

Diversity-Based Automated Test Case Generation

by

Ali Shahbazi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Ali Shahbazi, 2015

 ii

Abstract

Software testing is an expensive task that consumes around half of a project’s effort. To

reduce the cost of testing and improve the software quality, test cases can be produced

automatically. Random Testing (RT) is a low cost and straightforward automated test

generation approach. However, its effectiveness is not satisfactory. To increase the

effectiveness of RT, researchers have developed more effective test generation

approaches such as Adaptive Random Testing (ART) which improves the testing by

increasing the test case coverage of the input domain.

This research proposes new test case generation methods that improve the effectiveness

of the test cases by increasing the diversity of the test cases. Numerical, string, and tree

test case structures are investigated. For numerical test generation, the use of Centroidal

Voronoi Tessellations (CVT) is proposed. Accordingly, a test case generation method,

namely Random Border CVT (RBCVT), is introduced which can enhance the previous

RT methods to improve their coverage of the input space. The generated numerical test

cases by the other methods act as the input to the RBCVT algorithm and the output is an

improved set of test cases. An extensive simulation study and a mutant based software

testing investigation have been performed demonstrating that RBCVT outperforms

previous methods.

For string test cases, two objective functions are introduced to produce effective test

cases. The diversity of the test cases is the first objective, where it can be measured

through string distance functions. The second objective is guiding the string length

distribution into a Benford distribution which implies shorter strings have, in general, a

higher chance of failure detection. When both objectives are enforced via a multi-

objective optimization algorithm, superior string test sets are produced. An empirical

study is performed with several real-world programs indicating that the generated string

 iii

test cases outperform test cases generated by other methods.

Prior to tree test generation study, a new tree distance function is proposed. Although

several distance or similarity functions for trees have been introduced, their failure

detection performance is not always satisfactory. This research proposes a new similarity

function for trees, namely Extended Subtree (EST), where a new subtree mapping is

proposed. EST generalizes the edit base distances by providing new rules for subtree

mapping. Further, the new approach seeks to resolve the problems and limitations of

previous approaches. Extensive evaluation frameworks are developed to evaluate the

performance of the new approach against previous methods. Clustering and classification

case studies are performed to provide an evaluation against different tree distance

functions. The experimental results demonstrate the superior performance of the

proposed distance function. In addition, an empirical runtime analysis demonstrates that

the new approach is one of the best tree distance functions in terms of runtime efficiency.

Finally, the study on the string test case generation is extended to tree test case

generation. An abstract tree model is defined by a user based on a program under the test.

Then, tree test cases are produced according to the model where diversity is maximized

through an evolutionary optimization technique. Real world programs are used to

investigate the performance of generated test cases where superior performance of the

introduced method is demonstrated compared to the previous methods. Further, the

proposed tree distance function is compared against the previous functions in the tree test

case generation context. The proposed tree distance function outperforms other functions

in tree test generation.

 iv

Preface

Chapter 2 of this thesis has been published as A. Shahbazi; A.F. Tappenden; J. Miller,

"Centroidal Voronoi Tessellations -- A New Approach to Random Testing," IEEE

Transactions on Software Engineering, vol.39, no.2, pp.163-183, Feb. 2013. I was

responsible for developing the idea, the data collection and analysis, and the manuscript

composition. J. Miller was the supervisory author and was involved with concept

formation and manuscript composition. A.F. Tappenden also contributed in manuscript

composition.

Chapter 3 of this thesis is submitted as A. Shahbazi; J. Miller, "Black-Box String Test

Case Generation through a Multi-Objective Optimization," Under revision in IEEE

Transactions on Software Engineering, 2015. I was responsible for developing the idea,

the data collection and analysis, and the manuscript composition. J. Miller was the

supervisory author and was involved with concept formation and manuscript

composition.

Chapter 4 of this thesis has been published as A. Shahbazi; J. Miller, "Extended

Subtree: A New Similarity Function for Tree Structured Data," IEEE Transactions on

Knowledge and Data Engineering, vol.26, no.4, pp.864-877, 2014. I was responsible for

developing the idea, the data collection and analysis, and the manuscript composition. J.

Miller was the supervisory author and was involved with concept formation and

manuscript composition.

Chapter 5 of this thesis is submitted as A. Shahbazi; J. Miller, "Black-Box Tree Test

Case Generation through Diversity," Submitted to IEEE Transactions on Software

Engineering, 2015. I was responsible for developing the idea, the data collection and

analysis, and the manuscript composition. J. Miller was the supervisory author and was

involved with concept formation and manuscript composition.

 v

Acknowledgments

I would like to express my deepest respect and gratitude to my supervisor, Professor

James Miller, for his patience, innovations, enthusiasm, and supports during the years of

my Ph.D. study. It has been an honor to be his Ph.D. student.

I also would like to acknowledge the financial support provided by the Alberta Innovates

(iCORE Graduate Recruitment Scholarship in ICT).

Finally, I would like to thank my mother for her support and encouragement.

 vi

Table of Contents

1 Introduction ... 1

1.1 Overview of Automated Software Testing... 1

1.2 Random Testing and Input Coverage ... 3

1.3 The Focus of This Research ... 4

2 Numerical Test Data Generation Using Centroidal Voronoi Tessellation 6

2.1 The Focus of This Chapter ... 6

2.2 Notations Used in This Chapter ... 7

2.3 Current Approaches.. 9

2.3.1 Adaptive Random Testing (ART) ... 9

2.3.2 Quasi-Random testing (QRT) ... 11

2.4 Centroidal Voronoi Tessellation (CVT) ... 12

2.4.1 CVT and Software Testing ... 14

2.5 Proposed Test Case Generation Approach: Random Border CVT

(RBCVT)... 15

2.5.1 RBCVT Calculation Method .. 18

2.5.2 RBCVT’s Runtime Order Reduction (RBCVT-Fast) 19

2.5.3 Generalization of the RBCVT beyond two dimensions 23

2.6 Experimental Frameworks ... 26

2.6.1 Testing Effectiveness Measure ... 26

2.6.2 Parameters of Test Case Generation Methods 29

2.6.3 Simulation Framework.. 29

2.6.4 A Mutant Based Software Testing Framework 32

2.7 Experimental Results and Discussion .. 34

2.7.1 Formal Analysis .. 34

2.7.2 Block Pattern Simulation Results ... 35

2.7.3 Strip Pattern Simulation Results ... 37

2.7.4 Point Pattern Simulation Results .. 40

2.7.5 Mutants’ Testing Results .. 43

2.7.6 Empirical Runtime Analysis ... 45

 vii

2.8 Degree of Randomness Analysis.. 46

2.9 Summary .. 49

3 String Test Data Generation through a Multi-Objective Optimization 52

3.1 The Focus of This Chapter ... 52

3.2 Adaptive Random String Test Case generation 54

3.2.1 Fixed Size Candidate Set (FSCS) ... 54

3.2.2 ART for Object Oriented Software (ARTOO) 54

3.3 Evolutionary String Test Case Generation ... 55

3.3.1 Genetic Algorithm (GA) ... 55

3.3.2 Multi-Objective Genetic Algorithm (MOGA) 56

3.4 String Distance Functions .. 60

3.4.1 Levenshtein Distance .. 61

3.4.2 Hamming Distance.. 61

3.4.3 Manhattan Distance .. 62

3.4.4 Euclidian Distance .. 62

3.4.5 Cosine Distance .. 62

3.4.6 Locality-Sensitive Hashing (LSH) .. 62

3.5 Runtime Order Investigation .. 63

3.6 Experimental Framework ... 65

3.6.1 Software Under Test (SUT) .. 65

3.6.2 Source Code Mutation .. 67

3.6.3 Testing Effectiveness Measure ... 68

3.6.4 String Test Set Characterization ... 68

3.7 Experimental result and discussion .. 69

3.7.1 Results of Each Program Under Test .. 69

3.7.2 Statistical Analysis of Results ... 72

3.7.3 Comparison of String Distance Functions 75

3.7.4 Empirical Runtime Analysis ... 78

3.8 Degree of Randomness Analysis.. 80

3.9 Related works ... 81

3.10 Summary ... 83

 viii

4 Extended Subtree: A New Similarity Function for Tree Structured Data 85

4.1 The Focus of This Chapter ... 85

4.2 Notation and Definitions Used in This Chapter 86

4.3 Current Approaches.. 87

4.3.1 Edit Based Distances... 87

4.3.2 Multisets Distance ... 90

4.3.3 Path Distance .. 90

4.3.4 Entropy Distance ... 91

4.3.5 Other Distances ... 91

4.4 Proposed Tree Similarity Function: Extended Subtree (EST) 92

4.4.1 Motivation ... 93

4.4.2 Extended Subtree (EST) Similarity .. 96

4.4.3 Computational Algorithm ... 98

4.4.4 Runtime Complexity Analysis .. 103

4.5 Evaluation Frameworks Design ... 104

4.5.1 Data Sets ... 104

4.5.2 Clustering Framework .. 107

4.5.3 Classification Framework ... 108

4.5.4 Clustering and Classification Evaluation 108

4.5.5 Distance Function’s parameters .. 109

4.6 Experimental Results and Discussion .. 112

4.6.1 K-medoid Clustering Results .. 112

4.6.2 KNN Classification Results .. 114

4.6.3 SVM Classification Results .. 115

4.6.4 Statistical Analysis of Results ... 117

4.6.5 Empirical Runtime Analysis ... 118

4.7 Summary .. 118

5 Tree Test Data Generation through an Evolutionary Optimization 121

5.1 The Focus of This Chapter ... 121

5.2 Test Case Abstract Model .. 122

5.3 Tree Test Case Generation Methods .. 122

 ix

5.3.1 Random Tree Generation .. 122

5.3.2 Adaptive Random Tree Generation .. 122

5.3.3 Evolutionary Tree Generation... 123

5.4 Tree Distance Functions ... 123

5.5 Experimental Framework ... 124

5.5.1 Software Under Test (SUT) .. 124

5.5.2 XML Test Case Abstract Model ... 125

5.5.3 Abstract Tree Decoding to XML .. 126

5.5.4 Source Code Mutation .. 126

5.5.5 Testing Effectiveness Measure ... 127

5.5.6 Tree Test Set Characterization .. 127

5.6 Experimental Result and Discussion .. 128

5.6.1 Results of Each Program Under Test .. 129

5.6.2 Statistical Analysis of Results ... 131

5.6.3 Comparison of Tree Distance Functions....................................... 133

5.6.4 Node Value Generation by MOGA .. 136

5.7 Related Works .. 139

5.8 Summary .. 140

6 Conclusions and Future Works ... 142

6.1 Conclusions .. 142

6.2 Recommendations for Future Research ... 147

Bibliography ... 152

 x

List of Tables

Table 2.1. Cohen’s effect size description (large, Medium, and Small) as well as

corresponding values for percentile standing and percent of non-overlapped

portion of two populations. ... 34

Table 2.2. The P-measure testing effectiveness mean and standard deviation for

all approaches including the corresponding results after the RBCVT process as

well as effect size, Z-score, and significance value with respect to block pattern.

... 35

Table 2.3. The P-measure testing effectiveness mean and standard deviation for

all approaches including the corresponding results after the RBCVT process as

well as effect size, Z-score, and significance value with respect to strip pattern. 38

Table 2.4. The P-measure testing effectiveness mean and standard deviation for

all approaches including the corresponding results after the RBCVT process as

well as effect size, Z-score, and significance value with respect to point pattern. 41

Table 2.5. The P-measure testing effectiveness for all approaches including the

corresponding results after the RBCVT process with respect to the mutants’

framework. .. 43

Table 2.6. CR(T) and NCD(Ti, Tj) for RT, FSCS, RRT, and EAR before and

after the RBCVT process. ... 48

Table 3.1. Runtime order complexity of each algorithm used in this chapter. 64

Table 3.2. Programs used to perform experimental evaluations. 66

Table 3.3. The number of mutants generated for the test programs. 68

Table 3.4. The p-measure improvement percentage of each method over RT

where maximum string size is 30 and Levenshtein distance is used. 70

Table 3.5. The p-measure improvement percentage of each method over RT

where maximum string size is 50 and Levenshtein distance is used. 71

Table 3.6. The raw p-measure results for RT where the Levenshtein distance is

used. .. 72

 xi

Table 3.7. The effect size between RT and other methods where the maximum

string size is 30 and Levenshtein distance is used. “*” indicates the result of the z-

test where a significant difference exists at the 0.01 level. 74

Table 4.1. Detailed information regarding the real and synthetic data sets. 105

Table 4.2. The clustering results for all case studies in the terms of accuracy,

Weighted Average of F-measure (WAF), and runtime. 113

Table 4.3. The KNN classification results for all case studies in the terms of

accuracy, Weighted Average of F-measure (WAF), and runtime. 115

Table 4.4. The SVM classification results for all case studies in the terms of

accuracy, Weighted Average of F-measure (WAF), and runtime. 116

Table 4.5. The effect size between accuracy of the EST and previous approaches.

“*” indicates the result of the z-test where a significant difference exist at the 0.01

level ... 117

Table 5.1. Programs used to perform experimental evaluations. 125

Table 5.2. The percentage of p-measure improvement of each method over RT

where maximum tree size is set to a constant number of 30 and EST tree distance

function is used. .. 129

Table 5.3. The percentage of p-measure improvement of each method over RT

where mean tree size is adjusted to 15.5 and EST tree distance function is used.

... 130

Table 5.4. The raw P-measure results for RT where the EST tree distance is used.

... 131

Table 5.5. The effect size between RT and other methods where the maximum

tree size is set to 30 and EST tree distance is used. “*” indicates the result of the

z-test where a significant difference exists at the 0.01 level. 132

Table 5.6. The effect size between RT and other methods where the mean tree

size is adjusted to 15.5 and EST tree distance is used. “*” indicates the result of

the z-test where a significant difference exists at the 0.01 level. 132

 xii

List of Figures

Figure 1.1. Software testing steps. .. 2

Figure 1.2. RT fails to evenly distribute the test cases throughout the input

domain. No test cases is produced in region one by the RT generator, whereas we

have 14 test cases in region two with a same size. ... 3

Figure 2.1. The lines specify Voronoi regions corresponding to 10 randomly

generated points. The points are Voronoi generators and the circles are the

centroids of the Voronoi regions. .. 13

Figure 2.2. The (a) RT and (b) corresponding CVT points generated using a

probabilistic approach. .. 15

Figure 2.3. RBCVT test cases in I and the random border points (R) in H. 16

Figure 2.4. The (a) RT, (b) FSCS, (c) RRT, (d) EAR, (e) Sobol, (f) Halton, and

(g) Niederreiter on the left and corresponding RBCVT points on the right. 17

Figure 2.5. A grid divides ∪H I into a set of cells. The points are

, 1,...,=mtr m TR and the circle is jb . Cells in layer one regarding jb are

highlighted, as an example. ... 20

Figure 2.6. Pseudo code for the proposed search algorithm utilized in the

RBCVT-Fast algorithm. .. 22

Figure 2.7. Average number of points/cells that are compared to jb calculating

the nearest point of TR to jb in a RBCVT-Fast calculation, where a RT test set is

utilized as generators... 23

Figure 2.8. Typical two-dimensional failure patterns: (a) block, (b) strip, and (c)

point failure patterns. .. 30

Figure 2.9. Improvement of test case generation methods with respect to RBCVT

process at different failure rates regarding the block failure pattern. 36

Figure 2.10. P-measure testing effectiveness for block pattern simulations of

FSCS, RRT, EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 37

Figure 2.11. Improvement of test case generation methods with respect to the

RBCVT process at different failure rates regarding the strip failure pattern. 39

 xiii

Figure 2.12. P-measure testing effectiveness for strip pattern simulations of FSCS,

RRT, EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 40

Figure 2.13. Improvement of test case generation methods with respect to

RBCVT process at different failure rates regarding the point failure pattern. 42

Figure 2.14. P-measure testing effectiveness for point pattern simulations of

FSCS, RRT, EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 42

Figure 2.15. Improvement of test case generation methods after the application of

RBCVT with respect to the mutants’ framework. .. 44

Figure 2.16. P-measure testing effectiveness of each test case generation approach

against RT with respect to the mutants’ framework. .. 45

Figure 2.17. Empirical test set generation runtime for the RBCVT, RBCVT-Fast,

FSCS, RRT, and EAR. .. 46

Figure 3.1. (a) Benford distribution (PDFB(n)) where base is 10. (b) kolmogorov–

smirnov test is used to measure the distance of two distributions. CDF(n) and

CDFB(n) are cumulative probability distribution of the strings length and Benford,

respectively. The max string length is assumed to be 30 which leads to the

Benford base of 31. ... 57

Figure 3.2. (a) Comparison of string distance functions where maximum string

size is 30. Each column denotes p-measure improvement of each test case

generation method over RT. (a), (b), and (c) represent results for test set sizes of

10, 20, and 30, respectively. (d) presents the mean of all test set sizes. 76

Figure 3.3. Comparison of string distance functions where maximum string size is

50. Each column denotes p-measure improvement of each test case generation

method over RT. (a), (b), and (c) represent results for test set sizes of 10, 20, and

30, respectively. (d) presents the mean of all test set sizes. 77

Figure 3.4. Average execution time for different distance functions with string

sizes between 5 and 100. ... 78

Figure 3.5. Average execution time of diversity-based fitness function with test

set sizes between 3 and 50. Random string sets with maximum string size of (a)

50 and (b) 1000 are produced as input to the fitness function. 80

Figure 4.1. Three edit operations, “delete”, “insert”, and “update”. 88

 xiv

Figure 4.2. Optimal mappings between trees for TED and IST. 89

Figure 4.3. Samples of pT and qT utilized to problems regarding mapping

conditions in edit based distances. .. 94

Figure 4.4. Samples of isolated subtree (IST) mappings where (a) the mapped

nodes form a subtree as denoted by the hatches; and (b) the mapped nodes are

separate nodes. .. 95

Figure 4.5. Extended Subtree (EST) mapping where (a) indicates invalid

mappings, and (b) represents valid mappings. .. 97

Figure 4.6. Pseudo code for the proposed tree distance algorithm. 101

Figure 4.7. A simple example for the proposed EST algorithm. 103

Figure 4.8. The accuracy of EST similarity function against α and β 110

Figure 4.9. The average similarity of EST similarity function against α 111

Figure 4.10. Average execution time for different distance functions with tree

sizes between 5 and 100. ... 118

Figure 5.1. Analysis of failure detection against the tree sizes. Random tree

generation with test set size of 8 is used. .. 128

Figure 5.2. Comparison of tree distance functions where maximum tree size is 30.

Each column denotes mean of p-measure improvement over all programs. (a), (b),

(c), and (d) represent results for test set sizes of 4, 6, 8, and 10, respectively. (e)

presents the mean of all test set sizes. ... 135

Figure 5.3. Comparison of tree distance functions where mean tree size is 15.5.

Each column denotes mean of p-measure improvement over all programs. (a), (b),

(c), and (d) represent results for test set sizes of 4, 6, 8, and 10, respectively. (e)

presents the mean of all test set sizes. ... 136

Figure 5.4. Comparison of RT and MOGA string generation for tree node values

where max tree size is 30. Each column denotes mean of p-measure improvement

over three programs (NanaXML, JsonJava, and JTidy). The EST tree distance

function is used for all tree generation methods. (a), (b), (c), and (d) represent

results for test set sizes of 4, 6, 8, and 10, respectively. (e) presents the mean of all

test set sizes. .. 139

 1

1 Introduction

1.1 Overview of Automated Software Testing

Software testing is any activity aimed at evaluating an attribute or capability of a software

and determining software bugs. Software testing is an important step in the software

development lifecycle due to the high cost associated with software bugs found after

deployment. This cost can be reduced by optimizing the input test cases of the automated

test case generation system. Considering the fact that software plays an important role in

many aspects of human life, software failures can produce significant financial losses as

well as endangering human lives. Although software testing cannot assure bug free

software, its role is critical in software development. According to a study commissioned

by the Department of Commerce's National Institute of Standards and Technology

(NIST), software errors cost the U.S. economy 59.5 billion dollars annually [1]. Further,

Jones [2] reported that due to poor software quality 500 billion dollars are lost

worldwide, per year.

Accordingly, software testing consumes a significant portion of the software

development budget. Studies have shown that often testing accounts for half of total

project costs [3]. Since manual software testing is a labour-intensive task, the cost of

testing is enormous, mostly because of the high cost of human resources. Manual testing

is slow, leading to long time-to-market period, which increases the cost of software

production. Further, human errors may be another drawback of manual testing. In

addition, market pressures for the delivery of new functionality and applications have

also never been stronger. The only practical solution to these difficulties is to automate

the software testing process. Automated software testing has been introduced as an

approach to reduce the cost and speed up the testing process. Further, it enhances the

manual testing effort by increasing the testing coverage leading to higher software

quality.

As indicated in Figure 1.1, a testing framework has three major components including

test case generation, test case harness (execution), and a test oracle. Test case generation

is the first step of the testing process. This component generates test cases where the

objective is generating test cases with maximum coverage of the input space. In other

words, the objective is generating minimum number of test cases that detects maximum

 2

number of failures. The second step of the testing process that needs to be automated is

test case harness which, in general, has two responsibilities. First, it executes the test

cases generated in the previous step; and second, it captures the results that will be used

in the oracle.

Test case
generation

Test case
harness

(execution)
Test oracle

Software Under the Test (SUT)

Software testing

Figure 1.1. Software testing steps.

An oracle is a mechanism used in the testing process for determining whether a test has

passed or failed [4]. To achieve this objective which is usually the most complicated part

of the automated testing, the following two tasks need to be performed by the oracle:

1. The oracle must generate the expected results. The expected results are the outputs

that the oracle determines that software should generate for the given input.

2. The second task is comparing the captured output(s) to the expected output(s) and

then determining whether a test has passed or failed.

The testing can be automated in part of the process, for example, the test case generation

and harness can be automated, while analyzing the results are performed manually

(human oracle). Many industrial tools [5] for automated testing, that are sold for very

high prices, only automate the test case harness component. That is, the user still needs to

define test cases as well as the expected results. From an academic perspective, this level

of automation is not considered automated testing. In fact, test case harness is the easy

part, whereas automated test oracle and an effective automated test case generator are the

difficult parts. For small systems, manual test case generation is easy to write and

maintain. However, as systems become more complicated and the number of bugs

increases, manual test generation is not effective and cost sensitive.

Automated test case generation can be divided into black-box testing and white-box

testing. In black-box test generation, the automated test generation tool has no access to

 3

the source code. Therefore, these methods are independent from the language of the

source code. As a result, black-box testing methods are very general and independent of

the programming language; all that is needed is the structure of the inputs and the outputs

of the program under test. However, white-box test generation tools read and analyze the

source code to generate test cases.

1.2 Random Testing and Input Coverage

Random Testing (RT) [6] is a straightforward black-box testing approach. RT’s

application in industry includes Dot NET error detection [7], security assessment [8], [9],

Java Just-In-Time (JIT) compilers [10], and Windows NT robustness assessment [11].

Many companies use RT to detect security bugs; e.g. the Trustworthy Computing

Security Development Lifecycle document (SDL) [12] states that fuzzing, a form of RT,

is a key tool for security vulnerability detection.

RT is interesting since it has a low computational cost and is easy to implement.

However, RT is not very effective regarding fault detection. According to various

empirical studies, e.g. [13]–[17], faults usually occur in continuous regions within the

input domain. This is referred to as error crystals by Finelli [14]. This means that faults

are often clustered in the input space [18]. Accordingly, a diverse set of test cases that has

a better coverage of the input domain has a greater chance of detecting a fault. As a

result, RT’s failure detection performance can be improved if test cases are distributed

more diversely in the input space. RT test cases for a 2-dimensional space are presented

in Figure 1.2, where RT’s failure to evenly distributed test cases is demonstrated. That is,

there is no test case in region one, while there are 14 test cases in region two.

Figure 1.2. RT fails to evenly distribute the test cases throughout the input domain. No test

cases is produced in region one by the RT generator, whereas we have 14 test cases in region
two with a same size.

 4

Adaptive Random Testing (ART) approaches [19]–[21] were developed to enhance the

performance of RT. ART approaches generate more effective test cases by producing

more diverse test cases across the input domain. Therefore, the probability of fault

detection is improved [19].

1.3 The Focus of This Research

In this research, we limit our scope to black-box automated test case generation and

hence, we introduce approaches to generate more effective test cases. Since black-box

testing is a common testing strategy, any improvement in this domain could produce a

significant improvement. Accordingly, the objective is to generate a diverse set of test

cases. As explained in the previous section, failure usually occur in failure crystals or

failure regions according to several empirical studies, e.g. [13]–[17]. Hence, it is believed

that a diverse set of test cases is more likely to produce more effective test cases in the

context of black-box testing.

To achieve this, we develop new test case generation methods for three data structures as

test cases; numerical, string, and tree test cases. Hence, any program that accepts one of

these types as input or the input that can be modeled by one of these data structures can

be tested.

Accordingly, in chapter 2, numerical test case generation is studied where we introduced

a new test generation method which is compared against the previous black-box

numerical test case generators. We investigate the numerical test generation for higher

dimensions than two. Further, the runtime of the new method is optimized and compared

against the previous methods.

Following that, string test cases are investigated in chapter 3. A few string test case

generation methods are investigated and compared. We indicate that with multi-objective

optimization where diversity and string size distribution are the objectives, more effective

test cases can be generated. We also investigate the performance of a few string distance

functions which are part of string test generation.

In chapter 4, we propose a new tree similarity and/or distance function which works

based on tree mappings. We empirically investigate the performance of the new function

compared to other tree distance functions in clustering and classification applications. We

introduce this tree distance function to later use it in a tree test generation framework in

 5

the next chapter.

Finally, we study tree test case generation in chapter 5. Test case generation methods

from the string generation chapter are ported to generate trees based on an abstract tree

model. Again test generation methods are evaluated in an empirical framework.

Furthermore, the proposed tree distance function is compared against the other tree

distance functions in the context of test cases generation.

 6

2 Numerical Test Data Generation Using Centroidal

Voronoi Tessellation

Although Random Testing (RT) is low cost and straightforward, its effectiveness is not

satisfactory. To increase the effectiveness of RT for numerical test case generation,

researchers have developed Adaptive Random Testing (ART) and Quasi-Random Testing

(QRT) methods which attempt to maximize the test case coverage of the input domain.

This chapter proposes the use of Centroidal Voronoi Tessellations (CVT) to address this

problem. Accordingly, a test case generation method, namely Random Border CVT

(RBCVT), is proposed which can enhance the previous RT methods to improve their

coverage of the input space. The generated test cases by the other methods act as the

input to the RBCVT algorithm and the output is an improved set of test cases. Therefore,

RBCVT is not an independent method and is considered as an add-on to the previous

methods. An extensive simulation study and a mutant based software testing investigation

have been performed to demonstrate the effectiveness of RBCVT against the ART and

QRT methods. Results from the experimental frameworks demonstrate that RBCVT

outperforms previous methods. In addition, a novel search algorithm has been

incorporated into RBCVT reducing the order of computational complexity of the new

approach. To further analyze the RBCVT method, randomness analysis was undertaken

demonstrating that RBCVT has the same characteristics as ART methods in this regard.

2.1 The Focus of This Chapter

In this chapter, we propose a new test case generation approach, namely Random Border

Centroidal Voronoi Tessellations (RBCVT) which utilizes Centroidal Voronoi

Tessellations (CVT). The proposed RBCVT approach enhances the existing state-of-the-

art test case generation techniques. Specifically, we will demonstrate that RBCVT:

1. Is able to produce a superiorly distributed set of test cases when compared to RT,

ART, and QRT;

2. Still retains the random nature of RT; and,

3. Can be optimized to have linear execution characteristics across a wide set of

situations.

 7

RBCVT is not an independent method to generate input test cases. It considers other test

case generation methods as an input and increases software testing effectiveness by

spreading the test cases more diversely throughout the input domain. In addition, a novel

search algorithm is proposed to enhance the computational complexity of the RBCVT

test case generation from a quadratic to linear runtime order.

In addition to the even distribution of test cases over the input space, the degree of

randomness 1) within a set of test cases; and 2) between multiple sequences of test sets, is

an important aspect. The test cases’ randomness is critical in avoiding systematic poor-

performance in certain situations (that is, where a non-random sequence could

significantly (negatively) correlate with a current set of defects). Similarly, in regression-

type testing, we can prevent inefficient testing if test cases are uncorrelated with respect

to each other, meaning a high degree of randomness. The proposed RBCVT approach

seeks to generate a more effective sequence of test cases with respect to software testing

practice, while retaining the degree of randomness possessed by RT and ARTs methods.

This, randomness requirement, is investigated using Kolmogorov complexity which

provides a new class of distances appropriate for measuring similarity relations between

sequences [22], [23].

2.2 Notations Used in This Chapter

The following notations and assumptions are provided to simplify the discussion in the

rest of this chapter.

• I denotes the input space which is considered a two-dimensional unit hypercube

(2[0,1]I =).

• H denotes the area outside I which is defined as 2 [0 ,1]H h h I= − + − where the

width of H is indicated by h.

• d denotes the dimension of a test case or input space.

•  denotes the size of a set.

• T denotes selected test cases on I generating a test set (1{ }T
i iT t ==).

• B denotes a random background point set on H I∪ regarding the RBCVT

calculation algorithm (j 1{b }B
jB ==).

• R denotes a random border point set on H which simulates random borders in

 8

RBCVT approach (n 1{r }R
nR ==).

• TR denotes the combination of T and R which is defined as T
1{ } R

m mTR T R tr == ∪ =

where TR T R= + .

• iV denotes a Voronoi region (a cell in Voronoi tessellation).

• (),dist p q denotes the Euclidian distance between points p and q .

• (),p Tβ denotes nearest point of T to the point p .

• ().O represents the runtime order of an approach.

• ()argmax . returns the index of an element with maximum value.

• θ denotes the failure rate.

• std denotes the standard deviation.

• ⊕ is the bit-by-bit exclusive-or operator.

• ()
1,...,

XOR .
j k=

 denotes the bit-by-bit exclusive-or for the specified range.

• NG represents the number of cells in each dimension of the grid with respect to

RBCVT-Fast algorithm.

• avgC denotes the average number of points in each cell.

• ().Round returns the nearest integer value to the input data.

• lC is a set which contains all the cells in layer l where each cell in lC is denoted by

lmc .

• (),c j lmdist b c indicates the minimum Euclidian distance between the point jb and

the cell lmc .

• (),l jdist b l represents the minimum Euclidian distance between point jb and cells in

layer l.

• (), c j lmb cb denotes nearest child of lmc to the point jb .

• winnertr denotes a point of TR with minimum Euclidian distance from jb .

• ().RTime denotes a runtime of an algorithm or a method.

• ()Tϕ indicates the preprocessing function which preforms the required processing

on T regarding randomness analysis.

 9

• ()CR T represents the compression ratio of T .

• ().δ denotes the Kolmogorov complexity of the input data.

• (),i jNCD T T represents the normalized compression distance between iT and jT .

2.3 Current Approaches

2.3.1 Adaptive Random Testing (ART)

Adaptive Random testing methods seek to resolve the deficiencies of RT demonstrated in

Figure 1.2. These methods seek to retain the random nature of RT, while providing a

more “even distribution” of the sequence of test cases across the input domain. Since the

introduction of ART by Chen et al. [18] a variety of different ART methods have been

proposed, including Fixed Size Candidate Set (FSCS) [18], [24], [25], Restricted Random

Testing (RRT) [26], Mirror Adaptive Random Testing (M-ART) [27], Adaptive Random

Testing by Bisection (ART-B) [28], Adaptive Random Testing by Random Partitioning

(ART-RP) [29], ART through Iterative Partitioning (IP-ART) [30], ART based on

distribution metrics [31], and Evolutionary Adaptive Random Testing (EAR) [19].

The ART methods are developed based on the observation that failures occur in failure

regions which are clustered within the input domain. Each of these methods possesses

strengths and weaknesses regarding efficient test case generation and computational

complexity. Via empirical investigations, Mayer et al. [32] concluded that FSCS [18],

[24], [25] and RRT [26] were the best ART methods. Subsequently, Tappenden and

Miller [19] introduced EAR and demonstrated that this method has superior performance

than FSCS and RRT. Hence, we compare RBCVT's performance against these methods.

In each of these ART techniques, the first test case is generated randomly and subsequent

test cases are based on each method's specific algorithm.

2.3.1.1 Fixed Size Candidate Set (FSCS)

FSCS uses a distance based algorithm to generate test cases [18]. In this method, a fixed

size candidate set is used to produce test cases. A set of k randomly generated

candidates, cd , are evaluated against all previously selected test cases and a candidate

with largest distance from previously executed test cases is selected as

 ()()()
1,...,

arg max , , ,j jj k
J dist cd cd Tβ

=
= (2.1)

 10

where jcd denotes the j th candidate; and J represents the index of the selected

candidate as a next test case. The computational requirement for this method is
2(| |) (| |)FSCS T O T∈ due to the computation of the distance between candidates and

each previously generated test case [19], [32].

2.3.1.2 Restricted Random Testing (RRT)

RRT [26] also uses a distance based algorithm to generate test cases via a circular

exclusion zone [32] centered around each previously generated test case. The radius of

each exclusion zone is determined using a constant coverage ratio (γ), which is the sum

of the areas of all the existing exclusion zones divided by the total area of the input

domain. A candidate test case (jcd) is generated randomly, and disregarded, if it is

within the exclusion zone of any other test case, i.e. if the following inequality is true.

 ()(), , .j jdist cd cd T
T
γβ

π
< (2.2)

This process is repeated until an appropriate candidate is found [26]. Calculation of the

algorithm's computational efficiency is not straight forward, given the stochastic nature

of the technique. However, it has been demonstrated empirically that the average runtime

order is within 2(| |) (| | log(| |))RRT T O T T∈ [32].

2.3.1.3 Evolutionary Adaptive Random Testing (EAR)

EAR uses an evolutionary approach to find an approximation for the test case that has the

maximum distance from all the previous test cases [19]. For each test case, a pool of k

(population size) random candidates is generated. This population is evolved until a

stopping criterion is met. This approach is encoded using two genes in each chromosome.

Each gene is a number representing the value for one of the two dimensions. The

evolution is based upon a Euclidean distance-based fitness function [19]

 () ()(), , , ,j j jFitness ch T dist ch ch Tβ= (2.3)

where jch represents a chromosome. Single-point crossover was applied to the two

chromosomes to generate an offspring evolving the population. When the stopping

criterion is met, the best chromosome is selected as the next test point according to the

fitness function. The runtime of this algorithm [19] is in the order of quadratic time

 11

(2(| |) (| |)EAR T O T∈).

It is worthwhile to note that there are two sub-optimum techniques, introduced in

previous ART studies, to reduce the ART computational complexity, namely mirroring

[27] and forgetting [33]. Both techniques can be applied to all the studied ART methods.

Producing the next test case gets more time consuming as the number of test cases grows.

Accordingly, the technique of forgetting only considers a constant number of previous

test cases when designing a new test case, not all of them. It makes the new test case

design independent of |T|, leading to a one order reduction in the overall time complexity.

In mirroring, ART is only applied to a part of the input domain and then the designed test

cases are mirrored to other parts. Obviously, there is a trade-off between effectiveness

and computational complexity, if the techniques of mirroring and forgetting are applied.

2.3.2 Quasi-Random testing (QRT)

In addition to ART, the use of quasi-random sequences in software testing has been

recently proposed [34], [35] for numerical test case generation. Quasi-random sequences

are mathematically developed sequences which are rigorously designed to produce low-

discrepant sample points in a d -dimensional hypercube. They fill the space more

uniformly than uncorrelated random points. It has been observed [34], [35] that using

these sequences as input test case generators produces better results than RT in software

testing. However, it has not been shown that their results are better than ART methods.

Until now various quasi-random sequences have been constructed including Sobol [36],

Halton [37], Niederreiter [38], Faure [39], and Hammersley [40]. In this chapter, we

consider the following quasi-random sequences.

2.3.2.1 The Halton Sequence

The Halton sequence has been derived from Van der Corput sequence [35] which is

defined as

 () 1

0
Φ ‍ ,

k
j

b j
j

n n b− −

=

= ∑ (2.4)

where jn is the j th digit of n in the base b ; and k denotes the lowest integer that

makes 0jn = , for all j k> . The Halton sequence can be seen as the natural d -

dimensional extension of the Van der Corput sequence. The Halton sequence generates

 12

values deterministically using prime numbers as its base. The standard Halton sequence

performance is good in low dimensions, whereas in large dimensions a correlation

problem between sequences generated in different dimensions appears [41]. As a remedy,

several scrambling and randomization methods have been introduced [41].

2.3.2.2 The Sobol Sequence

The Sobol sequence [36] has been proposed for software testing by Chi and Jones [35].

The Sobol sequence can be considered as a permutation of the binary Van der Corput

sequence in each dimension [35] and is defined by the following equations.

 () ()
1, ,

XOR ,j jj k
Sobol n n w

= …
= (2.5)

1,...,

XOR ,
2 2

i j i j r
j j j ri r

w w
w

α − −
+=

 
= ⊕ 

 
 (2.6)

where jn is the j th digit of n in binary, k represents the number of digits of n in

binary, and ()Sobol n denotes n th element of the Sobol sequence. To construct a Sobol

sequence, we need to choose a primitive polynomial of degree r with { }0,1iα ∈

coefficients. The required computational overhead for the Sobol generator is within the

order of 2(| |) (log(| |))Sobol T O T∈ [42]. This low computational cost is the primary

advantage of QRT compared to ART approaches.

2.3.2.3 The Niederreiter Sequence

The Niederreiter sequence was introduced in 1988 [38] and provides a general form for

quasi-random sequences. This sequence has provided a good reference for other quasi-

random sequences, as all of these methods can be described in terms of what Niederreiter

called (),t s -sequence. The discrepancy of this sequence is lower than any other known

sequence [34]. Chen et al. [34] has proposed this sequence for test case generation where

a large number of test cases are required.

2.4 Centroidal Voronoi Tessellation (CVT)

In this section, we introduce the concept of CVT and discuss approaches to its calculation

as well as its application to software testing. A Voronoi diagram (Voronoi tessellation) is

a decomposition of a space, in our case a unit hypercube, into a set of cells (Voronoi

 13

regions) such that i jV V ∅= for i j≠ ; and 1 ‍ 11k
i iV= = , where iV is a Voronoi region

and k is the number of Voronoi regions. Each Voronoi region is associated with an object

and consists of all the areas that are closer to that object than any other object. These

objects are disjoint [43] and are referred to as the generators of the Voronoi diagram. In

this chapter, an object is a point (it) and Euclidian distance is considered as a distance

measure. The Voronoi region corresponding to the point it is defined as

 () (){ }| 1,..., , : , , .i i jV x I j T j i dist x t dist x t= ∈ ∀ = ≠ < (2.7)

Centers of mass, centroids, of a Voronoi region (iV) is defined as

()

()
*

‍
,

‍
i

i

V
i

V

x x dx
t

x dx

ρ

ρ
=
∫
∫

 (2.8)

where ρ is a density function defined in I. Centroids in the decomposed cells of a

Voronoi tessellation possess characteristics that seem to have some advantages with

respect to software testing. In Figure 2.1, adapted from [44], 10 randomly (RT or

alternatively by using ART or QRT techniques) generated points are used as the

generators or inputs to the system. Accordingly, the Voronoi regions have been formed

corresponding to the generators and the centroid of each Voronoi region is indicated by a

circle. As shown in this figure, the resulting circles are “more evenly distributed”

compared to the input points making them more appropriate for software testing.

Figure 2.1. The lines specify Voronoi regions corresponding to 10 randomly generated

points. The points are Voronoi generators and the circles are the centroids of the Voronoi
regions.

 14

A CVT is a collection of Voronoi regions where their generator points are the centroids

of the corresponding Voronoi regions [44]. This case is a special case; and the probability

of a set of random generators having the same positions as the centroids is quite low. In

general, the generators of Voronoi tessellations will not be at the same places as the

centroids. An important property of CVT is that these special generators producing a

CVT are not unique and we can have distinct CVTs within a d-dimensional unit

hypercube [44], [45].

A CVT can be produced either deterministically or probabilistically [44]–[46]. A

deterministic approach, such as Lloyd's method [44], produces a consistent output for

every input. Whereas, a probabilistic approach, such as MacQueen's method [45], uses a

random mechanism to generate a CVT leading to distinct outputs, for the same input set,

in different runs allowing additional exploration of the input space. Since this is

beneficial during testing scenarios (e.g. regression situations), we develop a probabilistic

calculation approach in this study for the RBCVT test case generation method, which is

introduced in Section 2.5.

2.4.1 CVT and Software Testing

In this section, we introduce the application of CVT in software testing as well as its

desirable and undesirable features in this regard. CVT has been applied within the wide

array of applications [44]. However, the use of this technique for improving RT, ART

and QRT techniques is novel. The CVT methodology requires a set of initial points

named generators. The use of the output from other test case generation methods (RT,

ART, and QRT) is proposed as inputs (generators) to the CVT algorithm leading to an

improved set of test cases. Chen and Merkel [47] presented a new calculation method for

FSCS using Voronoi diagrams; they utilized Voronoi diagrams to develop a search

algorithm with the ability to calculate (),jc Tβ with a reduced computational

complexity. This work is significantly different from our proposed use of Voronoi

diagrams in test case generation, since they use Voronoi diagrams to speed up finding the

nearest point in FSCS test case generation approach, whereas we use the centroids of

Voronoi regions to improve the effectiveness of the test case generation.

To indicate CVT’s effect on test cases, Figure 2.2 is presented. This figure indicates the

generator (input) points for CVT (Figure 2.2a), points generated by RT, as well as the

resultant points generated by CVT (Figure 2.2b). According to this figure, one can

 15

observe that CVT points possess the following desirable properties:

• The CVT points are more “evenly distributed” than their generators in the space.

Since faults often occur in failure regions or error crystals, the CVT points are likely

to detect a failure region more efficiently.

• As discussed in the previous section, as CVT generates its (output) points by a

probabilistic approach, the displayed points are not unique as the CVT process is

stochastic. Furthermore, the input generators are generated using a random

procedure, except for quasi-random points. Therefore, the output CVT points seem to

possess “randomness” (the randomness will be investigated in Section 2.8).

Figure 2.2. The (a) RT and (b) corresponding CVT points generated using a probabilistic

approach.

Further, the application of CVT to software testing requires a unique solution to the

“boundary conditions” introduced by this domain. It is a well-established principle that

the probability of a software defect is higher near the boundaries. In this regard, CVT

needs to be extended to explicitly consider defect behavior near these boundaries. As

indicated in Figure 2.2b, all the test cases near the borders have a relatively constant

distance with the border. Accordingly, CVT is unable to generate test cases near or on the

border. This undesirable feature is due to the traditional CVT definition. To solve this

problem, we propose the novel RBCVT approach, which is presented in the next section.

2.5 Proposed Test Case Generation Approach: Random Border

CVT (RBCVT)

In this section, we propose the novel RBCVT test case generation approach, which

removes the undesirable feature of the CVT discussed in the previous section. In this

 16

regard, we propose a RBCVT calculation approach and investigate its associated runtime

order. In addition, we propose a novel search algorithm to reduce the computational

complexity of RBCVT. Finally, we investigate the generalization of the RBCVT beyond

two dimensions.

RBCVT is based on defining an imaginary random border outside the real borders of I. In

this regard, we introduce a set of random points (R) in H, which simulate an imaginary

random border as discussed in the next section. In Figure 2.3, a set of RBCVT test cases

is demonstrated as well as the random border points in H. As indicated in this figure,

RBCVT effectively removes the aforementioned undesirable feature of the CVT.

Accordingly, Figure 2.4 indicates the generator points of RBCVT (one for each of the

seven test generation methods studied) in the left-hand side; and the resultant RBCVT

points on the right-hand side.

Figure 2.3. RBCVT test cases in I and the random border points (R) in H.

 17

Figure 2.4. The (a) RT, (b) FSCS, (c) RRT, (d) EAR, (e) Sobol, (f) Halton, and (g)

Niederreiter on the left and corresponding RBCVT points on the right.

 18

2.5.1 RBCVT Calculation Method

To calculate the RBCVT test cases using a set of generator points, we propose a

probabilistic method as follows:

Step1. Determine the initial set of 1{ }T
i iT t == as generators, it I∈ where 1,...,i T= .

Step2. Initialize a random border point set of 1{ }R
n nR r == in which ,nr H∈ where

1,...,n R= . In addition, the combination of T and R is defined as

T
1{ } R

m mTR T R tr == = where TR T R= + . Each mtr has an associated Voronoi

cell named mV .

Step3. Initialize a random background point set of 1{ }B
j jB b == in which ()jb I H∈ 

where 1,...,j B= .

Step4. Cluster the B into TR cells such that (), ,j m m jb V tr b TRb∈ = .

Step5. Calculate the centroids of Voronoi regions only for those mV where the generator

belongs to T, denoted by iV (We do not need to update border points). For the

probabilistic approach, (2.8) is simplified to *

1
j i

j i

jb V
i

b V

b
t ∈

∈

=
∑
∑

 where ρ is set to a

unit value in this application.

Step6. Update the generators, it , where 1,...,i T= are replaced with the corresponding

*
it .

Step7. Go to step3 until the stopping criterion is met.

A stopping criterion can be 1) the distortion value between it and *, 1, 2, , | |it i T= … in

each iteration, is reduced to less than a threshold; or 2) a constant number of iterations.

Within this study, a constant number of 10 iterations has been selected. This stopping

criterion was selected due to its perceived convergence amongst all trial runs of the

algorithm. The parameter B was set relative to the value of T , 100 T× . It has been

observed that with 10 iterations and considering 100B T= × , the produced RBCVT test

cases are in a stable situation and no further iterations were required to more uniformly

distribute the generators. Finally, we need to specify how to generate random border

 19

points of R. As indicated in Figure 2.3, we considered a set of square cells around I as H

and a random point is inserted in each cell. The number of cells in each side of I is

selected in accordance with the T as Tα × where α is a coefficient which is

selected as 2α = based upon an initial empirical exploration. Accordingly,

R 4 Tα= × × . Finally, the h which is defined as the width of H, indicated in Figure

2.3, is equal to a side of a square cell.

2.5.1.1 RBCVT Runtime Analysis

In this section, we discuss the order of computational complexity of the RBCVT

algorithm. In each RBCVT iteration, the main computational load is associated with

clustering the set B (Step4). Since each jb is clustered by comparing it to the all

members of TR , each jb clustering complexity grows linearly with TR given by

(| |) (| |)
jbRBCVT TR O TR∈ . Obviously, the runtime order of RBCVT is also dependent

on | |B and the number of iterations (held constant in this study), hence

(| |,| |) (10 | | | |)RBCVT TR B O TR B∈ × × . Since the number of | | 100 | |B T= × grows

linearly with T ; and TR T R= + , the previous equation can be simplified as

() ()(), R 1000 T RRBCVT T O T∈ × × + . However, the constant number of 1000

becomes insignificant as T grows. As a result, 2 1.5(| |) (| | 4 | |)RBCVT T O T Tα∈ + .

Finally, we need to keep the term with highest order. Therefore, the runtime complexity

of RBCVT grows within the order of quadratic time as 2(| |) (| |)RBCVT T O T∈ .

2.5.2 RBCVT’s Runtime Order Reduction (RBCVT-Fast)

The runtime of 2(| |)O T which was calculated for the RBCVT method in the previous

section, is the basic calculation method without any algorithmic optimizations. Hence, in

this section, we propose an optimized RBCVT calculation method (RBCVT-Fast) using a

novel search algorithm to generate test cases with a linear runtime given by

() ()RBCVTFast T O T∈ . Although there are some special search algorithms like R*-

tree [48], none of them are appropriate for our application. The steps of the new

algorithm are similar to the previous section with an additional preprocessing step after

Step3 that we call Step3B to prevent the renumbering of steps. Furthermore, Step4’s

 20

calculation procedure is updated with a new algorithm.

Each jb in Step4 is clustered by comparing it to the all members of TR given by

(),jb TRb . This process produces a linearly growing runtime with TR for clustering jb ,

given by ()()
jbRBCVT TR O TR∈ . In contrast, we propose a novel search algorithm,

specifically designed for RBCVT, which results in a constant runtime for clustering each

jb . In other words, jb clustering runtime is independent from the size of TR or T; and

we will find the nearest mtr to the jb by comparing jb to a constant number of points in

TR.

2.5.2.1 Preprocessing Step

This section explains Step3B of the RBCVT-Fast algorithm that is intended to prepare

, 1,...,mtr m TR= for the search algorithm (proposed in the next section). As indicated in

Figure 2.5, the preprocessing step involves defining a grid on H I∪ , which divides

H I∪ into a set of cells, called grid cells. Consequently, each mtr is placed in one of the

cells, which is referred to as the parent cell for that mtr . All the mtr points that are in a

cell are called child points of that cell.

Figure 2.5. A grid divides ∪H I into a set of cells. The points are , 1,...,=mtr m TR and the

circle is jb . Cells in layer one regarding jb are highlighted, as an example.

In the preprocessing step, we determine each cell’s child points and store them in an

array. The parent cell of each point is simply determined form the point’s coordinates.

 21

The critical parameter in the preprocessing step that affects the runtime of RBCVT-Fast,

is avgC which must be a constant for any size of TR. We have informally (empirically)

observed that avgC = 20, produces the most efficient algorithm with respect to runtime.

Having the avgC value, we can calculate the number of cells in each dimension, NG ,

given by

 N
avg

T
G Round

C

 
 =
 
 

 (2.9)

Consequently, the total number of cells in a two-dimensional space is N NG G× .

2.5.2.2 A Novel Search Algorithm

In this section, a novel search algorithm is discussed which reduces the linear runtime

order of clustering jb to a constant runtime. The main idea behind this search algorithm

is that we do not need to compare the jb with all of the mtr . As indicated in Figure 2.5,

to find the nearest point to jb , we need to calculate the distance between jb and the

children of the adjacent cells, not all the cells. That is, we need to compare jb with the

children of lC (a set which contains all the cells in layer l), where l starts from zero.

Layer l includes all the cells that have a similar Chebychev distance from the cell with jb

as a child. The highlighted cells in Figure 2.5 are in layer one. This algorithm starts by

calculating (), winner c j lmtr b cb← for layer zero where each cell of lC is denoted by lmc

(lmc for layer zero is only one cell which is the cell parent of jb). Then, we check that

winnertr is the nearest point to jb by comparing (),j winnerdist b tr with (),1l jdist b . If

(),j winnerdist b tr < () ,1l jdist b then the process is finished and winnertr is the nearest

point of TR to jb . Otherwise, we have to compare jb with the children of layer one’s

cells and update winnertr , in case we found a closer point to jb . To reduce the runtime

complexity, jb is only compared with the children of those cells in layer one that

() (), ,c j lm j winnerdist b c dist b tr< . This process will continue until we find the nearest

point to jb . Pseudo code for the proposed search algorithm is indicated in Figure 2.6.

 22

Figure 2.6. Pseudo code for the proposed search algorithm utilized in the RBCVT-Fast
algorithm.

2.5.2.3 RBCVT-Fast Runtime Analysis

Although the proposed search algorithm does not guarantee that finding the nearest point

to jb is accomplished by comparing jb with a constant number of points, empirical

investigations have indicated that the average number of comparisons stays constant

independent from the size of TR. Similarly, since |TR| is only dependent to |T|, the

average number of comparisons is independent from |T|. Figure 2.7 represents the average

number of points and cells compared to jb in order to find winnertr in a RBCVT-Fast

calculation, where a RT test set is utilized as generator points. This graph is presented for

different sizes of T with respect to the optimized avgC = 20. Since considering other ART

and QRT approaches as initial generator points revealed similar results with RT as initial

generator points, we only included RBCVT with RT as generator points to avoid

duplication.

begin
 0l ← // l denotes the layer number
 1MD ← // MD indicates minimum distance
 while (),l jdist b l MD< do

 for each cell in lC do

 if (),c j lmdist b c MD< then

 if ()(), ,j c j lmdist b b c MDb < then

 (),winner c j lmtr b cb←

 (),j winnerMD dist b tr←

 end if
 end if
 end for
 1l l← + .
 end while
end

 23

Figure 2.7. Average number of points/cells that are compared to jb calculating the nearest

point of TR to jb in a RBCVT-Fast calculation, where a RT test set is utilized as generators.

As indicated in Figure 2.7, we have produced a search algorithm that, on average,

requires a constant number of comparisons to calculate (),jb TRb leading to

()() 1
jbRBCVTFast TR O∈ . Another distinction between RBCVT and RBCVT-Fast

regarding runtime is the preprocessing step that is included in the RBCVT-Fast.

Obviously, the () ()10 TRPreprocessing TR O∈ × where 10 indicates the number of

iterations. Accordingly, the total RBCVT-Fast runtime order is ()10 1 10 TRO B× × + × .

Similar to the discussion in Section 2.5.1.1, this runtime order can be simplified as

() ()O 1000 T 10 T 10 O 1010 T 40αR T+ + = + . Since we need to keep the term with

highest order, the final runtime of the RBCVT-Fast algorithm is linear given by

() ()RBCVTFast T O T∈ . The linear runtime is also investigated in empirical runtime

analysis section.

2.5.3 Generalization of the RBCVT beyond two dimensions

The concept of the RBCVT is not limited to a two-dimensional hypercube. As defined in

Section 2.4 in (2.7), the Voronoi region related to it is all the areas that are closer to it

than any other point. Obviously, we can observe from the definition that the Voronoi

region can be of any dimension, having an appropriate d-dimensional distance function.

The distance function used in this study is Euclidian (l2-norm) which can be used in any

dimension. To analyze the calculation of RBCVT for higher dimensions, we go through

 24

the steps presented in Section 2.5.1 as well as the RBCVT-Fast calculation method as

follows:

• The initial generator set (T) in Step1 which are the result of other test case

generation approaches (RT, ARTs, and QRTs), can be of any dimension since RT,

ARTs, and QRTs can produce test cases beyond two dimensions.

• To generate the random border points (R) in Step2, we define a set of cells around

the d-dimensional input space hypercube and then we insert a random point in each

cell which is straightforward. The number of cells in each dimension of the input

space is selected as d Tα × . Accordingly, each side of the input space hypercube

has () 1d
d Tα

−
× cells, since the dimension of each side of a d-dimensional unit

hypercube is d-1. Finally, a d-dimensional unit hypercube has 2 d× sides leading

to the following equation for the number of cells which covers all borders of the

input space.

 () 1
.2

d
dR d Tα

−
= × × × (2.10)

• The background points (B) in Step3, are easy to generalize to higher dimensions,

since we only need d-dimensional random numbers.

• In Step3B regarding the preprocessing step of the RBCVT-Fast, we can define the

grid on d dimensions rather than a two-dimensional hypercube. Then each d-

dimensional mtr can be assigned to a cell of the grid. In addition, NG for the d-

dimensional hypercube can be calculated by

 .dN
avg

T
G Round

C

 
 =
 
 

 (2.11)

• In the non-optimized RBCVT approach, Step4 is easy to calculate in any

dimension as we compute the distance of each jb with all , 1,2, , mtr m TR= … with

the d-dimensional Euclidian distance function. The algorithm of this step in the

RBCVT-Fast is exactly equal to the pseudo code presented in Figure 2.6. The only

changes are the generalization of (),l jdist b l , (),c j lmdist b c , and (),c j lmb cb into d

 25

dimensions. All of these functions require a d-dimensional Euclidian distance

function which is available.

• Finally, Steps 5-7, including the calculation and updating of the centroids (*)it can

be calculated for any dimension.

2.5.3.1 Runtime Analysis of d-dimensional RBCVT

Looking precisely to the non-optimized RBCVT algorithm, one can observe that the only

process dependent to the dimension is the distance function, and its runtime changes

linearly with d. The number of comparisons is independent from d leading to

() ()2d, RBCVT T O d T∈ × . This indicates a linear increase in ()RTime RBCVT as d

grows.

In the contrary, the order of ()RTime RBCVTFast is not linear with d since the number

of required comparisons grows as d increases. The increasing number of cells in layer l as

d increases is the cause of this issue. The number of cells in layer l increases

exponentially as d grows leading to exponential increase in the number of distance

comparisons. In addition, each distance comparison runtime grows linearly with d. As a

result, the order of ()RTime RBCVTFast is given by

() ()d, dRBCVTFast T O d E T∈ × × where E is a constant. Note that in a given d,

()RTime RBCVTFast is still linear regarding |T|.

Although the runtime complexity of RBCVT-Fast with respect to d is higher than the

non-optimized RBCVT, the runtime complexity for RBCVT-Fast is lower with respect to

|T| than the non-optimized RBCVT. Combining these two observations results in

() ()RTime RBCVTFast RTime RBCVT≤ for any |T| and d. That is, the number of

comparisons in the RBCVT-Fast is less than or equal to the non-optimized RBCVT

algorithm. According to (2.11), NG reduces when d increases with constant avgC and

T , leading to an increasing ()
()

RTime RBCVTFast
RTime RBCVT

. With NG =1, the RBCVT and

RBCVT-Fast are exactly equal since there is only one cell in the hypercube. In NG =3,

the runtime of both approaches are similar, since the RBCVT-Fast uses layers 0 and 1 on

average to find the nearest point. As NG increases, the runtime effectiveness of the

 26

RBCVT-Fast grows compared to the non-optimized RBCVT algorithm. To summarize,

() ()RTime RBCVTFast RTime RBCVT when 3NG  leading to 3d
avg

T
C

 which is

concluded from (2.11). Therefore, when the number of test cases is large enough,

RBCVT-Fast algorithm is more efficient than non-optimized RBCVT algorithm

regarding time complexity.

2.6 Experimental Frameworks

The conducted study to investigate the effectiveness of RBCVT against the ART and

QRT methods is described in this section. We have designed two experimental

frameworks: a simulation based and a mutant based software testing framework. The

simulation framework utilizes three failure patterns derived from empirical studies [13]–

[17] investigating defect types. The mutant based software testing framework simulates

defects in software by producing mutants within the code in a systematic fashion [49].

For the mutant based software testing framework, we utilize the Briand and Arcuri [49]

framework; this framework has been accepted via publication as a valuable mechanism

for empirically exploring such mechanisms. This framework is based on 11 short

mathematical programs that appear in the ART literature [17]. Both frameworks require

an effectiveness measure to evaluate the results which is discussed in the following

section.

2.6.1 Testing Effectiveness Measure

There are three well-known testing effectiveness measures, E-measure, P-measure, and

F-measure. The E-measure is defined as the expected number of detected failures in a

series of tests. Assuming the probability of a test case to detect a failure is θ , similar to a

random test case, then the E-measure and its standard deviation are [50]

 ,Emeasure T θ= × (2.12)

 ()1 .std Tθ θ= − (2.13)

The P-measure is defined as the probability of at least one failure being detected within a

test set. Considering the number of test sets as tM and the number of test sets that detect

at least one failure as faultM , the P-measure can be estimated as /fault tM M . In addition,

 27

in RT, the P-measure is equal to [50]

 1 (1) .TPmeasure θ= − − (2.14)

The standard deviation associated with the calculation of a P-measure for RT can be

approximated by [50]

 2(1) (1) .T Tstd θ θ≈ − − − (2.15)

The last testing effectiveness measure is the F-measure which is defined as the number of

test cases required to detect the first failure within the input domain. Chan et al. [26] have

indicated that for RT the expected value of the F-measure is equal to 1θ − . The sampling

distribution of the P-measure and the E-measure can be approximated by the normal

distribution [50], whereas the probability distribution of the F-measure is geometric [50].

The main question that should be answered is: which of these measures best characterizes

software testing? Since the software testing trend is toward automating the process,

selecting a measure that best represents the operation of an Automated Testing System

(ATS) is essential. When we consider the “desirable” aspects of automated software

testing with respect to RT, ART, QRT, or RBCVT, it does impose certain constraints on

the measurement process that must be adhered to:

• ATS is intrinsically an automated technique at least on the test case generation side.

This implies that the traditional incremental cost of manual production of a new,

additional test case is minimized. ATS is characterized by: 1) a tester selecting an

arbitrary large number of test cases to be produced; and 2) the ATS system

producing the required volume of test cases.

• Test case generation often seeks to generate values with a specific purpose, while

we can generate truly random values and exercise them against the entire system.

The huge dimension of the input space for modern software systems tends to imply

that this “scatter gun” approach is ineffective. Instead, the tester will often have a

specific testing objective and will attempt to generate a specific set of test cases

under specific circumstances that answer this question. That is, the tester tends to

test aspects of the system or sub-components of the system rather than blindly

“attacking” the entire system. For example, automated security testing investigates

an aspect of the system, and automated unit testing explores a sub-component.

 28

Accordingly, the tester will require a large volume of test cases, possessing limited

dimensions, which are cost effective for an automated testing process.

• These large volumes of test sets are automatically applied to the system under test

and the “outputs” from the system are automatically captured. The system under

test is normally placed into a known state before each execution commences. The

large volume of test cases implies that manual application of the test data is not a

realistic option.

• This input process results in large volumes of test results, again implying that the

manual examination of every test result is prohibited by cost. Instead, two options

are commonly deployed: 1) A Test Oracle is constructed. The test oracle typically

has a simplified description of a defect. Does the system crash or not is an example

of such a description. Here each crash is considered a "defect". The oracle either

stops after finding the first crash or collects all of the crashes. Data about the

crashes is presented to the tester for analysis. If the oracle collects multiple crashes,

the system has no mechanism to understand if these crashes have the same root

cause or are in fact independent. The tester may select to only investigate a subset

of these multiple crashes to avoid excessive, potentially redundant (when crashes

are in fact dependent) costs. 2) The output is investigated manually as a single

integrated entity. Here the test results, or shorter proxies of the results, are sent to a

log file or other recording mechanism. The tester inspects this mechanism after all

the test runs are finished. Here the tester is looking for output values that look

anomalous. Again, the tester may select one or more test results to explore more

closely, However, the number of test results explored is always small to ensure a

cost effective process.

The above description of ATS is in correspondence with many ATS systems reported in

the literature, including [7], [51], [52]. Accordingly, it is believed that this process is well

characterized by the E- or the P-measure rather than F-measure. That is, the incremental

viewpoint of the F-measure is not supported by the operation of these automated testing

systems [7], [51], [52] in the operational profile discussed. Since in software testing,

failure areas tend to be clustered [13], [14], [24], [53], detecting multiple failures are

often redundant as it is indicative of multiple test cases discovering the same defect. This

argument strongly suggests the use of the P-measure over the E-measure. Therefore, the

P-measure is utilized in this study as an appropriate effectiveness measure for automated

 29

software testing.

Chen et al. [50] demonstrate that the F-measure has better statistical power than the P-

measure. However, this “performance difference” tends to zero as the number of

measurements tends to infinity. It is believed that the above analysis effectively implies

that this difference is essentially zero at the number of measurements utilized within this

chapter.

2.6.2 Parameters of Test Case Generation Methods

A number of parameters are associated with each ART algorithm which are considered

constant through all the experiments. We selected the value of these parameters as

recommended in their respective works. The k in FSCS method, representing the

number of randomly selected candidates, is held constant at 10k = based on the

recommendation of Chen et al. [25]. Similarly, the coverage ratio in RRT method is

considered constant at 1.5 due to recommendation of Chan et al. [53]. The EAR method

[19] has several parameters regarding the evolutionary approach which are set to identical

values to those reported in the original work [19]. The k (population size) has been set to

20 and the probability of crossover is set at 0.6. Furthermore, the probability of mutation

is considered as 0.1, the size of the mutation was set at 0.01, and the stopping criterion is

set to the constant number of 100 iterations. The parameters associated with RBCVT are

in accordance with the values discussed in Section 2.5.1, the number of background

points is set to 100 T× and the number of RBCVT iterations is equal to 10 for all the

tests.

2.6.3 Simulation Framework

For the simulation framework, we will introduce the utilized failure patterns, failure rate

associated with each failure pattern, the number of test cases in each test set, and the

number of test sets. These features are discussed in the next two sections.

2.6.3.1 Failure Patterns and Failure Rates

To be able to evaluate test case generation methods, we need to consider some parts of

the input domain as a failure area, where a failure is produced when a test case is placed

in this area. Several works have performed an empirical investigation through failure

patterns within the input domain [13]–[17]. White and Cohen [15] indicated that failures

usually occur on or near the boundary of (sub-) domains. As a result, failure areas form

 30

types of strip patterns since domain boundaries form lines or hyper planes. Ammann and

Knight [13] explain that failure regions seem to be locally continuous. They present two-

dimensional empirical failure patterns that possess similarities to rectangular geometry.

Similarly, Finelli [14] describes that there are continuous regions, called error crystals

that produce failures. Bishop [16] also explains continuous failure regions that are much

more angular and elongated than a pure “blob” [17]. Schneckenburger and Mayer [17]

have analyzed the failure area geometry in a systematic way using three numerical

programs, each possessing a two-dimensional input space. They presented strip faulty

patterns for all three programs under test. Therefore, significant empirical evidence exists

that failure areas are clustered into a contiguous region within the input domain and that

they produce error crystals or failure regions.

While we cannot generalize one software failure pattern to others, researchers have

empirically indicated common characteristics between failure patterns. Accordingly,

Chan et al. [24] have introduced three common types of failure patterns, shown in Figure

2.8 (the block, strip and point failure patterns). We have selected these patterns as a

testing framework, since the empirical studies support the use of these patterns as an

approximation to real software failures. Although these failure patterns are not real, these

patterns are believed to best represent multiple clustered values in the input domain,

which, in general, imply a single root cause failure.

Figure 2.8. Typical two-dimensional failure patterns: (a) block, (b) strip, and (c) point failure

patterns.

The main parameter associated with each pattern is a failure rate (θ) which is the total

failure area divided by the total area of the input domain. In this chapter, failure rates of
2 3 410 ,1 0 ,1 0 ,θ − − −= and 510− have been considered as a basis to analyze testing

strategies effectiveness. In the software testing literature [19], [32], failure rates between
210− and 310− are usually investigated, whereas in real life applications the failure rates

 31

may be lower. Considering the fact that the average programmers introduce five to ten

defects per Kilo Line Of Code (KLOC) [2], θ is certainly nonzero. However, no reliable

industrial information exists on θ. Hence, we include the failure rates of 410− and 510− to

explore a wider range of values.

Although the implementation of these three failure patterns is straightforward,

implementation details are included for the sake of completeness. The block pattern is

generated by randomly choosing a point in I and then a square is constructed around this

point with respect to the failure rate. Due to the section of the random point near to the

boundaries of I , the constructed block pattern may not fit within I . In this situation, this

pattern is disregarded and another random point is selected until a valid block pattern is

generated. The strip pattern is generated using a random point in I and a random angle

associated with a line passing over the selected random point. The width of the strip

pattern is calculated according to the failure rate. This strip pattern generation method is

different from the method introduced by Chen et al. [50], whereby one point is selected

on the vertical boundary and another point on the horizontal boundary of I . Then, the

strip pattern is generated by connecting the two points and calculating the width of the

line using θ . Unfortunately, we observed that this implementation does not produce a

uniform distribution of strip patterns - with an excessive concentration of points near the

boundaries compared to the middle of I . To generate the point pattern, 10 random points

were selected within I . A circular area is constructed around each point so that the sum

of these circular areas is equal to failure rate. Similar to the block pattern, if a circular

area is not within I , the associated random point is disregarded and another random

point is selected.

In short, the block and point patterns are in-line with those used in the literature [19],

[32], [34], [50]; and the strip pattern is redefined to overcome traditional limitations and

produce a uniform distribution of the strip pattern.

2.6.3.2 Number of Tests

Due to the random nature of test case generation methods, we generated 100tM =

distinct test sets for RT, FSCS, RRT, EAR, and accordingly RBCVT to evaluate the

effectiveness of each approach using the P-measure. Therefore, a P-measure is evaluated

using 100 tests for a specific failure pattern. In addition to test set generation, the failure

patterns are also generated randomly. Hence, we generated 10,000fM = random failure

 32

patterns leading to 10,000 P-measure results which are normally distributed [50] between

zero and one. Therefore, 10,000fM = statistics are used to evaluate the mean and

standard deviation of the normally distributed P-measure for each approach, at each

failure rate, and with each of the three failure patterns.

QRT methods are deterministic and hence each method produces a unique test set.

Therefore, to draw statistical analysis with the same population size, for each QRT

method, we generated a sequence of test cases where the length of this QRT sequence is

tM times larger than the test set size. Then, we split this sequence into tM test sets

which result in distinct test sets. So all the approaches have been tested using

10,000fM = P-measure results, each calculated by 100tM = measurements.

In addition to failure pattern type and θ (2 3 410 ,1 0 ,1 0 ,− − − and 510−), to evaluate a P-

measure, we need to set the number of test cases in each test set (T). The best T to

analyze the test case generation approaches using the P-measure, is the worst case in

terms of the standard error which can be estimated as

 .
t

stdSE
M

= (2.16)

Since tM is a constant number, worst case SE leads to maximizing the standard

deviation. According to Chen et al. [50], the maximum standard deviation of P-measure

calculation is 0.5. Solving (2.15) as 0.5std = , results in T based on θ as follows:

 ()
()

log 0.5
.

log 1
T

θ
=

−
 (2.17)

Since 2 3 410 ,1 0 ,1 0 ,θ − − −= and 510− have been chosen for the experimental test, the

respective values for T are 68.97 (69), 692.80 (693), 6931.12 (6931), 69314.37 (69314).

Since T is an integer value, the rounded values are given in the brackets. Finally, all the

generated test cases are within I and every test case consists of a floating point number,

with double precision, for each dimension.

2.6.4 A Mutant Based Software Testing Framework

To evaluate the proposed RBCVT approach on a testing framework which utilizes

 33

independently-produced programs, we selected the mutant based software testing

framework introduced by Briand and Arcuri [49]. This framework is outlined in detail in

Section 4 of [49]. For the sake of completeness, we present a summary of the main

features of this framework. This work utilizes 11 programs, written in Java, which

implements basic mathematical functions that appear in the ART literature [17]. We

directly utilized their source code without any modification. Their framework utilizes

mutation analysis to produce a large number of faults in a systematic fashion [49]. They

produced 3,727 mutants for the 11 programs using muJava [54], [55]. Further, in [49], the

P-measure is utilized to evaluate these mutants against RT and ART test sets, where the

size of test sets varies between 1 and 50.

This framework assumes an input space of each program, an integer value in the range of
24/[0, 2 1]d − for each dimension (d). This leads to 242 input possibilities for each

program. The framework first measures each mutants failure rate by testing all possible
242 states, so they could measure failure rates as low as 242− . Then, those mutants that

revealed no failure or had the failure rate over 0.01 were removed. Therefore, they kept

780 appropriate mutants with 242 0.01θ− ≤ ≤ .

In this study, we use these 780 mutants to test the effectiveness of the proposed test case

generation approach. Since we assume that we do not know the failure rate of the

programs under the test, we apply four test set sizes including |T|=10, 20, 50, and 100 to

each mutant to evaluate the effectiveness of each test case generation approach.

Accordingly, the P-measure is evaluated for each test case generation approach for

discussed test set sizes. To evaluate a P-measure, we tested each mutant using 100

distinct test sets and then, the average over all the mutants is calculated as a P-measure.

To draw a statistical analysis, we repeated this P-measure evaluation 100 times leading to

100 statistics that are used to evaluate the mean and standard deviation of the normally

distributed P-measure [50] for each approach, at each test set size. To draw statistical

analysis with the same population size for QRT methods, we utilized a similar procedure

as described in the simulation pattern where a longer sequence of QRT test cases is split

to generate distinct test sets.

This process leads to the execution of over 78 billion test cases which took more than a

month on an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM.

 34

2.7 Experimental Results and Discussion

2.7.1 Formal Analysis

Since P-measure values are normally distributed [50], Tables 2.2-2.5 present statistical

parameters reflecting the effectiveness of RT, ARTs, QRTs and the corresponding results

after the RBCVT process. In addition, the following parameters were calculated:

1) A test of statistical significance (z-test, one-tailed, our working hypothesis is that

RBCVT will produce superior results) with a conservative type I error of 0.01; and

2) An effect size (Cohen's method [56], [57]) which indicates “size” discrepancy between

two statistical populations given by

()

2 1
2 2

2 2 1 1

2 1

(1) 1

effect size
n std n std

n n

µ µ−
=

− + −
+

 (2.18)

where µ , std , and n represent the mean, the standard deviation, and the number of

elements within the populations, respectively. In this study, a positive value of effect size

represents the size of the improvement that has been achieved by applying the RBCVT

process. Cohen [56]–[58] defines the standard value of an effect size as small (0.2),

medium (0.5), and large (0.8). Effect size can also be interpreted as the average percentile

standing which indicates the relative position of the two populations. Similarly, effect

sizes can be interpreted in terms of the percent of the non-overlapped portion of the

populations. Corresponding values are presented in Table 2.1.

Table 2.1. Cohen’s effect size description (large, Medium, and Small) as well as
corresponding values for percentile standing and percent of non-overlapped portion of two

populations.

Cohen's
Description

Effect
Size

Percentile
Standing

Percent of
Non-overlap

 2.0 97.7 81.1%

 1.5 93.3 70.7%

 1.0 84 55.4%

Large 0.8 79 47.4%

Medium 0.5 69 33.0%

Small 0.2 58 14.7%

 0.0 50 0.0%

 35

2.7.2 Block Pattern Simulation Results

Table 2.2 indicates the testing effectiveness of all the studied approaches and the

corresponding results after the RBCVT process was applied with respect to the block

failure pattern. This table demonstrates that performing the RBCVT process on the

outputs of other methods has a positive effect on the P-measure, since RBCVT

consistently provides statistically significant improvement. The amount of improvement

in terms of effect size is larger than the highest Cohen’s description (Large) in most of

the cases, only RRT at 4 510 ,1 0θ − −= and EAR at 510θ −= have effect size between large

and medium.

Table 2.2. The P-measure testing effectiveness mean and standard deviation for all
approaches including the corresponding results after the RBCVT process as well as effect

size, Z-score, and significance value with respect to block pattern.

Comparing the amount of improvement (effect size) among all approaches in Table 2.2,

one can observe that the largest RBCVT improvement belongs to the RT for all failure

rates. In contrast, no individual method has the smallest increase in effectiveness

regarding the effect size, the EAR has the smallest improvement for 210θ −= and 310− ;

and RRT for 410θ −= and 510− . Figure 2.9 indicates the improvement of each approach

after the RBCVT process comparing to the effectiveness of test cases used as inputs to

the RBCVT process (effect size) with respect to block pattern at each failure rate. In this

 36

figure, in all methods, the level of changes before and after the RBCVT process is

decreasing as the failure rate decreases.

Figure 2.9. Improvement of test case generation methods with respect to RBCVT process at

different failure rates regarding the block failure pattern.

In Table 2.2, the mean values of the P-measures appear dissimilar for the different

approaches; whereas the corresponding results after the application of the RBCVT

process represents a sizable reduction of the variation between these values. Therefore,

for comparison of RBCVT, as a single method, against all other approaches, we assume

the average RBCVT results as the performance of the RBCVT approach. Figure 2.10

represents the effect size of the testing effectiveness at each strategy against RT in the

block pattern simulations. Contrasting RBCVT against FSCS, RRT, EAR, Sobol, Halton,

and Niederreiter, this figure highlights the increased efficiency of RBCVT regarding the

block pattern. Another conclusion from this figure is that all of the testing methods

outperformed RT at every failure rate with respect to the block pattern.

 37

Figure 2.10. P-measure testing effectiveness for block pattern simulations of FSCS, RRT,

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT.

2.7.3 Strip Pattern Simulation Results

Testing effectiveness results regarding the strip failure pattern are shown in Table 2.3.

The results demonstrate that for 210θ −= , RBCVT is statistically significantly superior to

all approaches. In contrast, the results for other failure rates suggest similar performance

between each approach and the corresponding results after the RBCVT. Although there

are differences between the P-measure results of the RBCVT and other approaches at
3 410 ,1 0 ,θ − −= and 510− , the results cannot be compared since the level of significance

values do not indicate a significant difference between the results in most of the cases.

 38

Table 2.3. The P-measure testing effectiveness mean and standard deviation for all
approaches including the corresponding results after the RBCVT process as well as effect

size, Z-score, and significance value with respect to strip pattern.

The magnitude of improvement for the strip pattern at 210θ −= is lower than for the

block pattern testing effectiveness results since the effect size has been reduced by

around an order of magnitude on average. Comparing the amount of improvement among

all the approaches in Table 2.3, again the largest improvement belongs to RT for
210θ −= and 310− . To highlight some strip pattern features regarding the RBCVT

approach, Figure 2.11 is presented which indicates the effect sizes between each

approach's effectiveness result and corresponding result after the RBCVT process. Figure

2.11 indicates that the impact of the RBCVT process is reducing as the failure rate

decreases in most of the cases. This fact as well as the results for 3 410 ,1 0 ,θ − −= and 510−

suggest that the impact of the RBCVT approach, for strip patterns, tends to zero as the

failure rate tends to zero.

 39

Figure 2.11. Improvement of test case generation methods with respect to the RBCVT

process at different failure rates regarding the strip failure pattern.

Similar to the block pattern, the strip pattern testing effectiveness results after the

application of the RBCVT represents a sizable reduction of the variation among these

values compared to the effectiveness of the input test cases to the RBCVT process.

Therefore, we again consider the average RBCVT results as the performance of the

RBCVT approach creating the possibility of comparing it against all of the test case

generation methods. Accordingly, all of the approaches have been compared against RT,

these results are provided in Figure 2.12. In this figure, one can observe the decreasing

trend of testing effectiveness against RT as the failure rate reduces. This leads to similar

effectiveness for RT with other approaches with respect to the strip pattern at very low

failure rates like 510− ; this is not true for the block pattern. This can be explained by the

intrinsic difference between the strip and the block pattern: as the failure rate decreases

the width of a strip pattern reduces, as its length is constant, whereas in the block pattern

both dimensions reduce together. Therefore, the similarity between block and strip

pattern decreases as the failure rate reduces leading to less testing effectiveness for strip

patterns.

 40

Figure 2.12. P-measure testing effectiveness for strip pattern simulations of FSCS, RRT,

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT.

2.7.4 Point Pattern Simulation Results

Point pattern simulations yield results as indicated in Table 2.4. The presented results

suggest an improvement comparing the P-measure results after the RBCVT process was

applied. Again the improvement in testing effectiveness, after the RBCVT process was

applied, are lower than the corresponding block pattern results. However, in contrast with

strip pattern, the RBCVT is statistically significantly superior to all approaches at all

failure rates. In addition, the impact of the RBCVT procedure on the test case generation

effectiveness regarding point pattern, as indicated by the effect sizes in Table 2.4, are

larger than the equivalent results for the strip pattern.

 41

Table 2.4. The P-measure testing effectiveness mean and standard deviation for all
approaches including the corresponding results after the RBCVT process as well as effect

size, Z-score, and significance value with respect to point pattern.

In Table 2.4, one can observe that in contrast with the block and strip patterns; the

maximum enhancement in testing effectiveness after the RBCVT process, does not

belong to the RT for all failure rates. EAR has the largest improvement for 210θ −= ; and

RT for other failure rates. To further characterize the point pattern results regarding the

RBCVT procedure, Figure 2.13 provides a graphical representation of the effect sizes in

Table 2.4. This figure indicates that the impact of the RBCVT process regarding the point

pattern has a reducing trend as the failure rate reduces for all approaches.

 42

Figure 2.13. Improvement of test case generation methods with respect to RBCVT process at

different failure rates regarding the point failure pattern.

Similar to the previous discussion in sections 2.7.2 and 2.7.3, since the variation among

the RBCVT results is quite low, the average RBCVT results is considered as a base for

the comparison of all the test case generation methods. Figure 2.14 presents a comparison

among all the approaches against RT with respect to the point pattern. Again we can

observe that the RBCVT method has the highest testing effectiveness. It is worth noting

that in contrast with previous patterns, all the ART approaches at 210θ −= have

generated test cases with lower effectiveness than RT. While the QRT approaches have

superior testing effectiveness compared to RT at all the studied failure rates.

Figure 2.14. P-measure testing effectiveness for point pattern simulations of FSCS, RRT,

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT.

 43

2.7.5 Mutants’ Testing Results

The testing effectiveness of all the studied approaches with respect to the real software

testing framework based on mutation, are represented in Table 2.5. The results

demonstrate the significant improvement after the RBCVT approach is applied. One can

observe that, in each case, the amount of improvement in term of effect size is larger than

the highest Cohen’s description (Large). Further, the effect size is larger than two in all

cases, leading to less than 18.9% overlap between the statistics of each method and its

corresponding result after the application of RBCVT, according to Table 2.1.

Table 2.5. The P-measure testing effectiveness for all approaches including the
corresponding results after the RBCVT process with respect to the mutants’ framework.

Figure 2.15 indicates the improvement of each approach after the RBCVT process in

terms of effect size. In contrast with the simulation framework, no particular

increasing/decreasing trend has been observed in this figure.

 44

Figure 2.15. Improvement of test case generation methods after the application of RBCVT

with respect to the mutants’ framework.

Similar to the simulation framework results, Figure 2.16 provides a comparison amongst

all of the approaches, where the RT effectiveness is considered as a reference; i.e. Figure

2.16 represents the effect size of each strategy against RT. In contrast with the simulation

framework, the P-measure results, after the application of RBCVT, is not similar in all

cases. Only in case of QRTs, a sizable reduction of the variation is observed amongst

RBCVT results. Accordingly, in Figure 2.16, RBCVT results with QRTs as generators,

are combined as QRT-RBCVT, while RBCVT with other inputs are represented

separately.

Test case generation approaches in Figure 2.16, are sorted based on their performance

where the EAR-RBCVT is the approach with highest efficiency and Sobol has the worst

results in term of testing efficiency. Finally, as demonstrated in Figure 2.16, QRT

methods revealed degraded performance compared to RT in most of the cases, whereas

other test case generation approaches outperformed RT.

 45

Figure 2.16. P-measure testing effectiveness of each test case generation approach against

RT with respect to the mutants’ framework.

2.7.6 Empirical Runtime Analysis

In addition to effectiveness, computational complexity of an algorithm is an important

factor in practical applications. In this chapter, different algorithms have been used as

basis to study the RBCVT method and in this section the runtime of these methods as

well as RBCVT is investigated.

All the simulations within this study were conducted using Java (JDK 7, 64bit). We

implemented the RBCVT, FSCS, RRT, and EAR in Java and Martingale stochastic

library [59] has been used to generate the Sobol, Halton, and Niederreiter quasi-random

sequences. Besides, the Java native pseudo-random function has been employed for the

RT test case generation. The hardware platform, where the simulation process has been

executed, was an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM.

To demonstrate the computational costs associated with each algorithm, an empirical

runtime investigation has been performed. The parameters associated with each approach

are the same as used during the evaluation, described in Section 2.6.2. Figure 2.17

represents the test set generation runtime for the FSCS, RRT, EAR, RBCVT, and

RBCVT-Fast in seconds. The runtime of the RT and QRT approaches has not been

included in this figure due to their significantly lower runtime compared to the RBCVT

and ART methods. The presented runtime values are the average runtime of tM =100 test

set generation for each approach with each test set length (0 100,000T< ≤). As

indicated in this figure, the non-optimized RBCVT has the largest runtime compared to

all other methods and is within the order of quadratic time as calculated in Section

 46

2.5.1.1. In accordance with runtime analysis in Section 2.5.2.3, RBCVT-Fast runtime is

linear based on empirical values observed in Figure 2.17. Figure 2.17 also demonstrates

that RBCVT-Fast has the best runtime compared to the non-optimized RBCVT and all

the investigated ARTs, for 30,000T ≥ . In addition, the computational complexity of

170 seconds for generating 100,000 test cases, suggests 1.7 mili seconds for each test

case in the proposed RBCVT-Fast calculation approach. It is worthwhile to note that

similar to ARTs, we can apply the mirroring technique [27] to RBCVT to reduce the

execution times further if it is required.

Figure 2.17. Empirical test set generation runtime for the RBCVT, RBCVT-Fast, FSCS,

RRT, and EAR.

2.8 Degree of Randomness Analysis

Beside the even distribution of the test cases within a test set, another important aspect of

test case generation algorithms is their ability to generate a sequence of test cases which

are random. Requiring random test cases has two different implications in this context:

• Randomness within a test set indicates the randomness among the individual test

cases within a test set. A high degree of randomness in test cases is better since it

provides the ability to generate uncorrelated test cases, which is essential for

software testing applications. Uncorrelated test cases are critical to avoid systematic

poor-performance in certain situations (that is, a non-random set of test cases could

significantly correlate with a current set of defects).

 47

• Randomness between multiple test sets which represents absence of correlation

between two, or more, different sequences of test cases, resulting from different runs

of the corresponding test case generation algorithm. This is a critical feature of test

case generation algorithm since software testing applications require uncorrelated

sequences of test cases. Executing a sequence of test cases will hopefully result in

the discovery of a number of defects. After correction, we may elect to execute

another set of tests; ideally, the tester wants the option to execute either the previous

set or a new set of test cases. Alternatively, if no or few defects where discovered,

the tester will often want the option of executing another new, and by definition,

different set of test cases in an attempt to discover more defects.

How can we measure randomness? Kolmogorov complexity provides a new class of

distances appropriate for measuring similarity relations between sequences [22], [23].

The Kolmogorov complexity of a piece of information (()datad) is the length of the

ultimate lossless compressed version of the corresponding information [23]. In fact, the

ultimate compressor does not exist. Thus, we have to use the lower bound of what a real-

world compressor can achieve [23]. Within this study, the Lempel-Ziv-Markov chain

Algorithm (LZMA) [60] is used to calculate ().δ since it is believed that it is one of the

best lossless compressors available. Before we can use a test set (T) as input to LZMA

we need to preprocess the test set to convert it to a set of Integer values. Assuming a test

set as

 { } { } { }{ }1 1 2 2, , , ,..., , ,T TT x y x y x y= (2.19)

where { },i ix y denotes a two-dimensional test case (it), the preprocessing function is

defined as

 { }1 1 2 2' , ' , ' , ' ,..., ' , ' ,T TT x y x y x y= (2.20)

where 'ix and 'iy denote the scaled integer representation of ix and iy , respectively.

Accordingly, to analyze within a test set randomness, () ()()
()

T
CR T

T
δ ϕ
ϕ

= is used which

indicates the compression ratio with respect to T . A compression ratio of one denotes a

totally random test set, while less compression values denote repetitive patterns within

 48

the test set. Theoretically, ()0 1CR T≤ ≤ . However, since LZMA is not a perfect

compressor a small (unknown) additive offset exists in the estimation of ()CR T .

To investigate randomness between test sets, we used the Normalized Compression

Distance (NCD) [23] indicating the similarity between two test sets. NCD is defined as

[23]

 ()
()() ()() ()(){ }

()() ()(){ }
,

,
,

ij i j
i j

i j

T min T T
NCD T T

max T T

δ j δ j δ j

δ j δ j

−
= (2.21)

where ijT is formed from the concatenation of iT and jT . When (), 0i jNCD T T = , iT

and jT are identical, whereas (), 1i jNCD T T = represents complete dissimilarity (these

relationships assume perfect compression). The length of the test set should be large

enough to be compressed effectively by LZMA. Thus, within this chapter the length of

each test set is selected as an arbitrary large number, specifically as T =100,000.

Table 2.6 represents the results of ()CR T and (),i jNCD T T for RT, FSCS, RRT, and

EAR approaches before and after the RBCVT process. QRT approaches have not been

included since they use a deterministic algorithm producing a unique test set. The

reported values in Table 2.6 are the average of 100 measurements which indicates similar

results before and after the RBCVT process regarding all studied approaches (in all

situations, the variation between trials was negligible). These results suggest no

degradation by RBCVT on the input points regarding randomness. In addition, all the

ART methods perform similar to RT with respect to degree of randomness.

Table 2.6. CR(T) and NCD(Ti, Tj) for RT, FSCS, RRT, and EAR before and after the
RBCVT process.

 49

2.9 Summary

In this chapter, the novel RBCVT method has been proposed to the domain of software

testing with the aim of increasing the effectiveness of numerical test case generation

approaches. The RBCVT method cannot be considered as an independent approach since

it requires an initial set of input test cases. This method is developed as an add-on to the

previous ART and QRT methods enhancing the testing effectiveness by more evenly

distributing test cases across the input space. In addition, the applied probabilistic

approach for RBCVT generation, allows different sets of outputs to be produced from the

same set of inputs which makes RBCVT an appropriate method for software testing

applications.

The computational cost of a test case generation algorithm should be carefully considered

in a practical application. In this chapter, we optimized the probabilistic computational

algorithm of the RBCVT approach. The proposed search algorithm reduces the RBCVT

computational complexity from a quadratic to a linear time order regarding the size of the

test set. While, ART methods still suffer from high runtime order. In this regard, the

computational cost of RBCVT is quite feasible with respect to practical applications. It is

worthwhile to state that since the RBCVT approach requires initial test cases, the

computational cost of the input test set generation is added to the RBCVT calculation

cost. Since the results provided in Tables 2.2-2.5 indicate, on average, “similar” results

for RBCVT with different types of generators, we can select the RT method, which is

linear and adds a low computational overhead, onto the RBCVT execution. Therefore,

with a concatenation of the RT and the RBCVT-Fast methods, we can produce a linear

algorithm with respect to computational complexity, although in some specific situations

this may lead to a slight reduction of algorithmic effectiveness. The principle contribution

of this chapter is utilizing CVT to develop an innovative test cases generation approach,

in particular RT-RBCVT-Fast with linear order of computational complexity similar to

RT.

An extensive experimental study has been performed and the results demonstrate that

RBCVT is significantly superior to all approaches for the block pattern in simulation

framework at all failure rates as well as the studied mutants at all test set sizes. Although

the magnitude of improvement in testing effectiveness results is higher for the block

pattern compared to the point pattern, the results demonstrate statistically significant

improvement in the point pattern. In contrast, ART methods have indicated less

 50

effectiveness than RT regarding point patterns at θ =0.01 (demonstrated in Figure 2.14).

Although RBCVT’s performance regarding strip pattern is statistically significant

compared to the other approaches at 210θ −= , the impact of RBCVT verses the other

approaches tends to zero as the failure rate decreases. In fact, in the case of strip pattern,

the impacts of all of the approaches reduce to the performance of RT as the failure rate

decreases; this is demonstrated in Figure 2.12. In contrast, in block and point patterns, the

performance of all the approaches verses RT usually stays constant or even increases as

the failure rate reduces. It is believed that these conclusions are stable regardless of the

failure rate, and hence, simulating lower failure rates than studied in this chapter is not

required. This fact is also verified in [61]. Randomness of test cases is an important factor

with respect to software testing. Accordingly, the investigation of randomness in Section

2.8 demonstrates that RT, all ART methods and all corresponding RBCVT methods

possess an appropriate degree of randomness.

Although in real life applications, test cases’ dimension can be large, in most cases they

belong to an acceptable range. Test case generation often seeks to generate values with a

specific purpose rather than generating test cases to exercise the entire system. The large

size of the input space for modern software systems tends to imply that this “scatter gun”

approach is ineffective. Instead, the tester will often have a specific testing objective and

will attempt to generate a specific set of test cases under specific circumstances that

answer this question. That is, the tester tends to test aspects of the system or sub-

components of the system rather than blindly “attacking” the entire system. As an

example, in unit testing, the program under test is usually small, so the number of input

and output variables are limited as is the number of dimensions. For instance, Ciupa et al.

[62] conducted an empirical study on several real world small routines using unit testing.

Briand and Arcuri [49] have considered 11 programs, basic mathematical functions that

appear in the ART literature [17], for empirical analysis. The generated test cases in these

papers do not exceed four dimensions. Furthermore, some techniques like range coding

[63] exist to reduce the dimension of the input space, especially when collections are

considered as the input to the software under the test. As a result, where we do not have

large dimensions, the linear RBCVT-Fast approach dominates over ART approaches

regarding computational cost.

Finally, although further studies are required to validate the use of RBCVT in real-life

applications, RT-RBCVT, ART-RBCVT, and QRT-RBCVT have been demonstrated to

 51

have a superior performance against RT, ART, and QRT methods, respectively.

Consequently, software testing practitioners can use RBCVT to enhance the existing

strategies within their software testing toolbox. The use of RBCVT in software testing is

straightforward since RBCVT can be included to the previous methods as an add-on.

 52

3 String Test Data Generation through a Multi-

Objective Optimization

String test cases are required by many real-world applications to identify defects and

security risks. Random Testing (RT) is low cost and easy to implement testing approach

to generate strings. However, its effectiveness is not satisfactory. In this chapter, black-

box string test case generation methods are investigated. Two objective functions are

introduced to produce effective test cases. The diversity of the test cases is the first

objective, where it can be measured through string distance functions. The second

objective is guiding the string length distribution into a Benford distribution [64] which

implies shorter strings have, in general, a higher chance of failure detection. When both

objectives are applied via a multi-objective optimization algorithm, superior string test

sets are produced. An empirical study is performed with several real-world programs

indicating that the generated string test cases outperform test cases generated by other

methods.

3.1 The Focus of This Chapter

In this chapter, the objective is to generate an effective set of test cases where each test

case is a string. As explained before, based on empirical studies [13]–[17], fault regions

normally form continuous regions in the input domain. Based on this assumption, a

diverse set of test cases has a greater chance of detecting a fault. Hence, it is believed that

a diverse set of test cases is more likely to produce more effective test cases [13]–[17].

To achieve this in the string domain, we have defined a fitness function that measures the

diversity of a test set. This allows an optimization technique to be employed to generate

test cases based upon the fitness function. To construct a fitness function to measure the

diversity, we utilize distance functions between strings. There are several string distance

functions available and hence, in this chapter, we compared their performance when used

in test generation. Different string distance function’s performance is compared in terms

of the effectiveness of the generated test cases and their runtime. Since runtime

performance is important in practical applications, we further extend this chapter by

applying a hash based distance function into the test generation methods to improve the

runtime efficiency.

We also hypothesize that the distribution of the length of the generated strings plays an

 53

important role in failure detection. We argue that smaller strings have a higher chance of

detecting a failure. Since the first fitness function is unable to control the length

distribution of the strings, we create a second fitness function which indicates the

proximity of the distribution of the lengths of the strings in a test set to the target

distribution. A multi-objective optimization technique is used to apply both fitness

functions simultaneously.

To empirically investigate this hypothesis, we generate mutants of 13 programs. Test sets

with different characteristics are generated and tested on these programs. The

experimental results demonstrate that failure detection is improved when both fitness

functions are applied.

The highlights of this chapter can be summarized as:

1) Introducing two fitness functions to control the diversity and length distribution

of the string test cases and optimizing both fitness functions through multi-

objective optimization techniques.

2) Investigating the performance of six different string distance functions in black-

box string test case generation.

3) Applying Locality-Sensitive Hashing (LSH) [65] technique, a fast estimation of

string distances, to improve the runtime order complexity. Comprehensive

runtime complexity improvement is discussed in Section 3.5. Further, empirical

runtime analysis is investigated in Section 3.7.4.

4) Empirical investigation of the proposed method and comparison with other

methods using a mutation analysis.

5) Analysis of the degree of randomness of the generated strings in Section 3.8. The

degree of randomness is critical to avoid systematic poor performance due to the

correlation between the tests. It can be investigated a) within a set of test cases;

and b) between multiple sequences of test sets.

The “string test case” is a general term and hence, we define the scope of research in this

chapter. In this research, the objective is string test case generation; not test case selection

[66] or prioritization [67]. Further, as discussed in Chapter 1, this research focuses on

black-box string test generation. White-box test generation methods, like symbolic

execution [68], are another category of string test generation which utilizes the source

 54

code to produce test cases. Typically, these methods try to increase the code coverage

using optimization methods to generate test cases [69]. These string-related techniques

are reviewed in Section 3.9.

3.2 Adaptive Random String Test Case generation

As discussed in the previous chapter, to improve the poor effectiveness of RT, ART

methods are introduced. Chen et al. [18] first introduced Fixed Size Candidate Set

(FSCS) and then a variety of other ART methods have been developed by other

researchers.

Most of the ART methods are designed for numerical test cases and they cannot be used

to generate string test cases. Among the ART methods, the FSCS and ART for Object

Oriented software (ARTOO) [62] methods are capable of more complex test case

structures than fixed size vector of numbers and they can be applied to string test cases.

Further, Mayer et al. [32] concluded that FSCS was one of the best ART methods

through an empirical study. As a result, we adapted FSCS and ARTOO to generate string

test cases in this chapter; these are reviewed in the following sections.

3.2.1 Fixed Size Candidate Set (FSCS)

FSCS method is discussed in depth in chapter 2 and hence, is not repeated here. The only

difference is that, in this chapter, a string distance function is used in FSCS. FSCS has

been initially introduced for numerical test cases. However, it can be applied to other test

case structures like strings. The only requirement is that a distance function is defined

between the test cases.

To generate test cases, FSCS uses a distance based procedure. The first string test case is

generated randomly, similar to RT. Then, to generate other test cases, a fixed size

candidate set is used to produce a test case. Therefore, K random strings are generated as

candidates (K=10 is used in the experiments based on the recommendation of Chen et al.

[25]). A string is selected where it has the largest distance from previously executed

string test cases.

3.2.2 ART for Object Oriented Software (ARTOO)

ARTOO [62] is an ART method designed for object oriented software where it uses a

distance function between objects to generate the test cases. The authors focus on the

specific problem of testing functions of an object-oriented program where test cases are

 55

input objects to the functions. ARTOO works similar to FSCS [62], it selects a test case

among the pool of candidates. The number of candidates for ARTOO is chosen as 10 to

match with the FSCS. The difference between FSCS and ARTOO is the selection rule

among the candidates. The mean distance of each candidate to the previously selected test

cases is calculated. Then, a candidate with the largest mean distance is chosen as the

winner (next test case) [62].

3.3 Evolutionary String Test Case Generation

To generate string test cases, evolutionary algorithms can be used. Among the

evolutionary algorithms, Genetic Algorithms (GA) [70] are the most commonly used

search algorithm in software engineering [71]–[73]. GAs also fit very well with our

application which requires string manipulations. Two approaches are used to produce test

sets based on GAs. First, we utilize a GA with a single objective, where a diversity-based

fitness function is used. Then, a second fitness function is defined to control the length

distribution of the strings. Hence, in the second approach, we use a Multi-Objective GA

(MOGA) [74] to optimize both fitness functions simultaneously.

3.3.1 Genetic Algorithm (GA)

In the following, we first briefly explain GA’s basic terminology and then, appropriate

fitness functions and GA’s parameters are discussed. Multiple chromosomes form a

population where a chromosome is a candidate solution. At each generation, some

chromosomes are selected (by the selection mechanism) and offspring are generated via a

crossover operator. Finally, the mutation operator is utilized to make random small

changes to the generated offspring resulting in a lower probability of becoming trapped in

a local optimum point.

3.3.1.1 Diversity-Based Fitness Function

A GA requires a fitness function to generate optimized test sets. According to the

discussion in the introduction, it is believed that a diverse set of test cases is more likely

to reveal faults more effectively [13]–[17]. Hence, we define a fitness function that

measures the diversity

1

(, (,))
test set size

i i
i

Fitness function dist t t test setβ
=

= ∑ (3.1)

where the summation is performed on the distance between every test case and its nearest

 56

test case. ti represents the ith test case in the test set, and β indicates the nearest test case

in test set to ti. A higher value of this fitness function implies a more diverse distribution

of test cases as it indicates that test cases are far from each other.

3.3.1.2 GA Parameters

Using a GA requires the definition of its elements and parameters. In this chapter, a

chromosome is a string test set. So, to generate the initial population, random test cases

are generated. We chose the size of the population as 100 since larger population sizes

produced no improvement. We have tested the GA with three selection mechanisms,

roulette-wheel selection, rank selection, and binary-tournament selection [70]. The

experimental results demonstrate that the performance of the all selection methods is very

close. However, rank selection slightly produces better results. Hence, rank selection is

used for the GA. In crossover, test sets are recombined to generate offspring test sets

using a 60% crossover rate [75]. In test sets recombination, given that both parents have a

same number of string test cases, each string in the first parent test set is combined with

the corresponding string in the second parent test set and two string children are

produced. This is repeated for all the string test cases in the parent test sets which leads to

two offspring test sets. A single point recombination [70] is used to generate children

strings from two parent strings. In a single point recombination, random points are

selected in each of the two parent strings. Then, to generate the children strings, the first

part of each parent string is concatenated to the second part of the other parent.

Edit, delete, and add are used as mutation operators where every character in each string

is mutated with 1% probability. Each time, one of the mutation operators is selected

randomly. In an edit operation, the character is replaced with another randomly selected

character. The delete operation eliminates the character and the add operator, inserts a

randomly selected character in the current position in the string.

Finally, the iterations are stopped when one of the following is reached: (a) No

improvement is achieved in 20 generations based upon the fitness function; or, (b) A

maximum of 200 iterations is reached.

3.3.2 Multi-Objective Genetic Algorithm (MOGA)

3.3.2.1 String Length Fitness Function

Beside the diversity-based fitness function, the distribution of the length of the generated

 57

strings may play an important role in failure detection. Accordingly, in this section, a

fitness function for string length distribution is investigated.

It is argued that data (a population of objects) essentially has two root causes, either real-

world or artificial situations. Artificial populations of objects have no restrictions on their

growth. For instance, computer-generated unique identifiers can have any sampling

distribution. However, real-world populations of objects have more restrictions; growth

takes time and is sequential. Hence, these populations are often modelled by an

exponential growth model. Such a model starts with typically a small population (starting

point) and “moves towards the right” on a log-scale at a constant rate [76], [77]. Hence, if

a (random) variable starts at 1, it spends more time growing between 1 and 2 than

between 2 and 3. Growing continues and the pattern is repeated; that is, the variable

spends more time growing between 10 and 20 than between 20 and 30. The growth

exhibits scale-invariance and characterized by the most significant digit [77], [78]. This is

commonly known as Benford’s Law [78]. Benford’s law indicates that the occurrence of

digits in a list of numbers is not uniform and follows a logarithmic distribution known as

the Benford distribution [64]. Figure 3.1.a represents the distribution of first digit

numbers where the base is 10. The Benford distribution can be calculated using [64]

 ()1() log 1 , 1 ,B bPDF n n bn= + ≤ < (3.2)

where b denotes the base of the numbers, and PDFB(n) represents the Benford

distribution.

Figure 3.1. (a) Benford distribution (PDFB(n)) where base is 10. (b) Kolmogorov–Smirnov

test is used to measure the distance of two distributions. CDF(n) and CDFB(n) are
cumulative probability distribution of the strings length and Benford, respectively. The max

string length is assumed to be 30 which leads to the Benford base of 31.

 58

The Benford distribution is empirically investigated in many areas [64], [79]. It can be

applied to a wide variety of data sets, including financial data, electricity bills, stock

prices, lengths of rivers, population numbers, street addresses, death rates, and physical

and mathematical constants [64]. Perhaps, the most widely known application of

Benford’s law is detecting fraud in accountancy and financial data, where Benford’s law

can effectively identify non-conforming patterns [64], [80]. In addition, Raimi [81] has

shown that the products of independent random variables follow Benford’s law. Hence,

Benford’s law provides a very general idea of how arbitrary populations of objects grow

which is independent of any domain knowledge. A detailed discussion on Benford’s law

and its wide applications can be found in [64], [79], [82].

Accordingly, this paper hypothesizes that the Benford distribution is applicable to

defining the distribution of the size of strings found in computer programs many of which

are models of real-world situations. Such strings (a population of characters under an

ordering constraint) are unbound, but their size is defined somewhat by what they are

modelling and what they are modelling is a mixture (product) of smaller items (e.g. a

person’s contact information is a mixture of their name, address, mobile number, etc.).

These smaller items can be decomposed into even smaller items – single characters

(starting point). While not ideal (non-coverage of artificial situations), it is argued that

Benford’s law provides a reasonable representation of the size of strings which are likely

to be encountered when no domain-specific knowledge is available. Hence, we

hypothesize that Benford’s distribution is a good model for string length distribution

within a test set when no domain-specific knowledge is available. This essentially means

that smaller strings have a higher chance of detecting a failure. So, we argue that if we

generate diverse string test cases and control the distribution of their length, more

effective test cases can be generated.

To examine this hypothesis, we first need to develop a fitness function that measures the

distance of the Benford distribution and the distribution of the string lengths. The chi-

squared test [64] has been used to test the compliance of a distribution with Benford

distribution. However, it has low statistical power with small samples [83]. Since

maximum test set size in our experiments is 30, chi squared test may not produce

adequate results as a fitness function. To solve this problem, we use a Kolmogorov–

Smirnov test [84]; this is more powerful when the sample size is small [84].As indicated

in Figure 3.1.b, the Kolmogorov–Smirnov test finds the maximum distance between two

 59

cumulative probability distributions [84]. It can be formulized as

[1,]
max | () () |Bn StrMax

Fitness function CDF n CDF n
∈

= − (3.3)

where CDF(n) and CDFB(n) are cumulative probability distributions of the strings length

and Benford, respectively. Finally, StrMax denotes the maximum string length. The

Benford distribution provides a probability distribution in [1,b-1]; and hence, Benford’s

base is set as b=StrMax+1. Further, the Benford distribution does not provide a

probability for zero which produces a problem for strings with no characters. To solve

this issue, we assume that each string has a terminator character and we count it toward

the string size. Therefore, a string with no character has a length of one and it can be

adapted to the Benford distribution.

3.3.2.2 Pareto-Optimal Test Sets

A multi-objective optimization technique is required to enforce both fitness functions

(namely F1 and F2) simultaneously. We employ one of the widely used multi-objectives

GAs (MOGA), namely NSGA-II [74]. Since the diversity needs to maximized, the value

calculated from (3.1) is inverted. Therefore, both fitness functions need to be minimized.

A basic step in NSGA-II is sorting of chromosomes in a population based on a

domination concept. Chromosome A dominates B if and only if (F1(A)<F1(B) and

F2(A)≤F2(B)) or (F1(A) ≤F1(B) and F2(A)< F2(B)). A non-dominated chromosome is a

chromosome that is not dominated by any other chromosomes in the population. To

perform the sorting, NSGA-II categorizes a population’s chromosomes into front lines.

First front includes all the non-dominated chromosomes. Second front includes non-

dominated chromosomes where chromosomes in the previous fronts are not considered.

This process is repeated until all chromosomes are assigned to front lines. Within a front

line, chromosomes are sorted to preserve the diversity [74]. That is, chromosomes are

rewarded for being at the extreme ends or the less crowded areas of a front. The complete

sorting algorithm is provided by Deb et al [74].

To generate the test cases the following steps are performed according to NSGA-II.

Step 1) The initial population with size N is generated randomly.

Step 2) The population is sorted.

Step 3) An offspring population with size N is created using selection mechanisms,

 60

crossover, and mutation [74].

Step 4) A combined population of offspring and parents is produced with size 2N.

Step 5) The new population is sorted and the first N chromosomes are selected to form

the next generation.

Step 6) A check to see if the stopping criterion have been met is performed. If the

criterion is not met then we return to step 3.

NSGA-II produces a Pareto-optimal set of test sets rather than a single optimal test set.

The Pareto-optimal set is the first front of the last generation of the algorithm. Among the

Pareto-optimal test sets, the results indicate that the test set with best diversity fitness on

the Pareto-optimal front generates the best failure detection effectiveness. Consequently,

for the results that are presented for MOGA in this chapter, the test set with best diversity

fitness on the Pareto-optimal front is selected. This implies that the best solution is the

solution with best diversity which also achieved the target string length distribution.

3.3.2.3 NSGA-II Parameters

We applied similar parameters as GA to NSGA-II. The population size, mutation

operators, and mutation rate is identical to GA. However, NSGA-II has no crossover rate

parameter as discussed in previous section. NSGA-II uses binary tournament selection

mechanism [74]. We also extended NSGA-II and replaced the selection mechanism with

rank selection. The experimental results of these two selection methods, demonstrate

slightly better performance when the binary tournament selection is used; and hence it is

used for rest of the experiments in this study. The roulette-wheel selection is not

applicable to NSGA-II. Finally, the iterations are stopped when one of the following is

reached:

• No chromosome is produced in 20 generations that dominates at least one

chromosome in the first front Or,

• A maximum of 200 iterations is reached.

3.4 String Distance Functions

A distance function between two strings is required in ART and evolutionary test case

generation methods. Several string distance functions are introduced in the literature [62],

[66], [67], [85]. Although we cannot afford to investigate all of them, a good portion of

 61

them, especially those that normally perform well in software testing studies, are covered

in this chapter.

Accordingly, we performed the experiments with six string distance functions. Four of

which are Levenshtein [86], Hamming [87], Cosine [88], Manhattan [67], and Euclidian

[67] distance functions that are repeatedly used in software testing studies [62], [66],

[67], [85]. Further, we also used Locality-Sensitive Hashing (LSH) [65] technique as a

fast estimate of string distance in our work.

3.4.1 Levenshtein Distance

The Levenshtein Distance [67] is an edit-based distance that works based on three edit

operations, “delete”, “insert”, and “update” [67]. Each operation has an associated cost

where each string can be converted to the other string based on these edit operations. The

distance is the minimum cost of a sequence of edit operations that converts one string

into the other string [67]. The Levenshtein distance assigns a unit cost to all edit

operations [67].

Mathematically, the Levenshtein distance between two strings, Str1 and Str2, is equal to

lev(Length(Str1), Length (Str2)) where it can be calculated recursively by

max(,) if min(,) 0
(1,) 1

(,)
min (, 1) 1 otherwise

(1, 1) (,)

0 if 1 2
(,)

1 otherw
i j

i j i j
lev i j

lev i j
lev i j

lev i j cost i j

Str Str
cost i j

==
 − + =   − + 

  − − + 
==

= ,
ise





 (3.4)

where Str1i denotes the ith character of Str1, and Str2j denotes the jth character of Str2.

3.4.2 Hamming Distance

The Hamming distance [67] was initially introduced as a measure to calculate the

distance of two bit streams. However, it has been adapted to be used for strings [67]. The

Hamming distance of two strings, like “abcd” and “anfd”, is the number of characters

different in two strings. In other words, every character in the first string is compared

with a character in the equivalent position in the second string. In this example, the

distance is two. In cases where the sizes of two strings are not equal, null characters

(ASCII code of zero) are added to the end of the smaller string until both strings have a

 62

same size. For example, the distance between “ab” and “acdb” is three.

3.4.3 Manhattan Distance

The Manhattan distance [67] is normally used for vectors of numbers. It also can be

applied to strings as

1

Manhattan distance 1 2
n

i i
i

Str Str
=

= −∑ (3.5)

where Str1i and Str2i are ASCII codes of the ith character. Similar to the Hamming

distance, when the size of the two strings is not equal, null characters are added to the

shorter string.

3.4.4 Euclidian Distance

The Euclidian distance [67] is similar to the Manhattan distance. It can be applied to

strings as

 2

1
Cartesian distance (1 2)

n

i i
i

Str Str
=

= −∑ (3.6)

Again, null characters are added to the shorter string until both strings have a same size.

3.4.5 Cosine Distance

The Cosine similarity [88] calculates the similarity of two vectors as a cosine of the angle

of two vectors. The Cosine similarity can be calculated as follows where ASCII codes are

used as a number.

 1

2 2
1 1

1 2
Cosine similarity .

1 2

n
i ii

n n
i ii i

Str Str

Str Str
=

= =

×
=

×

∑
∑ ∑

 (3.7)

Similar to The Hamming distance, when the size of the two strings is not equal, null

characters are added to the shorter string. Finally, to calculate the distance, 1- Cosine

similarity is used.

3.4.6 Locality-Sensitive Hashing (LSH)

LHS [65] is a technique that can be used as a fast estimation of the distance between two

strings. The basic idea is to hash strings such that similar strings are mapped into a same

 63

hash code with a high probability. Random projections are core elements used to map the

input data to a value [65]. In this chapter, we used a type of random projection that is

used to estimate cosine distances. This projection is defined as [89]

1 0

()
0 0

x x v
h v

x v
⋅ ≥

=  ⋅ <

 



 

 (3.8)

where v is the input vector, x is a random vector generated from a Gaussian distribution,

and ()xh v is a bit representing the location of v compared to x. P random projections are

used to construct a hash value where it indicates the location of the input vector

compared to the P random vectors. Therefore, we have P bits as a hash value; P=32 is

used in this research.

Finally, the Hamming distance is used between two hash bit strings which leads to an

estimation of the cosine distance of the original strings. LSH improves the runtime order

as the Hamming distance between two 32 bit streams is independent of the sizes of the

strings. A comprehensive runtime order investigation is presented in the next section.

Cosine and LSH distances are naturally normalized against the length of the strings and

hence, we do not need to normalize them. However, the other discussed distances are not

naturally normalized. To normalize them, the result is divided by

Length(Str1)+Length(Str2).

3.5 Runtime Order Investigation

The computational complexity of an algorithm is an important factor in practical

applications. In real-world applications, the size of strings and the size of test sets may

become very large. Hence, it is importance for the user to know how the execution time

grows when parameters are changed. Accordingly, in this section, the order of runtime

complexity for the distance functions, fitness functions, test case generation methods are

investigated. The runtime order is analyzed based on the string length of distance

functions (L1 and L2), test set size (TS), population size in GA and MOGA (N), and

number of potential candidates in ART (K). Table 3.1 provides the runtime order of all

the algorithms. In the following, detailed discussions are presented.

 64

Table 3.1. Runtime order complexity of each algorithm used in this chapter.

Algorithm Runtime Order
String Distance Functions
Levenshtein OD = L1×L2

Hamming OD = Max(L1, L2)
Manhattan OD = Max(L1, L2)
Euclidian OD = Max(L1, L2)
Cosine OD = Max(L1, L2)
LSH (part1: hashing) OLSH1 = L1

LSH (part2: Hamming distance) OLSH2 = 1
Fitness Functions
Diversity-based (with LSH) OFD = TS×(TS+OLSH1)
Diversity-based (other distance functions) OFD = TS2×OD
Length control OFL = TS
Test Set Generation Methods
RT ORT = TS
FSCS (with LSH) OFSCS = K×TS×(TS+OLSH1)

ARTOO (with LSH) OARTOO= K×TS×(TS+OLSH1)
FSCS (other distance functions) OFSCS = K×TS2×OD

ARTOO (other distance functions) OARTOO = K×TS2×OD
GA OGA = N×OFD
MOGA (NSGA-II) OMOGA = N2×(OFL+ OFD)

The Hamming, Manhattan, and Cosine distance runtime complexity is linear against the

length of the strings as can be observed from (3.5) and (3.7). Since each of these distance

functions add null characters to the end of smaller string to make it same size with the

longer string, the order of complexity is Max(L1, L2). The runtime order of Levenshtein

distance is quadratic (L1× L2) since a L1× L2 matrix needs to be constructed according to

(3.4).

The story for the LSH distance function is different as it has two parts. The first part that

calculates a hash value is linear against the length of a string. The second part is done in a

constant time as it is a Hamming distance between two fixed length bit streams. As a

result, the LSH produces a runtime complexity improvement for test case generation

methods and diversity-based fitness function. In the diversity-based fitness function, a

distance between every string pair in a test set needs to be calculated. This leads to

TS2×OD runtime order where OD denotes runtime order of a distance function other than

the LSH. However, with the LSH, we can calculate the hash value of each string first

which can be done in TS×OLSH1. Then, each pair distance calculation can be done in TS2

since OLSH2 = 1. Adding these two terms leads to TS×(TS+OLSH1) which is more efficient

 65

than TS2×OD. This improvement leads to the runtime efficiency in GA and MOGA test

case generation methods. The runtime order of NSGA-II is reported as N2×M [74] where

M represents the number of objective functions. However, the complexity order of fitness

functions is not included. Assuming OFL and OFD as the complexity order of length

control and diversity-based fitness functions, respectively, complexity order of NSGA-II

becomes N2×(OFL+OFD). OFL can be removed compared to OFD as OFL has a linear

complexity. Obviously, any improvement in OFD related to the LSH, has a direct effect on

the complexity of NSGA-II. Similarly, the complexity order of GA (N×OFD) is improved

using the LSH rather than other distance functions.

Similar arguments can be made for ART methods. The FSCS runtime order is reported to

be K×TS2 [19], [90] for numerical test cases. However, considering the distance function

runtime for strings, it becomes K×TS2×OD. To calculate the runtime order with LSH, we

first find the runtime order of generating one test case, ti+1. The distance between every

one of the K candidates and the i previously generated test cases need to be calculated.

Therefore, the hash of each candidate needs to calculated (runtime order of K×OLSH1) and

then distances are calculated (runtime order of K×i×OLSH2). So, for each test case we

have K×(i+ OLSH1). A summation over i from one to TS needs to be performed to find the

total runtime order to generate a test set. Accordingly, the runtime order is

K×TS×(TS+OLSH1) — an improvement compared to K×TS2×OD. The ARTOO has a same

runtime complexity as FSCS since their algorithms are similar except for where a

candidate is selected.

3.6 Experimental Framework

The experiments conducted to analyze the effectiveness of FSCS, ARTOO, GA, and

MOGA against RT are described in this section. Real world programs are used to

perform an empirical evaluation. These programs accept strings as input. Then, mutated

[49], [91] versions of the software are produced. The P-measure [90] was selected to

quantitatively measure the effectiveness of the test case generation methods. Finally,

features of string test sets are discussed.

3.6.1 Software Under Test (SUT)

To conduct a study on the fault-detection effectiveness of the test case generation

methods, 19 real world Java programs are investigated. We reused the programs from

McMinn et al. [92] and hence the selection of these programs can be viewed as being

 66

independent from the authors1. These programs are sub-components of 10 real-world

projects which are widely used in GUI and web applications to validate strings [92].

These programs accept a string as an input and only contain functionality which

transforms or validates the input. That is, no significant portion of these programs spent

time on anything except string manipulation [92].

Table 3.2 provides a description of each program. The “Name” column denotes a name

used in the rest of this chapter to refer to that program. The “Classes” column represents

all the associated Java classes to that program. The reported LOC (Line Of Code), in

Table 3.2, is the summation of all classes in each program. It is different than LOC

reported in the original work [92] as only LOC of the main class is reported in the

original work.

Table 3.2. Programs used to perform experimental evaluations.

Name Project,
Source code URL Classes LOC

1 Validation PuzzleBazar,
code.google.com/p/puzzlebazar

Validation 80

2 PostCode LGOL,
lgol.sf.net

PostCodeValidator, Validator 293
3 Numeric NumericValidator, Validator 217
4 DateFormat DateFormatValidator, Validator 236
5 CASNumber Chemeval, chemeval.sf.net CASNumber 102
6 MIMEType Conzilla,

www.conzilla.org
MIMEType,
MalformedMIMETypeException

145

7 PathURN PathURN, URI, URN,
 MalformedURIException

387

8 ResourceURL ResourceURL, URI,
 MalformedURIException

339

9 URI URI, MalformedURIException 267
10 URN URN, URI, MalformedURIException 327
11 Util Efisto, efisto.sf.net Util 244
12 TimeChecker GSV05, gsv05.sf.net TimeChecker, StringTokenizer 267
13 Clocale JXPFW,

jxpfw.sf.net
Clocale, Cdebug 751

14 International InternationalBankAccountNumber,
AbstractLocalizedConstants, Cdebug,
 Cstring, InvalidArgumentException,
 ISO3166CountryConstants

2938

15 Isbn TMG,
tmgerman.sf.net

Isbn, Field, SimpleDataField 420
16 Month Month, Field, SimpleDataField 346
17 Year Year 75
18 BIC WIFE,

wife.sf.net
BIC, ISOCountries, PropertyResource 200

19 IBAN IBAN, ISOCountries, PropertyResource 288

1 Originally, McMinn et al. [92] used 20 Java programs. Based on the information provided, we were unable to find one
of the programs (“OpenSymphony”); and hence, we performed our experiments with 19 programs.

 67

 “PuzzleBazar” is puzzle playing software. An email validation class is extracted as one

of the programs under the test [92]. “LGOL” is a library developed for local government

in UK [92]. Three programs are extracted where they involve string manipulation related

to date formats, integer numbers, and UK postal codes [92]. “Chemeval” is a framework

used to evaluate molecular structure with application in hazard assessment [92]. The

tested class in this project, handles “CAS numbers” which is a unique identifier assigned

to chemical substances [92]. “Conzilla” is a tool used in knowledge management. Within

this tool, five programs were extracted where one is responsible for validating strings that

have MIME types and the rest are used to manipulate and identify a variety of URIs [92].

“Efisto” is a file sending tool via the web [92]. The selected class validates/manipulates

dates as a string [92]. “GSV05” is a tool for recording attendance, the selected classes

validate/manipulate strings in a time format [92]. “JXPFW” (Java eXPerience

FrameWork) is a library where two programs are extracted. The programs are used for

the validation and manipulation of international bank account numbers and location

identifiers [92]. “TMG” (Text Mining for German documents) include classes to connect

to the DBLP research publication database. Three programs are extracted which validate

ISBNs (International Standard Book Numbers), month names, year names [92]. Finally,

“WIFE” is a tool for handling international bank’s SWIFT messages where two string

manipulation programs are extracted.

3.6.2 Source Code Mutation

To measure the effectiveness of the test case generation methods, faulty versions of the

software under test are required. Mutation techniques [49], [91] are a well-known

approach to automatically manipulate the source code and produce a large number of

faults [49]. There is considerable empirical evidence indicating a correlation between real

faults and mutants [55], [91].

In this chapter, muJava [54] is employed to produce mutated versions of the programs

under the test where a total of 6672 mutants are generated. Then, those mutants that were

failed with the majority of test sets (more than 90% of all the test sets) were deleted.

These defects were considered as unrealistic and hence contrary to the “Competent

Programmer” hypothesis which is an essential idea in mutation testing [93]. Six programs

(CASNumber, PathURN, Util, International, Month, and Year) were excluded from the

experiments since the remaining mutants for these programs revealed no failures. That is,

these mutants where never detected by any test cases generated in the experiments.

 68

Hence, 13 programs are available for the evaluation of the test generation methods. Table

3.3 demonstrates the number of generated and selected mutants per program.

Table 3.3. The number of mutants generated for the test programs.

Programs
Generated
Mutants

Selected
Mutants

1 Validation 721 687
2 PostCode 114 60
3 Numeric 48 43
4 DateFormat 54 46
5 MIMEType 92 55
6 ResourceURL 709 706
7 URI 613 597
8 URN 767 764
9 TimeChecker 578 442
10 Clocale 165 160
11 Isbn 284 277
12 BIC 151 109
13 IBAN 195 83

3.6.3 Testing Effectiveness Measure

Similar to chapter 2, we use p-measure to evaluate the effectiveness of test case

generation methods. An in depth discussion on the p-measure definition and the reason

behind its selection as a quantitative effectiveness measure is presented in Section 2.6.1.

3.6.4 String Test Set Characterization

To evaluate the p-measure, we need a test set with a fixed size. In this chapter, we

perform experiments with three test set sizes, 10, 20, and 30. As the size of the test sets

increases, the difference in the results of different test generation methods is normally

reduced.

Applying a test set to a mutated version of a program will return zero or one according to

the p-measure calculation rules. Accordingly, to estimate p-measure as a number between

zero and one, we applied 100 test sets. Further, we repeated this process 100 times for

each mutated version to be able to estimate mean and standard deviation parameters for

the measurements. As a result, each test case generation method (RT, FSCS, ARTOO,

GA, and MOGA) produced 10,000 test sets for each test set size. This leads to

10,000×(10+20+30)×5=3,000,000 test cases that have been applied to each mutant.

Each test case is a string of characters. Therefore, we need to determine the range of

characters to be used. Previous works commonly used printable ASCII characters [85],

 69

[94], [95]. Tonella [94] used only numbers, lower, and upper case characters. Alshraideh

and Bottaci [85] used ASCII code from zero to 127; and Afshan et al. [95] used ASCII

code from 32 to 126. We follow Afshan et al. [95] which includes all the printable ASCII

characters.

Finally, we need to determine the maximum string length (StrMax) allowed. Normally, it

can be adjusted by a tester according to the application. Afshan et al. [95] used StrMax of

30 to generate strings in a white-box approach. Alshraideh and Bottaci [85] performed

their experiments with StrMax of 20. In this chapter, we perform all of the experiments

with two StrMax values (30 and 50) to explore any impact of the maximum string size.

3.7 Experimental result and discussion

This section presents the results of the empirical study. At first, the results of each

program under the test are presented. The Levenshtein distance is used for these detailed

results since it produces superior results compared to other string distance functions

according to Section 3.7.3. Following that, statistical analysis of results is presented. In

Section 3.7.3, the performance of different string distance functions is compared. Finally,

an empirical runtime analysis is performed in Section 3.7.4.

3.7.1 Results of Each Program Under Test

Tables 3.4 and 3.5 present the results for each program under test. Table 3.4 contains the

results for StrMax=30 and Table 3.5 includes the results of StrMax=50. Every number in

these tables is a percentage indicating the improvement of that method against RT as

(%)

p-measure (X) - p-measure (RT)improvement 100
p-measure (RT)

= × (3.9)

where X denotes a test case generation method. Further, raw p-measure results for RT

method are provided in Table 3.6 which allows the reader to compute the p-measure of

each method if required.

According to these tables, the MOGA outperformed RT in most of the programs under

test with selected test set sizes and StrMax sizes. On average, the MOGA has the best test

generation performance. The GA is the second best method. The ARTOO and FSCS are

next; and finally RT has the lowest failure detection efficiency since every method

outperformed RT on average. As the size of the test sets increase, the average results of

 70

each test generation method is reduced and they are pushed closer to RT’s performance.

However, MOGA maintains its superior performance. Among the programs under the

test, normally the “PostCode” and “Numeric” reveal the best failure detection

improvement over RT. In contrast, the URI program performance is superior for RT.

Table 3.4. The p-measure improvement percentage of each method over RT where
maximum string size is 30 and Levenshtein distance is used.

Testset
Size

Software
Under Test FSCS ARTOO GA MOGA

10

Validation 23.6 54.3 69.8 77.4
PostCode 42.0 104.3 108.5 112.3
Numeric 109.6 238.1 255.7 254.9
DateFormat 110.2 238.5 258.2 258.2
MIMEType 3.1 -20.4 8.7 18.8
ResourceURL 19.4 4.9 -0.2 16.6
URI -16.6 -16.9 -21.6 -15.4
URN -38.4 -23.2 15.7 28.2
TimeChecker -18.2 -19.0 -29.4 -22.0
Clocale 160.8 165.5 101.5 188.0
Isbn 21.5 -52.6 23.9 33.8
BIC 32.7 -14.2 43.6 46.4
IBAN 36.2 -9.1 36.9 27.3
Average 37.4 50.0 67.0 78.8

20

Validation 2.0 5.2 25.1 27.2
PostCode 16.3 55.3 55.9 57.5
Numeric 32.1 107.4 105.8 105.5
DateFormat 32.7 106.9 107.7 107.7
MIMEType 14.1 -12.4 -7.1 15.9
ResourceURL 14.8 3.2 0.8 0.0
URI -5.1 -6.5 -11.7 -3.7
URN -28.9 -16.1 26.9 55.1
TimeChecker -4.4 -9.2 -12.5 -4.2
Clocale 77.3 81.2 35.3 72.4
Isbn 38.1 -52.4 29.8 32.0
BIC 34.9 -24.4 23.6 27.5
IBAN 23.7 -10.5 23.2 15.7
Average 19.1 17.5 31.0 39.1

30

Validation 15.7 -4.8 20.0 17.1
PostCode 13.9 34.4 35.4 36.0
Numeric 23.6 61.5 59.3 58.9
DateFormat 23.9 60.8 60.9 60.9
MIMEType -3.1 -15.6 1.3 9.0
ResourceURL 9.6 -5.5 -2.0 -3.7
URI -2.9 -4.6 -3.8 -2.3
URN -20.6 -27.4 31.7 28.8
TimeChecker -1.7 -5.0 -3.7 -2.7
Clocale 43.5 44.8 9.6 33.6
Isbn 29.9 -52.1 11.4 18.9
BIC 21.4 -23.2 12.6 15.9
IBAN 15.1 -11.1 16.0 12.8
Average 12.9 4.0 19.1 21.8

 71

Table 3.5. The p-measure improvement percentage of each method over RT where
maximum string size is 50 and Levenshtein distance is used.

Testset
Size

Software
Under Test

FSCS ARTOO GA MOGA

10

Validation 33.8 49.9 73.0 94.6
PostCode 54.5 111.2 134.6 137.0
Numeric 204.8 364.0 458.0 457.0
DateFormat 205.2 364.3 462.1 462.1
MIMEType -8.1 -19.3 -1.9 11.3
ResourceURL -6.8 -17.2 6.3 13.3
URI -18.0 -13.7 -22.5 -21.3
URN -47.6 -25.5 0.5 -21.5
TimeChecker -17.2 -15.8 -27.4 -23.5
Clocale 225.3 230.6 183.1 321.0
Isbn 37.8 -28.2 56.3 60.6
BIC 73.6 32.1 96.6 103.8
IBAN 90.4 54.7 77.5 77.1
Average 63.7 83.6 115.1 128.6

20

Validation 13.9 26.5 53.3 28.4
PostCode 32.1 83.4 85.4 86.6
Numeric 75.9 198.6 200.0 199.7
DateFormat 76.2 196.9 202.7 202.7
MIMEType 2.4 -9.2 -7.6 12.0
ResourceURL 3.5 -5.5 -2.2 15.6
URI -7.3 -6.2 -9.0 -6.5
URN -33.7 -28.7 2.5 6.9
TimeChecker -3.6 -5.5 -8.0 -5.1
Clocale 138.4 142.6 73.2 136.5
Isbn 65.6 -19.6 36.8 40.3
BIC 66.1 13.1 43.1 55.5
IBAN 59.0 28.5 36.3 37.2
Average 37.6 47.3 54.3 62.3

30

Validation 8.2 4.5 26.1 21.9
PostCode 22.1 60.3 60.6 60.7
Numeric 43.2 122.8 119.2 118.9
DateFormat 43.4 120.8 121.3 121.3
MIMEType -0.5 -11.7 8.7 5.4
ResourceURL 2.0 -8.8 15.2 10.0
URI -4.8 -3.3 -5.3 -7.8
URN -23.4 -17.0 15.6 2.0
TimeChecker -0.6 -2.6 -1.6 -3.5
Clocale 86.4 86.0 38.3 77.3
Isbn 58.0 -24.4 32.1 48.1
BIC 48.0 4.4 29.0 43.0
IBAN 43.5 23.8 29.6 39.0
Average 25.0 27.3 37.6 41.3

 72

Table 3.6. The raw p-measure results for RT where the Levenshtein distance is used.

Software Under Test
Test set size

10 20 30

St
rM

ax
=

30

Validation 0.003 0.005 0.008
PostCode 0.099 0.148 0.177
Numeric 0.079 0.136 0.176
DateFormat 0.073 0.126 0.162
MIMEType 0.002 0.003 0.005
ResourceURL 0.002 0.004 0.005
URI 0.123 0.164 0.179
URN 0.001 0.002 0.002
TimeChecker 0.191 0.253 0.274
Clocale 0.028 0.049 0.064
Isbn 0.007 0.013 0.017
BIC 0.097 0.150 0.180
IBAN 0.005 0.008 0.009

St
rM

ax
=

50

Validation 0.003 0.005 0.007
PostCode 0.093 0.127 0.150
Numeric 0.050 0.093 0.128
DateFormat 0.046 0.086 0.118
MIMEType 0.002 0.003 0.009
ResourceURL 0.002 0.004 0.005
URI 0.156 0.187 0.199
URN 0.002 0.003 0.004
TimeChecker 0.232 0.268 0.276
Clocale 0.020 0.036 0.049
Isbn 0.005 0.009 0.012
BIC 0.064 0.109 0.141
IBAN 0.003 0.006 0.007

3.7.2 Statistical Analysis of Results

The results in Table 3.4 and 3.5 are averaged over 100 trial runs. To formally indicate the

performance of each test case generation method against RT, we performed a test of

statistical significance (z-test, one tailed) with a conservative type I error of 0.01 [90],

similar to chapter 2. Our working hypothesis is that MOGA, GA, FSCS, and ARTOO

will produce superior results compared to RT. Further, an effect size (Cohen's method

[56], [57]) between each method and RT is calculated.

To perform a z-test or calculate effect size, the results must be normally distributed.

According to [50], p-measure values are normally distributed. Further, we investigated

the normality of the results more deeply by performing Shapiro-Wilk test [96]; it works

 73

based on a null hypothesis that the data is normally distributed. According to the results

of this test, the normality of the p-measure values cannot be rejected.

Table 3.7 represents the effect sizes where a positive value indicates that method

outperformed RT. In contrast, a negative value denotes the higher performance of RT.

The “*” beside an effect size demonstrates the result of the z-test where a statistically

significant difference exists. Statistical analysis are only presented for StrMax=30 as the

results for StrMax=50 are similar. Results in Table 3.7 indicate that in most of the

experiments MOGA statistically significant outperforms RT. However, the results of

FSCS, ARTOO, and GA methods are not as good as MOGA.

 74

Table 3.7. The effect size between RT and other methods where the maximum string size is
30 and Levenshtein distance is used. “*” indicates the result of the z-test where a significant

difference exists at the 0.01 level.

Testset
Size

Software
Under Test FSCS ARTOO GA MOGA

10

Validation 0.84* 1.83* 2.36* 2.02*
PostCode 4.61* 14.59* 16.17* 17.15*
Numeric 6.28* 17.36* 20.90* 20.83*
DateFormat 6.23* 17.25* 20.93* 20.93*
MIMEType 0.10 -0.65* 0.28* 0.54*
ResourceURL 0.57* 0.15 -0.01 0.46*
URI -2.56* -2.52* -3.32* -2.20*
URN -1.00* -0.60* 0.37* 0.69*
TimeChecker -2.54* -2.70* -4.27* -2.94*
Clocale 12.63* 13.69* 7.94* 17.93*
Isbn 1.21* -3.43* 1.35* 1.87*
BIC 3.47* -1.54* 4.74* 4.88*
IBAN 2.85* -0.73* 2.96* 2.07*

20

Validation 0.10 0.25* 1.15* 1.19*
PostCode 2.58* 12.45* 12.61* 13.07*
Numeric 2.9* 14.04* 13.96* 13.92*
DateFormat 2.91* 13.84* 14.05* 14.05*
MIMEType 0.64* -0.54* -0.31* 0.64*
ResourceURL 0.63* 0.14 0.03 0.00
URI -1.51* -1.92* -3.14* -1.16*
URN -0.87* -0.49* 0.75* 0.87*
TimeChecker -1.31* -2.54* -2.98* -1.17*
Clocale 11.56* 12.71* 4.35* 10.80*
Isbn 3.56* -5.09* 2.47* 2.88*
BIC 7.70* -4.24* 4.80* 5.37*
IBAN 2.99* -1.21* 3.12* 1.98*

30

Validation 0.66* -0.22 0.66* 0.75*
PostCode 3.05* 9.65* 9.99* 10.22*
Numeric 3.16* 10.56* 10.22* 10.16*
DateFormat 3.16* 10.34* 10.39* 10.39*
MIMEType -0.17 -0.87* 0.07 0.52*
ResourceURL 0.54* -0.31* -0.11 -0.21
URI -1.42* -2.36* -1.91* -1.16*
URN -0.58* -1.04* 1.13* 1.05*
TimeChecker -0.89* -2.27* -1.52* -1.29*
Clocale 8.77* 9.21* 1.57* 6.34*
Isbn 3.81* -6.30* 1.36* 2.30*
BIC 7.83* -5.64* 3.94* 4.97*
IBAN 3.03* -1.91* 3.18* 2.54*

 75

3.7.3 Comparison of String Distance Functions

Figures 3.2 and 3.3 represent the p-measure result for all six string distance functions that

are discussed in Section 3.4. The results for StrMax=30 and 50 are demonstrated in

Figures 3.2 and 3.3, respectively. In each of these figures, four graphs are presented

where the first three relate to the three test set sizes (10, 20, and 30) and the last one is the

average of all test set sizes.

 76

Figure 3.2. (a) Comparison of string distance functions where maximum string size is 30.

Each column denotes p-measure improvement of each test case generation method over RT.
(a), (b), and (c) represent results for test set sizes of 10, 20, and 30, respectively. (d) presents

the mean of all test set sizes.

 77

Figure 3.3. Comparison of string distance functions where maximum string size is 50. Each
column denotes p-measure improvement of each test case generation method over RT. (a),
(b), and (c) represent results for test set sizes of 10, 20, and 30, respectively. (d) presents the

mean of all test set sizes.

 78

According to these graphs, the MOGA test case generation method with the Levenshtein

distance function has the superior failure detection effectiveness, except for one case

(Figure 3.2.c). After the Levenshtein, the Hamming distance function was normally

“second best” and then, the Cosine distance. As discussed before, the LSH that we used is

a fast estimation of the Cosine distance; and hence, it has slightly lower failure detection

effectiveness than the Cosine distance according to Figures 3.2.d and 3.3.d. Comparing

the FSCS and the ARTOO in Figures 3.2.d and 3.3.d demonstrates that the ARTOO test

case generation method outperforms the FSCS when the Levenshtein and the Hamming

distances are used. However, the opposite is true with other distance functions. Finally,

the Euclidian distance function has the lowest performance on average with respect to

failure detection.

3.7.4 Empirical Runtime Analysis

In addition to failure detection effectiveness, the computational cost of an algorithm is an

important factor in practical applications. The runtime order of different string distance

functions and test generation algorithms are investigated in Section 3.5. To further

empirically study the runtime, we design a few experiments where the effect of varying

string size and test set size is investigated. The hardware platform that is used for runtime

measurements is a desktop computer with core i7-3770 (3.4 GHz) and 16 GB of Ram.

Further, the runtime measurement is performed 100,000 times and the average execution

times are presented.

Figure 3.4. Average execution time for different distance functions with string sizes between

5 and 100.

 79

Figure 3.4 represents the string distance calculation runtime with respect to different

string sizes. String sizes between 5 and 100 with step size of 5 have been investigated

where the strings used in a distance function are generated randomly. In this figure, the

runtime of Hamming, Manhattan, and Euclidian distance functions are presented with a

single line as they were very close. According to Figure 3.4, all the distance functions,

except the Levenstein distance, have a linear runtime as string sizes increase. The

Levenstein distance function has a quadratic runtime order. The runtime result for LSH is

the summation of both parts of the LSH calculation as explained in Section 3.5.

According to Figure 3.4, the LSH runtime is significantly higher than Cosine, Hamming,

Manhattan, and Euclidian distance functions. However, LSH can outperform the runtime

of other distance functions when used in test generation. In the diversity-based fitness

function, a distance between every string pair in a test set needs to be calculated. With the

LSH, the hash value of each string is calculated once and then, each string pair distance

calculation can be done in constant time. That is, to calculate distance of two strings, a

hamming distance between two fixed size bit streams must be calculated. It is argued in

the details in Section 3.5.

To demonstrate the runtime advantage of LSH compared to the other distance functions

in string test generation, Figure 3.5 is presented. Figure 3.5.a demonstrates the runtime of

the diversity-based fitness function where the test set size is changing. According to this

figure, LSH has a lower runtime than Cosine with test set size larger than about 10.

Further, as test set size increases, the LHS run time becomes lower than the Manhattan

(test set size larger than 25) and Euclidian distance function (test set size larger than 40).

Further, LSH has lower runtime than the Hamming distance with test set size larger than

100 (Figure 3.5.a only contains test set sizes up to 50 since the graph details were not

clear if we extended it to the test set size of 100). Finally, to generate the results in Figure

3.5.a, random string sets with maximum string size of 50 are produced as input to the

fitness function. If the string sizes are increased, the runtime of LSH is further reduced

relative to the other distance functions. Hence, Figure 3.5.b is presented where the max

string size is set to the relatively large number of 1000. As demonstrated in Figure 3.5.b,

the runtime of LSH is improved compared to other distance functions.

 80

Figure 3.5. Average execution time of diversity-based fitness function with test set sizes

between 3 and 50. Random string sets with maximum string size of (a) 50 and (b) 1000 are
produced as input to the fitness function.

3.8 Degree of Randomness Analysis

Correlation among test cases or test sets is not good as it can potentially limit the failure

detection capability if test cases correlate with a current set of defects [90]. Accordingly,

we performed a similar randomness analysis as Section 2.8.

To calculate CR and NCD, we need a perfect lossless data compressor. However, a

perfect compressor does not exist; and hence, we use LZMA [60]. Further, LZMA

requires a large size of data to be able to compress data adequately. Accordingly, to

 81

analyze the randomness, we generated test sets of an arbitrary large size of 1,000. The CR

and NCD are calculated for all the test generation methods (RT, FSCS, ARTOO, GA, and

MOGA) where each test generation method is executed with all the distance functions.

The calculated NCD values for all cases are between 0.995 and 0.997 which indicates

that no correlation exists between test sets generated in different runs of the test

generation methods; and hence, they are perfect in this regard. Similarly, the calculated

CR values are between 1.020 and 1.026 demonstrating that test cases in a test set are

completely uncorrelated; and hence, all methods produce perfect test cases with respect

to randomness within test set. Theoretically, 0≤CR(T)≤1. However, since LZMA is not a

perfect compressor a small additive value is produced during the compression; and hence,

CR values are slightly larger than one.

In conclusion, the randomness among test sets and within a test set is perfect for all the

investigated test generation methods. That is, all the test generation methods have similar

randomness as RT.

3.9 Related works

In this section, we review the related work which appears in the literature with respect to

string test cases.

A category of related work is white-box string test case generation where a string test set

is generated to maximize the code coverage. Research in this area normally generates a

test case using an evolutionally optimization technique [69] or symbolic execution [68],

[97] to cover a certain path or branch. This process is repeated until maximum number of

possible branches is covered by the generated test cases. For example, Harman and

McMinn [69] used a few optimization algorithms to produce a test set with maximum

branch coverage. Hill climbing, GA, and memetic (hybrid GA and hill climbing) are

utilized to generate a test case that covers a certain branch. Therefore, each branch in the

source code requires a separate run of the test generation algorithm [69]. A fixed length

array of numbers are used as a test case where it is converted to string, array, array list,

number, etc., according to the specification of the program under the test. Hence, a string

is a fixed length array of characters in this work [69]. In addition, Harman et al. [98]

introduce a multi-objective branch coverage test case generation approach where the

NSGA-II algorithm is used. The objectives are branch coverage and dynamic memory

usage [98]. Fraser et al. [99] integrate a memtic optimization algorithm with the EvoSuite

 82

tool [100] to improve test case generation. A test case is a sequence of method calls

where they generated strings and numbers as functions parameters. In Fraser et al. [99],

during each run of the evolutionary algorithm, a set of test cases are generated rather than

a test case. The objective function is to maximize the code coverage.

Further, Afshan et al. [95] focus on the human readability of string test cases. A white-

box evolutionary technique is used to generate a test case per branch. Then, a language

model is utilized to modify the string to make it more readable while maintaining the

covered branch. Similarly, McMinn et al. [92] and Shahbaz et al. [101] focus on the

readability of string test cases. A method was proposed to query the web for common

string types like emails [92], [101]. Since web content is produced by humans, strings

found from the web are more likely to be human readable than machine generated strings.

This method requires a set of keywords from the tester as search keywords [92], [101].

Alshraideh and Bottaci [85] also use GAs to generate string test cases where program-

specific search operators (mutation and crossover in GA) are used. Similar to Harman

and McMinn [69], in each run of the algorithm, a test case is produced that covers a

certain branch. Initial strings are generated randomly. The size is between 0 and 20.

Characters are from the ASCII range of 0-127 [85]. They also defined a “English-like”

mutation operator that inserts a character into the string according to the letters that

precede and follow the insertion point [85].

Symbolic execution [68], [97] is also a white-box test case generation technique that uses

static analysis of source code and constraint solving to produce test cases maximizing

code coverage. Further, symbolic execution is combined with concrete execution to

create more powerful test generation methods. Hampi [68] is a string constrain solver tool

introduced by Ganesh et al. [68]. It accepts constraints in a specific format and finds

values satisfying the constraints. It is used in many symbolic execution research projects

[68]. Ganesh et al. [68] use Hampi in static and dynamic analysis to find SQL injection

vulnerabilities. Saxena et al. [97] introduce a symbolic execution tool for JavaScript

where static analysis of source code is performed to generate string test cases.

The main difference between all these articles and the current study is that our work is a

black-box approach; and hence, the test generation algorithm is independent from the

source code.

Tonella [94] introduce a method to generate test cases where a test case is a sequence of

 83

method calls. The relevant part of this work to the current study is Tonella’s [94]

approach in generating strings for function calls. To generate a string, a simple black-box

approach is used where a character is uniformly selected from possible choices and added

into the string. The possible choices are alphanumeric values (a-z, A-Z, and 0-9) [94].

The next character is inserted with the probability of 0.5n+1 where n is the current length

of the string [94]. This implies a logarithmic reduction in the sizes of the produced

strings. Our use of Benford distribution is similar to Tonella’s choice of string generation

in a notion that the probability of generating shorter strings is higher. However, the

probability of string length distributions is different between the Benford distribution and

Tonella’s method. The major difference between Tonella’s approach and our work is that

Tonella produced strings randomly and hence, they are not likely to be very effective

with respect to failure detection. In contrast, in our work, the diversity of the string test

cases is optimized as well as the string length distribution and hence, superior string test

case can be generated. Another advantage of our work compared to Tonella’s work is that

for each test set, we optimize the string length distribution and diversity. However,

Tonella produced each string test case independent of other string test cases in the test

set.

In addition to string test case generation works, there is related research on string test

case selection and prioritization that use string distance functions. Although these works

are out of the scope of this research as discussed earlier, we present a brief review of

these works for the sake of completeness. Hemmati et al. [66] introduce a test cases

selection method where test cases are encoded as strings. Accordingly, a diversity based

fitness function based on a string distance function is used as the optimization objective

[66]. Several optimization algorithms including GA and hill climbing were tested. Ledru

et al. [67] also employ string distance functions to prioritize string test cases. Multi-

objective optimization is also used for test case selection. Yoo and Harman [102] used

code coverage, past fault-detection history, and the execution cost as three optimization

objectives.

3.10 Summary

In this chapter, black-box string test case generation is studied. Two objectives are

introduced to produce effective string test cases. The first objective controls the diversity

of the test cases within a test set. According to various empirical studies [13]–[17], faults

 84

usually occur in error crystals or failure regions. Hence, controlling the diversity of the

test cases is an important aspect of black-box test case generation. The second objective

is responsible for controlling the length distribution of the string test cases. The Benford

distribution is employed as an objective distribution. Accordingly, a Kolmogorov–

Smirnov test [84] is utilized to construct the fitness function. When both objectives are

enforced, using a multi-objective optimization technique, superior test cases are

produced.

Further, several string distance functions are examined as a part of test case generation

process (Levenshtein, Hamming, Cosine, Manhattan, Catesian, and LSH distance

functions). Among the investigated distance functions, the LSH [65] is a fast estimation

of the Cosine string distance function. According to the runtime complexity analysis in

Section 3.5, LSH improves the runtime complexity. Further, in Section 3.5, the runtime

complexities of all test case generation methods are discussed.

An empirical study has been performed to evaluate the failure detection capability of the

string test generation methods (RT, FSCS, ARTOO, GA, and MOGA). Thirteen real-

world programs are used for evaluation. Several faulty versions are produced for each

program through a mutation technique. These programs perform string transformation

and/or manipulation which make them a true test for situations where the input test cases

are strings [92]. With respect to the evaluation results, the MOGA revealed the superior

failure detection performance. Further, the empirical results of comparing different string

distance functions indicate that the Levenshtein distance outperformed the others.

Randomness of the test cases is an important aspect of a test case generation algorithm.

Correlated test cases may reduce the failure detection effectiveness as discussed in

Section 3.8. As a consequence, an investigation of randomness is performed; and it

demonstrated that all the generated test cases possess an appropriate degree of

randomness.

 85

4 Extended Subtree: A New Similarity Function for Tree

Structured Data

The extensive application of tree structured data in today’s information technology is

obvious. Trees can model many information systems like XML and HTML. User

behavior in a website (visited pages) [103]–[105], proteins, and DNA can be modeled

with a tree. Moreover, programming language compilers parse the code into a tree as a

first step. Consequently, in many applications involving tree structured data, tree

comparison is required. Tree comparison is performed by tree distance/similarity

functions. The applications includes document clustering [106], natural language

processing [107], cross browser compatibility [108], and automatic web testing [109].

4.1 The Focus of This Chapter

Several tree comparison approaches [110]–[113] have been already introduced to address

this domain. Edit base distances [112] are a well-known family of tree distances based on

mapping and edit operations. They have three major drawbacks with respect to their

mapping rules. First, order-preserving rules may prevent mapping between similar nodes,

resulting in situations where similar nodes may not contribute towards the overall tree

similarity score based solely upon their position. Second, according to the one-to-one

condition, any node in a tree can be mapped into only one node in another tree leading to

inappropriate mappings with respect to similarity. That is, repeated nodes or structures of

mapped nodes have no effect on similarity and they are counted as dissimilar nodes.

Finally, edit based distances work based upon mapping individual nodes, not tree

structures. This implies that every mapped pair of nodes is independent of all the other

nodes. However, a group of mapped nodes should have a stronger emphasis on the

similarity of trees when they form an identical subtree. That is, an identical subtree

represents a similar substructure between trees, whereas disjoint mapped nodes indicate

no similar structure between the two trees. More details of these drawbacks along with

illustrative examples are presented in Section 4.4.1.

In this chapter, we propose a new similarity function with respect to tree structured data,

namely Extended Subtree (EST). The new similarity function avoids these problems by

preserving the structure of the trees. That is, mapping subtrees rather than nodes is

utilized by new mapping rules. The motivation of proposing EST is to enhance the edit

 86

base mappings, provided in Section 4.3.1, by generalizing the one-to-one and order

preserving mapping rules. Consequently, EST introduces new rules for subtree mapping.

This new approach seeks to resolve the problems and limitations of edit based approaches

(this is detailed in Section 4.4.1 with illustrative examples).

To evaluate the performance of the proposed similarity function against previous

researches, an extensive experimental study is performed. The experimental evaluation

frameworks include clustering and classification frameworks. The distance functions

provide the core functionality for clustering and classification applications. In addition,

four distinct data sets (three real and one synthetic) are utilized to perform the evaluation.

In general, this chapter’s contributions can be summarized as:

• Introducing a novel similarity function to compare tree structured data by defining a

new set of mapping rules where subtrees are mapped rather than nodes.

• Further, the new approach resolves the limitations of the previous distance functions.

• Designing extensive evaluation frameworks using k-medoid [114], KNN (K Nearest

Neighbor) [115], and SVM (Support Vector Machine) [116] along with four different

data sets to perform an unbiased evaluation. That is, we believe applying one

machine learning technique on a single data set might lead to a biased evaluation; and

hence, it is not considered adequate to prove the effectiveness of an approach. This

extensive evaluation framework is one of the advantages of this research over

previous researches [103], [105], [106], [117], [118].

• Superior results of EST against previous approaches in most of the clustering and

classification case studies.

• Empirical runtime analysis of the new approach as well as current approaches where

runtime efficiency of EST is demonstrated.

4.2 Notation and Definitions Used in This Chapter

The following notation and assumptions are provided with respect to trees to simplify the

discussion in this chapter. In this chapter, trees are referring to rooted, ordered, and

labeled trees unless otherwise stated. A rooted tree is a tree with a single root node. A

tree is ordered if right-left order amongst sibling nodes in the tree is important. Finally, a

labeled tree represents a tree where each node has an assigned label.

 87

A tree is denoted as T and | |T indicates the size of a tree in terms of the number of

nodes/vertices. Multiple trees are differentiated by a top index as pT and qT . it

represents the ith node of T numbered in a post-order format. In case of multiple trees,

again a top index is utilized to distinguish between trees. For instance, p
it and q

it . In this

chapter, ()V T defines a set of vertices/nodes of T where 1
| |}() { i
T
iV tT == . The depth of a

tree is denoted by ()depth T which is defined as the length of the path from the root to the

deepest node in the tree. ()idepth t indicates the length of the path from the root to it .

()leaves T indicates the number of leaves in T where a leaf node is the node without

children. deg()it represents the degree of node it which is equal to the number of it ’s

children. Accordingly, deg()T represents the degree of T , which is the maximum

number of children of any node in the tree. A subtree is a tree which is part of a larger

tree. Accordingly, iT denotes a subtree of T rooted at it . If pT is a subtree of qT , we

indicate it as p qT T⊂ .

Finally, distance and similarity between pT and qT are presented as (,)p qD T T and

(,)p qS T T , respectively. Similarly, normalized values are indicated by D∗ and S∗ where

we have

 (,) 1 (,)p q p qS T T D T T∗ ∗= − (4.1)

4.3 Current Approaches

A variety of different tree distance functions have been proposed. In this section, we

survey these approaches and present a summary of each one.

4.3.1 Edit Based Distances

Edit based distances [112] are based on three edit operations (γ) including “delete”,

“insert”, and “update” [119] (Figure 4.1). Each operation has an associated cost

(, ,delete insert updateW W W). Based on the introduced edit operations, each tree can be

converted into another tree according to a set of rules that are different for each distance

function. Further, mappings were introduced in [120] to describe how a sequence of edit

operations converts a tree into another tree [121], namely pT and qT respectively.

 88

(b) Update operation,
)(gc →g

a
b g

e f
(c) Delete operation,

a
b

e
f

) (→cg ø
(d) Insert operation,

f

a
b

c
e

g

) (g→g ø (a) T

a
b c

e f

Figure 4.1. Three edit operations, “delete”, “insert”, and “update”.

Figure 4.2 represents a sample pT and qT along with a few mappings where each

mapping represents an optimal mapping associated with a tree distance approach. A

mapping is a set of ordered integers such as (,)p qi i where pi and qi are the index of the

nodes (numbered in post-order format) from tree pT and qT , respectively. This means

that node p
ipt is mapped into node q

iqt . The following conditions must be satisfied for all

(,),(,)p q p qi i j j M∈ [121]:

• One-to-one condition: p pi j= if and only if q qi j= . This condition implies that one

node from pT cannot be mapped into two nodes from qT .

• Sibling order preservation condition: p pi j> if and only if q qi j> .

• Ancestor order preservation condition: p
ipt is an ancestor of p

jpt if and only if q
iqt is an

ancestor of q
jqt .

(,)p qD T T is equal to the cost of the edit operations required to convert pT into qT .

Assuming the cost of each edit operation as one, the (,)p qD T T is bounded between zero

and | | | |p qT T+ . Accordingly, it can be normalized between zero and one as:

 (,)(,)
| | | |

p q
p q

p q
D T TD T T
T T

∗ =
+

 (4.2)

 89

a
b c

de f

a
c b
ge f

(b) Isolated subtree mapping

pT qT
a

b c
de f

a
c b
ge f

(a) Tree edit distance mapping

pT qT

Figure 4.2. Optimal mappings between trees for TED and IST.

4.3.1.1 Tree Edit Distance (TED)

TED [119], [120], [122] is a well-known edit based distance function that measures the

minimum cost of a sequence of edit operations between two trees. Since its introduction

by Tai [120], several algorithms have been introduced for computing the optimal TED

between two trees. This research follows the dynamic programming presented by Zhang

and Shasha [119]. The computational order for this algorithm is

(,) (| | | | ((), ()) ((), ()))p q p q p p q q
TEDD T T O T T Min depth T leaves T Min depth T leaves T∈ × × ×

[119] where ()O  represents the runtime order. The TED mapping needs only to satisfy

the mapping’s conditions presented in previous section. The mapping demonstrated in

Figure 4.2a indicates an optimal mapping to calculate the TED. According to this

mapping (,) 3p q
TEDD T T = , since we have only one update operation (()d gg →), one

insert operation (()bγ ∅→), and one delete operation (()bγ →∅).

4.3.1.2 Isolated Subtree (IST) Distance

The IST distance is introduced by Tanaka [123], it maps the disjoint subtrees of pT to

the similar disjoint subtrees of qT . Tanaka [123] argued that such a mapping is more

meaningful since it preserves the structure of the trees. The IST mapping is a TED

mapping where disjoint subtrees are mapped to similar disjoint subtrees under the

restriction of the structure preserving mapping [123]. Figure 4.2b demonstrates the

optimal IST mapping between pT and qT . In this sample, (,) 4p
S

q
I TD T T = . Tanaka

[123] provided an algorithm to compute the optimal IST distance with the runtime

complexity of (| | | | ((), ()))p q qpO T T Min leaves T leaves T× × [123], [124]. Later, Zhang

[125] provided an algorithm to calculate IST distance with runtime complexity of

(| | | |)p qO T T× .

In addition to TED and IST, there are other distance functions including alignment [126],

 90

top-down [127], and bottom-up distance [124]. Their objective is to simplify the

calculations; however, they produce lower quality solutions than TED.

4.3.2 Multisets Distance

Recently, Müller-Molina et al. [113] have introduced a tree distance metric based on

multisets. Multisets are sets that allow repeated elements, where pT and qT are

converted into multisets, pM and qM . pM and qM contain all the complete subtrees

of the corresponding trees. A complete subtree is defined as a subtree that: if it is a node

in a complete subtree, all of it ’s children are in the subtree. In addition, ()pV T and

()qV T are utilized along with pM and qM to calculate distance as:

(,) ((| | | |)

(| () () | | () () |)) / 2

p q p q p q
multiset

p q p q

D T T M M M M

V T V T V T V T

= − +

−

 



 (4.3)

Müller-Molina et al. [113] presented no approach for normalization. However, the

normalized distance can be calculated using (4.2) since (,)p qD T T is bounded between 0

and | | | |p qT T+ . An algorithm with runtime complexity of 2(| | | |)qpO T T× is presented

in [113] to compute the distance.

4.3.3 Path Distance

Path distance [111] considers paths as a tree’s building blocks. Each tree is converted into

a multiset of paths such as “/a/c/d” which describes a path in pT in Figure 4.2a. Different

approaches exist to extract paths from a tree. One possible approach is that all paths start

from a root node to it . Any node to any possible node is another approach where a path

to it can start from any ancestor of it or even it . The later approach includes all the

possible paths in the tree. In this research, we follow the second approach for path

extraction. Given pT and qT , pM and qM are the multisets which contain all the paths

in pT and qT , respectively. (,)p q
pathS T T can be simply calculated as | |p qM M .

Since (,)p q
pathS T T is bounded between zero and (| |,| |)p qMax T T ,

()* |,
(| |,| |)

|p q
p q

path p q
M MS T T

Max T T
=

 .

 91

4.3.4 Entropy Distance

Connor et al. [110] utilized information theory, Shannon’s entropy, to calculate a

bounded, between zero and one, distance function between two trees. Similar to the path

distance metric, the pM and qM multisets are generated which contain all the possible

paths in pT and qT , respectively. Then, Shannon’s entropy equation and complexity

theory are used to calculate the information distance. Finally, Connor et al. [110]

concluded the distance as:

 () (), 1
() ()

p q
p q

Entropy p q

C M MD T T
C M C M

= −
×

 (4.4)

where  represents the union of two multisets; and ()C M denotes complexity of a

multiset defined as [110]

 () () () ()
() ()logi b i

ib i
p m p m p mH M

i
i

C M b b p m
− −∑

= = =∏ (4.5)

where b is a constant number, ()bH M represents the entropy of M in base b, and im

denotes a member of M where i represents all the distinct members of M. Finally, ()ip m

denotes the probability of im in M which is equal to the number of im repetitions over

| |M . The authors did not provide the order of runtime complexity of the algorithm.

4.3.5 Other Distances

In addition to the discussed approaches, Lu [128] introduced node splitting and merging.

Further, Helmer [129] utilized Kolmogorov complexity which provides a new class of

distances for measuring similarity relations between sequences [23]. The main advantage

of this approach is its linear runtime complexity which is reported [129]

as (| | | |)p qO T T+ . Finally, Yang et al. [130] introduced a distance measure between two

trees based on a numeric vector representation of trees. They prove that this distance,

(,)p q
binaryD T T , is a lower bound for (,)p q

TEDD T T given by

(,) 5 (,)p q p q
binary TEDD T T D T T≤ × and hence, it has lower quality compared to TED.

However, it has a linear runtime complexity given by (| | | |)p qO T T+ which

outperforms TED in this respect.

 92

Beside the discussed tree distance functions, there are some diffing (differencing) tools

for XML documents like XMLDiff [131]. The primary objective of these tools is to

identify and list all the differences between two XML documents, and hence they are

different with a tree distance function that produces a single number as a measure of

distance. Diffing tools normally use one of the edit based approaches. For instance,

Microsoft XML Diff is a tool for diffing XML documents that is implemented in .NET

framework [131]. It implements the TED function. XMLDiff is another tool that is part of

many Linux distributions [131]. It uses a variation of tree edit operations based on the

Chawathe et al. work [132] to identify the differences. This diffing tool works based on

the “move”, “delete”, and “insert” operations. XyDiff is another diffing algorithm

introduced by Cobena et al. [133]. It works based on bottom-up tree edit model.

Code clone detection is another application that is relevant to tree distance and/or

similarity functions. Clone detection has many applications like fraud detection and clone

removal in order to decrease maintenance costs [134]. Code clone detection methods can

be divided into a few categories; one of which is clone detection based on abstract syntax

tree comparison [134] which is the most relevant to our research. Code clone detection

that utilizes abstract syntax tree matching is an application of tree similarity functions.

The objective in code clone detection is detecting exact or near-miss code fragments.

Hence, in an abstract syntax tree, subtrees are compared with a tree similarity function. If

the similarity is more than a defined threshold, the corresponding code fragments are

considered to be a clone. For instance, Baxter et al. [135] use 2 (2)S S L R+ + as a

similarity function, where S, L, and R denote the number of shared nodes, different nodes

in the first tree, and different nodes in the second tree, respectively.

Finally, the proposed distance function’s (EST) performance is evaluated against TED,

IST, Entropy, Multisets, and Path distances as no compelling evidence exists that any

other superior techniques exists and no comprehensive comparison of these techniques

appears in the literature. However, it should be noted that approaches such as

Kolmogorov complexity [129] and Binary distance [130] have linear computational

complexity; and hence, have a superior runtime to those used in the experiments.

4.4 Proposed Tree Similarity Function: Extended Subtree (EST)

In this section, we propose a new similarity function, namely EST, to compare trees. The

new function seeks to resolve many of the issues which will be discussed in the following

 93

section. Further, a computational algorithm as well as its runtime complexity is

presented.

4.4.1 Motivation

In this section, we justify the need to propose a new tree comparison approach by

discussing situations where previous approaches have poor performance. Note that the

aim of the new approach is not runtime complexity reduction as presented in [130], [136].

Although runtime complexity is an important issue in practical applications, we focus on

proposing a new approach that better represents the similarity or distance between tree-

structured data. This leads to an enhancement in applications where a tree distance

function is utilized.

A variety of tree comparison approaches are introduced in the previous section. Each

approach has advantages and disadvantages in terms of the distance/similarity score. We

found situations where the previous approaches do not give an appropriate

similarity/distance score. In the following, these cases are analyzed with illustrative

examples where all discussions are in terms of a normalized similarity score,

(,)p qS T T∗ . (,) 1p qS T T∗ = means that the trees are identical; while (,) 0p qS T T∗ =

means that the trees are totally distinct.

All of the five edit based tree distance approaches follow the mapping rules presented in

Section 4.3.1, namely one-to-one and order preserving conditions. According to the one-

to-one condition, any node in pT can only be mapped to one node in qT . Now consider

Figure 4.3a where u pT T⊂ and , u x qT T T⊂ . Also assume that | |, | | 1u xT T  , so the

cost of the root nodes in pT and qT have negligible impact on the distance calculation.

Considering | | | |u xT T= in Figure 4.3a leads to (,) 0.667p qS T T∗
. with respect to all

five edit based approaches. There is a problem in this similarity score: no matter whether
uT and xT are identical or totally different, (,)p qS T T∗ remains 0.667. The one-to-one

mapping condition enforces that xT cannot be mapped to u pT T⊂ , since u pT T⊂ is

already mapped to u pT T⊂ . Moreover, according to the order preserving conditions, a

node in pT can be mapped to one node in qT , if the ordering is preserved with other

mappings. This is how edit based distances differentiate between ordered and unordered

trees. This rule seems less than ideal in a number of situations. To clarify this discussion,

 94

consider Figure 4.3b, where , pu yT T T⊂ and , u x qT T T⊂ ; again, assume that

| |, | |, | | 1u x yT T T  . Considering | | | | | |u x yT T T= = in Figure 4.3b leads to

(,) 0.5p qS T T∗
. with respect to all edit based approaches. The problem in this case is

that whether xT and yT are identical or totally different, the similarity score remains at

0.5. This means that when considering xT and yT as identical, they cannot be mapped

together due to the order preserving conditions. Please note that considering xT and yT

as identical does not lead to p qT T= , since pT and qT are ordered trees. Accordingly,

we are not discussing that by mapping yT to xT , the similarity score would be one.

What we are discussing is that if x yT T= , *0.5 (,) 1p qS T T< < better represents the

similarity between these trees. According to these discussions, we introduce a new set of

mapping conditions in the next section.

a

uTyT

pT
a

xTuT

qT

(b)

a

(a)

a
pT

uT xTuT

qT

Figure 4.3. Samples of
pT and

qT utilized to problems regarding mapping conditions in
edit based distances.

Further, we observed that m (a constant number) similar nodes between pT and qT have

a stronger emphasis on the similarity of pT and qT when they form an identical subtree

mapping between pT and qT (Figure 4.4a), compared to disjoint nodes as illustrated in

Figure 4.4b. That is, an identical subtree represents a similar substructure between pT

and qT , whereas m disjoint mapped nodes indicate no similar structure between the two

trees. However, edit based approaches, in particular the IST distance [123], are unable to

model this. That is, in the IST distance, m mapped disjoint nodes have the same similarity

as m nodes forming a subtree. Figure 4.4 represents two IST mappings where

(,) 0.6p qS T T∗
. in both cases. However, we believe that pT and qT presented in

Figure 4.4a are more similar than the trees presented in Figure 4.4b, since Figure 4.4a

contains a similar subtree as denoted by the hatches.

 95

a
b c

d e

a
f c

g e

qTpT

(a)

a
b c

d e

a
f h

d e

pT qT

(b)

Figure 4.4. Samples of isolated subtree (IST) mappings where (a) the mapped nodes form a
subtree as denoted by the hatches; and (b) the mapped nodes are separate nodes.

Path [111] and entropy [110] distances consider paths as a tree’s building blocks as their

basic assumption; that is, they convert a tree into a multiset of paths and then compare the

trees by comparing the multisets of paths. This assumption is not in accordance with the

nature of tree-structured data. If we could convert a tree into a multiset of paths, there

would have been no reason to present the data initially as a tree. Further, the entropy

approach produces some strange results. Assuming the trees presented in Figure 4.3a with

the aforementioned conditions regarding uT and xT , the entropy approach yields

(,) 1p qS T T∗
 where x uT T= . Obviously, this result is unsatisfactory as pT and qT are

not identical.

The binary [130] and Fourier [136] distances assume TED as an ideal distance approach

and approximate TED while reducing the runtime complexity. Fourier distance converts a

tree to a signal in the frequency domain. The poor performance of Fourier distance,

presented in [111], verifies that it is not an appropriate tree comparison approach. The

bottom-up approach [124] puts more value on bottom nodes rather than top nodes, since

it matches the bottom nodes first. Therefore, this approach is not performing well in most

of the situations where nodes have equal weights or where top nodes have larger weights.

Based on our empirical investigation, the multiset approach [113] behaviour is similar to

the bottom-up approach in terms of putting more value on bottom nodes; that is, every

subtree defined in this approach contains leaves of the tree. Finally, the NCD approach

 [129] does not seem an appropriate distance metric, since it converts the tree into plain

text where each node’s label is converted to text. Just as an example to demonstrate a

disadvantage of this approach, assume that different nodes are labeled with different

numbers in a tree like 2, 111, and 1111. All the three labels are different, but since the

labels are converted into plain text, 111 and 1111 are considered similar in the

compression process utilized in NCD. Further, since an optimal compressor does not

 96

exist, a real world compressor is utilized which does not yield optimal NCD scores.

As a conclusion, the main motivation for proposing a new tree similarity approach is

introducing an approach which resolves the discussed problems and removes the

limitations of the previous approaches. In addition, the new approach must enhance the

applications where a tree distance function is utilized.

4.4.2 Extended Subtree (EST) Similarity

Given pT and qT , the proposed EST preserves the structure of the trees by mapping

subtrees of pT to similar subtrees of qT . Although it might seem similar to the IST, it is

fundamentally different since EST’s mappings are not in accordance with the mapping

conditions provided in Section 4.3.1. That is, EST generalizes the edit base distances and

mappings. According to the discussions in the previous section, given pxT and qxT as

two mapped subtrees in pT and qT with xm as the name of this mapping, we introduce

the rules of the new approach’s mapping as:

Rule 1: EST’s mapping is a subtree mapping which means that not only single nodes can

be mapped together, but also identical subtrees can be mapped together (unlike IST).

Using subtree mapping, we can increase the significance of larger subtrees, since they are

considered more important than single nodes in accordance with the discussion in the

previous section.

Rule 2: No common subtrees of pxT and qxT are allowed to be mapped together, as

indicated in Figure 4.5a, this is defined as an invalid mapping. When two subtrees of pxT

and qxT are already mapped, all the sub structures of pxT and qxT can be mapped

together as pxT and qxT are identical. Since we are interested in larger mapped subtrees,

mapped subtrees of pxT and qxT have no use, so we categorize them as invalid

mappings.

(a) Invalid mapping

pT qT
pxT

qxTpyT
qyT

(b) Valid mapping

pT qT

pxT

qyTpyT
2qxT

1qxT

1xm
2xm

ym

 97

Figure 4.5. Extended Subtree (EST) mapping where (a) indicates invalid mappings, and (b)
represents valid mappings.

Rule 3: One-to-many condition: A subtree of pT can be mapped into several subtrees of
qT and vice versa. The intuition of this rule is with respect to Figure 4.3a where the

disadvantages of the one-to-one condition are investigated. As indicated in Figure 4.5b,
pxT is mapped to 1qxT and 2qxT concurrently. Further, qyT is mapped into pyT where
qyT is a subtree of 2qxT which is already mapped.

Rule 4: xm is weighted as () (() ()) / 2px qx
xW m W T W T= + where ()pxW T and ()qxW T

are the weights of subtrees in the mapping. ()pxW T (and similarly for ()qxW T) is

calculated as:

 () ()
px px

i

px px
i

t T
W T W t

∈

= ∑ (4.6)

where ()px
iW t is the unit scalar, when pxT is the largest subtree that px

it belongs to; and

zero otherwise. A node like px
it might be a member of several subtrees in the mappings

as indicated in Figure 4.5b. However, it is inappropriate to multiply-count the same node;

therefore, nodes are counted as a weight just for the largest subtree that they belong to.

Finally, we can compute (,)p qS T T based on all the possible valid mappings as:

 () (),
k

p q
k k

m M
S T T W m α

α β= ×∑


 (4.7)

where α , 1α ≥ , is a coefficient to adjust the relation among different sizes of mappings.

It amplifies the importance of large subtrees compared to small subtrees or single nodes

in accordance with the discussion in the previous section. This similarity function has

obvious parallels with the Minkowski distance function [137] which is a popular distance

function for higher dimensions of data. 1α = does not amplify the importance of large

subtrees compared to small subtrees. As α grows larger, more emphasis is placed on

larger subtrees. Further, kβ is a geometrical parameter which reflects the importance of

the mapping with respect to the position of pkT and qkT in pT and qT , respectively.

kβ is the unit scalar, when the root nodes of pkT and qkT have the same depth with

 98

respect to pT and qT ; and it is equal to β (a constant number between zero and one)

otherwise; leading to the amplification of the mapping of the same depth regarding

subtrees. The selection of α and β values are discussed in Section 4.5.5.

To normalize the similarity score, we divide it by its higher bound. Since 0 1kβ≤ ≤ , we

have (), ()
k

p q
km MS T T W m αα≤ ∑  . Further, () ()

k k
k km M m MW m W mαα ≤∑ ∑ 

where 1α ≥ and ()kW m is a positive number. In addition, each node is counted as one in

the weight calculation, () (| |,| |)
k

p q
km M W m Max T T

∈
≤∑ . As a result,

(,) (| |,| |)p q p qS T T Max T T≤ and the similarity function is normalized as:

 (,)(,)
(| |,| |)

p q
p q

p q
S T TS T T

Max T T
∗ = (4.8)

In the example provided in Figure 4.5b, consider the presented mappings as the only

valid mappings. In addition, assume 1 2| | | | | | 5px qx qxT T T= = = and | | | | 2py qyT T= = .

Therefore, mapping weights can be computed as 1() 5xW m = , 2() 2.5xW m = , and

() 1yW m = . Accordingly, if we consider 2α = and 1,β = the similarity score

is 2 2 2(,) 5 2.5 1 5.679p qS T T = + + = . Consequently, considering | | 8pT = and

| | 10qT = , the normalized similarity score is * ,(0.568)p qS T T = .

4.4.3 Computational Algorithm

Assume ,
p

i jT represents a subtree of pT rooted at p
it which is mapped to an identical

subtree of qT rooted at q
jt , namely ,

q
j iT . Accordingly, computing (,)p qS T T has four

following steps.

Step 1: Identify all the mappings: In this step, we find all the possible mappings, valid or

invalid (in Step 3, invalid mappings will have a zero weight), and store two lists of nodes

for each mapping, one for each subtree. pT and qT are the inputs to this step and pV

and qV are the outputs (inputs for the next step). pV and qV are two dimensional

matrices where each element is a list of nodes. Accordingly, [][]pV i j and [][]qV j i

represent the list of nodes of the mapped subtrees of ,
p

i jT and ,
q
j iT , respectively. The

 99

pseudo code represented in Figure 4.6 details this step’s calculations. The GetMapping(i,

j) function produces two lists of nodes ([][]pV i j and [][]qV j i) for a mapping. Its

objective is to detect the largest possible mapping. To achieve this objective, we need to

find and match the mappings rooted at the children of p
it and q

jt . Since i and j are node

indexes in post-order formatting, when computing GetMapping(i, j) for nodes p
it and q

jt ,

the computation is already performed for all the children of p
it and q

jt in advance.

Therefore, as indicated in the pseudo code, the GetMapping(i, j) function goes through all

of the children of p
it and q

jt to use the mapping information among p
it ’s and q

jt ’s

children to find the largest mapping between p
it and q

jt . p
iat denotes the ath child of the

p
it node, where1 deg()p

ia t≤ ≤ , and ia represents the index of the ath child of the p
it

node. Similarly, q
jbt represents the bth child of the q

jt node, where 1 deg()q
jb t≤ ≤ and jb

represents the index of the bth child of the q
jt node. In Figure 4.6, E is a matrix which

indicates how the children of p
it and q

jt are matched. Accordingly, E is used to update

[][]pV i j and [][]qV j i . Since ,
p

i jT and ,
q
j iT are identical, | | | |[][] [][]p qV Vi j j i= , so

[][|]| pV i j can be replaced by [][|]| qV j i in the pseudo code.

 100

St
ep

 1

Begin
 for i = 1 to | |pT do

 for j = 1 to | |qT do

 if () ()p q
i jlabel t label t== then

 GetMapping(i, j)
 end of if
 end of for
 end of for

St
ep

 2

 for i = 1 to | |pT do

 for j = 1 to | |qT do

 for k = 1 to | [][] |p iV j do

 [][] , [][]p
k

q
ki j ji V V j i′ ← ←′

 if [][] []| | | |[] [][]p p p p
mi mji V LSjV LS i i> ′ ′ then

] , [][p p
mi mjLS i i LS i j′=′ =

 end of if
 if [][] []| | | |[] [][]q q q q

mj mij i j jV V LS LS′ ′> then

] ,][[p
mi mj

qLS i LSj j j′=′ =
 end of if
 end of for
 end of for
 end of for

St
ep

 3

 for i = 1 to | |pLS do

 [[]][[]]p p p
mi mjW LS LSi i + +

 end of for
 for j = 1 to | |qLS do

 [[[]] []]q q q
mj miW S jLjLS + +

 end of for

St
ep

 4

 for i = 1 to | |pT do

 for j = 1 to | |qT do

[][] []

2
[]p qi j j iW W

temp
α

+
=
 
 
 

 if () () p q
i jdepth t depth t≠ then

 temp temp β= ×
 end of if
 S S temp= +
 end of for
 end of for
 S Sα=
End

 101

St
ep

 1
,

G
et

M
ap

pi
ng

(i,
 j)

 fu
nc

tio
n

Begin of GetMapping(i, j)
 [][] { }p p

ii tjV =

 [][] { }q q
jj tiV =

 for a = 1 to deg()p
it do

 for b = 1 to deg()q
jt do

[-1][]

[][] [][-1]

[-1][-1] |][] | [p

E a b
E a b Max E a b

E a b V ia jb

=

+







 end of for
 end of for
 a= deg()p

it

 b= deg()q
jt

 while a > 0 and b > 0 then
 if [][] [-1][-1] | |[][]pE a b E a b V ia jb== + then

 [][] [][] [][]p p pi j i j iaV V V jb= 

 [][] [][] [][]q q qj i j i jV b aV V i∪=
 a = a - 1
 b = b - 1
 else if [][] [][-1]E a b E a b== then
 b = b - 1
 else
 a = a - 1
 end of if
 end of while
End

Figure 4.6. Pseudo code for the proposed tree distance algorithm.

Step 2: Identify each node’s largest mapping: A node in pT or qT might belong to

several mappings. Considering that we do not want to count one node several times, we

determine the largest subtree in the mappings for each node. To compute this step, first,

assume two arrays, namely pLS and qLS , of size | |pT and | |qT , respectively. []pLS i

indicates the largest subtree that p
it belongs to. []pLS i keeps the indexes of root nodes

of the mapping, denoted by [] p
miLS i and [] p

mjLS i . As indicated in Fig 6, filling pLS

and qLS with appropriate values is the objective of this step. For each mapping, between

,
p

i jT and ,
q
j iT , we iterate through all the nodes in [][]pV i j and [][]qV j i which were

computed in the first step. For each node in [][]pV i j , where the index of the node is

denoted by [][]p
kiV j in the pseudo code, we check if the [][] || pV i j is larger than the

 102

subtree stored in pLS for that node, and update pLS accordingly. A similar procedure is

repeated for each node in [][]qV j i .

Step 3: Compute the weight of each subtree: In this step, we calculate ,()p
i jW T and

,()q
j iW T for all the subtrees in the mappings. In the pseudo code, they are denoted by

[][]pW i j and [][]qW j i . We go through pLS and increase the weight of a subtree when

it is reported as a largest subtree of a node in pLS . This procedure is repeated for qLS as

well.

Step 4: Calculate (,)p qS T T : Now that we have all the subtree weights (pW and qW)

available, we can simply calculate (,)p qS T T according to (4.7).

Figure 4.7 presents an example which indicates the inputs and outputs of each step. Two

simple trees with three and four nodes are presented where the mappings are indicated on

the figure. There is two valid mapping, one between nodes b and the other between

subtrees of a-c. According to Step 1, pV and qV are calculated which indicates all the

valid and invalid mappings. The largest subtree, for each node, are calculated using Step

2 and are saved in pLS and qLS . For example, the second element of pLS , (3,4) ,

indicates the largest subtree that 2
pt is a member of. (3,4) represents the mapping

between subtrees rooted at node 3 of pT , and node 4 of qT . In the next step, the weight

of each subtree in the mapping is calculated and stored in pW and qW . Finally, in Step

4, similarity is calculated from pW and qW .

 103

𝑉𝑉𝑝𝑝 = �
∅ {𝑡𝑡1

𝑝𝑝} ∅ ∅
∅ ∅ {𝑡𝑡2

𝑝𝑝} ∅
∅ ∅ ∅ {𝑡𝑡2

𝑝𝑝 , 𝑡𝑡3
𝑝𝑝}
�

𝑉𝑉𝑞𝑞 =

⎣
⎢
⎢
⎢
⎡
∅ ∅ ∅

{𝑡𝑡2
𝑞𝑞} ∅ ∅
∅ {𝑡𝑡3

𝑞𝑞} ∅
∅ ∅ {𝑡𝑡3

𝑞𝑞 , 𝑡𝑡4
𝑞𝑞}⎦
⎥
⎥
⎥
⎤

𝑊𝑊𝑝𝑝 = �
0 1 0 0
0 0 0 0
0 0 0 2

� 𝑊𝑊𝑞𝑞 = �

0 0 0
1 0 0
0 0 0
0 0 2

�
𝑆𝑆 = �𝛽𝛽 × 1 + 2𝛼𝛼𝛼𝛼 → 𝑆𝑆∗ =

�𝛽𝛽 + 2𝛼𝛼𝛼𝛼

4

𝐿𝐿𝑆𝑆𝑝𝑝 = ��1
2� , �3

4� , �3
4� �

𝐿𝐿𝑆𝑆𝑝𝑝[𝑖𝑖]𝑚𝑚𝑚𝑚

𝐿𝐿𝑆𝑆𝑝𝑝[𝑖𝑖]𝑚𝑚𝑚𝑚

𝐿𝐿𝑆𝑆𝑞𝑞 = �∅, �1
2� , �3

4� , �3
4� �

𝐿𝐿𝑆𝑆𝑞𝑞[𝑗𝑗]𝑚𝑚𝑚𝑚

𝐿𝐿𝑆𝑆𝑞𝑞[𝑗𝑗]𝑚𝑚𝑚𝑚

a

c
b

qTpT a

cb dpt1
pt2

pt3

qt1
qt2

qt4

Figure 4.7. A simple example for the proposed EST algorithm.

4.4.4 Runtime Complexity Analysis

In this section, we discuss the order of computational complexity of the EST algorithm.

The order of runtime complexity is the summation of the associated complexity into each

of the four steps, discussed in the previous section. In accordance with the pseudo code

presented in Figure 4.6, we have ()()|T | | |
1 1 1

p qT
step i jEST O GetMapping

= =
∈ ∑ ∑ . The

GetMapping function has a double “for” loop and a “while” loop. Obviously, the double

“for” loop is executed deg() deg()p q
i jt t× times and the maximum number of executions

of the “while” loop is deg()+deg()p q
i jt t . Inside the “while” loop we have two set’s union

operations which has runtime complexity of ((| |,| |))p qO Min T T , since the size of each

subtree in the mapping cannot be larger than (| |,| |)p qMin T T . Accordingly, GetMapping

deg() deg() (deg()+deg()) (| |),|(|)p q p q p q
i j i jt t t t Min TO T× + ×∈ . Consequently,

() ()()(() () ()())| | | | | | | |
1 1 1 1 1deg deg , deg deg

p q p qT T T Tp q p q p q
step i j i ji j i jEST O t t Min T T t t

= = = =
∈ × + × +∑ ∑ ∑ ∑ .

This result can be simplified to

() () () () ()()| | | | | | | | | | | |
1 1 1 1 1 1deg deg , deg deg
p q p q p qT T T T T Tp q p q p q

i j i ji j i j i jt t Min T T t t
= = = = = =

× + × +∑ ∑ ∑ ∑ ∑ ∑ .

Since ()| |
1 deg 1
pT p p p

ii t T T
=

= − <∑ , we have 1 (| | | | 2 (|| , | |) | | | |)p q p q p q
stepEST O T T Min T T T T∈ × + × × × .

Since we need to keep the term with highest order, the final runtime of the algorithm’s

Step 1 is given by ((| , | |) | || | |)p q p qO Min T T T T× × .

 104

To determine pLS and qLS in Step 2, we need to iterate | | | |p qT T× times to cover all

the possible mappings. According to the description in Step 2, the complexity of each

mapping’s iteration is (2 (| , | ||))p qO Min T T× since ,()p
i jV T and ,()q

j iV T are bounded

between zero and |(| , | |)p qMin T T . Therefore,

2 |((| , | |) | | | |)p q p q
stepEST O Min T T T T∈ × × . Obviously, the runtime order of Step 3 and

Step 4 are |(| | |)p qO T T+ and |(| | |)p qO T T× , respectively. Finally, the total runtime of

the proposed algorithm is within the order of ((| , | |) | || | |)p q p qO Min T T T T× × since we

need to keep the term with highest order and we can forget about constant coefficients.

The calculated runtime complexity is also investigated in the empirical runtime analysis

section.

4.5 Evaluation Frameworks Design

In this section, we design clustering and classification frameworks to evaluate the

proposed distance function (EST) performance against other tree distance functions. To

implement these frameworks, k-medoid [114] is used for the clustering; and KNN [115]

and SVM [116] are utilized for the classification framework.

4.5.1 Data Sets

Four different labeled data sets (three real world data sets and one synthetic data set) are

utilized in this chapter to investigate the performance of the distance functions to prevent

biased results.

The first real data set is CSLOG, available at [138]; it has appeared in a number of

publications including [103], [105] and [118]. Each tree in this dataset represents the

behavior of a user visiting a website, where each node in the tree indicates a webpage of

the website. Each tree is labeled either “edu” (visitor is from edu domain) or “other”.

Further, this data set contains three weeks of information separated as three data sets,

presented in Table 4.1.

 105

Table 4.1. Detailed information regarding the real and synthetic data sets.

Data set
Data set
size

Average
tree size

Average
tree depth

CSLOG_2C_WEEK1 8074 8.03 4.40
CSLOG_2C_WEEK2 7407 8.05 4.46
CSLOG_2C_WEEK3 7628 7.98 4.42
SIGMOD_3C 987 39.04 3.76
TREEBANK_2C 160,616 13.08 4.64
TREEBANK_5C 769,172 9.48 3.85
TREEBANK_6C 922,442 12.80 4.52
SYN_2C_CLUSTER 100 58.22 8.48
SYN_3C_CLUSTER 150 58.50 8.44
SYN_5C_CLUSTER 250 58.31 8.51
SYN_8C_CLUSTER 400 57.85 8.45
SYN_20C_CLUSTER 1000 11.93 5.08
SYN_2C_CLASIFY 200 57.32 7.78
SYN_3C_CLASIFY 300 57.62 7.84
SYN_5C_CLASIFY 500 57.31 7.85
SYN_8C_CLASIFY 800 57.20 7.84
SYN_20C_CLASIFY 2000 12.81 4.83

The second real data set is the ACM SIGMOD records [139] from March 1999. This data

set is also utilized in several works such as [106] and [117]. Each tree in this data set is

presented as an XML file. We removed one of the XML files, named “a.xml”, since its

name was not in accordance with other XML files and it was always miss-

classified/miss-clustered. Therefore, the data set size is reduced to 987 trees.

The third real data set is called Treebank. The original data set is one huge tree, English

sentences from the Wall Street Journal, tagged with parts of speech [140] like “S”

(sentence), “NP” (noun phrase), “VP” (verb phrase), “PP” (prepositional phrase),

“ADJP” (adjective phrase), and “ADVP” (adverb phrase). To produce a useful labeled

data set for clustering and classification, we separated subtrees as samples of the classes.

We considered three cases as indicated in Table 4.1: 1) The “NP” and “VP” subtrees as a

two class data set; 2) five English phrases (“NP”, “VP”, “PP”, “ADJP”, and “ADVP”) as

a five class data set; and 3) five English phrases plus sentences as a six class data set. The

Treebank data sets are the largest data sets among the real data sets in this chapter. Since

their sizes are very large, to have a feasible runtime, we performed random sampling

where 1000 random trees are selected for two class dataset. In the case of the five and six

class datasets, we selected 100 random trees for each class. To prevent any biased results,

 106

the whole process of random sampling and performing the experiments is repeated 100

times and the average of trials are reported. Further, a statistical analysis is performed in

Section 4.6.4 which provides evidences on validity of these statistical experiments.

These real data sets have appeared in a number of publications [103], [105], [106], [117],

[118] none of which question the veracity of these data sets. Again, we find no real

evidence of miss-labeling, in these data sets and hence we believe that they are highly-

accurate sources of information.

To generate the synthetic datasets, we considered data sets with different numbers of

classes (2, 3, 5, 8, and 20 classes), so we can study the performance of the distance

functions with respect to the number of classes in the data set. Accordingly, we generated

five synthetic datasets randomly for classification and another five data sets for

clustering. Each synthetic data set for clustering has 50 trees for each class. The

classification of the synthetic data sets has two sub-components, one for training and one

for testing; each contains 50 trees for each class. Generating these data sets is a two-step

process:

Step 1: Assuming we are generating a data set with cN classes, we generate cN labeled

mother trees, namely imT where 1 ci N≤ ≤ . Each imT is generated randomly where to

add a new node to the tree, one of the pre-generated nodes is selected randomly and the

new node is added to the selected node as a child until | | 50imT = is reached. After

generating a tree with 50 nodes randomly, each node is randomly labeled from a pool of

30 possible node labels. The size of 50 for mother trees was selected since significantly

larger tree sizes was not feasible with respect to runtime of the classification and

clustering trials and are believed to be a reasonable representation of many situations

found in computer applications. Please note that in the case of the 20 class data set, we

reduced the initial size of trees to 10 to have a manageable runtime.

Step 2: After generating the mother trees, a synthetic data set is generated by producing

trees using the mother trees as follows: To generate trees in accordance with the ith

mother tree, imT , we go through all the nodes in imT and each node, namely jt , is edited

with the probability of ρ . For each jt , the edit operation is randomly selected with equal

probability from one of five edit operations. Let pT be a subtree of imT rooted at jt and

 107

includes all of the children of jt ; also let qT be a subtree of imT rooted at a random

node which includes all of the children of that random node. Further, rT is selected

randomly like qT , but from kmT rather than imT where kmT is a randomly chosen

mother tree other than imT . The five edit operation are: 1) pT is removed; 2) pT is

replaced with qT ; 3) pT is replaced with rT ; 4) qT is added to the root of pT as a

child; and 5) rT is added to the root of pT as a child. In fact, a tree in the ith class is a

combination of ith mother tree and other mother trees. For the classification trials,

0.5ρ = was selected; and for the clustering trials, it is selected as 0.25. ρ is chosen

lower for the clustering trials, since the clustering results are more sensitive than the

classification results; so to keep the results of clustering around 80% accurate, ρ is

reduced. Finally, since the synthetic data set generation is a probabilistic process, to

prevent any biased results, the whole process of generating data sets and conducting the

trials is repeated 100 times and the average of trials are reported as the synthetic datasets

results.

4.5.2 Clustering Framework

The k-medoid [114] clustering technique is used as one of the evaluation approaches. The

reason why k-medoid is chosen over other clustering techniques, like the classic k-means,

is the limitation enforced by our tree data type. Unlike usual machine learning problems,

we cannot simply model trees as a set of features and consequently we cannot define

operations such as averaging on trees which is required in most of the clustering

techniques such as k-means which partitions the data into Voronoi regions [90]. In our

case, the only operation defined on trees is the distance between two trees acquired using

a distance function. K-medoid is similar to k-means, however, a tree is selected as the

center of the cluster, called a medoid, rather than the average of the trees. Partitioning

Around Medoids (PAM) algorithm [114] is utilized for clustering. Further, to determine

the initial medoids, we selected the first medoid randomly and then trees with highest

distance from previously selected medoids. Since the k-medoid approach may find a local

optimum rather than the global optimum, the clustering process is repeated 10 times with

different initial medoids and the results with minimum cost are selected as the final

results. After the clustering is completed, we need to assign a label to each cluster as a

predicted label for evaluation purposes. A predicted label is determined as the real label

that has the greatest population within that cluster.

 108

4.5.3 Classification Framework

Weighted KNN [115] and kernel based SVM [116] are utilized to perform the evaluation

of the distance functions with respect to the classification applications. Similar to

clustering discussion, not all the classification techniques work on trees, since we only

have a distance between trees, not their features. As a result, only methods like KNN that

purely work based on distance functions; and kernel based classification approaches such

as SVM, which map the input space into higher dimensions, can be utilized for tree

classification problems.

KNN is a classic classification technique where the K nearest neighbors to the test data

are identified from the set of training data, and then, in a voting process with *S as a

weight, the predicted class for the test data is determined. K is chosen as nine in all the

trial runs since we observed it generates the best results.

Kernel based SVM [116] is a state-of-the-art classification technique which maps the

input space into higher dimensions and generates support vectors in the new space. The

mapping is performed based on the kernel function. Beside SVM’s kernel function which

is set to *S in all the evaluations, we need to specify the penalty factor (C) and epsilon

(ε). C controls the over/under fitting in the training stage [116] and is set to 2 for all the

real data sets, and 4 for all the synthetic data sets in this chapter. Further, ε which has an

effect on the smoothness of the SVM’s response and the number of support vectors, is

selected as 0.001 in all the experiments. Since SVM originally works only on two class

problems, we utilized the one-vs-all technique [141] to extend the SVM classification to

multi-classes.

Unlike clustering, we need to train these classifiers, and then perform a classification on

another date set. In the case of the CSLOG data sets, we performed three experiments,

distinguished as CSLOG_2C_WEEK12, 23, and 31 where the last two digits refer to the

training and the test data, respectively. In contrast, in the case of the SIGMOD and

Treebank data sets, we utilized 10-fold cross validation approach.

4.5.4 Clustering and Classification Evaluation

After the classification experiments, predicted and real labels for each test tree are

available. Similarly, as discussed in the clustering section, after a clustering experiment,

each cluster is assigned a label. Hence, each tree has a predicted label beside its real

 109

label. Now that we have predicted and real labels of each tree, the evaluation is

performed in terms of 1) accuracy; 2) Weighted Average of F-measures (WAF); and 3)

runtime.

Accuracy is simply defined as the number of correctly clustered/classified trees over the

total number of trees. The F-measure is a popular information retrieval metric that is

defined for each class and integrates recall and precision using the harmonic mean. Let

iC be the set of all the trees in class i; and let iP be the set of all the trees predicted

(clustered or classified) to be in class i, where 1 ci N≤ ≤ . The recall, precision, and f-

measure are defined as:

 , ,

2

|

,

| | |
i i

i i
i i

i i
i

i i

a bRecall Precision
C P

Precision RecallFMeasure
Precision Recall

= =

× ×
=

+

 (4.9)

where ia and ib denote the number of correctly clustered/classified trees in iC and iP ,

respectively. Since the number of classes is different with respect to different data sets

and space is limited, providing a f-measure for all classes separately is not feasible.

Therefore, the WAF, as used in WEKA [142], is presented regarding

clustering/classification evaluation, where it is defined as:

1

| |

cN
i

i
i

CWAF FMeasure
number of all trees=

= ×∑ (4.10)

where cN denotes the number of classes in a data set. The experiments within this study

were conducted using Java 7 (64bit). The hardware platform, where the experiments have

been executed, was an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM.

The k-medoid and KNN are bespoke implementations; and the libsvm Java SVM library

[143] was adapted for the tree classification applications.

4.5.5 Distance Function’s parameters

The proposed EST approach includes two parameters, α and β , that need to be

adjusted. Obviously, they can be adjusted for every single experiment to achieve the

optimum performance. However, for all the experiments, we have fixed the values of the

parameters to produce an equivalence with the other distance functions which are

 110

(relatively) parameter free.

As discussed in Section 4.4.2, β reflects the relative position of the mapped subtrees and

it can be adjusted between 0 and 1. However, we have no any formal mechanism for

estimating β at the moment. Hence, we set β to the neutral value of 0.5 which seems a

good balancing point according to the sensitivity analysis presented in Figure 4.8a. Figure

4.8a demonstrates accuracy vs. β , we did not include all the experiments in this figure to

prevent a busy figure. For each data set, one clustering and one classification experiment

is selected. In addition, we did not include SIGMOD data set as it produces 100%

accuracy for all values of β . One can observe from Figure 4.8a that with the increasing

β , accuracy is reducing for some of the experiments and increasing for some other.

Therefore, the neutral value of 0.5 is selected for all experiments. Finally, WAF

sensitivity analysis is not presented as it was similar to accuracy results.

Figure 4.8. The accuracy of EST similarity function against α and β .

α reflects the importance of the size of the mapped subtrees. Our formulation can be

thought of as a variation on the well-known Minkowski distance [137]. As explained in

[137], the optimal value of α will vary with the domain of application and hence no

 111

universal approach for optimally estimatingα exists. In the absence of problem-specific

knowledge, it is believed that α can be estimated in our formulation by considering the

variation of the average similarity against α (1α ≥). As 1α → , the algorithm overly

weights the impact of small trees compared to the impact of large trees. These small trees

are minor in terms of the “big picture”; however, their existence or not, can have a large

impact on the similarity result and hence we can view the metric as becoming “numerical

unstable” as 1α → . Conversely, as α →∞ , the distance metric loses discrimination

power. Large trees dominate and substantial variations on small tress have little or no

impact on the resultant similarity score. Hence, the selection of α is equivalent to finding

the balancing point which minimizes these two undesirable behaviors.

Let iα represent the ideal balancing point. If we consider a plot of the average similarity

against α as shown in Figure 4.9, we can define the plot in terms of: C1 – the curve

between 1α = and iα α= ; and C2 – the curve between iα α= and α = ∞ . From above,

C1 can be characterized as a curve where the average similarity changes significant with

small changes in α ; and C2 as a curve where the similarity changes slowly (in fact, we

believe that C2 can be modeled as a linear segment implying no curvature exists across

C2). This model is again well-known and is perhaps most commonly used in the Scree

test [144].

Figure 4.9. The average similarity of EST similarity function against α .

Accordingly, we need to estimate the balancing point (elbow) in Figure 4.9 (Only a

subset of the data is shown in the figure to increase clarity). In addition, we have scaled

the curves between 0 and 1. Several approaches exist to approximate the elbow point, e.g.

the Angle-based technique [145], the Menger Curvature method [146] which is good for

continuous data, and the Kneedle technique [147] which works for both discrete and

 112

continues data. None of these approaches are perfect in the presence of noise. Satopaa et

al. [147] discuss that the Menger Curvature method is sensitive to noise, while the

Kneedle technique produces better results. On average, all the methods give very similar

results. The Kneedle technique [147] is believed to be more robust to noise and works

for discrete data. Therefore, we utilize the Kneedle technique [147] to estimate the elbow

point. The elbow point for each curve was slightly different with the average value of

1.6α = . We utilized this value for all the experiments in this chapter and recommend

this value in situations where limited data exists stopping the re-estimation of α .

Further, we performed a sensitivity analysis of accuracy against α as presented in Figure

4.8b. Similar to β , we select a few experiments to prevent a busy figure. According to

this figure, the calculated value of 1.6 for α seems to be a balancing point for all the

experiments.

Finally, the costs of edit operations ()γ are considered as the unit scalar regarding TED

and IST for all experiments. The Entropy, Path, and Multiset distance functions have no

parameters to discuss.

4.6 Experimental Results and Discussion

4.6.1 K-medoid Clustering Results

Table 4.2 represents the k-medoid clustering results with respect to all data sets discussed

in Section 4.5.1. The purpose of this table is to compare the performance of the proposed

EST approach against the previous distance functions when they are used as the core in

clustering applications. This table has three parts associated to accuracy, WAF, and

runtime evaluations. Further, the result of the best evaluated distance function is bolded.

 113

Table 4.2. The clustering results for all case studies in the terms of accuracy, Weighted
Average of F-measure (WAF), and runtime.

 Data set EST TED Entropy Path Multiset IST

A
cc

ur
ac

y,
 %

CSLOG_2C_WEEK1 73.6 60.0 61.9 73.6 63.7 62.6
CSLOG_2C_WEEK2 74.8 60.0 63.0 64.1 62.2 65.9
CSLOG_2C_WEEK3 76.6 63.0 62.5 69.8 63.4 62.1
SIGMOD_3C 100 99.9 54.1 99.9 99.9 100
TREEBANK_2C 85.9 76.1 74.7 75.4 77.0 80.6
TREEBANK_5C 70.3 58.2 54.6 61.3 57.1 62.8
TREEBANK_6C 64.2 54.8 51.0 54.4 48.5 54.7
SYN_2C_CLUSTER 87.4 61.8 81.7 78.0 63.9 82.1
SYN_3C_CLUSTER 79.7 60.6 72.5 68.9 56.8 81.2
SYN_5C_CLUSTER 78.6 62.7 69.1 62.9 47.3 75.3
SYN_8C_CLUSTER 79.1 64.1 69.6 60.5 42.0 75.2
SYN_20C_CLUSTE 77.3 62.8 72.4 58.0 37.0 71.5

W
A

F,
 %

CSLOG_2C_WEEK1 69.4 62.5 59.1 69.4 60.1 59.4
CSLOG_2C_WEEK2 71.6 63.0 60.9 66.1 60.4 62.3
CSLOG_2C_WEEK3 72.2 65.3 59.9 63.7 60.4 59.7
SIGMOD_3C 100 99.9 68.6 99.9 99.9 100
TREEBANK_2C 85.8 76.1 74.0 74.2 76.2 80.3
TREEBANK_5C 70.9 58.7 55.3 61.8 57.5 63.3
TREEBANK_6C 63.7 55.5 50.7 53.6 47.7 54.0
SYN_2C_CLUSTER 86.8 56.7 81.0 76.4 61.1 81.7
SYN_3C_CLUSTER 76.4 55.5 68.4 63.6 51.0 80.6
SYN_5C_CLUSTER 75.1 59.5 64.2 56.3 40.1 73.5
SYN_8C_CLUSTER 76.4 61.7 65.1 54.0 34.3 73.9
SYN_20C_CLUSTE 76.1 62.2 71.1 56.8 35.7 71.1

R
un

tim
e,

 m
in

ut
es

CSLOG_2C_WEEK1 4.8 13.5 110.7 102.8 23.1 66.0
CSLOG_2C_WEEK2 6.5 17.7 146.4 138.5 29.8 82.4
CSLOG_2C_WEEK3 6.3 15.1 86.4 76.2 26.8 70.2
SIGMOD_3C 2.7 11.6 2.1 2.0 1.7 156.2
TREEBANK_2C 32.1 144.7 85.7 70.5 35.5 244.8
TREEBANK_5C 5.9 17.9 15.5 12.2 6.7 32.9
TREEBANK_6C 15.9 55.6 39.8 32.5 19.4 98.4
SYN_2C_CLUSTER 4.2 26.3 7.3 6.0 4.8 67.2
SYN_3C_CLUSTER 9.5 58.0 15.4 12.6 11.4 141.7
SYN_5C_CLUSTER 23.9 156.0 42.6 35.1 33.6 511.8
SYN_8C_CLUSTER 59.5 400.8 109.1 89.7 89.8 1361.3
SYN_20C_CLUSTE 66.6 87.3 80.6 79.1 70.7 165.5

As indicated in Table 4.2, the proposed EST has outperformed other distance functions in

most of the investigated situations in terms of accuracy, WAF, and runtime. In the case of

the three CSLOG data sets, EST has significantly improved results, over 10% in

accuracy, except for the Path distance with respect to CSLOG_2C_WEEK1. With respect

to SIGMOD_3C data set, EST and IST produce the perfect result; TED, Path, and

 114

Multiset have only one miss-clustered tree; finally, the Entropy approach produces a very

poor performance. EST also significantly outperformed other approaches (over 5%) with

respect to the Treebank data sets. Regarding the synthetic data sets, the Multiset approach

has the worst result and its accuracy and WAF significantly reduces as the number of

classes grows. EST produced the best results in most cases with IST in second place.

Apart from TED, the performances of all the distance functions are degraded as the

number of classes increases. However, this result is not an advantage for TED since its

uniformly poor performance. Finally, the runtime results indicate that EST has the best

efficiency in term of runtime, except for the SIGMOD data set. This result makes the

proposed approach the best for real time applications. In contrast, IST and Entropy

produce the largest execution times.

4.6.2 KNN Classification Results

The KNN classification results with respect to all data sets are represented in Table 4.3

where the performances of the distance functions are investigated. The CSLOG data sets’

results suggest that all the distance functions have a similar performance with regard to

accuracy and WAF measures. Apart from the Multiset approach, all other distance

functions produced a perfect classification regarding the SIGMOD data set. The Multiset

approach produced one miss-classification. EST and then TED produced the best results

with respect to the Treebank data sets. In case of the synthetic data sets, the EST

approach produces the most accurate results; and the largest WAF measures. IST has the

second most impressive results in terms of accuracy and WAF. Similar to the clustering

runtime results, EST has the lowest runtime complexity for all data sets except SIGMOD

where the Multiset approach produces the lowest runtime. Again, similar to the clustering

runtime results, Entropy and IST have the largest runtime performances.

 115

Table 4.3. The KNN classification results for all case studies in the terms of accuracy,
Weighted Average of F-measure (WAF), and runtime.

 Data set EST TED Entropy Path Multiset IST
A

cc
ur

ac
y,

 %

CSLOG_2C_WEEK12 83.4 83.1 83.3 83.2 83.0 83.2
CSLOG_2C_WEEK23 84.1 83.1 83.9 83.9 83.7 83.8
CSLOG_2C_WEEK31 83.2 82.4 83.0 83.0 83.0 83.0
SIGMOD_3C 100 100 100 100 99.9 100
TREEBANK_2C 97.0 96.9 93.9 94.9 90.1 95.5
TREEBANK_5C 88.8 86.3 79.2 81.9 69.6 83.0
TREEBANK_6C 87.2 84.8 75.5 78.2 65.7 80.4
SYN_2C_CLASIFY 82.9 78.1 77.6 76.9 72.4 80.5
SYN_3C_CLASIFY 75.1 67.4 70.7 70.0 60.6 71.4
SYN_5C_CLASIFY 70.3 61.6 67.8 66.4 55.6 66.4
SYN_8C_CLASIFY 68.7 59.1 65.8 65.1 53.0 63.9
SYN_20C_CLASIFY 68.9 60.5 62.0 59.3 37.9 63.1

W
A

F,
 %

CSLOG_2C_WEEK12 82.4 81.8 82.3 82.2 81.9 82.2
CSLOG_2C_WEEK23 83.2 81.7 82.9 83.0 82.6 82.8
CSLOG_2C_WEEK31 82.0 80.9 81.9 81.9 81.8 81.9
SIGMOD_3C 100 100 100 100 99.9 100
TREEBANK_2C 97.0 96.9 93.9 94.9 90.1 95.5
TREEBANK_5C 89.0 86.5 79.6 82.3 70.0 83.2
TREEBANK_6C 87.3 84.9 75.4 78.4 65.5 80.3
SYN_2C_CLASIFY 82.8 77.9 77.3 76.7 72.2 80.4
SYN_3C_CLASIFY 75.0 67.4 70.5 69.9 60.4 71.4
SYN_5C_CLASIFY 70.3 61.7 67.7 66.3 55.5 66.4
SYN_8C_CLASIFY 68.8 59.3 65.9 65.2 52.9 64.0
SYN_20C_CLASIFY 69.4 60.9 62.3 59.6 37.8 63.6

R
un

tim
e,

 m
in

ut
es

CSLOG_2C_WEEK12 5.8 15.3 126.7 117.5 26.3 75.5
CSLOG_2C_WEEK23 5.6 14.3 119.9 113.5 24.3 67.4
CSLOG_2C_WEEK31 6.7 15.8 91.5 80.7 28.2 74.3
SIGMOD_3C 2.6 11.4 2.0 1.8 1.6 156.0
TREEBANK_2C 29.8 142.3 83.2 68.0 33.2 242.5
TREEBANK_5C 3.5 15.4 13.1 10.0 4.5 30.6
TREEBANK_6C 8.4 47.2 31.5 24.7 11.8 90.4
SYN_2C_CLASIFY 4.0 28.2 8.0 6.7 5.3 73.7
SYN_3C_CLASIFY 9.3 64.0 18.3 15.1 13.2 155.9
SYN_5C_CLASIFY 22.2 173.0 47.2 38.8 34.8 420.9
SYN_8C_CLASIFY 58.9 429.8 116.5 94.9 90.7 1055.4
SYN_20C_CLASIFY 26.8 55.3 48.2 36.4 28.9 185.7

4.6.3 SVM Classification Results

The SVM classification results are presented in Table 4.4; they are similar to the KNN

results. The differences include the now perfect result for the Multiset distance function

in case of the SIGMOD data set. In case of the Treebank data sets, all the approaches

produce very good results. In addition, IST produced the highest accuracy with respect to

 116

SYN_2C_CLASIFY data set. However, the EST has still the greatest accuracy with

regard to the other synthetic data sets. The runtime results with respect to lowest and

largest runtime are similar to the KNN classification and the clustering case studies.

These suggest the proposed EST has, in general, the lowest runtime complexity.

Although the comparison between KNN and SVM is not within the scope of this

research, one can observe that SVM possesses a better accuracy and WAF on average.

Table 4.4. The SVM classification results for all case studies in the terms of accuracy,
Weighted Average of F-measure (WAF), and runtime.

 Data set EST TED Entropy Path Multiset IST

A
cc

ur
ac

y,
 %

CSLOG_2C_WEEK12 83.5 70.8 83.2 82.9 83.0 82.4
CSLOG_2C_WEEK23 83.6 68.1 83.5 83.1 83.0 82.9
CSLOG_2C_WEEK31 82.8 68.3 82.5 82.3 82.2 81.4
SIGMOD_3C 100 100 100 100 100 100
TREEBANK_2C 99.9 99.9 99.8 99.8 98.6 99.9
TREEBANK_5C 99.7 99.7 99.3 99.2 97.4 99.5
TREEBANK_6C 99.7 99.7 99.0 99.0 96.8 99.2
SYN_2C_CLASIFY 88.0 87.0 86.2 84.8 84.9 88.3
SYN_3C_CLASIFY 83.1 82.2 79.7 79.0 76.9 82.6
SYN_5C_CLASIFY 79.8 78.9 77.1 75.6 72.3 79.7
SYN_8C_CLASIFY 78.6 77.4 75.6 74.2 69.4 77.8
SYN_20C_CLASIFY 71.6 64.0 66.5 65.3 50.3 59.0

W
A

F,
 %

CSLOG_2C_WEEK12 82.3 70.5 82.0 81.4 81.6 81.2
CSLOG_2C_WEEK23 82.3 68.0 82.3 81.7 81.5 81.7
CSLOG_2C_WEEK31 81.4 67.8 81.1 80.6 80.6 80.0
SIGMOD_3C 100 100 100 100 100 100
TREEBANK_2C 99.9 99.9 99.8 99.8 98.6 99.9
TREEBANK_5C 99.7 99.7 99.3 99.2 97.4 99.5
TREEBANK_6C 99.7 99.7 99.0 99.0 96.8 99.2
SYN_2C_CLASIFY 87.9 87.0 86.2 84.8 84.9 88.3
SYN_3C_CLASIFY 83.0 82.2 79.6 79.0 76.9 82.6
SYN_5C_CLASIFY 79.8 78.9 77.1 75.6 72.3 79.7
SYN_8C_CLASIFY 78.6 77.5 75.6 74.2 69.4 77.8
SYN_20C_CLASIFY 72.0 64.3 66.8 65.7 50.3 59.3

R
un

tim
e,

 m
in

ut
es

CSLOG_2C_WEEK12 11.1 28.7 237.4 220.2 49.5 141.6
CSLOG_2C_WEEK23 12.6 31.9 266.2 252.1 54.1 149.6
CSLOG_2C_WEEK31 13.1 31.1 177.8 157.0 54.9 144.4
SIGMOD_3C 2.8 11.4 2.1 2.0 1.6 156.4
TREEBANK_2C 30.1 142.9 83.5 68.4 33.4 243.1
TREEBANK_5C 4.2 16.5 13.9 10.8 5.2 31.5
TREEBANK_6C 9.7 49.0 32.8 26.2 12.8 91.9
SYN_2C_CLASIFY 8.9 58.8 16.4 13.6 10.9 148.2
SYN_3C_CLASIFY 20.1 127.4 35.2 29.2 26.0 325.7
SYN_5C_CLASIFY 53.2 351.8 94.9 79.2 65.3 895.7
SYN_8C_CLASIFY 123.1 875.2 233.8 194.8 174.7 2249.1
SYN_20C_CLASIFY 54.5 112.2 97.3 73.4 58.5 376.7

 117

4.6.4 Statistical Analysis of Results

As explained in Section 4.5.1, the results of the Treebank and Synthetic data sets are

averaged over 100 trial runs. Therefore, we have a population of 100 results for each

experiment which allows us to perform a test of statistical significance (z-test, one-tailed,

our working hypothesis is that the EST will produce superior results) with a conservative

type I error of 0.01. Further, we have calculated effect size (Cohen's method [90]) which

estimates the “size” discrepancy between two statistical populations. Cohen defines the

standard value of an effect size as small (0.2), medium (0.5), and large (0.8).

Accordingly, Table 4.5 represents the effect size for accuracy of EST against all the

previous approaches. In this table, a positive value of effect size indicates that EST

outperformed that method. The “*” beside an effect size indicates the result of the z-test

where a significant difference exist at the 0.01 level. The results indicate that in most of

the experiments EST statistically significant outperforms other approaches.

Table 4.5. The effect size between accuracy of the EST and previous approaches. “*”
indicates the result of the z-test where a significant difference exist at the 0.01 level

 Data set TED Entropy Path Multiset IST

K
-m

ed
oi

d

TREEBANK_2C 5.81* 2.10* 1.17* 1.60* 1.65*
TREEBANK_5C 2.59* 3.83* 2.68* 3.91* 2.22*
TREEBANK_6C 2.46* 3.38* 2.72* 4.81* 2.62*
SYN_2C_CLUSTER 2.40* 0.79* 0.98* 3.69* 0.78*
SYN_3C_CLUSTER 1.69* 0.38* 0.69* 2.69* -0.11
SYN_5C_CLUSTER 1.95* 0.77* 1.47* 5.17* 0.28*
SYN_8C_CLUSTER 2.02* 0.99* 1.97* 6.95* 0.42*
SYN_20C_CLUSTER 3.33* 1.10* 4.25* 9.86* 1.29*

K
N

N

TREEBANK_2C 0.17 4.84* 3.53* 8.79* 2.46*
TREEBANK_5C 1.70* 5.79* 4.17* 9.76* 3.74*
TREEBANK_6C 1.66* 6.96* 5.83* 12.30* 4.38*
SYN_2C_CLASIFY 1.08* 1.03* 1.38* 2.27* 0.50*
SYN_3C_CLASIFY 1.84* 0.96* 1.26* 3.40* 0.87*
SYN_5C_CLASIFY 2.20* 0.67* 1.06* 3.91* 1.03*
SYN_8C_CLASIFY 3.57* 1.01* 1.31* 5.39* 1.73*
SYN_20C_CLASIFY 4.25* 3.54* 5.02* 14.90* 2.91*

SV
M

TREEBANK_2C 0.00 0.82* 0.78* 1.07* 0.00
TREEBANK_5C 0.00 1.30* 1.46* 4.24* 0.76*
TREEBANK_6C 0.00 2.09* 2.24* 5.97* 1.55*
SYN_2C_CLASIFY 0.24* 0.49* 0.83* 0.91* -0.09
SYN_3C_CLASIFY 0.28* 1.04* 1.25* 2.03* 0.14
SYN_5C_CLASIFY 0.29* 0.89* 1.36* 2.72* 0.02
SYN_8C_CLASIFY 0.58* 1.47* 2.06* 5.00* 0.40*
SYN_20C_CLASIFY 3.54* 2.66* 3.23* 9.91* 5.70*

 118

4.6.5 Empirical Runtime Analysis

In addition to accuracy and WAF, the computational cost of an algorithm is an important

factor in practical applications. The runtime of the clustering and classification

experiments are reported in Tables 4.2, 4.3, and 4.4. To further empirically compare the

distance functions’ runtime, we measure the distance calculation runtime with respect to

different tree sizes. Tree sizes between 5 and 100 with step size of 5 have been

investigated where both trees are generated randomly as described in the synthetic tree

generation section. In addition, the hardware platform is in accordance with the platform

described at the end of Section 4.5.4; and again, Java 7 (64 bit) is utilized to implement

the source code. The runtime measurement is performed 1000 times and the average

distance function execution times are presented in Figure 4.10 in milliseconds.

The IST distance function produced the largest runtime followed by TED and then the

Multiset approach. The EST, Path, and Entropy have the best runtime; all three

approaches produce broadly similar results.

Figure 4.10. Average execution time for different distance functions with tree sizes between 5

and 100.

4.7 Summary

In this chapter, the novel EST similarity function has been proposed for the domain of

tree structured data comparison with the aim of increasing the effectiveness of

 119

applications utilizing tree distance or similarity functions. This new approach seeks to

resolve the problems and limitations of previous approaches, as discussed in Section

 4.4.1. In addition, the new approach must enhance applications where a tree distance

function is utilized. To achieve this goal, we first extensively analyze other distance

functions. Then, we identified situations where the studied distance functions have poor

performance; and finally we propose the EST approach. The proposed EST approach

preserves the structure of the trees by mapping subtrees rather than nodes. EST

generalizes the edit base distances and mappings by breaking the one-to-one and order

preserving mapping rules. Further, it introduces new rules for subtree mapping provided

in Section 4.4.2.

An extensive experimental study has been performed to evaluate the performance of the

proposed similarity function against previous research. Clustering and classification

frameworks are designed to perform an unbiased evaluation according to K-medoid,

KNN, and SVM along with four distinct data sets. The real-world data sets have appeared

in a number of publications [103], [105], [106], [117], [118] and hence they are deemed

to be reliable source of information. Further, using synthetic data sets, we investigated the

effect of varying the number of classes in the evaluation. This extensive evaluation

framework is one of the advantages of this research over previous researches such as

[103], [105], [106], [117], and [118].

The results of the experimental studies demonstrate that the EST approach is superior to

the other approaches with respect to classification and clustering applications. To

evaluate the performance, accuracy and WAF, are used in Tables 4.2, 4.3, and 4.4, where,

in general, EST is demonstrated to be a better option for the clustering and classification

of tree structured data. However, the performance of a distance function varies with the

domain of application; and hence, we cannot generalize the superior performance of EST

to all domains of application.

The computational cost of a tree distance function should be carefully considered for

practical applications. Given pT and qT as the input trees to the distance function, we

calculated the runtime order of the EST as (| | | | (| |, | |))p q p qO T T Min T T× × . Further, the

runtime of all the clustering and classification experiments are measured where the

proposed EST outperformed all other distance functions with respect to all data sets

except SIGMOD. In addition, an empirical analysis has been performed to compare the

 120

runtime of EST vs. other distance functions in different tree sizes. The result of this

empirical investigation suggests that the runtime efficiency of EST, Entropy, and Path are

better than the other distance functions. Accordingly, the conclusion can be drawn that

the proposed EST is an appropriate approach for computationally restricted and real time

applications.

Finally, although further studies are required to validate the use of the EST similarity

function in real-life applications, EST has been demonstrated to have a superior

performance against TED, IST, Path, Entropy, and Multiset distance functions with

respect to classification and clustering applications.

 121

5 Tree Test Data Generation through an Evolutionary

Optimization

5.1 The Focus of This Chapter

In this chapter, the objective is to generate a diverse set of test cases where each test case

is a tree. As explained before, in the context of black-box software testing, it is believed

that a diverse set of test cases is more likely to produce more effective test cases [13]–

[17]. To achieve this in the tree domain, similar to chapter 3 for strings, we have a fitness

function that measures the diversity of a test set. This allows an optimization technique to

be employed to generate test cases based upon the fitness function. This means more

diverse test cases which leads to a better failure detection.

We also demonstrate that the distribution of the size of the generated trees affect the

failure detection. Since the first fitness function is unable to control the size distribution

of the trees, we create a second fitness function which indicates the proximity of the

distribution of the sizes of the trees in a test set to an expected distribution. A multi-

objective optimization technique is used to enforce both fitness functions simultaneously.

To empirically investigate the diversity based test generation for trees, we generate

mutants of four real world programs that accept trees as input. Test sets with different

characteristics are generated and tested on these programs. The experimental results

demonstrate that generating test cases based on the diversity objective improves the

failure detection rate.

The highlights of this chapter can be summarized as:

1. Investigating the effect of generating diverse tree test cases on failure detection

performance. We indicate that through a diversity based objective function and

an optimization algorithm, more efficient test cases can be produced.

2. Applying different tree distance functions to tree generation methods and

demonstrating that the proposed tree distance function in the previous chapter

(Extended Subtree (EST)) has superior performance in diversity based test case

generation.

3. Investigating the effect of tree node values on failure detection. We produce the

 122

strings required for node values according to the MOGA string generation

method in chapter 3 and compare the results with random string values.

4. Empirical investigation of the tree test case generation methods through a

mutation approach on four real world programs.

5.2 Test Case Abstract Model

The test case generation methods investigated in this chapter can be applied to any

system where the input to the system can be modeled by a tree. This tree is called abstract

tree – a labeled tree with a finite number of labels. The number of required labels is

determined based upon the software under the test. In other words, for any software under

the test, the user need to define the abstract tree model for that software and then, run the

test case generation methods to produce the test cases. The generated test cases are

abstract test cases that must be decoded into concrete test cases according to the software

under the test. The decoding process normally includes replacing the node labels with

final values. In this chapter, we use XML test cases where the tree model and the

decoding process are discussed later in Section 5.5.

5.3 Tree Test Case Generation Methods

5.3.1 Random Tree Generation

Random tree generation is the base line method and every other tree generation method is

compared against it. Further, every other tree generation method in this chapter requires a

random tree generation in its process. For example, the initial population in GA is

produced randomly. Therefore, we need to define how the random trees are produced.

To produce a random tree based on the abstract tree model, first, a random size is selected

as the tree size, where 1≤ random size ≤ MaxTreeSize. MaxTreeSize is a constant. Then, a

random label is selected as a root node. Following that, random labels are selected and

added to random positions in the tree until the target tree size is reached.

5.3.2 Adaptive Random Tree Generation

To improve the poor effectiveness of RT, ART methods are introduced. ART methods

are discussed in depth in chapter 2 and 3 and hence, are not repeated here. Similar to

chapter 3 on strings test generation, FSCS [18] and ARTOO [62] methods are used to

generate test cases. The only difference is that, in this chapter, the string distance

 123

functions used in FSCS and ARTOO are replaced with tree distance functions.

5.3.3 Evolutionary Tree Generation

To generate trees test cases, evolutionary algorithms can be used. Among the

evolutionary algorithms, Genetic Algorithms (GA) [70] are the most commonly used

search algorithms in software engineering due to their effectiveness [66]. Similar to

chapter 3 on string generation, we use GA and Multi-Objective GA (MOGA) [74] to

produce tree test cases. The GA and MOGA used in this chapter have mostly same

parameters to the ones used in chapter 3 for string generation. Hence, in the following,

we only discuss the differences.

The GA requires a fitness function to guide the optimization where we use a diversity-

based fitness function similar to string generation. The only difference is that tree

distance functions are used rather than string distance functions. Further, similar to string

generation, the Benford distribution [64], [79] and Kolmogorov–Smirnov test [84] are

used as the second fitness function for the MOGA. Crossover and mutation are more

complicated for trees compared to strings. To generate two offspring from the parent

trees, one node is selected randomly in each parent tree. Then, the nodes along with all

their children are swapped. Edit, delete, and add are used as mutation operators where

every node in each tree is mutated with 1% probability. Each time, one of the mutation

operators is selected randomly. For edit, the label of the abstract tree is replaced with

another label which is selected randomly from the possible labels in the tree model. For

delete, the node is deleted and for add operator, a node with random label is produced and

is attached to the mutated node as a child.

NSGA-II produces a Pareto-optimal set of test sets rather than a single optimal test set.

The Pareto-optimal set is the first front of the last generation of the algorithm. Among the

Pareto-optimal test sets, the results indicate that the test set with best diversity fitness on

the Pareto-optimal front generates the best failure detection effectiveness. Consequently,

for the results that are presented for MOGA in this chapter, the test set with best diversity

fitness on the Pareto-optimal front is selected. This implies that the best solution is the

solution with best diversity which also achieved the target string length distribution.

5.4 Tree Distance Functions

As discussed earlier in this chapter, one of the objectives of this chapter is to investigate

 124

different tree distance functions in the context of software test generation. In the previous

chapter, we proposed a new tree distance function (EST) where its superior effectiveness

in clustering and classification applications is demonstrated. Beside EST, five other tree

distance functions were examined and the results indicate that EST outperforms other tree

distance functions.

In this chapter, EST distance function is compared against the same five distance

functions (IST, TED, Entropy, Path, and Multiset) in the context of software test

generation. Accordingly, each distance function is used in FSCS, ARTOO, GA, and

MOGA tree test generation methods and the results are compared.

5.5 Experimental Framework

This section discusses the conducted experiments to analyze the effectiveness of FSCS,

ARTOO, GA, and MOGA against RT. Real world programs are used to perform an

empirical evaluation. These programs accept XML as input which can be modeled as a

tree. Hence, the abstract tree model for XML input and the decoding process are

explained in this section. Then, mutated [49], [91] versions of these programs are

generated. The P-measure [90] is employed to quantitatively measure the performance of

the test case generation methods. Finally, features of generated tree test sets are

discussed.

5.5.1 Software Under Test (SUT)

Four real world Java programs are selected as case studies to conduct an empirical

evaluation on the fault-detection effectiveness of the tree test case generation methods.

These programs are open source programs that are widely used in a variety of

applications that interact with XML data. These programs accept a XML file as an input,

and hence they are suitable, since XML can be easily modeled as a tree. Programs were

selected basically upon the following criteria:

1. The input of each program can be modeled by a tree, so that we can use test

generation methods based on an abstract tree model. Hence, every program

contains functionality which transforms or manipulates the input tree which

makes them a true test where input test cases are trees.

2. Each program is an open source program and hence, they are publicly available

for research proposes. This allows replication of these results.

 125

3. The size of programs covers a wide range; the sizes of selected programs vary

between 6,000 and 34,000 LOC.

Table 5.1 provides a description of each program. “NanoXML” [148], [149] is an XML

parser implemented in Java. It accepts an XML file and parses the input into a DOM

(Document Object Model) tree. The parsed DOM tree can be used by other programs or

applications as a representation of the XML document. “NanoXML” can also convert

back a DOM tree into an XML file. “NanoXML” is a non-validating parser which only

checks for structure of the XML code. It works when there is no DTD (Document Type

Definition) or schema. “NanoXML” is even ported into embedded systems since its

dependency to other Java libraries is low and it is small compared to other XML parser

[150]. “JsonJava” is a library that implements JSON (JavaScript Object Notation)

decoder/encoder in Java. JSON is a syntax for storing and exchanging data similar to the

XML. “JsonJava” can convert the input XML data into the Json format as output which

makes it good program for our experiments. “StAX” which stands for “Streaming API for

XML” is a standard XML processing library that allows the programmer to stream XML

data from and to the application [151]. “StAX” is a pull parser that requires a small

memory footprint. A pull parser iteratively visits the various elements, attributes, and

data in an XML document. In each iteration, the data can be consumed by another

program or code. Unlike “NanoXML”, it does not produce DOM trees and hence, it

requires a small memory footprint. “JTidy” is an XML and HTML syntax cleaner and

pretty printer. It can parse XML, check the syntax, fix syntax errors, and finally print the

parsed DOM tree in a human readable form.

Table 5.1. Programs used to perform experimental evaluations.

Name Version Source code URL Number
of Classes LOC Generated

mutants
Selected
mutants

1 NanoXML 2.2.1 nanoxml.sourceforge.net/orig 23 7698 5448 3865

2 JsonJava -- github.com/douglascrockford/JSON-java 17 6132 4507 3714

3 StAX 1.2.0 stax.codehaus.org 92 17770 8521 8256

4 JTidy r938 jtidy.sourceforge.net 52 33070 27965 23839

5.5.2 XML Test Case Abstract Model

To generate XML test cases using tree generation methods, an abstract tree model for

XML needs to be specified. As described in Section 5.2, the abstract model must have a

limited number of labels. Six labels are selected that conform to different types of nodes

 126

in an XML document. The selected labels are “Element”, “Attribute”, “Text”,

“Comment”, “Processing-Instruction”, and “CDATA”. Beside the selected node types,

other node types like “Document” and “DocumentType” exist. These nodes are not part

of the XML tree and they are normally used once at the beginning of each XML

document to specify some information. For instance, “DocumentType” that starts with

“<!doctype…” is an optional node at the beginning of the document, before the root

node, specifying the data model for the XML document. The “Document” node

represents the entire document. There is no tag in the XML document for it. It is just a

representation of the document when the XML document is parsed into a DOM tree.

Accordingly, these node types are excluded from the abstract tree model since they are

not part of the XML tree and hence, they cannot be modeled as a node in the abstract tree

model. Among the selected labels, only “Element” can have child nodes and the rest of

labels can be leave nodes. This limitation is enforced while generating the random

abstract trees. Therefore, in the abstract tree model for XML, two types of labels exist.

Labels that can have child nodes and labels that cannot have child nodes. During the

random abstract tree generation, first, one of the label types is randomly chosen and then,

a label is randomly selected.

5.5.3 Abstract Tree Decoding to XML

After the abstract tree test cases are produced, they need to be decoded into concrete test

cases where a concrete test case is an XML document. To achieve this, every node in the

abstract tree is converted into an equivalent XML node according to its label. Then, a

value for each node is generated as a random string. We used random strings with

maximum size of 30 similar to the string generation in chapter 3.

In addition, to investigate the effect of tree node values on failure detection, we also

produce the required strings for node values according to the MOGA string generation

method in chapter 3 and compare the results with random string values in Section 5.6.4.

To generate the node values according to MOGA, one string set is generated for each

label in a tree test set. In other words, in each tree test set, we first identify the number of

each label. Accordingly, a string set is generated for each label and then, values are

assigned to the nodes.

5.5.4 Source Code Mutation

To measure the effectiveness of the test case generation methods, faulty versions of the

 127

software under test are required. Mutation techniques [49], [91] are a well-known

approach to automatically manipulate the source code and produce a large number of

faults [49]. There is considerable empirical evidence indicating a correlation between real

faults and mutants [55], [91].

Similar to chapter 2 and 3, muJava [54] is employed to produce mutated versions of the

programs under the test where a total of 46,441 mutants are generated for the four case

study programs. Then, those mutants that were failed with the majority of test sets (more

than 90% of all the test sets) were deleted. These defects were considered as unrealistic

and hence contrary to the “Competent Programmer” hypothesis which is an essential idea

in mutation testing [93]. Table 5.1 demonstrates the number of generated and selected

mutants per program.

5.5.5 Testing Effectiveness Measure

Similar to chapters 2 and 3, we use p-measure to evaluate the effectiveness of test case

generation methods. An in depth discussion on the p-measure definition and the reason

behind its selection as a quantitative effectiveness measure is presented in Section 2.6.1.

5.5.6 Tree Test Set Characterization

A test set with a fixed size is required to evaluate the p-measure. In this chapter, we

perform experiments with four test set sizes, 4, 6, 8 and 10. As the test set size increases,

the difference in the results of different test generation methods is normally reduced and

hence, repeating the experiments with larger test set sizes is not required. Beside, as the

size of the test sets increases, the runtime increases in a quadratic order according to

Section 3.5.

Applying a test set to a mutated version of a program will return zero or one according to

the p-measure calculation rules. Accordingly, to estimate the p-measure as a number

between zero and one, we applied 10 test sets. Further, we repeated this process 100

times for each mutated version to be able to estimate mean and standard deviation

parameters for the measurements. As a result, each test case generation method (RT,

FSCS, ARTOO, GA, and MOGA) produced 1,000 test sets for each test set size. Further,

everything is repeated with six tree distance functions as discussed before. This leads to

1,000×(4+6+8+10)×5×6=840,000 test cases being applied to each mutant.

In each test case generation method, we need to specify the maximum tree size

 128

(MaxTreeSize) as a constant number. The size of generated trees are between one and

MaxTreeSize, inclusive. We repeated all the experiments with two sets of different

settings with respect to the tree sizes. In the first set of experiments, MaxTreeSize is set to

30. So, all the test generation methods use a same MaxTreeSize. Figure 5.1 indicates the

p-measure for each program when the sizes of trees are variable in a random tree

generation. As a result, the failure detection results improve as the size of trees increases;

clearly defining tree size as a co-variant of effectiveness. Further, the mean size of

generated trees is different when different test generation methods and different tree

distance functions are used with the same MaxTreeSize. Accordingly, in the first set of

experiments, GA outperforms MOGA (refer to Section 5.6.1 for the results) as GA

produces larger trees compared to MOGA, on average. Hence to attempt to compare the

tree generation methods independently of tree size, the second set of experiments were

produced, now we set the mean size of trees as a fix number. We selected 15.5 which is

the mean of [1, 30]. To make sure that the mean tree sizes generated by each method is

equal to the target value; we changed the MaxTreeSize several times and determined the

values that lead to mean tree size of 15.5. Since in most of the cases there is no value for

MaxTreeSize that produce exactly 15.5 as the mean tree sizes, two MaxTreeSizes that

produce larger and smaller mean tree sizes are determined and then a linear estimation is

performed to calculate the final results for the exact 15.5 mean tree size.

Figure 5.1. Analysis of failure detection against the tree sizes. Random tree generation with

test set size of 8 is used.

5.6 Experimental Result and Discussion

The result of the empirical study is presented in this section. First, the detailed result of

each program under the test is presented. It is followed by statistical analysis of the

 129

results. Then, different tree distance functions are used in test case generation methods.

Hence, a comparison among different tree distance functions is made in the context of

tree test generation. Finally, the failure detection results are demonstrated where MOGA

for strings, from chapter 3, is used for node value generation.

5.6.1 Results of Each Program Under Test

In this sub-section, two sets of results are presented; the “same maximum tree size”

experiment and the “same mean tree size” experiment as described in Section 5.5.6. In

Table 5.2, the result of each program under test is provided where the MaxTreeSize is set

to 30 for all the test generation methods. Every number in this table is a percentage

indicating the p-measure improvement of that method over the base line random tree

generation. Similar to chapter 3 on strings, each number is calculated using (3.9). The

results in this table indicate that all the tree generation methods produce better results

than random tree generation. Moreover, GA produced the best results for all the

programs. To summarize this table GA is best method and MOGA is in the second place

when MaxTreeSize is similar for all methods. ARTOO is next, then FSCS, and finally

random tree generation.

Table 5.2. The percentage of p-measure improvement of each method over RT where
maximum tree size is set to a constant number of 30 and EST tree distance function is used.

Test Set
Size

Software
Under Test FSCS ARTOO GA MOGA

4

NanoXML 1.8% 3.1% 29.2% 15.9%
JsonJava 0.3% 11.5% 37.4% 37.2%
StAX 6.3% 14.1% 55.8% 45.0%
JTidy 1.2% 5.8% 18.8% 12.0%
Average 2.4% 8.6% 35.3% 27.5%

6

NanoXML 6.2% 8.5% 22.4% 14.1%
JsonJava 5.9% 7.9% 26.9% 21.5%
StAX 14.7% 18.8% 42.3% 36.2%
JTidy 6.6% 8.6% 17.9% 10.8%
Average 8.3% 11.0% 27.3% 20.7%

8

NanoXML 9.6% 10.2% 18.3% 13.3%
JsonJava 5.7% 10.2% 19.3% 14.4%
StAX 14.8% 13.4% 27.2% 24.2%
JTidy 9.3% 8.4% 18.0% 12.2%
Average 9.9% 10.5% 20.7% 16.0%

10

NanoXML 10.1% 10.5% 16.9% 14.9%
JsonJava 7.7% 7.7% 16.0% 13.6%
StAX 11.5% 12.4% 18.2% 16.3%
JTidy 10.0% 9.5% 16.2% 12.3%
Average 9.8% 10.0% 16.8% 14.3%

 130

The GA outperforms the MOGA in Table 5.2 since it produces, on average, larger trees

than the trees produced by MOGA. As discussed in Section 5.5.6, the mean of tree sizes

is a covariant affecting the failure detection effectiveness, where larger trees produce

better results, on average. Hence, in the second set of experiments, we set the mean size

of trees as a fix number to attempt to compare the tree generation methods independently

of tree size. Table 5.3 demonstrates the improvement of test generation methods

compared to random tree generation where the generated trees have a same mean size of

15.5. Accordingly, MOGA “outperforms” the GA in most of the cases. Further, GA and

MOGA are always better than the FSCS, ARTOO, and of course random generation.

Finally, Table 5.4 provides raw P-measure results for the RT method for the sake of

completeness. This allows the reader to compute the P-measure of each method if

required.

Table 5.3. The percentage of p-measure improvement of each method over RT where mean
tree size is adjusted to 15.5 and EST tree distance function is used.

Test set
Size

Software
Under Test FSCS ARTOO GA MOGA

4

NanoXML 4.5% 3.1% 15.8% 15.5%
JsonJava 2.1% 11.5% 31.2% 33.2%
StAX 13.2% 14.1% 55.0% 48.9%
JTidy 6.2% 5.8% 13.6% 18.3%
Average 6.5% 8.6% 28.9% 29.0%

6

NanoXML 9.5% 11.7% 14.2% 14.3%
JsonJava 5.9% 5.9% 16.9% 20.2%
StAX 17.1% 17.5% 38.1% 36.9%
JTidy 5.8% 5.7% 8.3% 11.6%
Average 9.6% 10.2% 19.4% 20.7%

8

NanoXML 9.4% 10.5% 11.0% 13.2%
JsonJava 5.7% 6.5% 12.0% 14.5%
StAX 13.6% 14.3% 25.6% 23.8%
JTidy 5.3% 6.9% 7.7% 10.1%
Average 8.5% 9.5% 14.1% 15.4%

10

NanoXML 8.4% 7.9% 9.5% 10.5%
JsonJava 1.9% 6.4% 8.6% 13.1%
StAX 10.3% 11.3% 17.9% 15.2%
JTidy 6.3% 6.4% 7.4% 8.5%
Average 6.7% 8.0% 10.9% 11.9%

 131

Table 5.4. The raw P-measure results for RT where the EST tree distance is used.

Software Under
Test

Test set size
4 6 8 10

NanoXML 0.00641 0.00867 0.01052 0.01128

JsonJava 0.00188 0.00251 0.00302 0.00344

StAX 0.00060 0.00073 0.00084 0.00092

JTidy 0.00963 0.01270 0.01485 0.01653

5.6.2 Statistical Analysis of Results

The results in Table 5.2 and Table 5.3 are averaged over 100 trial runs. To formally

indicate the performance of each test case generation method against RT, we performed a

test of statistical significance (z-test, one tailed) with a conservative type I error of 0.01

[90], similar to chapter 2 and 3 on numerical and string test cases. Our working

hypothesis is that MOGA, GA, FSCS, and ARTOO will produce superior results

compared to RT. Further, an effect size (Cohen's method [56], [57]) between the each

method and RT is calculated.

To perform a z-test or calculate effect size, the results must be normally distributed. As

discussed in chapter 2 and 3, according to [50], p-measure values are normally

distributed. Further, we investigated the normality of the results more deeply by

performing a Shapiro-Wilk test [96]; it works based on a null hypothesis that the data is

normally distributed. According to the results of this test, the normality of the p-measure

values cannot be rejected.

Table 5.5 represents the effect sizes for the “same MaxTreeSize” experiment. Similarly,

Table 5.6 presents the effect sizes for the “same mean tree size” experiment. In both

tables, the “*” beside an effect size demonstrates the result of the z-test. The test

measures if a statistically significant difference exists between RT and a tree generation

method. In each table, only one case related to the FSCS method is found where the z-test

shows insignificant improvement compared to RT. All other results demonstrate

significant improvement in failure detection for each method against RT. Further, in both

tables, most of the GA and MOGA effect sizes are more than 0.8 which is considered to

be a large improvement according to Cohen’s definition [56]–[58]. Regarding the FSCS

and ARTOO methods, most of the results are larger than 0.5 (Cohen’s definition of

medium).

 132

Table 5.5. The effect size between RT and other methods where the maximum tree size is set
to 30 and EST tree distance is used. “*” indicates the result of the z-test where a significant

difference exists at the 0.01 level.

Test set
Size

Software
Under Test

FSCS ARTOO GA MOGA

4

NanoXML 0.07 0.11 1.16* 0.63*
JsonJava 0.01 0.43* 1.59* 1.52*
StAX 0.24* 0.52* 2.40* 1.78*
JTidy 0.10 0.46* 1.53* 0.97*

6

NanoXML 0.27* 0.36* 1.06* 0.69*
JsonJava 0.29* 0.37* 1.23* 1.05*
StAX 0.74* 1.01* 2.77* 2.18*
JTidy 0.84* 1.12* 2.21* 1.32*

8

NanoXML 0.56* 0.54* 0.99* 0.80*
JsonJava 0.32* 0.53* 1.08* 0.87*
StAX 1.01* 0.91* 2.21* 1.88*
JTidy 1.38* 1.29* 2.61* 1.80*

10

NanoXML 0.58* 0.60* 0.96* 0.83*
JsonJava 0.44* 0.49* 1.06* 0.77*
StAX 1.06* 1.14* 1.93* 1.64*
JTidy 1.75* 1.71* 2.77* 2.13*

Table 5.6. The effect size between RT and other methods where the mean tree size is
adjusted to 15.5 and EST tree distance is used. “*” indicates the result of the z-test where a

significant difference exists at the 0.01 level.

Test set
Size

Software
Under Test

FSCS ARTOO GA MOGA

4

NanoXML 0.17 0.11 0.57* 0.59*
JsonJava 0.09 0.43* 1.31* 1.42*
StAX 0.48* 0.52* 2.40* 2.02*
JTidy 0.51* 0.46* 1.09* 1.46*

6

NanoXML 0.44* 0.57* 0.73* 0.70*
JsonJava 0.29* 0.30* 0.86* 0.98*
StAX 0.93* 0.92* 2.38* 2.23*
JTidy 0.79* 0.74* 1.12* 1.41*

8

NanoXML 0.51* 0.54* 0.61* 0.80*
JsonJava 0.30* 0.36* 0.73* 0.85*
StAX 0.90* 0.99* 2.09* 1.87*
JTidy 0.83* 1.04* 1.16* 1.57*

10

NanoXML 0.48* 0.45* 0.55* 0.57*
JsonJava 0.12 0.39* 0.52* 0.81*
StAX 0.89* 1.02* 1.91* 1.50*
JTidy 1.16* 1.15* 1.18* 1.43*

 133

5.6.3 Comparison of Tree Distance Functions

The p-measure results for all six tree distance functions that are discussed in Section 5.4

are presented in Figure 5.2 and Figure 5.3. Results for each tree generation method and

each tree distance function are illustrated where each column is the mean of all programs

under the test. Figure 5.2 represents the “same MaxTreeSize” experiment, while “same

mean tree size” experiment is presented in Figure 5.3. In each of these figures, five

graphs are presented where the first four relate to the four test set sizes (4, 6, 8, and 10)

and the last one is the average of all the test set sizes.

According to these graphs, the proposed EST tree distance function produces superior

results compared to the other five distance functions. Any tree generation method has

normally better performance when used with EST. After EST, IST and then TED are

normally on second and third places, respectively. In Figure 5.2, the Entropy, Path, and

Multiset distance functions produce negative results in most cases. This means under

performance compared to RT. That is, significantly smaller trees are generated while

these distance functions are utilized in “same MaxTreeSize” experiment. However,

positive results are generated when a same mean size for trees is used.

(a) Test set size = 4

 134

(b) Test set size = 6

(c) Test set size = 8

(d) Test set size = 10

 135

(e) Mean of all test set sizes

Figure 5.2. Comparison of tree distance functions where maximum tree size is 30. Each
column denotes mean of p-measure improvement over all programs. (a), (b), (c), and (d)

represent results for test set sizes of 4, 6, 8, and 10, respectively. (e) presents the mean of all
test set sizes.

(a) Test set size = 4

(b) Test set size = 6

 136

(c) Test set size = 8

(d) Test set size = 10

(e) Mean of all test set sizes

Figure 5.3. Comparison of tree distance functions where mean tree size is 15.5. Each column
denotes mean of p-measure improvement over all programs. (a), (b), (c), and (d) represent
results for test set sizes of 4, 6, 8, and 10, respectively. (e) presents the mean of all test set

sizes.

5.6.4 Node Value Generation by MOGA

In the final experiment, we investigate the effect of tree node values on failure detection.

In all the previous results, RT are used to produce strings in the decoding process as

 137

described in Section 5.5.3. Now, we produce the strings required for node values in a

decoding process according to the MOGA string generation method in chapter 3 and

compare the results with random string values. The details of applying MOGA string

generation in a decoding process are discussed in Section 5.5.3.

The EST tree distance function is used to generate the trees since empirical evidence

indicates its superior performance over other distance functions. However, it is not an

important parameter in this experiment since for both cases (RT and MOGA strings in the

decoding process) the same abstract trees are generated. Further, we only performed the

experiment with the same MaxTreeSize setting. It is not necessary to perform the

experiment with the same mean tree size since it will only affect the trees’ structure. That

is, we are comparing different decoding processes and the methods or settings that

produce or affect the abstract trees are irrelevant.

The results are provided in Figure 5.4 where every column is again an improvement

against the base line RT. Replacing the RT string generation with MOGA improved the

results for three of the four programs. The MOGA string generation had no effect on the

“StAX” program’s results. Hence, the results for “StAX” were identical with RT and

MOGA string generation. Accordingly, each column provided in Figure 5.4 is the mean

of all programs except “StAX”. This figure indicates a significant improvement in the

results when MOGA is used in a decoding process for string generation.

(a) Test set size = 4

 138

(b) Test set size = 6

(c) Test set size = 8

(d) Test set size = 10

 139

(e) Mean of all test set sizes

Figure 5.4. Comparison of RT and MOGA string generation for tree node values where max
tree size is 30. Each column denotes mean of p-measure improvement over three programs

(NanaXML, JsonJava, and JTidy). The EST tree distance function is used for all tree
generation methods. (a), (b), (c), and (d) represent results for test set sizes of 4, 6, 8, and 10,

respectively. (e) presents the mean of all test set sizes.

5.7 Related Works

This section reviews research related to tree or XML test case generation. Most of the

works with respect to XML test data generation use XML schemas to produce XML files

that conform to the schema. Our work is different in this regard as it produces tree test

data based on an abstract tree model.

Bertolino et al. [152]–[154] introduced a tool called TAXI that generates XML test data

based upon a XML schema. TAXI implements the category partition testing approach on

XML data [154]. First, TAXI read the schema and every choice element is weighted (The

user can modify the default weights). Then, a set of sub-schemas are produced so that

each one contains a different selection in choice elements [154]. Finally, values are

populated into the sub-schemas. The values can be defined by a user or can be

automatically extracted from the definitions of the input schema. XMLMate [155] is

another tool that produces XML test data using XML schemas. XMLMate is white-box

tool where a GA is used to generate XML test cases that maximize the code coverage

[155] . This work is an extension of the EvoSuite tool [156] which is a general white-box

test generator. Further, Feldt and Poulding [157] use metaheuristic search to produce

unlabeled random trees where generated trees have the specified mean size and height.

However, no evaluation is performed in the context of software testing. In addition,

ToXgene [158] is a tool to generate XML documents which requires a TSL (Template

Specification Language). The TSL document needs to be manually created by a user

 140

since currently there is no automated approach to generate it from the XML schema.

A web service request and response are in a XML format. Hence, a category of related

researches are the studies performed on the testing of the web services. Offut et al. [159]–

[161] mutate XML requests for web services via data perturbation in order to test the web

services. A valid XML request (input) is mutated where values of nodes are modified

[160]. Boundary values defined by XML schema are used to replace the node values

[160], [162]. Bai et al. [163] produce test cases to test web services. WSDL (Web

Services Specification Language) is used to automatically generate the test cases. WSDL

includes a specification of a web service. Similarly, Vanderveen et al. [164] generate web

service requests automatically. They produce a context-free grammar from WSDL. Then,

a string constraint solver is used to generate the XML files from the grammar. Further,

WSDLTest [165] is a tool to automatically test the web services. It produces two objects

from the schema. One is the service request and the other one is the test script [165]. The

web service request is generated randomly from the schema [165]. Finally, the TAXI

tool, discussed earlier in this section, is further extended to generate test cases for web

service testing. The new tool is called WS-TAXI [166] which produces test cases based

on WSDL.

5.8 Summary

In this chapter, black-box tree test case generation is studied. A tree abstract model needs

to be defined by a user for each problem and then, tree generation methods can produce

diverse test cases. Faults normally occur in error crystals or failure regions based on

various empirical studies [13]–[17]. Hence, producing a diverse set of test cases is an

important aspect that can improve the performance of black-box test case generation.

Tree distance functions are required in each test generation method to produce diverse

test cases. Several tree distance functions (EST, IST, TED, Entropy, Path, and Multiset)

are tested as a part of the test case generation process. Among the investigated distance

functions, the EST, a new distance function proposed in the previous chapter,

outperformed the other distance functions.

Four tree test case generation methods (FSCS, ARTOO, GA, and MOGA) are

investigated and compared against the random tree generation. Failure detection

performance of these methods is investigated through an empirical study where four real-

world programs are used as case studies. These programs accept input XML test cases

 141

and hence, an abstract tree model for XML is defined. However, our work is not limited

to XML generation and it can be applied to any type of test cases that can be modeled by

a tree. For example, in previous chapter a few different data types were modeled by trees.

The mutation technique is utilized to produce several faulty versions of each program.

Then, the p-measure is used as a quantitative measure to evaluate the failure detection

performance.

With respect to tree sizes, two set of experiments are performed where in the first one, the

maximum tree size in each test generation method is set to a constant number. In the

second set of experiments, the mean size of tree sizes is adjusted to a fixed value. The

evaluation results demonstrate that GA is the best method in the same maximum tree size

experiment. However, in the same mean size experiment, MOGA outperformed all other

test generation methods. Finally, in the XML decoding process, we replaced the random

string node value generation with MOGA string generation from chapter 3. This resulted

in improved failure detection.

 142

6 Conclusions and Future Works

6.1 Conclusions

In this thesis, black-box test case generation is studied. In black-box testing, we have no

information from the source code. Various empirical studies [13]–[17] indicated that

faults normally occur in error crystals or failure regions. Failure regions are areas in the

input domain that trigger faults. This means that faults are mapped onto a cluster within

the input domain [24]. Accordingly, producing a diverse set of test cases is more likely to

detect a failure and hence, it can improve the performance of black-box test case

generation compared to RT.

Accordingly, in this research, automatic generation of diverse set of test cases is

investigated that improves the failure detection effectiveness. To this end, we developed

strategies that outperform the current state of the art test generation approaches. We

limited our scope into three data structures for test generation; numerical, string, and tree

test cases. Any program that accepts one of these types as input can be tested.

For numerical test generation, in chapter 2, the novel RBCVT method has been proposed

with the aim of increasing the effectiveness of numerical test case generation approaches.

The RBCVT method cannot be considered as an independent approach since it requires

an initial set of input test cases. This method is developed as an add-on to the previous

ART and QRT methods enhancing the testing effectiveness by more evenly distributing

test cases across the input space. In addition, the applied probabilistic approach for

RBCVT generation, allows different sets of output to be produced from the same set of

inputs which makes RBCVT an appropriate method for software testing applications.

Given the importance of the computational cost in a practical application, we optimized

the probabilistic computational algorithm of the RBCVT approach. The proposed search

algorithm reduces the RBCVT computational complexity from a quadratic to a linear

time order regarding the size of the test set. However, ART methods still suffer from high

runtime order. In this regard, the computational cost of RBCVT is quite feasible with

respect to practical applications. It is worthwhile to state that since the RBCVT approach

requires initial test cases, the computational cost of the input test set generation is added

to the RBCVT calculation cost. Since the results provided in Tables 2.2-2.5 indicate, on

average, “similar” results for RBCVT with different types of generators, we can select

 143

the RT method, which is linear and adds a low computational overhead, onto the RBCVT

execution. The principle contribution in numerical test generation is utilizing CVT to

develop an innovative test cases generation approach, in particular RT-RBCVT-Fast with

a linear order of computational complexity similar to RT.

An extensive experimental study has been performed for numerical test cases and the

results demonstrate that RBCVT is significantly superior to all approaches for the block

pattern in simulation framework at all failure rates as well as the studied mutants at all

test set sizes. Although the magnitude of improvement in testing effectiveness results is

higher for the block pattern compared to the point pattern, the results demonstrate

statistically significant improvement in the point pattern. In contrast, ART methods have

indicated less effectiveness than RT regarding point patterns at θ =0.01 (demonstrated in

Figure 2.14). Although RBCVT’s performance regarding strip pattern is statistically

significant compared to the other approaches at 210θ −= , the impact of RBCVT verses

the other approaches tends to zero as the failure rate decreases. In fact, in the case of strip

pattern, the impacts of all of the approaches reduce to the performance of RT as the

failure rate decreases; this is demonstrated in Figure 2.12. In contrast, in block and point

patterns, the performance of all the approaches verses RT usually stays constant or even

increases as the failure rate reduces [61]. Randomness of test cases is an important factor

with respect to software testing. Accordingly, the investigation of randomness in Section

2.8 demonstrates that RT, all ART methods and all corresponding RBCVT methods

possess an appropriate degree of randomness.

Although in real life applications, test cases’ dimension can be large, in most cases, they

belong to an acceptable range. Test case generation often seeks to generate values with a

specific purpose rather than generating test cases to exercise the entire system. For

instance, Ciupa et al. [62] conducted an empirical study on several real world small

routines using unit testing. Briand and Arcuri [49] have considered 11 programs, basic

mathematical functions that appear in the ART literature [17], for empirical analysis. The

generated test cases in these papers do not exceed four dimensions. Furthermore, some

techniques like range coding [63] exist to reduce the dimension of the input space,

especially when collections are considered as the input to the software under the test. As

a result, where we do not have large dimensions, the linear RBCVT-Fast approach

dominates over ART approaches regarding computational cost.

Finally, RT-RBCVT, ART-RBCVT, and QRT-RBCVT have been demonstrated to have

 144

a superior performance against RT, ART, and QRT methods, respectively. Consequently,

software testing practitioners can use RBCVT to enhance the existing strategies within

their software testing toolbox. The use of RBCVT in software testing is straightforward

since RBCVT can be included to the previous methods as an add-on.

With respect to string test case generation, in chapter 3, a multi-objective optimization

approach is studied. Two objectives are introduced to produce effective string test cases.

The first objective controls the diversity of the test cases within a test set. The second

objective is responsible for controlling the length distribution of the string test cases. The

Benford distribution is employed as an objective distribution. Accordingly, a

Kolmogorov–Smirnov test [84] is utilized to construct the fitness function. When both

objectives are enforced, using a multi-objective optimization technique, superior test

cases are produced.

Further, several string distance functions are examined as a part of test case generation

process (Levenshtein, Hamming, Cosine, Manhattan, Euclidian, and LSH distance

functions). Among the investigated distance functions, the LSH [65] is a fast estimation

of the Cosine string distance function. According to the runtime complexity analysis in

Section 3.5, LSH improves the runtime complexity. Further, in Section 3.5, the runtime

complexities of all test case generation methods are discussed.

An empirical study has been performed to evaluate the failure detection capability of the

string test generation methods (RT, FSCS, ARTOO, GA, and MOGA). Thirteen real-

world programs are used for the evaluation. Several faulty versions are produced for each

program through a mutation technique. These programs perform string transformation

and/or manipulation which make them a true test for situations where the input test cases

are strings [92]. With respect to the evaluation results, the MOGA revealed the superior

failure detection performance. Further, the empirical results of comparing different string

distance functions indicate that the Levenshtein distance outperformed the others.

Randomness of the test cases is an important aspect of a test case generation algorithm.

Correlated test cases may reduce the failure detection effectiveness as discussed in

Section 3.8. As a consequence, an investigation of randomness on string test cases is

performed; and it demonstrated that all the generated test cases possess an appropriate

degree of randomness.

In chapter 4, the novel EST similarity function has been proposed for the domain of tree

 145

structured data comparison with the aim of increasing the effectiveness of applications

utilizing tree distance or similarity functions. This new approach seeks to resolve the

problems and limitations of previous approaches, as discussed in Section 4.4.1. In

addition, the new approach must enhance applications where a tree distance function is

utilized. To achieve this goal, we first extensively analyzed other distance functions.

Then, we identified situations where the studied distance functions have poor

performance; and finally we propose the EST approach. The proposed EST approach

preserves the structure of the trees by mapping subtrees rather than nodes. EST

generalizes the edit base distances and mappings by breaking the one-to-one and order

preserving mapping rules. Further, it introduces new rules for subtree mapping provided

in Section 4.4.2.

An extensive experimental study has been performed to evaluate the performance of the

proposed similarity function against previous research. Clustering and classification

frameworks are designed to perform an unbiased evaluation according to K-medoid,

KNN, and SVM along with four distinct data sets. The real-world data sets have appeared

in a number of publications [103], [105], [106], [117], [118]; and hence, they are deemed

to be reliable source of information. Further, using synthetic data sets, we investigated the

effect of varying the number of classes in the evaluation. This extensive evaluation

framework is one of the advantages of this research over previous researches such as

[103], [105], [106], [117], and [118].

The results of the experimental studies demonstrate that the EST approach is superior to

the other approaches with respect to classification and clustering applications. To

evaluate the performance, accuracy and WAF, are used in Tables 4.2, 4.3, and 4.4, where,

in general, EST is demonstrated to be a better option for the clustering and classification

of tree structured data. However, the performance of a distance function varies with the

domain of application; and hence, we cannot generalize the superior performance of EST

to all domains of applications.

The computational cost of a tree distance function should be carefully considered for

practical applications. Given pT and qT as the input trees to the distance function, we

calculated the runtime order of the EST as (| | | | (| |, | |))p q p qO T T Min T T× × . Further, the

runtime of all the clustering and classification experiments are measured where the

proposed EST outperformed all other distance functions with respect to all data sets

 146

except SIGMOD. In addition, an empirical analysis has been performed to compare the

runtime of EST vs. other distance functions in different tree sizes. The result of this

empirical investigation suggests that the runtime efficiency of EST, Entropy, and Path are

better than the other distance functions. Accordingly, the conclusion can be drawn that

the proposed EST is an appropriate approach for computationally restricted and real time

applications. Finally, EST has been demonstrated to have a superior performance against

TED, IST, Path, Entropy, and Multiset distance functions with respect to classification

and clustering applications.

Tree test case generation is studied in chapter 5. A tree abstract model needs to be

defined by a user for each problem and then, tree generation methods can produce diverse

test cases. Four tree test case generation methods (FSCS, ARTOO, GA, and MOGA) are

investigated and compared against the random tree generation. Failure detection

performance of these methods is investigated through an empirical study where four real-

world programs are used as case studies. These programs accept input XML test cases

and hence, an abstract tree model for XML is defined. However, our work is not limited

to XML generation and it can be applied to any type of test cases that can be modeled by

a tree. For example, in chapter 4 a few different data types were modeled by trees. The

mutation technique is utilized to produce several faulty versions of each program. Then,

the p-measure is used as a quantitative measure to evaluate the failure detection

performance.

With respect to tree sizes, two set of experiments are performed where in the first one, the

maximum tree size in each test generation method is set to a constant number. In the

second set of experiments, the mean size of tree sizes is adjusted to a fixed value. The

evaluation results demonstrate that GA is the best method in the same maximum tree size

experiment. However, in the same mean size experiment, MOGA outperformed all other

test generation methods.

Tree distance functions are required in each test generation method to produce diverse

test cases. Several tree distance functions (EST, IST, TED, Entropy, Path, and Multiset)

are tested as a part of the test case generation process. Among the investigated distance

functions, the EST, a new distance function that we proposed in chapter 4, outperformed

the other distance functions. Finally, in the XML decoding process, we replaced the

random string node value generation with MOGA string generation from chapter 3. This

resulted in improved failure detection.

 147

Computational cost of a test case generation method and its relation to the required time

for other parts of the testing process is an important factor when the user need to decide

what test generation method to use. Basically, an ATS (Automated Testing System) has

three parts; test generation, test execution, and examination of the test results. So, the

total time (tt) is combination of all; t g e ot t t t= + + where gt , et , and ot stand for

generation time, execution time, and result examination time, respectively. Test

generation and execution can be automated easier than test result examination. With

respect to examination of the test results, two options are normally used:

• A test oracle is constructed to automate the test examination. The test oracle

usually has a simplified definition of a defect. Does the system crash or not is an

example of such a description. Here each crash is considered a "defect".

• The test results are investigated manually by the tester.

When et is small (very small programs) and test result examination is fully automated

(small ot) one would be better off running more test cases instead of generating more

efficient test cases, similar to [49]. In such a case, methods that have high runtime

compared to random generation are not cost effective. However, industrial software’s

execution runtime is usually large enough to have adequate time for test generation.

Further, test result examination is not typically fully automated, unless for simplistic

defects like crash, and requires manual work by the tester. Hence, generating more

effective test cases which normally have higher runtime than random test cases is

believed to improve failure detection in most cases.

6.2 Recommendations for Future Research

Although the results of this research improve black-box software testing effectiveness,

there is still room for improvement. This research can be extended for further

investigation as follows:

1) Up to now, we have introduced methods to generate numerical, string, and tree test

cases. However, there are many programs that the structures of their input are not one of

these types. Therefore, future studies can be focused on exploring other test case

structures.

Another approach is developing a test generation approach that can produce test cases for

 148

any given structure. Grammar based testing is a technique used to produce test cases

where the input structure of the program is specified with a grammar. Grammars are a set

of rules that define all the valid possibilities for the input to the software. For example,

HTML can be defined with grammars. In grammar based testing, test cases are produced

based on the grammar rules. There are several studies on grammar based testing. For

instance, rule coverage [167] is a method to generate test cases based on grammar.

Generating all the possibilities based on grammar is often too large to be practical.

Hence, in rule coverage, the objective of test generation is to cover every rule in the

grammar at least once. As a further example, Hoffman et al. [168] utilizes covering array

as a technique to generate grammar based test cases. With covering arrays, a test template

with N parameters is produced where each parameter has a limited number of

possibilities [168].

Although there are several works on grammar based test generation, to the best of our

knowledge, there is no research on grammar based test generation that produces test cases

based on diversity of generated test cases. To achieve this, first, a distance function

between two test cases that are extracted from the grammar must be developed. Then,

based on the distance function, a diversity objective can be defined similar to our work in

this research. Finally, an optimization technique can be applied to produce effective

grammar based test cases. In this process, the critical part is defining a proper distance

function between grammars. This could be challenging as a grammar can be very

complicated. To define a proper distance function many features of the grammar must be

considered. For example, the selected rules to generate a test case are an important factor.

Further, the order that rules are selected can be important. Different rules may have

different importance in test generation that needs to be accounted for.

2) Furthermore, with respect to numerical, string, and tree test generation, more research

can be performed. Regarding numerical test case generation, more research can be done

to optimize higher dimension numerical test cases. In addition, our experimental results

are on programs with up to four dimensions. Real programs with higher dimensions can

be investigated in future researches. With respect to the RBCVT and other numerical test

generators, normally, test cases are produced with a pre-fixed number of dimensions or

numbers with a fixed array length. However, in many applications the input software

accepts a variable length array. Further studies can be performed on generating diverse

numerical test cases when the dimension of the input can be variable.

 149

3) In string test case generation, strings are generated without any information from the

program under the test. In many programs, regular expressions define the features of the

valid input string to the software. Invalid strings may not be very effective as it may be

filtered in early stages of the program under the test and hence, it may not have a good

failure detection chance. Therefore, in case a regular expression is available for the

program under the test, using it in the test generation process can improve the failure

detection. Achieving this is challenging, as during the optimization, more specifically in

GA in the offspring generation, strings are broken and recombined. This breaks the

strings structure that is based on the regular expression. Similarly, in a mutation process,

the regular expression pattern is broken as a character in the string is randomly added,

deleted, or replaced. Hence, achieving this requires a new optimization algorithm that is

aware of the regular expression. As a future study, a regular expression aware test case

generation algorithm can be developed.

4) Regarding the tree test case generation, up to now, we considered diversity and size

distribution as factors that influence the testing effectiveness. However, other parameters

of a tree can be important in failure detection. As an example, the height of a tree or its

ratio to the size of the tree may affect the failure detection performance. The complexity

of nodes of the tree might be important as well. So, a direction for future study on tree

test generation is investigating other parameters that affect failure detection performance.

To investigate the effect of other parameters, a new fitness functions can be defined and

added into the multi-objective optimization.

5) Further, regarding tree test generation, we used a tree model to generate tree test cases.

So, a tree model needs to be defined by the tester for the program under the test. The tree

model that we constructed our tree generation method based on it, is an ordered and

labeled tree model. Further, the proposed tree distance function, as well as other tree

distance functions that we investigated, works on the ordered and labeled trees. This may

pose a limitation, where in an application the test cases can be modeled by unordered or

non-labeled trees. A same argument can be made for non-testing related applications as

investigated in chapter 4. In chapter 4, we performed experiments on clustering and

classification applications. In all those experiments, applications were selected that data

samples were able to be modeled by an ordered and labeled tree; since the proposed tree

distance function works based on ordered and labeled trees. Again, this poses limitation

on the applications. Hence, a future direction with respect to tree distance function is

 150

expanding the EST (the proposed tree distance function) such that it supports unordered

and non-labeled trees.

6) Finally, with respect to the tree test case generation, in applications where the input to

the software is XML, it is quite popular that an XML schema is pre-defined. An XML

schema specifies the characteristics of input XML file. Our work, in this thesis, does not

support XML schema as extra information in test generation. Several works have been

performed on generating XML test cases based on XML schema as we reviewed it in

Section 5.7. However, none of them, to be best of our knowledge, works based on

diversity. Hence, our work in this research can be extended to support XML schema. This

might be challenging as every test cases that is generated or altered during optimization

process still must conform to the XML schema definitions.

7) In this research, we proposed a new tree distance function (EST). EST’s performance

is compared with previous distance functions in a few applications including clustering,

classification, and automated test case generation. However, our tree distance function

can be applied into variety of applications. Natural language processing [107] and cross

browser compatibility [108] are examples of applications of a tree distance function.

Another application that potentially can benefit from our tree distance function is outlier

detection for data that can be modeled as a tree; like XML. Outlier detection has

numerous applications. For example, it can be used in fraud detection and noise removal

(data cleaning). Several works has been done on XML outlier detection [169]. A new

XML outlier detection approach can be the use of EST as a distance function between the

XML documents. Any XML document that has relatively large distance with other data

points can be potentially an outlier. Further, the EST can be applied to code clone

detection. A source code of a programming language can be converted into an abstract

syntax tree. Hence, the EST distance function can be used to detect code cloning if the

distance for two source codes is less than a threshold. Consequently, new applications of

the proposed tree distance function can be a potential direction for future researches.

8) An automated test generator must produce test cases that have a higher chance of

detecting a failure. This reduces the cost of testing by faster failure detection and less

manual work. In this study, we demonstrated that diversity among input test cases

improves the chance of detecting a failure and hence, it improves the failure detection

performance. Failure detection is improved since faults normally occur in error crystals

or failure regions [13]–[17]; how about the outputs of the test cases? Can we use them to

 151

produce test cases with higher chance of failure detection? Let’s assume that for every

input to the software under the test we have an corresponding output. If two different

inputs lead to two similar outputs, we can argue that both test cases, with a degree of

probability, have a similar execution path in the source code and hence, it is likely that

both tests either fail or pass. Similarly, we can argue that if the two outputs are very

different, probably the two test cases have different execution paths in the source code.

As a result, we can say that a set of tests are diverse if their corresponding outputs are

diversely distributed. The effect of the diversity of the outputs can be more than the effect

of diversity of the inputs. Therefore, if we optimize the test cases such that their

corresponding outputs are diversely distributed in the output space, we may be able to

produce test cases with higher chance of failure detection. To do this, a proper distance

function between the outputs must be developed. Please note that the output can have any

structure like trees. For example, in a web browser, in the first stage, the input HTML is

parsed into a DOM (Document Object Model) tree. So, for this stage, the input is HTML

text and output is a DOM tree. Then, a diversity based objective function must be defined

on the outputs. In the optimization process, inputs are generated and optimized based on

the objective function. In such test generation, the optimization include execution the test

cases in order to capture the output. This is a potential approach to improve the testing

process and hence, a direction or future studies.

 152

Bibliography

[1] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining behavior graphs for
‘backtrace’ of noncrashing bugs,” in Proceeding of the 2005 SIAM international
conference on data mining (SDM’05), Newport Beach, 2005, pp. 286–297.

[2] C. Jones, “Software quality in 2011: A survey of the state of the art,” 2011.
[Online]. Available: http://www.asq509.org/ht/a/GetDocumentAction/id/62711.

[3] R. Ramler and K. Wolfmaier, “Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost,” in Proceedings of
the 2006 international workshop on Automation of software test, 2006, pp. 85–91.

[4] D. Hoffman, “A taxonomy for test oracles,” Qual. Week, pp. 1–8, 1998.

[5] “Testing Anywhere.” [Online]. Available:
http://www.automationanywhere.com/Testing/products/automated-testing-
anywhere.htm.

[6] J. W. Duran and S. C. Ntafos, “An Evaluation of Random Testing,” Softw. Eng.
IEEE Trans., vol. SE-10, no. 4, pp. 438–444, 1984.

[7] C. Pacheco, S. K. Lahiri, and T. Ball, “Finding errors in .NET with feedback-
directed random testing,” in Proceedings of the 2008 international symposium on
Software testing and analysis, 2008, pp. 87–96.

[8] P. Godefroid, “Random testing for security: blackbox vs. whitebox fuzzing,” in
Proceedings of the 2nd international workshop on Random testing: co-located
with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), 2007, p. 1.

[9] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith, “Agile security
testing of Web-based systems via HTTPUnit,” in Agile Conference, 2005.
Proceedings, 2005, pp. 29–38.

[10] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator for Java
JIT compiler test system,” in Quality Software, 2003. Proceedings. Third
International Conference on, 2003, pp. 20–23.

[11] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of Windows
NT applications using random testing,” in Proceedings of the 4th conference on
USENIX Windows Systems Symposium, 2000, pp. 59–68.

[12] S. Lipner and M. Howard, “The Trustworthy Computing Security Development
Lifecycle document (SDL),” 2005.

 153

[13] P. E. Ammann and J. C. Knight, “Data diversity: an approach to software fault
tolerance,” Comput. IEEE Trans., vol. 37, no. 4, pp. 418–425, Apr. 1988.

[14] G. B. Finelli, “NASA Software failure characterization experiments,” Reliab. Eng.
Syst. Saf., vol. 32, no. 1–2, pp. 155–169, 1991.

[15] L. J. White and E. I. Cohen, “A Domain Strategy for Computer Program Testing,”
Softw. Eng. IEEE Trans., vol. SE-6, no. 3, pp. 247–257, May 1980.

[16] P. G. Bishop, “The variation of software survival time for different operational
input profiles (or why you can wait a long time for a big bug to fail),” in Fault-
Tolerant Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third
International Symposium on, 1993, pp. 98–107.

[17] C. Schneckenburger and J. Mayer, “Towards the determination of typical failure
patterns,” in Fourth international workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting, 2007, pp. 90–93.

[18] T. Y. Chen, T. H. Tse, and Y. T. Yu, “Proportional sampling strategy: a
compendium and some insights,” J. Syst. Softw., vol. 58, no. 1, pp. 65–81, 2001.

[19] A. F. Tappenden and J. Miller, “A Novel Evolutionary Approach for Adaptive
Random Testing,” Reliab. IEEE Trans., vol. 58, no. 4, pp. 619–633, 2009.

[20] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code Coverage of Adaptive
Random Testing,” Reliab. IEEE Trans., vol. 62, no. 1, pp. 226–237, 2013.

[21] J. Lv, H. Hu, K.-Y. Cai, and T. Y. Chen, “Adaptive and Random Partition
Software Testing,” Systems, Man, and Cybernetics: Systems, IEEE Transactions
on, vol. PP, no. 99. p. 1, 2014.

[22] M. Li and P. M. B. Vitanyi, An introduction to Kolmogorov complexity and its
applications. Springer-Verlag New York Inc, 2008.

[23] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitanyi, “The similarity metric,” Inf.
Theory, IEEE Trans., vol. 50, no. 12, pp. 3250–3264, 2004.

[24] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu, “Proportional sampling strategy:
guidelines for software testing practitioners,” Inf. Softw. Technol., vol. 38, no. 12,
pp. 775–782, 1996.

[25] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive Random Testing,” in Advances
in Computer Science - ASIAN 2004, vol. 3321, M. Maher, Ed. Springer Berlin /
Heidelberg, 2005, pp. 3156–3157.

[26] K. Chan, T. Chen, and D. Towey, “Restricted Random Testing,” in Software
Quality -- ECSQ 2002, vol. 2349, J. Kontio and R. Conradi, Eds. Springer Berlin /
Heidelberg, 2002, pp. 321–330.

 154

[27] F.-C. Kuo, “An Indepth Study of Mirror Adaptive Random Testing,” in Quality
Software, 2009. QSIC ’09. 9th International Conference on, 2009, pp. 51–58.

[28] J. Mayer, “Adaptive Random Testing by Bisection and Localization,” in Formal
Approaches to Software Testing, vol. 3997, W. Grieskamp and C. Weise, Eds.
Springer Berlin / Heidelberg, 2006, pp. 72–86.

[29] T. Y. Chen, R. Merkel, P. K. Wong, and G. Eddy, “Adaptive random testing
through dynamic partitioning,” in Quality Software, 2004. QSIC 2004.
Proceedings. Fourth International Conference on, 2004, pp. 79–86.

[30] T. Y. Chen, D. Huang, and Z. Zhou, “Adaptive Random Testing Through Iterative
Partitioning,” in Reliable Software Technologies -- Ada-Europe 2006, vol. 4006,
L. Pinho and M. Gonzalez Harbour, Eds. Springer Berlin / Heidelberg, 2006, pp.
155–166.

[31] T. Y. Chen, F.-C. Kuo, and H. Liu, “Adaptive random testing based on
distribution metrics,” J. Syst. Softw., vol. 82, no. 9, pp. 1419–1433, 2009.

[32] J. Mayer and C. Schneckenburger, “An empirical analysis and comparison of
random testing techniques,” in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, 2006, pp. 105–114.

[33] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting Test Cases,” in Computer
Software and Applications Conference, 2006. COMPSAC ’06. 30th Annual
International, 2006, vol. 1, pp. 485–494.

[34] T. Y. Chen and R. Merkel, “Quasi-Random Testing,” Reliab. IEEE Trans., vol.
56, no. 3, pp. 562–568, 2007.

[35] H. Chi and E. L. Jones, “Computational investigations of quasirandom sequences
in generating test cases for specification-based tests,” in Proceedings of the 38th
conference on Winter simulation, 2006, pp. 975–980.

[36] I. M. Sobol, “Uniformly distributed sequences with additional uniformity
properties,” J. Comput. Math. Math. Phys., vol. 16, pp. 236–242, 1976.

[37] J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point sequence,”
Commun. ACM, vol. 7, no. 12, pp. 701–702, Dec. 1964.

[38] H. Niederreiter, “Low-discrepancy and low-dispersion sequences,” J. Number
Theory, vol. 30, no. 1, pp. 51–70, 1988.

[39] H. Faure, “Discr{é}pance de suites associ{é}esa un systeme de num{é}ration (en
dimension un),” Bull. Soc. Math. Fr., vol. 109, no. 2, pp. 143–182, 1981.

[40] P. Peart, “The dispersion of the Hammersley Sequence in the unit square,”
Monatshefte fur Math., vol. 94, no. 3, pp. 249–261, 1982.

 155

[41] C. Schlier, “On scrambled Halton sequences,” Appl. Numer. Math., vol. 58, no.
10, pp. 1467–1478, 2008.

[42] B. L. Fox, “Algorithm 647: Implementation and Relative Efficiency of
Quasirandom Sequence Generators,” ACM Trans. Math. Softw., vol. 12, no. 4, pp.
362–376, Dec. 1986.

[43] H. Everett, D. Lazard, S. Lazard, and M. Safey El Din, “The Voronoi Diagram of
Three Lines,” Discret. Comput. Geom., vol. 42, no. 1, pp. 94–130, 2009.

[44] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations:
Applications and Algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676, 1999.

[45] L. Ju, Q. Du, and M. Gunzburger, “Probabilistic methods for centroidal Voronoi
tessellations and their parallel implementations,” Parallel Comput., vol. 28, no.
10, pp. 1477–1500, 2002.

[46] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. 2nd Edition. John Wiley & Sons, Inc.,
2008.

[47] T. Y. Chen and R. Merkel, “Efficient and effective random testing using the
Voronoi diagram,” in Software Engineering Conference, 2006. Australian, 2006,
pp. 300–308.

[48] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an
efficient and robust access method for points and rectangles,” SIGMOD Rec., vol.
19, no. 2, pp. 322–331, May 1990.

[49] A. Arcuri and L. Briand, “Adaptive random testing: an illusion of effectiveness?,”
in Proceedings of the 2011 International Symposium on Software Testing and
Analysis, 2011, pp. 265–275.

[50] T. Y. Chen, F.-C. Kuo, and R. Merkel, “On the statistical properties of testing
effectiveness measures,” J. Syst. Softw., vol. 79, no. 5, pp. 591–601, 2006.

[51] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed Random
Test Generation,” in Software Engineering, 2007. ICSE 2007. 29th International
Conference on, 2007, pp. 75–84.

[52] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random
testing,” SIGPLAN Not., vol. 40, no. 6, pp. 213–223, Jun. 2005.

[53] K. P. Chan, T. Y. Chen, F.-C. Kuo, and D. Towey, “A revisit of adaptive random
testing by restriction,” in Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual International, 2004, pp. 78–85
vol.1.

 156

[54] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class mutation
system,” Softw. Testing, Verif. Reliab., vol. 15, no. 2, pp. 97–133, 2005.

[55] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are
mutants a valid substitute for real faults in software testing,” in International
Symposium on the Foundations of Software Engineering (FSE), 2014, p. 10 pages.
TO APPEAR.

[56] J. Cohen, “A power primer,” Psychol. Bull., vol. 112, no. 1, pp. 155–159, 1992.

[57] J. Cohen, Statistical power analysis for the behavioral sciences. Lawrence
Erlbaum, 1988.

[58] L. A. Becker, “Effect Size (ES),” no. 1993, 2000.

[59] M. J. Meyer, “Martingale Java stochastic library.” [Online]. Available:
http://martingale.berlios.de/Martingale.html.

[60] K. G. Morse Jr, “Compression tools compared,” Linux J., vol. 2005, no. 137, pp.
62–66, 2005.

[61] T. Y. Chen, F. C. Kuo, and Z. Q. Zhou, “On favourable conditions for adaptive
random testing,” Int. J. Softw. Eng. Knowl. Eng., vol. 17, no. 6, pp. 805–825,
2007.

[62] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive Random
Testing for Object-Oriented Software,” in Software Engineering, 2008. ICSE ’08.
ACM/IEEE 30th International Conference on, 2008, pp. 71–80.

[63] D. Salomon, Data compression: the complete reference, vol. 10. Springer-Verlag
New York Inc, 2007, pp. 127–129.

[64] C. Durtschi, W. Hillison, and C. Pacini, “The effective use of Benford’s law to
assist in detecting fraud in accounting data,” J. forensic Account., vol. 5, no. 1, pp.
17–34, 2004.

[65] L. Pauleve, H. Jegou, and L. Amsaleg, “Locality sensitive hashing: A comparison
of hash function types and querying mechanisms,” Pattern Recognit. Lett., vol.
31, no. 11, pp. 1348–1358, 2010.

[66] H. Hemmati, A. Arcuri, and L. Briand, “Achieving Scalable Model-based Testing
Through Test Case Diversity,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 1,
pp. 6:1–6:42, Mar. 2013.

[67] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test cases with
string distances,” Autom. Softw. Eng., vol. 19, no. 1, pp. 65–95, 2012.

 157

[68] V. Ganesh, A. Kiezun, S. Artzi, P. J. Guo, P. Hooimeijer, and M. Ernst, “HAMPI:
A string solver for testing, analysis and vulnerability detection,” in Computer
Aided Verification, 2011, pp. 1–19.

[69] M. Harman and P. McMinn, “A Theoretical and Empirical Study of Search-Based
Testing: Local, Global, and Hybrid Search,” Softw. Eng. IEEE Trans., vol. 36, no.
2, pp. 226–247, Mar. 2010.

[70] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85,
1994.

[71] M. Harman and B. F. Jones, “Search-based software engineering,” Inf. Softw.
Technol., vol. 43, no. 14, pp. 833–839, 2001.

[72] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation,” Softw. Eng. IEEE Trans., vol. 36, no. 6, pp. 742–762, Nov. 2010.

[73] M. Harman, “The Current State and Future of Search Based Software
Engineering,” in 2007 Future of Software Engineering, 2007, pp. 342–357.

[74] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evol. Comput. IEEE Trans., vol. 6,
no. 2, pp. 182–197, Apr. 2002.

[75] K. A. De Jong and W. M. Spears, “An analysis of the interacting roles of
population size and crossover in genetic algorithms,” in Parallel problem solving
from nature, Springer, 1991, pp. 38–47.

[76] S. Newcomb, “Note on the Frequency of Use of the Different Digits in Natural
Numbers,” Am. J. Math., vol. 4, no. 1, pp. 39–40, 1881.

[77] T. P. Hill, “The Significant-Digit Phenomenon,” Am. Math. Mon., vol. 102, no. 4,
pp. 322–327, 1995.

[78] F. Benford, “The Law of Anomalous Numbers,” Proc. Am. Philos. Soc., vol. 78,
no. 4, pp. 551–572, 1938.

[79] M. J. Nigrini and L. J. Mittermaier, “The use of Benford’s law as an aid in
analytical procedures,” Auditing, vol. 16, pp. 52–67, 1997.

[80] C. L. Geyer and P. P. Williamson, “Detecting Fraud in Data Sets Using
Benford's Law,” Commun. Stat. - Simul. Comput., vol. 33, no. 1, pp. 229–
246, 2004.

[81] R. A. Raimi, “The First Digit Problem,” Am. Math. Mon., vol. 83, no. 7, pp. 521–
538, 1976.

 158

[82] A. Berger, T. P. Hill, and others, “A basic theory of Benford’s Law,” Probab.
Surv., vol. 8, pp. 1–126, 2011.

[83] J. J. Baroudi and W. J. Orlikowski, “The problem of statistical power in MIS
research,” MIS Q., pp. 87–106, 1989.

[84] M. A. Stephens, “Use of the Kolmogorov-Smirnov, Cramer-Von Mises and
related statistics without extensive tables,” J. R. Stat. Soc. Ser. B, pp. 115–122,
1970.

[85] M. Alshraideh and L. Bottaci, “Search-based software test data generation for
string data using program-specific search operators,” Softw. Testing, Verif.
Reliab., vol. 16, no. 3, pp. 175–203, 2006.

[86] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, 1966, vol. 10, no. 8, pp. 707–710.

[87] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech.
J., vol. 29, no. 2, pp. 147–160, 1950.

[88] D. C. Anastasiu and G. Karypis, “L2AP: Fast cosine similarity search with prefix
L-2 norm bounds,” in Data Engineering (ICDE), 2014 IEEE 30th International
Conference on, 2014, pp. 784–795.

[89] G. Xue, Y. Jiang, Y. You, and M. Li, “A Topology-aware Hierarchical Structured
Overlay Network Based on Locality Sensitive Hashing Scheme,” in Proceedings
of the Second Workshop on Use of P2P, GRID and Agents for the Development of
Content Networks, 2007, pp. 3–8.

[90] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal Voronoi Tessellations-
A New Approach to Random Testing,” Softw. Eng. IEEE Trans., vol. 39, no. 2,
pp. 163–183, 2013.

[91] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria,” Softw. Eng.
IEEE Trans., vol. 32, no. 8, pp. 608–624, Aug. 2006.

[92] P. McMinn, M. Shahbaz, and M. Stevenson, “Search-Based Test Input Generation
for String Data Types Using the Results of Web Queries,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on,
2012, pp. 141–150.

[93] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, “Mutation
Analysis.,” Yale University, Department of Computer Science, 1979.

[94] P. Tonella, “Evolutionary Testing of Classes,” in Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2004, pp.
119–128.

 159

[95] S. Afshan, P. McMinn, and M. Stevenson, “Evolving Readable String Test Inputs
Using a Natural Language Model to Reduce Human Oracle Cost,” in Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference on, 2013, pp. 352–361.

[96] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3–4, pp. 591–611, 1965.

[97] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
Symbolic Execution Framework for JavaScript,” in Security and Privacy (SP),
2010 IEEE Symposium on, 2010, pp. 513–528.

[98] K. Lakhotia, M. Harman, and P. McMinn, “A Multi-objective Approach to
Search-based Test Data Generation,” in Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, 2007, pp. 1098–1105.

[99] G. Fraser, A. Arcuri, and P. McMinn, “Test Suite Generation with Memetic
Algorithms,” in Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, 2013, pp. 1437–1444.

[100] G. Fraser and A. Arcuri, “Whole Test Suite Generation,” Softw. Eng. IEEE
Trans., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[101] M. Shahbaz, P. McMinn, and M. Stevenson, “Automated Discovery of Valid Test
Strings from the Web Using Dynamic Regular Expressions Collation and Natural
Language Processing,” in Quality Software (QSIC), 2012 12th International
Conference on, 2012, pp. 79–88.

[102] S. Yoo and M. Harman, “Pareto Efficient Multi-objective Test Case Selection,” in
Proceedings of the 2007 International Symposium on Software Testing and
Analysis, 2007, pp. 140–150.

[103] M. J. Zaki, “Efficiently mining frequent trees in a forest: algorithms and
applications,” Knowl. Data Eng. IEEE Trans., vol. 17, no. 8, pp. 1021–1035,
2005.

[104] J. Punin, M. Krishnamoorthy, and M. Zaki, “LOGML: Log Markup Language for
Web Usage Mining,” in WEBKDD 2001 — Mining Web Log Data Across All
Customers Touch Points, vol. 2356, R. Kohavi, B. Masand, M. Spiliopoulou, and
J. Srivastava, Eds. Springer Berlin / Heidelberg, 2002, pp. 273–294.

[105] M. J. Zaki and C. C. Aggarwal, “XRules: an effective structural classifier for
XML data,” in Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2003, pp. 316–325.

[106] W. Lian, D. W. -l. Cheung, N. Mamoulis, and S.-M. Yiu, “An efficient and
scalable algorithm for clustering XML documents by structure,” Knowl. Data
Eng. IEEE Trans., vol. 16, no. 1, pp. 82–96, 2004.

 160

[107] M. Kouylekov and B. Magnini, “Recognizing textual entailment with tree edit
distance algorithms,” in Proceedings of the First Challenge Workshop
Recognising Textual Entailment, 2005, pp. 17–20.

[108] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility testing,” in
Software Engineering (ICSE), 2011 33rd International Conference on, 2011, pp.
561–570.

[109] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-Based Automatic Testing of
Modern Web Applications,” Softw. Eng. IEEE Trans., vol. 38, no. 1, pp. 35–53,
2012.

[110] R. Connor, F. Simeoni, M. Iakovos, and R. Moss, “A bounded distance metric for
comparing tree structure,” Inf. Syst., vol. 36, no. 4, pp. 748–764, 2011.

[111] D. Buttler, “A Short Survey of Document Structure Similarity Algorithms,” in
The 5th International Conference on Internet Computing, 2004.

[112] P. Bille, “A survey on tree edit distance and related problems,” Theor. Comput.
Sci., vol. 337, no. 1–3, pp. 217–239, 2005.

[113] A. Muller-Molina, K. Hirata, and T. Shinohara, “A Tree Distance Function Based
on Multi-sets,” in New Frontiers in Applied Data Mining, vol. 5433, S. Chawla,
T. Washio, S. Minato, S. Tsumoto, T. Onoda, S. Yamada, and A. Inokuchi, Eds.
Springer Berlin / Heidelberg, 2009, pp. 87–98.

[114] L. Kaufman, P. J. Rousseeuw, and others, Finding groups in data: an introduction
to cluster analysis, vol. 39. Wiley Online Library, 1990.

[115] W. Zuo, D. Zhang, and K. Wang, “On kernel difference-weighted k-nearest
neighbor classification,” Pattern Anal. Appl., vol. 11, no. 3, pp. 247–257, 2008.

[116] E. Alpaydin, “Support Vector Machines,” in Introduction to Machine Learning,
Second edi., The MIT Press, 2004, pp. 218–225.

[117] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki, “Xproj: a framework for
projected structural clustering of xml documents,” in Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data
mining, 2007, pp. 46–55.

[118] F. Hadzic and M. Hecker, “Alternative Approach to Tree-Structured Web Log
Representation and Mining,” in Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, 2011,
vol. 1, pp. 235–242.

[119] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance between
trees and related problems,” SIAM J. Comput., vol. 18, no. 6, pp. 1245–1262,
1989.

 161

[120] K.-C. Tai, “The Tree-to-Tree Correction Problem,” J. ACM, vol. 26, no. 3, pp.
422–433, Jul. 1979.

[121] J. T. L. Wang and K. Zhang, “Finding similar consensus between trees: an
algorithm and a distance hierarchy,” Pattern Recognit., vol. 34, no. 1, pp. 127–
137, 2001.

[122] A. Nierman and H. V Jagadish, “Evaluating structural similarity in XML
documents,” in Proc. 5th Int. Workshop on the Web and Databases (WebDB
2002), Madison, Wisconsin, USA, 2002, pp. 61–66.

[123] E. Tanaka and K. Tanaka, “The tree-to-tree editing problem.,” INT. J. PATTERN
RECOG. ARTIF. INTELL., vol. 2, no. 2, pp. 221–240, 1988.

[124] G. Valiente, “An efficient bottom-up distance between trees,” in String
Processing and Information Retrieval, 2001. SPIRE 2001. Proceedings.Eighth
International Symposium on, 2001, pp. 212–219.

[125] K. Zhang, “Algorithms for the constrained editing distance between ordered
labeled trees and related problems,” Pattern Recognit., vol. 28, no. 3, pp. 463–
474, 1995.

[126] T. Jiang, L. Wang, and K. Zhang, “Alignment of trees - an alternative to tree
edit,” Theor. Comput. Sci., vol. 143, no. 1, pp. 137–148, 1995.

[127] S. M. Selkow, “The tree-to-tree editing problem,” Inf. Process. Lett., vol. 6, no. 6,
pp. 184–186, 1977.

[128] S. Y. Lu, “A Tree-Matching Algorithm Based on Node Splitting and Merging,”
Pattern Anal. Mach. Intell. IEEE Trans., vol. PAMI-6, no. 2, pp. 249–256, Mar.
1984.

[129] S. Helmer, “Measuring the structural similarity of semistructured documents using
entropy,” in Proceedings of the 33rd international conference on Very large data
bases, 2007, pp. 1022–1032.

[130] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-structured
data,” in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 754–765.

[131] D.-I. S. Rönnau, “Efficient Change Management of XML Documents,”
Universität der Bundeswehr München, 2010.

[132] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change
Detection in Hierarchically Structured Information,” in Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, 1996, pp. 493–
504.

 162

[133] G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in XML
documents,” in Data Engineering, 2002. Proceedings. 18th International
Conference on, 2002, pp. 41–52.

[134] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of Code
Clone Detection Techniques and Tools: A Qualitative Approach,” Sci. Comput.
Program., vol. 74, no. 7, pp. 470–495, May 2009.

[135] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection
using abstract syntax trees,” in Software Maintenance, 1998. Proceedings.,
International Conference on, 1998, pp. 368–377.

[136] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese, “Fast detection of
XML structural similarity,” Knowl. Data Eng. IEEE Trans., vol. 17, no. 2, pp.
160–175, 2005.

[137] P. J. F. Groenen and K. Jajuga, “Fuzzy clustering with squared Minkowski
distances,” Fuzzy Sets Syst., vol. 120, no. 2, pp. 227–237, 2001.

[138] M. J. Zaki, “CSLOG data set.” [Online]. Available:
http://www.cs.rpi.edu/~zaki/software/logml/.

[139] “XML SIGMOD Record.” [Online]. Available:
http://www.sigmod.org/publications/sigmod-record/xml-edition.

[140] “Treebank data set.” [Online]. Available:
http://www.cs.washington.edu/research/xmldatasets/.

[141] R. Rifkin and A. Klautau, “In Defense of One-Vs-All Classification,” J. Mach.
Learn. Res., vol. 5, pp. 101–141, Dec. 2004.

[142] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software: an update,” SIGKDD Explor. Newsl., vol. 11,
no. 1, pp. 10–18, Nov. 2009.

[143] C.-C. Chang and C.-J. Lin, “{LIBSVM}: A library for support vector machines,”
ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, 2011.

[144] R. B. Cattell, “The Scree Test For The Number Of Factors,” Multivariate Behav.
Res., vol. 1, no. 2, pp. 245–276, 1966.

[145] Q. Zhao, V. Hautamaki, and P. Fränti, “Knee Point Detection in BIC for Detecting
the Number of Clusters,” in Advanced Concepts for Intelligent Vision Systems,
vol. 5259, Springer Berlin / Heidelberg, 2008, pp. 664–673.

[146] X. Tolsa, “Principal values for the Cauchy integral and rectifiability,” Am. Math.
Soc., vol. 128, no. 7, pp. 2111–2119, 2000.

 163

[147] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ‘Kneedle’ in a
Haystack: Detecting Knee Points in System Behavior,” in Distributed Computing
Systems Workshops (ICDCSW), 2011 31st International Conference on, 2011, pp.
166–171.

[148] R. Santelices, M. J. Harrold, and A. Orso, “Precisely Detecting Runtime Change
Interactions for Evolving Software,” in Software Testing, Verification and
Validation (ICST), 2010 Third International Conference on, 2010, pp. 429–438.

[149] R. Santelices and M. J. Harrold, “Exploiting Program Dependencies for Scalable
Multiple-path Symbolic Execution,” in Proceedings of the 19th International
Symposium on Software Testing and Analysis, 2010, pp. 195–206.

[150] “NanoXML.” [Online]. Available:
http://nanoxml.sourceforge.net/orig/NanoXML-Java/introduction.html.

[151] “StAX.” [Online]. Available: http://stax.codehaus.org/.

[152] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Systematic Generation of XML
Instances to Test Complex Software Applications,” in Rapid Integration of
Software Engineering Techniques, 2007, vol. 4401, pp. 114–129.

[153] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Automatic Test Data
Generation for XML Schema-based Partition Testing,” in Proceedings of the
Second International Workshop on Automation of Software Test, 2007, p. 4–.

[154] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “TAXI--A Tool for XML-Based
Testing,” in Companion to the Proceedings of the 29th International Conference
on Software Engineering, 2007, pp. 53–54.

[155] N. Havrikov, M. Höschele, J. P. Galeotti, and A. Zeller, “XMLMate: evolutionary
XML test generation,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 719–722.

[156] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation for Object-
oriented Software,” in Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, 2011,
pp. 416–419.

[157] R. Feldt and S. Poulding, “Finding test data with specific properties via
metaheuristic search,” in Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, 2013, pp. 350–359.

[158] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. Lyons, “ToXgene: An
extensible template-based data generator for XML,” in In WebDB, 2002, pp. 49–
54.

 164

[159] S. C. Lee and J. Offutt, “Generating test cases for XML-based Web component
interactions using mutation analysis,” in Software Reliability Engineering, 2001.
ISSRE 2001. Proceedings. 12th International Symposium on, 2001, pp. 200–209.

[160] J. Offutt and W. Xu, “Generating Test Cases for Web Services Using Data
Perturbation,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 5, pp. 1–10, Sep. 2004.

[161] W. Xu, J. Offutt, and J. Luo, “Testing Web services by XML perturbation,” in
Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International
Symposium on, 2005, p. 10 pp.–266.

[162] J. B. Li and J. Miller, “Testing the semantics of W3C XML schema,” in Computer
Software and Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, 2005, vol. 1, pp. 443–448 Vol. 2.

[163] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-based automatic test case
generation for Web services testing,” in Service-Oriented System Engineering,
2005. SOSE 2005. IEEE International Workshop, 2005, pp. 207–212.

[164] P. Vanderveen, M. Janzen, and A. F. Tappenden, “A Web Service Test
Generator,” in Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, 2014, pp. 516–520.

[165] H. M. Sneed and S. Huang, “WSDLTest - A Tool for Testing Web Services,” in
Web Site Evolution, 2006. WSE ’06. Eighth IEEE International Symposium on,
2006, pp. 14–21.

[166] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A WSDL-
based Testing Tool for Web Services,” in Software Testing Verification and
Validation, 2009. ICST ’09. International Conference on, 2009, pp. 326–335.

[167] M. Hennessy and J. F. Power, “An Analysis of Rule Coverage As a Criterion in
Generating Minimal Test Suites for Grammar-based Software,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, 2005, pp. 104–113.

[168] D. Hoffman, H.-Y. Wang, M. Chang, D. Ly-Gagnon, L. Sobotkiewicz, and P.
Strooper, “Two case studies in grammar-based test generation,” J. Syst. Softw.,
vol. 83, no. 12, pp. 2369–2378, 2010.

[169] G. Manco and E. Masciari, “XML Class Outlier Detection,” in Proceedings of the
16th International Database Engineering & Applications Sysmposium, 2012,
pp. 155–164.

