies available for

the modeling of categorical variables. These techniques can be divided into stochastic and

deterministic. The deterministic approaches cannot be used for the characterization of risk

and uncertainty as only one scenario is considered. The stochastic methods have different

characteristics and their application depends on the modeling goals and geological seĴing.

Stochastic methods can be further divided into object based and cell based approaches.

The object based frameworks are focused on the reproduction of morphological shapes

such as meandering channels in fluvial environments. Conditioning the object based mod-

els to data observation is difficult and only pertinent when these original shapes are pre-

served in the subsurface. The original morphology is usually disturbed by geological

events and the structures that are left may not resemble the original objects. Cell based

methods, on the other hand, are easily conditioned to the observed data. The degree of

geological complexity they can represent is variable.

Among cell based methods, multiple point statistics (MPS) is the methodology with the

greatest capability of reproducing complex non-linear features. The technique relies on the

utilization of reference models often referred to as training images. The resulting models

rely heavily on these training images. The main limitation with the use of training images

is the difficulty in handling non-stationarity and the limitation of relative simple features

embedded in the training image (Pyrcz and Deutsch, 2014). Sequential indicator simulation

(SIS) is at the other end of the spectrum of cell based methods. The technique utilizes two
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point statistics and provides no means of introducing explicit geological controls. The SIS

technique also lacks a fully specified random function that leads to difficulty reproducing

reference statistics (Emery, 2004).

TPGS is a cell based method for simulation of categorical variables. The simulation of

the categorical variable is undertaken utilizing underlying Gaussian latent variables. These

latent variables can be modeled with one of the many well established methods for simula-

tion of GRFs. The mapping between the categorical and continuous variables is realized by

truncation rules. These truncation rules allow for the introduction of modeling constraints

based on geological contacts. TPGS is a powerful method for the simulation of categorical

variables, however, its application have been mostly constrained to no more than two or

three Gaussian latent variables. The reasons for this limitation is explored in this thesis and

an alternative methodology for the application of TPGS is developed.

1.1.2 Modeling of Continuous Variables

The multivariate modeling of continuous variables in conventional geostatistics is almost

always performed under an assumption of multivariate Gaussianity and using the linear

model of coregionalization (LMC). Variables are assumed to be multivariate Gaussian af-

ter univariate transformation, which is not correct for most geological variables (BarneĴ,

2015). An incorrect assumption of Gaussianity may lead to poor reproduction of some

multivariate relationships. The multivariate relationship between the economic variables

and contaminants are important for the prediction of recovery in metallurgical processing.

Considerable advances in multivariate modeling have been made in recent years. Mod-

ern workflows based on multivariate transformations such as principal component analy-

sis (PCA) (Davis and Greenes, 1983; Hotelling, 1933), minimum/maximum auto-correlation

factors (MAF) (Desbarats and Dimitrakopoulos, 2000; Swiĵer and Green, 1984), stepwise

conditional transform (SCT) (Leuangthong and Deutsch, 2003; RosenblaĴ, 1952), projection

pursuit multivariate transformation (PPMT) (BarneĴ et al., 2014; Friedman, 1987), among

others have become widely used to overcome the limitations of the classical methods.

1.1.3 Modeling of Multiple Categorical Variables

As with the continuous variables, multiple categorical variables are also available in most

cases. The combination of these categorical variables governs many aspects of mining
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projects from ore content to metallurgical recovery. Multiple categorical variables, how-

ever, did not receive the same aĴention as the continuous variables and liĴle research on

multivariate modeling of categorical variables is available. This problem is addressed in

this thesis; a methodology for the multivariate modeling of categorical variable is devel-

oped.

1.2 Thesis Statement and Research Contributions

The hierarchical approach for TPGS allows the utilization of higher dimensions and

simplifies the geological interpretation of the truncation rule resulting in the en-

hanced ability to represent complex geological seĴings. The multivariate modeling

of categorical variables mitigates the information loss from category merging and

permits beĴer prediction of metallurgical performance.

The key contributions of this thesis are the development of: (1) a HTPG approach that

improves the modeling of categorical variables; and (2) a method for the multivariate mod-

eling of categorical variables. Other contributions are the development of method and tools

for: (1) continuous variables variogram optimization for truncated Gaussian methods; (2)

stable data imputation for HTPG based on Gibbs sampler; and (3) the multivariate data im-

putation of continuous variables based on Gaussian mixture models (GMMs) for use with

multivariate transformation methods.

1.2.1 Hierarchical Approach to Truncated pluri-Gaussian Simulation

The concept of truncating continuous variables to model categorical variables is very flex-

ible. The current application of TPGS for categorical modeling does not explore the full

capability of this concept. More often then not, the application of the TPGS is restricted to

the utilization of two or three continuous variables, regardless of the number of categories

being modeled. There is no theoretical restriction on the number of Gaussian variables that

can to be used. In practice, the number of continuous variables can go up to the number of

categories being modeled minus one. This provides the degrees of freedom to model any

kind of categorical variable.

There are five essential steps for the application of truncated Gaussian methods: (1) def-

inition of a truncation rule; (2) mapping of spatial continuity from categorical to continuous
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space; (3) imputation of continuous data subject to categorical observations; (4) simulation

of the continuous variables at modeling nodes; and (5) truncation of the simulated models

to generate categorical realizations. The first step is critical and has an effect on every other

step.

The current methodology for TPGS have been developed around the concept of trun-

cation masks. These masks are graphical representations of the mapping between the con-

tinuous and the categorical space (Figures 1.1 and 1.2). The concept of using truncation

masks is limiting as the geological interpretation degrades when higher number of cate-

gories and/or latent variables are considered. The conventional graphical representation

cannot be easily used after three Gaussian variables.

Y1

Y2
-3 30

-3

0

3

Figure 1.1: Templates for the case of two latent variables and four categories (indicated by differing
shades of grey). (modified from Armstrong et al., 2011)

Y1

Y3
Y2

Figure 1.2: TPGS template used to map a categorical variable with 5 categories to a 3D continuous
space. (modified from Emery, 2007)

The developed HTPG utilizes a tree structure to define the truncation rules. This facil-

itates the definition of the mapping between continuous and categorical space making it
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possible to efficiently utilize any number of Gaussian variables for the modeling of a cate-

gorical variable. Improvements and adaptations to the key steps of the truncated Gaussian

framework are developed to ensure the efficient application of the HTPG.

1.2.2 Multivariate Modeling of Categorical Variables

Multiple categorical variables are often available. In mining, for instance, it is common

to have several different categorical data such as mineralization zones, alteration zones,

and lithology (Figure 1.3). Each of these categorical variables may assume a set of cate-

gorical labels. The categorical variables and their combinations are closely related to the

mineralogical composition of the rocks, which are linked to metallurgical properties and,

therefore, exercise a key role on processing performance (Bowell et al., 2011; Gregory et al.,

2013).

Rhyolitic
DomePit limit 1997

Escondida
Stock

Fault
dashed lines

Andesite

Advanced Argillic
dashed areaQz-Ser

Chl-Ser (Bt)

Kfds (Chl-Ser)

Chl-Ser (Bt)

Epid-Chl

Leached capping

High enrichment
chalcocite blanket

primary Cu-Fe sulfides

Low enrichment
chalcocite blanket

Alteration Zones

Mineralization Zones

Lithology

Figure 1.3: Lithology, alteration zones and mineralization zones within a north-south section of La
Escondida copper deposit. (modified from Garza et al., 2001)

There has been liĴle research into the modeling of multivariate categorical variables

(Emery and Cornejo, 2010). In practice, multiple categorical variables are combined into a



1. Introduction 7

single categorical variable for the purpose of modeling. In some cases, lumping categorical

variables is justified in terms of stationary domains, however, this decision is often due to

the limitations of existing techniques. The collapse of multiple categorical variables into a

single with all possible/observed combinations is likely impractical due to the large number

of combinations and difficulty of statistical inference (Rossi and Deutsch, 2014).

Emery and Cornejo (2010) proposed the use of truncated Gaussian simulation (TGS)

for the multivariate modeling of categorical variables using LMC to co-simulate the latent

variables. The LMC of the latent Gaussian variables is derived iteratively to ensure the

reproduction of the spatial structure of the categorical variables. TGS only uses one latent

variable per categorical variable. This is too simplistic to reproduce complex categorical or-

dering and transitions, however, the idea of mapping the categorical variables to a contin-

uous space and using established methodologies for multivariate modeling of continuous

variables is promising.

The developed univariate HTPG methodology is extended to perform the multivariate

modeling of categorical variables by allowing correlation across the latent variables. This

avoids the need for merging categorical variables reducing information loss. The multivari-

ate approach also allows for improved reproduction of multivariate relationships between

categorical variables. This ultimately translates into beĴer prediction of resources and re-

serves including categorical dependent metallurgical performance.

1.2.3 Multiple Data Imputation with Gaussian Mixture Models

Multivariate transformations such as PCA, MAF and PPMT are only possible if all vari-

ables are available at all data locations. The SCT method requires a certain ordering in the

availability of the variables. Regardless, data imputation is required where some of the

variables are not sampled. There have been important advances in the multiple imputa-

tion of continuous variables by BarneĴ and Deutsch (2015). The technique developed by

BarneĴ and Deutsch (2015) relies on the Gibbs sampler for the inference of multivariate

distributions. The utilization of a Gibbs sampler is not necessary for this application. This

leads to a lack of performance that can be a limiting factor for applications with large data

sets. This problem is addressed in this research with the replacement of the Gibbs sampler

with a semi-parametric approach using GMMs.
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1.3 Thesis Outline

Chapter 2 provides the necessary background for the developments in this thesis. A sum-

mary of the geostatistical theory for the modeling of continuous and categorical variables

is provided. The Gibbs sampler algorithm is explained followed by the review of the cur-

rent state of research on data imputation. A review of the main modeling techniques for

categorical variables is also provided.

Chapter 3 starts with the mathematical notation for the developed HTPG approach

followed by a discussion of the limitations of current practice with the truncated Gaussian

methods. The remainder of the chapter is dedicated to the development of the theory and

framework for the application of HTPG.

Chapter 4 is dedicated to practical aspects and parameterization of the developed HTPG

technique. The chapter starts with the practical considerations for the definition of trunca-

tion rules based on qualitative and quantitative factors. Details of the HTPG application

in the presence of a categorical trend is also discussed and a framework is proposed. The

causes and effects for the hyper-continuous structures observed during the definition of

latent variable variograms is also explored in this chapter.

Chapter 5 explores the available implementations of the Gibbs sampler algorithm for

the imputation of Gaussian latent variables for the application of the truncated Gaussian

methods. A combination of the available techniques is suggested for improved conver-

gence of the algorithm. The impact of multiple versus single data imputation is evaluated

with a synthetic example to demonstrate the importance of properly transferring the un-

certainty in the unobserved Gaussian latent variables.

Chapter 6 provides a new framework for multiple data imputation of continuous vari-

ables for utilization with multivariate transformations such as SCT and PPMT. The frame-

work replaces the utilization of Gibbs sampler for the inference of multivariate conditional

distributions by a semi-parametric model based on GMM. The technique is demonstrated

for a lateritic nickel data set and compared to common alternatives.

Chapter 7 introduces a new approach for the multivariate modeling of categorical vari-

ables based on the HTPG developed in Chapter 3. The chapter starts by highlighting the

importance of modeling multiple categories followed by the extension of the HTPG nota-

tion to the multivariate case. The framework for the application of the multivariate HTPG
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is developed and illustrated with a small 2D data set with two categorical variables. The im-

pact of data correlation on the application of the developed methodology is also explored.

A full scale practical example of the application of both univariate and multivariate

HTPG techniques is shown in Chapter 8. The application of the developed methodology

is compared with common alternatives. The available data set is split into a training and

a test set. The training set is used for modeling and the test set is utilized to validate the

results. The effectiveness of each technique are compared in terms of reproduction of data

statistics and validation performance.

Concluding remarks are provided in Chapter 9. The chapter starts with a summary of

the contributions and results. The limitations of the developed techniques and proposed

future work is also outlined in Chapter 9.



Cѕюѝѡђџ 2

LіѡђџюѡѢџђ RђѣіђѤ юћё BюѐјєџќѢћё
This dissertation involves the modeling of continuous and categorical variables and, there-

fore, covers a wide range of subjects. The relevant literature is reviewed in the following

sections.

2.1 Random Variables, Random Functions and Stationarity

The theory of regionalized variables developed in the 1960’s by Georges Matheron (Math-

eron, 1971) couples probability theory using the concept of random variables (RVs) and ran-

dom functions (RFs) to spatial problems of modeling subsurface resources. A RV, which is

usually denoted by capital leĴer Z(uuu) where uuu is a location coordinate vector, is a vari-

able whose values are generated stochastically according to a probabilistic mechanism

(Isaaks and Srivastava, 1990) and the RFs are sets of RVs defined within a domain of in-

terest {Z(uuu);uuu ∈ A} and are also denoted as Z(uuu) (Deutsch et al., 1998).

In the multivariate case, a set of n data observations with K variables or properties is

represented by zzz =
(
zzz⊤(uuu1), . . . , zzz⊤(uuun)

)
where zzz(uuuα) ∈ RK and is considered to be a

realization of the RFs ZZZ(uuuα) = Z1(uuuα),. . . , ZK(uuuα)) at the αth data location. A decision of

stationarity is required to allow inference. The stationarity decision is often restricted to

one-point and two-point statistics (Goovaerts, 1997).

The multivariate cumulative density function (CDF) is deemed invariant under transla-

tion (Fi(zi) = P{Zi(uuu) ≤ zi}; i ∈ {1, . . . ,K}; uuu ∈ A); the first order moments are deemed

independent of location (E{Zi(uuu)} = µi; i ∈ {1, . . . ,K}; ∀uuu ∈ A); the two-point joint CDFs

depend only on separation vector hhh between two locations (Fi,j(hhh; zi, zj) = P{Zi(uuu) ≤

zi, Zj(uuu + hhh) ≤ zj}; ∀i, j ∈ {1, . . . ,K}; ∀uuu ∈ A); and the second order moments also

depend solely on hhh (Ci,j(hhh) = E{[Zi(uuu)− µi][Zj(uuu+ hhh)− µj ]}; ∀i, j ∈ {1, . . . ,K}; ∀uuu ∈ A)

10
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2.2 Spatial Variability and Continuity

The most common measure of spatial variability utilized in geostatistics is the semivari-

ogram (γ(uuu)). The semivariogram is defined as one half of the variogram. The Equation 2.1

show the variogram definition for a stationary RFs ZZZ(uuu) ∈ RK . As the semivariogram is

almost always utilized instead of the variogram, the term variogram is utilized to refer

to the semivariogram throughout this dissertation. When i = j in Equation 2.1, the vari-

ogram is referred to as direct variogram, whereas when i ̸=j, the variograms are referred

as cross-variograms.

2γi,j (hhh) = Cov {[Zi (uuu)− Zi (uuu+ hhh)] , [Zj (uuu)− Zj (uuu+ hhh)]}

= E {[Zi (uuu)− Zi (uuu+ hhh)] [Zj (uuu)− Zj (uuu+ hhh)]}
∀i, j ∈ {1, . . . ,K} (2.1)

Experimental variogram values are calculated with Equation 2.2. The spatial variabil-

ity is often anisotropic and the variogram must be inferred for several directions and lag

distances. Tolerances are allowed during the calculation to ensure stable estimation of the

spatial variability. Three main directions (major, mid and minor) of anisotropy are de-

fined. These directions are orthogonal to each other. The major direction is the direction

of greatest continuity, the minor direction is the direction of smallest continuity and the

mid directions is locked by the orthogonality requirement and the ellipsoidal nature of the

anisotropy modeled in geostatistics.

γ̂i,j (hhh) =
1

2 |N(hhh)|
∑

α∈N(hhh)
[zi (uuuα)− zi (uuuα + hhh)] [zj (uuuα)− zj (uuuα + hhh)] ∀i, j ∈ {1, . . . ,K}

(2.2)

where N(hhh) is the set locations with data pairs that are used for the calculation of the ex-

perimental variogram for lag vector hhh.

By further expanding the Equation 2.1 a relationship between the spatial covariance

and the variogram can be established (Equation 2.3). This relationship assumes symme-

try of the covariance function {Ci,j (−hhh) = Ci,j (+hhh) ; ∀i, j ∈ 1, . . . ,K}. This relationship

is utilized to build the system of equations utilized for estimation as the variograms are of-

ten modeled, but the covariance values are the ones required. To ensure that the system of
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equations have a solution, the covariance function must be positive definite. To ensure pos-

itive definiteness, the experimental variogram points are modeled with specific functions

that are known to generate positive definite covariances.

γi,j (hhh) = Ci,j(0)− Ci,j(hhh) ∀i, j ∈ {1, . . . ,K} (2.3)

The three most commonly used variogram models are the spherical (Equation 2.4), ex-

ponential (Equation 2.5) and the Gaussian variogram (Equation 2.6). Note that h is the

scalar normalized distance calculated with the equation of an ellipsoid (Equation 2.7).

Sph (h) =


1.5h− 0.5h3, if h ≤ 1

1, otherwise
(2.4)

Exp (h) = 1− exp (−3h) (2.5)

Gaus (h) = 1− exp
(
−3h2

)
(2.6)

h =

√√√√(hmajor

amajor

)2

+
(
hminor
aminor

)2
+
(
hmid
amid

)2
(2.7)

These models are positive definite in 3D and that also ensures the positive definiteness

in lower dimensions. Experimental variograms can be fiĴed with nested structures com-

posed of multiple variogram types. Nesting structures to fit direct and cross-variograms in

the multivariate case must consider a model of coregionalization such as the linear model

of coregionalization (LMC) to ensure positive definiteness.

The main features of the variogram are the sill, range and nugget. The sill is equal to

the variance of the data used to calculate the variogram. The range is an anisotropic pa-

rameter that represents the extension of the spatial continuity. Data locations separated by

a distance greater than the variogram range for the given direction are not spatially corre-

lated. The variogram has zero value at the origin, however, experimental points can show

relatively high variogram values close to the origin. This is aĴributed to random measure-

ment errors and small scale variability (Rossi and Deutsch, 2014). This discontinuity at the

origin is isotropic and it is called nugget effect.
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2.3 Modeling Continuous Variables

The conventional geostatistical methods assume that variables are multivariate Gaussian

after univariate transformation and utilize the LMC for modeling. Simplifications of the

LMC are commonly used to avoid modeling a full LMC.

In most cases, univariate transformation of geological variables do not lead to multi-

variate Gaussianity. Complex relationships between the variables remain after the trans-

formation that cannot be matched with conventional methods. Advanced techniques make

use of multivariate transformations to improve the Gaussianity of resulting variables and

allow for a more efficient use of Gaussian methods.

The latent variables utilized by the truncated Gaussian methods are not observed. The

categorical variables are mapped to a multivariate Gaussian space, therefore, conventional

LMC and its derivatives are utilized for modeling. Even though the truncated Gaussian

approach only makes use of conventional modeling techniques, both conventional and

advanced techniques are reviewed in this section. This is because of the secondary con-

tributions of this dissertation to the problem of multiple data data imputation and data

transformation using stepwise conditional transform (SCT).

2.3.1 Linear Model of Coregionalization

Modeling a RF requires the assessment of high dimensional conditional and marginal dis-

tributions. This is not possible without a flexible parametric model. The first step of the

modeling workflows is to map the original variables to the Gaussian space. Gaussian dis-

tribution is chosen because it is highly tractable and fully parameterized by mean vector

and covariance matrix. The variables are independently transformed to Gaussian using

normal scores transformation (Equation 2.8) (Bliss, 1934; Deutsch et al., 1998). This trans-

formation only ensures that marginal distributions are Gaussian, however, the modeling

is often carried forward under assumption of multivariate Gaussianity. Note that Φ is uti-

lized throughout this dissertation to denote the Gaussian CDF and Φ−1 is used for its in-

verse. The Gaussian probability density function (PDF) will be denoted by the lower case

(ϕ). The mean and covariance parameters are omiĴed for the standard Gaussian distribu-

tions.
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yi(uuuα) = Φ−1 (Fi (zi(uuuα))) , α ∈ {1, . . . , n} and i ∈ {1, . . . ,K} (2.8)

Under multivariate Gaussianity assumption the parameters of any conditional distri-

bution can be calculated by solving the simple cokriging system of equations that are also

known as normal equations. This requires the definition of all covariances between all

variables (Ci,j(hhh);∀i, j ∈ {1, . . . ,K}) for any given lag vector hhh. The covariances may be

inferred from data for a limited number of lags, however, a valid (positive definite) con-

tinuous model must be defined. This allows the calculation of valid covariances for any

arrangement of conditioning data to be used for inference at any location uuu ∈ A. This

continuous model is referred to as coregionalization model in the multivariate case.

The LMC assumes that each RFZi(uuu) (i ∈ {1, . . . ,K}) is a linear combination of underly-

ing standard independent RFs Y l
k(uuu) (Equation 2.9) with l ∈ {0, . . . , L} and k ∈ {1, . . . , nl}

where L + 1 is the number of covariance structures and nl the number of independent

factors that shares the same covariance structure cl(hhh) (Goovaerts, 1997). The resulting

coregionalization model is shown in Equation 2.10.

Zi(uuu) =
L∑
l=0

nl∑
k=1

ali,kY
l
k(uuu) + µi ∀i ∈ {1, . . . ,K} (2.9)

Ci,j(hhh) =
L∑
l=0

nl∑
k=1

ali,ka
l
j,kcl(hhh) ∀i, j ∈ {1, . . . ,K} (2.10)

The LMC entails the definition of K(K+1)/2 direct and cross-covariance models. This

can become a tedious task with increasing number of RF’s to model. Also, the utilization

of LMC model for estimation and simulation requires the solution of a system of linear

equations that often grows quadratically in terms of number of variables. The computa-

tional cost and practicality of the LMC utilization motivates the utilization of simplified

alternatives such as the intrinsic model of coregionalization (IMC) (Almeida and Journel,

1994; Babak and Deutsch, 2009; Goovaerts, 1997; Wackernagel, 2003).

2.3.2 Cokriging

Kriging is a least-squares regression utilized in geostatistics for inference of regionalized

variables (Goovaerts, 1997) that is named after the work of Krige (1951). Kriging is referred

to as cokriging in the multivariate case. The kriging estimator at a location uuu0 ∈ A for
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the RV Zk(uuu) in a set of multiple RVs Zi(uuu) (i ∈ {1, . . . ,K}), can be wriĴen as shown in

Equation 2.11. The kriging estimate is also referred to as kriging mean.

Ẑk(uuu0)−mk(uuu0) =
K∑
i=1

∑
α∈Ni(uuu0)

λα,i [Zi (uuuα)−mi(uuuα)] (2.11)

where Ni(uuu0) is the set of locations where variable i is available and that are utilized for the

estimation at location uuu0.

The weights (λλλ) are defined to minimize the error variance (Equation 2.12) under the

constraint that the expected error is zero (Equation 2.13). These properties grants kriging

the quality of best linear unbiased estimation or BLUE.

σ2
E = Var

{
Ẑk (uuu)− Zk (uuu)

}
(2.12)

E
{
Ẑk (uuu)− Zk (uuu)

}
= 0 (2.13)

For a stationary multivariate Gaussian RVsYi(uuu) (i ∈ {1, . . . ,K}) with zero mean (E{Yi(uuu)} =

0 ∀i ∈ {1, . . . ,K}) and covariance function Ci,j(hhh) (i, j ∈ {1, . . . ,K}), the system of equa-

tions that minimizes the error variance (Equation 2.12) can be wriĴen in matrix form as

shown in Equation 2.14.



CCC1,1 CCC1,2 . . . CCC1,K

CCC2,1 CCC1,2 . . . CCC2,K
...

... . . . ...

CCCK,1 CCCK,2 . . . CCCK,K





λλλ1

λλλ2
...

λλλK


=



CCC
(0)
k,1

CCC
(0)
k,2
...

CCC
(0)
k,K


(2.14)

where CCCi,j (i, j ∈ {1, . . . ,K}) is a submatrix with all the covariances between the data loca-

tions for the RV’s Yi(uuu) and Yj(uuu) for the sets Ni(uuu0) and Nj(uuu0) utilized for the estimation

at location uuu0. The weight vector λλλi contains all the weights applied to the variable i at the

locations in the set Ni(uuu0). The covariance vector CCC(0)
k,i (k, i ∈ {1, . . . ,K}) contains all the

covariances between the set of data Ni(uuu0) and the variable Yk(uuu0).

An estimate of the error variance (Equation 2.12) is also obtained from the solution of the

kriging system. The minimized error variance is also known as the kriging variance. The

kriging variance for the estimation of variable Yk(uuu) at locationuuu0 is given by Equation 2.15.
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The kriging mean and variance are utilized to parameterize high-dimensional conditional

distributions under multiGaussian assumption for the stochastic simulation of Gaussian

random functions (GRFs).

σ̂2
Ek

(uuu0) = C(0)k,k −
K∑
i=1

λλλ
⊤
i CCC

(0)
k,i (2.15)

The covariance matrix on the left side of the Equation 2.14 must be inverted. The com-

putational time to solve this system raises quickly with the increasing number of variables

and data available. Alternatives such as collocated cokriging (CCK) (Almeida and Journel,

1994) and intrinsic intrinsic collocated cokriging (ICCK) (Babak and Deutsch, 2009) are of-

ten utilized to decrease the computational burden and to simplify the parameterization

task (variogram modeling).

2.3.3 Intrinsic Model of Coregionalization

The LMC model shown in Equation 2.10 is often wriĴen in the simplified form shown in

Equation 2.16. The the bli,j coefficients are defined by Equation 2.17 (Goovaerts, 1997).

Ci,j(hhh) =
L∑
l=0

bli,jcl(hhh) ∀i, j ∈ {1, . . . ,K} (2.16)

bli,j =
nl∑
k=1

ali,ka
l
j,k ∀i, j ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , L} (2.17)

The IMC is a simplification of the LMC model in which the ratio of correlation between

two RFs is independent of the spatial component (Wackernagel, 2003). All coefficients bli,j
are proportional to each other, that is bli,j = ηi,jbl ∀i, j ∈ {1, . . . ,K} and l ∈ {1, . . . , L}

(Goovaerts, 1997). As result the, IMC model can be wriĴen as shown in Equation 2.18.

Ci,j(hhh) = ηi,j

L∑
l=0

blcl(hhh) ∀i, j ∈ {1, . . . ,K} (2.18)

Under second-order stationarity, the coefficients ηi,j are equivalent to the variances

Ci,i(0) and covariances Ci,i(0) (i̸=j). The IMC is limited as it entails that all variables share

the same basic spatial structure that is scaled based on the zero lag covariance matrix. If

the variables are standardized, all direct variograms will be the same.
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2.3.4 Intrinsic Collocated Cokriging

In spite of its limitations, the IMC has been extensively used in cases where exhaustive

secondary data is available. In these cases, the selection of the data used for estimation

is important as the availability of secondary quickly contributes to enlarge the system of

equations to be solved (Equation 2.14). Three options for the cokriging neighbourhood are

shown in Figure 2.1.

Full neighbourhood Multicollocated Collocated

Model node
Secondary data
Primary data
Estimation node

Figure 2.1: Three options of neighbourhoods for cokriging. (modified from Wackernagel, 2003)

The CCK approach is based on an intrinsic model referred to as Markov model (Almeida

and Journel, 1994) that uses the collocated neighbourhood (Figure 2.1). The main aĴraction

of CCK is its simplicity and significant gain in computational time, however, the CCK is

known to introduce variance inflation. The causes of this variance inflation have been de-

rived by Babak and Deutsch (2009). Babak and Deutsch (2009) also show that the CCK

systems are not intrinsic and propose the utilization of the multicollocated neighborhood

(Figure 2.1) with an IMC, calling it the ICCK. Manchuk and Deutsch (2016) show that the

computational complexity of ICCK can be substantially reduced, to levels comparable to

CCK, when it is utilized with exhaustive secondary data.

2.3.5 Sequential Gaussian Simulation

Kriging is used to generate deterministic models with the single best estimated values. It

is a moving weighted average that results in smooth models that do not have the correct

spatial variability (Deutsch et al., 1998). The correct spatial variability is crucial for reliable

prediction of key features such as dilution. Simulation is utilized in order account for the

correct spatial variability and to carry uncertainty forward, through transfer functions, to

response variables such as dilution, recovery, resources and reserves.

The sequential Gaussian simulation (SGS) framework (Gómez-Hern¤ndez and Journel,
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1993; Isaaks, 1990) is a Monte-Carlo simulation (MCS) approach utilized to generate real-

izations of GRFs (Deutsch et al., 1998; Goovaerts, 1997). The SGS algorithm requires the

definition of high-dimensional conditional distributions. These distributions cannot be in-

ferred from data due to dimensionality of the problem (Leuangthong et al., 2008). This

problem is often referred to as the curse of dimensionality (Bellman, 2003). A practical

option is to utilize a parametric model. Under multiGaussian assumption, all the condi-

tional distributions required in the SGS approach can be defined by the kriging mean and

variance.

The SGS algorithm for the generation of a numeric model with a realization of the Gaus-

sian RVs proceeds as follows:

(1) define a random path through the model nodes

(2) for each variable from 1 to K:

(2.1) for each node in the random path:

(2.1.1) search for conditioning data

(2.1.2) build and solve kriging system

(2.1.3) sample the conditional distribution defined by kriging mean and variance

(2.1.4) assign sampled value to the model node and include the simulated node

to the conditioning data ensemble

As the model nodes are populated with simulated values, the number of conditioning

data grows. The large number of conditioning data leads to unreasonably large kriging

system (Equation 2.14). In practice, only the closest data to the simulation location are

used to define the parameters for the conditional distributions. The assumption that the

closest data screens out the influence of all other conditioning presumes a Markovian be-

havior (Gómez-Hern¤ndez and Journel, 1993; Manchuk and Deutsch, 2012). To minimize

the impact of search restriction on the reproduction of spatial variability, the random path

is divided into multiple grids. The grid is populated starting from a coarse grid subset that

is refined until the final desired resolution.
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2.4 Multivariate Transformations

Geologic variables show complex relationships including non-linearity, compositional con-

straints and heteroskedasticity which are not removed by univariate normal scores trans-

form (Equation 2.8). This leads to poor reproduction of these complex features in conven-

tional workflows (BarneĴ, 2015). Multivariate transformations such as SCT and projection

pursuit multivariate transformation (PPMT) are developed to ensure the appropriate trans-

formation of original variables to multivariate Gaussian space.

2.4.1 Stepwise Conditional Transform

The SCT is calculated in an ordered fashion where the first variable is independently trans-

formed to normal through normal scores transform, the second variable is transformed

based on conditional distributions given the first variable, and the ith variable is trans-

formed based on conditional distributions given the previous i−1 variables (Leuangthong

and Deutsch, 2003; RosenblaĴ, 1952) as in Equation 2.19.

y1 (uuuα) = Φ−1 (F1 (z1 (uuuα)))

y2 (uuuα) = Φ−1
(
F2|1 (z2 (uuuα) | z1 (uuuα))

)
...

yK (uuuα) = Φ−1
(
FK|1,...,K−1 (zK (uuuα) | z1 (uuuα) , . . . , zK−1 (uuuα))

)
, ∀α ∈ {1, . . . , n}

(2.19)

The resultant transformed variables are multivariate Gaussian and independent at zero

lag distance. All the complex relationships between the geological variables are removed

with the transformation. There is no guarantee of decorrelation at lags different from

zero. The transformed values in Equation 2.19 are used as conditioning data for simula-

tion within the domain of interest. Simulated values (yi(uuu), ∀uuu ∈ A, i ∈ {1, . . . ,K}) are

transformed back to original units using Equation 2.20. The back transformation ensures

the reproduction of the complex relationships between variables.
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zK(uuu) = F−1
K|1,...,K−1 (Φ (yK(uuu) | y1(uuu), . . . , yK−1(uuu)))

...

z2(uuu) = F−1
2|1 (Φ (y2(uuu) | y1(uuu)))

z1(uuu) = F−1
1 (Φ (y1(uuu)))

, ∀uuu ∈ A (2.20)

The methodology suffers from poor variogram reproduction in cases in which it fails

to decorrelate variables at lags different from zero. The SCT model relies on the binning

of the multivariate space for the calculation of the conditional distributions required for

transformation (Leuangthong and Deutsch, 2003). The binning approach makes the SCT

very limited with respect to the number of variables that can be modeled.

Alternatives to allow the use of SCT in high dimensions and for sparse data have been

proposed to eliminate binning artifacts from discrete partitioning of multivariate space.

Leuangthong and Deutsch (2003) proposed the use of kernel density estimation (KDE),

Manchuk and Deutsch (2011) proposed kernel density networks that is computationally

more efficient than KDE.

2.4.2 Projection Pursuit Multivariate Transform

The PPMT technique developed by BarneĴ (2015) utilizes a modified component of pro-

jection pursuit density estimation (PPDE) developed by Friedman (1987) for multivariate

transformation of complex geological data to be multivariate Gaussian. The methodology

is applied in steps.

The first step is the univariate normal scores transform (Equation 2.8) that centers all

variables and makes them more stable for subsequent steps. The resulting marginally Gaus-

sian data matrix with n transformed data observations is denoted by yyy =
(
yyy⊤(uuu1), . . . ,

yyy⊤(uuun)
)

. A variant of principal component analysis (PCA) sphering is used in PPMT

methodology. The sphering step requires the eigen value decomposition of the covariance

matrix at lag zero (CCC(0) = V DVV DVV DV ⊤), where VVV is the matrix of eigenvectors, DDD is a diagonal

matrix with eigenvalues and CCC(0) is the K ×K covariance matrix at lag zero. The sphered

variables are calculated as shown in Equation 2.21 that can be interpreted (reading from the

right) as: rotate to the principal components basis, standardize and rotate back to original

basis.
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yyy0 = VVVDDD−1/2VVV ⊤yyy (2.21)

After the sphering, the PPMT methodology proceeds to the projection pursuit iterations.

In each iteration (t), the most non-Gaussian projection (pppt = Θ̂ΘΘtyyyt−1) of the data is found

and transformed to be Gaussian. The degree of non-Gaussianity of a projection is defined

by the projection index I(ΘΘΘ), therefore, Θ̂ΘΘ is defined as Θ̂ΘΘ = argmax
ΘΘΘ

I(ΘΘΘ). After a number

of iterations the data is transformed to be multivariate Gaussian. All the operations on the

original data matrix are stored and used later to transform all simulated values to original

units restoring the complex relations observed in data.

2.5 Gibbs Sampler

The Gibbs sampler algorithm (Geman and Geman, 1984; Metropolis et al., 1953) is a Markov

chain Monte Carlo method commonly used for statistical inference. The technique is uti-

lized to generate samples from distributions for which the direct sampling is difficult. It is

particularly useful when marginal distributions can be easily sampled.

Given a target K-dimensional distribution f(YYY ) where YYY = (Y1, . . . , YK), and yyy =

(y1, . . . , yK) is a sample of the RV YYY . Also, assuming that all the conditional distributions

f(yi|y1, . . . , yi−1, yi+1, . . . , yK) ∀i ∈ {1, . . . ,K} can be readily sampled. The Gibbs sampler

algorithm can be utilized to generate a sample of f(YYY ) by the following steps.

(1) initialize the iteration counter: t = 0

(2) define initial state by defining a valid arbitrary vector yyy(0)

(3) for each dimension i = {1, . . . ,K}:

(3.1) increment iteration counter: t = t+ 1

(3.2) set y(t)j = y
(t−1)
j ∀j ̸=i

(3.3) draw a random sample for y(t)i from f(yi|y1, . . . , yi−1, yi+1, . . . , yK)

(3.4) terminate the algorithm if t = tMAX

For a sufficient number of iterations tMAX the resulting vector yyy(tMAX) is a valid sample

of the reference joint distribution. The number of iterations needed for the convergence

of the Gibbs sampler algorithm is commonly referred to as burn-in iterations. To generate

additional samples after the burn-in period, the algorithm can be run from steps 3.1 to 3.3
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multiple times recovering the state of yyy(t) at every nth increment of the iteration counter.

This buffer between two consecutive samples is called thinning and is utilized to ensure

that the generated samples are independent from each other. The buffer size as well as the

number of burn-in iterations relates to the the correlation between the RVs.

One of the applications of Gibbs sampler in geostatistics is for the imputation of missing

data (BarneĴ and Deutsch, 2015; LiĴle and Rubin, 2002). The imputation is important to

generate complete (isotopic) data sets from incomplete (heterotopic) ones, allowing their

use with multivariate transformations. The Gibbs sampler is also utilized to define the

unobserved latent variables for the truncated Gaussian methods (Armstrong et al., 2011;

Emery et al., 2014; Galli and Gao, 2001). The imputation of latent variables must respect the

mapping between the categorical and continuous space while also matching the categorical

data observations.

2.6 Data Imputation for Multivariate Transformations

High dimensional geological data have become standard in the mining and petroleum in-

dustry with the increasing availability of multiple measurements per sample. These multi-

variate data sets present complexities that cannot be reproduced by conventional geostatis-

tical techniques and therefore are more suited to advanced multivariate techniques. Many

advanced multivariate geostatistical workflows require multivariate data transformation

such as PCA, minimum/maximum auto-correlation factors (MAF), SCT, PPMT, among oth-

ers. These transformations can only be applied to isotopic observations (PCA, MAF and

PPMT) or where there is a particular ordering to the missing data (SCT is performed in

ordered manner and the transformation of a variable only requires the previously trans-

formed ones). In practice, however, it is common to find data sets that are not completely

informed with all variables at all locations for various reasons. In this context, the hetero-

topic observations must be discarded or the missing values imputed.

Excluding heterotopic observations would ignore expensive data and often lead to bi-

ased models (LiĴle and Rubin, 2002) as missing geological observations are not missing

randomly. At times the presence of missing variables is driven by the value of the mea-

sured variables. Low values for primary measured variables may not justify the expense

of additional measurements. Also, legacy data will have different measurements relative
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to more recently collected data. These cases are handled with multiple imputation (MI)

(BarneĴ and Deutsch, 2015; Rubin, 1978) that will allow the use of all available information

in subsequent modeling steps without the introduction of bias. The uncertainty from the

missing data will be transferred to the final models while maintaining the value from the

measured variables.

BarneĴ and Deutsch (2015) proposed two methodologies for imputation of geological

data based on Bayesian updating (BU) (Ren, 2007). The idea is to simulate the missing vari-

ables to generate multiple isotopic data sets in order to carry forward the uncertainty from

the missing values through the rest of the workflow while reproducing the complexities

from the original multivariate data distribution and spatial structure.

The first methodology proposed by BarneĴ and Deutsch (2015) is called parametric

merged method and is referred here as parametric only. This technique is fully paramet-

ric and assumes that the data follow a multivariate Gaussian distribution. This assump-

tion makes it difficult to reproduce the complexities of the original data, however, it may

perform surprisingly well due to the strong conditioning from nearby and colocated data

(BarneĴ and Deutsch, 2015).

The second methodology is referred as non-parametric and uses univariate KDE and

a Gibbs sampler to estimate the conditional distribution given the colocated data used in

BU. BarneĴ and Deutsch (2015) showed that the non-parametric technique improves con-

siderably upon the parametric and works well in reproducing multivariate complexities

observed in the data set. The computational expense of the KDE calculations and the need

for Gibbs sampler iterations increase considerably with the number of observations and

dimensions.

2.7 Modeling Categorical Variables

Agresti (2002) classifies categorical variables in three main groups: (1) nominal, (2) ordinal

and (3) interval. Nominal variables are those for which the ordering of categories is irrele-

vant. Ordinal variables present clear natural ordering, however, the distances between the

categories are unknown. Interval variables are ordered and also have defined numerical

distance between the categories. Categorical variables can also be binary (dichotomous) or

have multiple categories (polychotomous).
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Geological domains are most often defined by multiple categories of nominal and ordi-

nal types. Examples of ordinal categorical variables in the geological context are sedimen-

tary sequences formed in dispositional environment and domains defined by intensity lev-

els in a qualitative scale such as degrees of alteration and weathering. Nominal variables

in the geological context are diffuse in nature with no clear genetic shape or that have been

modified by late stage events such as intrusions and fractures.

In the mining industry, categorical variables are mostly used to represent stationary do-

mains (Pyrcz and Deutsch, 2014; Rossi and Deutsch, 2014) within which continuous vari-

ables such as grades are estimated or simulated using geostatistical techniques. There are

two principal branches for the modeling of these domains: (1) deterministic and (2) stochas-

tic.

The deterministic approaches include the parametric wireframing process (Bezier et al.,

1974), discrete smooth interpolation (Mallet, 2002), interpolation of volume functions (Cowan

et al., 2003) and signed distance functions (Hosseini et al., 2009; McLennan, 2007; McLen-

nan and Deutsch, 2006). Deterministic models do not consider uncertainty and do not

represent small scale variability (Silva, 2015).

Several stochastic categorical modeling algorithms exists. Each have their own applica-

tions depending on the nature of the problem and the modeling goals. The main techniques

utilized in conventional geostatistics are reviewed.

2.7.1 Indicator Formalism

The application of indicators in geostatistics is originally proposed for the non-parametric

estimation of spatial distributions (Journel, 1983). The approach is particularly useful for

modeling variables with long-tailed distributions and high coefficient of variation. The

indicator formalism became the basis for the indicator conditional simulation (Deutsch,

2006; Journel and Isaaks, 1984).

The application of indicators for the modeling of continuous variables requires the bin-

ning of the data resulting in information loss. This is not the case with categorical variables

that inherently have binned distributions. The indicator function utilized to transform the

categorical variables to indicators is provided in Equation 2.22.
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111i(x (uuu)) = 111i(uuu) =


1, if x (uuu) = bi

0, otherwise
, ∀i ∈ {1, . . . , B} (2.22)

where x(uuu) is a sample of the categorical RV X(uuu); bi is the ith category of a finite set B of

possible categories; and B = |B|.

The indicator variable can be interpreted as the probability of a category at a given

location. At hard data locations this probability is either 0 or 1. The estimation of local

distributions is performed with kriging. This particular class of kriging is called indicator

kriging (IK).

The spatial variability of the indicator variables is modeled through the indicator vari-

ogram (Equation 2.23). The indicator variogram is inferred from data similarly to the con-

tinuous case (Equation 2.24).

γ111i,j(hhh) =
1
2

E {[111i (uuu)− 111i (uuu+ hhh)] [111j (uuu)− 111j (uuu+ hhh)]} , i, j ∈ {1, . . . , B} (2.23)

γ̂111i,j (hhh) =
1

2 |N(hhh)|
∑

α∈N(hhh)
[111i (uuuα)− 111i (uuuα + hhh)] [111j (uuuα)− 111j (uuuα + hhh)] , ∀i, j ∈ {1, . . . , B}

(2.24)

where N(hhh) is the set locations with data pairs that are used for the calculation of the ex-

perimental variogram at lag vector hhh.

The indicator cross-variograms (i̸=j in Equation 2.24) are often ignored as they show ex-

treme continuity at short lags and cannot be modeled with conventional coregionalization

models (Machuca-Mory and Deutsch, 2006).

The experimental indicator variograms are modeled with valid models similarly to the

continuous variables. These models are utilized to built the kriging systems for the estima-

tion of the indicator variable at the model nodes. One kriging system per category is solved

for each location. The estimated indicator variable represents the probability of the corre-

sponding category. The estimated probabilities are not guaranteed to be non-negative nor

to sum to one, as it is required for a closed set of probabilities. Often, non-negative values

are reset to zero and the remaining estimates are rescaled by their sum (Deutsch, 2006).
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The most common kriging estimators utilized for IK with categorical variables are sim-

ple kriging (SK) (Equation 2.25) that assumes stationarity of the global proportions (pi(uuu) =

pi; ∀uuu ∈ A; ∀i∈ {1, . . . , B}) and two versions of non-stationary SK shown in Equations 2.26

and 2.27 (Deutsch, 2006) that utilizes locally varying mean (LVM).

1̂11SK
i (uuu0)− pi =

∑
α∈Ni(uuu0)

λα,i [111i (uuuα)− pi] , ∀i ∈ {1, . . . , |B|} (2.25)

where N(uuu0) is the set of locations that are utilized for the estimation of location uuu0.

1̂11LVM1
i (uuu0)− pi(uuu0) =

∑
α∈Ni(uuu0)

λα,i [111i (uuuα)− pi(uuuα)] , ∀i ∈ {1, . . . , B} (2.26)

1̂11LVM2
i (uuu0)− pi(uuu0) =

∑
α∈Ni(uuu0)

λα,i [111i (uuuα)− pi(uuu0)] , ∀i ∈ {1, . . . , B} (2.27)

The difference between the two non-stationary SK is on the utilization of the local pro-

portions. For the LVM1 (Equation 2.26) estimator, the local proportion on the right side

of the equation is taken at each data location, whereas the LVM2 (Equation 2.27) estimator

approximates the local probability at the conditioning data locations by the local probabil-

ity at the estimation location. The LVM1 is theoretically correct and the LVM2 gives more

importance to the local hard data (Deutsch, 2006).

2.7.2 Transition Probabilities

Transition probabilities are a measure of spatial variability and are closely related to the

indicator variogram (Carle and Fogg, 1996). For a given separation vector hhh, the transi-

tion probability between two categories is defined by Equation 2.28 . The transition matrix

(TTT (hhh)) is a square matrix of rank B that contains all transition probabilities for the separa-

tion vector hhh (Equation 2.29).

ti,j(hhh) =P{111j(uuu+ hhh) = 1|111i(uuu) = 1}

=P{111j(uuu+ hhh) = 1 and 111i(uuu) = 1}
P{111i(uuu) = 1}

, i, j ∈ {1, . . . , B} (2.28)
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TTT (hhh) =



t1,1(hhh) t1,2(hhh) . . . t1,B(hhh)

t2,1(hhh) t1,2(hhh) . . . t2,B(hhh)
...

... . . . ...

tB,1(hhh) tB,2(hhh) . . . tB,B(hhh)


(2.29)

If the bivariate distribution of the indicator variables 111(uuu) and 111(uuu+hhh) depends only on

the separation vector (Equation 2.30) and the categorical proportion is stationary (Equa-

tion 2.31), the indicator variogram can be rewriĴen in terms of transition probabilities

(Equation 2.32).

pi,j (hhh) =P {111i(uuu+ hhh) = 1 and 111j(uuu) = 1}

=E {111i (uuu)111j (uuu+ hhh)}
, i, j ∈ {1, . . . , B} and ∀uuu ∈ A (2.30)

pi = P {111i (uuu) = 1} = E {111i (uuu)} , i ∈ {1, . . . , B} and ∀uuu ∈ A (2.31)

γ111i,j(hhh) = pi

(
ti,j (0)−

1
2
[ti,j(hhh) + ti,j(−hhh)]

)
, i, j ∈ {1, . . . , B} (2.32)

The transition probabilities are often calculated along the drillhole as the data density is

higher and the shortest separation lags are well informed. The resulting transition matrices

are useful for the definition geological contacts. The transition matrices are often asymmet-

ric (ti,j(hhh) ̸=ti,j(−hhh)) and are calculated downwards and upwards along the drilling path

(Figure 2.2).

1
1
1
2
2
3
3
3
3
3

updown

TTT d =

0.67 0.33 0.00
0.00 0.50 0.50
0.00 0.00 1.00

 TTT u =

1.00 0.00 0.00
0.50 0.50 0.00
0.00 0.20 0.80



Figure 2.2: Illustration of the transition probability calculation, upwards and downwards, for a
string of categorical data along a drillhole.



2. Literature Review and Background 28

For simplicity, the lag vector (hhh) is dropped from the notation of the transition matrix

throughout this dissertation. This is justified as the transition matrix is often only calcu-

lated for the lag size that corresponds to the composite length and for the upward and

downward direction. {TTT d = (tdi,j); i, j = 1, . . . , B} is used for the transition matrix cal-

culated downwards, {TTT u = (tui,j); i, j = 1, . . . , B} is used for the upward direction and

TTT = 1
2(TTT d + TTT u) is used for the combined transition matrix.

2.7.3 Sequential Indicator Simulation

Sequential indicator simulation (SIS) (Deutsch, 2006) is a MCS algorithm that is applied

with steps similar to the SGS algorithm. The local conditional distributions are non-parametric

and inferred using the IK formalism. The SIS algorithm is summarized below:

(1) define a random path through the model nodes

(2) for each node on the random path:

(2.1) for each variable from 1 to B:

(2.1.1) search for conditioning data

(2.1.2) build and solve kriging system

(2.2) correct order relations and define the local conditional distribution

(2.3) sample the conditional distribution

(2.4) assign sampled value to the model node

(2.5) calculate the indicator variables at the simulated node and add them to the con-

ditioning data ensemble

SIS is suitable for the simulation of binary categorical variables. Multiple categories are

handled through the use of multiple binary indicator transforms. SIS realizations mostly

reproduce the proportions of categories and their two-point spatial distribution, however,

there is no guarantee of reproducing the ordering between categories specially in a sparsely

sampled domain. This makes the technique suitable to nominal categorical variables.

The SIS realizations often show inflated short scale variability resulting in noisy categor-

ical models. Also, categories with low proportions are under-sampled and, consequently,

the categories with higher proportions are over-sampled resulting in a mismatch in the

global proportion statistics. One solution for both issues is the application of the maxi-

mum a posteriori selection (MAPS) technique (Deutsch, 1998, 2006). The main drawbacks
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of cleaning SIS realizations are the possible removal of real short scale variability and the

requirement of parameters arbitrarily defined by the user to ensure the reproduction of

conditioning data (Deutsch, 1998).

2.7.4 Truncated Gaussian Simulation

Truncated Gaussian simulation (TGS) proposed by Matheron et al. (1987) is an alternative

for the simulation of categorical variables. This technique assumes that categorical vari-

ables are generated by the truncation of an underlying latent variable. The latent variable

is a realization of a GRF and the truncation rule defines the ordering and proportion of

each category. The truncated pluri-Gaussian simulation (TPGS) proposed by Galli et al.

(1994) is an extension of the TGS to use an arbitrary number of GRFs as latent variables.

This allows the simulation of more complex spatial arrangements of categorical variables

including ordered categorical variables such as alteration zones in lateritic nickel or depo-

sitional sequences in petroleum reservoirs. The TPGS aims at reproduction of categorical

proportions, two-point spatial correlation and transition probabilities.

2.7.4.1 Truncation Mask

The truncation rule, also referred to as lithotype rule, is an important part of the TPGS

methodology as it controls the contacts between categories, their transition and propor-

tions. The definition of the truncation rules is usually based on transition probabilities

observed in data and conceptual geological model (Mariethoz et al., 2009).

A number of techniques to define the mapping rule have been developed. Armstrong

et al. (2011) propose the partition of the multivariate Gaussian space in parallelepipeds (or

rectangular areas in bivariate case) through the use of thresholds. A template should be

chosen based on the knowledge regarding the geology (Figure 1.1) and the thresholds are

calculated in order to match the proportion of each category. This methodology is useful

for a bivariate case with few categories. In this situation, the possible templates can be

visualized and a decision can be made if the geology is well understood. The methodology

becomes more difficult when more categories are considered and virtually impossible for

four or more latent variables.

Xu et al. (2006) proposed a methodology for the definition of the truncation rule based

on a binary dynamic contact matrix (DCM) that facilitates the application of TPGS to high-
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dimensional cases with more complex geological features. The DCM is specified by the

user based on geologic knowledge and it is used to partition the multivariate Gaussian

space with rectangles and parallelepipeds similarly to what is done by Armstrong et al.

(2011).

Allard et al. (2012) introduced the assignation diagram which automatically builds the

truncation rule for the truncated biGaussian case allowing for complex contacts. The trun-

cation rule is defined using kernel regression based on auxiliary variables such as seismic

aĴributes and lithofacies information available at drilling locations. Synthetic data may be

used in the absence of auxiliary data.

Sadeghi and Boisvert (2012) use simulated annealing to optimize the truncation rule.

The objective function is the minimization of the mismatch between the transition proba-

bilities calculated from simulated realizations and the experimental transition probabilities

calculated from data. The use of simulated annealing allows for flexible truncation rules

which have the potential to reproduce complex features.

Deutsch and Deutsch (2014) use a multidimensional scaling (MDS) methodology to

define complex truncation rules with the focus on matching the experimental transition

probabilities. The final truncation rule partitions the Gaussian space by nearest distance

to B control points, where B is the number of categories. The methodology simplifies the

task of defining the truncation rule and is suitable for any number of Gaussian variables

up to B − 1 and any number of categories.

Astrakova et al. (2015) uses a Bayesian maximum entropy approach coupled to sim-

ulated annealing algorithm to optimize the truncation rule of the truncated biGaussian

model to match categorical bivariate unit-lag probabilities. The resultant partition of the

Gaussian space is also defined by nearest neighbor (Voronoi tessellation) similar to the

Deutsch and Deutsch (2014) approach, however, multiple control points for each category

are allowed.

Madani and Emery (2015) are the first to propose a hierarchical approach to tackle the

problem of simulating many categorical variables using multiple GRFs. The approach pro-

posed in Madani and Emery (2015) is based on the chronological ordering of the geological

units and uses one Gaussian variable to separate each category from the remaining result-

ing in a model with B − 1 latent variables (where B is the number of categories). This

truncation rule can be seen as a simple binary tree where each node represents a Gaus-
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Y1
Y2
Y31

2

3 4
Figure 2.3: Example of linked list with three Gaussian variables Y1, Y2 and Y3 as nodes and four
leafs that represents categories.

sian variable and the threshold separates two branches. Each node generates one leaf and

one child, with exception of the last node that generates two leafs. This specific case of

binary tree can be seen also as a linked list. The root of the tree represents the most recent

geological units and the deepest nodes represent the older units.

2.7.4.2 Non-stationarity

The stationarity of a categorical variable is often described in terms of proportions. In

truncated pluriGaussian methods, the categorical proportions are defined by the proba-

bility density of the region of the continuous space assigned to each category. In order

to account for non-stationarity, these regions must change to match the local proportions.

These regions are defined by the truncation rule.

In most applications the regions of the truncation rule are defined by thresholds that are

orthogonal relative to the continuous variables. This is the case of the 2D and 3D rock-type

rules presented in Armstrong et al. (2011) and Emery (2007). For these cases the the thresh-

olds can be locally changed to match the local proportions. Other truncation rules such

as the nearest neighbor segmentation of the Gaussian space in Astrakova et al. (2015) and

Deutsch and Deutsch (2014) are complex and requires the integration of the multivariate

Gaussian space.

2.7.4.3 Mapping Spatial Continuity

The TPGS approach simulates categorical variables indirectly by first simulating Gaussian

latent variables and then performing the truncation of these variables to obtain the cate-

gorical realizations. One of the objectives of simulation is to reproduce the variogram of

observed data. The variogram of the latent variables are unknown as the latent variables
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are not observed, however, the variogram of the categorical data can be experimentally

calculated from data. The variogram used in the simulation of the latent variables should

be defined in order to reproduce the spatial structure of the categorical variables after trun-

cation.

Kyriakidis et al. (1999) uses numerical integration of the bivariate Gaussian distribution

to define the variogram of the latent variable from indicator variogram for TPG technique

with two categories.

Armstrong et al. (2011) defines the theoretical link between the variogram of Gaussian

latent variables and the indicator variogram of the categorical variables for the rectangular

(parallelepipeds in higher dimension) partition of the Gaussian space. An iterative ap-

proach is used to define the variogram for latent variables that beĴer match the indicator

variogram of categories after truncation.

Zagayevskiy and Deutsch (2015) propose a methodology for numerical derivation of

latent variables variogram based on MCS. The methodology optimizes a series of lag dis-

tances that discretizes the correlation range of the categorical variables independently. The

spatial correlation of the Gaussian variables is optimized for each lag distance by simulat-

ing thousands of pairs and calculating the average indicator correlation after truncation.

The spatial correlation of the latent variables is adjusted until the mismatch is deemed small

enough. After defining the optimum correlation for each lag distance for each latent vari-

able, the points are fiĴed with stable (Chilès and Delfiner, 1999; Zagayevskiy and Deutsch,

2015) variogram models. This is a flexible technique that is suitable to any truncation rule

with any number of Gaussian latent variables.

2.7.4.4 Imputation of Latent Variables

The truncated Gaussian techniques assume that the categorical variable is generated by the

truncation of underlying latent variables. The latent variables, however, are not observed.

In order to condition the models to categorical observations the latent variables must be

defined at data locations. The multidimensional truncated Gaussian distribution is com-

plex and cannot be directly sampled, however, marginal conditional distributions can be

easily defined. In such situations, the Gibbs sampler algorithm is the best option available

(Arroyo et al., 2012; Astrakova et al., 2015; Emery et al., 2014; Galli et al., 1994; Lantuéjoul

and Desassis, 2012). The application of the Gibbs sampler depends on the truncation rule
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and often suffers from convergence issues.

Another alternative is to assign a valid combination of latent variable that would result

in the observed category after applying the truncation rule. The values are often defined by

the centroid of each categorical class with respect to the truncation rule (Rossi and Deutsch,

2014). This, however, results in conditioning data that do not have the correct spatial vari-

ability.

An important aspect of the data assignment for truncated Gaussian methods that is

often overlooked is the uncertainty in the latent variables. For the same combination of

categorical observations there are multiple valid combinations of the latent variables that

result in the same categorical observation. This uncertainty in the latent variables should

be transferred to the final categorical realizations.

2.7.5 Other Modeling Techniques

In addition to the reproduction of proportions and two-point spatial correlation features

observed in the data, there is also an interest in the reproduction of pre-conceived morphol-

ogy. Those morphologic features could include geological structures such as meandering

channels, vein systems and other high order continuity. Techniques such as multiple point

statistics (MPS) (Guardiano and Srivastava, 1993; Strebelle, 2002) and object based models

(Haldorsen et al., 1984; Hassanpour, 2013) are developed to reproduce conceptual geolog-

ical shapes. These techniques are out of the scope of this dissertation.

2.8 Conclusion

The literature review undertaken in this chapter provides the background required for the

further reading of this thesis. Additional literature exist that are not covered here, however,

the provided review synthesizes the the most relevant research available that are important

to this research subject.
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Hіђџюџѐѕіѐюљ TџѢћѐюѡђё
ѝљѢџі-GюѢѠѠіюћ
This chapter starts with the mathematical notation for the truncated Gaussian methods,

followed by the identification of the limitations with the current application. The theory

and procedures for the application of hierarchical truncated pluri-Gaussian (HTPG) are

developed in sequence.

3.1 Mathematical Notation and Definitions

The mathematical notation and definitions for the univariate case of HTPG is shown here.

This notation is further extended to the multivariate case in Chapter 7.

Consider a categorical random function (RF) {X(uuu); ∀uuu ∈ A} that can take any value

from finite set B of possible categories. Also, consider a set of latent variables to be rep-

resented by the Gaussian random function (GRF) {YYY (uuu) = (Y1(uuu), . . . , YK(uuu)); ∀uuu ∈ A}.

Finally, consider the truncation rule to be represented byMθ which defines the mapping

{Mθ : RK 7→ B} such that {Mθ(YYY (uuu)) = X(uuu); ∀uuu ∈ A}, where θ is the set of parameters

that define the truncation rule.

Let the cardinality of the categorical set be defined by B = |B| and {bi; i = 1, . . . , B}

be the categories within the set B. Let {Ci; i = 1, . . . , B} represent the multivariate space

where {X(uuu) = bi ⇔ YYY (uuu) ∈ Ci; i = 1, . . . , B; ∀uuu ∈ A}.

3.2 Limitation of Current Practice of Truncated Gaussian

Methods

The truncated Gaussian methods share four main principles: (1) the truncation rule; (2)

the mapping of spatial variability; (3) the assignment of Gaussian data; and (4) the trun-

cation of simulated Gaussian variables. The truncation rule defines the mapping between

the categorical and continuous space. The mapping is the most important feature of the

34
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truncated Gaussian methods as it impacts the features observed in the resulting geological

models and influences the application of the other principles. Any limitations imposed in

the truncation rule will result in limitations on the applicability of the truncated Gaussian

method.

The truncated Gaussian simulation (TGS) and truncated pluri-Gaussian simulation

(TPGS) were developed with the intention of allowing geological knowledge to be intro-

duced into the modeling workflow by means of the truncation rule. For instance, if a cate-

gorical variable representing a simple layered deposit is being modeled and the categories

transition in a ordered fashion, a single Gaussian variable is enough to represent the geol-

ogy (Figure 3.1)
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Figure 3.1: Illustrative example of a simple layered structure that can be represented with the trun-
cation of a single Gaussian variable.

Additional Gaussian variables and complex truncation rules are required with increas-

ing geological complexity. For instance, if an intrusion is added to the illustrative example

shown in Figure 3.1, an extra Gaussian variable is required to represent the discordant

structure (Figure 3.2). In this case, the representation is simple enough and easily visual-

ized with the conventional truncation mask. The first Gaussian variable Y1 is responsible

to separate the intrusion from the layered categories and will control the spatial structure

of the intrusion. The second Gaussian variable Y2 controls the spatial structure of the three

layered categories. The spatial structure of the two sets of categories is not mixed because

the thresholds are orthogonal in relation to the Gaussian variables.

Most applications of TPGS are restricted to the utilization of two Gaussian variables

as it still allows straightforward link between the truncation mask representation and the

geological structure. If additional geological complexity is added, more Gaussian variables
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Figure 3.2: Illustrative example of a layered structure cut by an intrusion. The structure can be
represented with the truncation of two Gaussian variables.

are required to represent the geological seĴing. In Figure 3.3, an additional discordant

structure is added. An erosional surface is included with additional depositional layers on

top of it.

Easting

E
le
va
ti
on

20m

Y1

Y2

Y3

Figure 3.3: Illustrative example of two layered structures separated by a erosional surface. The
layers below the erosional surface are cut by a intrusion. A 3D truncation mask that aĴempts to
represent the geological seĴing is also shown.

At first glance, one would think that one additional Gaussian variable would suffice

to represent the geology and that a conventional truncation mask could still be created as

shown in Figure 3.3. The Gaussian variable Y1 controls the transition between the struc-

tures above the erosional surface and the structures below ensuring that they do not cut

through that boundary. The Gaussian variable Y2 controls the transition between the lay-

ers below the erosional surface. The Gaussian variable Y3, however, controls the transition

between the layers above the erosional surface and the transition between the intrusion

and the layers below the erosion. Because these two structures have different spatial struc-

ture (direction and shape), the truncation mask shown in Figure 3.3 does not represent the
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geological seĴing that is shown.

Another alternative truncation mask is shown in Figure 3.4. For this example, Y1 con-

trols the transition between the layers on top of erosional surface. Y2 controls the transition

between the layers below the erosional surface. The Gaussian Y3 controls the spatial struc-

ture of the intrusion. This mask separates each geological unit’s spatial variability utilizing

an independent Gaussian variable, however, this seĴing still allows for the intrusion to

cut through the layers above the erosional surface. At least four Gaussian variables are

required to properly account for all the shapes and boundary constraints shown in this ex-

ample. An easy visualization and geological interpretation of the conventional truncation

mask is not possible for this example.

Y1

Y2

Y3

Figure 3.4: Alternative 3D truncation mask for the geological seĴing shown in Figure 3.3.

There are alternatives to the conventional truncation rules available for utilization with

higher dimensions. The multidimensional scaling (MDS) generated masks proposed by

Deutsch and Deutsch (2014) maps the multivariate space by Voronoi decomposition. The

technique is completely data driven and removes the opportunity to add geological expert

knowledge to the truncation rule. In addition, the boundaries of the truncation regions are

not completely orthogonal to the variable’s axes, resulting in the mixing of spatial struc-

tures and making it more difficult to map the spatial structure of the latent variables to the

categorical space.

Another approach is proposed by Madani and Emery (2015). The truncation rule is

represented by a simple binary tree with a linked list structure where each node is used to

segregate one category. The HTPG can be seen as a generalization of this technique where

more complex tree structures are allowed depending on the geological structure observed.

The technique proposed in Madani and Emery (2015) represents a extreme case in which
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the most spatial freedom is given to each category with minimum shared spatial structure.

3.3 Proposed Hierarchical Approach

Most applications of TPGS are restricted to two dimensional truncation rules mostly be-

cause the geological interpretation of the conventional truncation rules in higher dimen-

sion is difficult. The increased difficulty of mapping the spatial variability of the categorical

variable to the continuous space is often used to justify the restriction to the bivariate case

(Armstrong et al., 2011). This may be true if one is aĴempting to analytically resolve the

mapping, however, numerical methods can be used to define the mapping for any number

of latent variables. In fact, the use of additional dimensions often eases the mapping by

providing extra degrees of freedom to the possible spatial structures being mapped.

Methods such as the one proposed by Deutsch and Deutsch (2014) allow for multiple

latent variables, however, the definition of the truncation rule is completely data driven

with liĴle room for geological understanding and interpretations. The idea of using hier-

archical rules with larger number of latent variables to model multiple categories while

allowing for geological interpretation is very promising. The binary tree structure pro-

posed by Madani and Emery (2015), however, may not be the best to represent all possible

geological structures. The hierarchical approach developed in this dissertation can be seen

as a generalization of this technique in which more complex tree structures can be used

to describe the contact relationships between geological domains. This allows for more

flexibility on what can be represented.

A gridded 2D conceptual model is built to illustrate the HTPG (Figure 3.5). The con-

ceptual model shows the same geological complexity of the illustration in Figure 3.3 that

is used to highlight the limitation of the current practice. The template represents the geol-

ogy resultant of a set of geological events. Categories 5, 6 and 7 were deposited in ordered

layers which were tilted from its original horizontal orientation. The category 4 can be

interpreted as a dike that came later cuĴing through categories 5, 6 and 7. The resultant

sequence was later eroded and categories 1, 2 and 3 were deposited in layers on top of the

erosional surface. In this example the categorical variable X(uuu) can take any category on

the set B = [1, 2, 3, 4, 5, 6, 7] and B = 7.

The key contribution of the HTPG approach is the definition of the truncation rule,
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Figure 3.5: 2D conceptual model used to illustrate the HTPG methodology. Categories 5, 6 and
7 were deposited in ordered layers which were tilted from its original horizontal orientation. The
category 4 can be interpreted as a dike that cuts through the categories 5, 6 and 7. This sequence
was eroded and categories 1, 2 and 3 were deposited in layers on top of the erosional surface.

however, the truncation rule has an impact on all subsequent steps. In fact, the HTPG ap-

proach does not only refer to the truncation rule, but to all steps required in its application

as defined in this section.

3.3.1 The Hierarchical Truncation Rule

The truncation rule (Mθ) in HTPG is defined by a decision tree like structure. Every parent

(non-leaf) node on the tree structure represents a Gaussian latent variable. The parent

nodes are also where the thresholds are applied. The leafs of the tree are the resulting

categories. There can only be one leaf per category. This entails that there are only B − 1

thresholds and that the number of Gaussian variables must be less or equal to the number

of thresholds (K≤B − 1).

The geological seĴing shown in Figure 3.5 is complex enough to make the conventional

application of truncation masks unworkable, however, the definition of a truncation rule

is quite straightforward with the proposed tree structure. The geological seĴing can be

reconstructed with a hierarchical set of truncation rules defined by the tree structure shown

in Figure 3.6.

Four Gaussian variables (K = 4) are used to represent this geological seĴing. It was

shown that three variables were not enough for this representation. The first Gaussian

variable (Y1) defines the erosional surface that separates the categories 1, 2 and 3 from the

categories 4, 5, 6 and 7. The Gaussian variable Y2 separates the discordant category 4 from

the layered categories 5, 6 and 7. The Gaussian variable Y3 separates the layered categories

1, 2 and 3. Finally the Gaussian variable Y4 separates the layered categories 5, 6, and 7.
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Figure 3.6: Hierarchical set of truncation that describes the geological seĴing shown in Figure 3.5.

This simple example illustrates how one can define hierarchical truncation rules using

multiple Gaussian variables to define the transitions and ordering between different cate-

gories. This simple exercise of defining geologically sound truncation rules for this many

latent variables and categories would have been much more difficult with conventional

practices. The hierarchical procedure can be easily used to separate (1) sets of categories

that do not belong together such as sets of rocks types separated by erosional surface, (2)

cross cuĴing (discordant categories) such as intrusive rocks, (3) ordered categories such as

sedimentary sequences and (4) background categories.

The hierarchical truncation rule could be built using geological understanding of the

domain of interest, however, it is useful to have input information calculated from data

to assist the decision. An approach based on MDS, transition probabilities and minimum

spanning tree (MST) (Prim, 1957) can be used for quick visualization of categorical transi-

tions and relationship based on transition probabilities calculated from drillholes. More

details on the definition of the truncation rule in HTPG is given in Chapter 4.
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3.3.2 Thresholds

The truncation thresholds control the proportion of categories on simulated models. The

categorical proportion is the probability of observing a certain category at a given location

(Equation 3.1).

pi(uuu) = E {111i(uuu)} ∀i ∈ {1, . . . , B} and ∀uuu ∈ A (3.1)

The categorical variable is stationary if the categorical proportions do not change with

the location {pi(uuu) = pi; i = 1, . . . , B; ∀uuu ∈ A}. The multivariate Gaussian space is divided

into regions {Ci; i = 1, . . . , B} by the truncation rule. If the latent variables are indepen-

dent standard Gaussian variables and the categorical proportions are stationary over the

domain, the proportion of a category bi can be calculated by integrating the Gaussian PDF

over the respective region (Equation 3.2).

pi =
∫
Ci

ϕ(yyy)dy ∀i ∈ {1, . . . , B} (3.2)

The regions {Ci; i = 1, . . . , B} are defined by axis-parallel hyper-rectangles in HTPG.

The categorical outcome is only possible if all required inequality conditions are satisfied.

For a given category bi the region delineated by the thresholds is defined by Equation 3.3.

Ci =
{
yyy(uuu) ∈ RK |t(i,1)min ≤y1(uuu)≤t

(i,1)
max ∧ t

(i,2)
min ≤y2(uuu)≤t

(i,2)
max∧

. . . ∧ t
(i,K)
min ≤yK(uuu)≤t(i,K)

max
}
, ∀i ∈ {1, . . . , B} and uuu ∈ A

(3.3)

where the bounding thresholds t
(i,j)
min and t

(i,j)
max can take one of the values in {−∞, t1, . . . ,

tB−1,+∞}while t
(i,j)
min ≤ t

(i,j)
max .

Equation 3.2 can be rewriĴen to that shown in Equation 3.4, using the relationship from

Equation 3.3. If a node or Gaussian variable is irrelevant for the definition of a category,

the lower and upper thresholds are set to −∞ and +∞, respectively.

pi =
K∏
j=1

[
Φ
(
yj≤t(i,j)max

)
− Φ

(
yj≤t(i,j)min

)]
∀i ∈ {1, . . . , B} (3.4)

The tree structure defined in Section 3.3.1 ensures that there is only one possible set
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of bounding thresholds {ti; i = 1, . . . , B − 1} that defines a closed set of categorical pro-

portions
(∑B

i=1 pi = 1.0
)

. It also ensures that a threshold can be calculated utilizing the

proportions of the categories relevant to the node where the threshold is applied (Equa-

tion 3.5).

tj = Φ−1


∑

i∈Bk,j

pi∑
i∈Bk

pi

 , ∀j ∈ {1, . . . , B − 1} (3.5)

where Bk is a subset of B with all the categories that are relevant to the node k where the

threshold tj is applied. Bk,j is a subset of Bk with all the categories that are defined below

the threshold tj .

3.3.3 Non-stationarity

Categorical variables often are non-stationary. Local proportions are used to account for

aspects of non-stationarity. For example, a model that resembles the geology shown in

Figure 3.5 using the truncation rule shown in Figure 3.6 cannot be generated without the

use of local proportions unless there are enough conditioning data to enforce the observed

features. The same truncation rule presented in Figure 3.6 will also generate models such

as the one shown in Figure 3.7.
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Figure 3.7: 2D model generated without accounting for non-stationarity.

There are two alternatives to account for local proportions with the proposed hierarchi-

cal approach. The first is to simulate a stationary GRF and use locally varying thresholds

adjusted accordingly with the local proportions. In this case, the non-stationary version of

Equation 3.5 is wriĴen as in Equation 3.6. The second option is to use fixed thresholds and

a non-stationary GRF. In this case, the non-stationary version of Equation 3.5 is wriĴen as

in Equation 3.7.
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tj(uuu) = Φ−1


∑

i∈Bk,j

pi(uuu)∑
i∈Bk

pi(uuu)

 , ∀j ∈ {1, . . . , B − 1} (3.6)

tj = Φ−1


∑

i∈Bk,j

pi(uuu)∑
i∈Bk

pi(uuu)
;µµµ(uuu);ΣΣΣ(uuu)

 , ∀j ∈ {1, . . . , B − 1} (3.7)

where µµµ(uuu) and ΣΣΣ(uuu) are the mean vector and covariance matrix parameterizing the Gaus-

sian distribution. ΣΣΣ(uuu) is a diagonal matrix as the Gaussian variables are independent from

each other.

The first option (Equation 3.6) is the simplest and most flexible. It allows for any pos-

sible configuration of truncation rules. The second approach (Equation 3.7) is restrictive

as it imposes the constraint of using at most two thresholds per Gaussian variable. In this

case, only the mean and variance can be used to adjust for the local proportions. There are

not enough degrees of freedom to guarantee reproduction of proportions with more than

two fixed thresholds per latent variable. It also requires an inversion approach for the def-

inition of the local mean vector and variances that matches the global thresholds for each

set of local proportions.

The conceptual model is sampled generating five equally spaced strings of data that

emulates drillholes. This data is used to illustrate the definition of the parameters to ac-

count for non-stationarity in HTPG. Local proportions are calculated from the samples

and shown in Figure 3.8. The local proportions can be used to either adjust the thresh-

olds locally (Figure 3.9) or define locally varying mean and variance (Figure 3.10) for the

underlying Gaussian variables.

3.3.4 Mapping Spatial Structure

The truncated Gaussian techniques, HTPG included, require the modeling of GRFs to serve

as underlying latent variables for the definition of categorical models. This requires the

definition of the spatial correlation model for the Gaussian latent variables. In practice,

only the indicator variograms of the cateogorical variable can be calculated. The match-

ing spatial structure in continuous space has to be defined to ensure the reproduction of

the categorical spatial continuity. The indicator variogram cannot be used directly for the

latent variables (Kyriakidis et al., 1999; Matheron, 1989).
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(a) Category 1 (b) Category 2 (c) Category 3 (d) Category 4

(e) Category 5 (f) Category 6 (g) Category 7
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Figure 3.8: Local proportion calculated from sampled data for each category for the 2D example.

(a) Threshold 1 (b) Threshold 2 (c) Threshold 3 (d) Threshold 4

(e) Threshold 5 (f) Threshold 6
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Figure 3.9: Local threshold adjusted to the local proportion of the categories for the 2D example.
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(a) Mean Y1 (b) Mean Y2 (c) Mean Y3 (d) Mean Y4
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(e) Std. Dev. Y1 (f) Std. Dev. Y2 (g) Std. Dev. Y3 (h) Std. Dev. Y4

 

 

σ

0

0.5

1

Figure 3.10: Local mean and standard deviation for Gaussian variables for the 2D example. Note
that the Gaussian variables Y1 and Y2 do not require any change in standard deviation. These two
variables are truncated by one threshold only. The other two variables (Y3 and Y4) are truncated by
two thresholds and require varying standard deviation to match the local proportions.

The relationship between the non-centered covariance of the indicator variable and the

latent variables is shown in Equation 3.8. A flexible analytical solution for Equation 3.8 for

any truncation rule is impossible as there is no closed form solution for these integrals for

every possible configuration of regions {Ci; i = 1, . . . , B}. A number of numerical solutions

have been proposed depending on the application (Armstrong et al., 2011; Kyriakidis et al.,

1999; Zagayevskiy and Deutsch, 2015).

C111i,j (hhh) = E {111i (uuu)111j (uuu+ hhh)}

= E
{
111YYY (uuu)∈Ci111YYY (uuu+hhh)∈Cj

}
=
∫
Ci

∫
Cj

ϕh (uuu,vvv) duuudvvv

i, j ∈ {1, . . . , B} (3.8)

where ϕh (uuu,vvv) is the 2K-variate Gaussian density of the vector (yyy(uuu), yyy(uuu+ hhh)), so each

integral is over RK .

The numerical approach proposed by Zagayevskiy and Deutsch (2015) is flexible and

can be applied to any type of truncation rule. The technique is adapted to HTPG and further

developed to enhance its computational efficiency and practicality. The methodology for
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mapping the spatial structure of the categorical data to the continuous space in HTPG is

developed in the following paragraphs.

3.3.4.1 Numerical Derivation

The goal of the numerical derivation is to define the variogram model of the Gaussian latent

variables that generates realizations of the categorical variable with indicator variograms

that are as close to the modeled indicator variograms as possible. This is achieved by an

inversion algorithm that utilizes a Monte-Carlo simulation (MCS) framework coupled with

a line search optimization. The inversion is illustrated in Figure 3.11. Each lag distance

and direction are optimized independently and the resulting points are fiĴed with valid

variogram models. The final state of the numerical derivation is illustrated in Figure 3.12.

If the optimized points are fiĴed well, the mapped points in the categorical space can be

seem as the expected variogram reproduction of the HTPG.
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Figure 3.11: Illustration of the MCS based inversion algorithm being applied to the fourth node of
the lag discretization. The variograms of the latent variables (left side) are unknown. The first three
nodes have been defined before the illustrated state. The lower limit for the line search is the opti-
mized correlation for the previous lag distance. The upper limit is always 1.0. The yellow markers
show the iteration points and the green is the final optimum. Each node have its counterpart on the
categorical indicator variograms shown on the right side. The red lines are the reference indicator
variogram models. The mismatch between the nodes and this line is minimized.

Consider an arbitrary truncation rule represented by Mθ that defines the mapping be-

tween the continuous and categorical space {Mθ : RK 7→ B}. Let {γ111i (hhh) ; 1 = 1, . . . , B} be

the modeled direct indicator variograms of the categories in B, and let {γi (hhh) ; 1, . . . ,K}

be the variograms of the latent variables. In HTPG, the latent variables are independent
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Figure 3.12: Illustration of the final state of the numerical derivation. After all nodes are optimized,
the variogram of the latent variables (left side) are fiĴed with valid variogram models (red lines).
The nodes on the right side indicates the expected reproduction of the reference indicator vari-
ograms (red lines).

standard Gaussian variables
(
YYY (uuu) ∼ ϕ (yyy; 000, III) ; yyy ∈ RK

)
. The correlation between two

points separated by the lag hhh is calculated by Equation 3.9.

ρi (hhh) = 1.0− γi (hhh) ∀i = 1, . . . ,K (3.9)

The inversion approach requires the definition of a link between the correlation ρ(hhh)

and the indicator variogram γ111 (hhh). This is achieved through MCS. Two sets of size K ×m

containing m realizations of independent random vectors, zzzA =
(
zzz

⊤
A1
, . . . , zzz

⊤
Am

)
and zzzB =(

zzz
⊤
B1
, . . . , zzz

⊤
Bm

)
, are sampled from the standard Gaussian distribution (zzzA, zzzB ∼ ϕ(zzz; 000, III);

zzz ∈ RK
)

. These sets are used multiple times throughout the algorithm and can be defined

and stored beforehand to save computational time.

The inversion requires the generation of correlated pairs of vectors separated by the

lag distance. A set of m realizations of correlated pairs yyy(0) and yyy(hhh) are generated using

Equation 3.10

yi,j (0) = zAi,j

yi,j (hhh) = ρi (hhh)× zAi,j
+
√
1− ρi (hhh)2 × zBi,j

, ∀i ∈ {1, . . . ,K} and ∀j ∈ {1, . . . ,m}

(3.10)
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The correlated samples are mapped to categorical space using the truncation rule (Equa-

tion 3.11). The categorical samples are converted to indicators and the indicator variograms

are calculated for each one of the B categories using the m simulated pairs (Equation 3.12).

xj (0) =Mθ (yyyj (0)) and xj (hhh) =Mθ (yyyj (hhh)) , ∀j ∈ {1, . . . ,m} (3.11)

γ̂111i (hhh) =
1

2×m

m∑
j=1

[111i(zj (uuu))− 111i(zj (uuu+ hhh))]2, ∀i ∈ {1, . . . , B} (3.12)

The objective function (Equation 3.13) is the mismatch between the reference model for

the indicator variograms and the indicator variogram resulting from the MCS sampling.

The mismatch is measured in terms of the sum of squared errors. The evaluation is per-

formed on standardized variograms to equalize the importance of each category.

O (ρi (hhh) ; i = 1, . . . ,K) =
B∑
j=1

wj

pj(1− pj)

[
γ111j (hhh)− γ̂111j (hhh)

]2
(3.13)

where pj is the global proportion of the jth category and wj is the weight assigned to the

reproduction of the indicator variogram of the jth category.

In practice, the confidence on the reference indicator variogram is not equal across all

categories. Some reference models are based on stable experimental variograms estimated

from a large number of data pairs. Some reference models are fiĴed to unstable experimen-

tal variograms often defined by few samples. Weights can be assigned to the reproduction

of each indicator variogram based on the degree of confidence.

The inversion is performed on the major, mid and minor directions of continuity. For

each direction, the range of continuity is discretized into H lag distances and each lag dis-

tance is optimized independently. The procedure for the optimization of a given direction

discretized into H lag steps is detailed below:

(1) for each lag discretization {hhhi; i = 1, . . . , H} do:

(1.1) set minimum correlation for each latent variable to:
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ρmin
j =


0, if i = 1

ρj (hhhi−1) , otherwise
, ∀j ∈ {1, . . . ,K}

(1.2) initialize iteration counter: t = 0

(1.3) set the correlations to the minimum value:

ρ
(t)
j (hhhi) = ρmin

j , ∀j ∈ {1, . . . ,K}

(1.4) initialize the samples of the latent variables yyy(0) and yyy(hhh) using Equation 3.10

(1.5) while t < 10

(1.5.1) increment the iteration counter t = t+ 1

(1.5.2) for each latent variable j = 1, . . . ,K :

(1.5.2.1) increment counter t = t+ 1

(1.5.2.2) use the golden-section algorithm (Algorithm 3.1) to define the

best value for ρ(t)j (hhhi) between ρmin
j and 1.0

(1.5.3) stop inversion process if all optimized spatial correlations change by less

than 10−10 in relation to the previous iteration:

max
i≤K

{∥∥∥ρ(t−1)
i (hhh)− ρ

(t)
i (hhh)

∥∥∥} ≤ 10−10

The described procedure results in a set of optimized points informing the major, mid

and minor directions of continuity for all latent variables. The stopping criteria for the

algorithm is set to 10−10. This is far less than uncertainty in the variograms. The resulting

set is converted to variogram values using Equation 3.9 and fiĴed with a valid variogram

model. The set of points are often well behaved and automated variogram fiĴing tools

(Deutsch, 2015; Larrondo et al., 2003) can be used to facilitate this task.

To demonstrate the inversion procedure, two GRFs are unconditionally simulated and

truncated to generate a reference categorical model (Figure 3.13). The Gaussian variable

Y1 is created using a Gaussian variogram with ranges of 16 units in the major direction

(West-East) and 8 units in the minor direction (South-North). The Gaussian variable Y2 is

created with a isotropic Gaussian variogram with range of 16 units.

The truncation rule utilized for this example is shown in Figure 3.14. Category 1 is

defined by the rule Y1≤0.0; the category 2 is defined by the truncation Y1>0.0 and Y2≤0.0;
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Algorithm 3.1 The golden-section line-search algorithm
1: procedure Lіћђ-Sђюџѐѕ( ub: upper bound, lb: lower bound, O(·): objective function )
2: gr ←

√
5−1
2 (golden ratio)

3: a← lb
4: b← ub
5: c← b− gr × (b− a)
6: d← a+ gr × (b− a)
7: fc ← O(c) (Evaluate objective function for parameter c)
8: fd ← O(d) (Evaluate objective function for parameter d)
9: while (b− a) > 10−10 do

10: if (fc < fd) then
11: b← d
12: d← c
13: c← b− gr × (b− a)
14: fd ← fc
15: fc ← O(c)
16: else
17: a← c
18: c← d
19: d← a+ gr × (b− a)
20: fc ← fd
21: fd ← O(d)
22: end if
23: end while
24: o← a+b

2
25: fo ← O (o)
26: return (o, fo) (Return optimum parameter o and objective function value)
27: end procedure
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Figure 3.13: Reference model
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and the category 3 is defined by Y1>0.0 and Y2>0.0. This truncation scheme results in a

proportion of 0.5, 0.25 and 0.25 for categories 1, 2 and 3 respectively.

1 2

f(y1)

y1 y2

t1=0.0

3

t2=0.0

f(y2)

Figure 3.14: Truncation rule for the illustrative example

The experimental indicator variograms of the resultant categorical model are calculated

and shown in Figure 3.15. Note that the anisotropy in the variogram of Y1 has influence

in all indicator variograms. After the estimation of the indicator variograms, the inversion

procedure is used to infer the variogram of the Gaussian latent variables.
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Figure 3.15: Categorical variable indicator variograms for each category

The variograms of the latent variables obtained with the numerical derivation are shown

in Figure 3.16. The optimized lags are shown as colored markers (blue for minor direction

and red for major direction). The experimental variograms from the original models (Fig-

ure 3.13a and 3.13b) are shown as dashed lines in Figure 3.16. Note that the ergodic fluc-

tuations create an apparent anisotropy in the experimental variogram of Y2. The points

defined by the inversion algorithm show good match with the original variogram of Y1

and also a reasonable match of the original variogram of Y2. The points are fiĴed with the

Gaussian variogram model (Equation 2.6). The fiĴed structures are shown as solid lines in

Figure 3.16.

The fiĴed models are used to generate 100 realizations of each variable Y1 and Y2. The

realizations are truncated to generate realizations of the categorical variable. The first re-
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Figure 3.16: Optimized Gaussian variograms

alization of the latent variables as well as the respective categorical model are shown in

Figure 3.17.
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Figure 3.17: One realization of the Gaussian latent variables and resulting categorical variable.

The reproduction of the indicator variograms of the categorical variable is shown in

Figure 3.18. The solid lines are the fiĴed models for the indicator variograms that are used

as reference for the optimization. The light gray lines are the variograms of each realization

and the dashed lines are the average variogram considering all realizations. Note that the

dashed lines have a good match to the fiĴed models (solid lines).
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Figure 3.18: Reproduction of indicator variograms of the categorical variable. The solid lines are the
reference variogram models. Light gray lines are the variograms of each realization. The dashed
lines are the average variograms calculated from all realizations. Markers are the output of the
numerical derivation with the optimized points for the indicator variograms.
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The indicator variograms resulting from the inversion algorithm are also ploĴed as col-

ored markers in Figure 3.18. Note that the markers match the dashed lines. The inversion

approach provides means of checking the expected variogram reproduction of the HTPG

workflow. The mapped points for the indicator variograms can be checked and they can

indicate if the adopted procedure, including the chosen truncation rule, is adequate for the

problem prior to the simulation of large models.

3.3.5 Imputation of Latent Variables

The Gaussian latent variables used in truncated Gaussian techniques are a model assump-

tion, therefore, these variables are not observed. The truncated Gaussian techniques gener-

ate realizations of these latent variables and truncate them to define the categorical models.

The only data available are the samples of the categorical variable (x ∼ P {X = b; b ∈ B}).

The simulated categorical models are expected to match the data at the data locations. If n

observations of the categorical variable are available, the condition in Equation 3.14 must

be met for all locations.

xi =Mθ (yyyi) , ∀i ∈ {1, . . . , n} (3.14)

The simplest way of ensuring the reproduction of data is to assign an arbitrary valid

number for each location that meets the condition. The center of the truncation interval

(Rossi and Deutsch, 2014) is a common choice. Even though this approach enables the data

reproduction, the imputed latent variables do not have the correct spatial variability. For

instance, if two categorical samples are close in the space and they have different values,

there is higher probability that the respective latent variables at that location are close to

the boundary. If these samples are assigned to the centroid, artifacts are created near the

boundaries.
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Figure 3.19: Illustrative example of the effect of the spatial configuration of the categorical sam-
ples on the underlaying latent variable. The star shaped samples are spatially close to each other,
however, they show different categories. In this case the latent variable is expected to be near the
threshold if there is spatial correlation between them. The square shaped markers are samples that
are within a region surrounded by the same category. In this case, there is a low probability that
the latent variable is close to the threshold, in fact, they have a higher chance to be far appart within
the standard Gaussian distribution.

The definition of the latent variables should account for the spatial structure and also be

conditioned to the categorical data observations. Sampling directly from a high-dimensional

truncated Gaussian distribution is not feasible, however, sampling from the marginal uni-

variate conditional distributions is simple. The Gibbs sampler method is well suited for the

task of indirectly generating samples of a complex multivariate distribution utilizing the

univariate conditional distributions. Variations of the Gibbs sampler algorithm for the data

imputation in the truncated Gaussian methods have been developed by many researchers

(Astrakova et al., 2015; Emery et al., 2014; Galli and Gao, 2001; Geman and Geman, 1984;

Lantuéjoul and Desassis, 2012). The convergence of the Gibbs sampler algorithm is a re-

curring problem with the sampling of correlated variables. The current methodologies for

the application of Gibbs sampler are discussed in Chapter 5 and a approach is developed

to mitigate the problems with conversion. An alternative to Gibbs sampler based on simu-

lated annealing is also developed in Chapter 5.

Another important factor that is often overlooked is the non-uniqueness of the solution

to Equation 3.14. There are multiple realizations of the latent variable that satisfy the same

set of categorical data observations. This is illustrated in Figure 3.20. The blue line is the

true underlying latent variable that is not observed in practice. The black and white mark-

ers are the categorical observations, the only data available. The grey lines are multiple

realizations of the latent variable that has the same spatial continuity and that satisfies the

observed categorical data. In order to transfer the uncertainty of the unobserved latent

variables, a multiple imputation framework should be utilized. To achieve that, each re-
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alization of the categorical variable generated with a truncated Gaussian method should

utilize a different realization of the latent variable. The impact of different approaches to

the imputation of latent variables on resource uncertainty is also discussed in Chapter 5.
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Figure 3.20: Multiple realizations of latent variables that matches the categorical data observation.
The black and white markers represent categorical data. The blue line is the true underlying latent
variable. The threshold separating black from white is set at y = 0.5. The grey lines are a set of 100
realizations of the latent variables that generates the same categorical data observation.

The recommended approach for the imputation of the latent variable in HTPG is the

combined Gibbs sampler approach developed in Chapter 5. The methodology improves

the convergence and stability of the Gibbs sampler for the sampling of spatially correlated

truncated Gaussian vectors. Multiple imputed sets of latent variables, one per realization,

should be used to condition the simulation of latent variables and ensure the correct spatial

uncertainty in the final categorical models.

3.3.6 Simulation of Latent Variables and Mapping to Categorical Space

After the latent variables are defined at data locations, they can be simulated at all nodes of

the modeling grid. Any method for the simulation of Gaussian variables can be used. The

most common techniques for the generating of GRFs in geostatistics are the turning bands

(Journel, 1974; Matheron, 1973), LU simulation (Alabert, 1987; Davis, 1987), sequential

Gaussian simulation (SGS) (Gómez-Hern¤ndez and Journel, 1993; Isaaks, 1990), moving

average (Black and Freyberg, 1990; Oliver, 1995), and the Fourier integral method (Pardo-

Igúzquiza and Chica-Olmo, 1993).

The SGS algorithm is the most popular of all geostatistical simulation techniques (Rossi

and Deutsch, 2014). This is due to its simplicity, flexibility and widespread availability in

commercial softwares, which makes it the algorithm of choice for most applications of the

truncated Gaussian methods. One of the advantages of the truncated Gaussian methods is
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that it can readily benefit from any advances in the technology utilized for the generation of

GRF’s, such as the grid free geostatistical simulation (Zagayevskiy and Deutsch, 2016). As

with any other truncated Gaussian technique, HTPG imposes no restriction on the method

that is chosen to simulate the Gaussian latent variables.

Once the Gaussian variables are simulated at every grid node, the realizations are mapped

back to the categorical space by applying the truncation rule. At this point, if all the pre-

ceding steps are properly applied, the categorical realizations should match the categorical

data observation, the spatial structure given by the indicator variograms, the categorical

proportions and transition probabilities.

3.3.7 Conclusion

A novel HTPG for the application of the truncated Gaussian method is developed. The

hierarchical framework allows for the easy incorporation of geological knowledge and un-

derstanding to high dimensional cases with many categories and arbitrarily large number

of Gaussian latent variables. All the required notation and definitions as well as the prop-

erties of the proposed truncation rule are provided.

The technique is suited to the modeling of non-stationary categorical variables through

the definition of local parameters for the truncation rule based on local proportions inferred

from data. Advances have been made on the numeric derivation of the spatial structure

of the Gaussian latent variables. The flexible MCS based inversion technique is robust and

can be easily applied to any truncation rule. Important contributions are also made on

the imputation of the Gaussian latent variables, however, the topic is discussed with more

details in Chapter 5. The multiple data imputation framework should be used in HTPG

to ensure the correct characterization of the spatial variability of the categorical variable.

Whereas this chapter presents the theoretical grounds of the developed HTPG, the practical

considerations on the application and parameterization of the HTPG is the subject of the

following Chapter 4.
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The quality of numerical models is measured in terms of the reproduction of properties

observed in the data such as the spatial continuity, global proportions and transition prob-

abilities. The reproduction of morphological characteristics of the geological seĴing and

cross-validation accuracy are also considered.

This chapter is focused on the tools and practical considerations for the definition of the

hierarchical truncated pluri-Gaussian (HTPG) parameters to ensure its best performance.

The topics of this chapter include: (1) the definition of the truncation rule accounting for

transition probabilities, geological expertise and spatial continuity; (2) accounting for lo-

cally varying proportions; and (3) the problem of hyper-continuity in the latent variables.

4.1 Defining the Truncation Rule

The truncation rule impacts all steps of the HTPG approach and is the key aspect controlling

the quality of the generated models. The main role of the truncation rule is to introduce pro-

fessional expertise regarding the morphology of the geological seĴing into the numerical

models. The truncation rule controls the possible contacts between categories. Geological

expertise should be the main consideration when defining the truncation rule, however,

transition probabilities can be used to assist the decisions.

The truncation rule may introduce constraints on the achievable combinations of cate-

gorical spatial continuity. As a result, the variograms of the latent variables derived numer-

ically with the inversion approach (Section 3.3.4.1) may show hyper-continuous structures

at relatively short ranges. This can often be mitigated by redefining the arrangement of the

truncation structure and should be considered.

57
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4.1.1 Geological Expertise

The definition of geological structures involves a mixture of observed factual information

and interpretations. Factual information is gathered from core samples, trenches and ex-

posed outcrops, which represents only a infinitesimal portion of the total volume of interest.

For this reason, geological interpretation play a significant role on the geological modeling

process (Sinclair and Blackwell, 2002).

The geological expertise that goes into the definition of the truncation rule in HTPG is

mostly qualitative. Conceptual and genetic models, often based on previous experience

and similar deposits, are taken into consideration to assist the interpretation of observed

data. The geological sequence and chronology are defined. Fault systems, folding, frac-

tures and veins can extend or disrupt the mineralization depending on their chronological

order: before, during, or after, the events that led to the formation of the deposit.

4.1.2 Transition probabilities

Transition probabilities are a useful quantitative measure that have been utilized for the

data driven definition of truncation rules (Deutsch and Deutsch, 2014; Sadeghi and Boisvert,

2012). The HTPG methodology is not designed for a blind data driven truncation mask def-

inition. The objective of the HTPG is to facilitate the geological interpretation and allow

the modeler to build the truncation tree based on their expertise. This does not impede the

practitioner to utilize the information displayed in the transition matrix to assist the inter-

pretation and definition of the mapping rule. The transitions can also be used to check the

simulated models.

The diagonal terms of the transition probability represent the transition of a category

to itself. The off-diagonal terms are the transition between categories that carries the in-

formation regarding the contacts. Depending on the relation between the composite size

and the spatial continuity of the categories, the diagonal terms may be much higher than

the off-diagonal terms. For visualization purpose, the off-diagonal terms can be rescaled

to sum to 1. This facilitates the interpretation of contacts from transition probabilities.

For instance, the transition probabilities for the conceptual model shown in Figure 3.5

are calculated and shown in Figure 4.1. Note that the diagonal terms of the transition

probability is much higher than the off-diagonal terms. That makes it difficult to interpret
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the transitions across different categories.

100

  5

  0

  0

  0

  0

  0

  0

 95

  4

  0

  0

  0

  0

  0

  0

 96

  2

  2

  3

  2

  0

  0

  0

 97

  0

  1

  0

  0

  0

  0

  0

 98

  4

  0

  0

  0

  0

  0

  0

 92

  4

  0

  0

  0

  0

  0

  0

 95

1 2 3 4 5 6 7

1

2

3

4

5

6

7

(a) Up

 90

  0

  0

  0

  0

  0

  0

 10

 95

  0

  0

  0

  0

  0

  0

  5

 96

  0

  0

  0

  0

  0

  0

  1

 98

  0

  0

  0

  0

  0

  2

  1

 98

  0

  0

  0

  0

  1

  1

  2

 95

  0

  0

  0

  1

  0

  0

  4

100

1 2 3 4 5 6 7

1

2

3

4

5

6

7

(b) Down

95

 3

 0

 0

 0

 0

 0

 5

95

 2

 0

 0

 0

 0

 0

 3

96

 1

 1

 1

 1

 0

 0

 0

98

 0

 0

 0

 0

 0

 1

 1

98

 2

 0

 0

 0

 0

 1

 1

94

 2

 0

 0

 0

 0

 0

 2

97

1 2 3 4 5 6 7

1

2

3

4

5

6

7

(c) Up and down

Figure 4.1: Transition probability for the conceptual model in Figure 3.5. The displayed values
are percentages. In this case the elements in the diagonal are much higher than the off-diagonal
elements and the interpretation of the contacts across different categories is compromised.

The transition matrices with rescaled off-diagonal elements are shown in Figure 4.2 for

the same case. The rescaled matrices highlights the transition between different categories,

facilitating the interpretation. For instance, the first row in Figure 4.2b can be interpreted as:

the category 1 transitions to itself 90% of the time and it transitions downwards to category

2 100% of the time, within the remaining 10%. The comparison between the transitions

downwards (Figure 4.2a) and upwards (Figure 4.2b) reveals the asymmetry often observed

in geological seĴings.
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Figure 4.2: Transition probability for the conceptual model shown in Figure 3.5, with rescaled off-
diagonal elements. The displayed values are percentages. The rescaling highlights the transition
across different categories and facilitates the interpretation.

Some of the conclusions that can be drawn from the visualization of the transition prob-

abilities shown in Figure 4.2 are that: (1) category 1 is on top of the entire sequence as it

does not transition upwards to any other category; (2) Category 2 is bounded by categories
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1 above and 3 below; (3) Category 3 transitions to all categories but category 1 which reveals

that is must be located at a discordant boundary.

When the number of categories is relatively high, the interpretation of transition prob-

abilities may become cumbersome. In order to facilitate the interpretation of the transition

matrices in such cases, a visualization summary based on multidimensional scaling (MDS)

and minimum spanning tree (MST) is proposed. The dimension reduction methodology

is similar to the MDS approach utilized by Deutsch and Deutsch (2014) to automatically

generate truncations masks, however, the dimension is always reduced to two to facilitate

visualization. Also, there is no need to rescale or rotate the coordinates resulting from MDS

as the points are not related to the proportions and are not used to truncate the Gaussian

distribution. The MST is utilized to improve the visualization of categorical relations as

the nearest nodes are connected to each other.

The transition matrix is asymmetric and represents a measure of similarity. The MDS

requires the definition of a symmetric dissimilarity matrix SSS = (si,j). The suggested dis-

similarity matrix is defined in Equation 4.1. To achieve symmetry the transition matrix is

averaged with its transposed. The terms on the diagonal are set to zeros as a categorical

class cannot be dissimilar to itself. The off-diagonal terms are rescaled by the maximum

transition and the power of two is applied. The dimension reduction for visualization is

always performed to project into two dimensions, therefore, problems with SSS not being

positive definite should not be a concern at such low dimension (Deutsch and Deutsch,

2014).

si,j =


(

1− 1
2 (ti,j+tj,i)
tmax

)2
, if i ̸=j

0, otherwise
, tmax = max

1≤i,j≤B
i ̸=j

{
1− 1

2
(ti,j + tj,i)

}
(4.1)

The dissimilarity matrix calculated from the transition matrix in Figure 4.2c is shown in

Figure 4.3a. The respective visual summary of the transition matrix is shown in Figure 4.3b.

From Figure 4.3b it is possible to see how the category 4 is not related to any of the other

category. Also it is possible to see how categories 1, 2 and 3 are ordered and how 5, 6 and 7

are also ordered. One can also notice from Figure 4.3b that the sequence formed by 5, 6 and

7 is discordant with that formed by 1, 2 and 3 and that category 3 is the one making contact

with the others. This graphical tool together with geological understanding can be utilized
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to define the truncation rules. Once a set of rules is defined, i.e. the geologist decides to

consider 1, 2, and 3 as an ordered sedimentary unit the procedure can be repeated for the

remaining categories (Figure 4.3c).
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(a) Dissimilarity matrix (b) Visual summary (c) Visual summary for 4-7

Figure 4.3: Dissimilarity matrix for the conceptual model shown in Figure 3.5 and visual summaries
based on MDS and MST.

4.1.3 Asymmetry

The Gaussian random function (GRF) utilized within the HTPG framework are often gener-

ated with variogram based Gaussian simulation algorithms suited for stationary variables.

The variograms are symmetric functions and the resulting transitions are also symmetric

(Equation 2.32). Asymmetry is often observed in transition probabilities calculated in op-

posing directions (e.g. upwards and downwards). The enforcement of asymmetric transi-

tions in the simulated models is approximately dealt with by locally varying proportions.

The Figure 4.4 shows an example of asymmetry enforcement. The truncation of a sta-

tionary GRF with constant thresholds generates symmetric transitions (Figure 4.4a). The

sequence in the truncation mask (dark blue-light blue-yellow) can occur in any direction,

the only constraint is that light blue occurs between dark blue and yellow. The transition

probabilities in Figures 4.4b and 4.4c are symmetric with small deviations caused by er-

godic fluctuations.

The same GRF is truncated utilizing locally varying thresholds calculated from the ver-

tical proportion curve (Figure 4.4d). The non-stationary approach allowed the generation

of a asymmetric model in which the transition from dark blue to light blue to yellow can

only occur upwards whereas the opposite occurs downwards. The resulting asymmetric

transitions are shown in Figures 4.4e and 4.4f.
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Figure 4.4: Illustrative example of the utilization of non-stationary truncation for asymmetry en-
forcement. (a) shows the truncation of a stationary GRF with constant global thresholds. (b) and (c)
show the resulting transition probabilities for the truncation in (a). The slight asymmetry observed
in (b) and (c) are from ergodic fluctuations. (d) shows the truncation of the stationary GRF with
locally varying thresholds. (e) and (f) show the resulting transition probabilities for the truncation
in (d) and show strong asymmetry enforced by the trend.
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4.1.4 Geological Contacts and Non-stationarity

The lack of transition between two categories can be caused by different factors. For in-

stance, the chronological order of a sedimentary sequence may introduce a physical bar-

rier between two geological units in which the transition between one unit to another is

not possible without the transition to intermediary units. In this case, there is a sharp well

defined barrier between the two geological units and the transition or lack of transition is

enforced using the truncation rule. In certain instances, there may be no sharp well defined

barrier, and the two categories do not coexist at the same region. In these cases, the lack of

transitions could be enforced using locally varying proportions.

A GRF with three variables (Figure 4.5) is utilized to generate categorical variables by

applying three different truncation rules (Figure 4.6) to illustrate some of the different ge-

ological contacts and how they appear in the transition matrices.
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Figure 4.5: GRF utilized to demonstrate different types of categorical contacts and transitions.

The first example is generated by applying the truncation rule shown in Figure 4.6a with

constant thresholds to generate equal proportion (25%) of each category. The truncation

results in the categorical model and transitions shown in Figure 4.7. The category pairs 1-2

and 3-4 are separated by Y1 into two branches that leads to two other nodes where the pairs

are defined. The separation of the two pairs as depicted in Figure 4.6a makes the transition

between 1-2 and 3-4 more likely, however, it is not enough to remove the possibility of

one particular contact. The resulting MDS/MST visualization (Figure 4.7c) alone can be

deceiving as it depicts category 1 and 4 far from each other suggesting no contacts, however,

that can be quickly checked by looking at the transition probability matrix (Figure 4.7b).

The same truncation rule can be used with the locally varying proportions shown in

Figure 4.8. The non-stationary truncation results in the categorical model and transitions
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Figure 4.6: Different cases of truncation rule used to demonstrate different types of categorical
transitions.
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Figure 4.7: Illustrative example. (a) stationary categorical model generated by truncating the GRF
in Figure 4.5 and applying the truncation rule in Figure 4.6a; (b) resulting transition probabilities
with rescaled off-diagonal terms; and (c) visual summary based on MDS and MST.
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shown in Figure 4.9. In this case the transition between category 4 and category 1 is con-

strained by the use of a trend, resulting in the separation of the two categories without a

sharp physical barrier.
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Figure 4.8: Local proportions and respective local thresholds applied to Figure 4.6b.
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Figure 4.9: Illustrative example. (a) non-stationary categorical model generated by truncating the
GRF in Figure 4.5 applying the truncation rule in Figure 4.6a with the local thresholds shown in
Figure 4.8; (b) resulting transition probabilities with rescaled off-diagonal terms; and (c) visual sum-
mary based on MDS and MST.

The transition matrix 4.9b show the lack of transition between rock type 1 and 4, but

it does not necessarily show the nature of the physical separation between the two units.

For instance, a similar transition matrix can be achieved using the truncation rule shown in

Figure 4.6b without a trend model. Note that this truncation rule is only applied to Y2 and

Y3. This truncation results in the categorical model and transitions shown in Figure 4.10.

The transition probabilities in Figure 4.9b are similar to those in Figure 4.10b even though

the nature of the geological contacts are very different.

If categorical pairs 1-2 and 3-4 are disconnected in space, an additional category is re-

quired to ensure the physical separation between the two sets. The categorical model and
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Figure 4.10: Illustrative example. (a) stationary categorical model generated by truncating the GRF
in Figure 4.5 applying the truncation rule in Figure 4.6b (note that only Y1 and Y2 are used); (b)
resulting transition probabilities with rescaled off-diagonal terms; and (c) visual summary based
on MDS and MST.

transitions shown in Figure 4.11 are results of the truncation rule shown in Figure 4.6c ap-

plied to the GRF. In this case, category 5 removes all the transitions across the two pairs of

categories. This is clearly seem in the transition matrix shown in Figure 4.11b and in the

MDS/MST visualization in Figure 4.11c.
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Figure 4.11: Illustrative example. (a) stationary categorical model generated by truncating the GRF
in Figure 4.5 applying the truncation rule in Figure 4.6c; (b) resulting transition probabilities with
rescaled off-diagonal terms; and (c) visual summary based on MDS and MST.

4.2 Accounting for Locally Varying Proportions

Categorical variables are often non-stationary and the utilization of locally varying propor-

tions is common. The spatial variability of the categorical variable in these cases is a com-

bination of the continuity of the deterministic trend and the stochastic residuals. Indicator

variograms calculated directly from categorical data without consideration of the spatial

structure of the trend leads to realizations that are more spatially continuous than the un-
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derlying variable. In order to achieve appropriate variogram reproduction while modeling

categorical variables with trends, it is important to calculate and utilize the variogram of

the indicator residuals.

A synthetic 2D example is created to illustrate the required steps for modeling categor-

ical variables in presence of a trend. The model size is set to 100x100 grid cells of 1 unit

each. The example is built utilizing a single Gaussian latent variable that is truncated by

a single threshold resulting in two categories (0 and 1). A local trend varying with the Y

coordinate is created starting from 0.995 proportion of category 1 at lowest Y coordinate to

0.005 proportion of category 1 at highest Y coordinate (Figure 4.12a). Local thresholds are

calculated to match the local proportions (Figure 4.12b).
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Figure 4.12: Trend model for the 2D synthetic model. (a) Local proportion of category 1. (b) local
threshold calculated to match the local proportions.

The variogram of the latent variable has a Gaussian structure (Equation 2.6) with ranges

set to 16 and 8 units in X and Y directions respectively. A set of 100 unconditional realiza-

tions are generated using sequential Gaussian simulation (SGS). The Gaussian realizations

are truncated utilizing the local thresholds (Figure 4.12b) to generate the reference categor-

ical models. Three realizations of the reference models are shown in Figure 4.13.

The variograms of the reference models are shown in Figure 4.14. The light red and

light blue are the variograms of each realization and the solid line is the average vari-

ogram. The average variogram matches the reference used for the simulation, which is

shown as dashed line in Figure 4.14a. In practice, the underlying latent variables are not

observed and the categories are the only available data. The true variograms of the latent

variables are unknown and the only reference variograms that are observed are the indica-
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(b) Categorical realizations

Figure 4.13: Three unconditional realizations of the reference Gaussian models (a) and the reference
categorical models generated after truncation (b).

tor variograms calculated from the categorical data. In this example, the average indicator

variogram shown as solid lines in Figure 4.14b is the equivalent to the data variogram.

Lag size

S
em

iv
ar

io
g
ra

m

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

(a) Reference Gaussian variogram
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(b) Reference indicator variogram

Figure 4.14: Variogram reproduction for the reference models. Shades of red is utilized for the
variograms calculated in X direction and blue is utilized for the variograms in Y direction. Solid
dark colored lines are utilized for the average variograms and light colored lines are utilized for the
variograms of the realizations. Dark dashed lines in (a) show the reference variogram utilized to
generate the Gaussian realizations. The variograms in (b) are standardized.

The indicator variograms are used directly to define the Gaussian variograms. The

numerical derivation approach described in Section 3.3.4.1 is utilized for this step. The

inversion will consider the desired indicator variogram and truncation parameters and

calculate the latent variable variograms that best match the input indicator variogram.
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The optimized points are shown as markers in Figure 4.15a and the model fiĴed to the

optimized points is shown as solid lines. The dashed lines in Figure 4.15a are the reference

models utilized to build the synthetic example, however, the true variogram of underlying

Gaussian variables is unknown in practice. Note that the software matches the reference

indicator variogram perfectly (Figure 4.15b), however, by not accounting for the trend dur-

ing the calculation of the reference indicator variogram, the Gaussian variogram will show

greater continuity than it should.
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(a) Derived variogram
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(b) Inversion reproduction

Figure 4.15: Results from numerical variogram derivation. Red is utilized for the variograms calcu-
lated in X direction and blue is utilized for the variograms in Y direction. Solid dark colored lines
are utilized for the fiĴed models. Markers are the optimized points for the Gaussian variogram in
(a) and the expected reproduction for the indicator variogram in (b). The dashed lines in (a) are
calculated from the reference Gaussian variogram utilized to build the example.

The second and correct approach is to consider the trend while calculating the reference

indicator variogram. One way to consider the trend during the variogram calculation is

to calculate and model the variogram of the residuals. The variogram of the residuals

calculated for all reference models are shown in Figure 4.16a.
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(a) Variogram of residuals
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(b) Derived variogram
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(c) Inversion reproduction

Figure 4.16: Results from numerical variogram derivation utilizing the variogram of the residuals
as input. Red is utilized for the variograms calculated in X direction and blue is utilized for the
variograms in Y direction. Solid dark colored lines are utilized for the average variogram in (a) and
fiĴed models in (b) and (c). The light colored lines in (a) are the variograms of each realization.
Markers are the optimized points for the Gaussian variogram in (b) and the expected reproduction
for the indicator variogram in (c). The dashed lines is (b) are calculated from the reference Gaussian
variogram utilized to build the example.
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The average variogram of the residuals (Figure 4.16a) are standardized, modeled and

rescaled to the proper sill accordingly to the declustered proportion of the corresponding

category before their utilization to define the latent variable variogram. The variogram is

modeled to the sill (solid line in Figure 4.16c), even though the experimental variogram

goes slightly above it. The derived points for the latent variable variogram are shown as

markers and the fiĴed model is shown as solid lines in Figure 4.16b. The dashed lines

in Figure 4.16b is the reference model utilized to build the synthetic example. Note that

the derived variogram (Figure 4.16b) is much closer to the true variogram (Figure 4.14a)

than the derived variogram without considering the trend (Figure 4.15a). The inversion

approach is able to perfecly match the variogram of the residuals (Figure 4.16c).

Two sets of 100 realizations are generated utilizing the two derived variograms calcu-

lated with and without considering the indicator residuals. The same seed number utilized

to simulate the initial reference models is also utilized to generate the two sets of realiza-

tions to facilitate the visualization of the differences between the two approaches. Three

realizations of each case are shown in Figure 4.17. The spatial continuity of the models

shown in Figure 4.17a are increased by not considering the trend during the definition

of the Gaussian variable variograms. The models generated with the latent variable vari-

ogram derived from the variogram of the residuals have virtually the same spatial continu-

ity as the reference models with small differences due to the slightly different variogram

(Figure 4.16b).

The variogram reproduction for the two cases are shown in Figure 4.18. As expected,

the differences seem in Figure 4.17 are also observed in the variogram reproduction for each

case. By defining the variogram of the Gaussian variables from the indicator variogram of

the data directly and later utilizing local thresholds to truncate the Gaussian models, the

continuity of the trend is introduced two times. This results in models with exaggerated

continuity. By defining the Gaussian variogram from the variogram of the indicator resid-

uals, the continuity of the trend is only added during the truncation with local thresholds

and the final continuity of the simulated models matches the continuity observed in the

raw data.
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Figure 4.17: Resulting categorical models from the two approaches. The models generated without
considering the residuals are shown in (a) and the models generated accounting for the variogram
of the residuals are shown in (b).
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Figure 4.18: Variogram reproduction for the two cases with and without the use of the variogram of
the residuals. The variograms in (a) are result of the approach without considering the variogram
of the residuals and (b) show the results when the variogram of the residuals is utilized. Shades of
red is utilized for the variograms calculated in X direction and blue is utilized for the variograms
in Y direction. Solid dark colored lines are utilized for the average variograms and light colored
lines are utilized for the variograms of the realizations. Dark dashed lines show the target reference
indicator variogram.
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4.3 Hyper-continuity and Variogram Reproduction

The application of truncated Gaussian methods, including HTPG, requires the definition

of the variograms of the latent variables. Depending on the mapping and categorical pro-

portions, the derived variograms for the latent variables might show extreme continuity

at smaller lags and quickly transition to higher variability after a certain distance. This

hyper-continuity cannot be modeled with known variogram models. This feature is unde-

sirable and can often be mitigated by rearranging the ordering of the truncation structure

in HTPG.

The causes and implications of hyper-continuity are investigated using a truncation

structure consisting of two Gaussian latent variables with one truncation threshold applied

to each. This configuration results in 3 categories. The first Gaussian variable at the top of

the truncation structure is utilized to separate category 1 from categories 2 and 3. The sec-

ond Gaussian variable is truncated to separate categories 2 from 3. With this configuration,

category 1 can have a different variogram structure from category 2 and 3, but 2 and 3 have

the same variogram structure as they share an ending node on the truncation tree.

Three main factors are investigated in this section: (1) order in the truncation structure;

(2) continuity of the categories; and (3) proportion of each category. To investigate the

importance of the categorical proportion, the proportion of the category 1 is changed in 9

steps from 0.1 to 0.9. The remaining proportion is split equally between category 2 and 3

for each case. Three continuity cases are considered. The first case has category 1 as the

most continuous with range of 24 units while category 2 and 3 are the least continuous

with range of 8 units. The second case equally continuous categories range of 8 units and

the third case has category 1 as the least continuous with range of 8 units and categories 2

and 3 being the most continuous with range of 24 units.

For each one of these cases the numerical derivation (Section 3.3.4.1) is run to define

the variogram of the latent variables. The resulting expected reproduction of the inversion

approach is only correct if the Gaussian model can be reasonably fiĴed with valid models. If

the fiĴed models are not close enough to the optimized points, the variogram reproduction

should be evaluated after generating simulated models. In most cases, fiĴing the optimized

points is straightforward, however, this is not true for hyper-continuous points. In order to

demonstrate how much the actual reproduction deviates from the predicted, the optimized
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variograms points are fiĴed with Gaussian variogram structures (Equation 2.6) and used

to simulate 100 realizations at grid resolution of 100x100 cells of 1x1 unit each. The average

variogram calculated from all realizations is compared with the predicted by the inversion

approach for each case.

The results for the case in which the category 1 has the most continuity are shown in Fig-

ure 4.19. The derived points for the latent variables variograms are shown in Figure 4.19a.

Hyper-continuity does not occur for the case in which category 1 has the most continuity,

however, the categorical variogram reproduction deteriorates as the proportion of category

1 increases. The expected variogram reproduction shown in Figure 4.19b is not much dif-

ferent from the actual variogram reproduction shown in Figure 4.19c. This is expected as

the optimized points are well matched by the fiĴed models in Figure 4.19a.
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(c) Actual reproduction

Figure 4.19: Results for the case in which category 1 is the most continuous. The variograms are
colored according with category 1 proportion. The circular markers in (a) are the derived points
for the first latent variable and the cross markers are for the second latent variable. The solid lines
in (a) are the fiĴed models for first latent variable and the dashed lines are the fiĴed models to the
second latent variable. (b) shows the expected variogram reproduction for category 1 (solid lines)
and categories 2 and 3 (dashed lines). Black lines in (b) are the reference variograms used as input.
(c) is similar to (b), however, it is calculated from actual simulated models utilizing the fiĴed models
shown in (a).

The results for the case in which the category 1 has the same continuity as the cate-

gories 2 and 3 are shown in Figure 4.20. Hyper-continuity starts to appear in this example,

specially for the cases in which category 1 have high proportions (0.8 and 0.9) as shown

in Figure 4.20a. The expected variogram reproduction shown in Figure 4.20b is not much

different from the actual variogram reproduction shown in Figure 4.20c even though the

optimized points are not well matched by the fiĴed models (Figure 4.20a) for some in-

stances. This is aĴributed to the fact that all categories have the same structure and the

hyper-continuity is not relevant for such high proportion of category 1, which is control-

ling most of the continuity.

The results for the case in which the category 1 has the least continuity are shown in
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(a) Optimized latent variogram
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(c) Actual reproduction

Figure 4.20: Results for the case in which all categories are equally continuous. The variograms are
colored according with category 1 proportion. The circular markers in (a) are the derived points
for the first latent variable and the cross markers are for the second latent variable. The solid lines
in (a) are the fiĴed models for first latent variable and the dashed lines are the fiĴed models to the
second latent variable. (b) shows the expected variogram reproduction for category 1 (solid lines)
and categories 2 and 3 (dashed lines). Black lines in (b) are the reference variograms used as input.
(c) is similar to (b), however, it is calculated from actual simulated models utilizing the fiĴed models
shown in (a).

Figure 4.21c. The hyper-continuity is strong in this case. For all the cases in which category

1 have proportion higher than 0.2, the optimized points for the second latent variable show

hyper-continuity (Figure 4.21a) and are not well matched by the fiĴed models. This condi-

tion deteriorates the expected variogram reproduction shown in Figure 4.21b. For propor-

tions of category 1 higher than 0.4, it is not possible to reproduce the indicator variograms

even for the numerically derived points. The actual variogram reproduction (Figure 4.21c)

is worst than the predicted, however, it is reasonably close to the predicted ones consider-

ing how poorly matched the optimized points are by the fiĴed models in Figure 4.21a.
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(c) Actual reproduction

Figure 4.21: Results for the case in which category 1 is the least continuous. The variograms are
colored according with category 1 proportion. The circular markers in (a) are the derived points
for the first latent variable and the cross markers are for the second latent variable. The solid lines
in (a) are the fiĴed models for first latent variable and the dashed lines are the fiĴed models to the
second latent variable. (b) shows the expected variogram reproduction for category 1 (solid lines)
and categories 2 and 3 (dashed lines). Black lines in (b) are the reference variograms used as input.
(c) is similar to (b), however, it is calculated from actual simulated models utilizing the fiĴed models
shown in (a).

The results lead to the conclusion that, whenever possible, the categories with lowest
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proportions and highest continuity should be defined earlier on the truncation tree while

the least continuous categories with higher proportions should be defined closer to the

end nodes of the truncation structure. As the dark blue lines are well behaved in all results

(Figures 4.19, 4.20 and 4.21), the proportion criteria should be given priority over continuity

if a decision is required. Thankfully, the inversion approach can be quickly run and the

resulting variograms assessed before performing simulation at large numeric models.

4.4 Conclusion

The practical aspects and parameterization of the HTPG is discussed in this Chapter. Sev-

eral factors are taken into consideration to define the truncation rules utilized in HTPG. The

hierarchical truncation rules are designed to facilitate the introduction of expert knowledge

into the modeling by constraining the geological transitions that are allowed in a given ge-

ological seĴing.

In addition to the professional input, the utilization of quantitative information calcu-

lated from data is also discussed. The transition matrix calculated along the drilling path

contains information regarding the geological contacts, ordering and symmetry. A graph-

ical approach based on MDS and MST is proposed to facilitate the interpretation. The

methodology allows a quick visualization of the relationships between the categories.

The problem of non-stationarity and variogram reproduction while modeling with HTPG

is also discussed. It is shown that the indicator variogram calculated from the raw data is

not suitable for the definition of the latent variables variogram in presence of a trend. In this

situation, the variogram of the indicator residuals must be used instead. This procedure

ensures proper variogram reproduction where the utilization of the indicator variogram

from the raw data would lead to models with higher continuity than expected.

The causes of hyper-continuous variogram points after latent variogram optimization is

also investigated. It is shown that the categorical proportion, spatial continuity and relative

position on the truncation structure play major roles in the occurrence of hyper-continuity.

It is also shown that categories with lower proportions should be defined as early as possi-

ble in the truncation structure as well as categories with the highest continuity. The least

continuous categories and categories with highest proportions should be defined closer to

the ending nodes of the truncation structure whenever possible.
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MѢљѡіѝљђ Dюѡю IњѝѢѡюѡіќћ ѓќџ
HTPG
The truncated Gaussian techniques, including hierarchical truncated pluri-Gaussian

(HTPG), assume that the categorical variable is the result of the truncation of underlying

latent variables. In practice, only the categorical variable is observed. This translates the

practical application of HTPG into a missing data problem in which all latent variables

are missing. The latent variables are required at data locations in order to condition cat-

egorical realizations to the observed categorical data. The imputation of missing latent

variables at data locations is often achieved by either assigning valid constant values or

spatially simulating latent variables subject to categorical observations. Realizations of la-

tent variables can be used to condition all model realizations. Using a single realization or

a constant value to condition all realizations is the same as assuming that the latent vari-

ables are known at the data locations and this assumption affects uncertainty near the data

locations.

This chapter is focused on the techniques for imputation of latent variables in the trun-

cated Gaussian framework, their impact on uncertainty of simulated categorical models

and possible effects on factors affecting decision making. It is shown that the use of a

single realization of latent variables leads to underestimation of uncertainty and overes-

timation of measured resources while the use of constant values for latent variables may

lead to considerable over or underestimation of measured resources. The results highlight

the importance of multiple data imputation in the context of HTPG.

The techniques for data imputation in the truncated Gaussian framework are mostly

based on the Gibbs sampler approach. The convergence of the Gibbs sampler algorithm can

be problematic and a framework to mitigate the problems with convergence is proposed

in this chapter. An alternative data imputation approach based on simulated annealing is

also proposed.

76
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5.1 Introduction

In practice the categorical variable is observed and the underlying latent variables are not;

therefore, the assignment of the latent variable values in truncated pluri-Gaussian simula-

tion (TPGS) is a missing data problem (LiĴle and Rubin, 2002). The assignment of Gaussian

values to the sample data locations is achieved by either simulating the unknown Gaussian

values using the right spatial structure (Arroyo et al., 2012; Astrakova et al., 2015; Emery

et al., 2014; Galli et al., 1994; Lantuéjoul and Desassis, 2012) or assigning the centroid of

each categorical class with respect to the truncation rule (Rossi and Deutsch, 2014). The

laĴer methodology generates data with exaggerated short range continuity that does not

match the variogram of latent variables used for modeling. A single or multiple realiza-

tions of the Gaussian latent variables at each data location can be used to condition all

model realizations.

Using fixed values for the missing latent variables is the same as assuming that they

are known (sampled). This will likely result in incorrect uncertainty assessment as, in re-

ality, the values are unknown. There are multiple realizations for the latent variables that

result in the same observed categorical data with the same spatial structure and the same

truncation rule. The missing data problem for spatially correlated geological variables is

investigated by BarneĴ and Deutsch (2015) in the context of modeling continuous variables.

This chapter is focused on the investigation of the impact of the Gaussian data assignment

and multiple data imputation on the uncertainty of categorical models and the practical im-

pact on uncertainty and resource classification affecting decision making. The discussed

topics and results presented in this chapter are not only important for the development

of the HTPG approach, but are also relevant to the application of all truncated Gaussian

techniques.

5.2 Simulating latent variables subject to categorical

observations

The truncation rule controls the transition probability between categories and their propor-

tions and it also controls the link between the continuity of the latent Gaussian variables

and the continuity of the categorical variables. The current practice in the truncated Gaus-
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sian methodologies is to define the truncation rule first in order to match the transition

probabilities and proportions (Deutsch and Deutsch, 2014) and later define the variogram

of the latent variables for the fixed mask to match the categorical variables continuity after

truncation.

Simulating spatially correlated variables from a truncated multivariate Gaussian dis-

tribution is not trivial, however, the truncated univariate conditional distributions can be

easily sampled. The Gibbs sampler algorithm (Geman and Geman, 1984) is the standard

choice for simulation in this context as other alternatives such as rejection sampling are not

practical (Armstrong et al., 2011). Variations of the Gibbs sampler algorithm for the prob-

lem of Gaussian data assignment for use with TPGS have been proposed and are reviewed

here. Simulated annealing is a flexible methodology that can be used as an alternative

to the Gibbs sampler for simulation of Gaussian random functions (GRFs) (Deutsch and

Cockerham, 1994) subject to complex constraints. An algorithm for simulation of spatially

correlated Gaussian latent variables subject to categorical data observations using simu-

lated annealing is developed.

A synthetic 2D example is used to illustrate the different simulation methods. Two

independent GRFs are generated using unconditional LU simulation (Davis, 1987) to pop-

ulate a grid of 50x50 cells of size 1x1 meter. The latent variable Y1 has anisotropic Gaussian

variogram with practical ranges of 32 and 8 meters in horizontal and vertical directions

respectively while the latent variable Y2 has isotropic Gaussian variogram with practical

range of 16 meters. The resultant simulated fields are shown in Figure 5.1.
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(b) GRF Y2

Figure 5.1: Reference GRF’s generated for the example

A truncation rule similar to the ones obtained by the multidimensional scaling (MDS)

based methodology (Deutsch and Deutsch, 2014) is used to truncate the two random vari-
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ables Y1 and Y2 into three categorical classes (Figure 5.2). The truncation rule with the

simulated bivariate cloud is shown in Figure 5.2a and the resultant categorical model after

truncation is shown in Figure 5.2b.
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(a) Truncation mask and simulated points
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(b) Truncated categorical model

Figure 5.2: Truncation rule and simulated categorical model

5.2.1 Gibbs sampler algorithm

Consider a set of n observations xxx = (x(uuu1), . . . , x(uuun)) of a categorical random variable

X(uuu) with a finite set B of possible categories, where uuu is the vector of spatial coordi-

nates. Also, consider the set of K latent variables at all data locations to be represented

by yyy =
(
yyy⊤(uuu1), . . . , yyy⊤(uuun)

)
where yyy(uuui) ∈ RK and is a realization of the Gaussian ran-

dom variable YYY (uuui) = (Y1(uuui), . . . , YD(uuui)) at ith data location. The latent variables YYY (uuui)

(i = 1, . . . , n) are assumed to have independent components with zero mean and unit vari-

ance (YYY (uuui) ∼ N (000, III) ∀i ∈ {1, . . . , n}). For notation simplicity the vector of spatial coordi-

natesuuui will be omiĴed and represented by the subscript i. Finally, consider the truncation

rule to be represented byMθ which defines the map Mθ : RK 7→ B such thatMθ(yyyi) = xi

(i = 1, . . . , n), where θ is the set of parameters that define the truncation rule. The standard

Gibbs sampler algorithm proceeds by:

(1) Set iteration counter to zero: t = 0

(2) Initialize the set of latent variables yyy(t) with arbitrary values subject to the mapping

constraint: Mθ(yyy(t)) = xxx

(3) Increment iteration counter: t = t+ 1

(4) Set yyy(t) = yyy(t−1)

(5) Define a random path through data points
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(6) Loop for each variable j = 1, . . . ,K

(6.1) For each data location in the random path, update its value by a new Gaussian

value drawn from the conditional distribution given the surrounding data values.

y
(t)
j,i ∼ N (µ̃j,i, σ̃j,i) (5.1)

µ̃j,i =
∑
l∈Ni

λ
(j)
l,i × y

(t)
j,l (5.2)

σ̃2
j,i = 1−

∑
l∈Ni

λ
(j)
l,i × C

(j)
l,i (5.3)

∑
l∈Ni

λ
(j)
l,i × C

(j)
l,m = C

(j)
m,i ∀m ∈ Ni (5.4)

where Ni represents the neighboring locations, which can be constant (all neigh-

bors) or it could be restricted by a search around the ith location. The laĴer results

in an approximation of the conditional mean and variance and may affect conver-

gence of the algorithm. C(j)
l,m is the spatial covariance between locations l andm for

variable j. Note that the Equations 5.2 and 5.3 are derived under an assumption

of zero mean and unit variance.

(6.2) Test if the updated value of y(t)j,i satisfies the conditionMθ(yyy
(t)
i ) = xi. If the map-

ping is not satisfied, the sampling is repeated until the conditions are met before

moving to the next data point in the random path. Note that depending on the

mapMθ the boundaries for y(t)j,i can be calculated in advance and applied to con-

strain the distribution in Equation 5.1 to avoid multiple sampling aĴempts.

(7) Repeat steps from 3 for a maximum number of iterations.

Solving the system of equations (Equation 5.4) considering all neighboring data re-

quires the inverse of a covariance matrix of rank n − 1 and quickly becomes impractical

with increasing number of data. For practical purposes the size of the covariance matrix

must be reduced. An arbitrary number of closest points (Ni) are used to calculate the mean

and variance of conditional distributions used in Gibbs iteration. This approximation af-
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fects the convergence of the algorithm (Astrakova et al., 2015; Emery et al., 2014; Lantuéjoul

and Desassis, 2012).

The Gibbs sampler with restricted neighborhood is run for the 2D example presented in

the previous section. The results for 1,000 iterations using nearest 24 neighbors are shown

in Figure 5.3. The quantiles of the realization after each iteration are shown in the Fig-

ures 5.3d and 5.3e and are compared with the quantiles from N (0, 1) distribution and the

reference model (Figure 5.1). It is clear that the values move towards extreme highs and

lows with increasing number of iterations.
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(c) Realization of Y2
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(e) Convergence check Y2

Figure 5.3: Results for 1,000 iterations of the standard Gibbs sampler with restricted neighborhood
(nearest 24). It is clear that the realizations do not converge. Items (d) and (e) show the quantiles
of the realizations (solid lines), the quantiles fromN (0, 1) (doĴed lines), and the quantiles from the
reference model (dashed lines). The quantiles highlighted correspond to the standard Gaussian
percentiles 0.1, 0.3, 0.5, 0.7 and 0.9.

5.2.2 Propagative Gibbs sampler

Galli and Gao (2001) proposed an alternative that does not require the calculation of the

inverse of the covariance matrix, therefore, allowing the use of all neighbors even for a large
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number of data observations. Lantuéjoul and Desassis (2012) built on the work of Galli and

Gao (2001) and introduced the propagative Gibbs sampler. Emery et al. (2014) suggested an

algorithm that uses the propagative Gibbs sampler to simulate Gaussian random functions

subject to inequality constraints. The laĴer algorithm is described below:

(1) Set iteration counter to zero: t = 0

(2) Initialize the set of latent variables yyy(t) with arbitrary values subject to the mapping

constraint: Mθ(yyy(t)) = xxx

(3) Increment iteration counter: t = t+ 1

(4) Define a random path through data points

(5) Loop for each variable j = 1, . . . ,K

(5.1) Select a pivot i according to the random path and update it according to Equa-

tion 5.5.

y
(t)
j,i ∼ N (0, 1) (5.5)

(5.2) The new pivot value is used to update all non-pivot locations according to Equa-

tion 5.6.

y
(t)
j,l = y

(t−1)
j,l +

(
−y(t−1)

j,i + y
(t)
j,i

)
C

(j)
i,l ∀l ̸= i (5.6)

(5.3) Test if the updated values satisfy the conditionMθ(yyy(t)) = xxx. If the mapping is

not satisfied, the sampling is repeated until the conditions are met before moving

to the next data point in the random path. Depending onMθ, it may be possible

to define boundaries for y(t)j,i in advance and use them to constrain the sampling

in Equation 5.5.

(6) Repeat steps from 3 for a maximum number of iterations.

This algorithm is shown to work well for a single latent variable with simple trunca-

tion map (Emery et al., 2014). Lantuéjoul and Desassis (2012) found experimentally that

initializing the algorithm with zeroes improves convergence. This may not be possible

when simulating latent variables subject to complex constraints. In fact, for the 2D example

presented here, the algorithm failed to converge after a considerable number of iterations
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(Figure 5.4). The algorithm is stable in the sense that it does not diverge to extreme val-

ues, however, it also does not converge to the correct covariance of latent variables across

different rock types within a reasonable number of iterations.
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(b) Realization of Y1
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(e) Convergence check Y2

Figure 5.4: Results for 1,000 iterations of the propagative Gibbs sampler. It is clear that the real-
izations do not converge to a proper bivariate Gaussian distribution in (a) and show clear hard
boundaries between some categories (b and c). Items (d) and (e) show the quantiles of the realiza-
tions (solid lines), the quantiles from N (0, 1) (doĴed lines), and the quantiles from the reference
model (dashed lines). The quantiles highlighted correspond to the standard Gaussian percentiles
0.1, 0.3, 0.5, 0.7 and 0.9.

5.2.3 Combined Gibbs sampler

The combined Gibbs sampler is proposed by Astrakova et al. (2015) and consists of combin-

ing iterations of the standard and propagative Gibbs sampler in order to improve conver-

gence. Astrakova et al. (2015) propose to use several iterations of the standard Gibbs sam-

pler at the start and then proceed with alternating standard and propagative algorithms.

The same problems with convergence shown in Figure 5.3 for the standard algorithm is

also noticed for alternating the propagative and standard Gibbs sampler (Figure 5.5).

It seems reasonable to use the standard Gibbs sampler at early iterations to improve
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(e) Convergence check Y2

Figure 5.5: Results for 1,000 iterations of the combined algorithm alternating between the standard
and propagative Gibbs sampler. The same problems with convergence is found by alternating the
two algorithms. Items (d) and (e) show the quantiles of the realizations (solid lines), the quantiles
fromN (0, 1) (doĴed lines), and the quantiles from the reference model (dashed lines). The quantiles
highlighted correspond to the standard Gaussian percentiles 0.1, 0.3, 0.5, 0.7 and 0.9.

the spatial correlation between locations with different categorical observations, however,

continuing with the alternating algorithm does not result in a stable sequence. A second

run of the combined Gibbs sampler is aĴempted, but this time the standard Gibbs sampler

iterations are ceased after iteration 400 and only the propagative algorithm is used beyond

that iteration. The results are shown in Figure 5.6. It is clear from the Figures 5.6d and 5.6e

that this methodology generated a sequence that remains stable even after a large number

of iterations (2,000).

5.2.4 Simulated annealing

A methodology similar to the one described by Deutsch and Cockerham (1994) is proposed

here for the simulation of spatially correlated latent variables subject to categorical data

observations. Modifications to the algorithm are proposed to account for the restrictions
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(b) Realization of Y1
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(e) Convergence check Y2

Figure 5.6: Results for 2,000 iterations of the combined algorithm alternating between the standard
and propagative Gibbs sampler up to 400 iterations and proceeding with propagative Gibbs sampler
only. Items (d) and (e) show the quantiles of the realizations (solid lines), the quantiles fromN (0, 1)
(doĴed lines), and the quantiles from the reference model (dashed lines). The quantiles highlighted
correspond to the standard Gaussian percentiles 0.1, 0.3, 0.5, 0.7 and 0.9.

given by the truncation rule and to allow its use for simulation of scaĴered data locations

(not gridded). The algorithm is described bellow:

(1) Set iteration counter to zero: t = 0

(2) Initialize the set of latent variables yyy(t)i ∼ N (000, III) ∀i ∈ {1, . . . , n} using rejection sam-

pling in order to satisfy the mapMθ(yyy(t)) = xxx

(3) Increment iteration counter: t = t+ 1

(4) Select a random index i ∈ {1, . . . , n}

(5) Select a second random index l such that l ̸= i and xi = xl

(6) Update the latent variables by swapping the location iwith location l while maintaining

all other locations unchanged.

yyy
(t)
i = yyy

(t−1)
l (5.7)
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yyy
(t)
l = yyy

(t−1)
i (5.8)

yyy(t)m = yyy(t−1)
m ∀m ̸= l and m ̸= i (5.9)

(7) Evaluate the objective function

O
(
yyy(t)

)
=

H∑
h=1

[
γh − γ̂h

(
yyy(t)

)]2
(5.10)

where γh is the target variogram, γ̂h is the experimental variogram and H is a set of lag

vectors.

(8) Draw a random number from a uniform distribution u ∼ U (0, 1)

(9) Calculate temperature

t(t) = t(0)αk ∀k > 0, α ∈ ]0, 1[ and t(0) ∈ ]0,+∞[ (5.11)

(10) Accept changes if u < exp{O(yyy(t))−O(yyy(t−1))
t(t)

}, otherwise reject changes and reset values

to yyy(t) = yyy(t−1)

(11) Repeat steps from 3 for a maximum number of iterations.

The objective function (Equation 5.10) for the proposed algorithm is the mismatch of

spatial structure defined by the variogram model and the spatial structure of the assigned

Gaussian values. The spatial structure must be reproduced for all directions and different

distance lags. A similar strategy as the one presented in Deutsch and Cockerham (1994) is

used in order to ensure the spatial structure. A set of different angles and lags are defined

within a certain range (Figure 5.7a) and for each of these lag vectors a search tolerance is

allowed in order to make the calculation more stable for scaĴered data points (Figure 5.7b).

The proposed simulated annealing algorithm is run for 500,000 iterations for the same

2D example. The results are shown in Figure 5.8. Note that the bivariate scaĴer plot shown

in Figure 5.8a is generated at initialization and remains unchanged throughout the itera-

tions. The final realizations shown in the Figures 5.8b and 5.8c have an increased short scale

variability, however, this might not be of great concern for the simulation of scaĴered data

points for the purpose of conditioning TPGS realizations. The simulated annealing algo-

rithm represents a viable alternative for cases in which the truncation rule is too complex
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(a) Variogram volume (modified from Deutsch
and Cockerham (1994))

(b) Search tolerance

Figure 5.7: Lag vectors and tolerance parameters used for experimental variogram calculation that
goes into the objective function within simulated annealing implementation.

for use with Gibbs sampler and for cases in which other important factors are relevant to

the simulation and can be easily added to the objective function of the simulated anneal-

ing algorithm. Examples of other factors that have been considered with annealing are

two-point transition probabilities, seismic data, and multiple-point statistics (Deutsch and

Cockerham, 1994).
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(b) Realization of Y1
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(c) Realization of Y2

Figure 5.8: Results for 500,000 iterations of the simulated annealing algorithm.

An alternative approach based on simulated annealing is also proposed by Emery et al.

(2014). The alternative is a modification of the propagative Gibbs sampler in which the

constraints in the Gaussian distribution are not directly enforced by the Gibbs sampler
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iterations. The simulated annealing targets the minimization of the mismatch between

simulated and observed categorical data by penalizing latent variables that are simulated

beyond the constraints. The results from this approach may not match the observed data.

The simulated annealing approach is CPU intensive and the example in Figure 5.8 takes 20

minutes to run with an Intel® Core™ i7-4790K CPU @ 4.00GHz.

5.3 Impact of multiple data imputation

The impact of the different methods for the imputation of missing latent values to categor-

ical data observations in the context of TPGS is investigated in this section. Centroid as-

signment, single realization and multiple realizations (multiple imputation) are compared

here. It is clear that there is a great difference in terms of latent variable assignment, but it

is not clear how these strategies affect the uncertainty of the final categorical realizations,

which is what maĴers the most.

The uncertainty in the categorical data can be measured using Shannon’s entropy (Chris-

takos, 1990; Shannon, 1948) (Equation 5.12) and used to compare (visualize) the impact of

the different data assignment strategies. The Shannon’s entropy is adequate for the visu-

alization of local variations of assessed uncertainty resulting from each method. It is also

important to investigate the effect of data assignment to relevant practical factors affecting

decision making such as resource evaluation and classification. This will provide insight

on the global impact of the uncertainty assessment changes.

H = −
∑
i ∈ C

pi log pi (5.12)

Samples of the 2D synthetic model are used to illustrate the effects of the different as-

signment strategies on the uncertainty of categorical simulations. The Shannon entropy is

calculated for 400 TPGS categorical realizations using the three data assignment strategies.

The result is shown in Figure 5.9. It is clear that the assessment of uncertainty using simula-

tion with different data assignment methodologies is drastically affected. The uncertainty

is changed mostly close to boundaries between categories and in between the drillholes.

Using multiple imputation as the reference, the single realization method consistently

underestimates uncertainty. This is an expected result as fixing the data values will trans-

late to less variability between the realizations. The centroid assignment methodology re-
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(c) Multiple

Figure 5.9: Uncertainty of categorical realizations for the 2D example. Colored markers represent
the categorical samples from reference model. The gridded model is colored by the Shannon en-
tropy value calculated using 400 categorical realizations from TPGS

sults in less variability close to the data locations specially at boundaries and between the

drillholes. At first glance, the increased variability in those areas while using the centroid

method is unexpected as multiple imputation leads to varying conditioning data for TPGS

and therefore is expected to result in highest uncertainty on categorical realizations when

compared to fixed conditioning data. The reason for the larger variability is aĴributed

to the fact that the latent variables at the boundaries between categories are far from what

they should be; they are at the centroid of the class and not close to the boundary of another

class. This artificially increases the uncertainty in specific areas of the model.

A 3D synthetic model is used to illustrate the impact of using different latent data im-

putation methodologies on resource evaluation and classification. The reference model is

built with the simulation of two latent variables with Gaussian variograms. The first has

major direction dipping at 45o, with azimuth of 90o and no tilt. The ranges are 300 meters

for both major and mid directions and 50 meters for minor direction. The second latent

variable has an isotropic structure with range 300 meters. The reference model is built

on a grid of 100x100x50 blocks of size 10x10x5 meters. The simulated latent variables are

trimmed to generate a reference categorical model shown in Figure 5.10a.

In order to evaluate the resources, a grade variable is simulated per rock type where

rock type 1 (Figure 5.10a) is barren rock, rock type 2 and rock type 3 are mineralized with

the same average grade but different variability and spatial structure. The grade distribu-

tion in rock type 2 follows a lognormal distribution with mean of 0.75% and variance of

0.125%2. The grade distribution in rock type 3 follows a lognormal distribution with mean

of 0.75% and variance of 0.0625%2. The grade variable in rock type 2 has a spherical var-
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iogram with major direction dipping at 45o angle and with azimuth of 90o and no tilt. It

has 300 meter range in major and mid directions, and 25 meter range in minor direction.

The grade variable in rock type 3 has isotropic spherical variogram with range of 300 me-

ters. Both categorical and grade models are sampled with a regular drilling paĴern with

spacing of 100x100 meters closer to the border and 50x50 meters in the central part of the

domain. The reference models and samples are shown in Figure 5.10b.

(a) Rock types (b) Grade model

Figure 5.10: Simulated 3D model. (a) simulated rock types. Category 1 is barren rock, category 2
and 3 are mineralized rock. (b) reference grade model in Gaussian units. Markers represent sample
locations (165 drillholes)

Multiple imputation, single realization and centroid methods for assigning latent vari-

ables are used in TPGS workflow for the generation of 400 realizations of rock type for this

3D example. The resultant Shannon’s entropy calculated for each methodology is shown in

Figure 5.11. Similar results are obtained for the entropy compared to the 2D example. Us-

ing the multiple imputation (Figure 5.11c) as reference, the single realization (Figure 5.11b)

consistently underestimates uncertainty whereas the centroid method (Figure 5.11a) re-

sults in underestimation of uncertainty in densely sampled locations and uncertainty over-

estimation at more sparsely sampled locations. This is likely the result of the wrong spatial

correlation of the latent variables assigned through centroid method that shows hyper con-

tinuity at short range within the same category and increased short range variability across

different categories due to the sharp transition between them.

The grade variable is also simulated by rock type for each realization. Resource clas-

sification was performed using probabilistic criteria following the procedure described by

Silva and Boisvert (2014) using a production panel of size 50x50x25 meters. The classifi-
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(a) Centroid (b) Single

(c) Multiple

Figure 5.11: Uncertainty of categorical realizations for the 3D example. The gridded model is col-
ored by the Shannon entropy values calculated using 400 realizations.

cation of resource is performed according to the following criteria: (1) Measured blocks

must have simulated values within ±15% of the mean at least 95% of the time; (2) Indi-

cated blocks must have simulated values within±30% of the mean at least 95% of the time;

and (3) Inferred blocks must be within ±50% of the mean at least 95% of the time.

The classification results shown in Figure 5.12 and summarized at Table 5.1. The re-

sults are consistent with the entropy maps. Relative to the multiple imputation methodol-

ogy, the centroid has higher overall entropy and therefore consistently lower classified re-

sources while single realization methodology has lower entropy and results on consistently

higher classified resources. Variations of ±15% on measured plus indicated resources are

substantial and have potential to impact economical evaluation of projects and resulting

decisions. While the single realization method seems to always underestimate uncertainty,

the centroid assignment method may under or overestimate uncertainty depending on the

prevalence of higher and lower variability areas.
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(a) Centroid (b) Single

(c) Multiple

Figure 5.12: Results of resource classification for the 3D example.

The multiple imputation methodology is deemed the most accurate in assessing the

uncertainty as it transfers the uncertainty of the missing latent variables to the model re-

alizations. In light of the potential deviations on key results affecting decision making de-

pending on the choice of imputation technique, the use of multiple imputation of missing

latent variables in TPGS is advised.

Method
Resource Classification (Mt)

Measured Indicated Inferred Measured + Indicated

Centroid 535 (0.94) 640 (0.75) 416 (1.14) 1,175 (0.83)
Single 681 (1.20) 928 (1.09) 329 (0.90) 1,609 (1.13)

Multiple 567 (1.00) 851 (1.00) 364 (1.00) 1,418 (1.00)

Table 5.1: Calculated resources for each data assignment methodology. The ratio relative to multi-
ple imputation are shown in brackets. A density of 2.65 g/m3 is assumed
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5.4 Conclusion

The truncated Gaussian techniques are powerful tools for the simulation of spatially cor-

related categorical variables. They allow for the reproduction of proportions, two-point

spatial continuity and transition probabilities and therefore allowing the simulation of cat-

egorical variables with complex ordering. The technique requires the use of latent variables

which are not sampled and requires imputation.

Three imputation methodologies are compared. The imputation of constant values

(centroid), single realization imputation and multiple realization imputation. The first

method is simple, fast, and does not require any special algorithm, however, the imputed

values will have the wrong spatial structure. The single and multiple realization of la-

tent variables requires the utilization of simulation techniques which are able to reproduce

spatial structure and to condition realization(s) to observed categorical variables at data

locations.

The available simulation techniques for generating realizations of latent variables at

data locations are reviewed. The combination of standard and propagative Gibbs sampler

with limited number of standard iterations seems to be adequate for the simulation of la-

tent variables conditioned to categorical observations. A technique based on simulated an-

nealing is also proposed for cases in which Gibbs sampler cannot be applied or additional

factors need to be accounted for in the objective function.

Multiple imputation of latent variables is considered to be the most suitable technique

for this problem. It accounts for the fact that the latent variables are unknown and trans-

fers the uncertainty from the missing data to the categorical model realizations. It is shown

that centroid assignment leads to local under and over estimation of the categorical vari-

able uncertainty as result of fixed data values and wrong spatial structure. It is also shown

that centroid assignment could affect resource evaluation and classification which are key

factors in decision making. The single realization imputation method leads to consistently

lower uncertainty as the data has the right spatial structure, but it is not allowed to fluctu-

ate to other possible states. Single realization leads to consistently higher measured and

indicated resources.

The use of multiple imputation in TPGS latent variable assignment is advisable in light

of the great differences that may occur from different imputation methodologies and the
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potential impact that those differences may have on important decision making factors

such as resource evaluation and classification.



Cѕюѝѡђџ 6

Dюѡю IњѝѢѡюѡіќћ Ѥіѡѕ GюѢѠѠіюћ
MіѥѡѢџђ MќёђљѠ ѓќџ CќћѡіћѢќѢѠ
VюџіюяљђѠ
The multiple data imputation is not only required for the truncated Gaussian methods, but

it is also required for advanced multivariate geostatistical techniques that relies on multi-

variate data transformations. The research undertaken in the quest to advance and improve

the imputation for the application with hierarchical truncated pluri-Gaussian (HTPG) also

resulted in important contributions to multivariate data imputation for multivariate mod-

eling of continuous variables.

Even though the truncated Gaussian methods utilize a single parametric distribution,

the categorical conditioning and truncation structure makes it impossible to directly simu-

late from those distributions requiring the utilization of Gibbs sampler. The simulation of

continuous variables for multivariate transformations, on the other hand, do not have the

complication of the truncation thresholds. The complexity faced on the imputation of con-

tinuous variables for multivariate transformations relates to the shape of the multivariate

distribution that is often far from being Gaussian or easily parameterized.

Samples with missing variables are common in geological data sets for many reasons.

The missing data must be imputed (inferred) to permit the measured data to be used to their

full extent. Imputation methods for geological data should address spatial structure and

multivariate complexity. The published techniques that account for these considerations

make strong assumptions regarding conditional distributions and are computationally de-

manding in presence of many data.

A Gaussian mixture model (GMM) fiĴed to the multivariate data is developed to pro-

vide stability in fiĴing multivariate data and to significantly improve computational effi-

ciency. The approach is demonstrated using a lateritic nickel data set and it is shown to

decrease computational time by two orders of magnitude for the example while also con-

sistently improving results in several performance tests.

95
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6.1 Introduction

The developed methodology borrows many aspects of the non-parametric approach pro-

posed by BarneĴ and Deutsch (2015). The key difference is in the calculation of the con-

ditional distributions given the collocated data for the non-parametric Bayesian updating

(BU). These conditional distributions are calculated from a GMM fiĴed to the multivariate

data set. The use of a GMM allows the quick assessment of any marginal and conditional

distributions needed for the data imputation workflow improving the speed of the algo-

rithm. The computational expense would be significantly reduced. Moreover, the ability

to use unequally sampled locations to inform the fiĴing of the GMM and the improved

robustness against data sparseness leads to more accurate estimation of the multivariate

distributions resulting in enhanced performance.

The technique developed here is considered as semi-parametric as opposed to non-

parametric as it relies on the mixture of parametric distributions. This methodology is

suited to cases where the missingness is independent on the missing values and may be

dependent on the observed values. This missing data mechanism is known as missing at

random (MAR). The applicability and performance of the methodology is demonstrated

for a lateritic nickel data set.

6.2 Background

The Gaussian distribution is extremely tractable and fully parametrized by a mean vec-

tor and covariance matrix. Although a single Gaussian model cannot capture the complex

relationships that high dimensional geological data often show, a GMM is able to fit the dis-

tributions of many multi-dimensional data sets. The most widely used GMM for density

estimation is the kernel density estimation (KDE) (Gray and Moore) which has been stud-

ied since the 1950’s (Fix and Hodges Jr, 1951; Silva and Deutsch, 2015). KDE becomes com-

putationally expensive with increasing number of dimensions and observations as each

observation is the center of a Gaussian kernel. One Gaussian kernel per observation is not

always required and similar results can be obtained with fewer kernels centered at arbitrary

locations that are able to summarize the information of several observations into a single

kernel allowing the definition of the multivariate distribution with considerable reduction

in the number of kernels/components. Choosing a relatively small number of kernels not
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necessarily centered at data locations leads to the GMM formalism.

6.2.1 Expectation Maximization Algorithm

The basic form of the expectation maximization (EM) algorithm for fiĴing GMMs is well

known within the scientific community. This application requires that the EM algorithm

be adapted for missing data problems and, therefore, a concise description is presented.

Interested readers are referred to McLachlan and Krishnan (2008) and McLachlan and Peel

(2000) for a more detailed description of the algorithm. Further details on the missing data

(heterotopic samples) problem can be found in LiĴle and Rubin (2002).

Considering a set of n K-dimensional observations yyy =
(
yyy

⊤
1 , ..., yyy

⊤
n

)
, the density func-

tion estimated by EM algorithm with g Gaussian components is given by Equation 6.1.

f̂ (yyyj ;ΨΨΨ) =
g∑

i=1
πiϕ (yyyj ;µµµi;ΣΣΣi), ∀j = 1, . . . , n (6.1)

where f̂ is the estimated distribution; ϕ is the multivariate Gaussian probability density

function (PDF);ΨΨΨ is the set of unknown parameters (π1, ..., πg−1,µµµ1, ...,µµµg,ΣΣΣ1, ...,ΣΣΣg): weights

to each component, the mean values and the variance-covariance matrices. The EM algo-

rithm maximizes the log likelihood logL (ΨΨΨ) that can be calculated for a given set of obser-

vations as:

logL (ΨΨΨ) =
n∑

j=1
log

[ g∑
i=1

πiϕ (yyyj ;µµµi;ΣΣΣi)
]

(6.2)

The algorithm consists of two steps which are the expectation (E) and maximization

(M) steps that iteratively maximizes the log likelihood. Each observation is deemed to

have originated from a respective component of the mixture, but this information is un-

known, thus, the EM algorithm is formulated as an incomplete-data problem where the

g-dimensional label vectors xxx1, ...,xxxn indicate whether or not an observation came from a

given kernel. The component xi,j = (xxxj)i is equal to 1 if the jth observation belongs to the

ith component of the mixture and 0 otherwise.
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6.2.1.1 E-step

An initial set of parameters ΨΨΨ(0) is required for the E-step prior to the first iteration of the

algorithm. The initialization of the EM algorithm can be done by randomly defining the

set of parameters, however, k-means++ algorithm (Arthur and Vassilvitskii, 2007) is often

used for initialization to improve stability.

As the label vectors are missing, the expectation step of the
(
t+ 1th

)
iteration of the

algorithm requires the calculation the current conditional expectation of Xij given the ob-

served datayyy and the current set of parametersΨΨΨ(t) from the previous iteration t. The E-step

of the EM algorithm replaces the unknown labels xij by their conditional expectations τ (t)ij

as follows:

τi
(
yyyj ;ΨΨΨ(t)

)
= EΨΨΨ(t) {Xi,j | yyyj}

=
π
(t)
i ϕ

(
yyyj ;µµµ(t)

i ;ΣΣΣ(t)
i

)
∑g

k=1 π
(t)
k ϕ

(
yyyj ;µµµ(t)

k ;ΣΣΣ(t)
k

)
= τ

(t)
i,j

, ∀i = 1, . . . , g and ∀j = 1, . . . , n (6.3)

6.2.1.2 M-step

The M-step consists of the maximization of the log likelihood and can be expressed in closed

form for Gaussian components. The solution for the updated mean vector µµµ(t+1)
i and co-

variance matrix ΣΣΣ(t+1)
i are given by Equations 6.4 and 6.5 respectively, while the updated

estimate of the component contribution πi is calculated using Equation 6.6.

µµµ
(t+1)
i =

n∑
j=1

τ
(t)
i,j yyyj/

n∑
j=1

τ
(t)
i,j , ∀i = 1, . . . , g (6.4)

ΣΣΣ(t+1)
i =

n∑
j=1

τ
(t)
i,j

(
yyyj −µµµ

(t+1)
i

) (
yyyj −µµµ

(t+1)
i

)T
/

n∑
j=1

τ
(t)
i,j , ∀i = 1, . . . , g (6.5)

π
(t+1)
i =

n∑
j=1

τ
(t)
i,j /n, ∀i = 1, . . . , g (6.6)

The two steps are repeated until the difference in the likelihood function L
(
ΨΨΨ(t+1)

)
and

L
(
ΨΨΨ(t)

)
is small enough (10−10 times the likelihood is used as the criteria here) indicating
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convergence of the algorithm to a local optimum. Local optimum are deemed good enough

for the proposed application. Inspection for unstable components (e.g. components fiĴing

outliers) is advised.

6.2.2 Expectation Maximization With Missing Data

In geological applications it is common to sample some variables more often than others

and the decision on whether to sample all variables is usually related to the value of the

more important ones. As the mechanism of missing data is not completely random, dis-

regarding unequally sampled locations will likely lead to bias on the estimated density

which would be carried throughout the geostatistical workflow generating biased results.

The methodology described by LiĴle and Rubin (2002) for EM with missing data allows

the use of all data available including heterotopic samples. In this version of the EM algo-

rithm, the E-step remains practically the same and the only change is that the multivariate

PDF’s used in the calculations are marginalized on the observed variables.

Prior to the M-step, the missing variables at the jth observation yyyjm are replaced by

their conditional mean ŷyy(i,j)m given the set of observed variables yyyjo for each component

(i = 1, ..., g) (Equation 6.7).

ŷyy(i,j)m = µµµ(i,j)
m +ΣΣΣ(i,j)

mo ΣΣΣ(i,j)−1
oo

(
yyy(j)o −µµµ(i,j)

o

)
(6.7)

whereΣΣΣ(i,j)
mo andΣΣΣ(i,j)

oo are the sub-matrices ofΣΣΣi referring to the covariance between missing

and observed variables and covariance between the observed variables for the ith Gaussian

component. The vectorsµµµ(i,j)
m andµµµ

(i,j)
o are the mean of missing and observed variables for

the ith component and are sub-vectors of µµµi.

The calculation of the updated meanµµµ
(t+1)
i remains the same as in Equation 6.4 and the

updated covariance ΣΣΣ(t+1)
i from Equation 6.5 is corrected by adding a matrix (CCCi) derived

from the sum of all conditional variances (Delalleau et al., 2012; Roberts, 2010) from each

observation with missing variables (Equation 6.8). This corrects the smoothing (covariance

reduction) effect of the conditional means that are replacing the missing observations for

each component.

CCCi =
n∑

j=1
τi,jMMM

T
j

(
ΣΣΣ(i,j)

mm −ΣΣΣ(i,j)
mo ΣΣΣ(i,j)−1

oo ΣΣΣ(i,j)
om

)
MMM j/

n∑
j=1

τi,j (6.8)
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whereMMM j is a sub-matrix of an identity matrix that is built by deleting rows corresponding

to the missing dimensions for each observation (j = 1, ..., n).

6.3 Methodology

Consider a set of n observations zzz =
(
zzzT1 , ..., zzz

T
n

)
containing K-dimensional isotopic and

heterotopic observations zzzj = (zj,1, ..., zj,K). The objective is to generate multiple realiza-

tions of the missing data that account for the spatial structure and multivariate relation-

ship between the variables. This is achieved by combining two conditional distributions

through non-parametric BU and sampling the final combined distribution. The first condi-

tional distribution is calculated using spatial data of the same variable being imputed and

the second is calculated using the other observed variables at same location. The steps for

the non-parametric data imputation using GMM are as follows:

1. Normal score transformation: Each variable is transformed to be marginally standard

Gaussian through normal score transformation (Equation 2.8). This is a univariate

transformation done independently for each variable and, therefore, not sensitive to

heterotopic observations.

2. Multivariate density estimation: The result of step 1 is a set of n observations yyy =(
yyyT1 , ..., yyy

T
n

)
. The EM algorithm is then used to fit a GMM with g components to the

transformed data defining the estimated multivariate density function as in Equa-

tion 6.1

3. Conditional distribution given spatial data: Each variable is assumed to be spatially

multivariate Gaussian after the normal scores transformation, therefore, the condi-

tional distribution given spatial data is Gaussian and parameterized by the kriging

mean and variance that are calculated by solving the simple kriging system using

nearby observations of the same variable being imputed. For a given variable k to be

imputed at lth data location, consider the set of neighboring locations N
(k)
l contain-

ing all observed and previously simulated values (step 6) for the same variable. The

conditional mean and variance can be calculated as follows, where C
(k)
l,j is the spatial

covariance between the lth and jth data locations defined for variable k.
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µ̄(l,k)
s =

∑
j∈N(k)

l

λ
(l,k)
j yj,k (6.9)

σ̄2 (l,k)
s = 1−

∑
j∈N(k)

l

λ
(l,k)
j C

(k)
l,j (6.10)

∑
j∈N(k)

l

λ
(l,k)
j C

(k)
p,j = C

(k)
l,p ∀p ∈ N

(k)
l (6.11)

The conditional distribution given the spatial data is defined as:

P
(
yl,k | Yj,k = yj,k, ∀j ∈ N

(k)
l

)
= ϕ

(
yl,k; µ̄(l,k)

s ; σ̄(l,k)
s

)
(6.12)

4. Conditional distribution given colocated data: This distribution is defined as the

marginal of the conditional GMM given the colocated observed and previously im-

puted data with respect to the variable being imputed. It can be easily calculated

from the GMM fiĴed in step 2. The conditional GMM requires the calculation of

each conditional multivariate Gaussian component. Each one is parameterized by its

conditional mean (Equation 6.13) and covariance (Equation 6.14).

µ̄µµ(i,l)
m = µµµ(i,l)

m +ΣΣΣ(i,l)
mo ΣΣΣ(i,l)−1

oo

(
yyy(l)o −µµµ(i,l)

o

)
i = 1, ..., g (6.13)

Σ̄ΣΣ(i,l)
mm = ΣΣΣ(i,l)

mm −ΣΣΣ(i,l)
mo ΣΣΣ(i,l)−1

oo ΣΣΣ(i,l)
om i = 1, ..., g (6.14)

where ΣΣΣ(i,l)
mo and ΣΣΣ(i,l)

oo are the sub-matrices of ΣΣΣi referring to the covariance between

missing and observed variables and covariance between the observed variables for

the ith Gaussian component at lth data location. The vectors µµµ
(i,l)
m and µµµ

(i,l)
o are the

mean of missing and observed variables for the ith component at lth data location

and are sub-vectors ofµµµi that is the mean of the ith component of the GMM. After cal-

culating the parameters of the conditional distribution of each Gaussian component

the conditional distribution of the GMM is defined by:



6. Data Imputation with GMM for Continuous Variables 102

f̂
(
yyy(l)m ;ΨΨΨ(l)

m

)
=

g∑
i=1

π′
iϕ

(
yyy(l)m ; µ̄µµ(i,l)

m ; Σ̄ΣΣ(i,l)
mm

)
(6.15)

π′
i =

πiϕ
(
yyy
(l)
o ;µµµ(i,l)

o ;ΣΣΣ(i,l)
oo

)
∑g

i=1 πiϕ
(
yyy
(l)
o ;µµµ(i,l)

o ;ΣΣΣ(i,l)
oo

) (6.16)

The marginal of the conditional GMM respective to the variable k being imputed at

lth location is defined as:

P (yl,k | Yl,o = yl,o, ∀o ∈ Ol) =
g∑

i=1
π′
iϕ
(
yl,k; µ̄(i,l,k)

c ; σ̄(i,l,k)
c

)
(6.17)

where Ol is the set of observed and previously simulated variables at location l, µ̄(i,l,k)
c

and σ̄
(i,l,k)
c are the conditional mean and conditional standard deviation of the ith com-

ponent of the GMM at location l marginalized with respect to the missing variable

k.

5. Combined distribution: The two conditional distributions defined in Equations 6.12

and 6.17 are combined with non-parametric BU (Neufeld and Deutsch, 2006). The

Equation 6.18 is an approximation as it requires the assumption that the spatial ob-

servations of the same variable being imputed are independent from the colocated

data from the other observed variables.

P
(
yl,k | Yj,k = yj,k, ∀j ∈ N

(k)
l ;Yl,o = yl,o, ∀o ∈ Ol

)
=

=
ϕ
(
yl,k; µ̄

(l,k)
s ; σ̄(l,k)

s

)∑g
i=1 π

′
iϕ
(
yl,k; µ̄

(i,l,k)
c ; σ̄(i,l,k)

c

)
ϕ (yl,k; 0; 1)

(6.18)

6. Generate missing data realization: The updated distribution (Equation 6.18) is sam-

pled with Monte-Carlo simulation (MCS) to generate an imputed realization of the

missing data.

The steps 1 and 2 are fixed and are required only once. For each variable, the locations

where the value for this variable is missing are visited sequentially. At each of these loca-

tions steps 3 to 6 are performed. After the imputation the value thus generated is deemed
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as observed and used in the imputation of subsequent missing values. Once all missing

values are imputed, the realization is stored and the original state of the variables is re-

stored for the generation of the next realization. This is repeated until the desired number

of realizations is reached. The realizations may be transformed back to original units after

the simulation if required.

Each full-valued isotopic realization of the data is subjected to the geostatistical model-

ing workflow to create a multivariate realization of all variables at all unsampled locations.

As many data realizations are required as geostatistical realizations. This scheme permits

the uncertainty due to missing data to be transferred through to the spatial realizations and

subsequent resource estimation.

6.4 Application to Lateritic Nickel Data Set

In order to illustrate the proposed methodology a data set with geological variables from

a lateritic nickel deposit is used. The data set is composed of measurements of nickel (Ni),

which is the most important variable, iron (Fe), silica (SiO2), and magnesium (MgO). The

original data set has 18 352 isotopic observations, but samples were removed to emulate the

common scenario in which several less important variables are missing. This synthetic data

example is useful because the imputed values can be checked against the known true val-

ues. Variables are missing specially where the most important have been already measured

to be low and, therefore, not justifying the additional expense of measuring the others. This

is the classical situation characterizing MAR mechanism.

The Ni measurements are maintained everywhere while 1/3 of the Fe samples were

randomly removed from samples in which Ni values are lower than the median and 1/6

from samples where Ni is above the median resulting in 9178 observed Fe measurements.

For MgO and SiO2 the fraction removed is 1/6 where Ni is lower than the median and

1/10 where Ni is higher than the median resulting in 13 459 observations of these variables.

Note that this is the same missing data strategy as used by BarneĴ and Deutsch (2015)

to generate subsets of the same data set resulting in similar but different data set as the

selection is random.

The data set is subdivided into four rock types, (1) basic east type ore (BETO), (2) basic

west type ore (BWTO), (3) acid east type ore (AETO), and (4) acid west type ore (AWTO). As
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with other geostatistical techniques, the imputation methodology proposed here is applied

to each population (rock type) independently. The summary of the number of data and

proportion missing by rock type are shown in Table 6.1.

Rock type Number of samples % missing (Fe) % missing (SiO2) % missing (MgO)

BETO 5968 46.67 25.18 25.17
BWTO 4016 45.69 26.20 26.20
AETO 1389 60.62 30.60 30.60
AWTO 6979 53.19 27.43 27.43

Table 6.1: Number of samples per rock type and percentage missing.

Each variable is transformed to be marginally standard normal. The scaĴer plots of

transformed variables are shown in Figure 6.1 for BETO. Its clear that after the univariate

transformation the multivariate distribution remains highly non-linear and heteroscedastic.

These complex features of geological data are the main motivation of using multivariate

transformation techniques and, therefore, MI techniques such as the one presented here.

The transformed data are fiĴed with GMMs of 20, 15, 20 and 20 components for BETO,

BWTO, AETO and AWTO, respectively. There are a number of techniques to assist in the se-

lection of the number of components used for GMM including split/merge EM algorithms

and bootstrap. For this example the number of components is chosen through visual in-

spection in order to avoid overfiĴing while capturing complexities of the data. The GMM

fiĴed to the BETO data is shown in Figure 6.2. Note that the standard normal marginal

distributions are closely matched by theGMMs. This is possible because heterotopic data

are considered during the fiĴing process using the methodology for fiĴing GMM’s with

missing data. The marginal distribution of the isotopic part of the data set is not standard

normal due to a higher proportion of missing data at low Ni intervals. FiĴing GMMs to

heterotopic data is key to avoid bias.

The imputation methodology proposed here is applied to generate 100 realizations of

the data for each rock type. The parametric and non-parametric techniques proposed by

BarneĴ and Deutsch (2015) are also applied to this data set for comparison purposes. The

non-parametric technique proposed by BarneĴ and Deutsch (2015) is referred to as non-

parametric kernel density estimation (NPKDE) while the technique proposed in this paper

is referred to as semi-parametric Gaussian mixture model (SPGMM) highlighting the main

difference between the two that is the method of estimating conditional distributions from
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Figure 6.1: Bivariate scaĴer plots of normal scores transformed data for BETO rock type coloured
by the bivariate KDE. Only isotopic observations are used for ploĴing.

collocated data.

One motivation for development of this methodology is to reduce computational time

required for imputation while keeping the advantages of the non-parametric technique.

The computational time required to run each method to this data set is shown in Table 6.2.

These results were obtained with an Intel® Core™ i7-4790K CPU @ 4.00GHz. The time is

improved considerably. The SPGMM for this data set took from 3 to nearly 5 times longer

than the parametric technique while the NPKDE took from 80 to 700 times longer.

In order to check if the proposed technique is able to keep the advantages of the non-

parametric technique, the known true values are used to cross-validate the results from

each technique based on several univariate and bivariate performance measures. The uni-

variate performance measures are cumulative density function (CDF) reproduction that



6. Data Imputation with GMM for Continuous Variables 106

Figure 6.2: Bivariate and univariate marginals of the GMM fiĴed to all observations in BETO rock
type. As heterotopic observations are allowed during the fiĴing, the marginals that are known to be
standard Gaussian are reasonably matched, avoiding introduction of bias. The data is fiĴed with
20 multivariate Gaussian components.

Rock type Number missing
Time (s)

Parametric NPKDE SPGMM

BETO 5789 17.11 (1) 8390.64 (490.4) 55.43 (3.2)
BWTO 3939 9.78 (1) 3848.86 (393.5) 29.96 (3.1)
AETO 1692 4.97 (1) 401.86 (80.9) 16.64 (3.4)
AWTO 7540 15.31 (1) 10968.60 (716.4) 70.97 (4.6)

Table 6.2: Time in seconds per technique and per rock type. The time relative to the fastest is shown
in brackets.
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includes mean and variance reproduction, correlation between true and imputed values,

root mean squared error (RMSE) between true and imputed values and RMSE between the

true variogram (vertical and horizontal) and the variogram of the imputed data. The bivari-

ate performance measures considered in this article are the reproduction of the correlation

and RMSE on the bivariate KDE between true and imputed data.

Box plots of the univariate measures calculated using all realizations are shown in Fig-

ure 6.3. The relative results are summarized in Table 6.3 to facilitate the comparison be-

tween techniques. The best average results are highlighted. The performance results are

surprisingly good considering that the initial intent was to improve time while keeping

the performance. On average, the proposed SPGMM yielded the best results in all uni-

variate performance checks (Table 6.3) even where the parametric method outperformed

the NPKDE (σ2 error). The SPGMM is outperformed only for the reproduction of SiO2

variance.

Measure Method Fe SiO2 MgO Avg.

µ Error
Parametric 1.00 0.55 0.99 0.84

NPKDE 0.28 1.00 1.00 0.76
SPGMM 0.14 0.45 0.67 0.42

σ2 Error
Parametric 0.30 0.83 0.80 0.64

NPKDE 1.00 1.00 1.00 1.00
SPGMM 0.15 0.91 0.46 0.51

1− ρ
Parametric 1.00 1.00 1.00 1.00

NPKDE 0.63 0.69 0.73 0.68
SPGMM 0.55 0.62 0.65 0.60

RMSE
Parametric 1.00 1.00 1.00 1.00

NPKDE 0.81 0.86 0.87 0.84
SPGMM 0.74 0.78 0.81 0.78

γ Error
Parametric 1.00 1.00 1.00 1.00

NPKDE 0.71 0.75 0.80 0.75
SPGMM 0.57 0.61 0.77 0.65

Table 6.3: Summary of univariate performance measures. The best average result is highlighted.
All results are stated relative to the worst case.

Univariate statistics are the easiest to reproduce and, not surprisingly, all techniques

result in appropriate reproduction of the CDFs as shown in Figure 6.4. It is visually clear

that the semi and the non-parametric techniques improve upon the parametric. It is also

clear that the SPGMM technique improves the reproduction of the distribution tails in this
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Figure 6.3: Box plot summary of univariate measures for all realizations. Dashed red lines repre-
sents known true values when applicable.

example.

The scaĴer plots of true values vs e-type estimated values are shown in Figure 6.5.

Again, all techniques perform well in the missing data estimation task mostly due to the

highly conditioned environment. While conditional bias is not evident for the parametric

and the SPGMM it seems slightly more pronounced for the NPKDE technique. This was
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Figure 6.4: Reproduction of univariate CDF. Grey lines are the CDF of each realization, the black
line is the average of all realizations and red line is the CDF of the original values.

not observed in the work by BarneĴ and Deutsch (2015) and could be related to modeling

decisions and parameters or perhaps due to the different random selection of missing data.

This highlights an advantage of using GMM to derive the multivariate conditional distribu-

tions rather than using a built-in Gibbs sampler. The fiĴed GMMs can be visualized by the

user with plots like the one shown in Figure 6.2 allowing the user to evaluate the adequacy

of the fiĴed model and change fiĴing parameters if required to potentially improve results.

The reproduction of direct horizontal and vertical variogram are shown in Figs. 6.6 and 6.7.

The overall variogram reproduction for the semi and non-parametric techniques are beĴer

compared to the parametric approach. The SPGMM shows considerable improvement es-
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Figure 6.5: ScaĴer plot of true vs e-type estimate of the missing values. The black line is the 45
degree line and the red is the linear regression.

pecially regarding the horizontal variogram.

Box plots of the bivariate measures calculated using all data realizations are shown in

Figure 6.8. The relative results are summarized in Table 6.4. The best average results are

highlighted. Again, the average performance results are beĴer for the proposed SPGMM

technique for both measurements ρ error and KDE RMSE.

The bivariate distributions are shown in Figure 6.9. The benefits of semi and non-

parametric approaches are more evident when dealing with the reproduction of the multi-

variate complexities. The superiority of the semi and non-parametric distribution is quite

evident upon visual inspection of the scaĴer plots shown in Figure 6.9. Note that distribu-
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Figure 6.6: Horizontal variogram reproduction for each technique. Grey lines are the variogram of
each realization, the black line is the average of all realizations and red line is the variogram of the
original values.

Measure Method Fe-SiO2 Fe-MgO SiO2-MgO Avg.

ρ Error
Parametric 1.00 1.00 0.70 0.90

NPKDE 0.23 0.03 1.00 0.42
SPGMM 0.41 0.07 0.48 0.32

KDE RMSE
Parametric 1.00 1.00 1.00 1.00

NPKDE 0.90 0.91 0.90 0.91
SPGMM 0.87 0.85 0.91 0.88

Table 6.4: Summary of bivariate performance measures. Best average result is highlighted. All
results are stated relative to the worst case.
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Figure 6.7: Vertical variogram reproduction for each technique. Grey lines are the variogram of
each realization, the black line is the average of all realizations and red line is the variogram of the
original values.
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Figure 6.8: Box plot summary of bivariate measures for all realizations. Dashed red lines represents
known trues value when applicable.

tions with Ni are not accounted in the analysis as they are relatively well reproduced by

all techniques due to the fact that no Ni value is missing.

In light of the significant improvement of the SPGMM results over the NPKDE, further

investigation of the differences between the two is carried out. The consistent improvement

in performance can be related to the quality of the estimated conditional distributions. The

current methodology for NPKDE only uses the isotopic observations for the calculation of

univariate conditionals used in the Gibbs sampler while SPGMM uses a GMM fiĴed to all

observations including locations where some variables are missing. In addition to a more

well informed multivariate distribution, this feature reduces the bias caused by data MAR

in which the missing data mechanism is dependent on the values of the observed variables

but independent of the missing values (BarneĴ and Deutsch, 2015; LiĴle and Rubin, 2002).

The differences between the conditional distributions from NPKDE and SPGMM are

quantified through three measures. The first is the well known Kolmogorov-Smirnov (KS)

d-distance which is defined by Equation 6.19. The KS d-distance can be very high for highly

conditioned distributions (low variance) with no significant difference in the actual Gaus-

sian values, therefore, the Equation 6.20 is used to measure the distance between the distri-

butions in Gaussian units. The Equation 6.20 can be sensitive to the tails of the distributions

and, for this reason, the difference between the median values is also calculated and shown

separately.
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Figure 6.9: Bivariate scaĴer plots coloured by KDE. Orginal distributions are shown on top for
comparison.
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DKSj,k = max
y

∣∣FKDEj,k (y)− FGMMj,k (y)
∣∣ (6.19)

where DKSj,k is the KS d-distance for the missing variable k at location j, FKDEj,k(y) is the

conditional CDF of variable k at location j estimated using KDE and FGMMj,k (y) is the

conditional CDF of variable k at location j estimated using GMM.

DQj,k = max
p

∣∣∣F−1
KDEj,k (p)− F−1

GMMj,k (p)
∣∣∣ (6.20)

where DQj,k is the quantile distance for the missing variable k at location j, F−1
KDEj,k(y) is

the inverse of the conditional CDF of the variable k at location j estimated using KDE and

F−1
GMMj,k(y) is the inverse of the conditional CDF of the variable k at location j estimated

using GMM.

The conditional distributions are calculated for every missing variable in the BETO rock

type and the three measurements are calculated for each pair of CDFs coming from each

technique. The histograms of each measurement are shown in Figure 6.10. Both histograms

for KS d-distance (Figure 6.10a) and quantile distance (Figure 6.10b) show substantial dif-

ferences between the distributions from each technique for this well informed example. Fig-

ure 6.10c also shows substantial differences between the median values, but it also shows

that NPKDE is unbiased in relation to SPGMM in a global sense as the mean is close to

zero. The data imputation problem is highly conditioned by collocated data and therefore

such differences in estimated distributions are significant.

6.5 Conclusion

A methodology for multivariate data imputation using a GMM for estimation of the multi-

variate distribution within Bayesian updating workflow that improves upon existing ones

is developed. The most important improvement is related to the computational time, which

is reduced by two orders of magnitude compared to the existing technique that uses KDE

and Gibbs sampler for the estimation of multivariate conditional distributions. This im-

provement would make the approach practical versus waiting days.

The technique shows consistent performance improvements in both univariate and bi-

variate tests. The differences between the multivariate conditional distributions estimated

using univariate KDE coupled with Gibbs sampler and the distributions estimated using



6. Data Imputation with GMM for Continuous Variables 116

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

D
KS

F
re

q
u

en
cy

Number of Data: 5789

Mean: 0.15
Std.: 0.10
Max.: 0.97
Min.: 0.02

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

D
Q

F
re

q
u

en
cy

Number of Data: 5789

Mean: 0.60
Std.: 0.52
Max.: 6.61
Min.: 0.04

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Difference in Median

F
re

q
u

en
cy

Number of Data: 5789

Mean: 0.01
Std.: 0.32
Max.: 5.10
Min.: −2.90

(c)

Figure 6.10: Measures of difference between conditional distributions from NPKDE and SPGMM.
The histogram of KS d-distance between the conditional from the two sources for each missing
variable is shown in (a); a similar measure to d-distance, but for the maximum distance between
quantiles is shown in (b); and the histogram of the differences on the median of each distribution is
shown in (c).

GMM are substantial. The improved performance is aĴributed to superior estimation of

multivariate conditional distributions given colocated data. The multivariate density es-

timated using GMM accounting for all data including the unequally sampled locations

reduces local bias and improves the robustness against sparse data sets.

Even though the results were satisfactory, there is room for improvement. The number

of components for the GMM in this study was chosen by visual inspection, however, there

are a variety of techniques that can be used as alternative such as split/merge expectation

maximization algorithm and bootstrap techniques. Other possible improvements could

include accounting for the spatial correlation across different variables and investigate the

impact of declustering weights in case of spatial preferential sampling. The potential per-

formance gain should be enough to justify the increased complexity in these cases.
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MѢљѡіѣюџіюѡђ Cюѡђєќџіѐюљ
Mќёђљіћє Ѥіѡѕ HTPG
Multiple categorical variables are often available for geostatistical modeling. Each cate-

gorical variable has a number of possible categorical outcomes. The current approach for

numerical modeling of categorical variables is to either combine the categorical variables or

to model them independently. The collapse of multiple categorical variables into a single

variable with all possible/observed combinations is impractical due to the large number

of combinations. The independent modeling of each categorical variable will fail to repro-

duce the joint categorical proportions. A methodology for the multivariate modeling of

categorical variables utilizing the hierarchical truncated pluri-Gaussian (HTPG) approach

is developed in this chapter and illustrated with the Swiss Jura data set.

7.1 Importance of Multiple Categorical Models

Multiple spatially distributed categorical variables are common in many areas of geoscience

and yet there has been liĴle research on the multivariate modeling of categorical variables

(Emery and Cornejo, 2010). In mining, for instance, it is common to have categorical vari-

ables such as lithology, alteration, mineralization, oxidation, and structural domains (Bye,

2011; Rossi and Deutsch, 2014; Tonder et al., 2010). Each one of these categorical vari-

ables are defined by several mutually exclusive categories. An example of drillhole logging

spread sheet with multiple categorical variables defined for each core section is shown in

Figure 7.1.

Categorical variables have been mostly utilized for the definition of stationary domains

for simulation and/or estimation of grade variables. The categories that are identified as

the main controls of grade variability often belong to different categorical variables and

they must be combined to form these stationary domains. The relevant categories to grade

estimation/simulation are case specific. For instance, in a gold deposit, the main factors

affecting metal content may be defined by the oxidation, alteration and structural controls

117
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Figure 7.1: Drillhole logging spread sheet with an example of multiple categorical variables that
are interpreted for each core section. This log sheet includes oxidation, lithology, texture, recovery,
grain size, alteration, and mineralization. This figure is obtained from Marjoribanks (2010).
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whereas in diamondiferous kimberlite, the lithology will represent the main control, Rossi

and Deutsch (2014).

In addition to the definition of stationary domains for the modeling of grades, the cate-

gorical variables are also relevant for the definition of other domain types such as geomet-

allurgical (Acar, 2016; Angove and Acar, 2016; Deutsch et al., 2016; Hunt and Berry, 2017)

and structural domains (Hunt and Berry, 2017; Rossi and Deutsch, 2014). Geometallurgical

domains are often defined based on the categories, across the multiple categorical variables,

that have the most impact on metallurgical processing. This includes recovery, chemical

reagent and energy consumption, mill throughput, environmental impact (acid drainage),

among others. The geometallurgical variables are as important as the grade variables to

the economic success of a mining project (Scheffel et al., 2016), especially for low grade

projects (Deutsch et al., 2016). The structural domains are modeled and utilized to inform

mine/slope stability and blasting design (Hunt and Berry, 2017).

The different stationary domains defined for each particular application utilize differ-

ent combinations of categories within the categorical variables (Bye, 2011; Hunt and Berry,

2017). The two options for the modeling of these categorical variables with univariate work-

flows are to define a single categorical variable by combining the categories of each set or

to model each set independently. If the first option is chosen, the combinatorial nature of

the problem would lead to a high number of merged categories. The definition of many

categories often result in lack of data to infer the required parameters for modeling within

each domain (Rossi and Deutsch, 2014) and lumping is required to lower the number of

categories to a manageable level. Information is inevitably lost during the lumping process.

Moreover, if stationary domains are required for multiple objectives such as resource and

metallurgical variables estimation, one or both objectives would have to be compromised

to build a model with a single set of categories.

The second alternative with the current univariate workflows is to model each categor-

ical variable independently and perform the combination and lumping of the categories

after modeling to define the stationary domains for different applications. In this case, the

inference problem for the parameters required for the categorical modeling is solved as the

data do not require to be subset based on the multiple possible combinations. The draw-

back with this approach is that it does not consider any multivariate relationship that may

exist across the different categorical variables.
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A lithology unit, for instance, may be more or less susceptible to alteration depend-

ing on its mineral composition and the stability of the minerals. The degree of alteration

may also be affected by other factors such as texture and fractures. In some instances, the

lithology can have strong control on the mineralization in some regions of the deposit with

low alteration and be completely overprinted by alteration in other regions where it no

longer represents a strong control (Rossi and Deutsch, 2014). The categorical variables are

often not completely independent from each other and their spatial overlap has significant

effects on the continuous aĴributes.

Emery and Cornejo (2010) proposed a methodology based on the truncated Gaussian

simulation (TGS) for the multivariate modeling of categorical variables using a linear model

of coregionalization (LMC) to co-simulate the latent variables. The LMC of the latent Gaus-

sian variables is derived iteratively to ensure the reproduction of the spatial structure of

the categorical variables. The TGS only uses one latent variable per categorical variable.

This is too simplistic to reproduce complex categorical ordering and transitions, however,

the idea of mapping the categorical variables to a continuous space and using established

methodologies for multivariate modeling of continuous variables is promising.

The HTPG technique developed for the univariate modeling of categorical variables

simplified the modeling of complex geological variables with the utilization of underlying

Gaussian latent variables and laid the groundwork for the creation of a multivariate ap-

proach. A novel technique based on HTPG for the multivariate modeling of categorical

variables is developed in this chapter. The technique is focused on the reproduction of the

joint multivariate relationship across the different categorical variables and the improve-

ment of the prediction of any response variables that are sensitive to this relationship. This

is achieved by introducing correlation across the Gaussian latent variables utilized for the

modeling of each categorical variable.

7.2 Mathematical Notation and Definitions

The mathematical notation outlined in Section 3.1 is further extended here to the multivari-

ate case of HTPG. Consider M random functions (RFs) {Xi(uuu); ∀uuu ∈ A; i = 1, . . . ,M},

each one with a corresponding finite set {Bi; i = 1, . . . ,M} of possible categorical out-

put. Let the cardinality of each categorical set be defined by {Bi = |B|i ; i = 1, . . . ,M}.



7. Multivariate Categorical Modeling with HTPG 121

Also, consider M sets of latent variables to be represented by the Gaussian random func-

tions (GRFs) {YYY i(uuu) = (Yi,1(uuu), . . . , Yi,Ki(uuu)); ∀uuu ∈ A; i = 1, . . . ,M}. Finally, consider

the truncation rules to be represented by {Mθi ; i = 1, . . . ,M} that defines the mapping

{Mθi : RKi 7→ Bi; i = 1, . . . ,M} such that {Mθi(YYY i(uuu)) = Xi(uuu); ∀uuu ∈ A; i = 1, . . . ,M},

where θi is the set of parameters that define the truncation rule for the ith categorical vari-

able. Note that for the conventional truncated Gaussian methodologies, only a single cate-

gorical variable is considered (M = 1).

In some instances, it is more convenient to use a compact notation. The categorical vari-

ables are defined by {XXX (uuu) = (Xi (uuu) , . . . , XM (uuu)) ; ∀uuu ∈ A}. The sets of Gaussian latent

variables are considered together in aD-dimensional GRF {YYY (uuu) = (YYY i (uuu) , . . . ,YYY M (uuu)) ; ∀uuu ∈

A} where D =
∑M

i=1Ki. The notation for the truncation rule becomes Mθθθ that defines

the mapping {Mθθθ : RD 7→
∏M

i=1 Bi} such that {Mθθθ(YYY (uuu)) = XXX(uuu); ∀uuu ∈ A}, where

θθθ = (θ1, . . . , θM ) is the set of parameters for all truncation rules.

7.3 Methodology for the Modeling of Multiple Categorical

Variables

In order to illustrate the developed methodology for the multivariate modeling of categor-

ical variables, the well known Swiss Jura data set is used (Goovaerts, 1997). The data set

comprises of 360 samples with two categorical variables: Land Use (LU) and Rock Type

(RT). As well as seven continuous variables: Cd, Co, Cr, Cu, Ni, Pb, and Zn. The data is

often split into two sets, one for prediction with 259 samples and one for validation with

100 samples. Only the categorical variables are required for the demonstration of the de-

veloped technique.

A map with the location of the samples is shown in Figure 7.2. The LU variable has

four categories: (1) Forest; (2) Meadow; (3) Pasture; and (4) Tillage. The RT variable has

five categories: (1) Argovian; (2) Kimmeridgian; (3) Squanian; (4) Portlandian; and (5) Qua-

ternary. The area is covered partially with evenly spaced samples with some areas that are

densely sampled with additional clusters of data.
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Figure 7.2: Location map of the 259 samples of the prediction subset of the Swiss Jura data

7.3.1 Relationship Between Categorical Variables

Complex relationships amongst continuous geological aĴributes are often observed in their

joint distribution. These complex features should be properly addressed and reproduced

by the modeling workflow (BarneĴ and Deutsch, 2015; BarneĴ et al., 2014). Similar com-

plexity is also observed in the joint distribution of geological categorical variables, however,

its detection may not be as apparent as with the continuous case due to its discrete nature.

Geological knowledge of the processes involved and interactions between the different

categorical variables is always a valuable criteria to determine the existence of interdepen-

dence between them. The complex relationships can be observed on the categorical joint

distribution. If a set of categorical variables are independent from each other, the joint

probability density function (PDF) is defined by the product of the marginal probabilities

(Equation 7.1).

P (X1 = x1, . . . , XM = xM ) =
M∏
i=1

P (Xi = xi) (7.1)

The developed multivariate approach to HTPG is heavily focused on the reproduction

of the multivariate joint PDF. It is important, in this case, to define a representative ex-

perimental distribution from data that will serve as reference for the modeling workflow.

In geoscience, it is a common practice to oversample few areas of interest while sparsely

sampling marginal areas. Declustering techniques are utilized to mitigate the impact of

preferential sampling and assist in the definition of a representative distribution. The rep-
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resentative experimental joint PDF calculated from data is compared to the theoretical inde-

pendent case (Equation 7.1). The departure from the independent PDF is an indication of

the existence of complex relationships that must be addressed by the modeling workflow.

Cell declustering (Deutsch et al., 1998) is utilized with the Swiss Jura data set to define

the weights for the calculation of the declustered global proportion of each category of

both LU and RT variables. The global proportions are shown in Table 7.1. Both LU and

RT are unevenly distributed with proportion ranging from 2% and 3% for Tillage LU and

Portlandian RT to 59% for Pasture LU and 40% for Kimmeridgian RT.

Table 7.1: Global proportions for Swiss Jura data set

Variable Category Code Global Proportion (%)

Clustered Declustered

Land Use

Forest 1 12.74 16.96
Meadow 2 21.62 21.37
Pasture 3 63.71 58.81
Tillage 4 1.93 2.85

Rock Type

Argovian 1 20.46 16.27
Kimmeridgian 2 32.82 39.11

Sequanian 3 24.32 26.00
Portlandian 4 1.16 2.32
Quaternary 5 21.24 16.30

The reference declustered bivariate distribution for LU and RT variables (Figure 7.3a)

is calculated and compared with the theoretical distribution considering independent vari-

ables (Figure 7.3b). The reference distribution calculated from data is fairly different from

the distribution expected if the variables were independent.
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Figure 7.3: Joint distribution of categorical variables LU and RT
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The likelihood of finding the most common category of each variable, Pasture LU and

Sequanian RT, at the same location is reduced by 5%. The probability of occurrence of

Pasture LU in the Quarternary RT is increased by 5%. Also, no occurrence of Forest LU

in the Quaternary RT is observed in the data resulting in 0% while the occurrence for the

independent case is of nearly 3%. The difference between the two distributions is one of

the motivations to consider the multivariate workflow.

7.3.2 Truncation Rule and Spatial Continuity

The workflow for the multivariate HTPG shares many aspects with its univariate counter-

part. The initial steps taken for the the modeling remains unchanged. The definition of

truncation rule and the mapping of the spatial continuity from the continuous to categor-

ical space is undertaken as if the categorical variables were to be modeled independently.

Geological knowledge, spatial structure, categorical proportion and transition probabili-

ties are utilized to determine the truncation rule. Once the truncation rule is defined, the

respective variograms for the Gaussian latent variables are defined utilizing the numerical

derivation developed in Section 3.3.4.1 for the univariate HTPG.

For the Jura data set, the spatial continuity is used as the main factor for the definition

of the truncation rule. The indicator variograms are calculated for each category of the two

variables. The variograms are calculated for the major direction at an azimuth of 67.5o and

minor direction at an azimuth of 157.5o. The indicator variograms for the LU categories

are shown in Figure 7.4. The Tillage LU only has 4 samples (Figure 7.2) scaĴered over the

domain, therefore the range of the variogram was considered isotropic and smaller than

the data spacing (Figure 7.4d).

The indicator variogram for the RT categories are shown in Figure 7.5. The variograms

of the RT categories are beĴer defined compared to the variograms of the LU categories.

The anisotropy is very strong for the Argovian and Sequanian RTs. Similarly to the Tillage

LU, the Portlandian RT also only has few scaĴered samples, therefore, its range is also set

to a value smaller than the data spacing.

The hierarchical truncation chosen for this example utilizes the most number of Gaus-

sian variables possible for each categorical variable. The LU variable is modeled with 3

Gaussian variables and RT with 4. This choice avoids unwanted restrictions and gives

more flexibility to the spatial configuration of the categories as there are not enough data
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Figure 7.4: Experimental indicator variograms for LU categories. The red variogram represents
azimuth of 67.5o and blue is used for the azimuth of 157.5o. Markers represent the experimental
variograms and the solid lines are the fiĴed model. The variograms shown are standardized.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h [km]

γ
(h

)

(a) Argovian

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h [km]

γ
(h

)

(b) Kimmeridgian

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h [km]

γ
(h

)

(c) Sequanian

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h [km]

γ
(h

)

(d) Portlandian

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

h [km]

γ(h)
(e) Quaternary

Figure 7.5: Experimental indicator variograms for RT categories. The red variogram represents
azimuth of 67.5o and blue is used for the azimuth of 157.5o. Markers represent the experimental
variograms and the solid lines are the fiĴed model. The variograms shown are standardized.
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to support a more complex structure for this particular example. The truncation rule for

both LU and RT variables are shown in Figure 7.6. The most different variograms should

appear higher in the truncation tree while the most similar variograms should share the

final Gaussian variable. For this reason, the Tillage LU and the Portlandian RT are at the

top of the truncation structures while Forest and Meadow share the last Gaussian variable

for LU and Kimmeridgian and Quaternary share the last Gaussian variable for RT.
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Figure 7.6: Hierarchical truncation scheme for LU and RT variables

The thresholds are defined in the same way as with the univariate HTPG. This is possi-

ble because the Gaussian variables are only correlated across different categorical variables

and remain independent from each other within the same categorical variable. The covari-

ances between the Gaussian latent variables representing the same categorical variable are

zero (Equation 7.2)

Cov (Yi,j (uuu) , Yi,k (uuu+ hhh)) = 0, i = 1, . . . ,M ; j, k = 1, . . . ,Ki; j ̸= k and ∀uuu ∈ A

(7.2)
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The truncation rules and indicator variograms are utilized to define the variogram of

the Gaussian latent variables. The numerical approach developed for the univariate HTPG

is utilized for the definition of the variogram of the latent variables independently for each

categorical variable. The cross-variograms are not required as the latent variables are mod-

eled with an intrinsic model of coregionalization (IMC) approximation. The optimized

variograms and the fiĴed models are shown in Figure 7.7. Most of the optimized values

are well fiĴed by the selected models. The variables Y1,3 and Y2,3, however, show hyper-

continuity which is difficult to fit with valid numeric models.
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Figure 7.7: Result from variogram calculation. Markers and dashed lines represent the optimized
lags and the solid lines represent the fiĴed models. Red color is utilized for the major direction at
azimuth of 67.5o and blue for the minor direction at 157.5o.

The quality of the optimization can be evaluated by examining the expected indicator

variogram reproduction that is generated by the optimization software. The variogram

reproduction for the LU categories is shown in Figure 7.8. Forest and Meadow LUs share

the same Gaussian at the last node. This leads to similar indicator variogram for both
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categories. This is the reason why the categories with similar experimental variograms are

chosen to share the terminating node of the truncation tree. The variogram reproduction

for the RT categories is shown in Figure 7.9. Note that Kimmeridgian and Quarternary

RTs also share the same terminating node and will have the similar expected indicator

variogram reproduction.
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Figure 7.8: Expected indicator variogram reproduction for LU categories. The red variogram rep-
resents azimuth of 67.5o and blue is used for the azimuth of 157.5o. Markers represent the experi-
mental variograms and the solid lines are the fiĴed model. The variograms are standardized.

7.3.3 Defining the Correlation Structure

The truncation rules and the mapping of spatial correlation is unchanged from the uni-

variate approach. The multivariate relationships observed on the categorical joint PDF are

reproduced by introducing cross-correlation between the latent variables utilized to model

different categorical sets. This cross-correlation affects the imputation of the Gaussian la-

tent variables at data locations and the simulation of these variables at the modeling grid

nodes. If all cross-correlations between all latent variables utilized in the modeling are set

to zero, the resulting joint PDF is expected to reproduce the PDF of the independent case

(Figure 7.3b). If the experimental PDF calculated from data show a departure from the in-

dependent case, as observed for the Jura data set (Figure 7.3a), the correlation between the

latent variables is utilized improve the match with the reference PDF. Conditioning data
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Figure 7.9: Expected indicator variogram reproduction for RT categories. The red variogram repre-
sents azimuth of 67.5o and blue is used for the azimuth of 157.5o. Markers represent the experimen-
tal variograms and the solid lines are the fiĴed model. The variograms shown are standardized.

would likely improve reproduction of the joint PDF.

For the Jura data set, for instance, the probability of having Pasture LU at the same

location as a Quaternary RT is increased by nearly 5% from the independent case. The

categorical code for Pasture LU is 3 and the code for Quaternary RT is 5 (Table 7.1). These

categorical codes are defined by the variables Y1,2 and Y2,4 where these categories are leafs

of the truncation tree structure (Figure 7.6). The Pasture LU occurs when Y1,2 is low (below

the threshold) and the Quaternary RT occurs when Y2,4 is high (above the threshold). This

suggests that a negative correlation between these two variables would improve the repro-

duction of the joint PDF across multiple realizations of simulated models. This assump-

tion, however, only considers the local impact of that specific correlation. The definition

of a valid correlation matrix that improves the expected reproduction of the joint PDF is a

complex optimization problem.

A localized random search optimization algorithm (Spall, 2005) is developed to define

the optimal correlation matrix. The randomized search algorithms are highly customizable

and are able to perform an extensive exploration of the solution space. If applied well, this

family of algorithms are able to provide reasonable solutions at a reasonable computational

cost (Silva et al., 2018) to various complex problems for which an analytical treatment is not

straightforward.
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As requirement for the application of the multivariate HTPG, all Gaussian latent vari-

ables must be standard normal and uncorrelated within the same categorical set (Equa-

tion 7.3). This means that some of the covariances are set to zero and one and remain

unchanged throughout the optimization. The covariance matrix with all collocated co-

variances between the all Gaussian latent variables will have the structure shown in Equa-

tion 7.4, as result of Equation 7.3.

YYY i (uuu) ∼ ϕ (yyyi; 000, III) , yyyi ∈ RKi and i ∈ {1, . . . ,M} (7.3)

CCC =



IIIK1 CCC1,2 . . . CCC1,M

CCC2,1 IIIK2 . . . CCC2,M
...

... . . . ...

CCCM,1 CCCM,2 . . . IIIKM


(7.4)

where CCC is a D × D matrix containing all the covariances between all latent variables;

{IKi ; 1 = 1, . . . ,M} are identity matrices of order {Ki; 1 = 1, . . . ,M}; and {CCCi,j ; i, j = 1, . . . ,M ; i ̸= j}

are sub-matrices of CCC containing the covariances to be optimized.

The covariance matrix CCC must be symmetric. This entails that
{
CCCi,j = CCC

⊤
j,i;

∀i, j = 1, . . . ,M
}

. As a result, the number nc of covariance terms being optimized is de-

fined by Equation 7.5. These covariance values can be mapped into an one dimensional

vector with linear indexing (ccc = (ci, . . . , cnc)) to facilitate the notation. Each one of these

variables are mapped into two locations inCCC, one at the upper triangle and one at the lower

triangle (symmetry), outside of the fixed identity sub-matrices.

nc =
M−1∑
i=1

Ki ×

 M∑
j=i

Kj

 (7.5)

The joint categorical PDF can be defined by a B1 × B2 × . . . × BM probability matrix

PPP . Let ppp =
(
pi, . . . , pnp

)
= vec (PPP ) be the vector with all reference probabilities calculated

from data, where np =
∏M

i=1Bi.

A Monte-Carlo simulation (MCS) approach is utilized for the evaluation of the objec-

tive function, similarly to the procedure for the numerical derivation of the variograms

of latent variables. A random set of Gaussian deviates are simulated and correlated uti-

lizing the respective state of the covariance matrix at each iteration of the algorithm. The
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simulated latent values are truncated in accordance with the truncation rules to define cate-

gorical realizations. The joint distribution of the simulated categorical set is evaluated and

the mismatch between the PDF of simulated values and the reference PDF is utilized to

calculate the objective function.

A set of size D × m containing m realizations of independent random vectors zzz =(
zzz

⊤
1 , . . . , zzz

⊤
m

)
are sampled from the standard Gaussian distribution

(
ZZZ ∼ ϕ (zzz; 000, III) ;zzz ∈ RD

)
.

This set is utilized multiple times throughout the optimization and can be defined and

stored beforehand to save computational time. A set of correlated vectorsyyy =
(
yyy

⊤
1 , . . . , yyy

⊤
m

)
of size D ×m is generated from the independent set zzz, utilizing the lower triangle matrix

resulting from the Cholesky decomposition of the covariance matrix (Equation 7.6).

yyy = LLLzzz where CCC = LLL⊤LLL (7.6)

The set of simulated categorical variables of size M ×m is generated by applying the

truncation rule to each simulated sample of the latent variables (Equation 7.7). A probabil-

ity matrix P̂PP (ccc) can be calculated from the categorical setxxx =
(
xxx

⊤
i , . . . ,xxx

⊤
m

)
simulated using

ccc. The probability matrix is used to define p̂pp (ccc) =
(
p̂i (ccc) , . . . , p̂np (ccc)

)
= vec

(
P̂PP (ccc)

)
. The

objective function is then defined by the Equation 7.8 as function of the covariance terms

being optimized.

xxxi = Mθθθ (yyyi) , i = 1, . . . ,m (7.7)

O (ccc) =
np∑
i=1

[pi − p̂i (ccc)]2, i = 1, . . . ,m (7.8)

The optimization algorithm requires the initialization of the covariances. The initializa-

tion can be performed in two ways. One is the random initialization that sets the initial

covariances to small random deviates uniformly distributed between −0.1 and 0.1. Small

numbers are utilized to ensure that the initial covariance matrix at iteration t = 0 is a valid

positive semi-definite matrix. The second option is to independently simulate the Gaussian

deviates at data locations subject to the truncation rule and categorical observations and

calculate the resulting covariance matrix. A large number of data realizations are utilized

to ensure stable initial covariance values. The second option often generates beĴer initial
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correlation values. Even though the random deviates are generated without correlation,

the categorical data observation together with the truncation structure often introduces

enough structure to allow faster convergence.

The localized random search algorithm proposed for the optimization of the objective

function in Equation 7.8 is outlined below:

(1) Set iteration counter to zero: t = 0

(2) Initialize the set of covariances: ccc(0) =
(
c
(0)
1 , . . . , c

(0)
nc

)
(3) Evaluate the initial objective function: O

(
ccc(0)

)
(4) While t < tmax

(4.1) Increment iteration counter: t = t+ 1

(4.2) Set ccc(t) = ccc(t−1)

(4.3) Generate a random deviate u ∼ U (0, 1)

(4.4) Randomly select a index i between 1 and nc

(4.5) Update the covariance element: c(t)i = c
(t−1)
i ×

(
1 + t×(u−0.5)

tmax

)
(4.6) If CCC(t) is not positive definite, reset the covariance value to c

(t)
i = c

(t−1)
i and go to

step 4.3

(4.7) Evaluate objective function O
(
ccc(t)
)

(4.8) Keep the change if the objective is improved or reset covariance to previous state

otherwise:

c
(t)
i =


c
(t)
i , if O

(
ccc(t)
)
≤ O

(
ccc(t−1)

)
c
(t−1)
i , otherwise

(5) For i = 1, . . . , nc do:

(5.1) Increment counter: t = t+ 1

(5.2) Set selected covariance to zero: c(t)i = 0

(5.3) If CCC is not positive definite, reset the covariance value to c
(t)
i = c

(t−1)
i and cycle

the loop to next index i

(5.4) Evaluate objective function O
(
ccc(t)
)

(5.5) Keep the change if the objective is improved or reset covariance to previous state

otherwise:

c
(t)
i =


0, if O

(
ccc(t)
)
≤ O

(
ccc(t−1)

)
c
(t−1)
i , otherwise
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The first set of iterations (step 4) is used to define a reasonable solution for the covari-

ance matrix, however, the nature of the iterations may lead to unnecessary covariances

adding unwanted complexity to the problem. In order to eliminate any non-zero covari-

ance values that are not contributing to the solution a second set of iterations over all the

covariances is utilized, starting in step 5. This second round of iterations will set the co-

variances to zero wherever the change does not improve the solution.

This is a greedy algorithm and perhaps not the most efficient, however, it is able to find

reasonable solutions within a reasonable amount of time. The algorithm is stochastic in na-

ture and the results from multiple runs are non-unique. The utilization of multiple random

restarts is recommended to avoid unreasonable solutions from local minima. The global

minimum is unlikely to be found, however, the algorithm is capable of finding solutions

within very small deviations from the reference joint PDF.

The algorithm is applied to the Swiss Jura data set example. The algorithm is initialized

using the covariance matrix calculated from 100 realizations of independently simulated

latent variables at each categorical data observation. The initial correlation matrix is shown

in Figure 7.10
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Figure 7.10: Initial correlation matrix utilized to initialize the optimization algorithm for the Swiss
Jura data set.

The optimization is run utilizing the declustered distribution (Figure 7.3a) as reference.

The software is allowed to run for 10,000 iterations (tmax), 10,000 samples (m) and 120 ran-

dom restarts to ensure a solution that is close to the reference. The error measure utilized

for the optimization is the root of the sum of squared error (RSSE) between each bin of the

categorical joint distribution of the simulated realizations and the reference distribution.

The best solution found has a RSSE of 1.5%. The correlation resultant from optimization
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and the respective expected joint distribution are shown in Figure 7.11. The obtained dis-

tribution (Figure 7.11b) is close to the reference (Figure 7.3a). The Gaussian variables rep-

resenting the same categorical variables remained uncorrelated. This is required to ensure

the reproduction of categorical spatial correlation and proportions.
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Figure 7.11: Results from the correlation matrix optimization for the Jura data set.

7.3.4 Gibbs Sampler Algorithm for Multivariate HTPG

The latent variables must be jointly simulated to allow the reproduction of the covariance

matrix and consequently the reproduction of the joint categorical PDF. The joint simulation

introduces further complexity to the imputation of latent variables at data locations. The

Gibbs sampler algorithm must be adapted to accommodate and enforce the correlation

between the latent variables. The utilization of an IMC with a merged secondary aĴribute

(Babak and Deutsch, 2008) is proposed for the adaptation of the standard Gibbs sampler

algorithm (Section 5.2.1).

Consider a set of n observations xxx =
(
xxx⊤(uuu1), . . . ,xxx⊤(uuun)

)
of a M -dimensional categor-

ical random variable XXX(uuu), where uuu is the vector of spatial coordinates. Also, consider the

set of D latent variables at all data locations to be represented by yyy =
(
yyy⊤(uuu1), . . . , yyy⊤(uuun)

)
where yyy(uuui) ∈ RD and is a realization of the Gaussian random variable YYY (uuui) = (Y1(uuui),

. . . , YD(uuui)) at ith data location. The latent variables YYY (uuui) (i = 1, . . . , n) are centered Gaus-

sian variables with covariance matrixCCC. For notation simplicity the vector of spatial coordi-

natesuuui will be omiĴed and represented by the subscript i. Finally, consider the truncation

rule to be represented byMθθθ such thatMθθθ(yyyi) = xxxi (i = 1, . . . , n). The proposed Gibbs
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sampler algorithm for the multivariate HTPG proceeds by:

(1) Set iteration counter to zero: t = 0

(2) Initialize the set of latent variables yyy(t) with arbitrary values subject to the mapping

constraint: Mθθθ(yyy(t)) = xxx

(3) Increment iteration counter: t = t+ 1

(4) Set yyy(t) = yyy(t−1)

(5) Define a random path through data points

(6) For each location i ∈ {1, . . . ,m} in the random path do:

(6.1) Loop for each variable j = 1, . . . , D

(6.1.1) Merge all variables {k = 1, . . . , D; k ̸= j} into a secondary aĴribute at each

neighboring location within the set Ni:

y
(t)
sj,l =

∑D
k=1
k ̸=j

ω
(j)
k y

(t)
k,l

cpsj
, ∀l ∈ Ni (7.9)

cpsj =
D∑

k=1
k ̸=j

ω
(j)
k cj,k (7.10)

D∑
k=1
k ̸=j

ω
(j)
k ck,k′ = cj,k′ , k′ = 1, . . . , D and k′ ̸= j (7.11)

where y
(t)
sj,l is the merged secondary aĴribute; cj,k is the covariance be-

tween the jth and kth variable from the optimized matrix of covariances

(Equation 7.4); cpsj is the new covariance between the merged secondary

aĴribute and the primary when j is the variable being updated (deemed

primary).

(6.1.2) Update the selected variable’s value by a new Gaussian value drawn from

the conditional distribution given the surrounding data and merged at-

tributes:

y
(t)
j,i ∼ ϕ (y; µ̄j,i, σ̄j,i) (7.12)
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µ̄j,i =
∑
l∈Ni

λ
(j)
pl,i
× y

(t)
pj,l

+
∑
l∈Ni

λ
(j)
sl,i × y

(t)
sj,l + λ

(j)
si,i × y

(t)
sj,i (7.13)

σ̄2
j,i = 1−

∑
l∈Ni

λ
(j)
pl,i
× C

(j)
ppl,i

+
∑
l∈Ni

λ
(j)
sl,i × C

(j)
psl,i + λ

(j)
si,i × C

(j)
psi,i (7.14)

∑
l∈Ni

λ
(j)
pl,i
× C

(j)
ppl,m

+
∑
l∈Ni

λ
(j)
sl,i × C

(j)
psl,m + λ

(j)
si,i × C

(j)
psi,i =C

(j)
ppm,i

, ∀m ∈ Ni

∑
l∈Ni

λ
(j)
pl,i
× C

(j)
psl,m +

∑
l∈Ni

λ
(j)
sl,i × C

(j)
ssl,m + λ

(j)
si,i × C

(j)
ssi,i =C

(j)
psm,i

, ∀m ∈ Ni

∑
l∈Ni

λ
(j)
pl,i
× C

(j)
psl,i +

∑
l∈Ni

λ
(j)
sl,i × C

(j)
ssl,i + λ

(j)
si,i × C

(j)
ssi,i =C

(j)
psi

(7.15)

where y
(t)
pj,l

= y
(t)
j,l is the original variable being updated and deemed to be

the primary aĴribute; µ̄i,j and σ̄i,j are the mean and variance parameters

used for the updating of the jth variable at the ith data location; C(j)
ppl,i

=

C
(j)
l,m is the original spatial covariance between the locations l and m for

variable j (primary); C(j)
psl,m = cpsj ×C

(j)
l,m is the intrinsic spatial covariance

between the primary variable at location l and merged aĴribute at location

m when the variable being updated is j; C(j)
ssl,m is the covariance between

the merged secondary aĴributes at locations l and m. This covariance is

the same as C(j)
ppl,m

under IMC.

(6.1.3) Test if the updated value of y(t)j,i satisfies the conditionMθθθ

(
yyy
(t)
i

)
= xxxi. If

the mapping is not satisfied, the sampling is repeated until the conditions

are met before moving to the next variable. Note that depending on the

mapMθθθ, the boundaries for y(t)j,i can be calculated in advance and applied

to constrain the distribution in Equation 7.12 to avoid multiple sampling

aĴempts.

(7) Repeat steps from 3 for a maximum number of iterations.

Only the direct variograms of each Gaussian latent variable are required with the intrin-

sic assumption. As a result, there is no additional work for the definition of variograms



7. Multivariate Categorical Modeling with HTPG 137

when compared to the univariate HTPG. The utilization of a merged secondary aĴribute

reduces the computational cost by lowering the dimensionality of the covariance matrices

that requires inversion. As with the univariate case of the standard Gibbs sampler, the

utilization of a restricted neighborhood (Ni) leads to approximate parameters for the con-

ditional distribution in Equation 7.12 and can potentially result in convergence issues. The

propagative Gibbs sampler could be extended for the multivariate case, however, the re-

quirement to store all covariances between all data locations and all variables would render

it not feasible for practical applications.

The results of the proposed algorithm must be checked for convergence. The conver-

gence is only a concern for the data imputation step and it is not a problem with the sim-

ulation at the modeling grid. In cases where the imputation with the proposed approach

is not stable, the independent Gibbs sampler from univariate case could be utilized for the

imputation while the correlation is considered during the modeling at the grid nodes. The

impact of correlation on the imputation of multiple Gaussian latent variables is investigated

in Section 7.4.

7.3.5 Simulation of Latent Variables and Mapping to Categorical Space

After the imputation of the latent variables at the data locations, the imputed data are used

to condition the simulation at the modeling grid. The same IMC approach with merged

secondary aĴribute utilized in the proposed multivariate Gibbs sampler is also utilized for

the simulation at the modeling nodes. The simulation is performed sequentially for each

latent variable. During the simulation of a given latent variable, all the previous variables

already simulated are merged into a secondary aĴribute and utilized with the IMC.

The ordering of the latent variable is important in this case as the IMC is an approxima-

tion and does not necessarily represent the true nature of the spatial structure. The latent

variables must be ordered accordingly with the most important categorical variables com-

ing first. The IMC assumption has no effect on the modeling of the latent variables of the

first categorical variable, as the latent variables within one categorical variable are all inde-

pendent from each other. The effects of the IMC approximation, if any, are only observed

for the latent variables of the second and subsequent categorical variables. Once all latent

variables are simulated at all grid nodes, the truncation rule is applied for the definition of

the categorical realizations.



7. Multivariate Categorical Modeling with HTPG 138

7.3.6 Results for Jura Data Set

The data imputation is run with 10,000 iterations of the standard Gibbs sampler approach to

generate 100 realizations of data. The full neighborhood search is used to ensure stability

of the algorithm. The imputed data is utilized as conditioning data for the subsequent

modeling in order to transfer the uncertainty of the unsampled latent variables. Two sets of

imputed data are generated. One set uses the optimized correlation matrix with intrinsic

model and supersecondary variables and the other set has independent latent variables.

These two sets are compared.

The sequential Gaussian simulation (SGS) algorithm is used to simulate the latent vari-

ables at grid locations. The 2D grid have 173x205 blocks of 25x25 m. Five sets of realizations

are generated. These sets are utilized to compare the multivariate modeling approach with

the independent approach. These sets are: (1) correlated conditioning data with correlated

SGS; (2) independent data with correlated SGS; (3) independent data with independent

SGS; (4) unconditional correlated SGS; (5) unconditional correlated SGS (6). The method-

ology proposed here is beĴer represented by set 1, however, the utilization of the Gibbs

sampler with a large number of data may be unpractical and the user might only be able to

generate independent latent variables (set 2). The sets 1 and 2 are compared to the current

approach (set 3) in which both data imputation and simulation are performed with inde-

pendent latent variables. As the conditioning is very strong due to dense data. The effects

on unconditional realizations are also checked (sets 4 and 5).

The joint probability reproduction of each realization of each one of the described sets

are checked. The results are summarized in box-plots and shown in Figure 7.12. The pro-

posed framework resulted in the least amount of error (7.7%) in average, however, it shows

a large variability in the error magnitude. The average error for the case with independent

data and correlated simulation is slightly higher than the proposed methodology at 8.7%.

The conventional independent modeling resulted in the highest error amongst the condi-

tional realizations siĴing at 9.5% that represents a 23.5% increase in error compared to the

proposed framework. The error is pushed down due to the effect of conditioning data that

helps reproducing the joint proportion. The error difference between the proposed mul-

tivariate approach and the conventional independent approach is beĴer visualized with

the unconditional realizations. The error of the unconditional independent simulation is

60% higher then the amount for the unconditional multivariate simulation. The mean er-
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ror for the unconditional multivariate approach is lower than for conditional independent

approach.
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Figure 7.12: Summary of RSSE results for each testing set.

7.4 Effects of Data Correlation on Multivariate Categorical

Modeling

A synthetic example is created to further investigate the effects of data correlation on the

proposed multivariate HTPG. A grid with 100x100 cells of 50x50m each is defined for dis-

cretization of an area of 5x5 km in easting and northing directions. The the categorical

variables and modeling parameters are defined based on the Swiss Jura data set. Uncondi-

tional simulation is utilized to generate 1,000 reference models. A high number of realiza-

tions is used to ensure smooth results. The reference models are sampled with a string of

data containing all data for a fixed central location at easting direction (Figure 7.13). This

creates a string of data oriented from south to north.

Three cases are built for comparison. The first case utilizes the standard Gibbs sampler

considering the cross-correlation for data imputation and also utilizes the cross-correlation

for the simulation at grid nodes. The second case utilizes the independent Gibbs sampler to

perform the data imputation, however, the simulation at the grid nodes is performed using

the correlation between the Gaussian latent variables. The third case utilizes independent

modeling for the imputed data and for the simulation over the grid. All three cases are

compared against the reference models.

For each of the three cases 1,000 realizations were generated. The joint proportion re-

production is checked for each location in easting direction by evaluating the error for all
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Figure 7.13: Sample locations with categorical observations for variable 1 and 2 for realization 1 of
the reference models.

realizations and all locations in northing direction. This results in the error as function of

the easting coordinate. The RSSE of each bin of the joint distribution is utilized as error

measure. The results for all cases including the reference is shown in Figure 7.14 and the

error relative to the reference model is shown in Figure 7.15.
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Figure 7.14: Sample locations with categorical observations for variable 1 and 2 for realization 1 of
the reference models.

All cases have have the same error as the reference models at data location as the impu-

tation is constrained to match the categorical data observations. This error is due to ergodic

fluctuations in the categorical joint distribution. As the distance from the data increases, the

error is different for each case. The first case with correlated imputation has the same error

level as the reference models. This indicates that the standard Gibbs sampler converged
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Figure 7.15: Sample locations with categorical observations for variable 1 and 2 for realization 1 of
the reference models.

to the appropriate correlation between the variables (Figure 7.11). The error levels for the

second and third cases are higher than the reference as the imputation does not consider

correlation. The error for the second case is comparable to the third case up to a short dis-

tance from data and it starts to decline as the distance to the data increases. This happens

as the effect of conditioning data gets less strong. In the third case, the error only increases

until reaching the error expected for completely independent categorical variables around

11%. For this example the error from completely independent simulation reaches levels

up to 15 times higher than the expected error from ergodic fluctuations (Figure 7.15). Not

considering correlation during the imputation, but utilizing it for the simulation at grid

locations, leads to errors up to 3 times higher than the reference models.

These results suggest that the joint modeling of categorical variables should be per-

formed even if it is not possible to introduce the correlation during the imputation step.

The joint probability of independent categorical variables can be calculated from the uni-

variate proportions and compared to the declustered joint probability calculated from data.

The multivariate modeling of categorical variables should be considered if these two dis-

tributions are different.

7.5 Conclusion

A methodology for multivariate categorical modeling using the HTPG framework is de-

veloped. The technique is aimed at the reproduction of the joint categorical proportion.
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The Swiss Jura data set is used as an illustrative example to show that the methodology

improves the reproduction of the joint distribution when compared to the conventional

independent modeling. The reproduction is controlled by the correlation between the un-

derlying latent variables that are utilized for the modeling of each categorical variable. The

correlation is considered during the simulation through the use of IMC and merged sec-

ondary aĴributes.

The imputation of Gaussian latent variables with correlation when dealing with large

data sets is not always possible due to computational limitations. The effect of the data

correlation on the multivariate HTPG is investigated. The correlation between Gaussian

latent variables is important for the reproduction of the joint categorical distribution. In

cases that the correlation cannot be introduced in the imputation step due to computational

constraints, it is recommended that the simulation at grid nodes are still performed with

correlation as it reduces the error on the reproduction of joint distribution. The proposed

methodology is demonstrated for a full scale practical application in Chapter 8.



Cѕюѝѡђџ 8

CюѠђ SѡѢёѦ: Cюѡђєќџіѐюљ Mќёђљіћє
юѡ Rђё Dќє Mіћђ
The hierarchical truncated pluri-Gaussian (HTPG) approach for categorical modeling de-

veloped in this dissertation along with its extension to the multivariate case are demon-

strated in this chapter for a data set from the Red Dog Mine. The univariate and multivari-

ate HTPG approaches are applied and compared with the sequential indicator simulation

(SIS) technique. The results are compared through a test data set left out of the modeling

workflow and the advantages and disadvantages of each method are highlighted. The im-

pact of considering or not a multivariate workflow for the modeling of multiple categorical

variables is assessed by comparing the predicted metallurgical recovery against the real re-

covery for the test data set.

8.1 Background

The Red Dog Mine is located in the Western Brooks Range in northern Alaska and is one

of the world’s largest producers of zinc concentrate. The deposits in the Red Dog district

are described as shale-hosted massive sulfide Zn-Pb-Ag deposits formed by sedimentary

exhalative (SEDEX) and replacement processes (Kelley and Jennings, 2004; Moore et al.,

1986). The deposits in Red Dog have a strong structural control as a result of thrust faults

that formed a stacking structure. Within the Red Dog thrust plate, the mineralization is

separated by thrust sheets (plates). The deposits in Red Dog district are characterized by

veins and breccias at the lower portions followed by massive sulfide, silica rock or silicified

barite and barite with high to low sulphide content at the upper portions (Krolak et al.,

2017).

The metallurgy in Red Dog mine is complex and sensitive to the multiple ore types.

The high relative iron content as pyrite has a negative impact on metallurgical recovery

and silica is the most important variable affecting the metallurgical throughput (Krolak

et al., 2017). Weathering is also an important factor affecting the overall metallurgy at Red

143
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Dog deposits (Krolak et al., 2017).

8.2 Available Data

The data set available for this case study consists of a total of 1134 drillholes and 41,343

samples composited to a length of 12.5 ft and distributed at a nominal 100 ft spacing. The

location of the available drillholes are shown in Figure 8.1. The parameters of the block

model utilized for the modeling in this chapter is shown in Table 8.1.
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Figure 8.1: Views of the location of the 1134 drillholes available for modeling at Red Dog mine.
There are 712 blue drillholes and 422 red drillholes. The blue drillholes are used for modeling and
the red ones are used for performance check.

Table 8.1: Parameters of the block model utilized for the modeling of the area where the data is
available.

Direction Origin Number of Blocks Block Size (ft)

Northing (ft) 585,317 146 25.0
Easting (ft) 142,256 210 25.0

Elevation (ft) 400 69 12.5
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The categorical variables available for modeling are the Plates and Rock Type (RT). The

Plates variable has five categories: (1) Upper; (2) Middle; (3) Lower; (4) Sub-lower; and (5)

Other. The RT variable also has five categories: (1) Barite; (2) Low Grade (LG); (3) High

Grade (HG); (4) Vein; and (5) Host. The data set is divided into two sets of 712 drillholes

with 26,074 samples and 422 drillholes with 15,269 samples. The larger set is used as train

data and is shown as blue drillholes in Figure 8.1 and the smaller set is used as test data

and is shown as red drillholes. The separation of the two sets is performed in such way

that the resulting sets have nearly evenly spaced drillholes and the test set appear as infill

drilling in relation to the training set. All the modeling in this chapter is undertaken with

the training set and the quality of the models and performance of the methodologies are

evaluated with the test set.

8.2.1 Recovery Parameters

The mineral composition, texture and rock/ore type are cited as important factors for the

metallurgical recovery and throughput in Red Dog Mine (Krolak et al., 2017), however,

quantitative factors relating the metallurgical recovery to the categorical variables are not

found in the literature. The goal of this chapter is to demonstrate the impact of the devel-

oped methodologies for categorical modeling on key response variables such as metallurgi-

cal recovery. Leuangthong (2003) utilizes a metallurgical recovery prediction model based

on the Zn, Fe, and Ba content for the Red Dog Mine. A metallurgical recovery model based

on the categorical variables is built by applying the same rules to the available composites

and defining the average recovery for each combination of the categorical variables. The

rule utilized in (Leuangthong, 2003) proceeds as follows:

(1) if the sample belongs to the Vein RT, the Zn recovery is fixed at 89%

(2) if Ba is greater or equal than 7%, the recovery is given by: 27.182× ln(Zn)− 3.4834; to

a maximum of 85%

(3) if Ba is less than 7% and Fe is less than 15.5%, the recovery is given by: 89.4− 0.7× Fe

(4) if Ba is less than 7% and Fe is greater or equal than 15.5%, the recovery is given by:

(−0.4205× Fe + 90.196)− (55− (−0.531× Fe + 60.036))× 1.6

Two additional rules are added for this case study: (1) recovery is 0 for the Host RT

as it is outside of mineralization and (2) minimum recovery is set to 0% as the rule above
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resulted in negative recoveries for some samples in the data set. The resulting recovery

model for the combination of the categorical variables is shown in Table 8.2.

Table 8.2: Recovery as function of the combination of categorical variables RT and Plates. Missing
values are combinations that are not observed in the data.

Plates
Rock Type

Barite LG HG Vein Host

Upper 20.24 60.57 - - -
Median 18.84 71.02 83.25 89.00 -
Lower 37.32 79.08 84.18 89.00 -

Sub-lower 31.03 76.50 - 89.00 -
Other - 71.01 79.46 - 0.00

8.2.2 Categorical Proportions

Categorical variables are modeled to define stationary domains for the modeling of contin-

uous variables. The distribution of categories have a direct contribution to resource esti-

mation. Bias in the categorical proportions can potentially lead to under or overestimation

of resources with serious economic impact. The definition of global proportion for cate-

gories is an important aspect of the modeling. In a multivariate modeling workflow such

as the multivariate HTPG developed in this dissertation, the definition of a joint categorical

distribution is also required.

The training set utilized for modeling is fairly regularly distributed in space, but there

are still some areas that are more or less densely sampled. To account for preferential sam-

pling, declustering weights are calculated for each sample. Cell declustering is a robust

technique that only requires the definition of the cell size parameter. Cell size is often de-

fined by largest reasonable drillhole spacing within the area of interest (Rossi and Deutsch,

2014). To assist the selection of cell size the distribution of drill hole spacing is calculated

(Figure 8.2) and the 95th percentile is highlighted as reference for the cell size selection. The

cell size of 200x200x25 ft is selected for this data set.

There is a clear trend from boĴom to top in the RT categories (Figure 8.3). The Vein

RT is more likely to appear at lower elevations (Figure 8.3d) whereas the Barite is observed

more often in the upper portions (Figure 8.3a). The Plates categorical variable is also highly

non-stationary (Figure 8.4) with the Upper and Middle Plates located mostly on the South

region (Figures 8.4a and 8.4b) and Lower and Sub-lower located towards the North region
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Figure 8.2: Distribution of drillhole spacing for the train data set. The 95th percentile is highlighted
to assist the definition of cell size for cell declustering and the 5th percentile is highlighted to assist
the definition of the smallest lag sizes for horizontal variogram calculation.

(Figures 8.4c and 8.4d) of the Red Dog area. The Host category on RT variable is similar

to the Other category on the Plates variable. The main difference is that the weathered LG

and HG is included in the Other category.

The global proportions calculated from the trend models need to be checked against the

reference distribution calculated from the data to avoid bias in the simulated models. The

categorical global proportions calculated with and without declustering weights as well as

the proportions calculated from the trend model are shown in Table 8.3. The declustered

proportions do not differ significantly from the proportions calculated without the declus-

tering weights. This is due to the fairly regular drillhole spacing in the area of interest. A

small change in the proportion, however, may lead to significant bias on the resource esti-

mation. The models generated with the use of local proportions are more likely to repro-

duce the distribution inferred from data if the global proportions calculated from the trend

model matches the target global proportions. The proportion calculated from the trend

model generated for this case study is close to the declustered proportions (Table 8.3).

The joint categorical probability density function (PDF) is calculated for the training

data set (Figure 8.5a) and compared with the theoretical distribution for independent cat-

egories (Figure 8.5b). There is a clear deviation between the joint PDF of the data and the

one for independent variables. A multivariate modeling approach is necessary to enforce

the relationship between the two categorical variables observed in the data.
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Figure 8.3: Local proportion for the RT categorical variable.
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Figure 8.4: Local proportion for the Plates categorical variable.
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Table 8.3: Global proportions for Swiss Jura data set

Variable Category Code
Global Proportion (%)

Clustered Declustered Trend Model

Plates

Upper 1 0.95 1.06 0.94
Median 2 20.00 15.84 15.71
Lower 3 23.97 21.33 21.78

Sub-lower 4 1.21 1.25 01.36
Other 5 53.86 60.52 60.22

Rock Type

Barite 1 9.75 8.59 7.75
LG 2 18.30 16.63 16.83
HG 3 10.77 7.85 7.48
Vein 4 8.86 8.08 8.63
Host 5 52.32 58.86 59.31
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Figure 8.5: Multivariate categorical PDF calculated from data and the theoretical joint PDF for in-
dependent categories.
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8.2.3 Variography

The parameterization of the spatial structure is performed by calculating the indicators for

each categorical variable and the respective residuals considering the trend models. The

only strong observed anisotropy is from horizontal to vertical for all Plates and RT indi-

cators. The major and mid directions are isotropic and parallel to the horizontal plane

whereas the minor direction is aligned with the vertical direction. The experimental var-

iograms of the indicator residuals for the Plates variable are shown in Figure 8.6 and the

variograms for the RT categories are shown in Figure 8.7e.
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Figure 8.6: Modeled experimental variograms of the indicator residuals for the Plates variable. The
red color is used for the vertical direction and the blue color is used for the horizontal direction.
The markers are the experimental points and the lines are the fiĴed models.

8.3 HTPG Parameters

The parameters for the HTPG are defined in this section. The required parameters are the

structure of the truncation tree for each categorical variable, the truncation thresholds and

the spatial structure of the latent variables. The multivariate HTPG also requires the defini-

tion of the correlation structure between the Gaussian latent variables across all categorical

variables.
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Figure 8.7: Modeled experimental variograms of the indicator residuals for the RT variable. The
red color is used for the vertical direction and the blue color is used for the horizontal direction.
The markers are the experimental points and the lines are the fiĴed models.

8.3.1 Truncation Rule

The definition of the mapping between the categorical and the continuous space is the

most important step in the application of truncated Gaussian methods. Geological contacts,

spatial structure and proportions are the main factors considered for the definition of the

truncation rule.

A cross-section in the South-North direction located at 570840 ft easting coordinate

is shown in Figure 8.8a together with the transition probability (Figure 8.8b) and multi-

dimensional scaling (MDS)/minimum spanning tree (MST) visualization (Figure 8.8c) for

the Plates categorical variable. Most of the times the Upper, Middle, Lower and Sub-lower

plates are separated. Each one of these categories transitions to the Other category. In

few instances, transition between consecutive plates is observed, such as Upper to Middle,

Middle to Lower, and Lower to Sub-Lower. The categories in the Plates variable represent

large features concentrated in certain areas of the domain. Given the spatial separation

of the categories, the trend model can be used to enforce the transitions. The hierarchical

truncation tree chosen for the Plates variable is a linked list shown in Figure 8.9. The linked

lists have the most number of Gaussian variables possible in a truncation structure. The

truncation ordering is based on the spatial continuity with the most continuous variables
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at the top of the truncation structure and the least continuous at the boĴom.
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Figure 8.8: Cross-section, dissimilarity matrix and visual summaries based on MDS and MST for
the Plates categorical variable.
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Figure 8.9: Truncation tree for the Plates variable.

The procedure utilized for the Plates variable is repeated for the RT variable. The same

cross-section is shown in Figure 8.10a for the RT variable and the transition matrix and

MDS/MST visualization are shown in Figures 8.10b and 8.10c. There are transitions be-

tween all categories to a certain extension. The cross-section show that the Barite is often

at the top followed by LG and HG categories before transitioning to the Vein category. The

transition from Barite to Vein is rare and it happens in the absence of the LG and HG cate-

gories. The LG and HG appear together most of the time and the MDS/MST visualization

show a close connection between the two categories. In light of these observations, the

truncation structure shown in Figure 8.11 is chosen for the RT variable.
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Figure 8.10: Cross-section, dissimilarity matrix and visual summaries based on MDS and MST for
the RT categorical variable.

The truncation structure defined for the RT variable consists of three Gaussian variables

with the first defining the Host category (the most continuous), the second Gaussian vari-

able is utilized to separate Barite from Vein by placing the LG and HG in between, and

the third Gaussian variable defines the separation between LG from the HG. In the sta-

tionary case, this configuration would result in no transition between the Barite and Vein

categories, however, in the non-stationary case the transition between the Barite and Vein

can happen where the local proportion of LG and HG are low.

8.3.2 Thresholds

Once the the truncation rules are defined, the thresholds are calculated based on the cat-

egorical proportions. A global set of thresholds must be defined using the global propor-

tions. These are used in the numerical derivation of the variograms of the latent variables.

The global thresholds for both Plates and RT variables are shown in Table 8.4.

Local proportions are being considered for the modeling of the categorical variables.

In this case, the matching set of local thresholds must be defined. The local thresholds for

the Plates variable are shown in Figure 8.12 and the local thresholds calculated for the RT

variable are shown in Figure 8.13.
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Figure 8.11: Truncation tree for the RT categorical variable.

Table 8.4: Global thresholds for the Red Dog case study.

Variable
Global Thresholds

t1 t2 t3 t4

Plates 0.2589 0.1193 1.1395 -0.2313
RT 0.2354 -0.8764 0.7992 0.5022

8.3.3 Numerical Variogram Derivation

With the truncation rule established and the global thresholds calculated, the numerical

derivation of the Gaussian variables variograms is undertaken utilizing the variogram of

the indicator residuals as reference. The numerical derivation is performed for the hori-

zontal and vertical directions of continuity utilizing 100,000 samples for the Monte-Carlo

simulation (MCS). The horizontal direction is discretized into 20 steps of 20 ft and the ver-

tical direction is discretized into 20 steps of 10 ft.

The results of the numerical derivation for the Gaussian variables utilized for the Plates

variable are shown in Figure 8.14. The variograms in Figures 8.14a to 8.14d are the resulting

variograms for the Gaussian variables. The variograms for Gaussian Y1,1 and Y1,2 are well

behaved whereas the variograms for Y1,3 and Y1,4 show hyper-continuous structure. The

hyper-continuity in this case is difficult to avoid given the very different categorical pro-

portions for this variable. The Upper and Sub-lower categories show small proportions

compared with the other variables. Even in the presence of unfiĴed hyper-continuous

structure, the reproduction of categorical variograms may be just slightly affected. This

can only be determined when checking the simulated models.
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Figure 8.12: Local thresholds calculated for the Plates variable.

The Upper and Sub-lower categories share the last node of the truncation tree and their

variograms are not well matched in the horizontal direction (Figures 8.14e and 8.14h). This

is not a major concern as these categories did not have stable horizontal experimental var-

iograms. The well informed vertical direction is well matched. The other categories were

matched by the numerical derivation. Again, the unfiĴed hyper-continuous structures may

affect final variogram reproduction.

The results of the numerical variogram derivation for the RT variable are shown in

Figure 8.15. The variogram of the Gaussian variables are beĴer behaved with a slight pres-

ence of hyper-continuity observed for Y2,2 (Figure 8.15b). The variogram models are well

matched for all categories in RT variable (Figures 8.15d to 8.15h).
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Figure 8.13: Local thresholds calculated for the RT variable.

8.3.4 Correlation for Multivariate HTPG

The algorithm for the optimization of the correlation matrix is run to match the declustered

categorical multivariate distribution (Figure 8.5a). The software is allowed to run for 5,000

iterations with 20,000 samples and 120 random restarts. The best solution found has a sum

of squared error (RSSE) of 2.18%. The correlation matrix resulting from the optimization is

shown in Figure 8.16a and the respective expected joint PDF is shown in Figure 8.16b. The

obtained distribution is close to the reference distribution compared to the distribution

considering independent variables (Figure 8.5b). The Gaussian variable Y1,1 defines the

the Other category for the Plates variable and the Y2,1 defines the Host category for the RT

variable. These categories are very similar and overlap each other in space for the most part.

As a result the optimized correlation between these two variables is 0.9985, which rounds

to 1.00 in Figure 8.16a. The high correlation can be a limiting factor in the application of
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Figure 8.14: Results from the numerical derivation of the Gaussian variables variograms for the
Plates categorical variable. The red color is used for the vertical direction and the blue color is used
for the horizontal direction. The markers are the results of numerical derivation and the lines are
the reference models (categories) and fiĴed models (Gaussian variables).

the multivariate Gibbs sampler as highly correlated variables leads to slow convergence of

the algorithm.

8.3.5 Imputation of Gaussian Variables

Two sets of imputed Gaussian variables are generated for the Red Dog case study. One

is generated with independent Gaussian latent variables and the other is generated con-

sidering the optimized correlation matrix shown in Figure 8.16a. The independent data

imputation is utilized with the univariate case of the HTPG and the correlated is utilized

for the multivariate HTPG.
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Figure 8.15: Results from the numerical derivation of the Gaussian variables variograms for the RT
categorical variable. The red color is used for the vertical direction and the blue color is used for
the horizontal direction. The markers are the results of numerical derivation and the lines are the
reference models (categories) and fiĴed models (Gaussian variables).
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Figure 8.16: Results from the correlation matrix optimization for the train data set.
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8.3.5.1 Independent Gibbs Sampler

The combined Gibbs sampler approach proposed in Section 5.2.3 is utilized for the inde-

pendent data imputation in this case study. At each iteration, the Gibbs sampler algorithm

loops through all data locations. As a result, the more data points in the data set the less

burn-in iterations are required. Only eight burn-in iterations were utilized for the data

imputation with the training data set due to the large number of composites available.

The imputation results for drillhole 1267 are shown in Figure 8.17. The blue lines high-

light one data realization, the red lines represent the thresholds applied to each Gaussian

variable and the gray markers show all 100 realizations for each data point.
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Figure 8.17: Results from independent data imputation utilizing the combined Gibbs sampler algo-
rithm for drillhole 1267. The marker color coding in (a) is: orange for Middle; gray for Other and
yellow for Lower Plates. The marker color coding in (b) is: red for HG; yellow for LG and gray for
Host RT. The red lines represent the thresholds, the blue lines highlight a single data realization
and the gray markers are all 100 data realizations in each data location.
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The Middle, Lower and Other categories are observed in this drillhole for the Plates

variable (Figure 8.17a). The Middle plate (orange markers) must be above the threshold

for the first two Gaussian variables (Y1,1 and Y1,2) and below the threshold for the third

(Y1,3). The threshold for Y1,3 is not visible in Figure 8.17a as it is above the shown interval.

The variable Y1,4 is irrelevant for the Middle plate (see Figure 8.9). The Lower plate (yel-

low markers) must be above the threshold for Y1,1 and below the threshold for Y1,2. The

Other category (gray markers) must be below the threshold for Y1,1 and all other Gaussian

variables are irrelevant for this category.

There are three main points to observe when visually checking the results from the

Gibbs sampler: (1) check if the simulated values matches the truncation rule; (2) check for

extreme highs and lows that may indicate instability in the algorithm; and (3) check for

reasonable fluctuations where conditioning is not strong (e.g. variable Y1,4 in Figure 8.17a),

this may indicate whether or not more iterations are required.

The simulated Gaussian variables for the RT variable are shown in Figure 8.17b. The

LG and HG categories (yellow and red markers) must be above the threshold for the first

variable (Y2,1), between the lower and upper thresholds for the second variable Y2,2 and the

third variable (Y2,3) is the one that separates the two with HG above the threshold and LG

below. This is observed in Figure 8.17b. Similar results of the independent Gibbs sampler

are observed for the other drillholes in the training data set and are deemed adequate for

use with the univariate HTPG workflow.

8.3.5.2 Multivariate Gibbs Sampler

The algorithm for the multivariate Gibbs sampler developed in Section 7.3.4 is applied for

the simulation of the missing latent variables for the application of the multivariate HTPG.

The results for drillhole 1267 are shown in Figure 8.18. The correlation between variable

Y1,1 and Y2,1 is almost 1.0. This high correlation between the two variables makes the con-

vergence of the Gibbs sampler algorithm slow and it is impractical to run the algorithm long

enough for convergence. The values observed in Figure 8.18 for these two variables are al-

most identical to the initial values assigned to data locations and do not show the expected

smoothness of the Gaussian variogram structure as observed in Figure 8.17. Also, the vari-

ables Y1,3 and Y2,3 have a correlation of -0.41 and different spatial structures (Figures 8.14c

and 8.15c). The intrinsic model of coregionalization (IMC) approximation utilized with the
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multivariate Gibbs sampler causes the mixing of the spatial structure when the true struc-

ture is not intrinsic. Despite the poor convergence observed for the variables Y1,1 and Y2,1

and the mixing of spatial structure from IMC approximation, the imputation matches the

data and show reasonable fluctuation. The multiple stochastic imputation will transfer the

uncertainty on unobserved latent variables to the final models unlike the alternative fixed

class center approach.
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Figure 8.18: Results from correlated data imputation utilizing the standard Gibbs sampler algo-
rithm with IMC for drillhole 1267. The marker color coding in (a) is: orange for Middle; gray for
Other and yellow for Lower Plates. The marker color coding in (b) is: red for HG; yellow for LG
and gray for Host RT. The red lines represent the thresholds, the blue lines highlight a single data
realization and the gray markers are all 100 data realizations in each data location.



8. Case Study: Categorical Modeling at Red Dog Mine 163

8.4 Results

Four sets of 100 realizations of each categorical variable are generated for this case study.

The first set is generated using the univariate HTPG, the second set is generated with the

multivariate HTPG and will be referred to as MVHTPG, the third set is generated with the

SIS approach and the fourth set is generated with SIS and cleaned with maximum a poste-

riori selection (MAPS) post processing. This is a common practice with the application of

SIS and it is used to remove the noise artifacts from SIS and improve the reproduction of

categorical proportions (Deutsch, 1998, 2006). The fourth set will be referred to as MAPS.

One realization of each set is shown in Figure 8.19.
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Figure 8.19: One realization of the Plates variable generated with HTPG, MVHTPG, SIS and MAPS.

The Plates indicators have large structures and the realizations are similar for the HTPG

and MVHTPG approaches (Figures 8.19a and 8.19b). The realization for SIS (Figure 8.19c) is
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noisiest of all realizations shown and the MAPS realization (Figure 8.19d) is the smoothest.

The correctness of the spatial variability is evaluated by checking the variogram reproduc-

tion for each methodology.

One realization of the RT variable generated with each technique is shown in Figure 8.20.

Again, both HTPG and MVHTPG (Figures 8.20a and 8.20b) seem very similar in terms

of spatial variability. Also for the RT variable, SIS generated the noisiest realization and

MAPS generated the smoothest. There is a visible difference between SIS and HTPG based

models in terms of spatial distribution of the categories.
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Figure 8.20: One realization of the RT variable generated with HTPG, MVHTPG, SIS and MAPS.

The most likely categories over all 100 realizations generated with each technique are

shown in Figure 8.21 for the Plates variable. The models for all techniques are similar. This

is not a surprise as they use the same trend model. The only noticeable difference is for the

the Sub-lower category that shows much higher proportions in the HTPG and MVHTPG
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models (Figures 8.21a and 8.21b) when compared to the models generated with SIS and

MAPS (Figures 8.21c and 8.21d).
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Figure 8.21: The most likely category across all realizations for the Plates variable generated with
HTPG, MVHTPG, SIS and MAPS.

The most likely categories over all 100 realizations generated with each technique are

shown in Figure 8.22 for the RT variable. Again, the models for all techniques are similar.

The west-east middle cross-section in Figure 8.22b for MVHTPG show different transition

structure between the Barite to LG to HG categories that is not observed in the other models.

The visualization of single realizations offers only a hint of the heterogeneity of the

models. Shannon’s entropy is used to summarize the uncertainty. The entropy is a direct

measure of categorical disorder and it is highest where the uncertainty is highest and lowest

where the uncertainty is lowest. The theoretical maximum entropy value is observed when

all categories have equal probability. Both Plates and RT variables have five categories and
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Figure 8.22: The most likely category across all realizations for the RT variable generated with
HTPG, MVHTPG, SIS and MAPS.

the maximum possible entropy for both variables is 1.6. The Shannon entropy is calculated

for each grid node based probability of each category calculated over all realizations.

The entropy models for the Plates variable resulting from the application of each mod-

eling technique are shown in Figure 8.23. The entropy is not expected to be different for the

Plates variable between the MVHTPG (Figure 8.23b) and HTPG (Figure 8.23a), however,

the entropy for the MVHTPG is slightly lower inside the large features away from the cat-

egorical boundaries and slightly higher close to the boundaries. This could be a symptom

of the less than ideal convergence of the Gibbs sampler algorithm, but, the differences are

minor compared to the entropy for SIS (Figure 8.23c) and MAPS (Figure 8.23d).

The SIS models resulted in the highest entropy. This is a expected feature in SIS models.

They often show increased small scale variability that results in artificial increase in the
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(d) MAPS

Figure 8.23: Categorical uncertainty represented by the Shannon entropy calculated over all real-
izations for the Plates variable generated with HTPG, MVHTPG, SIS and MAPS.

categorical disorder. The entropy is clearly decreased for the cleaned SIS models (MAPS),

however, there is an evident short scale contrast close to the drillhole locations which could

be artificially introduced by the weighting function utilized with cleaning process. An

evident difference in entropy is also observed at the domain boundaries between the HTPG

and SIS based models.

Shannon’s entropy is also calculated for the realizations of the RT variable generated

with each modeling technique. The resulting entropy models are shown in Figure 8.24.

The RT variable has categories with shorter spatial continuity than the categories of the

Plates variables. This results in an overall increase in entropy values across the models at

relatively shorter distance from the conditioning data.

The entropy for the RT variable is similar for the HTPG and MVHTPG models (Fig-
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Figure 8.24: Categorical uncertainty represented by the Shannon entropy calculated over all real-
izations for the RT variable generated with HTPG, MVHTPG, SIS and MAPS.

ures 8.24a and 8.24b). The slight differences observed are expected as the RT models are

conditioned to the previously simulated models for the Plates variable and are slightly

more contained by the enforced multivariate structure. The contrast between the entropy

of the HTPG based techniques and the SIS based techniques is clear. Both SIS and MAPS

have considerably higher entropy (Figures 8.24c and 8.24d). One of the reasons for the dis-

crepancy is that the Gaussian latent variables utilized with the HTPG techniques carries

information regarding the distance to the boundary. The latent variables are constrained

to crossing the thresholds depending on the categorical contacts and the spatial structure

enforced by the Gibbs sampler determines how quickly the Gaussian values can fluctuate

back to values close to the thresholds. These constraints are transfered to the categorical

realizations resulting in very different local uncertainty compared to SIS based models.
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8.4.1 Reproduction of Global Proportions

Categorical variables are often utilized as stationary domains for the modeling of contin-

uous variables such as metal concentrations (Rossi and Deutsch, 2014). The proportion of

categorical variables have a direct impact on the resources and must be checked carefully.

Box-plots are utilized to summarize the global proportions calculated for each category of

each categorical variable for each one of the modeling techniques being compared. The

results are shown in Figure 8.25. The target global proportions calculated with the weights

from cell declustering are shown as green dashed lines in Figure 8.25 and the global pro-

portions calculated from the trend model are shown as red dashed lines. These are the

target proportions that are expected to be reproduced. The global proportions calculated

without declustering weights are also shown as blue dashed lines in Figure 8.25.

The most noteworthy feature of the global proportion reproduction in this case study

is with respect to the SIS modeling techniques. It is well documented in the literature

that SIS often underestimates lower proportion categories in favor of the categories with

higher proportions due mostly to the order relations corrections that take place within

its application (Deutsch, 2006), The MAPS correction is not only utilized to remove noise

from the SIS realizations, but also to improve the reproduction of categorical proportions

(Deutsch, 1998). In this example the opposite behavior is observed. The lower proportion

categories such as Upper and Sub-lower Plates as well as Barite, HG and Vein RT have the

highest proportions in SIS simulated models and are lowered when MAPS is used.

It is not possible to state that one particular technique performed beĴer in terms of re-

producing the global proportions by visually inspecting the box-plot summary. The mean

absolute percent error (MAPE) is calculated for each case using the global proportions from

the trend model (red dashed lines) in Figure 8.25 as reference. The MAPE is chosen as it is

a relative error measure that equalizes the importance of reproducing the low proportion

categories and high proportion categories. The results are shown in Table 8.5 and the best

results are highlighted. The techniques performed similarly with MVHTPG showing the

best reproduction for the Plates variable and MAPS resulted in the best overall reproduc-

tion for the RT variable.
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Figure 8.25: Reproduction of global proportions for the categorical variables utilizing the different
modeling techniques. The red dashed line is the global proportion calculated from the trend model,
the green dashed line is the declustered global proportion and the blue dashed line is the clustered
global proportion.
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Table 8.5: Reproduction of categorical proportions for Plates and RT variables utilizing different
techniques. The error is measured in terms of the MAPE. The best (lowest error) is highlighted.

Variable Category Technique

HTPG MVHTPG SIS MAPS

Plates

Upper 6.4 8.7 35.5 16.7
Middle 13.7 11.6 2.12.12.1 8.6
Lower 15.0 11.7 5.65.65.6 10.1

Sub-lower 10.4 8.08.08.0 30.4 9.6
Other 9.2 7.4 1.21.21.2 5.9

Mean 10.9 9.59.59.5 15.0 10.2

RT

Barite 7.07.07.0 13.7 30.0 17.5
LG 10.9 7.9 14.1 1.41.41.4
HG 11.3 3.8 43.3 2.82.82.8
Vein 15.2 19.1 4.2 3.93.93.9
Host 7.6 7.3 14.0 1.61.61.6

Mean 10.4 10.4 21.1 5.45.45.4

8.4.2 Variogram Reproduction

As observed in Figures 8.19 and 8.20, the SIS approach resulted in the noisiest models and

MAPS resulted in the smoothest models. The HTPG and MVHTPG generated models with

intermediate spatial variability. To state that one is beĴer than the other, the spatial con-

tinuity of the realizations must be compared with the spatial continuity of the data. The

horizontal and vertical variograms of each realization generated by each technique are cal-

culated and compared to the reference.

The variogram reproduction for the Plates variable is shown in Figure 8.26. The red

color is utilized for the vertical direction and the blue color is utilized for the horizontal

direction. The light colored lines are the variograms of the realizations and the solid lines

are the average variogram over all realizations. The markers connected by dashed lines are

the experimental indicator variograms calculated from data. Note that a variogram model

for the indicators is not available as it was not necessary for the modeling with a trend.

The noisy features observed of the SIS models are clearly shown as inflated short range

variability in the variogram reproduction. The HTPG, MVHTPG and MAPS have simi-

lar variogram reproduction with MAPS showing an overall beĴer horizontal variogram

reproduction while the HTPG and MVHTPG techniques show beĴer vertical variogram

reproduction for the Plates variable.
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Figure 8.26: Variogram reproduction for the categories of the Plates variable. The red color is uti-
lized for the vertical direction and the blue color is utilized for the horizontal direction. The light
colored lines are the variograms of the realizations and the solid lines are the average variogram
over all realizations. The markers connected by dashed lines are the experimental indicator vari-
ograms.

The variogram reproduction for the RT variable is shown in Figure 8.27. Again, the

same behavior is observed for the models generated by the SIS technique. MAPS in this

case was not sufficient to remove the inflated variability. The HTPG and MVHTPG have

similar variogram reproduction and have clearly superior performance when compared

with the SIS and MAPS techniques.

8.4.3 Transition Probabilities

Transition probabilities are a quantitative measure of the geological structure. The trun-

cated Gaussian methods have the ability to explicitly control some features of the transi-

tions between categories, whereas, the SIS method does not have the same capability. It is

noted, however, that the local trend is utilized for the control of transitions for the Plates
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Figure 8.27: Variogram reproduction for the categories of the RT variable. The red color is utilized
for the vertical direction and the blue color is utilized for the horizontal direction. The light colored
lines are the variograms of the realizations and the solid lines are the average variogram over all
realizations. The markers connected by dashed lines are the experimental indicator variograms.

variables and no explicit geological control is utilized in the truncation rule defined for the

Plates variable. In light of these observations the reproduction of transition probabilities of

HTPG and SIS based methods for the Plates variable is expected to be somewhat similar.

The RT variable, on the other hand, has the transition enforced by both trend model

and truncation structure. The Gaussian variable Y2,2 in Figure 8.11, for instance, is utilized

to decrease the likelihood of transition between Barite and Vein categories. The HTPG and

MVHTPG are expected to have beĴer transition reproduction for the RT variables when

compared with SIS and MAPS due to the combination of the truncation rule and trend

model for the enforcement of transitions.

The average scaled transition probabilities calculated over all realizations for each mod-

eling technique and for each variable are shown in Figure 8.28. The reproduction of the tran-

sition probabilities for the Plates variable is similar across all modeling techniques. This is
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expected due to the aforementioned reasons. The separation between the Upper and Mid-

dle plates from the Lower and Sub-lower is slightly beĴer reproduced by the HTPG and

MVHTPG methods. The transition between the Other plate to the Upper plate and Sub-

lower plate is inflated for all models compared to the reference (Figure 8.8b) and, as result,

there are less than expected transitions to Middle and Lower plates. This can potentially

be improved by a more restrictive truncation rule for the HTPG techniques perhaps explic-

itly separating the Upper and Sub-lower plates from the Middle and Lower by placing the

Other category in between. This would be similar to what is done for the RT variable.
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Figure 8.28: Average scaled transition probabilities calculated over all realizations for each model-
ing technique for Plates and RT variables.

The reproduction of the transition probabilities for the RT variable is slightly beĴer for

the HTPG and MVHTPG approaches. The restriction on the transition between the Barite

and Vein categories can be clearly observed by comparing the matrices for SIS and MAPS

versus the matrices for HTPG and MVHTPG in Figure 8.28. The root mean squared error

(RMSE) is calculated for each realization and the distribution for each modeling technique

is summarized in Figure 8.29. There is no theoretical reason for the lower performance of

MVHTPG compared to the HTPG, specially for the Plates variable. The only difference

between the two is in the conditioning data. The differences can be aĴributed to the per-

formance of the Gibbs sampler utilized in each application.
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Figure 8.29: Distribution of error on the reproduction of the transition probabilities for each mod-
eling technique.

8.4.4 Validation

HTPG and MVHTPG are shown to have very different characterization of the local uncer-

tainty if compared to SIS and MAPS techniques. HTPG and MVHTPG show an overall

decrease in local uncertainty especially for the RT variable. A lower uncertainty does not

necessarily mean beĴer models. This is only the case if the models are also accurate. The

test data set left out of the modeling workflow is utilized to evaluate the accuracy of the

models.

8.4.4.1 Prediction Error

The most obvious validation to perform is to check the reproduction of the categorical

observations at the test data locations. For each data location the true category is compared

with the simulated value at the closest grid node and the mismatch are counted. The total

count is divided by the number of realization and a percent error is calculated. The percent

error calculated for each data location is utilized to generate an error distribution. This

distribution is shown in Figure 8.30 for the Plates variable.

All techniques perform similarly with relation to reproducing the categories of the

Plates variable. This is not surprising as even with the data left out the structures of this

variable are large if compared with the drilling density. HTPG resulted in the lowest er-

ror followed closely by MAPS. SIS resulted in the highest mismatch between the true and

simulated categories.
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Figure 8.30: Prediction error for the Plates variable for each modeling technique.

The error distribution for the RT variable is shown in Figure 8.31. The RT variable

has much smaller features relative to the drillhole spacing that are more difficult to model

accurately. The differences in performance between HTPG and MVHTPG compared to

SIS and MAPS are visible. The developed methodologies show beĴer reproduction of the

categories of the RT variable.
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Figure 8.31: Prediction error for the RT variable for each modeling technique.

8.4.4.2 Probabilistic Accuracy

The probabilistic accuracy is evaluated by discretizing the probability interval in several

bins, calculating the predicted frequency in each one of these bins and then comparing

the predicted frequency with the actual fraction of each category in each one of these bins

(Deutsch and Deutsch, 2012). The predicted and actual fraction in each interval are utilized

to generated an accuracy plot where being close to the 45 degree line indicates that the

modeling technique is accurate. Other summary statistics such as entropy and B values are

also shown (Deutsch and Deutsch, 2012). The B value is the average predicted probability

when the true value is 1 and when the true value is 0. The highest the B value the beĴer
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reproduction of the categorical indicator. The B value has similar meaning to the mean

prediction error shown in the previous section.

The expected features in an accuracy plot are low entropy coupled with high B value

and liĴle deviation from 45 degree line. This means that the modeling technique is both

accurate and precise. Low entropy and low B value indicates bias and is usually coupled

with points consistently above or below the 45 degree line. A high entropy with low B

value indicates a models that are inaccurate and not precise and are usually characterized

by large spread from the 45 degree line.

The accuracy plots for the Plates variable are shown in Figure 8.32. The B values show

the same result as observed for the prediction error. The accuracy is similar for the HTPG,

MVHTPG and MAPS whereas the SIS technique show features of a precise but inaccurate

models for this variable.
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Figure 8.32: Accuracy plot for Plates variable.

The accuracy plots for the RT variable are shown in Figure 8.33. HTPG shows the de-

sired features with the most accurate and precise models amongst all the modeling tech-

niques. The MVHTPG is also precise but it shows slight bias which means that it is not as

accurate as the HTPG models. The SIS and MAPS are significantly less precise than HTPG

and MVHTPG. The SIS models are also less accurate compared to all other models as it

shows significantly higher uncertainty as indicated by the entropy values.

8.4.4.3 Metallurgical Recovery

All the performance evaluations undertaken so far are checking univariate features. None

of the measures have a direct dependence on the multivariate relationships between the

categorical variables. To evaluate the impact of the developed multivariate workflow rep-

resented by MVHTPG against the univariate alternatives HTPG, SIS and MAPS, the met-
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Figure 8.33: Accuracy plot for RT variable.

allurgical recoveries shown in Table 8.2 are applied to the composites of the test data. The

true overall metallurgical recovery is the mean value considering all the composites and it

is calculated to be 31.42%.

The simulated values at the closest nodes to the test data set are utilized to calculate the

overall metallurgical recovery for each realization for each modeling technique. The 100

values for the simulated overall recovery are utilized to generate a histogram for compari-

son with the true value for each technique. The results are shown in Figure 8.34.

As the recovery is highly dependent on the combination of categories, it is not a sur-

prise that the only methodology that is able to accurately predict the overall metallurgical

recovery is the only multivariate approach considered. The MVHTPG results are far supe-

rior to all the others with RMSE of 1.36% whereas the next best result is given by the HTPG

technique with a RMSE of 32.78%. All the univariate approaches show highly biased re-

sults. The MVHTPG also show the least uncertainty which makes it the most accurate and

the most precise modeling technique.

The improved performance on the reproduction of the metallurgical recovery is at-

tributed to the enforcement of the joint categorical PDF by the MVHTPG workflow. The

average joint PDF calculated over all realizations for each of the modeling techniques are

shown in Figure 8.35. As expected, the best reproduction is achieved with the MVHTPG

with a RMSE of 4.8%. The joint PDF is enforced to some degree for all methodologies. This

is aĴributed to the trend model and conditioning data. Amongst the univariate techniques

the HTPG resulted in the lowest RMSE and the SIS resulted in the highest.
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Figure 8.34: Histogram of the overall recovery calculated from the simulated categorical variables
for each modeling technique. The true overall recovery is shown as a vertical red line at 31.42%.

8.5 Conclusion

The two techniques for categorical modeling developed in this dissertation are demon-

strated for a data set from the Red Dog Mine. The univariate and multivariate versions

of the HTPG are compared against the SIS modeling technique. The comparison also ac-

counts for the cleaned SIS models (MAPS) as it is a common practice to post process the

models generated by SIS to remove noise and improve reproduction of categorical propor-

tions.

The SIS technique underperformed in all model checking measurements. The over-

all results show good accuracy in the reproduction of the univariate parameters for the

HTPG, MVHTPG and MAPS, however, HTPG and MVHTPG were more precise as they

consistently showed lower uncertainty. The categories of the Plates variable are spatially

continuous and the model validation with the test data set was reasonable with all tech-

niques. The HTPG and MVHTPG showed clear performance improvement for the less
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(c) SIS (RMSE = 23.4%)

 0.21%

 1.67%

 4.16%

 0.10%

 2.97%

 0.32%

 3.99%

 5.67%

 0.27%

 6.66%

 0.04%

 2.85%

 2.07%

 0.05%

 2.27%

 0.08%

 2.10%

 3.06%

 0.24%

 2.82%

 0.42%

 3.75%

 4.61%

 0.58%

49.02%

Rock Type

P
la

te
s

1 2 3 4 5

1

2

3

4

5

(d) MAPS (RMSE = 14.14%)

Figure 8.35: Average joint categorical PDF calculated over all realizations for each modeling tech-
nique and respective RMSE calculated using the declustered distribution calculated from data as
reference.

spatially continuous categories from the RT variable with a significantly beĴer prediction

of the categories from the test data set.

The univariate HTPG technique outperformed the MVHTPG for the univariate mea-

sures. This is mainly aĴributed to the less than ideal convergence the multivariate Gibbs

sampler utilized with the MVHTPG. Even with the convergence difficulties, MVHTPG out-

performed the SIS based models in most univariate measurements.

As expected, MVHTPG showed the best reproduction of the joint PDF. The impact of

the multivariate workflow is also shown with regard to the reproduction of the overall

metallurgical recovery of the test data set. MVHTPG was the only technique to achieve
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unbiased predictions and was also the technique with the lowest uncertainty. This makes

MVHTPG the most precise and accurate amongst all tested techniques. Being precise and

accurate in the prediction of key aĴributes affecting the economical feasibility of a mining

project is key for mitigating the risk of such projects.



Cѕюѝѡђџ 9

CќћѐљѢёіћє RђњюџјѠ
Multiple techniques are available for modeling categorical variables. The goal is to repro-

duce the key features observed in data and achieve the the most precise and accurate pre-

dictions to minimize risk and maximize the value of the data acquired. This dissertation

develops a new framework for the application of truncated Gaussian methods that allows

for greater flexibility and facilitates the use of geological interpretation in a straightforward

manner.

The development of this new framework led to the adaptation and improvement of ex-

isting techniques that are required for the application of any truncated Gaussian method.

This includes the mapping of the spatial structure from categorical to continuous variables

and the implementation of the Gibbs sampler algorithm for the imputation of the Gaus-

sian latent variables. The work undertaken for multiple data imputation also generated

important contributions for multivariate modeling of continuous variables.

The foundations developed for the univariate hierarchical truncated pluri-Gaussian

(HTPG) created an opportunity to explore the multivariate modeling of categorical vari-

ables. This is an area of liĴle research and limited available options despite the fact that

the multiple categorical variables are the key controls for grade distribution and other im-

portant variables such as metallurgical recovery. A summary of the key contributions of

this thesis as well as the main limitations and future work are outlined in this chapter.

9.1 Summary of Contributions

The main contributions of this thesis are in the field of truncated Gaussian techniques for

the modeling of categorical variables. There are also important contributions to multiple

data imputation applied to the modeling of continuous variables.

182
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9.1.1 Hierarchical Truncated pluri-Gaussian

The HTPG modeling framework developed in this thesis addresses some of the limitations

of the existing applications of truncated Gaussian methods. Truncated Gaussian methods

were created to facilitate the introduction of transition constraints based on knowledge of

the geological seĴing being modeled. The truncated Gaussian simulation (TGS) method

applied with a single Gaussian variable allowed the modeling of simple geological seĴings

with clear categorical ordering. Even in a simple geological seĴing, the control on transi-

tions is not possible with other techniques such as sequential indicator simulation (SIS). The

potential of the truncated Gaussian techniques was extended to the utilization of multiple

Gaussian variables with the truncated pluri-Gaussian simulation (TPGS). The utilization of

multiple Gaussian variable allowed the construction of more complex mappings between

the categorical variables and continuous latent Gaussian variables, however, the applica-

tion of TPGS was mostly restricted to the utilization of two Gaussian variables. This is

aĴributed to the increased difficulty of building geologically sound truncation rules and

also to the increased complexity in the required steps such as the mapping of the spatial

continuity between the categorical and continuous space.

The limitations on the utilization of multiple Gaussian variables with TPGS framework

is overcome with the introduction of the hierarchical approach. The HTPG technique de-

veloped in this thesis facilitates the definition of truncation rules for complex geological

seĴings without sacrificing the ability of devising a sound geological interpretation. The

development of the new truncation framework led to the development and adaptation all

the required steps of the application of truncated Gaussian methods and, as result, contri-

butions are made on the numerical derivation of the latent variable variograms and latent

variable imputation.

A detailed description of the practical considerations for the application and param-

eterization of the HTPG is provided that includes: (1) the tools for the definition of the

truncation rule based on a transition matrix; (2) modeling in a non-stationary seĴing; and

(3) identification and mitigation of hyper-continuity for improved variogram reproduction.

The technique is demonstrated for a data set from the Red Dog Mine and shown to

perform well compared with alternative approaches such as the SIS based models. The uti-

lization of truncation rules leads to more constrained models that show greater accuracy

with lower uncertainty. This is crucial for risk management and maximization of infor-
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mation usage. The multivariate HTPG makes the most use of the data when it comes to

the prediction of aĴributes that are dependent on the complex relations resulting from the

different combinations of multiple categorical variables.

9.1.1.1 Numerical Derivation of Latent Variables Variogram

The tree based truncation rule scheme utilized by the HTPG approach facilitates the uti-

lization of a large number of latent variables for the modeling of an arbitrary number of

categories. Even though the framework is designed to facilitate the geological interpreta-

tion, there is an increased complexity in other steps of the modeling workflow. One of

these steps is the derivation of the variograms for the Gaussian latent variables. This step

is mentioned by Armstrong et al. (2011) as a deterring factor for the utilization of more than

two Gaussian variables with the TPGS method.

The framework developed for the HTPG utilizes a numerical derivation technique im-

proved upon the method proposed by Zagayevskiy and Deutsch (2015). The technique is

shown to work well and it is only limited by the degrees of freedom of the truncation it-

self. This is often the restricting factor for the reproduction of categorical variograms with

reasonable spatial structure within the Gaussian space.

Hyper-continuity is a common issue with the derivation of Gaussian variograms. This

is not a limitation of the numerical derivation procedure itself. This is a limitation of the

physically possible combination of spatial structure for the categorical variable given the

chosen truncation rule. The causes and effects of hyper-continuity are investigated in this

thesis and mitigating actions are suggested. In many cases, the hyper-continuity cannot be

addressed, however, in some instances the closest possible fiĴing is good enough in prac-

tice. For instance, hyper-continuous structures are observed for the case study in Chapter 8

and it did not prevent the HTPG methods from outperforming SIS at variogram reproduc-

tion.

9.1.1.2 Multiple Data Imputation of Latent Variables

The Gibbs sampler is utilized for the imputation of the Gaussian latent variables subject to

the categorical data observations. A detailed overview of the available Gibbs sampler al-

gorithms is presented and suggestions are made to improve the stability and convergence
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of such algorithms. The suggested combination of the standard Gibbs sampler and prop-

agative Gibbs sampler is shown to improve stability and convergence.

An alternative based on simulated annealing is proposed. The technique can be used

in some instances where additional constraints and objectives are present or when conver-

gence with the conventional Gibbs sampler approach cannot be achieved.

9.1.2 Multiple Data Imputation with Gaussian Mixture Models

The latent variables in the truncated Gaussian methods are nearly always a model assump-

tion and are not observed in practice. This makes the application of truncated Gaussian

techniques a missing data problem. Research in the field of multiple data imputation has

led to the improvement of the Gibbs sampler approach for imputation of latent variables.

Research has also led to the development of an alternative to Gibbs sampler approach for

the application with the multivariate modeling of continuous variables in the context of

multivariate transformations.

The truncated multivariate Gaussian distributions are complex and the sharp bound-

aries cannot be easily parameterized with any parametric of semi-parametric model. This

makes the Gibbs sampler the best available practical alternative for the imputation of latent

variables given that the convergence of the algorithm can be achieved within reasonable

computational time.

The joint distributions observed for the continuous geological variables, on the other

hand, can be well represented by semi-parametric models such as with the fiĴing of a

Gaussian mixture model (GMM). The utilization of a semi-parametric model removes the

requirement for the utilization of the Gibbs sampler. A technique for multiple data im-

putation using a GMM is developed in Chapter 6 and it is shown to not only increase the

computational performance by orders of magnitude for large data sets, but it also improves

the overall accuracy and precision of the imputed data. This is demonstrated for a lateritic

nickel data set in Chapter 6 and it represents an important contribution to the multivariate

geostatistical modeling of continuous variables.

9.1.3 Multivariate Categorical Modeling

Categorical variables controls the modeling of many important aspects of a mining project

such as ore concentrations, metallurgical recovery and structural stability. Each one of
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these features are affected by a different combination of these categorical variables. The

current paradigm is to combine these categorical variables into a single model with a lim-

ited number of categories. The combined categories are utilized as modeling domains for

the continuous aĴributes. This practice leads to the underutilization of important and ex-

pensive information. Each aspect of interest depends on a different combination of cate-

gorical variables. The univariate methods can only work with one particular combination

and a trade off must be considered when merging categorical information. This leads to

inevitable deterioration of the model prediction potential.

There is very limited research in the field of multivariate geostatistical modeling of cate-

gorical variables. The development of the univariate HTPG and the tools for its application

created the groundwork for the development of a multivariate categorical modeling tech-

nique. The extension of the HTPG to the multivariate case is done by introducing correla-

tion between the Gaussian latent variables that are independently defined for the modeling

of each categorical variable. The correlation is calculated by targeting the reproduction of

the categorical joint probability density function (PDF) calculated experimentally from the

data.

The developed multivariate HTPG technique shows similar performance for the repro-

duction of the univariate parameters such as global proportions, variogram models, predic-

tion error and probabilistic accuracy. The greatest advantage of the multivariate approach

is observed for the features that are highly dependent on the combination of the categorical

variables such as the metallurgical recovery. It is shown for the Red Dog Mine case study

that the multivariate categorical modeling developed in this thesis is able to precisely and

accurately predict the overall metallurgical recovery of the test data set, left out of the mod-

eling workflow.

The multivariate HTPG technique developed in this thesis represents an important con-

tribution to the geostatistics. This is perhaps the most flexible approach available at this

time as it has no theoretical restriction on the number of Gaussian latent variables and cat-

egorical variables that can be modeled together. The modeling framework is setup in such

way that any combination that can be modeled independently with HTPG can be easily

extended to the multivariate case by introducing the correlation across the latent variables

representing different categorical variables.
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9.2 Limitations and Future Work

Despite the developments made in this dissertation there are several limitations to the ap-

plication of the developed techniques. Important limitations of the univariate and multi-

variate HTPG are described as well as the limitations with the multiple data imputation of

continuous variables with GMM.

9.2.1 Imputation of Latent Variables

The main limitation of the application of the HTPG technique is the convergence rate of the

Gibbs sampler approach. The combination of the propagative Gibbs sampler and the stan-

dard approach improved the convergence, however, it can still pose a problem when the

latent variables show long range spatial correlation. The highly correlated variables have

a much slower convergence rate and in some instances the number of burn-in iterations

required to ensure convergence is impractical.

The propagative Gibbs sampler requires the computation of the covariance values be-

tween all data available and at each burn-in iteration several loops through all the data

is required to define the probabilistic boundaries for sampling. Also, the change in one

data location must be propagated through all data locations. As a result the propagative

Gibbs sampler requires a large amount of memory and computational time that grows ex-

ponentially with increasing number of data. It may be impractical to run the Gibbs sampler

algorithm until convergence for large data sets with long range correlation structures.

For the multivariate HTPG approach, there are even greater limitations. The number of

latent variables being modeled are usually larger than for univariate HTPG. The multivari-

ate modeling of three categorical variables, for instance, can potentially have three times

more latent variables than what would be considered in the univariate case. In addition

to the added complexity by number of variables alone, there is also the added complexity

from the introduction of correlation between the latent variables. A propagative Gibbs sam-

pler approach could still be outlined in theory, however, its practical application would be

seriously limited due to memory and computational time requirements. For this reason,

only the standard Gibbs sampler approach has been adapted for the multivariate case.

The standard Gibbs sampler for the multivariate HTPG is subject to the same limitations

regarding the convergence as for the univariate case. The practitioner must be aware of this
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limitation and check the imputed data. In some instances, when full convergence cannot

be achieved the imputed values can still be used as long as the values do not diverge to

extreme highs and lows. The utilization of values that are not fully converged will lead to a

loss in the overall performance of the technique. The results are expected to be somewhere

between the correct uncertainty characterization and the characterization utilizing the fixed

class centroid alternative investigated in Chapter 5. The multivariate Gibbs sampler also

utilizes a IMC approximation. This can lead to the mixing of spatial structure between

latent variables if two correlated variables have different spatial structure.

9.2.2 Multivariate HTPG

The current approach utilized in the multivariate HTPG is only focused on the reproduc-

tion of the joint PDF of the categorical variables utilizing collocated correlation and the IMC

approximation. The information contained in the joint PDF is equivalent to the non-zero

elements of the zero lag transition probability matrix. The transition probabilities between

the categories of the same set are zero (mutually exclusive) and the non-zero terms are tran-

sitions between categories in different sets. The transition probabilities can be defined at

several lag sizes and may contain important information regarding higher order relations

between the categorical variables. This is currently not accounted for by the developed

technique.

9.2.3 GMM Based Multiple Data Imputation

The developed methodology for multiple data imputation for the multivariate modeling of

continuous variables utilizes a fiĴed semi-parametric model to define the conditional dis-

tributions given the collocated data. The spatial correlation across the different variables is

disregarded in this process and the only spatial correlation accounted for is for the primary

variables being imputed. Disregarding the spatial contribution of the non-collocated sec-

ondary variables can lead to variance inflation similar to what is observed with collocated

cokriging (Babak and Deutsch, 2009).

The current implementation has no means of automatically defining the number of

Gaussian kernels to be utilized for the fiĴing of the GMM. This can potentially lead to

over/under-fiĴing of the data multivariate PDF and result in unreasonable imputed values.

Also, the current implementation has no means of accounting for preferential sampling.
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The fiĴed GMM can be potentially biased. This is not major issue for data imputation as

the realizations of data are highly conditioned by the nearby available data.

9.2.4 Future Work

Future work could be focused on the solution of the major limiting factors for the applica-

tion of the developed methodology. Additional work is necessary on the development of

a stable implementation of the Gibbs sampler algorithm for utilization with the univariate

and multivariate HTPG. The development of practical alternatives to the Gibbs sampler is

also a possibility. The simulated annealing alternative presented in this dissertation can

be improved to allow for its practical application with both univariate and multivariate

HTPG.

The impact of higher order relationships between categorical variables at multiple lag

distances should also be focus of future research. The possible benefits of considering a

full linear model of coregionalization (LMC) over the currently proposed intrinsic model

of coregionalization (IMC) approximation can also be evaluated in future work.
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