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Abstract 

Software testing is an expensive task that consumes around half of a project’s effort. To 

reduce the cost of testing and improve the software quality, test cases can be produced 

automatically. Random Testing (RT) is a low cost and straightforward automated test 

generation approach. However, its effectiveness is not satisfactory. To increase the 

effectiveness of RT, researchers have developed more effective test generation 

approaches such as Adaptive Random Testing (ART) which improves the testing by 

increasing the test case coverage of the input domain. 

This research proposes new test case generation methods that improve the effectiveness 

of the test cases by increasing the diversity of the test cases. Numerical, string, and tree 

test case structures are investigated. For numerical test generation, the use of Centroidal 

Voronoi Tessellations (CVT) is proposed. Accordingly, a test case generation method, 

namely Random Border CVT (RBCVT), is introduced which can enhance the previous 

RT methods to improve their coverage of the input space. The generated numerical test 

cases by the other methods act as the input to the RBCVT algorithm and the output is an 

improved set of test cases. An extensive simulation study and a mutant based software 

testing investigation have been performed demonstrating that RBCVT outperforms 

previous methods. 

For string test cases, two objective functions are introduced to produce effective test 

cases. The diversity of the test cases is the first objective, where it can be measured 

through string distance functions. The second objective is guiding the string length 

distribution into a Benford distribution which implies shorter strings have, in general, a 

higher chance of failure detection. When both objectives are enforced via a multi-

objective optimization algorithm, superior string test sets are produced. An empirical 

study is performed with several real-world programs indicating that the generated string 
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test cases outperform test cases generated by other methods. 

Prior to tree test generation study, a new tree distance function is proposed. Although 

several distance or similarity functions for trees have been introduced, their failure 

detection performance is not always satisfactory. This research proposes a new similarity 

function for trees, namely Extended Subtree (EST), where a new subtree mapping is 

proposed. EST generalizes the edit base distances by providing new rules for subtree 

mapping. Further, the new approach seeks to resolve the problems and limitations of 

previous approaches. Extensive evaluation frameworks are developed to evaluate the 

performance of the new approach against previous methods. Clustering and classification 

case studies are performed to provide an evaluation against different tree distance 

functions. The experimental results demonstrate the superior performance of the 

proposed distance function. In addition, an empirical runtime analysis demonstrates that 

the new approach is one of the best tree distance functions in terms of runtime efficiency. 

Finally, the study on the string test case generation is extended to tree test case 

generation. An abstract tree model is defined by a user based on a program under the test. 

Then, tree test cases are produced according to the model where diversity is maximized 

through an evolutionary optimization technique. Real world programs are used to 

investigate the performance of generated test cases where superior performance of the 

introduced method is demonstrated compared to the previous methods. Further, the 

proposed tree distance function is compared against the previous functions in the tree test 

case generation context. The proposed tree distance function outperforms other functions 

in tree test generation. 
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1 Introduction 

1.1 Overview of Automated Software Testing  

Software testing is any activity aimed at evaluating an attribute or capability of a software 

and determining software bugs. Software testing is an important step in the software 

development lifecycle due to the high cost associated with software bugs found after 

deployment. This cost can be reduced by optimizing the input test cases of the automated 

test case generation system. Considering the fact that software plays an important role in 

many aspects of human life, software failures can produce significant financial losses as 

well as endangering human lives. Although software testing cannot assure bug free 

software, its role is critical in software development. According to a study commissioned 

by the Department of Commerce's National Institute of Standards and Technology 

(NIST), software errors cost the U.S. economy 59.5 billion dollars annually [1]. Further, 

Jones [2] reported that due to poor software quality 500 billion dollars are lost 

worldwide, per year. 

Accordingly, software testing consumes a significant portion of the software 

development budget. Studies have shown that often testing accounts for half of total 

project costs [3]. Since manual software testing is a labour-intensive task, the cost of 

testing is enormous, mostly because of the high cost of human resources. Manual testing 

is slow, leading to long time-to-market period, which increases the cost of software 

production. Further, human errors may be another drawback of manual testing. In 

addition, market pressures for the delivery of new functionality and applications have 

also never been stronger. The only practical solution to these difficulties is to automate 

the software testing process. Automated software testing has been introduced as an 

approach to reduce the cost and speed up the testing process. Further, it enhances the 

manual testing effort by increasing the testing coverage leading to higher software 

quality. 

As indicated in Figure 1.1, a testing framework has three major components including 

test case generation, test case harness (execution), and a test oracle. Test case generation 

is the first step of the testing process. This component generates test cases where the 

objective is generating test cases with maximum coverage of the input space. In other 

words, the objective is generating minimum number of test cases that detects maximum 
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number of failures. The second step of the testing process that needs to be automated is 

test case harness which, in general, has two responsibilities. First, it executes the test 

cases generated in the previous step; and second, it captures the results that will be used 

in the oracle. 

Test case 
generation

Test case 
harness 

(execution)
Test oracle

Software Under the Test (SUT) 

Software testing

 
Figure 1.1. Software testing steps. 

An oracle is a mechanism used in the testing process for determining whether a test has 

passed or failed [4]. To achieve this objective which is usually the most complicated part 

of the automated testing, the following two tasks need to be performed by the oracle: 

1. The oracle must generate the expected results. The expected results are the outputs 

that the oracle determines that software should generate for the given input. 

2. The second task is comparing the captured output(s) to the expected output(s) and 

then determining whether a test has passed or failed. 

The testing can be automated in part of the process, for example, the test case generation 

and harness can be automated, while analyzing the results are performed manually 

(human oracle). Many industrial tools [5] for automated testing, that are sold for very 

high prices, only automate the test case harness component. That is, the user still needs to 

define test cases as well as the expected results. From an academic perspective, this level 

of automation is not considered automated testing. In fact, test case harness is the easy 

part, whereas automated test oracle and an effective automated test case generator are the 

difficult parts. For small systems, manual test case generation is easy to write and 

maintain. However, as systems become more complicated and the number of bugs 

increases, manual test generation is not effective and cost sensitive.  

Automated test case generation can be divided into black-box testing and white-box 

testing. In black-box test generation, the automated test generation tool has no access to 
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the source code. Therefore, these methods are independent from the language of the 

source code. As a result, black-box testing methods are very general and independent of 

the programming language; all that is needed is the structure of the inputs and the outputs 

of the program under test. However, white-box test generation tools read and analyze the 

source code to generate test cases.  

1.2 Random Testing and Input Coverage 

Random Testing (RT) [6] is a straightforward black-box testing approach. RT’s 

application in industry includes Dot NET error detection [7], security assessment [8], [9], 

Java Just-In-Time (JIT) compilers [10], and Windows NT robustness assessment [11]. 

Many companies use RT to detect security bugs; e.g. the Trustworthy Computing 

Security Development Lifecycle document (SDL) [12] states that fuzzing, a form of RT, 

is a key tool for security vulnerability detection. 

RT is interesting since it has a low computational cost and is easy to implement. 

However, RT is not very effective regarding fault detection. According to various 

empirical studies, e.g. [13]–[17], faults usually occur in continuous regions within the 

input domain. This is referred to as error crystals by Finelli [14]. This means that faults 

are often clustered in the input space [18]. Accordingly, a diverse set of test cases that has 

a better coverage of the input domain has a greater chance of detecting a fault. As a 

result, RT’s failure detection performance can be improved if test cases are distributed 

more diversely in the input space. RT test cases for a 2-dimensional space are presented 

in Figure 1.2, where RT’s failure to evenly distributed test cases is demonstrated. That is, 

there is no test case in region one, while there are 14 test cases in region two. 

 
Figure 1.2. RT fails to evenly distribute the test cases throughout the input domain. No test 

cases is produced in region one by the RT generator, whereas we have 14 test cases in region 
two with a same size. 
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Adaptive Random Testing (ART) approaches [19]–[21] were developed to enhance the 

performance of RT. ART approaches generate more effective test cases by producing 

more diverse test cases across the input domain. Therefore, the probability of fault 

detection is improved [19]. 

1.3 The Focus of This Research 

In this research, we limit our scope to black-box automated test case generation and 

hence, we introduce approaches to generate more effective test cases. Since black-box 

testing is a common testing strategy, any improvement in this domain could produce a 

significant improvement. Accordingly, the objective is to generate a diverse set of test 

cases. As explained in the previous section, failure usually occur in failure crystals or 

failure regions according to several empirical studies, e.g. [13]–[17]. Hence, it is believed 

that a diverse set of test cases is more likely to produce more effective test cases in the 

context of black-box testing.  

To achieve this, we develop new test case generation methods for three data structures as 

test cases; numerical, string, and tree test cases. Hence, any program that accepts one of 

these types as input or the input that can be modeled by one of these data structures can 

be tested. 

Accordingly, in chapter 2, numerical test case generation is studied where we introduced 

a new test generation method which is compared against the previous black-box 

numerical test case generators. We investigate the numerical test generation for higher 

dimensions than two. Further, the runtime of the new method is optimized and compared 

against the previous methods. 

Following that, string test cases are investigated in chapter 3. A few string test case 

generation methods are investigated and compared. We indicate that with multi-objective 

optimization where diversity and string size distribution are the objectives, more effective 

test cases can be generated. We also investigate the performance of a few string distance 

functions which are part of string test generation. 

In chapter 4, we propose a new tree similarity and/or distance function which works 

based on tree mappings. We empirically investigate the performance of the new function 

compared to other tree distance functions in clustering and classification applications. We 

introduce this tree distance function to later use it in a tree test generation framework in 
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the next chapter.  

Finally, we study tree test case generation in chapter 5. Test case generation methods 

from the string generation chapter are ported to generate trees based on an abstract tree 

model. Again test generation methods are evaluated in an empirical framework. 

Furthermore, the proposed tree distance function is compared against the other tree 

distance functions in the context of test cases generation.  
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2 Numerical Test Data Generation Using Centroidal 

Voronoi Tessellation  

Although Random Testing (RT) is low cost and straightforward, its effectiveness is not 

satisfactory. To increase the effectiveness of RT for numerical test case generation, 

researchers have developed Adaptive Random Testing (ART) and Quasi-Random Testing 

(QRT) methods which attempt to maximize the test case coverage of the input domain. 

This chapter proposes the use of Centroidal Voronoi Tessellations (CVT) to address this 

problem. Accordingly, a test case generation method, namely Random Border CVT 

(RBCVT), is proposed which can enhance the previous RT methods to improve their 

coverage of the input space. The generated test cases by the other methods act as the 

input to the RBCVT algorithm and the output is an improved set of test cases. Therefore, 

RBCVT is not an independent method and is considered as an add-on to the previous 

methods. An extensive simulation study and a mutant based software testing investigation 

have been performed to demonstrate the effectiveness of RBCVT against the ART and 

QRT methods. Results from the experimental frameworks demonstrate that RBCVT 

outperforms previous methods. In addition, a novel search algorithm has been 

incorporated into RBCVT reducing the order of computational complexity of the new 

approach. To further analyze the RBCVT method, randomness analysis was undertaken 

demonstrating that RBCVT has the same characteristics as ART methods in this regard. 

2.1 The Focus of This Chapter 

In this chapter, we propose a new test case generation approach, namely Random Border 

Centroidal Voronoi Tessellations (RBCVT) which utilizes Centroidal Voronoi 

Tessellations (CVT). The proposed RBCVT approach enhances the existing state-of-the-

art test case generation techniques. Specifically, we will demonstrate that RBCVT: 

1. Is able to produce a superiorly distributed set of test cases when compared to RT, 

ART, and QRT; 

2. Still retains the random nature of RT; and, 

3. Can be optimized to have linear execution characteristics across a wide set of 

situations.  
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RBCVT is not an independent method to generate input test cases. It considers other test 

case generation methods as an input and increases software testing effectiveness by 

spreading the test cases more diversely throughout the input domain. In addition, a novel 

search algorithm is proposed to enhance the computational complexity of the RBCVT 

test case generation from a quadratic to linear runtime order.  

In addition to the even distribution of test cases over the input space, the degree of 

randomness 1) within a set of test cases; and 2) between multiple sequences of test sets, is 

an important aspect. The test cases’ randomness is critical in avoiding systematic poor-

performance in certain situations (that is, where a non-random sequence could 

significantly (negatively) correlate with a current set of defects). Similarly, in regression-

type testing, we can prevent inefficient testing if test cases are uncorrelated with respect 

to each other, meaning a high degree of randomness. The proposed RBCVT approach 

seeks to generate a more effective sequence of test cases with respect to software testing 

practice, while retaining the degree of randomness possessed by RT and ARTs methods. 

This, randomness requirement, is investigated using Kolmogorov complexity which 

provides a new class of distances appropriate for measuring similarity relations between 

sequences [22], [23]. 

2.2 Notations Used in This Chapter 

The following notations and assumptions are provided to simplify the discussion in the 

rest of this chapter. 

• I  denotes the input space which is considered a two-dimensional unit hypercube 

( 2[0,1]I = ).  

• H  denotes the area outside I which is defined as 2  [0 ,1 ]H h h I= − + −  where the 

width of H is indicated by h. 

• d  denotes the dimension of a test case or input space. 

•   denotes the size of a set.  

• T  denotes selected test cases on I generating a test set ( 1{ }T
i iT t == ). 

• B  denotes a random background point set on H I∪  regarding the RBCVT 

calculation algorithm ( j 1{b }B
jB == ). 

• R  denotes a random border point set on H which simulates random borders in 
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RBCVT approach ( n 1{r }R
nR == ). 

• TR  denotes the combination of T and R which is defined as T
1{ } R

m mTR T R tr == ∪ =  

where TR T R= + . 

• iV  denotes a Voronoi region (a cell in Voronoi tessellation).  

• ( ),dist p q  denotes the Euclidian distance between points p  and q .  

• ( ),p Tβ  denotes nearest point of T  to the point p .  

• ( ).O  represents the runtime order of an approach.  

• ( )argmax .  returns the index of an element with maximum value.  

• θ  denotes the failure rate.  

• std  denotes the standard deviation.  

• ⊕  is the bit-by-bit exclusive-or operator.  

• ( )
1,...,

XOR .
j k=

 denotes the bit-by-bit exclusive-or for the specified range. 

• NG  represents the number of cells in each dimension of the grid with respect to 

RBCVT-Fast algorithm. 

• avgC  denotes the average number of points in each cell. 

• ( ).Round  returns the nearest integer value to the input data. 

• lC  is a set which contains all the cells in layer l where each cell in lC  is denoted by 

lmc . 

• ( ),c j lmdist b c  indicates the minimum Euclidian distance between the point jb  and 

the cell lmc . 

• ( ),l jdist b l  represents the minimum Euclidian distance between point jb  and cells in 

layer l. 

• ( ), c j lmb cb  denotes nearest child of lmc  to the point jb .  

• winnertr  denotes a point of TR with minimum Euclidian distance from jb . 

• ( ).RTime  denotes a runtime of an algorithm or a method. 

• ( )Tϕ  indicates the preprocessing function which preforms the required processing 

on T  regarding randomness analysis.  
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• ( )CR T  represents the compression ratio of T .  

• ( ).δ  denotes the Kolmogorov complexity of the input data.  

• ( ),i jNCD T T  represents the normalized compression distance between iT  and jT . 

2.3 Current Approaches 

2.3.1 Adaptive Random Testing (ART) 

Adaptive Random testing methods seek to resolve the deficiencies of RT demonstrated in 

Figure 1.2. These methods seek to retain the random nature of RT, while providing a 

more “even distribution” of the sequence of test cases across the input domain.  Since the 

introduction of ART by Chen et al. [18] a variety of different ART methods have been 

proposed, including Fixed Size Candidate Set (FSCS) [18], [24], [25], Restricted Random 

Testing (RRT) [26], Mirror Adaptive Random Testing (M-ART) [27], Adaptive Random 

Testing by Bisection (ART-B) [28], Adaptive Random Testing by Random Partitioning 

(ART-RP) [29], ART through Iterative Partitioning (IP-ART) [30], ART based on 

distribution metrics [31], and Evolutionary Adaptive Random Testing (EAR) [19]. 

The ART methods are developed based on the observation that failures occur in failure 

regions which are clustered within the input domain. Each of these methods possesses 

strengths and weaknesses regarding efficient test case generation and computational 

complexity. Via empirical investigations, Mayer et al. [32] concluded that FSCS [18], 

[24], [25] and RRT [26] were the best ART methods. Subsequently, Tappenden and 

Miller [19] introduced EAR and demonstrated that this method has superior performance 

than FSCS and RRT. Hence, we compare RBCVT's performance against these methods. 

In each of these ART techniques, the first test case is generated randomly and subsequent 

test cases are based on each method's specific algorithm. 

2.3.1.1 Fixed Size Candidate Set (FSCS) 

FSCS uses a distance based algorithm to generate test cases [18]. In this method, a fixed 

size candidate set is used to produce test cases. A set of k  randomly generated 

candidates, cd , are evaluated against all previously selected test cases and a candidate 

with largest distance from previously executed test cases is selected as 

 ( )( )( )
1,...,

arg max , , ,j jj k
J dist cd cd Tβ

=
=   (2.1) 
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where jcd  denotes the j th candidate; and J  represents the index of the selected 

candidate as a next test case. The computational requirement for this method is 
2(| |) (| | )FSCS T O T∈  due to the computation of the distance between candidates and 

each previously generated test case [19], [32].  

2.3.1.2 Restricted Random Testing (RRT) 

RRT [26] also uses a distance based algorithm to generate test cases via a circular 

exclusion zone [32] centered around each previously generated test case. The radius of 

each exclusion zone is determined using a constant coverage ratio (γ ), which is the sum 

of the areas of all the existing exclusion zones divided by the total area of the input 

domain. A candidate test case ( jcd ) is generated randomly, and disregarded, if it is 

within the exclusion zone of any other test case, i.e. if the following inequality is true. 

 ( )( ), , .j jdist cd cd T
T
γβ

π
<   (2.2) 

This process is repeated until an appropriate candidate is found [26]. Calculation of the 

algorithm's computational efficiency is not straight forward, given the stochastic nature 

of the technique. However, it has been demonstrated empirically that the average runtime 

order is within 2(| |) (| | log(| |))RRT T O T T∈  [32]. 

2.3.1.3 Evolutionary Adaptive Random Testing (EAR) 

EAR uses an evolutionary approach to find an approximation for the test case that has the 

maximum distance from all the previous test cases [19]. For each test case, a pool of k  

(population size) random candidates is generated. This population is evolved until a 

stopping criterion is met. This approach is encoded using two genes in each chromosome. 

Each gene is a number representing the value for one of the two dimensions. The 

evolution is based upon a Euclidean distance-based fitness function [19] 

 ( ) ( )( ), , , ,j j jFitness ch T dist ch ch Tβ=   (2.3) 

where jch  represents a chromosome. Single-point crossover was applied to the two 

chromosomes to generate an offspring evolving the population. When the stopping 

criterion is met, the best chromosome is selected as the next test point according to the 

fitness function. The runtime of this algorithm [19] is in the order of quadratic time 
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( 2(| |) (| | )EAR T O T∈ ). 

It is worthwhile to note that there are two sub-optimum techniques, introduced in 

previous ART studies, to reduce the ART computational complexity, namely mirroring 

[27] and forgetting [33]. Both techniques can be applied to all the studied ART methods. 

Producing the next test case gets more time consuming as the number of test cases grows. 

Accordingly, the technique of forgetting only considers a constant number of previous 

test cases when designing a new test case, not all of them. It makes the new test case 

design independent of |T|, leading to a one order reduction in the overall time complexity. 

In mirroring, ART is only applied to a part of the input domain and then the designed test 

cases are mirrored to other parts. Obviously, there is a trade-off between effectiveness 

and computational complexity, if the techniques of mirroring and forgetting are applied. 

2.3.2 Quasi-Random testing (QRT) 

In addition to ART, the use of quasi-random sequences in software testing has been 

recently proposed [34], [35] for numerical test case generation. Quasi-random sequences 

are mathematically developed sequences which are rigorously designed to produce low-

discrepant sample points in a d -dimensional hypercube. They fill the space more 

uniformly than uncorrelated random points. It has been observed [34], [35] that using 

these sequences as input test case generators produces better results than RT in software 

testing. However, it has not been shown that their results are better than ART methods. 

Until now various quasi-random sequences have been constructed including Sobol [36], 

Halton [37], Niederreiter [38], Faure [39], and Hammersley [40]. In this chapter, we 

consider the following quasi-random sequences. 

2.3.2.1 The Halton Sequence 

The Halton sequence has been derived from Van der Corput sequence [35] which is 

defined as 

 ( ) 1

0
Φ ‍ ,

k
j

b j
j

n n b− −

=

= ∑   (2.4) 

where jn  is the j th digit of n  in the base b ; and k  denotes the lowest integer that 

makes 0jn = , for all j k> . The Halton sequence can be seen as the natural d -

dimensional extension of the Van der Corput sequence. The Halton sequence generates 
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values deterministically using prime numbers as its base. The standard Halton sequence 

performance is good in low dimensions, whereas in large dimensions a correlation 

problem between sequences generated in different dimensions appears [41]. As a remedy, 

several scrambling and randomization methods have been introduced [41]. 

2.3.2.2 The Sobol Sequence 

The Sobol sequence [36] has been proposed for software testing by Chi and Jones [35]. 

The Sobol sequence can be considered as a permutation of the binary Van der Corput 

sequence in each dimension [35] and is defined by the following equations. 

 ( ) ( )
1, ,

XOR ,j jj k
Sobol n n w

= …
=   (2.5) 

 
1,...,

XOR ,
2 2

i j i j r
j j j ri r

w w
w

α − −
+=

 
= ⊕ 

 
  (2.6) 

where jn  is the j th digit of n  in binary, k  represents the number of digits of n  in 

binary, and ( )Sobol n  denotes n th element of the Sobol sequence. To construct a Sobol 

sequence, we need to choose a primitive polynomial of degree r  with { }0,1iα ∈  

coefficients. The required computational overhead for the Sobol generator is within the 

order of 2(| |) (log(| |) )Sobol T O T∈  [42]. This low computational cost is the primary 

advantage of QRT compared to ART approaches. 

2.3.2.3 The Niederreiter Sequence 

The Niederreiter sequence was introduced in 1988 [38] and provides a general form for 

quasi-random sequences. This sequence has provided a good reference for other quasi-

random sequences, as all of these methods can be described in terms of what Niederreiter 

called ( ),t s -sequence. The discrepancy of this sequence is lower than any other known 

sequence [34]. Chen et al. [34] has proposed this sequence for test case generation where 

a large number of test cases are required. 

2.4 Centroidal Voronoi Tessellation (CVT) 

In this section, we introduce the concept of CVT and discuss approaches to its calculation 

as well as its application to software testing. A Voronoi diagram (Voronoi tessellation) is 

a decomposition of a space, in our case a unit hypercube, into a set of cells (Voronoi 
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regions) such that i jV V ∅=  for i j≠ ; and 1 ‍ 11k
i iV= = , where iV  is a Voronoi region 

and k is the number of Voronoi regions. Each Voronoi region is associated with an object 

and consists of all the areas that are closer to that object than any other object. These 

objects are disjoint [43] and are referred to as the generators of the Voronoi diagram. In 

this chapter, an object is a point ( it ) and Euclidian distance is considered as a distance 

measure. The Voronoi region corresponding to the point it  is defined as 

 ( ) ( ){ }| 1,..., , : , , .i i jV x I j T j i dist x t dist x t= ∈ ∀ = ≠ <   (2.7) 

Centers of mass, centroids, of a Voronoi region ( iV ) is defined as 

 
( )

( )
*

‍
,

‍
i

i

V
i

V

x x dx
t

x dx

ρ

ρ
=
∫
∫

  (2.8) 

where ρ  is a density function defined in I. Centroids in the decomposed cells of a 

Voronoi tessellation possess characteristics that seem to have some advantages with 

respect to software testing. In Figure 2.1, adapted from [44], 10 randomly (RT or 

alternatively by using ART or QRT techniques) generated points are used as the 

generators or inputs to the system. Accordingly, the Voronoi regions have been formed 

corresponding to the generators and the centroid of each Voronoi region is indicated by a 

circle. As shown in this figure, the resulting circles are “more evenly distributed” 

compared to the input points making them more appropriate for software testing.   

 
Figure 2.1. The lines specify Voronoi regions corresponding to 10 randomly generated 

points. The points are Voronoi generators and the circles are the centroids of the Voronoi 
regions. 
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A CVT is a collection of Voronoi regions where their generator points are the centroids 

of the corresponding Voronoi regions [44]. This case is a special case; and the probability 

of a set of random generators having the same positions as the centroids is quite low. In 

general, the generators of Voronoi tessellations will not be at the same places as the 

centroids. An important property of CVT is that these special generators producing a 

CVT are not unique and we can have distinct CVTs within a d-dimensional unit 

hypercube [44], [45]. 

A CVT can be produced either deterministically or probabilistically [44]–[46]. A 

deterministic approach, such as Lloyd's method [44], produces a consistent output for 

every input. Whereas, a probabilistic approach, such as MacQueen's method [45], uses a 

random mechanism to generate a CVT leading to distinct outputs, for the same input set, 

in different runs allowing additional exploration of the input space. Since this is 

beneficial during testing scenarios (e.g. regression situations), we develop a probabilistic 

calculation approach in this study for the RBCVT test case generation method, which is 

introduced in Section 2.5.   

2.4.1 CVT and Software Testing 

In this section, we introduce the application of CVT in software testing as well as its 

desirable and undesirable features in this regard. CVT has been applied within the wide 

array of applications [44]. However, the use of this technique for improving RT, ART 

and QRT techniques is novel. The CVT methodology requires a set of initial points 

named generators. The use of the output from other test case generation methods (RT, 

ART, and QRT) is proposed as inputs (generators) to the CVT algorithm leading to an 

improved set of test cases. Chen and Merkel [47] presented a new calculation method for 

FSCS using Voronoi diagrams; they utilized Voronoi diagrams to develop a search 

algorithm with the ability to calculate ( ),jc Tβ  with a reduced computational 

complexity. This work is significantly different from our proposed use of Voronoi 

diagrams in test case generation, since they use Voronoi diagrams to speed up finding the 

nearest point in FSCS test case generation approach, whereas we use the centroids of 

Voronoi regions to improve the effectiveness of the test case generation. 

To indicate CVT’s effect on test cases, Figure 2.2 is presented. This figure indicates the 

generator (input) points for CVT (Figure 2.2a), points generated by RT, as well as the 

resultant points generated by CVT (Figure 2.2b). According to this figure, one can 
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observe that CVT points possess the following desirable properties: 

• The CVT points are more “evenly distributed” than their generators in the space. 

Since faults often occur in failure regions or error crystals, the CVT points are likely 

to detect a failure region more efficiently.  

• As discussed in the previous section, as CVT generates its (output) points by a 

probabilistic approach, the displayed points are not unique as the CVT process is 

stochastic. Furthermore, the input generators are generated using a random 

procedure, except for quasi-random points. Therefore, the output CVT points seem to 

possess “randomness” (the randomness will be investigated in Section 2.8).  

 
Figure 2.2. The (a) RT and (b) corresponding CVT points generated using a probabilistic 

approach. 

Further, the application of CVT to software testing requires a unique solution to the 

“boundary conditions” introduced by this domain. It is a well-established principle that 

the probability of a software defect is higher near the boundaries. In this regard, CVT 

needs to be extended to explicitly consider defect behavior near these boundaries. As 

indicated in Figure 2.2b, all the test cases near the borders have a relatively constant 

distance with the border. Accordingly, CVT is unable to generate test cases near or on the 

border. This undesirable feature is due to the traditional CVT definition. To solve this 

problem, we propose the novel RBCVT approach, which is presented in the next section. 

2.5 Proposed Test Case Generation Approach: Random Border 

CVT (RBCVT) 

In this section, we propose the novel RBCVT test case generation approach, which 

removes the undesirable feature of the CVT discussed in the previous section. In this 
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regard, we propose a RBCVT calculation approach and investigate its associated runtime 

order. In addition, we propose a novel search algorithm to reduce the computational 

complexity of RBCVT. Finally, we investigate the generalization of the RBCVT beyond 

two dimensions. 

RBCVT is based on defining an imaginary random border outside the real borders of I. In 

this regard, we introduce a set of random points (R) in H, which simulate an imaginary 

random border as discussed in the next section. In Figure 2.3, a set of RBCVT test cases 

is demonstrated as well as the random border points in H. As indicated in this figure, 

RBCVT effectively removes the aforementioned undesirable feature of the CVT. 

Accordingly, Figure 2.4 indicates the generator points of RBCVT (one for each of the 

seven test generation methods studied) in the left-hand side; and the resultant RBCVT 

points on the right-hand side. 

 
Figure 2.3. RBCVT test cases in I and the random border points (R) in H. 
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Figure 2.4. The (a) RT, (b) FSCS, (c) RRT, (d) EAR, (e) Sobol, (f) Halton, and (g) 

Niederreiter on the left and corresponding RBCVT points on the right. 
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2.5.1 RBCVT Calculation Method  

To calculate the RBCVT test cases using a set of generator points, we propose a 

probabilistic method as follows: 

Step1. Determine the initial set of 1{ }T
i iT t ==  as generators,  it I∈  where 1,...,i T= .  

Step2. Initialize a random border point set of 1{ }R
n nR r ==  in which ,nr H∈  where 

1,...,n R= . In addition, the combination of T and R is defined as 

T
1{ } R

m mTR T R tr == =  where TR T R= + . Each mtr  has an associated Voronoi 

cell named mV . 

Step3. Initialize a random background point set of 1{ }B
j jB b ==  in which ( )jb I H∈   

where 1,...,j B= .  

Step4. Cluster the B  into TR  cells such that ( ), ,j m m jb V tr b TRb∈ = .  

Step5. Calculate the centroids of Voronoi regions only for those mV  where the generator 

belongs to T, denoted by iV   (We do not need to update border points). For the 

probabilistic approach, (2.8) is simplified to *

1
j i

j i

jb V
i

b V

b
t ∈

∈

=
∑
∑

 where ρ  is set to a 

unit value in this application. 

Step6. Update the generators, it , where 1,...,i T=  are replaced with the corresponding 

*
it .  

Step7. Go to step3 until the stopping criterion is met. 

A stopping criterion can be 1) the distortion value between it  and *, 1, 2, , | |it i T= …  in 

each iteration, is reduced to less than a threshold; or 2) a constant number of iterations. 

Within this study, a constant number of 10 iterations has been selected. This stopping 

criterion was selected due to its perceived convergence amongst all trial runs of the 

algorithm. The parameter B  was set relative to the value of T , 100 T× . It has been 

observed that with 10 iterations and considering 100B T= × , the produced RBCVT test 

cases are in a stable situation and no further iterations were required to more uniformly 

distribute the generators. Finally, we need to specify how to generate random border 
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points of R. As indicated in Figure 2.3, we considered a set of square cells around I as H 

and a random point is inserted in each cell. The number of cells in each side of I is 

selected in accordance with the T  as Tα ×  where α  is a coefficient which is 

selected as 2α =  based upon an initial empirical exploration. Accordingly, 

R 4 Tα= × × . Finally, the h which is defined as the width of H, indicated in Figure 

2.3, is equal to a side of a square cell. 

2.5.1.1 RBCVT Runtime Analysis 

In this section, we discuss the order of computational complexity of the RBCVT 

algorithm. In each RBCVT iteration, the main computational load is associated with 

clustering the set B  (Step4). Since each jb  is clustered by comparing it to the all 

members of TR , each jb  clustering complexity grows linearly with TR  given by 

(| |) (| |)
jbRBCVT TR O TR∈ . Obviously, the runtime order of RBCVT is also dependent 

on | |B  and the number of iterations (held constant in this study), hence 

(| |,| |) (10 | | | |)RBCVT TR B O TR B∈ × × . Since the number of | | 100 | |B T= ×  grows 

linearly with T ; and TR T R= + , the previous equation can be simplified as 

( ) ( )( ),  R 1000 T RRBCVT T O T∈ × × + . However, the constant number of 1000 

becomes insignificant as T  grows. As a result, 2 1.5(| |) (| | 4 | | )RBCVT T O T Tα∈ + . 

Finally, we need to keep the term with highest order. Therefore, the runtime complexity 

of RBCVT grows within the order of quadratic time as 2(| |) (| | )RBCVT T O T∈ . 

2.5.2 RBCVT’s Runtime Order Reduction (RBCVT-Fast) 

The runtime of 2(| | )O T  which was calculated for the RBCVT method in the previous 

section, is the basic calculation method without any algorithmic optimizations. Hence, in 

this section, we propose an optimized RBCVT calculation method (RBCVT-Fast) using a 

novel search algorithm to generate test cases with a linear runtime given by 

( ) ( )RBCVTFast T O T∈ . Although there are some special search algorithms like R*-

tree [48], none of them are appropriate for our application. The steps of the new 

algorithm are similar to the previous section with an additional preprocessing step after 

Step3 that we call Step3B to prevent the renumbering of steps. Furthermore, Step4’s 
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calculation procedure is updated with a new algorithm.  

Each jb  in Step4 is clustered by comparing it to the all members of TR  given by 

( ),jb TRb . This process produces a linearly growing runtime with TR  for clustering jb , 

given by ( )( )
jbRBCVT TR O TR∈ . In contrast, we propose a novel search algorithm, 

specifically designed for RBCVT, which results in a constant runtime for clustering each 

jb . In other words, jb  clustering runtime is independent from the size of TR or T; and 

we will find the nearest mtr  to the jb  by comparing jb  to a constant number of points in 

TR. 

2.5.2.1 Preprocessing Step 

This section explains Step3B of the RBCVT-Fast algorithm that is intended to prepare 

,  1,...,mtr m TR=  for the search algorithm (proposed in the next section). As indicated in 

Figure 2.5, the preprocessing step involves defining a grid on H I∪ , which divides 

H I∪  into a set of cells, called grid cells. Consequently, each mtr  is placed in one of the 

cells, which is referred to as the parent cell for that  mtr . All the mtr  points that are in a 

cell are called child points of that cell. 

 
Figure 2.5. A grid divides ∪H I  into a set of cells. The points are , 1,...,=mtr  m TR  and the 

circle is jb . Cells in layer one regarding jb  are highlighted, as an example. 

In the preprocessing step, we determine each cell’s child points and store them in an 

array. The parent cell of each point is simply determined form the point’s coordinates. 
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The critical parameter in the preprocessing step that affects the runtime of RBCVT-Fast, 

is  avgC  which must be a constant for any size of TR.  We have informally (empirically) 

observed that avgC = 20, produces the most efficient algorithm with respect to runtime. 

Having the avgC  value, we can calculate the number of cells in each dimension, NG , 

given by 

 N
avg

T
G Round

C

 
 =
 
 

  (2.9) 

Consequently, the total number of cells in a two-dimensional space is N NG G× . 

2.5.2.2 A Novel Search Algorithm 

In this section, a novel search algorithm is discussed which reduces the linear runtime 

order of clustering jb  to a constant runtime. The main idea behind this search algorithm 

is that we do not need to compare the jb  with all of the mtr . As indicated in Figure 2.5, 

to find the nearest point to jb , we need to calculate the distance between jb  and the 

children of the adjacent cells, not all the cells. That is, we need to compare jb  with the 

children of lC  (a set which contains all the cells in layer l), where l starts from zero. 

Layer l includes all the cells that have a similar Chebychev distance from the cell with jb  

as a child. The highlighted cells in Figure 2.5 are in layer one. This algorithm starts by 

calculating ( ), winner c j lmtr b cb←  for layer zero where each cell of lC  is denoted by lmc  

( lmc  for layer zero is only one cell which is the cell parent of jb ). Then, we check that 

winnertr  is the nearest point to jb  by comparing ( ),j winnerdist b tr  with ( ),1l jdist b . If 

( ),j winnerdist b tr  < ( ) ,1l jdist b  then the process is finished and winnertr  is the nearest 

point of TR to jb . Otherwise, we have to compare jb  with the children of layer one’s 

cells and update winnertr , in case we found a closer point to jb . To reduce the runtime 

complexity, jb  is only compared with the children of those cells in layer one that 

( ) ( ), ,c j lm j winnerdist b c dist b tr< . This process will continue until we find the nearest 

point to jb . Pseudo code for the proposed search algorithm is indicated in Figure 2.6. 
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Figure 2.6. Pseudo code for the proposed search algorithm utilized in the RBCVT-Fast 
algorithm. 

2.5.2.3 RBCVT-Fast Runtime Analysis 

Although the proposed search algorithm does not guarantee that finding the nearest point 

to jb  is accomplished by comparing jb  with a constant number of points, empirical 

investigations have indicated that the average number of comparisons stays constant 

independent from the size of TR. Similarly, since |TR| is only dependent to |T|, the 

average number of comparisons is independent from |T|. Figure 2.7 represents the average 

number of points and cells compared to jb  in order to find winnertr  in a RBCVT-Fast 

calculation, where a RT test set is utilized as generator points. This graph is presented for 

different sizes of T with respect to the optimized avgC = 20. Since considering other ART 

and QRT approaches as initial generator points revealed similar results with RT as initial 

generator points, we only included RBCVT with RT as generator points to avoid 

duplication. 

begin 
    0l ←     // l  denotes the layer number 
    1MD ←   // MD indicates minimum distance 
    while ( ),l jdist b l MD<  do 

        for each cell in lC  do 

            if ( ),c j lmdist b c MD<  then 

                if ( )( ), ,j c j lmdist b b c MDb <  then 

                    ( ),winner c j lmtr b cb←  

                    ( ),j winnerMD dist b tr←  

                end if 
            end if 
        end for 
        1l l← + .  
    end while 
end 
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Figure 2.7. Average number of points/cells that are compared to jb  calculating the nearest 

point of TR to jb  in a RBCVT-Fast calculation, where a RT test set is utilized as generators. 

As indicated in Figure 2.7, we have produced a search algorithm that, on average, 

requires a constant number of comparisons to calculate ( ),jb TRb  leading to 

( )( ) 1
jbRBCVTFast TR O∈ . Another distinction between RBCVT and RBCVT-Fast 

regarding runtime is the preprocessing step that is included in the RBCVT-Fast. 

Obviously, the ( ) ( )10 TRPreprocessing TR O∈ ×  where 10 indicates the number of 

iterations. Accordingly, the total RBCVT-Fast runtime order is ( )10 1 10 TRO B× × + × . 

Similar to the discussion in Section 2.5.1.1, this runtime order can be simplified as 

( ) ( )O 1000 T 10 T 10 O 1010 T 40αR T+ + = + . Since we need to keep the term with 

highest order, the final runtime of the RBCVT-Fast algorithm is linear given by 

( ) ( )RBCVTFast T O T∈ . The linear runtime is also investigated in empirical runtime 

analysis section.  

2.5.3 Generalization of the RBCVT beyond two dimensions 

The concept of the RBCVT is not limited to a two-dimensional hypercube. As defined in 

Section 2.4 in (2.7), the Voronoi region related to it  is all the areas that are closer to it  

than any other point. Obviously, we can observe from the definition that the Voronoi 

region can be of any dimension, having an appropriate d-dimensional distance function. 

The distance function used in this study is Euclidian (l2-norm) which can be used in any 

dimension. To analyze the calculation of RBCVT for higher dimensions, we go through 
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the steps presented in Section 2.5.1 as well as the RBCVT-Fast calculation method as 

follows: 

• The initial generator set (T) in Step1 which are the result of other test case 

generation approaches (RT, ARTs, and QRTs), can be of any dimension since RT, 

ARTs, and QRTs can produce test cases beyond two dimensions. 

• To generate the random border points (R) in Step2, we define a set of cells around 

the d-dimensional input space hypercube and then we insert a random point in each 

cell which is straightforward. The number of cells in each dimension of the input 

space is selected as d Tα × . Accordingly, each side of the input space hypercube 

has ( ) 1d
d Tα

−
×  cells, since the dimension of each side of a d-dimensional unit 

hypercube is d-1. Finally, a d-dimensional unit hypercube has 2 d×  sides leading 

to the following equation for the number of cells which covers all borders of the 

input space. 

 ( ) 1
.2

d
dR d Tα

−
= × × ×   (2.10) 

• The background points (B) in Step3, are easy to generalize to higher dimensions, 

since we only need d-dimensional random numbers. 

• In Step3B regarding the preprocessing step of the RBCVT-Fast, we can define the 

grid on d dimensions rather than a two-dimensional hypercube. Then each d-

dimensional mtr  can be assigned to a cell of the grid. In addition, NG  for the d-

dimensional hypercube can be calculated by 

 .dN
avg

T
G Round

C

 
 =
 
 

  (2.11) 

• In the non-optimized RBCVT approach, Step4 is easy to calculate in any 

dimension as we compute the distance of each jb  with all , 1,2, , mtr m TR= …  with 

the d-dimensional Euclidian distance function. The algorithm of this step in the 

RBCVT-Fast is exactly equal to the pseudo code presented in Figure 2.6. The only 

changes are the generalization of ( ),l jdist b l , ( ),c j lmdist b c , and ( ),c j lmb cb  into d 
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dimensions. All of these functions require a d-dimensional Euclidian distance 

function which is available.  

• Finally, Steps 5-7, including the calculation and updating of the centroids ( *)it  can 

be calculated for any dimension. 

2.5.3.1 Runtime Analysis of d-dimensional RBCVT 

Looking precisely to the non-optimized RBCVT algorithm, one can observe that the only 

process dependent to the dimension is the distance function, and its runtime changes 

linearly with d. The number of comparisons is independent from d leading to 

( ) ( )2d,  RBCVT T O d T∈ × . This indicates a linear increase in ( )RTime RBCVT  as d 

grows. 

In the contrary, the order of ( )RTime RBCVTFast  is not linear with d since the number 

of required comparisons grows as d increases. The increasing number of cells in layer l as 

d increases is the cause of this issue. The number of cells in layer l increases 

exponentially as d grows leading to exponential increase in the number of distance 

comparisons. In addition, each distance comparison runtime grows linearly with d. As a 

result, the order of ( )RTime RBCVTFast  is given by 

( ) ( )d,  dRBCVTFast T O d E T∈ × ×  where E is a constant. Note that in a given d, 

( )RTime RBCVTFast  is still linear regarding |T|. 

Although the runtime complexity of RBCVT-Fast with respect to d is higher than the 

non-optimized RBCVT, the runtime complexity for RBCVT-Fast is lower with respect to 

|T| than the non-optimized RBCVT. Combining these two observations results in 

( ) ( )RTime RBCVTFast RTime RBCVT≤  for any |T| and d. That is, the number of 

comparisons in the RBCVT-Fast is less than or equal to the non-optimized RBCVT 

algorithm. According to (2.11), NG  reduces when d increases with constant avgC  and 

T , leading to an increasing ( )
( )

RTime RBCVTFast
RTime RBCVT

. With NG =1, the RBCVT and 

RBCVT-Fast are exactly equal since there is only one cell in the hypercube. In NG =3, 

the runtime of both approaches are similar, since the RBCVT-Fast uses layers 0 and 1 on 

average to find the nearest point. As NG  increases, the runtime effectiveness of the 
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RBCVT-Fast grows compared to the non-optimized RBCVT algorithm. To summarize, 

( ) ( )RTime RBCVTFast RTime RBCVT  when 3NG   leading to 3d
avg

T
C

  which is 

concluded from (2.11). Therefore, when the number of test cases is large enough, 

RBCVT-Fast algorithm is more efficient than non-optimized RBCVT algorithm 

regarding time complexity. 

2.6 Experimental Frameworks 

The conducted study to investigate the effectiveness of RBCVT against the ART and 

QRT methods is described in this section. We have designed two experimental 

frameworks: a simulation based and a mutant based software testing framework. The 

simulation framework utilizes three failure patterns derived from empirical studies [13]–

[17] investigating defect types. The mutant based software testing framework simulates 

defects in software by producing mutants within the code in a systematic fashion [49].  

For the mutant based software testing framework, we utilize the Briand and Arcuri [49] 

framework; this framework has been accepted via publication as a valuable mechanism 

for empirically exploring such mechanisms. This framework is based on 11 short 

mathematical programs that appear in the ART literature [17]. Both frameworks require 

an effectiveness measure to evaluate the results which is discussed in the following 

section.  

2.6.1 Testing Effectiveness Measure 

There are three well-known testing effectiveness measures, E-measure, P-measure, and 

F-measure. The E-measure is defined as the expected number of detected failures in a 

series of tests. Assuming the probability of a test case to detect a failure is θ , similar to a 

random test case, then the E-measure and its standard deviation are [50] 

 ,Emeasure T θ= ×   (2.12) 

 ( )1 .std Tθ θ= −   (2.13) 

The P-measure is defined as the probability of at least one failure being detected within a 

test set. Considering the number of test sets as tM  and the number of test sets that detect 

at least one failure as faultM , the P-measure can be estimated as /fault tM M . In addition, 
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in RT, the P-measure is equal to [50] 

 1 (1 ) .TPmeasure θ= − −   (2.14) 

The standard deviation associated with the calculation of a P-measure for RT can be 

approximated by [50] 

 2(1 ) (1 ) .T Tstd θ θ≈ − − −   (2.15) 

The last testing effectiveness measure is the F-measure which is defined as the number of 

test cases required to detect the first failure within the input domain. Chan et al. [26] have 

indicated that for RT the expected value of the F-measure is equal to 1θ − . The sampling 

distribution of the P-measure and the E-measure can be approximated by the normal 

distribution [50], whereas the probability distribution of the F-measure is geometric [50]. 

The main question that should be answered is: which of these measures best characterizes 

software testing? Since the software testing trend is toward automating the process, 

selecting a measure that best represents the operation of an Automated Testing System 

(ATS) is essential. When we consider the “desirable” aspects of automated software 

testing with respect to RT, ART, QRT, or RBCVT, it does impose certain constraints on 

the measurement process that must be adhered to: 

• ATS is intrinsically an automated technique at least on the test case generation side. 

This implies that the traditional incremental cost of manual production of a new, 

additional test case is minimized. ATS is characterized by: 1) a tester selecting an 

arbitrary large number of test cases to be produced; and 2) the ATS system 

producing the required volume of test cases.  

• Test case generation often seeks to generate values with a specific purpose, while 

we can generate truly random values and exercise them against the entire system. 

The huge dimension of the input space for modern software systems tends to imply 

that this “scatter gun” approach is ineffective. Instead, the tester will often have a 

specific testing objective and will attempt to generate a specific set of test cases 

under specific circumstances that answer this question. That is, the tester tends to 

test aspects of the system or sub-components of the system rather than blindly 

“attacking” the entire system. For example, automated security testing investigates 

an aspect of the system, and automated unit testing explores a sub-component. 
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Accordingly, the tester will require a large volume of test cases, possessing limited 

dimensions, which are cost effective for an automated testing process.  

• These large volumes of test sets are automatically applied to the system under test 

and the “outputs” from the system are automatically captured. The system under 

test is normally placed into a known state before each execution commences. The 

large volume of test cases implies that manual application of the test data is not a 

realistic option.  

• This input process results in large volumes of test results, again implying that the 

manual examination of every test result is prohibited by cost. Instead, two options 

are commonly deployed: 1) A Test Oracle is constructed. The test oracle typically 

has a simplified description of a defect. Does the system crash or not is an example 

of such a description. Here each crash is considered a "defect". The oracle either 

stops after finding the first crash or collects all of the crashes. Data about the 

crashes is presented to the tester for analysis. If the oracle collects multiple crashes, 

the system has no mechanism to understand if these crashes have the same root 

cause or are in fact independent. The tester may select to only investigate a subset 

of these multiple crashes to avoid excessive, potentially redundant (when crashes 

are in fact dependent) costs. 2) The output is investigated manually as a single 

integrated entity. Here the test results, or shorter proxies of the results, are sent to a 

log file or other recording mechanism. The tester inspects this mechanism after all 

the test runs are finished. Here the tester is looking for output values that look 

anomalous. Again, the tester may select one or more test results to explore more 

closely, However, the number of test results explored is always small to ensure a 

cost effective process.  

The above description of ATS is in correspondence with many ATS systems reported in 

the literature, including [7], [51], [52]. Accordingly, it is believed that this process is well 

characterized by the E- or the P-measure rather than F-measure. That is, the incremental 

viewpoint of the F-measure is not supported by the operation of these automated testing 

systems [7], [51], [52] in the operational profile discussed. Since in software testing, 

failure areas tend to be clustered [13], [14], [24], [53], detecting multiple failures are 

often redundant as it is indicative of multiple test cases discovering the same defect. This 

argument strongly suggests the use of the P-measure over the E-measure. Therefore, the 

P-measure is utilized in this study as an appropriate effectiveness measure for automated 
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software testing. 

Chen et al. [50] demonstrate that the F-measure has better statistical power than the P-

measure. However, this “performance difference” tends to zero as the number of 

measurements tends to infinity. It is believed that the above analysis effectively implies 

that this difference is essentially zero at the number of measurements utilized within this 

chapter.  

2.6.2 Parameters of Test Case Generation Methods 

A number of parameters are associated with each ART algorithm which are considered 

constant through all the experiments. We selected the value of these parameters as 

recommended in their respective works. The k  in FSCS method, representing the 

number of randomly selected candidates, is held constant at 10k =  based on the 

recommendation of Chen et al. [25]. Similarly, the coverage ratio in RRT method is 

considered constant at 1.5 due to recommendation of Chan et al. [53]. The EAR method 

[19] has several parameters regarding the evolutionary approach which are set to identical 

values to those reported in the original work [19]. The k  (population size) has been set to 

20 and the probability of crossover is set at 0.6. Furthermore, the probability of mutation 

is considered as 0.1, the size of the mutation was set at 0.01, and the stopping criterion is 

set to the constant number of 100 iterations. The parameters associated with RBCVT are 

in accordance with the values discussed in Section 2.5.1, the number of background 

points is set to 100 T×  and the number of RBCVT iterations is equal to 10 for all the 

tests.  

2.6.3 Simulation Framework 

For the simulation framework, we will introduce the utilized failure patterns, failure rate 

associated with each failure pattern, the number of test cases in each test set, and the 

number of test sets. These features are discussed in the next two sections. 

2.6.3.1 Failure Patterns and Failure Rates 

To be able to evaluate test case generation methods, we need to consider some parts of 

the input domain as a failure area, where a failure is produced when a test case is placed 

in this area. Several works have performed an empirical investigation through failure 

patterns within the input domain [13]–[17]. White and Cohen [15] indicated that failures 

usually occur on or near the boundary of (sub-) domains. As a result, failure areas form 
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types of strip patterns since domain boundaries form lines or hyper planes. Ammann and 

Knight [13] explain that failure regions seem to be locally continuous. They present two-

dimensional empirical failure patterns that possess similarities to rectangular geometry. 

Similarly, Finelli [14] describes that there are continuous regions, called error crystals 

that produce failures. Bishop [16] also explains continuous failure regions that are much 

more angular and elongated than a pure “blob” [17]. Schneckenburger and Mayer [17] 

have analyzed the failure area geometry in a systematic way using three numerical 

programs, each possessing a two-dimensional input space. They presented strip faulty 

patterns for all three programs under test. Therefore, significant empirical evidence exists 

that failure areas are clustered into a contiguous region within the input domain and that 

they produce error crystals or failure regions. 

While we cannot generalize one software failure pattern to others, researchers have 

empirically indicated common characteristics between failure patterns. Accordingly, 

Chan et al. [24] have introduced three common types of failure patterns, shown in Figure 

2.8 (the block, strip and point failure patterns). We have selected these patterns as a 

testing framework, since the empirical studies support the use of these patterns as an 

approximation to real software failures. Although these failure patterns are not real, these 

patterns are believed to best represent multiple clustered values in the input domain, 

which, in general, imply a single root cause failure. 

 
Figure 2.8. Typical two-dimensional failure patterns: (a) block, (b) strip, and (c) point failure 

patterns. 

The main parameter associated with each pattern is a failure rate (θ ) which is the total 

failure area divided by the total area of the input domain. In this chapter, failure rates of 
2 3 410 ,1 0 ,1 0 ,θ − − −=  and 510−  have been considered as a basis to analyze testing 

strategies effectiveness. In the software testing literature [19], [32], failure rates between 
210−  and 310−  are usually investigated, whereas in real life applications the failure rates 
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may be lower. Considering the fact that the average programmers introduce five to ten 

defects per Kilo Line Of Code (KLOC) [2],  θ  is certainly nonzero. However, no reliable 

industrial information exists on θ. Hence, we include the failure rates of 410−  and 510−  to 

explore a wider range of values. 

Although the implementation of these three failure patterns is straightforward, 

implementation details are included for the sake of completeness. The block pattern is 

generated by randomly choosing a point in I  and then a square is constructed around this 

point with respect to the failure rate. Due to the section of the random point near to the 

boundaries of I , the constructed block pattern may not fit within I . In this situation, this 

pattern is disregarded and another random point is selected until a valid block pattern is 

generated. The strip pattern is generated using a random point in I  and a random angle 

associated with a line passing over the selected random point. The width of the strip 

pattern is calculated according to the failure rate. This strip pattern generation method is 

different from the method introduced by Chen et al. [50], whereby one point is selected 

on the vertical boundary and another point on the horizontal boundary of I . Then, the 

strip pattern is generated by connecting the two points and calculating the width of the 

line using θ . Unfortunately, we observed that this implementation does not produce a 

uniform distribution of strip patterns - with an excessive concentration of points near the 

boundaries compared to the middle of I . To generate the point pattern, 10 random points 

were selected within I . A circular area is constructed around each point so that the sum 

of these circular areas is equal to failure rate. Similar to the block pattern, if a circular 

area is not within I , the associated random point is disregarded and another random 

point is selected. 

In short, the block and point patterns are in-line with those used in the literature [19], 

[32], [34], [50]; and the strip pattern is redefined to overcome traditional limitations and 

produce a uniform distribution of the strip pattern. 

2.6.3.2 Number of Tests 

Due to the random nature of test case generation methods, we generated 100tM =  

distinct test sets for RT, FSCS, RRT, EAR, and accordingly RBCVT to evaluate the 

effectiveness of each approach using the P-measure. Therefore, a P-measure is evaluated 

using 100 tests for a specific failure pattern. In addition to test set generation, the failure 

patterns are also generated randomly. Hence, we generated 10,000fM =  random failure 
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patterns leading to 10,000 P-measure results which are normally distributed [50] between 

zero and one. Therefore, 10,000fM =  statistics are used to evaluate the mean and 

standard deviation of the normally distributed P-measure for each approach, at each 

failure rate, and with each of the three failure patterns. 

QRT methods are deterministic and hence each method produces a unique test set. 

Therefore, to draw statistical analysis with the same population size, for each QRT 

method, we generated a sequence of test cases where the length of this QRT sequence is 

tM  times larger than the test set size. Then, we split this sequence into tM  test sets 

which result in distinct test sets. So all the approaches have been tested using 

10,000fM =  P-measure results, each calculated by 100tM =  measurements. 

In addition to failure pattern type and θ  ( 2 3 410 ,1 0 ,1 0 ,− − −  and 510− ), to evaluate a P-

measure, we need to set the number of test cases in each test set ( T ). The best T  to 

analyze the test case generation approaches using the P-measure, is the worst case in 

terms of the standard error which can be estimated as 

 .
t

stdSE
M

=   (2.16) 

Since tM  is a constant number, worst case SE  leads to maximizing the standard 

deviation. According to Chen et al. [50], the maximum standard deviation of P-measure 

calculation is 0.5. Solving (2.15) as 0.5std = , results in T  based on θ  as follows: 

 ( )
( )

log 0.5
.

log 1
T

θ
=

−
  (2.17) 

Since 2 3 410 ,1 0 ,1 0 ,θ − − −=  and 510−  have been chosen for the experimental test, the 

respective values for T  are 68.97 (69), 692.80 (693), 6931.12 (6931), 69314.37 (69314). 

Since T  is an integer value, the rounded values are given in the brackets. Finally, all the 

generated test cases are within I and every test case consists of a floating point number, 

with double precision, for each dimension. 

2.6.4 A Mutant Based Software Testing Framework  

To evaluate the proposed RBCVT approach on a testing framework which utilizes 
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independently-produced programs, we selected the mutant based software testing 

framework introduced by Briand and Arcuri [49]. This framework is outlined in detail in 

Section 4 of [49]. For the sake of completeness, we present a summary of the main 

features of this framework. This work utilizes 11 programs, written in Java, which 

implements basic mathematical functions that appear in the ART literature [17]. We 

directly utilized their source code without any modification. Their framework utilizes 

mutation analysis to produce a large number of faults in a systematic fashion [49]. They 

produced 3,727 mutants for the 11 programs using muJava [54], [55]. Further, in [49], the 

P-measure is utilized to evaluate these mutants against RT and ART test sets, where the 

size of test sets varies between 1 and 50. 

This framework assumes an input space of each program, an integer value in the range of 
24/[0, 2 1]d −  for each dimension (d). This leads to 242  input possibilities for each 

program. The framework first measures each mutants failure rate by testing all possible 
242  states, so they could measure failure rates as low as 242− . Then, those mutants that 

revealed no failure or had the failure rate over 0.01 were removed. Therefore, they kept 

780 appropriate mutants with 242 0.01θ− ≤ ≤ .  

In this study, we use these 780 mutants to test the effectiveness of the proposed test case 

generation approach. Since we assume that we do not know the failure rate of the 

programs under the test, we apply four test set sizes including |T|=10, 20, 50, and 100 to 

each mutant to evaluate the effectiveness of each test case generation approach. 

Accordingly, the P-measure is evaluated for each test case generation approach for 

discussed test set sizes. To evaluate a P-measure, we tested each mutant using 100 

distinct test sets and then, the average over all the mutants is calculated as a P-measure. 

To draw a statistical analysis, we repeated this P-measure evaluation 100 times leading to 

100 statistics that are used to evaluate the mean and standard deviation of the normally 

distributed P-measure [50] for each approach, at each test set size. To draw statistical 

analysis with the same population size for QRT methods, we utilized a similar procedure 

as described in the simulation pattern where a longer sequence of QRT test cases is split 

to generate distinct test sets. 

This process leads to the execution of over 78 billion test cases which took more than a 

month on an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM.  
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2.7 Experimental Results and Discussion 

2.7.1 Formal Analysis 

Since P-measure values are normally distributed [50], Tables 2.2-2.5 present statistical 

parameters reflecting the effectiveness of RT, ARTs, QRTs and the corresponding results 

after the RBCVT process. In addition, the following parameters were calculated:  

1) A test of statistical significance (z-test, one-tailed, our working hypothesis is that 

RBCVT will produce superior results) with a conservative type I error of 0.01; and  

2) An effect size (Cohen's method [56], [57]) which indicates “size” discrepancy between 

two statistical populations given by 

 
( )

2 1
2 2

2 2 1 1

2 1

 
( 1) 1  

effect size
n std n std

n n

µ µ−
=

− + −
+

  (2.18) 

where µ , std , and n  represent the mean, the standard deviation, and the number of 

elements within the populations, respectively. In this study, a positive value of effect size 

represents the size of the improvement that has been achieved by applying the RBCVT 

process. Cohen [56]–[58] defines the standard value of an effect size as small (0.2), 

medium (0.5), and large (0.8). Effect size can also be interpreted as the average percentile 

standing which indicates the relative position of the two populations. Similarly, effect 

sizes can be interpreted in terms of the percent of the non-overlapped portion of the 

populations. Corresponding values are presented in Table 2.1. 

Table 2.1. Cohen’s effect size description (large, Medium, and Small) as well as 
corresponding values for percentile standing and percent of non-overlapped portion of two 

populations. 

Cohen's 
Description 

Effect 
Size 

Percentile 
Standing 

Percent of 
Non-overlap 

 2.0 97.7 81.1% 

 1.5 93.3 70.7% 

 1.0 84 55.4% 

Large 0.8 79 47.4% 

Medium 0.5 69 33.0% 

Small 0.2 58 14.7% 

 0.0 50 0.0% 
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2.7.2 Block Pattern Simulation Results 

Table 2.2 indicates the testing effectiveness of all the studied approaches and the 

corresponding results after the RBCVT process was applied with respect to the block 

failure pattern. This table demonstrates that performing the RBCVT process on the 

outputs of other methods has a positive effect on the P-measure, since RBCVT 

consistently provides statistically significant improvement. The amount of improvement 

in terms of effect size is larger than the highest Cohen’s description (Large) in most of 

the cases, only RRT at 4 510 ,1 0θ − −=  and EAR at 510θ −=  have effect size between large 

and medium. 

Table 2.2. The P-measure testing effectiveness mean and standard deviation for all 
approaches including the corresponding results after the RBCVT process as well as effect 

size, Z-score, and significance value with respect to block pattern. 

 

Comparing the amount of improvement (effect size) among all approaches in Table 2.2, 

one can observe that the largest RBCVT improvement belongs to the RT for all failure 

rates. In contrast, no individual method has the smallest increase in effectiveness 

regarding the effect size, the EAR has the smallest improvement for 210θ −=  and 310− ; 

and RRT for 410θ −=  and 510− . Figure 2.9 indicates the improvement of each approach 

after the RBCVT process comparing to the effectiveness of test cases used as inputs to 

the RBCVT process (effect size) with respect to block pattern at each failure rate. In this 
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figure, in all methods, the level of changes before and after the RBCVT process is 

decreasing as the failure rate decreases.  

 
Figure 2.9. Improvement of test case generation methods with respect to RBCVT process at 

different failure rates regarding the block failure pattern. 

In Table 2.2, the mean values of the P-measures appear dissimilar for the different 

approaches; whereas the corresponding results after the application of the RBCVT 

process represents a sizable reduction of the variation between these values. Therefore, 

for comparison of RBCVT, as a single method, against all other approaches, we assume 

the average RBCVT results as the performance of the RBCVT approach. Figure 2.10 

represents the effect size of the testing effectiveness at each strategy against RT in the 

block pattern simulations. Contrasting RBCVT against FSCS, RRT, EAR, Sobol, Halton, 

and Niederreiter, this figure highlights the increased efficiency of RBCVT regarding the 

block pattern. Another conclusion from this figure is that all of the testing methods 

outperformed RT at every failure rate with respect to the block pattern. 
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Figure 2.10. P-measure testing effectiveness for block pattern simulations of FSCS, RRT, 

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 

2.7.3 Strip Pattern Simulation Results 

Testing effectiveness results regarding the strip failure pattern are shown in Table 2.3. 

The results demonstrate that for 210θ −= , RBCVT is statistically significantly superior to 

all approaches. In contrast, the results for other failure rates suggest similar performance 

between each approach and the corresponding results after the RBCVT. Although there 

are differences between the P-measure results of the RBCVT and other approaches at 
3 410 ,1 0 ,θ − −=  and 510− , the results cannot be compared since the level of significance 

values do not indicate a significant difference between the results in most of the cases.  
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Table 2.3. The P-measure testing effectiveness mean and standard deviation for all 
approaches including the corresponding results after the RBCVT process as well as effect 

size, Z-score, and significance value with respect to strip pattern. 

 

The magnitude of improvement for the strip pattern at 210θ −=  is lower than for the 

block pattern testing effectiveness results since the effect size has been reduced by 

around an order of magnitude on average. Comparing the amount of improvement among 

all the approaches in Table 2.3, again the largest improvement belongs to RT for 
210θ −=  and 310− . To highlight some strip pattern features regarding the RBCVT 

approach, Figure 2.11 is presented which indicates the effect sizes between each 

approach's effectiveness result and corresponding result after the RBCVT process. Figure 

2.11 indicates that the impact of the RBCVT process is reducing as the failure rate 

decreases in most of the cases. This fact as well as the results for 3 410 ,1 0 ,θ − −=  and 510−  

suggest that the impact of the RBCVT approach, for strip patterns, tends to zero as the 

failure rate tends to zero.   
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Figure 2.11. Improvement of test case generation methods with respect to the RBCVT 

process at different failure rates regarding the strip failure pattern. 

Similar to the block pattern, the strip pattern testing effectiveness results after the 

application of the RBCVT represents a sizable reduction of the variation among these 

values compared to the effectiveness of the input test cases to the RBCVT process. 

Therefore, we again consider the average RBCVT results as the performance of the 

RBCVT approach creating the possibility of comparing it against all of the test case 

generation methods. Accordingly, all of the approaches have been compared against RT, 

these results are provided in Figure 2.12. In this figure, one can observe the decreasing 

trend of testing effectiveness against RT as the failure rate reduces. This leads to similar 

effectiveness for RT with other approaches with respect to the strip pattern at very low 

failure rates like 510− ; this is not true for the block pattern. This can be explained by the 

intrinsic difference between the strip and the block pattern: as the failure rate decreases 

the width of a strip pattern reduces, as its length is constant, whereas in the block pattern 

both dimensions reduce together. Therefore, the similarity between block and strip 

pattern decreases as the failure rate reduces leading to less testing effectiveness for strip 

patterns.   
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Figure 2.12. P-measure testing effectiveness for strip pattern simulations of FSCS, RRT, 

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 

2.7.4 Point Pattern Simulation Results 

Point pattern simulations yield results as indicated in Table 2.4. The presented results 

suggest an improvement comparing the P-measure results after the RBCVT process was 

applied. Again the improvement in testing effectiveness, after the RBCVT process was 

applied, are lower than the corresponding block pattern results. However, in contrast with 

strip pattern, the RBCVT is statistically significantly superior to all approaches at all 

failure rates. In addition, the impact of the RBCVT procedure on the test case generation 

effectiveness regarding point pattern, as indicated by the effect sizes in Table 2.4, are 

larger than the equivalent results for the strip pattern. 
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Table 2.4. The P-measure testing effectiveness mean and standard deviation for all 
approaches including the corresponding results after the RBCVT process as well as effect 

size, Z-score, and significance value with respect to point pattern. 

 

In Table 2.4, one can observe that in contrast with the block and strip patterns; the 

maximum enhancement in testing effectiveness after the RBCVT process, does not 

belong to the RT for all failure rates. EAR has the largest improvement for 210θ −= ; and 

RT for other failure rates. To further characterize the point pattern results regarding the 

RBCVT procedure, Figure 2.13 provides a graphical representation of the effect sizes in 

Table 2.4. This figure indicates that the impact of the RBCVT process regarding the point 

pattern has a reducing trend as the failure rate reduces for all approaches.  
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Figure 2.13. Improvement of test case generation methods with respect to RBCVT process at 

different failure rates regarding the point failure pattern.  

Similar to the previous discussion in sections 2.7.2 and 2.7.3, since the variation among 

the RBCVT results is quite low, the average RBCVT results is considered as a base for 

the comparison of all the test case generation methods. Figure 2.14 presents a comparison 

among all the approaches against RT with respect to the point pattern. Again we can 

observe that the RBCVT method has the highest testing effectiveness. It is worth noting 

that in contrast with previous patterns, all the ART approaches at 210θ −=  have 

generated test cases with lower effectiveness than RT. While the QRT approaches have 

superior testing effectiveness compared to RT at all the studied failure rates. 

 
Figure 2.14. P-measure testing effectiveness for point pattern simulations of FSCS, RRT, 

EAR, RBCVT, Sobol, Niederreiter, and Halton against the RT. 



 43 

2.7.5 Mutants’ Testing Results 

The testing effectiveness of all the studied approaches with respect to the real software 

testing framework based on mutation, are represented in Table 2.5. The results 

demonstrate the significant improvement after the RBCVT approach is applied. One can 

observe that, in each case, the amount of improvement in term of effect size is larger than 

the highest Cohen’s description (Large). Further, the effect size is larger than two in all 

cases, leading to less than 18.9% overlap between the statistics of each method and its 

corresponding result after the application of RBCVT, according to Table 2.1.  

Table 2.5. The P-measure testing effectiveness for all approaches including the 
corresponding results after the RBCVT process with respect to the mutants’ framework. 

 

Figure 2.15 indicates the improvement of each approach after the RBCVT process in 

terms of effect size. In contrast with the simulation framework, no particular 

increasing/decreasing trend has been observed in this figure.   
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Figure 2.15. Improvement of test case generation methods after the application of RBCVT 

with respect to the mutants’ framework. 

Similar to the simulation framework results, Figure 2.16 provides a comparison amongst 

all of the approaches, where the RT effectiveness is considered as a reference; i.e. Figure 

2.16 represents the effect size of each strategy against RT. In contrast with the simulation 

framework, the P-measure results, after the application of RBCVT, is not similar in all 

cases. Only in case of QRTs, a sizable reduction of the variation is observed amongst 

RBCVT results. Accordingly, in Figure 2.16, RBCVT results with QRTs as generators, 

are combined as QRT-RBCVT, while RBCVT with other inputs are represented 

separately.  

Test case generation approaches in Figure 2.16, are sorted based on their performance 

where the EAR-RBCVT is the approach with highest efficiency and Sobol has the worst 

results in term of testing efficiency. Finally, as demonstrated in Figure 2.16, QRT 

methods revealed degraded performance compared to RT in most of the cases, whereas 

other test case generation approaches outperformed RT.  
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Figure 2.16. P-measure testing effectiveness of each test case generation approach against 

RT with respect to the mutants’ framework. 

2.7.6 Empirical Runtime Analysis 

In addition to effectiveness, computational complexity of an algorithm is an important 

factor in practical applications. In this chapter, different algorithms have been used as 

basis to study the RBCVT method and in this section the runtime of these methods as 

well as RBCVT is investigated. 

All the simulations within this study were conducted using Java (JDK 7, 64bit). We 

implemented the RBCVT, FSCS, RRT, and EAR in Java and Martingale stochastic 

library [59] has been used to generate the Sobol, Halton, and Niederreiter quasi-random 

sequences. Besides, the Java native pseudo-random function has been employed for the 

RT test case generation. The hardware platform, where the simulation process has been 

executed, was an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM. 

To demonstrate the computational costs associated with each algorithm, an empirical 

runtime investigation has been performed. The parameters associated with each approach 

are the same as used during the evaluation, described in Section 2.6.2. Figure 2.17 

represents the test set generation runtime for the FSCS, RRT, EAR, RBCVT, and 

RBCVT-Fast in seconds. The runtime of the RT and QRT approaches has not been 

included in this figure due to their significantly lower runtime compared to the RBCVT 

and ART methods. The presented runtime values are the average runtime of tM =100 test 

set generation for each approach with each test set length ( 0 100,000T< ≤ ). As 

indicated in this figure, the non-optimized RBCVT has the largest runtime compared to 

all other methods and is within the order of quadratic time as calculated in Section 
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2.5.1.1. In accordance with runtime analysis in Section 2.5.2.3, RBCVT-Fast runtime is 

linear based on empirical values observed in Figure 2.17. Figure 2.17 also demonstrates 

that RBCVT-Fast has the best runtime compared to the non-optimized RBCVT and all 

the investigated ARTs, for 30,000T ≥ . In addition, the computational complexity of 

170 seconds for generating 100,000 test cases, suggests 1.7 mili seconds for each test 

case in the proposed RBCVT-Fast calculation approach. It is worthwhile to note that 

similar to ARTs, we can apply the mirroring technique [27] to RBCVT to reduce the 

execution times further if it is required. 

 
Figure 2.17. Empirical test set generation runtime for the RBCVT, RBCVT-Fast, FSCS, 

RRT, and EAR. 

2.8 Degree of Randomness Analysis  

Beside the even distribution of the test cases within a test set, another important aspect of 

test case generation algorithms is their ability to generate a sequence of test cases which 

are random. Requiring random test cases has two different implications in this context: 

• Randomness within a test set indicates the randomness among the individual test 

cases within a test set. A high degree of randomness in test cases is better since it 

provides the ability to generate uncorrelated test cases, which is essential for 

software testing applications. Uncorrelated test cases are critical to avoid systematic 

poor-performance in certain situations (that is, a non-random set of test cases could 

significantly correlate with a current set of defects). 
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• Randomness between multiple test sets which represents absence of correlation 

between two, or more, different sequences of test cases, resulting from different runs 

of the corresponding test case generation algorithm. This is a critical feature of test 

case generation algorithm since software testing applications require uncorrelated 

sequences of test cases. Executing a sequence of test cases will hopefully result in 

the discovery of a number of defects. After correction, we may elect to execute 

another set of tests; ideally, the tester wants the option to execute either the previous 

set or a new set of test cases. Alternatively, if no or few defects where discovered, 

the tester will often want the option of executing another new, and by definition, 

different set of test cases in an attempt to discover more defects. 

How can we measure randomness? Kolmogorov complexity provides a new class of 

distances appropriate for measuring similarity relations between sequences [22], [23]. 

The Kolmogorov complexity of a piece of information ( ( )datad ) is the length of the 

ultimate lossless compressed version of the corresponding information [23]. In fact, the 

ultimate compressor does not exist. Thus, we have to use the lower bound of what a real-

world compressor can achieve [23]. Within this study, the Lempel-Ziv-Markov chain 

Algorithm (LZMA) [60] is used to calculate ( ).δ  since it is believed that it is one of the 

best lossless compressors available. Before we can use a test set (T ) as input to LZMA 

we need to preprocess the test set to convert it to a set of Integer values. Assuming a test 

set as 

 { } { } { }{ }1 1 2 2, , , ,..., , ,T TT x y x y x y=   (2.19) 

where { },i ix y  denotes a two-dimensional test case ( it ), the preprocessing function is 

defined as 

 { }1 1 2 2' , ' , ' , ' ,..., ' , ' ,T TT x y x y x y=   (2.20) 

where 'ix  and 'iy  denote the scaled integer representation of ix  and iy , respectively.  

Accordingly, to analyze within a test set randomness, ( ) ( )( )
( )

T
CR T

T
δ ϕ
ϕ

=  is used which 

indicates the compression ratio with respect to T . A compression ratio of one denotes a 

totally random test set, while less compression values denote repetitive patterns within 
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the test set. Theoretically, ( )0 1CR T≤ ≤ . However, since LZMA is not a perfect 

compressor a small (unknown) additive offset exists in the estimation of ( )CR T .  

To investigate randomness between test sets, we used the Normalized Compression 

Distance (NCD) [23] indicating the similarity between two test sets. NCD is defined as 

[23] 

 ( )
( )( ) ( )( ) ( )( ){ }

( )( ) ( )( ){ }
,

,
,

ij i j
i j

i j

T min T T
NCD T T

max T T

δ j δ j δ j

δ j δ j

−
=   (2.21) 

where ijT  is formed from the concatenation of iT  and jT . When ( ), 0i jNCD T T =  , iT  

and jT  are identical, whereas ( ), 1i jNCD T T =  represents complete dissimilarity (these 

relationships assume perfect compression). The length of the test set should be large 

enough to be compressed effectively by LZMA. Thus, within this chapter the length of 

each test set is selected as an arbitrary large number, specifically as T =100,000. 

Table 2.6 represents the results of ( )CR T  and ( ),i jNCD T T  for RT, FSCS, RRT, and 

EAR approaches before and after the RBCVT process. QRT approaches have not been 

included since they use a deterministic algorithm producing a unique test set. The 

reported values in Table 2.6 are the average of 100 measurements which indicates similar 

results before and after the RBCVT process regarding all studied approaches (in all 

situations, the variation between trials was negligible). These results suggest no 

degradation by RBCVT on the input points regarding randomness. In addition, all the 

ART methods perform similar to RT with respect to degree of randomness. 

Table 2.6.  CR(T) and NCD(Ti, Tj) for RT, FSCS, RRT, and EAR before and after the 
RBCVT process. 

 



 49 

2.9 Summary 

In this chapter, the novel RBCVT method has been proposed to the domain of software 

testing with the aim of increasing the effectiveness of numerical test case generation 

approaches. The RBCVT method cannot be considered as an independent approach since 

it requires an initial set of input test cases. This method is developed as an add-on to the 

previous ART and QRT methods enhancing the testing effectiveness by more evenly 

distributing test cases across the input space. In addition, the applied probabilistic 

approach for RBCVT generation, allows different sets of outputs to be produced from the 

same set of inputs which makes RBCVT an appropriate method for software testing 

applications. 

The computational cost of a test case generation algorithm should be carefully considered 

in a practical application. In this chapter, we optimized the probabilistic computational 

algorithm of the RBCVT approach. The proposed search algorithm reduces the RBCVT 

computational complexity from a quadratic to a linear time order regarding the size of the 

test set. While, ART methods still suffer from high runtime order. In this regard, the 

computational cost of RBCVT is quite feasible with respect to practical applications. It is 

worthwhile to state that since the RBCVT approach requires initial test cases, the 

computational cost of the input test set generation is added to the RBCVT calculation 

cost. Since the results provided in Tables 2.2-2.5 indicate, on average, “similar” results 

for RBCVT with different types of generators, we can select the RT method, which is 

linear and adds a low computational overhead, onto the RBCVT execution. Therefore, 

with a concatenation of the RT and the RBCVT-Fast methods, we can produce a linear 

algorithm with respect to computational complexity, although in some specific situations 

this may lead to a slight reduction of algorithmic effectiveness. The principle contribution 

of this chapter is utilizing CVT to develop an innovative test cases generation approach, 

in particular RT-RBCVT-Fast with linear order of computational complexity similar to 

RT. 

An extensive experimental study has been performed and the results demonstrate that 

RBCVT is significantly superior to all approaches for the block pattern in simulation 

framework at all failure rates as well as the studied mutants at all test set sizes. Although 

the magnitude of improvement in testing effectiveness results is higher for the block 

pattern compared to the point pattern, the results demonstrate statistically significant 

improvement in the point pattern. In contrast, ART methods have indicated less 
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effectiveness than RT regarding point patterns at θ =0.01 (demonstrated in Figure 2.14). 

Although RBCVT’s performance regarding strip pattern is statistically significant 

compared to the other approaches at 210θ −= , the impact of RBCVT verses the other 

approaches tends to zero as the failure rate decreases. In fact, in the case of strip pattern, 

the impacts of all of the approaches reduce to the performance of RT as the failure rate 

decreases; this is demonstrated in Figure 2.12. In contrast, in block and point patterns, the 

performance of all the approaches verses RT usually stays constant or even increases as 

the failure rate reduces. It is believed that these conclusions are stable regardless of the 

failure rate, and hence, simulating lower failure rates than studied in this chapter is not 

required. This fact is also verified in [61]. Randomness of test cases is an important factor 

with respect to software testing. Accordingly, the investigation of randomness in Section 

2.8 demonstrates that RT, all ART methods and all corresponding RBCVT methods 

possess an appropriate degree of randomness. 

Although in real life applications, test cases’ dimension can be large, in most cases they 

belong to an acceptable range. Test case generation often seeks to generate values with a 

specific purpose rather than generating test cases to exercise the entire system. The large 

size of the input space for modern software systems tends to imply that this “scatter gun” 

approach is ineffective. Instead, the tester will often have a specific testing objective and 

will attempt to generate a specific set of test cases under specific circumstances that 

answer this question. That is, the tester tends to test aspects of the system or sub-

components of the system rather than blindly “attacking” the entire system. As an 

example, in unit testing, the program under test is usually small, so the number of input 

and output variables are limited as is the number of dimensions. For instance, Ciupa et al. 

[62] conducted an empirical study on several real world small routines using unit testing. 

Briand and Arcuri [49] have considered 11 programs, basic mathematical functions that 

appear in the ART literature [17], for empirical analysis. The generated test cases in these 

papers do not exceed four dimensions. Furthermore, some techniques like range coding 

[63] exist to reduce the dimension of the input space, especially when collections are 

considered as the input to the software under the test. As a result, where we do not have 

large dimensions, the linear RBCVT-Fast approach dominates over ART approaches 

regarding computational cost. 

Finally, although further studies are required to validate the use of RBCVT in real-life 

applications, RT-RBCVT, ART-RBCVT, and QRT-RBCVT have been demonstrated to 
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have a superior performance against RT, ART, and QRT methods, respectively. 

Consequently, software testing practitioners can use RBCVT to enhance the existing 

strategies within their software testing toolbox. The use of RBCVT in software testing is 

straightforward since RBCVT can be included to the previous methods as an add-on. 
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3 String Test Data Generation through a Multi-

Objective Optimization  

String test cases are required by many real-world applications to identify defects and 

security risks. Random Testing (RT) is low cost and easy to implement testing approach 

to generate strings. However, its effectiveness is not satisfactory. In this chapter, black-

box string test case generation methods are investigated. Two objective functions are 

introduced to produce effective test cases. The diversity of the test cases is the first 

objective, where it can be measured through string distance functions. The second 

objective is guiding the string length distribution into a Benford distribution [64] which 

implies shorter strings have, in general, a higher chance of failure detection. When both 

objectives are applied via a multi-objective optimization algorithm, superior string test 

sets are produced. An empirical study is performed with several real-world programs 

indicating that the generated string test cases outperform test cases generated by other 

methods. 

3.1 The Focus of This Chapter 

In this chapter, the objective is to generate an effective set of test cases where each test 

case is a string. As explained before, based on empirical studies [13]–[17], fault regions 

normally form continuous regions in the input domain. Based on this assumption, a 

diverse set of test cases has a greater chance of detecting a fault. Hence, it is believed that 

a diverse set of test cases is more likely to produce more effective test cases [13]–[17]. 

To achieve this in the string domain, we have defined a fitness function that measures the 

diversity of a test set. This allows an optimization technique to be employed to generate 

test cases based upon the fitness function. To construct a fitness function to measure the 

diversity, we utilize distance functions between strings. There are several string distance 

functions available and hence, in this chapter, we compared their performance when used 

in test generation. Different string distance function’s performance is compared in terms 

of the effectiveness of the generated test cases and their runtime. Since runtime 

performance is important in practical applications, we further extend this chapter by 

applying a hash based distance function into the test generation methods to improve the 

runtime efficiency. 

We also hypothesize that the distribution of the length of the generated strings plays an 
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important role in failure detection. We argue that smaller strings have a higher chance of 

detecting a failure. Since the first fitness function is unable to control the length 

distribution of the strings, we create a second fitness function which indicates the 

proximity of the distribution of the lengths of the strings in a test set to the target 

distribution. A multi-objective optimization technique is used to apply both fitness 

functions simultaneously. 

To empirically investigate this hypothesis, we generate mutants of 13 programs. Test sets 

with different characteristics are generated and tested on these programs. The 

experimental results demonstrate that failure detection is improved when both fitness 

functions are applied. 

The highlights of this chapter can be summarized as: 

1) Introducing two fitness functions to control the diversity and length distribution 

of the string test cases and optimizing both fitness functions through multi-

objective optimization techniques. 

2) Investigating the performance of six different string distance functions in black-

box string test case generation. 

3) Applying Locality-Sensitive Hashing (LSH) [65] technique, a fast estimation of 

string distances, to improve the runtime order complexity. Comprehensive 

runtime complexity improvement is discussed in Section 3.5. Further, empirical 

runtime analysis is investigated in Section 3.7.4. 

4) Empirical investigation of the proposed method and comparison with other 

methods using a mutation analysis. 

5) Analysis of the degree of randomness of the generated strings in Section 3.8. The 

degree of randomness is critical to avoid systematic poor performance due to the 

correlation between the tests. It can be investigated a) within a set of test cases; 

and b) between multiple sequences of test sets. 

The “string test case” is a general term and hence, we define the scope of research in this 

chapter. In this research, the objective is string test case generation; not test case selection 

[66] or prioritization [67]. Further, as discussed in Chapter 1, this research focuses on 

black-box string test generation. White-box test generation methods, like symbolic 

execution [68],  are another category of string test generation which utilizes the source 
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code to produce test cases. Typically, these methods try to increase the code coverage 

using optimization methods to generate test cases [69]. These string-related techniques 

are reviewed in Section 3.9. 

3.2 Adaptive Random String Test Case generation 

As discussed in the previous chapter, to improve the poor effectiveness of RT, ART 

methods are introduced. Chen et al. [18] first introduced Fixed Size Candidate Set 

(FSCS) and then a variety of other ART methods have been developed by other 

researchers. 

Most of the ART methods are designed for numerical test cases and they cannot be used 

to generate string test cases. Among the ART methods, the FSCS and ART for Object 

Oriented software (ARTOO) [62] methods are capable of more complex test case 

structures than fixed size vector of numbers and they can be applied to string test cases. 

Further, Mayer et al. [32] concluded that FSCS was one of the best ART methods 

through an empirical study. As a result, we adapted FSCS and ARTOO to generate string 

test cases in this chapter; these are reviewed in the following sections. 

3.2.1 Fixed Size Candidate Set (FSCS) 

FSCS method is discussed in depth in chapter 2 and hence, is not repeated here. The only 

difference is that, in this chapter, a string distance function is used in FSCS. FSCS has 

been initially introduced for numerical test cases. However, it can be applied to other test 

case structures like strings. The only requirement is that a distance function is defined 

between the test cases. 

To generate test cases, FSCS uses a distance based procedure. The first string test case is 

generated randomly, similar to RT. Then, to generate other test cases, a fixed size 

candidate set is used to produce a test case. Therefore, K random strings are generated as 

candidates (K=10 is used in the experiments based on the recommendation of Chen et al. 

[25]). A string is selected where it has the largest distance from previously executed 

string test cases. 

3.2.2 ART for Object Oriented Software (ARTOO) 

ARTOO [62] is an ART method designed for object oriented software where it uses a 

distance function between objects to generate the test cases. The authors focus on the 

specific problem of testing functions of an object-oriented program where test cases are 
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input objects to the functions. ARTOO works similar to FSCS [62], it selects a test case 

among the pool of candidates. The number of candidates for ARTOO is chosen as 10 to 

match with the FSCS. The difference between FSCS and ARTOO is the selection rule 

among the candidates. The mean distance of each candidate to the previously selected test 

cases is calculated. Then, a candidate with the largest mean distance is chosen as the 

winner (next test case) [62]. 

3.3 Evolutionary String Test Case Generation 

To generate string test cases, evolutionary algorithms can be used. Among the 

evolutionary algorithms, Genetic Algorithms (GA) [70] are the most commonly used 

search algorithm in software engineering [71]–[73]. GAs also fit very well with our 

application which requires string manipulations. Two approaches are used to produce test 

sets based on GAs. First, we utilize a GA with a single objective, where a diversity-based 

fitness function is used. Then, a second fitness function is defined to control the length 

distribution of the strings. Hence, in the second approach, we use a Multi-Objective GA 

(MOGA) [74] to optimize both fitness functions simultaneously. 

3.3.1 Genetic Algorithm (GA) 

In the following, we first briefly explain GA’s basic terminology and then, appropriate 

fitness functions and GA’s parameters are discussed. Multiple chromosomes form a 

population where a chromosome is a candidate solution. At each generation, some 

chromosomes are selected (by the selection mechanism) and offspring are generated via a 

crossover operator. Finally, the mutation operator is utilized to make random small 

changes to the generated offspring resulting in a lower probability of becoming trapped in 

a local optimum point.  

3.3.1.1 Diversity-Based Fitness Function 

A GA requires a fitness function to generate optimized test sets. According to the 

discussion in the introduction, it is believed that a diverse set of test cases is more likely 

to reveal faults more effectively [13]–[17]. Hence, we define a fitness function that 

measures the diversity 

 
1

( , ( , ))
test set size

i i
i

Fitness function dist t t test setβ
=

= ∑   (3.1) 

where the summation is performed on the distance between every test case and its nearest 



 56 

test case. ti represents the ith test case in the test set, and β indicates the nearest test case 

in test set to ti. A higher value of this fitness function implies a more diverse distribution 

of test cases as it indicates that test cases are far from each other. 

3.3.1.2 GA Parameters  

Using a GA requires the definition of its elements and parameters. In this chapter, a 

chromosome is a string test set. So, to generate the initial population, random test cases 

are generated. We chose the size of the population as 100 since larger population sizes 

produced no improvement.  We have tested the GA with three selection mechanisms, 

roulette-wheel selection, rank selection, and binary-tournament selection [70]. The 

experimental results demonstrate that the performance of the all selection methods is very 

close. However, rank selection slightly produces better results. Hence, rank selection is 

used for the GA. In crossover, test sets are recombined to generate offspring test sets 

using a 60% crossover rate [75]. In test sets recombination, given that both parents have a 

same number of string test cases, each string in the first parent test set is combined with 

the corresponding string in the second parent test set and two string children are 

produced. This is repeated for all the string test cases in the parent test sets which leads to 

two offspring test sets. A single point recombination [70] is used to generate children 

strings from two parent strings. In a single point recombination, random points are 

selected in each of the two parent strings. Then, to generate the children strings, the first 

part of each parent string is concatenated to the second part of the other parent.  

Edit, delete, and add are used as mutation operators where every character in each string 

is mutated with 1% probability. Each time, one of the mutation operators is selected 

randomly. In an edit operation, the character is replaced with another randomly selected 

character. The delete operation eliminates the character and the add operator, inserts a 

randomly selected character in the current position in the string.  

Finally, the iterations are stopped when one of the following is reached: (a) No 

improvement is achieved in 20 generations based upon the fitness function; or, (b) A 

maximum of 200 iterations is reached. 

3.3.2 Multi-Objective Genetic Algorithm (MOGA) 

3.3.2.1 String Length Fitness Function 

Beside the diversity-based fitness function, the distribution of the length of the generated 
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strings may play an important role in failure detection. Accordingly, in this section, a 

fitness function for string length distribution is investigated.  

It is argued that data (a population of objects) essentially has two root causes, either real-

world or artificial situations. Artificial populations of objects have no restrictions on their 

growth. For instance, computer-generated unique identifiers can have any sampling 

distribution. However, real-world populations of objects have more restrictions; growth 

takes time and is sequential. Hence, these populations are often modelled by an 

exponential growth model. Such a model starts with typically a small population (starting 

point) and “moves towards the right” on a log-scale at a constant rate [76], [77]. Hence, if 

a (random) variable starts at 1, it spends more time growing between 1 and 2 than 

between 2 and 3. Growing continues and the pattern is repeated; that is, the variable 

spends more time growing between 10 and 20 than between 20 and 30. The growth 

exhibits scale-invariance and characterized by the most significant digit [77], [78]. This is 

commonly known as Benford’s Law [78]. Benford’s law indicates that the occurrence of 

digits in a list of numbers is not uniform and follows a logarithmic distribution known as 

the Benford distribution [64]. Figure 3.1.a represents the distribution of first digit 

numbers where the base is 10. The Benford distribution can be calculated using [64] 

 ( )1( ) log 1 , 1 ,B bPDF n n bn= + ≤ <   (3.2) 

where b denotes the base of the numbers, and PDFB(n) represents the Benford 

distribution. 

 
Figure 3.1. (a) Benford distribution (PDFB(n)) where base is 10. (b) Kolmogorov–Smirnov 

test is used to measure the distance of two distributions. CDF(n) and CDFB(n) are 
cumulative probability distribution of the strings length and Benford, respectively. The max 

string length is assumed to be 30 which leads to the Benford base of 31.   
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The Benford distribution is empirically investigated in many areas [64], [79]. It can be 

applied to a wide variety of data sets, including financial data, electricity bills, stock 

prices, lengths of rivers, population numbers, street addresses, death rates, and physical 

and mathematical constants [64].  Perhaps, the most widely known application of 

Benford’s law is detecting fraud in accountancy and financial data, where Benford’s law 

can effectively identify non-conforming patterns [64], [80]. In addition, Raimi [81] has 

shown that the products of independent random variables follow Benford’s law. Hence, 

Benford’s law provides a very general idea of how arbitrary populations of objects grow 

which is independent of any domain knowledge. A detailed discussion on Benford’s law 

and its wide applications can be found in [64], [79], [82]. 

Accordingly, this paper hypothesizes that the Benford distribution is applicable to 

defining the distribution of the size of strings found in computer programs many of which 

are models of real-world situations. Such strings (a population of characters under an 

ordering constraint) are unbound, but their size is defined somewhat by what they are 

modelling and what they are modelling is a mixture (product) of smaller items (e.g. a 

person’s contact information is a mixture of their name, address, mobile number, etc.). 

These smaller items can be decomposed into even smaller items – single characters 

(starting point). While not ideal (non-coverage of artificial situations), it is argued that 

Benford’s law provides a reasonable representation of the size of strings which are likely 

to be encountered when no domain-specific knowledge is available. Hence, we 

hypothesize that Benford’s distribution is a good model for string length distribution 

within a test set when no domain-specific knowledge is available. This essentially means 

that smaller strings have a higher chance of detecting a failure. So, we argue that if we 

generate diverse string test cases and control the distribution of their length, more 

effective test cases can be generated.  

To examine this hypothesis, we first need to develop a fitness function that measures the 

distance of the Benford distribution and the distribution of the string lengths. The chi-

squared test [64] has been used to test the compliance of a distribution with Benford 

distribution. However, it has low statistical power with small samples [83]. Since 

maximum test set size in our experiments is 30, chi squared test may not produce 

adequate results as a fitness function. To solve this problem, we use a Kolmogorov–

Smirnov test [84]; this is more powerful when the sample size is small [84].As indicated 

in Figure 3.1.b, the Kolmogorov–Smirnov test finds the maximum distance between two 
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cumulative probability distributions [84]. It can be formulized as 

 
[1, ]
max | ( ) ( ) |Bn StrMax

Fitness function CDF n CDF n
∈

= −   (3.3) 

where CDF(n) and CDFB(n) are cumulative probability distributions of the strings length 

and Benford, respectively. Finally, StrMax denotes the maximum string length. The 

Benford distribution provides a probability distribution in [1,b-1]; and hence, Benford’s 

base is set as b=StrMax+1. Further, the Benford distribution does not provide a 

probability for zero which produces a problem for strings with no characters. To solve 

this issue, we assume that each string has a terminator character and we count it toward 

the string size. Therefore, a string with no character has a length of one and it can be 

adapted to the Benford distribution. 

3.3.2.2 Pareto-Optimal Test Sets  

A multi-objective optimization technique is required to enforce both fitness functions 

(namely F1 and F2) simultaneously. We employ one of the widely used multi-objectives 

GAs (MOGA), namely NSGA-II [74].  Since the diversity needs to maximized, the value 

calculated from (3.1) is inverted. Therefore, both fitness functions need to be minimized. 

A basic step in NSGA-II is sorting of chromosomes in a population based on a 

domination concept. Chromosome A dominates B if and only if (F1(A)<F1(B) and 

F2(A)≤F2(B)) or (F1(A) ≤F1(B) and F2(A)< F2(B)). A non-dominated chromosome is a 

chromosome that is not dominated by any other chromosomes in the population. To 

perform the sorting, NSGA-II categorizes a population’s chromosomes into front lines. 

First front includes all the non-dominated chromosomes. Second front includes non-

dominated chromosomes where chromosomes in the previous fronts are not considered. 

This process is repeated until all chromosomes are assigned to front lines. Within a front 

line, chromosomes are sorted to preserve the diversity [74]. That is, chromosomes are 

rewarded for being at the extreme ends or the less crowded areas of a front. The complete 

sorting algorithm is provided by Deb et al [74]. 

To generate the test cases the following steps are performed according to NSGA-II. 

Step 1) The initial population with size N is generated randomly. 

Step 2) The population is sorted. 

Step 3) An offspring population with size N is created using selection mechanisms, 
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crossover, and mutation [74].  

Step 4) A combined population of offspring and parents is produced with size 2N. 

Step 5) The new population is sorted and the first N chromosomes are selected to form 

the next generation. 

Step 6) A check to see if the stopping criterion have been met is performed. If the 

criterion is not met then we return to step 3. 

NSGA-II produces a Pareto-optimal set of test sets rather than a single optimal test set. 

The Pareto-optimal set is the first front of the last generation of the algorithm. Among the 

Pareto-optimal test sets, the results indicate that the test set with best diversity fitness on 

the Pareto-optimal front generates the best failure detection effectiveness. Consequently, 

for the results that are presented for MOGA in this chapter, the test set with best diversity 

fitness on the Pareto-optimal front is selected. This implies that the best solution is the 

solution with best diversity which also achieved the target string length distribution. 

3.3.2.3 NSGA-II Parameters 

We applied similar parameters as GA to NSGA-II. The population size, mutation 

operators, and mutation rate is identical to GA. However, NSGA-II has no crossover rate 

parameter as discussed in previous section. NSGA-II uses binary tournament selection 

mechanism [74]. We also extended NSGA-II and replaced the selection mechanism with 

rank selection. The experimental results of these two selection methods, demonstrate 

slightly better performance when the binary tournament selection is used; and hence it is 

used for rest of the experiments in this study. The roulette-wheel selection is not 

applicable to NSGA-II. Finally, the iterations are stopped when one of the following is 

reached: 

• No chromosome is produced in 20 generations that dominates at least one 

chromosome in the first front Or, 

• A maximum of 200 iterations is reached. 

3.4 String Distance Functions 

A distance function between two strings is required in ART and evolutionary test case 

generation methods. Several string distance functions are introduced in the literature [62], 

[66], [67], [85]. Although we cannot afford to investigate all of them, a good portion of 
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them, especially those that normally perform well in software testing studies, are covered 

in this chapter.  

Accordingly, we performed the experiments with six string distance functions. Four of 

which are Levenshtein [86], Hamming [87], Cosine [88], Manhattan [67], and Euclidian 

[67] distance functions that are repeatedly used in software testing studies [62], [66], 

[67], [85]. Further, we also used Locality-Sensitive Hashing (LSH) [65] technique as a 

fast estimate of string distance in our work. 

3.4.1 Levenshtein Distance 

The Levenshtein Distance [67] is an edit-based distance that works based on three edit 

operations,  “delete”, “insert”, and “update” [67]. Each operation has an associated cost 

where each string can be converted to the other string based on these edit operations. The 

distance is the minimum cost of a sequence of edit operations that converts one string 

into the other string [67]. The Levenshtein distance assigns a unit cost to all edit 

operations [67].  

Mathematically, the Levenshtein distance between two strings, Str1 and Str2, is equal to 

lev(Length(Str1), Length (Str2)) where it can be calculated recursively by 
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where Str1i denotes the ith character of Str1,  and Str2j denotes the jth character of Str2. 

3.4.2 Hamming Distance 

The Hamming distance [67] was initially introduced as a measure to calculate the 

distance of two bit streams. However, it has been adapted to be used for strings [67]. The 

Hamming distance of two strings, like “abcd” and “anfd”, is the number of characters 

different in two strings. In other words, every character in the first string is compared 

with a character in the equivalent position in the second string. In this example, the 

distance is two. In cases where the sizes of two strings are not equal, null characters 

(ASCII code of zero) are added to the end of the smaller string until both strings have a 
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same size. For example, the distance between “ab” and “acdb” is three. 

3.4.3 Manhattan Distance 

The Manhattan distance [67] is normally used for vectors of numbers. It also can be 

applied to strings as 

 
1

Manhattan distance 1 2
n

i i
i

Str Str
=

= −∑   (3.5) 

where Str1i and Str2i are ASCII codes of the ith character. Similar to the Hamming 

distance, when the size of the two strings is not equal, null characters are added to the 

shorter string.  

3.4.4 Euclidian Distance 

The Euclidian distance [67] is similar to the Manhattan distance. It can be applied to 

strings as 
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Again, null characters are added to the shorter string until both strings have a same size. 

3.4.5 Cosine Distance 

The Cosine similarity [88] calculates the similarity of two vectors as a cosine of the angle 

of two vectors. The Cosine similarity can be calculated as follows where ASCII codes are 

used as a number. 
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Similar to The Hamming distance, when the size of the two strings is not equal, null 

characters are added to the shorter string. Finally, to calculate the distance, 1- Cosine 

similarity is used. 

3.4.6 Locality-Sensitive Hashing (LSH) 

LHS [65] is a technique that can be used as a fast estimation of the distance between two 

strings. The basic idea is to hash strings such that similar strings are mapped into a same 
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hash code with a high probability. Random projections are core elements used to map the 

input data to a value [65]. In this chapter, we used a type of random projection that is 

used to estimate cosine distances. This projection is defined as [89] 
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where v is the input vector, x is a random vector generated from a Gaussian distribution, 

and ( )xh v  is a bit representing the location of v compared to x. P random projections are 

used to construct a hash value where it indicates the location of the input vector 

compared to the P random vectors. Therefore, we have P bits as a hash value; P=32 is 

used in this research. 

Finally, the Hamming distance is used between two hash bit strings which leads to an 

estimation of the cosine distance of the original strings. LSH improves the runtime order 

as the Hamming distance between two 32 bit streams is independent of the sizes of the 

strings. A comprehensive runtime order investigation is presented in the next section. 

Cosine and LSH distances are naturally normalized against the length of the strings and 

hence, we do not need to normalize them. However, the other discussed distances are not 

naturally normalized. To normalize them, the result is divided by 

Length(Str1)+Length(Str2).  

3.5 Runtime Order Investigation 

The computational complexity of an algorithm is an important factor in practical 

applications. In real-world applications, the size of strings and the size of test sets may 

become very large. Hence, it is importance for the user to know how the execution time 

grows when parameters are changed. Accordingly, in this section, the order of runtime 

complexity for the distance functions, fitness functions, test case generation methods are 

investigated. The runtime order is analyzed based on the string length of distance 

functions (L1 and L2), test set size (TS), population size in GA and MOGA (N), and 

number of potential candidates in ART (K). Table 3.1 provides the runtime order of all 

the algorithms. In the following, detailed discussions are presented. 
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Table 3.1. Runtime order complexity of each algorithm used in this chapter. 

Algorithm Runtime Order 
String Distance Functions 
Levenshtein OD = L1×L2 

Hamming OD = Max(L1, L2) 
Manhattan OD = Max(L1, L2) 
Euclidian OD = Max(L1, L2) 
Cosine OD = Max(L1, L2) 
LSH (part1: hashing) OLSH1 = L1 

LSH (part2: Hamming distance) OLSH2 = 1 
Fitness Functions 
Diversity-based (with LSH) OFD = TS×(TS+OLSH1) 
Diversity-based (other distance functions) OFD = TS2×OD 
Length control OFL = TS 
Test Set Generation Methods 
RT ORT = TS 
FSCS (with LSH) OFSCS =  K×TS×(TS+OLSH1) 

ARTOO (with LSH) OARTOO= K×TS×(TS+OLSH1) 
FSCS (other distance functions) OFSCS = K×TS2×OD 

ARTOO (other distance functions) OARTOO = K×TS2×OD 
GA OGA = N×OFD 
MOGA (NSGA-II) OMOGA = N2×(OFL+ OFD) 

 

The Hamming, Manhattan, and Cosine distance runtime complexity is linear against the 

length of the strings as can be observed from (3.5) and (3.7). Since each of these distance 

functions add null characters to the end of smaller string to make it same size with the 

longer string, the order of complexity is Max(L1, L2). The runtime order of Levenshtein 

distance is quadratic (L1× L2) since a L1× L2 matrix needs to be constructed according to 

(3.4).  

The story for the LSH distance function is different as it has two parts. The first part that 

calculates a hash value is linear against the length of a string. The second part is done in a 

constant time as it is a Hamming distance between two fixed length bit streams. As a 

result, the LSH produces a runtime complexity improvement for test case generation 

methods and diversity-based fitness function. In the diversity-based fitness function, a 

distance between every string pair in a test set needs to be calculated. This leads to 

TS2×OD runtime order where OD denotes runtime order of a distance function other than 

the LSH. However, with the LSH, we can calculate the hash value of each string first 

which can be done in TS×OLSH1. Then, each pair distance calculation can be done in TS2 

since OLSH2 = 1. Adding these two terms leads to TS×(TS+OLSH1) which is more efficient 
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than TS2×OD. This improvement leads to the runtime efficiency in GA and MOGA test 

case generation methods. The runtime order of NSGA-II is reported as N2×M [74] where 

M represents the number of objective functions. However, the complexity order of fitness 

functions is not included. Assuming OFL and OFD as the complexity order of length 

control and diversity-based fitness functions, respectively, complexity order of NSGA-II 

becomes N2×(OFL+OFD). OFL can be removed compared to OFD as OFL has a linear 

complexity. Obviously, any improvement in OFD related to the LSH, has a direct effect on 

the complexity of NSGA-II. Similarly, the complexity order of GA (N×OFD) is improved 

using the LSH rather than other distance functions. 

Similar arguments can be made for ART methods. The FSCS runtime order is reported to 

be K×TS2 [19], [90] for numerical test cases. However, considering the distance function 

runtime for strings, it becomes K×TS2×OD. To calculate the runtime order with LSH, we 

first find the runtime order of generating one test case, ti+1. The distance between every 

one of the K candidates and the i previously generated test cases need to be calculated. 

Therefore, the hash of each candidate needs to calculated (runtime order of K×OLSH1) and 

then distances are calculated (runtime order of K×i×OLSH2). So, for each test case we 

have K×(i+ OLSH1). A summation over i from one to TS needs to be performed to find the 

total runtime order to generate a test set. Accordingly, the runtime order is 

K×TS×(TS+OLSH1) — an improvement compared to K×TS2×OD. The ARTOO has a same 

runtime complexity as FSCS since their algorithms are similar except for where a 

candidate is selected. 

3.6 Experimental Framework 

The experiments conducted to analyze the effectiveness of FSCS, ARTOO, GA, and 

MOGA against RT are described in this section. Real world programs are used to 

perform an empirical evaluation. These programs accept strings as input. Then, mutated 

[49], [91] versions of the software are produced. The P-measure [90] was selected to 

quantitatively measure the effectiveness of the test case generation methods. Finally, 

features of string test sets are discussed. 

3.6.1 Software Under Test (SUT) 

To conduct a study on the fault-detection effectiveness of the test case generation 

methods, 19 real world Java programs are investigated. We reused the programs from 

McMinn et al. [92] and hence the selection of these programs can be viewed as being 
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independent from the authors1. These programs are sub-components of 10 real-world 

projects which are widely used in GUI and web applications to validate strings [92]. 

These programs accept a string as an input and only contain functionality which 

transforms or validates the input. That is, no significant portion of these programs spent 

time on anything except string manipulation [92]. 

Table 3.2 provides a description of each program. The “Name” column denotes a name 

used in the rest of this chapter to refer to that program. The “Classes” column represents 

all the associated Java classes to that program. The reported LOC (Line Of Code), in 

Table 3.2, is the summation of all classes in each program. It is different than LOC 

reported in the original work [92] as only LOC of the main class is reported in the 

original work. 

Table 3.2. Programs used to perform experimental evaluations. 

# Name Project, 
Source code URL Classes LOC 

1 Validation PuzzleBazar, 
code.google.com/p/puzzlebazar 

Validation 80 

2 PostCode LGOL, 
lgol.sf.net 

PostCodeValidator, Validator 293 
3 Numeric NumericValidator, Validator 217 
4 DateFormat DateFormatValidator, Validator 236 
5 CASNumber Chemeval, chemeval.sf.net CASNumber 102 
6 MIMEType Conzilla, 

www.conzilla.org 
MIMEType, 
MalformedMIMETypeException 

145 

7 PathURN PathURN, URI, URN, 
 MalformedURIException 

387 

8 ResourceURL ResourceURL, URI, 
 MalformedURIException 

339 

9 URI URI, MalformedURIException 267 
10 URN URN, URI, MalformedURIException 327 
11 Util Efisto, efisto.sf.net Util 244 
12 TimeChecker GSV05, gsv05.sf.net TimeChecker, StringTokenizer 267 
13 Clocale JXPFW, 

jxpfw.sf.net 
Clocale, Cdebug 751 

14 International InternationalBankAccountNumber, 
AbstractLocalizedConstants, Cdebug, 
 Cstring, InvalidArgumentException, 
 ISO3166CountryConstants 

2938 

15 Isbn TMG, 
tmgerman.sf.net 

Isbn, Field, SimpleDataField 420 
16 Month Month, Field, SimpleDataField 346 
17 Year Year 75 
18 BIC WIFE, 

wife.sf.net 
BIC, ISOCountries, PropertyResource 200 

19 IBAN IBAN, ISOCountries, PropertyResource 288 
 
                                                 

1 Originally, McMinn et al. [92] used 20 Java programs. Based on the information provided, we were unable to find one 
of the programs (“OpenSymphony”); and hence, we performed our experiments with 19 programs. 
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 “PuzzleBazar” is puzzle playing software. An email validation class is extracted as one 

of the programs under the test [92]. “LGOL” is a library developed for local government 

in UK [92]. Three programs are extracted where they involve string manipulation related 

to date formats, integer numbers, and UK postal codes [92]. “Chemeval” is a framework 

used to evaluate molecular structure with application in hazard assessment [92]. The 

tested class in this project, handles “CAS numbers” which is a unique identifier assigned 

to chemical substances [92]. “Conzilla” is a tool used in knowledge management. Within 

this tool, five programs were extracted where one is responsible for validating strings that 

have MIME types and the rest are used to manipulate and identify a variety of URIs [92]. 

“Efisto” is a file sending tool via the web [92]. The selected class validates/manipulates 

dates as a string [92]. “GSV05” is a tool for recording attendance, the selected classes 

validate/manipulate strings in a time format [92]. “JXPFW” (Java eXPerience 

FrameWork) is a library where two programs are extracted. The programs are used for 

the validation and manipulation of international bank account numbers and location 

identifiers [92]. “TMG” (Text Mining for German documents) include classes to connect 

to the DBLP research publication database. Three programs are extracted which validate 

ISBNs (International Standard Book Numbers), month names, year names [92]. Finally, 

“WIFE” is a tool for handling international bank’s SWIFT messages where two string 

manipulation programs are extracted. 

3.6.2 Source Code Mutation 

To measure the effectiveness of the test case generation methods, faulty versions of the 

software under test are required. Mutation techniques [49], [91] are a well-known 

approach to automatically manipulate the source code and produce a large number of 

faults [49]. There is considerable empirical evidence indicating a correlation between real 

faults and mutants [55], [91].  

In this chapter, muJava [54] is employed to produce mutated versions of the programs 

under the test where a total of 6672 mutants are generated. Then, those mutants that were 

failed with the majority of test sets (more than 90% of all the test sets) were deleted. 

These defects were considered as unrealistic and hence contrary to the “Competent 

Programmer” hypothesis which is an essential idea in mutation testing [93]. Six programs 

(CASNumber, PathURN, Util, International, Month, and Year) were excluded from the 

experiments since the remaining mutants for these programs revealed no failures. That is, 

these mutants where never detected by any test cases generated in the experiments. 
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Hence, 13 programs are available for the evaluation of the test generation methods. Table 

3.3 demonstrates the number of generated and selected mutants per program. 

Table 3.3. The number of mutants generated for the test programs. 

# Programs 
Generated 
Mutants 

Selected 
Mutants 

1 Validation 721 687 
2 PostCode 114 60 
3 Numeric 48 43 
4 DateFormat 54 46 
5 MIMEType 92 55 
6 ResourceURL 709 706 
7 URI 613 597 
8 URN 767 764 
9 TimeChecker 578 442 
10 Clocale 165 160 
11 Isbn 284 277 
12 BIC 151 109 
13 IBAN 195 83 

 

3.6.3 Testing Effectiveness Measure 

Similar to chapter 2, we use p-measure to evaluate the effectiveness of test case 

generation methods. An in depth discussion on the p-measure definition and the reason 

behind its selection as a quantitative effectiveness measure is presented in Section 2.6.1. 

3.6.4 String Test Set Characterization 

To evaluate the p-measure, we need a test set with a fixed size. In this chapter, we 

perform experiments with three test set sizes, 10, 20, and 30. As the size of the test sets 

increases, the difference in the results of different test generation methods is normally 

reduced. 

Applying a test set to a mutated version of a program will return zero or one according to 

the p-measure calculation rules. Accordingly, to estimate p-measure as a number between 

zero and one, we applied 100 test sets. Further, we repeated this process 100 times for 

each mutated version to be able to estimate mean and standard deviation parameters for 

the measurements. As a result, each test case generation method (RT, FSCS, ARTOO, 

GA, and MOGA) produced 10,000 test sets for each test set size. This leads to 

10,000×(10+20+30)×5=3,000,000 test cases that have been applied to each mutant. 

Each test case is a string of characters. Therefore, we need to determine the range of 

characters to be used. Previous works commonly used printable ASCII characters [85], 
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[94], [95]. Tonella [94] used only numbers, lower, and upper case characters. Alshraideh 

and Bottaci [85] used ASCII code from zero to 127; and Afshan et al. [95] used ASCII 

code from 32 to 126. We follow Afshan et al. [95] which includes all the printable ASCII 

characters.  

Finally, we need to determine the maximum string length (StrMax) allowed. Normally, it 

can be adjusted by a tester according to the application. Afshan et al. [95] used StrMax of 

30 to generate strings in a white-box approach. Alshraideh and Bottaci [85] performed 

their experiments with StrMax of 20. In this chapter, we perform all of the experiments 

with two StrMax values (30 and 50) to explore any impact of the maximum string size.  

3.7 Experimental result and discussion 

This section presents the results of the empirical study. At first, the results of each 

program under the test are presented. The Levenshtein distance is used for these detailed 

results since it produces superior results compared to other string distance functions 

according to Section 3.7.3. Following that, statistical analysis of results is presented. In 

Section 3.7.3, the performance of different string distance functions is compared. Finally, 

an empirical runtime analysis is performed in Section 3.7.4. 

3.7.1 Results of Each Program Under Test 

Tables 3.4 and 3.5 present the results for each program under test. Table 3.4 contains the 

results for StrMax=30 and Table 3.5 includes the results of StrMax=50. Every number in 

these tables is a percentage indicating the improvement of that method against RT as 

 
(%)

p-measure (X) - p-measure (RT)improvement 100
p-measure (RT)

= ×   (3.9) 

where X denotes a test case generation method. Further, raw p-measure results for RT 

method are provided in Table 3.6 which allows the reader to compute the p-measure of 

each method if required. 

According to these tables, the MOGA outperformed RT in most of the programs under 

test with selected test set sizes and StrMax sizes. On average, the MOGA has the best test 

generation performance. The GA is the second best method. The ARTOO and FSCS are 

next; and finally RT has the lowest failure detection efficiency since every method 

outperformed RT on average. As the size of the test sets increase, the average results of 
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each test generation method is reduced and they are pushed closer to RT’s performance. 

However, MOGA maintains its superior performance. Among the programs under the 

test, normally the “PostCode” and “Numeric” reveal the best failure detection 

improvement over RT. In contrast, the URI program performance is superior for RT. 

Table 3.4. The p-measure improvement percentage of each method over RT where 
maximum string size is 30 and Levenshtein distance is used.  

Testset 
Size 

Software 
Under Test FSCS ARTOO GA MOGA 

10 

Validation 23.6 54.3 69.8 77.4 
PostCode 42.0 104.3 108.5 112.3 
Numeric 109.6 238.1 255.7 254.9 
DateFormat 110.2 238.5 258.2 258.2 
MIMEType 3.1 -20.4 8.7 18.8 
ResourceURL 19.4 4.9 -0.2 16.6 
URI -16.6 -16.9 -21.6 -15.4 
URN -38.4 -23.2 15.7 28.2 
TimeChecker -18.2 -19.0 -29.4 -22.0 
Clocale 160.8 165.5 101.5 188.0 
Isbn 21.5 -52.6 23.9 33.8 
BIC 32.7 -14.2 43.6 46.4 
IBAN 36.2 -9.1 36.9 27.3 
Average 37.4 50.0 67.0 78.8 

20 

Validation 2.0 5.2 25.1 27.2 
PostCode 16.3 55.3 55.9 57.5 
Numeric 32.1 107.4 105.8 105.5 
DateFormat 32.7 106.9 107.7 107.7 
MIMEType 14.1 -12.4 -7.1 15.9 
ResourceURL 14.8 3.2 0.8 0.0 
URI -5.1 -6.5 -11.7 -3.7 
URN -28.9 -16.1 26.9 55.1 
TimeChecker -4.4 -9.2 -12.5 -4.2 
Clocale 77.3 81.2 35.3 72.4 
Isbn 38.1 -52.4 29.8 32.0 
BIC 34.9 -24.4 23.6 27.5 
IBAN 23.7 -10.5 23.2 15.7 
Average 19.1 17.5 31.0 39.1 

30 

Validation 15.7 -4.8 20.0 17.1 
PostCode 13.9 34.4 35.4 36.0 
Numeric 23.6 61.5 59.3 58.9 
DateFormat 23.9 60.8 60.9 60.9 
MIMEType -3.1 -15.6 1.3 9.0 
ResourceURL 9.6 -5.5 -2.0 -3.7 
URI -2.9 -4.6 -3.8 -2.3 
URN -20.6 -27.4 31.7 28.8 
TimeChecker -1.7 -5.0 -3.7 -2.7 
Clocale 43.5 44.8 9.6 33.6 
Isbn 29.9 -52.1 11.4 18.9 
BIC 21.4 -23.2 12.6 15.9 
IBAN 15.1 -11.1 16.0 12.8 
Average 12.9 4.0 19.1 21.8 
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Table 3.5. The p-measure improvement percentage of each method over RT where 
maximum string size is 50 and Levenshtein distance is used. 

Testset 
Size 

Software 
Under Test 

FSCS ARTOO GA MOGA 

10 

Validation 33.8 49.9 73.0 94.6 
PostCode 54.5 111.2 134.6 137.0 
Numeric 204.8 364.0 458.0 457.0 
DateFormat 205.2 364.3 462.1 462.1 
MIMEType -8.1 -19.3 -1.9 11.3 
ResourceURL -6.8 -17.2 6.3 13.3 
URI -18.0 -13.7 -22.5 -21.3 
URN -47.6 -25.5 0.5 -21.5 
TimeChecker -17.2 -15.8 -27.4 -23.5 
Clocale 225.3 230.6 183.1 321.0 
Isbn 37.8 -28.2 56.3 60.6 
BIC 73.6 32.1 96.6 103.8 
IBAN 90.4 54.7 77.5 77.1 
Average 63.7 83.6 115.1 128.6 

20 

Validation 13.9 26.5 53.3 28.4 
PostCode 32.1 83.4 85.4 86.6 
Numeric 75.9 198.6 200.0 199.7 
DateFormat 76.2 196.9 202.7 202.7 
MIMEType 2.4 -9.2 -7.6 12.0 
ResourceURL 3.5 -5.5 -2.2 15.6 
URI -7.3 -6.2 -9.0 -6.5 
URN -33.7 -28.7 2.5 6.9 
TimeChecker -3.6 -5.5 -8.0 -5.1 
Clocale 138.4 142.6 73.2 136.5 
Isbn 65.6 -19.6 36.8 40.3 
BIC 66.1 13.1 43.1 55.5 
IBAN 59.0 28.5 36.3 37.2 
Average 37.6 47.3 54.3 62.3 

30 

Validation 8.2 4.5 26.1 21.9 
PostCode 22.1 60.3 60.6 60.7 
Numeric 43.2 122.8 119.2 118.9 
DateFormat 43.4 120.8 121.3 121.3 
MIMEType -0.5 -11.7 8.7 5.4 
ResourceURL 2.0 -8.8 15.2 10.0 
URI -4.8 -3.3 -5.3 -7.8 
URN -23.4 -17.0 15.6 2.0 
TimeChecker -0.6 -2.6 -1.6 -3.5 
Clocale 86.4 86.0 38.3 77.3 
Isbn 58.0 -24.4 32.1 48.1 
BIC 48.0 4.4 29.0 43.0 
IBAN 43.5 23.8 29.6 39.0 
Average 25.0 27.3 37.6 41.3 
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Table 3.6. The raw p-measure results for RT where the Levenshtein distance is used. 

Software Under Test 
Test set size 

10 20 30 

St
rM

ax
=

30
 

Validation 0.003 0.005 0.008 
PostCode 0.099 0.148 0.177 
Numeric 0.079 0.136 0.176 
DateFormat 0.073 0.126 0.162 
MIMEType 0.002 0.003 0.005 
ResourceURL 0.002 0.004 0.005 
URI 0.123 0.164 0.179 
URN 0.001 0.002 0.002 
TimeChecker 0.191 0.253 0.274 
Clocale 0.028 0.049 0.064 
Isbn 0.007 0.013 0.017 
BIC 0.097 0.150 0.180 
IBAN 0.005 0.008 0.009 

St
rM

ax
=

50
 

Validation 0.003 0.005 0.007 
PostCode 0.093 0.127 0.150 
Numeric 0.050 0.093 0.128 
DateFormat 0.046 0.086 0.118 
MIMEType 0.002 0.003 0.009 
ResourceURL 0.002 0.004 0.005 
URI 0.156 0.187 0.199 
URN 0.002 0.003 0.004 
TimeChecker 0.232 0.268 0.276 
Clocale 0.020 0.036 0.049 
Isbn 0.005 0.009 0.012 
BIC 0.064 0.109 0.141 
IBAN 0.003 0.006 0.007 

 

3.7.2 Statistical Analysis of Results 

The results in Table 3.4 and 3.5 are averaged over 100 trial runs. To formally indicate the 

performance of each test case generation method against RT, we performed a test of 

statistical significance (z-test, one tailed) with a conservative type I error of 0.01 [90], 

similar to chapter 2. Our working hypothesis is that MOGA, GA, FSCS, and ARTOO 

will produce superior results compared to RT. Further, an effect size (Cohen's method 

[56], [57]) between each method and RT is calculated.  

To perform a z-test or calculate effect size, the results must be normally distributed. 

According to [50], p-measure values are normally distributed. Further, we investigated 

the normality of the results more deeply by performing Shapiro-Wilk test [96]; it works 
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based on a null hypothesis that the data is normally distributed. According to the results 

of this test, the normality of the p-measure values cannot be rejected. 

Table 3.7 represents the effect sizes where a positive value indicates that method 

outperformed RT. In contrast, a negative value denotes the higher performance of RT. 

The “*” beside an effect size demonstrates the result of the z-test where a statistically 

significant difference exists. Statistical analysis are only presented for StrMax=30 as the 

results for StrMax=50 are similar. Results in Table 3.7 indicate that in most of the 

experiments MOGA statistically significant outperforms RT. However, the results of 

FSCS, ARTOO, and GA methods are not as good as MOGA. 
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Table 3.7. The effect size between RT and other methods where the maximum string size is 
30 and Levenshtein distance is used. “*” indicates the result of the z-test where a significant 

difference exists at the 0.01 level. 

Testset 
Size 

Software 
Under Test FSCS ARTOO GA MOGA 

10 

Validation 0.84* 1.83* 2.36* 2.02* 
PostCode 4.61* 14.59* 16.17* 17.15* 
Numeric 6.28* 17.36* 20.90* 20.83* 
DateFormat 6.23* 17.25* 20.93* 20.93* 
MIMEType 0.10 -0.65* 0.28* 0.54* 
ResourceURL 0.57* 0.15 -0.01 0.46* 
URI -2.56* -2.52* -3.32* -2.20* 
URN -1.00* -0.60* 0.37* 0.69* 
TimeChecker -2.54* -2.70* -4.27* -2.94* 
Clocale 12.63* 13.69* 7.94* 17.93* 
Isbn 1.21* -3.43* 1.35* 1.87* 
BIC 3.47* -1.54* 4.74* 4.88* 
IBAN 2.85* -0.73* 2.96* 2.07* 

20 

Validation 0.10 0.25* 1.15* 1.19* 
PostCode 2.58* 12.45* 12.61* 13.07* 
Numeric 2.9* 14.04* 13.96* 13.92* 
DateFormat 2.91* 13.84* 14.05* 14.05* 
MIMEType 0.64* -0.54* -0.31* 0.64* 
ResourceURL 0.63* 0.14 0.03 0.00 
URI -1.51* -1.92* -3.14* -1.16* 
URN -0.87* -0.49* 0.75* 0.87* 
TimeChecker -1.31* -2.54* -2.98* -1.17* 
Clocale 11.56* 12.71* 4.35* 10.80* 
Isbn 3.56* -5.09* 2.47* 2.88* 
BIC 7.70* -4.24* 4.80* 5.37* 
IBAN 2.99* -1.21* 3.12* 1.98* 

30 

Validation 0.66* -0.22 0.66* 0.75* 
PostCode 3.05* 9.65* 9.99* 10.22* 
Numeric 3.16* 10.56* 10.22* 10.16* 
DateFormat 3.16* 10.34* 10.39* 10.39* 
MIMEType -0.17 -0.87* 0.07 0.52* 
ResourceURL 0.54* -0.31* -0.11 -0.21 
URI -1.42* -2.36* -1.91* -1.16* 
URN -0.58* -1.04* 1.13* 1.05* 
TimeChecker -0.89* -2.27* -1.52* -1.29* 
Clocale 8.77* 9.21* 1.57* 6.34* 
Isbn 3.81* -6.30* 1.36* 2.30* 
BIC 7.83* -5.64* 3.94* 4.97* 
IBAN 3.03* -1.91* 3.18* 2.54* 
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3.7.3 Comparison of String Distance Functions 

Figures 3.2 and 3.3 represent the p-measure result for all six string distance functions that 

are discussed in Section 3.4. The results for StrMax=30 and 50 are demonstrated in 

Figures 3.2 and 3.3, respectively. In each of these figures, four graphs are presented 

where the first three relate to the three test set sizes (10, 20, and 30) and the last one is the 

average of all test set sizes. 
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Figure 3.2. (a) Comparison of string distance functions where maximum string size is 30. 

Each column denotes p-measure improvement of each test case generation method over RT. 
(a), (b), and (c) represent results for test set sizes of 10, 20, and 30, respectively. (d) presents 

the mean of all test set sizes.   
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Figure 3.3. Comparison of string distance functions where maximum string size is 50. Each 
column denotes p-measure improvement of each test case generation method over RT. (a), 
(b), and (c) represent results for test set sizes of 10, 20, and 30, respectively. (d) presents the 

mean of all test set sizes.   
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According to these graphs, the MOGA test case generation method with the Levenshtein 

distance function has the superior failure detection effectiveness, except for one case 

(Figure 3.2.c). After the Levenshtein, the Hamming distance function was normally 

“second best” and then, the Cosine distance. As discussed before, the LSH that we used is 

a fast estimation of the Cosine distance; and hence, it has slightly lower failure detection 

effectiveness than the Cosine distance according to Figures 3.2.d and 3.3.d. Comparing 

the FSCS and the ARTOO in Figures 3.2.d and 3.3.d demonstrates that the ARTOO test 

case generation method outperforms the FSCS when the Levenshtein and the Hamming 

distances are used. However, the opposite is true with other distance functions. Finally, 

the Euclidian distance function has the lowest performance on average with respect to 

failure detection. 

3.7.4 Empirical Runtime Analysis 

In addition to failure detection effectiveness, the computational cost of an algorithm is an 

important factor in practical applications. The runtime order of different string distance 

functions and test generation algorithms are investigated in Section 3.5. To further 

empirically study the runtime, we design a few experiments where the effect of varying 

string size and test set size is investigated. The hardware platform that is used for runtime 

measurements is a desktop computer with core i7-3770 (3.4 GHz) and 16 GB of Ram. 

Further, the runtime measurement is performed 100,000 times and the average execution 

times are presented. 

 
Figure 3.4. Average execution time for different distance functions with string sizes between 

5 and 100. 
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Figure 3.4 represents the string distance calculation runtime with respect to different 

string sizes. String sizes between 5 and 100 with step size of 5 have been investigated 

where the strings used in a distance function are generated randomly. In this figure, the 

runtime of Hamming, Manhattan, and Euclidian distance functions are presented with a 

single line as they were very close. According to Figure 3.4, all the distance functions, 

except the Levenstein distance, have a linear runtime as string sizes increase. The 

Levenstein distance function has a quadratic runtime order. The runtime result for LSH is 

the summation of both parts of the LSH calculation as explained in Section 3.5. 

According to Figure 3.4, the LSH runtime is significantly higher than Cosine, Hamming, 

Manhattan, and Euclidian distance functions. However, LSH can outperform the runtime 

of other distance functions when used in test generation. In the diversity-based fitness 

function, a distance between every string pair in a test set needs to be calculated. With the 

LSH, the hash value of each string is calculated once and then, each string pair distance 

calculation can be done in constant time. That is, to calculate distance of two strings, a 

hamming distance between two fixed size bit streams must be calculated. It is argued in 

the details in Section 3.5.  

To demonstrate the runtime advantage of LSH compared to the other distance functions 

in string test generation, Figure 3.5 is presented. Figure 3.5.a demonstrates the runtime of 

the diversity-based fitness function where the test set size is changing. According to this 

figure, LSH has a lower runtime than Cosine with test set size larger than about 10. 

Further, as test set size increases, the LHS run time becomes lower than the Manhattan 

(test set size larger than 25) and Euclidian distance function (test set size larger than 40). 

Further, LSH has lower runtime than the Hamming distance with test set size larger than 

100 (Figure 3.5.a only contains test set sizes up to 50 since the graph details were not 

clear if we extended it to the test set size of 100). Finally, to generate the results in Figure 

3.5.a, random string sets with maximum string size of 50 are produced as input to the 

fitness function. If the string sizes are increased, the runtime of LSH is further reduced 

relative to the other distance functions. Hence, Figure 3.5.b is presented where the max 

string size is set to the relatively large number of 1000. As demonstrated in Figure 3.5.b, 

the runtime of LSH is improved compared to other distance functions. 
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Figure 3.5. Average execution time of diversity-based fitness function with test set sizes 

between 3 and 50. Random string sets with maximum string size of (a) 50 and (b) 1000 are 
produced as input to the fitness function.   

3.8 Degree of Randomness Analysis 

Correlation among test cases or test sets is not good as it can potentially limit the failure 

detection capability if test cases correlate with a current set of defects [90]. Accordingly, 

we performed a similar randomness analysis as Section 2.8. 

To calculate CR and NCD, we need a perfect lossless data compressor. However, a 

perfect compressor does not exist; and hence, we use LZMA [60]. Further, LZMA 

requires a large size of data to be able to compress data adequately. Accordingly, to 
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analyze the randomness, we generated test sets of an arbitrary large size of 1,000. The CR 

and NCD are calculated for all the test generation methods (RT, FSCS, ARTOO, GA, and 

MOGA) where each test generation method is executed with all the distance functions.  

The calculated NCD values for all cases are between 0.995 and 0.997 which indicates 

that no correlation exists between test sets generated in different runs of the test 

generation methods; and hence, they are perfect in this regard. Similarly, the calculated 

CR values are between 1.020 and 1.026 demonstrating that test cases in a test set are 

completely uncorrelated; and hence, all methods produce perfect test cases with respect 

to randomness within test set. Theoretically, 0≤CR(T)≤1. However, since LZMA is not a 

perfect compressor a small additive value is produced during the compression; and hence, 

CR values are slightly larger than one. 

In conclusion, the randomness among test sets and within a test set is perfect for all the 

investigated test generation methods. That is, all the test generation methods have similar 

randomness as RT. 

3.9 Related works 

In this section, we review the related work which appears in the literature with respect to 

string test cases.  

A category of related work is white-box string test case generation where a string test set 

is generated to maximize the code coverage. Research in this area normally generates a 

test case using an evolutionally optimization technique [69] or symbolic execution [68], 

[97] to cover a certain path or branch. This process is repeated until maximum number of 

possible branches is covered by the generated test cases. For example, Harman and 

McMinn [69] used a few optimization algorithms to produce a test set with maximum 

branch coverage. Hill climbing, GA, and memetic (hybrid GA and hill climbing) are 

utilized to generate a test case that covers a certain branch. Therefore, each branch in the 

source code requires a separate run of the test generation algorithm [69]. A fixed length 

array of numbers are used as a test case where it is converted to string, array, array list, 

number, etc., according to the specification of the program under the test. Hence, a string 

is a fixed length array of characters in this work [69]. In addition, Harman et al. [98] 

introduce a multi-objective branch coverage test case generation approach where the 

NSGA-II algorithm is used. The objectives are branch coverage and dynamic memory 

usage [98]. Fraser et al. [99] integrate a memtic optimization algorithm with the EvoSuite 
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tool [100] to improve test case generation. A test case is a sequence of method calls 

where they generated strings and numbers as functions parameters. In Fraser et al. [99], 

during each run of the evolutionary algorithm, a set of test cases are generated rather than 

a test case. The objective function is to maximize the code coverage.  

Further, Afshan et al. [95] focus on the human readability of string test cases. A white-

box evolutionary technique is used to generate a test case per branch. Then, a language 

model is utilized to modify the string to make it more readable while maintaining the 

covered branch. Similarly, McMinn et al. [92] and Shahbaz et al. [101] focus on the 

readability of string test cases. A method was proposed to query the web for common 

string types like emails [92], [101]. Since web content is produced by humans, strings 

found from the web are more likely to be human readable than machine generated strings. 

This method requires a set of keywords from the tester as search keywords [92], [101]. 

Alshraideh and Bottaci [85] also use GAs to generate string test cases where program-

specific search operators (mutation and crossover in GA) are used. Similar to Harman 

and McMinn [69], in each run of the algorithm, a test case is produced that covers a 

certain branch. Initial strings are generated randomly. The size is between 0 and 20. 

Characters are from the ASCII range of 0-127 [85]. They also defined a “English-like” 

mutation operator that inserts a character into the string according to the letters that 

precede and follow the insertion point [85]. 

Symbolic execution [68], [97] is also a white-box test case generation technique that uses 

static analysis of source code and constraint solving to produce test cases maximizing 

code coverage. Further, symbolic execution is combined with concrete execution to 

create more powerful test generation methods. Hampi [68] is a string constrain solver tool 

introduced by Ganesh et al. [68]. It accepts constraints in a specific format and finds 

values satisfying the constraints. It is used in many symbolic execution research projects 

[68]. Ganesh et al. [68] use Hampi in static and dynamic analysis to find SQL injection 

vulnerabilities. Saxena et al. [97] introduce a symbolic execution tool for JavaScript 

where static analysis of source code is performed to generate string test cases. 

The main difference between all these articles and the current study is that our work is a 

black-box approach; and hence, the test generation algorithm is independent from the 

source code. 

Tonella [94] introduce a method to generate test cases where a test case is a sequence of 
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method calls. The relevant part of this work to the current study is Tonella’s [94] 

approach in generating strings for function calls. To generate a string, a simple black-box 

approach is used where a character is uniformly selected from possible choices and added 

into the string. The possible choices are alphanumeric values (a-z, A-Z, and 0-9) [94]. 

The next character is inserted with the probability of 0.5n+1 where n is the current length 

of the string [94]. This implies a logarithmic reduction in the sizes of the produced 

strings. Our use of Benford distribution is similar to Tonella’s choice of string generation 

in a notion that the probability of generating shorter strings is higher. However, the 

probability of string length distributions is different between the Benford distribution and 

Tonella’s method. The major difference between Tonella’s approach and our work is that 

Tonella produced strings randomly and hence, they are not likely to be very effective 

with respect to failure detection. In contrast, in our work, the diversity of the string test 

cases is optimized as well as the string length distribution and hence, superior string test 

case can be generated. Another advantage of our work compared to Tonella’s work is that 

for each test set, we optimize the string length distribution and diversity. However, 

Tonella produced each string test case independent of other string test cases in the test 

set. 

In addition to string test case generation works, there is related research on string test 

case selection and prioritization that use string distance functions. Although these works 

are out of the scope of this research as discussed earlier, we present a brief review of 

these works for the sake of completeness. Hemmati et al. [66] introduce a test cases 

selection method where test cases are encoded as strings. Accordingly, a diversity based 

fitness function based on a string distance function is used as the optimization objective 

[66]. Several optimization algorithms including GA and hill climbing were tested. Ledru 

et al. [67] also employ string distance functions to prioritize string test cases. Multi-

objective optimization is also used for test case selection. Yoo and Harman [102] used 

code coverage, past fault-detection history, and the execution cost as three optimization 

objectives. 

3.10 Summary 

In this chapter, black-box string test case generation is studied. Two objectives are 

introduced to produce effective string test cases. The first objective controls the diversity 

of the test cases within a test set. According to various empirical studies [13]–[17], faults 
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usually occur in error crystals or failure regions. Hence, controlling the diversity of the 

test cases is an important aspect of black-box test case generation. The second objective 

is responsible for controlling the length distribution of the string test cases. The Benford 

distribution is employed as an objective distribution. Accordingly, a Kolmogorov–

Smirnov test [84] is utilized to construct the fitness function. When both objectives are 

enforced, using a multi-objective optimization technique, superior test cases are 

produced. 

Further, several string distance functions are examined as a part of test case generation 

process (Levenshtein, Hamming, Cosine, Manhattan, Catesian, and LSH distance 

functions). Among the investigated distance functions, the LSH [65] is a fast estimation 

of the Cosine string distance function. According to the runtime complexity analysis in 

Section  3.5, LSH improves the runtime complexity. Further, in Section  3.5, the runtime 

complexities of all test case generation methods are discussed. 

An empirical study has been performed to evaluate the failure detection capability of the 

string test generation methods (RT, FSCS, ARTOO, GA, and MOGA). Thirteen real-

world programs are used for evaluation. Several faulty versions are produced for each 

program through a mutation technique. These programs perform string transformation 

and/or manipulation which make them a true test for situations where the input test cases 

are strings [92]. With respect to the evaluation results, the MOGA revealed the superior 

failure detection performance. Further, the empirical results of comparing different string 

distance functions indicate that the Levenshtein distance outperformed the others. 

Randomness of the test cases is an important aspect of a test case generation algorithm. 

Correlated test cases may reduce the failure detection effectiveness as discussed in 

Section 3.8. As a consequence, an investigation of randomness is performed; and it 

demonstrated that all the generated test cases possess an appropriate degree of 

randomness. 
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4 Extended Subtree: A New Similarity Function for Tree 

Structured Data  

The extensive application of tree structured data in today’s information technology is 

obvious. Trees can model many information systems like XML and HTML. User 

behavior in a website (visited pages) [103]–[105], proteins, and DNA can be modeled 

with a tree. Moreover, programming language compilers parse the code into a tree as a 

first step. Consequently, in many applications involving tree structured data, tree 

comparison is required. Tree comparison is performed by tree distance/similarity 

functions. The applications includes document clustering [106], natural language 

processing [107], cross browser compatibility [108], and automatic web testing [109]. 

4.1 The Focus of This Chapter 

Several tree comparison approaches [110]–[113] have been already introduced to address 

this domain. Edit base distances [112] are a well-known family of tree distances based on 

mapping and edit operations. They have three major drawbacks with respect to their 

mapping rules. First, order-preserving rules may prevent mapping between similar nodes, 

resulting in situations where similar nodes may not contribute towards the overall tree 

similarity score based solely upon their position. Second, according to the one-to-one 

condition, any node in a tree can be mapped into only one node in another tree leading to 

inappropriate mappings with respect to similarity. That is, repeated nodes or structures of 

mapped nodes have no effect on similarity and they are counted as dissimilar nodes. 

Finally, edit based distances work based upon mapping individual nodes, not tree 

structures. This implies that every mapped pair of nodes is independent of all the other 

nodes. However, a group of mapped nodes should have a stronger emphasis on the 

similarity of trees when they form an identical subtree. That is, an identical subtree 

represents a similar substructure between trees, whereas disjoint mapped nodes indicate 

no similar structure between the two trees. More details of these drawbacks along with 

illustrative examples are presented in Section 4.4.1. 

In this chapter, we propose a new similarity function with respect to tree structured data, 

namely Extended Subtree (EST). The new similarity function avoids these problems by 

preserving the structure of the trees. That is, mapping subtrees rather than nodes is 

utilized by new mapping rules. The motivation of proposing EST is to enhance the edit 
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base mappings, provided in Section  4.3.1, by generalizing the one-to-one and order 

preserving mapping rules. Consequently, EST introduces new rules for subtree mapping. 

This new approach seeks to resolve the problems and limitations of edit based approaches 

(this is detailed in Section 4.4.1 with illustrative examples). 

To evaluate the performance of the proposed similarity function against previous 

researches, an extensive experimental study is performed. The experimental evaluation 

frameworks include clustering and classification frameworks. The distance functions 

provide the core functionality for clustering and classification applications. In addition, 

four distinct data sets (three real and one synthetic) are utilized to perform the evaluation. 

In general, this chapter’s contributions can be summarized as: 

• Introducing a novel similarity function to compare tree structured data by defining a 

new set of mapping rules where subtrees are mapped rather than nodes. 

• Further, the new approach resolves the limitations of the previous distance functions. 

• Designing extensive evaluation frameworks using k-medoid [114], KNN (K Nearest 

Neighbor) [115], and SVM (Support Vector Machine) [116] along with four different 

data sets to perform an unbiased evaluation. That is, we believe applying one 

machine learning technique on a single data set might lead to a biased evaluation; and 

hence, it is not considered adequate to prove the effectiveness of an approach. This 

extensive evaluation framework is one of the advantages of this research over 

previous researches [103], [105], [106], [117], [118]. 

• Superior results of EST against previous approaches in most of the clustering and 

classification case studies. 

• Empirical runtime analysis of the new approach as well as current approaches where 

runtime efficiency of EST is demonstrated. 

4.2 Notation and Definitions Used in This Chapter 

The following notation and assumptions are provided with respect to trees to simplify the 

discussion in this chapter. In this chapter, trees are referring to rooted, ordered, and 

labeled trees unless otherwise stated. A rooted tree is a tree with a single root node. A 

tree is ordered if right-left order amongst sibling nodes in the tree is important. Finally, a 

labeled tree represents a tree where each node has an assigned label. 
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A tree is denoted as T  and | |T  indicates the size of a tree in terms of the number of 

nodes/vertices. Multiple trees are differentiated by a top index as pT  and qT . it    

represents the ith node of T  numbered in a post-order format. In case of multiple trees, 

again a top index is utilized to distinguish between trees. For instance, p
it  and q

it . In this 

chapter, ( )V T  defines a set of vertices/nodes of T where 1
| |}( ) { i
T
iV tT == . The depth of a 

tree is denoted by ( )depth T  which is defined as the length of the path from the root to the 

deepest node in the tree. ( )idepth t  indicates the length of the path from the root to it . 

( )leaves T  indicates the number of leaves in T  where a leaf node is the node without 

children. deg( )it  represents the degree of node it  which is equal to the number of it ’s 

children. Accordingly, deg( )T  represents the degree of T , which is the maximum 

number of children of any node in the tree. A subtree is a tree which is part of a larger 

tree. Accordingly, iT  denotes a subtree of T  rooted at it . If pT  is a subtree of qT , we 

indicate it as p qT T⊂ . 

Finally, distance and similarity between pT  and qT  are presented as ( , )p qD T T  and 

( , )p qS T T , respectively. Similarly, normalized values are indicated by D∗  and S∗  where 

we have 

 ( , ) 1 ( , )p q p qS T T D T T∗ ∗= −   (4.1) 

4.3 Current Approaches 

A variety of different tree distance functions have been proposed. In this section, we 

survey these approaches and present a summary of each one.  

4.3.1 Edit Based Distances 

Edit based distances [112] are based on three edit operations (γ ) including “delete”, 

“insert”, and “update” [119] (Figure 4.1). Each operation has an associated cost 

( , ,delete insert updateW W W ). Based on the introduced edit operations, each tree can be 

converted into another tree according to a set of rules that are different for each distance 

function. Further, mappings were introduced in [120] to describe how a sequence of edit 

operations converts a tree into another tree [121], namely pT  and qT  respectively.  
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Figure 4.1. Three edit operations, “delete”, “insert”, and “update”. 

Figure 4.2 represents a sample pT  and qT  along with a few mappings where each 

mapping represents an optimal mapping associated with a tree distance approach. A 

mapping is a set of ordered integers such as ( , )p qi i  where pi  and qi  are the index of the 

nodes (numbered in post-order format) from tree pT  and qT , respectively. This means 

that node p
ipt  is mapped into node q

iqt . The following conditions must be satisfied for all 

( , ),( , )p q p qi i j j M∈  [121]: 

• One-to-one condition: p pi j=  if and only if q qi j= . This condition implies that one 

node from pT  cannot be mapped into two nodes from qT . 

• Sibling order preservation condition: p pi j>  if and only if q qi j> . 

• Ancestor order preservation condition: p
ipt  is an ancestor of p

jpt  if and only if q
iqt  is an 

ancestor of q
jqt . 

( , )p qD T T  is equal to the cost of the edit operations required to convert pT  into qT . 

Assuming the cost of each edit operation as one, the ( , )p qD T T  is bounded between zero 

and | | | |p qT T+ . Accordingly, it can be normalized between zero and one as: 

 ( , )( , )
| | | |

p q
p q

p q
D T TD T T
T T

∗ =
+

  (4.2) 
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Figure 4.2. Optimal mappings between trees for TED and IST. 

4.3.1.1 Tree Edit Distance (TED) 

TED [119], [120], [122] is a well-known edit based distance function that measures the 

minimum cost of a sequence of edit operations between two trees. Since its introduction 

by Tai [120], several algorithms have been introduced for computing the optimal TED 

between two trees. This research follows the dynamic programming presented by Zhang 

and Shasha [119]. The computational order for this algorithm is 

( , ) (| | | | ( ( ), ( )) ( ( ), ( )))p q p q p p q q
TEDD T T O T T Min depth T leaves T Min depth T leaves T∈ × × ×

[119] where ( )O   represents the runtime order. The TED mapping needs only to satisfy 

the mapping’s conditions presented in previous section. The mapping demonstrated in 

Figure 4.2a indicates an optimal mapping to calculate the TED. According to this 

mapping ( , ) 3p q
TEDD T T = , since we have only one update operation ( ( )d gg → ), one 

insert operation ( ( )bγ ∅→ ), and one delete operation ( ( )bγ →∅ ). 

4.3.1.2 Isolated Subtree (IST) Distance 

The IST distance is introduced by Tanaka [123], it maps the disjoint subtrees of pT  to 

the similar disjoint subtrees of qT . Tanaka [123] argued that such a mapping is more 

meaningful since it preserves the structure of the trees. The IST mapping is a TED 

mapping where disjoint subtrees are mapped to similar disjoint subtrees under the 

restriction of the structure preserving mapping [123]. Figure 4.2b demonstrates the 

optimal IST mapping between pT  and qT . In this sample, ( , ) 4p
S

q
I TD T T = . Tanaka 

[123] provided an algorithm to compute the optimal IST distance with the runtime 

complexity of (| |  | | ( ( ), ( )))p q qpO T T Min leaves T leaves T× ×   [123], [124]. Later, Zhang 

[125] provided an algorithm to calculate IST distance with runtime complexity of 

(| |  | |)p qO T T× .  

In addition to TED and IST, there are other distance functions including alignment [126], 
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top-down [127], and bottom-up distance [124]. Their objective is to simplify the 

calculations; however, they produce lower quality solutions than TED. 

4.3.2 Multisets Distance 

Recently, Müller-Molina et al. [113] have introduced a tree distance metric based on 

multisets. Multisets are sets that allow repeated elements, where pT  and qT  are 

converted into multisets, pM  and qM . pM  and qM  contain all the complete subtrees 

of the corresponding trees. A complete subtree is defined as a subtree that: if it  is a node 

in a complete subtree, all of it ’s children are in the subtree. In addition, ( )pV T  and 

( )qV T  are utilized along with pM  and qM  to calculate distance as: 

 
( , ) ((| | | |)

(| ( ) ( ) | | ( ) ( ) |)) / 2

p q p q p q
multiset

p q p q

D T T M M M M

V T V T V T V T

= − +

−

 



  (4.3) 

Müller-Molina et al. [113] presented no approach for normalization. However, the 

normalized distance can be calculated using (4.2) since ( , )p qD T T  is bounded between 0 

and | | | |p qT T+ . An algorithm with runtime complexity of 2(| |  | | )qpO T T×  is presented 

in [113] to compute the distance.  

4.3.3 Path Distance 

Path distance [111] considers paths as a tree’s building blocks. Each tree is converted into 

a multiset of paths such as “/a/c/d” which describes a path in pT  in Figure 4.2a. Different 

approaches exist to extract paths from a tree. One possible approach is that all paths start 

from a root node to it . Any node to any possible node is another approach where a path 

to it  can start from any ancestor of it  or even it . The later approach includes all the 

possible paths in the tree. In this research, we follow the second approach for path 

extraction. Given pT  and qT , pM  and qM  are the multisets which contain all the paths 

in pT  and qT , respectively. ( , )p q
pathS T T  can be simply calculated as | |p qM M . 

Since ( , )p q
pathS T T  is bounded between zero and (| |,| |)p qMax T T , 

( )* |,
(| |,| |)

|p q
p q

path p q
M MS T T

Max T T
=

 .  
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4.3.4 Entropy Distance 

Connor et al. [110] utilized information theory, Shannon’s entropy, to calculate a 

bounded, between zero and one, distance function between two trees. Similar to the path 

distance metric, the pM  and qM  multisets are generated which contain all the possible 

paths in pT  and qT , respectively. Then, Shannon’s entropy equation and complexity 

theory are used to calculate the information distance. Finally, Connor et al. [110] 

concluded the distance as: 

 ( ) (  ), 1
( ) ( )

p q
p q

Entropy p q

C M MD T T
C M C M

= −
×

   (4.4) 

where   represents the union of two multisets; and ( )C M  denotes complexity of a 

multiset defined as [110] 

 ( ) ( ) ( ) ( )
( ) ( )logi b i

ib i
p m p m p mH M

i
i

C M b b p m
− −∑

= = =∏   (4.5) 

where b is a constant number, ( )bH M  represents the entropy of M in base b, and im  

denotes a member of M where i represents all the distinct members of M. Finally, ( )ip m  

denotes the probability of im  in M which is equal to the number of im  repetitions over 

| |M . The authors did not provide the order of runtime complexity of the algorithm.  

4.3.5 Other Distances 

In addition to the discussed approaches, Lu [128] introduced node splitting and merging. 

Further, Helmer  [129] utilized Kolmogorov complexity which provides a new class of 

distances for measuring similarity relations between sequences [23]. The main advantage 

of this approach is its linear runtime complexity which is reported [129] 

as (| |  | |)p qO T T+ . Finally, Yang et al. [130] introduced a distance measure between two 

trees based on a numeric vector representation of trees. They prove that this distance, 

( , )p q
binaryD T T , is a lower bound for ( , )p q

TEDD T T  given by 

( , ) 5 ( , )p q p q
binary TEDD T T D T T≤ ×  and hence, it has lower quality compared to TED. 

However, it has a linear runtime complexity given by (| |  | |)p qO T T+  which 

outperforms TED in this respect.  
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Beside the discussed tree distance functions, there are some diffing (differencing) tools 

for XML documents like XMLDiff [131]. The primary objective of these tools is to 

identify and list all the differences between two XML documents, and hence they are 

different with a tree distance function that produces a single number as a measure of 

distance. Diffing tools normally use one of the edit based approaches. For instance, 

Microsoft XML Diff is a tool for diffing XML documents that is implemented in .NET 

framework [131]. It implements the TED function. XMLDiff is another tool that is part of 

many Linux distributions [131]. It uses a variation of tree edit operations based on the 

Chawathe et al. work [132] to identify the differences. This diffing tool works based on 

the “move”, “delete”, and “insert” operations. XyDiff is another diffing algorithm 

introduced by Cobena et al. [133]. It works based on bottom-up tree edit model. 

Code clone detection is another application that is relevant to tree distance and/or 

similarity functions. Clone detection has many applications like fraud detection and clone 

removal in order to decrease maintenance costs [134]. Code clone detection methods can 

be divided into a few categories; one of which is clone detection based on abstract syntax 

tree comparison [134] which is the most relevant to our research. Code clone detection 

that utilizes abstract syntax tree matching is an application of tree similarity functions. 

The objective in code clone detection is detecting exact or near-miss code fragments. 

Hence, in an abstract syntax tree, subtrees are compared with a tree similarity function. If 

the similarity is more than a defined threshold, the corresponding code fragments are 

considered to be a clone. For instance, Baxter et al. [135] use 2 (2 )S S L R+ +  as a 

similarity function, where S, L, and R denote the number of shared nodes, different nodes 

in the first tree, and different nodes in the second tree, respectively. 

Finally, the proposed distance function’s (EST) performance is evaluated against TED, 

IST, Entropy, Multisets, and Path distances as no compelling evidence exists that any 

other superior techniques exists and no comprehensive comparison of these techniques 

appears in the literature. However, it should be noted that approaches such as 

Kolmogorov complexity  [129] and Binary distance [130] have linear computational 

complexity; and hence, have a superior runtime to those used in the experiments. 

4.4 Proposed Tree Similarity Function: Extended Subtree (EST) 

In this section, we propose a new similarity function, namely EST, to compare trees. The 

new function seeks to resolve many of the issues which will be discussed in the following 
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section. Further, a computational algorithm as well as its runtime complexity is 

presented. 

4.4.1 Motivation 

In this section, we justify the need to propose a new tree comparison approach by 

discussing situations where previous approaches have poor performance. Note that the 

aim of the new approach is not runtime complexity reduction as presented in [130], [136]. 

Although runtime complexity is an important issue in practical applications, we focus on 

proposing a new approach that better represents the similarity or distance between tree-

structured data. This leads to an enhancement in applications where a tree distance 

function is utilized.  

A variety of tree comparison approaches are introduced in the previous section. Each 

approach has advantages and disadvantages in terms of the distance/similarity score. We 

found situations where the previous approaches do not give an appropriate 

similarity/distance score. In the following, these cases are analyzed with illustrative 

examples where all discussions are in terms of a normalized similarity score, 

( , )p qS T T∗ . ( , ) 1p qS T T∗ =  means that the trees are identical; while ( , ) 0p qS T T∗ =  

means that the trees are totally distinct.  

All of the five edit based tree distance approaches follow the mapping rules presented in 

Section 4.3.1, namely one-to-one and order preserving conditions. According to the one-

to-one condition, any node in pT  can only be mapped to one node in qT . Now consider 

Figure 4.3a where u pT T⊂  and , u x qT T T⊂ . Also assume that | |, | | 1u xT T  , so the 

cost of the root nodes in pT  and qT  have negligible impact on the distance calculation. 

Considering | | | |u xT T=  in Figure 4.3a leads to ( , ) 0.667p qS T T∗
.  with respect to all 

five edit based approaches. There is a problem in this similarity score: no matter whether 
uT  and xT  are identical or totally different, ( , )p qS T T∗  remains 0.667. The one-to-one 

mapping condition enforces that xT  cannot be mapped to u pT T⊂ , since u pT T⊂  is 

already mapped to u pT T⊂ . Moreover, according to the order preserving conditions, a 

node in pT  can be mapped to one node in qT , if the ordering is preserved with other 

mappings. This is how edit based distances differentiate between ordered and unordered 

trees. This rule seems less than ideal in a number of situations. To clarify this discussion, 
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consider Figure 4.3b, where , pu yT T T⊂  and , u x qT T T⊂ ; again, assume that 

| |, | |, | | 1u x yT T T  . Considering | | | | | |u x yT T T= =  in Figure 4.3b leads to  

( , ) 0.5p qS T T∗
.  with respect to all edit based approaches. The problem in this case is 

that whether xT  and yT  are identical or totally different, the similarity score remains at 

0.5. This means that when considering xT  and yT  as identical, they cannot be mapped 

together due to the order preserving conditions. Please note that considering xT  and yT  

as identical does not lead to p qT T= , since pT  and qT  are ordered trees. Accordingly, 

we are not discussing that by mapping yT  to xT , the similarity score would be one. 

What we are discussing is that if x yT T= , *0.5 ( , ) 1p qS T T< <  better represents the 

similarity between these trees. According to these discussions, we introduce a new set of 

mapping conditions in the next section. 

a

uTyT

pT
a

xTuT

qT

(b)

a

(a)

a
pT

uT xTuT

qT

 

Figure 4.3. Samples of 
pT  and 

qT  utilized to problems regarding mapping conditions in 
edit based distances. 

Further, we observed that m (a constant number) similar nodes between pT  and qT  have 

a stronger emphasis on the similarity of pT  and qT  when they form an identical subtree 

mapping between pT  and qT  (Figure 4.4a), compared to disjoint nodes as illustrated in 

Figure 4.4b. That is, an identical subtree represents a similar substructure between pT  

and qT , whereas m disjoint mapped nodes indicate no similar structure between the two 

trees. However, edit based approaches, in particular the IST distance [123], are unable to 

model this. That is, in the IST distance, m mapped disjoint nodes have the same similarity 

as m nodes forming a subtree. Figure 4.4 represents two IST mappings where 

( , ) 0.6p qS T T∗
.  in both cases. However, we believe that pT  and qT  presented in 

Figure 4.4a are more similar than the trees presented in Figure 4.4b, since Figure 4.4a 

contains a similar subtree as denoted by the hatches. 
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Figure 4.4. Samples of isolated subtree (IST) mappings where (a) the mapped nodes form a 
subtree as denoted by the hatches; and (b) the mapped nodes are separate nodes. 

Path [111] and entropy [110] distances consider paths as a tree’s building blocks as their 

basic assumption; that is, they convert a tree into a multiset of paths and then compare the 

trees by comparing the multisets of paths. This assumption is not in accordance with the 

nature of tree-structured data. If we could convert a tree into a multiset of paths, there 

would have been no reason to present the data initially as a tree. Further, the entropy 

approach produces some strange results. Assuming the trees presented in Figure 4.3a with 

the aforementioned conditions regarding uT  and xT , the entropy approach yields 

( , ) 1p qS T T∗
  where x uT T= . Obviously, this result is unsatisfactory as pT  and qT  are 

not identical.  

The binary [130] and Fourier [136] distances assume TED as an ideal distance approach 

and approximate TED while reducing the runtime complexity. Fourier distance converts a 

tree to a signal in the frequency domain. The poor performance of Fourier distance, 

presented in [111], verifies that it is not an appropriate tree comparison approach. The 

bottom-up approach [124] puts more value on bottom nodes rather than top nodes, since 

it matches the bottom nodes first. Therefore, this approach is not performing well in most 

of the situations where nodes have equal weights or where top nodes have larger weights. 

Based on our empirical investigation, the multiset approach [113] behaviour is similar to 

the bottom-up approach in terms of putting more value on bottom nodes; that is, every 

subtree defined in this approach contains leaves of the tree. Finally, the NCD approach 

 [129] does not seem an appropriate distance metric, since it converts the tree into plain 

text where each node’s label is converted to text. Just as an example to demonstrate a 

disadvantage of this approach, assume that different nodes are labeled with different 

numbers in a tree like 2, 111, and 1111. All the three labels are different, but since the 

labels are converted into plain text, 111 and 1111 are considered similar in the 

compression process utilized in NCD. Further, since an optimal compressor does not 
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exist, a real world compressor is utilized which does not yield optimal NCD scores. 

As a conclusion, the main motivation for proposing a new tree similarity approach is 

introducing an approach which resolves the discussed problems and removes the 

limitations of the previous approaches. In addition, the new approach must enhance the 

applications where a tree distance function is utilized.  

4.4.2 Extended Subtree (EST) Similarity 

Given pT  and qT , the proposed EST preserves the structure of the trees by mapping 

subtrees of pT  to similar subtrees of qT . Although it might seem similar to the IST, it is 

fundamentally different since EST’s mappings are not in accordance with the mapping 

conditions provided in Section 4.3.1. That is, EST generalizes the edit base distances and 

mappings. According to the discussions in the previous section, given pxT  and qxT  as 

two mapped subtrees in pT  and qT  with xm  as the name of this mapping, we introduce 

the rules of the new approach’s mapping as: 

Rule 1: EST’s mapping is a subtree mapping which means that not only single nodes can 

be mapped together, but also identical subtrees can be mapped together (unlike IST). 

Using subtree mapping, we can increase the significance of larger subtrees, since they are 

considered more important than single nodes in accordance with the discussion in the 

previous section. 

Rule 2: No common subtrees of pxT  and qxT  are allowed to be mapped together, as 

indicated in Figure 4.5a, this is defined as an invalid mapping. When two subtrees of pxT  

and qxT  are already mapped, all the sub structures of pxT  and qxT  can be mapped 

together as pxT  and qxT  are identical. Since we are interested in larger mapped subtrees, 

mapped subtrees of pxT  and qxT  have no use, so we categorize them as invalid 

mappings. 

(a) Invalid mapping

pT qT
pxT

qxTpyT
qyT

(b) Valid mapping

pT qT

pxT

qyTpyT
2qxT

1qxT

1xm
2xm

ym
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Figure 4.5. Extended Subtree (EST) mapping where (a) indicates invalid mappings, and (b) 
represents valid mappings. 

Rule 3: One-to-many condition: A subtree of pT  can be mapped into several subtrees of 
qT  and vice versa. The intuition of this rule is with respect to Figure 4.3a where the 

disadvantages of the one-to-one condition are investigated. As indicated in Figure 4.5b, 
pxT  is mapped to 1qxT  and 2qxT  concurrently. Further, qyT  is mapped into pyT  where 
qyT  is a subtree of 2qxT  which is already mapped. 

Rule 4: xm  is weighted as ( ) ( ( ) ( )) / 2px qx
xW m W T W T= +  where ( )pxW T  and ( )qxW T  

are the weights of subtrees in the mapping. ( )pxW T  (and similarly for ( )qxW T ) is 

calculated as: 

 ( ) ( )
px px

i

px px
i

t T
W T W t

∈

= ∑   (4.6) 

where ( )px
iW t  is the unit scalar, when pxT  is the largest subtree that px

it  belongs to; and 

zero otherwise. A node like px
it  might be a member of several subtrees in the mappings 

as indicated in Figure 4.5b. However, it is inappropriate to multiply-count the same node; 

therefore, nodes are counted as a weight just for the largest subtree that they belong to. 

Finally, we can compute ( , )p qS T T  based on all the possible valid mappings as: 

 ( ) ( ),
k

p q
k k

m M
S T T W m α

α β= ×∑


  (4.7) 

where α , 1α ≥ , is a coefficient to adjust the relation among different sizes of mappings. 

It amplifies the importance of large subtrees compared to small subtrees or single nodes 

in accordance with the discussion in the previous section. This similarity function has 

obvious parallels with the Minkowski distance function [137] which is a popular distance 

function for higher dimensions of data. 1α =  does not amplify the importance of large 

subtrees compared to small subtrees. As α  grows larger, more emphasis is placed on 

larger subtrees. Further, kβ  is a geometrical parameter which reflects the importance of 

the mapping with respect to the position of pkT  and qkT  in pT  and qT , respectively. 

kβ  is the unit scalar, when the root nodes of pkT  and qkT  have the same depth with 
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respect to pT  and qT ; and it is equal to β  (a constant number between zero and one) 

otherwise; leading to the amplification of the mapping of the same depth regarding 

subtrees. The selection of  α  and β  values are discussed in Section 4.5.5.  

To normalize the similarity score, we divide it by its higher bound. Since 0 1kβ≤ ≤ , we 

have ( ), ( )  
k

p q
km MS T T W m αα≤ ∑  . Further, ( )  ( ) 

k k
k km M m MW m W mαα ≤∑ ∑   

where 1α ≥  and ( )kW m  is a positive number. In addition, each node is counted as one in 

the weight calculation, ( ) (| |,| |)
k

p q
km M W m Max T T

∈
≤∑ . As a result, 

( , ) (| |,| |)p q p qS T T Max T T≤  and the similarity function is normalized as: 

 ( , )( , )
(| |,| |)

p q
p q

p q
S T TS T T

Max T T
∗ =   (4.8) 

In the example provided in Figure 4.5b, consider the presented mappings as the only 

valid mappings. In addition, assume 1 2| | | | | | 5px qx qxT T T= = =  and | | | | 2py qyT T= = . 

Therefore, mapping weights can be computed as 1( ) 5xW m = , 2( ) 2.5xW m = , and 

( ) 1yW m = . Accordingly, if we consider 2α =  and 1,β =  the similarity score 

is 2 2 2( , ) 5 2.5 1 5.679p qS T T = + + = . Consequently, considering | | 8pT =  and 

| | 10qT = , the normalized similarity score is * ,( 0.568)p qS T T = . 

4.4.3 Computational Algorithm 

Assume ,
p

i jT  represents a subtree of pT  rooted at p
it  which is mapped to an identical 

subtree of qT  rooted at q
jt , namely ,

q
j iT . Accordingly, computing ( , )p qS T T  has four 

following steps.  

Step 1: Identify all the mappings: In this step, we find all the possible mappings, valid or 

invalid (in Step 3, invalid mappings will have a zero weight), and store two lists of nodes 

for each mapping, one for each subtree. pT  and qT  are the inputs to this step and pV  

and qV  are the outputs (inputs for the next step). pV  and qV  are two dimensional 

matrices where each element is a list of nodes. Accordingly, [ ][ ]pV i j  and [ ][ ]qV j i  

represent the list of nodes of the mapped subtrees of ,
p

i jT  and ,
q
j iT , respectively. The 
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pseudo code represented in Figure 4.6 details this step’s calculations. The GetMapping(i, 

j) function produces two lists of nodes ( [ ][ ]pV i j  and [ ][ ]qV j i ) for a mapping. Its 

objective is to detect the largest possible mapping. To achieve this objective, we need to 

find and match the mappings rooted at the children of p
it  and q

jt . Since i and j are node 

indexes in post-order formatting, when computing GetMapping(i, j) for nodes p
it  and q

jt , 

the computation is already performed for all the children of p
it  and q

jt  in advance. 

Therefore, as indicated in the pseudo code, the GetMapping(i, j) function goes through all 

of the children of p
it  and q

jt  to use the mapping information among p
it ’s and q

jt ’s 

children to find the largest mapping between p
it  and q

jt . p
iat  denotes the ath child of the 

p
it  node, where1 deg( )p

ia t≤ ≤ , and ia represents the index of the ath child of the p
it  

node. Similarly, q
jbt  represents the bth child of the q

jt  node, where 1 deg( )q
jb t≤ ≤  and jb 

represents the index of the bth child of the q
jt  node. In Figure 4.6, E is a matrix which 

indicates how the children of p
it  and q

jt  are matched. Accordingly, E is used to update 

[ ][ ]pV i j  and [ ][ ]qV j i . Since ,
p

i jT  and ,
q
j iT  are identical, | | | |[ ][ ] [ ][ ]p qV Vi j j i= , so 

[ ][ |]| pV i j  can be replaced by [ ][ |]| qV j i  in the pseudo code.  
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St
ep

 1
 

Begin 
    for i = 1 to | |pT   do 

        for j = 1 to | |qT  do 

            if ( ) ( )p q
i jlabel t label t==  then 

                GetMapping(i, j) 
            end of if 
        end of for 
    end of for 

St
ep

 2
 

    for i = 1 to | |pT  do 

        for j = 1 to | |qT  do 

             for k = 1 to | [ ][ ] |p iV j   do 

               [ ][ ] , [  ][ ]p
k

q
ki j ji V V j i′ ← ←′  

                if [ ][ ] [ ]| | | |[ ] [ ][ ]p p p p
mi mji V LSjV LS i i> ′ ′   then 

                    ] , [ ][ p p
mi mjLS i i LS i j′=′ =  

                end of if 
                if [ ][ ] [ ]| | | |[ ] [ ][ ]q q q q

mj mij i j jV V LS LS′ ′>   then 

                    ] , ][ [ p
mi mj

qLS i LSj j j′=′ =  
                end of if 
            end of for 
        end of for 
    end of for 

St
ep

 3
 

    for i = 1 to | |pLS   do 

          [ [ ] ][ [ ] ]p p p
mi mjW LS LSi i + +   

    end of for 
    for j = 1 to | |qLS  do 

          [[ [ ] ] [ ] ]q q q
mj miW S jLjLS + +  

    end of for 

St
ep

 4
 

    for i = 1 to | |pT  do 

        for j = 1 to | |qT  do 

           
[ ][ ] [ ]

2
[ ]p qi j j iW W

temp
α

+
=
 
 
 

  

            if ( ) ( ) p q
i jdepth t depth t≠   then 

                temp temp β= ×   
            end of if 
           S S temp= +   
        end of for 
    end of for 
   S Sα=   
End 
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Begin of  GetMapping(i, j) 
    [ ][ ] { }p p

ii tjV =    

    [ ][ ] { }q q
jj tiV =   

    for a = 1 to deg( )p
it    do 

        for b = 1 to deg( )q
jt   do 

            
[ -1][ ]

[ ][ ] [ ][ -1]

[ -1][ -1 ] |][] | [p

E a b
E a b Max E a b

E a b V ia jb

=

+







  

        end of for 
    end of for  
    a= deg( )p

it  

    b= deg( )q
jt  

    while a > 0 and b > 0 then 
        if [ ][ ] [ -1][ -1] | |[ ][ ]pE a b E a b V ia jb== +   then 

           [ ][ ] [ ][ ] [ ][ ]p p pi j i j iaV V V jb=    

           [ ][ ] [ ][ ] [ ][ ]q q qj i j i jV b aV V i∪=  
            a = a - 1 
            b = b - 1 
        else if  [ ][ ] [ ][ -1]E a b E a b==  then 
            b = b - 1 
        else 
            a = a - 1 
        end of if 
    end of while  
End 

Figure 4.6. Pseudo code for the proposed tree distance algorithm. 

Step 2: Identify each node’s largest mapping: A node in pT  or qT  might belong to 

several mappings. Considering that we do not want to count one node several times, we 

determine the largest subtree in the mappings for each node. To compute this step, first, 

assume two arrays, namely pLS  and qLS , of size | |pT  and | |qT , respectively. [ ]pLS i  

indicates the largest subtree that p
it  belongs to. [ ]pLS i  keeps the indexes of root nodes 

of the mapping, denoted by [ ] p
miLS i  and [ ] p

mjLS i . As indicated in Fig 6, filling pLS  

and qLS  with appropriate values is the objective of this step. For each mapping, between 

,
p

i jT  and ,
q
j iT , we iterate through all the nodes in [ ][ ]pV i j  and [ ][ ]qV j i  which were 

computed in the first step. For each node in [ ][ ]pV i j , where the index of the node is 

denoted by [ ][ ]p
kiV j  in the pseudo code, we check if the [ ][ ] || pV i j  is larger than the 
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subtree stored in pLS  for that node, and update pLS  accordingly. A similar procedure is 

repeated for each node in [ ][ ]qV j i . 

Step 3: Compute the weight of each subtree: In this step, we calculate ,( )p
i jW T  and 

,( )q
j iW T  for all the subtrees in the mappings. In the pseudo code, they are denoted by 

[ ][ ]pW i j  and [ ][ ]qW j i . We go through pLS  and increase the weight of a subtree when 

it is reported as a largest subtree of a node in pLS . This procedure is repeated for qLS  as 

well. 

Step 4: Calculate ( , )p qS T T : Now that we have all the subtree weights ( pW  and qW ) 

available, we can simply calculate ( , )p qS T T  according to (4.7).  

Figure 4.7 presents an example which indicates the inputs and outputs of each step. Two 

simple trees with three and four nodes are presented where the mappings are indicated on 

the figure. There is two valid mapping, one between nodes b and the other between 

subtrees of a-c. According to Step 1, pV  and qV  are calculated which indicates all the 

valid and invalid mappings. The largest subtree, for each node, are calculated using Step 

2 and are saved in pLS  and qLS . For example, the second element of pLS , (3,4)  , 

indicates the largest subtree that 2
pt  is a member of. (3,4)  represents the mapping 

between subtrees rooted at node 3 of pT , and node 4 of qT . In the next step, the weight 

of each subtree in the mapping is calculated and stored in pW  and qW . Finally, in Step 

4, similarity is calculated from pW  and qW . 
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Figure 4.7. A simple example for the proposed EST algorithm. 

4.4.4 Runtime Complexity Analysis 

In this section, we discuss the order of computational complexity of the EST algorithm. 

The order of runtime complexity is the summation of the associated complexity into each 

of the four steps, discussed in the previous section. In accordance with the pseudo code 

presented in Figure 4.6, we have ( )( )|T | | |
1 1 1

p qT
step i jEST O GetMapping

= =
∈ ∑ ∑ . The 

GetMapping function has a double “for” loop and a “while” loop. Obviously, the double 

“for” loop is executed deg( ) deg( )p q
i jt t×  times and the maximum number of executions 

of the “while” loop is deg( )+deg( )p q
i jt t . Inside the “while” loop we have two set’s union 

operations which has runtime complexity of ( (| |,| |))p qO Min T T , since the size of each 

subtree in the mapping cannot be larger than (| |,| |)p qMin T T . Accordingly, GetMapping 

deg( ) deg( ) (deg( )+deg( )) (| | ),|( |)p q p q p q
i j i jt t t t Min TO T× + ×∈ . Consequently, 

( ) ( )( )( ( ) ( ) ( )( ))| | | | | | | |
1 1 1 1 1deg deg , deg deg

p q p qT T T Tp q p q p q
step i j i ji j i jEST O t t Min T T t t

= = = =
∈ × + × +∑ ∑ ∑ ∑ . 

This result can be simplified to 

( ) ( ) ( ) ( ) ( )( )| | | | | | | | | | | |
1 1 1 1 1 1deg deg , deg deg
p q p q p qT T T T T Tp q p q p q

i j i ji j i j i jt t Min T T t t
= = = = = =

× + × +∑ ∑ ∑ ∑ ∑ ∑ . 

Since ( )| |
1 deg 1
pT p p p

ii t T T
=

= − <∑ , we have 1 (| | | | 2 ( || , | |) | | | |)p q p q p q
stepEST O T T Min T T T T∈ × + × × × . 

Since we need to keep the term with highest order, the final runtime of the algorithm’s 

Step 1 is given by ( (| , | |) | || | |)p q p qO Min T T T T× × .  
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To determine pLS  and qLS  in Step 2, we need to iterate | | | |p qT T×  times to cover all 

the possible mappings. According to the description in Step 2, the complexity of each 

mapping’s iteration is (2 (| , | || ))p qO Min T T×  since ,( )p
i jV T  and ,( )q

j iV T  are bounded 

between zero and |(| , | |)p qMin T T . Therefore,  

2 |( (| , | |) | | | |)p q p q
stepEST O Min T T T T∈ × × . Obviously, the runtime order of Step 3 and 

Step 4 are |(| | |)p qO T T+  and |(| | |)p qO T T× , respectively. Finally, the total runtime of 

the proposed algorithm is within the order of ( (| , | |) | || | |)p q p qO Min T T T T× ×  since we 

need to keep the term with highest order and we can forget about constant coefficients. 

The calculated runtime complexity is also investigated in the empirical runtime analysis 

section. 

4.5 Evaluation Frameworks Design 

In this section, we design clustering and classification frameworks to evaluate the 

proposed distance function (EST) performance against other tree distance functions. To 

implement these frameworks, k-medoid [114] is used for the clustering; and KNN [115] 

and SVM [116] are utilized for the classification framework.  

4.5.1 Data Sets 

Four different labeled data sets (three real world data sets and one synthetic data set) are 

utilized in this chapter to investigate the performance of the distance functions to prevent 

biased results.  

The first real data set is CSLOG, available at [138]; it has appeared in a number of 

publications including [103], [105] and [118]. Each tree in this dataset represents the 

behavior of a user visiting a website, where each node in the tree indicates a webpage of 

the website. Each tree is labeled either “edu” (visitor is from edu domain) or “other”. 

Further, this data set contains three weeks of information separated as three data sets, 

presented in Table 4.1.  
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Table 4.1. Detailed information regarding the real and synthetic data sets. 

Data set 
Data set 
size 

Average 
tree size 

Average 
tree depth 

CSLOG_2C_WEEK1 8074 8.03 4.40 
CSLOG_2C_WEEK2 7407 8.05 4.46 
CSLOG_2C_WEEK3 7628 7.98 4.42 
SIGMOD_3C 987 39.04 3.76 
TREEBANK_2C 160,616 13.08 4.64 
TREEBANK_5C 769,172 9.48 3.85 
TREEBANK_6C 922,442 12.80 4.52 
SYN_2C_CLUSTER 100 58.22 8.48 
SYN_3C_CLUSTER 150 58.50 8.44 
SYN_5C_CLUSTER 250 58.31 8.51 
SYN_8C_CLUSTER 400 57.85 8.45 
SYN_20C_CLUSTER 1000 11.93 5.08 
SYN_2C_CLASIFY 200 57.32 7.78 
SYN_3C_CLASIFY 300 57.62 7.84 
SYN_5C_CLASIFY 500 57.31 7.85 
SYN_8C_CLASIFY 800 57.20 7.84 
SYN_20C_CLASIFY 2000 12.81 4.83 

 

The second real data set is the ACM SIGMOD records [139] from March 1999. This data 

set is also utilized in several works such as [106] and [117]. Each tree in this data set is 

presented as an XML file. We removed one of the XML files, named “a.xml”, since its 

name was not in accordance with other XML files and it was always miss-

classified/miss-clustered. Therefore, the data set size is reduced to 987 trees.  

The third real data set is called Treebank. The original data set is one huge tree, English 

sentences from the Wall Street Journal, tagged with parts of speech [140] like “S” 

(sentence), “NP” (noun phrase), “VP” (verb phrase), “PP” (prepositional phrase), 

“ADJP” (adjective phrase), and “ADVP” (adverb phrase). To produce a useful labeled 

data set for clustering and classification, we separated subtrees as samples of the classes. 

We considered three cases as indicated in Table 4.1: 1) The “NP” and “VP” subtrees as a 

two class data set; 2) five English phrases (“NP”, “VP”, “PP”, “ADJP”, and “ADVP”) as 

a five class data set; and 3) five English phrases plus sentences as a six class data set. The 

Treebank data sets are the largest data sets among the real data sets in this chapter. Since 

their sizes are very large, to have a feasible runtime, we performed random sampling 

where 1000 random trees are selected for two class dataset. In the case of the five and six 

class datasets, we selected 100 random trees for each class. To prevent any biased results, 
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the whole process of random sampling and performing the experiments is repeated 100 

times and the average of trials are reported. Further, a statistical analysis is performed in 

Section 4.6.4 which provides evidences on validity of these statistical experiments.  

These real data sets have appeared in a number of publications [103], [105], [106], [117], 

[118] none of which question the veracity of these data sets. Again, we find no real 

evidence of miss-labeling, in these data sets and hence we believe that they are highly-

accurate sources of information. 

To generate the synthetic datasets, we considered data sets with different numbers of 

classes (2, 3, 5, 8, and 20 classes), so we can study the performance of the distance 

functions with respect to the number of classes in the data set. Accordingly, we generated 

five synthetic datasets randomly for classification and another five data sets for 

clustering. Each synthetic data set for clustering has 50 trees for each class. The 

classification of the synthetic data sets has two sub-components, one for training and one 

for testing; each contains 50 trees for each class. Generating these data sets is a two-step 

process: 

Step 1: Assuming we are generating a data set with cN  classes, we generate cN  labeled 

mother trees, namely imT  where 1 ci N≤ ≤ . Each imT  is generated randomly where to 

add a new node to the tree, one of the pre-generated nodes is selected randomly and the 

new node is added to the selected node as a child until | | 50imT =  is reached. After 

generating a tree with 50 nodes randomly, each node is randomly labeled from a pool of 

30 possible node labels. The size of 50 for mother trees was selected since significantly 

larger tree sizes was not feasible with respect to runtime of the classification and 

clustering trials and are believed to be a reasonable representation of many situations 

found in computer applications. Please note that in the case of the 20 class data set, we 

reduced the initial size of trees to 10 to have a manageable runtime.  

Step 2: After generating the mother trees, a synthetic data set is generated by producing 

trees using the mother trees as follows: To generate trees in accordance with the ith 

mother tree, imT , we go through all the nodes in imT  and each node, namely jt , is edited 

with the probability of ρ . For each jt , the edit operation is randomly selected with equal 

probability from one of five edit operations. Let pT  be a subtree of imT  rooted at jt  and 
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includes all of the children of jt ; also let qT  be a subtree of imT  rooted at a random 

node which includes all of the children of that random node. Further, rT  is selected 

randomly like qT , but from  kmT  rather than imT  where kmT  is a randomly chosen 

mother tree other than imT . The five edit operation are: 1) pT  is removed; 2) pT  is 

replaced with qT ; 3) pT  is replaced with rT ; 4) qT  is added to the root of pT  as a 

child; and 5) rT  is added to the root of pT  as a child. In fact, a tree in the ith class is a 

combination of ith mother tree and other mother trees. For the classification trials,  

0.5ρ =  was selected; and for the clustering trials, it is selected as 0.25. ρ  is chosen 

lower for the clustering trials, since the clustering results are more sensitive than the 

classification  results; so to keep the results of clustering around 80% accurate, ρ  is 

reduced. Finally, since the synthetic data set generation is a probabilistic process, to 

prevent any biased results, the whole process of generating data sets and conducting the 

trials is repeated 100 times and the average of trials are reported as the synthetic datasets 

results.  

4.5.2 Clustering Framework 

The k-medoid [114] clustering technique is used as one of the evaluation approaches. The 

reason why k-medoid is chosen over other clustering techniques, like the classic k-means, 

is the limitation enforced by our tree data type. Unlike usual machine learning problems, 

we cannot simply model trees as a set of features and consequently we cannot define 

operations such as averaging on trees which is required in most of the clustering 

techniques such as k-means which partitions the data into Voronoi regions [90]. In our 

case, the only operation defined on trees is the distance between two trees acquired using 

a distance function. K-medoid is similar to k-means, however, a tree is selected as the 

center of the cluster, called a medoid, rather than the average of the trees. Partitioning 

Around Medoids (PAM) algorithm [114] is utilized for clustering. Further, to determine 

the initial medoids, we selected the first medoid randomly and then trees with highest 

distance from previously selected medoids. Since the k-medoid approach may find a local 

optimum rather than the global optimum, the clustering process is repeated 10 times with 

different initial medoids and the results with minimum cost are selected as the final 

results. After the clustering is completed, we need to assign a label to each cluster as a 

predicted label for evaluation purposes. A predicted label is determined as the real label 

that has the greatest population within that cluster.  
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4.5.3 Classification Framework 

Weighted KNN [115] and kernel based SVM [116] are utilized to perform the evaluation 

of the distance functions with respect to the classification applications. Similar to 

clustering discussion, not all the classification techniques work on trees, since we only 

have a distance between trees, not their features. As a result, only methods like KNN that 

purely work based on distance functions; and kernel based classification approaches such 

as SVM, which map the input space into higher dimensions, can be utilized for tree 

classification problems. 

KNN is a classic classification technique where the K nearest neighbors to the test data 

are identified from the set of training data, and then, in a voting process with *S  as a 

weight, the predicted class for the test data is determined. K is chosen as nine in all the 

trial runs since we observed it generates the best results.  

Kernel based SVM [116] is a state-of-the-art classification technique which maps the 

input space into higher dimensions and generates support vectors in the new space. The 

mapping is performed based on the kernel function. Beside SVM’s kernel function which 

is set to *S  in all the evaluations, we need to specify the penalty factor (C) and epsilon 

(ε ). C controls the over/under fitting in the training stage [116] and is set to 2 for all the 

real data sets, and 4 for all the synthetic data sets in this chapter. Further, ε  which has an 

effect on the smoothness of the SVM’s response and the number of support vectors, is 

selected as 0.001 in all the experiments. Since SVM originally works only on two class 

problems, we utilized the one-vs-all technique [141] to extend the SVM classification to 

multi-classes.  

Unlike clustering, we need to train these classifiers, and then perform a classification on 

another date set. In the case of the CSLOG data sets, we performed three experiments, 

distinguished as CSLOG_2C_WEEK12, 23, and 31 where the last two digits refer to the 

training and the test data, respectively. In contrast, in the case of the SIGMOD and 

Treebank data sets, we utilized 10-fold cross validation approach. 

4.5.4 Clustering and Classification Evaluation 

After the classification experiments, predicted and real labels for each test tree are 

available. Similarly, as discussed in the clustering section, after a clustering experiment, 

each cluster is assigned a label. Hence, each tree has a predicted label beside its real 
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label. Now that we have predicted and real labels of each tree, the evaluation is 

performed in terms of 1) accuracy; 2) Weighted Average of F-measures (WAF); and 3) 

runtime. 

Accuracy is simply defined as the number of correctly clustered/classified trees over the 

total number of trees. The F-measure is a popular information retrieval metric that is 

defined for each class and integrates recall and precision using the harmonic mean. Let 

iC  be the set of all the trees in class i; and let iP  be the set of all the trees predicted 

(clustered or classified) to be in class i, where 1 ci N≤ ≤ . The recall, precision, and f-

measure are defined as: 
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where ia  and ib  denote the number of correctly clustered/classified trees in iC  and iP , 

respectively. Since the number of classes is different with respect to different data sets 

and space is limited, providing a f-measure for all classes separately is not feasible. 

Therefore, the WAF, as used in WEKA [142], is presented regarding 

clustering/classification evaluation, where it is defined as: 

 
1

| | 
   

cN
i

i
i

CWAF FMeasure
number of all trees=

= ×∑   (4.10) 

where cN  denotes the number of classes in a data set.  The experiments within this study 

were conducted using Java 7 (64bit). The hardware platform, where the experiments have 

been executed, was an Intel dual-core Processor E6300 (2.8GHz) with 8GB of RAM.  

The k-medoid and KNN are bespoke implementations; and the libsvm Java SVM library 

[143] was adapted for the tree classification applications. 

4.5.5 Distance Function’s parameters 

The proposed EST approach includes two parameters, α  and β , that need to be 

adjusted. Obviously, they can be adjusted for every single experiment to achieve the 

optimum performance. However, for all the experiments, we have fixed the values of the 

parameters to produce an equivalence with the other distance functions which are 
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(relatively) parameter free. 

As discussed in Section 4.4.2, β  reflects the relative position of the mapped subtrees and 

it can be adjusted between 0 and 1. However, we have no any formal mechanism for 

estimating β  at the moment. Hence, we set β  to the neutral value of 0.5 which seems a 

good balancing point according to the sensitivity analysis presented in Figure 4.8a. Figure 

4.8a demonstrates accuracy vs. β , we did not include all the experiments in this figure to 

prevent a busy figure. For each data set, one clustering and one classification experiment 

is selected. In addition, we did not include SIGMOD data set as it produces 100% 

accuracy for all values of β . One can observe from Figure 4.8a that with the increasing 

β , accuracy is reducing for some of the experiments and increasing for some other. 

Therefore, the neutral value of 0.5 is selected for all experiments. Finally, WAF 

sensitivity analysis is not presented as it was similar to accuracy results.   

 
Figure 4.8. The accuracy of EST similarity function against α  and β . 

α  reflects the importance of the size of the mapped subtrees. Our formulation can be 

thought of as a variation on the well-known Minkowski distance [137]. As explained in 

[137], the optimal value of α  will vary with the domain of application and hence no 



 111 

universal approach for optimally estimatingα  exists. In the absence of problem-specific 

knowledge, it is believed that α  can be estimated in our formulation by considering the 

variation of the average similarity against α  ( 1α ≥ ). As 1α → , the algorithm overly 

weights the impact of small trees compared to the impact of large trees. These small trees 

are minor in terms of the “big picture”; however, their existence or not, can have a large 

impact on the similarity result and hence we can view the metric as becoming “numerical 

unstable” as 1α → . Conversely, as α →∞ , the distance metric loses discrimination 

power. Large trees dominate and substantial variations on small tress have little or no 

impact on the resultant similarity score. Hence, the selection of α  is equivalent to finding 

the balancing point which minimizes these two undesirable behaviors. 

Let iα  represent the ideal balancing point. If we consider a plot of the average similarity 

against α  as shown in Figure 4.9, we can define the plot in terms of: C1 – the curve 

between 1α =  and iα α= ; and C2 – the curve between iα α=  and α = ∞ . From above, 

C1 can be characterized as a curve where the average similarity changes significant with 

small changes in α ; and C2 as a curve where the similarity changes slowly (in fact, we 

believe that C2 can be modeled as a linear segment implying no curvature exists across 

C2). This model is again well-known and is perhaps most commonly used in the Scree 

test [144]. 

 
Figure 4.9. The average similarity of EST similarity function against α . 

Accordingly, we need to estimate the balancing point (elbow) in Figure 4.9 (Only a 

subset of the data is shown in the figure to increase clarity). In addition, we have scaled 

the curves between 0 and 1. Several approaches exist to approximate the elbow point, e.g. 

the Angle-based technique [145], the Menger Curvature method [146] which is good for 

continuous data, and the Kneedle technique [147] which works for both discrete and 
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continues data. None of these approaches are perfect in the presence of noise. Satopaa et 

al. [147] discuss that the Menger Curvature method is sensitive to noise, while the 

Kneedle technique produces better results. On average, all the methods give very similar 

results. The Kneedle technique [147] is believed to be more robust to  noise and works 

for discrete data. Therefore, we utilize the Kneedle technique [147] to estimate the elbow 

point. The elbow point for each curve was slightly different with the average value of 

1.6α = .  We utilized this value for all the experiments in this chapter and recommend 

this value in situations where limited data exists stopping the re-estimation of α . 

Further, we performed a sensitivity analysis of accuracy against α  as presented in Figure 

4.8b. Similar to β , we select a few experiments to prevent a busy figure. According to 

this figure, the calculated value of 1.6 for α  seems to be a balancing point for all the 

experiments. 

Finally, the costs of edit operations ( )γ  are considered as the unit scalar regarding TED 

and IST for all experiments. The Entropy, Path, and Multiset distance functions have no 

parameters to discuss. 

4.6 Experimental Results and Discussion 

4.6.1 K-medoid Clustering Results 

Table 4.2 represents the k-medoid clustering results with respect to all data sets discussed 

in Section 4.5.1.  The purpose of this table is to compare the performance of the proposed 

EST approach against the previous distance functions when they are used as the core in 

clustering applications. This table has three parts associated to accuracy, WAF, and 

runtime evaluations. Further, the result of the best evaluated distance function is bolded.  
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Table 4.2. The clustering results for all case studies in the terms of accuracy, Weighted 
Average of F-measure (WAF), and runtime. 

 Data set EST TED Entropy Path Multiset IST 

A
cc

ur
ac

y,
 %

 
CSLOG_2C_WEEK1 73.6 60.0 61.9 73.6 63.7 62.6 
CSLOG_2C_WEEK2 74.8 60.0 63.0 64.1 62.2 65.9 
CSLOG_2C_WEEK3 76.6 63.0 62.5 69.8 63.4 62.1 
SIGMOD_3C 100 99.9 54.1 99.9 99.9 100 
TREEBANK_2C 85.9 76.1 74.7 75.4 77.0 80.6 
TREEBANK_5C 70.3 58.2 54.6 61.3 57.1 62.8 
TREEBANK_6C 64.2 54.8 51.0 54.4 48.5 54.7 
SYN_2C_CLUSTER 87.4 61.8 81.7 78.0 63.9 82.1 
SYN_3C_CLUSTER 79.7 60.6 72.5 68.9 56.8 81.2 
SYN_5C_CLUSTER 78.6 62.7 69.1 62.9 47.3 75.3 
SYN_8C_CLUSTER 79.1 64.1 69.6 60.5 42.0 75.2 
SYN_20C_CLUSTE 77.3 62.8 72.4 58.0 37.0 71.5 

W
A

F,
 %

 

CSLOG_2C_WEEK1 69.4 62.5 59.1 69.4 60.1 59.4 
CSLOG_2C_WEEK2 71.6 63.0 60.9 66.1 60.4 62.3 
CSLOG_2C_WEEK3 72.2 65.3 59.9 63.7 60.4 59.7 
SIGMOD_3C 100 99.9 68.6 99.9 99.9 100 
TREEBANK_2C 85.8 76.1 74.0 74.2 76.2 80.3 
TREEBANK_5C 70.9 58.7 55.3 61.8 57.5 63.3 
TREEBANK_6C 63.7 55.5 50.7 53.6 47.7 54.0 
SYN_2C_CLUSTER 86.8 56.7 81.0 76.4 61.1 81.7 
SYN_3C_CLUSTER 76.4 55.5 68.4 63.6 51.0 80.6 
SYN_5C_CLUSTER 75.1 59.5 64.2 56.3 40.1 73.5 
SYN_8C_CLUSTER 76.4 61.7 65.1 54.0 34.3 73.9 
SYN_20C_CLUSTE 76.1 62.2 71.1 56.8 35.7 71.1 

R
un

tim
e,

 m
in

ut
es

 

CSLOG_2C_WEEK1 4.8 13.5 110.7 102.8 23.1 66.0 
CSLOG_2C_WEEK2 6.5 17.7 146.4 138.5 29.8 82.4 
CSLOG_2C_WEEK3 6.3 15.1 86.4 76.2 26.8 70.2 
SIGMOD_3C 2.7 11.6 2.1 2.0 1.7 156.2 
TREEBANK_2C 32.1 144.7 85.7 70.5 35.5 244.8 
TREEBANK_5C 5.9 17.9 15.5 12.2 6.7 32.9 
TREEBANK_6C 15.9 55.6 39.8 32.5 19.4 98.4 
SYN_2C_CLUSTER 4.2 26.3 7.3 6.0 4.8 67.2 
SYN_3C_CLUSTER 9.5 58.0 15.4 12.6 11.4 141.7 
SYN_5C_CLUSTER 23.9 156.0 42.6 35.1 33.6 511.8 
SYN_8C_CLUSTER 59.5 400.8 109.1 89.7 89.8 1361.3 
SYN_20C_CLUSTE 66.6 87.3 80.6 79.1 70.7 165.5 

 

As indicated in Table 4.2, the proposed EST has outperformed other distance functions in 

most of the investigated situations in terms of accuracy, WAF, and runtime. In the case of 

the three CSLOG data sets, EST has significantly improved results, over 10% in 

accuracy, except for the Path distance with respect to CSLOG_2C_WEEK1. With respect 

to SIGMOD_3C data set, EST and IST produce the perfect result; TED, Path, and 
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Multiset have only one miss-clustered tree; finally, the Entropy approach produces a very 

poor performance. EST also significantly outperformed other approaches (over 5%) with 

respect to the Treebank data sets. Regarding the synthetic data sets, the Multiset approach 

has the worst result and its accuracy and WAF significantly reduces as the number of 

classes grows. EST produced the best results in most cases with IST in second place. 

Apart from TED, the performances of all the distance functions are degraded as the 

number of classes increases. However, this result is not an advantage for TED since its 

uniformly poor performance. Finally, the runtime results indicate that EST has the best 

efficiency in term of runtime, except for the SIGMOD data set. This result makes the 

proposed approach the best for real time applications. In contrast, IST and Entropy 

produce the largest execution times. 

4.6.2 KNN Classification Results 

The KNN classification results with respect to all data sets are represented in Table 4.3 

where the performances of the distance functions are investigated. The CSLOG data sets’ 

results suggest that all the distance functions have a similar performance with regard to 

accuracy and WAF measures. Apart from the Multiset approach, all other distance 

functions produced a perfect classification regarding the SIGMOD data set. The Multiset 

approach produced one miss-classification. EST and then TED produced the best results 

with respect to the Treebank data sets. In case of the synthetic data sets, the EST 

approach produces the most accurate results; and the largest WAF measures. IST has the 

second most impressive results in terms of accuracy and WAF. Similar to the clustering 

runtime results, EST has the lowest runtime complexity for all data sets except SIGMOD 

where the Multiset approach produces the lowest runtime. Again, similar to the clustering 

runtime results, Entropy and IST have the largest runtime performances. 
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Table 4.3. The KNN classification results for all case studies in the terms of accuracy, 
Weighted Average of F-measure (WAF), and runtime. 

 Data set EST TED Entropy Path Multiset IST 
A

cc
ur

ac
y,

 %
 

CSLOG_2C_WEEK12 83.4 83.1 83.3 83.2 83.0 83.2 
CSLOG_2C_WEEK23 84.1 83.1 83.9 83.9 83.7 83.8 
CSLOG_2C_WEEK31 83.2 82.4 83.0 83.0 83.0 83.0 
SIGMOD_3C 100 100 100 100 99.9 100 
TREEBANK_2C 97.0 96.9 93.9 94.9 90.1 95.5 
TREEBANK_5C 88.8 86.3 79.2 81.9 69.6 83.0 
TREEBANK_6C 87.2 84.8 75.5 78.2 65.7 80.4 
SYN_2C_CLASIFY 82.9 78.1 77.6 76.9 72.4 80.5 
SYN_3C_CLASIFY 75.1 67.4 70.7 70.0 60.6 71.4 
SYN_5C_CLASIFY 70.3 61.6 67.8 66.4 55.6 66.4 
SYN_8C_CLASIFY 68.7 59.1 65.8 65.1 53.0 63.9 
SYN_20C_CLASIFY 68.9 60.5 62.0 59.3 37.9 63.1 

W
A

F,
 %

 

CSLOG_2C_WEEK12 82.4 81.8 82.3 82.2 81.9 82.2 
CSLOG_2C_WEEK23 83.2 81.7 82.9 83.0 82.6 82.8 
CSLOG_2C_WEEK31 82.0 80.9 81.9 81.9 81.8 81.9 
SIGMOD_3C 100 100 100 100 99.9 100 
TREEBANK_2C 97.0 96.9 93.9 94.9 90.1 95.5 
TREEBANK_5C 89.0 86.5 79.6 82.3 70.0 83.2 
TREEBANK_6C 87.3 84.9 75.4 78.4 65.5 80.3 
SYN_2C_CLASIFY 82.8 77.9 77.3 76.7 72.2 80.4 
SYN_3C_CLASIFY 75.0 67.4 70.5 69.9 60.4 71.4 
SYN_5C_CLASIFY 70.3 61.7 67.7 66.3 55.5 66.4 
SYN_8C_CLASIFY 68.8 59.3 65.9 65.2 52.9 64.0 
SYN_20C_CLASIFY 69.4 60.9 62.3 59.6 37.8 63.6 

R
un

tim
e,

 m
in

ut
es

 

CSLOG_2C_WEEK12 5.8 15.3 126.7 117.5 26.3 75.5 
CSLOG_2C_WEEK23 5.6 14.3 119.9 113.5 24.3 67.4 
CSLOG_2C_WEEK31 6.7 15.8 91.5 80.7 28.2 74.3 
SIGMOD_3C 2.6 11.4 2.0 1.8 1.6 156.0 
TREEBANK_2C 29.8 142.3 83.2 68.0 33.2 242.5 
TREEBANK_5C 3.5 15.4 13.1 10.0 4.5 30.6 
TREEBANK_6C 8.4 47.2 31.5 24.7 11.8 90.4 
SYN_2C_CLASIFY 4.0 28.2 8.0 6.7 5.3 73.7 
SYN_3C_CLASIFY 9.3 64.0 18.3 15.1 13.2 155.9 
SYN_5C_CLASIFY 22.2 173.0 47.2 38.8 34.8 420.9 
SYN_8C_CLASIFY 58.9 429.8 116.5 94.9 90.7 1055.4 
SYN_20C_CLASIFY 26.8 55.3 48.2 36.4 28.9 185.7 

 

4.6.3 SVM Classification Results 

The SVM classification results are presented in Table 4.4; they are similar to the KNN 

results. The differences include the now perfect result for the Multiset distance function 

in case of the SIGMOD data set. In case of the Treebank data sets, all the approaches 

produce very good results. In addition, IST produced the highest accuracy with respect to 
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SYN_2C_CLASIFY data set. However, the EST has still the greatest accuracy with 

regard to the other synthetic data sets. The runtime results with respect to lowest and 

largest runtime are similar to the KNN classification and the clustering case studies. 

These suggest the proposed EST has, in general, the lowest runtime complexity. 

Although the comparison between KNN and SVM is not within the scope of this 

research, one can observe that SVM possesses a better accuracy and WAF on average.  

Table 4.4. The SVM classification results for all case studies in the terms of accuracy, 
Weighted Average of F-measure (WAF), and runtime. 

 Data set EST TED Entropy Path Multiset IST 

A
cc

ur
ac

y,
 %

 

CSLOG_2C_WEEK12 83.5 70.8 83.2 82.9 83.0 82.4 
CSLOG_2C_WEEK23 83.6 68.1 83.5 83.1 83.0 82.9 
CSLOG_2C_WEEK31 82.8 68.3 82.5 82.3 82.2 81.4 
SIGMOD_3C 100 100 100 100 100 100 
TREEBANK_2C 99.9 99.9 99.8 99.8 98.6 99.9 
TREEBANK_5C 99.7 99.7 99.3 99.2 97.4 99.5 
TREEBANK_6C 99.7 99.7 99.0 99.0 96.8 99.2 
SYN_2C_CLASIFY 88.0 87.0 86.2 84.8 84.9 88.3 
SYN_3C_CLASIFY 83.1 82.2 79.7 79.0 76.9 82.6 
SYN_5C_CLASIFY 79.8 78.9 77.1 75.6 72.3 79.7 
SYN_8C_CLASIFY 78.6 77.4 75.6 74.2 69.4 77.8 
SYN_20C_CLASIFY 71.6 64.0 66.5 65.3 50.3 59.0 

W
A

F,
 %

 

CSLOG_2C_WEEK12 82.3 70.5 82.0 81.4 81.6 81.2 
CSLOG_2C_WEEK23 82.3 68.0 82.3 81.7 81.5 81.7 
CSLOG_2C_WEEK31 81.4 67.8 81.1 80.6 80.6 80.0 
SIGMOD_3C 100 100 100 100 100 100 
TREEBANK_2C 99.9 99.9 99.8 99.8 98.6 99.9 
TREEBANK_5C 99.7 99.7 99.3 99.2 97.4 99.5 
TREEBANK_6C 99.7 99.7 99.0 99.0 96.8 99.2 
SYN_2C_CLASIFY 87.9 87.0 86.2 84.8 84.9 88.3 
SYN_3C_CLASIFY 83.0 82.2 79.6 79.0 76.9 82.6 
SYN_5C_CLASIFY 79.8 78.9 77.1 75.6 72.3 79.7 
SYN_8C_CLASIFY 78.6 77.5 75.6 74.2 69.4 77.8 
SYN_20C_CLASIFY 72.0 64.3 66.8 65.7 50.3 59.3 

R
un

tim
e,

 m
in

ut
es

 

CSLOG_2C_WEEK12 11.1 28.7 237.4 220.2 49.5 141.6 
CSLOG_2C_WEEK23 12.6 31.9 266.2 252.1 54.1 149.6 
CSLOG_2C_WEEK31 13.1 31.1 177.8 157.0 54.9 144.4 
SIGMOD_3C 2.8 11.4 2.1 2.0 1.6 156.4 
TREEBANK_2C 30.1 142.9 83.5 68.4 33.4 243.1 
TREEBANK_5C 4.2 16.5 13.9 10.8 5.2 31.5 
TREEBANK_6C 9.7 49.0 32.8 26.2 12.8 91.9 
SYN_2C_CLASIFY 8.9 58.8 16.4 13.6 10.9 148.2 
SYN_3C_CLASIFY 20.1 127.4 35.2 29.2 26.0 325.7 
SYN_5C_CLASIFY 53.2 351.8 94.9 79.2 65.3 895.7 
SYN_8C_CLASIFY 123.1 875.2 233.8 194.8 174.7 2249.1 
SYN_20C_CLASIFY 54.5 112.2 97.3 73.4 58.5 376.7 
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4.6.4 Statistical Analysis of Results 

As explained in Section 4.5.1, the results of the Treebank and Synthetic data sets are 

averaged over 100 trial runs. Therefore, we have a population of 100 results for each 

experiment which allows us to perform a test of statistical significance (z-test, one-tailed, 

our working hypothesis is that the EST will produce superior results) with a conservative 

type I error of 0.01. Further, we have calculated effect size (Cohen's method [90]) which 

estimates the “size” discrepancy between two statistical populations. Cohen defines the 

standard value of an effect size as small (0.2), medium (0.5), and large (0.8).  

Accordingly, Table 4.5 represents the effect size for accuracy of EST against all the 

previous approaches. In this table, a positive value of effect size indicates that EST 

outperformed that method. The “*” beside an effect size indicates the result of the z-test 

where a significant difference exist at the 0.01 level. The results indicate that in most of 

the experiments EST statistically significant outperforms other approaches. 

Table 4.5. The effect size between accuracy of the EST and previous approaches. “*” 
indicates the result of the z-test where a significant difference exist at the 0.01 level 

 Data set TED Entropy Path Multiset IST 

K
-m

ed
oi

d 

TREEBANK_2C 5.81* 2.10* 1.17* 1.60* 1.65* 
TREEBANK_5C 2.59* 3.83* 2.68* 3.91* 2.22* 
TREEBANK_6C 2.46* 3.38* 2.72* 4.81* 2.62* 
SYN_2C_CLUSTER 2.40* 0.79* 0.98* 3.69* 0.78* 
SYN_3C_CLUSTER 1.69* 0.38* 0.69* 2.69* -0.11 
SYN_5C_CLUSTER 1.95* 0.77* 1.47* 5.17* 0.28* 
SYN_8C_CLUSTER 2.02* 0.99* 1.97* 6.95* 0.42* 
SYN_20C_CLUSTER 3.33* 1.10* 4.25* 9.86* 1.29* 

K
N

N
 

TREEBANK_2C 0.17 4.84* 3.53* 8.79* 2.46* 
TREEBANK_5C 1.70* 5.79* 4.17* 9.76* 3.74* 
TREEBANK_6C 1.66* 6.96* 5.83* 12.30* 4.38* 
SYN_2C_CLASIFY 1.08* 1.03* 1.38* 2.27* 0.50* 
SYN_3C_CLASIFY 1.84* 0.96* 1.26* 3.40* 0.87* 
SYN_5C_CLASIFY 2.20* 0.67* 1.06* 3.91* 1.03* 
SYN_8C_CLASIFY 3.57* 1.01* 1.31* 5.39* 1.73* 
SYN_20C_CLASIFY 4.25* 3.54* 5.02* 14.90* 2.91* 

SV
M

 

TREEBANK_2C 0.00 0.82* 0.78* 1.07* 0.00 
TREEBANK_5C 0.00 1.30* 1.46* 4.24* 0.76* 
TREEBANK_6C 0.00 2.09* 2.24* 5.97* 1.55* 
SYN_2C_CLASIFY 0.24* 0.49* 0.83* 0.91* -0.09 
SYN_3C_CLASIFY 0.28* 1.04* 1.25* 2.03* 0.14 
SYN_5C_CLASIFY 0.29* 0.89* 1.36* 2.72* 0.02 
SYN_8C_CLASIFY 0.58* 1.47* 2.06* 5.00* 0.40* 
SYN_20C_CLASIFY 3.54* 2.66* 3.23* 9.91* 5.70* 



 118 

 

4.6.5 Empirical Runtime Analysis 

In addition to accuracy and WAF, the computational cost of an algorithm is an important 

factor in practical applications. The runtime of the clustering and classification 

experiments are reported in Tables 4.2, 4.3, and 4.4. To further empirically compare the 

distance functions’ runtime, we measure the distance calculation runtime with respect to 

different tree sizes. Tree sizes between 5 and 100 with step size of 5 have been 

investigated where both trees are generated randomly as described in the synthetic tree 

generation section. In addition, the hardware platform is in accordance with the platform 

described at the end of Section 4.5.4; and again, Java 7 (64 bit) is utilized to implement 

the source code. The runtime measurement is performed 1000 times and the average 

distance function execution times are presented in Figure 4.10 in milliseconds. 

The IST distance function produced the largest runtime followed by TED and then the 

Multiset approach. The EST, Path, and Entropy have the best runtime; all three 

approaches produce broadly similar results.  

 
Figure 4.10. Average execution time for different distance functions with tree sizes between 5 

and 100. 

4.7 Summary 

In this chapter, the novel EST similarity function has been proposed for the domain of 

tree structured data comparison with the aim of increasing the effectiveness of 
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applications utilizing tree distance or similarity functions. This new approach seeks to 

resolve the problems and limitations of previous approaches, as discussed in Section 

 4.4.1. In addition, the new approach must enhance applications where a tree distance 

function is utilized. To achieve this goal, we first extensively analyze other distance 

functions. Then, we identified situations where the studied distance functions have poor 

performance; and finally we propose the EST approach. The proposed EST approach 

preserves the structure of the trees by mapping subtrees rather than nodes. EST 

generalizes the edit base distances and mappings by breaking the one-to-one and order 

preserving mapping rules. Further, it introduces new rules for subtree mapping provided 

in Section 4.4.2.  

An extensive experimental study has been performed to evaluate the performance of the 

proposed similarity function against previous research. Clustering and classification 

frameworks are designed to perform an unbiased evaluation according to K-medoid, 

KNN, and SVM along with four distinct data sets. The real-world data sets have appeared 

in a number of publications [103], [105], [106], [117], [118] and hence they are deemed 

to be reliable source of information. Further, using synthetic data sets, we investigated the 

effect of varying the number of classes in the evaluation. This extensive evaluation 

framework is one of the advantages of this research over previous researches such as 

[103], [105], [106], [117], and [118].  

The results of the experimental studies demonstrate that the EST approach is superior to 

the other approaches with respect to classification and clustering applications. To 

evaluate the performance, accuracy and WAF, are used in Tables 4.2, 4.3, and 4.4, where, 

in general, EST is demonstrated to be a better option for the clustering and classification 

of tree structured data. However, the performance of a distance function varies with the 

domain of application; and hence, we cannot generalize the superior performance of EST 

to all domains of application.  

The computational cost of a tree distance function should be carefully considered for 

practical applications. Given pT  and qT  as the input trees to the distance function, we 

calculated the runtime order of the EST as (| | | | (| |, | |))p q p qO T T Min T T× × . Further, the 

runtime of all the clustering and classification experiments are measured where the 

proposed EST outperformed all other distance functions with respect to all data sets 

except SIGMOD. In addition, an empirical analysis has been performed to compare the 
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runtime of EST vs. other distance functions in different tree sizes. The result of this 

empirical investigation suggests that the runtime efficiency of EST, Entropy, and Path are 

better than the other distance functions. Accordingly, the conclusion can be drawn that 

the proposed EST is an appropriate approach for computationally restricted and real time 

applications. 

Finally, although further studies are required to validate the use of the EST similarity 

function in real-life applications, EST has been demonstrated to have a superior 

performance against TED, IST, Path, Entropy, and Multiset distance functions with 

respect to classification and clustering applications.  

 



 121 

5 Tree Test Data Generation through an Evolutionary 

Optimization  

5.1 The Focus of This Chapter 

In this chapter, the objective is to generate a diverse set of test cases where each test case 

is a tree. As explained before, in the context of black-box software testing, it is believed 

that a diverse set of test cases is more likely to produce more effective test cases [13]–

[17]. To achieve this in the tree domain, similar to chapter 3 for strings, we have a fitness 

function that measures the diversity of a test set. This allows an optimization technique to 

be employed to generate test cases based upon the fitness function. This means more 

diverse test cases which leads to a better failure detection. 

We also demonstrate that the distribution of the size of the generated trees affect the 

failure detection. Since the first fitness function is unable to control the size distribution 

of the trees, we create a second fitness function which indicates the proximity of the 

distribution of the sizes of the trees in a test set to an expected distribution. A multi-

objective optimization technique is used to enforce both fitness functions simultaneously. 

To empirically investigate the diversity based test generation for trees, we generate 

mutants of four real world programs that accept trees as input. Test sets with different 

characteristics are generated and tested on these programs. The experimental results 

demonstrate that generating test cases based on the diversity objective improves the 

failure detection rate. 

The highlights of this chapter can be summarized as: 

1. Investigating the effect of generating diverse tree test cases on failure detection 

performance.  We indicate that through a diversity based objective function and 

an optimization algorithm, more efficient test cases can be produced. 

2. Applying different tree distance functions to tree generation methods and 

demonstrating that the proposed tree distance function in the previous chapter 

(Extended Subtree (EST)) has superior performance in diversity based test case 

generation. 

3. Investigating the effect of tree node values on failure detection. We produce the 
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strings required for node values according to the MOGA string generation 

method in chapter 3 and compare the results with random string values. 

4. Empirical investigation of the tree test case generation methods through a 

mutation approach on four real world programs. 

5.2 Test Case Abstract Model 

The test case generation methods investigated in this chapter can be applied to any 

system where the input to the system can be modeled by a tree. This tree is called abstract 

tree – a labeled tree with a finite number of labels. The number of required labels is 

determined based upon the software under the test. In other words, for any software under 

the test, the user need to define the abstract tree model for that software and then, run the 

test case generation methods to produce the test cases. The generated test cases are 

abstract test cases that must be decoded into concrete test cases according to the software 

under the test. The decoding process normally includes replacing the node labels with 

final values. In this chapter, we use XML test cases where the tree model and the 

decoding process are discussed later in Section 5.5. 

5.3 Tree Test Case Generation Methods 

5.3.1 Random Tree Generation 

Random tree generation is the base line method and every other tree generation method is 

compared against it. Further, every other tree generation method in this chapter requires a 

random tree generation in its process. For example, the initial population in GA is 

produced randomly. Therefore, we need to define how the random trees are produced. 

To produce a random tree based on the abstract tree model, first, a random size is selected 

as the tree size, where 1≤ random size ≤ MaxTreeSize. MaxTreeSize is a constant. Then, a 

random label is selected as a root node. Following that, random labels are selected and 

added to random positions in the tree until the target tree size is reached. 

5.3.2 Adaptive Random Tree Generation 

To improve the poor effectiveness of RT, ART methods are introduced. ART methods 

are discussed in depth in chapter 2 and 3 and hence, are not repeated here. Similar to 

chapter 3 on strings test generation, FSCS [18] and ARTOO [62] methods are used to 

generate test cases. The only difference is that, in this chapter, the string distance 
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functions used in FSCS and ARTOO are replaced with tree distance functions.  

5.3.3 Evolutionary Tree Generation 

To generate trees test cases, evolutionary algorithms can be used. Among the 

evolutionary algorithms, Genetic Algorithms (GA) [70] are the most commonly used 

search algorithms in software engineering due to their effectiveness [66]. Similar to 

chapter 3 on string generation, we use GA and Multi-Objective GA (MOGA) [74] to 

produce tree test cases. The GA and MOGA used in this chapter have mostly same 

parameters to the ones used in chapter 3 for string generation. Hence, in the following, 

we only discuss the differences. 

The GA requires a fitness function to guide the optimization where we use a diversity-

based fitness function similar to string generation. The only difference is that tree 

distance functions are used rather than string distance functions. Further, similar to string 

generation, the Benford distribution [64], [79] and Kolmogorov–Smirnov test [84] are 

used as the second fitness function for the MOGA. Crossover and mutation are more 

complicated for trees compared to strings. To generate two offspring from the parent 

trees, one node is selected randomly in each parent tree. Then, the nodes along with all 

their children are swapped. Edit, delete, and add are used as mutation operators where 

every node in each tree is mutated with 1% probability. Each time, one of the mutation 

operators is selected randomly. For edit, the label of the abstract tree is replaced with 

another label which is selected randomly from the possible labels in the tree model. For 

delete, the node is deleted and for add operator, a node with random label is produced and 

is attached to the mutated node as a child. 

NSGA-II produces a Pareto-optimal set of test sets rather than a single optimal test set. 

The Pareto-optimal set is the first front of the last generation of the algorithm. Among the 

Pareto-optimal test sets, the results indicate that the test set with best diversity fitness on 

the Pareto-optimal front generates the best failure detection effectiveness. Consequently, 

for the results that are presented for MOGA in this chapter, the test set with best diversity 

fitness on the Pareto-optimal front is selected. This implies that the best solution is the 

solution with best diversity which also achieved the target string length distribution. 

5.4 Tree Distance Functions 

As discussed earlier in this chapter, one of the objectives of this chapter is to investigate 
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different tree distance functions in the context of software test generation. In the previous 

chapter, we proposed a new tree distance function (EST) where its superior effectiveness 

in clustering and classification applications is demonstrated. Beside EST, five other tree 

distance functions were examined and the results indicate that EST outperforms other tree 

distance functions.  

In this chapter, EST distance function is compared against the same five distance 

functions (IST, TED, Entropy, Path, and Multiset) in the context of software test 

generation. Accordingly, each distance function is used in FSCS, ARTOO, GA, and 

MOGA tree test generation methods and the results are compared. 

5.5 Experimental Framework 

This section discusses the conducted experiments to analyze the effectiveness of FSCS, 

ARTOO, GA, and MOGA against RT. Real world programs are used to perform an 

empirical evaluation. These programs accept XML as input which can be modeled as a 

tree. Hence, the abstract tree model for XML input and the decoding process are 

explained in this section. Then, mutated [49], [91] versions of these programs are 

generated. The P-measure [90] is employed to quantitatively measure the performance of 

the test case generation methods. Finally, features of generated tree test sets are 

discussed. 

5.5.1 Software Under Test (SUT) 

Four real world Java programs are selected as case studies to conduct an empirical 

evaluation on the fault-detection effectiveness of the tree test case generation methods. 

These programs are open source programs that are widely used in a variety of 

applications that interact with XML data. These programs accept a XML file as an input, 

and hence they are suitable, since XML can be easily modeled as a tree. Programs were 

selected basically upon the following criteria: 

1. The input of each program can be modeled by a tree, so that we can use test 

generation methods based on an abstract tree model. Hence, every program 

contains functionality which transforms or manipulates the input tree which 

makes them a true test where input test cases are trees. 

2. Each program is an open source program and hence, they are publicly available 

for research proposes. This allows replication of these results. 
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3. The size of programs covers a wide range; the sizes of selected programs vary 

between 6,000 and 34,000 LOC.  

Table 5.1 provides a description of each program. “NanoXML” [148], [149] is an XML 

parser implemented in Java. It accepts an XML file and parses the input into a DOM 

(Document Object Model) tree. The parsed DOM tree can be used by other programs or 

applications as a representation of the XML document. “NanoXML” can also convert 

back a DOM tree into an XML file. “NanoXML” is a non-validating parser which only 

checks for structure of the XML code. It works when there is no DTD (Document Type 

Definition) or schema. “NanoXML” is even ported into embedded systems since its 

dependency to other Java libraries is low and it is small compared to other XML parser 

[150]. “JsonJava” is a library that implements JSON (JavaScript Object Notation) 

decoder/encoder in Java. JSON is a syntax for storing and exchanging data similar to the 

XML. “JsonJava” can convert the input XML data into the Json format as output which 

makes it good program for our experiments. “StAX” which stands for “Streaming API for 

XML” is a standard XML processing library that allows the programmer to stream XML 

data from and to the application [151]. “StAX” is a pull parser that requires a small 

memory footprint. A pull parser iteratively visits the various elements, attributes, and 

data in an XML document. In each iteration, the data can be consumed by another 

program or code. Unlike “NanoXML”, it does not produce DOM trees and hence, it 

requires a small memory footprint. “JTidy” is an XML and HTML syntax cleaner and 

pretty printer. It can parse XML, check the syntax, fix syntax errors, and finally print the 

parsed DOM tree in a human readable form. 

Table 5.1. Programs used to perform experimental evaluations. 

# Name Version Source code URL Number 
of Classes LOC Generated 

mutants 
Selected 
mutants 

1 NanoXML 2.2.1 nanoxml.sourceforge.net/orig 23 7698 5448 3865 

2 JsonJava -- github.com/douglascrockford/JSON-java 17 6132 4507 3714 

3 StAX 1.2.0 stax.codehaus.org 92 17770 8521 8256 

4 JTidy r938 jtidy.sourceforge.net 52 33070 27965 23839 

 

5.5.2 XML Test Case Abstract Model 

To generate XML test cases using tree generation methods, an abstract tree model for 

XML needs to be specified. As described in Section 5.2, the abstract model must have a 

limited number of labels. Six labels are selected that conform to different types of nodes 
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in an XML document. The selected labels are “Element”, “Attribute”, “Text”, 

“Comment”, “Processing-Instruction”, and “CDATA”. Beside the selected node types, 

other node types like “Document” and “DocumentType” exist. These nodes are not part 

of the XML tree and they are normally used once at the beginning of each XML 

document to specify some information. For instance, “DocumentType” that starts with 

“<!doctype…” is an optional node at the beginning of the document, before the root 

node, specifying the data model for the XML document. The “Document” node 

represents the entire document. There is no tag in the XML document for it. It is just a 

representation of the document when the XML document is parsed into a DOM tree. 

Accordingly, these node types are excluded from the abstract tree model since they are 

not part of the XML tree and hence, they cannot be modeled as a node in the abstract tree 

model. Among the selected labels, only “Element” can have child nodes and the rest of 

labels can be leave nodes. This limitation is enforced while generating the random 

abstract trees. Therefore, in the abstract tree model for XML, two types of labels exist. 

Labels that can have child nodes and labels that cannot have child nodes. During the 

random abstract tree generation, first, one of the label types is randomly chosen and then, 

a label is randomly selected. 

5.5.3 Abstract Tree Decoding to XML 

After the abstract tree test cases are produced, they need to be decoded into concrete test 

cases where a concrete test case is an XML document. To achieve this, every node in the 

abstract tree is converted into an equivalent XML node according to its label. Then, a 

value for each node is generated as a random string. We used random strings with 

maximum size of 30 similar to the string generation in chapter 3.  

In addition, to investigate the effect of tree node values on failure detection, we also 

produce the required strings for node values according to the MOGA string generation 

method in chapter 3 and compare the results with random string values in Section 5.6.4. 

To generate the node values according to MOGA, one string set is generated for each 

label in a tree test set. In other words, in each tree test set, we first identify the number of 

each label. Accordingly, a string set is generated for each label and then, values are 

assigned to the nodes. 

5.5.4 Source Code Mutation 

To measure the effectiveness of the test case generation methods, faulty versions of the 
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software under test are required. Mutation techniques [49], [91] are a well-known 

approach to automatically manipulate the source code and produce a large number of 

faults [49]. There is considerable empirical evidence indicating a correlation between real 

faults and mutants [55], [91].  

Similar to chapter 2 and 3, muJava [54] is employed to produce mutated versions of the 

programs under the test where a total of 46,441 mutants are generated for the four case 

study programs. Then, those mutants that were failed with the majority of test sets (more 

than 90% of all the test sets) were deleted. These defects were considered as unrealistic 

and hence contrary to the “Competent Programmer” hypothesis which is an essential idea 

in mutation testing [93]. Table 5.1 demonstrates the number of generated and selected 

mutants per program. 

5.5.5 Testing Effectiveness Measure 

Similar to chapters 2 and 3, we use p-measure to evaluate the effectiveness of test case 

generation methods. An in depth discussion on the p-measure definition and the reason 

behind its selection as a quantitative effectiveness measure is presented in Section 2.6.1. 

5.5.6 Tree Test Set Characterization 

A test set with a fixed size is required to evaluate the p-measure. In this chapter, we 

perform experiments with four test set sizes, 4, 6, 8 and 10. As the test set size increases, 

the difference in the results of different test generation methods is normally reduced and 

hence, repeating the experiments with larger test set sizes is not required. Beside, as the 

size of the test sets increases, the runtime increases in a quadratic order according to 

Section 3.5. 

Applying a test set to a mutated version of a program will return zero or one according to 

the p-measure calculation rules. Accordingly, to estimate the p-measure as a number 

between zero and one, we applied 10 test sets. Further, we repeated this process 100 

times for each mutated version to be able to estimate mean and standard deviation 

parameters for the measurements. As a result, each test case generation method (RT, 

FSCS, ARTOO, GA, and MOGA) produced 1,000 test sets for each test set size. Further, 

everything is repeated with six tree distance functions as discussed before. This leads to 

1,000×(4+6+8+10)×5×6=840,000 test cases being applied to each mutant. 

In each test case generation method, we need to specify the maximum tree size 
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(MaxTreeSize) as a constant number. The size of generated trees are between one and 

MaxTreeSize, inclusive. We repeated all the experiments with two sets of different 

settings with respect to the tree sizes. In the first set of experiments, MaxTreeSize is set to 

30. So, all the test generation methods use a same MaxTreeSize. Figure 5.1 indicates the 

p-measure for each program when the sizes of trees are variable in a random tree 

generation. As a result, the failure detection results improve as the size of trees increases; 

clearly defining tree size as a co-variant of effectiveness. Further, the mean size of 

generated trees is different when different test generation methods and different tree 

distance functions are used with the same MaxTreeSize. Accordingly, in the first set of 

experiments, GA outperforms MOGA (refer to Section 5.6.1 for the results) as GA 

produces larger trees compared to MOGA, on average. Hence to attempt to compare the 

tree generation methods independently of tree size, the second set of experiments were 

produced, now we set the mean size of trees as a fix number. We selected 15.5 which is 

the mean of [1, 30]. To make sure that the mean tree sizes generated by each method is 

equal to the target value; we changed the MaxTreeSize several times and determined the 

values that lead to mean tree size of 15.5. Since in most of the cases there is no value for 

MaxTreeSize that produce exactly 15.5 as the mean tree sizes, two MaxTreeSizes that 

produce larger and smaller mean tree sizes are determined and then a linear estimation is 

performed to calculate the final results for the exact 15.5 mean tree size. 

 
Figure 5.1. Analysis of failure detection against the tree sizes. Random tree generation with 

test set size of 8 is used. 

5.6 Experimental Result and Discussion 

The result of the empirical study is presented in this section. First, the detailed result of 

each program under the test is presented. It is followed by statistical analysis of the 
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results. Then, different tree distance functions are used in test case generation methods. 

Hence, a comparison among different tree distance functions is made in the context of 

tree test generation. Finally, the failure detection results are demonstrated where MOGA 

for strings, from chapter 3, is used for node value generation.   

5.6.1 Results of Each Program Under Test 

In this sub-section, two sets of results are presented; the “same maximum tree size” 

experiment and the “same mean tree size” experiment as described in Section 5.5.6. In 

Table 5.2, the result of each program under test is provided where the MaxTreeSize is set 

to 30 for all the test generation methods. Every number in this table is a percentage 

indicating the p-measure improvement of that method over the base line random tree 

generation. Similar to chapter 3 on strings, each number is calculated using (3.9). The 

results in this table indicate that all the tree generation methods produce better results 

than random tree generation. Moreover, GA produced the best results for all the 

programs. To summarize this table GA is best method and MOGA is in the second place 

when MaxTreeSize is similar for all methods. ARTOO is next, then FSCS, and finally 

random tree generation.  

Table 5.2. The percentage of p-measure improvement of each method over RT where 
maximum tree size is set to a constant number of 30 and EST tree distance function is used. 

Test Set 
Size 

Software 
Under Test FSCS ARTOO GA MOGA 

4 

NanoXML 1.8% 3.1% 29.2% 15.9% 
JsonJava 0.3% 11.5% 37.4% 37.2% 
StAX 6.3% 14.1% 55.8% 45.0% 
JTidy 1.2% 5.8% 18.8% 12.0% 
Average 2.4% 8.6% 35.3% 27.5% 

6 

NanoXML 6.2% 8.5% 22.4% 14.1% 
JsonJava 5.9% 7.9% 26.9% 21.5% 
StAX 14.7% 18.8% 42.3% 36.2% 
JTidy 6.6% 8.6% 17.9% 10.8% 
Average 8.3% 11.0% 27.3% 20.7% 

8 

NanoXML 9.6% 10.2% 18.3% 13.3% 
JsonJava 5.7% 10.2% 19.3% 14.4% 
StAX 14.8% 13.4% 27.2% 24.2% 
JTidy 9.3% 8.4% 18.0% 12.2% 
Average 9.9% 10.5% 20.7% 16.0% 

10 

NanoXML 10.1% 10.5% 16.9% 14.9% 
JsonJava 7.7% 7.7% 16.0% 13.6% 
StAX 11.5% 12.4% 18.2% 16.3% 
JTidy 10.0% 9.5% 16.2% 12.3% 
Average 9.8% 10.0% 16.8% 14.3% 
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The GA outperforms the MOGA in Table 5.2 since it produces, on average, larger trees 

than the trees produced by MOGA. As discussed in Section 5.5.6, the mean of tree sizes 

is a covariant affecting the failure detection effectiveness, where larger trees produce 

better results, on average. Hence, in the second set of experiments, we set the mean size 

of trees as a fix number to attempt to compare the tree generation methods independently 

of tree size. Table 5.3 demonstrates the improvement of test generation methods 

compared to random tree generation where the generated trees have a same mean size of 

15.5. Accordingly, MOGA “outperforms” the GA in most of the cases. Further, GA and 

MOGA are always better than the FSCS, ARTOO, and of course random generation. 

Finally, Table 5.4 provides raw P-measure results for the RT method for the sake of 

completeness. This allows the reader to compute the P-measure of each method if 

required. 

Table 5.3. The percentage of p-measure improvement of each method over RT where mean 
tree size is adjusted to 15.5 and EST tree distance function is used. 

Test set 
Size 

Software 
Under Test FSCS ARTOO GA MOGA 

4 

NanoXML 4.5% 3.1% 15.8% 15.5% 
JsonJava 2.1% 11.5% 31.2% 33.2% 
StAX 13.2% 14.1% 55.0% 48.9% 
JTidy 6.2% 5.8% 13.6% 18.3% 
Average 6.5% 8.6% 28.9% 29.0% 

6 

NanoXML 9.5% 11.7% 14.2% 14.3% 
JsonJava 5.9% 5.9% 16.9% 20.2% 
StAX 17.1% 17.5% 38.1% 36.9% 
JTidy 5.8% 5.7% 8.3% 11.6% 
Average 9.6% 10.2% 19.4% 20.7% 

8 

NanoXML 9.4% 10.5% 11.0% 13.2% 
JsonJava 5.7% 6.5% 12.0% 14.5% 
StAX 13.6% 14.3% 25.6% 23.8% 
JTidy 5.3% 6.9% 7.7% 10.1% 
Average 8.5% 9.5% 14.1% 15.4% 

10 

NanoXML 8.4% 7.9% 9.5% 10.5% 
JsonJava 1.9% 6.4% 8.6% 13.1% 
StAX 10.3% 11.3% 17.9% 15.2% 
JTidy 6.3% 6.4% 7.4% 8.5% 
Average 6.7% 8.0% 10.9% 11.9% 
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Table 5.4. The raw P-measure results for RT where the EST tree distance is used. 

Software Under 
Test 

Test set size 
4 6 8 10 

NanoXML 0.00641 0.00867 0.01052 0.01128 

JsonJava 0.00188 0.00251 0.00302 0.00344 

StAX 0.00060 0.00073 0.00084 0.00092 

JTidy 0.00963 0.01270 0.01485 0.01653 

 

5.6.2 Statistical Analysis of Results 

The results in Table 5.2 and Table 5.3 are averaged over 100 trial runs. To formally 

indicate the performance of each test case generation method against RT, we performed a 

test of statistical significance (z-test, one tailed) with a conservative type I error of 0.01 

[90], similar to chapter 2 and 3 on numerical and string test cases. Our working 

hypothesis is that MOGA, GA, FSCS, and ARTOO will produce superior results 

compared to RT. Further, an effect size (Cohen's method [56], [57]) between the each 

method and RT is calculated.  

To perform a z-test or calculate effect size, the results must be normally distributed. As 

discussed in chapter 2 and 3, according to [50], p-measure values are normally 

distributed. Further, we investigated the normality of the results more deeply by 

performing a Shapiro-Wilk test [96]; it works based on a null hypothesis that the data is 

normally distributed. According to the results of this test, the normality of the p-measure 

values cannot be rejected. 

Table 5.5 represents the effect sizes for the “same MaxTreeSize” experiment. Similarly, 

Table 5.6 presents the effect sizes for the “same mean tree size” experiment. In both 

tables, the “*” beside an effect size demonstrates the result of the z-test. The test 

measures if a statistically significant difference exists between RT and a tree generation 

method. In each table, only one case related to the FSCS method is found where the z-test 

shows insignificant improvement compared to RT. All other results demonstrate 

significant improvement in failure detection for each method against RT. Further, in both 

tables, most of the GA and MOGA effect sizes are more than 0.8 which is considered to 

be a large improvement according to Cohen’s definition [56]–[58]. Regarding the FSCS 

and ARTOO methods, most of the results are larger than 0.5 (Cohen’s definition of 

medium).  
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Table 5.5. The effect size between RT and other methods where the maximum tree size is set 
to 30 and EST tree distance is used. “*” indicates the result of the z-test where a significant 

difference exists at the 0.01 level. 

Test set 
Size 

Software 
Under Test 

FSCS ARTOO GA MOGA 

4 

NanoXML 0.07 0.11 1.16* 0.63* 
JsonJava 0.01 0.43* 1.59* 1.52* 
StAX 0.24* 0.52* 2.40* 1.78* 
JTidy 0.10 0.46* 1.53* 0.97* 

6 

NanoXML 0.27* 0.36* 1.06* 0.69* 
JsonJava 0.29* 0.37* 1.23* 1.05* 
StAX 0.74* 1.01* 2.77* 2.18* 
JTidy 0.84* 1.12* 2.21* 1.32* 

8 

NanoXML 0.56* 0.54* 0.99* 0.80* 
JsonJava 0.32* 0.53* 1.08* 0.87* 
StAX 1.01* 0.91* 2.21* 1.88* 
JTidy 1.38* 1.29* 2.61* 1.80* 

10 

NanoXML 0.58* 0.60* 0.96* 0.83* 
JsonJava 0.44* 0.49* 1.06* 0.77* 
StAX 1.06* 1.14* 1.93* 1.64* 
JTidy 1.75* 1.71* 2.77* 2.13* 

 

Table 5.6. The effect size between RT and other methods where the mean tree size is 
adjusted to 15.5 and EST tree distance is used. “*” indicates the result of the z-test where a 

significant difference exists at the 0.01 level. 

Test set 
Size 

Software 
Under Test 

FSCS ARTOO GA MOGA 

4 

NanoXML 0.17 0.11 0.57* 0.59* 
JsonJava 0.09 0.43* 1.31* 1.42* 
StAX 0.48* 0.52* 2.40* 2.02* 
JTidy 0.51* 0.46* 1.09* 1.46* 

6 

NanoXML 0.44* 0.57* 0.73* 0.70* 
JsonJava 0.29* 0.30* 0.86* 0.98* 
StAX 0.93* 0.92* 2.38* 2.23* 
JTidy 0.79* 0.74* 1.12* 1.41* 

8 

NanoXML 0.51* 0.54* 0.61* 0.80* 
JsonJava 0.30* 0.36* 0.73* 0.85* 
StAX 0.90* 0.99* 2.09* 1.87* 
JTidy 0.83* 1.04* 1.16* 1.57* 

10 

NanoXML 0.48* 0.45* 0.55* 0.57* 
JsonJava 0.12 0.39* 0.52* 0.81* 
StAX 0.89* 1.02* 1.91* 1.50* 
JTidy 1.16* 1.15* 1.18* 1.43* 
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5.6.3 Comparison of Tree Distance Functions 

The p-measure results for all six tree distance functions that are discussed in Section 5.4 

are presented in Figure 5.2 and Figure 5.3. Results for each tree generation method and 

each tree distance function are illustrated where each column is the mean of all programs 

under the test. Figure 5.2 represents the “same MaxTreeSize” experiment, while “same 

mean tree size” experiment is presented in Figure 5.3. In each of these figures, five 

graphs are presented where the first four relate to the four test set sizes (4, 6, 8, and 10) 

and the last one is the average of all the test set sizes. 

According to these graphs, the proposed EST tree distance function produces superior 

results compared to the other five distance functions. Any tree generation method has 

normally better performance when used with EST. After EST, IST and then TED are 

normally on second and third places, respectively. In Figure 5.2, the Entropy, Path, and 

Multiset distance functions produce negative results in most cases. This means under 

performance compared to RT. That is, significantly smaller trees are generated while 

these distance functions are utilized in “same MaxTreeSize” experiment. However, 

positive results are generated when a same mean size for trees is used. 

 
(a) Test set size = 4 
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(b) Test set size = 6 

 
(c) Test set size = 8 

 
(d) Test set size = 10 



 135 

 
(e) Mean of all test set sizes 

Figure 5.2. Comparison of tree distance functions where maximum tree size is 30. Each 
column denotes mean of p-measure improvement over all programs. (a), (b), (c), and (d) 

represent results for test set sizes of 4, 6, 8, and 10, respectively. (e) presents the mean of all 
test set sizes. 

 

 
(a) Test set size = 4 

 
(b) Test set size = 6 
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(c) Test set size = 8 

 
(d) Test set size = 10 

 
(e) Mean of all test set sizes 

Figure 5.3. Comparison of tree distance functions where mean tree size is 15.5. Each column 
denotes mean of p-measure improvement over all programs. (a), (b), (c), and (d) represent 
results for test set sizes of 4, 6, 8, and 10, respectively. (e) presents the mean of all test set 

sizes. 

5.6.4 Node Value Generation by MOGA 

In the final experiment, we investigate the effect of tree node values on failure detection. 

In all the previous results, RT are used to produce strings in the decoding process as 
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described in Section 5.5.3. Now, we produce the strings required for node values in a 

decoding process according to the MOGA string generation method in chapter 3 and 

compare the results with random string values. The details of applying MOGA string 

generation in a decoding process are discussed in Section 5.5.3. 

The EST tree distance function is used to generate the trees since empirical evidence 

indicates its superior performance over other distance functions. However, it is not an 

important parameter in this experiment since for both cases (RT and MOGA strings in the 

decoding process) the same abstract trees are generated. Further, we only performed the 

experiment with the same MaxTreeSize setting. It is not necessary to perform the 

experiment with the same mean tree size since it will only affect the trees’ structure. That 

is, we are comparing different decoding processes and the methods or settings that 

produce or affect the abstract trees are irrelevant.  

The results are provided in Figure 5.4 where every column is again an improvement 

against the base line RT. Replacing the RT string generation with MOGA improved the 

results for three of the four programs. The MOGA string generation had no effect on the 

“StAX” program’s results. Hence, the results for “StAX” were identical with RT and 

MOGA string generation. Accordingly, each column provided in Figure 5.4 is the mean 

of all programs except “StAX”. This figure indicates a significant improvement in the 

results when MOGA is used in a decoding process for string generation. 

 
(a) Test set size = 4 



 138 

 
(b) Test set size = 6 

 
(c) Test set size = 8 

 
(d) Test set size = 10 
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(e) Mean of all test set sizes 

Figure 5.4. Comparison of RT and MOGA string generation for tree node values where max 
tree size is 30. Each column denotes mean of p-measure improvement over three programs 

(NanaXML, JsonJava, and JTidy). The EST tree distance function is used for all tree 
generation methods. (a), (b), (c), and (d) represent results for test set sizes of 4, 6, 8, and 10, 

respectively. (e) presents the mean of all test set sizes. 

5.7 Related Works 

This section reviews research related to tree or XML test case generation. Most of the 

works with respect to XML test data generation use XML schemas to produce XML files 

that conform to the schema. Our work is different in this regard as it produces tree test 

data based on an abstract tree model.  

Bertolino et al. [152]–[154] introduced a tool called TAXI that generates XML test data 

based upon a XML schema. TAXI implements the category partition testing approach on 

XML data [154]. First, TAXI read the schema and every choice element is weighted (The 

user can modify the default weights). Then, a set of sub-schemas are produced so that 

each one contains a different selection in choice elements [154]. Finally, values are 

populated into the sub-schemas. The values can be defined by a user or can be 

automatically extracted from the definitions of the input schema. XMLMate [155] is 

another tool that produces XML test data using XML schemas. XMLMate is white-box 

tool where a GA is used to generate XML test cases that maximize the code coverage 

[155] . This work is an extension of the EvoSuite tool [156] which is a general white-box 

test generator. Further, Feldt and Poulding [157] use metaheuristic search to produce 

unlabeled random trees where generated trees have the specified mean size and height. 

However, no evaluation is performed in the context of software testing. In addition, 

ToXgene [158] is a tool to generate XML documents which requires a TSL (Template 

Specification Language). The TSL document needs to be manually created by a user 
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since currently there is no automated approach to generate it from the XML schema.  

A web service request and response are in a XML format. Hence, a category of related 

researches are the studies performed on the testing of the web services. Offut et al. [159]–

[161] mutate XML requests for web services via data perturbation in order to test the web 

services. A valid XML request (input) is mutated where values of nodes are modified 

[160]. Boundary values defined by XML schema are used to replace the node values 

[160], [162]. Bai et al. [163] produce test cases to test web services. WSDL (Web 

Services Specification Language) is used to automatically generate the test cases. WSDL 

includes a specification of a web service. Similarly, Vanderveen et al. [164] generate web 

service requests automatically. They produce a context-free grammar from WSDL. Then, 

a string constraint solver is used to generate the XML files from the grammar. Further, 

WSDLTest [165] is a tool to automatically test the web services. It produces two objects 

from the schema. One is the service request and the other one is the test script [165]. The 

web service request is generated randomly from the schema [165]. Finally, the TAXI 

tool, discussed earlier in this section, is further extended to generate test cases for web 

service testing. The new tool is called WS-TAXI [166] which produces test cases based 

on WSDL. 

5.8 Summary 

In this chapter, black-box tree test case generation is studied. A tree abstract model needs 

to be defined by a user for each problem and then, tree generation methods can produce 

diverse test cases. Faults normally occur in error crystals or failure regions based on 

various empirical studies [13]–[17]. Hence, producing a diverse set of test cases is an 

important aspect that can improve the performance of black-box test case generation. 

Tree distance functions are required in each test generation method to produce diverse 

test cases. Several tree distance functions (EST, IST, TED, Entropy, Path, and Multiset) 

are tested as a part of the test case generation process. Among the investigated distance 

functions, the EST, a new distance function proposed in the previous chapter, 

outperformed the other distance functions.  

Four tree test case generation methods (FSCS, ARTOO, GA, and MOGA) are 

investigated and compared against the random tree generation. Failure detection 

performance of these methods is investigated through an empirical study where four real-

world programs are used as case studies. These programs accept input XML test cases 
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and hence, an abstract tree model for XML is defined. However, our work is not limited 

to XML generation and it can be applied to any type of test cases that can be modeled by 

a tree. For example, in previous chapter a few different data types were modeled by trees. 

The mutation technique is utilized to produce several faulty versions of each program. 

Then, the p-measure is used as a quantitative measure to evaluate the failure detection 

performance. 

With respect to tree sizes, two set of experiments are performed where in the first one, the 

maximum tree size in each test generation method is set to a constant number. In the 

second set of experiments, the mean size of tree sizes is adjusted to a fixed value. The 

evaluation results demonstrate that GA is the best method in the same maximum tree size 

experiment. However, in the same mean size experiment, MOGA outperformed all other 

test generation methods. Finally, in the XML decoding process, we replaced the random 

string node value generation with MOGA string generation from chapter 3. This resulted 

in improved failure detection. 
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6 Conclusions and Future Works 

6.1 Conclusions 

In this thesis, black-box test case generation is studied. In black-box testing, we have no 

information from the source code. Various empirical studies [13]–[17] indicated that 

faults normally occur in error crystals or failure regions. Failure regions are areas in the 

input domain that trigger faults. This means that faults are mapped onto a cluster within 

the input domain [24]. Accordingly, producing a diverse set of test cases is more likely to 

detect a failure and hence, it can improve the performance of black-box test case 

generation compared to RT.  

Accordingly, in this research, automatic generation of diverse set of test cases is 

investigated that improves the failure detection effectiveness. To this end, we developed 

strategies that outperform the current state of the art test generation approaches. We 

limited our scope into three data structures for test generation; numerical, string, and tree 

test cases. Any program that accepts one of these types as input can be tested. 

For numerical test generation, in chapter 2, the novel RBCVT method has been proposed 

with the aim of increasing the effectiveness of numerical test case generation approaches. 

The RBCVT method cannot be considered as an independent approach since it requires 

an initial set of input test cases. This method is developed as an add-on to the previous 

ART and QRT methods enhancing the testing effectiveness by more evenly distributing 

test cases across the input space. In addition, the applied probabilistic approach for 

RBCVT generation, allows different sets of output to be produced from the same set of 

inputs which makes RBCVT an appropriate method for software testing applications. 

Given the importance of the computational cost in a practical application, we optimized 

the probabilistic computational algorithm of the RBCVT approach. The proposed search 

algorithm reduces the RBCVT computational complexity from a quadratic to a linear 

time order regarding the size of the test set. However, ART methods still suffer from high 

runtime order. In this regard, the computational cost of RBCVT is quite feasible with 

respect to practical applications. It is worthwhile to state that since the RBCVT approach 

requires initial test cases, the computational cost of the input test set generation is added 

to the RBCVT calculation cost. Since the results provided in Tables 2.2-2.5 indicate, on 

average, “similar” results for RBCVT with different types of generators, we can select 
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the RT method, which is linear and adds a low computational overhead, onto the RBCVT 

execution. The principle contribution in numerical test generation is utilizing CVT to 

develop an innovative test cases generation approach, in particular RT-RBCVT-Fast with 

a linear order of computational complexity similar to RT. 

An extensive experimental study has been performed for numerical test cases and the 

results demonstrate that RBCVT is significantly superior to all approaches for the block 

pattern in simulation framework at all failure rates as well as the studied mutants at all 

test set sizes. Although the magnitude of improvement in testing effectiveness results is 

higher for the block pattern compared to the point pattern, the results demonstrate 

statistically significant improvement in the point pattern. In contrast, ART methods have 

indicated less effectiveness than RT regarding point patterns at θ =0.01 (demonstrated in 

Figure 2.14). Although RBCVT’s performance regarding strip pattern is statistically 

significant compared to the other approaches at 210θ −= , the impact of RBCVT verses 

the other approaches tends to zero as the failure rate decreases. In fact, in the case of strip 

pattern, the impacts of all of the approaches reduce to the performance of RT as the 

failure rate decreases; this is demonstrated in Figure 2.12. In contrast, in block and point 

patterns, the performance of all the approaches verses RT usually stays constant or even 

increases as the failure rate reduces [61]. Randomness of test cases is an important factor 

with respect to software testing. Accordingly, the investigation of randomness in Section 

2.8 demonstrates that RT, all ART methods and all corresponding RBCVT methods 

possess an appropriate degree of randomness. 

Although in real life applications, test cases’ dimension can be large, in most cases, they 

belong to an acceptable range. Test case generation often seeks to generate values with a 

specific purpose rather than generating test cases to exercise the entire system. For 

instance, Ciupa et al. [62] conducted an empirical study on several real world small 

routines using unit testing. Briand and Arcuri [49] have considered 11 programs, basic 

mathematical functions that appear in the ART literature [17], for empirical analysis. The 

generated test cases in these papers do not exceed four dimensions. Furthermore, some 

techniques like range coding [63] exist to reduce the dimension of the input space, 

especially when collections are considered as the input to the software under the test. As 

a result, where we do not have large dimensions, the linear RBCVT-Fast approach 

dominates over ART approaches regarding computational cost. 

Finally, RT-RBCVT, ART-RBCVT, and QRT-RBCVT have been demonstrated to have 
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a superior performance against RT, ART, and QRT methods, respectively. Consequently, 

software testing practitioners can use RBCVT to enhance the existing strategies within 

their software testing toolbox. The use of RBCVT in software testing is straightforward 

since RBCVT can be included to the previous methods as an add-on. 

With respect to string test case generation, in chapter 3, a multi-objective optimization 

approach is studied. Two objectives are introduced to produce effective string test cases. 

The first objective controls the diversity of the test cases within a test set. The second 

objective is responsible for controlling the length distribution of the string test cases. The 

Benford distribution is employed as an objective distribution. Accordingly, a 

Kolmogorov–Smirnov test [84] is utilized to construct the fitness function. When both 

objectives are enforced, using a multi-objective optimization technique, superior test 

cases are produced. 

Further, several string distance functions are examined as a part of test case generation 

process (Levenshtein, Hamming, Cosine, Manhattan, Euclidian, and LSH distance 

functions). Among the investigated distance functions, the LSH [65] is a fast estimation 

of the Cosine string distance function. According to the runtime complexity analysis in 

Section  3.5, LSH improves the runtime complexity. Further, in Section  3.5, the runtime 

complexities of all test case generation methods are discussed. 

An empirical study has been performed to evaluate the failure detection capability of the 

string test generation methods (RT, FSCS, ARTOO, GA, and MOGA). Thirteen real-

world programs are used for the evaluation. Several faulty versions are produced for each 

program through a mutation technique. These programs perform string transformation 

and/or manipulation which make them a true test for situations where the input test cases 

are strings [92]. With respect to the evaluation results, the MOGA revealed the superior 

failure detection performance. Further, the empirical results of comparing different string 

distance functions indicate that the Levenshtein distance outperformed the others. 

Randomness of the test cases is an important aspect of a test case generation algorithm. 

Correlated test cases may reduce the failure detection effectiveness as discussed in 

Section 3.8. As a consequence, an investigation of randomness on string test cases is 

performed; and it demonstrated that all the generated test cases possess an appropriate 

degree of randomness. 

In chapter 4, the novel EST similarity function has been proposed for the domain of tree 
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structured data comparison with the aim of increasing the effectiveness of applications 

utilizing tree distance or similarity functions. This new approach seeks to resolve the 

problems and limitations of previous approaches, as discussed in Section  4.4.1. In 

addition, the new approach must enhance applications where a tree distance function is 

utilized. To achieve this goal, we first extensively analyzed other distance functions. 

Then, we identified situations where the studied distance functions have poor 

performance; and finally we propose the EST approach. The proposed EST approach 

preserves the structure of the trees by mapping subtrees rather than nodes. EST 

generalizes the edit base distances and mappings by breaking the one-to-one and order 

preserving mapping rules. Further, it introduces new rules for subtree mapping provided 

in Section 4.4.2.  

An extensive experimental study has been performed to evaluate the performance of the 

proposed similarity function against previous research. Clustering and classification 

frameworks are designed to perform an unbiased evaluation according to K-medoid, 

KNN, and SVM along with four distinct data sets. The real-world data sets have appeared 

in a number of publications [103], [105], [106], [117], [118]; and hence, they are deemed 

to be reliable source of information. Further, using synthetic data sets, we investigated the 

effect of varying the number of classes in the evaluation. This extensive evaluation 

framework is one of the advantages of this research over previous researches such as 

[103], [105], [106], [117], and [118].  

The results of the experimental studies demonstrate that the EST approach is superior to 

the other approaches with respect to classification and clustering applications. To 

evaluate the performance, accuracy and WAF, are used in Tables 4.2, 4.3, and 4.4, where, 

in general, EST is demonstrated to be a better option for the clustering and classification 

of tree structured data. However, the performance of a distance function varies with the 

domain of application; and hence, we cannot generalize the superior performance of EST 

to all domains of applications.  

The computational cost of a tree distance function should be carefully considered for 

practical applications. Given pT  and qT  as the input trees to the distance function, we 

calculated the runtime order of the EST as (| | | | (| |, | |))p q p qO T T Min T T× × . Further, the 

runtime of all the clustering and classification experiments are measured where the 

proposed EST outperformed all other distance functions with respect to all data sets 
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except SIGMOD. In addition, an empirical analysis has been performed to compare the 

runtime of EST vs. other distance functions in different tree sizes. The result of this 

empirical investigation suggests that the runtime efficiency of EST, Entropy, and Path are 

better than the other distance functions. Accordingly, the conclusion can be drawn that 

the proposed EST is an appropriate approach for computationally restricted and real time 

applications. Finally, EST has been demonstrated to have a superior performance against 

TED, IST, Path, Entropy, and Multiset distance functions with respect to classification 

and clustering applications. 

Tree test case generation is studied in chapter 5. A tree abstract model needs to be 

defined by a user for each problem and then, tree generation methods can produce diverse 

test cases.  Four tree test case generation methods (FSCS, ARTOO, GA, and MOGA) are 

investigated and compared against the random tree generation. Failure detection 

performance of these methods is investigated through an empirical study where four real-

world programs are used as case studies. These programs accept input XML test cases 

and hence, an abstract tree model for XML is defined. However, our work is not limited 

to XML generation and it can be applied to any type of test cases that can be modeled by 

a tree. For example, in chapter 4 a few different data types were modeled by trees. The 

mutation technique is utilized to produce several faulty versions of each program. Then, 

the p-measure is used as a quantitative measure to evaluate the failure detection 

performance. 

With respect to tree sizes, two set of experiments are performed where in the first one, the 

maximum tree size in each test generation method is set to a constant number. In the 

second set of experiments, the mean size of tree sizes is adjusted to a fixed value. The 

evaluation results demonstrate that GA is the best method in the same maximum tree size 

experiment. However, in the same mean size experiment, MOGA outperformed all other 

test generation methods.  

Tree distance functions are required in each test generation method to produce diverse 

test cases. Several tree distance functions (EST, IST, TED, Entropy, Path, and Multiset) 

are tested as a part of the test case generation process. Among the investigated distance 

functions, the EST, a new distance function that we proposed in chapter 4, outperformed 

the other distance functions. Finally, in the XML decoding process, we replaced the 

random string node value generation with MOGA string generation from chapter 3. This 

resulted in improved failure detection. 
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Computational cost of a test case generation method and its relation to the required time 

for other parts of the testing process is an important factor when the user need to decide 

what test generation method to use. Basically, an ATS (Automated Testing System) has 

three parts; test generation, test execution, and examination of the test results. So, the 

total time ( tt ) is combination of all; t g e ot t t t= + +  where gt , et , and ot stand for 

generation time, execution time, and result examination time, respectively. Test 

generation and execution can be automated easier than test result examination. With 

respect to examination of the test results, two options are normally used:  

• A test oracle is constructed to automate the test examination. The test oracle 

usually has a simplified definition of a defect. Does the system crash or not is an 

example of such a description. Here each crash is considered a "defect".  

• The test results are investigated manually by the tester.  

When et  is small (very small programs) and test result examination is fully automated 

(small ot ) one would be better off running more test cases instead of generating more 

efficient test cases, similar to [49]. In such a case, methods that have high runtime 

compared to random generation are not cost effective. However, industrial software’s 

execution runtime is usually large enough to have adequate time for test generation. 

Further, test result examination is not typically fully automated, unless for simplistic 

defects like crash, and requires manual work by the tester. Hence, generating more 

effective test cases which normally have higher runtime than random test cases is 

believed to improve failure detection in most cases. 

6.2 Recommendations for Future Research 

Although the results of this research improve black-box software testing effectiveness, 

there is still room for improvement. This research can be extended for further 

investigation as follows: 

1) Up to now, we have introduced methods to generate numerical, string, and tree test 

cases. However, there are many programs that the structures of their input are not one of 

these types. Therefore, future studies can be focused on exploring other test case 

structures.  

Another approach is developing a test generation approach that can produce test cases for 
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any given structure. Grammar based testing is a technique used to produce test cases 

where the input structure of the program is specified with a grammar. Grammars are a set 

of rules that define all the valid possibilities for the input to the software. For example, 

HTML can be defined with grammars. In grammar based testing, test cases are produced 

based on the grammar rules. There are several studies on grammar based testing. For 

instance, rule coverage [167] is a method to generate test cases based on grammar. 

Generating all the possibilities based on grammar is often too large to be practical. 

Hence, in rule coverage, the objective of test generation is to cover every rule in the 

grammar at least once. As a further example, Hoffman et al. [168] utilizes covering array 

as a technique to generate grammar based test cases. With covering arrays, a test template 

with N parameters is produced where each parameter has a limited number of 

possibilities [168].  

Although there are several works on grammar based test generation, to the best of our 

knowledge, there is no research on grammar based test generation that produces test cases 

based on diversity of generated test cases. To achieve this, first, a distance function 

between two test cases that are extracted from the grammar must be developed. Then, 

based on the distance function, a diversity objective can be defined similar to our work in 

this research. Finally, an optimization technique can be applied to produce effective 

grammar based test cases. In this process, the critical part is defining a proper distance 

function between grammars. This could be challenging as a grammar can be very 

complicated. To define a proper distance function many features of the grammar must be 

considered. For example, the selected rules to generate a test case are an important factor. 

Further, the order that rules are selected can be important. Different rules may have 

different importance in test generation that needs to be accounted for. 

2) Furthermore, with respect to numerical, string, and tree test generation, more research 

can be performed. Regarding numerical test case generation, more research can be done 

to optimize higher dimension numerical test cases. In addition, our experimental results 

are on programs with up to four dimensions. Real programs with higher dimensions can 

be investigated in future researches. With respect to the RBCVT and other numerical test 

generators, normally, test cases are produced with a pre-fixed number of dimensions or 

numbers with a fixed array length. However, in many applications the input software 

accepts a variable length array. Further studies can be performed on generating diverse 

numerical test cases when the dimension of the input can be variable. 
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3) In string test case generation, strings are generated without any information from the 

program under the test. In many programs, regular expressions define the features of the 

valid input string to the software. Invalid strings may not be very effective as it may be 

filtered in early stages of the program under the test and hence, it may not have a good 

failure detection chance. Therefore, in case a regular expression is available for the 

program under the test, using it in the test generation process can improve the failure 

detection. Achieving this is challenging, as during the optimization, more specifically in 

GA in the offspring generation, strings are broken and recombined. This breaks the 

strings structure that is based on the regular expression. Similarly, in a mutation process, 

the regular expression pattern is broken as a character in the string is randomly added, 

deleted, or replaced. Hence, achieving this requires a new optimization algorithm that is 

aware of the regular expression. As a future study, a regular expression aware test case 

generation algorithm can be developed. 

4) Regarding the tree test case generation, up to now, we considered diversity and size 

distribution as factors that influence the testing effectiveness. However, other parameters 

of a tree can be important in failure detection. As an example, the height of a tree or its 

ratio to the size of the tree may affect the failure detection performance. The complexity 

of nodes of the tree might be important as well. So, a direction for future study on tree 

test generation is investigating other parameters that affect failure detection performance. 

To investigate the effect of other parameters, a new fitness functions can be defined and 

added into the multi-objective optimization. 

5) Further, regarding tree test generation, we used a tree model to generate tree test cases. 

So, a tree model needs to be defined by the tester for the program under the test. The tree 

model that we constructed our tree generation method based on it, is an ordered and 

labeled tree model. Further, the proposed tree distance function, as well as other tree 

distance functions that we investigated, works on the ordered and labeled trees. This may 

pose a limitation, where in an application the test cases can be modeled by unordered or 

non-labeled trees. A same argument can be made for non-testing related applications as 

investigated in chapter 4. In chapter 4, we performed experiments on clustering and 

classification applications. In all those experiments, applications were selected that data 

samples were able to be modeled by an ordered and labeled tree; since the proposed tree 

distance function works based on ordered and labeled trees. Again, this poses limitation 

on the applications. Hence, a future direction with respect to tree distance function is 
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expanding the EST (the proposed tree distance function) such that it supports unordered 

and non-labeled trees. 

6) Finally, with respect to the tree test case generation, in applications where the input to 

the software is XML, it is quite popular that an XML schema is pre-defined. An XML 

schema specifies the characteristics of input XML file. Our work, in this thesis, does not 

support XML schema as extra information in test generation. Several works have been 

performed on generating XML test cases based on XML schema as we reviewed it in 

Section 5.7. However, none of them, to be best of our knowledge, works based on 

diversity. Hence, our work in this research can be extended to support XML schema. This 

might be challenging as every test cases that is generated or altered during optimization 

process still must conform to the XML schema definitions. 

7) In this research, we proposed a new tree distance function (EST). EST’s performance 

is compared with previous distance functions in a few applications including clustering, 

classification, and automated test case generation. However, our tree distance function 

can be applied into variety of applications. Natural language processing [107] and cross 

browser compatibility [108] are examples of applications of a tree distance function. 

Another application that potentially can benefit from our tree distance function is outlier 

detection for data that can be modeled as a tree; like XML. Outlier detection has 

numerous applications. For example, it can be used in fraud detection and noise removal 

(data cleaning). Several works has been done on XML outlier detection [169]. A new 

XML outlier detection approach can be the use of EST as a distance function between the 

XML documents. Any XML document that has relatively large distance with other data 

points can be potentially an outlier. Further, the EST can be applied to code clone 

detection. A source code of a programming language can be converted into an abstract 

syntax tree. Hence, the EST distance function can be used to detect code cloning if the 

distance for two source codes is less than a threshold. Consequently, new applications of 

the proposed tree distance function can be a potential direction for future researches. 

8) An automated test generator must produce test cases that have a higher chance of 

detecting a failure. This reduces the cost of testing by faster failure detection and less 

manual work. In this study, we demonstrated that diversity among input test cases 

improves the chance of detecting a failure and hence, it improves the failure detection 

performance. Failure detection is improved since faults normally occur in error crystals 

or failure regions [13]–[17]; how about the outputs of the test cases? Can we use them to 
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produce test cases with higher chance of failure detection? Let’s assume that for every 

input to the software under the test we have an corresponding output. If two different 

inputs lead to two similar outputs, we can argue that both test cases, with a degree of 

probability, have a similar execution path in the source code and hence, it is likely that 

both tests either fail or pass. Similarly, we can argue that if the two outputs are very 

different, probably the two test cases have different execution paths in the source code. 

As a result, we can say that a set of tests are diverse if their corresponding outputs are 

diversely distributed. The effect of the diversity of the outputs can be more than the effect 

of diversity of the inputs. Therefore, if we optimize the test cases such that their 

corresponding outputs are diversely distributed in the output space, we may be able to 

produce test cases with higher chance of failure detection. To do this, a proper distance 

function between the outputs must be developed. Please note that the output can have any 

structure like trees. For example, in a web browser, in the first stage, the input HTML is 

parsed into a DOM (Document Object Model) tree. So, for this stage, the input is HTML 

text and output is a DOM tree. Then, a diversity based objective function must be defined 

on the outputs. In the optimization process, inputs are generated and optimized based on 

the objective function. In such test generation, the optimization include execution the test 

cases in order to capture the output. This is a potential approach to improve the testing 

process and hence, a direction or future studies. 
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