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ABSTRACT

Structures that are in contact with naturally occurring ice covers can be subjected to
considerable forces due to thermal expansion of the ice. These forces are especially
important for structures like low head dams, spillways, water intakes, gates, water
reservoirs, and bridge piers. Although the importance of thermal ice loads has been
recognized for over a century, due to lack of a three dimensional model, various factors
that affect the thermal ice pressure are not considered in analytical studies. Such factors
include the bending behavior of the ice sheet coupled with the elastic foundation effect of
the underlying water, the geometry of the reservoir, shore-line features, the flexibility of
the resisting structure, and cracking activity in the ice. The objective of this study was to
develop an improved analytical capability for predic_ting ice forces.

A numerical model is developed that allows the prédicti@n of the three dimensional
stress field in an ice sheet due to temperature changes, as a function of time, under a
variety of conditions. The model relies on two separate computer programs for the
thermal and mechanical aspects of the problem. The thermal program uses the finite
difference method to calculate the temperature distribution through the thickness of the ice
cover, under a variety of meteorological input conditions. The mechanical part of the
analysis is conducted using the finite element method. Relevant features of the finite
element model! include variable temperatures and properties through the thickness, an

elastic foundation representation of the underlying water, nonlinear constitutive behavior



of the ice, temperature dependent mechanical properties, flexibility of the resisting
structure, and boundary conditions representing a variety of shoreline types.

The predictions of both models are verified by comparison with analytical and other
numerical solutions, published data on laboratory experiments, and field measurements
conducted by the Canadian Electricity Association. The models are then used to
investigate the factors that affect the thermal ice pressure. These factors include
meteorological conditions, ice thickness, temperature history, different shore types,

flexibility of resisting structure, and tensile cracking.
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Many civil engineering structures in cold regions must be designed to resist loads due
to interaction with ice. Normally the dominant mechanisms giving rise to these loads are
wind and current driving forces. However, under certain conditions, thermal ice loads can
be equally important. The thermal ice load acting on a structure is defined to be the static
pressure arising from the thermal expansion of a solid ice sheet which is in contact with
the structure. When the ice initially forms, its temperature is at the freezing point. As the
point but the temperature at the top surface can vary due to heat exchange between the ice

and the surrounding atmosphere. The temperature variation causes volume changes but

to creep. However, a subsequent rapid rise in temperature will cause expansion, which if
prevented by a structure, will cause thermal stresses to be developed (Fig. 1.1).
Ultimately these will dissipate due to creep, but before this can happen, very significant

loads may be generated. In some cases the ice force may even control the design of the

structure.

The significance of thermal ice loads has been recognized for over a century.
Attention was drawn to the problem by various failures. One of the earliest failures in
Canada was the Rice Lake Railway Bridge (Dumble, 1891). As stated by Dumble,

piers filled with stone. The whole structure was of the strongest and most

substantial character of its kind, and yet this bridge was wrecked in a few minutes,

in the early part of December, by an ice shove, and when the ice was comparatively



thin. The pile work south of the island was inclined like a pack of cards to nearly

an angle of forty-five degrees.”

The railway was abandoned and the million dollars spent on its construction was lost.
Other examples of failures were noted in the discussion of Dumble’s paper.

A much more recent example is shown in Fig. 1.2. This involved a water intake on the
Tilley B reservoir in Southern Alberta. Prior to failure, the 2.0 m wide concrete box was
oriented vertically. It was pushed into the inclined position shown in Fig. 1.2, by an ice
sheet about 0.9 m thick. The ice load was subsequently estimated to have exceeded 300-
400 kN/m (Gerard, 1989).
shown were obtained by field measurements. The data in Table 1.1 gives some indication
of the uncertainty that exists with regard to thermal ice loads. With loads as high as

320 kN/m, it also gives some sense of their relevance. It should be noted that the data

significantly in terms of their accuracy.

A category of structure for which thermal ice loads are particularly important, is that
of low to medium head dams. The significance of the ice load in the design of dams is
illustrated in Fig. 1.3 (Gerard, 1989) where the overturning moment due to hydrostatic
pressure from the reservoir is compared to the overturning moment due to ice thrusts of
different magnitudes. It can be seen that for a low head dam with a height of ten metres,
the overturning moment due to the ice force can be larger than the overturning moment
due to hydrostatic pressure. Thermal ice loads are also important in the design of
spillways, water intakes, and bridge piers.

The measured ice thrusts listed in Table 1.1 cover a wide range. This is due in part to
the fact that the ice thicknesses range from 0.16 m to 1.10 m. However for a single
thickness, for example around 0.4 m, quite different values of ice thrust are listed. This
can be explained by the fact that the ice pressure depends on many parameters. Some, like
those related to meteorological conditions (e.g. air temperature, solar radiation, snow
cover, etc.), affect the temperature distribution through the ice sheet. Factors of a

mechanical nature, such as the restraint against movement provided by the shore and
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cracking of the ice, affect the stress distribution. Because the actual ice load that occurs in
a particular situation depends on many such factors it is difficult to assign a single load
that is suitable for all situations.

In the Dam Safety Guidelines for existing dams prepared by the Canadian Dam Safety
Association (1995) the following recommendations are given for the ice pressure:

“The thermal ice loads used in the design reviews are usually assumed to be

146 kN/m (10 kips/ft) for concrete dams, 73 kN/m (5 kips/ft) for steel gates, and

29 kN/m (2 kips/ft) for timber stop logs. Ice load shall be considered to act at

300 mm (1 foot) below the water level.

If site specific characteristics and operating information warrant, different values of

static ice loads may be used in the assessment and, in addition, dynamic ice loads

may also be considered.”

Comparing the values in the first paragraph of the CDSA recommendations with the
ice forces listed in Table 1.1, it appears that the former could be unconservative in some
cases.

Criteria for the design of gates under ice conditions in Northern Europe are given in
DIN 19704 (Lewin, 1995), where different empirical rules apply to inland and estuarial
conditions. For inland conditions, the triangular hydrostatic distribution of water pressure
at a depth of 1 m is replaced with a uniform pressure of 0.02, and 0.03 MPa, where the ice
thickness is below and above 0.3 m, respectively. In estuarial conditions, different values
are suggested for skin plates and main girders. In the design of skin plates the following
loads are suggested over the hydrostatic load within 0.5 m above and below water level:

-A uniform pressure of 0.1 MPa, when severe ice formation is present and ice

movement occurs,

used.

For main girders, additional loads of 350 and 100 kN/m are suggested for severe and
moderate ice conditions respectively.

A uniform pressure of 0.03 MPa over a height of one metre, will give a line load of

30 kN/m. According to Table 1.1 the measured line load on the gate in Paugan Dam,
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which is considered an inland condition was about 82 kN/m during the 1991-1992 winter.
In estuarial conditions where the ice movements are possible, much higher stresses and
loads may develop.

Gerard (1989) reviewed measured ice thrusts and design guides and concluded that
most values suggested in the design guides were unconservative. Then, using the
measured data, an upper bound of 500 kN/m with a probability of exceedence of about
design of dams, where failure would be catastrophic, higher values for ice loads were
recommended. Gerard noted that the resulting recommended ice load could be very high
in some situations.

Two conclusions can be drawn from the wide range of measured and recommended
ice loads. First, the problem of thermal ice loads on structures is still not fully understood.
should be estimated according to the meteorological data and conditions of the reservoir
and the structure.

Efforts directed at predicting the ice pressure that would develop under different
conditions began more than 100 years ago. Dumble (1891) performed experiments on the
movements of a floating ice sheet due to temperature changes. But due to lack of
information on the stress-strain relationship for ice, it was not possible to determine the ice

stresses. The earliest approach was based on the crushing strength of the ice which

relationship for ice was in 1922 (Royen, 1922). Since then, many investigators in cold
regions have tried different approaches to estimate the thermal ice pressure. Many
laboratory tests were performed and many field measurements were conducted. Some
investigators obtained empirical relationships and some used analytical or numerical
calculations to predict the thermal ice load. Some of these methods are discussed in
Chapter 2. Despite these investigations, the problem of thermal ice pressure is not at all
close to being solved. There is a lack of a three-dimensional model for ice covers. Due to
non-uniform temperature variations through the thickness, ice covers can have both

bending and membrane deformations and because of creep, the bending and membrane
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stresses are coupled. In some studies the stresses due to temperature changes in different

been a model which could consider bending and membrane behavior simultaneously.

1.2 - Objective and O Thesis

rganization of the

The objective of this study was to develop an improved analytical capability for
predicting thermally induced ice forces, and to use that modeling capability to investigate
and assess the importance of the various factors that affect the thermal pressure. To
achieve these objectives, two separate computer programs were developed. One deals
with the thermal aspect of the problem and the other with the mechanical aspects. The
thermal program uses a finite difference scheme to predict the temperature distribution

profile as a function of time. This serves as a part of the input for the mechanical or stress
analysis program. It uses the finite element method to predict the three-dimensional
distribution of stress in the ice cover. A layered shell element is used, which allows
nonlinear temperature distributions through the thickness, temperature dependent material
properties, and both bending and membrane behavior of the ice cover.

The thesis contains seven chapters. Chapter | provides a brief introduction. Previous
investigations on the subject of thermal ice lcads are discussed in Chapter 2.

Chapter 3 deals with the thermal analysis. First the governing differential equation is
introduced and the various heat transfer mechanisms considered in this study are
described. Then the finite difference formulation and some features of the program are
explained. The chapter concludes with the results of verification studies in which
predictions of the program are compared with available analytical or other numerical

solutions.
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In Chapter 4, the finite element formulation is presented. Following a description of
the element used, the constitutive law is explained. Then some features of the program
are described and the overall formulation together with the solution algorithm are
presented. At the end of the chapter, verification studies involving simple test cases are
presented.

Chapter 5 consists of the comparisons between the predictions of the present models
with laboratory and field measurements. First the issue of the material properties of ice is
discussed. Then the stresses predicted by the present model using different mechanical
properties are compared to those presented in published laboratory tests for different ice
types. In the last part of the chapter, the predictions of both the thermal and mechanical
models are compared with published field measurements.

In Chapter 6 results are presented from a number of studies that were performed to
investigate the importance of different factors that affect the temperature and stress
distribution in an ice cover. The first group of tests were performed with the thermal
analysis program. The parameters studied include: the ice type and material properties,
wind speed, relative humidity, cloud cover, time of the year, snow cover, thickness of the
increase. The second series of tests deal with factors of a mechanical nature that affect the
stress distribution. These include: the number of layers through the thickness, the total
thickness, the duration of the temperature increase, the initial temperature, the rate and
magnitude of the temperature increase, the underlying water, the geometry of the
reservoir, the boundary conditions, the inclination of the shore, stiffness of the resisting
structure, isolated structure, and tensile cracking. The chapter ends with a list of the
important conclusions reached from the various tests.

The last chapter of the thesis, Chapter 7, consists of a summary, the overall

conclusions reached in this project, and recommendations for further studies.



Place ~ [Winter | Thickness | Iceload | Reference )

. _ _ (m) | (kN/m) R -
Tainter gate of the Hill (after Michel,
Hastings Dam on 1932-33 0.46 51 1978)
Mississipi River o N i _ -
Joachims Dam, Ontaﬁa 1951-52 102 Wilmot, 1952
Eleven mile Canon, | 1947-48 |7 235 | Monfore, 1954
Colorado 1948-49 206
. 3 11949-50 ] 294 | .
Antero, Colorado 1950-51 0.3 53 Monfore, 1954
Shadow Mountains, | 1950-51 | 04 85 Monfore, 1954
Colorado . _ _ — — -
Evergreen, Colorado 1950-51 138 Monfore, 1954
Taryall Rgseﬁfaif, “T1950-51 | 04 253 ﬁc&nfére, 1954
Colorado - _ o
Ges Reservoir, Dmeper 1954-55 123 Korzhavin (after
River B i ] | Michel, 1978)
Taisetsu Reservoir, 1977 04 56 Yamaoka et al., 1988
Hokkaido, Japan _ . - -
Taipingchi, China 1974 0.78 324 Xu Bomeng, 1986
Erlonghu, China 1977 082 | 226 | XuBomeng, 1986
Shanghewan,China 1975 | 072 167 | Xu Bomeng, 1986
Yinhe, China “T1978 1.10 235 | Xu Bomeng, 1986
Taiyangsheng, Chma 1979 [ 1.02 128 | XuBomeng, 1986
Yadian, China 1980 | 026 39 | Xu Bomeng, 1986
Shengli, China _ 1981 0.84 216 | Xu Bomeng, 1986
Hangali, China 1985 7 0.80 245 | Xu Bomeng, 1986
Amprior Dam, Ontario | 1992-93 | 0.46 | 156 | Comfort etal, 1994
Paugan Dam, Quebec Comfort et al, 1993
reservoir 1991-92 0.28 115
spillway pier 1991-92 288
spillway gate 1991-92 82
reservoir 1992-93 0.16 52 Comfort et al., 1994
spillway pier 1992-93 122
spillway gate 1992:93 1 22 -

Table 1.1 - Measured ice thrusts.
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Figure 1.2 - Water intake on the Tilley B Reservoir in southern Alberta, pushed :o

inclined position by ice cover.
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Figure 1.3 - Overturning moment due to a water column and ice thrusts of different

magnitudes (reproduced from Gerard, 1989).
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2 - LITERATURE REVIEW

In this chapter a brief review of the evolution of research related to thermal ice
pressure is presented. Investigations related to ice behavior but not directly concerned
with the problem of thermal pressure are not included in this chapter although some of this
work is used elsewhere in this study. Reference is made to literature reviews conducted
previously by Drouin and Michel (1971), Bergdahl (1978), and Kjelgard and Carstens
(1980). In order to facilitate the comparison of various works, numerical values for all
physical quantities are converted to S.I. units.

Investigation of thermal ice pressure began about a century ago. In 1891 Dumble
reported the results of his experiments on the movements of a floating ice sheet due to
temperature changes (Dumble, 1891). But due to lack of information on the stress-strain
relationship for ice, it was not possible to determine the ice stresses. The earliest approach
was based on the crushing strength of ice, which was estimated to be about 2.76 MPa.
Assuming that this crushing stress was realized in the upper part of the ice sheet and that
no pressure was exerted from the lower region, the thrust for an 0.45 m ice sheet would
amount to 620 kKN/m. For example, in the case of the Gouin Dam (1917) in Quebec,
allowance was made for a thrust of 730 kN/m (Drouin & Michel, 1971). Figure 1.3
shows that for a small dam with 10 m height the over-turning moment due to this thrust
can be 3 times the over-turning moment due to water pressure. Taking such a large force

into account can compromise the profitability of a hydroelectric project.

2.1 - Royen (1922)

In 1922 Royen from Sweden proposed a general uniaxial stress-strain relationship for

ice on the basis of experiments with wax and lake ice (Royen, 1922). It was given by



/
ccrtl 3

1;!]9{

E= ..

where

£ = compressive strain

o = stress (kg/cm?)

t = duration of load (hours)

8 = ice temperature (C°)

¢ = a factor determined experimentally, whose value lies between 60x10™ and 90x10™ .
This equation was used to calculate thermal ice pressure. The strain rate due to free

expansion of the ice sheet can be written as:

de do :
— =y 2.1.2
ot Cdr @1y

where a is the coefficient of thermal expansion. Assuming that the expansion of the ice
sheet is completely restrained, Royen differentiated (2.1.1) with respect to time and
equated the result with (2.1.2). That gives:

o=+ 90 (2.1.3)
c dt

In this differentiation, ¢ and 6 are considered to be constant despite the fact that in reality
they both vary with time. Royen justified this approximation on the basis of agreement

with experimental results. Royen assumed a linear variation of temperature with time and

Pmax = 009d(8; +1) 6(6; +1)° 2.1.4)
d = ice thickness (cm)
6; = average initial temperature of the ice (C°, absolute value)
6 = constant rate of average temperature increase
Royen assumed a minimum temperature of -40°C for Sweden with the average

minimum temperature of -12°C in the ice sheet. He suggested rates of temperature
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increase of 0.12, 0.07, and 0.033 C°hr. For a maximum thickness of 1 metre the values of
maximum pressure were 339, 281 and 221 kN/m. Allowing for some decrease in stress
due to plastic deformation, Koven suggested a value of 294 kN/m for a completely
restrained ice cover.

Later research showed that for several reasons, Royen’s theory could not be applied
with confidence. The calculations were based on a constitutive law that was not able to
represent the behavior of ice adequately. Heat transfer in the ice sheet was not considered
and therefore the maximum force predicted was proportional to ice thickness. A uniaxial

theory was used for a problem involving biaxial restraint.

2.2 - Brown and Clarke (1932)

In 1932, Brown and Clarke performed a number of tests on ice cubes in order to
obtain an estimate of the thermal pressure to be used in the design of the dams for the
hydro-electric power development at Island Falls on the Churchill River in Saskatchewan
(Brown and Clarke, 1932). In these experiments 0.0762 m ice cubes were subjected to a
temperature rise while oné of the dimensions was kept constant betweén the two platens
of a manual press. Each test was divided into time intervals. During each time interval the
temperature rate was almost constant. They reported two tests in which they had
observed linear rise in pressure due to linear temperature rise. On the basis of these two
tests they drew a curve for the rate of increase of stress as a function of the rate of
increase of temperature (Fig. 2.1). They argued that the effect of lateral restraint would
offset the effect of heat transfer and temperature gradient in the ice cover, so the total
pressure could be conservatively obtained by using the air temperature increase rate and
total thickness of the ice cover. An ice pressure of 146 kN/m was used in the design of
the dams at Island Falls.

Brown and Clarke’s contribution did not provide an acceptable solution for the
problem of thermal ice pressure. Their test apparatus was not accurate enough to capture

the true ice behavior and their results were not consistent with what is now well known
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about ice creep. The results of only two tests were used to obtain the curve and the initial

temperature was not considered. Brown and Clarke’s argument, that the effect of lateral

2.3 - Rose (1947)

In 1947 Rose suggested a method for determining thermal ice pressures (Rose, 1947)
which was based on:

1) The experimental data of Brown and Clarke.

2) Using heat transfer theory to obtain the temperature gradient in an ice cover.

3) An evaluation of the effect of the lateral restraint according to the theory of

elasticity.

Rose’s main contribution consisted of introducing a thermal analysis for calculating the
temperature distribution in the ice sheet. He assumed that the surface temperature was
equal to the air temperature and the initial air temperature was -40°C,

Finite difference integration was used to find the rate of the temperature increase at
different levels in the ice cover. Rates of air temperature increase of 2.78, 5.56, and
8.34°C/hr were considered . Then using the curve drawn by Brown and Clarke (Fig. 2.1)
the pressure at different levels was obtained. Rose made an extension of this curve on the
basis of other tests on continuous yielding of ice under sustained loads. The total force
per unit length was obtained by summation of stresses at different levels. Rose was the
first to consider the effect of solar radiation penetrating an ice sheet. In these calculations
a latitude of 40 degrees, and the time of vernal equinox was assumed.

Finally the effect of lateral restraint was estimated on the basis of the behavior of an
elastic slab. The pressures were multiplied by a factor equal to 1/(1-v), where v is

Poisson’s ratio. Assumjng v=0.365, a factor of 1.575 was obtained. The results were

(Fig. 2.2).
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Although Rose improved on the representation of the thermal aspects of the problem,

his force predictions were not satisfactory because they were based on Brown and

Clarke’s curves which did not give a reliable description of the stresses developing during

thermal expansion. Also, using elastic theory when considering the effect of lateral

restraint is not consistent with the creep of ice which occurs without volume change. In
spite of these deficiencies, Rose’s values were widely accepted and continue to be used by

engineers (see for example USBR, 1977 and Smith, 1985).

2.4 - Monfore’s Tests (1946 - 1954)

Experimental investigations of ice pressure were conducted by the United States
Bureau of Reclamation, USBR, from 1946 to 1951. These investigations included field
studies at several reservoirs located in the mountains of Colorado and laboratory studies
performed in the engineering laboratories of the USBR in Denver, Colorado. The results
1951) and a summary of results was presented by Monfore at an ASCE symposium

(Monfore, 1954).

but better equipment used was. The specimens were 0,102 m long by 0.102 m diameter
cylinders taken from 0.45 m thick field ice. The cylindrical axes of the specimens were in
was kept for som'e_tirn& at one of several temperatures (-34.4, -28.9, -23.3, -17.8, -12.2,
and -6.7°C). During the tests, while the temperature was increasing, the load on the
specimen was adjusted to maintain zero strain in the ice.

Monfore observed that for all the tests, the curve of pressure versus time was fairly
linear at the start, then bent over reaching a maximum and finally decreased. Although
qualitatively the stress-time curves were similar, the maximum pressure and the time to
reach the maximum pressure were quite different for tests made under the same

conditions. The average deviation in the maximum pressure was 6% for duplicate tests on
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the same specimen and 25% for different specimens, Monfore studied the crystal
orientation in a few samples and did find some marked differences. Even so, it was not
used as an independent parameter in his studies.

Monfore calculated the average maximum stress and the average time to reach the
maximum stress for a number of tests performed at the initial temperature of -23.3°C with
a temperature rate of 2.8°C/h. These values were used to normalize the results of the tests
performed at different initial temperatures and temperature rates. The. average
the stress-time curves were determined for different initial temperatures and different rates
of temperature increase.

The results of the experiments were summarized in two diagrams (Fig. 2.4) showing
the maximum pressure as functions of the rate of change of ice temperature for different
initial temperatures. The method for calculating ice pressure was as follows. First for
each level in the ice, values for the initial temperature and the temperature increase rate
were chosen. Then from the figures, the maximum pressure was read and the available
time was checked. Then the average pressure was multiplied by the ice thickness to obtain
the total thrust per unit length. 7

Monfore gave three examples where the calculated values were compared with field
measurements. The pressure gages used for field measurements were installed at three
different levels in the ice sheet and the total thrust was obtained by multiplying the average
measured stress by thickness. Ice temperatures were also measured at different depths in
the ice sheet. In the three examples, Monfore used the temperature measurements to

calculate the ice pressure and then compared the results with measured values. In these

ranged from 204 to 292 kN/m. In general, high pressures occurred during relatively warm
weather following periods of cold weather. The effect of shore type was generally as
expected. The highest thrust at a reservoir with flat shores was 85 kN/m and for a

reservoir with moderately steep shores was 137 kN/m. The highest values happened in
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reservoirs with rocky and steep walls. The highest pressure usually occurred at the top of
the ice sheet except for a case when there were open cracks during the day and the
maximum pressure was recorded by the middle gage.

Monfore’s experiments and measurements were a step forward in understanding the
behavior of ice subjected to thermal load. The calculations however, had some weaknesses
including neglecting the crystal type, not considering the lateral restraint, not considering
the time lag between the maximum pressure at different levels, and using the average
pressure for obtaining the total thrust. Monfore used measured temperatures in the
calculations and did not make any attempt to caiculate the temperature distribution in the

ice sheet.

bt

.5 - Lofquist (1954)

An investigation was undertaken by the Swedish State Power Board to solve the
problem of thermal ice pressure. Lofquist reported the results of one of the experiments at
an ASCE symposium in 1954 (Lofquist, 1954). In this experiment an ice cover was
grown in a cylindrical concrete container with insulated walls and an internal diameter of
0.5 m. The ice was formed in the same way as occurs in nature; by cooling at the top
surface. When the ice reached a maximum thickness of about 0.6 m, the ice surface was

exposed to an approximately exponential temperature increase from -30°C to 0°C over a

It can be seen that the position of the maximum stress moves down through the thickness
as time increases. It was also observed that the pressure in different gages increased with
time, reached a maximum and then decreased. The maximum thrust per unit length in this
experiment was 196 kN/m which was recorded at about 14 hours afier the start of the
temperature increase.

Lofquist remarked that the measured ice pressure was reduced by the fact that
container itself deformed due to both thermal expansion and the thrust exerted by ice.

Also some cracks were observed in the uppermost part of the ice cover that might have



17
reduced the pressure. It was estimated that the thrust would be 25% higher for the case of
complete restraint. Lofquist noted that the thermal pressure increased with thickness up
to the order of 0.5 m with only a marginal increase for thicker ice sheets. Lofquist’s
experiment was the first biaxial test on ice and provided understanding of the behavior of
ice when partially restrained in two directions and subjected to a temperature increase.
However, Lofquist did not analyze the data in such a way that it could be used for

predicting ice pressures.

2.6 - Assur (1959)

1959). The constitutive equation was the solution of the differential equation for a model
with a Maxwell and Kelvin unit in series under constant load. The solution for strain is:

1

£ =t [yt -e *)+mt] » (2.6.1)
ms ;

where

to = 1/E;n; = relaxation time for elastic lag

m = 2(1+v) for uniaxial case (m=3 for viscous flow)

m = 2/v for biaxial case (m=4 for viscous flow)

T

s=exp( ey —To | L (262)

RT’

sinh(~-)

Ty

and

Q. = activation energy for creep
R = the universal gas constant
T = the absolute temperature
T=0/ni

To=cT
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C = a constant
Neglecting the delayed elastic behavior, the differential equation would be:

6+ B _ g (2.6.3)

ms

The maximum ice pressure occurs when & = 0, which gives:

Qc s
O max = QUMY exp(ﬁ)sle (2.6.4)
where
6 = temperature rate
Gmax

§, =—mel . @265)

sinh(g'ﬂ) SR

mct

S, is a dimension-less number equal to 1 at low stresses.

Assur gave values equivalent to:

M = 0.4172x107'° tonnes-h/m?
Q. = 81kJ/mol

R =8.314 J/(mol-K°)

¢ = 0.154 tonnes/(m*K°)

o =51.5x10° C°"!

E, = 0.65x10° tonnes/m*

Assur gave a dimensionless solution for c=f{t) for a constant rate of change of
temperature, and suggested an empirical equation for maximum pressure. The rheological
model consisting of a Maxwell and a Kelvin unit is known to be suitable for ice.
However, using nonlinear and temperature dependent members in this model would give a
better agreement with ice behavior. This model is a uniaxial model and using it for a
biaxial case, just by changing a factor, is questionable. Assur only presented the equations

and did not calculate the ice pressures for specific cases.
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2.7 - Soviet Standards SN-76-1959

The Soviet standard, used from 1959 to 1967, was based on Royen’s theory with
some modifications (see Drouin and Michel, 1971). Empirical relations were given for the

initial temperature and the temperature increase rate.

8, = 0350, (2.7.1)
6, =035, (2.7.2)
where

0, = the average air temperature during the 24 hours preceding the temperature rise

8, = the average rate of air temperature increase during the period under consideration

Equation 2.1.4 is written in the form of

5
3
The constant a in 2.2.3 is replaced by the empirical form 0.78|6, [**. This gives the
maximum thrust in tonnes per metre as

(0350, +1)*?

0.88
6,

Paax = 0.055d 6, T e (2.7.4)
where d is in cm. When there is a snow cover with thickness ds, the values of Pmax should"

be multiplied by the factor:

d
r= :i+—9ﬁ: (2.7.5)
If the extent of the ice cover, L, is more than 50 m, pmx should be multiplied by a factor
which is 0.9 for L=50 m and reduces to 0.6 for L=100 m or more.

The minimum and maximum values recommended in SN-76-1959 are 147 and
294 kN/m. According to this standard for an initial air temperature of -40°C and air
temperature increase rate of 8.34°C/h the maximum pressure exerted by an ice sheet
0.61 m thick is 243 kN/m. There are some attempts in Soviet Norm 76-59 to consider the

effect of air temperature, snow cover and cracks in calculating the ice pressure. However,
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heat transfer in the ice sheet is not considered, and since the standard is based on Royen’s

rheological model it has the same short-comings.

2.8 - Lindgren (1968)

Lindgren performed uniaxial and biaxial laboratory experiments on ice samples to
determine the rheological properties of ice (Lindgren, 1970). Results were used to
calculate the thermal ice pressure for a prescribed air temperature variation.

The largest recorded air temperature rise in Arjeplog, which occurred during the
winter of 1963 (-34°C to +2°C) was used in calculating the temperature distribution in a
0.6 m thick ice cover for the three cases of 0.0, 0.05, and 0.4 m snow cover, The thermal
resistance of the surface was included. The calculations showed the great effect that snow
cover has on the temperature distribution in an ice cover.

Lindgren used a linear visco-elastic model similar to that suggested by Assur

E f-§=+ g [1-exp(-E,n,t)]+on,t (2.8.1)
E, E, - ,

Lindgren mentions that

* ...several studies have shown that” the equation (2.8.1) “..does not give a
complete picture of the deformation characteristics of ice. Ice is therefore not
linearly visco-elastic.”

To account for that, Lindgren investigated the dependence of the viscosity on the stress

and time, although in the differential equation the assumption was that the parameters

were constant.

The results of the experimental tests were used to evaluate the parameters in the
rheological equation. In the uniaxial tests, 0.07x0.07x0.2 m prisms were subjected to
constant load. The deformation-time plots for some of the tests are shown in Fig. 2.6.
Lindgren gave the followiny values based on the uniaxial experiments:

E, = 66000(1-0.0120) kg/cm®



E, = 70000 kg/cm?

M2 = 1.1x10® kg-s/cm?
18.567'(0.2-0.080)(1/3600)™*x 10® kg/cm? (28.2)

In the biaxial tests a steel ring with inner diameter 0.8 m was placed around a circular
ice plate of about 0.07 m thickness. The space between was filled with water which was
then frozen. The ice plate and steel ring were subjected to a rising temperature and the ice
pressure was obtained from the strain in the steel ring. The results of one of these tests
are shown in Fig. 2.7. From the biaxial tests the same values for E\, E;, and 1, were
obtained assuming a Poisson’s ratio value of 0.36. A new equation was given for i on

the assumption that Poisson’s ratio was 0.5 for viscous flow ( to model incompressiblity):

m = 3167(0.3-0.070)(t/3600)**x10* kg/cm?, (2.8.3)

and different rates of temperature increase was determined. The method for calculating
ice thrust was to divide the ice sheet into layers and calculate the pressure at different
times depending on the temperature changes in the layers in question. The sum of ice
pressure in the various layers gave the total ice thrust. For the three cases selected, the ice
pressure was calculated to be 451, 118, and 49 kN/m respectively.

Lindgren did not consider different types of ice crystals. The type of ice in the
experiments and the method of ice formation were not identified. Lindgren started with a
uniaxial model with constant parameters and constant stress, then used it for a biaxial case
with temperature changes, where the stress and parameters were no longer constant.

Although an attempt was made to fit the model with test data, getting a good agreement

“Calculations of the values of the maximum pressure are somewhat unreliable.

With this in mind, rough estimates can be used to assess maximum ice pressure.”



2.9 - Drouin and Michel (1971)

Drouin and Michel contributed significantly to the study of thermal ice pressure
(Drouin & Miichel, 1971). In their report they first reviewed previous research on thermal
ice pressure and then studied the thermal aspect of the problem. They reviewed the
thermal ice properties and conducted a statistical study of the air temperature records for
Quebec City to get an estimate of the initial temperature, spread, duration and shape of
temperature rises.

Concluding that the temperature versus time curve generally has a sinusoidal shape,
they solved the differential equation for thermal diffusion in ice, using a sinusoidal increase
in surface temperature. The effect of snow cover was accounted for by increasing the
thickness of ice by an amount that would result in the same temperature distribution as for
ice with a snow cover. For an ice thickness of more than 0.4 m the temperature

distribution was approximated by the Fourier solution for a semi-infinite space. The effect

performed on three different kinds of ice: snow-ice, columnar ice with optical axis vertical
(S1), and columnar ice with optical axis horizontal (S2). In the uniaxial tests, the
cylindrical specimens with 0.0254 m diameter and 0.0762 m height were subjected to
constant strain rates at different temperatures, The strain rates ranged from 1.8x10° to
1.8x107 s and the temperatures from -3.2°C to -28.3°C. These strain rates are in the
range of those encountered in nature when an ice sheet undergoes thermal expansion.
There are few tests cited in the literature for strain rates lower than 5x107 s because
these low strain rates require a long test duration and also because the slightest
instantaneous temperature variation of the ambient medium will affect the test results. In
the case of 52 ice it was concluded that the samples were too small compared to the grain
size, so only two tests with larger specimens were reported (h=0.1016 m and
d = 0.0508 m). The results of a typical test for each kind of ice are shown in Figs. 2.8 to

2.10. It can be seen that in the case of snow-ice and S2 ice the stress reaches a maximum
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and remains almost constant while for S1 ice there is a marked decrease in stress after the

of these ice samples.
The following rheological model for the uniaxial case was suggested:

do _
dt

I

SE, — 2bBE, [(12 + &t) — S5 Sy :
E, Z,BE,[(B +£t) E, I( zp) (2.9.1)

where
G = stress
€ = strain rate
t =time
E. = apparent elastic modulus
no = initial number of dislocations
B = rate of multiplication of dislocations
b = length of Berger’s vector
p = a function of temperature
m = a constant

As stated by Drouin and Michel, this rheological model is somewhere between the
conventional models consisting of Maxwell and Kelvin elements on one hand, and models
based entirely on theories of molecular mechanisms on the other. The results of uniaxial
tests were used to find the parameters for the rheological model. In order to get a match
with the test results, the effect of rigidity of the assembly was considered in the
calculations and stress-time curves for ice plus testing machine were calculated. Then by
assuming infinite rigidity for the assembly the theoretical curves for ice alone were
calculated. The following values were determined from the experiments:
E. = 4.52exp(2060/T) kg/cm? (snow-ice)
T = absolute temperature K°
E.=c & “"exp(1335/T) kg/em® (S1 ice)
c=344¢ (¢ins™)
m =4 (snow-ice)

m=3.7 (S1 ice)
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no = 10%em? (snow-ice)
ny = 5x10%/cm?® (S1 ice)
3 = 10%/cm?

367exp(-0.046) = 18x10exp(2710/T)

—
I

p
0 = temperature in C°
b=4.523 A°

The theoretical rheological model for ice alone was used to calculate the stress-time

curves for ice subjected to increasing temperature. In these calculations the variation of
the coefficient of thermal expansion with temperature was considered. Stress-time curves
for different initial temperatures and different rates of temperature increase were drawn,
Both linear and sinusoidal temperature variations were considered. In these curves the
pressures for temperatures below -30°C were calculated although all the tests were

performed above this temperature,

the thermal pressure as a function of ice thickness and duration of temperature increase for
different initial temperatures (Fig. 2.11). These curves were calculated for a sinusoidal
temperature increase and thicknesses more than 0.4 m. To obtain these curves the ice
cover was divided into layers and the rate of temperature change was calculated in each
layer. The rheological model was then used to calculate the stress for the strain rate
corresponding to cach temperature rate,

The biaxial tests were similar to those performed by Lindgren. The ice samples were
circular discs 0.05 m in height and 0.15 to 0.30 m in diameter. They were placed in an
invar ring which had a very low coefficient of thermal expansion. During the tests the ice
temperature was increased from an initial value to 0°C with a constant rate and the thermal
snow-ice, eight tests on Sl ice, and eight tests on S2 ice. The maximum pressure that
would develop in the uniaxial test under the same temperature conditions was calculated.
Then the ratio between the maximum measured biaxial pressure znd the maximum
calculated uniaxial pressure was found, Figure2.12 shows the stress-time curves

correspor.ding to these cases. For snow-ice, the ratios were from 1.51 to 1.81. The ratios
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for S1 ice were in the range 1.0 to 1.97. For S2 ice, due to a lack of results for unjaxial
case, the maximum uniaxial pressure for S1 ice was used. The values of these ratios were
between 0.83 and 1.16. The apparent Poisson’s ratio, v, was calculated assuming that
these ratios were equal to 1/(1-v).

Drouin and Michel considered the effect of cracks by assuming a certain crack width
per length. The amount of temperature increase was then decreased, so that the reduction
in thermal deformation would equal the deformation due to the crack opening.

The experiments performed by Drouin and Michel are very valuable in defining a
constitutive model and material properties for different kinds of ice at low strain rates. .
However, their calculations for predicting the thermal ice pressure, have some
weaknesses. The curves for uniaxial stress are based on a thermal analysis for a semi-
temperature.  Calculations by Bergdahl (1978) and observations by Comfort and
Abdelnour, (1993) show that in many cases the ice surface temperature is quite different
from the air temperature. Considering the ice sheet as a semi-infinite space might be a
good assumption for thick ice plates, but some of the thermal events happen in early
winter when the ice sheet is thin, and more accurate thermal analysis is needed for these
cases. Solar radiation also has a major effect on ice temperature and cannot be neglected.

The effect of biaxial restraint is poorly handled. Figure 2.12 shows that the maximum
pressure in the uniaxial and biaxial cases do not happen at the same time and the ratio
between the stresses was not constant during the tests. The ratio 1/(1-v) is valid for an
elastic material, but its use cannot be justified when creep is considered. Defining

Poisson’s ratio on this basis and using it for predicting the thermal pressure under biaxial

restraint is questionable .

In 1973 Jumpannen used a two dimensional constitutive equation to calculate ice

pressure (Jumppanen, 1973). This equation is
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e=J,1+[[J,(t-7,0)I(S, +6,)+],(t-1,0)8]dt o (100)
0

where € and S are strain and stress matrices,

g, EY a, T o
E=1 and S=| = (2.10.2)
2 y

The parameters Jo, J,, and I, are creep functions, I is the identity matrix, T is a time
variable on the interval [0,t], and a superposed dot denotes the derivative with respect to
time. Jumppanen stated that a comparison between equation 2.10.1 and the elasticity

equation

v | 1 '
e=—l(o,+0.)+—S8§ 2.10.3
E(o, _,) e ( 7 )

led to the interpretation of J, as the time variation of the elasticity modulus v/E, and
correspondingly for J; as the time variation of the modulus 1/2G. Equation (2.10.1) was
studied for two special cases.

a - One dimensional case, ox=0, cy=1=0

If the first term is omitted, equation (2.10.1) for this case can be written as

e, =|{J, +Jz)6'd‘t=j.1(t—‘t,e)d'(‘t)dt 7 - (2104)

D e -

where
J= J]+J2 .
b - Biaxial hydrostatic, ox=0,=c , 1=0

In this case the strains are

€, =€, =

(21, +1,)6dt = [1- v(e)]j J(t - 7,0)5(1)dr (2.10.5)

© ey =

The results of 50 creep tests performed in the cold laboratory of the Civil Engineering
Department at the Helsinki University of Technology were used to define the creep

function J. Two types of fresh water ice were used: columnar grained ice made from tap
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The samples were cylinders 0.15m in height and 0.09 m in diameter. They were
tested at -2, -5, -12, and -25°C. The stress levels were 0.29, 0.69, and 1.18 MPa. For
experiments at 0.29 and 0.69 MPa, the creep function showed weak nonlinearity and
strong nonlinearity at 1.18 MPa. Only the linear case was considered for stresses under
0.69 MPa and the expression for J which gave the best agreement with test results was
found to be:
J(t,8) = a(8) + b(B)t" (2.10.6)
where ,
a(8) = (117+0368) x 10 (cm¥/kg) (2107
b(0) = (24.5+0058) x10™* (ecm%/kg) (tap water ice) (2.10.8) -
b(8) = (12+0250) x 10 (cm%kg) (Saima Channel ice) - (2.10.9)
n=03
8o =-25°C, §=06-0p, -25°C<0<0°C

. These values were used to calculate the ice pressure for some simple ice pressure
problems including a cylindrical water reservoir, a rectangular water reservoir, and a long
channel trough. In these calculations Poisson’s ratio was taken to be:
v(8) = 03 + 00046 (2.10.10)

The ice pressure at a depth 0.08 m for the Saima Channel was also calculated and
compared with the measured stresses. The difference between the measured and calculated’
stresses was less than 20%. The temperature distribution in the ice cover was not

considered and the calculations are valid only for stresses under 0.69 MPa.

2.11 - Metge (1976)

of 1970, 71, and 72 included ice condition monitoring, ice thickness measurements,

temperature gradient measurements, solar radiation and wind velocity recording, recording
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of pressure ridge movement, time lapse photography of pressure ridges, seismic recording
of ice cracking, and observation of thermal cracks.

The cracks were separated into three different groups and the observations of these
cracks were as follows.
1 - Dry cracks

These are the most common cracks that form during cooling periods. These cracks do
not usually fill with water because the cracks do not result in complete separation of the
ice on either side. Figure 2.13 shows a typical section of a dry crack. The crack is
straight down to about two thirds of the ice thickness and is met there by one or two shear
cracks, usually at about 45 degrees to vertical. Dry cracks act like a set of bellows,
absorbing some of the contraction and expansion of the ice without causing stresses. The
width of dry cracks in the Kingston observations ranged from 1 to 20 mm. An estimate of
the average crack width was 5 mm. The spacing of the cracks was estimated to be
25 metres.
2 - Narrow wet cracks

With further contraction of the ice cover the sides of a dry crack can separate allowing
water to rise in the crack. When the water freezes, seals the crack. Metge indicated that
each cooling period opened the crack, which was weak in tension and a layer of ice was
added (Fig. 2.14). The thickness of the new ice bridge was large enough to withstand the
compression caused by a subsequent warming period. Metge mentioned that in the
Kingston area such cracks were extremely rare and numbered only two or three across the
wide region studied.
3 - Wide cracks

Metge described that as the amount of contraction increased, the ice had to separate
from the land and the total contraction was then absorbed along one or two cracks which
usually formed near tensile stress raisers such as between two headlands. It was stated
that the overall contraction of the ice shect was concentrated at these cracks and some had
been observed that were more than 200 mm wide. The large volume of water in these
cracks could not freeze completely during the night and as a result, by morning a typical

wide crack took the shape shown in Fig. 2.15. During the next day, if the ice temperature
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rose, the thin bridge of ice across the crack was put in compression and suddenly failed.
The closure of these cracks produced a loud noise and a violent impact, Metge indicated
that when the crack closed the sides of the crack became out of alignment. One side lifted
up while the other side sank under it. This caused the crack to act like an obstacle against
snow and this was the initiation a of pressure ridge formation. Metge's observations
showed that pressure ridges were usually preceded by wide cracks.

According to Metge’s observations, dry cracks are the most important type of crack
which should be considered in a thermal analysis, because they are the most common
cracks and are active during the thermal events. The narrow wet cracks are very rare and
wide cracks appear only at special locations. The impact due to closure of the wide cracks
might exert a large force on a structures, but this cannot be considered in a thermal

analysis and requires separate study.

2.12 - Bergdahl (1978)

In 1978 Bergdahl submitted a doctoral dissertation on thermal ice pressure to
Charmers Institute of Technology in Sweden (Bergdahl, 1977; Bergdahl, 1978, and

Bergdahl & Wernersson, 1977). A numerical model was proposed that calculated thermal

method which took into account solar radiation, latent heat transfer, and heat transferred
by conduction and convection. Input included: air temperature, wind speed, cloudiness,
air vapor pressure, location of the site and time of the year.

Bergdahl assumed that the ice cover was completely restrained and adopted the
following rheological equation for calculating the ice pressure.

dd _ de

8 _de _1ds  ppee 2.12.1)
dt dt E dt

This is the differential equation for a model composed of a linear spring and a non-linear

dashpot where

E =(1-0.0126)6100 MPa (2.12.2)
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D = Dyexp(-Q/RT) (2.12.3)
Dy = (9.1320.57)x10™ m?s
Q. = the activation energy for self diffusion = 59.8 kl/mol
R = the universal gas constant = 8.31 J/(mol-K®)

T = the absolute temperature

The values for K and n were chosen based on the experiments by Drouin and Michel
(1971) on ice monocrystals loaded parallel to the basal plane. The values used were
K =4.40x10" (m?Pa™) and
n=3.65].

The calculated temperature profile was used to determine the thermal ice pressure for
each layer separately. The differential equation (2.12.2) was written in difference form
and solved using a special iterative procedure. The pressures were then integrated over
the depth of the ice to obtain the total pressure. In order to consider the cracking of ice in
tension, the ice pressure was allowed to reach a negative minimum value (the tensile stress
had a negative sign), after which the stresses were set to zero. When the temperature
started to rise again, the cracks were assumed to be healed completely.

Bergdah! made some comparisons between the calculated ice pressure from the
proposed model and ice pressures calculated by other authors or obtained from the
other models. Monfore’s corrected curve is obtained by assuming Poisson’s ratio equal to

0.36. Figure 2.17 shows the comparison with measured pressures. Bergdahl stated that:

plate experiments. In a thick ice cover such high pressure levels could be reached

more often, but in a vast ice cover there ought to be factors that limit the

pressures.”

Bergdahl also made a comparison between different methods for calculating the ice
pressure and obtained the maximum ice pressure in two hypothetical conditions. The
thickness of the ice cover was 0.45 m and 0.9 m in these cases. The initial air temperature
was set to -30°C and made to rise 2.8°C/h to 0°C. No solar energy was absorbed. The

proposed model was calculated assuming a clear sky and vapor pressure equal to 80% of
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the saturation vapor pressure of the air. Table 2.1 shows the calculated pressures.
Bergdahl’s equation gives higher values than other methods. Bergdahl concluded that:

“It might be reasonable to reduce values of the highest pressures because in vast

Bergdahl and Wernersson calculated the thermal ice pressure for five Swedish lakes
(Bergdahl and Wernersson, 1977). They did statistical studies and gave the expected
pressures for return periods of 100, 500, and 1000 years. Results are shown in Table 2.2.

The thermal analysis conducted by Bergdahl included most of the parameters that have
an effect on the temperature distribution in an ice cover. However the pressure analysis
had some weaknesses. Bergdahl actually performed a uniaxial analysis. He used the
method of Drouin and Michel based on estimating the biaxial stress from the stress
obtained in uniaxial calculations. As mentioned before, this cannot be considered a proper
biaxial analysis. The forces calculated by Bergdahl are very high and this might be due to
the choice of the material properties. For example, the value selected for E seems very

high considering the low strain rates that occur in thermal events.

objectives of the field program were to obtain field experience in deploying the sensor and

some preliminary measurements of thermal ice pressures. In 1984 Cox presented the
results of this field measurement program together with the calculation of thermal ice
pressure, based on the measured ice temperatures (Cox, 1984). Although the ice sheet
was relatively warm and temperature changes were small, stresses up t00.3 MPa were
recorded. The peak stresses were about 0.21 MPa in compression and 0.31 MPa in
tension in one direction and about 0.14 MPa in compression and 0.24 MPa in tension in

the other direction.
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Ice pressures were first calculated using Bergdahl’'s rheological model, with the
measured temperature history at the depth of the sensing portion of the gauge. The model
was modified to allow tensile stress to accumulate in the ice cover during cooling periods
without any ice cracking. It was observed that Bergdahl’s model over predicted
compressive and tensile stresses in the ice.
Cox concluded that this over-prediction was due to Bergdahl’s values for E, K, and D.
As stated by Cox, for the low strain rates typical of thermal expansion, the effective
modulus of ice was expected to be lower than 6000 MPa. Also above -10°C, a plot of
In(e) versus 1/T was strongly non-linear and the creep activation energy, Q., was not
constant. Therefore, the product, KD, in Bergdahl’s model needed to be re-evaluated for
ice thermal expansion problems. Cox suggested that a modulus of 4000 MPa might be
more appropriate and defined a new function A(T) to account for the temperature

dependence of the creep rate:

=24 A(TI(-Z)" (2130)
E o ,
where

» =
O = aunit stress

R £ . .
A(T)y=—m—F— in a constant strain-rate test, or
(Smﬁ /s )
£

A(T)=—=2_  in a constant load test.
(c/c”)”

The values of o, from the curves presented by Drouin and Michel for a strain rate of
2x10"* 5! were used to obtain A(T), and In[A(T)] was plotted against In(T). In order to
obtain a linear fit it was assumed that the 0°C tests were performed at -1°C. By adjusting

the data the following relationship was obtained:
o T )
A(T) = B(=) (2.13.2)

where
T’ = a unit temperature

B =246x10%s"



m=1092

Cox compared the pressures predicted by the suggested model with the measured
stresses and the stresses calculated by Bergdahl. The pressures predicted by Cox were in
good agreement with the measured stresses. Bergdahl's values were high in both
compression and tension. Cox made the calculations using the measured temperature at a
single depth and did not analyze the whole ice cover. Biaxial restraint was not considered

in the analysis.

2.14 - Sanderson (1984)

At the seventh I.AHR. International Symposium on Ice, in 1984., Sanderson
presented a paper on thermal ice forces against isolated structures (Sanderson, 1984). It
was noted that depending on the boundary conditions two distinct types of thermal force
might develop. In reservoirs and rivers, where the ice is confined in a limited space
thermal stresses develop which may lead to loads of 200 to 600 kN/m across a structure.
In the seas where the ice is free to expand, thermal ice velocities occur. In the case of an
offshore isolated structure, as the ice expands it moves past the structure, and forces can
be calculated by solving the indentation problem. These forces typically amount to 2000
kN/m for a wide structure.

After a review of the previous methods for calculating the pressure in the case of
restricted expansion, a method was suggested for determining the velocity in free
expansion conditions. It was noted that thin ice covers would expand directly in response
to any temperature change while a thick ice cover would consist of two coupled layers,
one active and one passive, which expand at a slower net rate. For an ice cover many
times thicker than the active surface layer, the following steps were suggested for
calculating the strain rate: 1) calculate the thermal stress in the active layer with the
assumption of total restraint, 2) distribute the stress over the total thickness, 3) calculate

gross strain rate due ton the distributed stress.
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According to Sanderson, in many conditions, the temperature distribution in ice cover is
dominated by surface temperature changes and can be obtained by heat conduction
analysis with negligible convection. It was noted that any periodic surface temperature
history could be represented by a Fourier series of sinusoidal terms and each temperature
wave became attenuated with depth according to:
exp[-y(@/2a4)""] (2.14.1)
where
ay = thermal diffusivity of ice
o = angular frequency
y = depth

Assuming a4 =1.15x10° m%s for pure ice, the depth yo, at which the temperature wavér
is attenuated to 1/e of its surface amplitude could be calculated for diﬁ‘érént o.
yo = (2k/w)"? (2.14.2)
This was called the “skin depth”, which is tabulated in Table 2.3.

Sanderson also calculated the wave frequency which caused the maximum rate of
ter: perature change, d6/dt, at a given depth.
o = 8k/y? (2.14.3)

The dominant period which gives the maximum rate of change of temperature at a

particular depth is shown in Table 2.4. As stated by Sanderson:

calculating the maximum pressure and for thicker ice sheets longer periods should be
taken into account. It also means that for thin ice covers the whole thickness is affected
by the daily temperature changes and the total force will increase rapidly with increasing
thickness. But for thick ice covers only the upper part will be active and the total force
will not change very much with increasing thickness, unless the period of temperature

change is more than one day.



2.15 - Bomeng (1986)

Xu Bomeng from the People’s Republic of China suggested the following equation for
ice pressure which was obtained using data from several reservoirs in the northeast of
China (Bomeng, 1986).

p = KK,Ci(3-1,)"(48,)*(1°%-0.6)/(-6,*) (2.15.1)
where

p = average pressure of ice sheet, kg/cm?

K, = factor for snow cover (for no snow K,=1.0).

Cw = conversion factor related to thickness of ice cover, as shown in Table 2.5,

0. = initial air temperature at 8 a.m. (C°), usually not higher than -10°C

AB, = increment in air temperature (C°) from 8 a.m. to 2 p-m., or from 8 a.m. of the first
day to 2 p.m. of the second day or third day for sustained temperature increases; the
highest air temperature should not , however exceed 0°C.

t = duration of sustained temperature increase (h), corresponding to AO,.

t = 6 hours for daily changes.

t=30 hours for successive days of air temperature increase (two days).

K = coefficient to account for overall effects of other factors.

In order to simplify the calculations, some of the parameters in equation 2.15.1 were
determined based on the data of field observation. It was argued that for thin ice sheets
the maximum pressure could be reached in a single day but for ice sheets thicker than
0.5 m longer duration of temperature increase , up to two or three days should be taken
into account. Therefore, for ice of less than 0.5 m thickness the duration was taken to be
six hours. For thicker ice sheets, the duration was 30 hours. From observations, initial air
temperature and temperature rise were taken -15°C and 15°C respectively. Finally,
assuming no snow on the surface of the ice sheet, the ice pressure predicted by equation
2.15.1 would depend on the thickness of the ice sheet.

P =13.73hKCym, (2.15.2)

where
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P = ice thrust (tonnes/m)
m, = time factor of temperature rise (1.0 or 1.82)

The magpnitude of K is affected primarily by the surface area of the reservoir and the
conditions of the restraint against expansion, and lies between 3.5 and 5.0. In Fig. 2.18
ice thrust according to equation 2.15.2 is plotted versus thickness for different values of
K. The maximum thrusts measured at nine reservoirs are also marked in this figure.

Equation 2.15.1 includes most of the important factors that affect the thermal
pressure, but since it is based on data fitting, it cannot be used freely for other places. It is
not possible to judge equation 2.15.2 on the basis of the Fig. 2.18. The measured thrusts

cover a wide range and it is difficult to express them as a function of thickness.

2.16 - Yamaoka, Fujita, and Hasegawa (1988)

At the ninth 1. A H.R. International Symposium on Ice in 1988, Yamaoka, Fujita and
Hasegawa from Japan presented the results of measured and calculated thermal ice thrusts
at the Taisetsu Dam. The thickness of ice cover was about 0.4 m at the time of the
measurements. The site where the measurements were done was almost free from snow.
A summary of the results is presented in Table 2.6. It was observed that no thermal
pressure was recorded below a depth of 0.175 m. Therefore the effective ice thickness
was considered as 0.175 m,

The coordinate system in Fig. 2.19 was used in the calculation .of the thermal stress

under three different boundary conditions.

Case (1):
0,(z)=f(ab) (2.16.1)
6=0 atx==l

M=0 at z=+a/l2
where

o = the coefficient of thermal expansion

0 = ice temperature
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& = horizontal displacement
M = in-plane displacement by thermal bending
Case(2):

; a2

63(2)=0,(2)+~ [odz | o (2.16.2)

T =al2
6 =free at x =1
M=0 at z=x+a/2
Case(3):

1 a/t 122 a/2 ) ) -
oy(2)=0,(2)+= [o,dz+— [o,2dz (2.16.3)

a i a e '
d=free atx=x=]
M=free at z=1a/2

For the constitutive relationship a rheological model consisting of a Maxwell unit and

a Kelvin unit in series was used. The rheological equation for this model is:

Ede_1do 1 1, E do B 2.164)
dt*  n,dt E_ dt* 'n, n, nE "dt nn,

d’s Ede_1de 1 1 E, do_ E

where E and m are rheological coefficients. These coefficients were estimated by curve
fitting Lindgren’s experimental data. The values obtained are: i
En = 8584 MPa
Nm = 6.60x10” MPa.s
E, = 5347 MPa
N =6.43x10° MPa.s .

The temperature distribution in the ice cover was calculated using the thermal

diffusion equation,

= =2
D _,, 20 (2.16.5)

ot oz?
where
aq = the thermal diffusivity of ice = 1,15x10? cm¥s

The boundary conditions used in conjunction with equation 2.16.5 were
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6(a/2,t) = Acosn(t+4x3600)+B
B(-a/2,t) = 0
8(z,0) =0
® = 2n/(24x3600) 1/s
A=-5°C

=-12°C
a=05m

The maximum values calculated for o), 0;, and o3 at 0.08 m depth were about 0.44,
0.25, and 0.04 MPa, respectively. The calculations predicted maximum pressures at the ice
surface whereas the measurements showed the highest pressures at 0.085m. It was
argued that this difference was due to thermal cracks at the ice surface.

The method suggested by Yamaoka et al. has the advantage that it considers the
bending and expansion of the ice cover, when the ice sheet is not completely restrained
and is free to rotate or expand. The bending stress (the third term in equation 2.16.3),
however, is obtained according to elastic theory even though it is not consistent with the
behavior of ice. The effects of lateral deformation, underlying water, and change in ice

properties with respect to temperature are not considered in the calculations.

2.17 - Xian-Zhi (1988)

At the ninth LH.A R. International Symposium on Ice in 1988, Xian-Zhi from China
presented measured ice pressures from several reservoirs in China along with some
observatiorns regarding the thermal ice pressure. The maximum ice pressures observed in
the reservoirs are given in Table 2.7.

The measured temperatures showed that the effect of periodic change of surface
temperature gradually weakened with increasing depth and there was negligible effect
below a depth of 0.6-0.7 m. It was observed that the destructive action of the ice cover
on the revetments occurred mainly in either early or late winter. Xian-Zhi explained that

in early winter, the ice cover was thin and its temperature changed rapidly. Therefore if
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the integrity of the revetment was poor (such as loose-stone laid revetments) it could
easily be pushed by the ice body. In late winter the ice cover reached its maximum
thickness and when the temperature increased the total ice pressure was large. Xian-Zhi
cited the case of the Baiquan Reservoir where, on March 31, 1974 a large area of the
revetment slid 0.18 m upwards. The ice thickness was 1.2 m at the time.

The measured pressures showed that when other conditions remained the same, a
higher rate of temperature increase caused a higher ice pressure. It was also found that
for the same temperature increase rate, a lower initial temperature resulted in greater ice
pressure. This might be due to the fact that the value of modulus of elasticity is higher at
lower temperatures. Observations indicated that at a depth of 0.1-0.3 m, the ice pressure

was a maximum, and it was zero on the surface and at the bottom of the ice cover.

the pressure varied linearly from a maximum value, P, at the ice surface to zero at a depth

h.. Thus the maximum force could be expressed as:

F, = 0.5pBh, (2.18.1)

where B is the width of the structure. The maximum thermal pressure was obtained from

P, = K(0.0089-0.0204 s/t)(At+1)}(10)"* ' (2.18.2)

where

s = salinity (parts/thousand)

t=ice surface temperature at the end of the temperature change period (in C° with
positive sign).

T

-]

= period of time during which temperature had changed in hours; equation 2.18 is

applicable for 1o from several hours to 2-3 days,
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K= 1 for saline ice when temperature increases and for fresh water ice
K = -1 for saline ice when temperature decreases (saline ice expands when temperature
decreases).

" The depth of thermally stressed ice, h, was obtained from Sanderson’s “skin depth”
(the depth at which temperature is attenuated to 1/e of its surface magnitude; Sanderson,
1984), with some modifications (Figure 2.20). It was estimated using the formula:

h, = 0.14In0.6(to+4) (2.18.3)
It was assumed that the skin depth is the depth at which the stress is zero, but
according to Sanderson at this depth the temperature is about half of its surface

magnitude, and it is not zero.

2.19 - Ivchenko (1990)

At the LA-H.R. International Symposium on Ice in 1990, Ivchenko from thé USSR
presented an analytical method for calculating thermal ice pressure (Ivchenko, 1990). The
procedure was based on a rheological model consisting of a Maxwell unit in series with a
Kelvin-Voigt unit. It was assumed the ice cover is divided into.a number horizontal -

layers, the stress in each layer is independent from the stress in other layers, the layers are

within a layer.

The equation for the rheological model is given in the form:
1 Sqm=l on k ,
lgs, 88™m 8" 8% my

: . vl Mk Yok oo rHE ovte 7m 14 18
dy =570 +——— + o ———rexp[-—-(t - t,)]| " exp(—-t)dt . (2.19.1)
ST 2uy 2ny  2n 20} Nk " i

The symbols in equation 2.19.1 are not defined in the paper, except for d which is
mentioned to be the “complete relative strain”. Assuming that S denotes the stress, it
seem that the first term is for elastic deformation, the second to fourth terms for viscous
deformation and the last term for the delayed elastic deformation. Then it is assumed that
the state of stress is uniform at each point so that

— 6 =0, ' (2.19.2)
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d_i=d_jfd_=c1.(8—90)(1—v,)§‘5—(v1—v;) 19

m
where
o. = coefficient of thermal expansion
8 = temperature of the layer under consideration
0o = initial temperature
o = normal stress
v; = coefficient of viscous diametrical restraint
v, = coefficient of the elastic diametrical restraint.
Assuming that the rheological model consists of linear elements and the strain in the

Kelvin unit is equal to zero the final differential equation for the stress is given by:

6[ L 2.0 §v2]+ﬁf[ M 11 +,2'Ek B _vz)]-k
6“’:11 27¢ Hm Ep‘mnk éﬂm Enk’ ;“7&1]{ Hom Nk

o—tE = a1+ vyE+oE), (2.19.4)
Sﬂmnk k. :

Equation (2.19.4) is a function of stress only, and can be solved for a given temperature
function. The thermal line load is obtained by integrating 2.19.4 over the thickness of the
ice cover. A comparison was made between the predicted stresses and the stresses
measured in an outdoor basin with diameter of 1.8 m and at Lake Baikal. There was good
agreement between the measured and predicted stresses.

Since the symbols are not defined, it is difficult to assess equation 2.19.4, The

material properties used in obtaining the solution are important but are not mentioned in

the paper.

In a paper presented at the 10th International Conference on Offshore Mechanics and
Arctic engineering in 1991, Li et al. described the results of an experimental study on

thermal ice pressure (Li, Zhang, and Shen, 1991). The tests were performed in a
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controlled cold-room, where an ice cover was grown inside a cylindrical tank. The process
attempted to simulate ice growth in natural conditions. The ice type grown in the tank
was columnar S2 ice.

In the experiments, the ice cover was subjected to a linear increase in air temperature.
The temperature and stress distributions in the ice were studied for different initial values
of air temperature and different rates and duration of temperature increase. The durations
of temperature increase varied from 12 to 15 hours, the initial temperatures were -5, -10,
and -20°C, and the temperature increase rates were less than 1°C/h.

It was concluded from the tests that there was a transition depth in the ice cover.
Above this transition depth the ice temperature was controlled by the air temperature and
a large thermal pressure was produced. Below this depth the temperature changes and the
pressure were very small and could be neglected. The transition depth was reported to be
0.3 m according to the tests. An empirical relationship was suggested for the ice
temperature above the transition depth, as a function of air temperature, and transition
depth. It was observed that the ice pressure increased with decreasing initial temperature,
increasing the temperature rate, and increasing the duration.

The thickness of the ice cover were not reported, and the effects of the thickness on
the temperatures and stresses was not studied. It seems that the tests were performed
only on thick ice sheets where the effect of the bottom boundary could be neglected. In
the thin ice sheets the bottom boundary affects both the temperatures and stresses.

The effect of the duration of temperature increase on the transition depth was not

considered, and the transition depth was reported as a constant value. The durations of

give longer periods of temperature increase, for example 20 to 30 hours. In this case the
temperature change and the thermal stresses might occur to a larger depth. Therefore the

transition depth is not constant and depends on the duration of temperature increase.
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In order to improve the understanding of ice loads on hydro-electric structures, a
series of field measurements and large scale tests were sponsored by Canadian Electricity
Association (CEA). The tests were conducted on their behalf by Fleet Technology Ltd.
Field data were collected at Hydro Quebec’s Paugan dam on the Gatineau River at Low,
Quebec and Ontario Hydro’s dam at Arnprior, Ontario, during the winters of 1991-92 to
1993-94. The large scale tests were conducted at a 120 m by 60 m outdoor basin at the
National Research Council (NRC) in Ottawa. The objective in all these tests was to
measure both thermal loads and loads due to water level changes. The data collected
included temperature and stress histories, ice and snow cover thickness, and
meteorological data. The results were reported in three phases. Only those for the first
two phases (Comfort and Abdelnour, 1993; Comfort, Abdelnour, and Gong, 1994), which
correspond to the winters of 1991-92 and 1992-93 were used in this study to assess the
numerical model, as the report for 1993-94 winter was not available, The details of the
measurements are described in Chapter 5, and only the general results will be discussed
here.

Arnprior Dam - winter 1992-93

At the Amprior dam the temperatures and the stresses were measured at a location
close to the vertical concrete face of the dam. In early winter the ice was continuously
broken by the water level changes. The loads in January were very low (less than
10 kN/m), because the ice cover was not well bonded to the dam. When the ice cover
became thicker, a crack that absorbed the rotations of the ice cover due to water level
fluctuations, formed 10 m from the dam. Subsequently the ice sheet became well bonded
to the dam. The highest loads measured during the whole program occurred at the
Armnprior Dam in February. The peak line load was 156 kN/m which was due to the
combination of temperature increase and water level changes.

Paugan Dam - winter 1991-92 and 1992-93
During the 1991-92 winter the temperatures and the stresses were measured at four

locations: near the gates and piers of the spillway, 30 m from the gates, near the vertical
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face of the dam and nearby rock face, and 30 m away from the vertical face of the dam.
During the 1992-93 winter the stresses were measured near the gates and piers and 30 m
away from them. The daily water level changes at the Paugan Dam were relatively small
(less than 5 c¢cm). The loads at the locations away from the structures were mainly
thermally induced, but in the vicinity of the structures the loads were affected by the water
level changes. The loads and the stresses measured during the 1992-93 winter were much
less than those recorded during the 1991-92 winter. The measured stresses during the
1991-92 winter were considered less reliable by Comfort et al. because the thermal events
happened shortly after the installation of the stress sensors and were affected by freeze-in
stresses. In the winter of 1992-93 the highest line loads over the full width of the pier and
gate were 122 kN/m and 22 kN/m, respectively. Away from the gates and piers the
maximum line load was 52 kN/m. In early winter, when relatively large loads occurred,
the loads on the pier were typically two to five times higher than those on the gate. Later,
the difference reduced and in February the loads on the gate and the pier were similar.
This was attributed to the higher temperatures which caused more stress redistribution by
creep. The average line load over the total width of the pier and gate was also calculated
and compared to the line load at far field. The far field line loads tracked the average line
load with a difference of about 10% in magnitude. It was concluded that the load “seen”
by dam was similar to that produced in the reservoir ice sheet away from the dam.

Comfort et al. categorized the thcrmal events into two groups: “early season”, and
“late season”. In the early season events the ice is thin and cold and there is little snow
cover. During these events the ice surface temperature changes greatly and rapidly, while
the temperature change inside the ice sheet is relatively small. Therefore this type of event
produces high stresses in the upper parts of the ice sheet. In the late season events the ice
is thicker and warmer, and there is usually more snow cover on the ice sheet. The
temperature change happens at a smaller rate over almost the full thickness of the ice
cover. The late season events produce more load per-unit temperature rise.

In order to predict the ice load on the Paugan Dam gates and piers, a two dimensional
plane stress finite element analysis was carried out. The analysis was performed by

Selvadurai and Associates Inc. (1992), and submitted to Fleet Technology Ltd. The
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constitutive law was a two dimensional generalization of the rheological model suggested
by Bergdahl (1978). The mechanical properties suggested by Bergdahl were also used in
the stress analysis. In the cooling periods when the stresses exceeded the tensile strength
of the ice (0.5 MPa), it was assumed that the ice cracked and the cracks refroze due to the
influx of water. An additional pressure due to refreezing was applied by considering
prescribed displacements. A part of the ice cover in front of the gates and spillways was
modeled in the finite element mesh. In order to consider the flexibility of the gates, the
gate structure was modeled as a beam of variable but finite flexibility. The stiffness of the

beam was included in the global stiffness matrix.

capture the three dimensional behavior including the bending of the ice cover. Only an
average temperature was used for the whole thickness of the ice sheet and the temperature
variation through the thickness of the ice cover was not considered. The assumption that
all the cracks refreeze is not valid. Most of the cracks in an ice sheet are dry and open or
close with temperature changes. Comfort et al. also discussed a number of anomalies in
the results of the numerical analysis. It was stated that the model predicted significant
tensile stresses in the cooling periods whereas the measured stresses were mainly
compressive. Also the model predicted higher stresses on a flexible gate than a rigid one.
NRC Basin Test - winter 1992-93

In the first part of the program the water level was kept constant in the basin and the
stresses due to temperature changes were recorded. In the second part of the program,
which started on January 25, the stresses due to water level changes were studied. The
thermal events were grouped into early season and late season events. The highest line
load was 51 kN/m which occurred in late December during an early season event. The

data collected in the second part were also affected by the temperature changes. It was

increased with the rate of change and total displacement.
The data collected by Fleet Technology Ltd. is a valuable set of data that provides
useful information about the different mechanisms that affect the ice load on hydraulic

structures.
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At the LAHR. 12th International Symposium on Ice, Noponen and Maattanen
presented a paper on thermal ice loads against isolated structures (Noponen and
Maattanen, 1994). An isolated structure is a structure in the interior of the ice cover,
which is surrounded by the ice. This term is usually used for offshore structures. The
main part of this paper concerned the calculation of the ice velocity due to temperature

changes. A summary of this part is discussed here.

reaches 0°C and remains constant at that level. The equation of thermal diffusion was then
solved analytically using a Fourier series approach. Knowing the temperature distribution
through the thickness, two methods were suggested for calculating the global strain rate.
In the first method, which was called the elastic model, the global strain rate was obtained
as a weighted average strain rate of the cross-section of the ice cover. In the second
method, which was called the creeping model, the effect of elastic and viscous
deformation was also considered in calculating the global strain rate. The suggested
equation was based on a rheological model consisting of a linear spring in series with a
temperature changes, the elastic strain rate, and the viscous strain rate. The ice cover was
divided into ten layers and it was assumed that the sum of the stresses in the cross section
was equal to zero. The differential equation was solved by the finite difference method,
Then the uniaxial velocity was obtained as the product of the global strain rate and length
of the ice cover.

It was stated that the velocity was also affected by the biaxial restraint and boundary
conditions. In order to consider those effects a “boundary condition coefficient” was
introduced. The twc dimensional ice velocity was given as the product of the boundary
condition coefficient and the one dimensional velocity. The boundary condition coefficient

was obtained from an elastic finite element analysis for different boundary conditions and
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different aspect ratios of the ice field (Fig. 2.21). It was assumed that the ice field is free
to expand towards the water,

Although there was an effort to consider the three dimensional behavior of the ice
cover, this was poorly handled. With the assumption of free expansion on one boundary,
the geometry of the ice cover and the boundary conditions on the rest of the boundary
have a significant effect on the stresses. The creep of ice and the underlying water also
have significant effects which cannot be ignored. Since the stresses also affect the strain
rates all of these factors should be considered simultaneously. The effect of boundary
conditions and biaxial restraint cannot be introduced simply with a coefficient from elastic

analysis.

2.23 - Summary and Conclusion

pressures has existed in many northern countries for a long time. Numerous investigators

in cold regions have tried a variety of methods to estimate ice pressures. These methods

have been based on laboratory tests, field measurements, empirical relationships, and
analytical or numerical calculations. Most methods for determining ice pressure consist of
the following steps.

1) Assume a temperature rate: In early investigations the temperature variation through
the thickness of the ice cover was neglected and only a single temperature rate was
considered in the analysis. In some studies the measured temperature profiles were
used. Subsequent investigators performed a thermal analysis and calculated the
temperature profile in the ice cover.

2) Divide the ice sheet into a number of layers.

3) Assume a complete restraint and obtain the strain rate from product of the coefficient
of thermal expansion and the temperature rate.

4) Adopt a constitutive model for ice: In early studies empirical stress-strain

relationships based on curves obtained from lab experiments were used. Later,
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units were adopted by most investigators. The rheological models were calibrated
using experimental data.

5) Obtain the stress at each layer: Using the constitutive model the stress in each layer
was obtained from the strain rate.

6) Calculate the force per urit length: The force per unit length was calculated by
integrating the stresses through the thickness.

7) Estimate the stress under biaxial restraint: The stress under biaxial restraint was

estimated using the elastic theory and Poisson’s ratio or by comparing the biaxial and

uniaxial test results.

The development of methods for determining thermal ice pressures have occurred
concurrently with the development of better constitutive models for ice. Most of the past
research, however is based on uniaxial constitutive laws and there are a number of factors
which are not considered in the previous studies. The most important factor is the three
dimensional behavior of the ice cover. The temperature distribution through the thickness
of the ice cover is non-uniform. In the conditions of total restraint where the interaction
between the layers can be neglected, the stress in each layer is affected by the temperature
changes of that layer and the biaxial restraint in the horizontal plane. Due to three
dimensional creep of ice, the ratio between the stresses in uniaxial and biaxial constraint, is
not constant and cannot be obtained from the elastic theory using Poisson’s ratio. The
stresses are also affected by the tensile cracking during the cooling periods. |

When an ice cover is free to expand along one shore, the lower layers, which undergo
smaller temperature changes, resist the expansion of the upper layers. Therefore the
interaction between the layers should also be considered in the analysis. In this case the
underlying water, the boundary conditions (the shore type or flexible structure), and
geometry of the reservoir can all have a significant effect on the stresses. Due to the
nonlinear behavior the effect of the bending and membrane stresses are coupled and
cannot be considered separately. Due to free expansion, the lower layers undergo tensile

stresses and tensile cracking affects both the stresses and the resultant forces.
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The past research has been exclusively concerned with wide structures and fully
constrained ice sheets. Investigations dealing with free expansion have focused on
offshore structures and sea ice. This case can be dealt with as an indentation problem
where an indentor moves towards the ice sheet with a prescribed velocity. There have
been no investigations on thermal expansion in reservoirs where the ice cover is free to
expand on a part of the boundary. While the free expansion might reduce the load on a
wide structure, it may increase the load on an isolated structure like a water intake. In this
case the load on the isolated structure might be higher than the load on a wide structure
but not as high as the load exerted on an offshore structure. Factors such as the effect of
the underlying water, bending of the ice cover, geometry of the reservoir, flexibility of the
resisting structure and shore-line features are also not considered in the past research.
Even in the case of fully constrained ice sheets, the effect of biaxial restraint and tensile
cracking is either not considered or poorly handled. Although the development of three
dimensional constitutive models has made it possible to use the finite element method to
analyze the ice sheets, there is only one case in the literature where the finite element
method was used to obtain thermal ice pressures. In that case, however, a plane stress
element with a single temperature rate was used and the temperature distribution through
the thickness and bending deformation were not considered.

The purpose of this study was to develop an improved analytical capability for
predicting the ice forces; a model that could consider all of the above mentioned factors
and could be used for both fully constrained and free expansion conditions. Such a model
makes it possible to study and assess the importance of the different factors that affect the

stresses in an ice sheet.
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T ’ ""’ Line load (kN/m)

Method | Ongn h=045m | h=0.9 m
T Drouin (1970) | 47 86

Rose (1947)
Monfore (1954) T Drouin (1970) 222 232

SN 76-59 (1959) T Drouin (1970) 128 255

Drouin & Michel (1971) - S1ice | Kjeldgaard (1977) | 330 | 390
Drouin & Michel (1971) - Snow-ice | Kjeldgaard (1977) | 220 | 270
SN 76-66, wind speed = 0 m/s Kjeldgaard (1977) | 30 | 60

SN 76-66, wind speed= 5 m/s | Kjeldgaard (1977) 310 440

SN 76-66, wind speed = 20 m/s | Kjeldgaard (1977) | 410 580

Bergdahl, wind speed = 0 m/s | Bergdahl (1978) | 459 752
éérgd:aﬁlj, wind spéea¥ 5m/s Bgrgéahl (TQ'?S) 502 | 830
1(19 531 | 829

Bergdahl, wind speed = 20 m/s | Bergdahl (1978)

Table 2.1. - Ice pressure for ice covers of two thicknesses for the hypothetical conditions
stated in the text. A comparison between different methods {reproduced from Bergdahl,

1978).

T Return Period (years)

Lake T 100 500 1000

“Torn trisk T (643°N 19.5°E) | 507 | 550 569
Stora Bygdtrasket (68.3°N 20.5°E) | 453 | 532 568
Runn " (60.6°N 15.6°E) | 410 | 475 500
Glan (58.6°N 16.0°E) | 419 507 | 543
"Vidastern (57.1°N 14.0°E) | 330 380 | 400

Table 2.2. - Expected thermal ice load in kN/m for some return periods of annual maxima

(reproduced from Bergdahl, 1978).
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" Skin depth (m)

1.7x107

0.04

2 hours
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6 hours

2.9%10°

0.09

12 hours ~ 1_5;{16;1 ' R

24 hours 7.3x10° 0.18
 Tdays ©1.0x10° 047

14 days S 2x10% S —

2.4x10° 0.97

2.0x107

30 days

3.40

1 'yéar

Table 2.3 - Depth of penetration of surface temperature waves through an ice cover. The
“skin depth” (depth at which the wave is attenuated to 1/e of its surface amplitude) is

shown as a function of wave period and frequency o (reproduced from Sanderson, 1984).

" Depth(m) | Dominant period.

01 " 19hours

B 02 7.6 hours
03 | 17 hours
04 | 30hours
05 ideays
1.0 8 days
B 20 30 days

Table 2.4 - Period of surface temperature wave which at a particular depth gives rise to
maximum rate of change of temperature. All waves are assumed to have the same

amplitude (reproduced from Sanderson, 1984).



Ice thickness (m) Ch
0.4 0.391
0.6 0.311
0.8 0.274
1.0 0.252
1.2 0.237

Table 2.5 - Values of C,, at equation 2.15.1 (Xu Bomeng, 1986).
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Temperature (C°) Measured stress (MPa) Stress over .175m
Date at | at rate at at at average | total
(1977) | 6:00 | 14:00 | (C°/h) [ 0.035m {0.085m | 0.125m | (MPa) | (kN/m)
Feb.14 | -155 | -95 4.7 0.45 0.46 0.14 0.30 52.7
Feb. 15 | -16.5 | -9.0 59 0.45 0.47 0.16 0.28 49.5
Feb. 16 | -15.0 | -85 6.2 0.36 0.39 0.14 0.25 43.1
Feb. 17 | -16.5 | -9.5 6.8 0.0 0.53 0.21 0.32 56.3

Table 2.6 - Daily ice temperature and pressure at Taisetsu dam reservoir.



Ice Pressure

Name of

Thickness )

Mean

Max Total
reservoir Date ofice(m) | (MPa) (MPa) (kN/m)
Sifengshan | Nov. 30, 1963 | 0.36 0.177 | 0245
Taipingchi | Feb. 15, 1974 0.455 0.785 219.7
Yinhi | Mar. 17, 1978 - T 0206 | 2266
Yadian | Feb. 9, 1980 0138 | | 353
Yuejin | Nov. 28,1980 | 038 0.177 -
Shengli | Dec.2,1982 [ 036 [ 0196 | 0392 | 1413 |
Erado | Jan. 16, 1986 0319 | 2694 |

Table 2.7 - Major ice pressure events that have been recorded in China.
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Figure 2.1 - Rate of pressure increase versus rate of temperature rise (reproduced from

Bergdahi, 1978).

Filled circles: A-C original points,

D-I from shorter parts of the same two experiments.
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Curves A, B, and C are for air temperature rises of 2.78, 5.56, and 8.33°C/h respectively.

Solid lines are for no lateral restraint; and dotted lines are for complete lateral restraint

with v=0.36 (reproduced from Rose, 1947).
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Figure 2.6 - Deformation as a function of time for different stress levels.

unloaded after 3 or 4 hours (reproduced from Lindgren, 1968).
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Figure 2.10 - Stress versus time for nucleated columnar ice (82), at 6 = -20.6°C
(reproduced from Drouin and Michel, 1971). Up to 20 hours: strain rate = 5.2x107® sec™'.

After 20 hours: strain rate = 6.9x10%sec’!
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Figure 2.11 - Thermal thrust exerted by an ice sheet restrained in one direction (snow-
ice). Temperature varies as a sine function from -20°C to 0°C. Numbers in the figure
show the duration of temperature increase in hours. Calculations were done only for the

solid parts of the curves (reproduced from Drouin and Michel, 1971).
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Figure 2.12 - Relation between experimentally measured stress for biaxial condition and
calculated equivalent uniaxial condition, for 6 ~8.6°C/h (répradu::éd from Drouin and

Michel, 1971).

shear planes 0.4m

Figure 2.13 - Typical dry crack (reproduced from Metge, 1976).
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First night, first wet crack has refrozen.

Second night, second crack has formed and refrozen, but ice sheet has grown in

thickness and water reaches only 9/10 of new thickness.

Third night, process is repeated.

Figure 2.14 - Formation of a staircase crack (reproduced from Metge, 1976).

<

0.13m

Figure 2.15 - A wide crack before and after breaking (reproduced from Metge, 1976).
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from Bergdahl, 1978).
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(reproduced from Bomeng, 1986).
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Figure 2.19 - Definition of co-ordinate system for Equations 2.16.1 to 2.16.3 (reproduced
from Yamaoka et al., 1988)
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Figure 2.20 - Design schematic for Equation 2.18.1 (reproduced from Tunik, 1988).
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Figure 2.21 - Geometry and definition of the ice field (reproduced from Noponen and
Maattanen, 1994).




3 - THERMAL ANALYSIS

To estimate the ice pressure due to thermal expansion, temperature variations within
the ice cover need to be calculated. In this study, the thermal analysis required is

performed using the finite difference method. A computer program was developed which

The study of energy balance in ice and snow covers has been of interest for many years

and numerous methods and theoretical and empirical equations have been suggested. The

the present study. However other procedures and formulations are discussed for

comparison.

3.1 - Governing Differential Equation

Temperature changes in an ice cover depend on various factors such as climam!agicél
factors, ice thickness, ice properties, and snow cover. Also, local effects like currents, or
the presence of structures or a power house can influznce temperatures in the ice, Since
the stress analysis is three dimensional, it is also possible to use tie results from a threc-
dimensional thermal analysis. However, the thermal analysis is simplified considerably if it
can be assumed the temperature distribution is the same at every point in the ice sheet.

Observations show that in early winter when most thermal events happen the thickness of

throughout a reservoir (Comfort & Abdelnour, 1993; Co." fort et al., 1994). In late winter
when the ice sheet becomes thicker, snow accumulation and snow-ice formation might

cause changes in thickness and different temperature profiles in the ice sheet. Even in that
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case the temperature variation which causes the thermal pressure occurs in the upper
layers and does not vary very much with regard to horizontal position. Meteorological
data such as air temperature, wind speed, humidity, cloud cover, and solar radiation,
which are used as input for a thermal analysis usually do not vary significantly throughout
a lake or a reservoir and are typically measured at one station. From a practical point of
view there is often only one set of data available for analysis. Furthermore, it is probable
that in most cases the results of a one-dimensional analysis would not be much different
from those for a three-dimensional analysis. Considering all of these factors, it was
decided to do the thermal analysis only in the vertical direction and it is assumed that the
vertical temperature distribution is the same everywhere in the ice sheet. This assumption

is acceptable in most cases. In special situations, for example where a reservoir is very

Heat transfer occurs within an ice sheet because of temperature gfadients, and heat
flows from regions of high temperature to regions of low temperature. The governing
differential equation for the temperature distribution through the thickness of an ice cover
is the equation of thermal diffusion which is given by (Patankar, 1980)

» ,
pCpEzaz(k—)-l-s 7 (3.1.1)

where

z = vertical space coordinate

t = time coordinate

0 = temperature

k = thermal conductivity

p = density

Cp = specific heat

§ = energy source per unit volume and unit time at (z,t).

529 ,
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To properly formulate the boundary value problem, 3.1.2 must be supplemented by

appropriate boundary conditions.

3.2 - Components of Heat Exchange

In northern climates during the fall and winter, the heat accumulated by lakes and
reservoirs during the spring and summer is lost through the water surface. If the
temperature drops sufficiently, an ice cover forms. During this process the temperature
distribution in an ice cover is affected by the amount of heat exchange between the ice and
surrounding environment. Heat exchange is controlled by various mechanisms that
depend on climatological factors. The mechanisms that are considered in this study are:

1) Latent heat transfer due to evaporation and condensation; denoted as q.
2) Sensible heat transfer due to temperature difference between the air and the surface

(9.

3) Emitted long-wave radiation from the surface (qv).
4) Long-wave radiation from the atmosphere (q,).
5) Short-wave solar radiation (qj).
Snow or rain fall both have an effect on the temperature distribution in an ice cover.

Snow fall will form a snow layer on top of the ice cover. It acts as insulation and should

melting and freezing of snow that increases the thickness of ice from the top surface. If
the weather is warm, rain fall might form a layer of water on the top surface. This can
increase the temperature of the complete ice sheet to 0°C and prevent any further increase
or decrease of temperature in the ice cover. Considering all of these effects during the
period of analysis requires significant changes in the finite difference grid (like changing
the thickness of the top snow or ice layer). Since these effects were not considered, the
model developed here is valid only for periods during which there is no precipitation,

At the bottom surface, the temperature remains nominally at 0°C. However, the

thickness of the ice cover might increase due to ice growth at the bottom. This can be



68

analysis because the thickness is assumed constant in the finite element analysis.
3.2.1 - Latent and Sensible Heat Transfer

Latent heat transfer occurs due to evaporation and condensation on the ice surface,
air and the ice surface. The heat flux due to evaporation can be calculated with different

methods such as the water budget method, the energy budget method, the empirical

1974). Among these different methods, the mass transfer method is the most feasible

method for this study. In this method it is assumed that the evaporation is a function of

surface.
When the ice or water surface is in contact with air, the molecules with the highest

velocities will escape from the surface into the space above, The latent heat is the energy

form a layer of vapor above the surface. The number of molecules leaving the surface per
unit area and unit time will depend on the saturation vapor pressure in this layer, Usually
the air above this layer contains some water vapor at a certain partial pressure. If the
vapor pressure in the air is less than the saturation vapor pressure corresponding to the

surface temperature, a moisture deficit is produced that causes the number of molecules

surface. Therefore the amount of heat exchange due to evaporation is proportional to the
difference between the saturation vapor pressure in the layer near the surface and the
vapor pressure in the air above it.

Pailey et al.(1974) reviewed 63 evaporation formulas and fr cnd that only two have
been developed for sub-freezing air temperatures, and only one of these is applicable to
field conditions. This was the Russian winter equation presented by Rimsha and

Donchenko (1958). This was also used by Bergdahl for thermal analysis. The equation is



qe = f(uy e, —e,)

where

€, = the vapor pressure of the air 2m above the surface
€ = saturation vapor pressure at the ic* surface

f{uw) = wind function

The saturation vapor pressure is approximated by a linear function,
e, = a(l+bo) (-32°C<6<0°C)
where

a=610Pa
b=(32°C)'=0.031°C"!
8 = the ice surface temperature in C°

The wind function is given by:
f(u,)=pyLeall+bu, +c(®-0,))

where
a=242x10""  m/(s.Pa)
b=0.49 s/m

c=4.36x107 (C°)"

pw = the density of water = 1000 kg/m®

uw = the wind speed at 2m above the surface
8 = the surface temperature (C°)

0, = the air temperature

L. = the specific heat of sublimation (condensation and fusion) = 2.82x10° Ikg

After substituting the constants the equatior takes the form:
q. =[0.0682 +0.0334u,, +0.003(0 -6, (e, —¢,)
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(3.2.1)

(3.2.2

(3.23) -

(3.2.4)

The evaporation heat flux obtained from these equations is not very precise and the

error might exceed 25% (Cui, 1996). However, the heat flux due to evaporation is in the

range of -30 to 20 W/m?, which is considered small compared to other heat fluxes. The

heat components due to the long-wave and short-wave radiation can be in the range of

200-500 W/m?2.
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The energy ¢ »ducted away from the surface due to the temperature difference
between an ice cover .. ! the air above it, can be evaluated using the method proposed by
Bowen (1926). Bowen suggested that the heat exchange due to conduction by air is a
fixed ratio of that by evaporation. Thus
q, = Bq, (3.2.5)
The constant of proportionality, B, is known as Bowen’s ratio and is given by:

p=10.-6) (3.2.6)
e, —e :

where
¥ =61 Pa/C° is a constant.
The total convective heat transfer, e, due to latent and sensible heat transfer can be
written as:
qQc =q. +q; =f(uy)l(e, —e,)+v(6, -9)] (3.2.7)
Some authors have used a coefficient of heat transfer, H, for calculating the latent and
sensible heat transfer. For example Loset (1992) suggested:
q, = H(8, -0) (3.2.8)
g = 3= e (3.2.9)
Y T
where ¢ is the saturation vapor pressure for the ice surface temperature. It can be

calculated from the Clausius-Clapyron equation:

B L . o
e. =061 lexp[omzs 1 1 3.2.10
s P GiaTs T ) (3.2.10)

where

L, = latent heat transfer due to sublimation

&m = ratio of the molecular weights of water and dry air = 0.622
R = the universal gas constant = 8314 (m’.Pa/kg.mol K°)

The water vapor pressure of the air is given by:

- 061IR, exp[%(;‘i)] (3.2.11)

e —
27315 T,

a
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where R, is the relative humidity of the air in fraction of unity. The heat transfer
coefficient, H, can be calculated to fit the measured data.

%

3.2.2 - Long-wave Radiation

Radiation heat transfer is the transfer of heat by electromagnetic radiation. First the
thermal energy of a source is converted into energy of electromagnetic radiation waves.
These waves travel through the intervening space until they strike another object. When
electromagnetic waves fall on a body, part is absorbed by the body and the rest is
reflected back into space. The fraction of the energy that is absorbed is called the
absorptivity of the body. A body that absorbs all the radiant energy and reflects none is
called a black body. A black body also emits radiation depending on its temperature. The
heat transferred by radiation from a black body can be calculated from the Stefan-
Boltzman law,

q, =o,T! (3.2.12)
ir r .

o, = the Stefan-Boltzman constant = 5.6697x10®* W/(m?.°K*),
T = the absolute temperature.

The ratio of the emissive power of a surface to that of a black body is called the
emissivity, €, and is 1.0 for a black body. Kirchhoff’s law states that at a specified
temperature the emissivity and absorptivity of a given surface are the same. For a body
that is not a black body, the emitted heat is reduced by €, or

0, T, (3.2.13)

A substance that has an emissivity less than one is called a gray body. Ice and the
surrounding atmosphere could both be considered as gray bodies that emit and absorb
radiation. The wave-length of the emitted radiation is in the range of 5000 to 100000 nm
(Ashton, 1986). This is considered long-wave compared to the radiation that is received

directly from the sun, which has a wave-length below 4000 nm. The heat flux
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corresponding to emitted long-wave radiation from an ice surface can be calculated from
3.2.13.

q, =g.c T (3.2.14)
where ¢, is the emissivity of the surface which can be set to 0.97 for snow and ice
(Bergdahl, 1978), and q is the einitted radiation from the ice surface.

The gases and particles in the atmosphere including water vapor, ozone, carbon
dioxide, and oxygen also emit radiation which can be absorbed by an ice cover. The
intensity of long-wave radiation reaching the ice surface depends particularly on the
content of water vapor in the atmosphere. The problem in calculating the atmospheric
radiation is establishing a value for the emittance of the atmosphere and the effect of
clouds.

Paily et al. (1974) studied the different relations suggested for.the emissivity of the
sky. Some of these relations are a function of vapor pressure of the air and some depend
on air temperature only. Since the water content of the air is important in absorbing and
emitting long-wave radiation and can not be defined as a function of temperature only, the
formulas based on vapor pressure are preferable. The two main equations of this type are

due to Angstrom (1915) and Brunt ( 1932) and are given respectively by:

€, =a-bexp(~ce,) (3.2.15)
and
€, =a+byfe, . ©(3.2.16)

The coefficients a, b, and c are constants for which many different values are suggested
based on measurements at various locations. Tables 3.1 and 3.2 give the suggested values
for these coefficients. The coefficients are generally obtained by a regression analysis for a
specific location. A decision about the selection of the proper coefficients can be made on
the basis of the location and the coefficient of correlation. In this study, the Angstrom
equation(3.2.15), with the values suggested by him are used to calculate the emissivity of
the air. These values are:

a=0.806

b=10.236
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c=115x10"Pa’ .
The radiation emitted by the atmosphere can be expressed as:

q, =£,6,T (3.2.17)

where
T, = the absolute temperature of the atmosphere.

Usually the ambient temperature is used to calculate the heat emitted by the
atmosphere, and that is the approach used in the model. However, the temperature and
moisture may not be the same at different layers of atmosphere. Observations show that
the ratio between the long-wave radiation received on a horizontal plane and the value
calculated using the air temperature can be from about 0.6 under a clear sky to about 0.96
for completely overcast skies (Parmelee and Aubele, 1952). In order to include these
effects the heat flux can be adjusted using the equation suggested by Brunt (Parmelee and
Aubele, 1952), which is given by:

Qyay =91, (055+568 x107 fe,) (3.2.18)

The part of the long-wave radiation which is absorbed by an ice cover is:

qh = F'sq la (3219)

When clouds are present in the sky, the water and ice particles emit additional
radiation. Therefore, the atmospheric radiation is larger under the cloudy sky. Empirical
equations have been proposed to estimate the radiation under a cloudy sky. These involve
the product of the radiation for a clear sky by a function that depends on the cloud cover.
The relation suggested by Bergdahl and Ashton (1986) is:

q =Ch5(]+ac2) (3.2.20)

where

a=0.0027

C = the cloud cover in eighths.

Finally the net radiation flux will be equal to:

q,=9, -9, =&¢&,6,(1+aC*)T' ~e. o T* 3.2.21)
| h b s“ar a svr



3.2.3 - Short-wave Solar Radiation

Radiation from the sun that reaches the earth has wave lengths in the range 300 to
4000 nm. When passing through the atmosphere, part of the radiation is scattered and
diffused or absorbed by the gases and particles in the air. As a result of these processes,
the soiar radiation reaching the ground has two components, direct solar radiation and
diffuse sky radiation. The sum of these components is called insolation and can be
measured or calculated from empirical equations. According to Bergdahl (1978), each of
the components could be assumed constant and the flux through a horizontal surface from

a clear sky can be approximated as:

™
%)
b
=

qy =asina,+b (3.2.
where

a = direct solar radiation calculated on an area normal to the sun rays = 900 W/m?

b = diffused sky radiation = 100 W/m?

o, = the altitude of the sun.

The solar altitude, oy, is the angle in a vertical plane between the sun’s rays and the
horizontal. It can be approximated by:

o, =sin~' (sin¢sin + cosd cosd cosh, ) (3.2.22)
where

¢ = the latitude

& = the declination of the sun

h,

the local hour angle of the sun,
When the sun is below the horizon (sina,s<0), the short wave radiation is set to zero.

The declination of the sun, 8, is the angular distance of the sun, north or south of the
celestial equator. It has a seasonal variation but can be considered constant for a given

day. The declination can be expressed as:

_ , % 2T o . e

» = 2345 x —cos[—(172-D 3.2.23
0= 2345 x 135 cslgs ¢ ) (3.2.23)

where D is the day of the year (1 to 365).
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The local hour angle of the sun is the angle measured westward around earth’s axis
from the upper meridian of the observation point to the meridian of the sun (Paily et al.,
1974). When the sun is at the local meridian (local noon), h, is equal to zero. The true
solar time is measured in the same way but from the lower meridian of the observation
(Fig. 3.1). Due to irregular angular motion of the earth around the sun, there is a
difference between the true solar time and the mean solar time. This is called the equation
of time, ET, which varies between 0 and +£16 minutes over a year. The equation of time
=21 be calculated from the following relation given by Woolf (1968).
ET = -60(0.123570sin d’' - 0004289 cosd’ + 0.153809 sin 2d’ + 0.060783 cos 2d") (3.2.24)
where
__ 2=
365242

¥

(D-1 (in radians) (3.2.25)

When using standard time in a location it should be noted that the standard time is
equal to the mean solar time for the standard meridian of the time zone. The difference

between the standard time and mean solar time is called DOSM (Paily et al., 1974),

s
DOSM = (gsg) (distance between the meridian of the observation and the standard
meridian of the time zone, in degrees) (3.2.26)
In 3.2.26 the plus sign applies to the east longitude and the minus sign applies to the west
longitude.

In summary h, is related to standard time by:
h, (radians) = % [standard time (hours) - DOSM + ET # 12 hours] - (3.2.27)
The plus sign is for the mornings and minus sign is for the afternoons.

There are other empirical equations for calculating the insolation. For example Ashton
(1986) suggested the following formula:
q, =1I,sino, a,™ (3.2.28)

where
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Io sin o = intensity of solar radiation on a horizontal plane above the atmosphere
Io = the solar constant, which is the intensity of solar radiation at the mean annual distance
(a value of 1380 W/m? is suggested by Ashton)
4, = transmittance of the atmosphere
m, = optical air mass.

The atmospheric transmittance is a measure of the content of the absorbing and
scattering constituents in the atmosphere. The optical air mass is a measure of the length
of the path that rays have to penetrate before reaching the ground. It is approximately
(sin o)! which is the ratio of path length to the vertical height of the atmosphere.
McCulloch (1958) suggested the following relationship for the optncal air mass and the

transmittance of the atmosphere (Ashton, 1986).

a,™ =099-017m, (3.2.29)
According to Klein {1948), the optical air mass at sea level, my, can be calculated from the
solar altitude, o, (Ashton, 1986).

my = [sinot, +0.15(c, +3.885) 715! T (3.230)

Above sea level, my could be corrected by the ratio of the air pressures.

m, =m, -Pair_ @231
Po air .

The pressure ratio could be obtained from the altitude, Z (Ashton, 1986).

pair - (288 - 0.00652)5'256 (3232)
pl) air 288

When clouds are present in the sky, there is a further reduction in the amount of solar
radiation. Several empirical formulas have been suggested for including the effect of
clouds. In most of these relations the cloud cover is presented as the fraction of the sky
covered by clouds. Considerable deviation occurs among the predictions of the proposed
formulas. Problems in estimating the cloud cover also causes errors. Bergdahl (1978)

used the following equation to consider the effect of clouds.

9. =q,[035-+065(1- 5] (.23
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where
qa = radiation from a clear sky
C = cloud cover in eighths
Some of the incident light is reflected from the ice surface. The ratio between the
reflected radiation and the incident radiation for the ice can be calculated from the Fresnel

formula (Ashton, 1986):

< 12 . a2
= 0.5{[Slngci;, “B.)L +Vl§t§ﬂ(tll - BL)] ) (3.2.34)
[sin(a, +B;)]  [tan(a, +B)]
where
oy = n/2-0,

a, = altitude of the sun (see Fig. 3.2),

Angles o, and 3 are related to the refractive index, n,, through:

n, = o2l (3.2.35)
sinf;

The refractive index for ice is 1.33 (Bergdahl, 1978). Table (3.3), which is reproduced

from Ashton(1986) gives the values of r calculated with the Fresnel equation and the
values measured or suggested by other authors. The coefficient of reflection suggested by
Bergdahl for ice and snow-ice are given in Table 3.4,

The reflection coefficient for diffuse light is more uncertain since the angles of

incidence cover all directions and the intensive distribution is not known. Bergdahl sets

50% of the energy flux lies between 350-700 nm, 25% between 700-1200 nm, and 25%

between 1200-4000 nm. Finally the radiation flux entering the surface will be equal to:
q =[a(l-r;)sina, +0.98b][0.35+ 0.65(1 - %)] (3.2.36)

Short wave radiation is different from other heat fluxes since it is absorbed not only in
the upper surface of the ice but throughout the thickness of the ice cover. The radiation
flux at distance z from the upper surface can be obtained from the exponential law
(Bergdahl, 1978).

q,, =q, exp(—-Kz) (3.2.37)



where

qs = net flux of radiation entering the surface at z=0

K = coefficient of absorption

The absorption coefficient for ice is strongly wave-length dependent. The absorption
coefficients for different materials and different wave lengths are given in Table 3.5. The
high values of K for long wave-lengths suggest that for these wave-lengths, absorption

occurs in a thin surface layer.

3.3 - Finite Difference Formulation

The equation of thermal diffusion (3.1.1), can be solved by different methods. The
analytical solution for this equation is limited to certain boundary conditions. The
flexibility of numerical methods and their ability to deal with different boundary conditions
makes their use highly desirable. The finite difference method and finite element method
can both be used for solving this equation. The finite element method is most desirable for
two or three-dimensional analysis particularly when the thermal analysis is required for a

subsequent stress analysis, since the same mesh can be used for both. For one-dimensional

thermal analysis needs to be done only in the vertical direction, and the stress analysis
required is three dimensional, it was most convenient to solve the equation of diffusion
using the finite difference method.

In numerical analysis by the finite difference method, the continuous space is replaced
by a finite number of grid points and the time is divided into a finite number of time steps.
The distance between the grid points (in this case, Az), and the length of time step (At),
are used to approximate the derivatives in space and time. The temperature at the grid
points in space and time are the unknowns.

The equation of thermal diffusion (3.1.1), requires approximation for the second
derivative in space and the first derivative in time. A forward finite divided difference

formula can be used to approximate the first derivative in time.
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(B _zt+A)-8(zY) (3.3.1)
at At
The second derivative in space can be approximated using a generalized form of the
Crank-Nicolson implicit method:
%0 L o O(z—Azt)-20(z,t) +0(z+ Az, t
()} = (1- B2 220 = @0 0+ A2Y) |
oz* Az

E)('z—gﬁ,t+At)—2@(z,t+gt)+e(§+éz,t+m) (3.3.2)

1% 4
Az?

The Crank-Nicolson method is often used for thermal analysis and it is unconditionally
stable. In the usual Crank-Nicolson method, B. is equal to 0.5, but the value 0.6 is
suggested by Bergdahl in order to overcome the instabilities introduced by the boundary
conditions at the upper surface. When the equation 3.3.2 together with the boundary
conditions is written for all of the nodes the result is a set of n linear algebraic equations
with n unknowns. However, the system is tridiagonal and the extremely efficient solution
algorithms that are available for tridiagonal systems can be employed.

When the body is composed of different materials and heat fluxes other than
conduction are present, it is easier to use the control volume method for deriving the finite
difference equations. Each grid point is surrounded by a control volume (in this case a
control layer), for which the equation of heat balance can be written. The discretization of
the ice cover for the finite difference analysis is shown in Figure 3.3. Solid lines show the
grid points where the temperatures are calculated. Each grid point is surrounded by a
control layer. The boundaries of the control layers are shown with dashed lines.

Conservation of heat can be used to develop a heat balance for a control layer
surrounding an internal node, i. ,
(rate of heat accumulation) = (rate of heat in) - (rate of heat out) (3.3.3)
The rate of heat accumulation is

A9, Az, Az o
—(Cp._p._,—+Cp.p —L 334
At( pl’]pl—! 2 plpl 2 ) ( )
where

AB, =0(z,t+ At)-0(z1) (3.3.5)
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The total heat flux entering the layer is the sum of the conductive heat flux and the short-
wave radiation heat flux,
_ k

q —=1(8,_,-0)+q
90 =% O -0)+q

(3.3.6)

1
5 i=—
=

Py -

i=1
Bars denote the weighted time average:

8; = (1-B,)8(z;,1) + B.6(z, ,t + At) (3.3.7)
=(1-B.)q' | +B.q"Y . (3.3.8)
The heat flux exiting the layer is also the sum of conductive and short-wave radiation heat

fluxes.

kK, = =

ji*i = z(el = ei*] ) +§s i*L (339)

Substituting 3.3.4, 3.3.6, and 3.3.9 into 3.3.3 gives:

A6, Az, Az
2t (PP == +Cpp =) =T, -7 ,

0.)+3 -7 (3.3.10)
The short wave radiation flux entering and exiting the control layer is obtained from:

q , =7q,exp[-K (7 _;%’_")] (3.3.11)

3, =7,exp[-K,(z, +%)] (G3.12)

1
£ el

This formulation facilitates dealing with layers of different thickness and different material
properties, for example layers of snow and ice.

At thé upper interface the difference formulation can be written for the control layer
bounded by z; and z;+Az,/2.

A8, . Az
—;f(:p,[), :

=q, =T (3.3.13)

Approximating A8, s by A8, gives
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0}
=
L

AB, _ Az, 2k, = = . _ _
T*I'Cpxpiizi 'i(ei—ez)*qg"‘ |+'b+qs§qs‘*é (3’3‘14)

where the bars denote weighted time average and

9. =f(uy)(e, - e, +y(0, —6)] (3.3.15)
f(uy,)=pLga[l+bu, +c(0-6,)] (3.3.16)
q, =e,0,T' ' (3.3.17)
q, =¢,,0,T' (3.3.18)

Y
8

q, =[(1-r)asina, +0.98b][035+0.65(1 - —=)] (3.3.19)

q :qsexp(_g%) (3.3.20)

5=

2

As may be seen from the above equations, some of the heat fluxes are non-linear
functions of surface temperatures. There are two ways to deal with this problem. One is

to perform an iterative process and the other is to use a linear approximation of the above

from the temperature at the previous time step and q» is approximated with a linear

function as:

q, =8,0,(27315" +4 x 273150,) (3.3.23)
At the ice-water interface the boundary condition 8=0°C can be used. It is also

possible to estimate the ice cover growth from the heat conducted away from the

boundary. The following equation can be used to obtain the ice growth Az,

Pualr kg
Az 1o Kner o+

TN At Az,

O]

(3.3.24)

s N'—i qsh
2

where
N = number of grid points
L¢ = specific heat of fusion
The calculated ice growth, Azy, can be added to the coordinate of the last grid point,
Zy,, so that the thickness of the last layer would increase with time. This method over

estimates the ice growth, because a part of the heat conducted away from the last layer
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will decrease the temperature of the water below the ice cover. It might also cause
numerical problems in some cases. It should be noted that in the stress analysis the
thickness of the ice cover will remain constant. Therefore, in order to use the results of
this analysis, some assumptions and approximations should be made. For example it is
possible to study the ice growth in the thermal analysis and then use an average thickness

for the stress analysis.

3.4 - Computer Program

A computer program for the thermal analysis was developed based on the finite
difference formulation described in section 3.3. The features of the program are
summarized as follows:

e Different materials can be considered in the ice cover. The materials can be selected
from those for which the properties are defined in the program, or the properties can
be given in the input data. The materials defined in the program and their properties
are shown in Table 3.6.

e Grid points can be selected at different intervals.

¢ Changes in air temperature can be given in one of the following ways:

1) A sine function for which the initial temperature, period, and amplitude are

specified.

2) Cosine function with specified initial temperature, period, and amplitude.

3) A set of (t,0) pairs from which the temperature at the required time steps is

calculated by a linear interpolation.

e The following boundary condition types can be considered:

1) The boundary temperatures are prescribed at the top and bottom surfaces.

2) The surface temperature is prescribed and the bottom temperature is equal to 0°C.

3) A coefficient of heat transfer, H, is introduced where the heat flux at the upper

surface is given by:

q = H(®,-0ico) (3.4.1)
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At the bottom surface the temperature‘is{?qual to 0°C.

4) A general case where the heat fluxes are éaléiﬂated by the program from the given
data including air temperature, relative humidity, cloudiness of the sky, wind
speed, location of the site, and date and hour when the problem starts. Short-wave
solar radiation can be excluded simply by putting the date equal to zero. At the
bottom surface the temperatuyz is equal to 0°C.

5) General case as in 4, but the wind speed, or short-wave solar radiation flux, or
both are read from prepared input files. -

e Ice growth can be calculated and added to the thickness of the Jast layer.

3.5 -Verification of the Thermal Model

In this section the results of the present program are compared to analytical and
numerical solutions from other authors. A wide variety of problems are considered which

cover the different aspects of the thermal analysis. The purpose of these numerical

experiments was to verify the thermal model.
3.5.1 - Sinusoidally Varying Surface Temperature

If the material properties of the ice cover are assumed to be constant, and there are no
heat sources, the governing differential equation (3.1.1) becomes: '

0 k 5 ,
AL (3.5.1)

& pCp oz’

are;

0(0.t) =0, +0,, sin2rt (3.5.2)
o +Oun SN ,

8(h,t)=0°C (3.5.3)

where
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8.+ = the average temperature during cyclic temperature variations at the surface of the ice

sheet.

B.m = the amplitude of the cycle
Te = period

h = ice thickness

The solution for the steady state problem satisfying the boundary conditions (3.5.2 and

3.5.3)

is given by Drouin and Michel (1971) as

8(z,1)=6,,(1 ——E) +9mB;.\/E;_zz + th sin(?'r—m - y)
8

where

1
o~ Coshah sin? Ah — sinhAhcos? Ah
coshAhsin® Ah + sinh Ahcos? Ah

B, =

1+

7pCp
A= /
kT

E;, =(e™ +Ce")cosAz + C, coshAzsinAz

F,, =(e™ - C,e")sin Az+C, sinhAzcosAz

c - e”** (cosh Ahsin® Ah - sinh Ah cos® Ah)
! cosh Ahsin? Ah + sinh Ahcos? Ah

C. = ~2e™™ sin AhcosAh
2 cosh Ahsin? Ah + sinhAhcos? Ah

v=tan”l(22)

’z

(3.5.4)

(3.5.:

L)
e

L (3.5.7)

(3.5.8)
(3i5i§)
(3.5.10)

(3.5.11)

In Fig. 3.4 the temperature distribution obtained from (3.5.4) is compared to the

temperature distribution from the present program. The ice cover has the material

properties of the columnar ice given in Table 3.6. Other data are as follows:

h=0.49m
0.m = 30°C



6,,=-30°C
Ty = 24 hours
time of comparison = 48 hours
At=200s
Az=0.02m
In Table 3.7, the temperature at z = 0.2 m obtained from the present program for
different time steps, At, and different layer thickness, Az, are compared to the analytical

solution. It can be seen that even for large time steps and small number of layers, the error

is small (=2%).
3.5.2 - CoefTicient of Heat Transfer

In some cases it might be possible to define a coefficient of heat transfer using
previous field data. If measured data are available this coefficient can be obtained by trial
and error so that it gives the correct surface temperature when only the air temperature
data is used in the analysis. It accounts for the boundary layer between the ice cover and
the air and approximates the thermal fluxes due to convection and long-wave radiation.

q, = H®, -6) (3.5.12)

In equation 3.5.12 H is the coefficient of heat transfer. When this coefficient is defined,

the only data needed in the calculations would be the air temperature. This approach is

based on the assumptions that:

1. The heat flux due to long-wave radiation is a linear function of the difference between
the air and the ice surface temperature. Acording to Cue (1996) this assumption is
valid for temperature differences up to about 14°C.

The convective heat flux is a linear function of the difference between the air and the

¥

ice surface temperature. This assumption is valid for temperature differences up to

about 7°C (Cue, 1996).
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3. The evaporation heat component is negligible, The heat flux due to evaporation is

usually less than 10% of the radiation heat fluxes and can be considered when
calibrating the coefficient.

Figure 3.5 shows the comparison between the results of this program and those
obtained numerically by Bergdahl (1978) for a problem in which the coefficient of heat
transfer is used. The coefficient of heat transfer used is 33.3 W/m®. The air temperature
varies as a half a cosine wave from -30°C to 0°C in five hours and the ice thickness is

0.4m. The figure shows the temperature profiles obtained after three and five hours.
3.5.3 - Complete Case without Solar Radiation

In Fig. 3.6 the temperature profiles predicted by Bergdahl (1978) and by the presén'tr
program are compared for a complete case including latent and sensible heat transfer and
long wave radiation without short-wave solar radiation, The initial air temperature is
-30°C and rises as a single cosine half wave to 0°C in five hours. The ice thickness is
0.4m. The wind speed is constant (u,=2 m/s), the sky is clear (C=0), and the vapor
pressure is 80% of the saturation vapor pressure of the air,

The overall agreement is good and the slight difference which is not more than 0.4°C is

probably due to minor differences in how the heat fluxes are calculated.
3.5.4 - Short-wave Solar radiation

Short-wave solar radiation differs from other heat fluxes in that it can be absorbed
through the thickness of the ice cover. In order to check the accuracy of the numerical

model in dealing with this issue, a case is studicd where the heat flux at the upper surface

solution.
Considering the absorbed short-wave radiation as a heat source, the governing

differential equation for this case is



The boundary conditions are:

‘%ED at z=h
oz

86=0 at z=0

The initial condition is:
6 =-0,( {:) at t=0

The analytical solution for this problem is (Hrudey, 1992):

- ] 20, ) )
0(z,t) = ¥ 1-exp(-a Al t)] - ——L—exp(—ay AL t)} cosA, z
2]{‘3“‘“’{ p(=agAyt)] (l“h); p(—a4Ayt)}
where
‘7 pCp
, (2=

"7 2h

z[He“‘h( ) |
= ,,fls, K -} +foroddn and -forevenn

In non-dimensional form the solution becomes:

{5 [1-exp(~A%1)]- N fexp( A%1)}cosA L

n

<

pu

W

= n -

(3.5.13)
(3.5.14)

(3.5.15)

(3:5:16)

(3.5.17)

(3.5.18)

(3519

(3.5.20)
(3.5.21)
(3.5.22)

(3.5.23)

(3.5.24)



The solution depends on two parameters in addition to the time constant 1. These are

., = 4sh ,
=i 3.5.27
Y ok ( )

k = Kh (3.5.28)
In Fig. 3.7 the non-dimensional solution from the present program is compared to the

results of the analytical solution. The short-wave radiation is taken constant and the

_and Conclusion

3.6- Summary

In this chapter the issues regarding the thermal analysis were described. The
governing differential equation was introduced, different mechanisms of heat transfer and
their formulations were explained, the finite difference formulation was presented, some
features of the computer program were described and finally the results obtained from the

thermal analysis program were compared to the available analytical and other numerical

mechanisms of heat transfer including conduction, convection, long and short-wave
radiation, and heat transferred using a coefficient of heat transfer. The agreement was
good in all cases. These verifications show that the present program can be used to
estimate the temperatures in an ice cover in various meteorological conditions. Further

comparisons with field measurements are performed in Chapter 5.
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Investigator a b c ~ Remarks

Angstrom (Sweden) | 0.806 | 0.236 | 0.115 | -
Kimball (Virginia)_ 0.800 [0.326 |0.154 -

Eckel (Austria) “ 0710 0240 [0.163
Anderson (Oklahoma) | 1.107 | 0.405 | 0.022 |
Linke's ‘Meteorol [ 0.790 | 0.:74 | 0.041
Taschenbuch s 1 -
Bolz-Falchenberg 0.820 | 0.250 |0.218 | e,and T, measured at 16m above
(Baltic Sea Coast) ground at 150m from seashore,
- _ ___| valid for 1.3<¢,<27 mb. _
Raman (India) 0.790 |0.273 |0.112
'TVA (Paradise data) | 0.999 | 0.605 | 0.124 | Monthly average values based on
daily average data; includes the effect
of clouds.

Table 3.1 - Coefficients a, b, and ¢ in Angstrom formula &, =a-bexp(-ce,)

(reproduced from Pailey et al. , 1974),
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" Investigator | e d " remarks
B V B _ (' mb)'@-s | _ B _ ) B
Brunt (Germany) 0.52 0.065
AﬁgSIFGrT’; Eéalifcmia)i 1050 | 0032 Correlation coefficient = 0.3
| Angstrom (Algeria) ) 0.48 | 0.058 | Correlation coefficient = 0.73
Askléf(é’\i;éden) ' ) T 0.43 0.082 | Correlation coefficient = 0.83 |
Dines (Ehgiaﬁd) [ 053 | 0065 Correlation coefficient = 0.97 |
‘Boutaric (France) [ 060 0.042 - - B )

PéﬁmanfEﬁgland) 77

0.56

0.092

"Kimball (Washmgton D.C )

044

0.061

Carrelatmn coeff cient = D 20

Eckel(Austna)

0.47

0.063

Cc:rrelalicn t:c:eﬁ‘xcient =0.89

Kuzmin (Russxa)

" 0.62

0.050

“Anderson (C)klahama)

70.68

0.036

Correlation coefficient = 0,92

Raman (India)

0.62

0.029

Cm’relatmn cuefﬁment D 68

Swinbank (Ausl’iiraﬁia’ni égaég) [ 064 0.037 T i ]
“Fitzpatrick and Stern (Australia) | 0.352 | 0.049 | T

Goss and Brooks (Cahfamla)

0.66

0.039

Koberg (Oklahoma)

T 0.735

0.0263

Value of ¢ is maximum value given
as a function of cloud cover and air
temperalure.

Monteith (England)

0.53

0.065

Table 3.2 - Coefficients c and d in Brunt formula ¢,

Anderson, 1954),

c+dyfe, (Pailey et al. 1974, and

Solar altitude (degrees) 90

70

30

25 |20 |15

Fresnel (caiculatecl) 0.02

0.02 | 0.0

0.06

009 |0.13 |0.21

Angstrom -
(measurements)

To.08

0.10 [ 0.15 | 0.28

Devik (suggested) 7003 0.03 [ 0.05 [0.08 | 0.10 | 0.15 [ 0.25 | 0.45 | 0.70

Table 3.3 - Coefficient of reflection from ice surface.



91

Wave-length bands (nm) Snow Snow-ice
350-700 0.9 0.05
700-1200 0.7 | 005

1200-4000 06 | 005

Table 3.4 - Coefficient of reflection for snow and snow-ice surface (reproduced from

Bergdahl, 1978).

Wave length bands (nm) Snow Snow-ice | Columnar ice
350-700 120 30 T 02
700-1200 200 50 T2

1200-4000 10000 10000 | 5000

Table 3.5 - Coeflicient of absorption, K (1/m), for different wave-lengths.

Material Columnar ice Snow-ice Snow
Density, p 916.8 890.0 250.0
(kg/m’) _ _
Conductivity, k 2.24 2.14 03
(W/m.C°%) ) .
Specific heat, Cp 2120 2120 | 2120
(J/kg.C*) R
Coefficient of Equation 3.2.34 Table 3.4 Table 3.4
reflection, r | -
Coefficient of Table 3.5 Table3.5 |  Table3.5
absorption, K

Table 3.6 - Material properties defined in the thermal program.



At=200s

Az = 0.02 m

Az
(m)

Solution

)
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Figure 3.1 - Time diagram for solar radiation (reproduced from Paily et al.; 197'4); a

Figure 3.2 - Definition of angles in Equation 3.2.34,
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Figure 3.3 - Discretization of the ice cover for finite difference analysis.
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cover with short-wave solar radiation only.



97

4 - FINITE ELEMENT FORMULATION

If the temperature distribution in an ice cover is known as a function of time,
calculations can then be done to estimate the thermal stress distribution . In this study, a
computer program was developed which uses the finite element method. In this chapter
the overall formulation of the finite element procedure and the different features of the
computer program are described. The finite elemeni used is introduced first, and then the
constitutive law and some of the important features of the computer program are

explained. This is followed by a description of the solution algorithm and a flowchart of

the model. In these tests the results of the finite element program are compared to

available analytical and numerical solutions.

4.1 - Finite Element Used

The finite element program uses a quadratic degenerate shell element. A shell element
is used for two reasons. The membrane behavior must be present since that is the
dominant mechanism. Bending is included because the noniinear material behavior

couples the membrane and bending effects. The element is referred to as a degenerate

that normals to the mid-surface remain practically straight after deformation. Secondly,
the stress component normal to mid-surface is constrained to be zero in the constitutive
equations.

In a degenerate shell element the nodes are located on the mid-surface and the element
geometry is defined by the global coordinates of pairs of points on the top and bottom

surface. The mid-surface nodes are midway between these points so that
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x4 = 0.5(x +x2). @. 1.0

Five degrees of freedom are defined at each node corresponding to the three
displacements and the two rotations of the normal at node. The definition of independent
rotational and displacement degrees of freedom permits transverse shear deformation to be
taken into account, since the rotations are not constrained to be equal to the slope of the
mid-surface. The finite element formulation of this element is described in detail in Hinton
& Owen (1984) and only the main points are explained here.

In the formulation of the degenerate shell element four different coordinate systems
are used:

1. Global coordinate set - x;

This is a Cartesian coordinate system that is used to define the geometry of the ice
cover. Nodal coordinates and displacements as well as the global stiffness matrix and
applied force vector are referred to this system. In this study the x and y axes are taken in
the plane of the ice cover and the z axes is perpendicular to the ice cover and pointing
upwards.

2. Nodal coordinate set {v};

A nodal coordinate system is defined at each nodal point, with the origin at the mid-
surface. The vector {v}sx extends from the bottom to the top surface at node k so that
(v} = (X} = {x} (4.1.2)
where
{x} =[xy zl.

The vector {v} is perpendicular to {v}s and parallel to the global xz plane so that

Ve =Vy o, V=00 , v =-vi. (4.1.3)
The vector {v}s is perpendicular to the plane defined by {v}x and {v}sx . The vector
{v}sx defines the direction of the ‘normal’ at node k, which is not necessarily
perpendicular to the mid -surface at k. The rotations B, and B are defined as the
rotations of the normal at node k, about axes in the directions of {v}x and {v};

respectively.
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3. Curvilinear coordinate system
coordinates in the middle surface of the element and £ is a linear coordinate in the
thickness direction. The coordinates are normalized so that €, n, and { vary between -1
and 1 on the respective faces of the element.
4. Local coordinate system

and strains are calculated. The direction x; is taken perpendicular to the surface of
constant . This direction is obtained from the cross product of vectors in the £ and n
directions. The direction of x1 is perpendicular to x} and parallel to global xz plane. The
direction of x; is defined by the cross product of vectors in the x!and x/directions.
Since the ice covers being modeled are flat, the vector {v}s; will be perpendicular to the
ice surface and the local xjand x; axes will coincide with the global x and y axes if the
top and bottom nodal coordinates satisfy
Xtop = Xbot AN Yiop = Ybor. - (4.1.49)
The five significant strain components for this element are:
(&,
£,y
{e} =97
YKS‘E
Y52 )

Since the stress in the direction perpendicular to the mid-surface (o, ) is assumed to
be negligible, the five stress components considered in the local system are:

r 3

y

xv ([

Xz

1

In the thermal loading analysis, the temperature distribution through the thickness of

the ice cover is non-uniform. In the present finite element code this is accommodated in a
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simple and effective manner using a layered approach. It is assumed that the ice cover is
built up from a series of layers. Each layer can have a different temperature and different
material properties and the material properties can be a function of that layer's
temperature. The stress components are computed at the stress points located on the mid-
surface of the layers and the stresses are assumed to be constant over the thickness of each
layer. Therefore, the actual stress distribution is modeled by a piecewise constant
approximation (Fig. 4.1).

The numerical integration of isoparametric shell elements has received considerable
attention in the literature, since it has an important effect on element behavior. For the
integration in the £ and 7 directions, full or exact integration of an unmapped element can
be accomplished using a 3x3 Gaussian integration formula. However it is well known that
if degenerate shell elements are fully integrated, they exhibit locking. Therefore, the
beneficial effects of reduced (2x2) or selective (3x2) integration techniques have been
established in a number of investigation (for example, Zienkiewicz, 1977). For the lower
order elements, reduced integration is essential for thin shell applications; for higher order
elements, significant improvements in accuracy are attained with reduced integration. In
the reduced integration technique all of the components of the strain energy are integrated
using the four sampling points. In the selective reduced integration technique, the energies

corresponding to membrane strains (€., €, , and Y xy)» are integrated using the normal
rule (3x3), and the energies corresponding to transverse shear strains (y,, and Yy ), arc

computed using the reduced integration rule. The process involves the following steps.

First the shear terms in the strain-displacement matrix are computed at the four Gauss

points, where other terms are calculated. However, these techniques may occasionally
lead to spurious zero energy modes appearing in the global equations. Usually the global
stiffness matrix becomes singular if there is a small number of elements and the number of

sampling points is small compared to the number of unrestrained degrees of freedom.
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4.2 - Constitutive Law

The constitutive laws adopted for ice are most easily understood by considering their
associated one dimensional rheological models as shown in Fig. 4.2, The strain under
constant stress for this model is shown in Fig. 4.3. The curve shown in this figure is
similar to the experimental curves obtained by Lindgren (Fig. 2.6 ) for the deformation of
ice under constant load. The Maxwell unit consists of a linear spring, which represents the
creep which models the non-recoverable viscous deformation. The Kelvin-Voigt unit
consists of a linear spring in parallel with & non-linear dashpot. This unit models the
delayed elastic deformation. The use of the Kelvin-Voigt unit is optional in the program.

In a uniaxial model consisting of a Maxwell unit and a Kelvin-Voigt unit subjected to
temperature changes, the total strain consists of four parts
E=E,+E,+Ey +E “4.2.1)
where
€ = total strain
€. = instantaneous elastic strain

€, = permanent viscous strain

£p = thermal strain.
The elastic strain is related to the applied stress, o, by the stiffness E, of the elastic
element in the Maxwell unit. This gives |

6, == (4.2.2)

The viscous strain rate can be expressed as a function of the applied stress. This may be
expressed as
€, =1n0" v (4.2.3)

where n is a constant and 7, is the fluidity parameter. The fluidity parameter is related to

the viscosity (1) by
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1 .
n=—. (4.2.4)
My
The delayed elastic strain can be related to the stress, o', in the elastic element of the
Kelvin-Voigt unit by
cl
£, = B (4.2.5)

where E; is the stiffness of the spring in Kelvin-Voigt unit. The dashpot in this unit is also
based on power law creep which gives the strain rate as
€y =Mm,0"" (4.2.6)
where m is a constant and n; is the fluidity parameter of the dashpot.

The applied stress, o, is the sum of the stresses ’and ", and can be written in terms -
of the delayed elastic strain and strain rate. This gives
c=c'+¢c"

1
=E.e, +(—-¢,). 4.2.7)

-

The thermal strain is that due to température change and is given by

gy = 0AD | (4.2.8)
where

a = coefficient of thermal expansion

AB = temperature changes.

In the finite element formulation, equations 4 2.2 to 4.2.8 are required in a three
dimensional form. The three dimensional stress-strain relationship of the elastic element is
straight forward and is given by
{o} =D, ){e.} (4.2.9)
Assuming orthotropic material symmetry and taking o;=0 for the finite element (4.2.9)

takes the form;
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D33 D D <.Y]Z s (42,1@)

“12 721 12721 12 %121 =11 =12
D3 =G, Dy =K,Gyy Dss = K;G 3
K, K; = shear correction factor.
Assuming that the normal to the mid-surface remains straight, makes the transverse shear
strain constant through the thickness. The correction shear factor is introduced to
approximate on an average basis, the transverse shear strain energy. For a homogenous

cross section, where the shear strain distribution is a parabolic function of z, the shear

. . 5
correction factor is equal to 5

The three dimensional formulation of the constitutive law for the viscous element is
based on the equations suggested by Sanderson (1984). First, an effective stress, T, is
defined which is used to derive the generalized power law stress-strain rate relationship,
For an isotropic material the effective stress is the second invariant of the stress deviator
tensor and can be written as
2t? = (0, ~03)* +(6, —033)* +(033 ~0y,)? +6(c3, + 02, +03). (4.2.11)
For an anisotropic material, considering ¢3;=0, this may be generalized to

2 2 2 9. . S N 2
T° =20, +2y,0; +28,,0,,0,; +3;,0); +8,,0;; +2;50;. - (42.12)

(=]

where a;) to ass are constants. In the matrix form it can be written as

1? = (o)[A]{o} | ' (4.2.13)

where

(3)2(511 G, Oz Oj; st)
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For isotropic materials:
a51=a»n=1.0 ' ap=-0.5 R and A3 = a4y = ass = 3.0 |
Then a scalar potential function, @, is defined which allows the calculation of viscous

strain rate from the effective stress. This function is given by
- , - 7
@=NT , , (4.2.14)

where n and n have the same definition as in the one dimensional model. Finally the
viscous strain rate may be expressed as
oD ot

€y = o =M1 — (4.2.15)
1 b b0

i

From (4.2.13) it follows that:
Al{c} (4.2.16)

so the matrix form of (4.2.15) becomes:

{€.}=n""[A){s}). (4.2.17)
The three dimensional formulation of the delayed elastic element is based on the

constitutive equations suggested by Khoo (1989). The stress-strain relationship for the

elastic component is similar to that of an elastic material. This is given by

fe) = E%[P]{cs; } (4.2.18)
where

E3 = modulus of elasticity for the elastic component of the delayed elastic element

{o}} = stress in the elastic component

and
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o oo

21+v)
K, |

The stress in the viscous component of the delayed elastic element is equal to:

{oi} = {o}-{o1} (4.2.19)
The delayed elastic strain rate is obtained from {o}in the form of o
CHERRCIA I (4.2.20)

where

= if- . 77';- H = H § =
eﬂ’ *\/gdll +Gd*z+2‘jdlﬁ*23d13+2‘jdﬂ; (4,2,21)

As explained by Khoo (1989), the parameter o, takes into account the effect of
biaxial stress on the strain rate. The influence of each component of " on the rate is
related by the matrix [P]. In the elastic part of the delayed elastic element, the delayed
elastic strain g4 is also related to each component of ¢’ by the matrix [P]. According tc:r
Khoo

“The use of [P] in both elastic and viscous parts makes the delayed elastic term

coordinate invariant.”

4.3 - Some Features of the Computer Program
4.3.1 - Elastic Foundation

Natural ice covers are normally floating on the water. When there is no deformation
the weight of the ice cover is in equilibrium with the buoyancy force, and because of the
relationship between the specific weights of ice and water, 90% of the ice is below the

water. Bending of the ice cover, causes downward and upward displacements at different
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positions. The water resists such displacement. Since the hydrostatic pressure increases
linearly with depth from the free surface, the force at each point is proportional to the
displacement at that point. This effect can be modeled by a uniform linear elastic
foundation. The stiffness of the unit area of the elastic foundation is equal to the unit
weight of water. The force over a differential element of area is then equal to:
dF,, = S, udA 4.3.1)
where
S« = stiffness of the elastic foundation
u = vertical displacement of the small surface.

In the finite element formulation, the displacement of a point within an element can be

expressed in terms of the displacements of the element nodes.
dF,, =S, ZN,q;dA (4.3.2)
=1

where

N ;= nodal shape function for vertical displacements

nn = number of nodes

q: = nodal displacements

In the matrix form it can be written as:

dF,, =S, (N,){q}dA (4.3.3)
The total force acting on an element can be obtained by integration over the element
surface.

Fu el = ISW<N§>{q}dA (434)

Ael
4.3.2 - Boundary Elements

In this study, boundary elements are used to model the effect of inclined shore lines
and non-rigid boundaries. These elements are linear springs that are attached to the nodal
points and can be oriented in any direction in space. The orientation and stiffness of these

elements is given as a part of input data.
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4.3.3 - Tensile Cracking

According to Metge’s observations (section 2.11), dry cracks are the most common

cracks in ice covers. These are tensile cracks which form during cooling periods when the

not penetrate through the entire thickness and hence do not fill with water. The
contraction happens only in the upper part of the sheet and it is restrained by the rest.

(Fig 2.13). The cracks observed by Metge had an average crack width of about 0.5 em

analysis, because they affect the stresses during and after cooling periods.

In this study a smeared crack approach is used to model the dry cracks. In this
approach the cracked ice is assumed to remain a continuum and the effect of the cracks is
smeared out in a continuous fashion. The initiation of cracking is governed by a maximum
tensile stress criterion (tension cut-off). At each iteration and at each Gauss point, the
maximum principal stress in the horizontal plane is compared to the specified tensile
strength (f;). Cracks are assumed to form only in planes perpendicular to the ice cover. If
the maximum stress exceeds the tensile strength, a crack forms in a plane perpendicular to
the direction of the maximum principal stress. After cracking has occurred, the elasticity
modulus and the numerical value of the stress from the previous step are reduced to zero
in the direction perpendicular to the cracked plane. The Poisson’s ratio is also set to zero.
The ice becomes orthotropic after the first crack occurs with one of the material axes
being oriented along the direction of cracking. Denoting the two principal directions in
the xy plane with the subscripts 1 and 2, the elasticity matrix referred to coordinates in
these direction is :

[0 0 0 0
E 0 o
[D]cmckéd = D GE 70 (435)
0 0 G

0

0 0

o © o o

o ‘I',ﬂ o oo o
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where Gy and Gyj are the reduced shear moduli. The value for the reduced shear

also set to zero in the present model. If the stress in the 2 direction reaches f;, a second
crack perpendicular to the first is assumed to form and all the terms in the elasticity
matrix and all the stresses are set to zero. At each iteration, the strain perpendicular to the
crack is calculated and if this strain Sccames negative, it is assumed that the corresponding
crack is closed so that it can carry tension again. Cracking can occur independently at

different layers so that cracks need not penetrate through the whole thickness.

4.3.4 - Loading Due to Water Level Changes

When an ice cover is bonded to the shore or to a hydraulic structures, water level

changes might decrease or increase the buoyancy force of water on the ice cover. This

changes is given as input to the program. At the start of the analysis the weight of the
water replacing the ice cover is calculated and divided by the thickness. This gives-the
force per unit area per unit change in water level. At each increment this force is

multiplied by the water level changes and applied to the ice sheet.

4.4 - Overall Formulation

In the finite element formulation the total time is divided into a number of steps or
time increments. The temperature of the ice cover and the water level might vary during
each step causing additional thermal and mechanical loading. Therefore in each time step
there is a nonlinear problem to deal with. There are different ways of dealing with this
situation. The procedure used here, is based on the implicit method discussed by
Zienkiewicz (1977).

At the beginning of each time increment, all the displacements, stresses, and forces are

known. The viscous and delayed elastic strain rate at each step are calculated from an
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intermediate value of the stress within that time step. Since the stresses at the end of the
step are not known, an iterative procedure is required to obtain an estimate for these
stresses. In the following description of this procedure, the subscript, I, denotes the time
increment number and the superscript, J, denotes the iteration number.

At the end of each time step there are two conditions that have to be satisﬁéd:
1) The equilibrium condition:
The principal of virtual work can be used to obtain the equilibrium equations. The virtual
work equation can be written as:

[o8e,dv + [ F,Bu,dA = J-Tﬁuds+_"f , | (4.4.1)
v A v

In the finite element formulation, the virtual strains and displacements at each point within

an element can be obtained from the nodal displacements.

fou} = [N]t3a) | a2
{8e} =[B]{5a} - (a43)
where '

{q} = nodal displacements
[N] = shape function matrix
[B] = strain-displacement matrix.

In matrix form the equation of virtual work becomes :
j (8q)[B]"{c}dv + _]’ S, (6){N, }(N,){q}dA = j 8q)[N]"{T}ds+ J' (3q)[N {?}dv |
v A

(4.4.4)
Since (4.4.4) must be satisfied for an arbitrary (8q) (subject to (8q) =(0) on S.), it
follows that :

JIBI (0}, S NN o, - (P, = ()  (@45)

where

_[[N ds+f Fldv

Equation (4.4.5) is the equilibrium equation at the end of the time step.
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2) Considering that the elastic properties may change during the time step, the
incremental form of the elastic constitutive equation can be written as
{ac}=[D,]({ae} - {ae.} - {Ac,}) +[AD, {e.} - (4.4.6)

or

{j}iﬂ ’—{6}1 _[DILEB]({E!}H _{q}l)*[DIL{AEc}H& +[D!]1 {‘QEB}_[AD ] {E } - {0

4.4.7)
where
[AD;] = Changes in elasticity matrix due to temperature changes
{Ae.} = {Ae.} + {Agq}
(0A8)]
oA8
0
[ 0 )

The viscous and delayed eclastic strain increment are calculated from intermediate values :
for the stresses that are obtained by a linear interpolation between the stresses at the start »
and end of the time step. This is done both for the total stress and for the stress, {cj} ,in
the viscous part of the delayed elasticity element. This gives _

{o}..,, =(=B){o}, +B,{s},, (4.4.8)
(0"}, =0-BIc} +Bafoh - (0}, (4.9)

where B, and B, are constants with values between 0 and 1. As a matter of convenience,

the values of B, and B, were taken to be equal. This value is denoted by B in the
following.

The conditions (4.4.5) and (4.4.7) form a set of non-linear equations with {o}.; and
{q}1+1 as the unknowns. An iterative procedure can be used to solve this system of
equations. The solution scheme starts with an initial estiiﬂate for {c}i.1 and {q}i.1. The
corresponding values at the start of the time step are used so that

(o} ={e},  and  f{a},={a}.
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Equation (4.4.7) can be written as:

()7 = {o). ~ 1o}, _[DI]'[B]({Q}L! ~{a},)+[D], {AEE}LE +[D,],{aeo } - [AD, ]fe. },

1+1

= {0} (4.4.10)

where {¢} can be considered a residual that becomes zero when (44,7) is satisfied. A

terms of changes in the stress and strain during the current increment.

{d’}m x {d’}m {5‘3}1“ -[p, ] [B ]{Sq}lﬂ [D ] [R]I*BB{ES}IH ={0} (@4.11)

1+]
where
{6c},,, = the change in stress in the J" iteration
{Sq}:*l = the change in the nodal displacements in the J" iteration
A\ A, o{Ae,
[R]:ﬂl { } + { }HE
{G}l +f a{ }I*B

Using the equation 4.2.17 for the viscous strain rate, an estimate of the viscous strain

increment can be wnitten as:
{Asv}up = At{é"’}iﬂ‘j = Ayt {Al{o }1+;3 (4.4.12)

where At is the time step. It follows that

a{Aev}Ln ‘e 1 /N [A1T ., _n-If '
— = Aty (n = D1 [A){o},, (o), [A] + i [AD (4.4.13)
6{0}“” 5
The delayed elastic strain rate can be written as:
"‘{Sd} N2 (5 1p)™ [PJ{o g —{o'}) (4.4.14)
where
{c'} = E,[P] " {e.} | (4.4.15)

Substituting equation (4.4.15) into (4.4.14) gives:

%{ed} ={c,}-cofes) (4.4.16)



where
{C } N2 (ccﬁl*D)m-‘[P]{c}ha
=n,E.(cf 1+p ) ‘
Since Oery.p and O,,p are taken to be constant within the time step, {c;} and co will also

be constants.
The differential equation (4.4.16) was solved by Khoo (1989) and the result is the

following:
{Asd}l = (El_[P]{c}pp - {ed} )( —exp(—-n,E; (0% 1+p )m—‘At)) N (4.4.17) S

The rate of change of the delayed elastic strain increment is approximated by:

[a&“} —u(1 exp(—c,At)) | (4.4.18)

%I-o-l
After some manipulation (4.4.11) becomes:

((0+[.LIRT. )5}, = [P (B, (3, @)

Solving for the stress increment at iteration J gives:

{SG}M ([I]+[D ] [R]1+p )-I[DI]I[B]{SQ}:H ([ ]+[D ] [R]I*B ) l{d)};'l'. | (4.4.20)

(8c},., = [D] [Bl{sa}s., - {3}, | - @a2)

where

[B] = ([ +[D.JIR]..8) [D],
(@), =([+[DLIRL,8) (o).,

The new estimates for the stress ai: @ displacement at the end of the iteration can be

obtained from:

{~}1 ={oh., +{oo}., (4.4.22)

I+1

{ahis ={a}., +{6a},., (4.4.23)
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Substituting (4.4.21) to (4.4.23) into the equilibrium equation(4.4.5) gives.. ~
JIBT ({o}., + (8o}, )av + [ . N }N,)({a}r, + {8a}., Jda - {F}“—{O} (4.4.24)
[[B] [D] [B)sa}. dv + [, S, {N. XN, )oq}.,.da = |
[F],.. - [[B] ({o}s., - (3 b )i LSWI{NZ}(NZ){q};ﬂdA  (@425)

This can be written in the form '

[K}{8a},., = {f},. T (4.4.26)

where

[K]= [[B]'[D] [Blav + [ S, {N,}N,)dA
() = (P, + [[B] ({01, - ), Jav - [ 5. ONJ(N, e, da

The iteration process is continued until the convergence criteria is satisfied. The

following criteria is used for this purpose:

i
Fer] A, (4.4.27)

where A. is the error limit and Fy is the load vector for the total thermal strain.

{Fo} = .[B]"[D\ [{eo Jav a ' (‘?-4-28)

4.5 - Flowchart of the Computer Program

The flowchart of the computer program is shown in Fig. 4.4. All the symbols in this

flowchart are defined in section 4.4.
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4.6 - Comparison with Available Analytical and Numerical Solutions

In this section the predictions of the model are verified by comparison with some
available analytical and numerical solutions. The tests are selected so that they cover
different aspects of the model. In the uniaxial tests the predicted stresses and strains in
both constitutive models are compared to the analytical solution for the differential
equation of the rheological model. Then the displacements in a model consisting of a
Maxwell unit are compared to another finite element solution corresponding to the creep
of plates under mechanical loading. In another series of tests the effect of the elastic
foundation is verified for an elastic material and for both thermal and mechanical loading.

Comparisons with laboratory and field data are performed in Chapter 5.
4.6.1 - Uniaxial Stress in a Model Consisting of a Maxwell unit

In a model consisting of a Maxwell unit (Fig. 4.2), thé stress can be. related to the
elastic strain by ' | |
c=Eg.=E|(e-¢,). ' I 4.6.1)
Differentiating 4.6.1 with respect to time and assuming that the exponent of the stress in-

dashpot is equal to one, gives

or
E£=6+Emno. (4.6.3)

Equation 4.6.3 is the governing differential equation for the rheological model consisﬁng
of a Maxwell unit.

For stress under constant strain, the strain rate, ¢, is zero. Assuming initial condition
as
c=Ege att=0 (4.6.4)
The solution to the differential equation would be

o = E;eexp(—=E,n,t) (4.6.5)
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A clamped beam is used to model the uniaxial conditions. All of the rotations and the
displacements except the displacements in y direction are restrained. In order to simulate
the uniaxial conditions Poisson’s ratio is set equal to zero. Thermal loading is used to
generate a constant strain. A temperature increase of 10°C is applied at the start of the
analysis, and then the temperature is kept constant. In these conditions only the stress in x
direction is non-zero. The modulus of elasticity is chosen to be 1000 MPa, the stress
exponent is 1, and the fluidity parameter is 1x107s"MPa™. The modulus of elasticity and
fluidity parameter are both constant and do not change with temperature.

Figure 4.5 shows the comparison between the stress obtained from the analytical
solution (4.6.5), and the finite element solution with different time steps. With time steps
of 100s and 1000s the error is less than 1% and 5% respectively.

For stress under constant strain rate, the strain rate, €, is constant , and assuming the
initial condition
c=0 att=0 (4.6.6)

the solution of 4.6.4 is
£ ,
o:; [1-exp(—E;n;t)]. 4.6.7)
| :

A constant temperature rate of 3.6°C/h was applied to the same beam with the same
material parameters as described for the previous test. - With constant material parameters
this thermal load will simulate a constant stain rate loading. Figure 4.6 shows the
comparison between the stresses obtained from equation 4.6.7, and from the finite element
program with different time steps. The results are found to agree to three figures when
the time step is equal to 100s. Even when the time step is equal to half an hour, the error

is less than 4% at the start of the problem and gets smaller with increasing time.

4.6.2 - Uniaxial Stress in a Model with Delayed Elasticity

For the rheological model in Fig. 4.2, assuming that the exponent of stress is equal to
one in both dashpots, the stress strain relationship for different components of the model

will be
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o e _ g’ .
?ﬁ E‘i = ﬁlﬁ‘ Ed = E . 4and Eﬂ = T‘lﬁ .
E; £,

E.=

(4.6.8)

The total strain is the sum of the strain at the different components and is given by
E=E_+E, +&,

(4.6.9)
The stress is also equal to the sum of the stresses in the spring and dashpot of the Kelvin-
Voigt unit. This may be expressed as

S;GE_'_GH,

| — .. . oy

N2
or

[n]
]

) EZ(E—SV —i)+;(é§ﬂlﬁ§£5' .
n

1 2 El

E

(4.6.10)
Differentiating 4.6.10 with respect to time, using the equations 4.6.8, and rearranging

E+Egﬁgsz?+s(ﬁg+ﬁ2§+ﬂj)+6E3mﬂ;, 460
When the stress is constant, equation 4.6.11 reduces to
E+E,n,€ =cE,mm,.

(4.6.12)
In this case the initial conditions are

Ezgsi and g;=0 att=0
E,

(4.6.13)
The second condition gives

_ = : hd 1 =

o =—8y ff(E‘Ev) zf‘(gagﬂl)
N2 N2 M2

or

€=0o(n; +1n,).

(4.6.14)
The solution to 4.6.12 that satisfies 4.16.13 is:

(a7 o . -
g=—+0oNt+—[1-exp(-E.n,t)].
E, i Ei[ p(~E;n,v)]

(4.6.15)
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In the finite element simulation a tensile load is applied to the same beam as described
2.0 MPa. The material properties are:

E;=2000 MPa, E;=1000MPa, 1,=1x107s'MPa”, and n,=5x107s'MPpa’

Figure 4.7 shows the comparison between the results of the analytical solution and the
finite element solution with different time steps. The strains agree to three figures when
the time step is equal to 100s. When the time step is equal to 1000s the e:ror is about
10% at the start of the problem and decreases with time.

When the strain is constant, assuming
E,=E;, and 1 =n;
equation 4.6.11 reduces to
&+3En,6+E*n’c=0 (4.6.16)
The initial conditions are -
o=Eig, and g=0 att=0 . (4.6.17)
The second cendition gives R

1 1 5}

m o E

6 =-2E’ne.  (4.6.18)

The solution to 4.6.16 that satisfies 4.6.17 is

S e S, i _
o =051+ —’S)EIE exp[~05(3 ++/5)E n;t]+0.5(1 = —=)E & exp[-0.5(-3 + /5)E,m,t]

NG 7

(4.6.19)

In the finite element analysis the clamped beam is subjected to an instantaneous
temperature rise of 10°C. The material properties are:
E,=E;=1000 MPa, and nm;=m;=1x10"s'MPa™ .

The comparison between the stresses obtained from the analytical solution using

equation 4.6.19, and from the finite element program with different time steps is shown in
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Fig. 4.8. The error with time steps of 100s and 1000s is less than 1% and 7%

respectively.
4.6.3 - Steady State Creep of Plates Under Mechanical Loading

In this section the predictions of the finite model for creep of plates under constant
load are compared to another finite element solution given by Hrudey (1973). In the
analysis performed by Hrudey the constitutive law is the same as the present model with a
Maxwell unit. The results are presented in a non-dimensional form for the displacement
rate or velocity under steady state conditions. Figure 4.9 shows the comparison between
the non-dimensional vertical velocities along the radius for a simply supported circular
plate under point load, po. The numbers for n correspond to the stress exponent and the

non-dimensional velocity is given by

vaY_ZM,,  (4.6.20)

— | (4.6.21)

= :li}l‘i_ (4.6.22)
2(2n+1)
w = vertical displacement rate,
h = thickness of the plate,
€, = an arbitrary standard constant equal to the strain rate of uniaxial specimen under a
stress Oy, .
Table 4.1 shows the comparison for non-dimensional steady state vertical velocities at
the center of a uniformly loaded circular plate under a uniformly distributed load q,. As

can be seen the agreement is good for both loading conditions.
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4.6.4 - Elastic Foundation

Analytical solutions are available for elastic rectangular plates on elastic foundations
(Timoshenko and Woinowsky-Kreiger, 1959). In this section the results are compared for
a simply supported square plate under uniformly distributed and point loads. In the finite
element model using symmetry, a quarter of the plate is modeled with four elements. The
material properties and the dimensions of the plate are:

E =200000 MPa, v=0.3,

h=0.2m, dimensions=6x6m, S,= 100 MN/m?

uniformly distributed load = 1 MN/m, and point load = 10 MN,

The results for the vertical displacements along the center line of the plate are shown in
Table 4.2. The results also depend on the integration technique. Therefore the results for
both the complete and a reduced integration rule are shown in the table.

The analytical solution is also available for an elastic beam on elastic foundation under
non-uniform thermal loading (Hrudey, 1992). The classical differential equation for a

beam on elastic foundation is:

4
El ‘;x‘j’ +kew=0 (4.6.23)

where w is the vertical displacement and k¢ is the stiffness of the foundation. It is assumed
that the beam under goes a temperature change which is non-uniform across the section

- but has the same distribution for all sections. This assumption means that in the absence

constant curvature, denoted by ko. Therefore, when the foundation is included the

bending moment in any cross section would be
2

M= -EC S o) (4.6.24)
X

Assuming a symmetry with respect to the center of the beam, and free boundary
conditions with zero moments and zero shears at the ends, the non-dimensional form of

the solution t0 4.6.23 is
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(c:ash Alsin Al + sinh Al cosAl) sinh AlE sin lli

Ko 0 (sin Al cosAl + sinh Al cosh Al

gsinhkl cosAl = cosh Al sin Al) cosh ?\J.‘;cos?\.li (4.6.25)
(sinAlcosAl +sinh Al cosh Al) T

where

ke ,

2 =4 ?} i (4.6.26)

c=X

SET

The finite element analysis is performed for a beam with symmetric conditions at
center and free conditions at other boundaries. In order to eliminate the two dimensional
in-plane behavior, Poisson’s ratio was set equal to zero. Figure 4.10 shows the
comparison for the non-dimensional vertical displacements along the x axis, between the

analytical and finite element solutions. In this case

—=2,
id

There is a good agreement between the solutions and it can be seen that the elastic
foundation flattens the beam in the central parts. The negative and positive displacements
at the end of the beam result in foundation forces that form a moment that is sufficient to

straighten the beam.

4.7 - Summary and Conclusion

In this chapter the issues regarding the finite element program were described, The
program were explained, the solution algorithm and the program flowchart were
presented, and finally the results obtained from the program were shown to be in good
agreement with available analytical and other numerical solutions. The examples in

section 4.6 covered different aspects of the program including, uniaxial visco-elastic



121
deformation with or without delayed elastic element, three dimensional steady state creep
under mechanical loading, znd beam and plate on elastic foundation with mechanicai and
thermal loading. Nevertheless the given examples were only a part of the numerous tests
that were performed in the process of the development of the program. For example other
features of the program like tensile fracture and boundary elements were tested in the
situations were the results were known. In all of the tests the results of the program were
satisfactory. In Chapter 5 some comparisons are made with the results of field

measurements and boundary conditions.
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K,T

6M, )"

QDFZJ

n " Hrudey, 1973 | Present study
1 025781 025870
3 023618 0.23573
K 0.20552 T 0.20331 )

7 017650 | 0.1729%

9 T 0.15076 0.14638

Table 4.1 - Non-dimensional velocity in a center of a simply supported uniformly loaded

circular plate.

Umf@?rrﬁy distributed load

" Point load

x/a

Analytical
solution

" Finite
element
(3x3) _

Finite
element
(2x2)

Analytical
solution

" Finite
element
~ (3x3)

} ?"inite '
element
_(2x2)

0.00

0.010464

0.010623

0.010675

0.010777

0.009270

0.011027

0.25

0.009850

0.009984

0.010034

" 0.008446

0.007960

0.008708

0.50

0.007925

0.007929

70.008088

0.005164

0.005217

0.005052

0.75

0.004560

0.004589

0.0046609

0.002364

0.002442

0.002414

1.00

0.0

00

0.0

0.0

0.0

T 0.0

Table 4.2 - Comiparison between the analytical and finite element solutions with different

integration techniques for displacement at the center of simply supported square plate on

elastic foundation.



~ A /

NS ~ N o

Figure 4.2 - Rheological model for constitutive law.
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strain
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T loading T unloading

Figure 4.3 - Strain under constant stress for the rheological model shown in Fig. 4.2 ‘
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Start

Read input data

Calculate [B] matrix and initial [D] matrix

Calculate The stiffness of the boundary elements

Calculate the consistent stiffness matrix of the elastic foundation

Calculatc mechanical loading and the load per unit change in water level

Initialize certain values including {o} and {q}

l

———*Loop over increments, |

Read the temperature and water level of the current increment

—Loop over iterations, J

If J=1, calculate the visco elastic D matrix, [-lj_:ll:_l , and right hand side vect@r; {f' } ; i

l

Evaluate the stiffness matrix, [K]

Solve the system of equations for {§q}: 41+ and calculate {q};:

l

Calculate {50}; 4 and {0‘};:: - Check for cracking, and crack closing

l

Calculate the force in boundary elements

—1J+1 . . J . .
Calculate |D , and right hand side vector {f * , for the next iteration
I+1 141

No  Check the right hand side vector for convergence
if yes, {G}I = {c};:ll and {q}l = {q};‘::

Output the results if required

Stop

Figure 4.4 - Flowchart of the finite element program.
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Figure 4.7 - Comparison between analytical and finite element solutions for strain under

constant stress in a uniaxial model consisting of a Maxwell unit in series with a Kelvin-

Voigt unit.
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Figure 4.8 - Comparison between analytical and finite element solutions for stress under

constant strain in a uniaxial model consisting of a Maxwell unit in series with a Kelvin-

Voigt unit.
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Hrudey, (1973)
. Present study
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Figure 4.9 - Comparison between finite element solutions for steady state non-dimensional

velocity along the center line of a simply supported circular plate under point load.
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Figure 4.10 - Comparison between the analytical and finite element solutions for non-

dimensional vertical displacement of a beam under thermal loading on elastic foundation.
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5- COMPARISON WITH EXPERIMENTS AND FIELD MEASUREMENTS -

The objective of this part of the study is to calibrate and evaluate the analytical model,
so that it can be used for a qualitative study of ice behavior under thermal loading. In the
first part of this chapter, published experimental results are compared to predictions of the
model obtained using different mechanical properties for ice. Determining the material
properties for ice can itself be the subject of a very vast investigation and it was not in the
scope of this study. Therefore, only published values for material properties were used in
these comparisons. In the second section the predictions of the model are compared to
field measurements. The data collected by Fleet Technology Ltd., as described in section

(2.21) were used for this study.

5.1 - Mechanical Properties of Ice

The mechanical properties of ice have been the subject of investigation for a long time.
Compared to other engineering materials, ice has relatively large crystals and normally
exists at a temperature very close to its melting point. The response of ice under loading,
depends on many parameters such as the ice type, the stress and strain levels, the stress
and strain rate, and the temperature.

Ice types are classified according to their formation, and the size, shape, and
orientation of the crystals (Michel, 1979). A summary of the classification system is
presented in Table 5.1. The letter P denotes primary ice which forms first on a water
body. The letter S indicates secondary ice which grows below the primary ice in a
direction parallel to the heat flow. The ice types designated with a T are superimposed ice
types that form on the top of the primary ice due to flooding of the ice.

The grain size is divided into five ranges:

a) Fine - Grain diameter is less than 1 mm.
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b) Medium - Grain diameter is 1 to 5 mm.

¢) Large - Grain diameter is 5 to 20 mm.

d) Extra large - Grains have diameters greater than 20 mm.

e) Giant - Grains have dimensions in meters.

Among the different types of ice, there are really only two broad categories of ice
found in most lakes and reservoirs.

1) Granular ice - This category of ice consists of fine, randomly oriented crystals. The
grain size is between one and three millimeters. This ice is usually found in the surface
layers of lakes and reservoirs. Due to the random orientation of the crystals, the
mechanical properties of this ice are isotropic. The most common ice type in this category
is the snow-ice.

2) Columnar ice with c-axes horizontal or S2 ice - This type of ice is usually found in
the lower layers of ice covers in lakes and reservoirs. The grain size is usually in the range
of three to one hundred millimeters and the crystals are elongated in the vertical direction.
This ice is considered transversely isotropic (orthotropic) and the properties are the same
in all directions in the horizontal plane.

Most laboratory investigations on ice are performed on snow-ice, S2. and S1 ices
(Table 5.1) and the most common loading modes are constant strain-rate, constant load
and constant loading rate. In the field, temperature changes strain the ice covers and the
loading conditions are similar to those in constant strain rate tests. The behavior of ice
depends on strain rate and at strain rates higher than 10™ to 102 s the behavior changes
from ductile to brittle. Figures 5.1 and 5.2 show the results of some of the constant strain
rate tests performed on granular and columnar ice at different strain rates. It can be seen
that at higher strain rates the stress reaches a maximum and drops. This drop in stress is
less at lower strain rates.

Drouin and Michel studied the air temperature changes in Quebec City. The
climatological data used in this study were those recorded at the Quebec City airport from
1944 to 1967. The largest recorded change in air temperature was 3.3°C in 30 minutes.
For other regions of Canada, some data can be found in a paper by Kendall on the

meteorological information relevant to ice pressures (Kendall, 1968). The maximum air
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temperature spreads in January with duration of six hours and periods of recurrence of 5,
15, and 25 years are given for 23 locations in Canada. Those values are shown in
Table 5.2. The maximum value in this table is 27.8°C which corresponds to an average
rate of 4.6°C per hour. In some places like the Chinook belt of Southern Alberta, the air
temperature can increase in a relatively short time by as much as 10 to 20°C. It can also
happen that the temperature increase is followed by a rapid decrease. All of the values in
the table and the ones being discussed are for the air temperature. The corresponding
temperature change in an ice cover usually happens at a lower rate. According to the
parametric study performed for this project, when the short-wave solar radiation is not
considered, the change in ice surface temperature for daily temperature changes can be
less than 80 percent of the change in air temperature. In the measurements made by Fleet
Technology Ltd., as described in section 2. , the rates of rise in ice surface temperature

054 %107 x5
3600

Therefore, the mechanical properties used for stress analysis should be based on tests

=75x107"s™

performed at strain rates in the range of 10® to 107 s, Nevertheless, this is a very low
strain rate and most of the reported laboratory tests are performed in rates above 107s™,

In the finite element program there are two options for the rheological model. The
first is a Maxwell unit consisting of a linear spring in series with a non-linear dashpot.
This model requires values for E,, v, n;, and n. The second model has a Maxwell unit in
series with a Kelvin-Voigt unit. The parameters required are: E;, v, 5, n, E;, 12, and m.
This accounts for the softening after the peak stress. Drouin and Michel’s tests show that
for snow-ice and S2 ice at low strain rates, the stress at constant strain rate reaches a
maximum and then remains almost constant at that level. Thus in the present study, the
post-peak softening effect is not included. Only the effect of temperature on the material
parameters is considered. Among the various mechanical properties for ice reported in the
literature, only those used in determining thermal pressures and those obtained in tests

performed at iow strain rates (10 to 107s™") are considered for use in the present model.



What follows is a discussion of material properties suggested by others which were
considered to be suitable for thermal stress analysis.
Drouin and Michel (1971) -

Drouin and Michel performed uniaxial and biaxial tests on snow-ice and columnar ices
(S1 and §2). The uniaxial tests were constant strain rate tests performed at different
temperatures. The strain rates were in the order of 10® to 107 s which is in the range of
thermal strain rates Dccuning in natural ice. Drouin and Michel used the test results to
curves and found the best fit for the slope at the origin, and the relatianship between the
maximum stress and strain rate. Then considering the effect of the stiffness of the test
assembly they calculated the stress versus strain curves for the ice plus testing machine
and compared it to the test results. The stress-time curves for ice alone were also
calculated using the rheological model and the apparent Young’s modulus for ice alone.
Snow-ice-

The snow-ice used in the tests was made in the laboratory. Its density was about

890 kg/rns, The grains were spherical with random (:rystalicgfaphic orientation and the

from 1.8x IC)'S to 1.8x107 and at temperatures from -28.3 to -3.9°C. In the majority of the
tests the stress reached a maximum and remained almost constant at that level. In other
cases it diminished slightly and then assumed a constant value. The maximum stress was
reached at an average strain of 0.15 percent. The following relationships were given for
the apparent Young’s modulus of ice and the relationship between the maximum stress

and strain rate (converted to SI units).

E = 452 x 0,0981 ex (ZD 0, (E in MPa and T in K°) .1.1)
€ =2961x10° exp(—— 8833]6?} (cinMPa, TinK’, and €ins") (5.1.2)

Columnar ice with optical axis vertical - S1

The specimens were made in the laboratory by simulating the natural conditions (calm

surface and small temperature gradient). The tests were performed at constant strain rates
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varying from 3.7x10®* to 1.8x107 5™ and at temperatures varying from -26.8 to -4.1°C. It
was observed that the stress increased at an almost constant rate for about two to four

hours. Then the rate of increase gradually diminished until the stress reached a maximum.

value. The maximum stress was reached when the specimens had been deformed in the
range of 0.08 to 0.2 percent. The sudden drop in stress was attributed to the buckling of
crystals when strained in compression in the direction parallel to the basal plane. Drouin
and Michel studied the relationship between the maximum stress and strain rate. The
analysis showed a scatter in values which prevented the establishment of a single
relationship between the strain rate and maximum stress. The scatter was greater for tests
performed at higher temperatures. The average value measured for the stress exponent

was 3.7 and the following relationships were defined for different temperatures and rates.

E= cexp(;?T“" )o" (5.1.3)

where

n=3.7

R=8.314 j/(mol.K°)

and

Q. = 56170 j/mol for £=107" and =-30°C to -10°C
Q. = 60773 j/mol for £=10"s" and 9 =-30°C to -10°C

Q. = 269199 j/mol for £=107s" and 0 =-10°C to 0°C

Q. = 215476 j/mol for €=10"s"" and  0=-10°C to 0°C

The constant ¢ was given only for low temperatures (-30°C to -10°C). Finally the
following equation was given which is valid only for low temperatures but was used by

Drouin and Michel to simulate the test results at higher temperatures as well.

o , ~83684. ,
: =2961 x 10° exp(——)o*’ 5.1.4
& X Pg31aT ° ©14)

The apparent Young’s modulus for ice alone was obtained as a function of temperature

and strain rate.



E =344 x00981¢""™ exp(%;’i) (5.1.5)

Columnar ice with optical axis horizontal - S$2

For this kind of ice, Drouin and Michel only reported two tests. The test durations
were on the order of 100 hours and the appearance of the stress versus time curves was
substantially the same as those for snow-ice. The maximum stress, however, occurred at a
much greater deformation. The corresponding strain was 1.3 and 2.4 percent in these two
tests. Drouin and Michel did not calculate the Young’s modulus or the relationship
between the maximum stress and the strain rate. Most of the parameters in the rheological
model were taken to be the same as those for snow-ice and the value used for the stress
exponent was 4. The test results were compared to the predicted values for the ice plus
Bergdahl (1978) -

The model used by Bergdahl, to estimate thermal ice pressure, consisted of a linear

spring in series with a non-linear dashpot. The following values were used for the various

constants.
~59800 o
=3235ex TinK° 5.1.6
n exp( 8'314].) (TinK") (5.1.6)
n=3.651 (5.1.7)
E; =6100(1-0.0120)  (@in C°) (5.1.8)

The values for n; and n were based on Drouin and Michel’s experiments on S1 ice and the
value for E was based on the material properties given by Lindgren (1968).
Cox (1984) -

Cox used the same model as Bergdahl but with different values for mechanical
properties. Cox argued that the numbers used by Bergdahl for E were very high and
therefore selected a reduced value given by the relationship
E, = 4000(1-0.0120) (5.1.9)
For the stress-strain rate relationship Cox used the following equations.

n, =39x 107" (5.1.10)
n=3.7 5.1.11)
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Equation (5.1.9) was found by curve fitting the experimental data for S1 ice given by
Drouin and Michel. The values for n; from different tests, versus test temperature were
plotted with a logarithmic scale. In order to obtain a linear fit, it was assumed that the 0°C
tests were performed at -1°C. As a result, this equation gives quite large values for
temperatures close to 0°C.

The values for E and n obtained from different equations are compared in Tables 5.3
and 5.4. It can be seen that the values for E suggested by Bergdahl and Cox are much
higher than those suggested by Drouin and Michel for different kinds of ice.

In order to verify the present model, the mechanical properties suggested by Drouin
and Michel for different ice types were used in a model consisting of a spring and a
dashpot. To simulate a uniaxial condition, Poisson’s ratio was set to zero in the finite
element model. The results of this analysis were compared to the curves calculated by
Drouin and Michel for ice alone.

Figure 5.3 shows the comparisons for snow-ice. The curves given by Drouin and
Michel for ice alone compare well with the calculated curves. There is only a small
difference in the maximum stresses. In Fig. 5.4 the results are compared for S1 ice. The
present model is not able to simulate the drop in stress but the agreement in the initial part
of the curves is good. Except for the first two curves which are calculated at high
temperatures where Drouin and Michel’s equation is not valid, the overall agreement is
acceptable. In the experimental curves for ice plus testing machine the drop in stress is
more than that for the theoretical curves for ice alone (Fig. 2.9). Since this kind of ice is
not very common in lakes and reservoirs, no attempt was made to model the drop in
stress. Figure 5.5 shows the comparisons for S2 ice. In this case, for the present model,
the properties for S1 and snow-ice suggested by Drouin and Michel, and those suggested
by Cox were used and the results were compared to the experimental curves which
included the effect of the flexibility of the testing machine.

Drouin and Michel also performed biaxial tests on different types of ice. In these tests
circular discs of ice were placed in an invar ring. Invar has a very low coefficient of
thermal expansion compared to ice, so that the test approximates one of complete restraint

against thermal expansion. The thickness of the ice was 0.05 m and the diameters ranged
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from 0.15 to 0.3 m. The specimens were subjected to an increase in temperature and the

experimental stress in these tests is compared with the prediction of the present model
using different mechanical properties. In the analysis, Poisson's ratio was equal to 0.33
and the coefficient of thermal expansion for ice was taken as a function of temperature as
suggested by Drouin and Michel (1971).

o = (54+0189)x 107 (5.1.12)

In all these cases, the mechanical properties suggested by Cox, which have a high
value for E;, gave very high stresses compared to the measured stresses. The properties
suggested by Bergdahl gave even higher stresses and are not shown here. In the case of
snow-ice, the stress versus time curves obtained using snow-ice properties from Drouin
and Michel are closer to the measured stresses. In the case of S2 ice, the initial part of the
curves, which is controlled by the value of E;, is modeled better by the snow-ice
properties and the remaining part of the curves are between the snow-ice and S1, or close
to snow-ice. In some cases for S1 ice the measured stress is closer to that for snow-ice
and in some cases it is between that for the S1 and snow-ice. The curves calculated using
the E, value for S1 ice and the n, expression of Cox give good agreement in some tests.
However, equation (5.1.10) gives a very high value of n; for temperatures near 0°C and it
might cause numerical problems.

According to these numerical tests the values suggested by Drouin and Michel for
snow-ice give reasonable stress prediction for most cases. The stresses calculated using
the mechanical properties of S1 ice are also close to the measured stresses but these
properties have the limitation that the equation given for ), is not valid for temperatures
above -10°C. The material properties suggested by Bergdahl give very high stresses which
seem unrealistic for thermal loading analysis. The stresses calculated using the mechanical
properties suggested by Cox were also higher than the measured stresses in the
experiments of Drouin and Michel. All of these results offer guidance on the choice of
mechanical properties,. However a final decision on which properties to use in the

analytical studies requires consideration of field data,
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52- Comparison with Field Measurements

5.2.1 - General Discussion

As discussed in section (2.21), field measurements of ice were conducted by Fleet
Technology Ltd. and sponsored by Canadian Electricity Association (CEA). Field data
were collected during the winters of 1991-92 to 1993-1994, at Hydrc=(2uebécis Paugan

Dam on the Gatineau River at Low, Quebec and Ontario Hydro’s dam at Amprior,

National Research Council (NRC) in Ottawa. The purpose of these tests was to measure
and study the loads resulting from temperature and water level changes. The data
measurements, and meteorological data. The results were reported by Fleet Technology
Ltd. in three phases. The reports of phase I (winter 1991-92), phase II (winter 1992-93),
and computer data on solar radiation, wind speed, temperature profiles, and some of the
local stresses at the NRC basin test were obtained for use in this study (Comfort and
Abdelnour, 1993; Comfort, Abdelnour, and Gong, 1994). The data were used to verify
the analytical models.

A number of questions and difficulties were encountered in simulating the field

conditions. These problems were common to most of the simulations. Therefore before

ice type existed in the field and which constitutive model and which mechanical properties
should be used in the simulations. There is no simple solution to this problem. The ice
type and the associated mechanical properties depend on the conditions at the time of
formation. This makes it difficult to predict exactly what type of ice would have existed at
a particular site. Observations show that the upper parts of the ice cover usually consist of

granular ice and the lower parts of columnar ice with optical axis horizontal (S2). The
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finite element model offers two options for the constitutive model. In the first, which
consists of a spring and a dashpot, mechanical properties suggested by previous
investigators can be used directly, For the second, which includes a delayed elastic
element, the properties are not well defined and must be obtained by trial and error to fit
the measured data. Therefore, some of the major thermal events (periods of temperature
increase) were first simulated using model (1) with diff“ereﬁt mechanical properties. It was
observed that in all the events except one (described later), the best agreement was
obtained using the material properties suggested by Drouin and Michel for snow-ice. Two
thermal events from the NRC basin tests are used here to demonstrate how the stress is
affected by the choice of different mechanical properties.  Figure 5.9 shows the
comparison between the measured and calculated stress versus time curves. The first
thermal event begins at the start of the simulation and is followed by a cooling period.
The second thermal event starts at about 60 hours and lasts till the end of the simulation.
It can be seen that the curve calculated using mechanical properties for snow-ice, as given
by Drouin and Michel follows the measured data reasonably well. Stresses obtained using
the mechanical properties suggested by Cox are very high for both events and the stresses
obtained using S1 ice properties are high in the first event and low in the second event.
The same pattern was observed in most other cases. The good agreement using snow-ice
properties might be due to the fact that the temperature changes mostly affect the upper
parts of the ice sheet which usually consist of granular ice.

~ In the next step, the results of the second constitutive model were compared to those

of the first model with snow-ice properties, and the measured data. As mentioned earlier
the formulation of this model was done by Khoo (1989) who had Qsed it for indentation
problems. Khoo found the parameters that gave the best agreement with published
experiments. These parameters were as follows:
a) Sinha’s uniaxial tests on columnar ice at -10°C (Sinha, 1982),

E; = 7000 MPa E;= 3500 MPa

mi= 1.4x107 (MPa)™s! N2 = 0.6x10(MPa)™s™!

n=27 m=2
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The parameter v; is the initial value of 1, which varied as a function of strain and
strain rate in Khoo’s original model.
b) Mellor and Cole’s tests on fine grained ice at -5°C (Mellor and Cole, 1982),
E; = 9500 MPa E; = 1267 MPa

i = 3.2x10°7(MPa)™s’! N2 = 3x10°(MPa)™s’!

n=3 m=3

c) Frederking’s test on columnar ice at -10°C (Frederking, 1977),
E; = 4500 MPa E, = 9000 MPa
i = 2.1x107(MPa)™s 12 = 0.8x10%(MPa)™s™

I

n=3.1 m= ]

Sanderson (1988), suggested a value of 9500 MPa for E;. This is the elastic modulus of

ice which does not depend on temperature but could be measured only at very high

called the apparent elastic modulus of ice.

In order to determine the effect of each of these parameters on the stresses a number
of numerical tests were performed. In these tests a biaxially restrained ice sheet was
subjected to a uniform temperature increase. The material properties were constant and
did not change with temperature. In each test one of the mechanical properties was
changed while the others were kept constant and the stress versus time curves were
plotted. It was known that the maximum stress is controlled by the value of 1, and
therefore this parameter was not changed. In all of the tests the temperature rate was
5°C/h and the following parameters were used as the base constants.

E, = 5000 MPa E; = 5000 MPa
M =3.0x107(MPa)™s" Nz = 1.0x10(MPa)™s™
n=3.0 m=3

Figure 5.10-a shows the stress versus time curves for different values of E,; (1000,
5000, and 9500 MPa). It can be seen that the initial slope is controlled by this parameter.
In Fig. 5.10-b the ‘campariscn is made for different values of E, (1000, 5000, and

9500 MPa). 1t was observed that lower values for E, decrease the stresses after the initial
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part and before reaching the maximum stress. Figure 5.10-c shows the comparisons for
different values of n; (1.0x107, 1x10°, and 1x10° MPa™s). The value of 12 controls
the curvature before reaching the maximum stress.

Using a high value for E,, for example 9500 MPa as suggested by Sanderson,
increases the initial slope of the stress versus strain or stress versus time curves. This value
Wwas used in the simulations and it was observed that the calculated stresses at the start of
predictions when using a high value for E,, it is necessary to use a low value for Ea..
However the computation time increases as the difference between E, and E; is increased,
because the stress changes rapidly and more iterations are required in each time step.
Therefore, lower values for E; were used in the simulations and the parameters that gave
the best agreement with measured data were obtained by trial and error. Figure 5.11
shows results for the same events as Fig. 5.9, where the measured stress-time curve is
compared to the curves calculated using different constitutive models. Snow-ice
properties were used for the first model and in the second, the following properties were
used:

E; = 2000 MPa E, - E(T) as for snow-ice

M1 = n(B) as for snow-ice M2 = 1x10(MPa)™s™!

n=4 m=4

As seen in Fig. 5.11 the agreement for the first event is somewhat better with model 2, but
model 1 gives better agreement for the second event. It was observed that the first model
is capable of predicting the ice stresses and there is not much improvement in the results
when the second model is used. Since the second model has the disadvantages that it

to use the first model with snow-ice material properties for subsequent parametric studies.

2) Finite element mesh-

An important question that arises when designing the finite element mesh is whether or
not to model the entire ice cover or a much smaller region in the vicinity of the resisting
structure. In order to answer these questions several options were tried, For the NRC

basin test, it was possible to model the entire basin (using symmetry), with a relatively fine
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mesh containing 20 elements. In the case of the Arnprior Dam, a coarse mesh was used
and the complete reservoir was modeled using 20 elements. For the Paugan Dam, the ice
cover in front of the gates and piers of the spillway was modeled using a very fine mesh,
The effect of geometry and number of elements was also studied in the parametric study.

It was observed that when there is only thermal loading and all the displacements and
rotations on the reservoir boundary are restrained, the effect of reservoir geometry and
number of elements is negligible. In this case due to existence of an homogenous stress
field, the displacements and rotations at all of the nodal points are equal to zero and it is
possible to get the same results using a single element. A typical single element mesh is
shown in Fig. 5.12. The element has eight nodes and all of the displacements and
rotations are restrained except for the mid-side displacements in the direction parallel to
the element boundary. The size of the element is arbitrary but the thickness should be
equal to the thickness of the ice sheet at the time of simulation. Eight to ten layers are
used through the thickness of this element. Most of the simulations and tests (e.g.

Figs. 5.9 and 5.11) were performed using this one element mesh.

When comparing the measured and predicted stress, the effect of the stress history
should be considered. The ice cover is continuously under stress and when simulating an
event, the analysis must necessarily start somewhere in the middle of an ongoing process.
Figure 5.13 shows a sample from the parametric study where the surface temperature of
the ice cover varies as a cosine function having a 24 hour period. The air temperature
starts from -20°C and rises to 0°C and drops back to -20°C. The temperature distribution

in the ice sheet is calculated using the finite difference thermal analysis program. The

maximurn stress is greatest during the first cycle. After a few cycles an equilibrium is
reached beyond which the maximum stress does not change. Imagine now that this figure

represents measured stresses. If a simulation is started at the fourth or fifth cycle, the
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temperature changes, the calculated stresses would be higher than the measured stresses.
This effect usually causes an over estimation of the stresses at the start of a simulation,

Another problem is that when two thermal events happen within a short interval of
time, the stress from the first event may not have dissipated completely before the next
event. In this case, if the simulation starts from a zero stress at the beginning of the
second event, the measured stresses will be higher than the calculated stresses. This effect
usually causes an under estimation of the ice stresses at the start of the simulation.

In order to overcome these difficulties the duration of all simulations was made as
large as possible. A problem in simulating events over long periods however, is that the
thickness of the ice may change. Therefore, the following steps were taken in some of the
simulations.

a) If possible the simulation started at a time when the measured stresses were close 1o
zero.

b) An interval that covered a number of events (2 to 5 days) was used.

c) The initial thickness was chosen to be equal to the thickness of the ice cover at later
events.

d) For the first events the thickness was not correct and the effect of the stress history
was still present. Therefore the first events were disregarded in the comparisons.

The difference between the measured and calculated stresses, due to the effect of stress

history, usually diminishes after one or two days. Therefore, the stresses in later events

will be closer to the measured stresses.

4) Ice surface temperature-

In order to achieve good simulation of the ice stresses, it is necessary to use accurate
temperature data. Due to the difference between the conductivities of the air, snow, and
ice, there is a steep temperature gradient at the ice surface which is in contact wiht the air
or snow cover. Therefore the positioning of the thermocouple that measures the surface
temperature is very critical. Figure 5.14-a shows a comparison between the measured and
calculated temperatures for the NRC basin test. The calculated temperature distribution
was obtained using the air temperature, wind speed, solar radiation, and considering the

snow cover. The calculated and measured temperatures are in good agreement except at
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the surface of the ice. The reason for this discrepancy is not clear. It may have been that
the thermocouple was positioned in the snow cover rather than in the ice.

Figure 5.14-b shows the measured temperature profile from an earlier event at the
NRC basin test. In this case, the only temperatures recorded were at the ice surface and
0.1 m below the surface. There is a large difference between the surface and 0.1 m
temperatures. Considering that the temperature at the bottom of the ice sheet is at the
freezing point, and the ice sheet is very thin (h<0.2 m) the stress distribution through the
thickness should be close to linear. But in this case the line joining the measured
temperatures at the top surface, 0.1 m, and the bottom surface is very far from a straight
line or even a smooth line. It is very likely that in this case also, the positioning of the
thermocouple that measured the surface temperature was not right.

In order to overcome this problem, the measured temperatures were checked by
performing a thermal analysis. When the surface temperatures did not seem to be
accurate, it was assumed that the measured surface temperature was actually a
temperature in the snow cover. Then a new surface temperature was caiculated using a
thermal analysis with one centimeter of snow on top of the ice sheet.
5)_Effect of water level changes-

The field data obtained by Fleet Technology Ltd. (Comfort et al., 1993 and 1994)

indicate that water level changes have an effect on measured stresses. Although the
thermal events were the main contributor to the ice pressure, it was apparent that the
stresses also fluctuated with changes in water level.

The effect of water level changes can be included in the finite element model by
changing the buoyancy force on the ice cover. This was done by adding a uniform
gravitational force at each time step during which there was a decrease in water level. The
magnitude of the force is proportional to the water level change during the time increment.
During periods of increasing water level, the incremental forces were applied in the
opposite direction (upward). This approach is valid as long as the change in water level is
not more than the ratio of densities times the thickness of the ice cover (~90% of the
thickness). This numerical approach was verified by comparing the calculated deflections

with the prescribed water level changes.
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Calculations showed that changing the buoyancy force on the ice cover does not have
a major effect on the calculated stresses. The stresses calculated with this approach

compared very well with the measured stresses at the NRC basin test but this approach

effect on the in-plane stress resultant. In the dam sites the stress resultants calculated from
the measured stresses also fluctuated with the water level changes. This suggests that the
stress fluctuations might be caused by another mechanism rather than the change in
buoyancy force, a mechanism which causes a relatively uniform stress distribution through
the thickness.

One possible mechanism is arching action. Arching action was known to be the reason
of the failure of a dam in Minneapolis in 1899 (The Engineering Record, 1899) and was
also discussed in a paper by Wilmot (1952). When the water level drops, the ice cover,
which is bonded to the reservoir walls, forms a basin and cracks at the edges (Fig. 5.15).
These cracks can freeze and form a continuous arch. Subsequent increases in water level
are resisted by arching action which causes a pressure through the whole thickness of the

ice cover.
5.2.2 - NRC Basin Test - Winter 1992-93

As described in section 2.21, large scale tests were conducted at an outdoor basin at
the National Research Council (NRC) in Ottawa, Ontario. The basin was 3 m deep, 60 m
by 120m in area and had vertical concrete walls. Freeze-up commenced in early
December and the stress sensors were installed during the period from December 16 to 22.
During the early part of the winter, the ice was allowed to grow and the stresses resulting
from the changes in air and ice temperature were monitored. By the middle of January, a
large amount of snow (0.2m) had accumulated on the surface. To facilitate the
occurrence of large temperature changes in the ice sheet, the snow was cleared on
January 19 using mechanical equipment. Due to low conductivity of the snow, the snow

layer acts like an insulation layer and does not let the ice cover lose heat to the air.
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Therefore with increasing thickness of the snow layer the ice temperature increases.
Consequently removing the snow cover and exposing the ice cover to the cold air
produced a temperature shock and cracks in the ice sheet. The cracks subsequently
refroze. The thermal load moritoring part of the test continued until January 23. During
this period the water level in the basin remained constant.

On January 24 two slots were cut in the ice sheet (Fig. 5.16). The purpose of these
was to produce 2 simple two dimensional geometry by eliminating the biaxial restraint. On
January 25, tests to investigate the effect of water level changes were started. These
continued till February 26. The tests were conducted by pumping water into or out of the
basin. The snow was cleared again on February 19 by flooding. This was done by
pumping water onto the ice surface and draining water from the basin at the same time.
During all water level tests, with the exception of the last, the ice remained solidly bonded
to the basin walls,

The thickness of the ice cover was relatively uniform over the basin’s area. During the
period January 8 to February 12, the ice near the walls was about two to five centimeters
thinner than at the center of the basin. This was attributed to heat transfer from the
ground. After February 22 the difference in thickness increased to about 10 ce_ntimefers.
This was due to heavy snow falls and flooding operations which deflected the center of the
ice sheet downward. The surface ice growth was very small before January 12 (1 cm).
During the middle of the January it increased to about five centimeters and remained
almost constant till the flooding operation (February 19). The water from the flooding
remained on the ice and a large amount of surface growth occurred subsequently.

The ice temperature was measured continuously through the winter. In the early
winter (December 24 to January 8) the ice temperature was measured at two points
through the thickness: at the ice surface and 0.1 m below the surface. On January 8 a
string of 12 thermocouples was installed which measured the air-ice-water temperature
profile. When initially installed, the temperatures were measured at 1.5 m and 0.05 m
above the ice surface, every 0.05 m through the ice thickness, and 1.4 m below the ice
surface. Due to surface ice growth, the surface thermocouples gradually became

embedded in the ice. No attempt was made to reposition the thermocouple string. Thus
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the temperature at 0.05 m above the original surface was considered to be the ice surface

be the temperature at 0.1 m below the ice surface.
The in-coming solar radiation and wind speed were also recorded during the period
from December 22 to April 1. The in-coming solar radiation had daily fluctuations but

increased with time over the winter, reaching a maximum of 890 W/m? on March 3. The

Three different types of sensors were installed in the ice sheet. One rosette of
Hexpack panel meters was located at the center of the basin. These sensors, which were
developed in 1983 by Fleet Technology Ltd., are thin wide panels that extend through the
full thickness of the ice cover and measure the depth averaged pressure. Twelve BP local
sensors (developed by British Petroleum) were arranged in four vertical arrays to measure
the stress profile acting perpendicular to the basin walls, These are small disc shaped
sensors which measure the average pressure over an area of 0.075 m diameter. The BP
sensors were arranged so that they measured the average stresses at depths of 0.025 1o
0.10, 0.125 to 0.20, 0.225 to 0.30, and 0.325 to 0.40 m. Three oil-filled flatjack sensors
were also deployed which measured the average stress over an area of 0.15 m diameter.
Since the stresses are very depth dependent, the data measured by the BP sensors, which
have a smaller diameter, are preferred for the comparisons with the numerical simulations.
The data record for the stresses measured by the upper sensors (0.025 to 0.10 m) were
made available by Fleet Technology Ltd.

Several thermal events occurred during the thermal part of the test program,
Figure 5.17 shows the measured temperatures during the December 24 to February 8
period, when only the ice surface and 0.1 m temperatures were measured. A number of
thermal events can be seen in this figure. The stresses due to the temperature changes
were calculated using the finite element program, ICEP. At first a finite element mesh
spanning one quarter of the basin (using symmetry) was prepared. Subsequently, a single
element model as described in section (5.2.1) was used. It was found that the results from
the two models were the same and the single element model required less computing time,

Therefore it was easier to model the long periods with the single element model. All the
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results presented here for the thermal part of the program were simulated with the one
element model.

Figure 5.18 shows the comparison between the calculated and measured stresses for
the two events that occurred during the period December 24 to December 29. The
material properties suggested by Drouin and Michel for snow-ice were used in the
simulation. The first event begins at the start of the simulation. The stresses increase for
about 15 hours and then decrease during the cooling period that follows the first event.
The second event starts at about 60 hours from the start of the simulation and lasts about
three days. During these events the thickness of the ice cover was about 0.15m. The
temperature distribution between the ice surface and 0.1 m was obtained from a thermal
analysis, considering one centimeter of snow on the surface, as discussed in section
(5.2.1). The temperature distribution between 0.1 m and the bottom of the ice sheet was
also obtained from the thermal analysis. The stresses were calculated using snow-ice
properties from Drouin and Michel.

The predicted stresses follow the measured stresses reasonably well during the first
event. During the cooling period that occurred after the first temperature peak, the
measured stresses remain compressive. This is probably due to the presence of cracks that
reduce the tensile strength. First the analysis was performed using a very high tensile
strength (1000 MPa). The calculations were then repeated using a very small tensile
strength (0.01 MPa), which resulted in cracking of the ice sheet. The stresses calculated
using the cracking model match the measured stresses quite well at the start of the second
event (from 60 to 65 hours). This shows the importance of including the cracking in the
simulation of the thermal stresses. At the end of the second event, the measured stresses
decrease while the calculated stresses do not. Since the temperatures are still high (near
0°C) during this part of the event, the drop in the measured stresses might be due to
compressive cracking or softening of the ice which could have led to unbonding of the
SEnsors.

Figure 5.19 shows a comparison between the measured and calculated short wave
solar radiation data during the first event (January 25 and January 26). The heat flux due

to short-wave solar radiation that is shown in Fig. 5.19 was calculated for three different
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case of complete cloud cover. The heat flux due to short wave radiation can have a major
effect on the temperature distribution in the ice cover, and as can be seen in Fig. 5.19 it
can change significantly with the cloud cover. The amount of cloud cover is not usually
included in meteorological data. Even when this data is available, it must be remembered
that it is not obtained using sophisticated instrumentation. It is based on the subjective
judgment of an observer.

Figure 5.20 shows the comparison between the measured and calculated stresses for
the thermal event that occurred during the period from January 2 to January 4. The
thickness of the ice cover at that time was 0.2 m. The temperature profile was obtained by
the same method as described for the previous events. As can be seen, the calculated
values match very well with the measured stresses. However at the end of the event, the
measured stresses drop to zero due to melting of the ice. Above freezing temperatures
were recorded through the thickness of the ice cover. After this event, the measured
stresses were affected by freezing stresses for a while. The freezing stresses are the
stresses that occur due to volume increase during freezing. Very high stresses (0.75 MPa)
due to freezing were recorded by sensor BP21. The surface ice growth of one centimeter
probably occurred after this event when the snow cover that was melted due to increase in

On January 8 a string of thermocouples was installed which measured the air
temperature and temperature in the ice sheet at every 0.05m through the thickness.
Figure 5.21 shows the measured temperatures during the period from January 8 to
January 14. The air temperature data and the data recorded for incoming solar radiation

were used to calculate the temperature distribution through the thickness of the ice cover.

0.05 m and 0.1 m depth on January 10 and 11. The thickness of the ice cover at the time
was 0.28 m. A layer of snow (0.03 m) was also considered on top of the ice sheet. Since
the incoming short-wave solar radiation was measured, only the coefficient of reflection of
the surface was used in the analysis. Many different values are suggested for the

coefficient of reflection of snow in the literature. It depends on many parameters such as
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age, wetness, and grain size of the snow cover. It also depends on the wave length and
angle of the incident light. In general the coefficient of reflection of fresh and dry snow is
high (0.8 to 0.9), but decreases once the snow cover gets older and begins to melt (0.5 to
0.6) (Gray and Male, 1981). It is also higher for short wave lengths. Bergdahl suggested
values of 0.9 for wave lengths between 350-700 nm, 0.7 for 700-1200 nm, and 0.6 for
1200-4000 nm. These values were used in the temperature simulations. It was observed
that the measured temperatures were higher during the daytime, therefore the value of 0.9
was reduced to 0.7 and good agreement was obtained. The measured temperatures match
the calculated temperatures during the first day but are higher during the second day
showing that probably the snow layer was melting and a lower coefficient of reflection
was required. In Figs. 5.23-a and 5.23-b the measured and calculated temperature profiles
are compared at five hours and 15 hours after the start of the simulation. The agreement
is good except for the ice surface temperature. As mentioned earlier it is possible that the
measuring point at the surface was located inside the snow layer. Figure 5.24 shows the
comparison between the measured and calculated temperatures on January 12. The
thickness of the ice sheet had increased to 0.3 m but the thickness of the snow cover was
still 0.03 m. In this case the reflexivity is put equal to 0.5 for all wave lengths.
Figures 5.25-a and 5.25-b show the measured and calculated temperature profiles at four
hours and nine hours after the start of the event.

Above freezing temperatures were recorded on the surface and through the thickness
of the ice cover during January 4, 5, 7, 8, and 9. Therefore the measured stresses might
be high or low during and after these dates due to melting or freezing of the ice cover. In
Fig. 5.26 the measured and calculated stresses are compared for the period from
January 11 to January 14. The calculation was started earlier to include the effect of
prestressing. This figure shows three thermal events, two daily events and one event that
lasted more than one day. On January 13 and 14 there was a heavy snow (0.15 m) and the
ice temperature increased despite a decrease in air temperature. The calculated stresses
are higher than the measured stresses during all three events but the agreement with the

measured stresses is best during the third event.
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After January 15 the surface ice growth increased from 1cm to about 5cm on
January 25 and remained almost constant till the flooding operation (February 19). Above
some of the snow cover melted and froze subsequently. Therefore for the thermal events
occurring between the January 17 and 25, the depths for the recorded temperatures are
not quite clear. The snow cover was cleared on January 19 and some thermal events
happened afier that. Figure 5.27 shows a comparison between the measured and

second after 24 hours, and the third after 36 hours. In this simulation the temperature at

5 ¢m above the original ice surface was assumed to be the surface temperature, The

restraint for performing the tests on water level changes. A finite element mesh covering
the ice sheet between these slots (using symmetry) was prepared, and free boundary
conditions were used at the location of the slots. The element sizes were selected so that

the position of the Gauss points would be as close as possible to the location of the stress

February 1 to 7. In order to include the effect of the prestressing, the simulations started
at January 30 and also a temperature increase of five degrees at the ice surface was applied
at the start of the simulation. The calculation was performed twice, with and without the
effect of the water level changes. The vertical displacements at the central point of the ice

sheet are added to the initial water level and the results are presented as the calculated
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water levels in Fig. 5.28. As can be seen, although the calculated water levels track the
actual water levels, there is not much difference between the stresses calculated with or
without water level changes and the stresses are mainly thermally induced. The increase in
water level has resulted in a negative bending moment. Since the stresses are compared
for the upper part of the ice cover, the bending stresses have reduced the compressive
stresses due to thermal loads. The calculated stresses compare very well with the
measured stresses except for the cooling period at about 96 hours. As can be seen the
amount and the rate of temperature decrease from 80 hours to 96 hours are more than
those in the cooling period from 28 to 40 hours and yet there is a large decrease in the
measured stresses in the first cooling period. Since above freezing temperatures were
recorded in the ice sheet at about 80 hours, it is possible that the measured. stresses after

that were affected by the freezing stresses.

5.2.3 - Arnprior Dam - Winter 1992-93

The Arnprior dam is located on the Madawaska River at Arnprior (about 50 km from

sluiceway. The dam itself consists of a vertical concrete face and a sloped berm. Since
the gates were heated, the stresses were measured only at a position close to the dam’s
vertical face. Six BP sensors arranged in two vertical arrays, with three sensors in each
array, were used to measure the stress perpendicular to the dam face. The sensors
measured the stress at depths of 0.025 to 0.10, 0.125 to 0.20, and 0.225 to 0.30 m below
the ice surface. Initially (on December 9), the sensors were installed near the dam wall,
but due to relatively large water level fluctuations, the ice near the dam broke up and an
ice bustle consisting of ice, water layers, and air voids was produced. The sensors were
repositioned on December 18 and January 5. By January 5 the ice conditions near the
dam had stabilized and the sensors were located in the ice sheet in front of the bustle, A
veitical string of thermistors was used to measure the air-ice temperature profile. The

thermistors were also repositioned to the stable ice sheet in front of the dam.
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Due to water level fluctuations a crack was formed in mid-January at about 10 m from
the dam face. This crack refroze subsequently and another crack was formed further
offshore in early February. The February crack was open during the winter and absorbed
a part of the rotations produced by water level fluctuations. Therefore the local conditions
at the dam face were no longer affected by the water level changes.

Figure 5.29 shows a comparison between the measured and calculated temperatures at
depths of 0.1, 0.2, and 0.3 m below the ice surface during a period from February 12 to
15. The maximum line load occurred during this event. The temperatures through the
thickness of the ice cover were calculated using the surface temperatures. There is a good
agreement between the measured and calculated temperatures at 0.1 m and 0.2 m depths
but the calculated temperatures are higher than the measured temperatures at 0.3 m.
Measured and calculated temperature profiles 8 and 40 hours after the start of the
simulation are shown in Fig. 5.30. It can be seen that the calculated temperatures at 0.3 m
below the surface coincide with the temperatures at other depths. It is possible that the
thermistor at 0.3 m was positioned at a higher level.

A finite element mesh covering a large part of the reservoir (about 1.25x2.5 km) was
prepared for the stress analysis. The elements in front of the dam face were finer than
elsewhere in the mesh. The stress resultants obtained from the calculated stresses are
compared to those calculated from the measured stresses in Fig. 5.31. The material
properties suggested by Drouin and Michel for snow-ice gave the best agreement. - The
temperature changes and the water level fluctuations are shown as well. Since the actual
numbers for the water levels were very large, they are not used here, and the numbers -
shown in Fig. 5.31 are only used to show the fluctuations. The calculated water levels are
obtained by adding the vertical displacements at a node in the middle of the reservoir to
the initial water level. The calculated water levels show the same fluctuations as the
measured ones but there is not much difference between the stress resultants calculated
with or without water level changes. This was expected because the loading due to water
level changes causes only bending stresses which do not have a significant effect on the
stress resultants. The calculated stress resultants agree on an average basis with the

measured values but do not exhibit the same fluctuations. The fluctuations in the
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measured loads coincide with the water level changes. Since the calculated stresses do not
show these fluctuations, it is possible that other mechanisms such as arching action are
responsible. The February crack also may have affected the stress distributions. The
stresses measured at different depths were roughly equal at one of the sensors but at the

other, higher stresses were recorded at the lowest sensor.

5.2.3 - Paugan Dam - Winter 1991-92 And 1992-93

of the steel gates are heated. The dam is located next to the power plant and has a
combination of vertical and sloped faces. The reservoir is about 500 m wide and has

moderately steep and rocky sides.

During the 1991-92 winter, temperatures and stresses were measured at two sites:
near the spillway (site 1), and near the dam face and power house (site 2). The air-ice-

field temperatures. A combination of BP and panel stress meters were used to measure
the local and depth averaged pressures. The BP sensors were located at depths of 0.07 to
0.145 and 0.195 to 0.27 m below the ice surface. At site 1 the stress sensors were placed
in the vicinity of gates 2 and 3 (which were unheated), near piers 2 and 3, and at 32 m and
67 m from gate 2. At site 2 the sensors were installed along the face of the dam, along the
nearby steep rock face, and also at 30 m from the dam.

cover (less than 10 cm). Near the surface the ice sheet consisted of large grained P2, and
fine grained P3, P4, and S1 ices. At depths below 20 cm the ice was of columnar S2 type.

The stress sensors were installed during January 4 to 7 by cutting a slot in the ice, placing
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water fluctuations were small (about 5 cm). During January 15 to 17 a large crack formed

in the vicinity of the structures and along the reservoir boundaries due to a water level

drop of about 25 cm. After January 20 several snow falls took place and the ice sheet was
gradually depressed by the weight of the snow. In early February the ice sheet became

submerged below the water level. As described in the reports of Fleet Technology Ltd.,
water reached the surface and a mixture of snow, surface ice crusts, and water was formed
on top of the original ice surface. Therefore in the regions away from the boundaries, the
recorded ice temperatures through the thickness of the ice cover were at the freezing
point. Although at the boundaries the ice temperature was below the freezing point, the
relatively soft ice that covered most of the reservoir prevented the occurrence of thermal
loads during the remainder of the winter.

measured and calculated stresses are compared for the period from January 9 to
January 15, Two thermal events occurred during this period, one from January 8 to 10,
and the other from January 12 to 15. The temperature data was obtained from the
temperature profiles given in the figures of the report at four hour intervals. In the time
intervals between the times of the given profiles the temperature profile was obtained from

a linear interpolation between the given temperatures. The measured stresses are the

at a depth of 0.07 to 0.145 m. This location was selectcd for the comparison because it
was stress free at the start of the simulation and was unaffected by the local conditions in

the vicinity of the structures. The finite element analysis was performed using a single

The maximum line load obtained from the measured stresses in the reservoir which
occurred during the first event was 115 kN/m. The loads on the pier were significantly
higher than those on the gate. The maximum loads on the pier and gates were 288 and

82 kN/m respectively. The difference in the loads on the piers and the gates was probably
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for the stiffness of the gate and the results are presented in Chapter 6.

During the winter of 1992-93 temperatures and the stresses were measured only at
site 1. The air-water-ice temperature profile was measured at two locations: at 1 m from
gate 2, and 30 m from it. A panel stress meter that measured the depth averaged pressure
through the whole thickness of the ice cover was installed 30 m from the gates. BP

ensors were deployed near gate 2 and pier 3 at depths of 0.025 to 0.10, 0.125 to 0.20,

wa

and 0.225 to 0.30 m below the ice surface. The sensors were initially installed on
December 11 on floats. Due to a large drop in the water level the sensors were
repositioned on December 14. The thermal loads occurred during the period from
December 22 to February 13. In mid-February the far field ice temperature profile became
uniform at the freezing point due to snow accumulation. In early winter the ice
temperature profile was similar at both positions. Later, the ice near the gates was colder
and had more temperature variations than the ice at far field. However, since a relatively

soft ice covered most of the reservoir, the loads were very low near the spillway.

The highest stresses were recorded during the first thermal event which occurred on
December 24. Unfortunately the temperature data for this event is not considered reliable

properties suggested by Cox gave the best agreement, it was necessary to know if those
properties would give the best agreement for the 1992-93 winter as well. Therefore, the
material properties suggeted by Cox and those suggested by Drouin and Michel for snow-
ice were both used in the simulations. The agreement was better when the snow-ice
from January 24 to January 26. Between the two different temperatures which were
recorded for the ice surface, the lower one was used for the analysis. The thermal event

that starts at 19:00 on January 24, was preceded by a cooling period. Prior to this cooling
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period, which lasted about one day, above freezing temperatures were recorded through
the entire thickness of the ice cover. Therefore the compressive stresses during this
cooling period are probably due to the freezing of the ice cover, Two different start times
were selected for the stress analysis: one from a stress free condition during the cooling

period, and the other from the start of the thermal event. Cracking of the ice was included

resulted in stresses that were higher than the measured stresses. The other analysis that
includes the cooling period, gives the best agreérnent with the measured stresses during
the latter part of the thermal event.

The temperature analysis was done for a period during which the graphs containing the
temperature data were plotted on an extended scale. The measured surthce temperature
was used as the surface boundary condition in calculating the temperature distribution
temperatures at the depths of 0.1 and 0.2 m are compared for a period from January 12 to
14. The agreement is very good for the temperatures at 0.1 m, but the temperatures
measured at 0.2 m are slightly lower than the calculated temperatures. The difference is

less than 0.5 degrees.

5.3 - Summary and Conclusion

study, were compared to the results of experiments and field measurements. The
experimental studies of Drouin and Michel, and the field data collected by Fleet
Technology Ltd. at the NRC Test Basin, Arnprior Dam, and Paugan Dam were used in
the comparisons. Most of the measured data used in the comparisons of the NRC Basin
Test were available in digital form, but the other data were read from the graphs and were
subjected to reading errors. Some of the general conclusions from the comparisons are

discussed here.
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It was observed that good temperature predictions are possible with the thermal
types of boundary conditions were used. In the NRC Basin Test, where the data for the
wind speed and solar short wave radiation were avcilable, the air temperatures were used
to calculate the temperature distributions through the thickness of the ice cover including
the ice and snow surface temperature. The agreement was good except for the ice surface
temperature. This was attributed to the high temperature gradient that exists at the ice
surface. The results were also sensitive to the amount of solar short wave radiation. At
the dam sites, where the wind speed and solar radiation data were not available, the ice
surface temperatures were used to calculate the temperatures through the thickness of the
ice cover. The agreement was good in most of the cases.
In the stress simulations, it was observed that the predicted stresses depend very much

on the choice of mechanical properties. The mechanical properties suggested by Drouin

measurements, For the Paugan Dam however, during the 1991-92 winter, the stresses
obtained using the snow-ice properties were very low compared to the measured stresses
while the mechanical properties suggested by Cox gave the best agreement. Also,
information concerning grain structure was incomplete. Therefore, it was not possible to
reach to a firm conclusion with the available information about which mechanical
properties are the best. More field measurements in different regions are required to
obtain a better understanding about the mechanical properties of ice.

A constitutive model consisting of a linear temperature dependent spring and a
nonlinear temperature dependent dashpot was used in the simulations (Maxwell unit in
Fig. 4.2). This model can give a reasonable prediction of the ice stresses, has well defined

mechanical properties and requires less computing time than a model including the delayed

loading (i.e. no water level changes). The stress history was observed to have a significant
effect on the predicted stresses. In order to include the effect of stress history, long
periods were used and in some cases the simulations started one or two days before a

particular thermal event. Cracking of the ice should also be considered in the analysis. In
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the simulations, the tensile strength of ice was set very close to zero (0.01 MPa), since the
tensile stresses measured were close to zero. This is probably the effect of cracks that are
present in the ice. The effect of water level changes was included by adding a uniform
gravitational force which changed according to water level fluctuations. The calculated
method compared very well with the stresses for the NRC Basin Test but did not show the
fluctuations that occurred in the stresses at the dam sites. It was suggested that probably
other mechanisms such as arching action produced the stress fluctuations. The agreement
between the measured and calculated stresses was good in most of the cases. In situations
where above freezing temperatures were recorded in the ice sheet, some discrepancies
were observed between the measured and calculated stresses. During these periods the
calculated stresses were usually higher than the measured stresses and afler these periods
the measured stresses were higher. In some cases even compressive stresses were
recorded during the cooling periods. These discrepancies were attributed to the melting
and freezing of the ice cover. The cracks that were caused by water level changes or

snow remcval operations also affected the stresses in the ice cover.



Name Formation Grain size and | Orientation Location
shape of c-axis -
Pl calm surface, small large to extra vertical reservoirs, lakes,
temperature gradient large, irregular ~ calm rivers
P2 calm surface, large medium to random or | lakes, reservoirs,
temperature gradient extra large, vertical calm rivers
tabular or
needle like .
P3 agitated surface, fine to medium, random lakes, reservoirs,
nucleated from snow tabular ~ rivers, seas
P4 nucleated by snow fine to medium random lakes, reservoirs,
seas
S1 calm water, like P1 and | large to extra vertical lakes, reservoirs,
P2 large, columnar ~ calm rivers
S2 like P2, P3, and P4 large to extra | randomin | lakes, reservoirs,
large, columnar | horizontal seas
plane _
S3 bottom of thick ice columnar aligned in | frozen lakes, thick
sheets horizontal | sea ice, arctic ice
plane islands
S4 congealed frazil slush | fine to medium, | random turbulent flows
tabular .
S5 drained congealed frazil | fine to medium, random where water has
slush angular drained from slush
Tl snow-ice fine to medium, random where saturated
round to snow freezes
angular -
T2 drained snow-ice fine to medium, random where water level
well rounded varies rapidly
T3 layers of columnar ice
on top of primary ice o
R agglomerate ice various ice
types and forms -

Table 5.1 - Classification of different ice types (Michel, 1979).
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Location " Period of Recurrence (Y&arfs)r ]
s 10 25
Fort St. John, B.C. 148 159 16.4
Prince George, B.C. 1 199 24.9 272
Vancouver, B.C. 104 129 | 140
Watson Lake, Y.T. | 167 204 | 222
Yellowknife, NW.T. |  13.1 169 | 18.6
Calgary, Alta. | 212 | 251 26.8
Edmonton, Alta. 1 156 7i7f7' 186
Vermilion, Alta. 178 | 217 234
Regina, Sask. 177 | 202 212
Saskatoon, Sask. 16.1 190 | 202
Churchill, Man. | 135 | 165 | 179
The Pas, Ma. T 165 189 | 201
Winnipeg, Man. 134 156 166
Armstrong, Ont. 247 268 | 278
Earlton, Ont. 195 | 222 233
London, Ont. 7 13.9 ”ﬁjl 7 18.6
Ottawa, Ont. 151 17.7 188
Pagwa, Ont. 226 | 254 | 271
Montreal, Que. 148 17.4 18.6
Sept Iles, Que. 16,7 194 | 206
Charlottetown, P.E. I. 12.4 Y T 154
Gander, Nfld. N3 | 127 | 134
Goose, Nfld. 169 | 216 | 237

Table 5.2 - Maximum increase in air temperature(C°), with duration of six hours for 23

regions in Canada (reproduced from Kendall, 1968)
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Temperature Bergdahl Cox Drouin & Drouin & Drouin &
(C) Michel Michel(S1) | Michel(S1)
(snow-ice) | §=1x10"s" | §=1x107"s"

-30 8296 5440 2130 1915 2297
-28 8150 5344 1988 1831 2196
-26 8003 5248 1857 1752 2101
-24 7857 5152 1737 1678 2012
-22 7710 5056 1626 1607 1928
-20 7564 4960 1523 1541 1849
-18 7418 4864 1430 1479 1774
-16 7271 4768 1343 1420 1702
-14 7124 4672 1262 1364 1636
-12 6978 4576 1187 1311 1573
-10 6832 4480 1118 1261 1513
-8 6686 4384 1054 1214 1456
-6 6539 4288 994 1169 1402
-4 6393 4192 938 1126 1351
-2 6246 4096 887 1086 1302
0 6100 4000 839 1047 1256

Table 5.3 - Young’s modulus(MPa), predictions from different equations.




162

Temperature Bergdahl Cox Drouin & Drouin &
(o) Michel Michel
(snow-ice) (S1)
-30 3.6x10™" 4.4x10" 1.9x1071° 4.5x10™"
-28 4.6x10™" 5.0x10™" 2.7x107% 5.7x10™"!
-26 5.8x10™ 5.8x10™"! 3.7x10" 7.3x10™"
24 7.3x10™" 6.7x10™" 5.2x10™" 9.2x10™"
=22 9.2x10™ 7.9x10™"! 7.1x107" 1.2x10"
-20 1.2x10°" 9.5x10™" 9.8x107" 1.5x10
-18 1.5x10°7"° 1.2x107" 1.3x10? 1.8x107"
-16 1.8x107"° 1.5x10"° 1.8x10” 2.3x107"
-14 2.2x1071° 1.9x107"° 2.5x10” 2.9x10™"
-12 2.8x107° 2.5x107° 3.3x10° 3.6x10™"
-10 3.4x10°"° 3.6x10™ 4.4x107 4.4x10""
-8 4.2x101° 5.5x10"° 5.9x10? 5.4x10"°
-6 5.2x10°"° 9.6x10"° 7.9x107 6.7x107°
-4 6.3x10° 2.1x10? 1.0x10* 8.2x10"
-2 7.7x10°1° 7.9x10° 1.4x10"* 1.0x107
0 9.3x101° divided/0 1.8x10° 1.2x10”

Table 5.4 - Viscous strain rate(s”') for 6 = 0.5 MPa, predictions from different equations.
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Figure 5.1 - Plane strain compression deformation behavior of S2 columnar ice under
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surface of the ice cover (reproduced from Frederking, 1977).
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Figure 5.15 - Deflected shape of the ice cover during water level changes.
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Figure 5.16 - Layout of sensors and the slots, and side view of a typical sensor array at

NRC Basin Test.



i
f c6/.1
B 6/0/L
R c6/9/1
§ c6/9/1
B E6/5/1
X £6/5/1
B o
B c6/v/L
f corviL
§ co/c/L
§ ce/c/L
§ coe/1
¥ <612/l
B cerz/L
f co/LL
B co/u/1
¥ co/1c21
R zererzi
f z6/16z1
B z6r0crzL
 z6i0cr21
R zc/62/21
f zei62/21
N zo/62/21
R zei02/21
j corezre
¥ 22221
g coiere
8 zo1L2r2)
j zor0erz,
¥ zo/0z/21
§ corsere
W 2652721
¥ 26152721

10

-15 ¢

() aunjesadwa,

20 +

-2151

Date

Figure 5.17 - Measured temperatures at NRC Basin Test (12/25 to 1/7).



176

0.2 20
== == Calculated (no cracks) 1
<—=Calcuiated (with cracking)|
J ™ — =« Measured (BP21)
0.1 1 ;o\ — - - — Measured (BP31) 110
Event 1 a__ | ——o— ce surface temperature
0 £a % , 0
7 - .ﬁ.\. .._...,,.\,J__._.. ..“:........ ! ,
;s,,h g 4\ 5
— A Lo =
g N\ L ™ - Va o
w 0.1 “\i N - fr. 1-10 ®
“,_-_rh i_‘ . fo> Y 3
in « sﬂ , - ,,,J, ”m
v .“._ Xy, Vd N b -,_“‘_. _“.E__ i,._.,,j_”____,. ,__s._”a . -
§ sg \ n L . S, B .2 ,.,,_.____r,,.ﬁ_,_ ..,.____.._n. e S “.s\f -
02 ¢ | J " N/ A\ oA S EETRET L
| i } v\
- I aJ / \
' ﬁ, J '~ |
,, [ ..; .,..,,. ,_.; | —— .
] ‘___ k .,_,, ..,:. ~, J
0.3 4 Py Fx 1 -30
.,. 1} ,__,i,..
__,,. ol
(' E&,}.,, Event 2 |
Ry P <
N < \J,
04— Pttt ap
TTTFPRIRIRIITNBBBIBZRNRIISSEII L
Time [h)
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Figure 5.22 - Measured and calculated temperatures at NRC Basin Test (1/10, 4:20 to

1/11, 19:40)
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Figure 5.29 - Measured and calculated temperatures at different depths below the ice -

surface at Amprior Dam (2/12, 0:00 to 2/16, 0:00).
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6-_A STUDY OF INDIVIDUAL FACTORS INFLUENCING THERMAL ICE

The amount of pressure exerted by an expanding ice sheet depends on many factors,

Some factors such as the meteorological conditions affect the temperature field in the ice

necessary for the prediction of ice pressures. This chapter contains an investigation, the
purpose of which is to identify the parameters that have the most effect on ice pressures
and to determine how ice pressures are affected by changes in these parameters, The

investigation is divided into two parts. In the first, the focus is on the thermal aspects of

covers most of the parameters that affect the temperatures. However, in the mechanical
part of the investigation it was not possible to cover all the different factors. For example
when considering reservoir geometry, it is impossible to model all of the possible cases.
Therefore the study is limited to some specific situations chosen with the objective of
gaining some understanding of this aspect of the problem.

When reading this chapter, it should be remembered that the results presented are
based on a numerical model. As such they depend on a number of inherent assumptions,
particularly those in the constitutive model. The constitutive model used is considered to
be valid because it includes the basic features of ice behavior and it has been verified by
comparison with experimental and field data. The material properties used are those that
in most cases gave the best agreement with experimental and field data. However, due to
complexity of the ice behavior and the many factors involved in the problem being

studied, care must be taken when interpreting the numerical predictions. The objective
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here is not to produce results that can necessarily be relied upon in a quantitative sense,
but rather to investigate behavior and to assess the role that individual factors play.

As part of the process of formulating the analysis presented in this chapter, it was
necessary to choose a suitable form for the temperature time history. Usually linearly
varying or sinusoidally varying temperatures are used for the thermal stress analysis.
Drouin and Michel performed a study on air temperature variations in Quebec City and
concluded that most often they exhibited a sinusoidal shape (Drouin and Michel, 1971).
The type of the temperature variation used in their study was half a cosine wave varying
between - and m. If one wants to analyze situations involving cooling, this type of
temperature history is a convenient choice. The temperature variation applied in this study
is similar to that used by Drouin and Michel and is obtained from the following equation:

0 =6; +Ga,,,(l~cos—2—7z) . (6.1)
T3 .

where

0; = initial temperature

8.m = amplitude of temperature variation

To = period of temperature variation.

In the thermal analysis, equation 6.1 is used as the time history for the air temperature.
If short -wave solar radiation is not included in the analysis, the temperature history at any
point through the thickness of the ice cover, will have a periodic form. For stress analysis
the temperature variation is applied to the ice surface. Then the temperatures through the
thickness of the ice cover are obtained from the thermal analysis. The period selected for
most of the cases is 24 hours which represents a daily temperature variation. Other
periods that are used to study the effect of duration are 6, 12, 48 ,and 96 hours. The
initial temperature is the minimum temperature, and the maximum temperature is reached
after the time corresponding to the half of the period. For example in Fig 6.1 it is assumed
that the air temperature is -20°C at the start of the problem (mid-night), reaches to 0°C at
noon, and decreases again to -20°C by mid-night.

In the thermal parameter study the comparisons are made for ice surface temperature

and are based on the maximum temperature, minimum temperatures, and maximum
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temperature change or twice the amplitude of témperature wave. In the stress analysis the
comparisons are made for the maximum stress in the top layer, and the stress resultants at
the Gauss points. In some cases the reactions or the forces in boundary elements are used
to assess the line load on the structure. The stress resultants are obtained by integrating
the stresses through the thickness. The stress in each layer is multiplied by the thickness
of that layer, and the results are added.

The range of the thicknesses considered in this chapter cover the range encountered
for fresh water ice in most parts of Canada (below 60° latitude). Ice covers with a
thickness of 0.1 m to 0.2 m are considered thin, and ice covers with a thickness above

0.7 m are called thick.

6.1 - Parametric Study, Thermal Factors

When performing a thermal analysis in an attempt to simulate a particular field
situation it may not be possible to obtain all the inpgt data required unless an effort has
been made to measure all of the weather data and ice conditions. If this data is not
available, there is a need to know which factors are important and which factors are not,
as far influesicing the temperature distribution in the ice. In the first part of this section a
sensitivity analysis is performed on a number of parameters, and the effect of each on the

temperature distribution is studied. These parameters include: ice type and material
cover. In these cases the initial air temperature is -20°C, the amplitude is 10°C and the
period is 24 hours. In the next part the temperature distribution in the ice cover is studied
for different amplitudes and periods of air temperature increase and different ice thickness.

6.1.1 - Ice Type and Thermal Properties

The thermal and mechanical properties of ice depend on the ice type, which in turn

depends on the conditions that existed at the time the ice was formed. At any particular
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site, it is difficult to predict which type of ice will form. Thus there is value in
understandiﬁghcw the ice type affects both thermal and mechanical behavior of an ice
cover,

Although many different types of ice occur naturally (Table 5.1), there are actually two
broad categories of ice found in most lakes and reservoirs. These are granular ice like

snow-ice, and solumnar S2 ice. A thermal analysis is performed to compare the

conditions. The thermal properties used in the analysis are those suggested by Bergdahl
(1978) (Table 3.6). The comparison is made for two different ice thicknesses, with and
without short-wave solar radiation. It is assumed that the sky is clear, the wind speed is
2 m/s, and the relative humidity is 80%. In the analysis that includes short-wave solar
radiation, the date is set equal to January 1 and the latitude is assumed to be 60°. The time
at the start of the problem is assumed to be 12:00 a.m.

the analysis. It can be seen that with no short-wave solar radiation, there is not much
difference in the temperatures obtained for different ice types. When the shart;\ifave solar
radiation is considered, the temperatures are higher for snow-ice. Since in nature ice
covers usually consist of columnar ice with a layer of snow-ice on top, another case is
included in the study. In this case the ice cover is assumed to be of columnar ice, but the
coefficient of reflection from the surface is chosen to be equal to the coefficient of
reflection for snow-ice. The results for this case are included in Figs. 6.1 and 6.2 and are
identified by the caption, columnar ice (snow-ice at surface).

Compared to columnar ice, the coefficient of reflection for snow-ice is lower and the
coefficient of absorption is higher. Therefore when the short-wave solar radiation is
considered the temperatures in snow-ice are higher. The temperatures predicted for
columnar ice with snow-ice at the surface are not much different from the temperatures
for columnar ice. This indicates that most of the difference between the temperatures in
the columnar ice and those in the snow-ice are due to the different coefficients of

absorption.



193

If the effects of short-wave solar radiation are not considered, then three material
properties affect the temperature distribution in the ice. These are the density p, the
conductivity k, and the specific heat C,. The combined role of these parameters in the
equation of thermal diffusion (equation 3.1.2) is through the diffusivity (k/p C,). Some
guidance as to the range of values for the diffusivity of naturally occurring ice, can be
investigators for the thermal properties of ice can be combined in such a way as to obtain
extreme values for the diffusivity. The resulting maximum and r’ninimum values for the
diffusivity, and the associated values for p, k and C;, can be summarized as follows.
Kmax=2.508 J/(C°.m.s) ' kmin=2.090 J/(C°.m.s)
Cpmin=1800 J/(kg.C°) Cpmax=2120 J/(kg.C°)
Pmin=850 kg/m* Pmax=925 kg/m’
diffusivitym=1.64x10 m/s* diffusivitymin=1.07x10" m/s*

Thermal analyses are performed using these extreme values of diffusivity. The wind
speed, relative humidity, and cloud cover are the same as those described at the start of

this section. The results for the ice surface temperature are shown in Fig. 6.3 for two ice

of importance as far as thermal stresses are concerned, is almost the same for the two
extremes of diffusivity. For thin ice sheets where the temperature distribution through the
thickness is almost linear, the amplitude of the temperature changes is a maximum at

surface. Therefore the difference between the maximum and minimum temperatures will

change in the difference between the maximum and minimum temperatures for the
extreme values of diffusivity was less than 0.8°C. The conclusion is that when short-wave
solar radiation is not considered the temperatures are not very sensitive to the thermal

properties of the ice.
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6.1.2 - Relative Humidity, Cloud Cover, and Wind Speed

In this section the effect and relative importance of the ambient conditions on the
temperature distribution is studied. The effect of short-wave solar radiation is not
included in the analysis since it is studied in another section. The three factors considered
are the relative humidity, the cloud cover, and the wind speed.

The relative humidity is normally expressed as a percentage of the saturation vapor
pressure for the corresponding air temperature and can vary from zero to one hundred
percent. The cloud cover is expressed as a fraction, in eighths, with the extremes 0/8 and
8/% corresponding to clear sky and complete cloud cover respectively. In nature, the wind
speed typically does not remain constant for very long. In a thermal analysis for a specific
time and site, it is possible to read the wind data from an input data file. But when the
wind data is not available a constant value is assumed in the analysis. The possible wind
speeds cover a very wide range and it is difficult to assign an extreme maximum value for
wind speed. Therefore the wind data recorded by Fleet Technology Ltd. at the NRC
Basin test was used as a guide in selecting values for this study. Most of the recorded
data were below 5 m/s. The maximum wind speed recorded, which occurred for a very
short time only, was 6.95 m/s. Values of 0 m/s and 6 m/s were subsequently selected as
the minimum and maximum wind speeds. A wind speed of 2 m/s, a cloud cover of 4, and
a relative humidity of 80% are adopted as the normal conditions. In each test two
variables are kept constant at the normal value, while the other varies between the
maximum and minimum range.

The results for this part of the study are summarized in Table 6.1. The table shows the
minimum and maximum calculated surface temperatures along with the maximum
temperature change, for different combinations of wind speed, cloud cover, and relative
humidity. The first two rows show the effect of wind speed. With higher wind speed, the
amount of heat transfer due to convection increases. Therefore the maximum temperature
increases, the minimum temperature decreases, and the difference between these

temperature extremes increases. Rows three and four show the effect of cloud cover.
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The cloud cover affects the absorbed long-wave radiation. With complete cloud cover the
long-wave radiation emitted from the atmosphere, and the part that is absorbed by the ice
cover increase. The effect is that both the minimum and maximum temperatures increase.
It can be seen that when short-wave radiation is not considered, the effect of cloud cover
is not significant compared to the other parameters considered in Table 6.1. Rows five
and six show the effects of relative humidity. The relative humidity affects the heat fluxes
due to both convection and absorbed long-wave radiation. It can be seen that with
increasing relative humidity, both the minimum and maximum temperatures increase as
well as the difference between the extremes. In the last three rows the combination of the
extreme cases are compared to the normal condition. In row seven the extreme cases are
combined in a way that would increase the maximum temperature. This combination also
increases the difference between the maximum and minimum temperatures. In row nine

the other extremes are combined, and row eight shows the normal conditions.

6.1.3 - Parameters that Affect the Short-wave Solar Radiation

In this section the parameters that affect the short-wave solar radiation are studied.
These include: time of the year, latitude, and cloud cover. The other parameters are
selected to represent a relatively normal condition. The wind speed is chosen to be 2.0
m/s, and the relative humidity is chosen to be 80%. The results are presented for two ice
thicknesses (0.2 m and 1.0 m) and for both snow-ice and columnar ice.

Table 6.2 shows how the maximum temperature at the ice surface is affected by
changes in the parameters that affect the short-wave solar radiation. The results shown in
rows one and two are for two reference cases having 0/8 and 8/8 cloud cover respectively,
and in which short-wave radiation is not included. The difference in the calculated
maximum temperature due to the change in cloud cover is about 1.5°C for the thin ice and
about 2°C for the thicker ice. In the third and fourth row the effect of the cloud cover is
shown when the short-wave solar radiation is considered in the analysis. When the short-
wave radiation is included the effect of the cloud cover is not very significant for the

columnar ice, especially for the thin ice. Snow-ice has a higher coefficient of absorption.
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Therefore the difference is larger for this type of ice. However, even for snow-ice the

difference is small compared to the effect of other parameters.

In the fifth row of Table 6.2, results are shown for a case with a lower latitude. It can
be seen that the latitude has a significant effect on the temperatures, especially for snow-
ice. Note that the thermal analysis program does not account for melting and therefore
positive temperatures are obtained for this case. The results in rows three, six, and seven
on the first of January compared to the first of December or March. The differences are

most significant for the snow-ice.

6.1.4 - Snow Cover

The conductivity of snow is very low compared to that of columnar ice or snow-ice.
Therefore a snow cover on an ice sheet acts as an insulating layer and reduces the effect
that air temperature changes have on the temperature distribution through the ice cover.
In this section the effect of the snow layer on the ice surface temperature is studied. The
study is performed for a thin and a thick ice cover. The effect of the short-wave solar
radiation is not included in the analysis. The wind speed is 6 m/s, the relative humidity is
100%, and the cloud cover is 8/8.

In Fig. 6.4 the maximum and minimum ice surface temperature, and the difference
between these values are shown for different ice thicknesses, With increasing thickness of
the snow cover, the temperature inside the ice cover approaches the temperature at the
bottom surface which is 0°C. Since in the analysis the maximum air temperature is 0°C,
the maximum ice surface temperature does not change very much with changing snow
thickness. However the minimum temperatures increase and the maximum and minimum
values get closer with increasing snow thickness. The difference between the maximum
Therefore with a 10 cm snow layer the variation in ice surface temperature is only 2.7°C

even though the air temperature varies from -20°C to 0°C. Although the maximum and
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minimum temperatures are different for thin and thick ice covers, the temperature changes
are almost the same.

The insulating effect of snow covers is well known and it is confirmed in the field data
collected by Fleet Technology. It was observed that significant thermal stress events did
not occur after heavy snow falls. The effect of the snow cover in the field situation is due

to both the insulating effect and the fact that the weight of the snow can cause the ice
temperature remains constant until freezing occurs.

6.1.5 - Thickness of the Ice Cover, and Period and Amplitude of Temperature

Increase

In order to study the effect that ice thickness has on the vertical temperature
distribution, ice covers with thicknesses ranging from 0.1 m to 1.0 m are analyzed; The
numerical tests are performed for the extreme conditions with the wind speed taken as
6.0 m/s, complete cloud cover, and a relative humidity of 100%. Short-wave solar
radiation is not included in the analysis. The air temperature is varied according to

equation 6.1 with the minimum air temperature ranging from -40°C to -10°C, and the

hours.

Figures 6.5 and 6.6 show the maximum and minimum ice surface temperatures versus
ice thickness. The results are presented for different minimum air temperatures and
different periods. It can be seen that with inéreasing thickness both maximum and
minimum temperatures decrease and the curves become flatter. Also with increasing
period the maximum temperatures increase and the minimum temperatures decrease.

In a thin ice sheet the temperature distribution is affected by the temperature at the
bottom surface, but with increasing thickness the effect of the bottom temperature
reduces. Thus for thick ice covers the temperature distribution gets closer to the
temperature distribution corresponding to a semi-infinite body with a heat source (or sink)

at the surface. The temperature at the bottom surface of the ice sheet is at the freezing
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point which can be considered a high temperature compared to the air temperature.

Therefore with increasing thickness, as the effect of the bottom boundary decreases, the

increasing period the temperatures get closer to the air temperature. This is shown more
clearly in Figs. 6.7 and 6.8 where the maximum ice temperature change (maximum
temperature minus minimum temperature) is normalized with respect to the maximum
change in the air temperature. Figure 6.7 corresponds to ice surface temperature, and
Fig. 6.8 shows the temperature change at 1/4 thickness below the ice surface. It can be
seen that for a 24 hour (open symbols), and 48 hour periods (closed symbols), all the
curves corresponding to different minimum temperatures fall on top of one another. This
means that the amplitude of the temperature waves through the thickness depends on the
amplitude of the air temperature history and not on the average air temperature during the
cycle, Results for a 12 hour period and for a 96 hour period are also plotted for
comparison. These results indicate that with increasing period the ice surface temperature
amplitudes get closer to the air temperature amplitude.

The amplitude of temperature variation through the thickness of an ice cover for a
sinusoidal variation in surface temperature was discussed by Sanderson (1984). It was
stated that an ice surface temperature wave becomes attenuated with depth according to
equation (2.14.1). Therefore for a constant diffusivity and period, the amplitude of the
temperature wave at a certain depth will depend on the air temperature amplitude. The
~ results in this section indicate this is also true for the case where convective heat transfer
and long wave radiation are also considered. For small thicknesses the amplitudes are
affected by the bottom boundary condition, but with increasing thickness the effect of the
bottom boundary condition becomes less, and the normalized amplitudes at the ice surface
become relatively independent of ice thickness.

Figure 6.8 shows results for a point located 1/4 thickness from the top surface. Since
the actual distance to the quarter point depends on the full thickness, it is observed in
Fig. 6.8 that the relative temperature amplitude decreases with increasing thickness.

Figure 6.9 shows the temperature distribution through the thickness at the times of

maximum and minimum surface temperature, and also the temperature changes between
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these two cases. Results are presented for two different periods and four different
thicknesses. It can be seen that for the thinnest case of 0.2 m, the temperatures and the
temperature change are both linear through the thickness and the effect of the period is
slight. For a medium thickness (h=0.4 m), temperature change still occurs through
essentially the whole thickness but the results are more affected by the period. For a 24
hour period the distributions of temperature and temperature change show more non-
linearity compared to those for the 48 hour period. Also, the temperature change is less
significant in the lower half of the ice sheet. For the two thickest cases (0.7 m and 1.0 m)
the results are similar with only the upper part of the ice sheet undergoing significant
temperature variation with time. The thickness of this active zone increases from 0.3 m

for the 24 hour period to 0.4 m for the 48 hour period.

6.2 - Mechanical Factors

In this section the factors that affect the stress distribution in ice covers are studied.
These factors include, thickness of the ice cover, period of temperature increase, initial
temperature, amplitude of temperature change, underlying water, boundary conditions,
geometry of the reservoir, different shore lines, and stiffness of the resisting structure. For
some factors, like the geometry of the reservoir, it is not possible to cover all of the
different possibilities. Therefore the study is performed for some special situations that
would give an understanding of the problem.

The stress analysis is performed for a periodic change in the ice surface temperature.
The temperature distribution through the ice thickness is obtained by a thermal analysis.
In the following, unless stated otherwise, it can be assumed that the initial ice surface
temperature is -10°C, the amplitude of the temperature variation is 5°C, and the period is
24 hours. |

Issues concerning the mechanical properties of ice were discussed in Chapter 5. In
the present chapter only one set of mechanical properties is selected to study the effect of

the other parameters that affect the ice pressure. Since in the previous studies the
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mechanical properties suggested by Drouin and Michel for snow-ice gave the best
agreement in most cases, those properties are used here. Cracking of the ice is considered
with the tensile strength of ice taken to be 0.01 MPa. The choice of this value is made on
the basis of the field data which showed tensile stresses were very close to zero. In most
of the numerical tests presented in this section the analysis is performed for clamped
boundary conditions, and a single element mesk: as described in section 5.2.1(Fig. 5.12),
with ten layers through the thickness is used. The exceptions are cases where the
geometry of the ice sheet is considered important. This happens when the rotations or

displacements are not restrained at the boundaries.
6.2.1 - Number of Layers. Through the Thickness

Since the finite element analysis makes use of a number of layers through the ice
thickness, the question arises as to the proper choice for the number of layers. Increasing
the number of layers increases the computing time while using a small number of layers
decreases the accuracy of the analysis. To address this issue a simple test is performed
using two different choices for the number of layers (eight and ten). The stress resultants
and the stresses in the top layer are then compared for three different thickness cases,
0.2m, 0.4 m, and 1.0 m. The maximum values are shown in Table 6.3. Cgmpaﬁng the
results for the eight and ten layer cases, the largest differences in maximum stress resultant
and stress in the top layer are less than 0.5 kN/m and 0.015 MPa respectively. These

changes are considered to be small and indicate there is no need to use more than ten

layers.
6.2.2 - Thickness of the Ice Cover
Thickness of the ice cover is a factor that affects both the temperature and the stress

observed that in a thin ice sheet the whole thickness undergoes temperature change, while

in a thick ice sheet the temperature changes are significant only in the upper part. The



201
stress distribution in an ice cover depends on both temperature changes and boundary
conditions. For a clamped case where the rotations and displacements are restrained at
boundaries the stress at each layer will depend only on the temperature changes of that
temperature changes. For example in a thin ice sheet the whole thickness will be stressed,
but in a thick ice sheet the stress in the lower parts will be close to zero. When the ice
sheet has freedom to move or rotate along parts of the boundary, the interaction between
the layers will change the pattern of the stress distribution. In these cases the stresses due
to bending and in-plane deformation will be superimposed on stresses due to temperature
changes. In this section only the stresses and the stress resultants in the clamped case are
studied. It will be seen later that the stress resultants for the clamped situation provide a

To assess the role that ice thickness plays in the thermal stress problem a series of
numerical tests are performed. In these tests the ice thickness is varied from 0.1 to 1.0 m.

The thermal loading includes two cycles and a single element mesh is used. For this

comparisons are based on the maximum stress in the top layer and the stress resultant at
one of the Gauss points.

Figure 6.10 shows a comparison between the stresses in the top layer versus time for
three different thicknesses, 0.2 m, 0.4 m, and 1.0 m. The first two values are reasonable
for early and late season. For example in the data collected by Fleet Technology Ltd.
most of the thermal events occurred when the thickness of the ice cover was between
0.15 m and 0.5 m. The thickness of 1.0 m was selected to represent a very thick ice sheet.

Figure 6.10 shows that the stress in the top layer does not change very much with the
thickness and only slightly decreases with the increasing thickness. In the power law creep
the maximum stress depends on the strain rate and fluidity parameter, n, which is a

function of temperature. In the layered model the stress, the temperature and the

Since the number of layers is constant, with increasing thickness, the thickness of each

layer increases and the mid-point gets further from the surface. The temperature rate is
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rate at the mid-point of the top layer however, decreases slightly with increasing thickness
bmwwhyﬁﬁMmﬁmﬂMaﬁkaTMMhuMmmﬁhﬂEmﬂgﬁﬂﬂdmﬂm
change significantly with thickness but decreases slightly with increasing thickness. The
peak stress calculated during the second cycle is observed to be lower than that during the
first cycle and the magnitude of the stress during the second cycle depends on the tensile
strength of the ice sheet. The maximum stress resultant, the maximum stress in the top
layer, and the times of their occurrence during the first cycle are shown in Table 6.4 for
different ice thicknesses Similar results, but for the second cycle, are shown in Tables 6.5
and 6.6 for tensile strengths of 0.01 and 0.5 MPa respectively. It can be seen that with a
higher tensile strength the maximum compressive stress during the second cycle decreases.
The reason for this behavior is explained subsequently in section 6.2.10, which deals with
tensile cracking.

Tables 6.4 to 6.6 also show that with increasing thickness there is a greater delay
before the maximum stresses and stress resultants occur. It can be seen that the peak
stress in the top layer occurs before the peak stress resultant. Also the time delay between
the two peaks increases with increasing thickness. This indicates that the penetration into
the ice sheet of the effects of the transient surface temperature is an important factor
affecting the maximum load. Figure 6.11 shows the stress distribution through the
thickness of the ice cover at the time of the maximum stress resultant. Results are shown
for three different thicknesses. It can be seen that in all of the cases stress is very depth
dependent. For the thinnest ice sheet (0.2 m), the time at which the maximum stress
resultant occurs is close to that for the maximum stress. Therefore the stress is highest in
the first layer. For the two thicker cases (0.4 m and 1.0 m), the maximum stress resultants
occur after the temperature at the ice surface has started decreasing. Therefore the stress
in the top layer is lower than the stress in the second layer. Figure 6.11 also shows that
for a thick ice cover the effect of temperature variation with a period of 24 hours does not
reach the bottom layers and the stresses are close to zero in the lower parts of the ice

sheet.
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Figure 6.12 shows the stress resultant versus time for the same conditions as Fig. 6.10.
It can be seen that for the relatively thin 0.2 m ice sheet the maximum stress resultant
occurs simultaneously with the maximum surface temperature and the value of the
maximum stress resultant does not change between temperature cycles. As the ice
thickness increases there is a greater delay between the maximum temperature and the
maximum stress resultant. Also for the thickest case considered, a cumulative effect
between cycles is observed. This indicates that the stresses from the first temperature
cycle are not dissipated before the second cycle begins. Thus for the 1.0 m ice, the
predicted peak stress resultant increases between the first and second temperature cycle.
As seen in Fig. 6.12, the peak value of stress resultant depends on the ice thickness
and can be different between temperature cycles. The stress resultant during the second
cycle is also affected by tensile cracking and thus by the tensile strength. These affects are
shown in Fig. 6.13 where the peak stress resultant for both the first and second
temperature cycles are plotted as functions of ice thickness. Second cycle results are
shown for two values of tensile strength, 0.01 and 0.5 MPa. It is observed that the
maximum stress resultant during the first temperature cycle increases with ice thickness
until around 0.5 to 0.6 m after which it remains relatively constant. The peak stress
resultant for the second cycle is less than that for the first cycle for thicknesses less than
0.6 m. Beyond a thickness of 0.6 m the second cycle peak is higher and it continues to
increase with thickness. However, since the slope of the curve decreases with increasing
thickness, it is expected that the second peak value will eventually flatten out. Increasing
the tensile strength of the ice cover slightly decreases the maximum stress resultant during

the second cycle.
6.2.3 - Period of Temperature Increase

The magnitude of the prescribed temperature change and the time over which it occurs
both affect the stress distribution and the stress resultant in the ice cover. The role played
by the period of the temperature change is complex. On one hand, increasing the duration

of the temperature rise, reduces the strain rate and the hence the stress in the ice. On the
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other hand, a longer duration provides more time for conduction of heat into the ice, and
the zone undergoing significant temperature change will be thicker. In order to study
these effects, ice covers with different thicknesses are analyzed for prescribed harmonic
surface temperature variations having different periods. The minimum temperature is
-10°C, and the amplitude is 5°C. A 24 hour period approximates a typical daily
temperature cycle.

Figure 6.14 shows the predicted maximum stress in the top layer versus the period of
the prescribed surface temperature. As expected the stress in the top layer decreases with
increasing period due to the lower strain rate. At small periods there is not enough time
for the penetration of heat, and high stresses exist only near the surface. Since in the finite
element model the number of layers through the thickness is constant, with increasing total
thickness the thickness of each layer increases. For a thin ice sheet, the mid-point of the
top layer is very close to the ice surface, and shows the high stress that occurs near the
surface for small periods. With increasing thickness the mid-point of the top layer gets
further from the ice surface and therefore the stress decreases. However, as the period
increases the peak stress tends to become independent of ice thickness. For the 1.0 m ice
sheet the top layer does not capture the high strain rate corresponding to the 6.0 hour
period, so the stress increases when the period increases from 6 hours to 12 hours.

Figure 6.15 shows the maximum stress resultants versus the period of the temperature

cycle. In the thin ice sheet, due to the relatively linear distribution of the temperature

produced when the heat penetrates into the ice sheet, and the maximum stress resultant
increases with increasing period. Figures 6.16 and 6.17 show the maximum stress in the
top layer and the maximum stress resultant versus the thickness of the ice cover. The
same trends as discussed earlier in the paragraph can be seen in these figures as well. It is
generally believed that the ice pressure does not increase with the thickness when the
thickness of the ice cover is more than 0.5 m. According to Fig. 6.17 this is true for daily

temperature changes. However for long duration (periods of the order of 48 hours or
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greater) temperature changes, the stress resultant is thickness dependent for thicknesses

greater than 0.5 m.
6.2.4 - Initial Temperature

Under a constant strain rate the stress in ice increases with time until it reaches a level
where the viscous strain rate corresponding to that stress equals the strain rate. Then the
stress remains almost constant at that level. The maximum stress is therefore controlled
by the fluidity parameter, v, and the stress exponent, n. With increasing fluidity
parameter, the maximum stress decreases, for a given strain rate. The time to reach to the
maximum stress depends on the modulus of elasticity, E;. With increasing modulus of
elasticity the time to reach the maximum stress decreases. The apparent modulus of
elasticity and the fluidity parameter are both temperature dependent. Table 5.3 shows the
values of E; and 1, at different temperatures. It can be seen that at lower temperatures E;
is higher and m; is lower. Therefore with the same strain rate the maximum stress is
greater for lower temperatures and the time to reach the maximum is less. Consequently
higher stresses are produced at low temperatures. For the snow-ice the rate of change of
E, with temperature is higher at low temperature, and the rate of change in n, is lower.
The fluidity parameter increases rapidly at temperatures close to zero. Therefore with a
constant strain rate as the temperature increases the stress rate decreases until the stress
reaches a maximum value. Then due to significant relaxation at high temperatures despite
the increase in temperature the stress decreases.

With the periodic surface temperature history used in this study, for a particular
prescribed amplitude and period, the final stress distribution and stress resultant will

depend on the initial temperature at which the process started. In this section the effect of

different initial temperatures. The period and the amplitude in all of the tests are 24 hours
and 5°C respectively. The initial temperature ranges from -30°C to -10°C.
In Figs. 6.18 and 6.19, the maximum stresses in the top layer and the maximum stress

resultant for different ice thicknesses are plotted against the initial ice surface temperature.
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As expected the stresses and stress resultants both decrease with increasing initial
temperature. It was observed that the time to reach the maximum stress does not change
very much with increasing initial temperature. This indicates that the change in fluidity

parameter plays the main role in changing the maximum stresses.
6.2.5 - Amplitude of Temperature Increase

Changing the rate of temperature increase changes the strain rate which in turn affects
the stress. At a prescribed temperature (in which case E, does not change), with
increasing strain rate, the peak stress increases and the time to reach the peak decreases.

With increasing temperature the stresses are affected not only by the strain rate

In this section the amplitude of the temperature variation is changed while maintaining
the period at 24 hours. The amplitude is varied from 2.5°C to 15°C which correspond to
maximum temperature changes of 5°C and 30°C respectively. Also, since the mechanical
properties of ice are temperature dependent, a change in the mean temperature of the

cycle will affect the stress and stress resultant, Therefore in one series of tests the initial

temperature is kept constant at -30°C, and in the other series, the maximum temperature is
constant at 0°C.

Figures 6.20 and 6.21 show the maximum stress in the top layer and the maximum
stress resultant versus the amplitude of the temperature cycle for two different ice
thicknesses. It can be seen that the maximum stress and maximum stress resultant both
increase with increasing temperature amplitude but the shape of the curves depends on the
mean temperature. ‘

In Fig. 6.20 for the tests where the initial temperature is kept constant at -30°C (lower
mean temperature), the slope of the maximum top layer stress curve decreases as the
temperature amplitude increases, For the tests where the maximum temperature is
constant (higher mean temperature), the curve is almost linear and there is an almost

uniform increase in the maximum top layer stress as a function of temperature amplitude.
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This can be explained by the manner in which n, changes with temperature. As
discussed earlier, n; increases very rapidly at high temperatures. As the amplitude of the
temperature cycle increases there are two effects. On one hand the strain rate increases
which increases the maximum stress, while on the other hand 7, increases which
accelerates the relaxation in the stress. Consider for example the curve in Fig. 6.20 for
0.2 m ice with minimum temperature fixed at -30°C. When the amplitude increases from

due to the relatively high mean temperature. '

The shape of the curves in Fig. 6.21 are similar to the those in Fig. 6.20, but there are
two differences between Figs. 6.20 and 6.21. First in Fig. 6.21 the magnitudes are quite
different for two different thicknesses while they were almost the same in Fig. 6.20.
Secondly, the curves for 0.2 m thickness are closer than the curves for 1.0 m.

The difference in magnitudes is the effect of thickness which was discussed in section
6.2.2. It was observed that with increasing thickness the stress in the top layer remains
almost constant while the stress resultant increases. The closeness of the curves for the
thin ice sheet can be attributed to the range of temperatures. Figures 6.9 and 6.11 show
that in a thin ice sheet the temperature and the stress distributions through the thickness
are almost linear. In this case the stress resultant is the sum of the stresses through the
whole thickness which occur in a wide range of temperatures from the minimum surface
temperature up to 0°C. In a thick ice cover however, the significant stresses occur only in
the upper layers which are affected primarily by the surface temperature. For example

when the surface temperature varies from -30 to -25°C, in a thin ice sheet the stresses

develop in the temperatures which are probably below -15°C. Therefore for a thin ice
sheet there is not much difference between the curves for different temperatures.

In Fig. 6.22 the stress in the top layer is plotted versus time for two different
temperature amplitudes, and two different thicknesses. The initial temperature is the same

in all cases. In Fig. 6.22 the strain rates corresponding to the larger amplitude (-30 to 0)



208
are higher. Also with increasing thickness the mid-point of the top layer gets further from
the surface and therefore the strain rate decreases at this point. It can be seen that the
maximum stress occurs earlier with higher strain rates. As explained earlier this happens
because there is less time for relaxation.
for Fig. 6.22. It can be seen that for the thin ice (0.2 m), the maximum stress resultant
also occurs earlier when the strain rate is higher. There is not much difference between the
shape of the two 0.1 m curves, only the maximum values are different. This is due to the

fact that for relatively thin ice sheets the maximum load is controlled by the maximum

6.2.6 - Underlying Water and Boundary Conditions

The elastic foundation behavior of the underlying water, and the shoreline boundary
on the resultant line load. However to some degree the effects of these factors are related
and it is not possible to separate them.

For example consider an ice cover which is free to expand or rotate. Under a non-

and expands (or contracts) and the stresses through the thickness distribute in a way that
the stress resultant and bending moments in each cross section becomes equal to zero and

the normals to mid-surface remain normal. In this case due to interaction between the

compressive stress.

If the ice cover is floating on water, the underlying water will resist the bending and
flatten the ice cover in the regions away from the boundary. The effect of the underlying
water was shown in a beam example in section 4.6.3. In that case the bending
displacements near the end of the beam, in conjunction with the elastic foundation, result

in bending moments being applied at the ends. The size of the flat region for both a beam
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and a plate, will depend on the lateral dimensions, thickness, and stifthess of the
foundation.

When the displacements are restrained on the boundary but the rotations are free,
expansion is prevented and the stress resultant will not be equal to zero. However the
normal bending moment near the boundary will still be equal or close to zero.

Under clamped boundary conditions, where the displacements and rotations are both
equal to zero on the boundary, a normal bending moment and resultant force, both
generated as reactions, act on the ice cover. The effect of the bending moment reaction
will be similar to the effect of the bending moment generated by the underlying water in
the case where rotations are free on the boundary. Both tend to flatten the ice cover.
However in the clamped case, this flattening occurs with or without an elastic foundation.

In regions where the ice cover remains flat, and there is no horizontal displacement,
the stress distribution through the thickness is the same as would occur if each layer were
allowed to expand and contract independently under the action of the temperature history
in the layer.

Despite the difficulties cited in separating the effects of the elastic foundation and
boundary conditions, several test cases are conducted to gain some insight into the role of
these factors.

Two types of boundary condition at the edge of the ice plate are considered: one has
clamped boundaries with no displacement or rotation, and the other has displacements
restrained but free rotations about both the x and y directions. Other types of boundary
conditions are studied in the section about the different shore line types. The effect of the
underlying water is also studied for b\ clamped and free rotation boundary conditions.
The analyses are performed on circui ice plates with radius ranging from 3.0 m to
distribution when the elastic foundation is considered in the analysis. In the finite element
analysis, considering symmetry one quarter of the circular ice cover was modeled using a
total of 18 elements,

The results obtained for the clamped boundary conditions indicated that the stresses

are exactly the same in the x and y directions for all values of radius, both with and
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without an elastic foundation. The results do not change even for irregular geometries or
different number of elements. The rotations are close to zero in all elements and there is
no bending deformation in the ice cover. As well, all in-plane displacements are zero,
own temperature history. In order to verify this, a simple test was performed in which the
whole ice cover was subjected to a uniform temperature variation identical to the
temperature variation in the upper laye: of the previous cases. It was observed that
stresses in the whole ice cover are identical ic those generated in the upper layer of the
previous case with non-uniform temperature variation. This conclusion simplifies the
analysis for estimating the ice pressure. It indicates that in fully confined conditions,
where the reservoir boundary conditions are equivalent to clamped, it is possible to use
only one element with clamped boundary condition for estimating the thermal pressure.
The size of the element is arbitrary. The single element mesh was also used to simulate
the field measurements in Chapter 5. The agreement was good in most cases and it was
concluded that in certain circumstances the single element mesh is capable of estimating
the stresses in the ice sheet.

When the rotations are free at the boundaries, the stress distribution is affected by both
the presence of an elastic foundation and the radius of the ice plate. Tables 6.7 and 6.8
show the maximum stress in the top layer and the maximum stress resultant for circular ice

plates with different radius. The results are presented for two thicknesses, with and
without an elastic foundation. It can be seen that for small values of the radius, the stress
in the top layer is much lower than for the clamped case, but there is not much change in
the stress resultant. Figure 6.24 shows the stress distribution through the thickness at the
time of maximum stress resultant for two different thicknesses. The radius in each case is
3.0 m, and the stresses shown are at the Gauss point closest to the center of the plate.
The temperature changes are larger in the upper layers, therefore the ice covers takes a
convex shape when it is free to bend. This reduces the stress in the top layers and
produces compressive stresses in the bottom layers. Since the dimensions of the plate are

small and the normal moments are zero at the edges, the stresses even in the central

regions are redistributed in a way such that the resultant bending moment is close to zero.
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Since the plate is not free to expand in the xy plane, a resultant force is generated, which is
found to be similar to that for the clamped case. As can be seen in Table 6.7, with
increasing radius the stresses do not change very much when the effect of the underlying
water is not considered. For these cases however, the vertical displacements at the center
of the plate get very large and become unrealistic. The underlying water resists the
vertical displacements and tends to flatten the ice cover. Therefore when the elastic
foundation is included in the analysis, as the radius get larger the stress distribution at
points away from the boundary gets closer to that for the clamped case. At the edge of
the ice plate the stress distribution should produce a zero bending moment. The stresses
shown in the Table 6.7 as the edge stresses are obtained in the Gauss points. Since the
elements located on the edge of the ice plate get further from the edge. Therefore for
large radius these values also get close to those for the clamped condition and do not
represent the stress distribution right at the edge, which should have a zero normal
bending moment. This shows that for large ice sheets, as occur on lakes and reservoirs,
the effect of the underlying water is to create a condition for a large part of the ice cover,
which is the same as would exist if the boundaries were clamped. Thus even when the ice
cover is free to rotate at the boundaries, a single elem=nt mesh is able to give good

estimate of the stresses that exist in regions away from the boundary.

6.2.7 - Different Shore Types

to be lower in reservoirs having shorelines with relatively shallow inclines. For example
the highest thrusts measured by Monfore (1954) were 292 kN/m at a reservoir with rocky
and steep walls, 137 kN/m at a reservoir with moderately steep shores, and 85 kN/m at a
reservoir with flat shores. The freedom to expand also changes the stress distribution

through the thickness of the ice cover. The expansion of the upper layers is resisted by the
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lower layers which experience smaller temperature changes. Therefore tensile stresses are
produced in the lower layers. The expansion of the ice cover is also affected by the
thickness. With increasing thickness, there is more resistance against the expansion of the
upper parts of the ice cover.” Therefore the horizontal displacement of the whole ice cover
decreases with increasing the thickness.

While it is accepted that the incline of the shore has an effect on the thermal stresses
generated in an expanding ice sheet, it is difficult to study this effect in isolation from
other factors such as the geometry of the reservoir. Consider for example a reservoir

where the shore is relatively flat in one region and quite steep in others. The effect of the

be affected.

Since it is not possible to cover all the different geometries possible, a simple square
geometry is used to gain some understanding of the behavior of ice when it has some
freedom to expand on a part of the boundary. It is assumed that the shore is flat on one of
the sides of the rectangle, and steep on the other sides. The finite element mesh of the ice
plate, which is a 300 m square, is shown in Fig 6.25. Two series of analysis are
performed. In the first series, the plate is clamped on three sides (BD, CD, and AC) with
all rotations and displacements equal to zero. On the fourth side (AB), only the
displacements in the vertical direction are restrained. The springs shown in Fig. 6.25 are
used in the second series of tests and do not apply to these tests. This is intended to
represent a flat shore that provides negligible resistance against movements in the
horizontal direction or rotations.

In this series of tests, the horizontal movement of the ice cover, the stress distribution
in the vicinity of the free boundary (location 1, Fig. 6.25), the effect of thickness, and the
stress resultant at a location far form the free boundary (location 2, Fig. 6.25) are
investigated under two loading conditions. In the first, the minimum temperature is -10°C
and the amplitude is 5°C. In the secord, which represents a more severe thermal loading,
the minimum temperature is -20°C and the amplitude is 10°C. The period is 24 hours in

both cases. In order to study the tensile stresses, cracking is not included in the analysis.
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Figure 6.26 shows both the maximum displacement of the ice cover in the y direction,

comparison of results for different thicknesses, the stress resultants are normalized with
respect to the stress resultant corresponding to each thickness under completely clamped
conditions. As expected, with increasing thickness, the in-plane displacement of the ice
cover decreases. When the expansion of the ice cover decreases, the normalized load
decreases.

Figure 6.27 shows the stress distribution through the thickness of the ice cover at the
time of maximum expansion. Results are shown for different thicknesses, at different
locations (as shown in Fig. 6.25), and for the two loading conditions. The maximum
tensile stress is about 0.45 MPa, which occurs in the 0.1 m ice sheet under the severe
loading condition. The values suggested in the literature for the tensile strength of ice,
which are obtained from laboratory tests, are about 2 MPa (Haynes, 1973). In the upper
layers, due to presence of pre existing cracks and flaws, the sort of global tensile strength
is reduced. Since most of the cracks are observed to be open at upper layers (Metge,
1976) the ice in the bottom layers might be able to tolerate higher levels of tensile stress.
This should be verified by field measurements. The magnitude of the tensile stress

decreases as the thickness increases. With increasing thickness, the thickness of the region

thickness. Note also that the time at which the maximum expansion occurs increases with
increasing thickness. Some similar numerical tests under the same conditions but with a
lower tensile strength were also performed. It was observed that cracking in the ice cover
increases the expansion and the stress resultants.

In the second series of tests, boundary elements are used on side AB to mode! an
inclined shore (Fig. 6.25). The boundary elements are linear springs that aré fixed at one
end and attached to boundary nodes at the other. These springs can be given any desired
orientation. A spring with a relatively large stiffness prevents movement of the attached
node in the direction of the spring. Therefore when the springs are aligned in a direction

perpendicular to the shore, as shown in Fig. 6.25, the ice cover cannot move in that
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ice cover up the shore. In order to study the effect of the rotations on side AB on the
stresses two cases were studied, in one case the rotations were restrained and in the other
were free. In this particular example, the rotations are restrained and there is freedom to
move only in the direction perpendicular to the boundary elements. The case with free
rotations on side AB is discussed in the next part of this section. The thickness of the ice
cover is 0.2 m, and the minimum temperature is -10°C with an amplitude of 5°C.

Figures 6.28 and 6.29 show the maximum stress in the top layer and the maximum
stress resultant for different angles of shore inclination. The stresses are for two locations,
far from the free edge (location 2, Fig. 6.25) and near the free edge (location 1, Fig. 6.25).
As the inclination angle becomes larger the boundary condition approaches a clamped
condition and both the maximum top layer stress and the stress resultant increase. For
angles near zero or ninety degrees, the stress and the stress resultant are somewhat
unaffected by changes in the angle. The effect of change in the angle on the stresses is
larger for angles from 30° to 60°. The amount of reduction in the stresses with respect to
clamped conditions depends on the location of a particular point with respect to the shore
with shallow incline. Since the expansion of the ice cover occurs in the y direction the
reduction in the stresses with respect to clamped conditions is more for the stresses and
forces in the y direction than in the x direction. But due to Poisson’s effect, a part of the
stresses in the x direction is also released. The stresses also depend on the boundary
conditions on the other sides (BD, CD, and AC). All boundary points other than AB have
a displacement constraint in the y direction. Thus points that are far removed from the

free edge will be affected by this constraint, and a higher stress in y direction will result.

boundary condition are also considered. Figures 6.30 and 6.31 show the maximum stress
in the top layer and the maximum stress resultant for three different boundary conditions.
Boundary condition 1 represents the case that was described in the previous part of this
section where the sides AC, BD, and CD are clamped, and the rotations are restrained
along AB. Boundary condition 2 has clamped conditions on sides AC, BD, and CD. On

side AB the rotations about the x axis and displacements in x direction are free. Boundary
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condition 3 has the same conditions as boundary condition 2 but with free displacements
in the y direction along on AC and BD. It can be seen that free rotations along AB mainly
affects the stresses at location 1 for angles above ten degrees. This can be explained by
the fact that with large angles the ice cover has to bend near the shore in order to be able
to slide up the incline. Figures 6.30 and 6.31 also indicate that the maximum top layer
stress and the stress resultants at location 2 depend very much on boundary conditions on
sides AC and BD. The stresses and the loads decrease significantly when the plate is free

to move along the y axis on those sides.

6.2.8 - Stiffness of the Resisting Structure

As an ice sheet expands against a structure, the interaction force generated between
the ice sheet and the structure will be influenced by the stiffness of the structure. An
extremely flexible structure, which allows relative freedom for the ice sheet to expand, will
encounter smaller loads than would a very stiff structure. The latter would in effect
behave much like a rigid and very steep shoreline. The situation is more complex when
piers are much stiffer that the steel gates of a spillway. As the stiffness of the flexible parts
decreases, so would the loads on these parts, while at the same time, the loads on the
stiffer parts would increase. This effect has been confirmed by field data. For example the
data collected by Fleet Technology Ltd. show that at the spillway of Paugan Dam, the
loads exerted on piers were three or four times the loads on gates (Comfort et al., 1993,
1994).

In the finite element program, boundary elements are used to model flexible structures.
A spring with a very high stiffness represents a rigid structure, and a small stiffness
represents a flexible one. A real structure exhibits a distributed stiffness somewhat like an
elastic foundation. However ultimately in a finite element model, the effect of a
distributed stiffness will still be discrete stiffnesses added to the nodes. The objective in
this part of the study is not to characterize a specific structure but rather to adjust the

stiffness over a wide enough range as to encompass many real structures.
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In this section two different geometries are studied. In the first case the finite element
mesh shown in Fig. 6.25 is used. The springs lie in the horizontal plane and are oriented in
the y direction. Sides AC, BD, and CD have clamped boundaries. This corresponds to
the situation where the part of the structure in contact with the ice has a vertical face, and
the ice has adhered to the structure. The problem is analyzed using different values for the
spring stiffness and in each case the maximum stresses in the top layer and the maximum
stress resultants are obtained. The thickness chosen for the ice cover is 0.2 m. The values
selected for the stiffness of the boundary elements ranged from 1 MN/m which represents
almost a free expansion to 1x10° MN/m for which the results are identical to the clamped
conditions.

Figures 6.32 and 6.33 show the maximum stress in the top layer and the maximum
stress resultant in the y direction for different values of stiffness. It can be seen that both
the maximum top layer stresses and the stress resultants decrease with decreasing stiffness
of the structure. The stresses in the x direction also decrease, but since the springs are in
the y direction, there is more decrease in the y direction than the x direction. The sides
AC and BD are ciamped, therefore the stresses at location 1 are affected by the structure
stiffness more than those at location 2.

In the second case, the geometry of the ice cover in the vicinity of the spillway at the
Paugan Dam is used to study the effect of the flexibility of the gates on the load sharing
between the gates and piers. The finite element mesh used for this analysis is shown in
Fig. 6.34. The pier is assumed to be rigid and the springs model the flexible gate. The
length L is 70 m in this analysis. The analysis is performed for four different thicknesses:
0.2,04, 0.7, and 1.0 m. Two thermal loading conditions are considered: in the first, the
minimum temperature is -10°C and the amplitude is 5°C, and in the second, the minimum
temperature is -20°C and the amplitude is 10°C. The period is 24 hours in both cases.
The tensile strength in this analysis is set equal to 0.5 MPa.

Figures 6.35 and 6.36 show the maximum average line load on the gate and the
maximum stress resultant near pier tip versus stiffness of the gate, for different
thicknesses. The term line load is used to show the load per unit length that is exerted on

a structure and in this case is obtained by dividing the sum of the forces in the boundary
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elements by the length of the gate. The stress resultant at the pier tip is obtained from the
stresses in the ice at the Gauss point closest to the pier tip. The stress resultants and the
line loads are normalized with respect to the stress resultant for the same thickness but
with a rigid clamped condition along the face of the structure. Figure 6.35 shows the
of -20°C.

It can be seen that with decreasing stiffness of the gate, the load on the gate decreases
while the load on the pier increases. Also with increasing thickness the normalized line
load on the gate decreases while the normalized stress resultant near the pier tip increases.

It seems that for intermediate stiffnesses, in the middle region of these figures, there is
load sharing between the pier and the gate. As a check, the sum of the forces in the
springs and the reactions on the pier in the y direction, was divided by the total length of
the pier and the gate. This value was found to be close to, but less than the stress
resultant for completely clamped conditions. The data collected by Fleet Technology Ltd.
also showed that the average load on the combination of the gate and pier is almost equal
to the load measured at far field. As discussed in section 6.2.7, the lower regions of a
thick ice sheet provide some internal resistance against expansion. Thus the normalized
load on the gate decreases with increasing thickness, and due to load sharing the
normalized load on the pier increases.

As the stiffness decreases the stress condition approaches the free expansion case that
was discussed in section 6.2.7. In this case the load on the gate gets close to zero and the

compared for two different loading conditions. It can be seen that for the medium to high
range of stiffness (above 50 MN/m), the curves corresponding to two different loading
conditions fall on top one another. It indicates that the load sharing is independent of the
thermal loading condition and depends only on the stiffness of the gate.

The line loads and the stress resultants also depend on the tensile strength of the ice.
When tensile cracking is included in the analysis, the internal resistance against expansion

provided by the lower part of the ice sheet is reduced. Figure 6.38 shows the effect of
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tensile cracking on the line load on the gate and the stress resultant near the pier tip. It
can be seen that as the tensile strength is reduced, both the stress resultant near the pier tip
and the load on the gate increase.

In order to study the effect of scale, the length L in Fig. 6.35 is changed and the
normalized stress resultants at the pier tip are compared for two different ice thicknesses
and two different gate stiffnesses. The results are shown in Fig. 6.39. It can be seen that
over the range 10 m < L < 100 m, the stress resultants increase with respect to L at first
but eventually tend toward constant values. When the stiffness is small the effect of the
length is the same for both thicknesses, but with a higher stiffness the results are different
for different thicknesses.

When the length L is very small the part of the ice cover in front of the pier is confined
between the pier tip and the upper boundary which is clamped. Therefore the stresses will
be close to those corresponding to clamped boundary conditions. When the length L
increases the dimensions of the ice cover increase. With increasing dimensions, the
displacements due to expansion and the strain rates increase. Thus the stresses also
increase and the force exerted on the pier gets lager. However, with increasiﬁg L the size
of the gates becomes small compared to the length of the reservoir and therefore the stress
resultants tend to constant values. The difference in the normalized stress resultants in the
case of higher stiffness is the effect of the load sharing between the gates and piers that

was described in the previous section.

6.2.9 - Isolated Structures

An isolated structure is one that is located away from the shores and is surrounded by
the ice cover. In the literature this is usually applied to offshore structures which are
located in salt water, and at distances of the order of kilometers from shore. In this study
however the term is restricted to inland water situations and structures such as water
intakes or spillways that are located away from the main structure.

When the external boundaries of an ice sheet are clamped, the in-plane stress field is

homogeneous and hydrostatic. In this case the load exerted on an isolated structure is the
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clamped conditions in a single element mesh.

Now consider a case such as a rectangular reservoir where three sides are clamped and
the fourth side is free. This is like the geometry used in section 6.2.7. The situation is no
longer homogenous nor hydrostatic. A point located in the middle of the ice cover can go
under considerable horizontal displacement, the magnitude of which depends on the
dimensions of the reservoir and boundary conditions. Usually the larger the reservoir
dimension, the larger is the expansion of the ice cover and the displacement of a typical
point in the middle. Now if a fixed structure with dimensions that are small compared to
the dimensions of the reservoir is lccated in the interior of the ice cover, a substantial force
can be exerted on the structure. In this case, due to the large displacements, the strain
rates also get larger than the strain rates corresponding to clamped conditions. Therefore
the stresses increase. The thickness of the ice cover also affects the loads. In a thick ice
cover the bottom layers that are not affected by the temperature changes of the upper
layers will resist against the expansion and the strain-rates will be less than for a thinner ice
sheet.

In this section the purpose is to assess the loads that can be exerted on an isolated
structure in free expansion conditions. As discussed earlier the loads depend very much
on the geometry, boundary conditions, and dimensions. Since it is not possible to study all
of the different situations, a simple geometry is used. The finite element mesh is shown in
Fig. 6.40. On side AB the displacements and rotations are all free except for the
displacements in the vertical direction. Along CD and BD clamped boundary conditions
are used. Line AC is an axis of symmetry so that the actual problem solved spans a region
twice the size of that shown in Fig. 6.40. The isolated structure occupies the shaded
region EFGH. Clamped boundary conditions are applied to the ice sheet along the
boundary of the structure .

It could be argued that it is not realistic to apply rigid boundary conditions around the
entire boundary of the structure. For example on side EF high tensile stresses are
produced which in a field situation could result in the ice debonding from the structure.

However in a field situation, the structure would not be totally rigid and this would tend to
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decrease the compressive stresses on the front face of the structure. Therefore the forces
obtained using the present model are considered to be upper bound. |

The sides EF, FG, and GH of the structure are all five meters. The dimensions of the
elements adjacent to the structure are 5.0x0.5 m. Other dimensions are varied in different
tests. In order to study the effect of the geometry in each series of tests, the length L1 in
Fig. 6.40 is kept constant, and the change in the maximum stress in the top layer in front
of the structure and the average line load on the structure is determined for different
values of length L2. The tests are repeated for three different values of L1. The minimum
surface temperature is -10°C, the amplitude is 5°C, and the period is 24 hours. The
average line load on the structure is obtained by calculating the total reaction in the y
direction on side GH and then dividing by the length of side GH (5.0 m). In presenting the
results, the line loads are normalized with respect to those for the same geometry and

thickness but with clamped boundary conditions on sides AB, BD, and CD. This kind of

isolated structure, near point G. The results are presented for two different thicknesses
and three different values of L1. There is a stress concentration at G and the stresses at
this region are higher than the stresses close to H. It can be seen that for a prescribed
value of L1 stresses increase as the dimension L2 increases and tend to constant values.
Increasing dimension L1 also increases the stresses. Figure 6.41 also shows that the
stresses in the 1.0 m ice cover are much smaller than the stresses in the ice cover with the

same geometry and 0.2 m thickness.

front of the isolated structure. Therefore the strain rates due to displacements and the
resulting stresses increase. However the clamped boundary conditions on side BD limit
the expansion of the ice cover, and thus beyond a certain value of L2 the stresses do not
change very much. Increasing the length L1 however, moves the clamped boundaries
further from the structure and increases the stresses. The smaller stresses in the thick ice

cover can be explained by the fact that with increasing thickness , the portion of the ice
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cover that resists the thermal expansion becomes larger and reduces the displacement due
to thermal expansion.

Figure 6.42 shows the maximum average normalized line load on the isolated structure
for different values of L1 and L2 and for two different thicknesses. It can be seen that the
normalized line load increases as the dimension L1 increases. Following any of the -
individual curves in Fig. 6.41, which corresponds to holding the dimension L1 constant
and increasing the dimension L2, the normalized line load increases initially, but eventually
tends to a constant value. The increase in line load is initially almost linear on the
logarithmic scale. Figure 6.41 indicates that for small values of L1 the normalized results
are not much different for different thicknesses, but the difference between the normalized
line loads for two different thicknesses increases with increasing L1.

It can be seen that loads as high as 20 times the loads for clamped conditions are
exerted on the structure. Nevertheless, these values are considered to be upper bounds
because in a real case flexibility of the structure and compressive cracking at high stresses
will reduce the load. Due to the complexity of this problem it is difficult to assess all of
the different aspects of ice behavior that arise. Many different parameters including the
finite element mesh affect the results. In order to gain a better understanding of the
different aspects of the problem, future studies are necessary. In particular comparisons
should be made between the predictions of the model and field measurements of the loads

on isolated structures in lakes or reservoirs with flat shores.

6.2.10 - Tensile cracking

————

It was-observed in sections 5.2.2 and 5.2.4, in which simulation results were compared
with field measurements, that tensile cracking has a significant effect on the stresses that
occur during and after cooling periods. In the finite element analysis cracking occurs
when the principal stress at a Gauss point exceeds the tensile stfength. A value for the
tensile strength is therefore required as an input parameter. The uniaxial tensile strength
of ice measured in laboratory tests is reported in the literature to be around 2.0 MPa

(Haynes, 1973), and is almost independent of strain rate over the range of 10° to 10° s
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In the tests performed by Haynes (1973), the tensile strength under hydrostatic pressure,
was reduced to about 0.5 MPa and decreased with increasing strain rate. All of the tests
were performed at strain rates higher than 10%™. Based on the availabic data it can be
argued that at stain rates lower than 10®s the tensile strength is the same or higher. In
the data collected by Fleet Technology Ltd., during the cooling periods the stresses in the
majority of cases were close to zero (see for example Fig. 5.18). In some cases however
tensile stresses were recorded. The tensile stresses near the surface (0.025 m-0.10 m) were
in most of the cases below 0.05 MPa (see for example Fig. 5.20). At depths between
0.125 m and 0.3 m the maximum recorded tensile stresses were below 0.2 MPa. This was
attributed to cracking in the upper layers of the ice sheet where the largest tensile stresses,
and hence cracking, would be expected to occur. It could also be argued that the
presence of natural flaws and imperfections that are more likely in the field situation would
result in the effective tensile strength being lower than the laboratory values. If the ice
fails at a low stress due to a weakness at one location, the tensile stress in the vicinity of
that area drops essentially to zero despite the fact that some parts of the ice are still
capable of carrying a much higher tensile stress. In other words on a global basis for the
scenario described, the observed strength would be the low stress value. Therefore on the
basis of field measurements a very low tensile strength (0.01 MPa) was used in the

simulations and the studies involving clamped boundary conditions

the tensile cracks that occur during cooling periods under clamped boundary conditions
usually do not penetrate through the whole thickness so that the lower region of the ice
cover remains intact. In the analyses for the free expansion case however it was observed
that tensile stresses can also occur in the lower regions of the ice cover. Most of the
cracks described by Fleet Technology Ltd. and Metge (1976) were open in the upper half
of the ice sheet, and the recorded tensile stresses were also small in the upper half.
Therefore it may be that an ice sheet can carry a higher tensile stress in the bottom layers.
However with the data available, it is difficult to reach any conclusions regarding the
tensile strength under free expansion conditions. The question of what magnitude to use

for the tensile strength in this case requires further field measurements.
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Stresses that develop in the numerical model after cracking has occurred depend on
the criteria used for crack healing. In a finite element code that includes plasticity, Hinton
and Owen (1984), have used the total strain perpendicular to the crack for evaluating the
crack closure. A particular crack was assumed to be closed when the total strain
perpendicular to the crack became negative. Thermal loading was not considered in that
study. In the present study, due to temperature changes the situation is somewhat
different. As an example consider an elastic beam with clamped ends, that is subjected to
a non-uniform temperature decrease through the thickness. Non-uniform tensile stresses
develop and in the layers with high tensile stress cracking might occur. If the temperature
continues decreasing the cracks may open. Now if the beam is subjected to a temperature
increase the crack openings will decrease and eventually the cracks will close. However
due to the clamped boundary conditions, the beam remains straight and the total strains
are zero everywhere. Therefore the total strain is not suitable for use in a crack closing
criterion.

The beam example suggests that for an elastic case, the difference between the total
strain and the thermal strain be used in the crack closing criterion. Now consider a visco-
elastic material. In this case, during periods of temperature decrease, some stress
relaxation can occur before cracking. The relaxation changes the stress free configuration
and the beam will not be stress free if the temperature distribution was to suddenly return
to the initial condition. The question arises as to whether or not the viscous part of the
strain should also be subtracted from the total strain. In other words assuming that the
cracks heal when the crack opening strain (g.,) becomes zero, two different criteria may be
used for crack healing. These are given by:

1) e,=€-8=0 (6.2.1)
2) g,=€-8-8=0. (6.2.2)

In order to evaluate the differences between these criteria, a simple analysis is
performed using clamped boundary conditions and two different thermal loading
conditions. The temperature variation is uniform through the thickness, and the upper
layer of ice is allowed to crack. Under clamped boundary conditions the stresses are

independent in each layer. The temperature history and the stresses in the cracked layer
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are shown in Figs. 6.43 and 6.44. The difference between the analyses conducted for
these figures is the initial temperature. For the analyses presented in Fig. 6.43 the
temperature starts from the mean temperature in the cycle, which is -10°C. The
temperature then increases to the maximum value of 0°C after which it decreases to
-20°C. This gives a cooling period during which the temperature is less than the initial
temperature. For the analyses presented in Fig. 6.44 the temperature starts from the
minimum value, which is -20°C, and never goes below this temperature. In Figs. 6.43 and
6.44 the number (1) that appears in the legend indicates the first crack healing criteria,
which is based on equation 6.2.1. Similarly the number (2) indicates the second crack
closing criterion which uses equation 6.2.2. In both Figures 6.43 and 6.44, open symbols
are used for stresses obtained from analyses that include cracking. The tensile strength is
0.01 MPa and in the elastic case the modulus of elasticity is constant and equal to
1200 MPa. For the visco-elastic case the material properties of snow-ice are used.

For the elastic analyses represented in Fig. 6.43, cracking occurs as soon as the
temperature goes below the initial temperature. The cracks open during the cooling
period, start closing when the temperature rises, and they heal when the temperature gets
above the initial temperature. For the snow-ice during the first half period of the
temperature cycle the stress is compressive and negative creep strains occur. Thus during
the first cooling period (0°C to -20°C) when the stress is increasing, the stress reaches
zero before the temperature returns to the initial value, -10°C. Cracking occurs shortly
after, when the largest principal stress reaches the tensile strength. During the remainder
of the cooling period (~ -7°C to -20°C) the cracks open wider. Then during the first part
of the subsequent warming period (-20°C to ~ -7°C) they begin to close. When the cracks
heal depends on which of the two criteria is used. For the first criterion, the cracks heal
when the temperature reaches the initial temperature (-10°C). For the second criterion,
healing is later due to the accumulated negative viscous strain. For both healing criteria,
the maximum stress during the second half cycle above the initial temperature, is less than
the maximum stress if cracking is not included in the analysis.

Considering the analyses for Fig 6.44, the important distinguishing feature from the

analyses for Fig. 6.43 is that the temperature never goes below the initial temperature,
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which in this case is -20°C. Thus for an elastic material there is no cracking. This might
be thought to indicate the same would be true when the constitutive model for ice is used.
Interestingly, the results in Fig. 6.44 show that cracking does in fact occur. This is
because during the first three quarters of the first temperature cycle, when the stress is
compressive, the accumulation of negative viscous strains results in considerable
are produced when the temperature gets close to the initial value (-20°C). Again,
cracking occurs when the principal stress exceeds the tensile strength. The subsequent
behavior is again different depending on the healing criteria adopted. With the first criteria
the cracks do not open because the thermal strain is always negative. Furthermore, the
cracks heal as soon as the temperature starts rising (at -20°C) and compressive stresses
are generated. Comparing this behavior with that for the ice model in which cracking is
not included, it is observed for the latter, tensile stresses exist when the warming period
starts at -20°C. Thus the maximum compressive stress that is reached during the warming
period is less for the non-cracking model. The behavior observed for the second criteria is

different again. In this case, due to the negative viscous creep strains, the cracks open and

the thermal strain is taken up in closing the cracks. This results in a peak compressive
stress less than that for either the non-cracking model or the cracking model using the first
healing criteria.

The question of which healing criteria is the most accurate is one which can only be
resolved by performing appropriate laboratory tests. On intuitive grounds, the second
criteria seems more reasonable, since both the thermal and viscous strains can be
considered permanent strains and there is no fundamental basis for excluding one or the
other from the healing criterion. However comparisons between simulation results and
field measurements show that the stresses obtained using the first criteria give the best
agreement. In all cases the magnitude of the measured compressive stresses began to rise
immediately as the temperature started rising. Also, the measured compressive stresses

were significantly higher than those predicted using the non-cracking model (see for
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example Figs. 5.18 and 5.32). This indicates the importance of including cracking but why
the first healing criterion agrees best with field results is unclear.

When considering different aspects of the problem it should also be noted that the
model is based on a smeared cracking approach while the cracks in nature are discrete. In
nature, due to the effect of bottom layers, tensile stresses exist between the cracks.
Therefore it is possible that some relaxation occurs which reduces the crack openings, and
the compressive stresses develop immediately when the temperature starts rising.

Resolution of this question requires laboratory tests in which crack opening and
closing is studied under periodic thermal loading conditions. In the absence of such
experiments, the first healing criterion was adopted in the simulations and analyses, on the
basis that it agrees best with field results. This criteria was used in the analyses of the

previous chapters but due to complex nature of the problem the discussion was left to the

present chapter.

6.3 - Summary and Conclusion

In this chapter the role of various factors that affect the temperature and stress
distribution in an ice cover, was studied. For temperature distribution, the factors
considered included: different ice types, wind speed, cloud cover, relative humidity, time
of the year, latitude, snow cover, thickness of the ice cover, and period and amplitude of
temperature vanation. For the stress analysis, factors considered were the number of
layers through the thickness, the thickness of the ice cover, period of temperature
variation, initial temperature, amplitude of temperature variation, underlying water,
geometry of the reservoir, boundary conditions, different shore lines, stiffness of the
resisting structure, isolated structures, and tensile cracking of the ice.

The air and ice surface temperature variation used in the thermal and stress analysis
was a periodic temperature history. Therefore some of the conclusions, for example those
referring to amplitude and period or maximum and minimum values, are all based on this

kind of temperature variation. The words maximum and minimum indicate the maximum
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or minimum values with respect to time. For the thermal analysis if not mentioned, the

conclusions are based on the ice surface temperature, and for the stress analyses are based

on the stress in the top layer or the stress resultants. In these conclusions, ice covers with

a thickness of 0.1 to 0.2 m are considered to be thin, and those with a thickness larger

than 0.7 m are called thick. The conclusions reached from these studies are summarized in

the following:
1. When the effects of solar short-wave radiation are not included in the calculation of

with respect to the thermal properties of the ice.

When solar short-wave radiation is considered, the maximum temperatures depend
very much on the value used for the coefficient of absorption.

When solar short-wave radiation is not considered, increases in the wind speed, cloud
cover, and relative humidity, all increase the maximum temperature and the difference
between minimum and maximum temperatures. Among these parameters, the wind
speed has the greatest effect on the temperature changes.

Including short-wave solar radiation in the thermal analysis can increase the maximum
temperature significantly. The more energy absorbed, the greater the temperature
increase. Lowering the latitude, reducing the cloud cover, increasing the coefficient of
absorption, and decreasing the coefficient of reflection, all cause an increase in the

absorbed energy.

temperature distribution in an ice cover. In the cases studied, which involved 5 cm
and 10 cm snow covers, the predicted ice surface temperature amplitude decreased by
66% and 72% respectively from the predictions for the clear ice case.

When short-wave solar radiation is not considered, the amplitude of the ice surface

ice thickness. With increasing thickness however, the effect of the thickness
diminishes. As the period of the temperature history increases, the ratio between the
amplitude of the ice surface temperature and the amplitude of the air temperature gets

closer to one.
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For a given period of the air temperature history, both the minimum and maximum ice
surface temperatures decrease with increasing thickness and tend to constant values.
In thin ice sheets, the temperature changes occur through the whole thickness and the
temperatures are almost linear through the thickness. With increasing thickness the
temperature distributions become non-linear, and in a thick ice sheet only the upper
part is active. The depth of the active zone depends on the period of the temperature
cycle. The depth of the active zone is about 0.3 m for daily temperature changes
(24 hours), and 0.4 m for 48 hour period.
Under clamped boundary conditions the maximum stress resultant in a thin ice sheet is
controlled by the maximum stress in the top layer and occurs when the stress in the top
layer is a maximum. Depending on the temperature rate and duration of temperature
increase, the maximum may occur prior to the maximum temperature. In thick ice
covers, the maximum stress resultant occur when the effect of the surface temperature
changes have penetrated into the ice sheet. This may occur after the maximum
temperature.
Under clamped boundary conditions for two identical cycles of ice surface
temperature, the maximum stress resultant during the first cycle tends to a constant
value with increasing thickness. For thick ice covers the stress due to the first cycle

might not dissipate during the cooling period. In this case the maximum stress

during the first cycle.

With increasing period of temperature variation, the maximum stress resultant under
clamped conditions for thin ice covers decreases, where the maximum stress resultant
for thick ice covers increases.

For a given period and amplitude of temperature variation, the stresses and stress
resultants under clamped conditions both decrease with increasing initial temperature.
For clamped boundary conditions where the rotations and the displacements are zero,
the ice cover does not have bending deformation. In this case the stress in each layer

is controlled only by the temperature changes of that layer and does not depend on the
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geometry of the reservoir. Therefore, it is possible to get a good estimate of the

When the displacements are restrained on the boundaries but rotations are free, the ice
cover undergoes bending deformation which is resisted by the underlying water, This
affects the stress distribution through the thickness, but has negligible effect on the
stress resultants. Near the boundaries the stresses in the upper layers decrease while
the stresses in the lower layers increase. For large ice sheets the bending deformation
is resisted by the water. Therefore with increasing distance from the boundaries, the
stress distribution gets closer to that for the clamped case. In this case, a single
element mesh can still give a good estimate of the stresses.

When the ice cover is free to expand along some parts of the boundary, a part of the
thermal stress releases and the stress resultants decrease. The expansion might be due
to a non-vertical shore, or a flexible structure. The in-plane displacements due to
thermal expansion are larger for thin ice sheets, where the whole thickness is activated
by the surface temperature changes.

When a resisting structure has a combination of flexible and rigid parts, the ice load is
distributed between these parts. In this case the flexible part carries a load that is
smaller than the load corresponding to a clamped condition, and the rigid part carries a
larger load. As the stiffness of the flexible part is decreased the load on that part
decreases while the load on the rigid part increases.

When an ice cover is free to expand on one shore, and there is a fixed isolated
structure in the interior of the ice sheet, a substantial force can be exerted on the
structure. The magnitude of the force depends very much on the dimensions and
geometry of the reservoir. In some of the studied cases the exerted forces were about
20 times the load under clamped boundary conditions.

In the clamped boundary condition tensile stresses usually occur in the upper layers
during cooling periods. In the case of free expansion, however, tensile stresses are
produced during warming period in the lower layers which are less affected by the rise

in surface temperature,
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19. In the clamped boundary conditions the predicted stresses during and after cooling
periods depend on the tensile strength and crack healing criterion. Due to existence of
flaws and cracks in ice covers, the tensile strength in a global sense under field
conditions might not be as high as the tensile strength obtained from laboratory
specimens. It was observed that a crack healing criteria using the total strain minus

thermal strain gives a good agreement with the field measurements.
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Tk

Wind speed
(m/s)

Cloud cover

Relatii}e -
humidity
(o)

Minimum

temperature
(€Y

Maximum
temperature
(%)

Maximum

temperature
change (C")

0 4/8 80 -13.01 -5.55 7.46
6 | 48 | 80 | -15.99 -3.84 12.15
2 o8 | 80 -14.54 "512 | 942

2 | s’ 80 -13.7C 3.7 9.99
2 | a8 0 1574 | 827 | 747
T2 | am 100 1399 | -3.96 10.03
6 | 8B 700 -15.11 "207 | 13.04
2 4/8 80 -14.33 -4.76 9.57
o0 | o8 | o | -1444 |  -8.74 5.7

Latitude |

h=10m

Wmcﬁthjday

7(]jeg?ees)

Snow-ice

ice

Columnar

Snow-ice

Columnar
ice

| | 8 38 | 371 | 944 | 947
- |0 | 522 -5.12 11.66 | -11.66
1/ 60 0 | +0.68 366 | -447 | 971
171 60 | 8 1.7 321 | 693 | -88l
1 | 45 0 | +6.14 -2.69 +3.53 | -828
T 121 " 60 0 +1.11 | 359 | -3.90 959
31 | 60 0 +726 | -2.64 +4.13 | -8.06

Table 6.2 - Maximum temperatures with different parameters that affect the short-wave

solar radiation.
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Maxi

mum stress resultant

Maximum stress at top layer

Thickness (m) | 8 layers | 10 layers 8 layers 10 layers

02

60.28

104.94

Table 6.3 - Comparison between stress resultants and stresses calculated with different

number of layers through the thickness of the ice cover.

Stress resultant

Stress at top layer

Thickness
(m) |

Maximum
__(kN/m)

Time

(h)

Maximum

(MPa)

0.1

30.77

9.67

- 0.540

02

60.28

9.67

T 0539

0536

0.533

0.528

06 | 146 10.33 0.524
07 | 1500 | 12089 | 1067 0.519

08 15.33 132.60 10.67 0.514
09 15.33 134.28 11.00 0510
1.0 15.67 T 135.48 11.00 0.505

their occurrence at the first cycle.
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Stress resultant Stress at top layer
Thickness " Time Maximum |  Time | Maximum
- (m) (h) (kN/m) (h) (MPa)

01 | 3500 T 20543 34.00 | 0497

02 | 3567 T 574 | 34.00 ~0.497
03 | 3667 7992 | 3433 | 0491

04 3767 | 9624 | 3467 | 0.483
05 | 3833 11056 | 3500 | 0475
0.6 T 3867 | 12451 3500 | 0471

07 | 3867 137.70 | 3533 | 0.465
08 | 3867 | 15009 | 3533 0458
T 09 | 3867 716030 | 3533 0452
1.0 | 3900 16851 | 3567 0.450

Table 6.5 - Maximum stress resultants, maximum stresses at the top layer, and the time of

their occurrence at the second cycle (tensile strength = 0.01 MPa).

Stress resultant Stress at top layer -

" Thickness | _ Time | Maximum " Time | Maximum
(m) (h) (kN/m) (h) (MPa)
T 01 3567 | 2584 | 3533 | 0389
] 02 | 3633 5099 | 3533 | 0388
03 |  37.00 T 7337 3567 | 0.388

0.4 T 38.00 9140 | 3567 | 0387
05 | 3833 | 10645 | 3567 | 0388
06 | 3867 | 12076 |  36.00 T 0389
07 38.67 13441 | 3600 0.390

T 08 3867 14641 | 3600 | 0391
09 |  39.00 156,73 T 36.00 0391
10 ~39.00 T 164.66 36.33 0392

Table 6.6 - Maximum stress resultants, maximum stresses at the top layer, and the time of

their occurrence at the second cycle (tensile strength = 0.5 MPa).
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' gnoweice (with solar radiation) 5, \
\rrﬁnlurmar jee (enow-ice at surface) — L= '
4 / 7-5 \ {\colurmnar iee (with solar radiation) I? .
T N columnar iee (no solar radiation) f—s- S\l

. &nowsiee (no solar radiation) \

-8 air temperature -

Temperature {C)

=16 4
-18 4
20 et oo R T ...

a} 4 8 12 16 20 24 28 32 36 40 44 48
Time (h)

Figure 6.1 - Ice surface temperature for different ice types (ice thickness = 0.2 m).

emperature ()

T

Time (h)

Figure 6.2 - Ice surface temperature for different ice types (ice thickness = 1.0 m).
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h=1.0 m, diffusivity=1.07E-6 -
.54 L
h=1.0 m, diffusiity=1,64E-6

Temperature (C)

0 4 8 12 16 20 24 28 32 35 40 44 48
Time (h)

Figure 6.3 - Ice surface temperature with different diffusivity and different ice thicknesses.

20 - — — — —
=—0— Minimum temperature (h=0.2 m)

» —#— Minimum temperature (h=1.0 m)
% —=0— Maximum termperature (h=0.2 m)
s —a— Maximum temperature (h=1.0 m)
: —A— Temperature change (h=0.2 m)
= —w— Temperature change (h=1.0 m)
® S ve—— =
§. = S
E g 0 Y e A R Y ——% 5
e - —O— o0 < &
E s . e g
o * A=
Q —
5 -10 a- =
B s
g .15
E
A

-20 4 + e SELE e : et |

0 001 002 003 004 005 006 007 008 009 0.1
Thickness of snow cover (m)

Figure 6.4 - Effect of the snow cover on maximum, minimum, and change of ice surface

temperature.
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Figure 6.5 - Maximum ice surface temperature versus ice thickness for different amplitudes and periods of air temperature variation.
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Figure 6.6 - Minimum ice surface temperature versus ice thickness for different amplitudes and periods of air temperature variation.



(-]
5 e
2 — e el
e ———s
§ s e3¢ - - —3
o &
e %
m £
Pl
(1] 0.4 E— — I - _ — __
e —0— Tmin(air)=-40 - period=24 h —&— Tmir{air)=-30 - period=24 h
g 031 s Tmin(ai=20- period=24 h —o— Trmin(air)=10 - period=24 h
é& 0.2 —m— Tmin(air)=40 - period=48 h —a— Tmin(air)=-30 - period=48 h
5] 0.1 —a&— Trrin(air)=-20 - pariod=48 h —&— Trin(air)=-10 - period=48 h
8 ' —¢— Trmin(air)=-20 (12) —s— Tmin(air)=-20 (96)

0 s oo s -

0.1 0.2 03 0.4 05 08 07 0.8 09 1
Ice thickness (m)

for different amplitudes and periods of temperature increase.

ice thickness,

! —O— Tmin{air)=-40 - period=24 h
0.9 - —A— Tmin(air)=-20 - period=24 h
08 - —8— Tmin(air)=40 - petiod=48 h

' —a&— Trrin(air)=-20 - period=48 h
071  —e—Tmin(air)=-20 (12)

—o~— Tmin(air)=-30 - périod=24 h
—0— Tmin(air}=-10 - peried=24 h
—&— Tmin(air)=-30 - period=48 h
—a— Trrin(air;=-10 - period=48 h
—m— Tmin(air)=-20 (96)

{ce temperature change/Air temperature
change

04

05
lce thickness (m)

== S = t

0

&

Figure 6.8 - Maximum normalized change in temperature at 1/4 depth of the ice cover, for

different amplitudes and periods of air temperature variation.
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c)Temperature profiles (h = 0.4 m)

Figure 6.9 - Temperature profiles at the time of maximum and minimum surface
temperatures, and temperature changes through the thickness of ice cover (continued on

next page).
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Figure 6.11 - Stress distribution through the thickness of the ice cover for three different

thicknesses.
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Figure 6.14 -Maximum stress in the top layer versus period of temperature increase for
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Figure 6.15 - Maximum stress resultant versus period of temperature increase for different

ice thicknesses.
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Figure 6.16 - Maximum stress in the top layer versus thickness of the ice cover for

different periods of temperature increase.
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Figure 6.17 - Maximum stress resultant versus thickness of the ice cover for different

periods of temperature increase.
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Figure 6.18 - Maximum stress in the top layer versus initial temperature for different ice

thicknesses.
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Figure 6.19 - Maximum stress resultant versus initial temperature for different ice

thicknesses.
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Figure 6.22 - Stress in the top layer for different amplitudes of temperature increase.
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Figure 6.23 - Stress resultants for different amplitudes of temperature increase.
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Figure 6.26 - Maximum displacement at a flat shore (near location 1 in Fig. 6.25) and

maximum normalized stress resultant at location 2 in Fig 6.25, versus ice thickness.
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in Fig. 6.25 (continued on next page).
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Figure 6.30 - Maximum stress in the top layer for different angles of shore with respect to

the horizontal and different boundary conditions.
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Figure 6.31 - Maximum stress resultant for different angles of shore with respect to the

horizontal and different boundary conditions.



06 ‘ u
05 L] — T
-5(——‘:*"';/ |
e "1 L~
0.4 7/’5/
o~ 14
& Ar"’:‘”/
= 11 L4
o 03
' R o
0.2 —&—X - location 1
—8—y - location 1
0.1 —A—X - location 2
—¥¢—y - location 2
0 A St . 20 B 0 1 I 2 stann S i - 0
1 10 100 1000 10000
Stiffness (MN'm)

Figure 6.32 - Effect of the stiffness of the resisting structure on the maximum stress in the

top layer.
70
60 ; Lt -
’,.4""" T ./"_:/;s
50 T ,/"“//;’/
E 4—TT] T A
= 1 | A
> LA
= 40 T // P
e %]
S T
R s A4
o pe 7
» LAt -
& |+ —o— X - location 1
g 20 ey
3 el ,Er/’ ~—8-—y - location 1
10 ol ~—&—x - location 2
—3—y - location 2
O T—'T!T:'—‘-"Y—?_ i
1 10 100 1000 10000
Stitfness (MN'm)

Figure 6.33 - Effect of the stiffness of the resisting structure on the maximum stress

resultant.



iI‘J

- — __ et . o
L — . - —

Symmetric

B
L

Figure 6.34 - Finite element mesh of the ice cover in the vicinity of the Paugan Dam

spillway.




(D.01- = """g) sassajony 201 JualayIp

103 dy so1d ay3 reau Jue)Nsel SSANIS WNWIXELW POZI[EULIOU PUE 31eF 9y} U0 PrO| Ul IFLIGAE WNWIXEW PIZIBULON - SE°9 3InSig

| {wiNm) ssauyps sjeg
0000} 000k 00! oL b

fw g L=y) ejeb uo peo) euy| ebeseny —s— , W | W W HH:\E : \\“i m °
{w o 1 =y) dn Jeud JESU JUBYNSE. SSBLS —0~— , m AT T —_
, i AT | T 5
{w 2"0=\y) eeb uo peoj euy b elany —ap— P , | zZo 3
! | IR PP —
(w2 g=y) dy Jeid Jeesu JUByNSel SSEL S R W W\ \W 7 ! ,W m ]
] il | | | | [~ 3
{w y0=\) ejeb uo peoj eu| eBereAY —e— | » : NN o
(W p o=y} dn se1d JEBU JUBYNSE) SSELST —o— | \\ 1l ” | ro m,.
| {w z'g=y) e}eB uo peoj ey ebeseAy —g— | | \ | i t
| (w Z°o=y) dy te1d 18U JUBYNSE) SSBRG —O— [ 7 P i - 90 m
{ [T 1] T [ ‘“\ | ,, ] W
| | T L i 2
- W - .“ “— , B0 &
ﬁ | Pg \_\\ . | o
| [ T L4+ \\ | g
W.\” T | [ | -
. L [
| === HH”r.I, | , b =
m SNy N | g
| N T | 2
| [ //, ] &
] , TN et g
| i ! | ,W 3
| | | 3
- = , . B
, [ ” W L
S W c
| W i =
{1 ) 2
=S g
f— )

8l



258

(0,02~ = "*g) sassawony) 201 JUAIPIP

10j di jaid 2y} JeSU JUBINSDI SSANS WNWIXBW P3ZIRULIOU pue 31§ ayj uo peo| sul| aSeisA WNIXEW PIZHBULION - 9€'g InSig

fuynw) sssupps seg

0000 L 000k 0oL ol b
TTT 11 171 == 0
W | | ] , , d ,\\l\
, , 1] , LT 1 L ” =
, N ] 1 g , ] 1 rZo 5
] i L 1PsE | [ %
W | | W = | 1 ; ,.\\\ E
L] | | | |~ I vo o
- - o
, L ? \ | , , o
h | | | , " \ | ] =
| W ] | , I
5 W ” R AEENE g0 &
11 W, \\\\\\h ! h , W i i m_
B , , , g0 3
, ] b - | I =
[ 1] U LT L — | 2
T L)
__——C .
o 1 | | | @
Mg 1 :
N | , ] T— [ — | I i o
iR T | | | E
I [ [ W ,/l’/ | ¢ m.
{wy:p=y) =eb uo peoj auy sberony —a— ™~ ./m ” o
(g =y} diy 2a0d 1eau JueyNSal $581)5 —o— ,7 o | | Vi m
(w2°0=Y) a1eb uo peoj sul| ab1OAY —y- | ] /.ﬂ.l 3
{wz 0=y} dn sayd se8U JUE)NSSI SSBNG —P— // /II:/ 9l w
(wp0=Y) 2)eb uo pecy su) abesany —e-— B - — S W.
wp g=u) diy Jaud 1eau eynsal s I [
(wp0=y) dy J3y uelNsa) ssaNGg —o— ~—U g, 2
(wz"0=y) 81e6 uo peoy} aul| abessny —p— <
(wz'0=y) dy 131d 1e3U JUL}NSBI SSAIG ~g—




259

(02- ="™@ PuE 0[- =) aseasoul axnesodwa) jo spnyjdue

Jua1agip 103 diy 191d Jeau Jue)[NSaI SSAIIS WNWIXEW PIZI[RULIOU PUR 2328 3Y3 U0 Peo] oul] 35LI3AR WMUIXEW PIZIBULION] - LE'9 unFig

{wiNw) sssuyns e

ooooL ] QgL oL 4
T | I f m_m:_,_, i ,, ,
{w g L=y} eyel wo peo) euy ebesssy. - 7 , W
(w g p=y) dn seyd Jeeu JUEHNS B SSEULS =i | {w g m,
(w g o=y) eyed uo peo| euy ebelany —p— I g
{w ¢ p=y} dy teid Jeau JUeYNS el SSeS —p— g
L]
{w yp=y) eyed uo peo| eul) BERIBNY g ﬂ.
{w p 0=y} dn seid JesU JUB}INSEI SSBNG ~—E— , | H
{w z'g=y) syed uo pea| euy ebereAy —m— | | a
| =
{w 2'p=y) dg seyd Jeeu Jueynsed SSeNg —E— \ | g
T i T T 4
! ! {111 L~ ! =
, , , Prd _— , ,
L] LA g
p = 2
y —— @
\\ o
— | T e
ﬂ“\w — \"\“ WI
[ — )
.IIII jl “
R &
/ 2t 3
°
Z // (W z'0 = y) ta1d a
)
S / p1 W
Iﬂl =
[ ”Il <]
_ ] ///ﬂl/ M\
(wo't =y)iad S== ”/ P 9L
/

-8’1



260

e L —o— Average fine load on gate (ft = 0.01 MPa)
120 - - ] _@— Stress resultant near pier tip (ft = 0.01 Mpa)

T“s —&— Average fine load on gate (ft = 1.0 MFa)

—n— Stress resultant near pier tip (ft = 1.0 Mpa)

Kﬂ"‘*‘fe-_}x T » ~

-
tﬁ%ﬁ, 'a;zﬁﬁgss A

\
\

Line load or stress resubtant {kMiim)

100 1000 10000
Gate stiffness (MNm)

08 f———

—3—h = D,ém, gate stiffness =1 MN/m
06 T T 11 [| —e—h =0.2m, gate stiffness = 100 MVm
0.4

—e—h =1,0m, gate stiffress =1 MN/m

Stress resuftant near pler tipfstress
resultant at clamped condition

02 1— 1 T| —&=h = 1.0 m, gate stiffness = 100 MUm
0 — L e ———_|
10 100 1000

L (m)

Figure 6.39 - Effect of length (L) in Fig. 6.34, on the maximum normalized stress resultant

near pier tip, for different thicknesses and different gate stiffnesses.
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Fig.6.40 - Finite element mesh for analyzing isolated structure.
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Figure 6.41 - Maximum stress at top layer in front of the isolated structure in Fig. 6.40 for

different length of L1 and L2 and different thicknesses.
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7 - CONCLUSIONS AND RECOMMENDATIONS

7.1 - Summary and Conclusions

An analytical capability has been developed in order to investigate the pressure caused
from the thermal expansion of a solid ice sheet. The model allows the prediction of the
three-dimensional stress field in an ice sheet, as a function of time, under a variety of
meteorological input conditions. The analytical model relies on two separate computer
programs. One program calculates the temperature distribution through the thickness of

the ice cover using the finite difference method. The ice cover is divided into a number of

included in the model are those due to convection, absorbed and emitted long wave
radiation, and absorbed short-wave solar radiation. The output of this program is the
temperature profile as a function of time. This serves as a part of the input for the second
program which uses the finite element method to predict the stress distribution through the
ice cover.

In the finite element program, a degenerate shell element is used which is capable of
modeling both bending and membrane behavior of the ice cover. Through the thickness
the integration is performed by a layered approach. The ice cover is divided into a number
of layers. Each layer can have a different thickness, different temperature, and different

material properties. The material properties can be defined as a function of temperature of

thickness direction. Two options are available with regard to the constitutive behavior of
the ice. The uniaxial version for the first can be described by a Maxwell unit consisting of
a linear temperature dependent spring and a non-linear temperature dependent dashpot.
The spring represents the elastic deformation and the dashpot represents the viscous flow.

The second constitutive model has an additional Kelvin-Voigt element in series with the
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Maxwell unit. The Kelvin-Voigt unit that represents the delayed elastic deformation
consists of a dashpot in parallel with a spring. Some of the important features of the finite
element program are: elastic foundation for the effect of underlying water, smeared tensile
cracking, boundary elements to model the shores with different inclines and non-rigid
structures, and loading due to water level changes.

In this formulation it is assumed that the material properties are the same in all
directions in the horizontal plane. This is valid for granular ice which is isotropic and
columnar ice with optical axis horizontal which is transversely isotropic. The model is
designed for low strain rates (less than 10° 5') which are typical for naturaily occurring
thermal loading. Therefore compressive cracking or the softening effect after the peak
stress, both of which occur at higher strain rates, are not considered. Buckling of the ice
sheets is also not considered.

The thesis contains seven chapters. The problem of the thermal pressure was
introduced in Chapter 1 and some background was given. The literature review in
Chapter 2 showed that despite recognition of the problem for over a century and the large
number of investigations, a complete understanding has not been achieved. The past
research was based on one- or at most two-dimensional models which could not consider
some important factors such as the three-dimensional stress field in the ice, bending of the
ice cover, effect of the underlying water, geometry of the reservoir, different shore types,
flexibility of the resisting structure, and tensile cracking. The past research was almost
exclusively concerned with fully constrained conditions. Due to the short comings of the
models the conditions where the ice cover was free to expand on part of the boundary,
was not considered. It was concluded that there was a lack of a three-dimensional model
which could consider all of the above mentioned factors and conditions.

In Chapter 3 different aspects of the thermal analysis were explained.  After
introducing the governing differential equation, the formulations for different components
of the heat exchange were given and the finite difference formulation was described. The
predicted temperatures were shown to be in good agreement with analytical and other

numerical solutions.
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Chapter 4 was concerned with the finite element program. The particular finite element
used was introduced, the constitutive laws were explained, the important features of the
program were described, and the overall formulation and the flowchart were presented.
The predictions of the program were shown to be in good agreement with analytical and
other numerical solutions.

In Chapter 5 both models were used in simulations of laboratory and field events. The
different mechanical properties suggested by previous investigaiors which were suitable
for thermal analysis were presented. These included those suggested by Drouin and
Michel (1971), Bergdahl (1978), and Cox (1984). The stresses predicted by the finite
element model were compared to the stresses obtained in the uniaxial constant strain rate
tests and biaxial constant temperature rates performed by Drouin and Michel (1971). The
predictions of both the thermal and mechanical models were also compared to the field
data collected by Fleet Technology Ltd. (Comfort et al., 1993, Comfort et al., 1994). The
measurements were performed during the 1991-92 and 1992-93 winters at the Paugan
dam in Quebec, the Arnprior dam in Ontario, and a large outdoor basin at the National
Research Council in Ottawa. The data included the temperature and stress profiles,
observations and measurements of ice and snow conditions, and some meteorological
data. Some of the conclusions reached in Chapter S are:

1) It was observed that good temperature predictions are possible with the thermal
program. The accuracy of the results however, depends on the accuracy of the
boundary conditions such as air or ice surface temperature and incoming short-wave
solar radiation.

2) In the stress simulations, the predicted stresses depended very much on the choice of
mechanical properties. The mechanical properties suggested by Drouin and Michel for
snow-ice gave the best agreement in most cases. The exception was for one case
during the 1991-92 winter at the Paugan Dam site, where the best agreement was
achieved using the mechanical properties suggested by Cox.

3) Both constitutive models were used in simulations of laboratory and field data. It was
found that the first model, when used with temperature dependent material properties,

yielded acceptable predictions of both the experimental and field data. This model had
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the advantage of requiring less computing time and fewer material properties. Thus
the majority of the simulations were based on this model.

The stress history was observed to have a significant effect on the predicted stresses.

In order to include the effect of stress history, simulation intervals were selected to be

. as long as practical, and in some cases simulations were started one or two days in

advance of a particular thermal event.

It was concluded that cracking of the ice should be considered in the analysis. The
tensile strength of ice was set very close to zero (0.01 MPa) in the simulations. This
artificially low value accounted for the effect of pre-existing cracks.

Where the loading due to water level changes was included, the calculated deflections
matched with the prescribed water level changes. The stresses obtained by this
method compared very well with tlie stresses at the NRC Test Basin but did not show
the fluctuations that occurred in the stresses at the two dam sites. It was concluded
that the fluctuations are due to other mechanisms such as arching action.

In the situations where temperatures above freezing were recorded in the ice sheet,
some discrepancies were observed between the measured and calculated stresses.
Usually during these periods the calculated stresses were higher than the measured
stresses and afier these periods the measured stresses were higher. In some cases even
compressive stresses were recorded during the cooling periods. These discrepancies
were attributed to the melting and freezing of the ice cover.

In Chapter 6 a study was performed to investigate the role of different factors that

affect the temperature and stress distribution inside the ice cover. Both the thermal the

and stress analysis programs were used in the study. The applied temperature variation

was a periodical function with prescribed period, amplitude, and initial temperature. For

the thermal analysis, the factors studied included: different ice types, wind speed, cloud

cover, relative humidity, latitude, time of the year, snow cover, thickness of the ice cover,

temperature increase, underlying water, geometry of the reservoir, boundary conditions,
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inclination of the shores, stiffness of the resisting structure, isolated structures, and tensile

cracking. The conclusions of this chapter are as follows:

1)

2)

3)

4)

5)

6)

7

8)

%)

Short-wave solar radiation has a significant effect on the maximum temperatures in
an ice sheet, especially for snow-ice at lower altitudes and under clear sky
conditions.

When solar short-wave radiation is not considered, for example when the surface
temperature is prescribed, temperatures in the ice are relatively insensitive to the
thermal properties of ice.

The presence of a snow cover has a significant effect on temperatures in an ice sheet.
With 5 and 10 cm of snow, the amplitude of the ice surface temperature was reduced
by 66% and 72% respectively from the predictions for clear ice.

With increasing period of the air temperature history, the ratio between the
amplitudes of the ice surface temperature and the air temperature gets closer to one.
With increasing thickness the temperature distribution through an ice cover gets
closer to the temperature distribution corresponding to a semi-infinite body. In a
thin ice sheet the temperature changes occur through the whole thickness but with
increasing thickness only the upper parts undergo temperature changes. The depth
of the significant temperz ure changes depends on the period of temperature increase
and is about 0.3 m for daily temperature changes.

Depending on the boundary conditions, two different situations exist for stress
distributions, fully confined and free expansion conditions.

In the fully confined conditions when the displacements and rotations are zero at the
boundaries (clamped), there is no bending deformation and no interaction between
the different layers. [Each layer acts independently under the influence of the
temperature changes in the layer.

When there is a freedom to expand on part of the boundary, there is interaction
between the layers, which affects the stress distribution. In this case tensile stresses
can be produced in the bottom layers

Under clamped conditions maximum (with respect to time) stress at top layer, does

not change very much with thickness. The maximum (with respect to time) stress
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12)
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resultant, however, depends on the maximum stress and the penetration of

temperature variations into the ice sheet. As the thickness increases the stress

The stresses and the stress resultants both increase if the initial temperature is
decreased.

Under clamped conditions the effect of reservoir geometry is negligible and it is
possible to obtain good estimates of stresses even with a one element finite element
analysis. This conclusion was confirmed by comparing single element results with
field measurements.

Under confined conditions where there is no rotational constraint on the boundary

but the displacements are restrained, then near the boundaries some compressive

very much from those for the corresponding clamped case. Due to resistance of the
underlying water against bending of the ice cover, it was found that for large ice
covers the stress distribution in regions away from the boundaries gets close to that
the clamped case. Therefore in these regions, a one element mesh can still be used
to estimate ice loads.

When the ice cover is free to expand in some parts of the reservoir, the stresses and
the loads decrease in the vicinity of these areas. Examples of this situation are an
inclined shore or a flexible structure, The reductions in stress at other locations
depend on the boundary conditions and geometry of the reservoir.

In the case of free expansion, the in-plane displacements are larger for thin ice sheet

When a structure is a combination of relatively rigid and flexible parts, the ice load is
distributed according to the stiffness each part. In this case the load on the flexible

part will be less than the load on a clamped boundary, and the load on the rigid part

flexible parts, the load on these parts decreases and the load on the rigid parts

increases.
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16) In the case of free expansion of an ice sheet surrounding a fixed isolated structure, a
substantial force can be exerted on that structure. The magnitude of the force
depends very much on the geometry and dimensions of the reservoir. In some of the
cases studied the forces exerted forces were about 20 times the load for clamped

boundary conditions.

7.2 - Recommendations for Future Study

It was observed that the predicted stresses depend very much on the choice of material
properties. Most of the material properties suggested in the literature are based on tests
performed at high strain rates and cannot be used for thermal stress analysis. Therefore,
further study of the thermal load problem would benefit from additional experimental
work on the multi-axial behavior of different ice types, especially S2 ice at low strain rates.
It is recommended that unloading conditions which occur during cooling periods also be
considered in the experimental works.

In most of the comparisons with field measurements the best agreement was achieved
when the mechanical properties suggested by Drouin and Michel for snow-ice were used.
In one case, however the mechanical properties suggested by Cox gave the best
agreement. Since the field data were limited, it was not possible to reach a firm
conclusion about the choice of mechanical properties in the analysis. More field
measurements are required in order to properly determine the appropriate mechanical
properties.

In this study the effect of water level changes was modeled by changing the buoyancy
force on the ice cover. Although the vertical displacements matched with the prescribed
water level changes, the predicted loads did not show the high fluctuations that occurred
in the loads obtained from the measured stresses at dam sites. It is probable that other
mechanisms were responsible. Further studies concerning the effect of water level
changes is reccmmended. In particular, the second order geometric effects associated

with arching action should be considered.
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Most of the effort in this study was concentrated on the development of the analytical
models and comparison with field measurements. The available data were mostly for
restrained ice sheets and wide structures. The present model can be used to study the ice
load on isolated structures as well. It is recommended that the model be used to perform
comparative studies between numerical predictions and field measurements of ice loads on
isolated structures.
The present model is most suitable for low strain rates (less than 1x10%s™). In the
case of offshore structures, high strain rates and stresses might occur and compressive

In these situations the present model will give an upper bound solution. The model could
be expanded to include compressive cracking or buckling of the ice sheet.

Cracking of ice and crack closing have a significant affect on the stresses. The tensile
strength and closing criieria which are used in this study are based on the field data that
correspond to fully confined condition. In this case the tensile stresses occur in the upper
layers of the ice sheet during cooling periods. In the case of free expansion however,
tensile stresses can occur in the lower layers of an ice sheet during periods of temperature
increase. Therefore the tensile strength and closing criteria might be different in these

conditions. Further study on this matter is recommended.
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