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Abstract 

Tumor volume delineation plays a critical role in radiation treatment planning 

and simulation, since inaccurately defined treatment volumes may lead to the 

overdosing of normal surrounding structures and potentially missing the 

cancerous tissue. However, the imaging modality almost exclusively used to 

determine tumor volumes, X-ray Computed Tomography (CT), does not readily 

exhibit a distinction between cancerous and normal tissue. It has been shown that 

CT data augmented with PET can improve radiation treatment plans by 

providing functional information not available otherwise.  

Presently, static PET scans account for the majority of procedures 

performed in clinical practice. In the radiation therapy (RT) setting, these scans 

are visually inspected by a radiation oncologist for the purpose of tumor volume 

delineation. This approach, however, often results in significant interobserver 

variability when comparing contours drawn by different experts on the same 

PET/CT data sets. For this reason, a search for more objective contouring 

approaches is underway.  

The major drawback of conventional tumor delineation in static PET 

images is the fact that two neighboring voxels of the same intensity can exhibit 

markedly different overall dynamics. Therefore, equal intensity voxels in a static 

analysis of a PET image may be falsely classified as belonging to the same 

tissue. Dynamic PET allows the evaluation of image data in the temporal 

domain, which often describes specific biochemical properties of the imaged 



 

tissues. Analysis of dynamic PET data can be used to improve classification of 

the imaged volume into cancerous and normal tissue.  

In this thesis we present a novel tumor volume delineation approach 

(Single Seed Region Growing algorithm in 4D (dynamic) PET or SSRG/4D-

PET) in dynamic PET based on TAC (Time Activity Curve) differences. A 

partially-supervised approach is pursued in order to allow an expert reader to 

utilize the information available from other imaging modalities routinely used in 

conjunction with PET. In our scheme, this includes the definition of a tumor 

encompassing mask and selection of a seed site within the suspected tumor, 

while further delineation is performed automatically by the algorithm.  

The development of this method is examined and improved classification 

of the imaged volume into cancerous and normal tissue compared to methods 

currently used in the clinic is demonstrated. 
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1. Introduction 

Positron Emission Tomography (PET) plays an ever increasing role in radiation 

therapy. In oncology, X-ray Computed Tomography (CT) (or Magnetic 

Resonance Imaging (MR or MRI)) data augmented with PET can improve 

radiation treatment plans by providing physiological function information not 

available otherwise2-4. For example, a potential increase of 14.3 % in tumor 

control probability has been demonstrated for treatment plans modified using 

dose-escalation factors calculated from dynamic [18F]-fluoromisonidazole 

(FMISO) positron emission tomography data in hypoxia dose painting studies5, 6. 

Furthermore, PET/CT data has been proven to have a greater sensitivity and 

specificity in the staging of lung cancer7 than either CT or MR alone.  In the 

following sections a brief introductory review is presented for the reader to 

comprehend the goals, main contributions and findings in this work. 

1.1 Motivation 

In its early days, PET was mainly used as a research tool, however, in the last 

decade the role of PET in the clinic has become increasingly important. The 

largest area of clinical use of PET is in oncology. PET provides a unique tool for 

the visualization of biologic processes which can reveal valuable information 

pertinent to patient diagnosis, staging, progression and treatment outcome.  The 

quantitative interpretation of PET images is, unfortunately, not always 

straightforward.  Two confounding factors in the clinical application of PET are 

image noise and the interpretation of static image intensity values.  

Radiation therapy techniques such as three-dimensional conformal radiation 

therapy (3D-CRT) and intensity modulated radiotherapy (IMRT) allow delivering 

large doses of radiation to small volumes. The ultimate goal is to improve local 

control by escalating dose to sites of disease. To achieve this goal, two potentially 

conflicting objectives must be met: (1) a target volume must be defined 

encompassing the entire tumor volume plus any geometric motions and 

uncertainties, (2) the volume of normal tissue within this defined target must be 

minimized. Accurate delineation of the full extent of malignant growth is crucial 



 

     2

in radiation oncology. An inaccurately defined target volume may potentially lead 

to underdosing the tumor or overdosing normal structures surrounding the tumor 

and thus jeopardize patient outcome. 

Tumor localization has historically relied on the use of anatomic imaging 

modalities such as CT and MRI. Currently, CT based volume definition remains a 

gold standard for most radiotherapy treatment planning. CT acquisition and 

reconstruction parameters are standardized allowing the generation of consistently 

accurate, high resolution anatomical patient images. The intensity values in these 

images are reported in Hounsfield units (HU), which correlate with tissue density. 

The electron densities (related to tissue densities) of imaged tissues are required 

by modern treatment planning systems for correcting dose calculation in order to 

account for heterogeneities in patients. Unfortunately the change in Hounsfield 

units between normal and cancerous tissue is usually not very great, making 

accurate differentiation between normal and malignant tissue challenging. 

The early reports on use of PET in radiation therapy were published in the 

late 1990s8. Recent technological advances in radiation therapy and multimodal 

imaging (PET/CT & PET/MR) have further stimulated the use of PET-guided 

radiation therapy treatment planning. In fact, there is an ongoing discussion 

regarding whether PET/CT has a potential to replace CT as a standard for 

radiotherapy simulation and planning. The main argument against is that even 

though PET has a potential to enhance the consistency of tumor volume 

definition, it lacks accuracy9. While CT (or MR) allows defining a “macroscopic” 

target volume with anatomic data, functional imaging modalities such as PET 

allow the extraction of another volume, a ‘‘biological” target volume. The notion 

of a ‘‘biological” target volume (BTV), in addition to the widely accepted 

concepts of gross tumor volume (GTV) and clinical target volume (CTV), led to 

the integration of tumor biology into the treatment planning process8. The 

rationale for the use of PET/CT in radiation therapy treatment planning is that in 

some cases CT fails to detect lesions that are readily visible on PET images. In 

addition, there are reports of smaller lesion volumes delineated on fused PET/CT 

when compared to volumes based on CT alone. Also, articles featuring the 
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disparity between volume delineation based on anatomical information only (CT, 

MR) and that based on PET are frequently published in the literature8, 10-22. These 

discrepancies are due in part to a higher sensitivity and specificity of PET for the 

identification of tumor tissue in comparison to CT and MRI alone. Another 

limitation of using anatomical imaging modalities in RT treatment planning is a 

difficulty in visualization and accurate delineation of tumors in postsurgical 

distorted anatomy and the presence of residual scar tissue after chemotherapy23. 

FDG (18F-fluoro-deoxy-glucose) is the radiopharmaceutical used in PET 

imaging that has the widest application in clinical oncology. FDG is relatively 

easy to synthesize with a high radiochemical yield24. A typical activity of FDG 

used in an oncologic scan is 200-400 MBq for an adult human. This tracer is 

glucose analog and follows a similar metabolic pathway. Because an oxygen atom 

is replaced by 18F, FDG is not metabolized to CO2 and water and remains trapped 

within tissue until it decays. The result of this is intense radiolabeling of tissues 

with high glucose uptake, such as the brain, the liver, and most cancers25. 

Oncologic scans using FDG make up over 90% of all PET scans in current 

practice26. Various authors have published reports on the feasibility of FDG-

PET/CT based tumor volume delineation in head and neck tumors, esophageal 

cancer, NSCLC, breast cancer, cervical cancer, Hodgkins lymphoma, and rectal 

cancer8. Novel probes beyond FDG for delineation of other tumors and 

application in RT treatment planning are constantly emerging8. 

The most straightforward integration of the functional information provided 

by PET imaging into the RT treatment planning process consists in (i) delineating 

tumor volumes on a PET study, and (ii) transferring these volumes on CT images 

after registration. The image registration step has not only been well studied27-31, 

but also has been significantly simplified by multimodal imaging (PET/CT & 

PET/MR). On the other hand, the accurate delineation of PET defined targets 

remains a problem16, 27, 32 in spite of the vast literature accumulated on this topic 

over the years33. For the many methods currently used in clinical practice, 

delineation results can be quite disappointing especially in the case of small 

heterogeneous or non-spherical tumors33. 
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In this thesis we present a novel single seed region growing algorithm for 

tumor segmentation in dynamic positron emission tomography (henceforth 

SSRG/4D-PET). We compare SSRG/4D-PET to current clinical tumor 

segmentation methods and demonstrate improved classification of an imaged 

volume into cancerous and normal tissue may be achieved in the presence of both 

homogeneous and heterogeneous uptake. 

1.2 Thesis Objectives 

The main goal of research described in this thesis is the development of a novel 

partially-supervised tumor delineation algorithm incorporating both temporal and 

spatial information available in dynamic PET studies for use in radiation therapy 

treatment planning. The vision is to improve delineation accuracy of the 

geometric extent of PET defined target volumes by analyzing and exploiting the 

differences in the time activity curves (TAC) for tumor and surrounding normal 

tissue. 

To reach the aims of this work, first, statistical properties of noise in PET 

images reconstructed either analytically or iteratively are studied. This has 

important implications for selection of an appropriate noise suppression technique 

prior to delineation as well as for simulation of noise in synthetic PET data used 

in delineation algorithm performance evaluation. Following this, three different 

denoising approaches (PCA, BLS-GSM, and SHINE) are compared and the most 

appropriate noise suppression technique (PCA) is integrated into the framework 

of the proposed algorithm (SSRG/4D-PET). The algorithm performance is 

evaluated using semi-empirical digital phantoms (homogeneous and 

heterogeneous), a clinically-relevant physical phantom, and clinical patient 

images. 

1.3 Thesis Contributions 

The following summarizes the contributions that have been made as a result of 

this thesis: 
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• An examination of the statistical properties of noise in reconstructed PET 

images after all the necessary corrections has been applied. Statistical 

properties of the acquired data are evaluated and compared to five noise 

models (Poisson, Normal, Negative Binomial, Log-Normal and Gamma). 

This analysis shows that the noise in RAMLA reconstructed PET images 

is very well characterized by Gamma distribution followed closely by 

Normal distribution, while FBP produces comparable conformity with 

both Normal and Gamma statistics. These results have been published in 

Journal of Digital Imaging (Teymurazyan et al. 2012)34. 

 

• Three different approaches (PCA, BLS-GSM, and SHINE) to noise 

suppression in reconstructed PET images are evaluated. Their 

performance is compared to some recently published state-of-the-art 

methods as well as a number of standard well-known and widely-used 

denoising algorithms. 

  

• A comparison between denoising PET images with different techniques 

reveals PCA to be an appropriate method for post-processing of dynamic 

PET data aimed at noise reduction prior to tumor volume delineation. 

Within the framework of the proposed algorithm, retaining only the first 

principal component (PC1) allows obtaining a data set with a much lower 

level of noise while enhancing contrast, thereby optimizing the signal-to-

noise ratio (SNR). 

 

• A novel single seed region growing algorithm for dynamic positron 

emission tomography (henceforth SSRG/4D-PET) is presented.  We 

demonstrate that improved classification of the imaged volume into 

cancerous and normal tissue can be achieved compared to other methods 

currently used in the clinic.  These results have been published in IEEE 

Transactions on Nuclear Science (Teymurazyan et al. 2012)35.  
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1.4 Thesis Outline 

In Chapter 2, background information on Positron Emission Tomography (PET) 

is presented. This begins with an overview of PET technology and scanner 

detection mechanisms, followed by a brief discussion of image acquisition, image 

reconstruction, and the necessary corrections which are critical for conversion of 

raw measurements into a time series of three-dimensional images. The chapter 

concludes with a section on absolute quantification, which is used to assess 

patient images in order to distinguish benign tissue from malignant and (or) to 

assess response to therapy. 

Chapter 3 describes the properties of noise in reconstructed PET images, 

which is one of the confounding factors in PET imaging. This chapter examines 

the statistical properties of noise in PET images acquired with a GEMINI PET/CT 

scanner and reconstructed with Filtered-Backprojection (FBP) and Row-Action 

Maximum Likelihood Algorithm (RAMLA), after all clinical correction and 

image reconstruction procedures have been applied. This has important 

implications for an accurate evaluation and processing of quantitative information 

provided by PET imaging. Effective image noise reduction is greatly dependent 

on an accurate knowledge of the parameters which characterize this noise. A 

version of this chapter has been published in Journal of Digital Imaging 

(Teymurazyan et al. 2012)34. 

Chapter 4 focuses on image denoising. Since noise levels observed in PET 

images complicate their geometric interpretation, it is desirable to implement an 

effective post-processing technique aimed at noise reduction prior to tumor 

volume delineation. This chapter briefly discusses and compares three different 

approaches (PCA, BLS-GSM, and SHINE) to noise suppression in reconstructed 

PET images. 

Chapter 5 summarizes the segmentation techniques used in medical imaging. 

A review of the image segmentation literature is presented, including the methods 

currently used for segmentation of PET data. We first present current practices for 

tumor volume delineation and discuss their limitations. We then demonstrate how 

some of these shortcomings can be overcome with dynamic (4D) PET imaging. 
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Chapter 6 presents a single seed region growing algorithm for tumor volume 

delineation in dynamic PET imaging (SSRG/4D-PET). After fully describing the 

algorithm followed by a description of methods and various figures of merit used, 

an in depth evaluation of the proposed methodology is presented. A version of 

this chapter has been published in IEEE Transactions on Nuclear Science 

(Teymurazyan et al. 2012)35. 

Finally, Chapter 7 summarizes the thesis and presents the conclusions drawn 

as a result of this study, after which future work directions are discussed for 

further improvement of tumor volume delineation in PET. 
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2. Positron Emission Tomography in Medical Imaging 

Positron Emission Tomography (PET) is a non invasive, medium resolution, 

diagnostic imaging modality. This technique is based on the decay of a positron 

(β+) emitting radionuclide which is chemically bound to a biologically active 

molecule (tracer). Of particular interest are the radioactive forms of biologically 

important elements such as oxygen, nitrogen, carbon and fluorine, allowing in-

vivo imaging of physiological function with PET. The advantages over other 

imaging modalities used in Nuclear Medicine are increased sensitivity and the 

possibility of accurate attenuation correction. PET is capable of detecting very 

small (picomolar) quantities of radioactive agents administered to patients36. The 

radiation detected by a PET scanner is used to map the three dimensional (3D) 

distribution of radiopharmaceuticals in the body. Time sequences can be acquired 

(4D PET) to determine the time evolution of activity, with the aim of extracting 

physiological constants such as metabolic activity or transport rates36. PET 

imaging is relatively expensive as it requires not only a PET scanner but typically 

also a cyclotron for tracer production due to the short half-life of the radioactive 

materials involved. On the other hand PET has unique functional capabilities and 

a wide ranging research and clinical potential. It is used worldwide as a diagnostic 

tool in oncology, cardiology, neurology and pharmacology. With the advent of 

PET/CT, its role in oncology in general and in radiation therapy in particular is 

increasing. 

PET is unique, because it is able to visualize biochemical processes altered 

by disease and can detect these alterations before there is an actual change in 

patient anatomy. This separates it from traditional diagnostic techniques, such as 

x-rays, CT scans, or MRI, which produce images of the body's anatomy or 

structure. Even in diseases such as Alzheimer's, where there is no anatomical 

abnormality, PET can reveal changes in biochemistry. In clinical oncology it is 

useful in managing patients with certain conditions affecting the brain and the 

heart as well as with certain types of cancer.   



 

2.1 Sources of Positrons 

A positron (β+ particle) is the antimatter conjugate of an electron emitted in beta 

decay. Its existence was first postulated by Dirac around 1928 and was later 

discovered by Anderson in 1832. Positrons are produced by either pair production 

or in the course of nuclear transmutation called beta-plus decay (weak nuclear 

decay). The radioisotopes used in PET are proton-rich and decay via positron 

emission, in which a proton in the nucleus is converted into a neutron ( ), a 

positron (1

1
0 n

0β + ) and a neutrino ( eν ).  
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Figure 2.1: Decay scheme of common β+ emitters 

 

In general, the positron decay from the atom can be expressed as37: 

X X Q eβ ν+ −
−→ + + + +

Q

 2.1 

where  is energy. The daughter isotope has an atomic number of one less than 

the parent, since positive charge is carried away with the positron. To balance the 



 

charge of the daughter nucleus, an orbital electron must be ejected from the atom, 

often via the process known as internal conversion. The nucleus supplies the 

energy required by the orbital electron to overcome its binding energy and leave 

the atom with residual kinetic energy. In order for an atom to undergo positron 

decay its atomic mass has to exceed the mass of the daughter by at least two 

electron masses ( ), because both a positron and an electron are emitted in 

the process. 

2
02m c

Figure 2.1 shows beta-plus decay schemes of 18F, 11C, 15O, and 13N. 

The vertical distance between the horizontal solid lines in Figure 2.1 represents 

the total energy released (the transition energy) in the decay process and is also 

known as the Q value (2.1). 

2.2 PET Imaging 

PET imaging relies on the tracer principle: radiopharmaceuticals are distributed, 

metabolized, and excreted according to their chemical structure. The radiotracer is 

introduced into a patient usually via injection. Depending on radionuclide half-life 

and on the specific type of PET examination, a waiting period (normally between 

30 min to 2 hours) is required between tracer injection and scanning to allow the 

metabolically active molecule to become concentrated in tissues of interest. The 

short-lived proton-rich isotope decays, emitting a positron. The positron produced 

travels for a short distance (~1 mm) through surrounding tissue, losing kinetic 

energy principally by Coulomb interactions with electrons, as it collides with 

molecules. 
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Figure 2.2: Positron emission and annihilation process 

 

 Since the rest mass of a positron is equal to that of an electron, positrons may 

undergo large deviations in direction with each Coulomb interaction, thus 

following a very complex path through tissue (Figure 2.2). This path can be much 

longer than the Euclidean distance (positron range, Rβ) between point of emission 

and point of annihilation of the positron. Because the centre of mass of a positron 

and an atomic electron is not always at rest at annihilation, conservation of energy 

and momentum dictates that the annihilation photons produced are not always 

emitted at 180° from each other. This deviation from colinearity, which is shown 

on Figure 2.2 as an angle of non-colinearity (θNC), results in an annihilation 

localization error (εNC). This error arises because the detection process in PET 

assumes that annihilation photons travel in exactly opposite directions along a 

straight line called the line of response (LOR), shown as a black dashed line 

between the gamma rays in Figure 2.2. The effect of NC on PET image resolution 

will be discussed later (see section 2.5). 

2.3 PET Radionuclides 

One of the significant reasons for the importance of PET in medical research and 

in the clinic is the existence of positron-emitting isotopes which may be used to 

create a range of tracer compounds with properties similar to those of naturally 
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occurring substances in the body. This means that suitably labeled compounds can 

be introduced into the body without significantly altering its normal processes. An 

ideal PET tracer has to satisfy to two conditions: 1) be readily available or 

relatively simple to produce; 2) be suitable for the synthesis of biological 

compounds used in vivo for studies of biochemical processes. Physical 

characteristics of the current principal PET radionuclides are presented in Table 

2.1.  

Table 2.1: Common PET isotopes and their physical characteristics 

Radionuclide Source β+ decay Half-life Max (Mean) Max (Mean) 

  branching
fraction  positron 

energies 
range in 

water 
  (%) (min) (keV) (mm) 

C-11 Cyclotron 99.75 20.37 961 (390) 4.1 (1.1) 
N-13 Cyclotron 99.818 9.97 1198 (490) 5.4 (1.3) 
O-15 Cyclotron 99.885 2.04 1735 (740) 7.3 (2.5) 
F-18 Cyclotron 96.86 109.73 634 (250) 2.4 (0.6) 

Ga-68 Generator 89.14026 67.71 1899 (836) 8.2 (2.9) 
Rb-82 Generator 95.5 1.25 3356 (1532) 14.1 (5.9) 

 

These radionuclides are incorporated either into compounds normally used by the 

body such as glucose (or glucose analogues), water or ammonia, or into molecules 

that bind to receptors or other sites of drug action. Since most radionuclides used 

in PET are relatively short lived (see Table 2.1), they are usually produced on site 

by means of dedicated medical cyclotrons or generators (for example 68Ga and 
82Rb). 18F is a noteworthy exception; with a half-life of almost 110 min it can be 

distributed to smaller facilities at a reasonable distance from its production site. 

2.4 Coincidence Detection and Electronic Collimation 

As mentioned, PET involves the detection of two photons traveling in opposite 

directions in coincidence. After injection of a tracer compound labeled with a 

positron emitting radionuclide, the patient is placed within the field of view 

(FOV) of a number of detectors capable of registering incident gamma rays. In 

current scanners, one or more rings of small scintillation detectors are typically 
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used. These detectors convert high energy annihilation photons into lower energy 

photons in the visible and ultraviolet range of wavelength. These lower energy 

photons interact with a photodetector which converts them into an electrical 

signal. The reshaped and amplified signal is accepted by energy discrimination 

circuitry if it falls within a predetermined energy window (~350-650 keV38). 

Finally, each detector generates a timed pulse when it registers an incident 

photon. When two pulses from opposing detectors arrive within a short time 

windowa, an event (prompt) is registered for those detectors. The width of the 

coincidence timing window is determined by the geometry of the scanner and is 

typically taken to be slightly longer than the time required for the photon to cross 

the ring. The two coincidence photons detected in a PET scanner may originate 

from anywhere within the scanner's FOV; thus it is possible for each photon to 

travel a different distance prior to interaction within the detectors. Theoretically 

this distance can be as large as the scanner's diameter. Using the diameter of a 

typical whole-body scanner (100 cm) and the speed of light (c = 3×108 m/s), one 

can calculate the minimum requirement for the width of the coincidence timing 

window (~3-4 ns)39. This places a lower limit on the size of the coincidence 

timing window due to the difference in arrival times of two photons emitted at the 

edge of the scanner FOV. In realty, with the possible exception of very fast 

scintillators such as BaF2 (scintillation decay time of 0.6 ns), the timing resolution 

of the detectors needs to also be accounted for when defining the coincidence 

timing window. For detectors with poor timing resolution, a large coincidence 

timing window is required in order to detect the majority of valid coincidence 

events39. Near-simultaneous detection of two annihilation photons in opposing 

detectors, also known as annihilation coincidence detection (ACD), actually 

defines the volume from which they are emitted. It allows PET to localize the 

origin of the annihilation event along a line (line of response or LOR) between 

 
a This window duration is about 12 ns for a typical bismuth germinate (BGO) scanner (P. E. Valk, 

Positron emission tomography: basic science and clinical practice, edited by P. E. Valk (Springer, 

London ; New York, 2003), pp. 884). 
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two the detectors. ACD allows obtaining positional information without the need 

of mechanicalb collimation. This mechanism is called electronic collimation. 

Electronic collimation results in an increased sensitivity (two to three orders of 

magnitude higher) and improved uniformity for PET compared to SPECTc, where 

a mechanical collimator is used to restrict acceptance angles. The period of time 

during which events are collected is known as the scan time. For each pair of 

detectors, the total number of events registered equals the sum of the distribution 

of the activity or line integral along the LOR. The acquisition system reconstructs 

the acquired information into medical images. Position resolution within 

reconstructed images and the reconstruction process itself are some of the key 

features of PET imaging which are limited by several physical and technological 

factors, which shall be dealt with subsequently. 

2.5 The Fundamental Limits of PET 

In general, the resolution of a PET system is not shift-invariant and should be 

treated as a three dimensional parameter40-42. It is common to describe overall 

PET system resolution in terms of transaxial (in-plane) and axial components. The 

resolution of a PET system is also dependent on the mode (2D or 3D, see section 

2.7) of operation and is normally measured in terms of  the FWHM of a small (≤ 1 

mm in diameter) point source of activity41. There are four major independent 

factors affecting the point source spatial resolution of a PET system. Theoretical 

limits for the obtainable spatial resolution (Rimage) of a PET system can be 

estimated if certain factors are assumed to be isotropic in the transaxial and axial 

directions40. From a physics point of view, these blurring factors are the positron 

range (Rβ), annihilation non-colinearity (RNC), and detector size (Rdet-size). From 

the technological point of view a major contributing factor, for scanners with 

detector elements organized in blocks (see section 2.6.3), is the block effect 

 
b This is an absorptive collimation technique used in other nuclear imaging modalities. 
c SPECT: Single-Photon Emission Computed Tomography.  The technetium-99m (99mTc) emitting 

140.5 keV gamma-rays is the most commonly used radionuclide in SPECT. 



 

(Rblock). The overall system resolution can be estimated using an expression 

determined empirically by Moses et. al.42, 43: 

2 2 2 21.25image NC det-size blockR R R Rβ= × + + + R  2.2 

where the factor 1.25 accounts for the effect of the reconstruction process. 

The contribution from positron range to overall system resolution stems from 

the uncertainty in the exact location of positron emission. Positrons are emitted 

with a continuous spectrum of kinetic energy ranging from zero to a maximum 

energy (Table 2.1). Based on their initial kinetic energy and the electron density 

of the biological medium, positrons travel along a random trajectory so that the 

traveled path is much longer than the distance (Rβ) between  their point of 

emission and annihilation (Figure 2.2). Thus positron range is a distribution of 

values that is normally characterized by a full width at half-maximum (FWHM) 

value. The Rβ in 2.2 is the average distance traveled by the positron before 

annihilation. For most isotopes of interest, the FWHM range is 0.5 - 2.5 mm 

(Table 2.1).   

The annihilation photons are not always emitted at 180° from each other as 

positronium. This deviation is shown in Figure 2.2 as the angle of non-colinearity 

(θNC). The quoted value for the angle of non-colinearity is θNC = 0.25° 40, 42. The 

non-colinearity effect can be described as: 

( )0.5 tan 0.25 0.0022NCR D= × × = × D  2.3 

where D (in millimeters) is the distance between coincident detectors or the 

diameter of the detection system. For the Philips Allegro/Gemini scanner D is 

equal to 800 mm, therefore the contribution of non-colinearity to the effective 

spatial resolution of the scanner is 1.76 mm.  

Due to the finite dimensions of radiation detectors, the LOR is really a 

parallelepiped joining any two detector elements as a volume of response. For a 

point source at the centre of the volume of response, and a detector width much 

smaller than the system diameter, the detector size response (Rdet-size) is given by a 

FWHM equal to half the detector element width in either the transaxial or axial 
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directions40, 42. For the Philips Allegro/Gemini scanner, the transaxial crystal size 

of 4 mm gives a detector element contribution to the resolution uncertainty of 4/2 

= 2 mm.  

The block effect is the detector positioning accuracy resulting from the 

crystal identification algorithm42. For scanners based on detector elements 

organized in blocks, Rblock is equal to 2 mm.  

Thus, the theoretical limit for the obtainable spatial resolution of the Philips 

Allegro/Gemini PET system (for 18F) is equal to Rimage = 1.25 × (0.62 + 1.762 + 22 

+ 22)1/2 = 4.23 mm.  

2.6 Detector Configuration and Crystals used in PET 

The main criteria describing a good scintillator for radiation detection in PET are 

the stopping power for 511 keV photons, light yield, scintillation signal decay 

time, and intrinsic energy resolution. Other desirable qualities are low cost of 

manufacturing, radiation hardness (to minimize radiation induced changes in the 

properties of the crystal), ruggedness (ease of fabrication, less likely to break 

while in use), non-hygroscopic (eliminates need for hermetic seal) and durability 

of operational parameters. The characteristics of inorganic scintillators are 

discussed in section 2.6.1. Section 2.6.2 describes typical crystalline scintillators 

used for PET and an overview of detector configurations used in PET is presented 

in section 2.6.3.  

2.6.1 Characteristics of inorganic scintillators 

Coincidence detection of the energetic annihilation photons characteristic to PET 

places specific requirements on the scintillator materials used. An ideal 

scintillation crystal should have the following properties: high density, high 

atomic number (large photoelectric cross-section), short scintillation decay time 

(good coincidence timing), large light output per keV of photon energy (good 

energy resolution), narrow emission spectrum around 400 nm (good coupling to a 

PMT photocathode), and transparency to emission photons (low self-absorption). 



 

To maximize the sensitivity of a PET scanner, it is desirable to select a 

scintillation crystal with high stopping power for 511 keV photons in order to 

maximize the number of photons interacting and depositing energy in the crystal. 

The stopping power of the detector is characterized by its attenuation length 42,  

defined as the mean distance traveled by a photon before it interacts with the 

crystal: 

1attenuation length  =  μ  2.4 

where μ refers to the linear attenuation coefficient of the material (units: cm-1). 

The linear attenuation coefficient (μ) is a measure of the probability that a photon 

will interact within a unit length of the material. Thus, a scintillation crystal with 

large linear attenuation coefficient (short attenuation length) at 511 keV is needed 

for a PET scanner with high efficiency. The linear attenuation coefficient is 

directly proportional to the total atomic cross-section for photon interactions, 

which is given as the sum of the cross-sections of all individual interaction 

mechanisms of the photons with matter. The main interaction mechanisms for 

annihilation photons in the 511 keV range are Compton scattering and 

photoelectric absorption. In Compton scattering within a scintillation crystal, only 

a portion of the energy of the annihilation photon is transferred to the scattered 

electron and the rest is taken by the scattered photon of lower energy, resulting in 

secondary Compton and photoelectric events. On other hand, in photoelectric 

absorption, the entire energy is converted to the release of a photoelectron which 

excites higher energy states of the crystal lattice, thereby producing a single 

scintillation center. Due to position blurring associated with Compton scattering 

within the crystal, photoelectric absorption is the preferred pathway. Photoelectric 

absorption is commonly parameterized as the photoelectric absorption probability 

(PE) or photofraction. The photofraction is defined as the probability that a 

photon will undergo photoelectric absorption instead of Compton scattering: 
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where σph and σc are photoelectric absorption and Compton scattering cross-

sections.  The Compton scattering cross-section is a linear function of electron 

density and thus proportional to the density of the crystal ρ44, while the 

photoelectric absorption cross-section is related both to density (ρ) and the 

effective atomic number Zeff describing the attenuation properties of a mixture of 

atoms in a molecule42. The effective atomic number is defined as: 
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where mi is the number of atoms of element i in the molecule. The photoelectric 

cross section is proportional to effZ αρ , where α varies between 4 and 4.8 

depending on the energy of the interacting photon. Thus, to maximize the fraction 

of photons undergoing photoelectric absorption, a scintillation crystal with high 

density and high atomic number is required. 

The decay time of the excited state determines the timing characteristics of 

the scanner42. Longer decay times result in wider coincidence time windows. 

Wide coincidence time windows reduce the efficiency of the scanner by limiting 

performance at high count rates and increasing the number of random 

coincidences observed.  High count rates limit the ability of the scanner to process 

each pulse individually leading to pulse pile-up and decreased sensitivity, if 

crystals with long decay times are used. Additionally, the ideal scintillator should 

have a short rise time associated with the luminescence process. Short rise and 

decay times are desirable for optimal timing resolution, since both of these 

characteristics determine the initial scintillation photon emission rate I0
d. 

High light output (light yield)e of the scintillator helps to achieve fast timing 

resolution, good spatial resolution with a high encoding ratiof and good energy 

                                                 
d Short rise time and decay times imply high initial scintillation photon emission rate. 
e Number of emitted scintillation photons per MeV of energy absorbed. 
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resolution42. Eight to sixty light photons are emitted per keV of incident energy 

depending on the type of crystal used (Table 2.2). High light output results in 

good energy resolution, which is proportional to the square root of the number of 

scintillation photons. High light collection efficiency of the crystal and minimal 

optical self-absorption are imperative for the detection of a large fraction of 

emitted photons. The emission spectrum of the scintillator should overlap with the 

spectral sensitivity of the photodetector to ensure efficient conversion of captured 

light into a pulse. With the exception of the surface of the facing photodetector, 

the scintillator should be coated (or surrounded) with reflective material to 

prevent light from escaping the crystal. Furthermore, it is desirable for 

scintillation light output to be proportional to energy deposited in the crystal. 

Otherwise, the difference in scintillation light output due to full 511 keV energy 

absorption via a single photoelectric absorption event as compared to full energy 

absorption via multiple (lower energy) Compton interactions will lead to 

broadening of the full energy peak, thus degrading the energy resolution (ΔE/E) 

of a PET detector.  

Good energy resolution is required for effective rejection of events reaching 

the detector after undergoing Compton scattering inside the patient. This in turn 

affects the spatial resolution of the detector, since these events if not rejected are 

assigned to incorrect LORs which degrade spatial resolution. The energy 

resolution of a PET detector, besides the scintillation light output, also depends on 

the intrinsic energy resolution of the scintillator. Intrinsic energy resolution is 

affected by inhomogeneities arising in the crystal during the growth process as 

well as random variations in the production of light within it38, 39. 

 

 

 

 

 
f Encoding ratio is ratio of number of resolution elements, or crystals, to number of photodetectors. 
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Table 2.2: Characteristics of scintillator crystals used in PET (data from Lecomte 
et al.42) 

Typical inorganic scintillators  
Properties 

NaI BGO GSO LSO LYSO LGSO LuAP YAP LaBr3 

Peak emission 

wavelength (nm) 
410 480 440 420 420 415 365 350 360 

Index of refraction 1.85 2.15 1.85 1.82 1.81 1.8 1.94 1.95 1.9 

Light yield 

 (ph/keV) 
41 9 8 30 30 16 12 17 60 

τs,  scintillation decay 

time (ns) 
230 300 60 40 40 65 18 30 16 

I0 at 511 keV (ph/ns) 90 21 60 380 380 125 340 290 1,900 

ΔE/E (%)  

at 662 keV 
6 10 8 10 10 9 15 4.5 3 

Density ρ (g/cm3) 3.67 7.13 6.71 7.35 7.19 6.5 8.34 5.5 5.3 

 

Effective Z  

(Zeff ) 

50 73 58 65 64 59 65 33 46 

1/μ 

at 511 keV (mm) 
25.9 11.2 15 12.3 12.6 14.3 11 21.3 22.3 

PE (%)a 18 44 26 34 33 28 32 4.4 14 

PE2 (%)b 3.2 19 6.8 12 11 7.9 10 0.2 1.9 

Hygroscopic Yes No No No No No No No Yes 

Magnetic No No Yes No No Yes No No No 

NaI thallium doped sodium iodide - NaI(Tl), BGO bismuth germanate (Bi4Ge3O12), GSO cerium 
doped gadolinium orthosilicate - Gd2SiO5(Ce), LSO cerium doped lutetium orthosilicate - 
Lu2SiO5(Ce), LYSO cerium doped lutetium-yttrium oxyorthosilicate  -  Lu1.9Y0.1SiO5(Ce), LGSO 
cerium doped lutetium-gadolinium oxyorthosilicate -  Lu0.4Gd1.6SiO5(Ce), LuAP cerium doped 
lutetium-aluminum perovskite (LuAlO3:Ce), YAP cerium doped yttrium-aluminum perovskite - 
YAlO3(Ce), LaBr3 cerium doped lanthanum bromide LaBr3(Ce) 
a Photoelectric absorption probability (or photofraction) at 511 keV 
b Coincident photoelectric absorption probability 
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2.6.2 Typical crystalline scintillators for PET 

The characteristics of typical crystalline scintillators are presented in Table 2.2. 

Thallium doped sodium iodide, NaI(Tl), is a reference scintillator widely used in 

SPECT for its excellent light yield, energy resolution and relatively high Zeff. It 

has been used in PET scanners despite its lower stopping power for 511 keV 

photons and relatively slow decay time. Slow decay time and the necessity of 

using very thick crystals due to its low density limit attainable image resolution. 

Furthermore, this scintillator is neither rugged nor non-hygroscopicg making it 

vulnerable to moisture in the air as well as mechanical and thermal shocks, further 

reducing its value for PET applications. 

The high density and high effective atomic number Zeff of bismuth germanate 

(BGO) result in a very good stopping power for 511 keV gamma photons and a 

high photofraction PE. The photoelectric absorption cross section (σph ) of BGO 

at 511 keV is 1.6 times larger than for LSO and 5.8 times larger than that of 

NaI(Tl)44. Both BGO and NaI(Tl) are slow scintillators, i.e. both of these 

materials have relatively long decay constants. These longer decay constants 

result in increased dead time, thereby limiting the count rates at which the system 

may operate. Despite its low light yield and slow re-emission (visible light) of the 

energy absorbed in interactions with annihilation photons, BGO has been widely 

used in clinical PET scanners since the 1990’s due to its high detection 

efficiency45. 

BGO is being phased out in most PET applications and replaced by materials 

(Table 2.2) doped with cerium in the trivalent charge state (Ce3+)42. Similar in 

density and Zeff  to BGO, but with a higher detection efficiency, initial scintillation 

photon emission rate I0, photofraction PE, light yield, short decay time τs  (Table 

2.2) and a short rise time of 0.5 ns,  make LSO/LYSO arguably the most suitable 

scintillator for PET and TOF-PET imaging currently available42, 44. One 

disadvantage of LSO/LYSO is the non-proportionality of scintillation light output 

to deposited energy44 and the presence of the naturally radioactive lutetium 

 
g NaI(Tl) requires careful handling and needs to be hermetically sealed with aluminum foil. 



 

     22

isotope. Naturally occurring lutetium consists of two isotopes: stable 175Lu and 

radioactive 176Lu (β − decay) with 2.6 % abundance and a half-life of 4×1010 

years. Single events in a PET detector due to the presence of this isotope have 

negligible impact at clinical count rates. These events may, however, have a 

noticeable effect in low count rate measurements such as research related imaging 

with dedicated small animal PET and some clinical quality control procedures44, 

45. 

 Gadolinium orthosilicate (GSO) is another interesting scintillator with 

properties useful as a PET detector. The advantages of this material are higher 

energy resolution than BGO and LSO, similar scintillation decay time to LSO and 

LYSO and more uniform light output than LSO. However, it has slightly lower 

stopping power and light output than LSO. Another disadvantage of GSO, and to 

a lesser degree LGSO, is the presence of large amounts of gadolinium. The high 

magnetic susceptibility of gadolinium and its widespread use as an MR contrast 

agent make GSO/LGSO unsuitable for use in combination with MR 

instruments42. 

Some other examples of scintillator materials potentially attractive for PET 

applications are lutetium aluminum perovskite (LuAP), yttrium-aluminum 

perovskite (YAP) and lanthanum bromide (LaBr3). YAP has been used in small 

animal PET scanners44, 45. Despite the attractive properties of LuAP (see Table 

2.2), its usefulness is limited due to restrictions on the thickness (less than a 

centimeter) of the crystal, arising from the strong self-absorption of scintillation 

light44. Lanthanum bromide is another good candidate for PET with excellent 

light output, the best initial scintillation photon emission rate I0 of all known 

scintillators42, highest reported energy resolution (<3% @ 662 keV), and timing 

properties which are suitable for TOF-PET measurements. Both LuAP and LaBr3, 

like LSO, contain naturally occurring 176Lu. The introduction of these and other 

new scintillating materials is limited due to cost and availability44, 45. 
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2.6.3 Detector Configuration 

To facilitate signal readout the scintillation crystals must be coupled to 

photodetectors. The size of these crystals determines the intrinsic resolution of the 

PET system36. Presently, a large number of small crystals, with cross-sectional 

dimensions of 4-8 mm (e.g. cross-sections of 4×4, 4×6, 6×6 and 4×8 mm2) and 

depth of 20-30 mm, are used45. In general, the coupling of a scintillator to a 

photodetector is achieved in one of two ways: (1) large number of small crystal 

elements coupled onto photomultiplier tubes with larger areas; (2) one to one 

coupling, where a single crystal is paired with a single photo-detector.  

The first of these (multiple crystals coupled to a single PMT) is used in the 

detector readout scheme commonly referred to as the block-detector principle, 

where light sharing and centroid calculation is employed to identify in which 

crystal of a matrix a gamma ray was detected36, 39. For example, in a single block, 

a matrix of 8×8 crystal elements can be encoded on an array of 2×2 PMTs39, 45. 

Round or square PMTs of 1-5 cm cross-section are commonly used in PET 

scanners38. Each block detector is about 3 cm thick and grooved into an array of 

8×8 elements by making partial saw cuts through the crystal38. The cuts are made 

at various depths, with depth increasing from the centre to the edge of the block. 

These variations in cut depth result in linear sharing of light among PMTs. 

Thereby, scintillation light from a photon interaction in the corner element with 

deep cut will be detected by the PMT located under that element, whereas the 

light from the middle interaction will be shared by all PMTs38. The grooves 

between the individual elements are filled with an opaque reflective material 

preventing optical spillover between elements. Modern state of the art scanners 

employ three to four complete rings of blocks, with about one hundred blocks in 

each ring and a total axial field of view (FOV) of 15-22 cm45. This, depending on 

the design and purpose of the scanner, may result in as many as 12,000 to 18,000 

individual crystal elements used for a single PET system45. In another approach, a 

continuous light guide coupling small crystal elements to an array of 

photomultiplier tubes is used36, 39. For example, a flat panel (9 cm x 18 cm) 
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containing 4 mm × 6 mm crystal elements (600 crystal elements per panel) is 

coupled to an array of 15 PMTs. A full ring is assembled using about 28 panels, 

resulting in 18,000 individual crystal elements per system45. 

In one to one coupling a close-packed array of small discrete detectors is used 

as the large detector necessary for PET imaging46. Direct coupling to discrete 

crystals and independent parallel signal processing of every electronic channel 

allows avoiding decoding errors and the identification and potential processing (or 

rejecting) of multiple interaction events42. To improve the spatial resolution in one 

to one coupling, very small size photo-detectors must be used. This can be 

achieved either by using APDs or via the coupling of individual channels of a PS-

PMTh (position-sensitive photomultiplier tube) or MC-PMTi (multi-channel 

photomultiplier tube) to the small crystals46.  

The large number of crystals required, along with a complex assembly and 

manufacturing process, largely determine the cost of modern PET scanners45. 

2.7 2D and 3D mode of operation 

As discussed previously, it is common that modern scanners have at least three 

complete rings of crystals. Some systems employ movable shielding (septa) 

between the rows of detectors (crystal rings).  These septa are usually made of 

tungsten (high Z). Deployed septa limit the acceptance angle of LORs by 

allowing only events from certain rings to be in coincidence with each other. This 

is known as a two dimensional (2D) mode of operation. In 2D mode, the number 

of scattered and random events (see section 2.8) is reduced at the expense of a 

 
h In PS-PMT, a fine grid dynode structure allows restricting the spread of photoelectrons while in 

trajectory, thereby making possible a position-sensitive energy measurement within a single 

photomultiplier tube (PS-PMT) (R. Lecomte, "Novel detector technology for clinical PET," 

Eur.J.Nucl.Med.Mol.Imaging 36 Suppl 1, S69-85 (2009); P. E. Valk, Positron emission 

tomography: basic science and clinical practice, edited by P. E. Valk (Springer, London ; New 

York, 2003), pp. 884). 
i In MC-PMT technology, the use of a 2D array of glass capillary dynodes, each a few microns 

wide, has dramatically improved position sensitive energy measurement within PMTs ibid.. 
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reduced efficiency of the PET scanner to true coincidences (see section  2.8)45. In 

this mode of operation the sensitivity of the PET scanner to true coincidences can 

be improved by accepting coincidences not only in direct planes, but also in 

adjacent cross-planes. Direct planes are those planes formed from LORs between 

detectors within each individual detector ring, while cross-planes are the average 

of coincidences recorded between detectors in two adjacent detector rings and are 

the planes falling halfway between direct planes. Acquiring data in this manner 

improves axial sampling because the events collected by cross planes originate 

primarily from volumes between the direct planes. Cross-planes together with 

direct planes produce a dataset consisting of co-planar sets of LORs normal to the 

axis of the PET scanner. Thus, a system with p detector rings will generate a 

volume of images with 2p-1 planes or slices. For example, a PET camera 

consisting of 23 rings of detectors spanning the entire axial FOV will produce an 

image volume consisting of 45 planes or slices. 

In a modern scanner it is common for septa to be almost always retracted or 

even absent altogether. This mode of operation is referred to as three dimensional 

(3D mode). In 3D mode all coincidences detected within the FOV of the scanner 

may be accepted. This results in approximately fivefold increase in sensitivity47. 

Due to the increased sensitivity to true coincidences in 3D mode, the same dose to 

the patient and the same imaging time (as in 2D mode) leads to a substantial 

improvement in image quality as compared to 2D mode. Also, the increase in 

acquisition rates for 3D mode allows decreased imaging time (dynamic studies, 

see section  2.9) for the same dose and the same statistics, while the same imaging 

time and same statistics leads to reduced dose (serial studies, see section 2.9) as 

compared to 2D mode. The greater sensitivity to true coincidences is achieved at 

the expense of increased sensitivity to scattered and random coincidences (see 

section 2.8).  The scatter fraction (ratio of scatter to total) of events detected in a 

typical thorax PET study in 2D mode is estimated to be about 10 to 20 % and 

about 40 to 60 % in 3D mode47.  
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2.8 PET System Response Components and Necessary 
Corrections 

The events detected in a PET scanner can be one of four types: true, random, 

scattered and multiple. Typically, 106 to 109 annihilation events are detected in a 

typical PET scan48. Of these, only true events carry useful spatial information 

regarding the activity distribution within the patient. Both random and scattered 

coincidences add a uniform background spanning the imaged volume, hence 

contributing to image noise and reducing image contrast. Therefore, to minimize 

the effect of unwanted events and other mechanisms adversely affecting image 

quality, a number of corrections have to be applied. These corrections include 

correction for differential detector efficiencies (normalization), random 

coincidence correction, scatter correction, dead-time correction and attenuation 

correction.  

When a single event with energy higher than the LLD threshold is registered 

by a detector in coincidence with a valid event in another detector, a coincident 

event is recorded. The width of the coincidence timing window (CTW) depends 

on the light decay characteristics of the crystal used and the design of the 

electronics, while the lower level discriminator (LLD) is set based on the type of 

crystal and a tradeoff between sensitivity and spatial resolution (typically 350 keV 

for BGO and 420 keV for LSO/LYSO)45.  

Multiple coincidences occur when more than two valid events are detected 

within the CTW. These types of events are more likely to be observed at high 

count rates. The ambiguity in assigning a LOR corresponding to a true 

coincidence correctly results in discarding multiple coincidences under normal 

circumstances.  However, sometimes it may be beneficial to randomly select one 

of several possible LORs rather than discarding the event altogether48. 

Random coincidences are detected when two independent photons not arising 

from the same annihilation event are recorded in coincidence. Such a situation is 

possible due to the finite time resolution of the detectors. A relationship between 

the random coincidence rate R12, and the single events rates incident upon the 

relevant detectors R1 and R2, respectively can be expressed as: 



 

12 1 22R R Rτ=  2.7 

where τ is the width of the logic pulse produced when an annihilation photon is 

absorbed in the detector, otherwise known as the coincidence timing window 

(CTW). Random coincidences, being relatively uniformly distributed across the 

FOV, introduce noise into the image causing blurriness and distorted intensity49. 

Random coincidences for each detector pair are usually subtracted by the delayed 

coincidence method, where the random coincidence rate is estimated during the 

delayed window49. Alternatively, the random coincidence rate in each detector 

pair can be estimated from the singles rate for each49. 

A scattered coincidence is one in which one or both of the detected 

annihilation photons changed their original flight direction due to Compton 

interaction within or outside the FOV. If the energy of the scattered photon is 

greater than the LLD threshold, its detection in coincidence with an unscattered 

photon will produce a mispositioned LOR. The determining factors for the 

fraction of scattered events recorded are the size and attenuation characteristics of 

the object as well as the geometry and energy resolution of the scanner48. If not 

corrected, these scattered events produce a low spatial frequency background that 

reduces contrast, resulting in a reduced signal to background ratio48. In 2D mode, 

scatter correction is applied using a convolution subtraction method (de-

convolution algorithm)49, where the scatter contribution is reduced via an integral 

transformation of the projections. Due to the increased sensitivity to scattered 

coincidences, scatter correction in 3D mode is far more complicated than in 2D 

mode. A large number of scatter subtraction methods has been explored: 

convolution subtraction method, Monte-Carlo modeling methods, multiple energy 

window method, Gaussian fit methods, model-based scatter correction methods 

and reconstruction-based methods49. 

The majority of single events (about 90% or more) detected by a PET scanner 

are rejected, because the partner photon has not been registered for various 

reasons48. For example, the second annihilation photon did not deposit sufficient 

energy in the detector to be recorded or did not interact in crystal at all. Another 
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reason could be the solid angle coverage around the imaged object by the PET 

scanner. This type of event contributes to the number of random and multiple 

coincidences recorded and is a determining factor in problems related to detector 

dead time48. 

Correction for photon attenuation is by far the largest factor affecting 

measured counts in PET acquisition. The attenuation of 511 keV annihilation 

photons within tissue is mostly due to Compton scattering and to a much lesser 

degree (almost negligibly) photoelectric absorption. The amount of attenuation 

depends on the electron density of the tissue in question and the total distance 

traveled by each annihilation photon. To quantify this, if I0 (counts per second or 

cps) photons are emitted, then the amount by which the source intensity is 

reduced is described by: 

( ) ( )0 expi iI d I dμ= −  2.8 

where di is the distance traveled by the annihilation photon prior to interaction in 

the ith detector and μ (cm-1) is the linear attenuation coefficient. The linear 

attenuation coefficient is a function of the physical properties of the attenuating 

tissue (atomic number and density) and the energy of the annihilation photons. It 

is defined as the product of interaction cross section and number of targets per 

unit volume. For 511 keV photons in water, μ water(@ 511 keV) = 0.09695 cm-1, 

which gives a half-depth, the depth at which 1/2 the initial photons have been 

absorbed, of 7.15 cm. 

 Assuming an organ or tissue of uniform density, the probability of detecting 

both annihilation photons in coincidence is given by:  

( ) ( ) [ ]( ) ( )1 2 1 2exp exp exp expP d d d d Dμ μ μ= − ⋅ − = − + = −μ  2.9 

where μ is the linear attenuation coefficient, exp(-μd1) is the probability of 

detecting photon 1, exp(-μd2) is the probability of detecting photon 2, and D is the 

sum of tissue thicknesses (d1 and d2) traversed. This probability represents the 

attenuation correction factor (ACF) for a given tissue and is independent of the 

depth of the annihilation event in the patient and is the same as for an external 
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source located along the LOR. Thus, a theoretical calculation of ACFs may be 

done based on equation (2.9).  This method (also referred to as Chang’s method) 

assumes prior knowledge of μ, the shape of the organs involved and uniform 

attenuation (for example in the head)38. It is not well suited for ACF calculations 

in situations where imaging of the thorax and the abdomen is involved, due to the 

non-uniform attenuation resulting from the prevalence of various tissue 

structures38. Alternatively, a thin rod source is used to perform a transmission 

scan which allows the measurement of regional attenuation correction factors36. 

This source is attached to the PET scanner gantry and contains a relatively long-

lived positron emitter. The ACFs are calculated for each LOR based on a blank 

scan without the patient in the scanner and a transmission scan with the patient 

positioned in the scanner as: 

0
exp ,     ,
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where ACFij refers to the attenuation correction factor for detector pairs i and j 

(i.e., LOR), Bij and Rij refer to the counts measured by detector pairs i and j in the 

blank and transmission scans respectively, μk and Dk are the linear attenuation 

coefficient and thickness of the kth organ or tissue, and n is the number of organs 

or tissues that the photon travels through. Some sort of noise suppression, such as 

a space-invariant filter50, is applied to the blank and transmission data sets prior to 

ACF calculations to alleviate the effects of random coincidence subtraction 

(negative and zero values) and other factors contributing to image noise discussed 

previously.  In 3D mode, attenuation correction is more complicated than in 2D 

mode due to an increased scatter fraction and excessively long dead time 

experienced by detectors closer to the source. This can be dealt with by using 2D 

transmission data for correction of 3D emission data. Another approach is to use a 

much weaker point source for performing transmission scans 49. Alternatively, a 

well collimated single photon emitter producing photons with energies close to 

511 keV is used. A common radionuclide used for the transmission source is 68Ge, 

which decays with a half-life of 287 days to the positron emitting isotope 68Ga. 

Due to the relatively short half-life of 68Ge, 137Cs (single photon emitter @ 662 
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keV) is becoming the transmission source of choice in standalone PET systems 

because of its long half-life of 30 years. The calculation of ACFs is much 

simplified in PET/CT scanners, where CT transmission scans, in addition to their 

use in fusion of PET and CT images, are used to obtain ACFs at 511 keV. 

Because CT transmission scans are normally acquired at about 70 keV and ACFs 

depend on photon energy, the data derived must be scaled to the 511 keV photons 

of the PET scanner. CT values represented in Hounsfield units are mapped to the 

ACFs by means of methods such as bilinear mapping41. The advantages of the CT 

transmission method over the transmission method using radioactive sources are 

total duration of the scan and essentially noiseless attenuation correction factors38. 

The duration of a typical CT scan is a minute at most, while a 68Ge transmission 

scan can take as much as 20-40 min depending on the activity level of the 

source38. 

Dead-time is defined as the time interval during which a detector, having just 

responded to one event, is unable to respond to another. It is related to the signal 

integration time that depends on electronics and scintillation decay time38. It can 

seriously affect measured data at high count rates (especially transmission data 

used for ACF corrections), producing artifacts (structured noise) and contributing 

to noise in reconstructed images49. One way to reduce dead-time is to use 

detectors with shorter scintillation decay time, high-speed electronics and pulse 

pile-up rejection circuits38. Practically, an experimental dead-time model is used 

to produce dead-time correction factors from observed count rates as a function 

of increasing activity concentrations. A dead time curve is calculated from a 

series of measurements done on a uniform phantom, starting with high radiotracer 

concentration down to low concentration until dead-time losses are negligible49. 

Due to differences in the physical properties of the individual detectors, as 

well as detector efficiencies, normalization is performed to equalize or make 

uniform (as nearly as possible) responses of the detectors to the number of 

incident radiation events in the FOV. The detector efficiency correction is 

necessary as crystals positioned in the center of the detector block are more 

efficient than those at the edge of the block49. Correction factors are obtained 



 

using an external positron source. A lengthy (~12h) scan using an external 

uniform source is acquired such that all LORs are exposed to approximately the 

same coincident photon flux and the correction factors are calculated as38, 41: 
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where  refers to the normalization correction factor for detector pairs i and j 

(i.e., LOR), Nij is the number of counts in the LOR and m is  the number of LORs. 

It should be noted that same-ring coincident data and adjacent-ring coincidence 

data must be normalized separately in 2D mode as the two geometries have 

different detection efficiencies. 

norm
ijF

The total number of prompt coincidence events, Pij, measured by detector 

pairs i and j can be expressed as: 
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where  refers to the normalization correction factor for detector pairs i and j 

(i.e., LOR); ACFij is the attenuation correction factor; Tij, Sij and Rij refer to the 

true, scattered and random coincidences measured by detector pairs i and j 

respectively. 

norm
ijF

2.9 Scan Modes (static or dynamic) 

There are two scan modes in PET: static and dynamic. These should not be 

confused with the 2D and 3D modes of operation discussed in section 2.7. In 

static imaging (nowadays 3D PET), a static image is acquired over the total length 

of the scan, whereas in dynamic imaging (4D PET), data is collected in multiple 

frames, each of a predetermined duration. In dynamic imaging, a gated method 

can be employed to reduce artifacts induced by respiratory motion. Whereas static 

scans are useful to estimate gross tracer uptake, dynamic scans reveal the time 

course of activity distribution in tissue38. Depending on the scan mode used and 

the reconstruction algorithm employed, the annihilation events in PET are 

     31



 

     32

                                                

generally recorded either in list or histogram mode.  In list mode, each 

coincidence event meeting both energy and timing criteria is individually written 

to a file by sorting hardware, with information about the two locations at which 

the annihilation photons interacted and the time at which the event occurred48. In 

histogram mode, a memory location assigned to each possible LOR is 

incremented by 1 for every valid event detected in that LOR, thus providing the 

integrated number of events detected in each LOR48. With the exception of short 

duration acquisitions on scanners with a very large numbers of LORs, where the 

average number of events per LOR is less than one, the histogram mode is often 

the most efficient way of storing data. In histogram mode, the time interval over 

which the events are integrated has to be specified prior to data acquisition, 

making this mode suitable for static scans. With the introduction of faster 

computers, the list mode acquisition is becoming more commonly used in modern 

scanners. Also, list mode acquisition is preferred in dynamic studies since the data 

can be sorted into time bins (frames) after the completion of the study, providing 

variable temporal resolution38, 48.  

2.10 Image Reconstruction 

As previously mentioned, in PET imaging, recorded events represent the 

summation of activity within the tissue along a LOR. The data is stored in 

sinogramsj, where each LOR (and hence, detector pair) corresponds to a 

particular pixel (or element) in the sinogram, characterized by two orthogonal 

coordinates38. In other words, each LOR is defined by its distance (r) from the 

center of the gantry and the angle of orientation (φ) of the LOR (i.e., the angle 

between r and the vertical axis of the FOV)38.  In order to reconstruct a volumetric 

 
j Typically, for detector ring with N detectors, each detector can be in coincidence with up to N/2 

detectors on the opposite side, resulting in N/2 fan-beam projections for each detector. These 

projections form an angle of acceptance for each detector in transaxial plane, while these angles 

for all detectors form the transaxial FOV.  A sinogram is essentially a matrix of fan-beam 

projections defined by the angle of acceptance (G. B. Saha, Basics of PET imaging: physics, 

chemistry, and regulations, edited by G. B. Saha (Springer, New York, NY, 2005), pp. 206). 
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image representing the distribution of activity, large number LORs are collected 

and, after all corrections (scatter, randoms, attenuation, etc.) have been applied to 

the data, are processed according to an image reconstruction algorithm. A wide 

variety of PET reconstruction algorithms exists, owing to the absence of a 

uniquely optimal technique. These algorithms can be broadly divided into two 

categories: analytical approaches (based on the Fourier transform, a linear 

operations) and iterative methods (sometimes called Non-Fourier-based or non-

linear operations)49. The most common algorithm used for data acquired in 2D 

mode has been filtered back-projection (FBP) from fan-beam projections. 3D 

reconstruction algorithms are much more complex and a wide variety of cone-

beam (3D FBP) and iterative techniques have been investigated. 3D 

reconstruction techniques are very computing intensive (both in terms of time and 

memory required) due to the enormous number of LORs acquired. Often it is 

more advantageous to reduce the redundant 3D data set to synthetic 2D data 

which can be processed by analytic or iterative 2D algorithms. To this end, 

different hybrid algorithms combining fast Fourier rebinning (FORE, FOREX, 

FORE-J) with iterative 2D algorithms have been introduced39. 3D Re-Projection 

(3D-RP)49, 51 is another approach based on restoration of the missing elements of 

projections. This is done through numerical forward projection from an initial 

estimate of an image formed by reconstructing (2D FBP) only direct planes. 

The back-projection technique, a workhorse of tomography, has been around 

since the early 1960s and involves direct re-projection of multiple projections of 

2D activity distribution to a common image plane49. A variation of this method 

involving filtering of the observed projections prior to back-projection has been 

proposed and implemented by Chesler in 1972, in order to reduce blurriness 

characteristic to images reconstructed using the original algorithm49. A simple 

reconstruction procedure using FBP of data acquired in 2D mode involves 

convolution of the Fourier transformed (1D transform) angular projection data 

with a ramp filter in the frequency domain prior to back-projection to a common 

image plane using the inverse Fourier transform. Use of the ramp filter is 

necessary to reduce the structured noise present in PET data. However, while 
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reducing structured noise during the back-projection process, the ramp filter also 

has the property of amplifying high-frequency components. Since statistical noise 

characteristic to PET data manifests itself in Fourier space as high-frequency 

components, the process of FBP amplifies statistical image noise. For this reason, 

modifications of the ramp filter which discard frequencies higher than a certain 

limit are normally used. Perhaps the most common of these is the Hann filter (also 

known as an apodizing or tapering filter). Such low-pass filters are equivalent to 

some form of smoothing in image space. The traditional Hann window cutoff is at 

the Nyquist frequency (half the sampling rate). 

Of all iterative algorithms introduced between 1970 – 1980s, the most widely 

used in PET are the ML-EM (Maximum-Likelihood Expectation Maximization) 

algorithm and its accelerated version OSEM (Ordered Subset Expectation 

Maximization)39, 49.  With its roots in astronomy (Richardson-Lucy algorithm), 

ML-EM was first introduced by Dempster and Laird in 1977 and first applied in 

PET by Shepp and Vardi and Lange and Carson in the early 1980s39. Iterative 

algorithms offer less streak artifacts and lower noise levels compared to FBP. 

However, up until 1994 when the OSEM algorithm was introduced, iterative 

techniques were not sufficiently fast for clinical applications and FBP was the 

method of choice in most commercial systems. Since then, the OSEM and its 

variants have become very popular. The basic idea behind iterative reconstruction 

approaches is maximization or minimization of a cost (also known as target or 

objective function) function depending on the algorithm used. In the first step an 

initial guess is made of the image intensity distribution (often a blank or uniform 

grayscale image). The next step is to forward-project it into the projection 

domain, i.e. sum up all the activity in pixels that are intersected by the line of 

response that corresponds to the measured sinogram element48. Once this process 

is complete, the projections obtained from the initial image (guess) are compared 

with the measured projections. Based on the differences between observed and 

measured projections, correction factors for all projections are generated. The 

initial guess is then adjusted by multiplying it with these correction factors back-

projected into the spatial domain (image domain) and dividing it by “weighting 
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terms” based on the acquisition system model, thus generating a new corrected 

image49. The whole process is repeated iteratively using the newly corrected 

image as the initial image until a certain likelihood criterion is reached48, 49. 

Iterative algorithms differ by their cost function, update (or search) function, and 

the model describing the acquisition system (including noise)1. The cost function 

gives a measure of the difference (or similarity) between the image estimate and 

actual measured data, while the update function is an algorithm that determines 

the next estimate of the image. An additional advantage of iterative algorithms 

over FBP is the possibility to include prior information about the object scanned 

into the reconstruction process. Examples of such prior information include level 

of smoothness and non-negativity constraints. Both ML-EM and OSEM 

approaches maximize Poisson likelihood. The main disadvantage of ML-EM is its 

speed (low convergence rate) and uncertainty in determining the number of 

iterations required for obtaining acceptable results. An excessive number of 

iterations in ML-EM leads to image quality degradation due to image noise 

amplification49. In order to overcome long processing times typical of ML-EM, in 

the OSEM algorithm projections are grouped into a number of subsets in which 

projections are uniformly distributed. A standard EM algorithm is applied to one 

of the subsets and the result becomes the starting value to be used with the next 

subset. In a single OSEM iteration this process is repeated until each subset has 

been used once1. The cost function is updated as many times as the number of 

subsets, proportionally accelerating convergence. A popular variation of OSEM is 

Attenuation-Weighted OSEM (AW-OSEM)49. Two other examples of iterative 

algorithms applied to PET are Rescaled Block-Iterative ML-EM and Row-Action 

Maximum-Likelihood Algorithm (RAMLA)39, 49. In block-iterative (or raw-

action) algorithms only a subset of the data is used per iteration. RAMLA is a 

special case of OSEM requiring sequences of orthogonal projections. This leads 

to faster convergence than OSEM itself38. These algorithms are akin to OSEM, 

but guarantee an asymptotic convergence of Poisson likelihood estimation 

(maximization) under certain conditions39. Practically all commercially available 

scanners allow for both FPB and iterative reconstructions, both with and without 



 

attenuation correction. Iterative techniques such as the OS-EM and RAMLA (2D 

or 3D) algorithms have almost completely replaced FPB in clinical applications. 

2.11 Absolute Quantification 

Absolute quantification (AQ) is used to quantify patient images in order to 

distinguish benign tissue from malignant and (or) to assess response to therapy. 

AQ is a term referring to the process of expressing the activity distribution in a 

scanned object in terms of activity per unit volume (activity concentration). This 

is achieved by applying a calibration factor to voxels of a reconstructed 

tomographic image that maps counts per second (cps) into activity per unit 

volume (mCi/cc or MBq/cc). The calibration factor is derived from the volume 

image obtained by scanning a uniform cylindrical water phantom of known 

volume, injected with a known amount of activity41 (i.e. known activity 

concentration). From reconstructed images, the average count density, C (counts 

per voxel per second), within the central portion of the phantom image is 

determined and a calibration factor (CF) relating image counts and known activity 

concentration, A (μCi/cc), is deduced according to48: 

( )
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( )sec
CF

C counts voxel
=

A Ci cc BFμ ×
 2.13 

where BF is the branching fraction. BF represents the fraction of decays that 

occur via positron emission, since the radionuclides used in PET do not 

necessarily decay 100% by positron emission (see Table 6.2). 

The uptake of a radioactive tracer in a given volume of interest (VOI or in the 

2D case ROI – region of interest) can be normalized by correcting for differences 

in total injected dose and body weight. The normalized uptake, in terms of 

activity concentration, is a semiquantitative determination of tissue activity. It is 

called the standardized uptake value (SUV) and is defined as: 
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Tissue Activity Concentration Ci cc
SUV g cc

Total Injected Dose Ci Body Weight g
μ

μ
=  2.14 

Under some circumstances it is more convenient to express SUV as a unitless 

parameter after dividing it by the density of tissue which is often assumed to be ~ 

1 g/cc (or g/cm3)52, 53. A unitless SUV can be expressed in terms of annihilation 

event counts rather than activity concentration. 

One of the advantages of PET over some other imaging modalities is that it 

can accurately determine the activity concentration of radiotracer within a 

volume, allowing (for example) the classification of a lesion in terms of its 

metabolic rate38. FDG (18F-fluoro-deoxy-glucose) has been shown to be very 

effective in characterizing tumors by measuring glucose metabolism. Oncology 

scans using FDG make up over 90% of all PET scans in current practice. A 

typical dose of FDG used in an oncological scan is 200-400 MBq for an adult 

human. This tracer is glucose analog and follows a similar metabolic pathway. 

Because the oxygen atom is replaced by 18F to generate FDG, it is not 

metabolized to CO2 and water and remains trapped within tissue. The result of 

this is intense radiolabeling of tissues with high glucose uptake, such as the brain, 

the liver, and most cancers.  If a static sequence of images has been acquired, 

images show FDG-6-PO4 within tissue and FDG in the tissue and plasma. There 

are a number of factors affecting the amount of activity (SUV) measured using 

static imaging: blood glucose, partial volume effect, body composition and 

habitus (e.g., fat has lower uptake), and the time elapsed between tracer injection 

and the start of the PET scan (uptake period)41. These factors lead to tracer 

distribution (SUV) by static imaging being regarded as a semiquantitative 

measure41. In a dynamic scan, the ROIs or VOI defined by the operator can be 

applied to the same region (or volume) on all images to generate a time activity 

curve (TAC). TACs express the activity concentration in a specific region of the 

body over time48. The TACs can then be used in the framework of a 

compartmental model1, 39 to determine biologically meaningful parameters 

(metabolic rate for instance) and to construct parametric images48. The metabolic 

rate obtained from kinetic modeling is also referred to as a semiquantitative 
     37
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measure41. The most significant advantages of dynamic imaging over static 

imaging are the ability to quantify the actual glucose metabolism and the 

avoidance of the aforementioned factors affecting the activity distribution 

measured via static scans41. 
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3. Properties of Noise in PET Images Reconstructed with FBP 
and RAMLA algorithmsk 

One of the confounding factors in the interpretation of PET images is image 

noise.  Clinical PET images typically display increased noise levels compared to 

other modalities such as CT and MRI. Effective image noise reduction is greatly 

dependent on an accurate knowledge of the parameters which characterize this 

noise.  Unfortunately, detailed properties of the noise affecting clinical PET 

images are not often well characterized. This chapter examines the statistical 

properties of noise in PET images acquired with a GEMINI PET/CT scanner 

(Philips Medical Systems Inc.).  

3.1 Sources of Noise in PET  

 

In this section we summarize the most important sources of error manifesting as 

noise in reconstructed PET images that cause them to differ from the actual 

radiotracer distribution within the body. Noise observed in PET images leads to 

loss of spatial and temporal resolution; lower acquired signal level; missing 

features, which are present in the body but do not appear in the images; and false 

artifacts and textures, which appear as features in the image, but are not actually 

present in the body54. 

The preceding chapter regarding positron physics and PET technology has 

identified several phenomena that degrade the reconstructed image quality, 

namely:  

Poisson counting noise, radioactive decay obeys Poisson statistics 

Positron range, leading to loss of resolution 

 
k A version of this chapter has been published: A. Teymurazyan, T. Riauka, H. -S Jans, et al., 

"Properties of Noise in Positron Emission Tomography Images Reconstructed with Filtered-

Backprojection and Row-Action Maximum Likelihood Algorithm," J.Digital Imaging, 1-12 

(2012).  
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Non-colinearity effect (annihilation photons are not always 
emitted at 180° from each other), the assumption of colinearity in 
the reconstruction algorithms leading to loss of resolution 

Radial blurring due to detector dimensions (use of thin, long 
detector crystals), leading to loss of resolution 

Acquisition Mode (3D or 2D), higher statistical noise in 3D mode 

Blank, Transmission and Emission scan, contributing to 
statistical noise 

Scan duration, longer scan times lead to lower relative noise 

Out of field counts, contributing to false coincidences 

Multiple coincidences, leading to counts at erroneous positions 

Random coincidences, leading to counts at erroneous positions 

Scattered coincidences, leading to counts at erroneous positions 

Photon attenuation, leading to an underestimation of activity 
inside the body 

Detector dead time, leading to loss of counts 

Normalization (detector efficiency correction), despite the best 
efforts, differences in detector efficiencies may contribute to 
structured noise in the acquired data 

In addition to these, patient and organ motion during scan time and image 

reconstruction artifacts can also introduce additional noise into reconstructed PET 

images. The magnitude of the noise in reconstructed PET images is affected by: 

the PET scanner used; acquisition mode (2D or 3D) used; scan duration; amount 

of administered tracer; geometry of tracer distribution; applied correction 

methods; radioactive decay; and reconstruction algorithm (analytical or 

iterative)49.  

The statistical properties of the noise in PET images are discussed in the 

following sections. 
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3.2 Statistical Properties of Noise in PET Imaging  

Positron emission itself is well characterized by a Poisson distribution55-57. The 

scanner’s detection system and other electronic components then add their own 

characteristic noise to this initial Poisson distribution.  The resulting noise 

distribution is further altered by corrections processing and image 

reconstruction58, 59.  Some reconstruction schemes, such as the EM-ML60, are 

explicitly based on the assumption of Poisson statistics in the acquired sinograms. 

This assumption, given all the pre-processing steps prior to reconstruction, may 

prove to be invalid. Filtered-Backprojection61, on the other hand, is predicated on 

the analytic inversion of noise free projection data. The degree to which the 

Poisson characteristics of PET noise are preserved is highly dependent on the 

manner in which the raw data is processed62.  Noise propagation is affected by 

machine type, acquisition mode, scan time, amount and distribution of tracer, 

applied corrections, and the reconstruction algorithm1, 49, 54. For commercial 

systems, the details of clinical image production are usually held proprietary by 

the vendor.  This effective black box nature of the process necessitates an 

empirical evaluation in order to characterize the noise present in images presented 

to the user.  

Post-processing may be employed to reduce the level of noise present in 

clinical PET images.  The effectiveness of post-processing is greatly aided by a 

proper quantification of the characteristics of the noise present.  An assumption 

common to many post-processing approaches is that overall the noise may be 

characterized as Gaussian63, 64. Alternatively, the noise in clinical PET images has 

been described using a Poisson + Gaussian model65, where the presence of both, 

correlated and uncorrelated components, is assumed. Other studies66-69 are aimed 

specifically at the reduction of Poisson noise contained in medical (including 

PET) images, exploiting its statistical properties.  It is not clear if this approach is 

strictly valid in the case of PET images70. 

In this chapter the statistical properties of PET images acquired according to 

clinical protocol and reconstructed with Filtered-Backprojection61 and Row-

Action Maximum Likelihood Algorithm71 are examined. Filtered-Backprojection 
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(FBP) has significant limitations compared to more general maximum likelihood 

(ML) based iterative reconstruction methods. FBP does not take into account 

counting statistics, assumes shift invariance, treats LORs (lines of response) as 

close approximations to line integrals, and is often limited to approximate 

empirical scattering corrections. Iterative reconstruction methods, in contrast, do 

not rely on assumptions of well-behaved LORs and shift invariance, and uniform 

sampling is not necessary. Factors like detector resolution, scattering, attenuation, 

positron range, photon non-colinearity can be explicitly incorporated into the 

probabilistic calculation of positron annihilation detection along a particular 

LOR72. Several groups73-75 have performed theoretical analyses of the noise 

properties of images reconstructed with both methods. FBP tends to spread noise 

variance from high count regions to low count regions, producing increased noise 

correlation with decreasing FBP filter cutoff frequency. This results in a more 

uniform noise variance54. RAMLA, which was proposed as a faster alternative to 

the EM algorithm76 and can be considered as a special case of the Ordered 

Subsets Expectation Maximization algorithm75, 77, yields significantly decreased 

noise variance in low count regions compared to FBP. 

3.3 Experimental Evaluation of the Statistical Characteristics of 
Noise in Reconstructed PET Images  

3.3.1 Methods and Materials 

Statistical properties of noise were evaluated for PET images acquired with a 

Philips Gemini GS PET/CT scanner (produced in 2003). It is an integrated system 

that consists of an Mx8000 Dual-Exp CT system for CT imaging and an Allegro 

PET system for PET imaging. In addition to its CT based attenuation correction 

capability, this first generation Gemini system inherits the transmission scan 

mechanism of the Philips Allegro system that uses a singles transmission source 

(Cs-137). The PET scanner is comprised of 28 flat modules of a 22×29 (tangential 

and axial directions) array of GSO crystals, which form 29 rings with 616 crystals 

per ring. The dimensions of the crystals are 4×6×20 mm3 in the tangential, axial, 
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and radial directions, respectively. Data acquisition was performed in list mode. 

The data acquired from the scanner are binned into a sinogram with 161 angles 

and 295 rays for every ring combination (total of 292 = 841 combinations). 

Interpolation is performed to rebin these data into a 256×192 (rays × angles) 

sinogram and 7 tilts (out-of-plane angle). The whole-body field of view (FOV) for 

Gemini PET is 576 mm transaxially and 183 mm axially. Table 3.1 lists the 

characteristics of Gemini PET scanner. The noise measurements were performed 

with a cylindrical phantom (long axis coincident with the reconstruction centre 

and orthogonal to the image plane), which was 20 cm in diameter and 35 cm in 

length. 

 

Table 3.1: Philips Gemini GS PET/CT characteristics (produced in 2003) 

Parameter Specifications 

Number of blocks 28 

Number of Detector rings 29 

Maximum ring difference 28 

Number of crystals 17864 GSO 

Number of PMT's 420 

PMT diameter 39 mm 

Crystal dimensions 4 (transaxial)×6 (axial)×20 (radial) mm3 

Detector Ring diameter 800 mm 

Patient portal diameter 565 mm 

Axial FOV 183 mm 

Number of Image Planes 90 or 45 (brain and whole body, respectively) 

Plane Spacing 2 or 4 mm (brain and whole body, respectively) 

Transmission source Rotating 740 MBq 137Cs point source 

Reconstruction Algorithms FORE3D+ FBP 

 RAMLA3D 
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 The phantom was injected with 87 MBq of 11C (T1/2 = 20 min) and well mixed to 

provide a uniform activity distribution. The phantom was scanned in a single bed 

position. A dynamic sequence of 20 frames was acquired for 100 min according 

to the following schedule: 20×300 s. For each frame the reconstructed image size 

was 144×144 pixels in 45 slices (144×144×45), with a pixel size of 4×4 mm2 and 

slice thickness of 4 mm. Statistical properties of noise were evaluated for PET 

images reconstructed according to current clinical settings used at the Cross 

Cancer Institute.  Routine clinical image reconstruction is performed with a fast, 

fully 3D iterative algorithm (3D-RAMLA) with two iterations, relaxation 

parameter of 0.006 and a “blob” radius of 2.5 pixels. For comparison, statistical 

properties of noise were also evaluated for images reconstructed with Fourier 

rebinning (FORE) followed by a Hanning filtered-back-projection (FBP) 

algorithm. A default value of 3.00 for the Hanning smoothing parameter, supplied 

by the scanner manufacturer, was used in reconstruction. PET scans were 

normalized to correct for the variation in detector efficiencies and distortion. 

Emission data were corrected for randoms, scatter, attenuation and decay. The 

randoms correction was accomplished via direct online randoms subtraction from 

the prompt sinograms (direct randoms estimation using a delayed coincidence 

window technique, no smoothing of randoms). The decay correction was 

performed to the beginning of the scan. For RAMLA reconstruction the 

attenuation map was obtained from the CT scan and scatter correction was 

accomplished by a single-scatter simulation (SSS) technique (the scatter sinogram 

is subtracted from the non-scatter corrected sinogram). In the Gemini system, CT-

based three-dimensional attenuation correction (CT-3DAC) is incorporated into 

the three-dimensional row-action maximum likelihood algorithm (3D-RAMLA) 

for PET image reconstruction. For data reconstructed with FBP the scatter 

correction was accomplished by a uniform background subtraction (UNI-

BGSUB) technique, while attenuation correction was performed by the 

reconstruction-reprojection method based on the reconstruction and forward 

projection of transmission images. 3D-RAMLA and Hanning FBP reconstructions 

were performed using default (scanner manufacturer supplied) reconstruction 
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tools. The software used in the analysis of the reconstructed image data was 

developed in MATLAB 7.4.0, on a PC.  

The noise probability density function (PDF) may be characterized by 

examining the histogram of a region of interest (ROI) selected in a uniform 

image78. A circular ROI covering the inner 79% (1542 pixels, where each pixel is 

4 by 4 mm2) of the phantom’s cross section was selected from each slice.  The 

outer edge of the ROI was kept inside the full active extent of the phantom in 

order to avoid confounding partial volume effects which occur in the immediate 

vicinity of the phantom wall and to avoid the air bubble visible on Figure 3.1. In 

the longitudinal direction the analysis spanned the entire 45 slices acquired in a 

single bed position.  Histograms generated from these ROI’s were fitted, using 

maximum likelihood estimation, to Poisson, Normal (Gaussian), Negative 

Binomial, Log-Normal and Gamma distributions. Derived in this manner, the 

parameters specific to each distribution model are then used to calculate 

Cumulative Distribution Functions (CDFs), Quantiles (inverse of the CDF), 

Skewness and Kurtosis (excess kurtosis). 

Several graphical methods may be used to evaluate the differences between 

the probability distribution of a population from which a random sample is drawn 

and that of a reference distribution. Here, we employ commonly used Quantile – 

Quantile (Q-Q) plots79 for this purpose. In a Q-Q plot, the inverse of the 

cumulative distribution function (iCDF) of experimental data (experimental 

Quantiles) is plotted against the iCDF of the distribution fitted to the data 

(theoretical Quantiles). If the experimental distribution is the same as the 

reference distribution then the resulting Q-Q plot will follow a 45° line rising 

from left to right.  Linear plots which deviate from the 45° line indicate a 

difference in dispersion between the two distributions. Substantial deviations from 

linearity dictate a rejection of the hypothesis of sameness. Quantiles of the 

experimental PET distribution were compared to Quantiles of the Poisson, 

Negative Binomial, Normal, Log-Normal and Gamma distributions. The Shapiro-

Wilk, Anderson-Darling, Kolmogorov-Smirnov, Pearson's Chi-square, 

D'Agostino's K-squared, and a score of other tests may also be used to evaluate 



 

the distribution of noise. Quantile-Quantile plots were chosen for this 

investigation because, unlike some of the tests mentioned above, Q-Q plots: (1) 

can be applied to both continuous and discrete distributions, (2) do not require 

sample sizes to be the same, and (3) allow testing of many distributional aspects 

such as shifts in location, shifts in scale, changes in symmetry and the presence of 

outliers simultaneously79.  A pseudo-Poisson model has been proposed in the 

literature58 for simulating PET noise. Using this model to simulate an over-

dispersed Poisson distribution and estimate its variance, the mean number of 

counts is scaled by an empirically determined parameter. The same can be 

achieved by means of a Negative Binomial distribution without introducing 

scanner dependent empirical relationships. The Negative Binomial distribution 

was included in this comparison as it is the simplest way of modeling Poisson 

distributions in application to situations in which the variance is higher than the 

mean number of counts (over-dispersed Poisson distribution). This situation can 

be viewed as a Poisson model with Gamma heterogeneity, where the Gamma 

noise has a mean of one. In other words, the Negative Binomial distribution can 

be described as a continuous mixture of Poisson distributions, while the mixing 

rate is characterized by a Gamma distribution and accounts for over-dispersed or 

correlated Poisson counts80. The Gamma distribution was considered because it 

describes Poisson processes and, with an appropriate choice of shape and scale 

parameters, is capable of modeling an over-dispersed Poisson process. Lastly, it 

has been suggested in the literature that the histogram of a ROI selected in a 

uniform PET image may be well approximated by Log-Normal distribution81 and 

thus this distribution was also investigated.  

Skewness (third standardized moment) is a measure of the asymmetry of a 

probability distribution and is mathematically defined in terms of the third 

moment about the mean and standard deviation as: 
3-X

Skewness E
μ

σ
=
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 3.1 
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where X is the random variable, μ is the mean, and σ is the standard deviation and 

E is the expectation operator.  Kurtosis (fourth standardized moment) is a measure 



 

of the “peakedness” of a probability distribution.  The greater the Kurtosis value, 

the greater the contribution to the variance from large deviations.  Conversely, a 

variance composed of modest deviations results in a smaller value of Kurtosis.  

Thus a high Kurtosis value corresponds to a sharply peaked distribution with long 

ample tails while a low Kurtosis is descriptive of a more rounded peak with 

shorter thinner tails.  Mathematically, Kurtosis is defined in terms of the fourth 

moment about the mean and standard deviation as: 

( )4
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 3.2 

In this work, Skewness and Excess Kurtosis (Kurtosis – 3) are used in conjunction 

with CDF’s and Q-Q plots to examine the statistical properties of noise in PET 

data. These properties are used to evaluate the experimental distribution in 

comparison to five model distributions (Poisson, Normal, Negative Binomial, 

Log-Normal and Gamma). The performance of the Normal, Negative Binomial, 

Log-Normal and Gamma distributions is compared by means of Root Mean 

Square Error (RMSE), calculated for Normalized Standard Deviation (NSD), 

Skewness and Excess Kurtosis.  In the 2D case, NSD was defined as the standard 

deviation (STD) scaled to the Mean of that slice, while in the 3D case it was 

defined as standard deviation (STD) of the phantom volume of interest (VOI) 

scaled to its Mean. Analysis of goodness-of-fit between the experimental 

distribution and he five model distributions is performed by means of Q-Q plots 

for both 2D and 3D case.  Kurtosis and Skewness are utilized to provide an 

overall feel for the shape of the experimental data and a further measure of the fit 

to these five distributions.  

The spatial variation of noise within the phantom was investigated along 

single pixel width vertical and horizontal diametric profiles. The data obtained 

from these profiles is suggestive of certain trends but plagued by excessive noise. 

Five circular sub-regions (top, bottom, left, right, and center) within the area of 

interest were also analyzed. These procedures were applied to images 
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reconstructed from the same raw data set with both Filtered-Backprojection (FBP) 

and the Row-Action Maximum Likelihood Algorithm (RAMLA). 

3.3.2 Results and Discussion 

The simple case of a circular ROI in the uniform phantom was investigated first. 

Figure 3.1 shows images from slice 21 (first time frame) located near the centre 

of this uniform phantom reconstructed using RAMLA and FBP and their 

respective ROI histograms. 
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Figure 3.1: 4D PET study on a cylindrical phantom (1st time frame of 

slice 21). ROI was selected on image reconstructed with 

RAMLA (a) and FBP (b). The histogram generated from ROI 

selected on image reconstructed with RAMLA (c) and FBP 

(d). 
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Figure 3.2: Graph of the CDFs plotted vs. pixel counts. Experimental 

CDF is compared to CDFs of Poisson, Negative Binomial, 

Normal, Log-Normal and Gamma distributions. The 

theoretical CDFs are calculated using maximum likelihood 

estimates for the parameters. The histogram (1st time frame of 

slice 21) for the fits was generated from a circular ROI 

selected on a 2D image reconstructed with RAMLA (a 

through f) and FBP (g through l). 
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Immediately obvious are the higher reconstructed counts seen in Figure 3.1 

produced by FBP as compared to RAMLA from the same raw data. This can be 

attributed to a difference in the preprocessing steps (scatter and attenuation 

correction) and reconstruction (full 3D-RAMLA vs. FORE+FBP). Based on the 

process of maximum likelihood estimation (MLE), Cumulative Distribution 

functions (CDFs), Quantiles, Skewness, and Excess Kurtosis were calculated in 

order to model the experimental data with Poisson, Normal, Negative Binomial, 

Log-Normal, and Gamma distributions.  

Cumulative Distribution functions (CDFs) and cumulants of these 

distributions calculated from maximum likelihood estimates (MLE) of the 

distribution parameters are presented in Figure 3.2 and Table 3.2 along with 

respective Margins of Error for the 95% confidence level for slice 21 (1st time 

frame). Margins of error are calculated as the half widths of the 95% confidence 

intervals for the parameter estimates. Exploring the representative data of slice 21 

(1st time frame), it is readily evident from Figure 3.2 and Table 3.2 that the noise 

characterizing this ROI is not Poisson distributed but is instead better modeled by 

the Negative Binomial, Normal, Log-Normal  and Gamma distributions.  

In order to differentiate between the performances of these models, the data 

presented in Figure 3.2 and Table 3.2 is further analyzed by means of the 

absolute error (see Table 3.3) between the experimental data and the predictions 

of each distribution, with regard to Mean, Standard Deviation (STD), Kurtosis (K) 

and Skewness (S) values. It is apparent from Table 3.3 that each distribution has 

its own strengths and weaknesses.  The Normal distribution exhibits the largest 

discrepancy (absolute error) with regard to the mean, while the Poisson 

distribution performs very poorly with regard to standard deviation. With respect 

to Skewness, for both RAMLA and FBP, the absolute error is an order of 

magnitude smaller for the Gamma distribution compared to Poisson, Negative 

Binomial, Normal, Log-Normal distributions. With regards to Excess Kurtosis, 

for both RAMLA and FBP reconstructions, the discrepancy values are relatively 

small for all distributions except the Log-Normal distribution. For both RAMLA 

and FBP no model emerges as clearly superior, but Poisson is decidedly inferior.   
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Table 3.2: Cumulants and respective Margins of Error for 95% confidence level 
(in parentheses), calculated using maximum likelihood estimates for the 
parameters of Poisson, Negative Binomial, Normal, Log-Normal and Gamma 
distributions. Skewness and Excess Kurtosis of Normal distribution are always 
zero (follows from respective definitions) 

Distribution Mean STD Skewness Kurtosis 

RAMLA, 1st time frame of slice 21 

Poisson 
2505 

(2) 

50.05 

(0.02) 

0.01998 

(0.00001) 

0.0003992 

(0.0000004) 

Neg. Binomial 
2505.0 

(0.2) 

203 

(7) 

0.34 

(0.02) 

0.13 

(0.02) 

Normal 
2498.5 

(0.2) 

204.2 

(0.1) 
0 0 

Log-Normal 
2505 

(11) 

204 

(8) 

0.245 

(0.009) 

3.107 

(0.008) 

Gamma 
2505 

(355) 

204 

(22) 

0.162 

(0.006) 

0.040 

(0.003) 

FBP, 1st time frame of slice 21 

Poisson 
3178 

(3) 

56.38 

(0.02) 

0.01774 

(0.00001) 

0.0003146 

(0.0000003) 

Neg. Binomial 
3178.3 

(0.5) 

310 

(11) 

0.55 

(0.04) 

0.32 

(0.04) 

Normal 
3174.1 

(0.3) 

311.6 

(0.2) 
0 0 

Log-Normal 
3178 

(17) 

312 

(13) 

0.30 

(0.01) 

3.16 

(0.01) 

Gamma 
3178 

(450) 

310 

(33) 

0.195 

(0.007) 

0.057 

(0.004) 
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Table 3.3: Comparison of discrepancy (absolute error) between experimental and 
calculated distributions (Poisson, Negative Binomial, Normal, Log-Normal and 
Gamma), with respect to Mean, Standard Deviation (STD), Skewness and 
Kurtosis (Excess Kurtosis) (see data from Table 3.2 and Figure 3.2) 

Distribution Mean STD Skewness Kurtosis 

RAMLA, 1st time frame of slice 21 

Poisson 0 153 0.09 0.2 

Neg. Binomial 0 0.2 0.2 0.03 

Normal 6 0.9 0.1 0.2 

Log-Normal 0.04 1 0.1 3 

Gamma 0 0.3 0.05 0.1 

FBP, 1st time frame of slice 21 

Poisson 0 254 0.2 0.05 

Neg. Binomial 0 0.1 0.4 0.3 

Normal 4 1 0.2 0.1 

Log-Normal 0.07 2 0.1 3 

Gamma 0 0.1 0.02 0.01 

 

 

The poor representation of both RAMLA and FBP reconstructed PET data by the 

Poisson distribution is also shown using the Q-Q plots of Figure 3.3.  Here, with 

the exception of minor deviations at the tails, the data points conform very well to 

the reference 450 lines for the Negative Binomial, Normal, Log-Normal and 

Gamma distributions. Significant differences in dispersion (and hence noise) are 

observed with regard to the Poisson distribution for both RAMLA and FBP.  
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Figure 3.3: Q-Q plots (1st time frame of slice 21): circular ROI was 

selected on image reconstructed with RAMLA (a through e) 

and FBP (f through j) 
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Figure 3.4: Q-Q plots: cylindrical VOI was selected on images of the first 

time frame for slices 4 to 42 reconstructed with RAMLA (a 

through e) and FBP (f through j)  

 

The results presented thus far (Table 3.3 and Figure 3.1 through Figure 3.3) 

are representative only of the 1st time frame of slice 21. More general results may 

be sought by examining the data from all slice locations.  Unfortunately, a full 

volumetric analysis is not possible due to the large changes in mean and standard 

deviation associated with slices nearest the minimum and maximum longitudinal 

extents (slices 1, 2, 3, 43, 44 and 45). The data from the full complement of slice 
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locations combine to produce an asymmetric quasi-bimodal distribution.  Limiting 

the volumetric analysis somewhat arbitrarily to the combined results from slices 4 

through 42 (first time frame), over which the values of mean and standard 

deviation are relatively constant, yields the Q-Q plots shown in Figure 3.4 which 

reflect the conclusions drawn for the 2D case of slice 21 above.  
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Figure 3.5: 3D PET study on cylindrical phantom (Slice # 21). 1D 

horizontal profile through the center of image reconstructed 

using RAMLA (upper right) and using FBP (lower right). 1D 

vertical profile through the center of image reconstructed 

using RAMLA (upper left) and using FBP (lower left)  

 

Moreover, the Q-Q plots comparing experimental data to the Negative Binomial 

(Figure 3.4b), Log-Normal (Figure 3.4d) and Gamma (Figure 3.4e) distributions 

reveal points that lie almost exactly along the 45o reference line for RAMLA data.  

Deviations observed at the tails are somewhat more pronounced for the images 
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reconstructed with FBP (Figure 3.4g through Figure 3.4j).  Poisson statistics 

provides, once again, an inferior description of the experimental data. 

The spatial distribution of noise within the phantom was initially investigated 

along single pixel width vertical and horizontal diametric profiles. The magnitude 

and spatial distribution of noise in PET is significantly affected by the 

reconstruction algorithm used, as can be seen in Figure 3.5 for the vertical and 

horizontal diametric profiles of Slice #21. Consider first the data provided by 

RAMLA reconstruction (Figure 3.5a and Figure 3.5b).  Noise appears to be 

independent of lateral position within the active volume. Outside the active 

volume, count values fall off rapidly to a nominal zero level. A degree of 

ambiguity attends this assessment, however, due to the significant noise evident in 

the data.  A different picture emerges from the FBP data of Figure 3.5c and 

Figure 3.5d.  As noted previously, count levels within the active volume are 

higher than their corresponding values provided by RAMLA reconstruction.  

Further, count values appear moderately peaked near the center of reconstruction, 

falling off slightly toward the outer regions of the active volume.  The transition 

from active volume to cold outer regions is more gradual with FBP in comparison 

to RAMLA and regions of unphysical negative counts are observed external to the 

active volume. 

Five circular sub-regions (top, bottom, left, right, and center) within the area 

of interest were analyzed.  Each of these sub-regions had an area equal to ≈9 % of 

the transaxial cross section of the phantom. These sub-regions were propagated 

throughout slices 1 through 45 of the uniform cylindrical phantom resulting in the 

data of Figure 3.6.  Immediately obvious are the longitudinal variations in total 

counts and noise within each region of interest.  Rising rapidly from artificially 

low mean count values at the extrema slices (1 and 45), the RAMLA data of 

Figure 3.6a initially overshoots (slices 3 and 43) prior to assuming more nominal 

values characteristic of central slice locations.   
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Figure 3.6: 3D PET study on cylindrical phantom (Slices 1 to 45); 

circular ROIs were selected on the phantom (Center, Top, 

Left, Right, and Bottom), mean number of counts and 

standard deviation was determined for each ROI 

 

The unphysical diminishment of mean count values is greater at the superior 

extrema (slice 1) as compared to the superior most image location (slice 45).  

Further, a greater overshoot also occurs in the superior portion of the scan in 

contrast to its inferiorly located counterpart. From slice 9 through to 39 an overall 

upward trend in mean counts is observed in transiting from superior to inferior 

longitudinal positions.  Noise levels (SD) with RAMLA reconstruction (Figure 

3.6b) are lowest at the superior most position, spike rapidly at slice #2 and then 

quickly decreases over the next few slice locations. At the inferior most location 

noise levels all rise in comparison to central longitudinal locations.  Mean count 

levels reconstructed with FBP (Figure 3.6c) are also lowest at the extrema 

locations.  In contrast to the RAMLA data, the lowest FBP mean count level is 

found at the inferior most slice location.  A modest inferiorly located overshoot is 
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again observed while the large superior overage seen with RAMLA 

reconstruction is completely absent with the FBP data.  A gradual decrease in 

mean counts is observed as one progresses inferiorly from slice 12 to 39, which is 

opposite to the trend observed with RAMLA.  At all but the last two slice 

locations, the greatest mean count level is maintained by the central sub-region.  

Noise levels with FBP reconstruction (Figure 3.6d) are lowest at mid-

longitudinal locations ranging from slice 11 to 24 for the top and centre sub-

regions respectively.  Proceeding outward from these locations, noise levels climb 

to reach maximum values at slice #1 and #44.  Noise levels drop precipitously in 

the transition from slice 44 to slice 45 at the inferior most extent of the 

reconstructed data.  These variations observed over the longitudinal extent of the 

data for both reconstruction schemes result from the interplay of the inherent 

sensitivity profile of the scanner and the corrections algorithms which are applied.  

The proprietary nature of the finer points of the algorithms employed, and the 

manner in which they are implemented, renders moot further insight into the 

longitudinal structure of the data observed. 

An evaluation of Normalized Standard Deviation (STD/mean), Skewness, 

and Excess Kurtosis over slices 4 through 42 (first time frame) is presented in 

Figure 3.7 (RAMLA: a through c; FBP: d through f).  With regard to normalized 

standard deviation (Figure 3.7a and Figure 3.7d) it may be seen that all but the 

Poisson distribution demonstrate good conformity to the experimental data. For 

FBP the Log-Normal distribution demonstrates a slight discrepancy at the extrema 

slices. When considering Skewness (Figure 3.7b and Figure 3.7e), the Negative 

Binomial distribution produces the least agreement, especially for the extrema 

slices. Analysis with respect to excess Kurtosis is presented in Figure 3.7c and 

Figure 3.7f.  All distributions, except Log-Normal, model the RAMLA data 

reasonably well. The Log-Normal distribution also produces relatively poor 

agreement with FBP data except at the extrema slice locations where the negative 

binomial distribution yields even worse results. 
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Figure 3.7: 2D case (1st time frame): STD/Mean, Kurtosis and Skewness 

with respect to experimental data. ROI was selected on 

images (slices 4 to 42) reconstructed with RAMLA (a through 

c) and FBP (d through f)  
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Figure 3.8 and Figure 3.9 show images from all time frames for slice 21 in 

the uniform phantom, reconstructed using RAMLA and FBP.   

The dependence of statistical properties on count rate and counts collected is 

examined in Figure 3.10 by investigating the time series of acquisitions.  Here 

each data point represents the spatial integration over slices 4 through 42 in order 

to provide improved statistical accuracy.  Temporal variability in the fit of the 

different models is clearly evident.  This variability should not be surprising as all 

models are but approximations of reality built upon simplifying mathematical 

assumptions. Exact agreement between model and experiment is never 

guaranteed. Figure 3.10a and Figure 3.10d present the temporal development of 

normalized standard deviation (NSD).  

 

 
Figure 3.8: Slice 21 (all time frames, 1 to 20) reconstructed with RAMLA  
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As expected, the decreasing count levels associated with each subsequent time 

frame result in a monotonic increase in NSD (STD/Mean).  With the exception of 

Poisson, good agreement is observed between all statistical models and the 

experimental RAMLA data for NSD.  For this parameter, the Normal distribution 

provides good agreement over all time frames with the FBP data while all other 

statistical models diverge slightly from experiment as time increases.  The 

Poisson distribution once again provides poorest overall agreement.  Concerning 

Skewness, the RAMLA data shows an overall increase as the peak in its 

histogram shifts toward lower count values as a function of time. 

 

 
Figure 3.9: Slice 21 (all time frames, 1 to 20) reconstructed with FBP  
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Figure 3.10: 3D case: STD/Mean, Kurtosis and Skewness with respect to 

experimental data. Cylindrical VOI was selected on images 

(slices 4 to 42) reconstructed with RAMLA (a through c) and 

FBP (d through f)  

 

Skewness for both the Log-Normal and Gamma distributions follows the 

experimental data closely.  FBP data shows an initial slight decrease in Skewness 

followed by a rise as time progresses further.  Initially, the smallest discrepancy is 

seen with the Poisson and Normal distributions, while the experimental data 

conforms closest to the Gamma distribution for the latest time frames.  FBP data 
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is modeled most poorly in regards to Skewness by the Negative Binomial 

distribution.  With regard to excess Kurtosis, both RAMLA and FBP data 

demonstrate an overall trend of increase as time progresses.  This increase in 

peakedness is a direct result of the shift in the histogram peak towards lower 

count values as indicated by the Skewness results. The ability of the Negative 

Binomial distribution to model experimental excess Kurtosis quickly diminishes 

after the first couple of frames. Overall, the Gamma distribution demonstrates the 

closest agreement with respect to excess Kurtosis for both RAMLA and FBP.  

The Poisson distribution proved least capable of modeling the experimental data 

as it completely fails to predict any temporal development of NSD, Skewness, or 

excess Kurtosis.  The same is true for the Normal distribution with regard to 

Skewness and Excess Kurtosis.  The Negative Binomial distribution demonstrates 

the most rapid divergence from experimental data as a function of time for the 

metrics of Skewness and excess Kurtosis. To provide a more quantitative 

description of the performance, with respect to the experimental data, for each of 

these models, the Root Mean Square Error (RMSE) is calculated for each metric 

in Figure 3.10 and is presented in Table 3.4.  

 

Table 3.4: 3D case (all time frames (1 to 20), VOI: slices 4 to 42), Root Mean 
Square Error (RMSE) for NSD, Kurtosis and Skewness with respect to 
experimental data is compared between different models for data reconstructed 
with RAMLA and FBP 

Metric NSD Skewness Excess Kurtosis 
 

Reconstruction RAMLA FBP RAMLA FBP RAMLA FBP 

Poisson 0.2 0.3 0.5 0.5 0.7 2 

Neg.  Binomial 0.003 0.03 2 8 12 117 

Normal 0.002 0.003 0.5 0.5 0.7 2 

Log-Normal 0.003 0.1 0.9 1 3 6 

Model 

Gamma 0.003 0.03 0.1 0.3 0.4 1 
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This table clearly shows the advantages and disadvantages of each statistical 

approach to modeling the experimentally reconstructed data. For RAMLA, the 

Gamma distribution clearly yields the closest overall conformance to the actual 

time evolution of the experimental data, followed by the Normal distribution. It 

should also be noted that for temporal development of NSD, all distributions in 

question yield very similar values for RMSE when compared to experimental 

data. At the same time for Skewness and excess Kurtosis, the RMSE values for 

Negative Binomial and Log-Normal distributions are an order of magnitude 

higher than for Normal and Gamma distributions. For FBP, the Gamma 

distribution models very well Skewness and excess Kurtosis followed very 

closely by the Normal distribution while at the same time demonstrating greater 

discrepancy with regard to NSD than the Normal distribution. Both Negative 

Binomial and Log-Normal distributions fail to model the actual time evolution of 

the experimental data with respect to Skewness and excess Kurtosis, in 

comparison with Normal and Gamma distributions. NSD (STD/Mean) is modeled 

equally well by the Negative Binomial, Normal, Log-Normal and Gamma 

distributions for RAMLA and by the Negative Binomial, Normal, and Gamma 

distributions for FBP reconstructions. For FBP reconstruction, the Normal 

distribution demonstrates the least deviation from the time evolution of 

experimental data with respect to NSD while for the Log-Normal distribution the 

value of RMSE is very close to a Poisson distribution and two orders of 

magnitude higher compared to the Normal distribution. 

3.3.3 Conclusions 

In this chapter we have presented an investigation of the statistical properties of 

noise in PET images of a cylindrical phantom containing a uniform distribution of 

activity reconstructed with Filtered-Backprojection (FBP) and Row-Action 

Maximum Likelihood Algorithm (RAMLA), after all clinical correction and 

image reconstruction procedures have been applied. This analysis has shown that 

the noise in PET images created with RAMLA reconstruction is very well 

characterized by the Gamma distribution followed closely by the Normal 
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distribution, while FBP produces comparable conformity with both Normal and 

Gamma statistics.   We have also shown that NSD (STD/Mean) is modeled 

equally well by Negative Binomial, Normal, Log-Normal and Gamma 

distributions for RAMLA and by Negative Binomial, Normal, and Gamma 

distributions for FBP reconstructions. While radioactive decay is well-modeled as 

a Poisson process, the net result after all correction and image reconstruction 

techniques have been applied is decidedly non-Poisson. This has important 

implications for an accurate evaluation of quantitative information provided by 

PET imaging. It is particularly true for dynamic PET imaging, where the signal-

to-noise ratio decreases for each subsequent time frame, which can pose 

significant challenges for quantitative analysis. A large number of noise reduction 

techniques are predicated on additive noise models and an incorrect treatment of 

image noise can be detrimental to adequate algorithm performance. Noise 

reduction algorithms specifically designed for Poisson noise are expected to 

produce inferior results when applied to clinical PET images. 
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4. Noise Suppression Techniques in PET Imaging 

PET images are, relatively speaking, excessively noisy in comparison to other 

imaging modalities (such as CT and MRI) which are commonly used in RT. 

Noise levels observed in PET images complicate their geometric interpretation. It 

is thus desirable to suppress PET image noise prior to segmentation. In our quest  

to denoise PET images, we have evaluated three techniques for their suitability as 

a preprocessing step prior to tumor volume delineation: (1) Principal Component 

Analysis (PCA)49, 82, (2) Statistical and Heuristic Image Noise Extraction 

(SHINE)67, 68, (3) Image Denoising Using Gaussian Scale Mixtures in Wavelet 

Domain (BLS-GSM)83. 

4.1 Principal Component Analysis (PCA)  

Principal Component Analysis (PCA) is a form of unsupervised learning. It is a 

linear projection method used to reduce the number of parameters in a problem 

and can be viewed as a rotation of existing axes to new positions in a space 

defined by the original variables. These new orthogonal axes represent directions 

of maximum variability. PCA has been successfully applied in medical imaging 

for image denoising and feature extraction49, 82. 

PCA is a data driven technique which is used to identify the variance-

covariance structure in a data set. PCA utilizes the Karhunen-Loève theorem 

(theory of stochastic processes) which states that a stochastic process can be 

expressed as a linear combination of orthogonal functions. This is similar to 

Fourier series decomposition of a function. Whereas a Fourier series uses real 

numbers as coefficients for expansion into a basis of sine and cosine functions, 

the Karhunen-Loève transform employs random variables as coefficients for an 

expansion into a basis consisting of orthogonal functions which are determined by 

a covariance function of the process. The discrete Karhunen-Loève Transform 

(KLT), where coefficients are obtained empirically from the data sample, is 

known as Principal Component Analysis (also known as Proper Orthogonal 

Decomposition (POD), Hotelling Transform and Principal Component 

Transform). PCA, as applied to a dynamic PET data set, can be used for denoising 



 

and identification of structures. Application of PCA to a multivariate image 

results in a new transformed multivariate image. The images contained within this 

new data set, the principal component (PC) images, represent the orthogonal 

directions of maximum variance for the original data. Mathematically, these 

directions are derived as the eigenvectors of the covariance matrix for the data set.  

Each slice in a dynamic PET data set consists of n registered time frames, 

meaning that there are n pixels for every (i, j) coordinate point, one pixel at that 

point for each frame. These pixels may be arranged in the form of a column 

vector x (Figure 4.1). For an M×N image, there will be a total of MN such n-

dimensional vectors comprising all pixels in the n time frames84.  
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xn 
n - dimensional  
column vector 

x =  

 
Figure 4.1: Forming a vector from corresponding pixels in a stack of time 

frames for a given voxel in a PET data set. (Adapted from 

Gonzalez et al.84) 

 

The multidimensional image data matrix with M rows, N columns, and n variables 

is unfolded, forming a two-dimensional matrix of size n(MN)84. The n×n 

covariance matrix Cx of the mean corrected data set is given by 84: 
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1
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K
T
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k
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= − −
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where K = MN and mx is a mean of the vector population x, which can be 

approximated by the sample average84: 

1

1 K

x k
k

m x
K =

= ∑  4.2 

The principal component transform is given by84: 

( )xy A x m= −  4.3 

where the rows of transformation matrix A are the normalized eigenvectors of 

Cx.  The eigenvalues of Cx form the main diagonal elements Cy. The main 

diagonal element in the ith row of Cy is the variance of vector element yi. It can be 

shown that the covariance matrix Cy is diagonal, meaning the elements of vector y 

are uncorrelated. The original image can be recovered by performing the inverse 

transform84:  

T
xx A y m= +  4.4 

The denoising properties of PCA can be explored by reconstructing the image 

using only q eigenvectors, in which case A becomes a q×n matrix Aq
84:  

ˆ q
T

xx A y m= +  4.5 

The name Principal Component Analysis (or transform) comes from the fact 

that only eigenvectors corresponding to the largest (principal) eigenvalues of the 

covariance matrix are used in reconstruction. Each eigenvalue corresponds to a 

Principal Component (PC) image (channel). In this work only the first principal 

component (PC1) image corresponding to the largest eigenvalue is considered. 

The data in the first PCA channel is far less noisy and significantly sharper than in 

the original image49, 82, 84.  

The PCA algorithm84 used in this evaluation was implemented with 

MATLAB (version 7.4.0.287, R2007a; The Mathworks, Natick, MA). 
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4.2 Statistical and Heuristic Image Noise Extraction (SHINE) 

SHINE (Statistical and Heuristic Image Noise Extraction)67, 68 is a special 

software algorithm, which can be used to extract important information from an 

image and remove noise by means of Correspondence Analysis. To distinguish 

information from noise it uses an original “stop condition” such that at the end of 

the process, an image with reduced noise level is produced. Use of 

Correspondence Analysis (CA) in image processing was first proposed by 

Marano85.  

This method begins by dividing the image into small blocks of size m×m (m 

is generally equal to 4 or 8) and transforming the image into a matrix X. In this 

matrix, each row corresponds to elements of a block and each column 

corresponds to a pixel in the blocks. For an h×h image divided into m×m blocks, 

matrix X(p,n) has p = (h×h )/(m×m) rows and n = m×m columns. CA is then 

applied to the matrix X, aiming to reduce noise contained in the image. The same 

transformation is utilized in the JPEG (Joint Photographic Experts Group) 

compression technique except it uses a Discrete Cosine Transform (DCT) instead 

of CA.   

The SHINE algorithm has a very simple structure. First, a correspondence 

analysis (CA) is performed on the matrix X and then the following procedure is 

applied to each block i (where i = 1 . . . p)67:  

 

(1) Factors k (k = 1 . . . n) are sorted in descending order according to the 

square of their cosine with block i. The cosine between block i and 

factor k is a measure of the quality of the representation of the block i 

along k axis (Lebart et al.67, 86). 

 

(2) Block i is reconstructed step-by-step. Factors k are included according 

to their rank, starting from the most significant factor. 

 

(3) An “original stop condition test” is performed at each step. 



 

 

The caveat here is the “original stop condition test”. This is what makes SHINE 

different from the technique proposed by Marano85, where compression (or 

denoising) is achieved by reconstructing the image from matrix X with only the 

first q factors. Essentially the same idea is used in denoising with PCA. The 

ambiguity is in how to choose the number of factors (or PC), required to achieve 

optimal results. In our studies with PCA, only the first factor (PC1) was kept. 

There are other commonly accepted guidelines, however, such as the “Kaiser 

Criterion” and “Scree Test” that, in practice, seem to yield acceptable results. In 

SHINE, this problem is solved by using the classical variance comparison test67, 

86, 87. Block reconstruction is stopped when residual variance is significantly lower 

than noise variance. The goal is to recover only the signal variance in the 

reconstructed block, without including the noise variance. The stop condition at 

step k is given by the following: 

( ) ( )2 2
2 noise
residual

df
k

df
σ χ

σ
⋅

<  4.6 

where  is the noise variance in a block at step k;  is the residual 

variance at step k;  df is equal to (n-k-1); and χ2(df) is given by the χ2 table for df 

degrees of freedom and a 5% alpha risk.  

2
noiseσ 2

residualσ

Two fundamental assumptions are made here67:  

 

(1) The variance of the n values in a block (initial variance, 2
initialσ ) is the sum 

of the variance of the signal in the block (signal variance, 2
signalσ ) and that 

of the noise variance ( 2
noiseσ ) in the block ( ).  2 2

initial signalσ σ= 2
noiseσ+

 

(2) The noise in the block at step k follows Poisson statistics and an estimate 

of the noise variance in a block can be obtained as the mean of the n 

values in the block. 
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 Following the first assumption, if the variance of the reconstructed block at 

step k is , than it can be written that ( )2
reconstructed kσ

( ) ( )2 2 2
initial reconstructed residualk kσ σ σ= +  4.7 

The reconstruction of a block is completed when the condition given by 4.6 is 

satisfied and reconstruction of the next block begins, until every block comprising 

the original image has been denoised. 

The denoising procedure described above is repeated m×m times in a sliding 

fashion to minimize artifacts arising due to division of the image into small 

blocks. The original image is sampled into blocks m×m times, with offsets 

ranging from 0 to (m − 1) pixels in both the width (x) and the height (y) directions 

and the resultant denoised image is the mean of the m×m adaptively filtered 

images obtained with the different offsets in x and y. 

 In lieu of the absence of free and easy access to the original implementation 

of SHINE by Hannequin et al.67, the algorithm was implemented with MATLAB 

(version 7.4.0.287, R2007a; The Mathworks, Natick, MA). A procedure proposed 

in the original work67 was used for validation of our implementation of the 

SHINE algorithm. A numerical line phantom (64×64 pixels) containing six 

horizontal lines and six vertical lines with increasing width (ranging from 1 to 6 

pixels) was generated. In the noise-free image the background pixel value was set 

to 10, while a line pixel value was set to 20. Following this, seven simulated 

noise-free data sets were computed by multiplying the original noise-free image 

with the following scaling factors: 1, 2, 4, 6, 8, 10, and 20. Noisy acquisitions 

were created by adding Poisson noise generated with MATLAB function 

“imnoise”. Finally, SHINE and a median filter were applied to the noisy images 

to obtain noise corrected data sets. Noise suppression using these two methods 

was evaluated and compared by means of Mean Normalized Error (MNE), which 

is defined as67: 
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100 h h
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abs val j ref j
MNE

h h ref j

×

=

−
=

× ∑  4.8 

where h×h is the number of pixels in the image, val(j) is the value of pixel j 

in noisy or processed images and ref(j) is the value of the pixel j in the 

corresponding noise-free images.  

Figure 4.2 gives the value of MNE as a function of count level. 
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Figure 4.2: Quantitative results of noise extraction for a numerical line 

phantom. MNE as a function of seven count levels for raw 

images (squares), SHINE images (triangles) and median 

filtered images (circles). Reference images for the MNE 

calculations are the noise-free images. 

 

Data presented in Figure 4.2 closely replicates the results published in the 

original paper67 and indicates that the MNE of SHINE images is small, compared 
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to the MNE of corresponding raw (noisy) images. In contrast to this the MNE 

curve for median filtering shows improvement only for low count (noise) levels. 

MNE curves for both SHINE and raw images follow an exponential form, 

suggesting that the relative noise reduction is constant and does not depend on the 

count level in the images. The mean ratio of raw MNE and SHINE MNE is 1.73, 

which is close to the value of 1.48 reported by Hannequin et al.67. The difference 

in values can be attributed to the statistical nature of the noise generation process. 

In the original SHINE publication67, the authors state that: “It can be applied 

to all scintigraphic images, including PET data, and to all low-count photon 

images” and “SHINE can be applied to all kinds of images: static images, 

dynamic images, whole-body images and SPECT or PET images”. However, our 

work described in the previous chapter, concerning the statistical properties of 

noise in PET, shows that an assumption of strictly Poisson noise may lead to 

significant discrepancies. Other methods of noise estimation must be employed 

before SHINE can be applied to PET images. We will return to this point later in 

this chapter, after a discussion of BLS-GSM. 

4.3 Gaussian Scale Mixtures in Wavelet Domain (BLS-GSM) 

The choice of BLS-GSM (Bayes Least Squares - Gaussian Scale Mixture) was 

motivated by the fact that it has been shown to outperform some of the more 

recently published State-of-the-art methods83, 88-92 as well as a number of standard 

well-known and widely-used denoising algorithms: a local variance-adaptive 

method in the pixel domain (implemented in MATLAB as function wiener2) and 

a hard thresholding method using an undecimated representation with five scales 

based on the minimum-phase Daubechies 8-tap wavelet filter83. BLS-GSM is an 

algorithm which uses scaled mixtures of Gaussian functions in the wavelet 

domain for image denoising83. It is based on a statistical model of the coefficients 

of an over-complete multiscale oriented basis. In this model, the collection of 

coefficients in neighboring positions is described as the product of two random 

variables, a Gaussian vector and a hidden positive scalar multiplier. The role of 

the multiplier is to modulate the local variance of the coefficients in the 
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neighborhood. This is done in order to account for empirically observed 

correlations between amplitudes of the coefficients. The BLS estimate of each 

coefficient is used to reduce the weighted average of the local linear estimate over 

all possible values of the hidden multiplier variable. This algorithm uses a 

procedure very popular in wavelet based denoising:  

 

(1) Decompose the image into pyramid sub-bands at different scales and 

orientations 

 

(2) Denoise each sub-band, except for the low pass residual band 

 

(3) Apply an inverse pyramid transform to construct a denoised image 

 

An important assumption made in BLS-GSM is that the image is corrupted by 

white Gaussian noise of known variance. In principle, BLS-GSM can also handle 

nonwhite noise of known covariance. In any case, before BLS-GSM can be used 

effectively in PET imaging, the algorithm has to be modified to allow for 

estimation of the standard deviation of the noise.  

The original MATLAB implementation of BLS-GSM Denoising Toolbox, 

available on the internet from http://decsai.ugr.es/~javier/denoise (Javier 

Portilla), was used in this work. 

4.4 SHINE(SIG) & BLS-GSM(SIG): A Modified Approach for 
Processing Gaussian Noise in PET Images 

Both SHINE and BLS-GSM require specification of σ, the standard deviation of 

image noise. A hybrid approach was adopted for this purpose. Since σ is 

unknown a priori, it has to be estimated from the image. This is done by means of 

nonstandard decomposition of the two-dimensional discrete wavelet transform 

(DWT). Cascades of high and low pass filters are applied in order to decompose 

the image and produce a multi-resolution representation, where each wavelet 

coefficient represents the information content of the image at a certain resolution 

http://decsai.ugr.es/%7Ejavier/denoise


 

in a certain position. In nonstandard decomposition, a wavelet transform is 

applied to an image by columns, then by rows, using the transform at one scale 

only. This technique produces a result in four quarters: the top left will be a half-

sized version of the image and the other quarters are high-pass filtered images 

(see Figure 4.3). These quarters contain horizontal, vertical, and diagonal edges 

of the image. The next step is to apply a one-scale DWT to the top-left quarter, 

creating smaller images, and so on84. 

 

Original image 1 scale DWT 2 scale DWT 3 scale DWT

f(x,y)

 
Figure 4.3: Nonstandard decomposition of the 2D DWT. 

 

 Donoho and Johnstone93 proposed a robust noise level σ estimation based on the 

median absolute value of the wavelet coefficients as: 

[ ]( )( )
0.6745

median abs W i
σ =  4.9 

where i is an index over all detail coefficients W at the finest decomposition level. 

The basic idea is that at the most detailed level, the wavelet coefficients are 

primarily due to noise. Due to the fact that only a few coefficients correspond to 

signal, use of the median acts to eliminate bias that might be otherwise 

introduced. The constant 0.6745 comes into play because for a set of independent 

Gaussian random variables {ni}, i ∈ {1, 2 . . . N} with zero-mean and variance σ2, 

E[median(abs(ni))]  ≈ 0.6745σ . This estimator has become very popular in 

practice and is widely used28, 54. In estimating the noise variance we employed the 

Harr wavelet. The Harr wavelet is the simplest possible wavelet and it is the same 

as a Daubechies 2 tap wavelet. The number of taps corresponds to the number of 

filter coefficients. The Harr transform was in existence before Ingrid Daubechies 

introduced her class of wavelets, thus it retains its name. The use of a Daubechies 

     75



 

4 tap wavelet will produce smoother results than using the Harr wavelet. The Harr 

wavelet is not the best choice, since biomedical signals are characterized by 

smooth transitions as opposed to harsh jump discontinuities; however it allows the 

fastest computation of noise variance.  

4.5 SHINE(SIG) & BLS-GSM(SIG): Comparison to State-of-
the-Art Methods 

Performance of the modified algorithms, SHINE(SIG) and BLS-GSM(SIG), was 

tested on a set of 8-bit grayscale test images, of size 512×512 and 256×256, each 

contaminated with additive Gaussian white noise with 10 different degrees of 

variance (noise levels 1 to 10 correspond to standard deviations of 1, 2, 5, 10, 15, 

20, 25, 50, 75 and 100 respectfully) generated with the MATLAB function 

“imnoise”.  

 

Lena Barbra

House Peppers Fingerprint

BoatsLena Barbra

House Peppers Fingerprint

Boats

 
Figure 4.4: 8-bit grayscale test images used in SHINE(SIG) and BLS-

GSM(SIG) algorithm performance evaluation 
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The commonly known Lena, Barbara, Boats, House, Peppers and Fingerprint 

images which are widely used in image processing literature (see Figure 4.4) 

were used here. To allow proper comparison between the algorithms, the same 

version of the images was used as in the original BLS-GSM paper83. A MATLAB 

implementation of the BLS-GSM Denoising Toolbox and 8-bit grayscale test 

images (Figure 4.4) are available on the internet from 

http://decsai.ugr.es/~javier/denoise (Javier Portilla). 

For both SHINE and BLS-GSM noise-suppression algorithms, a required 

input is the standard deviation (σ) of noise in the image. Therefore, in our 

modified approach a Donoho and Johnstone93 noise variance estimator is used 

(equation 4.9). Since this estimator utilizes a wavelet transform, its performance 

may be potentially influenced by the choice of wavelet function. For this reason 

the performance of the estimator was evaluated for Harr and Daubechies 4 

wavelets at 10 different degrees of variance (noise levels).  

In Figure 4.5 the average standard deviation (averaged across six test 

images generated from the images in Figure 4.4) of noise is plotted as function of 

noise level. It can be seen from Figure 4.5, that the performance of the estimator 

produces little difference between the Harr and Daubechies 4 wavelets. Therefore, 

it is reasonable to use the Harr wavelet for estimating noise variance. The Harr 

wavelet provides a fast estimation of noise variance and is used in all evaluations 

of SHINE(SIG) and BLS-GSM(SIG) algorithm performance described in this 

section.  

 

http://decsai.ugr.es/%7Ejavier/denoise
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Figure 4.5: Performance evaluation of the Donoho & Johnstone estimator 

at 10 different contamination levels. Average standard 

deviation (averaged across six test images generated from 

images in Figure 4.4) of noise estimated at corresponding 

noise level is plotted as function of noise level. Noise Levels 

1 to 10 correspond to standard deviations of 1, 2, 5, 10, 15, 

20, 25, 50, 75 and 100 respectfully. Theoretical σ – standard 

deviation of Gaussian noise added to a test image at given 

noise level. 

 

The relative performance of SHINE(SIG) and BLS-GSM(SIG) in denoising 

images contaminated with additive Gaussian white noise, with 10 different 

degrees of variance, was evaluated using several metrics: Pearson's Product-

Moment Correlation Coefficient (PMCC), Peak Signal-to-Noise Ratio (PSNR), 

and Root Mean Square Error (RMSE). 
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Pearson's Product-Moment Correlation Coefficient (PMCC) between A and 

B is given by: 

( )( )

( ) ( )

mn mn
m n

2

mn mn
m n m n

A A B B
PMCC

A A B B

− −
=

⎛ ⎞⎛− −⎜ ⎟⎜
⎝ ⎠⎝

∑∑

∑∑ ∑∑
2 ⎞

⎟
⎠

 4.10 

( ) ( )    where A=mean A  and B=mean B  and A and B are m×n size monochrome 

images. PMCC estimates the strength of the linear relationship between two 

random variables and can take values between -1 (decreasing linear relationship) 

and 1 (increasing linear relationship). The closer the coefficient is to either −1 or 

1, the stronger the correlation between the variables. To evaluate the performance 

of these denoising algorithms, two different values of Pearson's correlation 

coefficient are calculated at 10 different contamination levels. The first value, 

PMCC(IN), represents the correlation between original noisy and original noise-

free images. The second value, PMCC(OUT), represents the correlation between 

denoised and original noise-free images. PMCC(OUT) as a function of 

PMCC(IN) is presented in Figure 4.6 for the original BLS-GSM, BLS-GSM 

(SIG), and SHINE(SIG) with two different sampling window sizes. 
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Figure 4.6: Performance evaluation of SHINE(SIG) and BLS-GSM(SIG) 

algorithms at 10 different contamination levels by means of 

Pearson's Product-Moment Correlation Coefficient (PMCC). 

 

In Figure 4.6, in the case of SHINE(SIG), 4×4 and 8×8 refer to the size of the 

sampling window used.  For the original BLS-GSM algorithm, the input variance 

of the noise was taken to be exactly equal to the variance of the generated white 

Gaussian noise, while for  BLS-GSM(SIG)  and SHINE(SIG) it was estimated 

using a Donoho and Johnstone93 noise variance estimator (equation 4.9). It is 

obvious from this figure that the introduction of the variance estimator into the 

algorithm did not change the performance of BLS-GSM (BLS-GSM(SIG) vs. 

BLS-GSM).  

While the performance of both algorithms (BLS-GSM and SHINE) drops as 

noise levels increase, this decrease in performance is more dramatic for SHINE. It 

also appears that SHINE with an 8×8 window outperforms SHINE with a 4×4 

window at very high noise levels. The PMCC values in this figure are averaged 
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across the six tested images. While Pearson correlation indicates the strength of a 

linear relationship between two variables, its value alone may prove insufficient 

for evaluation of this relationship. This is especially true in the case where the 

compared random variables are not normally distributed. Another drawback of the 

Pearson correlation coefficient is sensitivity to outliers.    

To verify the results obtained using PMCC (Figure 4.6) two other popular 

metrics which appear in the signal processing literature may be employed. These 

are Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). 

Both metrics can be defined via the mean squared error (MSE) given by: 

( ) ( )
21 1

0 0

1 , ,
m n

i j
MSE A i j B i j

mn

− −

= =

⎡ ⎤= −⎣ ⎦∑∑  4.11 

where A and B are m×n size monochrome images corresponding to noisy (or 

denoised) and noise free images respectively. 

The root mean square error (RMSE) is often used to quantify the differences 

model (or estimator) prediction and experimental observation. 

( ) ( )
21 1

0 0

1 , ,
m n

i j
RMSE MSE A i j B i j

mn

− −

= =

⎡ ⎤= = −⎣ ⎦∑∑  4.12 

In this evaluation, the RMSE calculated between noisy and noise-free images 

is compared to RMSE calculated between images denoised with SHINE or BLS-

GSM and the noise-free image (Figure 4.7). In Figure 4.7 the Root Mean Square 

Error (RMSE) averaged across these six images is plotted versus the standard 

deviation of noise. In the case of BLS-GSM, the input variance of the noise was 

taken to be exactly equal to the variance of the generated Gaussian noise. It is 

clear from Figure 4.7 that the introduction of a variance estimator into the 

algorithm did not change the performance of BLS-GSM (BLS-GSM(SIG) vs. 

BLS-GSM) and in the case of SHINE significant improvement is observed 

(SHINE (SIG) vs. SHINE). These results mirror conclusions drawn from data 

presented in Figure 4.6. 
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Figure 4.7: Performance evaluation of the SHINE(SIG) and BLS-

GSM(SIG) algorithms at 10 different contamination levels by 

means of Root Mean Square Error (RMSE) 

 

Finally, we have compared the performance of BLS-GSM(SIG) and 

SHINE(SIG) algorithms to the results of some more recently published state-of-

the-art methods and these are shown in Figure 4.8. These methods are compared 

by means of peak signal-to-noise ratio (PSNR), calculated at 10 different 

contamination levels. The PSNR is widely used in engineering applications and 

represents the ratio between the maximum possible signal power and the power of 

corrupting noise that affects the fidelity of its representation. This is usually 

expressed in terms of the logarithmic decibel scale to accommodate description of 

signals with wide dynamic range. 
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Figure 4.8: Comparison of the denoising performance of several best 

available published methods at four different noise levels with 

standard deviations of 10, 15, 20, and 25 (PSNR(IN) = 28.13, 

24.61, 22.11, and 20.17 dB respectively). Square and asterisk 

symbols indicate BLS-GSM(SIG)  and SHINE(SIG) results 

respectively. (Lena, Barbara) circles89; crosses90; stars92; 

(House, Peppers) crosses88; diamonds91. 
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Peak signal-to-noise ratio (PSNR) can be calculated using the following 

expression: 

2

10 1010 log 20 logI IMAX MAXPSNR
MSE MSE

⎛ ⎞ ⎛ ⎞
= ⋅ = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 4.13 

where MAXI = 2b-1, and b is number of bits per sample. For instance if pixels 

are represented by 8 bits per sample, then MAXI  =  255. 

In Figure 4.8, PSNR(IN), calculated between noisy and noise-free images, is 

compared to PSNR(OUT), calculated between denoised and noise-free images. In 

this figure, for the PSNR(OUT) resulting from denoising with the State-of-the-art 

methods, we have used data from previous work by Portilla et al.83. It is obvious 

from Figure 4.8 that BLS-GSM(SIG) outperforms SHINE(SIG) and all the other 

methods compared in this evaluation. 

4.6 Performance Evaluation: SHINE, SHINE(SIG), BLS-
GSM(SIG), and PCA 

In this analysis, the performance of SHINE, SHINE(SIG), and BLS-GSM(SIG) 

are compared to denoising with PCA by means of clinically relevant experimental 

phantom data. To facilitate this comparison, measurements were performed with a 

cylindrical phantom (long axis coincident with the reconstruction centre and 

orthogonal to the image plane; inside diameter 19.0 cm), which was filled with 
11C (T1/2 = 20 min, A = 0.006 MBq/ml) to simulate background. A cylindrical 

target (inside diameter = 4.75 cm, inside length = 8.5 cm), filled with 18F (T1/2 = 

110 min, A = 0.002 MBq/ml), was mounted in the centre of the phantom with its 

long axis coincident with the reconstruction centre to simulate a tumor volume. A 

dynamic sequence of 26 frames (45 slices per frame) was acquired for 130 min 

according to a schedule of 26 time frames of 300 s duration each. The data was 

corrected for attenuation and scatter, and then reconstructed using 3D-RAMLA 

(row-action maximum likelihood algorithm). 

Figure 4.9 provides a visual comparison of a representative slice (Slice 33, 

first time frame) denoised using the original SHINE, SHINE(SIG), BLS-

GSM(SIG), and PCA algorithms. Note that there is very little visual difference 

     84



 

between the noisy image and images denoised with SHINE(SIG) and BLS-

GSM(SIG). The image denoised with the original SHINE algorithm appears 

slightly blurrier than with SHINE(SIG). This is due to the fact that in the original 

SHINE algorithm the noise variance changes between blocks (see section 4.2) and 

is estimated as the mean of the n values in the block, while in SHINE(SIG) the 

noise variance is assumed to be constant throughout the image and is estimated 

using the Donoho and Johnstone93 method (equation 4.9). 

 

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

 
Figure 4.9: (a): Original Noisy Image (Slice 33, first time frame). 

Comparison of denoising performance of (b) SHINE; (c) 

SHINE(SIG); (d) BLS-GSM(SIG): and (e)-(h) PCA denoised 

images reconstructed using 1, 2, 3, and 4 eigenvectors. 

 

 Figure 4.9 (e, f, g, and h) depicts PCA denoised images reconstructed using 1, 2, 

3, and 4 eigenvectors. It is evident from this figure that noise levels increase as 

more eigenvectors are used in PCA reconstruction and that PCA demonstrates 

superior performance in comparison with SHINE and BLS-GS. The greatest level 

of noise suppression is achieved in images reconstructed with only the first 

Principal Component (PC1, Figure 4.9e). Another advantage of using PCA is 

that, unlike SHINE and BLS-GSM, there is no need to process each image of a 

4D PET dataset separately; making the overall processing time for PCA based 
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noise suppression significantly shorter as compared to SHINE and BLS-GSM. In 

this particular example, for PCA denoising, it took only 68.2 seconds for the 

entire data set (45 slices × 26 frames = 1170 images), while for SHINE, 

SHINE(SIG) and BLS-GSM(SIG) the processing times were 16.6, 11.7 and 9.7 

seconds respectively for the Slice 33 of the first time frame alone. These lengthy 

processing times make SHINE, SHINE(SIG) and BLS-GSM(SIG) absolutely 

undesirable in applications where denoising of dynamic PET data is required due 

to the large number of images involved. Also, as demonstrated in Figure 4.9e, 

retaining only the first principal component (PC1) allows one to obtain a data set 

with a much lower level of noise while enhancing contrast, thereby optimizing the 

signal-to-noise ratio (SNR). 

4.7 Noise Suppression Techniques: Conclusions 

In this chapter, a comparison between the denoising of PET images with different 

techniques (PCA, BLS-GSM, and SHINE) was presented.  This analysis suggests 

that PCA is a suitable approach for post-processing of dynamic PET data aimed at 

noise reduction prior to tumor volume delineation. PCA applied to dynamic PET 

image data is used to generate images with higher quality and improved SNR 

without modeling assumptions. Within the framework of the proposed algorithm, 

retaining only the first principal component (PC1) allows one to obtain a data set 

with a much lower level of noise while enhancing contrast, thereby optimizing 

signal-to-noise ratio (SNR).   
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5. Segmentation Techniques in Medical Imaging 

Recent advances in Nuclear Medicine imaging modalities in general and in 

multimodality imaging (PET/CT & PET/MR) in particular have resulted in 

significant improvements in the areas of anatomical, functional, and dynamic 

imaging. With these advancements PET/CT and PET/MR based radiation therapy 

treatment planning have become an attractive reality. A crucial step in 

complementing CT or MR data with PET is the accurate delineation of cancerous 

tissues (or target volumes) on PET images and separating these from normal 

tissue for further processing. This procedure is known as image segmentation. 

5.1 Image Segmentation 

Image segmentation is an analysis technique used in image processing to 

subdivide an image into the components or objects comprising it, based on one or 

more characteristics. Most segmentation algorithms can be classified as a member 

of one of two categories: (1) methods based on an evaluation of differences in 

intensity values, (2) methods based on an evaluation of similarities in intensity 

values94, 95. In the first case, an image is segmented based on distinct changes in 

intensity, e.g. edges94-96. Popular choices are the Sobel edge detection technique, 

the Prewitt gradient based method and the Canny edge detector94, 96. 

Thresholding, clustering, and region growing are examples of methods falling into 

the second category. These are based on segmenting an image into regions of 

similarity according to a set of predefined criteria94, 95. It has been shown that 

improvement in segmentation is possible, if a combination of methods from the 

two categories or the same category is used84, 95. Examples are techniques in 

which edge detection or region growing is combined with thresholding84, 95.  

An automated segmentation algorithm is stopped when a desired level of 

detail is achieved, i.e. all the objects or regions of interest have been detected. 

This is one of the most difficult and non trivial tasks in modern image processing. 

Segmentation accuracy determines the success or failure of computerized 

analysis95. Many approaches have been suggested for image segmentation, but 

only a handful of those can be successfully applied to PET imaging94, 95, 97. 
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5.2 Current Practices for Tumor Volume Delineation 

In Nuclear Medicine Imaging, many segmentation approaches use the gray scale 

pixel values derived from a single image or image volume. A few of these 

methods, along with their advantages and shortcomings, are briefly described 

below.  

Scans in PET can be acquired in two modes, static and dynamic. Static scans 

account for the majority of clinical procedures performed. In this mode the 

activity of the radiotracer is counted over a single fixed time period, resulting in a 

single image per anatomical slice location. At the present time these scans are 

analyzed visually by a radiation oncologist for the purpose of tumor volume 

delineation32, 98-110. The visual interpretation method is susceptible to image 

display Window/Level settings and has been shown to lead to significant inter-

observer variability when comparing contours drawn by different radiation 

oncologist on the same PET/CT data18, 32, 109, 111, 112. As a result, the search for 

more objective approaches has begun 18, 32, 109, 111, 112. An increasing number of 

emerging automated tumor volume delineation algorithms is being developed for 

static PET based imaging. These are mostly based on either a standardized uptake 

value (SUV) of 2.5 around the tumor101, 110, 113, 114, a fixed threshold of maximum 

signal intensity (for example 40% of SUVmax)16, 19, 110, 115-119, or a variable 

threshold based on the maximum SUV which is dependent on the signal-to 

background-ratio (SBR)32, 101, 110, 120-122. A recent review published by John A. 

Lee33 summarizes many delineation techniques popular in the literature. 

Image segmentation using histogram based thresholding is by far the simplest 

and most popular technique, since it is easy to implement and requires less CPU 

(Central Processing Unit) time to run. The goal in this approach is to find the 

optimal threshold (or thresholds) allowing accurate classification of regions in an 

image. This is achieved through minimization (or maximization) of a criterion 

function based on the histogram of the image. The optimal threshold corresponds 

to the gray level value at which the criterion function attains its minimum (or 

maximum) value. Images can be segmented by choosing a threshold based either 

on an intensity level histogram of the entire image or using local information by 
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dividing the image into several sub-regions and calculating thresholds for each 

sub-region97.  In the first instance, the process is called global thresholding. If 

several sub-regions are isolated in the image and a threshold is obtained for each 

sub-region, the process is called local thresholding. If the histogram of the image 

is assumed to have only one valley between two peaks, the technique is classified 

as bi-level thresholding, otherwise it is classified as multi-thresholding94.  A very 

well known automatic threshold selection method for bi-level global thresholding 

is Otsu’s method123. It provides satisfactory estimates when the number of pixels 

in the two classes is close to each other94. Reddi et al.124 proposed a faster version 

of Otsu’s method extended to multi-thresholding. A number of alternative 

automatic threshold selection algorithms have been developed over the years94, 125. 

An effective alternative to thresholding techniques is provided by mixture 

modeling and data clustering algorithms. An advantage of clustering approaches 

(albeit not so important for PET imaging) is that they can be applied not only to 

grayscale images, but also be used to segment multi-band images. Their main 

drawback is the necessity of prior selection of an appropriate number of clusters94.  

Clustering separates objects into groups whose members are similar in some way. 

This can be described as a process of finding structure in unlabeled data. This sets 

it apart from methods which use classifiers and require pre-segmented images 

called training data. Clustering algorithms are very often referred to as 

unsupervised methods as they must iterate between segmenting the image and 

characterizing properties of each cluster in order to compensate for the absence of 

training data and, in a sense, perform self training94.  Examples of unsupervised 

segmentation methods are K-means clustering126, C-means clustering127, FCM 

(Fuzzy C-means) clustering128 and the expectation-maximization (EM) 

algorithm76. These methods have shown very promising results as tumor 

delineation techniques in PET related studies; however more research is necessary 

for adequate algorithm initialization in order to guarantee reliable clustering 

results and a reduction in computational time129. FCM and C-means clustering are 

very popular in Nuclear Medicine94, 129-131 and transmission image 

segmentation132. A major drawback in histogram based segmentation methods 
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such as thresholding or clustering is the lack of spatial information. In other words 

they do not take into account the intensity values of the surrounding pixels. 

Notable exceptions to this are methods based on 2D histograms which, to some 

degree, consider contextual information.  Thresholding and clustering techniques 

work reasonably well on noise-free images, with slow spatial variation in 

intensity, and non-textured images94. Spatial characteristics of the image are an 

important piece of information for segmentation which is typically not taken into 

account in the above mentioned methods.  

In contrast to histogram based segmentation methods, contextual information 

can be fully exploited in region growing approaches. For this type of problem, it 

is postulated that pixels which are close to each other have similar intensities. The 

procedure starts by selection of seed pixels with the goal of growing a uniform 

connected region from each seed, until stopping criteria are met94. The most 

important assumption in region growing approaches is that the regions have 

nearly constant gray levels. This makes them very sensitive to noise and texture, 

which renders them less reliable94. Region growing has been very successful in 

SPECT studies94, 133, 134. There are other techniques, such as Markov Random 

Field methods135, which attempt to incorporate spatial correlations into the 

segmentation process94. Other examples of segmentation techniques include, but 

are not limited to methods using classifiers94, 136-139, watershed methods27, 84, 95, 140, 

edge detection (Sobel detector, Canny detector)94, artificial neural networks 

(ANN, PCNN, MLP, RBFN)94, deformable models (snake model)141, atlas-guided 

approaches94 and methods based on analysis of time activity curves (TACs)32, 142, 

143.  

5.2.1 Image Segmentation in Dynamic PET Imaging 

Several clustering algorithms have been proposed for tissue segmentation in 

dynamic PET related studies32, 142-146. In these approaches, dynamic PET images 

are first reconstructed from projection data using clinically accepted 

reconstruction algorithms and the time activity curves (TACs) of individual pixels 

are grouped into a predetermined number of clusters. Kamasak et al.147 have used 
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an alternate approach whereby the clustering of the regions in dynamic PET 

images occurs directly with projection data, while at the same time estimating the 

TACs of each cluster. However, many institutions do not have direct access to 

raw sinograms, making implementation of this technique impractical for anyone 

other than PET manufacturers. The main drawback of clustering algorithms is 

sensitivity to noise and the need for determining the appropriate number of 

clusters94. Signals that arise in Nuclear Medicine (such as PET images) and their 

associated TACs are extremely noisy, and sensitivity to noise presents potential 

problems for accurate tumor volume delineation. 

An alternative approach that allows use of the spatial information available in 

PET images is the combination of Region Growing (RG) and K-means cluster 

analysis.  A hybrid technique using this approach has been proposed by Kim et 

al.148. In this approach, cluster analysis is used to extract temporal kinetic features 

and provide seeds for RG. The number of clusters is fixed to eight. This number 

presumably corresponds to the number of major structures (including the tumor) 

in the brain; however it renders application of the technique to other sites 

somewhat arbitrary. The performance of this technique directly depends on an 

Optimal Image Sampling Schedule (OISS)149 along with a five-parameter FDG 

kinetic model (tracer dependent) used to reduce the dimensionality of the problem 

while increasing the SNR of individual time frames. This, in turn, dictates the 

development of clinical imaging protocols with OISS in mind at every institution 

interested in the algorithm, which may not be a feasible option. Furthermore, this 

algorithm was designed and validated around images reconstructed with Filtered 

Backprojection (FBP). Clinical use of FPB is diminishing (and is now practically 

extinct) due to the poor image quality associated with this reconstruction 

technique. 

5.3 Advantages of Dynamic (4D) PET Imaging Based Tumor 
Volume Delineation 

Conventional 3D PET images are constructed from a single time integration of 

activity concentration.  Correct utilization of the functional information conveyed 
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by these images for radiotherapy purposes requires accurate geometric delineation 

of the boundaries between cancerous volumes and surrounding uninvolved 

tissues. The major difficulty encountered in attempting to properly segment 

conventional PET images is the great latitude in uptake values observed at any 

single point in time.  Neighboring regions with different metabolic activity rates 

can, for example, exhibit large variances in perceived activity levels depending on 

the exact timing of image acquisition.   This effect may act to either accentuate or 

obfuscate the boundary between cancerous and healthy tissue.  Two such 

volumes, for example, might be imaged at a particular point in time when their 

activity levels are coincidently similar and may thus be falsely classified as the 

same tissue32, 106, 150.   This makes geometric segmentation of conventional PET 

images problematic with regard to the accuracy required for radiotherapy 

treatment planning.  4D PET (dynamic PET) allows the addition of one more 

variable from the time domain, describing the temporal evolution of the form or 

function of tissue-specific biochemical properties over a specific time interval. 

Adjacent regions which might have similar activity levels in a static PET image 

can exhibit completely different temporal evolutionary courses32, 106, 150.   These 

temporal variations in activity concentration are represented by measured time 

activity curves (TACs)151.   Appropriate mathematical models may be used to 

describe the time activity curves (TACs) of a region or volume of interest, thus 

allowing the assessment of biological parameters.  The shape of a TAC is 

indicative of tissue-specific biochemical properties, thus providing important 

insight into tracer kinetics and tissue uptake32, 106, 152, 153. For example, in studies 

with FDG, cancerous tissue exhibits steep upward TACs, while normal tissues 

exhibit flat TACs32, 107, 154-157. The use of TACs has the potential to significantly 

improve tumor volume delineation in PET imaging. In the following chapter we 

present a novel tumor volume delineation algorithm (SSRG/4D-PET) which 

exploits differences in the time activity curves (TAC) between tumor and 

surrounding background to more accurately delineate the geometric extent of PET 

defined tumor volumes for use in radiotherapy treatment planning. 
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6. Single Seed Region Growing Algorithm for Tumor Volume 
Delineation in Dynamic PET imaging (SSRG/4D-PET)l 

The main goal of the research described in this chapter is the development of a 

partially-supervised tumor delineation algorithm incorporating both the temporal 

and spatial information available in dynamic PET studies for use in radiation 

therapy treatment planning. To this end, voxel TACs are analyzed and their 

differences exploited, without regard to preserving their “true” shape in the 

process. The performance of the proposed algorithm was evaluated first using 

both semi-empirical digital phantoms (homogeneous and heterogeneous) and a 

clinically-relevant phantom imaged on an Allegro-PET whole body PET scanner 

(Philips Medical Systems Inc.).  Evaluation of the algorithm was also performed 

using clinical patient images acquired with a Philips Gemini GS PET/CT scanner 

(Philips Medical Systems Inc.).  

6.1 Theory and Simulation Study  

6.1.1 SSRG/4D-PET – The Algorithm 

The SSRG/4D-PET algorithm was implemented in MATLAB (version 7.4.0.287, 

R2007a; The Mathworks, Natick, MA). A partially-supervised (semi-automatic) 

approach was pursued in order to allow an expert reader to utilize the information 

available from other imaging modalities (CT or MR) routinely used in 

conjunction with PET (PET/CT or PET/MR). Two manual interventions are 

required: first, the definition of a mask around the structure of interest (e.g. the 

entire tumor volume, including reasonable margins) and second, the selection of a 

seed voxel within that structure. The subsequent delineation of the structure 

(tumor) within the mask is performed automatically by the algorithm, based on 

 
l A version of this chapter has been published: A. R. Teymurazyan, R. S. Sloboda, T. R. Riauka, et 

al., "Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for 

Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation," 

Nuclear Science, IEEE Transactions on 59 (5), 2020-2032 (2012). 
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comparison of the TAC of every voxel within this mask (candidate TAC) to the 

seed TAC. 

PCA is employed in a pre-processing stage to produce a dynamic data set 

with a greatly reduced level of noise while enhancing contrast, thereby optimizing 

signal-to-noise ratio (SNR). This general approach has been successfully applied 

to PET data by other researchers49, 82. Denoising with PCA is completely 

independent of the kinetic model used and thus does not contain model-based 

restrictions. In dynamic PET data the maximum number of principal components 

corresponds to the number of sequence time frames. However, the majority of the 

total variance can be accounted for by the first two or three components. The 

remaining components are comprised mainly of noise and can be discarded 

without significant loss of useful information. The first principal component is 

formed as a linear combination of original variables containing the largest 

variance.  Incidentally, the first principal component of a PET image volume will 

contain all high uptake regions (which often correspond to tumors) and can be 

expected to account for a significant amount of the total variance in the data. 

Since our intent is specifically the delineation of tumor volumes for the purpose 

of radiation treatment planning, only the first principal component is used in this 

study. It provides both the highest SNR and best discrimination between tumor 

and background tissue. In this work, dynamic PET data sets are processed by 

PCA slice-wise in the image domain. PCA of dynamic PET data requires the 

handling of large amounts of data. Slice-wise (as opposed to volumetric) 

application of PCA is less demanding with regards to computing power. The 

disadvantage of slice-wise PCA is possible inconsistencies within the resulting 

dynamic data set as parts of same structure in different slices are treated 

independently from each other. This does not pose a significant problem in the 

proposed schema as we are not attempting to extract kinetic parameters from 

TACs, but rather reduce the dimensionality of the problem while obtaining a data 

set in which the tumor and background are easily separated. This is achieved via 

fitting of the TAC of each voxel within a manually selected mask. The choice of 

the TAC model is dictated by the desire to fit the general shape of the TAC using 
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a very simple model independent of the specific tracer used (i.e. avoiding kinetic 

modeling and model-dependent restrictions). The denoising step prior to 

parameterization is necessary in order to eliminate local short term fluctuations in 

TACs which may significantly bias results. In the dynamic data set formed with 

first principal component images, all voxels (tumor and background) in the 

masked volume have the same kinetic characteristics. Only the amplitude 

parameter of the model function is therefore required for successful 

discrimination of tumor voxels. The parametric 3D image volume formed from 

the amplitude parameters is used in the region growing step of the algorithm. In 

the initial stage of the 3D seeded region growing process, a hard threshold 

separating regions of high uptake (large amplitude parameter) from regions of low 

uptake is automatically calculated. This calculated threshold value is used to 

compute the difference in amplitude between the threshold and the amplitude of 

the seed voxel selected in the high uptake region. This difference is used in the 

stopping condition governing voxel membership in the target structure. Any voxel 

within the mask satisfying the stopping condition is appended to the tumor 

volume if it is spatially connected to a voxel within the tumor region. The five 

main stages of the proposed tumor delineation algorithm for dynamic PET 

imaging are shown in Figure 6.1: 1) noise and artifact suppression; 2) selection of 

seed coordinates and a tumor encompassing mask of interest from the denoised 

4D data; 3) fitting of candidate Time Activity Curves (TACs); 4) 3D-SSRG using 

a parametric image volume extracted from TACs; 5) tumor volume refinement. 

6.1.1.1 Noise and Artifact Suppression 

Prior to delineation, PCA is applied to the 4D Dynamic PET image set which is 

not corrected for radioactive decay. This is required by the TAC model function 

used and the algorithm will back-decay correct the input data if necessary. Each 

transverse slice comprising the 3D spatial component of the 4D image volume is 

processed separately by the PCA code. The temporal component of the 4D 

dynamic data set consists of n time frames, resulting in n pixels for every (i, j)  

coordinate point (pixel) in a given transverse slice. These pixels may be arranged 



 

in the form of a column vector. For an M×N image (single transverse slice), there 

will be a total of M×N such n-dimensional vectors comprising all pixels in the n 

time frames95. The PCA code then operates on a two-dimensional feature matrix 

of size n×(M×N), produced in unfolding the multidimensional image data matrix 

(M rows, N columns, and n variables). Slices reconstructed using only the first  

Principal Component (PC1) images are used to produce a noise and artifact 

suppressed dynamic image volume (4D; three spatial coordinates and one 

temporal coordinate)49, 82, 95. 

 

 
Figure 6.1: Flowchart of proposed semi-automatic algorithm. 

 

6.1.1.2 Seed and Mask Selection 

To minimize computational time, the user is able to manually select a 3D region 

around the target structure containing all voxels to be used for further analysis. 
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The noise and artifact suppressed dynamic data set produced in stage one is 

averaged in the temporal dimension, resulting in a 3D volume used in this step 

only. A clinical expert (physician) then defines a tumor encompassing mask 

(rectangular cuboid in the current implementation of our software) and also 

selects the seed site (single voxel), which is characterized as belonging to the 

target structure (tumor) with a high degree of confidence. The seed coordinates 

for 3D SSRG are thus extracted from the region of the highest activity level 

within the tumor encompassing volume. 

6.1.1.3 3D Parametric Image Volume Definition via Fitting of Candidate 
TACs With an Appropriate Model Function 

All voxel TACs within the mask volume are parameterized using a three 

parameter model given by equation 6.1, simulating both nuclear (radioactive) 

decay and physiological tracer uptake and release: 
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where TTAC(k,t) is the number of counts in the kth voxel; CN(k), λ1(k) and  λ2(k) 

are corresponding model parameters (physical decay + uptake release and tracer 

uptake respectively). 

A Levenberg-Marquardt method with line-search158-160  is used to solve the 

nonlinear curve-fitting (data-fitting) problem in a least-squares sense. It was 

discovered empirically that solutions are achieved faster if noise and artifact 

suppressed 4D image data is normalized to its maximum value. This also 

simplifies the initialization of the data fitting algorithm.  

The shape parameters λ1 and λ2 describe the dynamics of decay in the PC1 

image set only and are not used in further processing. The amplitude (scaling) 

parameter CN(k) corresponds to the kth voxel and is  used to produce a parametric 

image volume at the voxel level required in the next stage. 

 



 

6.1.1.4 Stopping Parameter Selection and 3D-SSRG Based on Parametric 
Image Volume Extracted from TACs 

In this stage, the candidate TACs are compared with the reference (seed) TAC by 

means of their amplitude parameter CN(k) and the target volume is grown by way 

of a Single Seed Region Growing (3D-SSRG) algorithm. All voxels (CN(k)) of 

the parametric image volume produced in the previous stage are compared with 

CN(seed). Voxels satisfying a “stopping condition” are classified as belonging to 

the target structure until the next stage, where connectivity to the seed region is 

tested. 

The stopping condition for 3D-SSRG is defined as follows; the kth voxel is 

appended to the tumor region if the Euclidian distance between amplitude 

parameters CN(k) and CN(seed) is less than or equal to the stopping parameter S.  
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( ) ( )CN k CN seed S− ≤  6.2 

The stopping parameter S is defined as the Euclidean distance in one 

dimension between the threshold value T and amplitude parameter CN(seed), 

where the CN(seed) is the amplitude parameter corresponding to the seed voxel. 

( )T CN seed S− =  6.3 

The value of the threshold T is chosen based on a variation of the simple 

iterative approach first suggested by Ridler et al.161. The procedure is defined as 

follows: 1) an initial estimate of  the threshold value T is chosen as the midpoint 

between minimum and maximum values of the amplitude parameter CN in the 

masked volume; 2) the parametric image volume is segmented using the initial 

estimate for the threshold, producing two groups of voxels (groups A with CN 

values larger or equal to T, and group B with CN values less than T); 3) a new 

threshold value (T) is defined as the average of CNA (average of values in A) and 

CNB (average of values in B); 4) the previous two steps are repeated in iterative 

fashion until the difference in threshold values between successive iterations is 

smaller than a predefined parameter P. The value of P = 0.5 used in this work was 

adopted from the literature95  and allows one to obtain thresholds comparable to 



 

those obtained using Otsu's method123, without explicit binning of the data into 

histograms.  

6.1.1.5 Tumor Volume Refinement & Assignment 

In the refinement stage, all voxels in a tumor region are required to be connected 

in a specific way (e.g. neighborhoods for 3D tumor volume are 6, 18, or 26-

connected). 26-connectivity was used throughout this work (a user modifiable 

feature in the algorithm).  Connectivity within the tumor region is ensured 

through morphological reconstruction162 of the image marker under the image 

mask with the specified connectivity, where the marker (seed volume; one at the 

seed coordinates and zero everywhere else) and the image mask (tumor volume; 

ones for the tumor region and zeros everywhere else) are binary 3D image 

volumes of the same size.  Lastly, the refined tumor volume is remapped into the 

original image volume (Figure 6.2). 

 

 
Figure 6.2: Workflow of proposed algorithm (SSRG/4D-PET) 
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The workflow (Figure 6.2) of SSRG/4D-PET can be summarized as follows: 

PCA is employed in a pre-processing stage to provide a noise and artifact 

suppressed 4D image set; seed coordinates are selected and a tumor-

encompassing mask is defined; the data within this mask is then used to produce a 

parametric image volume by fitting each voxel’s TAC (the candidate TACs) to a 

model function; the amplitude parameters of each candidate voxel are compared 

with the amplitude parameter of the seed voxel which serves as a reference value; 

thus the 3D tumor region is grown from a single seed by means of a seeded region 

growing approach. Finally, the refined tumor volume is remapped into the 

original image volume. 

6.1.2 Algorithm Performance Evaluation Methods 

To analyze algorithm performance, target delineation results obtained using our 

algorithm were compared to the known (true) phantom geometries. Two different 

performance (similarity) metrics were used: misclassification rate (Rm) and Dice 

coefficient (Dice). For each delineation, the number of voxels wrongly classified 

as belonging to a given structure (false positive (FP)), wrongly classified as not 

belonging to a structure (false negative (FN)), correctly classified as belonging to 

a structure (true positive (TP)), and correctly classified as not belonging to a 

structure (true negative (TN)) were tallied and used to compute these similarity 

metrics. 

The misclassification rate Rm, is defined as: 

      100%
 mR

TP FN
FN FP+

= ×
+

 6.4 

and is the total percentage of  voxels incorrectly assigned by the delineation 

algorithm in question (FN+FP), compared to the total number of voxels in the 

“true” target volume (TP+FN). The misclassification rate is an overlap error 

measure (a value of 0 indicates perfect agreement). In contrast, the Dice 

coefficient (also known as Sorensen-Dice coefficient) is an overlap agreement 
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measure. For this metric, a value of zero indicates data sets with no common 

members and value of one indicates perfect agreement.  

The Dice coefficient is defined as follows, 
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6.1.3 Simulation Study: Homogeneous Phantom 

To test the validity of the SSRG/4D-PET delineation algorithm, a semi-empirical 

digital phantom was created to simulate fluorine-18-fluorodeoxyglucouse ([18F]-

FDG or FDG) metabolism in 7 clinically relevant tissue types.  These tissues 

include three normal structures: skeletal muscle (SM), lung (L), and myocardium 

(M); two malignant lesion types: Stage III non-small-cell lung cancer (M1), and 

lung carcinoma (M2); and two benign lesion types: lung aspergillosis (B1), and 

lung coccidomycosis (B2).  Geometric definition of the body contour and the 

three normal internal structures was achieved by segmentation of a representative 

anatomically correct 3D CT data set.  Lesions were added within the lung as 

clinically relevant sized163 spheroid and ellipsoid volumes (see Table 6.1).   

 

Table 6.1: FDG two-tissue compartmental model parameters 

Compartment (or Pathology)
K1 

(ml/min/g)

k2 

(min-1)

k3 

(min-1)

k4 

(min-1)

Size 

(cm) 

Size 

(pixels) 

Myocardium (M) 0.196 1.022 0.149 0.010 - - 

Lung (L) 0.014 0.291 0.006 0.000 - - 

Skeletal Muscle (SM) 0.045 0.163 0.077 0.000 - - 

Stage III non-small-cell lung 

cancer (M1) 
0.084 0.021 0.072 0.000 3.2×3.2 8×8 

Lung Carcinoma (M2) 0.139 0.296 0.164 0.000 3.2×4.0 8×10 

Lung Aspergillosis (B1) 0.1993 0.9778 0.240 0.010 4.0×4.0 10×10 

Lung Coccidomycosis (B2) 0.181 0.8692 0.039 0.001 2.4×4.0 6×10 

 

 



 

Post delineation, the original CT data set was downsampled to yield a 3D image 

consisting of 57 slices each with a matrix size of 128×128 and cubic voxels with 4 

mm sides.   Generation and visualization of this digital phantom was performed 

with MATLAB (version 7.4.0.287, R2007a; The Mathworks, Natick, MA). FDG 

was chosen as the radiopharmaceutical tracer to be modeled as it is used in over 

90% of all PET procedures in current clinical practice. 

 

Table 6.2: Time sampling schemes used  

Index 
(TSSi) 

Sampling  
Schedule Number of frames × frame duration (in seconds) 

1 157 min, 31 frames 31×300 
2 25 min, 19 frames 10×12, 2×30, 2×60, 1×90, 1×210, 2×300, 1×600 
3 55 min, 20 frames 10×12, 2×30, 2×60, 1×90, 1×210, 2×300, 1×600, 1×1800
4 115 min, 22 frames 10×12, 2×30, 2×60, 1×90, 1×210, 2×300, 1×600, 3×1800
5 33 min, 18 frames 12×10, 2×40, 2×300, 2×600 
6 73 min, 22 frames 12×10, 2×40, 2×300, 6×600 
7 31 min, 5 frames 2×41, 1×136, 1×567, 1×1104 
8 60 min, 5 frames 1×41, 1×136, 1×567, 1×1145, 1×1711 
9 30 min, 18 frames 8×15, 6×30, 3×300, 1×600 

10 30 min, 19 frames 8×15, 6×30, 5×300 
11 60 min, 21 frames 8×15, 6×30, 3×300, 4×600 
12 60 min, 23 frames 8×15, 6×30, 7×300, 2×600 

 

 

6.1.3.1 Homogeneous Phantom Generation 

The kinetics of FDG uptake in each tissue type was simulated using a two-tissue 

compartmental model164. This model consists of a compartment representing 

arterial plasma and two tissue compartments:  free (unmetabolized) FDG and its 

intra-cellularly trapped metabolite FDG-6-phosphate (FDG-6-PO4). If the plasma 

time activity curve ( , also referred to as the input function) and the relevant 

model parameters are known, then for the case of homogeneous tissue uptake, the 

PET activity concentration (

( )TACP t

( )TAC tC ) in tissue can be calculated as follows, 
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where the symbol ⊗ represents convolution; K1 is the perfusion (ml/min/g) and 

the other rate constants (k2, k3 and k4) are in units of min-1.  Constants α1 and α2 

are functions of the rate constants and index m indexes the tissue type simulated.  

The kinetic parameters associated with each tissue type are derived from the 

literature165-167 and summarized in Table 6.1. The plasma time activity curve, 

, which serves as the input function to this two-tissue compartmental 

model, may be obtained empirically by invasive sampling of arterial blood 168.  

Alternatively, a semi-empirical approach may be taken whereby 

( )TACP t

( )TACP t  is 

determined analytically according to published clinical data 168, 169. The latter 

approach was adopted for this work according to the methodology proposed by 

Feng et al.170. The plasma time activity curve was calculated using the expression, 
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where the delay factor τ = 0.537, and A1 = 5.987, A2 = 0.0453, A3 = 0.0881, λ1 = -

6.6887, λ2 = -0.2458, and λ3 = -0.0181 (Feng et al. 169).  

PET measurements of tracer concentration ( ( )TAC nC t ) are acquired over finite 

time intervals and are weighted time averages over the collection interval (Δtn) of 

a scan time frame, 

[ ] ( ) [ ] ( )
1

1

1 n

n

t t
m m

TAC n TAC
n t

C t C t d
t

−

−

+Δ

=
Δ ∫ t  6.8 

where tn = tn-1 + Δtn  and tn-1 is the start time of nth frame. The scanning interval 

Δtn of the nth time frame is defined by the time sampling schedule.  The nominal 

imaging interval for FDG-PET is 60 min.  It has been shown, however, that for 
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lung cancer, FDG kinetic parameters derived from time intervals as short as 30 

minutes can provide comparable results163.  Twelve time sampling schedules (see 

Table 6.2) adopted from the literature149, 163, 168, 169 were used to generate 

simulated dynamic PET data sets and aid in evaluating algorithm performance. 

Tracer concentrations were assigned to each voxel in every time frame using 

the kinetic parameters of each tissue type as per Table 6.1. Finally, noise was 

added to these data sets. Gaussian noise was created using a random number 

generator and was added to the noiseless tracer concentrations  

accumulated in each voxel representing the mth tissue type of the nth time frame of 

a dynamic PET scan as follows, 

[ ] ( )m
TAC nC t

[ ] ( ) [ ] ( ) ( ) ( )[ ] 0,1Nm m m
TAC n TAC n n NC t C t t Gσ= + ×  6.9 

where  is the noisy activity concentration of the nth time frame,   

is the standard deviation of noise, and 

[ ] ( )Nm
TAC nC t ( )[ ]m

ntσ

( )0,1NG  is a random number drawn from a 

Normal distribution with a mean of zero and a standard deviation of one.  The 

standard deviation  is given by (( )[ ]m
ntσ 6.10) as follows165, 

( )
[ ] ( )

1
2

[ ]
m

TAC nm
n

C t
t

t
α

σ
⎛ ⎞×

= ⎜ ⎟⎜ ⎟Δ⎝ ⎠
 6.10 

where the multiplier α = {0.1, 0.5, 1.0, 2.0, 4.0} serves to define five different 

noise levels adopted from the literature168. 

The final step in simulating realistic dynamic PET measurements was the forward 

projection (Radon transform) of these activity concentration distributions to 

produce temporally sequenced sinograms.  This projection data was then 

reconstructed using Maximum Likelihood Expectation Maximization (ML-EM) 
59.  This was performed using the Black Box Toolbox171 implementation of this 

algorithm.  Throughout, unless otherwise stated, simulations were performed with 

a noise level of α = 0.1 and a time delay of 2 minutes between tracer injection and 

simulated data collection. 
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6.1.3.2 Homogeneous Phantom: Results and Discussion 

Dice coefficients for the four lesion types are plotted as a function of TSS index 

(see first column in Table 6.2) in Figure 6.3.  One may readily observe that the 

Dice coefficients for the malignant lesions (M1 and M2) are very close to unity 

with negligible variation for TSS2 through TSS11 (average of 0.990 and standard 

deviation of 0.003), indicating very good segmentation performance of our 

algorithm for this lesion.  Diminished algorithm performance is realized for TSS1 

(0.937 for M1 and 0.877 for M2) and TSS12 (0.791 for M1 and 0.830 for M2), 

giving evidence to the fact that not all TSS schemes produce similar results and 

no technique is universal in scope and capability.   
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Figure 6.3: Dice coefficient as function of time sampling schedule (TSS) 

for the four different types of lesions (α = 0.1, delay = 2 min). 

Delineation algorithm used: SSRG/4D-PET. 
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A similar trend, albeit with considerably smaller Dice coefficients and much 

greater variability, is obtained for benign lesion B1.  Here, the best performance is 

realized for TSS4 with a Dice coefficient of 0.809.  Least effective results are 

obtained for benign lesion B2 with Dice coefficients as low as 0.342 and 0.345 

realized for TSS4 and TSS9 respectively.   

Mean values of the Dice coefficient and misclassification rate (Rm), averaged 

over the twelve TSS are tabulated in Table 6.3, along with their corresponding 

standard deviations (STD).  All simulations were performed with a noise level of 

α = 0.1 and a time delay of 2 minutes. 

 

Table 6.3: Mean values of Dice and Rm measures for the SSRG/4D-PET target 
delineation algorithm averaged across the twelve time sampling schedules (Table 
6.2).  Phantoms were generated with α = 0.1 and delay = 2 min 

Dice coefficient Rm (%) 
Pathology 

Average STD Average STD 

Stage III non-small-

cell lung cancer 

(M1) 

0.97 0.06 7.02 14.06 

Lung Carcinoma 

(M2) 
0.97 0.05 6.70 12.27 

Lung Aspergillosis 

(B1) 
0.71 0.10 83.55 41.34 

Lung 

Coccidomycosis 

(B2) 

0.45 0.10 129.54 67.17 

 

 

Values of Dice coefficient very close to unity for the malignant lesions (M1 

and M2) indicate very few false positives and false negatives, corresponding to 

higher sensitivity (capability of the algorithm to recognize a lesion) and 

specificity (capability of the algorithm to distinguish a lesion from normal tissue)  



 

when compared to the results obtained for benign (B1 and B2) lesions. These 

results can be attributed to the shape of the TACs involved, which are indicative 

of tissue-specific biochemical properties32. For example, in studies with FDG, 

cancerous tissue TACs continually rise for an extended period of time post 

injection (up to 60 min and more in some studies165), while TACs of normal 

tissues quickly reach a shallow maximum followed by a gradual wash-out32, 156, 

165. The algorithm employed here relies on the presence of a sufficient difference 

between the target and surrounding background TACs.  
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Figure 6.4: TACs (average values for each compartment) assigned to the 

structures in the mathematical simulation according to TSS1 

(31 frames × 5 min, α = 0.1, delay = 2 min) 

 

Figure 6.4 shows that the TACs and the concentration levels for B1 and B2 

are similar to that of normal tissues (Myocardium (M), Lung (L), and Skeletal 
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Muscle (SM)), while M1 and M2 display steep upward TACs characteristic of 

tumors. B1 exhibits steeper uptake and larger concentrations relative to B2 and to 

surrounding normal tissue, leading to the better agreement between delineated and 

true volume for B1 as compared to B2.  These results suggest caution when 

applying the algorithm to lesions with TACs insufficiently distinct from normal, 

healthy tissue. 

To investigate the effect of noise on the performance of SSRG/4D-PET at 

different noise levels, data sets with five noise levels ( α = {0.1, 0.5, 1.0, 2.0, 4.0} 
168) were generated for TSS4.  Comparison of the delineation of M1, M2, B1 and 

B2 at these noise levels is shown in Figure 6.5.  
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Figure 6.5: Dice coefficient comparing ground truth to simulated tumors 

for the dynamic phantom generated with TSS4 at five different 

noise levels (α = {0.1, 0.5, 1.0, 2.0, 4.0}) 
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While an almost linear decrease in algorithm (SSRG/4D-PET) performance is 

observed with increasing noise levels for malignant lesions, no clear trend can be 

discerned for benign lesions due to larger variations in Dice coefficient values. 

To investigate the effect of a delay between the time of injection and start of 

the PET scan on algorithm performance, five (delay = {2, 5, 15, 30, 60} min) 

different time delay intervals were used to generate simulated dynamic PET data 

sets according to TSS1.  

 

0 10 20 30 40 50 60
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 

 

D
ic

e 
co

ef
fic

ie
nt

 (T
S

S
1)

Scan Delay (min)

 M1
 M2

 B1
 B2

 
Figure 6.6: Dice coefficient comparing ground truth to simulated tumors 

for the dynamic phantom generated with TSS1 for five 

different time intervals between the time of injection and start 

of PET scan (delay = {2, 5, 15, 30, 60} min) 

 

The analysis of the effect of a delay between the time of injection and start of a 

PET scan on algorithm performance (Figure 6.6) reveals a significant 
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improvement in delineation for both malignant lesions (M1 and M2), when 

increasing the time delay from 2 to 15 minutes as Dice values increase from 0.937 

to 0.989 for M1 and from 0.877 to 0.989 for M2. This steep increase observed for 

intervals up to 15 min is followed by a plateau region (Dice is equal to 0.99 for 

both lesions). For the benign lesions (B1 and B2), a dramatic increase in 

performance is observed in going from a 2 to a 5 min interval (0.45 to 0.84 for B1 

and 0.60 to 0.72 for M2) followed by a systematic decrease in Dice values for 

time delays of greater than 5 minutes.  Clearly, of those examined, a 5 minute 

time delay yields optimum results for both B1 and B2.  

To test the robustness of the proposed delineation technique based on single 

seed region growing with respect to seed location selection, we randomly selected 

30 seed locations within lesion M1.  For each randomly selected seed location as 

shown in Figure 6.7a, delineation of the M1 lesion was performed for four TSS 

(TSS1, TSS4, TSS5, and TSS6) at α = 0.1 and a 2 min time delay. Using Dice 

coefficients the resulting M1-delineations were compared with the delineations 

based on the original manual seed selection (Figure 6.3). 

The Dice coefficient as a function of stopping parameter S for the resulting 

delineations is shown in Figure 6.7b.  For 22 out of 30 seed locations with 

stopping parameter above 0.25 for all four TSS, the Dice coefficient is nearly 

constant with the average value of 0.97 and standard deviation of 0.03, consistent 

with the average Dice coefficient for delineation based on a manually selected 

seed (0.97 with standard deviation 0.06, Table 6.3).  For the remaining eight seed 

locations, the Dice coefficient is decreasing with decreasing stopping parameter.  

Examination of the spatial distribution of these seed locations reveals that seed 

locations with S < 0.25 are located on the periphery of the tumor (open symbols 

in Figure 6.7a).  It should be noted, however, that seeds in the border regions are 

not likely to be selected by a user in a clinical setting due to partial volume 

effects. 
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Figure 6.7: Impact of random seed selection on SSRG/4D-PET algorithm 

performance: (a) the 3D spatial distribution of randomly 

selected seeds within tumor volume; Dice coefficient as a 

function of stopping parameter S (b) and TSS as indexed in 

Table 6.2 (c) 
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ication rate for both lesion types. 

 

Figure 6.7c depicts the comparison of average Dice coefficient for each of 

the four TSS for delineation based on a seed manually selected by the user to 

delineation based on seeds chosen randomly. The values of Dice coefficients 

averaged for all 30 seeds (line + open circle) are nearly 10 % lower compared to 

values obtained with manual seed selection (line + triangle).  However, when the 

eight points located on the periphery of the tumor are eliminated, the agreement 

between the randomly selected and user-selected seed Dice coefficients is 

excellent.  These results suggest that the single seed selection method may be 

used successfully in the proposed algorithm (SSRG/4D-PET) without inducing 

significant bias, provided that seed locations in peripheral regions are avoided. 

Finally, four alternate approaches for target (M2 and B2) delineation are 

compared to the algorithm proposed here: an algorithm based on K-means 

clustering with the number of clusters fixed to two, a fixed (40 %) threshold of 

maximum signal intensity, global automatic image thresholding95 using Otsu's 

method123 and adaptive (local) automatic thresholding95, 123. K-means clustering 

was performed using MATLAB function “k-means” (Statistics Toolbox; Version 

5.0.1) and the L2 norm as an index of similarity. Adaptive thresholding was 

implemented by taking the morphological opening of an image, then applying a 

global image threshold (obtained using Otsu's123 method) to the result. A square 

8×8 pixels structuring element was used in morphological operations in adaptive 

thresholding. Tumor volumes were delineated on the same masked volume used 

in the SSRG/4D-PET algorithm. Prior to delineation, the dynamic data set was 

averaged in the temporal direction resulting in a 3D summation image volume 

over all time frames. Delineation results were evaluated by Dice coefficient and 

misclassification rate (Rm) for two different lesion types (M2 and B2), applied 

directly to the 3D delineation results. Data based on the performance of these five 

different algorithms is presented in Table 6.4 and  

Table 6.5. In comparison to other algorithms, SSRG/4D-PET yields the 

highest Dice value and the lowest misclassif
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Table 6.4: Comparison of delineation of the M2 lesion using five different 
algorithms. Values of Dice and Rm measures were averaged across twelve time 
sampling schedules (Table 6.2).  Phantoms were generated with α = 0.1 and 
delay = 2 min 

Dice coefficient Rm (%) 
Method 

Average STD Average STD 

SSRG/4D-PET 0.97 0.05 6.70 12.27 

K-means clustering 

with 2  clusters 
0.91 0.14 27.84 58.81 

Fixed threshold of 

maximum signal 

intensity 

 (40%) 

0.90 0.19 44.87 124.93 

global automatic 

thresholding 

 (Otsu123) 

0.78 0.28 106.55 162.44 

adaptive (local) 

automatic  

thresholding 

 (Otsu123) 

0.90 0.16 33.01 74.29 
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Table 6.5: Comparison of delineation of the B2 lesion using five different 
algorithms. Values of Dice and Rm measures were averaged across twelve time 
sampling schedules (Table 6.2).  Phantoms were generated with α = 0.1 and 
delay = 2 min 

Dice coefficient Rm (%) 
Method 

Average STD Average STD 

SSRG/4D-PET 0.45 0.10 129.73 67.17 

K-means clustering 

with 2  clusters 
0.22 0.06 256.94 39.86 

Fixed threshold of 

maximum signal 

intensity  

(40%) 

0.10 0.04 227.39 28.75 

global automatic 

thresholding  

(Otsu123) 

0.19 0.07 257.89 84.31 

adaptive (local) 

automatic  

thresholding  

(Otsu123) 

0.15 0.13 212.10 28.04 

 

 

6.1.4 Simulation Study: Heterogeneous Phantom 

To evaluate the performance of the SSRG/4D-PET delineation algorithm in the 

presence of heterogeneous uptake, a semi-empirical digital phantom simulating 

FDG metabolism in three clinically relevant tissue types was generated.  These 

tissues include two normal structures: Skeletal Muscle (SM) and Liver (L); and 

one malignant lesion: Liver Tumor (LT).  Geometric definition of the body 

contour, the two normal internal structures and the tumor was achieved by manual 

segmentation of a representative fused 3D PET/CT data set. Segmentation was 

performed using the Region Of interest Visualization, Evaluation, and image 



 

Registration (ROVER) software package (ABX GmbH, Germany). The resulting 

segmented 3D image volume consisted of 45 slices, each a matrix of 144×144 

cubic voxels with 4 mm sides.   Generation and visualization of this digital 

phantom was performed with MATLAB (version 7.4.0.287, R2007a; The 

Mathworks, Natick, MA).  

6.1.4.1 Heterogeneous Phantom Generation 

Heterogeneous tissue simulations were performed using an FDG kinetic model 

developed by Wu et al.172. This is an extension of the "homogeneous" 

compartmental model given by (6.6), modified to account for tissue heterogeneity 

effects and refined for FDG-PET kinetic studies in liver metastases. According to 

this model, PET activity concentration ( ( )normal
TAC t

( )

C ) in normal tissues (Skeletal 

Muscle or Liver) can be calculated as a sum of activity concentration in normal 

cells (SM or L) and in a vascular compartment, 

( ) ( )2  normal normal cell
TAC TAC TACC t C t v P t= +  6.11 

where v2 is the vascular compartment volume (fractional volume) accounting for 

the vascular space in normal tissues (SM or L), ( )normal cell
TACC t  is the homogeneous 

uptake in the normal tissue ( ( )L cell
TACC t  or ( )tSM  cell

TACC ) given by (6.6), and  is 

the plasma time activity curve given by (6.7). Substitution of tissue blood 

radioactivity with the plasma radioactivity (

( )TACP t

( )TACP t

( )

) has been validated by Phelps 

et al.173. Each voxel within the tumor volume is assumed to be comprised of both 

a normal (L) and tumor (LT) cell population. Each population is assumed to have 

a homogenous compartment behavior given by (6.6) and its own characteristic 

rate constants (K1, k2, k3 and k4). Thus, 

( ) ( ) ( )1 2 1  LT LT cell L cell
TAC TAC TAC TACC t w C t w C t v P t= + +  6.12 

where w1, and w2 are the percent mass weights of the liver tumor (LT) and liver 

(L) normal cell population respectively (w1 + w2 = 1), and v1 is the fractional 

vascular compartment volume within the tumor. The liver cell population 

( ( )L cell
TACC t ) in the tumor is assumed to have the same characteristic rate constants 
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as a normal liver cell population. Rate constants for liver tissue (K1 = 0.864 

ml/min/g, k2 = 0.981 min-1, k3 = 0.005 min-1, k4 = 0.160 min-1; mean values from 

10 volunteers) and tumor (K1 = 0.243 ml/min/g, k2 = 0.780 min-1, k3 = 0.101 min-

1, k4 = 0.000 min-1; tumor source: liver metastases, mean values from 25 

melanoma studies) were adopted from a study by Wu et al.172. For skeletal muscle 

tissue, values presented in Table 6.1 were used. In this simulation, the tumor (LT) 

cell population fraction w1 in each voxel of the tumor volume was derived from 

the same representative 3D PET/CT data set which was used for geometric 

definition of the body contour, the two normal internal structures and the liver 

tumor contour. The intensity distribution within the liver tumor contour outlined 

on this clinical PET data was normalized to the maximum intensity value in the 

tumor. The weight distribution obtained was used in simulating heterogeneous 

tumor tissue. The simulated tumor was irregularly shaped with total volume of 8.1 

cc.  A ten percent contribution (v1 = 0.1) of plasma activity was added to tumor 

concentrations, while twenty five percent (v2 = 0.25) was added to the normal 

tissue TACs. For tumor and normal tissues, noiseless PET measurements of tracer 

concentration over finite time intervals are calculated as weighted time averages 

over the collection interval of a scan time frame as given by (6.8). A dynamic 

sequence of 28 frames (10×30 s, 5×60 s, 5×120 s, and 8×300 s) was simulated 

according to a time sampling schedule used in a study by Janssen et al.32. Finally, 

Gaussian noise comparable to the level in clinical PET studies was added to these 

data sets following (6.9), where the standard deviation is calculated from the 

noiseless tracer concentrations using (6.10). Noise levels in the last 40 min of 

tumor tissue, liver tissue and skeletal muscle tissue TACs were 4.9%, 3.4% and 

3.3%, respectively172. To simulate the resolution blur characteristic of PET data, 

images were convolved with a PSF (Point Spread Function) representative of a 

modern PET system. The PSF was approximated by a Gaussian kernel, with an 

isotropic FWHM of 6 mm. The value of the FWHM is larger than the width of the 

nominal PSF (4.31 mm for the Philips Allegro/Gemini cameras in case of 18F) 

attributable to the PET system and reconstruction method, in order to account for 

the additional blur caused by scatter174. 
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6.1.4.2 Heterogeneous Phantom: Results and Discussion 

In this evaluation, in addition to the three thresholding techniques and static K-

means clustering method discussed earlier, the performance of the SSRG/4D-PET 

algorithm is compared to a dynamic tumor volume delineation technique 

proposed by Janssen et al.32 (henceforth Dynamic K-means clustering algorithm). 

In the study by Janssen et al.32 a dynamic sequence of 28 frames acquired 

according to a schedule of 10×30 s, 5×60 s, 5×120 s, and 8×300 s (number of 

frames × frame duration (in seconds)) is assumed. This time sampling schedule 

was also used in the heterogeneous phantom simulation in order to facilitate a 

comparison with the dynamic K-means clustering algorithm. The major 

constraints in the algorithm are: a) the slope of the TAC (reflecting the amount 

and rate of FDG uptake) is higher within the tumor tissue than within surrounding 

normal tissue; b) the number of clusters is set to 2 a priori. Prior to tumor 

delineation, several pre-processing steps are applied: 1) the volume of interest 

(VOI) is manually selected around the tumor to minimize the computational time 

and restrict the number of normal structures in close proximity to the tumor; 2) an 

edge-preserving bilateral filter174 is applied to the data to attenuate the statistical 

noise and prepare the image for the de-blurring step; 3) to correct for blurring due 

to the point-spread function of the PET system, the data is de-blurred by means of 

Landweber’s iterative algorithm174; 4) filtering with a moving average filter in the 

time domain is used to smooth short-term fluctuations and highlight longer-term 

trends within the TACs. In the tumor delineation stage, the TAC slope value is 

calculated for each voxel within the selected VOI. Slopes are calculated over the 

last eight time frames of the dynamic PET scan as the average of the sum of the 

differences in FDG activity between two (time) adjacent measurements. Finally, 

slope values of the TACs are clustered using the k-means clustering algorithm, 

with the number set to 2. The cluster containing voxels with the highest mean 

TAC slope is classified as tumor. We would like to stress for the reader that in 

this comparison we have used our implementation of the method proposed by 

Janssen et al.32. The algorithm was implemented with MATLAB (version 

7.4.0.287, R2007a; The Mathworks, Natick, MA). Because of the absence of 
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parameter values for the various filtering methods used in the publication by 

Janssen et al.32, parameters from the referenced original work174 were used for 

bilateral filtering and iterative de-blurring. Filtering in the time domain was 

performed using a moving average filter with window size spanning 3 samples. 

K-means clustering was performed using the MATLAB function “k-means” and 

an L2 norm as the index of similarity. 

Since this dynamic K-means clustering algorithm utilizes only the last eight 

time frames of the 4D tumor volume, all other methods (including SSRG/4D-

PET) evaluated here were also applied only to the last eight time frames. Prior to 

delineation, in the case of static methods (thresholding and K-means clustering), 

the dynamic data set was averaged in the temporal direction over the last eight 

time frames. Tumor volumes were delineated on the same masked volume used in 

the proposed algorithm (SSRG/4D-PET).  

 

Table 6.6: Heterogeneous phantom study – comparison of delineation results for 
six algorithms 

Method Dice coefficient Rm (%) 

SSRG/4D-PET 0.84 27.56 

2 clusters 0.74 70.10 

3 clusters 0.70 68.50 

Dynamic K-means 

clustering 

(Janssen et al.32) 4 clusters 0.56 65.40 

2 clusters 0.55 165.40 

3 clusters 0.65 52.00 K-means clustering 

4 clusters 0.64 52.80 

Fixed threshold of maximum signal 

intensity (40%) 
0.04 5468.50 

global automatic thresholding (Otsu123) 0.55 165.35 

adaptive (local) automatic 

thresholding (Otsu123) 
0.57 148.82 
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Table 6.6 presents the segmentation results of these six different approaches 

evaluated according to Dice coefficient and misclassification rate (Rm). For 

completeness, we have also included the delineation results for both clustering 

methods (dynamic and static) with the number of clusters set to 3 and 4. 

In clinical situations, depending on tumor size and location, it may prove 

difficult to select a VOI (Volume of Interest) around the tumor containing a single 

type of normal tissue. For this reason, since the simulated tumor was located in 

the left section of the superior sub-segment of the anterior portion of the liver, the 

manually selected VOI around the tumor contained both liver tissue and a small 

amount of simulated skeletal muscle tissue. This fact contributed to the high 

misclassification rates (high number of false positives) presented in Table 6.6. 

However it is only partially responsible for the complete failure of the fixed (40% 

of max) thresholding technique. The size and shape of the simulated tumor (and 

associated partial volume effects) are to blame. For small tumors a high threshold 

value (>50%) is more appropriate33. However, the global threshold of 58% 

computed using Otsu's method via MATLAB function “graythresh” still leads to 

inadequate performance of the global thresholding schema, suggesting that the 

histogram of intensities in the tumor volume is not truly bi-modal. The same 

conclusion can be drawn for local thresholding and for both clustering methods 

utilizing 2 clusters as they all operate under the assumption of bi-modal intensity 

distribution. However, the dynamic K-means clustering with 2 clusters (second 

only to SSRG/4D-PET)  has a much higher Dice value than “static” K-means 

clustering with 2 clusters and a much lower misclassification rate due to all the 

extra pre-processing steps involved and information obtained from TACs. 

Because only those clusters containing voxels with highest mean values were 

classified as tumor, clustering with 4 clusters did not produce satisfactory results 

as expected. Best delineation results for both clustering algorithms were expected 

for clustering with 3 clusters, since the selected VOI contained three distinctly 

different tissue types. Our expectation was satisfied with regards to “static” K-

means clustering. Much to our surprise, however, the dynamic clustering 
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misclassification rate improved only slightly over the 2 cluster case, while the 

value of Dice decreased by close to 6%.  This may be attributed to the smoothing 

effect of various filtering procedures applied to the data in the pre-processing 

stage. As a result, the cluster with the highest mean value did not include all the 

tumor voxels. Also, the slope values for the liver tumor tissue were not as steep 

compared to the background in the selected VOI as for rectal cancers used in 

validation of the dynamic K-means clustering algorithm by Janssen et al.32, 

mostly due to the small amount of skeletal muscle tissue included in the VOI.  In 

comparison to other algorithms, SSRG/4D-PET has the highest Dice value and 

the lowest misclassification rate. In fact, no false positives were registered for the 

proposed algorithm. In contrast to the other methods compared, it requires all the 

voxels assigned to the tumor to be spatially connected. Denoising with PCA and 

the spatial connectivity requirement in combination with the stopping condition 

employed within the single seed region growing framework led to more accurate 

tumor volume delineation. 

6.2 Experimental Validation 

Experimental validation of the algorithm was performed on an Allegro-PET 

whole body PET scanner (Philips Medical Systems Inc.). 

6.2.1 Experimental Dynamic 4D PET Data 

Measurements were performed with a cylindrical phantom (long axis coincident 

with the reconstruction centre and orthogonal to the image plane; inside diameter 

19.0 cm), which was filled with 11C (T1/2 = 20 min, A = 0.006 MBq/ml) to 

simulate background. A cylindrical target (inside diameter = 4.75 cm, inside 

length = 8.5 cm), filled with 18F (T1/2 = 110 min, A = 0.002 MBq/ml), was 

mounted in the centre of the phantom with long axis coincident with the 

reconstruction centre to simulate a tumor volume. A dynamic sequence of 26 

frames (45 slices per frame) was acquired for 130 min according to a schedule of 

26 time frames of 300 s duration each. The data was corrected for attenuation and 
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scatter, and then reconstructed using 3D-RAMLA (row-action maximum 

likelihood algorithm). 

6.2.2 Experimental Study: Results and Discussion 

This study aims to demonstrate the validity of the PCA procedure within the 

framework of the proposed algorithm (SSRG/4D-PET) and, to a lesser degree, to 

provide experimental validation under more realistic clinically relevant conditions 

with all the corrections applied. However, all the delineation methods compared 

in this experimental study are expected to produce satisfactory results due to the 

size, shape, and placement of the simulated target volume. A relatively large (total 

volume of 150.62 cc), cylindrically symmetric target placed in the centre of the 

phantom with long axis coincident with the reconstruction centre is reasonably 

simple to delineate. The true bi-modal nature of the intensity histogram in the 

masked volume proves advantageous for the histogram shape-based image 

thresholding techniques based on global threshold.  The same is also true for 

clustering with the number of clusters restricted to 2. 

The transverse, coronal, and sagittal projections through the center of the 

simulated tumor in the first time frame of the raw unprocessed image volume are 

presented in Figure 6.8. The noisy and not entirely uniform nature of the activity 

distribution in the raw data is quite evident (Figure 6.8a, Figure 6.8b, and Figure 

6.8c) and serves to approximate (at least to first order) the combination of normal 

and tumor cells often found within a target volume. 

 



 

 
Figure 6.8: Comparison of raw unprocessed image and corresponding 

PC1 image: (a)-(c) transverse, coronal, and sagittal 

projections for the raw data; (d)-(f) transverse, coronal, and 

sagittal projections for the PCA processed data. (a), (d): slice 

33, first time frame; (b), (c), (e), (f): projections through the 

center of simulated tumor. 

 

The noise and artifact suppression provided by application of the first PCA 

channel (PC1 image) to the dynamic PET data in the first stage of the SSRG/4D-

PET algorithm is clearly illustrated in Figure 6.8.  The effectiveness of PCA 

applied to a dynamic PET scan for denoising and identification of structures is 

readily visible (Figure 6.8d, Figure 6.8e, and Figure 6.8f)49, 82. In this method 

the TAC of each voxel is individually compared to the TAC of the seed (through 

a scaling parameter). The noise present in TACs, if left untreated, can be 

detrimental to the algorithm’s performance since the TAC model used in the 

parameterization does not account for noise. For this phantom, SSRG/4D-PET 
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applied to raw untreated data results in a 68.64% volume discrepancy between 

delineated and true target volumes, whereas for the PCA processed data the 

volume discrepancy is reduced to 12.34%. 

 

Table 6.7: Phantom study – comparison of delineation results for six algorithms 

Method Dice coefficient Rm (%) 

SSRG/4D-PET 0.93 12.55 

Dynamic K-means clustering 

(Janssen et al.32) with 2 clusters 
0.92 15.40 

K-means clustering 

with 2  clusters 
0.92 14.96 

Fixed threshold of maximum 

signal intensity (40%) 
0.91 16.92 

global automatic thresholding 

(Otsu123) 
0.92 15.49 

adaptive (local) automatic 

thresholding (Otsu123) 
0.83 31.12 

 

 

Table 6.7 presents segmentation results of six different approaches evaluated 

by Dice coefficient and misclassification rate (Rm). This evaluation was based on 

a comparison of the target volumes delineated using each of the algorithms to the 

manually delineated target volume.  Manual target volume delineation was 

performed using the Region Of interest Visualization, Evaluation, and image 

Registration (ROVER) software package (ABX GmbH, Germany) based on 

known physical dimensions and placement of the cylindrical target.  In order to 

compare the four static approaches to SSRG/4D-PET target volume delineation, 

the dynamic data set was averaged in the temporal direction prior to delineation. 

The target volume was delineated on the same masked volume used in the 

proposed algorithm (SSRG/4D-PET). From inspection of the data presented in 
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Table 6.7, SSRG/4D-PET delineation reveals a distinct advantage over all four 

alternate segmentation techniques. The “adaptive thresholding” method clearly 

underestimates the target volume and yields the highest misclassification rate 

compared to SSRG/4D-PET, followed closely by the “fixed threshold” method. It 

is noteworthy that “adaptive thresholding” performs quite poorly in comparison 

with the other methods. Adaptive thresholding was performed by applying a 

morphological top-hat operator to the data and the resulting image volume was 

processed using a global threshold obtained from Otsu's method. The combination 

of the smoothing effect of the procedure, size of the structuring element used 

(square, 8×8 pixels), and the non-negligible impact of the plastic walls of the 

cylindrical target on local threshold values may explain the degradation in 

performance of the “adaptive thresholding” method. Delineation with dynamic K-

means clustering (2 clusters) results in a slightly higher misclassification rate 

(same Dice value) than does “static” K-means clustering with 2 clusters (Table 

6.7). This can be attributed to the smoothing effect of various filtering procedures 

applied in the data pre-processing stage. In the case of both “K-means clustering” 

techniques and “global thresholding”, the advantage of the SSRG/4D-PET 

method was less pronounced, but nonetheless evident (the highest Dice value and 

the lowest misclassification rate). 

6.3 Clinical Evaluation 

Clinical evaluation of the algorithm was performed on sets of images acquired 

with a Philips Gemini GS PET/CT scanner (Philips Medical Systems Inc.). To 

analyze the performance of the proposed algorithm (SSRG/4D-PET) using 

clinical data, the biological target volumes (BTVs) obtained are compared to the 

results of static delineation using automated SUV thresholding. 

6.3.1 Clinical Patient Data 

To evaluate the performance of the SSRG/4D-PET delineation algorithm in a 

clinical setting, data from four patients (patient ID: 1, 2, 3, and 4) diagnosed with 

prostate cancer were analyzed (Table 6.8). These patients were enrolled with 
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informed consent in a research protocol which had received local Research Ethics 

Committee approval. Both CT and dynamic PET images of the region of interest 

were acquired. Patients were intravenously injected with [C-11] Cholinem 

immediately after beginning their PET scan in a “head-first supine” position with 

arms held above their head. 

 

Table 6.8: Clinical evaluation – patient specific characteristics and comparison of 
delineation results for dynamic (SSRG/4D-PET; COF01 (section 6.3.3)) and static 
(fixed threshold of maximum signal intensity, i.e. % of SUVmax thresholding; 
COF02 (section 6.3.3)).  

Patient 

ID 

Age 

(y) 

Weight 

(kg) 

[C-11] 

Choline 

activity 

(MBq) 

Dynamic 

target 

volume 

(cm3) 

Static 

target 

volume 

(cm3) 

Threshold 

for static 

delineation 

(% SUVmax)

COF01  COF02  

1 79 100.0 862 33.2 22.1 75 0.67 1.00 

2 68 84.0 870 30.3 20.2 75 0.67 1.00 

3 74 85.0 804 32.5 37.3 75 0.98 0.85 

4 70 92.0 862 32.2 30.6 88 0.90 0.95 

 

 

PET data was acquired in list mode for a total of 40 minutes. This data was 

re-binned into 20 sinograms, each containing 2 minutes of list mode data. 

Sinograms were reconstructed according to current local clinical protocol. 

Routine clinical image reconstruction using default (scanner manufacturer 

supplied) reconstruction tools was performed with a fast, fully 3D iterative 

algorithm (3D-RAMLA) using two iterations, a relaxation parameter of 0.006 and 

                                                 
m [C-11] Choline is currently the most promising tracer for imaging prostate cancer patients. M. 

Picchio, E. Giovannini, C. Crivellaro, et al., "Clinical evidence on PET/CT for radiation therapy 

planning in prostate cancer," Radiother.Oncol. 96 (3), 347-350 (2010). 
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a “blob” radius of 2.5 pixels. For each frame the reconstructed image size was 

144×144 pixels in 45 slices with an isotropic voxel size of 4×4×4 mm3. Scans 

were normalized to correct for variations in detector efficiency and distortion. 

Emission data was corrected for randoms (direct online subtraction), scatter 

(single scatter simulation – SSS), attenuation (using segmented CT data, CT-

3DAC) and decay. Software used in the analysis of these reconstructed image 

data sets was developed in MATLAB (version 7.4.0.287, R2007a; The 

Mathworks, Natick, MA), on a PC.  

6.3.2 Biological Target Volume Delineation 

For each patient, a contour was derived from the dynamic scan data using the 

SSRG/4D-PET delineation algorithm. A second contour was obtained from a 

static data set (consisting of the average of the last 15 dynamic time frames) using 

automated SUV thresholding. For this purpose, the software package "Region Of 

interest Visualization, Evaluation, and image Registration" (ROVER, ABX 

GmbH, Germany) was used.  The threshold used in static delineation was based 

on a percentage of the maximum SUV value (SUVmax) within a spherical mask 

with diameter of 17 pixels (6.8 cm) centered on the prostate. This %SUVmax was 

set by an experienced staff physician to 88% for patient 4 and to 75% for the other 

patients (1, 2, and 3).  

In static PET analysis, only volumes corresponding to the last 15 frames (last 

30 minutes of acquisition) were averaged and this time averaged data was used 

for biological target volume (BTV) delineation. For the analysis of both static and 

dynamic PET data, the mask manually chosen by the user was of a fixed form: a 

sphere for static PET analysis and cuboid for dynamic PET analysis. Figure 6.9 

and Figure 6.10 depict transverse, coronal, and sagittal projections taken through 

the seed point (location indicated by cross hairs) used for delineation with 

SSRG/4D-PET and showing a cross section of the  spherical VOI used in static 

delineation (SUVmax thresholding). For SSRG/4D-PET a fully enclosing VOI 

cuboid was used. 



 

3D binary datasets (having tumor voxels labeled with a value 1 and zero 

everywhere else) resulting from both dynamic and static PET data analyses were 

converted to contours on each slice using the MATLAB function “contour” and 

were used for visualization purposes. Volumes defined by these binary masks 

were used for algorithm performance evaluation. 

 

(a) (b)(a) (b)

 
Figure 6.9: (a) – patient 1 and (b) – patient 2. Fused PET/CT images 

(transverse, coronal, and sagittal slices) showing the spherical 

VOI used in static delineation (SUVmax thresholding) and the 

coordinate of the seed used for dynamic (SSRG/4D-PET) 

delineation. For SSRG/4D-PET, a cuboid fully enclosing the 

VOIs shown here was used.  
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(b)(a) (b)(a)

 
Figure 6.10: (a) – patient 3 and (b) – patient 4. Fused PET/CT images 

(transverse, coronal, and sagittal slices) showing the spherical 

VOI used in static delineation (SUVmax thresholding) and the 

coordinate of the seed used for dynamic (SSRG/4D-PET) 

delineation. For SSRG/4D-PET, a cuboid fully enclosing the 

VOIs shown here was used.  

 

6.3.3 Contour Comparison Methods 

To investigate the differences between the contours (C1 and C2) resulting from 

these two delineation approaches, the method of analysis used by Janssen et al.32 

was followed. Three regions were defined as depicted on Figure 6.11.  
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Figure 6.11: R1 – upwards diagonal (from left to right), R2 – downwards 

diagonal (from left to right) and R0 – crosshatched region 

(intersection of contours C1 and C2). Schematic diagram 

depicting three regions (R0, R1, and R2) used in calculation of 

contour overlap fractions (COF01 and COF02) for two 

contours (C1 and C2). 

 

Region R1 represents that part of contour C1 not overlapping with contour C2 and 

Region R2 represents that part of contour C2 not overlapping with contour C1, 

whereas region R0 is defined as the intersection of contours C1 and C2. Two 

contour overlap fractions (COFs) were calculated using the number of voxels in 

the volumes (summed over all slices in which these contours occurred) 

corresponding to these three regions (equations 6.13 and 6.14). The overlap 

fraction with respect to the first contour is defined as: 

0

0 1

 
01

 

  
  

region R

region R region R

N
COF

N N
=

+
 6.13 

where and are the number of voxels in regions R0 and R1.  In turn, 

the overlap fraction with respect to the second contour is calculated as: 

0 region RN
1 region RN
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where and are the number of voxels in regions R0 and R2. The 

differences between the contours are assessed based on these overlap fractions. 

0 region RN
2 region RN

To fully analyze algorithm performance, detailed analysis of the shapes of the 

TACs within non-overlapping regions as well as within the intersection of the two 

contours was performed. It is reasonable to assume that the shape of voxel TACs 

within the intersection region (R0) of the two contours is characteristic of 

malignant tissue. Based on this assumption, and using the TACs of the 

intersection region as indicative of tumor, the voxels within non-overlapping 

regions (R1 and R2) are classified as cancerous or normal tissue depending on the 

shape of their corresponding TACs. 

6.3.4 Statistical Analysis 

Significant differences between biological target volume delineation by dynamic 

(SSRG/4D-PET) and static (fixed threshold as percentage of maximum SUV) 

approaches were expected. For the evaluated patient population, dynamic and 

static target volumes obtained are expressed in terms of mean ± standard 

deviation and range.  To test the statistical significance of observed differences, a 

Wilcoxon signed-ranks test for the median difference between the target volumes 

resulting from the two tumor delineation methods was performed. The MATLAB 

function “signrank” (Statistics Toolbox; Version 5.0.1) performs a paired, two-

sided test of the hypothesis that the difference between the matched items comes 

from a distribution whose median is zero. In this test, the level of significance was 

selected at 0.05 (α = 0.05), meaning that the observed differences are considered 

statistically significant if the obtained p value is less than 0.05. 

6.3.5 Tissue-Specific Uptake Kinetics 

An important assumption, upon which the delineation algorithm (SSRG/4D-PET) 

is predicated, is the existence of significant differences between the time-activity 

curves of malignant tissue as compared to normal tissue. To confirm the validity 
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of this assumption we have examined TAC patterns for different tissue types 

identified within the four patients available to us (Figure 6.12, Figure 6.13, 

Figure 6.14, and Figure 6.15).  
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Figure 6.12: Fused PET/CT image at the last time frame of slice 20 

(coronal projection) is presented in (a) for patient 1; from 

which six points were selected manually within different 

tissue types: normal tissue (1, 2), tumor tissue (3, 4), one point 

at the boundary of the tumor (5), and one point within the 

bladder (6). The TACs of the selected points are shown in (b). 
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Figure 6.13: Fused PET/CT image at the last time frame of slice 20 

(coronal projection) is presented in (a) for patient 2; from 

which six points were selected manually within different 

tissue types: normal tissue (1, 2), tumor tissue (3, 4), one point 

at the boundary of the tumor (5), and one point within the 

bladder (6). The TACs of the selected points are shown in (b). 
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Figure 6.14: Fused PET/CT image at the last time frame of slice 20 

(coronal projection) is presented in (a) for patient 3; from 

which six points were selected manually within different 

tissue types: normal tissue (1, 2), tumor tissue (3, 4), one point 

at the boundary of the tumor (5), and one point within the 

bladder (6). The TACs of the selected points are shown in (b). 
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Figure 6.15: Fused PET/CT image at the last time frame of slice 20 

(coronal projection) is presented in (a) for patient 4; from 

which six points were selected manually within different 

tissue types: normal tissue (1, 2), tumor tissue (3, 4), one point 

at the boundary of the tumor (5), and one point within the 

bladder (6). The TACs of the selected points are shown in (b). 

 

Points 1 and 2, located in uninvolved tissues of all four patients reveal a relatively 

small increase in accumulated activity as a function of time. In contrast, voxels 

lying within the prostate for patients 1, 2, and 3 (Figure 6.12, Figure 6.13, and 

Figure 6.14) exhibit an initial rapid increase in activity level (well above those of 

points 1 and 2) over the first 3 to 4 time frames (first 6 to 8 minutes of their scans) 

followed by a plateau of relatively constant uptake.  The uptake pattern within the 

prostate indicates that the scan of patient 4 (Figure 6.15) did not begin promptly 

but rather several minutes post injection thus capturing the plateau phase only.  

The time activity curves for the three points within the prostate also reveal 
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significant amounts of variation as a function of time for all four patients.  This is 

in all probability due to patient motion during these scans in combination with the 

presence of TAC heterogeneity within the prostate.  A varied response is also 

observed within the bladder for these four patients.  A large rise in SUV is 

observed for patient 3, a more moderate rise for patient 4, a small rise for patient 

2, and for patient 1 no discernable rise different from that of points 1 and 2.  

These variations in urinary accumulation of [C-11] Choline are suspected to be a 

result of incomplete tubular re-absorption of intact tracer and/or enhanced 

excretion of labeled oxidative metabolites175. Distinct differences between the 

shapes of the TACs, evident from the data presented in Figure 6.12, Figure 6.13, 

Figure 6.14, and Figure 6.15, suggest tissue specific Choline uptake kinetics.      

6.3.6 Contour Comparison Results 

The average biological target volume obtained using our algorithm (SSRG/4D-

PET) was 32.0±1.2 cm3 (range, 30.3–33.2 cm3), whereas for static delineation 

(standardized uptake value (SUV) thresholding based on percentage of SUVmax) 

the average resulting volume was 27.6±7.9 cm3 (range, 20.2–37.3 cm3). An 

overview of the patient characteristics and comparison of results for dynamic and 

static delineation is presented in Table 6.8. 

Contours resulting from dynamic (SSRG/4D-PET) and static target volume 

delineation are overlaid on their corresponding PET images (representative 

transverse slices) and are presented in Figure 6.16, Figure 6.17, Figure 6.18, and 

Figure 6.19 for all four patients examined in this study. Images in these figures 

are cropped to enhance visibility of the differences between contours. 

Analysis of the differences between the contours resulting from dynamic 

delineation using SSRG/4D-PET and contours generated from static SUV 

thresholding revealed contours obtained with dynamic (SSRG/4D-PET) PET 

analysis to be on average significantly larger (20.5±34.1%, range: -12.9 to 50.2%, 

p < 0.0045) than their static counterparts. 80.3±16.1% (range, 66.6–98.0%) of the 

dynamic (SSRG/4D-PET) target volume was located within the contour resulting 

from static SUV analysis. In contrast, 95.0±6.9% (range, 85.4–100.0%) of the 



 

static SUV contour was located within the contour resulting from dynamic 

analysis (Table 6.8).  

 

 
Figure 6.16: Patient 1, representative slices at the last time frame. In blue, 

the target contour resulting from standardized uptake value 

thresholding (75% of  SUVmax) of static PET data; in green, 

the target contour resulting from dynamic PET delineation 

(SSRG/4D-PET). 
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Figure 6.17: Patient 2, representative slices at the last time frame. In blue, 

the target contour resulting from standardized uptake value 

thresholding (75% of  SUVmax) of static PET data; in green, 

the target contour resulting from dynamic PET delineation 

(SSRG/4D-PET). 
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Figure 6.18: Patient 3, representative slices at the last time frame. In blue, 

the target contour resulting from standardized uptake value 

thresholding (75% of  SUVmax) of static PET data; in green, 

the target contour resulting from dynamic PET delineation 

(SSRG/4D-PET). 
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Figure 6.19: Patient 4, representative slices at the last time frame. In blue, 

the target contour resulting from standardized uptake value 

thresholding (88% of  SUVmax) of static PET data; in green, 

the target contour resulting from dynamic PET delineation 

(SSRG/4D-PET). 
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A comparison of the time activity curves (TACs) within the contours which 

result from dynamic (SSRG/4D-PET) and static (standardized uptake value 

(SUV) thresholding based on a percentage of the maximum SUV) target volume 

delineation for patients 1 and 2 is shown in Figure 6.20.  For both of these 

patients, the static contours (C1) are fully circumscribed by the dynamic contours 

(C2) so that R0 (intersection region) is equal to C1.  Thus, for these geometries, it 

is not surprising that the TACs within the static contours exhibit the same shape 

as those characterizing the dynamic contours.  These plots (Figure 6.20) are 
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extremely busy as they contain the TACs of all voxels within these contours.  To 

aid in interpretation, the mean TAC over all TACs in each contour are presented 

in Figure 6.21.  The error bars on each mean TAC are derived from the standard 

deviation over the range of TACs from each region.  The similarity between the 

shapes of the TACs in each contour clearly indicates that static delineation failed 

to recognize the full extent of the tumor.  Treatment plans for these two patients 

which were based solely on the results of static delineation would result in failure 

to target the entire extent of the tumor. 

The time activity curves within the static and dynamic contours for patients 3 

and 4 are presented in Figure 6.22.  For these two patients the static contours (C1) 

were not fully circumscribed by their dynamic counterparts (C2).  TACs for the 

intersection regions (R0) are presented in Figure 6.22a and Figure 6.22d (patients 

3 and 4 respectively).  TACs for the R2 regions (within the dynamic contours but 

not intersecting with the static contours) are presented in Figure 6.22b and 

Figure 6.22e.  TACs for the R1 regions (within the static contours but not 

intersecting with the dynamic contours) are presented in Figure 6.22c and Figure 

6.22f.  For clarity of presentation the mean TACs over these regions (along with 

their standard deviations) are presented in Figure 6.23.  The similarity between 

the TACs of regions R0 and R2 are evident.  Also evident are the dissimilarities 

between the TACs of region R1 and those of R0.  If, as hypothesized, the TACs of 

region R0 are indicative of malignant tissue, for these two patients static 

delineation has failed to encompass the full extent of the tumor while at the same 

time including non-malignant tissues within the target volume.  Therapeutic 

failure and the risk of elevated normal tissue complications are a possibility for 

treatment planning based solely on these static contours. 
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Figure 6.20: Comparison of time activity curves (TACs) within dynamic 

(SSRG/4D-PET) and static (thresholding, based on percentage 

of SUVmax) contours; (a), (b) - patient  1 and (c), (d) - patient 

2. (a), (c) - TACs of the voxels of all slices present within the 

intersection region of the two compared contours for 

respective patients. (b), (d) - TACs of the voxels of all slices 

present inside the dynamic contour but outside the static PET 

tumor contour. 
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Figure 6.21: Comparison of average time activity curves (TACs) (with 

standard deviation plotted as error bar) within dynamic 

(SSRG/4D-PET) and static (thresholding, based on percentage 

of SUVmax) contours; (a), (b) - patient  1 and (c), (d) - patient 

2. (a), (c) - TACs of the voxels of all slices present within the 

intersection region of the two compared contours for 

respective patients. (b), (d) - TACs of the voxels of all slices 

present inside the dynamic contour but outside the static PET 

tumor contour. 
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Figure 6.22: Comparison of time activity curves (TACs) within dynamic 

(SSRG/4D-PET) and static (thresholding, based on percentage 

of SUVmax) contours; (a), (b), and (c) - patient 3 and (d), (e), 

(f) - patient 4. (a), (d) - TACs of the voxels of all slices 

present within the intersection region of the two compared 

contours for respective patients. (b), (e) - TACs of the voxels 

of all slices present inside the dynamic contour but outside the 

static PET tumor contour. (c), (f) - TACs of the voxels of all 

slices present inside the static contour but outside the dynamic 

PET contour. 
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Figure 6.23: Comparison of average time activity curves (TACs) (with 

standard deviation plotted as error bar) within dynamic 

(SSRG/4D-PET) and static (thresholding, based on percentage 

of SUVmax) contours; (a), (b), and (c) - patient 3 and (d), (e), 

(f) - patient 4. (a), (d) - TACs of the voxels of all slices 

present within the intersection region of the two compared 

contours for respective patients. (b), (e) - TACs of the voxels 

of all slices present inside the dynamic contour but outside the 

static PET tumor contour. (c), (f) - TACs of the voxels of all 

slices present inside the static contour but outside the dynamic 

PET contour. 

 

6.3.7 Discussion 

The preceding clinical evaluation is predicated upon the assumption that the 

region of intersection of static and dynamic (SSRG/4D-PET) contours serves to 

define a reasonable volume within which to define time activity curves which 
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accurately characterize cancerous tissue.  Lacking any a-priori knowledge of the 

true extent of the tumor, as is the case with almost every in-vivo clinical study, 

this seems a reasonable assumption to make as static contours serve as the current 

standard for PET defined target volumes.  Proceeding thusly, it has been shown 

that static delineation, at least for the four patients available for this limited 

endeavor, apparently fails to determine the full extent of tumor volumes as 

defined by time activity analysis.  If true, these results indicate that target volumes 

defined solely upon static PET delineation run the risk of increasing the 

probability of compromising therapeutic benefit. Furthermore, in the case of 

patients 3 and 4, static delineation also resulted in the inclusion of uninvolved 

tissues within target volumes. The inclusion of uninvolved tissues within target 

volumes may increase the risk of normal tissue complications which further 

detracts from the therapeutic benefit intended. 

6.4 SSRG/4D-PET: Conclusions 

The ability to accurately delineate target volumes which include the entire extent 

of malignant tissue while excluding as much normal tissue as possible is highly 

desirable if the metabolic information contained in PET images is to be used to its 

maximum benefit in radiation treatment planning. 

A novel partially-supervised tumor volume delineation technique for 

dynamic PET imaging which allows improved classification of a patient’s 

anatomy into cancerous and normal tissue in the presence of homogeneous and 

heterogeneous uptake was developed and evaluated using both synthetic and real 

clinical patient data. Although the main purpose of the technique is to improve 

delineation of the geometric extent of PET defined tumor volumes for use in PET-

guided radiation therapy treatment planning, other applications in clinical 

oncology such as the assessment of response to treatment are also possible. 
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7. Summary and Future Work 

In this final chapter we summarize the thesis (section 7.1) and suggest future 

research directions (section 7.2) which have the potential to enhance the value of 

the contributions made by this research effort. 

7.1 Summary 

4D-PET is garnering great interest in the radiotherapy community for its 

enhanced ability to better define target volumes.  Significant foundational work, 

such as is presented in this thesis, is still required, however, to transform this 

potential into clinical reality. To this end we present a novel four dimensional 

(4D) tumor volume delineation algorithm (SSRG/4D-PET) that incorporates 

information available in dynamic PET imaging through time activity curves 

(TACs).  This algorithm utilizes temporal and spatial data simultaneously via 

parametric images extracted directly from TACs for the purpose of tumor volume 

delineation.  

The accuracy of tumor volume delineation is directly dependent on image 

quality. One of the confounding factors in the interpretation of PET data is image 

noise. Post-processing may be employed to reduce the level of noise present in 

clinical PET images.  Effective image noise reduction is greatly dependent on an 

accurate knowledge of the parameters which characterize this noise. For this 

reason we first analyzed the statistical properties of noise in PET images 

reconstructed with Filtered-Backprojection (FBP) and Row-Action Maximum 

Likelihood Algorithm (RAMLA), after all clinical correction and image 

reconstruction procedures had been applied. From this analysis it was revealed 

that the noise in PET images created with RAMLA reconstruction is very well 

characterized by Gamma distribution followed closely by Normal distribution, 

while FBP produces comparable conformity with both Normal and Gamma 

statistics.   We have also shown that the noise NSD (Normalized Standard 

Deviation = STD/Mean) is modeled equally well by the Negative Binomial, 

Normal, Log-Normal and Gamma distributions for RAMLA and by the Negative 

Binomial, Normal, and Gamma distributions for FBP reconstructions. These 
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results have been published in the Journal of Digital Imaging (Teymurazyan et al. 

2012)34.While radioactive decay is well-modeled as a Poisson process, the net 

result after all corrections and image reconstruction techniques have been applied 

is decidedly non-Poisson. A large number of noise reduction techniques are 

predicated on additive noise models and the incorrect treatment of image noise 

can be detrimental to optimal algorithm performance. Noise reduction algorithms 

specifically designed for Poisson noise are expected to produce inferior results 

when applied to clinical PET images. 

The next step in the algorithm development was the integration of an 

effective post-processing technique aimed at noise reduction. A comparison 

between PET image denoising with different techniques (PCA, BLS-GSM, and 

SHINE) reveals PCA to be the most appropriate method for post-processing of 

dynamic PET data aimed at noise reduction prior to tumor volume delineation. 

PCA applied to dynamic PET image data is used to generate images with higher 

quality and improved SNR without relying on modeling assumptions. Within the 

framework of the proposed algorithm, retaining only the first principal component 

(PC1) allows obtaining data sets with a much lower levels of noise while 

enhancing contrast, thereby optimizing signal-to-noise ratio (SNR).  The proposed 

algorithm (SSRG/4D-PET) utilizes temporal and spatial data simultaneously via 

parametric images extracted directly from TACs for the purpose of tumor volume 

delineation. The denoising step prior to parameterization is necessary because 

otherwise local short term fluctuations in TACs may significantly bias the results. 

For example, in the experimental validation study, SSRG/4D-PET applied to raw 

untreated data results in a 68.64% volume discrepancy between delineated and 

true target volumes, whereas with PCA processed data the volume discrepancy is 

reduced to 12.34%.  

The ability to accurately delineate a target volume completely covering 

malignant tissue while including minimal amounts of normal tissue is necessary if 

the metabolic information contained in PET images is to be used to its maximum 

benefit in radiation treatment planning. A novel partially-supervised tumor 

volume delineation technique for dynamic PET imaging that allows improved 
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classification of the imaged volume into cancerous and normal tissue in the 

presence of homogeneous and heterogeneous uptake was developed and evaluated 

using synthetic and real clinical patient data. The performance of the proposed 

algorithm (SSRG/4D-PET) was evaluated using both semi-empirical digital 

phantoms (homogeneous and heterogeneous) and a clinically-relevant phantom 

imaged on an Allegro-PET whole body PET scanner. Both digital simulations and 

the physical phantom study suggest that accurate tumor volume delineation can be 

achieved with SSRG/4D-PET. Also, these simulations indicate that accurate 

delineation results with SSRG/4D-PET and short imaging intervals (25-30 min in 

total) may be realized. These shorter imaging times could help with balancing 

patient comfort and financial cost. For a more rigorous evaluation of the 

algorithm performance using clinical data, biological target volumes (BTVs) 

obtained from dynamic PET analysis (SSRG/4D-PET) were compared to the 

results of the current clinical practice of static delineation using automated SUV 

thresholding. Volumes of the contours resulting from dynamic delineation using 

SSRG/4D-PET were found to be on average significantly larger than contours 

generated from static SUV thresholding.  On the other hand, in some of the 

evaluated patients, not all voxels showing TACs with shapes characteristic of 

what was observed in the region suspected to be malignant were present within 

the contour generated from static SUV analysis, introducing the possibility of 

geographic miss of malignant tissue.  These voxels were, however, included in the 

contour resulting from dynamic delineation using SSRG/4D-PET. 

In summary, SSRG/4D-PET exhibits promising potential to replace manual 

tumor delineation in clinical settings. PET-derived tumor volumes can be used to 

augment segmentation in CT (or MRI) images. Image fusion techniques may be 

used to compare anatomical information available through CT (or MRI) to the 

metabolically active tumor volumes delineated with SSRG/4D-PET, thus 

improving consistency and accuracy of the treatment planning process. With the 

advent of combined PET/CT systems, involvement of PET in the RT treatment 

planning process has been greatly simplified. The incorporation of 4-D PET into 

PET/CT offers great potential for improved tumor delineation. Also, it would 
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naturally lend itself to scans that are already acquired dynamically.  Furthermore, 

even though the main purpose of the technique is to improve delineation of the 

geometric extent of PET defined tumor volumes for use in PET-guided radiation 

therapy treatment planning, other applications in clinical oncology such as the 

assessment of response to treatment are also possible. 

7.2 Future Work 

In this thesis, a new approach to the delineation of radiation therapy target 

volumes using dynamic PET images was proposed and implemented. Future work 

will focus on further refinement and assessment of the technique in the clinical 

setting. Further research focusing on tumor sites for which there is a clear 

evidence of benefit from PET/CT-guided RT could possibly help to definitively 

establish the superiority of tumor delineation based on dynamic PET analysis in 

comparison to static tumor volume delineation. Evaluation of algorithm 

performance with images obtained using different tracers, different reconstruction 

algorithms, and coming from different PET systems could also provide additional 

insight into the problem. Finally, studies with a larger population of patients 

featuring patient outcome results and long term follow-up are necessary. 

Other applications in clinical oncology such as the assessment of response to 

treatment are also envisioned.  For example, during the course of an effective 

treatment a rapid decrease of FDG uptake in malignant tissue is expected27, 108. 

This decrease in uptake, which is found to occur prior to any detectable 

anatomical change with conventional CT images, should allow treatment efficacy 

to be assessed a short time after treatment commencement.  This would provide 

an opportunity to use the algorithm developed in this work for evaluation of the 

response of a malignancy to treatment. A clinician monitoring patient progress 

could potentially make use of tumor volume delineation prior to treatment to 

determine the therapeutic efficacy. Comparison of tumor volumes delineated on 

PET scans prior and post treatment may also provide a quantitative measure of 

tumor response to treatment. The obtained information could prove valuable in 
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providing an early warning for the need to modify the course of treatment and 

assure the long term effectiveness of treatment. 

Finally, “motion blur” such as would occur for structures affected by 

respiratory and/or cardiac function and other patient movements may significantly 

complicate the task of delineation. Patient movement during acquisition could 

result in discontinuity in the TACs for the affected organ. This issue can be 

addressed both by PET acquisitions with respiratory gating and post acquisition 

motion correction. The motion correction of dynamic PET studies can be 

accomplished through co-registration of all frames against a reference frame or 

against a time averaged image volume. For example, in a study by Janssen et 

al.32, frames are co-registered against the last time frame. In this approach, all 

applied transformations are restricted to rigid body transformations and the 

normalized cross correlation (or normalized mutual information) serves as cost 

function. An investigation into the use of alternate motion correction methods is 

also warranted.  
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