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Abstract

In this dissertation, various problems related to stochastic (partial) differential equa-
tions are investigated. These problems include well-posedness, Holder continuity of the
solution, moments of the solution and their asymptotics. This thesis is divided into
three parts. The first part studies the existence and uniqueness problems of nonlinear
stochastic differential equations including stochastic heat equation and stochastic wave
equation driven by multiplicative Gaussian noises. The main feature of this part is that
the Gaussian noise has the covariance of a fractional Brownian motion with Hurst param-
eter H € (1/4,1/2) in the spatial variable. Our contributions are to remove an artificial
assumption on diffusion coefficient in the nonlinear stochastic heat equation and to sur-
mount the barrier caused by the absence of semi-group property of wave kernel. The
second part of the dissertation explores intermittency properties for various stochastic
PDEs with varieties of space-time Gaussian noises via matching upper and lower mo-
ment bounds. This part introduces the Feynman diagram formula for the moments of
the solution and the small ball nondegeneracy for the Green’s function to obtain the
sharp lower bounds for all moments for various interesting equations, including stochas-
tic heat equations, stochastic wave equations, stochastic heat equations with fractional
Laplacians, and stochastic diffusions which are both fractional in time and in space.
The third part of this thesis considers stability problems in the mean square sense for
stochastic differential equations driven by fractional Brownian motion with Hurst param-
eter H € (1/2,1). Both the mean square stability of the solution and its stochastic theta
scheme for linear and nonlinear equations are investigated by introducing a set of analytic
and probabilistic tools. Numerical examples are carried out to illustrate our theoretical

results.
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Preface

This thesis is based on one published paper, one accepted paper and two complete

preprints. In particular

e Chapter 2 of this thesis is a joint work with Prof. Yaozhong Hu which has been
published as “Stochastic Heat Equation with general noise” in Annales de l'institut

Henri Poincaré (B) Probability and Statistics.

e Chapter 3 of this thesis is a joint work with Prof. Yaozhong Hu and Shuhui Liu
with the title “Nonlinear stochastic wave Equation driven by rough noise.” It has

been accepted by Journal of Differential Equations.

e Chapter 4 of this thesis is based on a complete work with Prof. Yaozhong Hu. This
preprint is entitled “Intermittency properties for a large class of stochastic PDEs

driven by fractional space-time noises.”

e Chapter 5 of this thesis is a joint work with Prof. Yaozhong Hu, Prof. Chengming
Huang and Dr. Min Li. This preprint is entitled “Mean square stability of stochastic
theta method for stochastic differential equations driven by fractional Brownian

motion.”
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Chapter 1

Introduction and Summary

1.1 Introduction

In natural sciences and engineering sciences, partial differential equations (PDEs) are
essential tools for modeling physical phenomena. PDEs are foundational in the modern
scientific understanding of sound, heat, diffusion, fluid dynamics and so forth. Joseph
Fourier ([FD"22]) developed the heat equation via the law of heat conduction (also called
Fourier’s law). That is, given an open subset U C R? and and a subinterval [0, 7] C R,

we say u(t,z) : [0,7] x U — R is a solution of the heat equation with source if

ou(t, )
ot

= %Au(t,x) + f(t,z), (1.1.1)

with f(¢,z) denoting a heat source. Another example is the wave equation, which de-
scribes water waves, and sound waves that arise in the fields of electromagnetism and
fluid dynamics. Historically, the vibrating string problem was studied by many famous
mathematicians such as Jean le Rond d’Alembert, Leonhard Euler, Daniel Bernoulli and
others. We refer [CD81] to the readers for history of vibration theory. Classical physics
tells us that the displacement of a string (one dimension) or a water wave (two dimension)
v(t,x) : [0,T] x U — R solves the following PDE:

0*v(t, )

—r = Av(t,z) + g(t, x), (1.1.2)



where ¢(t, z) is a wave source.

We are interested in the following question:

“What if the sources f(¢,z) and g(¢,z) in (1.1.1) and (1.1.2)

depend on some random noises?”

In Walsh’s note [Wal86], there are many interesting interpretations of this question by
introducing the theory of stochastic partial differential equations (SPDEs).

Before SPDEs, the mathematical theory of ordinary differential equations (ODEs)
perturbed by terms dependent on some random noises was developed in the 1940s. The
most popular noise is the white noise, which can be formally viewed as the derivative
of Brownian motion B, (or Wiener process W;). Kiyosi [to ([[t042,1t644]) extended the
classical calculus to Brownian motion and developed the the theory of stochastic differ-
ential equations (SDEs). Alternatively, physicist Ruslan Stratonovich ([Str57]) proposed

another stochastic calculus which is also frequently used. A typical SDE is in the form of

Some interesting examples and their applications to other fields, such as mathematical
finance, can be found in [Dks03].

However, in stochastic partial differential equations, people are more interested in
noises relying on both time and space variables, for example, the space-time white noise.
In this thesis, we primarily focus on what is so-called Gaussian noises in the form of

5 o gd+1
W(tv l’) _ m

W (t,z). See section 1.2 for a brief introduction to Gaussian noises.
There is a large amount of research on SPDEs driven by the Gaussian noises W (t, z).
Let us close the introduction section with some common examples.

If f(t,x) and g(¢,z) in (1.1.1) and (1.1.2) are replaced by W (t,z). The equations can

be rewritten as

ulte) _ INu(t, )+ W(t,a), | 2202 — Au(t,x) + W(t,2), "
u(0,2) = ug(x) . v(0,z) = up(z), 2u(0,z) = vo(x).



They are referred to as stochastic heat equation (SHE) with additive noise and stochastic
wave equation (SWE) with additive noise. If we set all the initial conditions to 0, then the
solutions to (1.1.4) as random fields are still Gaussian processes. Some critical properties
such as upper and lower bounds, strong local nondeterminism and exact modulus of
continuity have been investigated. For more related results, we refer the interested readers
to [AdI90,Hul7, Tall4, Xia06] and references therein.

Let f(t,z) = u(t,x)W(t,z) and g(t,z) = v(t,x)W(t,z) in (1.1.1) and (1.1.2), re-
spectively. Then we get the parabolic Anderson model (PAM) and hyperbolic Anderson
model (HAM):

ouls) — INu(t,z) +u(t, )W (ta), | Zob) = Ao(t,x) + olt, o)W (t,2),
U’(va) = UO(I) : U(O,ZL’) = UO(‘T) ) %U(O,[E) = U()(J]) :
(1.1.5)

There are many interesting properties of the solutions to Anderson models (1.1.5). We
refer the readers to the seminal work [CM94] by Carmona and Molchanov. Among
these properties, intermittency is the most attractive one to us. Roughly speaking, it is
characterized by the structures of sharp peaks. Let us mention an interesting example
in [BC14], the solar magnetic field is intermittent since more than 99% of the magnetic
energy concentrates on less than 1% of the surface area. A more comprehensive discussion
of this topic can be found in [Khol4] and references therein. Other than intermittency,
the Kardar-Parisi-Zhang (KPZ) equation and the KPZ universality class have drawn
increasing attention in recent years. When d = 1, W(t, x) is the space-time white nose,
there is a fundamental connection between PAM and KPZ equation. This is, the Hopf-

Cole solution h(t,z) = logu(t, z) formally solves the KPZ equation

Oh(t,x)
ot

= %Ah(t, ) + %[Vh(t, o)+ W(t,z). (1.1.6)

The solvability of (1.1.6) has been rigorously justified by Martin Hairer in [Hail3] by
regularity structures.

In addition, when f(t,z) = o(u(t,z))W (t,z) and g(t,z) = o(v(t, z))W (t, x) for some

nonlinear functions, we refer them as nonlinear SPDEs. If o(-) is Lipschitz and the noise



W (t,z) can be viewed as a Brownian motion in an infinite dimensional Hilbert space, the
existence and uniqueness problems of nonlinear SPDEs have been well developed. The
readers can find the classical results in [Dal99, DKM 09, DPZ14]. Moreover, if o(-) is non-
Lipschitz, the qualitative properties of solutions to these nonlinear SPDEs, such as the
support property ([Mue91,Shi94]) have been studied in last decades. In particular, the
stochastic heat equation with o(u) = /u is related to super-Brownian motion. There are
many researches concentrating on this direction, especially on the pathwise uniqueness

problem ([MPS06, MP11}).

1.2 Preliminaries

In most cases, the equations such as (1.1.1) and (1.1.2) do not have a ‘classical solution’
with f(¢t,z) and g¢(t,z) replaced by some random forces. This section briefly reviews
the fractional Gaussian noises we mainly focus on throughout this thesis and the precise
definitions of solutions to SPDEs.

The fractional Gaussian noise can be formally written as W(t, z) = a‘?—;pW(t,x)
where W (t, z) is a centered Gaussian process defined on some complete probability space
(Q, F,P) with covariance given by (see e.g. [Hul9, CH21] for more details)

d

E[W (t,2)W (s,y)] = Cuo(t.8) [ [Cri(2,9), s.6>0,2,y eR?, (1.2.1)

=1

1
where  Cy(a,b) = =(|a/* + b — |a —b*), VabeR.
2

In this dissertation, we always assume 3 < Hy < 1 and 0 < H; < 1. Denote C5°(R™ x R?)
the space of real-valued functions with compact support that are infinitely differentiable.
Since W (t, z) is not differentiable in general, we need to identify the noise to a mean zero
Gaussian family {W(¢) : ¢ € C°(RT x RY)}, with the covariance structure defined by

d

E[W (¢)W ()] = Crig. / 55,0 (r, € )1(r — ) [[ 16> ededsdr,  (1.22)

(RTxR%)2 i=1

where y(r—s) = Cp|s—7|™ = Ho(2Hy—1)|s—r[2#0~2 and ¢ means the Fourier transform



on space variables. Moreover, when Hy = 1/2, we always replace Hy(2Hy — 1)|s — r|*0~2

by (s — ). On the other hand, if < Hy < 1 and 3 < H; < 1, one can rewrite (1.2.2) as
BWOW@I= [ ot mvevn - A - pirdsdsdy (123
R+XR 2

where A(z) = C’H?Zl |z;|~% with \; € (0,1), j =1,---,d. Specially, when d = 1 and
Hy = H = 1/2, we call W(t,z) the space-time white noise. In addition, people also pay
attention to Riesz potential A(x) = |z|™* with 0 < A < d in (1.2.3) that can be compared
with fractional Gaussian noise. See [CJK13, CJKS13, Chel6], for example. The case of
Riesz potential has connections to many classical laws in physics.

Next, we shall briefly introduce the form of SPDEs we are dealing with. We consider

the following stochastic partial differential equation in the Eulcidean space R%:

Lu(t,x) =o(t,z,u(t,z))W(t, x), t>0, v eR? (1.2.4)

with some given initial condition(s). Here £ denotes a general (including fractional
order) partial differential operator. The examples include £ = 9; — %A (heat operator),
&L = 02 — A (wave operator), .Z = 9, — (—=V(A(z)V))*? (a-heat operator), and . =
85 — %(—A)a/ 2 (fractional diffusion operator) and so on. The Green’s function associated
with .Z is a (possibly generalized) function G;_4(7,%),0 < s <t < o0, z,y € R? or a
measure G;_¢(z,y)dy := Gi—g(z, dy) (we omit the explicit dependence of G on .Z’). Then

by Duhamel’s principle, the solution to (1.2.4) is given by the mild solution form

ult,z) = Io(t, 2) + / [ Geslamotspuls ) Wids. g, (125)

where the term Iy(t, 2) depends on the initial data and the Green’s function. For instance,
when 2 = 9, — 3A (heat operator), the Green’s function (heat kernel) and its Fourier

transform in spatial variable are respectively:

1 KN

(2rtyi2 P <—§) and  F[G}()](€) = exp (—@) : (1.2.6)

Gi(z) = ot



When £ = 07 — A (wave operator), the associated Green’s function (wave kernel) has

different forms for different dimensions. More precisely, it is given by

)
G;V(ZC) = %1{|z\<t} s d= 1,
W _ 1 1 _
G(@) = o Zmp Ual<y» A =2, (1.2.7)
Gy (dr) = L2 d=3.
\

The Fourier transform of G}'(-) has the same form given by

_ sin(tf¢])

FIGEOIE) = e §ER.

To make things precise we give here the definitions of strong and weak solutions.

Definition 1.2.1. Let {u(t,z),t > 0,2 € R} be a real-valued adapted stochastic process
such that for all't € [0,T] and v € R the process {Gi_s(x — y)o(s,y,u(s,y))lpq(s)} is
integrable with respect to W.

(i) We say that u(t,x) is a strong (mild) solution to (1.2.4) if for all t € [0,T] and

x € R we have (1.2.5) holds almost surely.

(ii) We say (1.2.4) has a weak solution if there exists a probability space with a filtration
(ﬁ,f,lg,ft), a Gaussian random field W identical to W in law, and an adapted
stochastic process {u(t,x),t > 0,z € R} on this probability space ((NZ, F,P, .7-"t) such

that u(t, z) is a mild solution with respect to (Q, F,P,F,) and w.

1.3 Summary of the work

This dissertation is a collection of joint works with my advisor and other collaborators.

It consists of four research articles, which are listed as follows.

1. Stochastic Heat Equation with general noise, with Yaozhong Hu, Ann. Inst. Henri

Poincaré Probab. Stat. 58 (2022), no. 1, 379-423;

2. Nonlinear stochastic wave Equation driven by rough noise, with Yaozhong Hu and

Shuhui Liu, accepted by Journal of Differential Equations;
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3. Intermittency properties for a large class of stochastic PDEs driven by fractional

space-time noises, with Yaozhong Hu, arXiv preprint;

4. Mean square stability of stochastic theta method for stochastic differential equations
driven by fractional Brownian motion, with Yaozhong Hu, Chengming Huang and

Min L1, arXiv preprint.

In the Chapter 2 and Chapter 3, the existence and uniqueness problems of nonlinear
stochastic heat equation and stochastic wave equation driven by Gaussian noise are stud-
ied based on paper 1 and preprint 2. We set d = 1 and the Hurst parameters of Gaussian
noise to be Hy = 1/2 and H € (1/4,1/2) in these two chapters. Considering the nonlinear
stochastic heat equation (namely, (1.2.4) with £ = 8§, — 3A), and assuming the diffusion
coefficient o (¢, z,u) in a reduced form o(u) satisfying o(0) = 0, the authors of [HHL"17]
successfully proven the strong existence and uniqueness of the SPDE by introducing some
new function spaces with some Holder norms. We keep using the reduced form o(u) to
talk about the results in Chapter 2 briefly. The main effort of Chapter 2 is to remove
this artificial condition on (). The idea is to work on a weighted space Z3 ;. (see(2.4.4)
for details) for the spatial power decay weight A(z). Our key tasks are to establish some
contractive type inequalities of heat kernel with regard to the weight A(x), which are
done in Section 2.2. Taking A(z) = cg(1 + 22)#~1 and without assuming o(0) = 0, we
show that the SPDE has a weak solution in Z¥(T") for p > 3/H under the uniform linear

growth condition and uniform Lipschitz condition (see (H1) in Chapter 2). Moreover,

it has a unique strong solution in ZY(T) for p > 4Hﬁ_1 under (H2) in Chapter 2. This
assumption is stronger than before but is satisfied for some crucial cases such as affine
functions o(u) = au + b. In addition, for any v < H — %, the process u(t,z) is almost
surely Holder continuous on any compact sets in [0,7] x R of Holder exponent /2 and
~ with respect to the temporal variable ¢ and the spatial variable x, respectively. Fur-
thermore, in the additive case, i.e. o(u) = 1, we obtain some exact asymptotics related
to the solution wu,qq(t, ) as t and x go to infinity. These results depend on Talagrand’s
majorizing measure theorem ([Tall4]).

In Chapter 3, the existence and uniqueness of the strong solution to one spatial

dimension nonlinear stochastic wave equation ((1.2.4) with £ = 0y — A and o(t,x,u) =

7



o(u) for the simple introduction of Chapter 3) are obtained under the constraint o(0) = 0.
Further research remains to get rid of this condition. In this chapter, some techniques
are developed to overcome the difficulties because of missing semi-group property of the
wave kernel. These can be found in Section 3.6. Thus, assuming that o(u) satisfies the

uniform bounded condition and uniform Lipschitz condition on its derivative with respect

to u (see hypothesis (H2) in Chapter 3) and that Iy(t,z) is in Z?(T) := Z{(T) (with

2

177> We prove that it has a unique strong solution in Z?(T") for

A(xz) = 1) for some p >

2
4H-1

p > whose sample paths are in C([0, 7] x R) almost surely. Moreover, it is proven

that both the temporal and the spatial Holder exponents of the random field u(t, z) are
v < H— % on any compact subsets of [0,7] x R. We remark that by selecting suitable
large p, the exponents of Holder continuous in time and space of the solutions to SHE
(Chapter 2) and SWE (Chapter 3) close the optimal ones as possible as we can.
Intermittent random fields as functions of space variable x consist of ‘high peaks’ which
give the most contribution to the processes. Taking from is from preprint 3, we mainly
investigate this property for the following four type Anderson models: & = 9, — %A
(SHE), £ = 8?—A (SWE), Z = 9,—(—V(A(2)V))*/? (a-SHE), and Z = 9, — 1(—A)*/?
(SFD) in Chapter 4. See equations (1.1.5) for examples. We consider Hy € [1/2,1),
H; € [1/2,1)Vi=1,--+ ,d and o(t,z,u) = u in this chapter. It is well known the lower
p-th moments and upper p-th moments of SHE match with each other (see [Hul9] and
references therein). But the approach of showing this sharp result highly depends on
Feynman-Kac formula which is no longer applicable in general, e.g. the stochastic wave
equation. However, people conjectured this should hold for hyperbolic Anderson models
and other cases. In Chapter 4, this has been answered in general. We apply Feynman
diagram formula (see section 4.5) for the moments of the solution and then select the

diagrams in the principle of small ball non-degeneracy (G2). In this way, we successfully

obtain the sharp lower bounds. More preciesely, we find that (see also (4.3.10))

b-(1—7) b
1 exp (62 Rz .p1+b(2a+1))\)

< Elu(t,z)|P] < Cyexp (02 . tlﬂféﬁiflx .p1+h<2a+"1>x)



forall t > 0, z € RY, p > 2, where ¢y, ¢, C1, C5 are some positive constants, independent
of t,z,p. The meaning of all parameters is omitted and can be found in Chapter 4.

In the Chapter 5, considering d = 1, we study the nonlinear SDEs driven by fractional
Brownian motion (fBm) B (¢) with H € [1/2,1) (i.e. replace B; by Bf in (1.1.3)). More

precisely, we investigate the nonlinear SDE ((5.1.9))

dX(t) = f(t, X(t))dt + g(t, X (t)) o dB(t),

with f(¢, X) satisfying monotone condition and linear growth condition and g(¢, X) sat-
isfying uniform linear growth condition (see Assumption 1 in Chapter 5). The noise
BH(t) is also a Gaussian process that can be defined similarly to W (¢, z) in (1.2.1) with-
out spatial parameter. The stochastic integral with respect to B¥(t) is understood in
Stratonovich sense in this chapter (see [HO03, Mis08, Hul3]). Throughout this chapter,
we focus on the problem of mean square stability; namely, the second moment of the
original solution or numerical solution vanishes as t or t,, goes to infinity. This reflects a
numerical algorithm is stable or not. Euler #-method is a popular numerical scheme to
simulate the solution of differential equations and stochastic differential equations. See
stochastic theta method (STM) (5.1.13) for the full description of this numerical scheme
in stochastic setting. However, the mean square stability of STM for SDEs driven by
fBm remains open after the paper [Hig00Ob] which deals with the Brownian motion case.
Moreover, even the problem of stability in the mean square sense of the original solution
has not been well studied due to the presence of long memory. We answer part of these
questions by developing an entirely new set of techniques to address the dependence gen-
erated by the long memory of the fBm. Our method relies on the asymptotic property
of confluent hypergeometric functions, Gaussian correlation inequality, and law of large
numbers for correlated random variables. In conclusion, for the linear case, the STM
reproduces the mean square stability when 6 is larger than 6y, ~ 0.77 and is not mean
square stable when 6 < 0.5. For the nonlinear case, the original solution to a special form
(including linear case) is proven to be mean square stable and the STM for the numerical
solution to the general form is proven to be stable in the mean square scene when @ is

larger than 6, ~ 0.87.



Chapter 2

Stochastic Heat Equation with

general rough noise

2.1 Introduction and main results

In this chapter, we consider the following one dimensional (in space variable) nonlinear
stochastic heat equation driven by the Gaussian noise which is white in time and fractional

in space:

ou(t,r)  O*ul(t,z) :
- > . .
8t ax2 +0(t,x,u(t,x))W(t,x), t = O, WS R, (2 1 1)

where W (t, x) is a centered Gaussian process with covariance given by
1
E[W (£, 2)W (s,y)] = 5(s A (|2 + yI™" — o —y*") (2.1.2)

and where 1 < H < 1 and W(t,z) = %W(t,x).

There has been a lot of work on stochastic heat equations driven by general Gaussian
noises. We refer to [Hu19] for a short survey and for more references. The main feature of
this work is that the noise is rough (e.g. i < H < %) in the space variable. We mention
three works that are directly related to this specific Gaussian noise structure. The first

two are [BJQS15] and [HHL 18], where the authors study the existence, uniqueness and

some properties such as moment bounds of the mild solution when the diffusion coefficient
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o is affine (i.e. o(t,z,u) =0(u) = au + b) in [BJQSI5] or linear (i.e. o(u) = au) in
[HHL*18]. After these works researchers tried to study (2.1.1) for general nonlinear o.
However, the method effective for affine (and linear) equations cannot no longer work.
One difficulty for general nonlinear diffusion coefficient o is that we cannot no longer
bound |o(u1) — o (ug) —o(vy) +o(vy)| by a multiple of |u; — uy —v1 +vs| (which is possible
only in the affine case). A breakthrough was made in [HHL"17]. However, to solve
equation (2.1.1) the authors in [HHL"17] have to assume that ¢(0) = 0, which does not
even cover the affine case studied in [BJQS15]! The main motivation of this chapter is to
remove the condition ¢(0) = 0 assumed in [HHL"17]. To this end we need to understand
why this condition is so crucial there. We first find out that this condition ¢(0) = 0
can ensure the solution lives in the space Z% (see [HHL17] or (2.4.4) in Section 2.4 of
this chapter with A(z) = 1). As we shall see that even in the simplest case o(u) = 1
(of the case o(0) # 0), the solution is no longer in Z% (see e.g. Theorem 2.1.1 and
Proposition 2.3.11). Moreover, the initial condition in [HHL"17] must be integrable to
guarantee the solution belongs to Z%, which means uy(z) = 1 is excluded. Thus, to
remove the restriction o(0) = 0, we must find another appropriate solution space. Our
idea is to introduce a decay weight (as the spatial variable x goes to infinity) to enlarge
the solution space Z2 to a weighted space Zf\’,T for some suitable power decay function
A(z). This weight function will have to be chosen appropriately (not too fast and not too
slow. See Section 2 for details).

The introduction of the weight makes all the tools used in [HHL*17] collapse. As we
can see we shall need a whole set of new understandings of the heat kernel to complete our
program. People may wonder whether one can still just use Z2° for our solution space.
This question is natural since we work on the whole real line R for the space variable.
A constant function is in L*(R) but not in LP(R) for any finite p. If it happens to be
possible to use Z° (without weight), then many computations in [HHL"17] will still be
valid and the problem becomes greatly simplified.

To see if this is possible or not we consider the solution w,qq(¢, ) to the equation with
additive noise, which is the solution to (2.1.1) with o(u) = 1 and with initial condition

up(z) = 0. This is the simplest case that o(0) # 0. To find out if uqq(t, z) is in Z5°
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or not (or to see if the introduction of decay weight A is necessary or not), we shall find
the sharp bound of the solution u,qq(t, ) as = goes to infinity. In other words, we shall
find the exact explosion rate of supj, <y |tada(t, )| as L goes to infinity. This problem
has a great value of its own. To study the supremum of a family of random variables,
there are two powerful tools: one is to use the independence and the other one is to use
the martingale inequalities. However, u,qq(t, ) is not a martingale with respect to the
spatial variable x (nor it is a martingale with respect to the time variable ¢) and since the
noise W is not independent in the spatial variable either, the application of independence
may be much more involved (We refer, however, to [Chel6, CHNT17, CJK13,CJKS13] for
some successful applications of the independence in the stochastic heat equation (2.1.1)).
In this work, we shall use instead the idea of majorizing measure to obtain sharp growth
of supy, <y, [taaa(t, )| and supg<i<rp |z1<r, [taaa(t, z)|, as L and T' go to infinity, both in

terms of expectation and almost surely. More precisely, we have

Theorem 2.1.1. Let the Gaussian field u,qq(t, x) be the solution to (2.1.1) with o(t,z,u)

=1 and up(x) = 0. Then, we have the following statements.

(1) There are two positive constants cy and Cy, independent of T and L, such that

cgY(T,L) <E | sup upga(t,z)| <E | sup |waaa(t,2z)|| < CrV¥Y(T,L),

0<t<T 0<t<T
_L<z<L _L<z<L
(2.1.3)
where Wo(T, L) :== 1+ 4/log, (L/\/T) L >~T and
THU(T L) if L>VT.
WY(T, L) := (2.1.4)

T% if L<VT.

(2) There are two strictly positive random constants cy and Cy, independent of T and

L, such that almost surely

cnTTYY(T, L) < sup  uaaa(t, ) (2.1.5)
(t,2)eY(T,L)

< sup |uaaa(t, @) < Oy T2Y(T, L),
(t,x)eY(T,L)
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where Y(T,L) = {(t,z) € [0,T] x [-L,L] : L>T}.

Let us point out that Theorem 2.1.1 is an extension of Theorem 1.2 of [CJK13] and
Theorem 2.3 of [CJKS13] to spatial rough noise.

It is well-known that the solution to equation (2.1.1), if exists, is usually Holder
continuous on any bounded domain. But usually it is not Hoélder continuous on the
whole space. An interesting question to ask is how the Holder coefficient depends on the
size of the domain. Since the additive solution u,qq(t, ) is a Gaussian random field we
will be able to obtain sharp dependence on the size of the domain of the Holder coefficient.
In the following theorem we state our result on the Holder continuity in spatial variable

over unbounded domain.

Theorem 2.1.2. Let u,qq(t, z) be the solution to (2.1.1) with o(t,z,u) = 1 and ug(z) =0
and denote

Z&huadd(t,lﬂ = uadd(t,x-+-h)-—-uadd(t,m).

Let 0 < 0 < H be given. Then, there are positive constants c, cy and Cp g such that the

following inequalities hold true:

—L<z<L

cy |h|TWo(t, L) < E [ sup Ahuadd(t,x)] (2.1.6)

< E[ sup \Ahuadd(t,xﬂ] < Crot'T |h|"Wo(t, L)

—L<zx<L

for all L >/t >0 and 0 < |h| < c(\/f A 1). Moreover, there are two (strictly) positive

random constants cy and C g

e [h/FWo(t, L) < sup  Aptaaa(t, z) (2.1.7)

—L<z<L

H-0
< sup  |Apugaalt,z)| < Crgt 2 |h"W(t, L)
—L<a<L

forall L >+t>0and0 < |h| <c(vVtA1).

Next, we study the Holder continuity in time over the unbounded domain. We state

the following.
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Theorem 2.1.3. Let u,qq(t, z) be the solution to (2.1.1) with o(t,z,u) = 1 and ug(z) =0

and denote

AT’LLadd(t, Qf) = uadd(t + T, 37) — Uadd(t; Z’) .

Let 0 < 0 < H/2. Then, there are positive constants ¢, cy and Cpg such that

cH T%\PO(t,L) <E [ sup ATuadd(t,x)} (2.1.8)

—L<z<L

IN

E[ sup |A7uadd(t,x)|] < Chp t%_GTGWO(t,L)

—L<z<L

for all L > Vi>0and 0 <1< c(t A1). We also have the almost sure version of the

above result.

CHT%WO(t,L)S sup  Arugaa(t, ) (2.1.9)
—L<z<L

< Sup | Astaaalt, )| < Crgt? O7Wo(t, L)
—L<z<L

forallL>+t>0and0< 71 <c(tAl). Now, cg and Cyy are random.

The above Theorems 2.1.1-2.1.3 are proved in Section 2.3. Now let us return to the
equation (2.1.1). To make things precise we give here the definitions of strong and weak

solutions.

Definition 2.1.4. Let {u(t,z),t > 0,2 € R} be a real-valued adapted stochastic process
such that for allt € [0,T] and x € R the process {Gi—s(x — y)o(s,y,u(s,y))Ipq(s)} is
integrable with respect to W (see Definition 2.2.4), where Gy(z) := \/%m exp (—%) is the

heat kernel on R associated with the Laplacian operator A.

(i) We say that u(t,x) is a strong (mild) solution to (2.1.1) if for all t € [0,T] and

z € R we have

u(t,x) = Gy xup(z) + /0 /RGt_s(x —y)o(s,y,u(s,y))W(ds,dy) (2.1.10)

almost surely, where the stochastic integral is understood in the sense of Definition

2.2./.
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(i) We say (2.1.1) has a weak solution if there exists a probability space with a filtration
(ﬁ,ﬁ,f’,j—i), a Gaussian random field W identical to W in law, and an adapted
stochastic process {u(t,x),t > 0,2 € R} on this probability space (ﬁ, F, f’, .7::t) such
that u(t,z) is a mild solution to (2.1.1) with respect to (Q, F,P,F,) and w.

Before stating our theorem on the existence of a weak solution, we make the following

assumption.

(H1) o(t,z,u) is jointly continuous over [0,7] x R? and is at most of linear growth in

u uniformly in ¢ and z. This means

sup |o(t,z,u)] < CO(ju| + 1) (2.1.11)
t€[0,T],z€R

for some positive constant C'. We also assume that it is uniformly Lipschitzian in

u, namely, V u,v € R

sup |o(t,z,u) —o(t,z,v)| < Clu—1v|, (2.1.12)
t€[0,T],z€R

for some constant C' > 0.
We can now state our main theorem of the Chapter.

Theorem 2.1.5. Let A(z) = cy(1+]x )"~ satisfy [, Mx)dx = 1. Assume that o(t,z,u)
satisfies hypothesis (H1) and that the initial data ug belongs to Zf,o for some p > ﬁ‘_l
(see Section 4.1 for the definition of Z3 ). Then, there exists a weak solution to (2.1.1)
with sample paths in C([0,T] x R) almost surely. In addition, for any v < H — %, the
process u(-,+) is almost surely Holder continuous on any compact sets in [0,T] x R of
Hélder exponent /2 with respect to the time variable t and of Hélder exponent v with

respect to the spatial variable x.

From Theorem 2.1.1 we see that when o(0) # 0 we expect that the solution will not
be in the space ZF. We enlarge it to the weighted space ZiT in the above theorem. As
we said earlier that the introduction of the weight A makes the computations in [HHL"17]

no longer applicable. For example, now we need to control, roughly speaking, a certain
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norm of A(+) [5 [ Gies(- — y)uls,y)dW (s, y) and its fractional derivative (with respect
to spatial variable) by the similar norm of A(-)u(x,-) and its fractional derivative. This
would require us to study the delicate properties of A(z)Gy(x — y)A\~'(y). Thus, we need
some very subtle and very sharp bounds on the heat kernel G;(x — y) with respect to
the weight function A\(x), which are of interest in their own. This is done in Section 2.2.
After these preparations, we shall show the above theorem in Section 2.4. Although the
techniques of [HHL'17] are no longer effective in our new situation we still follow the
same spirit there.

It is always interesting to have existence and uniqueness of the strong solution. As
we said earlier, due to the roughness of the noise we need to handle, as in [HHL17],
the square increment |o(u;) — o(uz) — o(v1) + o(v2)|. It seems too complicated for the
weighted space. So, to show the existence and uniqueness of strong solution we assume
that the derivative of the diffusion coefficient in (2.1.1) possesses a decay itself as © — oo.

More precisely, we make the following assumptions.

(H2) Assume that o(t, z,u) € COM ([0, T| xR?) satisfies the following conditions: |0, (¢, z, u)|

and |0, (t, z,u)| are uniformly bounded, i.e. there is a constant C' > 0 such that

sup lo,(t, z,u)] < O (2.1.13)
t€[0,T],zeR,ueR

sup lo? (t,z,u)| < C. (2.1.14)
t€[0,T],x€R,ueR

6

Moreover, we assume that for some p > 7,

sup )f%(x) ot (t, 2, uy) — ol (t, 2, uz)| < Cluy — usl . (2.1.15)
te[0,T],z€R
Theorem 2.1.6. Let o satisfy the above hypothesis (H2) and assume that for some

p > Uy € Zf\),o- Then (2.1.1) has a unique strong solution with sample paths in

6
4H-1’
C([0,T] x R) almost surely. Moreover, the process u(-,-) is uniformly Holder continuous
almost surely on any compact subset of [0,T] x R with the same temporal and spatial

Holder exponents as those in Theorem 2.1.5.

This theorem will be proved in Section 2.5. Let us point out that if o(u) is affine,
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then it satisfies the assumption (H2).

2.2 Auxiliary Lemmas

T —1 2
In this section, we shall obtain some estimates about the heat kernel Gy(z) = \/%me’%

associated with the Laplacian A combined with the decay weight A(z). These estimates

are the key ingredients to establish our results.

2.2.1 Covariance structure

We start by recalling some notations used in [HHL"17]. Denote by D = D(R) the space
of smooth functions on R with compact support, and by D’ the dual of D with respect

to the L*(R, dz). The Fourier transform of a function f € D is defined as

~

7(6) = F(e) = / e f(2)da,

and the inverse Fourier transform is then given by F~'g(z) = &=Fg(—x).
Let (2, F,P) be a complete probability space and let H € (i, %) be given and fixed.
Our noise W is a zero-mean Gaussian family {W (), ¢ € D(R, x R)} with covariance

structure given by

EW(@)W()] = i Fo(s, &) F(s, €)' deds, (2.2.1)

R+XR

where ¢; g is given below by (2.2.7) and F¢(s,§) is the Fourier transform with respect
to the spatial variable x of the function ¢(s,x). Let F; be the filtration generated by W.
This means

Fi = o{W(o(x)1p,(s)) : 7 € [0,t],0(x) € D(R)}.

Equation (2.2.1) defines a Hilbert scalar product on D(R; x R). To express this product
without the use of Fourier transform, we recall the Marchaud fractional derivative D? of

order 8 € (0,1). For a function ¢ : Ry x R — R, the Marchaud fractional derivative D’
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is defined as:

t t
zﬁat@_hmpﬂwt@—g%rl_ /ﬁ¢ ?) Hﬁm+w@' (2.2.2)

We also define the Riemann-Liouville fractional integral of order g of a function ¢ by

IPo(t,z) = / o(t,y)(y — x)dy.

Set

g

H={0: R, xR—=R; e L* Ry xR)st ¢(t,x) =12 (tz)} (2.2.3)

With these notations we can express the Hilbert space obtained by completing D(R, x R)
with respect to the scalar product given by (2.2.1) in the following proposition (see e.g.
[PT00] for a proof).

Proposition 2.2.1. The function space $ is a Hilbert space equipped with the scalar

product
(60n = | Fols FUG.OIE] s (2.2.4)
_02,H/ D%_Hqﬁ(t,:v)D%_qu(t, x)dxdt (2.2.5)
R4 xR
—can | [ [ott. ) = ot (e o ) = ot P dodyt, - (22:6)
where

qﬂ——(ﬂﬂﬂs TH); (2.2.7)

)
QH—[ }( 1+w“"—ﬁ"rﬁ+§ﬁ]; (2.2.8)

@ﬂ_wﬂg— )eort (2.2.9)
The space D(R, x R) is dense in $).

The Gaussian space §) is the same as the homogeneous Sobolev space H? for § =
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5 — H € (0,3) in harmonic analysis ([BCD11]). The Gaussian family W = {W(¢), ¢ €
D(R; x R)} can be extended to an isonormal Gaussian process W = {W(¢), ¢ € H}
indexed by the Hilbert space $). This means that W is a centered Gaussian family
such that E[W (o)W (¥)] = (¢,1)g. It is easy to see that ¢(t,x) = x{ogx[0.e]}: ¢ € Ry
and v € R, is in § (we set X{ox[02]} = —X{0.4xz0} if T is negative). We denote

W(t,z) = W(X{0.4x[0.2]})-

2.2.2 Stochastic integration

We first define stochastic integral for elementary integrands and then extend it to general

ones.

Definition 2.2.2. An elementary process g is a process of the following form

g(t,2) = > X0, (8) Ly ) (2),

i=1 j=1

where n and m are finite positive integers, —oo < a; < by < --- < a, < b, <00, h; <,
and X; ; are F,,-measurable random variables fori =1,...,n. The stochastic integral of

such an elementary process with respect to W is defined as

/ /g(t,l’)W(dt, dr) = Z ZXiij(l(aiabi] ® 1(hj»lj]>
R, JR

i=1 j=1

(2.2.10)

n m

=) X [Wbi 1) — Was, ;) — W(bi, hy) + W(as, hy)].

i=1 j=1

Proposition 2.2.3. Let Ay be the space of predictable processes g defined on Ry x R
such that almost surely g € $ and E[||g||3] < oo. Then, the space of elementary processes

defined in Definition 2.2.2 is dense in Ag.

Definition 2.2.4. For g € Ay, the stochastic integral fR+XRg(t,x)W(dt,dx) is defined
as the L*(Q) limit of stochastic integrals of the elementary processes approzimating g(t, )

in Ay, and we have the following isometry equality

( /R IR dx))2
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2.2.3 Auxiliary Lemmas

We shall find a solution to equation (2.1.1) in the space Z} ;.. To deal with the weight A
we need a few technical results concerning the interaction between the weight A(z) and

the Green’s function Gi(z — y).

Lemma 2.2.5. For any A € R, A\(z) = Ty and T'> 0, we have

(1+\$|

sup sup — /Gt Ay)dy < . (2.2.12)

0<t<T zeR AT

Remark 2.2.6. To avoid using too many notations we use the symbol X for a real number

and the function induced. Apparently, there will be no confusion.

Proof. Let us rewrite (2.2.12) as

sup Sup/Gt dy< sup /Gt sup y+x)dy.

0<t<T z€R 0<t<T ek A(T)

We discuss the cases A > 0 and A < 0 separately. When A > 0, we have

sup Ay to) Cy sup <ﬂ> < a1+ [yh*
zeR (x) z€R

On the other hand when A < 0 we have

1+|x+y|2>” <1+|x+y|>‘”
sup | ——MmM8M8M = < Cysup | ————= < Cy(1+
xeg( e < Cysup E < Cr(1+ y|)

In both cases we see

sup / Gi(y sup >dy < C, sup /Gt(y)(l + |y|)2wdy < 0.
0<t<T z€eR ( ) t€[0,7] JR
This finishes the proof. O

Lemma 2.2.7. Denote J(z) := [;° e~ nPcos(xn)dn, where § > —1. We have
1
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Proof. Notice that this is to estimate the decay rate of the Fourier transform of e~
when |z| is large. Since J(—x) = J(z) and since we are only concerned with the large

behaviour we may assume x > 1. We split the integral J(z) into two parts:

o0

s(x)
J(z) = / e~ cos(xn)dn + / e~ 0P cos(an)dn == Jy(x) + Ja(),
0 s(z)

where s(z) > 0 is a function to be determined shortly.

First, it is easy to see

s(x)
(@) < / nPdn < Cals(a)]**1.

For Jy(z), an integration by parts implies

) = | [ e costanyan)
s(x)

]. & M2 ,3 .

‘— ey dsm(a:n))

z s(w)

<C’ s(2))” Cﬁ)/ “le sin(xn)dn‘

-I——’B‘/ nitle sin(xn)dn‘.
L1 S s(x)

Let k = [] denote the least integer greater than or equal to 5. Continuing the above

application of integration by parts another k times yields

()| < 2 Cs > [s(2))°7 + [s(2)]"

xrk+1l xitl
7=0

Combining the estimates of J;(z) and Jy(x) we have

k s(xV1P—7 + [s(x))BHI
|J(37)| < Cﬁ[s(x>]5+1+&+oﬁz[ ( )] +[ ( )] .

xk+l

The lemmas follows with the choice of s(z) = 1. O

Let us associate two increments related to the Green function G(z), given as follows.
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The first one is a first order difference:
Di(z,h) := Gi(x + h) — G(z) . (2.2.14)

Denote D(z,h) = /7Dy u(x,h) = e”@*M* — e~  The second one is a second order

difference:
O¢(z,y,h) :=Ge(x +y+h) — Gz +y) — Gi(x + h) + Gy(x) . (2.2.15)
As above, we denote O(x,y, h) = /7O1/4(x, y, h):
O(xz,y, h) = e~ @ _ o=@th)® _ o—(@ty)® 4 o= (2.2.16)

For these two increments, we have the following identities which are needed later.

Lemma 2.2.8. For any «, 5 € (0,1), we have

C
/RZ |Dy(z, h)|?|h| " dhdx = t%fﬂ (2.2.17)
and
C
211 |—1—2ay,,|—1-28 o a,B

[ 150Gy bPIB Yy dynde = e 2.2.18)

Proof. With change of variables, it suffices to show

/ |D(z, h)|*|h| P dhdx < oo

R (2.2.19)

/ 1O, 9, )P IR~y P dydhdz < oo,
R3

The above two inequalities will be derived from Plancherel’s identity. The Fourier trans-

forms with respect to the variable x of D(x,h) and O(z,y, h) are, respectively,

D(&, h) = FID( h)](€) = Ve T — 1]

and
BE v, h) = FIOC, 5, B))(€) = Ve [ — 1][e"€ — 1]
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Thus, we have

[ 10 = [ 1De.mds = am [ 51— costrelae

and

/ |0(z, vy, h)\de = / |0, y, h)|2d§ = 47r/ e_%[l — cos(h&)][1 — cos(y&)]dE.
R R R
By Fubini’s theorem

|D(z, h)]*|h| P dhds = C/ e
R2 R

e / (1 — cos(he)]|h|2%dh
o R (2.2.20)
_ & ¢128 . —1-28

C/Re €] dﬁ/}R[l cos(h)]|h| dh < o0

00 1—cos(

since [~ —7

Bt is finite for all # € (1,3) which requires o, 8 € (0,1). This proves the
first inequality in (2.2.19). Same argument shows the second inequality in (2.2.19) under

the condition of the lemma. OJ

Remark 2.2.9. In the rest of our chapter, we shall use the lemma for a = 8 = % —H e
(0,1/4).
Lemma 2.2.10. For D(z,h) and Di(x, h) defined in (2.2.14), we have
F(x):= / |D(z, h)|* R 2dh < Cy (1A |22 (2.2.21)
R
and when t > 0
| [2H 2
Fi(z /]Dt z, h)*Ih*"2dh < Cy <tH A 7 ) : (2.2.22)

whereO<H<%.

Proof. The assertion (2.2.22) is an easy consequence of (2.2.21) by change of variables so

we only need to provide a proof for (2.2.21).
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Recall that the Fourier transform of D(z,h) (as a function of x) is

By the inverse Fourier transformation D(z, h) can also be written as

/D 777 mndn— 2\/_/ 7"7 zhn zzndn'

Therefore, we can write

n% 772 . e — .
F(z) = C’H7r2/ 6_% /[6”"“ — 1][eihm2 — 1]|n|*" ~2dh e m=m2) dp dny
R2 R

2+ 2 .
=Cn / e H (1, m2)e™ M=) dny dns
RQ

where similar to (2.2.20), we have

H(n,m2) = CH/[@””71 — ”m‘h‘ﬂf_?dh
R

= Crr (Im]" 7" + e 721 — |y — a2 (2.2.23)

It is easy to see that sup,cp |[F(z)] < C < co. Now, we want to get the desired decay

estimate when x goes to infinity. We have

771+172 1-2H z:r
/ [72] 01 =12) gy
]R2

_n +n .
+Ch / En 1 — |2 e ) dy di
RQ

2
_z2 _n2 _ —i
SCHG T /6 vl |772|1 2H6 zwman‘
R

A 2
R R

2 2
<cne| [ e-%\n|1-2Hcos<m>dn'+cH [ e S costanyin
Ry Ry

since

_ IngP+Ing+n)? _In?
/e 1 dn, = Ce™ 5 .
R
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Now the inequality (2.2.21) follows from Lemma 2.2.7. O

Lemma 2.2.11. Recall that O(z,y, h) and O(x,y, h) are defined by (2.2.15) and (2.2.16).
We have

F(z) := / 1O(z,y, ) P|hP" 2y 2dydh < Cy (LA |2P772) (2.2.24)
R2

Moreover, for any t > 0 we have

2H—2
Fi(x) ::/ 10u(z,y, ) P |R*2 2 |y|* 2dydh < Cy <t2H_2 A 2 ) . (2.2.25)
R2

2fl—H

Proof. As in the proof of Lemma 2.2.10 we only need to prove (2.2.24) and last inequality
can be derived from (2.2.24) by a change of variable.
The proof of (2.2.24) is similar to that of Lemma 2.2.10. Recall the Fourier transform

of O(z,y, h) as a function of x:

Bn, v, h) = FIOCy. W] () = v/ae 5 e — 1)[e — 1],
This means
2 A ‘
D(I’, Y, h) = \/E/ 6_% [GZyn — 1] [elhn _ 1]€Zz‘nd,’7 ]
R
Thus, we have

2 2
_ m +772

Fla)= [ e e — et — 1) T =]

[ — 1| R[22y P2 et =) dydhdipy dipe

2403 .
= 27r2/ e H? (11, m2) €™M =) dny dn (2.2.26)
R2

where H(n1,72) is defined in (2.2.23) or

H?(m,m) = Chy <|771|2_4H + | i [ o+ iy — P

—im| T = mel —mel T m — e .
| ’1 2H| |1 2H ‘ |1 2H| ‘1 2H
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It is easy to see that sup,.p |F(2)] < C < co. Now we want to show the desired decay
rate as * — oo. By the symmetry F(—z) = F(x), we can and will assume z > 1. The

argument in the proof of Lemma 2.2.10 can be used to obtain the desired bound for

|2—4H |1—2H (

and

each of the above terms except the terms |n; — 7 and |n 172 |ny — ny

[m2|' 2" |ny — me|'72H | which can be handled analogously).

For term |, — no|?>~*#, letting & = 1 — np and & = n; + 1, implies

"1“72 2Q—4H iz
/ Im — ’ e'w(m =) dnydns
RZ

_&+e 52 izé) _& —
—c [ S P estagdg = [ el cosae)as
+

Then using Lemma 2.2.7, we see that this term is bounded by 1 A |z[*773 < 1 A |22

1 1
f0r1<H<§.

|1—2H‘771 _ 7]2|1—2H

In order to deal with the second term | , we make the substitution

& =m and n = 3(m — n2) to obtain

_n +n .
J () ‘:/RQ S T [y — |2 ) Ay, i,

_ )2 2 ]
:C/ exp <_ (g 27]) )exp (_%) |£|172H’n‘172H612xnd€dn.
R2

ﬂm:ém((€m>mw%§

We need to show a similar inequality to that in Lemma 2.2.7:

Denote

|J(2)| = / e‘%nl—zHE(n) cos(an)dn' < Cy (1 A \:1:|2H_2) .
0

First, we observe that |E(n)| < Cg(1 + |n|*~2) and both |E'(n)| and |E”(n)| can be

bounded by a multiple of

/Rexp (_w> ’£|1*2Hd£ < CH (1 + |?7’1—2H) .

We only need to care the case when x is large. Let us split J(z) into two parts of
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which one integrates from 0 to s(z), denoted by J;(x), and the other integrates from s(z)
to infinity, denoted by Jo(x), such that s(z) — 0 as x goes to infinity and whose precise

form will be given later. For the first part

s(x)
@< B[ B < Co (s + ).

For J(z), an integration by parts yields

@)1= [ ) cos2ama

:C‘E/ 6_72771 HE(n )dsin(an)‘

<Cy We il |E(s(z))] + —‘ /( | J? sin(2zn)E (n)dn’
—i——‘/ ~% sin(2zn)E dn’ + —‘/ N 22 sin(an)E’(n)dn‘
=:Jo1 + Joo + Joz + Jos.
The first term is bounded by
1

J21<(E) S CH;[S(.T)PiQH .
As for Jos(x) an integration by parts yields

1 o0 2
Tala) =y | [ e sin2on) By

LS s(x)

E(s(z)) g, C [T d | on _r
<C o [s(x)]7*" + = - an [ E(n)e } ‘ dn
< o))+ () 4

In the same way we can bound Jo3(x) as follows.

1) [ 2
ofe) =y | [ o e L s B

SCE(S(;C)) [8(1’)]272}[ + g /OO

T 1'2 s(z)

d

il 272HE f% d
i [?7 (n)e ” n
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<cZe e 5 [ e e | an
<)) 20+ st +
Noticing that § < H < 3, and taking s(z) = % imply our result. O
Lemma 2.2.12. Denote A\(x) = W and recall Dy(x,h) defined by (2.2.14) and

O¢(x,y, h) defined by (2.2.15). We have

/ Dy(, WP 2A(= — 2)dadh < Crpt?—'A(2),
R2
(2.2.27)
/ O (@, y, B) PLRPT 2y P20 (2 — @) dadydh < Cr gt 30 (2).
R3

Proof. Set
2-2H
R(m,z):A(Z_m)z 1+ |z| |
A(z) 14|z — 2|

where and throughout the chapter for two functions f and g, notation f ~ g means that
there exist two positive constants ¢y and Cy such that cgg < f < Cgxg. By Lemma

2.2.8, we have by change of variables  — zv/t, h — hy/t and z — 21/t

/ Dy(, )2 P2 R (x, =)ddh

RQ

gCHtH-lf |D(z, h)2|h|* 2 R(Vtx, Vtz)dzdh
R2

SCHtHl/ (1A Jz*72) R(Vtx,V/tz)dx. (2.2.28)

Similarly, making substitutions = — zv/t, y — yv/t, b — h\/t and z — 2/t we can get

rid of the ¢ in O;:

/ Oz, y, W)PIAPT 1y 27 R(e, 2)dedydh
R3
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— Oyt / O, y, W) P2y 22 RV, V22 dadydh
R3

SCHtQH_%/ (LA |2*72%) R(Vtz, Vt2)da. (2.2.29)
R

Notice that the above change of variable with respect to z is not essential because we will
take its supremum over R. But it will be convenient for us to split the intervals. From

(2.2.28) and (2.2.29) to show our lemma it is sufficient to show

sup sup/ (1A [z*2) R(V'tx,\V/tz)dx < occ. (2.2.30)
R

t€[0,T] zeR

Notice that we assume that ¢ € [0, 7] is bounded. If z is bounded, then R(v/tx,/tz) is

also bounded. Then, we have

sup sup/ (LA [z[2772) R(Vtx,Vtz)dzr < CT,H/ LA |22 2de < 0. (2.2.31)
R

te[0,T] |2|<2 R

This means that we only need to consider the case |z| > 2. Due to the symmetry
R(—V/tx, —/tz) = R(V/tx,\/1z), we can assume z > 2.
Next we split the domain of the integral into two parts.

(i) The domain x < 2/2 or # > 22. On this domain R(v/tz,v/z) is bounded. Thus

sup sup/ (LA [z[2772) R(Vtx,Vtz)dzr < CT/ LA |22 2de < 0o, (2.2.32)
te€[0,T] |z|>1 {wgg} R

(ii)) The domain z/2 < x < 2z. On this domain we have x > 2/2 > (2 +1)/3 > 1 and

then

92-2H

1A |.CE’2H_2 S |$|2H—2 S m

Thus,
I ::/ (1A |z R(V'tw, Viz)da
F<w<2z

<C, (1+\/Zz)

1+ 2

2—-2H

2z 1
/ dx
o (Lt Vil — 2
By the symmetry of the above integrand we know that the integrals [~ and f:z are the
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same. Hence, we have

I <Cpy

1+ (Vitz)*2H /22 1
-

1+ 22728 1+ Vtlx — 2|

P (ﬁz)Q_QH 2H—1
_CH\/E(l + 222 [1 ~ (L) ]

I (Viz)2 21 2H—1
<O e ey [ 0V

)272H dx

Consider now the function

1 _I__ U/272H

f(u):m [1-(1+w™ '], u>0.

This is a continuous function on (0, 00). When v — 0 and when u — oo we have

lim f(u)=1—-2H, lim f(u)=1.

u—0+ U—00

Thus, f(u) is bounded on (0, 00) and this in turn proves

sup sup/ (LA 2)72) R(Vix, Viz)de < oc. (2.2.33)
z/2<x<2z

t€[0,T] z>1

Combining (2.2.31)-(2.2.32) together with our above symmetry argument we prove (2.2.30)

and hence we complete the proof of the lemma. O

Remark 2.2.13. From this lemma, we see why we choose the above decay rate for our
weight function. If we consider A\(z) = (1+4|x|*)™ with A\ > 1—H, then for |z| sufficiently

large one has

1 A
[ QAP ) Rede 2 [ PR e 2 G
R

le—z|<1

which diverges as |z| — co. This elementary fact suggests us that A\ must be in (5,1— H],

and it is obvious L (R) is the largest space when A =1 — H.
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2.3 Additive noise

When the diffusion coefficient o(t,z,u) = 1 (or a general constant), the noise is additive

and the solution to (2.1.1) can be written explicitly as
u(t, ) /Gt x —yY)up(y dy+/ /Gt s(x —y)Wi(ds,dy), (2.3.1)

where Gyi(z) = ﬁ exp <—j—j> is the heat kernel. To focus on the stochastic part we

assume uy = 0. Thus, the resulting solution is written as

Uada(t, T) / / Gl — y)W(ds, dy) . (2.3.2)

This solution u,qq(t, ) defines a (symmetric) centered Gaussian process. We shall study
how it grows as the parameters ¢ and = go to infinity. It is expected that waqq(, )
is Holder continuous in ¢ and x. More precisely, for any positive constants v < H,

T,L € (0,00), there is a constant Cr , , depending only on T, L and v, such that

sup [Uada (s, ) — Uaaa(t, y)| < Crory (|t — |72 + |z — y) .
0<s,1<T Jal Jyl <L

We want to consider the Holder continuity of u.qq(f, ) on the whole space R. Namely,

we want to know how the sharp constant Cr 1, grows as 7" and L go to infinity (for any

fixed 7).

2.3.1 Majorizing measure theorem

To find the sharp bound for Cr 1, we shall utilize Talagrand’s majorizing measure theo-

rem which we recall below.

Theorem 2.3.1. (Majorizing Measure Theorem, see e.g. [Tall4, Theorem 2.4.2]). Let T

be a given set and let {X;,t € T} be a centered Gaussian process indexed by T'. Denote

d(t, s) = (E| X, — X,|?)2, the associated natural metric on T. Then
E[Sup Xt] = 72(T, d) := inf sup Z 2"2diam (A, (1)), (2.3.3)
teT tel 753
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where the infimum is taken over all increasing sequence A := {A,,n = 1,2,---} of
partitions of T such that #A, < 22" (#A denotes the number of elements in the set A),
A, (t) denotes the unique element of A, that contains t, and diam (A, (t)) is the diameter

(with respect to the natural distance d) of A,(t).

This theorem provides a powerful general principle for the study of the supremum of

Gaussian process.

Remark 2.3.2. The natural metric d(t,s) is actually only a pseudo-metric because
d(t,s) = 0 does not necessarily imply t = s (e.g. Xy =1). It is also called the canonical

metric.

It is more convenient for us to use the following theorem to obtain the lower bound.
Theorem 2.3.3. (Sudakov minoration theorem, see e.g. [Tall4, Lemma 2.4.2]). Let
{Xi,,i=1,--- L} be a centered Gaussian family with natural distance d and assume

Vp,q < L, p#q=d(t,,ty) > 0.

Then, we have

E( sup th) > g\/@, (2.3.4)

1<4i<L

where C is a universal constant.

The following “concentration of measure” type theorem allows us to obtain deviation

inequalities for the supremum of a Gaussian family.

Theorem 2.3.4. (Borell, see e.g. [AdI90, Theorem 2.1]). Let {X;,t € T} be a centered
separable Gaussian process on some topological index set T with almost surely bounded

sample paths. Then ]E(supteT Xt) < o0, and for all A >0

)\2
< e .0.
P{ >/\}_2exp< 202), (2.3.5)
2

T
where 0% := sup,er B(X?).

sup X; — E ( sup Xt>

teT teT
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We have the following observation which can be deduced immediately from [Tall4,
Lemma 2.2.1]. This simple fact tells us E[sup,c; | Xt|] > E[sup,eq Xt]. So, we only need

to consider E[sup,c; X¢].

Lemma 2.3.5. If the process {X;,t € T'} is symmetric, then we have

E[sup |X;|| < 2E[sup X;] + inf E[|X,,]]. (2.3.6)
teT to€T

teT

2.3.2 Asymptotics of the Gaussian solution

For the mild solution w,qq(t, ) to (2.1.1) with additive noise (e.g. o(t,x,u) = 1), defined
by (2.3.2), we shall first obtain the sharp upper and lower bounds for its associated

natural metric:

di((t,2), (5,9)) = VE|ttaga(t, ) — taga(s, y)[?, (2.3.7)

The following lemma gives a sharp bounds for this induced natural metric for the

Gaussian solution w,qq(t, x).

Lemma 2.3.6. Let dy((t, ), (s,y)) be the natural metric defined by (2.3.7). Then, there

are positive constants cy, Cy such that

cnlle —yl" A(EAS)T + ]t —s]7) < di((t,2), (s,9)) .
<Cullz—yl"A(EAS)Z +t—s|7)
for any (t,x), (s,y) € Ry x R.
Remark 2.3.7. The above property of the natural metric can also be written as
di((t,2), (5,9) < o ((t,2), (5,9) == o —y[T A(EAS)> + |t =52 (239)

di.u((t,x),(s,y)) is no longer a distance but it is very convenient for us to obtain the

desired results.

Proof. Without loss of generality, let us assume ¢ > s. Plancherel’s identity and the
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independence of the stochastic integrals over the time intervals [0, s] and [s, ¢] give

di((t,2),(5,9)) = Eluaaa(t, ¥) — taaa(s, y)[*

2

=E / Gi_r(x — 2) — Gs_.(y — 2)|W (dr,dz)
+E Gt (@ —2)W(dr,dz) 2
_ /R [1 _ exp<—2sg 1+ exp(—2(t — )€2) (2.3.10)

— 2exp(—(t — 5)¢%) cos(lw —ylg)] - €7 Hdg + 2"y (t — 5)"

where kK = H™'T'(1 — H) is a positive constant. We start to obtain the upper bound of

(2.3.8). The triangle inequality gives

dl((tv CL’), (Sa y)) < dl((t7x)’ (Sv J})) + dl((S,ZE), (87 y)) : (2'3‘11)

Let us deal with the two terms on the right hand side of the above inequality sepa-

rately. For the first term, Plancherel’s identity (2.3.10) implies

di((t,x), (s,2)) = rp (27717 42070 — (0 4 9)H] + (2771 + D (t — )"

S CH(t_S)HJ

because 2801t + 201l (¢ + )7 < (0 when t > 5. Again from (2.3.10), the second

term on the right hand side of (2.3.11) is given by

E((sv) (s = [ [ explo(s = 1) 611 = coslele — yldgar
—Culo o [ 1o (25 ) |- - ot

y[?

which can be controlled by Cg|r — y|*. On the other hand, we have

di((5,2), (5,9)) =Elttadaa(s, %) — taaa(s, y)I’]

< (E[taals, )] + Elluaaa(s,9) ")) < Crrs”
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Thus, the quantity of d3((s, ), (s,y)) is bounded by the minimum of Cx|z — y[* and

Cysf. We can summarize the above argument as

q
2

di((t,), (5,9)) < Cullr =yl A% + (1= 5)%), (2.3.12)

which is the upper bound part of (2.3.8).
Now we turn to the lower bound part of (2.3.8). From Plancherel’s identity it is
sufficient to bound the first summand in (2.3.10) from below by cy(|z — y|# A s%) for

some constant cg > 0. We denote this first summand by I:

= /R[l — exp(—2s¢")][1 + exp(—2(t — 5)¢7)

— 2exp(—(t — 5)&?) cos(|z — yl€)]|€]' 7 d¢

=clz — y|** /R+ {1 — exp (—%)} Y S (2.3.13)
[1-en (-4 ) o] as

yl?

To bound it from below, we divide our argument into two cases:

[z—yl>+vs and |z —y[< Vs

When |z — y| < /s, we can bound (2.3.13) from below by

L 12H 2t _ o2\ . —1-2H
I > cylz — vy Z/ 1 exp( 2{” 13 dé

2nm+Z 5

> cplr —y*, (2.3.14)

since 1 — exp(—2s€?/|z — y|?) > 1 — exp(—2£?%) by the assumption and cos(£) is negative
on the intervals J;~, [2n7 + I, 2nm + 27].

The case |x — y| > /s is a little bit more involved. Denote

>]
=]
—~
[u—
|
Q
*
~—
8
|
=
—

:= inf €Np:2 — _
no n {n 0: mr—l—z P
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with the choice ¢* = 1 — exp(—7?/2) such that

—In(1 — ¢¥)

— >
5% |z —y| >

It is then easy to see that ng is a well defined finite positive integer. This way, we have

the lower bound for (2.3.13):

1= ey | e {1 — exp (— 258" )} iR g

n=ngo 2nm+35 |ZL’ - y|2
2n7'r+377r * e’}
2H —1-2H c 2H —1-2H
sele—yPt 3D [ et s Sy [ g
n>no 2n7r+% 2n07r+%

5—1—2H

where the last inequality follows from the fact that is a decreasing function on

(0,00). From the definition of ny, it follows

—In(1 —¢)

]ZCH|$—CU|2H< P

—2H
lx —y| + 27r) > cyst (2.3.15)

since |z — y| > /s and consequently

—2H
ol —In(1 — ¢*)
|z =y TW—Z/H'QW

mi—c) 27 \ mi—c) 27\

—In(1 —¢* T —In(1l —¢* T

= > S S A R = cyst .
( PR |x—y|> = ( PR \/§> cns

Thus, (2.3.14) together with (2.3.15) imply

H
2

di((t,2), (s,9) > cu(|lz —y|T As? + (t—s)2). (2.3.16)
Combining (2.3.12) and (2.3.16), we complete the proof of this lemma. O

Now we are ready to prove Theorem 2.1.1, which gives a sharp bound for

E | sup |uaga(t, )]
0<t<T
_L<z<L

36



Proof of the first part of Theorem 2.1.1. To simplify notation we denote

T=1[0,7] and L=[-L,L].

Since uaqq(t, ) is a symmetric and centred Gaussian process Lemma 2.3.5 states that

E| sup |uaaa(t,z)|| ~E | sup waqalt, ZE)] (2.3.17)
(t,x)eTxL (t,x)eTxL
Hence, to show (2.1.3) it is equivalent to show
cn¥Y(T,L) <E [ sup uadd(t,:c)] <CyVY(T,L), (2.3.18)
teT,xell

where W(T', L) is defined by (2.1.4). We shall prove the upper and lower bound parts of
(2.3.18) separately. Let us first consider the upper bound part in (2.3.18). We shall use
the majorizing measure method (Theorem 2.3.1) and our bound for the natural distance
(Lemma 2.3.6). Let us separate the proof into the cases L > VT and L < V/T. First,
we assume L > /7. We choose the admissible sequences (A,) as uniform partition
of T x L. = [0,7] x [~L, L] such that card(A,) < 22". More precisely, we partition
0,T] x [-L, L] as

( 22" g

0.7)=" U [j-2¥ ' T(G+1)-227'T),
=0
22’”72_1 n—2 n—2
~L,L]= U [k-2—2 L.(k+1)-272 L).
k:722n—2

\

Theorem 2.3.1 states

E

sup uadd(t,x)] < Cyp(T,d)<C sup > 2"2diam (A,(t,2)).  (23.19)

(t,x)eTXL (t,x)eTxL n>0

Here A, (t,x) is the element of uniform partition .4,, that contains (¢, z), i.e.

Adta) =[5 27T G+ 1) 2 T) [k 2 L )27 L)
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such that j-272" ' T <t<(j+1)-2Y "Tand k-2 "L<z < (k+1)-272""L. We
only need to estimate diameter of each A, (¢,z). Since (A,) is an uniform partition, the
diameter of A, (¢, x) with respect to dy g ((t,2), (s,y)) defined in (2.3.9) can be estimated

as

diam (A, (t, 2)) < Cy (T% A (z—HQ"*"’LH)) 4 oY

For L > \/T, we can split it into two cases: VT < L <2JT and L > 2/T. Tt is clear
that the case L > 2+/T is more complicated. We consider it first. Let Ny be the smallest
integer such that 272" "L < /T, i.e. logy(logy(L/VT))+2 < Ny < log,(logy(L//T))+3.
By (2.3.19) we have

E| sup u(tx)
(t,x)eTxL
<Cy sup Z 2"%diam (A Z 2"2diam (A, (t, z))
(t,x)eTxL n=No+1

H
22N0 2

n=0 n=No+1

<CyT? 2N 4 CyT= < CpT?Vo(T, L), (2.3.20)

where Wo(T, L) = 1 + \/log,(L/v/T) and L > 2/T. The case VT < L < 2/T is easy
because Wy(T, L) is bounded now. One can prove directly that E [Sup(tw,c)eqrx]L u(t,z)] <
CuT% same as (2.3.21). This concludes proof of the upper bound in (2.3.18) when
L>VT.

Now, we prove the upper bound part in (2.3.18) when L < VT. The same uniform

partition discussed above is still applicable. We have

E

sup  |u(t, x)|]

(t,x)eTxL

<Cy

ZQ”/2 sup diam (An(t,x))]

n—0 (t,x)eTxL

<OpT? Y 2% 271" L 04T < OyT? (2.3.21)
n=0
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because

0T

sup  diam (A,(t, 7)) < Cy {(22"_2L)H + (2’2"_1T>

(t,x)eTxL

] < Cu2 YTy

This completes the upper bounds part of (2.3.18).

We will utilize Theorem 2.3.3 (Sudakov minoration Theorem) to prove the lower bound
in (2.3.18). We also divide the proof into two cases: L > VT and L < VT.

First, we consider the case L > VT. Select ¢ in Theorem 2.3.3 as cHT% with certain
relatively small ¢y > 0. For the sequence {u(T,z;),i = 0,1,--- ,£N}, where N =
|L/VT] (> 1 by the assumption) and

2o = 0,241 = VT, - 24y = £NVT,

we have

dyy(T,2:), (T, 2;)) > eyT? =3 ifi#j.

Sudakov’s minoration theorem implies

E| swp |uft,o)

(t,x)eTxL

>cpdy/1og,(2N + 1) > ey T2 Uo(T, L) .

Sy ——-

(2

(2.3.22)

The lower bound in (2.3.18) is established when L > v/T.

Now we prove the lower bound part in (2.3.18) when L < v/T. We choose § = cyT? as
above and we choose u(7"/2,0), (7, 0) as our comparison set. We have dy ((7/2,0), (T,0)) >
cy(T/2)% > 6. Theorem 2.3.3 gives

E| sup wu(t,z)| >Eu(T/2,0)Vu(T,0)]>cyT? . (2.3.23)
(t,x)eTxL
Thus, the proof of the lower bound part in (2.3.18) is completed. 0
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Notice that from (2.3.9), it follows that for any fixed t € R
dy((t,2), () < dyp(,y) =7 Az —y|", (2.3.24)

and for fixed z € R
dy((t,2), (s,2)) =< dy g (t,s) == |t — 5|7 . (2.3.25)

Using a similar argument to that in the proof of inequality (2.1.3) we have the following

corollary.

Corollary 2.3.8. Let the Gaussian field uaqa(t, x) be defined by (2.3.2). There are positive

universal constants cyg and Cygx such that

;

crt® \/logy(L) gE[ sup |uadd(tax)|:|
—L<a<L

SE{ sup Uadd(tax):| < Oyt \/logy(L) ;

—L<z<L

(2.3.26)

e S| swp vuaa(t.0)| B | sup funaa(t )| < Gt

\ 0<t<T 0<t<T

Next, we shall explain that the almost sure version of Theorem 2.1.1 is a consequence

of (2.1.3) with the aid of Borell’s inequality (Theorem 2.3.4).

Proof of the second part of Theorem 2.1.1. First, we shall prove (2.1.5) for T = n® for

some « and for all sufficiently large integer n. Denote L := [—L, L], T* = [0,n*]. Let

e>0andlet L > 2 be sufficiently large. We start with the lower bound. Theorem

aH aH L
SUp  Uaad(t, w)| > cg | n 2 +n2 4 /log, (ﬁ)
(t,x)eTexL n<

for some positive number cy. Denote

2.1.1 gives

E

1
Ag = Ag(T* x L) = §E { Sup uadd(t?x)} )

zeTaxL
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and

aH
ot = 0n(T*xL) = sup El|uaa(t,z)]’] = Cyn 2 .
(t,z)eTexL
Then, Borell’s inequality implies
1 ¥
P{osup ua(tw) < SB[ sup waalt,@)| p < 2exp [~
(t,2)eTo xLL 2 LizeToaxL 209

(2.3.27)

CH
L n® 172 .
= 2o (_CH |:1 +log, (W)}) <Cn |:na(1+a)} S CHn_ae.TH )

where ¢y, C'y > 0 are some constants independent of n. Select real number « sufficiently

large such that ae - <& > 1 and define the events F,

1
F, = { SUp  Uada(t, v) < —E[ sup Uadd(t7$)] } :
(t,x

)ET> XL (t,z)€T>xL

The bound (2.3.27) means Y -, P(F},) < co. An application of Borel-Cantelli’s lemma

yields that P(limsup,, F;,) = 0. This means that

1
SUp  Upaa(t, z) > —E[ sup  Unad(t,z)| > cpm T%\IJO(T, L), (2.3.28)
(t,x)eTexL 2 (t,x)eTexL

almost surely for sufficiently large values of 7' = n®. Then letting ¢ — 0 proves lower
bound part of (2.1.5).
The proof of the upper bound in (2.1.5) can be done in exactly the same manner as

in the proof of the lower bound except now we replace (2.3.27) by

3
P SUP  Uaad(t, ) > —E[ sup uadd(t,x)] < 2exp (——2)
(t,z)eTxL 2 (t,2)€T XL 20%

L n® 2 . CHE
§2exp —CH 1—|—10g2 W SCH W SCHTL 2,

with some positive constant ¢y, C'ly independent of n. Similar to (2.3.28) we have

3 p
5JE[ sup uadd(t,x)}gCHT?\Ifo(T,L) (2.3.30)

(t,x)eTexL

SUp  Uaaa(t, z) <
(t,x)eTexL

almost surely for sufficiently large T'= n®. And then € — 0 implies the upper bound in
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(2.1.5).
Finally, we conclude the proof of (2.1.5) for sup, ) taaa(t,z) by combining (2.3.28),
(2.3.30) and the property that sup, ,jerx1, Uada(t, z) is an increasing function of L and T

almost surely. On the other hand, it is easy to see

sup |f(2)] < Sgp[f(x)] + Slip[—f(x)]

since |f(z)| < sup,[f(z)] + sup,[—f(z)] for any function f(z). Since wuaqa(t, ) is sym-
metric, we see that sup, ,[—uada(t, )] and sup, ,[taqa(t, z)] have the same law. Then, we
have

sup |uaqa(t, )| < 2supluaga(t, z)] . (2.3.31)
t,x t,x
This completes the proof of (2.1.5). O

One can show the following asymptotic (2.3.32) by combining (2.3.26) and Borell’s

inequality and we omit the details.

Corollary 2.3.9. Let uaqq(t,x) be defined by (2.3.2) and let T satisfy T < L*. Then,
there are two positive random constants cy and Cy such that for any fived t € [0,T] we

have
cHt% logy(L) < sup  Uaaa(t, )
—L<2<L

< sup  |Uaaa(t,z)| < Cyt? log,(L)  almost surely.  (2.3.32)
—L<x<L

Remark 2.3.10. As in [CJK13,CJKS13], the inequality (2.3.32) implies that there exist

some constants ¢, C > 0 such that

vl

ada (1, : add (/;
ct? < liminf aaa(t, 2) < limsup atilh0)
|z|—o00 10g2(|$|) |z| =00 10g2(|$|)

< Ctz, (2.3.33)

for any t € Ry almost surely.

We now turn to show Theorem 2.1.2.
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Proof of Theorem 2.1.2. Apuaqa(t, x) is centered symmetric and stationary Gaussian pro-
cess. As before, we only need to find appropriate bounds for Apu,qq(t, ). The conclusion
with respect to |Aptaqa(t, )| follows from (2.3.31). Our strategy to prove Theorem 2.1.2
for Apuaqa(t, z) is also to apply Talagrand’s majorizing measure theorem and Sudakov’s

minoration theorem to the following Gaussian process

Aptaad(t, ©) :=uada(t, T + h) — Uaaa(t, x)

t (2.3.34)
[ [(Giash=2) = Gesa = 2)W(as ),

with fixed ¢ > 0 and fixed h # 0. Without loss of generality, we assume h > 0. The

natural metric is given by

[NIES

Ao n(7,Y) = (E|Aptiaaa(t, ) — Aptiaaa(t, y))?)? .

We need to obtain good upper and lower bounds of dy (2, y). Let us first focus on the

upper bound. Similar to (2.3.10) Plancherel’s identity yields

Bual9) = Cir [ 1L exp(~2€2)][1 = cos(lz ~ yl¢)][1 — cos(h)] - ¢ 2.

R4

By the same argument as in the proof of the upper bound of d;((s,z), (s,y)) in Lemma

2.3.6 it is easy to see that for any 0 < 0 <1

dg,t,h(-ra y) < CH/ 1— exp(—2t§2)][1 — cos(hé)] - 5_1_2Hd§

R

< Oyt AR < OytT=0120

On the other hand, an application of the elementary inequality 1 —cos(z) < Cya??, where

0 € (0, H) is as above, and a substitution £ — £/|x — y| yield

5, (z,y) < Couh® | — y|2H29/ [1 — cos(€)]€201720 q¢

R+

S Cg,tha‘iC . y‘2H729 .
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In conclusion, we have the following bound analogous to upper bound part of (2.3.9):
dosn(z,y) < Croh®(lz —y|T o AtTT), (2.3.35)

for any 0 € (0, H).
Now we can follow the same argument ((2.3.20) in particular) as in the proof of
Theorem 2.1.1 by invoking Talagrand’s majorizing measure theorem (Theorem 2.3.1) to

prove the upper bound part of (2.1.6):

E [sup Antipaalt, a:)} < Chglh|'t = y(t, L),

el

if L > +/t. Now we turn to prove the lower bound part of (2.1.6). To this end, we
need the inverse part of (2.3.35) and we shall use again the Sudakov minoration theorem.

Observe that we only need to consider the case when |r — y| > v/t. We claim

d3on(@,y) > culh®™ when v —y| > Vi and h < /{5 AT,

In fact, notice that

22 1 eyl =
1—exp(—‘x_y‘2>2§ V§24—gandh§ 8tln2/\1.

The simple inequality

1 —cos(z) > 2?/4 if x| < 7w/2

implies

he R
1-— > > f <wy‘ﬂ.
COS<|x—y|>—4\x—y\2 e

44



Therefore, a substitution £ — £/|z — y| yields

d%,t,h(x> y)

2 h
s oo (2] o (5]

+[1 = cos(§)J¢7 " dg
lz=ylx

Zenle o [ 1 cos (1) 1= eoste) -2

leylx |z =y
>cph?|le — y|2H 2 lxﬁ [1—cos(&)] - 128 e
o
Set
ko — in {k N, (2k %2— 1w > |z ;hy|7r} ;
and

klzsup{kENo:

If h is sufficiently small, then

|[z—y|=

Joo. 0@ @i = 3 | 1 - cos(€) - €121 dg

eyl k>0 7 N[, )
k1 1 (2k12+3)7r
1-2H 1-2H
>> /I [1— cos(€)] - €' 72dg > - / L R
k‘:k:() k 2
(2ky + 3)7 2-2H (2ko + 1)1 2-2H 2z — y| 2-2H
=\ T ) T\ zen\ T )

due to the fact that £!72H is an increasing function. Thus, we have for |z —y| > V/t
dogn(x,y) > egh' (2.3.36)

if h < C(v/t A1) for some small positive quantity C. On the interval L = [—L, L] for L
large enough, let us select x; = jL/v/t for j = 0,41+, £[L/v/t]. Similar to (2.3.22),

applying the Sudakov minoration theorem (Theorem 2.3.3) with § = cy|h|* yields

zell T;

E {sup Ahuadd(t,x)] >E {sup Ahuadd(t,m)} > cH|h|H\IJO(t, L).
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The proof of (2.1.7) follows from exactly the same argument as in the proof of (2.1.5) by

Borel-Cantelli’s lemma. The only difference is that now we have

op(h) = sup E[|Anttada(t, ©)]?] < Crrot™=*|h]*;

S AL = %E {sup Ahuadd<t7x):| ;

rzelLe

A2 h? H=0 n®
\eXp <_W> < Cphgexp | — [T] log, [ﬁ} )

where L* := [-n®* n®]. We can then complete the proof of the theorem by choosing «

appropriately. We omit the details here. O

Proof of Theorem 2.1.3. We will use the same method as in the proof of Theorem 2.1.2.

The natural metric associated with the time increment of the solution is

(SIS

dS,t,T('T7 y) = (]E’ATuadd(ta .T) - A‘f'uadd(tv y)|2) .

Using

t+7 t
A Uaqa(t, ) = / / Giyr—s(x — 2)W(ds,dz) — / / Gi_s(x — 2)W(ds, dz) ,
0 R o Jr

and using the isometric property of stochastic integral and Plancherel’s identity one

derives

dyp-(v.y) =2 [ f(t, 7€)1 —cos(|lz —ylg)] - 7 7de, (2.3.37)

Ry
where
f(t’ T7 f)

=[1 — exp(=2(t + 7)&")] + [1 — exp(—2t¢")] — 2exp(—7¢*)[1 — exp(—2t¢”)]

—[1 — exp(—2r€2)] + [L — exp(—2t)][1 + exp(—27&?) — 2exp(—7E?)].
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Notice that when x >0, 1 — e ® < Cpz? and 1 + 72 —2¢7% = (1 — e72)? < CZ2? for

any 6 € (0,1). Then, we have
f(ta T, f) < 09(7—52)6 ) Ve (Oa ]-) :
Inserting this bound into (2.3.37) yields

dg,t,T(xa y) SCGTG/ [1— cos(|z — y|€)] - £ 172HT20q¢

R

<Cpo7l|z — y|*H~2* for any 0 < 6 < H.
On the other hand, a substitution £ — £/+/7 yields

2, (z,y) <C / [1— oxp(—2r€)]e M de

R4

" / 1~ exp(— 241 — exp(—r€) e de

<Cyr + CH7.9’7'0tH_9 < CvaTetH_a

when 7 < C't. Thus, we have
dysr(2,y) < Crroor(jx — y[T O AT, (2.3.38)

where 0 < 0 < H, which is the bound needed for us to prove the upper bound part of
(2.1.8).

The Sudakov minoration Theorem 2.3.3 will still be used to prove the lower bound.
We need to obtain an appropriate lower bound of ds; ,(z,y) for |x — y| > V/t. It is easy

to see

Bolw) 2 e [ 1 -esp(-2rl1 - coslfe — yig)] ¢ Mg

R
la—yl (2.3.39)
> crle = [ 71— cos(e)l6 e,
NG

Analogous to the obtention of (2.3.36) we can conclude that the integral in (2.3.39) is

47



lz—y
=

2-2H
bounded below by a multiple of ( ) . Thus, we obtain

5

dsr(2,y) > cym™/? (2.3.40)

if 7 < C(t A1) for some constant C. This is the bound needed to use Theorem 2.3.3 to
show the lower bound part of (2.1.8).

Once again, Borell’s inequality (Theorem 2.3.4) can be combined with Borel-Cantelli’s
lemma to show the almost sure asymptotics (2.1.7), and the proof Theorem 2.1.3 is

completed. O

In [HHL"17] (see also next section) to show the existence and uniqueness of the
solution to (2.1.1) (for Hurst parameter H € (1/4,1/2)) it is extensively used the following

quantity

1

3
N%_Hu(t,x) = </ lu(t,z +h) —u(t,z)]*- |h\2H_2dh) : (2.3.41)
R
which plays the role of fractional derivative of u. It is because of the difficulty to ap-
propriately bound this quantity (see [HHL17] or the next section) it is assumed that

c(0) = 0 in [HHL*17]. After our work on the bound of the solution u,qq(t,x) we want

to argue that

E [supN?_ Uaqa(t, )| > cprlogy(L) if L is sufficently large. (2.3.42)
zel 2

This fact illustrates that the argument in [HHL17] for the pathwise uniqueness (see
Lemma 4.9 in [HHL"17] for this argument) is not applicable in the general setting when
a(0) # 0. Here is the precise statement of our result, which is also interesting for its own

sake.

Proposition 2.3.11. Let u,qq(t, z) be defined by (2.3.2) and let J\/’%_Huadd(t, x) be defined
by (2.3.41).

(i) For any fived t > 0 and L > \/t we have

E| sup N?_juaaa(t,z)| > e logo(L), (2.3.43)

—L<z<L 2
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where ¢, i 15 a positive constant.

(ii) Moreover, we have almost surely if L > \/t

sup ./\f1 _plUadd(t,x) < Cy {203 2[1 —log(Vt A 1)]Wy(t, L), (2.3.44)

—L<z<L
where Cy is a positive random constant.

Proof. First, we consider the upper bound (2.3.44). Let 0 < 0 < % Applying

Theorem 2.1.2 when |h| < v/t A1 and Theorem 2.1.1 when |h| > v/t A 1, respectively,

and using the notation Apuaqq(t, ) := Uaaa(t, T + h) — waqq(t, ) we obtain

SUPNT_  tada(t, 7) = SUP/ | Aptigaa(t, z) - |h|*2dh

el 2 z€elL

2
§/(sup|Ahuadd(t,x)|) -|h|2H_2dh
R

zell

2
§/ (sup|Ahuadd(t,x)|) -|h|2H_2dh
{|h|<VtA1} \z€L

2
+/ (sup]Ahuadd(t,x)O - |h|*"2dh
{ln|>vin1} \z€L

< Crot" "W (t, L) / |R|2H=220 0D + Cyt? W (t, L)
{In|<ViAL}

- [ / P [ Tog(hl VI dn
{|h|>VtAl}

{Ih|>Vtn1}

where we applied an elementary inequality

log,(L) + 1 when |h| < 1;
[log, [L + h[| <

logy (L) + logy(|h]) + 1 when |h| > 1.

Most of terms of above integrals can be evaluated easily except the one involving with

log,(|h|/v/t), which equals to

[ Tomllhl) o (VO] I 2an
{In[>VtA1}

< / [Logs(|h]) — logy(VE A 1)] AP 2dhS(VE A 1)1 — log(VE A 1)].
{|hI>Vtn1}
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This yields (2.3.44).
Now we turn to the lower bound (2.3.43). A simple observation and an application of

Jensen’s inequality give

E {Sup foHuadd(t, x)]

z€ell 2

<i2£ /R Ahuadd(t,x)g(h)dh> 2] > en (E EL;E /R Ahuadd@,x)g(h)thQ,
(2.3.45)

ZCHE

where o(h) = Oy [|h[*"=2 1<ty + [[*7 21 (n=13] such that it is probability density.

Denote

uy(t ) = /R Apttaga(t, z)o(h)dh = /0 t /R ( /R Dts(h,x—z)g(h)dh) W(ds, dz)

where D;(h, x) is defined in (2.2.14). The above u,(t, x) is a well-defined Gaussian random

field since o(h) is integrable for i <H< % Introduce the induced natural metric

N

dii(2,y) = (Elug(t, ) — ug(t,y)[*)2 .

We need to bound this distance for |z — y| > 1. Applying Plancherel’s identity we can
find

B (ry) = cn / 11— exp(~26€2)][1 — cos(|z — yl€)]

2
([ - costugoan) e -2ae
Ry
When £ > 1, we have
1 5 3 1
/ [1 — cos(hé)]o(h)dh > ¢2721 / [1—cos(h)] - K*H~2dh > c£272H,
Ry 0
Thus, we conclude that if [z — y| > 1, then
) = eull = exp(=20)] [ 11 = cos(le —yl6)] - €M

20



> eyl — exp(—2t)] (2.3.46)

by the same argument as in proof of lower bound of E[sup,cy Aptaga(t, )] in Theorem
2.1.2. An application of the Sudakov minoration Theorem 2.3.3 implies the lower bound

(2.3.43). O

2.4 Weak Existence and Regularity of Solutions

2.4.1 Basic settings

This section is devoted to prove the existence of a weak solution to (2.1.1). Let us briefly
recall some notations and facts in [HHL*17]. Let (B, | - || 5) be a Banach space with the

norm || - ||g. Let 5 € (0,1) be a fixed number. For any function f : R — B denote

N (x) = ( [lst+m - f<w>||23|h|-1-%dh) " (2.4.1)

if the above quantity is finite. When B = R, we abbreviate the notation N E f as Naf
(see also (2.3.41)). Asin [HHL"17] throughout this chapter we are particularly interested

in the case B = LP(Q), and in this case we denote N7 by N,

Nopf(z) = </R | f(x+h)— f(x)H%,,(Q)\h\l%dh) ’ . (2.4.2)

The following Burkholder-Davis-Gundy inequality is well-known (see e.g. [HHL'17]).

Proposition 2.4.1. Let W be the Gaussian noise defined by the covariance (2.2.1), and

let f € Ay be a predictable random field. Then for any p > 2 we have

‘/ot/Rf(S’wW(dsvdy) <V (/:/R[N%_vaf(s,y)rdyds)%, (2.4.3)

where cy is a constant depending only on H and /\/'%_H’pf(s,y) denotes the application

LP(Q

of J\/'%_H,p with respect to the space variable y.

In the work [HHL"17], the authors have already proved the existence and uniqueness
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result in a solution space Z7. (see [HHLT17] or formula (2.4.4) in next paragraph for the
definition of Z%) under the condition o(t,z,0) = 0. When o(¢,2,0) # 0 or even in the
simplest case o(t,z,u) = 1 (as we see from (2.3.43)) we cannot expect that the solution
is still in ZP. So, the method powerful in [HHL"17] is no longer valid to solve (2.1.1)
for general o(t,x,u). Our idea is to add an appropriate weight A(z) to the space Z% to
obtain a weighted space Z} ;.

Let A(z) > 0 be a Lebesgue integrable positive function with [, A(z)dz = 1. Introduce

anorm | - ||z for a random field v(¢, x) as follows:
AT
v||zp = sup ||v(¢, )| e + sup N¥ . o(t), 2.4.4
vl 2z, tE[O’T]H (&, ez @xm) Sup N (t) (2.4.4)

WherepZQ,i<H<%,

=

(s e @xr) = (/R]EHU(LSE)V’] A(x)da:) ,
and ;
NIy v(t) = (/R [o(t,-) —o(t, - + h)||i§(QxR)|h|2H‘2dh) By (2.4.5)

Then Z3 ;. is the function space consisting of all the random fields v = v(t, z) such that
vl zv I finite. When the function is independent of ¢, the corresponding space is

denoted by Z% .

2.4.2 Some bounds for stochastic convolutions

To prove the existence of weak solution, we need some delicate estimates of stochastic

integral with respect to the weight.

Proposition 2.4.2. Denote the weight function

M) = Ag(w) = e (1 + |z[H), (2.4.6)
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where cy is a constant such that [ A(z)dx =1, and denote

Bt ) = /0 t /R Gr oz — y)u(s, )W (ds, dy). (2.4.7)

We have the following estimates. (In the following Cr,, 1~ denotes a constant, depending

only on T, p, H and 7).

(i) If p> 3, then

1
sup  Ar(z)P(t,x ”
te[0,T),zeR ( ) ( ) Lr(Q)

< Crpullvlz, - (2.4.8)

(ii) If p > %, then

sup  AP(@)Ni @t x)HLm) < Crpallvllzz . (2.4.9)

te€[0,T],z€R

3 then

(i) Ifp> 3, and 0 <y < 5 — 3,

1
sup Ap(gg)[@(tm,x)—@(t,x)}H < Crpualhlolze, . (24.10)
t,t+hel0,T) Lr(Q) '

z€R

(iv) pr>%, and0<7<H—%, then

O(t,x) — Pt

sup (1’@ (1’ y) < Crpule—y|"||v|zr . (2.4.11)
—_— —_—— 9. b 9 )\T

te[0, 7] \ p(;g) + A p(y) ,

z,yeER r(Q)

Remark 2.4.3. The method provided in the following proof depends on the semigroup
property of the heat kernel because we need to use the factorization method (e.g. [7GJ2014].
see also (2.4.13) below). This means that we can not apply our approach directly to the
stochastic wave equation since the wave kernel (the fundamental solution of the wave

equation in [BJQS15]) lacks the semigroup property.

Proof. For any «a € (0,1) we set

Jo(r,2) = /OT /R(r —5) “Gr_s(z —y)v(s,y)W(ds, dy). (2.4.12)
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A stochastic version of Fubini’s theorem implies

ot 7) = S0 / / VLG (3 — 2)Ju(r, 2)dzdr (2.4.13)

We are going to show the four different parts of the proposition separately. We divide
our proof into six steps. Let us recall D;(z, h) := Gi(z + h) — Gi(z), and Oi(x,y,h) =
Di(z 4+ y,h) — Dy(x, h) defined in (2.2.14) and (2.2.15).

Step 1. The first two steps are to prove part (i). In this step we will obtain the
desired growth estimate of ®(¢,z) in term of J,(r, z). Applying the bounds of (2.2.22)
and (2.2.12) to (2.4.13) we have

SUI>A0( ) [ (¢, )]

o~ sup M(z )Gy (1 — 2) o (7, 2)d2dr

< sup N (a) / (t =y (/ Gl — 2 <>|de) Va2 ey

t,x

t :
<sup /\9(.73)/ (t—r)>! (/ (t— T)TQG(t,T)/q(:I: — z)Ap(z)dz) | (T, -)HLg(R)dr
0 R

t,x

t
l-q¢ _ 1
< sup M (a) / (t =) (= ) TAF @) - alr, laz ey
0

t,x

Setting 0 = % and then applying the Holder inequality we obtain

t
o341
stup)\e(:c)@(t,x)],ﬁ sup /(t—r) 2+2q-HJa(7",-)HLz;(R)dr

tefo,7] Jo

¢ e : T ;
< sup {/ (t —r)2 2+2q)dr} {/O ||Ja(7«’.)||1£§(R)dr

te[0,T]
< [ 1ntr gt 414

if gl — 35+ 5,) > —1, Le. if

3
. 2.4.15
o 2 ( )

This is possible if p > 3/2. Thus, to prove part (i), we only need to show that there
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exists a constant C, independent of r € [0, 7], such that
EllJa(r; ) 7p ) < CllvllZ - (2.4.16)

Step 2. We shall prove the above bound (2.4.16) in this step and to do this let us

introduce the following two notations

— (/ / (r — 20‘|DT s(y, h \ Wollv(s y+z)||Lp )|h|2H‘2dhdyds) ,
0 R2

[NJiS)

and

M}

Dy(r, 2) :=( I/ <r—s>—2a|Gr_s<y>|2||Ahv<s,y+z)||ip(m|h|2H-2dhdyds) ,
0 R2

where Apv(t,z) = v(t,z + h) — v(t,x). From the definition (2.4.12) of J and by

Burkholder-Davis-Bundy’s inequality (3.2.5) stated in Lemma 2.4.1, we have

Bl Mg [ { [ = Bl s = ot 1)

p/2

2/p
— Gr_s(y — 2)v(s, y)’p] h2H_2dhdyds} A(z)dz

N /R [7-71(7‘, z) + Do, Z)}/\(z)dz:: Dy + D,.

For the first term [, thanks to Minkowski’s inequality, we have

[Nl

D, N(/ /RQ r— )2 D,_(y, h | |lAyv(s ’.)||%§(Q><]R)|h|2H_2dhdyds)
—2a 2 _
—|—(/0 /RQ(T — S) 2 |Dr—s(y, h)| . ||v(37 ')||%§(Q><R)|h|2H thdyds)

P

S(/O /R(T — S)_Q‘X—5HAy’U(S, .)HQLK(QX}R)‘QPH_zdde)

p
2

N (/0 (T_S)2a+H1“0(3,.)”%,;(%)613) , (2.4.17)

(M}

where the last inequality follows from inequalities (2.2.22) and (2.2.17).

For the second term Iy, we can again use Minkowski’s inequality, Jensen’s inequality

25



with respect to (r — 5)1/2G%75(y)dy:G%(y)dy (since when p > 2, the function ¢(x) =

x¥? 1 >0, is concave), and then we use (2.2.12) to obtain

2/p
DzN/ /Rz 2aG2 )(/R |Apv(s,y + Z)szp(ﬂ))\(z)dz> ’h|2H_2dydhds

< / / (r— 52} ( / / G ()1 A00(5, 2) [y A2 — y)dy) " B2 2dnds
0o JR RJR 2

" C9a_1 _
5/0 /R(r—s) 2 2||Ahv(8,-)|]%§(QxR)|h|2H 2dhds . (2.4.18)

Recall that

[vllzg . == sup [[o(s,)llzgoxm) + sup Ni_p v(s),
s€[0,T] s€[0,T]

where ./\/finv(t) is defined in (2.4.5). The estimates obtained in (2.4.17) and (2.4.18)
2 2.
imply

E[[ Ja(r, ')HZZ;(R)SJ”UHZ;T(/O (r—s)2 4+ (r— S)2Q+H1dr) . (2.4.19)

If we have =2+ H —1 > —1 and —2a — 1 > —1, i.e. @ < Z, then (2.4.16) follows.
However, the condition o < H/2 should be combined with (2.4.15). This gives % <

a < % which implies p > % Thus, under the condition of the proposition, the inequality

(2.4.16) holds true. This finishes the proof of (i).

Step 3. In this and next steps we prove (ii). The spirit of the proof is similar to that

of the proof of (i) but is more involved. In order to obtain the desired decay rate of

/\/‘%_H@(t,x), we still use the equation (2.4.13) to express ®(t,z) by J.

O(t,x + h) — O(t, z)
_sin(ra / / ) Dy (2 — 2, h)Jo(r, 2)dzdr

s1n(7ra / / VG (x — 2) AR o (r, 2)dzdr

™

where ApJo(t,x) == Jo(t,z + h) — Ju(t, x).
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Invoking Minkowski’s inequality and then Holder’s inequality with % + % =1 we get

/ D(t, 2+ h) — B¢, 2)|h[2H2dh

2

)G (2 — 2)Anda(r, 2)dzdr| - |R|*22dR

2
(/ / )Gy (z — 2) /|AhJ r, 2) 2| b2 th} dzdr)

. (/0 /R(t — ) NG (v - Z)/\_%(z)dzdr) '
(/ / /‘A" IR an] )dzd?“)

SO UO (t — ryote 2+2q)dr} (/ / /|AhJ r, 2) |||~ th] ()dzdr) ,

where in the above last inequality we used Gi_,.(z — 2) = (t — T)l

inequality (2.2.12). If we take 6 = -, and g(a — 5 + 5.) > —1, ie.

s
2p’

then

1

sup)\ (/ |®(t,x+ h) — (t,:c)yQ\hPH?dh)

(/ / /'Ah‘] r,2) P[P th} ()dm)

2'Gir(z — z) and

(2.4.20)

Thus, to prove part (ii) we only need to prove that there exists some constant Cj,

independent of r € [0, 77, such that

I:=E/ | / A da(r, 2) PP 2R *Nz)dz < Culloll, .
R LJR v

(2.4.21)

Step 4. In this step we show the above inequality (2.4.21). By the definition (2.4.12)
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of J and by an application of Minkowski’s inequality we have

e[t )
(/ / //]R?r_s Dz —y = Lol y +1)

—Dy_y(z —y, (s, y)\2|1|2H—2d1dyds) E)\(z)dz} v yhy2H—2dh) .

[NS]

We introduce two notations:

[Nl

Ty(r, 2, h) ::E( / / <r—s>—2a|DT_s<z—y,h>|2x|Aw<s,y>|2|Z|2H-2dZdyds) ,
0 R2

and

Zy(r,z, h) —E(// r— ) —2a
RZ

Then, we have

RS

Ors(z —y, 1, h) ‘ lo(s, ) |12~ 2dldyds)

E/R [/Rtha(r, z)|2|h|2H‘2dh]g/\(z)dz

< (/ [/Zl(r, 2 h)A(z)dz]ﬂhy?H—?dh)
R R
+ (/ [/12(r,z, h)/\(z)dz]p|h|2H‘2dh) = I
R R

We shall bound I; and I, one by one. For the first term, a change of variable y — z —y

and an application of Minkowski’s inequality yield

E(/O /RQ(r —5)72| Dy, b)|”

5 ’
X !Alv(s,y+z)|2|l|2H—2dZdyds) A(2)dz| |h|2H2dh
' —2« 2 _ _
5/ / (r — )72 | Dy_g(y, h) | 122 h[2H 2
0 R3
x ( / E\Aw(s,z)\pA(z_y)dz)p dydhdids. (2.4.22)
R
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By (2.2.17) with 8 = § — H we see that
[ 1Dty P2y S (- 9"
R2

which is finite. Since 22?7,z > 0 is a concave function for p > 2 we can apply Jensen’s in-
equality with respect to the probability measure (r—s)' " [G,_,(y)—G,—_s(y+h)] ? |h|*7=2dydh.

Thus, we have for p > 2:

s [ [o=om ([ om0 p )

|h|2H 2 / E|Aw(s, 2)["A(z — y)dzdydh)p x |12 2dlds
R

5/0 /R<T — 8)_2a+H—1”Al/U<S7 .>||i§(QxR)|l|2H_2dldr (2423)

by the first inequality in Lemma 2.2.12.
In order to bound Zy(t, x, h), we make a change of variable y — z — y and then split

it to two terms. More precisely, we have

To(r,z,h) < Toy(r, 2z, h) + Zoo(r, 2, h) (2.4.24)

—E ( [ [ o=aio i imis, z>|2|1|2H-2duyds)
0 R2

i3

2

&S]

2

+E (/ / (r— 3)_2“|DT_5(y, [, h)|2\Ayv(s,z)|2|l]2H_2dldyds)
0o Jr2

Using Minkowski’s inequality, Lemma 2.2.8, and Lemma 2.2.11, one can check that

2
121 :I/ |:/1-21(T',Z, h))\(Z)dZ]p|h|2H72dh
R R
5/ /3(7"—3)_2O‘|Dr_s(y,l,h)|2||v(s)||%§(QX]R)|l|2H_2|h|2H_2dldhdyds (2.4.25)
0 JR

T
_ _3
S [ =9 o)y g
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and

Lo _/ [/122(r 2 WA(2)d z]%]hPH‘zdh

/ / Y / (/R |D”‘S(y’l’h)|2|l|2H_2|h|2H‘2dldh) N5, )13 oy dyds
5/0 /R<7" — 3)_2a+H—1||AyU(57 ')||%§(QXR)|y|2H_2dyd8.

(2.4.26)

Recalling the definition of || - ||%, , and combining (2.4.23), (2.4.25) and (2.4.26), we
AT

obtain

]E/ [/ Ap o (r, ) 2IBIZH=2dR] * A(2)d
BOUR , (2.4.27)

' 2
L e R

Once we have —2a+2H—% >—land 2a+H—-1>—1,ie. a< H— i, we see that

(2.4.21) follows from (2.4.27). This condition on « is combined with (2.4.20) to become

2% < a< H- %. Therefore, we have proved that if p > ﬁ, then (2.4.21) holds,

finishing the proof of (ii).
Step 5. We are going to prove part (iii). We continue to use (2.4.13). Without loss of

generality, we can assume h > 0 and ¢ € [0, 7] such that t + h < T. We have

O(t+ h,x) , )
t+h
sm T {/ / (t+h— 1Gt+h_r(x—2)=]a<7“, z)drdz

/ / )Gy (= 2) X Ja(r, 2)drdz
3
ISZ‘TL(t? h7 x)’
i=1

where

Ji(t, h,z) = /0 /R [(t+h—r)" = (t—r)* G (z — 2)Ja(r, 2)drdz,
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To(t, h, ) == /0 /R(t +h = 1) Gipnor(z — 2) = Gip (@ — 2)] Ju(r, 2)drdz,

and

t+h
Js(t, h,x) = / /(t +h— 1) Gronr(x — 2)Ju(r, 2)drdz.
¢ R

As in the proof of (i) and (ii), we insert additional factors of /\_%(z) : )\%(Z) and apply

Holder’s inequality in the expression for J;. Then, [J; is estimated as follows.

1-g
Ji(t,h, x) / [(t+h =)= (& =) (=) 2 [ Ja(r, ) gy dr

1

) (/O ((t+h—r)* = —r) (- r)¥dr> ' (2.4.28)
([ 1 gt )?

Fix v € (0,1). It is easy to see
((t+h =)t = (=) Y S =] R (2.4.29)

Thus, we have

t
sup AP(2)| 71 (t, b, )| SAY sup (/ (t — pyalet=n+5t dr)
t,x 0

te[0,7

. :
AP
< ([ 1 Mg

In other word, if v + % <a< g or equivalently, if v < g — 2%, then we have

p

< |p|PY p
E S Bl (2.4.30)

sup X' (2)|J1(t, . @)
t,x

Let us proceed to bound Js(t, h, ). One finds easily

ot h,x) < (/Ot /R(t +h =) DGy (2 — 2) (2.4.31)

G(a— )N R () dzdr) (/OTHJQ( N2 )‘1’

Q=
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To bound the above first factor we use the following inequality

x? 22 yx?
exp( : h) exp( t)‘ C,ht exp( 20 h)) Vye(,1).

Combining the above inequality with (2.4.29) (with o = 1/2), we have

Grinr(z —2) = Gip(7 — 2) (2.4.32)
<O = 1) |Gapnon(@ = 2) + Gaple = 2)]

Thus, the first factor in (2.4.31) is bounded by

/ / t+h ‘Gt-i-h r — ) Gt r | AP dZd’f‘
<h‘”/ / (=150 G (x — 2)\~ (z)dzdr

vaq

—I—h‘”/ / (@15 Qo) (2 — 2)A 7 (2)dzdr

vq

<hOA T (z )/ (t— )q(a—l—v)#%qdr’
0

where the last inequality follows from Lemma 2.2.5. Hence, if v —|— 3 < < & namely,

if v < g — 2%, then we have the following estimation:

p

< B IPY |||
E S Bl (2.4.33)

sup A (2)| Ja(t, h, @)
t,x

Now we are going to bound J3(¢,z,h). Exactly in the same way as for (2.4.28), we

have

t+h %
j3(t7$7 h) S/\_;(.I) </ (t +h— T)q(o‘—l)(t +h— T>qudT>
t

L)\
_1 a3 T z
—C N\ 5 ()R (/ HJa(r,-)”f‘z,;(R)dr) .
0
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If% <a< %, which is possible if7<a— 5 < ——%, then

p

E |sup N(@)|Ts(t, b, )| < CalhP* 2 vz, = Cs (APl (2.4.34)

Combining (2.4.30), (2.4.33) and (2.4.34) we prove (2.4.10).
Step 6. We prove part (iv) of the proposition. As before, we shall again use the

representation formula (2.4.13) and then we apply the Holder inequality to find

O(t,x) — P(t,y)

_sin(7ma / / G r(x — 2) = Gir(y — 2)] Ju(r, 2)d2dr

(//t—'r V|G — 2) = oy — 2)| 9N ()dZdr>
() L z)!wzmzdr)p

Denote the above first factor by

t
Kt z,y) = / /(t — )G (= 2) — Gy (y — z)|q)f%(z)dzdr.
0o Jr
Fix v € (0,1). Using Holder’s inequality we have

K(t,z,y)

1

</ (¢ — )t ([16erte=2 -Gty - aptineiie) sy

x ( [16eit =2~ Gty - z>|q2wz) “dr.
R

To bound the integral inside the above second bracket, we make the substitutions z =

7= J = 7= and Z = = to obtain for any p > 0,

/ |Gi—r(z — 2) — G (y — 2)|Pdz

R

~(t—r) / | exp(—[ — Z[*) — exp(—|y — 2|*)|PdZ
R

St—r) T E -l =(t—71) 7z -yl
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Substituting this bound into (2.4.35) with p = ¢*r we have

K(t,x,y)

t
Slo =yl [ (¢ -yl
0

1-pg(1—7y) + 1-2¢%4
2p 2q

B =

« ( /R (G e (2-2)+C s (y—2) )\_q(z)dz) dr

t
Slo—yl7 - @) 4 A w) - [ (@R,
0

where the last inequality follows from Lemma 2.2.5.

Ifq(oz—%—l—zl—q)—%>—1anda<E naumely,if%—i—%<oz<g,thenvvithezl

27 P
we have
. ) T 1P
E| sup (A(x) + A(y)) " Kt 2, y)|7 x ( / / |, z)m(z)dzdr) v
te(0,7) 0 R
z,yeR
T
Sl —ylP7 - / /E|Ja(r, 2)[PA(z)dzdr < Cyloz —yP7||v||%, . (2.4.36)
0o JR AT

This proves (2.4.11). The proof of the proposition is then completed. O

2.4.3 Weak existence of the solution

In this subsection we show the weak existence of a solution with paths in C([0,7] x R),

the space of all continuous real valued functions on [0,7] x R, equipped with a metric

o0

de(w,0) =3 o max_ (fu(t,2) — v(t, )| A 1). (2.4.37)

27 0<t<T,|z|<n
n=1

We state a tightness criterion of probability measures on (C([0, 7] xR), Z(C(]0,T] x R)))
that we are going to use (see Section 2.4 in [KKS88] for the case where [0, 7] x R is replaced

by [0,00). It is also true for our case as indicated there).

Theorem 2.4.4. A sequence {P,,}>°, of probability measures on (C([0,T]xR), B(C([0,T]x
R))) is tight if and only if

(1) limypoo sup,>; Pn ({w € C([0,T] x R) : [w(0,0)] > A}) =0,
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(2) for any T >0, R>0 ande >0

limsup P, ({w € C([0,T] x R) : m""(w,d) >¢}) =0

010 p>1

where

mT7R<wa5> = max |C¢)(t,l’) —W(S,y)|
[t—s|+|z—y[<d
0<t,s<T;0<|z|,]y|<R

is the modulus of continuity on [0,T] X [-R, R].

We approximate the noise W with respect to the space variable by the following

smoothing of the noise. That is, for ¢ > 0 we define

%Wa(t, x) = /RGg(x —y)Wi(t,dy). (2.4.38)

The noise W, induces an approximation to mild solution

we(t,z) = Gy # uolz) + / / Groslz — )0 (s yus(s, y))Welds dy),  (2.4.39)

where the stochastic integral is understood in the It sense. As in [HHL"17] due to the
regularity in space, the existence and uniqueness of the solution u.(t, z) to above equation
is well-known.

The lemma below asserts that the approximate solution u.(t, x) is uniformly bounded

in the space ZﬁT. More precisely, we have

Lemma 2.4.5. Let H € (1,3) and let A(z) be defined by (2.4.6). Assume o(t,x, u)
satisfies hypothesis (H1). Assume also that the initial value uo(x) € 25 ,. Then the

approzimate solutions u. satisfy

sup [|ue||zz == sup sup |luc(t, )|z @xm) +sup sup Ni_, u.(t) < oo. (2.4.40)
e>0 ’ e>0 t€[0,7T] e>0 tefo,1] 2

Proof. For notational simplicity we assume o(t,x,u) = o(u) without loss of generality
because of hypothesis (H1). We shall use some similar thoughts to that in [HHL"17] but

now with special attention to the weight A\(x). To this end, we define the Picard iteration
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as follows:

ul(t,x) = Gy x uo(w)

and recursively forn =0,1,2,-- -,

ul(t, x) = Gy * ug(x) + /0 /RGts(:C —y)o(ul(s,y))W(ds,dy) . (2.4.41)

From [HHL'18, Lemma 4.12] it follows that for any fixed ¢ > 0 when n goes to infinity,
the sequence u”(t,x) converges to u.(t,z) a.s. In the following steps 1 and 2, we shall
first bound |[[u?| zv . uniformly in n, and e. Then, in step 3 we use Fatou’s lemma to
show (3.3.24).

Step 1. In this step, we derive a Gronwall-type inequality to bound the LX(2 x R)

norm of ul*(t, x) by the 2%, norm of u?(t, x). Rewrite (2.4.41) as

ut (t,z) = Gy x up(x) + /ot/R [(Gt_s(x — Jo(ul(s, ))) * GE] (y)W(ds,dy) .

In the following, we will continue to use the notations D;(x,h) and 0O;_4(x,y, h) defined
in (2.2.14) and (2.2.15) previously. Applying the Burkholder-Davis-Gundy inequality
(Proposition 2.4.1) and the isometry equalities (2.2.4)-(2.2.6) and then noting |o(u)| <

|u| + 1, we have

B [Juz*(t, 2)I"]

[iS]

2

<yl e+ GE( [ [ [Fl6rte = otunts. D)@ e e agas

t
ng\Gt*uo(x)]p+CpE(/ /
0 Jr2

2
= Gl = whotut (s, )| 12y )

Gis(x —y —h)o(ul(s,y +h))

S}

<Gy (IGe * up(@) P + DY (t,2) + D3"(t, 7)) (2.4.42)

where the constant C), is independent of € because el < 1, and where we denote

p

2

t
e,n 2 n _
1y(a@;:<A RJDFJMM‘(LHWA&x+yMEmQMW¥%mw%>,
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and Apul(t,x) == ul(t,x + h) —ul(t, x),

I3

2

t
D" (ta) = [ [ 161t + ) o I aays)

This means

AN

627 sy = ([ Bl P Mo )

<Cp (!\UO(x)!\Lg(R> + I+ I§’”> , (2.4.43)

where I7" and I;" are defined and bounded as follows.

2 t
i ([ P ean@n ) <G [(e - (L 02 g ) (2440

and

2
g )] (2.4.45)
"= (/RD2 (t,x)/\(a:)dx) < C’va/O N ds.

The above bounds on I7", I5™ together with (2.4.43) yield

t
||ug+1(tv ')||%§(Q><R) < GZLH (HuOH%i(wa) + /0 (t - S)H_l ”u?(sv ')H%g(QXR)d‘S
¢ 2
+/0 (t—s)"Y2 [Nng,pu;L(S)} ds) . (2.4.46)

Step 2. Next, we obtain a bound for Nf_HpugH(t) analogous to (2.4.46). Similar to
2 .

(3.3.26) we have

E[|u* (¢, 2) — a2 (2 + h)]?]

£

<Cp| Gy * up(z) — Gy % up(z + h)}p

+CIE</O/R

2
= Dt = 2ot )| WP s

D (x—y—z,h)o(ul(s,y+2))

IS

2

SCp (IO(t7 Z, h) + I?n(ta Z, h) + 1.267”(757 Zz, h)) )
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where

Zo(t,x,h) : |Gt*u0() Gy * ug(z + h)["

T (t, 2, h) : </ /R
Tt 2, h) ;:E(/Ot/RZ

By Minkowski’s inequality we have

[NIiS)

2
Dicslo =y = 2 otucts,y + 2)) = otusts, )Py sy )

[NS]

2
O — 2. h)| % \a<us<s,z>>\2|y|2H2dzdyds)

Our strategy is to control the above three quantities by using the ideas similar to those
when we deal with the terms Z; and Z, in the step 4 of the proof of Proposition 2.4.2

(ii). First, from Lemma 2.2.5 it follows.

Jo gcp/R (/ [/ Gz —y dm} | Apuo(y )|pdy)% |h|2H~2dh

p 2
<G, /R ( /R ’Ahuo<y>’p)‘<y>dy) |h|*2dh = C, [Ng_vauo] .

For the term .J;, we can use the method similar to that when we obtain (2.4.22) and

(2.4.48)

(2.4.23). This is, a change of variable y — 2z — y, and applications of Minkowski’s

inequality, Jensen’s inequality and Lemma 2.2.12 give

t
Jy Scp,H/ /(t_S)H—l(/ (t — s)\ H‘Dt . ‘ )| -2
o Jr R3

2

B[ At o) |\ = 2)dedsan) P s (2449
t 2
<Cyu /O (t = 5" [N}y ()] s

Next, we obtain a bound for J;. Similar to the obtention of (2.4.24), (2.4.25) and (2.4.26)
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we also make a change of variable y — z — y, and then split it to two terms to obtain

" (t e, h) < Cp (T3 (t, 2, h) + Ly (t, 2z, h))

t
G ([ [ 15tz mPlotu o, Pl 2dyazas)
0 R2

[SIiS]

[NiS]

t
1C,E ( / O (9, 2, W)Plo(ul (s, 2 + 2)) — ol (s, x>>\2|y|2H-2dydzds)
0 R2

Applying Minkowski’s inequality, the condition |o(u)| < |u| + 1, and Lemma 2.2.8 one

has

/ IStz A (@)dz| |h[2H2dh
R

ng Z:/
R

t L, .
<Cpn [ (6= (14 (o, sy -
0

(2.4.50)

Again by Minkowski’s inequality, the Lipschitz condition (3.2.10) on ¢, and Lemma 2.2.11

we obtain

Jao ::/ /Igén(t,x, )X (x)dz ’ |h|*"~2dh

R |/R (2.4.51)
! H-1 * n 2
SCp,H/O (t —s) [./\/’%_H’pua(s)} ds .
Using that fact that J3 < J3; + Js2 and using (2.4.47)-(2.4.51) we obtain
n+1 2 * 2 ! H-1 2
N1 0] <Cor [N _gya] 4 Cpar [ (= 70 [Ny u2(0)] s

0 (2.4.52)

t L .
*Cpn [ (=573 (14 2 gy -

Step 3. Set

Ul(t) = ||u?(t,')||%§(QxR [ ;_Hp u(t >r

Thus, combining all the estimates (3.3.31), (3.3.32), (3.3.33) and (2.4.51) yields

2 t
0270) < Cpnr (ol + [V ] + [ (0= 5P Hunas )
0
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Now it is relatively easy to see by fractional Gronwall lemma (e.g. [LHH21, Lemma 1])

sup sup VI (t) < Crpp < 00.
n>1 10,7

For any fixed € > 0 since u converges to u. a.s. as n — oo, we have by Fatou’s lemma

et Magiaa = (/]R]E |:nh—>r£>lo |ug(t,x)|p} /\(x)dxf

< lim ( / Euus(t,x)wwwdxf < sup sup WI(t) < .

n—00 n>1t€[0,7T)

Thus, we conclude that sup sup ||uc(¢,-)]| 2 (@xg) is finite.  On the other hand, for any
e>0 te[0,T)
t,z and h we have |[u”(t,z + h) — u(t,x)[* = |u.(t,z + h) — u.(t,x)|* a.s. So, on the

domain |h| <1

/ lua(t, -+ B) = 10t g oy |12~ 2
Ihl<1

< lim ”u?(tv -t h) - ug(t7 ')H%’;(Q><R)|h|2H72dh'

n—o0 J|h|<1

For |h| > 1, we simply bound ||u.(t,- + h) — u.(t, )HLp sy DY 2([uz (¢, )HLp Oxg)» Which
is uniform bounded with respect to ¢,e and n. When H < 1, f|h|>1 |h|*72 < 0o. Thus,

we have that

N

sup N7 _Hp us(t) = sup (/R lue(t, -+ h) — ua(t, ')||i§(QXR)|h|2H_2dh>

tejo,1] 2 te[0,T]
<Cpgsup sup VZ(t) < . (2.4.53)

n>1t€[0,T]

Therefore, sup sup N7 Hp uc(t) is finite.
e>0 tef0, 7] 2

In conclusion, we have proved sup, g [|tellzr  :=sup sup [luc(t, )|l @xry+sup sup N7, uc(t)
M 250 tef0,1] e>0 tefo,r] 2 P
is finite. O

Recall that (C([0,T]xR), d¢) is the metric space with the metric d¢ defined by (2.4.37).

Lemma 2.4.6. Let u. € 25 ;. If u. — u almost surely in (C([0,T] x R),dc) as € — 0,

then w is also in Z5 .
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Proof. Since u. converges to u in (C([0,7] x R), dc) almost surely, we have u.(t,x2) —
u(t, z) for each (t,z) € [0,T] x R almost surely. Thus

lut, )| 12 @y S lim (/REHua(t,x)P]/\(x)dm)p < . (2.4.54)

e—0

This means that sup [[u(t, )|z @xr) is finite.

On the other 1;;[3(;] for any z, h we have |u.(t, 2+h) —u.(t, z)[* = |u(t, z+h)—u(t,z)[*
almost surely. So, on the domain |h| < 1 and |h| > 1, we can simply repeat the same
procedure as in the Step 3 of the proof of Lemma 2.4.5 but replacing lim by li_n(l), and

nsoo e

bound |Ju(t,- + h) — u(t, )”LP xr) PY 2[[ult, )HLP 0xmr): Which is finite. Thus, similar to
(2.4.53) we have

1
sup N%_ pu(t) = sup (/ Ju(t, -+ h) — ul(t, ')H%’;(QxR)|h|2H2dh) < 00.

t€[0,7) t€[0,7]
Together with (2.4.54), this implies that u € Z3 . O

Lemma 2.4.7. Let u. be the approzimate mild solution defined by (3.3.23) and assume

that uy(z) belongs to Zf,o- Then, we have the following statements.

(i) If p> %, then

1
N @ _guta)| o <c b +1). 2.4.55
wlp  Ar@Npguet )| < Craluellzg, +1) (2.4.55)

(ii) Ifp > &, then

sup v () [uc(t + hy ) — uc(t, )] < Cralh(lucllzp, +1),  (2.4.56)

t,t+he[0,T] Lr()
x€R
forall0<7<%—2%.
oo 3
(i) If p > 5, then
U, x) —u(t,y

sup LD Ul o, +1), (2457)
te0, 7] A7 (x) + A7 (y) ’

:z;yE]R LT"(Q)
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forallO<7<H—%.

Proof. Denote for « € [0, 1]

V& = [ [ [0= 572Gl = 2datun(o, )Gle = eIV (ds.dy)

Then, Fubini’s theorem implies

wn(t,) =Gy ug() + ST

/ot /R(t =) Gl = §) 5 (r, §)dedr

™

=uy(t,x) + ug(t, ).

Applying Proposition 2.4.2 (ii), (iii), (iv) to ug.(t,2) yields (2.4.55)-(2.4.57) without
the constant term 1. However, from the assumption that ug(x) belongs to Z3 ;, we see
that left hand sides of (2.4.55)-(2.4.57) are finite when wu.(t,x) is replaced by u,(t, z).

Combining the bounds for u,(¢,x) and us (¢, x) proves the lemma. O

Proof of Theorem 2.1.5. We still assume o(t,z,u) = o(u) to simplify the notations.
From Lemma 2.4.5 and Lemma 3.4.2 (ii) and (iii) it follows that the two conditions
of Theorem 2.4.4 are satisfied. Hence, the probability measures on the space (C([0,T] x
R), B(C([0,T] x R)),dc) corresponding to the processes {u.,e € (0,1]} are tight. Thus,
there is a subsequence ¢, | 0 such that u, = wu., convergence weakly. By Skorohod
representation theorem, there is a probability space (@, F , 15) carrying the subsequence
Uy, and noise W such that the finite dimensional distributions of (tn,; , W) and (U, W)

coincide. Moreover, we have
U, (t,2) = U(t,x) in (C([0,T] x R),dc) P-almost surely (2.4.58)

for a certain stochastic process u as j — oo. By Lemma 2.4.6 we see that u belongs to
space Z~f\’T with respect to the new probability P. We want to show that 7 is a weak
solution to (2.1.1).

Define the filtration ﬁt to be the filtration generated by W. We claim that Uy, satisfies
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(2.1.1) with W replaced by W, namely,

@ (t,2) = G * up(a //Gts Yo @n,(5,)) * G, (9) W (ds, dy) . (2.4.59)

To show the above identity it is sufficient to prove that for any Z € L%(Q, P) one has

Elty,, (t,2)Z] = E [Gt x ug(z)Z

//Gt (@ = )0 (@n, (5,) % G (y )W(ds,dy)z], (2.4.60)

where E means the expectation under P.

For any ¢ € D(R), denote

/cb W(t,dz); /gb W (t,dz).

It is routine to argue that the set
S = {f(th(qS),--- W (@), 0<t; < <t, <T feCo(R") }

are dense in L2(§, P, .7::T) This means that it is sufficient to choose Z = f (Wt1(¢),

,th(qﬁ)) in (2.4.60), which is true because we have the following identities:

Elin, (t,2) f(Wi (6), - . Wo, (6))] = Elun, (t,2) F(Wi, (6), -+, Wi ()]

E (G uo(2)f(Wiy(6), -+, W, (6))] = E[Gr # uo(@) F(Wiy (8). -+, Wi, (&)

and

[/ / Groslw — )o@, (s, )) * G <>W<ds,dy>f<m<¢>,---,mcb))]
=E [/ / Groslw — )ty (s, ) * Ge <>W<ds,dy>f<wtl<¢>,---,thw]

due to the fact that the finite dimensional distributions of (, W) coincide with that of
(n;, W). Therefore, iy, (t, r) satisfies (2.4.60), and hence it satisfies (2.4.59).
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From (2.4.58) and (2.4.59) it follows that @ is a mild solution to (2.1.1) with W
replaced by w. Therefore, we have proved the existence of a weak solution to (2.1.1).
Moreover, for any v € (0, H — %) and for any compact set T C [0,7] x R, Lemma

3.4.2 (parts (ii) and (iii)) implies that there exists constant C' such that

~ u(t.x) — P
B sup |—db®)=dlsy) ) Clills, . (2.4.61)
(ta) sw)eT | [t — sz + [z —y|1 »T
This combined with the Kolmogorov lemma implies the desired Holder continuity. O

2.5 Pathwise Uniqueness and Strong Existence of so-
lutions

In this section we prove the pathwise uniqueness and the existence of strong solution
for the equation (2.1.1). It is well known that once pathwise uniqueness is achieved,
together with the existence of weak solution proved in previous section, we can conclude
the existence of the unique strong solutions to (2.1.1) by, for example, the Yamada-
Watanabe theorem ([IW89]). Therefore, we only need to focus on the proof of pathwise

uniqueness.

Proof of Theorem 2.1.6. The proof follows the strategy in the proof of Theorem 4.3 of
[HHL"17] combined with Proposition 2.4.2 (part (ii)).
Define the following stopping times

Ty := inf {t €[0,7]: sup )\%(x)N%,Hu(s,x) >k,

0<s<t,z€R o
or  sup )\%(ZL’)N%_HU(S,ZL’)Z]{Z}, k=1,2---

0<s<t,z€R

Proposition 2.4.2, part (ii) implies that T} 1T T" almost surely as k — co. We need to find

appropriate bounds for the following two quantities:

L(t) = sugE[l{KTk}m(t,x) —o(t,z)|?]
TE
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and

I(t) =supE {/ Lyerglu(t, 2) —v(t, ) —ut,x + h) +o(t,x + h)|*|p[* ~2dh| .
R

z€R

First, it is easy to see

ey (u(t, ) —v(t, x))

“geny / [ Gumalo = a5, ) = (5,005, (ds. ).

Recall Dy(x, h) defined in (2.2.14) and denote A(t, z,y) = o(t, z,u(t,y)) —o(t,z,v(t,y)).

We can decompose

E[l{t<Tk}|u(t x) —v(t, x)ﬂ

B( [ [ tecral Dt = PG,y I 2 ahds

A

_l_

E( / / LiseryGig(z —y = h)[A(s,y + h,y) — A(s, v, y)]Q\h\zH_Zdhdyds)

0 R2
t

+E( /0 /R . LieryGi_o(x = y)[A(s, 4,y + h) — As, y, y)]Q\h\QH_thdyds)

The assumption (3.2.12) of o and the equality (2.2.17) can be used to dominate the above

first term J;. This is,

t
A SE( [ [ tieenalPeeate = g tiPluts.) - v(s,y>|2|h|2H—2dhdyds)
0 JRr2
¢ t
S/ (t — s)" " supE [1gsery|uls, y) — v(s,y)?] ds = / (t — )" (s)ds.
0 SIS 0

Using the properties (3.2.12) of o, we have if |h| > 1

[A(S7y + hay) - A(57y7y>]2 5 |U(S,y) - U(Say)|2

v 2
/ 045y + 1 &) — o5, e

5 |u(87 y) - U(Sv y)|2 )
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and if |h| <1 (with the help of additional properties (3.2.13))

[A(s,y +h,y) — A(s,y,y))

2

[ oty 1) = ol || S IiPluts,y) = ofs, )

Thus, the second term Jy in (4.5.1) is bounded by

t
:E(/ / / 1{S<Tk}G?75($ — Y — h)’u(s,y) — U(57y)|2’h’2H2dhdyd3>
|h|>1
+]E(/ // 1{S<Tk}Gt 5( -y — h)]u(s y) (57y)|2|h’2Hdhdyd5)
|h|<1

N/ (/G )dsg/o(t—s) 211 (s)ds.

For the last term J; in (4.5.1) we have by (3.2.12), (3.2.14)

|A(s,y,y +h) — A(s.y.y)|
:) /0 [u(s,y +h) —v(s,y + h)]oi(s,y,0u(s,y +h) + (1 = 0)v(s,y + h))df

- / fu(s,y) — v(s,9))04(s, 5, Buls, y) + (1 — B)o(s,))d6|

Noticing the additional uniform decay assumption (3.2.12), we have

|A(s,y,y +h) — A(s,y,9)|
§|U(S,y + h) - U(S7y + h‘) - U(S,y) + U(S7y)|2

A ()|uls,y) —v(s,)[* - [lu(s,y + h) —uls,y)[* + s,y + h) —v(s,y) ]
Thus, we can dominate the last term in (4.5.1) by
t 1
J3 S k/ (t —s)"z[Ii(s) + Io(s)]ds .
0

Summarizing the above estimates we have

(1) < k/o (t — )" I (s) + L(s)]ds .
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The similar procedure can be applied to estimate the term I5(¢) to obtain
t 3
L) <k / (t— )3 [1,(s) + Io(s)]ds.
0
As a consequence,
t 3
L(t) + L(t) S k / (t — )3 [1,(s) + Lu(s)]ds.
0
Now Gronwall’s lemma implies [, (t) + I5(t) = 0 for all ¢ € [0,T]. In particular, we have
E[l{t<Tk}|u(t,J:) —o(t, x)ﬂ =0.

Thus, we have u(t,z) = v(t,x) almost surely on {¢t < T}} for all k£ > 1, and the fact
Tr 1 oo a.s as k tends to infinity necessarily indicate u(t,z) = v(t,z) a.s. for every
t€[0,7] and z € R.

It is clear that the hypothesis (H2) implies the hypothesis (H1). So the existence of
a Holder continuous modification version of the solution follows from Theorem 2.1.5. We

have then completed the proof of Theorem 2.1.6. O
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Chapter 3

Nolinearstochastic wave equation

driven by rough noise

3.1 Introduction

In this chapter, we consider the following one (spatial) dimensional stochastic nonlinear
wave equation (SWE for short) driven by rough spatial Gaussian noise which is white in
time and fractional in space:

azgg,m) _ 32:;9(:2@) + g(t,x,u(t,x))W(t,x), tel0, 7], zeR,

(3.1.1)
w(0,2) = ug(z), Lu(0,z) =vy(z).
Here W (t, ) is a centered Gaussian process with covariance given by
1
EW (t, )W (s, 9)] = 5(s A (|2 + [y — [z — ™) (3.1.2)

and W(t,z) = %W(t, x). The main feature of this work is our assumption that the

Hurst parameter H € (i, %) Namely, the noise is rough and fractional in space variable.
This make the study of this equation challenging. Before we continue let us briefly sum-
marize some relevant works. 1). When the noise is less singular, more precisely, when the
noise is general Gaussian which is white in time and satisfies the so-called Dalang’s con-

dition, there are some results about the well-posedness of the equation and the properties
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of the solutions (e.g. [DKM™09,DSS09, HHN14]). When we apply Dalang’s condition to
fractional Gaussian noise, then we need to assume the spatial Hurst parameter H > 1/2.
2). When H < 1/2, namely, when the noise is rough in space (in this case the spatial
dimension must be one dimensional), there are very limited results. The only result we
know, to the best of our knowledge, is the work [BJQS15], where the noise coefficient
o(t,x,u) = au + b is affine. There has been no work to tackle the case when o(t, z,u) is
nonlinear (or not affine) function of u. 3). On the other hand, when g—; on the left hand
of (3.1.1) is replaced by %, this is, in the case nonlinear stochastic heat equations (SHE
for short) driven by spatial rough noise, the authors of [HHL"17] studied the equation in
the case o(t,z,0) = 0. They prove the strong existence and uniqueness of solution. This
condition o(t,z,0) = 0 is removed in [HW22], where the authors obtained the existence
of weak solution.

The objective of this work is to obtain the strong existence and uniqueness of the
SWE (3.1.1) while still assuming o(¢,2,0) = 0. For the moment we are are not sure
if our approach can be applied to remove this condition. When we start to consider
the well-posedness of the equation (3.1.1) we immediately encounter a similar problem
as that in [HHL*17, HW22]: One cannot bound the L, norm of [} [, hu(s,y)W (ds, dy)
by the L, norm of h:(s,y) itself, where h(s,y) = Gi_s(z,y)o(s,y,u(s,y)) and Gi(x,y)
is the heat or wave kernel. Instead, one has to use the L, norm of h(s,y) itself plus
the L, norm of its fractional derivative. This makes thing very much sophisticated. In
particular, as indicated in [HHL17, HW22], due to the existence of our rough noise W
we need to bound |o(u;) — o(uz) — o(v1) + o(ve)| by a multiple of |u; — us — vy + 9|
(which is possible only in the affine case). To get around this difficulty the authors in

[HHL*17, HW22] use a priori bound of L, x Ly norm Esupyc;op |u(t, x) and the

|z£p(R)
similar norm of the fractional derivative of u(¢, ) for the solution u(t, x). We shall follow

the same strategy. However, this immediately poses some new challenges.

1. The first one is that f(f Jg he(s,y)W (ds, dy) is not a martingale in ¢ (nor it is a
semimartingale), it is hard to bound the L, norm of supg<,<7 fo [y, he(s, y)W (ds, dy)
since we can no longer use the powerful Burkholder-Davis-Gundy inequality. In the

case of SHE, this is overcome by a clever exploitation of the semigroup property
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of the heat kernel. Unfortunately, this idea is not reproducible in our case simply
because the wave kernel Gy(z,y) associated with our SWE (3.1.1) does not have
the semigroup property. To surmount this barrier we have luckily found a way to
decompose G(x —y) to four complicated parts (see (3.3.2) in Section 3) so that we
can bound the L, norm of supy< < fg Jz he(s,y)W (ds, dy) by the L, norm of hy(s,y)
itself plus the L, norm of its fractional derivative. Of course, one also needs to bound

L, norm of the supy,7 norm of the fractional derivative of [; [, hi(s, y)W (ds, dy).

2. Since the wave kernel and heat kernels are of completely different nature, all the
estimates in [HHL"17, HW22] are no longer useful here and we need an entirely
new set of analysis of our decomposed kernels toward our final purpose. Since the
wave kernel can decomposed into these kernels, we hope our estimates may also be

useful in future study of stochastic wave equations.

After achieving the necessary estimation of the decomposed kernels, the proof of the
existence and uniqueness of the mild solution is routine and we omit them to save the
space of the chapter.

In the study of fractional noise, the number 1/4 seems to be a magic number. It
appears in a number of occurrences. Here we are interested in the problem if H > 1/4
is necessary for (3.1.1) to have a classical (Ls) solution. We shall provide an affirmative
answer. To this end we consider the hyperbolic Anderson model, namely, o(t, z,u) = u.

In this case the equation (3.1.1) becomes

Poltr) _ PoLa) 4oy )W (t,2), te0,T], z€R,

(3.1.3)
v(0,2) = up(z), 2v(0,2) = vo(x).

Under some conditions on the initial data, we shall prove that v(t, x) is square integrable
only if H > 1/4. After the completion of this work, we discover that the necessity of
H > 1/4 is implied in [BJQS17, Proposition 3.7] (see also [SSX20, Proposition 3.4]). To
make the chapter more comprehensive, we keep our alternative proof of the necessity of
H > 1/4. Our method may be useful to study the properties of (3.1.1) with additive noise

(0 =1). Let us also mention a recent work [CH21] that for the parabolic Anderson model
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when the dimension d = 1 and when the noise is white in time and fractional in space
with Hurst parameter H, then H > 1/4 is also the necessary and sufficient condition for
the solution to be square integrable.

Here is the organization of this chapter. In Section 3.2 we briefly recall some necessary
concept about stochastic integral and wave kernel and so on to fix the notations used in the
chapter and we also state our main results obtained in this work. Sections 3.3 and 3.4 are
the core of the chapter. In Section 3.3 we decompose the wave kernel into four parts and
then we use this decomposition to obtain the necessary bound of the stochastic integral
(stochastic convolution with the wave kernel). There are a lot of computations to obtain
the bound for the stochastic convolution. We postpone some of these computations in
the Appendix 3.6 and 3.7. Section 3.4 obtains the existence and uniqueness of the strong
solution. Some of the computations are moved to Appendix 3.8 for the fluency of the
proof. Section 3.5 is about the necessity of H > 1/4 for strong solution to exist.

Throughout the chapter, A < B (and A 2 B) means that there are universal constants
Cy,Cy € (0,00) such that A < 1B (and A > C3B). We also denote throughout the

chapter

A f(tx) = f(t+1,2) — f(t,x), (3.1.4)

Onf(t,z) = f(t,x+h)— f(t,z), (3.1.5)

and

Onuf(t,z) =00, f(t,z) =Dpf(t,x +1) — Dpf(t,x)

=[f(t,e+h+1)— ft,x+1)] = [f(t,z+h)— f(t,z)]. (3.1.6)

3.2 Preliminaries and Main results

Let (2, F,P) be a complete probability space and let W = (W(t,x),t > 0,2 € R) be a
mean zero Gaussian random field whose covariance is given by (3.1.2). For any t > 0,
Fi =oc(W(s,z),s € [0,t],x € R) be the o-algebra generated by the Gaussian field .

We recall briefly some notations and facts in [HHL"17] and refer to that reference for
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more details.

Denote S the set of smooth functions on Ry x R with compact support. For any

fyg €S, define

(f,9)s = CH/R y [f(t,x +y) — f(t,2)][g(t,x +5y) — g(t,2)]|y|**dedydt, (3.2.1)

where

el ] ([ oo ).

Let $ be the Hilbert space obtained by completing S with respect to the scalar product
(-, ). Let us start with the stochastic integration of elementary process with respect to

W, and then extend it to general process.

Definition 3.2.1. A random field f = (f(t,x), (t,z) € Ry X R) is called adapted to the
filtration Fy if f(t,x) € F for all (t,x) € Ry xR. An elementary process g is Fi-adapted

random field of the following form.:

D X L) () 1 ey ()
1 j=1

1=

where n and m are positive integers, 0 < a; < by < --- < a, < b, < +00, ¢; < d; and
Xi; are Fq,-measurable random variables for ¢ =1,--- ,n,j =1,--- ,m. The stochastic

integral of such an elementary process g with respect to W is defined as

/ g(t, z)W (dt, dz) = ZZX”W 2] @ 1(c;.a)
R4 xR

i=1 j=1

= Z ZX” (bi, d;) — W (ai, d;) — W(b;, ;) + W(ag, ¢;)] . (3.2.2)

i=1 j=1
In fact, we have the following proposition (e.g. [HHL17]).

Proposition 3.2.2. Let Ay be the space of adapted random field g defined on R, x R

such that g € $ a.s. and E[||g||3] < co. Then we have the following statements.

1. The space of elementary process defined in Definition 5.2.1 is dense in Ay;
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2. For g € Ay, the stochastic integral [, g g(t, x)W(dt,dz) is defined as the L*(9)-
limit of stochastic integrals of elementary processes approrimating g(t,z) in Agy,

and for this stochastic integral we have the following isometry equality

2
Bl ([ steowd) | <l
R+XR
Now we introduce some norms and spaces used in this chapter. Let (B, | - | 5) be a
Banach space with the norm || - [|5. Let 8 € (0,1) be a fixed number. For any function

f R — B denote

NEf) = ( [ 190t \|B|h|”ﬂdh) , (323)

if the above quantity is finite, where we recall ®, f(z) = f(z+h)— f(z). When B =R, we
abbreviate the notation N }f [ as N f. With this notation, the norm of the homogeneous
Sobolev space H? can be given by using Njf: 1fllz, = Nsfllz2@)- As in [HHL*17]
throughout this chapter we are particularly interested in the case B = LP(£2), and in this

case we denote NJ by N :

Nipf (2) ( JACNCI 2%) . (3.2.4)

We shall set § = % — H. The following Burkholder-Davis-Gundy inequality is well-known
(see e.g. [HHLT17, HW22]).

Proposition 3.2.3. Let W be the Gaussian noise defined by the covariance (3.1.2), and

let f € Ay be a predictable random field. Then for any p > 2 we have

_- / / £(s, y)W (ds, dy)
0<r<tJo JR LP(Q)

<Cu/p ( /0 t /R [N%_vaf(s,y)rdyds)% (3.2.5)

¢ 3
:cm( / / / |r®hf<s,y>uipm)rhr2f’2dhdyds) |

where C'y 1s a constant depending only on H, ./\/’%_Hmf(s,y) denotes the application of
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N%_Hp to the space variable y and Dy, is defined by (3.1.5).

We introduce the solution space ZP(T). It consists of all continuous functions f from

[0,7] x R to L?(§2) such the following norm is finite:

[fllzeery = Fll 2z ey + 1f 1l 2507y (3.2.6)
= sup {8 poqumy + sUP NIy, f(0),
t€(0,17] teo,7] 2
where || f(¢,- ||LP(Q><R (J=EllF (8, 2) 1] dx) and

N0 = [ 1900 P20

It is proved that Z?(T') is a Banach space (e.g. [HHL'17, Section 4.1]).
After defining the stochastic integral, let us return to the stochastic wave equation.

Since we are working in dimension d = 1, the Green’s function associated with (3.1.1) is
1
Gt(.%) = 51{|z\<t} , teR,,xeR. (327)

Notice that Gy(x) does not satisfy semigroup property.

Now we give the definitions of strong and weak solutions to (3.1.1).

Definition 3.2.4. Let {u(t,z),t > 0,z € R} be a real-valued adapted random field such
that for all fired t € [0,T] and z € R, the random field

{Gis(z —y)o(u(s,y)) Lpq(s), (s,y) € Ry x R}

is integrable with respect to W (namely it is in Ag ).

(i) We say that u(t,z) is a strong (mild, random field) solution to (3.1.1) if for all

€ [0,T] and x € R we have almost surely

0
8_Gt xup(z) + Gy xvo(z) + Gy ® o (-, -, u)(z)

= Iy(t,x) / /Gt st —y)o(s,y,u(s,y))W(ds,dy), (3.2.8)

u(t,x) =
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where
0
In(t,x) =Gy * vo(x) + aGt * ug ()
1 -+t 1
3 / o(y)dy + 5 ol + ) + ol — )] (3.2.9)
r—t

(i) We say (3.1.1) has a weak solution if there exists a probability space with a filtration
(ﬁ,f,ﬁ,]é), an ]A-:t—a,dapted Gaussian random field W identical to W in law, and
an F,-adapted random field {u(t,z),(t,x) € Ry x R} on this probability space
((Z,f,f’,ﬁ) such that u(t,z) is a mild solution with respect to (Q,j—z,f’,j}t) and

—~

w.

To obtain the existence and uniqueness of strong (mild) solution to (3.1.1), we make

the following assumptions on o.

(H1) o(t,x,u) is jointly continuous over [0,7] x R? o(t,x,0) = 0, and it is Lipschitz in

w (uniformly in ¢ and x). This means V u,v € R

sup |o(t,z,u) —o(t,z,v)| < Clu—1v], (3.2.10)
t€[0,T],z€R

for some constant C' > 0.

One easily observes that the hypothesis (3.2.10) and the condition o(t,z,0) = 0 imply
that

sup o(t,z,u)| < Clul, (3.2.11)
te[0,T],zeR

for some constant C' > 0.

(H2) Assume |Zo(t,2,u)| and \%;ua(t, x,u)| exist and are uniformly bounded, i.e. there

is some constant C' > 0 such that

sup —o(t,z,u)| < C; (3.2.12)
t€[0,T),z€R,ucR ou
92
sup —o(t,x,u)| < C. 3.2.13
t€[0,T),z€R,ucR O0xou ( ) ( )
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Moreover, we assume

0 0

sup |zo(t,z,u1) — —o(t,x,u2)| < Cluy — ugl. (3.2.14)
t€[0,T],2€R | OU ou

Notice that (3.2.10) is a consequence of (3.2.12). But we keep the former one in the

assumption (H1) since we shall use (H1) for the existence of the weak solution and

(H2) for the existence and uniqueness of the strong solution.

Now we state the main results of this chapter.

Theorem 3.2.5. Assume that o(t,x,u) satisfies the hypothesis (H1) and that Iy(t,x)
is in ZP(T) for some p > 4. Then, there exists a weak solution to (3.1.1) whose sample
paths are in C([0,T] x R) almost surely. Moreover, for any v < H — i, the process u(t, x)

1s almost surely Holder continuous of exponent v with respect to t and x on any compact

subsets of [0,T] x R.

Theorem 3.2.6. Assume that o(t,z,u) satisfies the hypothesis (H2) and that Iy(t, ) is

2

in ZP(T) for some p > 7.

Then (3.1.1) has a unique strong solution whose sample
paths are in C([0,T] x R) almost surely. Moreover, the random field u(t,x) is Holder
continuous a.s. on compact subsets of [0,T] x R with the same exponent as in Theorem

3.2.5.

Theorem 3.2.7. If the hyperbolic Anderson model (3.1.3) has a solution in ZP(T) for

some p > 2 and for some T > 0, then the Hurst parameter H must satisfy H > 1/4.

3.3 Uniform moment bounds

In this section, we obtain the uniform moment estimates of the stochastic convolution
with the noise W which appears in the definition of the mild solution. These estimates

are used later on to prove the existence and uniqueness of solution to SWE (3.1.1).

3.3.1 Uniform moment bounds of stochastic convolution

Define
O(t,x) = /Ot/RGt_s(:L’ —y)u(s,y)W(ds,dy), (3.3.1)
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where G(z) is the Green’s function associated with the wave operator (3.1.1), given by
(3.2.7).

As we mentioned before, the major difficulty here is that the wave Green’s function
Gi(z) does not satisfy the semigroup property so that the stochastic Fubini technique
used for stochastic heat equation is no longer applicable (see Remark 4.3 in [HW22]).
To get around this obstacle, we decompose it into sum of convolutions of some ‘nice’
kernels. More precisely, we have the following simple and important lemma which is the
key starting point of our approach and which plays the role of semigroup property of the
heat kernel when the heat equation is investigated (e.g. [HHL"17, HW22]).

Lemma 3.3.1. The wave kernel Gy(z) = %1{‘x|<t} can be expressed as

Gis(x —y) = / Cs(t —ryx—2)S1-5(r — s,z — y)dz
R

+/S(t ra—2)Ci_o(r — s,z —y)dz

(3.3.2)
/St_r r—2)E(r — s,z —y)dz
/g(t_r v —=2)S(r—s,2—y)dz,
R
where o, B € (0,1), S(t,2) = Si(t, ) = Gy(x) = 3 L{jzj<ty and
(
5(t7x) = %pixz )
Salt, @) i= "0 cos (57) [(¢ + Jal)> " + sgn(t — e[t — o] *7] |
< (3.3.3)

Cialt,x) := FZ—;“) |:CO (0‘7) Ht+ |a:|| + ‘t — |x|’_a}

\ —2cos (oztan (‘ﬂ)) [t? + ]_%} :

Proof. We prove (3.3.2) via Fourier transform

f(&) =F[f&) = / e " f(x)dx, where 1=+/—1.

R
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The Fourier transform of Gy 4(z) is

sin(t + s)l€l)

CA:t—i-s (g) = |§|

We can decompose Gyy,(€) into the summation of following four items:

sin(t|¢]) cos(s|€]) | sin(s|€]) cos(£[¢])

Gl =" +— g
_sin(le]) cos(sle) — =K1 _sinftlg)
e s €
sin(sle]) cos(tle]) — e sin(sle)
GE €77 g |

On the other hand, the Fourier transforms of £(¢, x), S, (t,x) and C;_,(t, z) are given as

follows (see Lemma 3.6.1):

cos(t[¢]) — e~
[t

_ sin(t[¢])

E(t,€) = el S.(t,6) = e Cioalt, &) =

(3.3.4)

We then conclude the proof of (3.3.2) by the fact the Fourier transformation transforms

the convolution to product. O

Remark 3.3.2. Readers may wonder why we don’t use the following simpler decomposi-

tion as we originally attempted:

ét+s(§) _ Sin((t|§| S)|€|)
_ sin(t|£]) cos(s|€]) N sin(s|¢]) cos(t[¢])
€ <

_ sin(tle])  cos(slel) | cos(tlE]) sin(s|é])
e gt €17 r=e

The reason is that the following quantity

cos([¢])
€17

Coto) = FI { ] — ¢ [(t+ o)+t — Jal )

s not integrable. w.r.t. * € R when 0 < [ < 1.

Analogously to idea used in [HHL17], we shall seek the solution of (3.1.1) in the space
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ZP(T). To this end we need to bound the || - ||zr(r) norm of the stochastic convolution

(¢, x) defined by (3.3.1) and its variant /\/'%_Hq)(t, x) as stated in the following theorem.

Proposition 3.3.3. For the stochastic convolution ®(t,x), we have the following esti-

mates:

(i) If p > &, then

sup  |B(t,7)] H < Crpatllvll 2o - (3.3.5)
te[0,T],z€R Lr ()
sw [Ny _g@(ta)||| < Crpalollze (3.3.6)
te0,T],zeR | 2 Lr(Q)

Proof. We shall use Lemma 3.3.1 to prove this proposition. We divide the proof into two
steps.

Step 1: In this step, we shall prove part (i) of the proposition. For any 6 € (0, 1) and
1=1,2,3,4, set

JEH(r, 2) = / T / (r— ) Ki(r — 5,2 — go(s,y)Wi(dy,ds),  (3.3.7)

where

’C1 = Ca, ICQ = Sa, ’Cg = S, and IC4 =£. (338)

And we define K; to be the complements of K; according to (3.3.2), namely,
I€1 = 8170“ ’62 = lea, ]C3 = 5, and ]€4 = 8. (339)

Let us set

sin

(I)z(t, x) =

™

0 t _

(6r) / /(t YRt =y — 2) S (ry 2)ddr i = 1,2,3,4.
0o Jr

Then a stochastic version of Fubini’s theorem and Lemma 3.3.1 yield

B(t,z) — /0 t /R Gr oz — y)u(s, )W (ds, dy)
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:E%ﬁjéiélzwwy*w—srwrxGpr—wM&wWWwﬁﬁ

:ZSinfﬂ) /Ot/R/:/R(t—r)e_l(r—s)_e

=1

X Ki(t —r,x — 2)Ki(r — 8,2 — y)dzdr x v(s,y)W (dy, ds)

//t—rgllC (t —r,x — 2)Jp (r, 2)dzdr

Il
(]
=.
:

.
Il
_

ga%

O,(t, 1), (3.3.10)

(2

where we have applied the identity

/t(t — ) r — 5)dr = sin7(T97r) , 0€(0,1),0<s<¢.

This expression is essential for us to derive the desired estimates. In the following, we
will use 37, to denote "7, and sup to denote  sup

t,x te[0,T],zeR
It is clear by the Hoélder inequality with 1/p+1/¢g =1 that fori=1,--- ,4

1
sup |®;(t,z)| < sup / (t —7r)° (/ IKi(t —r,x — z)|qdz)
t.x t.x

< |1y (r, 2) || oy dr

1
t q
§<sup / /rq(el)UCi(r,z)szdr)
t Jo Jr
([ 1)

=L))o (1) (3.3.11)

-

where we change the variables r — ¢t —r and z — x — z in the second inequality and then
it is clear that sup, , becomes sup, thanks to the translation invariance in space variable
of the function. This technique will be freely used in the sequel without mention. We
shall deal with Ii(l), Ii(z), t=1,--- .4, term by term in the subsequent paragraphs.

First, let us deal with Ii(l) when ¢ = 1,2. The cases i = 3,4 can be treated similarly.
When i = 1, K; = C, and K; = S;_,, defined as (3.3.3). By the change of variable
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z — rz, it is easy to see 11(1) can be bounded as

t
11(1) :sup/ /Tq(9_1)|81_a(7’, 2)|dzdr
t Jo Jr

t
5[sup / Tq<9—1—a+%)dr] x/ (12 + sl — [<)[1 |2
t 0

0

In order to make sure the above integrals converge, we need

1 1
ag<1l, (a+1)g>1 & O<a<-=1-—-—,
q b

and also

1 2
gl0—a—-1+-|>-1 & O06>1—-+a.
q q

When i = 2, Ky = S, and Ky = C;_,, which are defined in (3.3.3), we have

¢
IQ(I):sup / /rq(01)|C1_a(r, 2)|1dzdr
t Jo Jr
t 1
S[sup / rq(elﬁq)dr]
t 0
o am —a —a
></ {cos <—> [|1—|—|zH + |1 — || }
0 2
q
} dz.

By Lemma 3.6.1 in the Appendix 3.6, C;_,(r, 2) can be bounded by

(NI

—2cos (atan™'(2)) [1 + 2%

&
2

|T—|—|z|‘7a+‘r—|z||7a—l—[r2+22] if |z =7,

|C1_a(’l“, Z)| 5 o
r(|z|2—7”2)_7_1 if 2| ~ 0.

Thus, in order to make sure (3.3.14) is bounded, we need
1
ag<1l, (a+2)g>1 <:>0<04<5,

and

1 2
q(é’—a—1+—>>—1<:>«9>1——+oz.
q q
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(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)



Therefore, to prove part (i) of the proposition we only need to show
Ky P
ElJg (r )Moy < CllolZoy, i=1,2,3,4.

This is objective of Lemma 3.7.1, proved in the Appendix 3.7 under the following condi-

tion:
1 2 1 1
p>—, 1l-——+a<l0<H+a—-—-, 1-H<a<l--. (3.3.18)
H q 2 p
Therefore, when p > %, we can choose a such that 1 — H < a < 1 — }17, and then we

see (3.3.12), (3.3.13), and (3.3.18) are satisfied since + > if H < 1. Thus we have

H

2H+1

proved (i) of the proposition for ®,(t,z), ®o(t, z). The cases for ®3(t,x) and P4(t, z) can

be proved similarly. Thus, we complete the proof of part (i) of the proposition.

Step 2: Let us now consider part (ii) of the proposition. In order to obtain the desired
decay rate of ./\/'%_H@(t,:r:), we still use the equation (3.3.10) to express ®(¢,z) by JZ)CI'.
Recall our notation D, ®(t, z) := ®(t, z+h)—®(t, z) and same notations for D, k;(t—r, 2),
D)% (r, z). Then

0,0(t,z) = S0 Z / / )0 K(t — 1, — 2)J (1, 2)dedr

= Z/ /(t — )it —r o — z)@hJéCi (r, z)dzdr, (3.3.19)
—Jo Jr

with the choice of K and K defined by (3.3.8) and (3.3.9). Invoking Minkowski’s inequality

and then Holder’s inequality we get

3
sup ( rsh@<azvaw”*4dh)
R

t—ra IIC t—r,x—2z)

1

: |h|2H2dh)

2

X D Jy (1, 2)dzdr

t
Sswp 3 [ -0 R - - o)
2 3
x < / ‘@hJéCi(r, z)‘ |h|2H2dh) dedr
R
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2> (Sup / | R Z)’qudr)%
</ /U ’th T2 ‘ )| IR 2dh} dzdr>

= (JDYe x (JP)r (3.3.20)

The first factor (J.(l))% in (3.3.20) is finite if we require that «, 0, p, g satisfy (3.3.12)

7

and (3.3.13). Therefore we only need to focus on the second factor (Ji(g))% in (3.3.20).

By Lemma 3.7.2, we see

B [ [ [ 1002 We-2an] s < Crplollr
R

under the conditions

1 3 1
p>—,1-2/g+a<0<2H+a—-1, - —2H<a<1-—-. (3.3.21)

H 2 P
Ifp> 4H 7, then we can choose a such that %—2H <a< 1—1—1)7 and then we see (3.3.12),

(3.3.13) and (3.3.21) are satisfied since ;77 > % when H < 4. Thus, we complete the

proof of part (ii) of the proposition. O

3.3.2 Uniform moment bounds of the approximate solutions

We approximate the noise W by the following smoothing of the noise with respect to the

space variable. That is, for € > 0 we define

0

W) = /R Pl — )W (t,dy), (3.3.22)

where p.(x) = \/T exp(—% ) The regulated noise W, induces an approximation of mild

solution

ue(t, x) = Io(t, x) / /Gt st —y)o(s,y,u(s,y))We(ds, dy), (3.3.23)

93



where the stochastic integral is understood in the Ito sense. Due to the regularity in
space of the noise, the existence and uniqueness of the solution u.(t, z) to above equation
is standard (even the higher dimensional case were known (e.g. [HHNI4, Pes02] and
references therein).

The lemma below asserts that the approximate solution {u.(¢,z),e > 0} is uniformly

bounded in the space ZP(T'). More precisely, we have

Lemma 3.3.4. Let H € (1, 3). Assume that o(t,z,u) satisfies the hypothesis (H1) and

assume that 1y(t, z) is in ZP(T). Then the approximate solutions u. satisfy
sup [[uel| ze(r) == sup [[uc(t, )|l zo () + sup [[ue(t, )| zp () < 00 (3.3.24)
e>0 e>0 e>0

Proof. For notational simplicity we assume o(t,x,u) = o(u) without loss of generality
because of hypothesis (H1). We shall use some thoughts similar to those in [HW22]. To

this end, we define the Picard iteration as follows:
ul(t,z) = Iy(t, z),
and recursively forn =0,1,2,-- -,

ul (¢, x) =Io(t7rv)+/0 /RG,:_S(QJ—y)a(u?(s,y))Wa(ds,dy). (3.3.25)

From [HHL"18, Lemma 4.12] it follows that for any fixed £ > 0 when n goes to infinity,
the sequence u”(t,x) converges to u.(t,z) a.s. In the following steps 1 and 2, we shall
first bound ||u’||z»(r) uniformly in n, and €. Then, in step 3 we use Fatou’s lemma to
show (3.3.24).

In the following, we will continue to use the notations Dy f(¢,z) and Op,f(¢,x) pre-
viously defined in (3.1.5) and (3.1.6).
Step 1. In this step, we bound the L?(Q x R) norm of u"™!(¢,z) by the Z? norm of
ul(t, z). Rewrite (3.3.25) as

WUt z) = Lot ) + /0 t /R [(Gt_s(:ﬁ—-)a(u?(s,-))> *Ga} (y)W (ds, dy) .
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Using eKI* < 1 and the condition (3.2.11) on ¢, we have from the Burkholder-Davis-

Gundy inequality (3.2.5)

E[Juz*(t, 2)|"]

t
<Gnor+ce( [ |
0 JR
t
<cnor+ce( [ |
0 JR2

[N

FlGia = Jolucts, D] O el -2agds

Gis(@ —y —h)o(ul(s,y + h))

[NS]

2
= Guealo = whotu (s, )| 2y )

<G, [lHo(t 2) + D" (¢, 2)|F + [D5" (¢, )| (3.3.26)

where we have used the notations DY (¢, ) and D5" (¢, z) similar to (3.7.2) and (3.7.3),

namely,

t
Di"(t,x) :=/0 /R }@th,s(y)}Q-Hug(s,x+y)\|ip(m|h\2H—2dhdyds,

and

t
D57(0) = [ [ G IOt ) 1Py,
0 JR

This means

SAIN

28, ) oy = ( "+1tx>|p]das)

Cy [o(t 2) [ Logxm + D1 () + D" (B)] (3.3.27)

where D7"(t) and D5"(t) are defined and can be bounded similar to the argument used

in the proof of Lemma 3.7.1:

D" (t) - (/ DY (t, )|? d:v) <CpH/ (t — )2 Jul (s, ) 1 p(xmyds (3.3.28)
0
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and

2 ;
Dy"(t) = (/R |D§’n(t,9€)|g d:r;) < C'pﬂ/o (t—s) [Ng_H,p“?(S)rd& (3.3.29)

The above bounds on D7"(t), D5™(t) together with (3.3.27) yield

2

2

t
a2, ) o ey < cp,H(||fo<t,x)||%pM> b [ =9 Vi)
0

t
b e gndsds) . 3330
0

Step 2. Next, we bound NI_Hpu?“(t) by the ZP norm of u”(¢,x). Similar to (3.3.26)
2 9.

we have

E[[Dn (1, 2)"] <Cy|Io(t, ) — Tolt, w + h) "

+C’E</O/R

2
DGy (o — 2ol (s, 2)) |y|2H-2dzdyczs)

DnGis(x —y — z)o(ul(s,y + 2))

iS]

2
<Cy [Lo(t,x,h) + I7"(t,x, h) + I3"(t, x, h)] ,

where

p
)

To(t, @, h) == |Io(t, ) — Io(t,z + h)

t
7"t h) :zE(//
0 Jr2

and

p
2

2
01Giesla = ) 19, D P 2y )

I3

‘ 2 2

uGiesla =3[+ fotucts, )Py sy

t
" (t, 2z, h) ::]E(//
0 Jr2

Thus, by Minkowski’s inequality we have

2

2
N O] = [ 1900, oy P2
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<C, Z/ (/I” (t,x h)dx)p B2 =2dh

= J0+J1 +J2.

For the term Jy, it is clear that

’ 2
J() — CP/R </R ’@hfo(t,l‘”pdl’) |h|2H_2dh = [Nng,p]()(t)} . (3331)

We can deal with the term .J; in the similar manner as when we deal with (3.7.15)
in the proof of Lemma 3.7.2. An application of Minkowski’s inequality and then an

application of Parseval’s formula yield

t
Ji SCp,H/ /
0 R2
< [ [Elmuriea]as) e (33.82)
R R

2

SCP,H/Ot(t—s)ZH [Nl_Hp E(5)} ds .

2
’Dth_S(z)‘ B2 2dhd>

Next, we bound Jy. By the condition (3.2.11) (|o(u)| < |u|) and by a change of variable

z — x — z, we obtain

p

t
75700 h) < GE ([ [ 1Batern P22 = )P 2y
0 JRr2
In a similar way to that when we deal with (3.7.16) in the proof of Lemma 3.7.2, we have

7, ::/R /Rf”(t . h)da

t
< Con [ [ 1BusG P2y 2 2ana
0 JR3

2
X (/ Elul(s,x — z)|pdx) " ds
R

t
< Coar [ (6= " 25, -
0

‘h‘2H th

(3.3.33)
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Thus, we obtain

7p €

2 2
/\Q_H n+1(t)} < Cpu [Ng_ijIO(t)} +Cpm / (t —s)2H [N;_H,p "(s )} ds

t
+C ’H/o (t — &)1 |ul (s, -)H%p(ﬂxR)ds. (3.3.34)

Step 3. Set
n n 2 2
() = (o) + (N ppul(0)]

Then combining the estimates (3.3.30) and (3.3.34) yields

t
V(1) < Chr (||fo||22p(T) + [e- s>4H-1\v2<s>ds) .
0

Now it is relatively easy to see by fractional Gronwall lemma (similar to [CHN16, Lemma
A2])

supsup sup VI (t) < Cr,pp < 00.
e>0 n>1 te[0,T]

Thus, by the same argument as in the proof of [HW22, Lemma 4.5], we have that
sup sup |luc(t, )| zraxr) and sup sup N7 _Hp ue(t) are finite.

e>0 t€[0,T] e>0 te0,T] 2
In conclusion, we have proved

Sup 2wy = 5up sup. (£, s+ Sup sup N0
0 tef0,7] e>0 tef0,7] 2

is finite. O

3.4 Holder continuity and well-posedness

In this section, we obtain some estimations which imply the Holder regularity of the
stochastic convolution with respect to our noise W. Then the similar estimations of the
solution to SWE (3.1.1) follow in a routine way. These estimations are devoted to prove

the tightness associated with the solution to (3.1.1).
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3.4.1 Holder continuity of stochastic convolution

We have the following regularity results for stochastic convolution ®(¢,z) defined by

(3.3.1) and the approximated solution u. defined by (3.3.23).

Proposition 3.4.1. Let v(-,-) € ZP(T) and let the stochastic convolution ®(t,x) be

defined by (3.3.1). We have the following Hélder regularity in the space and time variables
for ®(t,x):

(i) Ifp> & and O<'y<H—%, then

sup |D(t + h,z) — (ID(t,x)|HLp(Q) < Crpaqlb| 0| z00r) - (3.4.1)
t,t+hel0,T],z2€R

(it) If p > & and O<7<H—%, then

| sup |D(t,x) — (ID(t,y)|HLp(Q) < Crpaqlr =y |vze0r) - (3.4.2)
t€[0,T],x,y€R

Proof. Step 1: In this step, we concentrate on the analysis of the following quantity (we

denote sup, ; hepo 17.2cr bY SUP;,)
sup |Ap®(t, )| :=sup |P(t+ h,x) — P(t, )| .
t,x t,x

Assuming h € (0,1) and ¢ € [0, 7] such that t+h < T, then by the representation formula

(3.3.10) and the triangle inequality we have

sin(70)

™

t+h
Ap®(t,x) = Z [/ /(t +h =)+ h = x — 2) ) (r, 2)drdz
; 0 R

t
- / /(t — )it — v x — 2) Iy (r, 2)drdz
0o Jr
where
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t
= Z/ / Ap(t =) (t = ryw — 2) ) (r, 2)drdz
—~Jo Jr
with Ap(t —r)=L =t +h—r)0=t — (t — 1)L
5(t,h, @) ZI (t,h, )
= Z/o /R(t +h =) ALK (t = — 2) ) (r, 2)drdz,
with ARKi(t —r o —2) == Ki(t +h —r,x — 2) — Ki(t —r,x — 2); and
Ty(t,h,w) = Y I{(t,h,x)
L B
Z/ /(t +h =)'t +h =1 — 2)J)i(r, 2)drdz.
. R
Our goal is to show that
I sup I, (t, h, ) oy < Croaal W 0l zery, 5 =1,2,3, (3.4.3)
under the conditions
> — 1—H<oz<1—1 <H—l (3.4.4)
P> 5 Y . 4.

We shall first treat Z; (¢, h,z) and Z3(t, h,x). The term Zy(t, h,z) is more complicated
and shall be handled lastly.

For the term Z;(t, h, x), it is easy to see that for any fixed v € (0,1),
At =) =|t+h—r)0"t =t =) < |t =700 (3.4.5)

Then by Hoélder’s inequality with 1/p + 1/¢ = 1 and Lemma 3.7.1, under conditions
(3.3.18) we have fori =1,--- 4

H Stuf Il(i) (¢, h, ) HLP(Q)
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1/q
< (Sup / / At — 971“1 IKi(t — 7,2 — z)|f1dzdr) X ||v|| ze(m)

1/q
< (sup / /|r|(9_1_7)q|Ki(r, z)|qdzdr) X ||v]|ze(ry - |P]7, (3.4.6)
t Jo Jr

where in the last inequality of (3.4.6) we have used the change of variables r — ¢ —r and

z — z+ x. Now we only need to show

t
sup / /|7“](917)q|zi(r,z)|qdzdr<+oo.
0 JR

We shall only discuss the situation ¢ = 1. Other cases ¢ = 2, 3,4 can be treated similarly.
For i = 1, we have K; = C,, K, = Si_, as defined in (3.3.3). Hence, by changing variable

r — rz we have

sup / /|T|(9 1= 7q|81 o1y 2) | dzdr

<sup / |r|(0-1=Datl-aqg,. . / ’(1 +|2]) 7 +sgn(l — |2])|1 — |z|]| 7 "d-
0
Then by the same argument as in the proof of part (i) of Proposition 3.3.3, we have
| Sup T (t, h7$)HLp(Q) < Crpuaslh|[v] ze(r)
under the conditions (3.3.18) and (# —1 —~v)q+ 1 — ag > —1, which can be summarized

as the following conditions

1 1 2 1
p>—, 1-H<a<l—--, l4+a—-+7<O0<H+a-_-. (3.4.7)
H D q 2

Since p > & > 2 implies v < H — 1/p < H +2/q — 3/2 it is clear that one can choose
and 6 satisfying (3.4.7) under conditions (3.4.4).
Now let us deal with the term Z3. Using Holder’s inequality, Lemma 3.7.1 and the

change of variables 2 — z + x and r — r —t — h, we have

| Stuf Is(t, h’x)HLP(Q)
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h 1/q
< Z (/0 /qu(e—l)‘lci(r, z)|qdzdr> X vl ze(r)
i 1/q
=3 (7)) " x lollzvery (3.4.8)

- 1/q
We want to show that (Ié”(h)) S hY fori=1,---,4 with p, a, v satisfying (3.4.4).
As before, we only consider the case i = 1, i.e. K1 = C,, K1 = Si_o. The other cases

can be handled in similar way. In this case we have

1/q h 1/q
(supIé”(h)) = </ /7"1(9_1)|81_a(7“, z)|qdzd7’)
t,x 0 R
h
< (/ pa0—1)+1-ga 7.
0

too 1/q
< [T b sl — - \z||a}"dz)

S [jpfr0-v2mae] e < (3.4.9)

if (3.4.7) is satisfied (and hence so does (3.4.4)). We have similar bound for I?Ei)(h) for
i =2,3,4. Combing these bounds with (3.4.8) we have

H Stup Z3(ta h7x)“Lp(Q) < C’T,p7H,’y|h’|’y||U||ZP(T) )

if p, a, 7 satisfy (3.4.4).
Lastly, we are going to deal with Z,, which is much more complicated. By Holder’s

inequality,

¢ 1/q
Ly(t,h,x) < Z (/ /(t +h =) 1O DA (t—r x — z)]qdzdr)
- o Jr

1/p

T
(1 B ar) (3410

The second factor inside the summation in (3.4.10) can be bounded by a multiple of

|v]|zp(ry via Lemma 3.7.1 under the condition (3.3.18). By the change of variables r —
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t—r, z —x— 2z, We see

H Stuf I2<t’h7x)||LP(Q)

t 1/q
<y (sup / / (r + BV A (1, z)|qdzdr) < [[oll 2
i t 0 R

(i H
=: Z (SlipIQ (t, h)) X HUHZP(T)-

i

Thus, we shall need to show that for i = 1,2,3,4
. t —
supIz(l) (t,h) = sup / /(7" + W) 1D (7, 2)|9dzdr < Crpom A, (3.4.11)
t t 0 JR

to obtain

I sup Ty(t, h, :c)HLp(Q) < Crp iyl |v] 207 - (3.4.12)

Now, we shall deal with IQ(i) (t,h) for i = 1,2,3,4 term by term.

Case i=1. Recall that Ki(r,2) = Si_o(1,2) and Ki(r,2) = Cu(r, z) are defined by
(3.3.3). We shall show

supIQ(I)(t, h) < Crpealh|™, where
' . (3.4.13)
Iél)(t7h) :/ /(7“ + h)1ODIALS, o (r, 2)|9dzdr
0o JR

for p, v and «a satisfying (3.4.4). Set Ay :=[|z| < 7|, Ay :=[|z| > r+2h] and A3 :=[r <
|z| < r+ 2h]. For fixed n € (0,1), we see

(

Aplr+ 2|7 = |r+ |2l + b7 = [r 4 |2[[7 S |r + 2] 7], on R;

Aplr = 2|7 = [r = |z[ + A7 = |r = [2|[7* S Ir = |2][7*77[A]", on Ay ;

L Anlr = [2][7 = [r =[] + 27 = |r = [2][7* S {l2] =7 = h[7*77[A]7, on A,
(3.4.14)

Then we have
—« —« q
BnSialr, 2T < Ay + |27+ |Anlr = 2]l - [La, + 14,
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q
I R E e A Pl

14,
< |r + |Z||(—a—n1)qhmq + |7“ _ |Z||(—a—n2)qhn2q 1y,
+|z| =7 — h|(—a—n3)qhn3q 14,

e+ b= [+ = 2 1,
for some n1,m2,m3 € (0,1). Therefore,

t
Iél)(t, h)< / /(r + R)IOD | 4 2] |G Gz dy
/ / (r + R)1O D — |z||Commapm2a . 1, dzdr
+ / / (r 4+ h)1O=D||z| — p — h|ComIIpma .1, dzdr
0 JR

t
b [ [ m D b el 2l Lagdadn
0 JR

=Y Tt h). (3.4.15)

4
k=1

The procedures of dealing terms Iz(}g(t,h), k = 1,2,3,4 require standard but careful

1

computations which are included in Appendix 3.8. By Lemma 3.8.1, for any p > &,

v < H— z_l)’ Ié},z(t,h) (k =1,2,3,4) can be bounded by h7? if a, 0 satisfy (I1.1) and n,
k=1,2,3 satisfy (3.8.1).

Case i=2. In this case, we have Ky(r,z) = Ci_4(r,2) defined by (3.3.3). We want to

show when ¢ = 2, i.e.

supI (t h) < Crpealh|™, where
' (3.4.16)
(2) _ q(6—-1) q
" (t, h) —/ /(7’—|— h) |ARCy_o (1, 2)|*dzdr
o Jr

with parameters p, v and « satisfying (3.4.4).

For fixed € (0,1), it is not hard to verify

(r+¢h)-h |
[+ € + [2PT7

< (r2 i |Z|2)*%(1*n) |r2 i |Z’2|f(%+1)’i (r + h)"|R]"

S (P42 E

’Ah (7“2 + |Z|2)_%
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S|P+ P72 (e h)A), (3.4.17)

and

e
‘Ah cos <a tan™! (M)> ’ fj% (3.4.18)

r r2 4+ 22
Then by the above two inequalities (3.4.17) and (3.4.18), and the inequalities in (3.4.14),

we have

q
ARCy_q(r, z)’ S|+ ]zH(*a*”l)qh”lq + |r— ’ZH(*a*ﬂz)Qhﬁzq 14,

+||z| =7 — h|(—a—n3)qhn3q 1,

I+ b= 27 = 2] L
2 2|(=5—m)q |2[™4| A4
|2 2P (o )M R R
6
=: Z M,EQ) (r,2). (3.4.19)
k=1
Substituting this bound into (3.4.16), we see that,
6
sup I§2) (t,h) < sup 2252,2 (t,h),
t t o
where
t
Iz(,zﬁ(t h) = / /(7“ + h)q(e’l)M,?)(r, 2)dzdr, k=1,--- 6. (3.4.20)
0 JR

The first four terms Ifk) (t,h), k =1,--- 4 are treated in the same way as Case i=1

and require conditions (II.1) and (3.8.1) to guarantee
supZ2(t WSIA, k=1, 4,
t

We shall deal with the Ig(?g(t,h) and IQ(?g(t, h) in Appendix 3.8. By Lemma 3.8.3,
supr,z (t,h)<|h|79 for k = 5,6 under conditions (I1.1) and (3.8.6).
t )
As a result, for any p > %, v< H— ;lw we have supr,z(t, h)<|h|? for k=1,--- 6,
t ’

if o, 6 satisfy (II.1) and 7 (k= 1,---,6) satisfy (3.8.1) and (3.8.6).
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Case i=3. In this case we have K3(r,2) = £(r,2) = * o and

r+h ro |
A 1~ —
| h8<rv Z)‘ (T+h)2+22 r2 4 2
h 1 1 1
| (r 4+ h)2 4 22 T {(r—{—h)?jtzz _T2—|—2’2:|
h a re-|h|9-|2r + h|?
< . 3.4.21
T (r 4 h)2+ 22 [(r + h)? 4 22[0 - |r?2 + 2|9 ( )

By Hoélder’s inequality with = 4+ £ =1 and |2r + h|? < 24|r + h|?, we obtain

t
It h) = / / (r + )10 | ALE(r, 2)|? dzdr
0 R

¢
h
< +hq(9—1)—
S el e
|r + h|%® Ik
h|? - . dzd
+1h] //|r+h + 222 |r2+22|qZT

</t/(r + h)q(e_l) [ dzdr
~ (r+h)?+ 22|

e[ (i Mh'qezﬂq)mdz”m/ [ () M“V

1/n

— I8t h) + |h|q[ 8¢, h)} " [Igf’g(t,h)} . (3.4.22)

q
dzdr

By the change of variable z — (r 4+ h)z in I2(31) (t,h) and I§32) (t,h), and by the change of

variable z — rz in ISSS) (t,h), we have

1
¥ <|hj7 - //\r+hyq9 D+1- Qq( ) dzdr

1+mqb—2qm 1—ngq %
+ |h|? / / Ir + A i dzdr / / T dzdr
o Jr |1+ 22| |1‘|’Z2‘nq
1
t m Z
<|hJ? / I+ BBy 4 [Rje [ / I+ h]ququdr} [ / \r|1nqdr]
0 0 0

<|h|f1(9—1)+2—q + |h|Q(0—1)+2/m _ |h|Q(9—1)+2—q + |h‘(1(9—1)+2—2/n < |h|qv7

under condition

2 2
—>q 0—v>2——. (3.4.23)
n q

Then Z(t, h) < Crpo- B[ under (3.4.23).
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Case i=4. In this case we use K4(r, 2) = S(r, 2) = $11;1<y. Since (r+ )10~ < pa@=1),

we see

t
I§4) (t, h) 2/ /(’I" + h)q(Q_l) ll{z\<r+h} — 1{\z|<r+h}}q dZdT

// (r + h)? gldzdr—l—// (r + h)1Vdzdr
(r+h)

/ 2h(r + h)"Vdr < h/ 2r1@=Vdr < |nP",

0 0

where the last inequality requires
1
g0 —1) > -1, v < —. (3.4.24)
q
Then under (3.4.24), we have
supI (t h)<|h|e.

To conclude, with the choice of 1 — H < a <1 — %, p>4, 0<y<H-—_, wesee

that the condition (3.3.18) to guarantee

T 1/p
ICi .
( | 19802 g dr) < Jollaner (= 1,2,3,4)

and the conditions listed in Case i=1,2,3,4 to guarantee (3.4.11) are all satisfied, so we
have

Isup Za(t, hy 2) [ o) < Oy I 0] 20(r)
t,x
This finishes the proof of ().

Step 2: In this step, we deal with

te[0,T],x,yeR

By (3.3.19) in the proof of part (ii) of Proposition 3.3.3, we have

Z Sinf”) /Ot /R(t — )i (t—r 2 — 2)

=1

|O(t, ) — D(t,y)| =
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— Ki(t —r,y — 2)]J)i(r, 2)dzdr

! 1/q
Z(/ / q(0 1) |© /C Z)|qdzdr>

1/p
([ wt) . Ga)

where h = |z — y| and DuK;(t —r,2) == Ki(t —r, 2 + h) — Ki(t — r, z). Without loss of

generality, we can suppose that > y and h = |z — y| < 1 is sufficiently small. The term
1/p

<fOT |5 (r, -)Hﬁp(R)dr) in (3.4.25) can be estimated via Lemma 3.7.1 which requires

(3.3.18). Thus, we need to show for i =1,--- 4

sup Va2 (t,z,y) < Crpulh"?, (3.4.26)

1,2,y

where sup is the is abbreviation for sup and
t,x,y t€[0,T],z,yeR

)(t,z,7) / / a(0=1) }Dh (r,2) { dzdr . (3.4.27)

We are going to bound J® for i = 1,2, 3,4 separately.

Case i=1. In this case K,(r, z) = Si_(r, ) which is defined by (3.3.3). We shall show
that

sup I (t, z,y) —Sup/ /r” V10581 o(r, 2)|" dzdr < Crpq B, (3.4.28)

tx,y tx,y

with o, p and v satisfying (3.4.4). We split JM(¢,z,y) into two parts:

t
TV (t,z,y) :/ /rq(gl) ‘@hﬁl(r, z)‘qdzdr
nJR

h
+/ /rqwl) ‘@hlﬁl(r, z)‘qdzdr

=TIV (t, 2, y) + T (¢, 2, y) .
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Let us treat the term Z(l)(t, x,y) first. In this case, —r + h < r — h. Set

By=lz<—-h—r|, By=[z>r+h], By=[-r+h<z<r—hl;
(3.4.20)
By=[]-r—h<z<-r+h], Bs=[r—h<z<r+Ah.

By the triangle inequality and the inequalities (3.4.14), we have

D181l 2)|" = |(r + |2+ h) " +sgn(r — |z + A)|r — |2+ 4] "
q

= (r+12))7 = sgn(r — [z])|r — |2]|

SJ |®ﬁ<r + |Z‘)7a|q + }Dh@n - ‘Z|>7O[‘q ) (131 + 132 + 133)

[ =z + A7+ (r = )7 (s, + 1)

S Ja] -

I = |2l (L, + 1)
I = B [al T 1,

[ = e+ A7+ (r = 27" (s, + 1)

3
=Y Nt 2,y) (3.4.30)
k=1
Then
t
t z,y) ZJ (t,x,y) Z/ rq(‘g’l)Nl(vlk)(t,x,y)dzdr. (3.4.31)
— Jn Jr

By Lemma 3.8.4, sup .71(}2(15,:1:, y) S|k for k = 1,2, 3 if we require (I1.1) and (3.8.9).
t,x,y ’

Next, we shall deal with j;”(t, x,y). In this case, —r + A > r — h. Setting
Ci=lz<—r—nh|, Co=lz>r+h], C5=[-r—h<z<r+h, (3.4.32)

then by the inequalities (3.4.14),

(D1S1-alr,2)|" = |(r 4 |z 4+ B) ™ + sgn(r — |z + Al)|r — |z + Bl
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— (o ey = sgn(r = Jal) | — |2l
S [oulr + )71+ [0l = 12D (L + 1cs)
= [z B+ (0= )" Loy
S 2l = [3] |7 (1, + 1,)

+|(r =z 4+ B+ (r =27 1

=) Nyt ay). (3.4.33)

k=1

Thus

(1) (t,z,y) ZJ; t,x,y) Z/ /rqw 1N (v (t,z,y)dzdr. (3.4.34)

By Lemma 3.8.5, sup ‘72(}2 (t,z,y)S|A|" for k = 1,2, 3 under conditions (I1.1) and (3.8.14).
t,r,y
As a result, for any p > %, v < H— %, we know that (3.4.28) holds if «, 6 satisfy
(IT.1) and nx, k =1, -+ , 4 satisfy (3.8.9) and (3.8.14).

Case i=2. We consider Ky(r, 2) = C;_,(r, 2) defined by (3.3.3). We want to obtain

sup T (t, 2, ) = sup/ /rq(G V1D,,C1_o(r, 2)|" dzdr < Crppq R, (3.4.35)

ta,y tay
with parameters p, «, ~ satisfy (3.4.4). By the triangle inequality,

Oé‘q

DACralr, )Y SDalr + 2|1 4+ [Dalr — (=7 + [Du(r? + 22)73

+ {2 D}, cos (atan_l (%))]q (r* + Zz)—%q

= i NP(r,z). (3.4.36)

k=1

Substituting (3.4.36) into (3.4.35), we have

sup J (¢, 2,y) <SUPZ~7k (tz,y),

t,x,y :):yk 1
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where

t
j]gQ)(t,x,y) = / /rfl(@—l)]\/"iQ)(T7 Z)dZdT, k= 17 o 74.
0 R

For the term jfm (t,x,y), since for fixed n; € (0,1) ,

[Dalr + =77 < |r + ||,

similar to the estimation of Iz(ll) (t,h) in (3.4.15), we have sup \71(2) (t,z,y)<|h|" under the

t,x,y
condition (3.8.2).

It is more complicated to deal with the term jQ(Q) (t,z,y) since |Dz|r —|z||~*|? has dif-

ferent upper bounds on different domains of |z|. Similar to Case i=1, we split J

into two parts
t
Tt = [ [ rOOl@ulr — [ rdzar
Lo Jr
2

h
3
+/ /qul)IQ,ﬂr— |z||~*|?dzdr
o Jr

=T33 (ta,y) + T3 ().
We first deal with jz(i) (t,z,y) when r > 2 namely —r < r — h. Let us set

Dy=[z<—-r—h|, Dy=[-r—h<z<-r], Dy=[-r<z<r-—~h,

Dy=[r—h<z<r|, Ds=[r<z<r+h|, Dg=[r>z+h|.

The first integral of (3.4.37) can be bounded by

.721 tx,y)S Z// r1O=DD,|r — |2|| 7| %dzdr =: ZJ@) (t,z,y).

111

V(t,z,y)

(3.4.37)

(3.4.38)
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It is not hard to derive that for some n € (0, 1)

(

|7"_|Z||*a*77h777 on .DlLJ_D5LJ_D67

Dalr = 2] S Jr = |2 + K|~ A0, on Dy

Ul |z 4+ A7+ |r—|2||7*, on DyUDy.

Substituting this into (3.4.39) we obtain

6 t
S tay < [ [t ey
j=1 0 D1UDs

t
+// rqw*l)h‘—]sz(o‘*"S)qﬁ’Bqdzdr
0 JDg

t
+/ / 7nq(0—1)|7~ _ |z + h||_(a+’74)qh"4qdzdr
0 JD;

¢
—|—/ / ra0-1) (|r — |z + A"+ |r — |Z||—aq) dedr
0 DQUD4
By Lemma 3.8.6 in Appendix 3.8, we have
fup \72(,21),]'(2(:7'%7 y)§|h|’yq7 j = 1’ e ,67
7x7y

under conditions (II.1) and (3.8.17).

In similar way we can obtain the same bound for j;? (t,z,y) by dividing the domain
of |z| into subdomains and estimating each terms. We omit the details here.

Now we turn to the third and last terms j3(2) (t,z,y) and \74(2) (t,z,y). Analogously
to the obtention of (3.4.17) and (3.4.18), it is not hard to obtain for fixed n € (0, 1),

‘@h(rz X 22)—%| < (1% + 22| 4 R|RP, (3.4.40)

and

e P
— < . 4.
'@hcos (atan < . ))’ T (3.4.41)
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Then we have

Tt 2, y) + Tt 2,y)

t
§\h|mq/ / rO=D(p2 4 22)=(GFma| 4 fmaddr

n54 .
|h|’75q/ / a-n__" ———————(r* + 2*) " 2%dzdr. (3.4.42)

(r2 + z2)m4

By Lemma 3.8.7, sup jg(z) (t,z,y) and sup j4(2) (t,x,y) can be bounded by a multiple of
tay tay
|h|7 under conditions (II.1) and (3.8.24).
As a result, for any p > &, v < H — %, sup J @ (t, z,y)<|h9 if «, 0 satisfy (I1.1), m
t,x,y

(k=1,---,5) satisfy (3.8.17) and (3.8.24).

Case i=3. In this case K3(r,2) = E(r,2) = Then

™ r2+22

t t
/ /7“1(9_1) ‘@hlé:g(r, z)‘qdzdr—/ /qu
o Jr o Jr

The i = |z — y| in (3.4.43) plays the same role as h in the second term of (3.4.21). So

1

q
24 (z+h)2 124 22 dzdr. (3.4.43)

using the similar method as in dealing with ‘Ah (ﬁ”q in Case i=3 of Step 1, we

t ) 1 q
[Ty (e
/O/RT h(r2+z2>

ifg—~v>2-— %. Thus, under (3.4.4) we have

have

dzdr < R,

T 1/p
1/
)" ([ 10w ) S Crpsle = o ol
0

Case i=4. In this case K4(r, z) = S(r,2) = $1{j2/<,3. Then

t
/ /rq(el) |£D;»LI€4(7“, z)|qdzdr
0
q(6-1 1

T 1{|z+z vl<ry — 5 1{z1<r)

T s t
f:/ =1 (/ dz—l—/ dz) dr ~ h-/ ra@=1 < g,

0 Yy—x—r y—x+r 0
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under the conditions ¢(6 — 1) > —1 and v < %. Therefore, under (3.4.4) we have

T 1/p
1/
(TD(t,2,y)) " x (/ [BAREE ')||Lp(R)d7") S Crpaqle =y [[v] 2oy
0

In conclusion, with the choice of p>%,1—H<a<1—%, O<7<H—]%,the

conditions listed in Case i=1,2,3,4 to ensure

sup T (t, x, y) S|h[Y,
t,x,y

and the condition (3.3.18) to ensure

T 1/p
KCs
( N <r,->||Lp<R>dr) <lollzriay,
0

are all satisfied. Thus, we have

| sup  [®(t,2) = (L, y)| o) S Crpqle — ylM|[v]|zo ) -
te[0,7],xz,yER

This completes the proof of (ii). O

3.4.2 Holder continuity of the approximate solutions and well-

ponsedness

Analogous to Proposition 3.4.1 we have the following regularity results for the approxi-

mated solution u. defined in (3.3.23). The proof is similar and we omit it.

Lemma 3.4.2. Let u. be the approximation mild solution defined by (3.3.23) and assume

that Io(t,z) belongs to ZP(T).

(i) If p > ;7. then

s Nt o)l < Crpallucl (3.4.44)
te0,7],zeR 2 Lr(Q)

114



(it) If p > + and0<7<H—%, then

sup |u€(t+h,:z:)—u5(t,a:)|H < Crpmalb el zory . (3.4.45)
t,t+hel0,T],z€R Lr(Q)

(iis) If p > + andO<7<H—%, then

< Crp sl =yl |luel zo(r) - (3.4.46)
LP(Q)

sup |Ua(t,ll§') - UE(t7y)|
te[0,T],x,yER

Finally, we are in position to prove our main results.

Proof of Theorem 5.2.5 and Theorem 5.2.6. As we know the uniformly Hélder continuity
of the type specified in Lemma 3.4.2 is the most important ingredient in the proof ([HW22,
Theorem 1.5]) of the existence of weak solution to the nonlinear stochastic heat equation.
It is also the most important one to show the existence of weak solution for nonlinear
stochastic wave equation (3.1.1). Hence we omit the details of the proof of Theorem 3.2.5.
Since the pathwise uniqueness implies the existence of strong solution by the Yamada-
Watanabe theorem (in the SPDEs setting, e.g. [KS88, Kur(7]), we only need to focus
on the proof of pathwise uniqueness. We follow the same strategy in [HHL™17, HW22]
together with the crucial estimate (3.3.6) in Proposition 3.3.3.

Suppose u(t,z) and v(t,z) are two solution to (3.1.1). Define the following stopping
times:

%) = inf {t €0, 7]: sup Ni_pgu(s,z) >k,
0<s<tazeR *

or sup ./\/'%_Hv(s,x)zk}, k=1,2,---

0<s<t,zeR

Recall that the inequality (3.3.6) in Proposition 3.3.3 implies that T, 1 T almost surely
as k — oo. This is a key fact to our method. We need to find appropriate bounds for the

following two quantities:

Ji(t) = sugE[l{ngﬂu(t,x) —v(t, )]
e
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and

Jo(t) =supE {/ Lyexyu(t, ) —o(t,z) —u(t,z + h) +v(t,x + h)|*|h[*" 2dh| .
R

z€R

By the elementary properties of It0’s integral, we have

Lyt [u(t, x) — v(t, x)]

“lgeny / [ Gl = )y o u(5,) = oo, )W s ).

Therefore, denoting A(t, x,y) := o(t,z,u(t,y)) — o(t,z,v(t,y)) we have

E[lpesylult, z) —v(t, )]
t
< E(/ / 1<ty |DnGios(z — y)|P[A(s, y, y)]2|h|2H_2dhdyds)
0 R2
t
+ E(/ / Lser Giy(z —y = )[A(s,y + hyy) — A(s, v, y)]QIhIQH‘2dhdyd8)
0 R2

t
+E< | 1{8@}@2_5@—y)[A(s,y,wm—A<s7y,y>]2|h|2H—2dhdyds)
0 R2

=g+ Lo+ 115, (3.4.47)

The assumption (3.2.10) on o can be used to estimate [; ;. This is,

t
Iy < E( / / Loery | DhGrs(z — y)Plu(s ) —v<s,y>12|h|2ﬂ-2dhdyds)
0 2
t
< / (t — 5P SupE [Lpseryy us, y) — v(s, y)?] ds
0 yeR
t
:/ (t — 8)*F1(s)ds .
0

Using the property (3.2.12) of o, we have if |h| > 1

2

[A(Sv Y+ h> y) - A(Sa y7y)]2 =

10 0
/u [8_50(87?/ + h?éu) - 8_60—(37y7€):| df

S Juls,y) — (s, ).
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If |h| <1, with the help of additional property (3.2.13) we get

[A(s,y + h,y)=A(s,y,y)]°

vl o 0
/ [8—§a<s,y Fh) - a—§a<s,y,5>] ¢

v h 62
//Oanag“(s’y+”’§)d”d5

5 |]’L|2|U(S, y) - U(Sv y>|2 :

2

2

Thus, the term I; 5 in (3.4.47) is bounded by

ha s [ ([ G-y} as g - 9misias

For the last term I 3 in (3.4.47), by (3.2.12) and (3.2.14) we have

|A(s,y,y +h) — A,y 9)|

:‘ /0 [u(s,y +h) —v(s,y + h)](%a(s, y,0u(s,y + h) + (1 — O)v(s,y + h))db

~ [t = w5l uls) + (1= B)uls, )it

§|U(S,y + h) - U(S7y + h) - U(S,y) + U(S,y)|2

+|U(S, y) - U(S7 y)|2 ' UU(S, Y+ h) - U(Sa y)|2 + |U(Sv Y+ h) - U<S7 y)lﬂ :
Thus, we can get
t
11’3 SJ k/ [31(8) + 32(8)} ds.
0

Summarizing the above estimates we have
t
Ji(t) < k- OT/ [31(8) +32(5)}d37
0

where Cr > 0 and the constant k£ depends on the stopping times Ty.

A similar procedure to the obtention of (3.3.34) can be applied to estimate term Jo(t)
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to obtain

As a consequence,

t

Ju(t) + Ja(t) 5i~c/ (t— )"

0

?

Now Gronwall’s lemma implies J;(¢) + J2(t) = 0 for all ¢ € [0,7]. This means we have
E 1<z, ylu(t, ) — v(t,z)[’] =0.

Thus, we have u(t,x) = v(t,z) almost surely on the set {t < Ty} for all £ > 1, and the
fact Ty T T a.s as k tends to infinity necessarily indicate u(t,z) = v(t,z) a.s. for every
(t,xz) € [0, 7] x R.

It is clear that hypothesis (H2) implies the hypothesis (H1). So equation (3.1.1) has
a weak solution by Theorem 3.2.5. This combined with the above pathwise uniqueness

yields Theorem 3.2.6.

3.5 Necessity of H > i

In Theorem 3.2.5 and Theorem 3.2.6, we see that H > - is a sufficient condition for

1
4
the solvability of equation (3.1.1). In this section we shall prove that it is also necessary
for some specific stochastic wave equations, namely, the hyperbolic Anderson equation

(3.1.3). It is known that if ||v(t,2)| 12 < oo the solution admits the following unique

Wiener chaos expansion (see [Hul7, Nua06]):

v(t,x) =Io(t,x) + > Ln(galt, ), (3.5.1)

n=1

where I, denotes the multiple It6-Wiener integrals and g, (¢, z) (n > 1) are defined by

— =

1
gn(5,75t, 1) = mGt—sa(n) (T = Zom) *** Gspiy—soy (To@) = To))0(S0(1), To(1)) ,  (3.5.2)
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where & = (z1,...,2,) and §= (s1,...,5,) such that 0 < s,y < 552) <+ < Spm) < t
for a permutation o. Then to verify the existence and uniqueness of the mild solution

v(t, ) is equivalent to show that
Ello(t, )] = Y nlllga(5t,2)|[Fen < o0, (3.5.3)
n=0
where $) is defined by (3.2.1). In terms of Fourier transformation, we have

lonCst)lzen = [ f
[O7t]n n

with u(d€) = [Tj_, [&['*"dE.
For national simplicity, we abbreviate I}(gx(t,z)) as I (¢, x) for k = 1,2, i.e.

FoulF 1 t,2) ()] u(d€)as

b = [ [ Gote =)t W s, ).
L(t, z) / /Gt st —y) (s, y)W(ds,dy) .

Let us select some special initial conditions ug(z) = e~** and vy(z) = 0 to proceed our

argument. Then

/t dy+;[u0(x+t)+u0(x—t)]

l\')IP—‘ l\DIP—‘

[‘(“t +e @ (3.5.4)

We do not consider the simple case ug(z) = 1 and vo(z) = 0. Because in this case, Iy(, x)

is not in the space Z?(T') for any p > 1.

Lemma 3.5.1. Suppose Iy(t,z) are given in (3.5.4). Then for H € (0,1/2), there exist
positive constants cr g and Cr g such that for any (t,x) € [0, T] x R and h small enough

satisfying 0 < h < 1A %

com - [P < E[|D,(t2)] < Crp - R (3.5.5)
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Proof. first, from (3.5.4) we see easily that

[Io(t,x)| < Cr, |Ddo(t,z)| < Cpr-|l|A1. (3.5.6)
Moreover, on the set (¢t,z) € [0,T] x [-T,T], we have a lower bound for |Io(t, x)|:
LT @ | —aty?
Iy(t,x) = 5 e +e > cr (3.5.7)

Now we are in a position to estimate E[|D, (¢, z)]?]. Let us consider the lower bound
2

— 3b%, then

PR 2dldyds

3 t

ZZ// 0,nGo(y) - To(s, )| - 172 dldyds
R2

—3// 1D,Gs(x — )| - |Dudo(s, y)|° - 1| 2dldyds .
R2

By Hélder’s inequality and (3.5.6), we see that

first. Recall an elementary inequality: (a +b)? > 3a

H@hll t QZ’

@th s(x —y) - Lo(s,y)W(ds, d?/)

=/0/W

2
- @th_s(ZE' - y) ' ]0(87 y)

DG s(x — (y+1)) - Lo(s,y+1)

g / Dulo(s, ) - 12 2d1 < Cryy < o0,
s€[0,T],yeR JR

for H € (0,3). Then

/" DuC(r — ) [Duly (s ) - 12 -2dldyds
0 R2

t
5//@@@Wms@ww
0 R

Moreover, we have

t
/ 00hGs(y) - To(s,y)|? - |||*2dldyds
0 JR2
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t
> / / / OunGa () (s, ) - 1P ~2dldyds.
0 Jy>0Ji>n

Notice that on the set {y > 0} x {{ > h}

|Dl,hG8(y)|2 = |1{|y+l+h|<s} - 1{|y+l|<s} - 1{|y+h|<s} + 1{\y|<s}|2
~ |Lgyrictsl<yrirny — Liy<isi<ysny]’

=Lyticisi<y+i+ny + Liy<|si<y+h} -

Letting & < 1 A § be small enough and noticing the lower bound (3.5.7), we have

t
| [ 1ottt - i didys
0

/ / / 122 Iy s, y)[2dldyds
s—h JI>h

2 [ [ o) P 2 e
5 Js=h
Thus, we obtain when H € (0,1/2) and |h] is relatively small
E[|Dn11(t, )% 2 com - B2 — Cr - || 2 e - 2.
The upper bound can be derived by the Fourier transformation. By (3.5.6), we have

t
E[[Dnli(t,2)[*] < 2/ |Gy (y)do(s. ) - |12 didyds
0 JR2

t
*2/ D,Gs(z — )] - |Dilo(s, )] - |12 2dldyds

t
<[ [ ol s+ [ [ 19460 duds
R2 0 R
2
S/ /‘6Lh€_1’2 (SIH<S|§D) |€’1_2Hd€d5+‘h|
0 R 6

' s? 1-2H
S [ 1= costhieh) o gplel e+

= Crar - (|0 + [A)SCrp - W7
for H € (0,1/2) and |h| is sufficiently small. Therefore, we finish the proof. O
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Now we begin to prove Theorem 3.2.7.

Proof of Theorem 3.2.7. We only need to consider || I5(¢, z)||7, () With some special initial

data (3.5.4). Let us denote
Ft,x<57 y) = ths(a: - y>Il(Sv y) :
Noting that

@th,:c(Sa y)fz = |ths($ - y)gh11(57 y) + @thfs(UC - y>11(57y)|2

3
2 Z’ths('x - y)@hh(& y)|2 - 3’©th78(£ - y)[1(57 y)‘z )
so we have

t
E [|I(t, 2)I°] = E/ / (D0 Fra(s, ) |02 dhdyds
0 JR
3 t
= Z/ /2 |Gis(@ = ) PE[DuLi(s,y)[*|n|*"~*dhdyds (3.5.8)
0 JR

t
3 / / DGz — y)PE|L (s, y) 2B 2dhdyds . (3.5.9)
0 R2

Without loss of generality, we assume ¢ = 2 and estimate term (3.5.8) first. By Lemma

3.5.1 with h < 1AL =1, it is clear that when H < i,

t
| [ 16t — ) PEDL s, PP 2dndyds
0 R2
2
Z/ // |Gas(z = y)PE[Duli (s, y)*|h]*"~dhdyds
1 JRJIn|L1

2
Z/ / / G s(x —y)|?* - || 2dhdyds = . (3.5.10)
1 JRJh|L1

For any H € (0,1/2) we can get that sup,cg E|l1(s,y)[*Ss*” + s in the term (3.5.9),

thus

2
/ / DhCos( — 1) PE| Ly (s, ) 2 B2~ 2dhdyds
0 R2

< [ [ (B S)'f‘))Q =2 dzds
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2
= / (s* 4+ 5%)(2 — 5)*"ds < 0. (3.5.11)
0
Plugging (3.5.10) and (3.5.11) into (3.5.8) and(3.5.9), we obtain that for ¢t = 2
E (11, )] = oc

1 .
when H < ;. The proof is complete. O

3.6 Appendix A: some technical lemmas for wave
kernel

In this Appendix, we show some technical lemmas used several times in our work. Let

us start by proving the Fourier transform of £(¢,x), So(t,x) and Cy_,(t, z).

Lemma 3.6.1. Let £(t,x), Su(t,z) and Ci_o(t,x) be defined by (3.3.3). Then they are
all in LY(R), and their Fourier transforms are given by (3.3.4). Consequently, the wave

kernel Gy_s(x —y) can be expressed as the representation (3.3.2).

Proof. We treat E(t, x) first,

Et,x) = FUEW, )](z) = L /Re_“&e””{dﬁ _Lt (3.6.1)

o T2 4+ 22’

which is obviously in L'(R). Similarly, for S, (¢, ),

Sultsa) = FSute ) = 5 [ entag = 2 [T con(iriga

Ty fE o
_ 1 esin((t+ |28 Lo sin ((t — |2))¢)
-5/ G e %/D e
- F(lT;o‘) CoS (%) [(t + ]x\)a_l + sgn(t — |x|)(t — ]x\)a_l} , (3.6.2)

where the last equality can be found in 17.33(2) in [GR15]. For fixed ¢t > 0, if |z| is close
to t, |Sa(t, z)| can be bounded by

(t+ |27+ e = o) |*
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And when |z| is large enough, |S, (¢, )| behaves like
a—1 a—1
(ol =) = (Jal +1)"

which can be bounded by ¢(|z| — t)a_Q. Therefore, S,(t,z) is in L*(R) since a € (0,1).

e—tlel

MP—*“} . But we can

The last one C;_,(t, x) is more involved because of the term F~! [

apply the formula 17.34(14) in [GR15] to get

Cia(t,z) = FCioalt, )](2)
1 [ 1 [ et
- = /O CZ?(_tf)cosﬂx\s)ds—; [ costlalé)ie

- F2(a) {COS (%) [!t—i— ]x\ra + ‘t — |33|’7a}

W — 2cos <atan1 (@)) & +x2}_%}. (3.6.3)

Similarly, when |z| is close to t, |C1_o(%, x)| can be bounded by

&
2

|t + ||

B

+ [t =2l + [ +47]

It is more interesting to know the above asymptotics when |z| is large. Since

Ci_o(t, ) ~cos (a_27r> [t + |||~ + |t = |z||7*] = 2cos (a—;> [ + 91:2}_%

+2 {cos (%) — cos (a fan~! ('f—’)ﬂ (2 + 22)"%, (3.6.4)

setting yo = %, then for |z| large enough,

cos (%) — cos ( tan! (9)) _ /°° - feos (rtan™ ()] do

+00 1 .
<a Edw ~ Cy -tz ™. (3.6.5)

Yo

Therefore,
{2 cos (%) — 2cos (a tan™* (’%‘))} (t> + 2272 ~ Cy - tlz| N2+ 2%)72, (3.6.6)
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which is integrable with respect to z when |z| is large enough since a € (0,1). More-
over, since the following important asymptotic behavior holds, which will be explained

in Remark 3.6.2,

|t + [af| "+ |t =[] |

= 2(|z]* - t2)7% cos {oz tan™! (%)} ~2(|z]* = t2)7% , (3.6.7)

it is clear that

tlaf + ) 2T S (2 =) 7 = (2P 4 ) ES (- 2)

We see that for o € (0, 1), C,(t, x) is also integrable with respect to  when |z| sufficiently
large. As a result, C,(t,x) is in L'(R).
Combining (3.6.1), (3.6.2) and (3.6.3), we can conclude (3.3.2). O

Remark 3.6.2. We provide details of the equation (3.6.7) we used in the above proof of
Lemma 3.6.1. Noticing that

L L—Z L I+e2
tan(z) = — <1 -4
arctan(z) 5 n(H_Z) 5 n(l—LZ) :

we have
-1 1 -1 -1
coslatan™ (2)] = 3 {exp [tatan™'(z)] + exp [—rartan™'(2)] }
1 o a 1+2 e a, I +z
21" 2"\ =2 Pl \i—w
11+ %+ 1—2\?
2 1—1z 14z
1 (o]
=5 {14227 [(1—2) "+ (1+:2)7%]}
Letting z = ﬁ, we see the equation (3.6.7) holds.

Lemma 3.6.3. If 5 < a < 1, then Calt, &) = %‘;e%m and S, (t,€) = SteD  gre in

L*(R) for any t > 0. Hence, Co(t,x) and S,(t,z) are also in L*(R).
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3.7 Appendix B: lemmas for Proposition 3.3.3

Lemma 3.7.1. [fp>%,1—H<a<1—Z—1) and1—-2/g+a <0< H+a—1/2, then

there exists a constant C' independent of r such that
Ell Ty (r, Wia@ < Clolay, i=1,2,3,4, (3.7.1)

where J)* (depending on o, 0) and K; (depending on o) are defined by (3.3.7) and (3.3.8)

respectively.

Proof. We will prove the above bound (3.7.1) for i = 1,2, 3,4 separately. We deal with
the term ¢ = 1 first. In this case K; = C, and K; = S;_, as defined by (3.3.3). From the
definition (3.3.7) of Jécl and from Burkholder-Davis-Gundy’s inequality and the triangle

inequality it follows
/E|Jg“(r,z)’pdz < / ‘Dl(r,z)‘g + ’Dg(r,z)lgdz,
R R

where we have used two notations

// )2 1D4Calr — 5,))

Nwls,y + 2o |hP 2 dhdyds (3.7.2)
and
(r,z) = // 20|C(T—sy)|
RQ
Du0(s, 2 + )2y I 2y (5.1
By the definition of Z{(7T) in (3.2.6), we can bound Dy(r) = [ |D:(r, 2)|? dz as
follows.

p

5 B 2
([ [ = 0l = s I 2andyds) < Lol

. 2 £
(/ / §20 ‘@hCQ(S,f)’ ’h’2H—2dth§ds> X HUHZP(T). (3.7.4)
0 JR?2 !
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In the last line of (3.7.4), we have applied Parseval’s formula which is legitimate since
Cu(s,-) is in L*(R) when

1

5 <a<l, (3.7.5)

by Lemma 3.6.3. Through (3.3.4), we can write (3.7.4) as

([ [
RQ
' — —s)¢[]2 —20— :
=( [ oosteleh = 7 i ) ol

r b o o 9 2
z(/ g2 (H+a=b 1)ds-/ g2 cos(§) — e8| df) X HvH%lp(T), (3.7.7)
0 0

which is finite if

cos(sl¢]) — e~/
e

xu—mwmmwwﬁﬁﬁﬁ)>Wﬂ%w

(3.7.6)

1-20—2H<—1,2H4+a—0—-1)> -1,

1
@a>1—H,9<H+a—§. (3.7.8)

Similarly, by the definition of Z5(T') in (3.2.6), for Dy(r) := [, [Da(r, z)| dz, Parse-

val’s formula implies

s(/’/ ¥|Calr w&w@) < ol
:(/0 /Rsza|éa(s,§)\2d§ds) Hszp ) (3.7.9)

if «v satisfies (3.7.5). Then plugging (3.3.4), we have
cos(s|€]) —e‘SH

a d ds)2 S
(//ﬁ €] g (L
:(/O 145 - /O €72 |cos(s€) — e dg) % ellyery . (37.10)

which is finite since § <a <land o > 1 — H +60 >0 by (3.7.8).

Thus, with the choice of § < H+ «a —1/2 and o > 1 — H, we have finished the proof
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(3.7.1) for i = 1.
Now let us deal with the case when ¢ = 2. Similar to the proof in the case i = 1, now

we need to show

175 (r, 2) oy < Cllvll
From the definition (3.3.7) of Jp and from Burkholder-Davis-Gundy’s inequality it follows

p
2

[NJ4S)

+ [Dg(r )] %dz,

[ B2l s [ 1B 2)]

R

where Dy (r, z) and Dy(r, z) are defined by (3.7.2) and (3.7.3), respectively, with C, re-
placed by S,.
By the definition of Z¥(T) in (3.2.6) and Minkowski’s inequality, we have

~ 7’) :/ "51(7"7,2) _dz
R
S </ / (r— )| DpSa(r — S,y)|2‘h‘2H2dhdyd8) X ([0l
0 R2 ;

S,( / a0 / 512a2H|Sin(§)‘2d£> <ol (3710)
0 0

S

which is finite under the condition (3.7.8). In a similar way we can get

Nwag

(/ / 7180 = s, Pays ) [0y
S(/ G2a=0)-17. / €72 |sin(&) df) X HUH%(T) , (3.7.12)
0 0

which is clearly bounded by (3.7.8) since § < a < 1 and o > 0.

52<7’) : dz

Therefore, with the choice of 8 € (1 —2/q+ «, H + o — 1/2), we finish the proof of
(3.7.1) when ¢ = 2. The remaining parts of (3.7.1), i.e. the cases K3 =S and Ky = &
can be completed in the same spirit and we omit the details since they are actually

simpler. O

Lemma 3.7.2. Ifp> g, 5 —2H <a<1— and1-2/g+a <0 <2H+a—1, then
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there ezists a constant C' independent of v € [0,T] such that for i =1,2,3,4
. _ 9 B 2
E/R [/}R |y (2 +h) — Jy (r,2)|” |R*H 2dh} dz < Clvl|% ) » (3.7.13)

where J)* (depending on o, 0) and K; (depending on ) are defined by (3.3.7) and (3.3.8)

respectively.

Proof. Recall that D, (1, 2) := J)*(r, 2+ h) — Jj(r, z). We still first consider the case
when i = 1, i.e. K; =C, and K; = S;_,, defined by (3.3.3). We only need to prove that

there exists some constant C', independent of r € [0, T], such that

/E[/ }@hjg“(r,z)|2]h]2H2dh] dz
R R

, (3.7.14)
< ( JACEAE z>|\%p<mwh\2“dh) < Cllolery

where we employed Minkowski’s inequality in the above first inequality.
Thanks to Burkholder-Davis-Gundy’s inequality, the triangle inequality and then a

change of variable y — 2z — y, we have

EU@hJeCO‘(T, z)|p]

SCP</OT(T —5) % /R? [E‘@hca(r —s,z—y—Dv(s,y+1)

p
2

=2l = s, = e[ | 0Pty

P

2

<G[0 = 972 [ 190t = sl -+ 2 Pty
0 R2

Jr(/*][,(/or(r—s)2"/]R<2

Therefore, by Minkowski’s inequality

[iS]

2

2
50.Calr = 5.0)| 191006, + 2 1Pl

/R 10T (7, ey |12 2l

) /R (/REU@”% (r,2)l"] de (b2 =2dh

< [ [0 0t s P 2 dndyds < ol
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2
OniCalr — 5,9)| [P 2|RPT 2 didhdyds x |[v]|%p )

+/OT/R$(r—s)—29

=:J1(r, z) X HUHQZS(T) + Ja(r, 2) X HUHQZf(T)

Applying (3.3.4) and Parseval’s formula again, one can find

o [ fle

N/ G2(H+a=0-1) 1. / 51_20‘_2H‘cos(§) —e_§|2d§, (3.7.15)
0 0

2
DiCalr = ,€)| W2 2dhdds

which is finite if (3.7.8) is satisfied. Similarly, we have

?" Z / / 29‘5’ 20 ‘COS r_S)’a) *(7’*5)|f|’2

x [1 — cos([IEN][1 — cos(|h&])] - [I|*7 2 |h|* ~2dIdhdEds

:/ (T_S)2(a+2H—0)—3dS,/ 52(1‘°“‘2H)|cos(§) —e‘§]2d§. (3.7.16)
0 0

In order to guarantee the integrals in (3.7.16) converge, we must have

2a+2H—0)—3>—1, 2(1—a—2H) < -1

@6<a+2H—1,a>g—2H. (3.7.17)

Therefore, with the choice of 6 € (1 —2/q+a,2H+a—1)and o € (2 —2H,1 - %)

which implies p > %

%, then the conditions (3.7.8)
and (3.7.17) are satisfied. Thus, we complete the proof of (3.7.14).

Now we show (3.7.13) for i = 2, i.e. Ky =S, and Ky = C;_,, only briefly since the
idea will be similar as in the above case ¢ = 1. We only need to show that there exists

some constant C' independent of r € [0, T], such that
9 _ p
E[A\@tha(r, ) e thr < CllolB - (3.7.18)

Using Burkholder-Davis-Gundy’s inequality, Minkowski’s inequality and then the triangle
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inequality, we have the left hand side of (3.7.18) is bounded by

(G:)

=~ 2
X ol + (Far2)) " X ol

Applying (3.3.4) and Parseval’s formula again, one finds

Ji(r, z) = / / 8) 20,80 (r — s, y) *|h|*" ~2dhdyds
R2

N/ 2(H+a—60-1) dT’ / 51 2a—2H ]sm( )| df

0

which is obviously bounded if (3.7.8) is satisfied. Similarly, we have

Jo(r, 2) / / §) 2ND,Su(r — s,y + 1) — DpSalr — 5,y)|°
R3
122 |h| 222 d1dhdyds
:/ (7, . 8)2(a+2H70)73d8 . / 52(17a72H)’ sin(£)|2d§,
0 0

which is finite under (3.7.17).

(3.7.19)

(3.7.20)

Therefore, with the choice 6 € (1 — % +a,2H+a—1)and o € (3 —2H,1— —) which

implies p > -, we see the conditions (3.7.8) and (3.7.17) are satisfied. So we finish the

proof of (3.7.18). The other cases of (3.7.13) when ¢ = 3 and i = 4 can be done by using

the same strategy and we omit them here.

3.8 Appendix C: lemmas for Proposition 3.4.1

0J

Our aim is to show for any p > % and v < H — }D, the temporal-spatial Holder continuity

in Proposition 3.4.1 hold by selecting appropriate «, # and 7. Above all, we list some

conditions which will be used frequently in our technical lemmas.
I1.1 1—H<a<%,a+’y<%,%<9<H+a—%;
I1.2 0>1+a—§+277, n>v;

I1.3 oz+77>%, n>v;
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M4 a+n<g, n>7.
Throughout Appendix 3.8, we always assume p > % and v < H — ]13.

Lemma 3.8.1. Suppose «, 0 satisfy (I1.1) and

(

m satisfies (11.2) and (I1.3);

ny satisfies (11.2) and (11.4); (3.8.1)

| 713 satisfies (I1.3) .

Then Ié},z(t, h), k=1,2,3,4 in (3.4.15) can be bounded by |h|"9.

Proof. For 12(11) (t,h), since (r + h)70=1 < 7401 it can be bounded by

t
) (t, h)S hme - / /R pd@=1 . pi=lodma ) 4 z|Cemmagz gy
0

t
~ pmd / pa0=1)  i=(atm)q . ~ pma < pa
0
where we require 7, satisfy
m>7v, (e+m)g>1, q@-1)+1—-(a+m)g>—1,

which is

1 2
771>'y,04+771>§,9>1+04—5+771. (3.8.2)

Similarly, for Zélz) (t,h) we have

t r
12(712)(25, h) ~ h™9. / / r10=D (p — ) (Zamm2)q 5
0 Jo
¢

~ / pd@-D ity ~ pra < e
0

if we require

1 2
772>776>05+772,‘9>1+06—6+772. (383)
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For 12(1?3 (t,h) we have

t 00
Iélg) (t,h) ~h™7. / / rdO0=0 H(—amn3)a g gy
0 Jh

t
:hn:sq,/ paO=Dpl=(atnm)ag. ~ pl-es < pra
0

under conditions

1 1 1 1
->v+a, at+n>—, 0>1——-=—. (3.8.4)
q q qg D

For the last term 22(714) (t,h) we have

t
z§}4><t,h>5h./ rq(91)~/ [+ h— |2]|7% + ||2] — 77°9] - 1a,dzdr
0 R

t h 2h
~h / ra0=1) {2/ 2z Ydz +/ Z_O‘qdz] dr
0 0 0

t
< h2od. / ri0 Dy~ p2o1 < 1
0

if we set

1 1 1 1 1 2
a<-=1—-, O0>1—-=—-, at+y<-<-. (3.8.5)
q p qQ P q q

Notice that once «, 0 satisfy (II.1) and 7, 1, and n3 satisfy (3.8.1), then the conditions
(3.8.2)-(3.8.5) hold automatically. The proof is complete. O

Remark 3.8.2. We remark here that the conditions (3.8.1) for a, 0, n’s are compatible

with p > % and v < H — ]10. Let us summarize all the restrictions in Lemma 3.8.1:

1.p>%, v < H —

)

o

2 1-H<a<g, aty<g ;<O0<H+a-j;

)

3.m >, 9>1+a—§—|—2n1, o+ >

Q=

4o >, 0>1+a—=242m, atn<,;

5.oms >, atny <.
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For any (fived) p > 4, we can choose for (small enough) e, >0k =1,...,6

1
y=H—-—¢;, a=1—-—H+¢ey, 0 =H —¢3,
p

1 1 1
m=H—-———¢e4, p=H——-—¢e5, ;3=H———c¢q.
p p p
For arbitrary (small enough) € > 0 let
€1 ="Te, 69 =4e,e3=¢€,64 = 3¢ ,65 = b, = b¢.

Then all the restrictions (1)-(5) are satisfied with ~y arbitrarily close to H — 110. The

following lemmas can be verified similarly. We omit the details.

Lemma 3.8.3. Suppose «, 0 satisfy (I1.1) and

N1, M5 satisfy (11.2) and (11.3) . (3.8.6)

Then the terms 1'2(252 (t,h) and Zé?g (t,h) in equation (3.4.20) can be bounded by |h|".

Proof. For the term Ié? (t,h), from inequality (3.4.17) and (r+h)" < "4 " it follows

t
Iz(,zs)(ta h)f,/ /(r + RO NN, (P2 4 12)7) 2 " dedr
o Jr

t [e3
0 JR
t
< pmadq / Tq(0—1)+1—(a+n4)qdr / (1 +Z2)—(%+774)q dz

0 R

t
+h2n4q / rq(971)+17(a+2n4)qdr / (1 + ZZ)‘(%‘HM)Q dzf, L
0 R

if n, satisfies the following conditions

2 1
n>v, 0=2pu>14+a——, a+2n>-. (3.8.7)
q q

Now we deal with 12(726) (t,h). For fixed n € (0,1) by (3.4.18) and then by changing of
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variable z — rz,

54| h |19 _a
I?th //T+h 91|Z| || (2+22) quZd’f’

(r2+z )nsq

<pysa a(6—1) Z|n5q ( 2+Z2)f%q dedr
(2 + 22)ma

Y R I
0 r (14 22)me

which can be bounded by A" under conditions (3.8.2) with 7, replaced with 7s, i.e.
1 2
775>'y,04+175>§,9>1—|—04—5+775. (3.8.8)
Therefore, under conditions (3.8.7) and (3.8.8), we have for k = 5,6,
(2) <|p|a
sup Ly i (£, h)SIAI™

Notice that once «a, 6 satisfy (I1.1) and ny4, 15 satisfy (3.8.6), then the conditions (3.8.7)-

(3.8.8) hold automatically. The proof is complete. O

Lemma 3.8.4. Suppose «, 0 satisfy (I1.1) and

(

m satisfies (11.2) and (I1.3);

N\

ne satisfies (11.3); (3.8.9)

| 73 satisfies (I1.2) and (I1.4).
Then the term ~71(jg) (t,z,y) in (3.4.31) can be bounded as

sup jlk(t 2, Y)SCrpuq R for k=1,2,3.

t,x,y

Proof. Similar to the proof of Ié | in part (i) of Proposition 3.4.1, j1 (t,x,y) can be
bounded by |A|" under the same condition as (3.8.2) which is implied by conditions on

n in (3.8.9).
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Now we deal with \71(712) (t,z,y). By triangle inequality

t
T (t,2,y) = / / POV 1D, (r — o) (1p, + 1p, + 15,) dedr
h R

t
</ / TQ(9—1)|7~_ |z||(_a_”2)qh"2qdzdr
I Jacmron
t
+/ / Tq(9—1)|7~_ |Z||(—a—n2)qhn2qudT
h Jz>r+h
t r—h
+/ / 7ﬁq(b’*1)|7» - |2H(7°‘7’73)qh’73qdzd7’
h J—r+h
3
=: Z j1(712)’j(t, z,y) ., (3.8.10)
j=1
where By, By and Bj are defined by (3.4.29).
For the term j1(712)71(t, z,y) in (3.8.10), we have

¢
jl(,12),1(t7337y) :h772Q/ qu_l)/ y(etm)ag, dy
0 z>h

t
~ hl(a+772)Q+772Q/ r40=Dgpr ~ pl-oq S R
0

under the same conditions as (3.8.4):

1 1 1
at+y<—,a+np>-,0>-. (3.8.11)
q q p

Similar to 31(712)’1(75, x,y), if the conditions in (3.8.11) hold, then we have

t +00
jl(,lz),1<ta z, y) = / / rqw*l)(z — r)(*a*m)qhnzqd’zdr
h r+h

t +oo
:hnzq// pa0=1) ,—(atm)q 7. 1p
n Jh
t

~ pl-od / rdO=Dgp < pre.
0

To estimate ._71(712{3(15, x,y) in (3.8.10), letting n3 satisfy the conditions (3.8.3) with 7,

replaced by 73, namely,

1 2
n3>%§>oz+n379>1+a—5+n3, (3.8.12)
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we have

Ttz y) / / 10Dy — g 2|y
—r+h

r—h
_|_/ / Tq(9—1)’7~ —h— z\(_a_”3)qh’73qdzdr
~ / / 20Ty
h

< B / —(a+m3)q+q(6-1) g, < e < R
0

Now we proceed to deal with \71(7? (t,z,y) in (3.4.30). By the similar way as dealing
with \71(712) (t,x,y), we have with By and Bs defined by (3.4.29).

t
[ [0 1 ) O 1) e
h JR
—r+h
// e RO =[] dedr
h —

r—h

r+h
// FO (jr — |24 B 4 |7 — |2 7°) dadr

t r2n
// rq<91)\2|°‘qd2dr—|—// Tq(9*1)|z|’°‘qdzdr
nJ-n n Jo

t
< hlaq/ ra0=1) . < pl-ad < B,
0

12

under the same conditions as (3.8.5):
1 1
a<-—=1——,0>~-, at+vy<-. (3.8.13)
p q

Therefore, if a, 0 satisfy (I1.1) and n;, 72, n3 satisfy (3.8.9), then we have our desire
upper bounds for sup j1 ¥ (t z,y) (k=1,2,3). O

t,z,y

Lemma 3.8.5. Suppose «, 0 satisfy (I1.1), and moreover

ny satisfies (11.2) and (I1.3) . (3.8.14)
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Then the terms j;}?(t,m, y) in (3.4.34) can be bounded as follows

sup t72(jg)(taxay)SCT,p,H,fy’hfl’yq fOT' k= 1,2,3,

tz,y

Proof. Similar to the way when we deal with Iél) in the proof of part (i) of Proposition
3.4.1, jQ(}l) (t,z,y) can be bounded by A7 under the condition (3.8.2) which holds under

condition (3.8.14). Let us recall the definitions of C;, Cy and Cj in (3.4.32), then for

2(712) (t,x,y) we have

h
Tt = [ [ 10D [0utr 2D (1, + 10,) dedr
0 JR

h
S/ / rq((’*l)]r — ]zH(’“’"“qh"‘*qdzdr
0 z<—r—h

h
+/ / Tq(9_1)|’l“ _ |Z||(_°‘_”4)qh"4qdzd7‘. (3,8_15)
0 Jz>r+h

For the first term of the summation in (3.8.15), we have

h
/ / rq(6_1)|7" — |Z||(_O‘_"4)qh774qdzd7“
0 z<—r—"h
h
— hmq/ / 7nqr((v’fl)(_z _ T)(*a*"“)qdzdr
0 z<—r—h

h
:h"4q// pa0=1) y(=a=nia g, qy
0 z>h

h
:hmth(aer)q/ Tq(efl)dr
0

~ patl=(atm)g+l+q(0-1) < g
- ~ 9

under the same conditions as (3.8.2) with 7; replaced by ;.

Similarly, we have for the second term of the sum in (3.8.15)

B
/ / rq(9_1)|7’ _ |Z]|(_°‘_”4)qh’74qdzdr
0 z>r+h
h
:/ / 7"‘1(9_1)(2 —T)(_a_”4)qh"4qdzdr
0 z>r+h

h
:hmq// pa0=1) —(at+n)a g, 1.
0 z>h
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Y

h
~ BMa 1= (atna)g q(0-1) 7. < Enag+l—(a+n4)g+14q(0—-1)
~ RMIp r dr S h
0

which can be bounded by A7 if the condition (3.8.2) with 7, replaced by 74 holds.

For the last term jz%) (t,z,y), if o, O satisfy (I1.1), then the conditions

1 1 2
a<-—=1——, 9>— 0>1+a—-—+7, (3.8.16)
q p’ p’ q

are satisfied. So we have

h
Btag) = [ [0 = B+ = |2 dededr
0 JR

h r+h
:/‘/ PO (|5 — |2+ BJ|7 4 | — |2]| ™) dedr
—r—h

/ / r0=D] 2|~ O‘qdzdr—i-/ / r40=1| 2|~ dzdr

~ / S / WOy

0 0
< p2reate(0-1) < e

Thus, the proof is complete. O

Lemma 3.8.6. Suppose «, 0 satisfy (I1.1) and

(

ne satisfies (11.3);

ns satisfies (11.4); (3.8.17)

|74 satisfies (I1.2) and (I1.3).

Then the jﬂj(t,x,y), j=1,--+,6 in (3.4.39) can be bounded as follows.
2) (4 <|p|e

fuP \-72,1,3'( 75’373/>N‘ | .

7x’y

Proof. Let us recall the definitions of Dy,--- , Dg in (3.4.38). Firstly, we deal with ‘72(21)1
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and ‘72(721),5 on Dy and Dj successively. We have

j211(t T,y +~7215(t r,y)

_|h|n2q/ / ra@— 1) ) (a+m2)a 7 dr
z<—r—nh

r+h
+ ]h!’”q/ / r1O=D (5 — )= (@tn2)ag, gy
0 r

t
<|h|772q/ rq(e_l)dr-/ (g)—(oH—m)qu
0 Z>h

t h
+ |h]’72q/ ra@=D gy . / (2)~latmlagy (3.8.18)
0 0
through changing of variables Z = —z — r and 2 = z — r. Thus, it can be bounded by
|79 if
1
a—+ny > 7 Ny > 7. (3.8.19)

In the same way, we can deal with ‘72(721),6(25, x,y) by changing of variable Z = z — 7,

t
Wﬁsq/ / 741(0—1)<Z —T)_(O‘+’73)qdzdr
0 z>r+h

t
<|h’nsq/ ra0=1) g . / (g)*(a+n3)qdz<|h‘7q’
0 Z>h
which requires 73 satisfying the conditions (3.8.19) and
1
a+ns < 7 N3 > . (3.8.20)

Similarly, by changing of variable z — z + A and then z — rz, we have on Ds,

T2 (2 <h’74‘1/ / |z 4 B[z gy
<h’74q// rdO=D|p — | 2| |95
1
:hmfI/ Tq(@ 1)—(a+na) q+1dT'/ ‘1_|Z||7(oz+774)qdz<}7/7q7 (3821)
0 0

which requires the same condition as (3.8.2) with 7, replaced by 7, here.
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As for ‘72(721)72(15, x,y) and ‘72(721)74(15, x,y), we have

j212(t x y)+~7214 t x Z/

/ (/ / ) WOV Dyl — |zl 7| dzdr
/(/h /) — |z + Bl |=*dzdr
/(/h /)qu Dl — |||~ *9dzdr

5/ La(0-1) g, / 2|~ d = <) o< |, (3.8.22)
0 0
if we require
1 1 1
0> -, a< -, a_’_fy< —. (3.8.23)
p q q

Thus, if o, 0 satisfy (I1.1) and if (3.8.17) holds, then all the restrictions on n’s are satisfied.

The proof is then complete. O

Lemma 3.8.7. Suppose «, 0 satisfy (I1.1) and moreover
N4, N5 satisfy (11.2) and (11.3) . (3.8.24)

Then the terms sup .73(2) (t,z,y) and sup j4(2) (t,z,y) in (3.4.42) can be bounded by a con-
t,x,y t,x,y

stant multiple of |h|79.
Proof. For the term j(2) t,z,y), by (3.4.40) and the inequality |z + h|™?<|z|™2 + |h|™1
3 ~
, we have
t o
j3(2)(t,x,y)§|h|"4q/ /7061(9—1)(7«2 + ZQ)—(5+n4)q|Z|n4qudT
0o JR
t
+ |h’2n4q/ /Tqr(el)(?n2 + z2)*(%+"4)qdzd’r
0o Jr
t
:]h|’74‘1/ rq(9—1)—(a+2n4)q+n4q+ldr./(1 +22)—(%+n4)q12|n4qdz
0 R

t
+ |h|2n4q/ pa(0=1)—=(a+2ma)g+1 ., /(1 + z2)_(%+’74)qdz, (3.8.25)
0 R
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which can be bounded by |47 under the following conditions
2 1
>, 0—=2n>14+a——, a+n > —. (3.8.26)
q q

As for the term \74(2) (t,x,y), by inequality (3.4.41) and by changing of variable z — rz,

(r?2 4 22)msa

j(2) <|B|msa t q(0-1) red 2 2\—-%4q
Lz, y) <A r (r* 4 2z%)"29dzdr
0o Jr
t

<[ / pa(O—D=ma—oq+l g, / (14 22)"59mag; (3.8.27)

0 R

which can be bounded by |h|7? under conditions (3.8.2) with 7; substituted by 7;. So we
complete the proof by noticing that (3.8.26) and (3.8.2) are implied by (3.8.24). O
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Chapter 4

Intermittency properties for a large
class of stochastic PDEs driven by

fractional space-time noises

4.1 Introduction

In this chapter, we consider the following stochastic partial differential equation in the

d-dimensional Euclidean space R%:

Zu(t,z) = u(t,z)W(t,x), t>0, v €R? (4.1.1)

with certain given initial condition. Here .Z denotes a general (including fractional order)

partial differential operator and W (t,z) = —2—W (¢, z) is mean zero Gaussian noise.

~ Otdwi--0zg
We would like to enable our approach to be applied to a large class of operators .Z.
For this reason, instead of giving the concrete form of .#, we shall impose conditions
satisfied by the Green’s function associated with £ (see e.g. [HHNSI15, NQS07] for a
similar spirit).
One of the most studied properties of the solution is the intermittency arose from

physics. An intermittent random field is a random function of space variable x consisting

of ‘high peaks’ which give the most contribution to the processes. This property is related
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the moment bounds of the solution (p-th moment Lyapunov exponent, in particular).
In order to formulate the mathematical definition of intermittency for a random field
u = {u(t,zr) : t > 0,z € R}, researchers consider the upper and lower (moment)

Lyapunov exponents

- 1
A(p) :=limsup p log E[|u(t, z)|?], (4.1.2)
t—r00
1
Alp) ::h{n inf n log E[|u(t, x)|?] . (4.1.3)

If X\(p) = A(p), then we call this common value the p-th moment Lyapunov exponent,
denoted by A(p). Traditionally, the random-field w is called intermittent if [1,00) > p —
A(p)/p is strictly increasing. We refer to [CM94, Khol4] and references therein for more
discussion.

When (4.1.1) is parabolic Anderson model, namely, when & = % — %A is a heat
operator, there are many results about the sharp (both lower and upper) moment bounds,
see e.g. [BC16, CHKNI18, Chel7, CHSS18, CHSX15, HHL*18 HHNT15, Lyu20], and we
also refer to [Hul9] for a recent survey. Let us also mention that there are many works
on the behaviour of ‘high peaks’ of the parabolic Anderson model and general nonlinear
parabolic stochastic PDEs. For instance, the macroscopic multifractal analysis of such
random sets was studied in [KKX17, KKX18] and the estimates of the length of the
‘intermittency islands’ corresponding to ‘high peaks’ was studied in [CJK12].

However, when . is a wave operator, namely the hyperbolic Anderson model, or
when £ is (temporal) fractional differential operators, the situation is different. We

summarize the known results (to the best of our knowledge) as follows.

(i) Similarly to the stochastic heat equation (parabolic Anderson model) we can use the
chaos expansion and the hypercontractivity inequality to obtain the upper bounds
(which we believe to be sharp). It is also possible to obtain the lower bound for the
second moment. There are many contributions on these aspects and among them
we mention only a few [BC14,BC16,BJQS17, CHHH17,SSX20] and the references
therein. However, it is hard to obtain the sharp lower bound for any p-th moment

which matches the upper bounds in terms of the growth of p.
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(ii) Until now the success to obtain a sharp lower moment bounds for the solution of
stochastic heat equations largely relies on the clever application of the Feynman-Kac
formula. However, there is no effective analogous formula for other equations such
as wave equations. The only work that we know is [DM09, Theorem 4.1], where the
authors use an Feynman-Kac like formula for stochastic wave equation obtained in
[DMTO8] to obtain a nice lower bound for all moments when the Gaussian noise is
white in time and “smooth” in space. However, this formula is hard to use to obtain
sharp lower moment bounds for other more general Gaussian noises. Let us mention
that after the completion of this work, we learn the announcement of a work [Qia],
where the Gaussian noise is what they called Dobri¢-Ojeda one, namely, noise is
still white in time but with a weight and the equation is one dimensional stochastic
wave equation. The idea is still to make more careful use of the Feynman-Kac like

formula obtained in [DMTO0S].

(iii) For the time-independent noise, the authors of [BCC20, CE21] obtain the exact
asymptotic behaviour of the p-th moment of the solution to (4.1.1) when . is wave
operators or (temporal) fractional differential operators. However, it seems unlikely

that their method is applicable to the time dependent noise.

The objective of this chapter is to obtain the sharp lower bounds (which matched the
upper bounds) for all moments when the operator £ in (4.1.1) is a wave operator of
dimension one, two, or three or an operator which is fractional both in time and in space.
The Gaussian noise W can be very general and it does not need to be white or even
fractional in time.

The approach that we use is a generalization of the Feynman diagram formula for the
moments of the solution. This formula allows us to keep track the extremely sophisticated
terms in the expectation of the product of several multiple Wiener-Ito integrals. It is
in some sense a brutal force method. We fully explore the positivity of the Green’s
function. This property enables us to throw away some complicated terms and to keep
the main terms so that the remaining ones contain the essential contribution on one
hand and on the other hand are possible to manage although still very sophisticated.

After the (fortunately successful) isolation of the leading terms there still remains an
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extremely challenging problem of how to bound them from below. At the first glance this
seems an impossible task since it needs to perform very sophisticated multiple integral
computation involving the singular Green’s function and the covariance structure of the
Gaussian noise. To make the estimate of these multiple integrals possible, we discover a
new property which we call the small ball nondegeneracy of the Green’s functions, which
helps us to significantly reduce the difficulty so that we are able to handle these multiple
integrals. Of course, the remaining task to bound the multiple integrals is still highly
technical but somehow possible. We shall show that many popular Green’s functions
satisfy this small ball nondegeneracy property. Similarly, to obtain the upper moment
bounds we discover another property of Green’s function, which we call the bounded
Hardy-Littlewood-Sobolev total mass which can guarantee the upper moment bounds.
The Feynman diagram type formula that we obtain may be essentially analogous
to the Feynman-Kac type formula obtained in [DMTO08]. However, the former one is
straightforward and is more convenient for us to manage. Since we only use the positivity
and the small ball nondegeneracy properties for the lower moment bounds, our approach
is applicable to a very large class of equations and to a large class of Gaussian noises. The
equations include stochastic heat equation, stochastic wave equation (SWE, .Z = 92— A),
stochastic heat equation which is inhomogeneous and fractional in space ((«, A)-SHE,
L =0, — (—V(A(x)V))*/?), where A is a positive definite symmetric matrix, stochastic
partial differential equations which is both fractional in time and in space (SFDE, ¥ =
o — 1(=A)*/?) (see e.g. [BC14,BC16, CHHH17,CHSS18, CHW18,DM09] and references
therein for the study of this type of equations). As for the noise, we can allow the noise
structure to be very general: we only need to assume that the covariance function is
bounded (above or/and below) by some singular power functions as those in [HHNT15].
In particular, they need not necessarily to be white or fractional in time or in space.
Here is the organization of the chapter. In Section 4.2 we give the noise structure
and introduce the stochastic integral, mild solution, and chaos expansion. Section 4.3
proposes the general conditions satisfied by the Green’s function associated with .# and
states our main results. Sections 4.4 is devoted to prove the upper moment bounds

for the solution. This is done by using the chaos expansion and the hypercontractivity
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inequality. Our main tool to prove the lower moment bounds is the generalization of the
Feynman diagram formula for the expected value of product of several multiple Wiener-
Ito integrals. This formula is presented in Section 4.5. After this preparation, in Sections
4.6 we prove the lower moment bounds of the solution. To encure that some famous
operators .Z satisfies the positivity (G1) and small ball nondegeneracy conditions (G2)
so that our results can be applied to cover a large class of interesting stochastic partial
equations, we verify these conditions for various interesting operators .Z in Section 4.7.

Throughout the entire chapter, we shall use the notations <, 2, and =~ extensively.
The meaning are conventional. Thisis, A < B (or A 2 B) means that there are constants

C € (0,00) such that A < CB (or B < CA, respectively). The notation A ~ B means
that both A < B and A 2 B hold true.

4.2 Noise covariance structure, mild solution and chaos
expansion

In this section, we give the conditions satisfied by the covariance of the noise W in
(4.1.1). For this Gaussian noise we also define the (Skorohod type) integral, the mild
solution, and the chaos expansion of the solution candidate. These concepts are known,
so we recall them very quickly to fix the notation throughout the chapter. We refer to
[CHHH17,Hul7, HHL" 17, HHL 18 HHNT15] and the references therein for more details.
The existence and uniqueness of the solution in our new situation will be a consequence

of the upper moment bounds.

4.2.1 Noise covariance structure

We assume that the noise W (t,z) = % W (t,z) is mean zero Gaussian with the
following covariance structure:
E[W (t,2)W (s,9)] = 7(t — s)A(z —y). (4.2.1)
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The restriction that the covariance of the noise has this product form of a function of
time variables and a function of space variables is convenient. The reason that the time
function is of the form (¢ — s) means that the noise is stationary (or the original process
W has stationary increment). The space function is of the form A(z —y) means that the
noise is homogeneous.

In order to simplify our presentation and in order to cover the typical examples we

make the following assumptions. For v we assume

(H1) There is a vy € (0,1) such that
i <A <O, ViER,

for some positive constants ¢, C'. For convenience, when v = 1 we mean y(t) = J(t).
For A(-) we assume that it satisfies one of the following three conditions:

(H2) There is A € (0,d) such that

clz|™ < Az) < Clz|™, Va2ecR?.
(H3) There are constants \; € (0,1),5 =1,--- ,d such that
d d
c[Jlel™ < Al@) < CIJlayl ™, VazeR
=1 j=1

In this case we denote A = S0 | \,.

(H4) When d =1 and v = 1, we assume A(z) = d(z).

4.2.2 Stochastic integral

We follow the approach of [BC16, Hul7, HHNT15, HN09, Nua06] to define stochastic in-
tegral. First, let us recall the Fourier transform with respect to the spatial variables.
Denote by D(RY) the space of real-valued infinitely differentiable functions with com-

pact support on R? (We can also introduce D(R, x R%) in a similar way). The Fourier
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transform is defined as
f©) = FUOIE) = [ e pla)da,

R4

and the the inverse Fourier transform is given by

F (@) = @m)FIf(O))(—x) .

Let H is the Hilbert space defined as the completion of D(R, x R?) equipped with the

inner product given by

(@, V) = /(R e o(t, ) (s, y)y(t — s)A(x — y)dtdzdsdy (4.2.2)
| ) .
@m)4 J g, xraye Yt = 8)o(t, ) (€)v(s, - )(§)p(dE) (4.2.3)

where v : R — R, and A : R? — R, are non-negative definite functions and satisfy (H1)
and one of the conditions (H2)-(H4) introduced at the beginning of this section. Note
that the space H contains generalized functions.

The noise W can be described by an isonormal family of mean zero Gaussian random
variables {W(¢); ¢ € D(R} x R?)} with the covariance E[W (¢)W (¢)] = (¢, ¢}y for all

¢ and ¢ in D(R, x R?). This isometry can be extended to H and is denoted by

W(¢p) = /]R y o(t,x)W(dt,dx), forall p e H.

Let P be the set of smooth and cylindrical random variables of the form

F=fW(g),....W(¢n)),

with ¢; € H, f € C;°(R") (i.e. f and all its partial derivatives have polynomial growth).
For F' € P of the above form we define DF' as the H-valued random variable by the

following expression

DF =3 5L (W), W(6.))6.
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The operator D is closable from L?(2) into L?(2;H) and we define the Sobolev space

D2 as the closure of P under the norm

|DFllsz = \/EIF?] +E[| DF|2] .
Given any element u € L?(Q; H) if there is a v € L?(Q) such that
E(wF)=E(DF,u)y) for any F € D!? (4.2.4)

then we say that u is in the domain of § and we call it the Skorohod integral of u, denoted

by

v = 8(u) = /Ooo /Rdu(t,x)W(dt,d:r).

Obviously, when such v (satisfying (4.2.4)) exists, it is unique. We refer to [Hul7,
HHNT15, Nua06] for more details. Now with the Skorohod integral introduced, we give
the concept of mild solution as follows. But first, let us briefly recall the concept of
Green’s function. Suppose f(t,z),t > 0,2 € R? is a nice (smooth with compact support)

function and consider the corresponding deterministic equation
ZLu(t,x) = f(t,x), t>0, v €R%. (4.2.5)

with the same initial condition(s) as in (4.1.1). The Green’s function associated with &
is a (possibly generalized) function Gy4(z,y),0 < s < t < oo,z,y € R? or a measure
Gis(z,y)dy = Gi_s(z,dy) (we omit the explicit dependence of G on .Z) such that the

solution to (4.2.5) is given explicitly by

u(t,z) = Io(t,z) + /Ot Gis(z,y) f(s,y)dyds, (4.2.6)

R4

where the term Iy(¢,z) depends on the initial data and the Green’s function.

If we formally replace f(s,y) in (4.2.6) by u(s,y)W (s, y) and replace W (s,y)dsdy by
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the Skorohod type stochastic integral W (ds, dy), then the solution to (4.1.1) satisfies

ult,z) = To(t, z) + /0 Gy )us, ) W (ds. dy). (4.2.7)

R4

where the stochastic integral is interpreted in the Skorohod sense and Iy(t, x) is from the
initial condition(s) and the Green’s function. . However, Unlike the previous identity
(4.2.6) the expression (4.2.7) is still an equation on w. It is impossible to make sense for
each of the terms Zu(t, z) and u(t, )W (t, x) in a straightforward way so it is impossible
to find a solution satisfies (4.1.1) literally. But it is possible to find u(t, z) satisfies (4.2.7).
A random field u(t, z) satisfying (4.2.7) will be called a mild solution (or random field

solution) to (4.1.1). Here is its definition:

Definition 4.2.1. An adapted random field {u(t,x) : t > 0,z € R} so that E[|u(t, z)|?] <
oo for allt > 0 and v € R? is called a mild solution to equation (4.1.1) if for all

(t,z) € Ry x RY the process

{Grosl, y)uls. y)pa(s) : s> 0,y € RY}

is Skorohod integrable, and u(t,x) satisfies (4.2.7).

If u is a mild solution to (4.1.1), namely if u satisfies (4.2.7), then u(s,y) = Iy(s,y) +

f(f Jaa Gs—r(y, z)u(r, z)W (dr,dz). Substituting this expression into (4.2.7) we obtain

u(t,z) = Io(t,)+ / [, Geeslo )l )W (ds. )

t r
+/ / Gt_s(l’,y)Gs_r(y72>Io<T7 Z)W(d?", dZ)W<d57dy) .
0 0 R2d

Repeating this procedure we obtain a solution candidate for the equation (4.2.7):

u(t,x) = Io(t,x) + Y Li(fal-t,2)). (4.2.8)
Here
fa(st,m) o= fulty, o0, o, Ty b, @) (4.2.9)
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1
:m Z Gt_ta(n) (aj’ xo'(n))Gto'(n) _to(nfl) (:EO'(TL)7 aja(n*l)) T

’ O’ES’n

X G,y —toy (To(2)s To(1)) To(to(1)s To (1)) L{0<t, )<<ty <t}

is the symmetrization of

Gt—tn (1’7 $n)th—tn,1($m In—l) s

X Gy, (22, 21) Lo (t, 371)1{0<t1<~--<tn<t} ) (4.2.10)

where S,, denotes the set of all permutations of {1,...,n}; and I,,(f.(-, ¢, x)) is the multi-
ple Wiener-It6 integral (e.g. [Hul7,Nua06]). The expression (4.2.8) is called the Wiener
chaos expansion (or simply chaos expansion) of the solution. It is known that if (4.2.8)

is convergent in L*(), then (4.1.1) has a unique mild solution.

4.3 Small ball nondegeneracy and main results

4.3.1 Small ball nondegeneracy for Green’s function

Our main aim of this chapter is to study the lower and upper asymptotics of the moments
of mild solution defined in (4.2.7), which match with each other. What we need are the
following assumptions on the Green’s function associated with the operator .£. The

following assumptions are made in order to derive the sharp lower asymptotics:
(G1) [Positivity]: G:(-,-) is a positive function, measure, or generalized function.

(G2) [Small ball nondegeneracy|: G;(-, ) satisfies the small ball nondegeneracy (B(a,b)).
This is, there exist real numbers a and b (depending on the Green’s function) sat-
isfying

a>—-1, b>0, and b(2a+1)—A>0, (4.3.1)

and there is a constant C' > 0 such that

y€EB: ()

inf / Gy, z)dz > C - t*, (4.3.2)
B.(x)
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for all 0 < t < &< 1) and o € RY, where B.(z) is the ball of center x with radius

E.

To obtain the upper bound for moments, we need is the following hypothesis for the

Green’s function.

(G3) [HLS-type mass property|: G(-,-) satisfies what we shall call the Hardy- Littelewood-
Sobolev type mass property M(h). That is, there exist a real number /& and a constant
C > 0 satisfying
h>—1, (4.3.3)
and

sup Gi(z,y)A(y — y)Ge(',y)dydy' < C - t". (4.3.4)

x,x' ER4 J R2d

Remark 4.3.1. The tasks to verify the assumptions (G1)-(G3), in particular to find
the sharp indices a,b, h in (4.3.2)-(4.3.4) are not trivial. We shall dedicate one section
(Section 4.7) to verify these conditions for various partial differential operators £ that
are currently interested by researchers. For different operators £, we shall obtain the

best indices a, b, h in the sense that our upper and lower p-th moment will match each

other as p ort tends to infinity.

Remark 4.3.2. The hypothesis (G3) is quite standard for the upper moment bounds.
When Gy is a function (rather than a measure), then we can easily apply Hardy-Littelewood-

Sobolev inequality ([LLI7, Theorem 4.3]) to obtain

z,x’' R

sup / Gz, y) Ay — )G,y ) dydy'
RQd
<

sup / N Gi(z,y)ly — /| *Gu(2', ) dydy'
R

x,x’' ER4
2d—)

2d d
< sup V |Gt(x,y)\mdy1
Rd

zER4

We shall use this inequality to verify (4.3.4) for some operators £ in Section J.77.

Remark 4.3.3. In this remark, we give some intuitive connections between (G2) and

(G3). If we assume Gi(z,y) = Gi(x — y) satisfies what we shall call the total weighted
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mass property M(w,v): there exist real numbers w and v (depending on the Green’s
function) satisfying
u>—-1, veR, and p+v>-1, (4.3.5)

and there are two positive constants C7 and Cy such that

Jpa Gely)dy < Cy -t
(4.3.6)

sup fRd Gi(z —y)Ay)dy < Cy - t”.

rERI

Then we can easily see (4.3.4) holds with h = w+ v > —1. Furthermore, we notice that
w = a, where a is the same parameter in (G2).
Let us discuss the SHE and SWE in one dimension as examples. It is easy to see

from Hardy-Littlewood rearrangement inequality (see [L1.97, Theorem 3.4]) that

1
V27t
t

Sup/ GY(z —y)ANz)dr < [ || Mo <O -7,
R

yeR —t

_a? Y _2
e 2 |x| e < C -t 2

Sup/RG?(x — y)A(z)de g/R

yeR

where G and GY are heat kernel and wave kernel, respectively. In addition, we know

that

/RG};(a:)da: =1, /RGXV(x)d:c =t.

Thus, (4.3.4) holds for SHE and SWE. Moreover, it will be shown in Section 4.7 that

SHE and SWE satisfy small ball nondegeneracy with a =0 and a = 1, respectively.

4.3.2 Main results

In this subsection we present our main results. This is, we give the upper moment
estimates in Theorem 4.3.4 and lower moment in Theorem 4.3.6. In fact, with v(-), A()
and Gy(-) satisfying conditions stated before, we also give the relation among the indices
a, b and A so that the exponents in ¢ and p in the lower and upper moments match with
each others (see the Table 4.1).

First we state the result for the upper moment bounds.
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Theorem 4.3.4. Assume (-) satisfies (the upper inequality in) (H1) and A(-) satisfies
(the upper inequality in) one of (H2)-(HY). Let the Green function Gi(-) satisfy (G3).
Assume that the initial condition term Iy(t,z) is bounded, namely, there is a positive
constant C' such that sup( e, xerd [Lo(t, 7)| < C. Then there is a unique mild solution
u(t, z) satisfying (4.2.7). Moreover, there are some constants Cy and Cy do not depend

ont, p and x such that
E[|u(t, z)”] <Oy exp (02 U pl+#) . (4.3.7)

The proof of this result will be given in next section (Section 4.4) by using the hyper-

contractivity inequality.

Remark 4.3.5. This result is new in the sense that it holds now for general operator
% satisfying (G3). When £ is the heat operator, wave operator, fractional c-diffusion
operator, or partial differential operator both fractional in time and space but homogeneous
in space, the result is known (e.g. [BC16, CHHH17,Hul9,5SX20], references therein and

other references.

Our main contribution of this work is the following lower moment bounds for a general

partial differential operator .Z.

Theorem 4.3.6. Assume (-) satisfies (the lower inequality in) (H1) and A(-) satisfies
(the lower inequality in) one of (H2)-(HZ). Let the Green function Gi(-) satisfy (the
lower inequality in) (G1) and (G2). If the initial condition satisfies inf, yyer, wra lo(t, ) >
co for some constant co > 0, then there are some positive constants ¢; and cs independent

of t, p and x such that we have

b-(1—~)

E [|u(t, x)|p] > ¢ exp (02 . 751+ b(2a+t1)—Ax .p1+h(2u$1)7}\> . (438)

The proof of this theorem replies on the Feynman diagram formula for the moments
of a chaos expansion. This formula will be presented in Section 4.5 and will be used in
Section 4.6 to prove the above theorem.

Consequently, combing Theorem 4.3.4 and 4.3.6 we obtain the following theorem
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about the matching upper and lower moment bounds.
Theorem 4.3.7. Assume y(-) satisfy (H1) and A(-) satisfy one of (H2)-(H4). Assume

the Green function Gy(-) satisfy (G1)-(G3) with

hi=2a— % > —1 (4.3.9)

If the initial condition satisfies co < Io(t,z) < Cy for some positive constants 0 < ¢q <

Co < 00, then the mild solution u(t,z) to (4.1.1) satisfies

b-(1—v) b
C1 exp <02 . t1+ b(2a+1)—X . p1+[v(2a+1)—k>

b-(1—7)
< E[ju(t,z)|] < Cyexp (cg e 'pH"(Q“fU*A) (4.3.10)

forallt >0, z € RY, p > 2, where ¢, ¢y, Cy,Cy are some positive constants, independent

Oft’x7p'

Proof. 1t is obvious that under the conditions of this theorem both the conditions of
Theorems 4.3.4 and 4.3.6 hold. Thus both (4.3.8) and (4.3.7) hold true. Replacing h by
(4.3.9) we see that (4.3.7) becomes the second inequality in (4.3.10). The theorem is then

proved. O

We shall demonstrate that (4.3.9) holds true for the Green’s function of various partial
differential operators: SHE, a-SHE, SWE and SFD (see (4.7.1), (4.7.13), (4.7.22) and
(4.7.33) respectively). We summarize the results of that section here in following table.

Notice that Table 4.1 only includes the exponent parts of (4.3.10).
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SPDEs (a,b) h Moment When v =2 - 2H

SHE (0,2) —2 S i PR R
a-SHE  (0,a) —A Sy = e R
SWE (1,1) 2—\ 17573 L iR P

a(l—y) B(2a—)) a(284+2H—2)—BA B(2a—3)

SFD (5 — 1;%) 2(/3 — 1) — % Ty Ty - pZaB-a=pBX {7 2af-a-Fx . plaf-a-px

Table 4.1: Matching lower and upper moments

4.4 Upper moment bounds

Our goal of this section is to prove the upper moment bounds assuming that (G1), (G3)
hold for the Green’s function G associated with the operator . and assuming that (H1)
and one of (H2)-(H4) or one of (H2")-(H3’) hold true for the noise covariance structure.

Sometimes it is convenient to use Fourier transformation to represent the covariance
function in spatial variables. Assume A(x) > 0 for all 2 € R? and assume that there is a

measure 1 on R? such that

Ax) = /Rd e pu(de) . (4.4.1)

We now assume some conditions on the Fourier mode that are similar to (H2)-(H3) and

(G3).

(H2') There is a A : R? — R such that u(d¢) = A(€)d¢ and there are constants \; €
(0,1),j=1,--- ,d and C > 0 such that

d
A< o], veeRrd.
j=1
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In this case we denote A = \; + - -+ A4.

(H3') There is a A : RY — R such that u(d€) = A(€)d¢ and there are constants A € (0, d)
and C' > 0 such that
A < Cler, veeRr?.

(G3') [Majorized property| G(-) satisfies the majorized property (M (h)). This is, there
exists a positive function or measure @Q); such that Gy(z,y) < Q;(x—y) for any t > 0
and z,y € R, and there exist a real number 7 > —1 (the same ones in (G3)) and

a constant C' > 0 such that

sup [ |Q:(& —m)Plpl(d€) < C -, (4.4.2)

neRd JRd
where [p|(€) = |A(€)|d¢ with (H2') or (H3') holds.

Theorem 4.4.1. Let the Green function Gy(-) satisfy (G3'). Assume ~y(-) satisfies (the
upper inequality in) (H1) and A(-) satisfies one of (H2' )-(H3' ). Assume that the ini-
tial condition term Io(t,x) is bounded, namely, there is a positive constant C' such that
SUD(; 1)er, xerd | Lo(t, )| < C. Then there is a unique mild solution u(t,r) is satisfying
(4.2.7). Moreover, there are some constants Cy and Cy do not depend on t, p and x such

that (4.3.7) holds.

Proof of Theorem 4.3./ and Theorem /.j.1. Asindicated in [Hul9], there are mainly three
approaches to obtain the upper moments, effective in different situations. In our case,
we choose to use the approach of combining chaos expansion and hypercontractivity
inequality.

Step 1: We shall show the upper bound under assumptions (G3), (H1) and one of
(H2)-(H4). In the following, we shall only prove the case (H2). The cases (H3) and
(H4) can be done similarly. Recall the Wiener-1t6 chaos expansion (4.2.8) for the mild

solution to (4.2.7)
u(t, I) = [o(t, 213') + Z [n(fn(v 2 .CC)) )

n=1

where f, (-, t,x) is given by (4.2.9). Denote u,(t,z) = I,(f.(-,t,2)). Then it follows from
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the It6 isometry for the multiple Wiener-It6 integral (e.g. [Hul7]) that

[ (t, 2) 172 = Bl (a5t 2))1°

= n‘”fn(v t, $)H3—l®" :

0y
I
—~
V)
g
\.CID
3
N—
8y
I

To compute the above norm let us denote t = (t,---,t,),
(xla"' 7xn)7 ?j: (ylv"' 7y'fl) and

n

U, (58) = | ful.35t,2) [[Aley — ) ful5,5: t, 2)diidy

d
R2n ]:1

Then, we have

lun(t, 2) 172 = 0l fa (3t 2) [ Fgen

1 n ~ o
= B, (1) =1 / [T~ (t; — 5,)¥a(f, 3)dids. (4.4.3)
n' n! [07t}2n i1

By the Cauchy-Schwarz inequality W, (£, 5) < [U,,(£,1) ¥, (5, 5] 2 and Hardy-Littlewood-
Sobolev inequality [HN09, Inequality (2.4)], we obtain with v =2 —2H (or H =1 — )
from (4.4.3)

n

05 [ TIolt - ) Va0 (59) " dids
[O,t]2" ]:1

2H
< ( / \%(s:;)\“%) .
[0,¢]"

Now we need to resort to the key assumption (G3), i.e. Hardy-Littelewood-Sobolev type
mass property M(h) to obtain the bound for ¥,,. Repeatedly using (G3) (namely, (4.3.4)),

we have

U,(5,8) < | fulE 35t x) [ Ay — ) ful 5,35 t, ) diEd
j=1

(4.4.4)

h
‘Sﬂ(j+1) - SU(j)| 1{0<80(1)<"'<50'(n)<t} )

N
T

where A > —1 and 0 < sp(1) < -+ < So(n) < So(n41) = t. Denote the simplex [], (t) =
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{(s1,"++ ,8n);0< 83 <--- <8, <t}. Then, using the bound we just obtained for ¥,

we obtain the upper bound for ®,,():

" 2H
P, (1) <Ch (”'/ [T lsi - 3j|h/2Hd§>

IT.(t) j=

gnh/2H+n 2H n(ht2H)
<cy (! ~ O
I'(nh/2H +n+1) (nh)h

by Stirling’s formula for Gamma function.

As a result, the second moment can be estimated as

tn(h+2H)

1 n
ln(t, 222 = —Pn(t) SCHw-

It is now easy to bound the p-th moment from the above second moment bound by using

the hypercontractivity inequality (e.g. [Hul7, p.54, Theorem 3.20])

lun(t, 2)l[ze <(p = 1) [Jun(t, )l 2

, [¢n(m+2m 1/2
<Ci(p—1)" [ ()it ]

Thus

lu(t, 2)llp SC + Y llun(t, o)z

n=1

<C+> Chlp—1)"?

n=1

<C'exp <C’ : t%(p — 1)h41r1

|:tn(h+2H) ] 1/2

(nl)it1
).

This means E||u(t, z)|P] < C exp <C’2 : tH};TYpHﬁLH) for some positive constants C; and

C5 and hence we conclude the proof of Theorem 4.3.4.
Step 2: We shall show the upper bound under assumptions (G3'), (H1) and one of
(H2')-(H3'). Denote

an(7t"/L‘) = fn(tlyxla Tt ,tn,xn,t,l') (445)
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1
:E Z Qt—t(T(n) (x - zU(n))Qt(,(n)—to(n,l) (mo(n) - xa(nfl)) e

’ O'ESn

x Qt(f(z)—to(l)(%@) - %(1))]0(%(1), %(1)) . (4.4.6)

Namely, we replace G in the expression of f,(+,¢,z) by . Then by the positivity of G,
A, and the fact that G < @, we have

\Ifn(§7.§j§ _‘7 _’atal‘ HA Tj—Y;j fn S yvt I‘)dl’d’y
Ran .
j=1
S fO(5, 75t A — y) (5, 7 t, x)didy
R2nd j:l
S [ UGt OF 1918 S [ oo = seol"
n j:l

As a result, we get E[|u(t, z)|P] < Cyexp (CQ : tHﬁpH#) for some positive constants

01 and Cg. O

4.5 Feynman diagram formula

Now we turn to the proof of Theorem 4.3.6, i.e., the lower bounds for the moments. The
main difficulty is the lack of the Feynman-Kac formula for general partial differential
operators. To get round of this difficulty our strategy is a brutal force one. We try
to handle the p-th moment of wu(t,z) directly, where p is an arbitrary positive integer
and u is the mild solution to (4.1.1), given by its chaos expansion (4.2.8). Since the
solution is an infinite sum of multiple Wiener-It6 integrals so we need first to use the
product formulas of the multiple Wiener-It6 integrals (with respect to Gaussian noise).
This is called the Feynman diagram formulas and they can be found in Theorem 5.7
and Theorem 5.8 in [Hul7] (for general Gaussian noise case), Theorem 10.2 in [Majl13]
or Theorem 5.3 in [Majl4] (for White noise cases). In this section we shall present this
formula “graphically” so that we can keep track the terms.

Recall that the Gaussian space H in our situation is the Hilbert space obtained by the

completion of D(R, x R?) with respect to the scalar product defined by (4.2.2). Since
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the work of [Maj13] or [Majl4] are for the “White noise” case, we will follow the product
formula of [Hul7, Theorem 5.7]. Since we are only interested in the expectation of the
product of multiple integrals and since E [Ix(f)] = 0 for all £ > 1 we only need to sum
the terms with |y| = 0 in [Hul7, Theorem 5.7] when we take the expectation of the left
hand side of [Hul7, Equation 5.3.5] (The notation 7 used in [Hul7] is different than the
one used in this chapter).

To visualize these summation terms graphically, we recall the concept of diagram
associated with only these terms. A Feynman diagram D is a set of some vertices and
some edges connecting them so that the vertices are arranged into some finite rows and
each row contains some finite many vertices. The set of vertices of the diagram D can
then be represented by # (D) = {(k,r) : 1 <k < m,1 <r < ny,}t. Weuse &D) =
{[(k,7), (k,7)] : k < k} denote the set of all edges of a diagram D, where k < k means
(k,7) is the upper (row) and (k,r) is the lower (row) end point of a edge. The strict
inequality is important here since two vertices in the same row are not allowed to form
an edge. For an edge [(k,7), (k,r)] € &(D), we call (k,7) the upper vertice and (k,r)
the lower vertice of the edge and we call a vertice associates with an edge if it is either
upper or lower vertice of the edge. We use 7 (D) and ¥ (D) to the sets of all upper and
lower vertices, respectively. We require that one vertice associates with at most one edge.
Thus we have ¥ (D)N ¥ (D) = (. After taking the expectation of [Hul7, Equation 5.3.5],
the terms will be significantly reduced. To account the remaining terms we only need to

consider the following special diagrams.

Definition 4.5.1. A diagram D = (¥ (D), &(D)) is called admissible if every vertice is
associated with one and only one edge. The set of all admissible diagrams associated with

the vertices {(k,r),1 <k <m,1 <r <mn} is denoted by D(ny,--- ,ny).

It is clear that if a diagram D is admissible then ny +- - -+n,, = 2|&(D)|, in particular,
niy + -+ n,, is an even integer.

Let fi : (Ry x RY)™ — R, k =1,--- ,m be some given measurable functions. Associ-
ated with these functions we have naturally the set of Feynman diagrams ]@( fiyo s fm)-
The correspondence is described as follows. Each Feynman diagram D &€ ]]~)( fi,o o fm)

contains m rows, corresponding to f1,--- , f,,, and the k-th row of D contains n; vertices,
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which is the number of independent variables of the function fr. We use D(f1,--- , fin)
to denote the set of all admissible Feynman diagrams associated with fi,---, f,,.

For the sake of convenience we consider (¢,x) as one vector independent variable,
where t > 0,2 € R%. So we shall say that f : (R, x RY)™ — R has n, independent
(vector) variables. From the functions f, : (R; xR%)™ — R, k =1,--- ,m, we define their
concatenation fyo---o f,, as a function of ny +- - - +mn,, independent vector variables. We
name the ny independent variables of the function f by (t(1), T(k1)), - -, (t(kmk), T (k)
associated with the k-th row vertices. Thus for an admissible Feynman diagram D &
D(f1, -, fm), the concatenation fio---o f,, is a function of ny +- - - +n,, vector variables

and we write it as

fro-o ful(tzpy: T7(p)): (Lx(m), Ty(D))) -

The edges in D € D(f1,---, fm) are used to form the (tensor) scalar product in the
Gaussian space H of the above concatenation. Here is the detail of this construction. If

[(k,7), (k,r)] is an edge of the diagram D, then we form a factor

v (t(E,r) Lk, r))A(x(E,?) — T(k)) -

For the set of &(D), we denote the product of all above factors as

V(t7m) — tr)Mazp) — 2v(p))

= H Yt grm — ten)MEEn — Twn) - (4.5.1)
[(k,7),(k,r)]€€(D)

With these notations, we define finally a real number associated with fy,---, f,, and

associated with an admissible diagram D as follows:

fla ) m
/fl o fu((t 7 (D) $V(D)) (ty (D), Tx(p)))

V(t7p) = tr)) My (o) — Ly (0))dlz )ty ) drgpydey ). (4.5.2)
To illustrate the above notation, we give one example.
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Example 4.5.2. Given three functions of four independent of variables. Let us take
the following admissible diagram D € D(4,4,4) in Figure 4.1 as an example. The upper
vertices are colored in red and the lower vertices are colored in blue. The upper and lower

variables are gives as follows:

Ly(py = {(17 1)7 (17 2)7 (173>7 (174)7 (27 1)? (274)} )

Ly (D) = {(27 2)7 (27 3), (3, 1)7 (37 2)7 (37 3)7 (37 4)} )

The corresponding set of edges of this diagram is

&(D) ={{(1,1), (3, D], [(1,2), (2,3)],[(1,3), ((3,4)],
[(1,4),(2,2)],1(2,1),(3,2)], [(2,4), 3,3)]}

In this case, ny = ny = ng = 4. It is easy to see that |&(D)| =6 = (n; + ny + n3)/2 and

FD(fla f2, f3) = / fl((t(1,1)7 93(1,1)), (t(1,2), 35(1,2)), (t(1,3), $(1,3)), (t(1,4), 55(1,4)))

fa((tenys ) (te2): e2); (tes), @), Fea), Tea))
f3((ta), ) (B2, T62), (E8), 33), (Ee4), T34)))
A(tany —ten) V(a2 — tes)Y(tas) — tea)

At —te)r(ten —te)Y(tee) — tes)

Ay —2En)) Moo — 2es)Mzas) — 2@)

“Axaa) — e2) M@ — 2E2) Mo — T3 )dtde

where dt = dt(y 1) - - - dt(3 4) and similar notation for dz. Notice that the Feynman diagrams
are used to track the terms and to provide guidance for the variables inside v and A.
Let us also notice that the operation Fp can also be defined for any f, € H®™,

k=1,---,m, which may contain measures or generalized functions.
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ti3,1) ® T(31)  l(32)@ T32)  t33 ¢T33)  t(34) @ L(34)

Figure 4.1: An example the admissible diagram

Theorem 4.5.3. For fi € H®™ ..., f,, € H®" we have

Elln,(f0) - Lo, (f)] = D Folfi, o+ fm) (4.5.3)

DeED(f1,,fm)

where Fp(fi,--+, fm) is given by (4.5.2).

Proof. This theorem is a consequence of [Hul7, Theorem 5.7] when we take the expecta-
tion of [Hul7, Equation 5.3.5] and notice that now the scalar product of H is defined by
(4.2.2). O

If we apply the above formula to the f,, defined by (4.2.9), we have

Theorem 4.5.4. Let f,(-,t,z) be defined by (4.2.9) and let I,,(f.(-,t,x)) be the associated

multiple Wiener-Ito integral. Then

E[[nl(fn1('at>$)) T [nm(fnm<'>ta x))}
= Y Pl fu)

DED(fnl )t 7fn7n)
m (4.5.4)

- Z /H H Gtiyin—ti (Tar+) = TG) Lo<tn <<t}
o

DGD(fnl""’fnm jzl r=1

Xy (tvm) - tZ(D)> A (Ww) - xzw)) dtpdrp,

where we use the notations t(jn;41) =t and T(jn,41) = forall1 < j <m and ~(:) and

A(+) are defined as (4.5.1).
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Proof. We only need to prove the second equality in (4.5.4). We may only consider the
time variable without loss of generality (i.e. d = 0). Namely, we reduce the symmetric
function f,(t1, 21, ,tn, xp;t, ) to the symmetric function f, (¢, - ,t,;t). Then what
we need to show is the following equality for any nq,...,n,, and for any corresponding
admissible diagrams D, (4.5.4) holds true. We shall prove (4.5.4) recursively on n. Denote

the function of (4.2.10) by fy(t1,--- ,tn;t) and its symmetrization by f,(t1,--- ,tn:t).

Then
Z Fp (.fm('vt)"" 7]Enm<'7t)>
DED(fn1,~~~ 7fnm)
= ) /Hfm G s L) )><7< 7(D )_tZ(D)>dtD
DED(fn17 o 7fnm
- Z l Z /fnl (Lo(1)s " s t1o(m)} t)
DED(fnl,"- 7f77m) OeS”l
an] (G0 s tGmit) X 7<t7(p) - tzw))dtz?
= > Z Lo(1). () D (4.5.5)
DED(fn1,~~,fnm) | Y oes,
where S,,, denotes the set of all permutations of {1,2,--- ,n;} and I5(1),... o(ny),p denotes
the above integral. Suppose that D € D(f,,,, -, fn,.) is a Feynman diagram. Then there
there are (j1,71),* , (Jn,, Tn,) such that the following edges

[(1’ 1)7 (jla 7“1)], T [(17 nl)’ (jmv Tnl)]

are in &. In this diagram D, we replace the above edges by the following ones

[(17 0(1))7 (jla 7“1)], T [(17 0(711)), (jnnrm)]

and retain all other edges unchanged. Then we obtain another diagram D,. See Figure
4.2 for an illustrating example.

This transformation D — D, has the following properties:

(i) If D is an admissible diagram, so is D,.
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Figure 4.2: The left is 0 = {1,2, 3,4} and the right is 0 = {2,1,4, 3}

(ii) For any fixed permutation o, the mapping D — D, is a bijection from D(f,,,, -, fn..)

to itself.

(iii) 7(757(%) — tZ(DU)) remains unchanged:
gl (fwa,) - tzwa)) =7 (twm - tﬂD)) :

These properties imply

Z I51), - o(n)D = Z L.

DeD(f7L17"'7f7Lm) DeD(f7L17“'7fTLm)

Substituting it to (4.5.6) we have

S B (fult fanl)

DG]D)(fnl [ 7.fnm

- ) /fm @Dt t) (4.5.6)

DED(fnl "t 7fnm

Hf (G,1)s """ jn]);t) XV(t 7 (D )_t7/ )dtD
j=2
This can be used to prove the theorem by induction. 0

Example 4.5.5. The above formula (4.5.4) can be used to compute all moments of a
chaos expansion. This will be done in the next section when we prove the lower moment
bounds. As an example, it is interesting to consider the second moment. By orthogonality

of multiple Wiener-It6 chaos expansion, we have

E[|u(t, z)|? _1+ZE 1L.(fa)?] -

n=1
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Then by (4.5.4) in Theorem 4.5.4, one finds

E||L(£:)/?]
Z /HHGt(” —t) ( 2 ()> Locti <t <ty (4.5.7)
j=1r=1

DeD(n,n)

An example of admissible diagram D € D(4,4) can be illustrated in the Figure 4.3.
In this diagram, we have Typ) == (t7py, T7(p)) = {Tj(2) : 1 < j < 4} colored in red,

Ty(py = (ty), Ty (D)) = {le : 1 < j <4} colored in blue. Moreover,

2
( t — t3>7<t§2) - t%)v(t?) - ti>7<ti) - t%) :

7(757(1)) —tyo )) =7
A( - a:%)A(ng) - x})A(xi(f) — $}1>A<xf) - x%) )

A<x7(p) — Ty (p )

and A(xy(p) — JJZ(D)> is also expressed in the same way. Obviously, there are 4! such

diagram. If 7(:) = 4(+), then (4.5.7) reduced to

T1(2) T2(2) T3(2) ° T4(2)

[|]W(fn) } /HGtTH b (Trp1 — 20) A<SU7~ - y7'> (4.5.8)

X GtH.l—tr (yr+1 - yr) : 1{0<t1<---<tn<t}dtbd$dy-

This is because the only admissible admissible diagram is the ‘trivial’ one shown in Figure
4.4 in this case. Otherwise, in some non-trivial admissible diagrams (e.g. the one in Figure

4.3) the indicate function 1o pi..cy1 <4y is not compatible with Liocr® ey gy
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o Tl(z) . T2(2) . T?Ez) o T4(2)

h T T3 T

Figure 4.4: The ‘trivial” admissible diagram D € D(4,4)
4.6 Lower moment bounds

In this section we use the formula (4.5.4) to obtain the lower moment bounds for the mild
solution of (4.1.1). In the remaining part of the chapter we shall use the index (¢}, z%)
to represent the independent variable (¢ ;), 2z )) associated with the vertice (I,7): the
superscript indicates the row that variable corresponds to and the subscript indicates the

column that variable corresponds to. Again, in the following, we shall only prove the case

(H2). The cases (H3) and (H4) can be done similarly.

Proof of Theorem J.5.6. Let u(t,z) be the mild solution given by (4.2.8)-(4.2.9). Let p

be an even positive integer. Applying Theorem 4.5.4, we have

B[ [T utt2)] <E[T] 3 5 (5 (- 1.2)

j=1 J=1n;=0
S E[Im(fm(.,t,xj)) : ..[np(fnp(.,t,xj))]
n1=0 np=0

:Z Z FD(fma"' 7fnp)' (461)

m=0 n1+--+np=2m
DeD(fny s fnp)

Notice that the last equality follows from the fact that the number of all vertices of an
admissible diagram D must be even.

Our next strategy is to find the suitable lower bounds for the term

2. D

ni+---+np=2m DeD

in (4.6.1) when p and m are sufficiently large. We shall divide our proof into three steps.

Step 1: By the assumption (G1), namely, all the kernels f,,, are nonnegative, to obtain
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™ ) T 1 LT

.T 4 :
T2

Tl(l) T2(1) T?fl) 1

Figure 4.5: A particular scheme when p =4

the lower bounds, we can discard any terms we wish. As in [DMO09] we shall keep only
those terms such that ny = --- = n, (see the Figure 4.5 for a graphical illustration).
To be more precise, among all the admissible diagrams D € D(nq,--- ,n,) such that
ny + -+ +n, = 2m, we take into account only those diagrams satisfying the following

conditions:

(D.1) We consider only the diagram so that the number of vertices in each row are the
same. This is, we set

np=--=n,=—=:m,. (4.6.2)

(D.2) We set the first § rows to be the upper vertices Ty p) := (t57(p), T7(p)) (Which are
colored in red in the Figure 4.5), and the remaining rows to be the lower vertices

Ty(py = (ty (D), Ty(p)) (Which are colored in blue in the Figure 4.5).

Remark 4.6.1. Fiz the set of upper vertices. Any permutation of the lower vertices
corresponds to an admissible diagram in one to one manner. Then there are m! such

admissible diagrams satisfying the conditions (D.1) and (D.2).

Step 2: Since f,(-,t,z) is defined by (4.2.9) we can use (4.5.4) in Theorem 4.5.4 to
bound Fp in (4.6.1).
We only consider particular scenario specified in Step 1. We denote the set of

all admissible diagrams satisfying satisfying the conditions (D.1) and (D.2) by D :=
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D(fos -+, fon). When D € D, we have

p mp

Fp(fos- - ,fnp) = / H H Gté.ﬂ—tg. (Ié'—&—hxé') 1{0<tll<-~~<tlmp<t} (4.6.3)

=1 j=1

with the convention that xlmpH =z and tfan =tforall 1l <[<p.

It seems very difficult to compute the multiple integral in (4.6.3). We need to find a
suitable lower bounds of the integral that are the main parts and that are relatively easier
to handle. Since A(x) — oo when x — 0, we shall first bound the above integral with
respect to the spatial variables dxp from below by the integration over small balls B.(x)

centered at x = x1 = --- = x, with radius €. This is, we concentrate on the domain
!
Q=N ﬂ;n:pl {2 € B(z)}.

By the assumption (H2) or (H3), it is easy to see A(xy(D) — IZ('D)> > e7™ since
#{7 (D)} = #{¥ (D)} = m and since we always have |z; — x;| < 2¢ for any i € ¥ (D)
and j € (D).

For the time variables. Let t € Ry. Denote L = ti = 5Lt and I; = [a;, bj]

2(mp+1)

forj=1,...,m,, wherea; =t;—L/4 and b; = t;+L/4. We assure té- isin/jfor1 <[ <p

t
2(mpt1)’

and 1 < j < m,. Moreover, we require (4.6.2) in (D.1) satisfying m, = 27""” > %, which

is equivalent to the following conditon:

-t
m > 1;_813. (4.6.4)

Then we have

t t
~ <l —th < (4.6.5)

dm, ~ 4A(m,+1) — !

These restrictions are used to guarantee the small ball nondegeneracy property B(a,b)
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can be estblished. Overall, we shall consider the points {té} on the following domain:
Q= N {th e I},

with m (or m,,) satisfies condition (4.6.4). Similarly, it is obvious to control 7(157@) —
tz(p)) > 7™ because |t; — t;| <t for any i € ¥ (D) and j € ¥ (D).

On each space-time line, we shall consider (¢}, z}) on the set Q. x Q.. Then the small
ball nondegeneracy property B(a,b) implies

Be(z) J+1

if xé belong to B.(z) for all I and j. Thus, on the domain €. we have from the simple
fact A(xy(p) - ZL'Z(D)) > e

p mp
2L !
ST G () (w710, — 2000 o
=1 j5=1
p Mp
Z/ HHG —t §+1,x§~)A(m7()—x7/ )dxp
fl 1j=1

mp

p

E_m’\/( HHG ¢ ZH,xé) dxp
€ = 1j=1
s o G (et )

p,myp

X H G]H*é al . @h) dep\ay

l=1,5=1
1,j#1

Vv

gfm)\

> e ity — 4]

pvmp
2 ! 1
/ H G _tz aly, 2h) dep\ay
Be(

2m—1
c(x)?m—L Sy
1,7#1

where we used (4.6.5) and dzp\z] means that dri is removed from drp. We integrate

the spatial variables iteratively to find
p Mp

J TG (2 a)A (w50 = 2200 o

=1 j=1
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p Mp

2 e T - (4.6.6)

=1 j=1

for all tp € Q.. From this inequality, Remark 4.6.1, and (4.6.5) we can bound (4.6.3)

from below by

FD(fn17 e 7fnp)
p Mp
G l l') 1
o -t %Ha% {o<th < <th, <t}

eX8e 1 j=1

X ”}/(ty( D) — tz(p)) A <‘7‘:7(D) — xz(p)> dtpd.fl}’p

v

p mp
—mAp—m ¢
> e / i1 = 5] Liocn<ocat, <yt
Qe 1=1 j=1
p Mp
2 6m*tmw( ) / IITT () s <c, ,<tydtp
=1 j=1
" 2ma
—MmAp—mm
g (N 4.6.7
(4mp) o ( |

where I, ,, , denotes the above multiple integral with respect to dtp. Now let us deal with

this integral I, , . It is easy to see

o [l () (2)

Let D(m,) denote D(fy,, -, fm,). Substituting this bound into (4.6.7) we have for
D € D(m,),

FD(fmpa"' 7fmp)
p Mmp
Zs_mt_m'( ) /HHlI (#) o<t <<t ,<ipdip

=1 j=1

2m(a+1)
2 6—m>\t—m7 X (t_p) )
m
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Since there are m! elements in D(m,,), we have

tp m(a+1)
S Folfmye - fuy) Zmle ™ (—) . (468)

m
DeD(myp)

Step 3: In this step, we obtain the asymptotic behaviors of the term appearing in

(4.6.8) when m is sufficient large. According to Stirling’s formula m! ~ v27m - (%)™, we

arrive at
Z FD fmzn' o 7fmp)
DeD(m,)
o (t .p)2m(a+1) N _/\ $2(e D)=y . 2(atD) m
2’6 ! - W B < X m2a+1 . (469)

Let us recall that to obtain the above inequality we assumed that ¢, x are sufficiently large
and b is sufficiently small. Consequently, m is also large enough since it satisfies (4.6.4).

Now in (4.6.9), we can take the value
mo(e) = [Cg—)\t2(a+1)—'yp2(a+1)} SaFT —C. g—ﬁtuﬁpuﬁ '

With this choice of m = my(e), the condition (4.6.4) i.e. m > £ZL

2eb

together with (4.3.1)
(i.e. b(2a+ 1) — A > 0) imply that

b(2a+1)— > 1y 1
£ 2a+1 Nt 20+lp 2a+1

_ 1—v _ 1
= g 2t FEFNAY WA =1 gy .
Thus, putting € = ¢, and m = mg(g;,) into (4.6.9) we obtain

A 1
Z FD(fmp7 o 7fmp) Z exp <C . gt’;a+1t1+2aﬁ1pl+2ul+l)

DeD(myp)

= exp (C tb(2u+1 =X 2a+1pb(2u+l =X’ 2u+1 X t1+2u+lp 2a+1) ,
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where

1— 1— A (1 -
1+ T4 v : —1 b-(d-9)

2a+1 b2a+1)—X 2a+1 b(2a+1) — A
and

LI ! A g b

20+1  b(2a+1)—A 2a+1 b(2a+1) — A~

This is
Z Fp(fmys -+ s fmy) 2 exp (C’ _ tlJrb(bgcgrzyl)\p1+b(2a:1)f>\) . (4.6.10)
DeD(myp)

As a result, from (4.6.1), (4.6.8) and (4.6.10) we obtain that

]E[f[u(t,xj)] = i Z Z Ep(fomys s fmp)

m=0mi+-+mp=2m DED(fm,, ,fmp)

Z Z Z FDfmpa"'afmp)

pmp=2mo DED(myp)

b-(1—7) b
1+ — 1+ —
Z exp (C -1 bEaFD=A Lyt T b(2a+D) A) .

We have completed the proof of Theorem 4.3.6. 0

4.7 Some important SPDEs

In this section, we shall explain the positivity property (G1), the small ball nondegen-
eracy property (B(a,b)) (G2) and the HLS total weighted mass property (G3) for some
important stochastic PDEs: SHE, a-SHE, SWE and SFD.

4.7.1 Stochastic heat equation (SHE)

Firstly, we consider the well known stochastic heat equation that has been extensively

studied in literature, see [Hul9] and the references therein. The equation has the following
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form.

2 = LAu(t,z) + u(t,2)W(t,x), t>0, zeR?
- T (4.7.1)

u(0, ) = up(x).
In this case the partial differential operator in the setting of equation (4.1.1) is

ZLu(t,z) = augft, z) _ %Au(t, T).

There is only one initial condition u(0, z) = ug(x). The Green’s function and its Fourier

transform in spatial variable are respectively:

Gh(z) (27;)0[/2 exp G%) and  FIGM()](€) = exp (-@) 412

It is clear that GP(x) > 0 is a positive kernel. So, the assumption (G1) is obviously
satisfied. We shall show the small ball nondegeneracy property (B(a,)) (G2) and the
HLS mass property M(w,v) (G3) in the following proposition 4.7.1 and proposition 4.7.2

respectively.

Proposition 4.7.1 (Small Ball Nondegeneracy Property and Lower Moments
for SHE). For the heat kernel G2 (z), the small ball nondegeneracy B(0,2) holds. In fact

we have the following statements:

(i) For all d € N, there exist some strict positive constants Cy and Cy independent of

t, x and € such that

inf Gy — 2)dz > Cy exp (—CQ£> . (4.7.3)

y€B:(z) J B, (x)

(ii) Consequently, B(0,2) holds for GE, i.e. there exist a strict positive constant C

independent of t, x and € so that

inf Gy — 2)dz > C, (4.7.4)

y€B:(2) J B, (x)
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for 0 <t <e2.

As a result, assuming y(-) (with v = 2 — 2H ) and A(-) satisfy the same conditions
of Theorem 4.5.6, there are some positive constants ¢; and ¢y independent of t, p and x

such that

E[|u(t, z)[P] > ¢, exp (02 : t42H—_AAp%) .

Proof. We only need to prove (4.7.3), which is related to what is known as small ball
property of Brownian motion. The readers can find the related result in immense liter-
atures, for example (5.6.20) in [Hul7] for one dimension. We divide the proof into two
steps.

Step 1: Clearly, we may assume z = (0, --- ,0). It may be possible to work on the integral
directly. However, we feel easier to use the spherical coordinate for the computation of

the integral. We employ the following d-dimensional spherical coordinate (21, ,zq4) =

Q)(T‘, 97 ¢17 e 7¢d—2):

21 =1 -cos(¢y)

29 =1 - 8in(¢y) cos(¢ps)

(4.7.5)
Za-2 =1 -sin(¢1) - - - sin(Pg—3) cos(dq—2)
2g—1 =1 -sin(¢q) - - - sin(¢g_2) cos()
| za-1 =1 sin(dr) -+ sin(@g—2) sin(0)
where 0 < ¢, < m,n=1,---,d—2,0 < 0 < 27. The Jacobian determinant of this
transformation is e
Jg=rit H sin? 1R () .
k—1

Since GI(-) is rotation invariant as a function in R? we only need to consider y =

(10,0, ---,0) for some fixed ro € (0,¢). Set B.(rg) := B.(y), therefore

1 2*
Gy — 2)dz > / ————=exp (——) dz
! B.(ro)nB.(0) (2mt)4/2 2t
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[ o @omen (5
~ ——— - €X —_
0 [077r)d—2 0 (27Tt)d/2 P 2t

X 1B.(r) (U (7,0, 9)) - | JaldOddr .
Notice that the identity

1Bs(T0)(\IJ(r7 97 ¢)) = 135(0)((TD> 0,..., 0) - \Ij(n 97 ¢))

can be expressed as

{(r,0,¢)

[0,¢] x [0,27) x [0,7)4% : r?sin®(¢1) + [rcos(¢y) — o] < €2}
= {(r7 0, ¢) <

[0,¢] x [0,27) x [0,7)%2 : 72 + 78 — 21 - rgcos(¢y) < €7}

(4.7.7)
In order to estimate the lower bound of (4.7.6), we need the following particular subset
of {(r,0,¢) € [0,¢] x [0,2m) x [0,m)"2 : ¥(r,0,¢) € Be(ro) }:

Se(r,0,¢) :=={(r,0,9)

[0,¢] x [0,27) x [0,7/3) x [0,7/2)"2:

(4.7.8)
r? 4+ 12 —2r-rocos(¢y) < &%},
Because for ¢; € [0,7/3), we always have

r? 1y — 2rrgcos(ér) < r* 4 1g —rrg < €2,

if 0 < r,79 < e. Onthe domain S.(r,0, ¢), the indicate function 1g_(r, 0, ¢) := 15 (r0.4)(7, 0, 0) =
1. Then we have from (4.7.6)

G?(y — 2)dz
B:(0)
> 2 2 1 T‘2
(912 ~ 57 1 0,) - |Jg|d0dod
N/o /[O,w)dz/o (27t )d/2 exp< 2t> X 1s,.(r,0,9) - |Jq|dOdedr
> 1

: (#) i
— T x rldr ~ t ex - dr
~ Jy @rtyaz TP\ Ty =/ P75 )
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where we have used the change of varible r — 7 = r/+/t in the last line.
Step 2: We shall prove (4.7.9) is greater than C exp ( G, t) by showing the following
claim. For fixed v > 0, one can find a constant ¢, such that ¢, - fo exp (—57"”) dr = 1.

d
We claim that there exists a constant ¢ > (”H) such that V § := (%) > 0,

5, .
/ e~ Tdr>ct e, (4.7.10)
0

This is equivalent to prove

Let

It is easy to see that g(d) is continuous and ¢(0) = g(co) = 1. So in order to prove

g(0) <1 for all 6 > 0, it suffices to show that if ¢ > ”H , then

gl(é) = gy:&—feié% —Cc, e 2 = 0

has exactly one root. It is clear that this is equivalent to

V-cC §Y
2

e 6u+1

eéc"<:>exp<5C (V+1)ln(5)—%—ln(

Cy

has exactly one root. One can notice that h(0+) = +o00 and h(4+00) = —oo. Then h(e)

has at least one root. Next, we shall show it has at most one root, which suffices to argue

O — [(5v_”“>2+y.c_ w1y

grHl 2

that
=0

has no root for 6 > 0. But this is verified when ¢ > (”H) . Lastly, the fact ¢’(6) = 0 has

only one root and the intermediate value theorem imply that the claim (4.7.10) holds.

Letting v = 2/d and § = (=5

W)d in (4.7.10), we get (4.7.9) is greater than Cy exp (—<&t)
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for some constant C; and Cy. Thus, we have completed the proof of (4.7.3). O

Proposition 4.7.2 (HLS Mass Property and Upper Moments for SHE). Assume
v() (with v = 2 —2H ) and A(-) with X\ < 2 satisfy the same conditions as in Theorem
4.3.4 or Theorem 4.4.1. Then for the heat kernel G (x —vy), we have (G3) or (G3') with
M(—%) hold. In other words, for all d € N, there exist some strict positive constants C1,

Cs and C3 do not depend on t and x such that

sup | Gia—y)Ay — )G —y)dydy < C 7%, (4.7.11)

z,x' €ER4 J R2d

or denoting p(d€) = V(€)dé

sup / 1GHE ~ mPptde) < 573 (4.7.12)

neR?

As a result, we have the upper p-th (p > 2) moments for u®(t,x) for any d > 1. More

precisely, for some constants C and Cy that are independent of t, p and x we can get

4H-X\ 4

Eflu(t, 2)l"] < €y -exp (Co -t 95 p33 )

Proof. We only need to prove (4.3.6) with M (0, —%) This is,

sup / Gz —y)dy =/ Giy)dy =1,
zeR4 J R4 R4

sup / Gi(x — y)A(y)dy < sup EWVEX —a| > < C -3,
Rd

z€R4 zcR4

where X is a standard normal random variable and the above last inequality follows from
[HNS11, Lemma A.1].
For the (4.7.12), it is easy to

sup [ (G = mPutde) = sup [ et e

nerd JRrd neRrd
.Sup/ £d§<0-th
nerd Jra 1+ |E—n2 7~

So, we obtain the upper moment bound. O

o[>~

<t
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4.7.2 Fractional spatial equations: Space nonhomogeneous case

The next model is the generalized d (> 1)-spatial dimensional fractional stochastic a-heat

equation (a-SHE) that has been considered in [BC14, BC16, CHW18]:

dulta) _ _(_V(a(x)V))*2u(t, ) + ult,2)W (t, ), t>0, xR,
(a-SHE)
u(0,x) = ug(x),

(4.7.13)
where 0 < o < 2, a(-) : R* = R? is a matrix valued function whose entries are Holder
continuous, and there exists a constant ¢ > 1 such that ¢! - Id < a(x) < c¢-Id. The
operator .Z is

Ou(t, x)

Lu(t,x) = 5

+ (= V(a(@)V))*u(t, z)

and the corresponding Green’s function G? “(z) satisfies the following Nash’s Holder

estimates (see e.g. [CHW18] for more details):

% (ti A ¥> <GM(zy)<C (ti A %) , (4.7.14)

€T — y|d+a

and Io(t,z) = G % ug(x). Clearly, (4.7.14) ensures the positivity of G1"*(x) when
a € (0,2). We still need to take care of the small ball nondegeneracy property (G2) with
B(a, ) and the HLS mass property (G3) with M(0, —2).

Proposition 4.7.3 (Small Ball Nondegeneracy Property and Lower Moments
for a-SHE). For the heat kernel G}"*(z), we have B(0,a0) holds:

(i) For o € (0,2) and d € N, there exist some strict positive constants Cy and Cy do

not depend on t and € such that

inf / G (y, z)dz > Cyexp (—026%) : (4.7.15)
<(z)

yE€B:(z) Jp

(i1) Consequently, B(0,«) holds for G i.e. there exist a strict positive constant C
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independent of t and € so that

inf G (y, 2)dz > C, (4.7.16)

y€B:(2) J B (x)
for 0 <t <e“.

As a result, assuming y(-) (with v = 2 — 2H ) and A(-) satisfy the same conditions
of Theorem /.3.0, we have the lower p-th (p > 2) moment bound: there are constants ¢

and co independent of t, p and x such that

EHuh’a(ta x)[P] > ¢ exp (CQ . tzi[i;ApQS—_AA) .

Proof. The proof is similar to the SHE case except now we have the Nash’s Holder
estimates (4.7.14) instead of the the precise form of GI**(z).

By lower bound in the Nash’s inequality (4.7.14), we have

G (z,y) 2 1% exp (—C’a,d e _ty| > 7 (4.7.17)

since 1A |z|™t > C - exp (—Cqyq - |2|*) for a > 0. Thus (4.7.16) can be proved the same

way as that of (4.7.15). O

Proposition 4.7.4 (HLS Mass Property and Upper Moments for a-SHE). As-
sume Y(+) (with v =2—2H ) and A(-) with A < « satisfy the same conditions of Theorem
4.3.4 or Theorem 4.4.1. Then for the heat kernel G}"*(z,y), we have (G3) or (G&)
with M(—g) hold. In other words, for all d € N, there exist some strict positive constants

C1 and Cs independent of t and x such that

sup / Gz, y) Ay — i) GP (2! o )dydy < C - e (4.7.18)
R2d

x,x’ ER4

Furthermore, there is a positive kernel Qy(x — ) such that G (z,y) < Qu(z —y) and

sup [ Qi(€ — n)|?ul(d€) < Cy -t (4.7.19)

ﬁERd R4
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with |u|(d€) = |V (§)]de.
Consequently, we have the upper p-th (p > 2) moment bounds. This is, for some

constants C7 and Cy that are independent of t, p and x we have

E[|u"(t,)[P] < Ci - exp <Cg : tzi’iikp25:§> .

Proof. Presumably, we may use (4.7.14) to obtain the desired bounds. However, we will

use Pollard’s formula in [CHW18] to prove this proposition.
S / e g(a/2,s)ds, u>0, (4.7.20)
0

where g(a, s) is a probability density function of s > 0 and defined in (1.2) in [CHW18].

By Proposition 2.2 there, we have

G(z,y) = / p(t2s, 7, y)g(a)2, 5)ds
0

X4 jz —yl*
< C/o t7as 2 exp (— Citlos ) g(a/2,s)ds =: Qi(x —y) . (4.7.21)

Therefore, it is sufficient to show the assumption (G3) can be archived with M (0, —3)

(i.e. the estimates (4.3.6)) for Q:(z — y). It is not hard to derive that

sup [ Qe =iy S [ ola/2.5)ds < oo,
0

xcRd JRA

and

sup [ Qi(xr —y)A(y)dy

zcRd JRd

>4 4 |z —yl?
N /O tTas 2 [:élﬂgi/wexp (— OtQ/%)A(y)dy} 9(a/2,s)ds

o¢]
stie [ s iglapnais < Coth,
0

where we have applied rearrangement inequality and [CHW 18, Proposition 2.1].
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Moreover, for the Fourier transform of @Q;(z) with respect to x, we have

Fl1Q:()](§) ~ /000 exp (—C’s . t2/°‘|§]2) g(a/2,s)ds
= oxp (- [oreer] ) = e

Finally, it is relatively easy to see that the assumption (4.7.19) can be archived. Then

the upper moment bound follows. O

4.7.3 Stochastic wave equations

The lower moment bounds for d-dimensional stochastic wave equation (SWE) is one of
the SPDEs that motivated this study. This type of equations has been well-studied in
literature. There are several works on the upper bounds for any moments. But the
lower bounds are only known for the second moments except in a few cases. (see e.g.
[BC16,DMO09]). We give a more complete results for all moments. This equation has the

following form (we consider only d = 1,2, 3):

Ofulte) — Pulbe) Loyt 2)W(t,x), >0, x€R?,

(SWE) (4.7.22)

u(0,x) = ug(x), %U(O, x) = vp(x).
The operator .Z has the form

Pu(t,x) O*u(t,x
Lu(t,x) = 8(252 ) _ 6;2 ) .

The associated Green’s function has different forms for different dimensions. More pre-

cisely, it is given by
.

Gy () = 51 i<t} » d=1,

v =L 1 = 4.7.23
Gt (x) o \/mlﬂxkt} ) d 27 ( )
Gy (dr) = £ d=3,

\

where 0,(dz) is a surface measure on the sphere 9B;(0) C R? with center at 0 and radius

t, with total mass 47t and G¥(R3) = ¢. It is well known that G}'(-) may not be positive
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when d > 4. On the other hand for any dimension d, the Fourier transform of G} () has

the same form given by

FIGYO)(E) = Smgf‘) ,

£ R,

In this case we also have I (t,x) := %G,}” s ug(x) + Gy *vo(x). When d = 1,2, G}(x) are
positive functions and when d = 3 it is a positive measure. Thus, the assumption (G1)

is satisfied for wave kernel G}V (dx). The next two propositions are devoted to (G2) and

(G3).

Proposition 4.7.5 (Small Ball Nondegeneracy Property and Lower Moments
for SWE). For the wave kernel G} (x) defined by (4.7.23), we have B(1,1) holds:

(i) When d =1 and d = 2, there exist strict positive constants Cy and Cy, independent
of t, € and y such that

inf / G} (y — z)dz > Cy - texp (—C’%) : (4.7.24)
B:(z)

yEBe ()

Consequently, there exist a strict positive constant C' independent of t, € and y so
that
inf / GY(y—=z)dz>C-t, (4.7.25)
()

yEB:(x) J B

for0 <t <e.

(i1) When d = 3, there ezists a strict positive constant C independent of t, € and y such
that
inf Gl(ly—dz)>C-t, (4.7.26)

y€B:(2) J B (x)

for0<t<e.

As a consequence, assuming () (with v =2 —2H ) and A(-) satisfy the same conditions

of Theorem /.3.6, we have the following lower moment bounds for the solution:

2H42-) 4—A)

E[‘uw(t>$)|p] > cexp <02 A S
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for some constants c¢; and ¢y independent of t, p and x.

Remark 4.7.6. The small ball nondegeneracy property of wave kernel G} is motivated
by the following fact when d = 1. Let us illustrate it with x =y = 0. Then the left hand

of (4.7.24) can be evaluated exactly as

€ e 1
/ sz(z)dz = / 51{|Z‘<t}d2’ =1tANe.

And then it is not hard to see

tAhe=c¢- <£/\1) >e- (C’l-éexp (—C’;)) =(C-texp (—C’J) ,
€ € € €

which is the right hand of (4.7.24).

Proof. We shall give the proof of Proposition 4.7.5 for d = 1, 2, 3 in three steps seperately.
Step 1 (d = 1): It is clear that we only need to show (4.7.24). Without loss of
generality, we may assume z = 0. Let us consider d = 1 first. Because G}'(y — z) =

s1qjy—z|<ty, then (4.7.25) becomes

/R GY (y—2)GY (2)dz
~ / FIGY (g — NOFIG())(€)de

o _esin(tlE]) Sin(€|§|)d
= /R a1 ©
~ /e—wqg\-? [sinQ <lyt+5|yg\) _ sin? (1115—5]]5\)1 de
R 2 2
~ (|t +e| = y)Ly<ierely — (1t — €l = ) Lgyi<pp—en » (4.7.27)

where in the last line we have applied the Fourier transform (e.g. 17.34(21) in [GR15])
: g . m
Fla™sin*(az))(€) = Fela™ sin*(az)}(€) = 5(a = £/2) 1 g<aay -

The rest is routine. We split (4.7.27) into two cases: t > ¢ and t < e. Noticing |y| < ¢,
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when ¢ > ¢ we can bound (4.7.27) below by
((t+e) =y) = (= &) =Y gyl<t—<y 2 281 gyl<t—ey T tlgyzee) 2 €
The case t < e can be done similarly, so we omit the details. Therefore, we obtain

t
G (y—z)dz>tNe>Cy-texp (—C’Qg) :

B:(z)

We have completed the proof of (4.7.25) when d = 1.

Step 2 (d = 2): Recall that G} (y — 2) = i\/ﬁl{\y—d@}' Then
——
JRCTERIETE
RQ
/ ~ Hly—z1<t) Lz1<ey d2
/ Ly —z11<6) Higa—zal <ty Ll | <e} L ool <} 02 (4.7.28)

1
1
1
Tt

2
(/ 1{|y—z<t}1{z|<a}d2>
1 £\ 2 t
Z— (01 . teXp (—Og—)) = Cl : teXp (—Cg—) 5
t € €

where we have applied the result in d = 1 to derive the inequality last line in (4.7.28).
Thus, the proof of (4.7.25) when d = 2 has been completed.
Step 3 (d = 3): Let us recall that now Gy (dz) = ;- Jt(dz) where 0,(dz) is the surface

measure on 0B;(0). We may assume x = 0 and simplify B.(0) as B.. Then (4.7.26)

becomes

JRICCEYS

1
= 4—7Tt o5, 1. (y — 2)o4(dz)
2 Ov aqf
- — / 1. (y — (0 H Hd¢d9
27r
0 /0 1. (y — W (8, 0))| sin()|dpde (4.7.20)

where the parametrization is the three dimensional spherical coordinate (i.e. d = 3 in
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(4.7.5)):

U (0, p) = (21(0,0), 22(0, 9), 23(0, ¢)) = (tsin(¢) cos(0), t sin(¢) sin(h), t cos(¢)) .

Similarly, we can select the particular subset as in (4.7.8) so that we can bound

(4.7.29) below as

27 s o /3
ﬁ/o /0 lBg(y—W(9,¢))|sin(¢)|d¢d92%/O /O [sin(@)|dod — t/4.

As a result, we have completed the proof of (4.7.26). O

Proposition 4.7.7 (HLS Mass Property and Upper Moments for SWE). Assume
d=1,2,3, v(:) (withy =2—2H) and A(-) satisfy the same conditions of Theorem /.3.}
(under the condition A < d) or Theorem 4.4.1 (under the condition A < 2/\d). Then for
the wave kernel Gy (x), we have (G3) with M(2 — X) or (G3') with M(2 — X) hold. In
other words, for d = 1,2,3, there exists some strict positive constants C' independent of

t and x such that

sup / GY(x —y)Ay — 9G¥ (2 — o )dydy < C -2, (4.7.30)
R2d

x,x' R4

Denoting pu(d€) = V(€)de

sup [ |GY(E—m)Plpl(d) < C -7 (4.7.31)

neRd JRd

Consequently, we have the desired upper p-th (p > 2) moment bounds for the solution
u%(t,z) when d =1,2,3. This is, we can find constants Cy and Cy that are independent
of t, p and x such that

2H+2—) 4—)\>

B[} (1, 2)"] < - oxp (G 55 i

Proof. 1t is clear we only need to show (G3) holds for G}'(x) with M(2 — \), i.e. the
estimates (4.7.30).

When d = 1,2, we can easily apply Hardy-Littelewood-Sobolev inequality ([L.L97,
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Theorem 4.3]) for A < d to bound

sup Gl (x —y) Ay — )Gy (2 — o )dydy'

z,2’€Rd JR2d

< sup / Gule — )y — /| Cula’ — o )dydy’
z,o’ €R4 J R2d
2d—\

<| [Iermi#sa]
Rd

For d = 1, we have

2d

d_A t ) 2—X\
[awEsa] =] [ paa] <o
—t

For d = 2, we have

[ erwisa

2d

44—
4-—X

= ) =
~ |:/ ‘tQ — x2]_ﬁ1|x<td$}
R2
— e s L ade|
= 2\ | |z <16
R

=C - tQ—)\

where the integral is finite if A\ < 2.
Now we shall apply the HLS inequality on sphere (see e.g. [LL97, Theorem 4.5]) to
show (4.7.30) for d = 3 and X < 3. Denote by S&* the unit sphere in R?. We have

sup / GY(x —y) My — )Gy (2" — y)dydy'
R3 xR3

z,x’' €R3

—d ' —dy
S sup / |y_y/|—)\0-t(aj4 y) Ut( y)
z,x'€R3 JR3 xR3 7t 47t

~ >~ sup / Livss (W)l — o' [ Larvss (y)on(dy) o (dy')
z,o’ ER3 JR3 xR3
6=

3

S sup { Lorss(W)|T50u(dy)| = C 272,
z€R3 R3

where we have made use of the scaling property of the surface measure o;(dy) = t?0,(dy)
with y = ¢7 in the third line and the HLS inequality [LL97, Theorem 4.5] on sphere in
the last line. This proves (4.7.30).
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In regard to the bound (4.7.31), it is easy to see that if A < 2 A d

. sin(t[€])|?
sup [ 1Gr@Pute - =suwp [ [UD ag -
neRd JR4 neERd J R4 5
<A sup/ Ldf <Ot
N nerd Jra 1+ |E+ 0>~ ~
Thus, we complete the proof of Proposition 4.7.7. O

Remark 4.7.8. The properties we obtained in Proposition 4.7.1 (i) and Proposition 4.7.5
(i) can be also rewritten as the following small ball property (B(a,b.c)): if y € B.(z),
then

tb
/ Gi(y — z)dz > Cy - t" exp (—Cz—) , (4.7.32)
Bs(ﬂf) gc

where a, b and ¢ are parameters depending on the kernel. Obviously, B(a,b,c) is stronger
than B(a,b) because (4.7.32) holds for all t > 0 other than 0 < t < &°.

For example, we have proved that (a,b,c)=(0,1,2) for the heat kernel, (a,b,c) =
(0,1, ) for the a-heat kernel and (a,b,c)=(1,1,1) for the wave kernel.

Our effort to take into account B(a,b) rather than B(a,b,c) is mainly stimulated by
Proposition J.7.5 (ii). One should note that when d = 3, the wave kernel can not satisfy
the B(a,b,c). Because the three dimensional wave kernel is a surface measure on the
sphere 0B;(0), there might be no intersection between the surface measure Gy (y — dz)

and the ball B.(x) if t > . Then the lower bound in (4.7.26) might be 0.

4.7.4 Fractional temporal and fractional spatial equations: space

homogeneous case

In this section we consider the following d-spatial dimensional stochastic partial differen-
tial equation of fractional orders both in time and space variables, which will be called the
stochastic fractional diffusion (SFD). The existence, uniqueness, upper moment bounds
have been obtained earlier (e.g. [CHHHI17] ; [MN15] and references therein). But the
sharp lower bounds for any moment has not been known. We shall apply Theorem 4.3.6

to obtain a sharp lower moment bounds for this equation.
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This type of equations takes the following form:

O u(t,x) = —L(=A)u(t, ) +u(t,x)W(t,z), t>0, xR,

8fu(tv m)‘15:0 = Uk(l’) ’

(SFD) (4.7.33)
0<k<[B]—-1.

As in [CHHH17,MN15], we shall assume that 5 € (1/2,2) and a € (0,2]. We refer to
[KST06] for the precise meaning of the fractional derivative in time and the fractional

Laplacian. Notice that the SWE coincide with the case (o, §) = (2, 2) in (4.7.33) formally.
In this case, the operator .Z is given by

Lu(t,x) = Pult,z) + %(—A)a/zu(t, ).

The associated Green’s function can be represented by the Fox H-function.

(1,1),(8,8
(

2
~ wd2[g[d 23 \ 9a—145 [(§,5),(L1),

. i1 ®
G (2) i= G ™ (a) = (5

7§)> : (4.7.34)

where H is a Fox H-function (e.g. [KS04]). When 5 > 1 we also need another Green
function

_ ¢181-1 ||
Z 1 ZaBd N 2,1 (L,1),(181.8)
to represent Iy(t, z), namely,
[81-1
(t0)= 3 [ ot GE e~ iy, (4.7.36)
k=0 YR

The Fourier transforms of G} (z) and G7(z) are given by the following :

B¢l
FIGHONE =t Eaga (-1

Ble|a
FIGH OO = Ens (-5 )

(4.7.37)

where Ej3 g is the Mittag-Leffler function (e.g. [KST06]).
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As before, we may assume uy = 1 and uy, = 0 for £ > 1 to simplify the form of moments
without loss of generality (also see Remark 3.6 in [CHHH17]). We have I§(t,z) = 1 by
our particular initial conditions. Whence, we can prove Theorem 4.3.4 with the notations
introduced before.

Positivity of GY (z) (as well as GZ(z)) have been obtained in the following three cases

in [CHHH17, Theorem 3.1]:

(

d=1,B¢€(1,2) and a € [3,2];

d=2,3 € (1,2) and a = 2;

\deN,ﬁE(O,l] and « € (0,2].

Notice that although [ is allowed to be smaller than %, the existence and uniqueness of
solutions to (4.7.33) can be proved only under the conditions 8 € (3,2) and a € (0,2].

Therefore, we will replace last condition by
1
deN,B e (5,1], anda € (0,2].

This means that we will assume that («, 5, d) satisfies one of the following three condi-

tions:
4

(a) B € (3,1 and @ € (0,2], d€N;

(b) Be(1,2) and a € (0,2], d=2,3; (4.7.38)

\(c) pe(1,2)and v € [3,2], d=1.

As we indicated above the assumption (G1) is met under the above parameter range of
(4.7.38). In the remaining part of this subsection, we shall prove (G2) and (G3) for the

Green’s function G} .

Proposition 4.7.9 (Small Ball Nondegeneracy Property and Lower Moments
for SFD). For the kernel GY (z) defined in (4.7.34), the small ball nondegeneracy prop-

erty B(5 — 1,%) holds for the parameter ranges given in (4.7.38). More precisely, there

192



exist a strictly positive constant C' independent of t, € and y such that

inf GY(y —2)dz > C -t (4.7.39)
y€B:(2) J B (x)
forany 0 <t < s
As a result, if v(-) (with v = 2 — 2H) and A(-) satisfy the same conditions as in

Theorem 4.3.0, the lower p-th (p > 2) moment bounds hold

a(26+2H—2)—BX B(2a—))
E[|uf(t, x)[P] > ¢ exp <02 -t i -p2a@27a75x>

for some constants c¢; and co independent of t, p and x.

Proof. We divide the proof into three steps to deal with three cases in (4.7.38) seperately.
Step 1: case (a). The special case § = 1 was treated in (4.7.16), so we can assume
B € (1/2,1). By the convolution property of [CHHH17], we get a subordination law for

the Green’s function:

th-1 ||
Y _ 2,1
Gt (I) o 7Td/2|l.|dH2»3 (Qa—ltﬁ

(1,1),(8,8)
(581115

%
ﬁtﬁ_l * 1,1 ‘x|a86 (1,1) 1,0 -3 (576) dS
— ﬂ_d/2’x|d 0 H172 2a_1 (g7% 7(]_7%) H171 (ts) (1,1) ? (4740)
When y, z € B.(z), t < £% and when ¢ is small enough we have
/ GY(y— 2)dz
B.(z)
L[ B (W=
“nwm =z Sy T 20T G909
ds
70 - 5
X H11,1 ((ts) f (gf))) ?dz
~ prit [ Jaet, ly—z|*s"|
T I ly—z2t e TP\ 2018 (£,9).(1,%)
ds
10 [ -8l
x Hyy <s g ((‘fff)’) —dz. (4.7.41)

Notice that the second H-function is nonnegative by Lemma 4.5 in[CHHH17]. More-

over, recall that the characteristic function and the density of a centered, d-dimensional
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spherically symmetric a-stable random variable are given, respectively, by

fad(€) = exp(—[¢]"),  £€R?, (4.7.42)

and
1

_ L ||
pose) = (et (1

This means that the first Fox H-function is related to the spherically symmetric a-stable

(1,1) d
(%,%),(1,%)) , r € R?. (4.7.43)

distribution (see also [CHHH17, Theorem 3.3] for more details). Therefore, one can apply
the Pollard’s formula in [CHW18] together with (4.7.42) and (4.7.43) to find

L (ly=2%"] ha
|y — Z‘dH1’2 ( 9a—1¢f (%,%),(1,%) - G(t/s)ﬁ (y - Z)

()" e

Bd
AN ly — 2|
> _ _ .
< (> eXp( KN TPE )

where G}"*(x) is the a-heat kernel associated to (4.7.13). Whence, by Proposition 4.7.1

(i), and (4.7.41) we get

/ GY (y — 2)dz
B:(z)

o} t B
2 tﬁl/ exp (—c- 7< /9) > X Hll’f (sﬁ X
0 ga )

oo d
> tﬁl/ exp (—c-s) x HiY (5 Yff}) =, (4.7.44)
0

if y, 2 € B.(x) and t < g%/,

(B:8)

Next, we need to analyze H 11;) (s (1 1)). We only need to consider its asymptotics for

s near to 0 and near co. We shall use the results in the Appendix of [CHHH17] replacing
the notations there by A = 8y —a; =1—-53,a" = i —ay =1—,6 = 77 and

uw=1— 0. Thus we can make use of the asymptotic expansion for the Fox H-function
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(e.g. [CHHH17, (A10)]):

m o.9] b 41
m,n (ai,Oéi) s _ * J_
Mo (S (bjﬁj)i,s) N Zzhﬂ s (4.7.45)
j=1 1=0
Thus, when s — 0 we have
it (s[sy) = it (o]0) = oni s, (4.7.46)
1=0

since m = 1 and (b1, 51) = (1,1), k] is given by (e.g. [CHHH17, (A.12)])

pe D ! (=11
L 116, F(al—[bl%—l]%) S NG

Therefore, one can easily see that h =0, hi = —1/T'(—f) > 0, and

1,0
H1,1 (3

When s goes to infinity, by [KS04, Corollary 1.10.2], we have the following asymptotic:
HLY <s

where Cg = (1—3)3%(175). Whence we can observe that the integral in (4.7.44) is finite.

o0
(gf))):Zh}“~slH:hT~s, |s| ~ 0.
1=0

(8,8)
(1,1)

) = O (%20 oxp [~ CpsVIB]) | s 0,

> exp(—Cys'/0-2)) (4.7.47)

So, we have for some constant C'z > 0

GY(y—2)dz > Cg- P71,
Be ()

As a result, we have proved the small ball nondegeneracy property B(f — 1,% ) for the
case (a).

Step 2: case (b). In thiscase d =2 or d = 3, § € (1,2) and a = 2. By equations (43)
and (85) in [Psk09], we have for g € [1,2)

Gf(x) = Fﬁ’,d(tvx)v
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where

To(t,x) = 01;21/ &(—B/2,0, — |zt 7)(r2 — 1)"2dr (4.7.48)
Tya(t,z) = Ct=5-1 / S(—B/2, —B/2: —|alt=*/2)dr (4.7.49)
1

Here ¢(a, b, c) is the Wright function.
Let us check the small ball nondegeneracy property B(S — 1,%) for d = 2 first. If

Y,z € B.(x) and t < €%/, by the representation (4.7.48)

12

t_l/B( )/1 ¢(—B/2,O,—\y—z!t‘§7)(72—1)_1/2d7dz

where the last inequality is derived analogously to the argument used in (4.7.28) for the
wave kernel when d = 2 and the fact that ¢(—/3/2,0, —7) is positive (see [Psk09, Section
2]). Then since t#/2 < € and exp(—t*/?7 /) > exp(—7), we obtain by the relation between

the Wright function and the Fox H-function

/ GY (y — 2)dz = / Lpalt,y — 2)dz
() ()
267 [ o(-5/2.0,-7) rexp (-r)dr
0

~ 1B /°° 7710 (
= 1,1 T
0

where the integral in the last equality of (4.7.50) is finite by the similar asymptotic

Qﬂ?) -Texp (—7)dr ~ Cg-t*7, (4.7.50)

analysis of Hi’? as in case (a). Thus, we proved B(5 — 1,%) for d = 2.

Next, let us check the small ball nondegeneracy property B(S — 1,%) for d = 3. We
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have by the equation (4.7.49)

Gf(y —2)dz = / Lps(t,y —2)dz

B:(z)

~ / 5 / O B/2, B2~y — 2| ) drd
Be(z) 1

B:(z)

1 o
~ fﬁ_l/ / (=B/2, =82 =T)Ljy—iciprrydrdz. (4.7.51)
B () ly — z| Jo

Now we can apply the same three dimensional spherical coordinate transformation as in
the proof of Proposition 4.7.5 (now for d = 3). Assuming x = 0, the integral with respect

to z in (4.7.51) becomes

: lp o)y — =
/ —1{\y—z|§tl3/27}dz ~ / Ldz
B.(0) ly — 2| B s2(0) ]

:7’2255/
0

2 w/3
> i / / | sin(¢)|dodd ~ 742 .
o Jo

Tth/2

/0 W / r-1p.(y — U(0,0))|sin(¢)|dododr

Thus, plugging it back to (4.7.51), we get

/ Gf(y —z)dz 2 7! / o(—pB/2,—B/2; —T) - ridr ~ 971
Be () 0

where the last equality follows from the asymptotic behavior of the Wright function.
Hence we complete the proof of the proposition in case (b).

Step 3: case (c). We have d = 1, § € (1,2) and « € [§,2]. By Remark 3.2 (3) and
convolution property Theorem 1.8 in [CHHH17], the Fox H-function admits an alternative

representation:

A1 ||~ a
Yy . 2.1 (1,1),(8,8),(1,%)
Gt (:B) - ‘.T’ H313 ( tﬂ (171)7(170‘)7(17%)
pto-t [ 1,1 (1,1),(1,9) 1,0 -
= ] Hyy ( |x]*s” anya) ) s (ts)™”
0

_Btﬁil > 1,1 |-T|a8’8 (1,1),(1,2) 10 _sl@.p) ds
REE Hyy \ =5 |an@d) ) x| 5770 ) (4.7.52)
2

(The representation is well defined since A; = Z?Zl Bi—=> 1 0;=0,a] =a1 —az+
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Bi—P2=2—a,d = (%)a/2 (%)

_a/2:1,,ul:2—2:0; Agzﬁl—alz&—ﬁ,

=pf—a =a—08 6 =7 and uy = 1 — B.) Note that the second Fox H-

function is nonnegative combining [KS04, Property 2.4] with [CHHH17, Lemma 4.5].

By [MLPO1, (4.38)], the first Fox H-function can be identified as the Green function of

neutral-fractional diffusion, namely,

w\DwIQ

,(1,
1

St (e {108 = N2(laD = K2 (o)

1 |z|*~! sin[ar /2]
- w1+ 2|z|e cos[am /2] 4 |x[2

From (4.7.52) it then follows

6w =5 [T (3)" N Geltssye) it (5

sl a3
(o) ) 5

Thus, we have (without loss of generality we can set = 0 in the following),

/ Gy (y — 2)dz
=(2)

[ ) \y—zus/t)ﬁ/“) it (7] S
e [ " )

i B.(4) |z|(s/t)5/] +1 s
can [l [T ] 2 e (i)
~ sin a_27r 8- 1/ arctan{ 7 } 'Hf,’? (Sﬂ E?gg %
2 sin a_27r tﬁ_l/o arctan [sﬁ} -Hllf (s‘ﬁ (((fg) % (4.7.53)

for y,z € Bu(z), and t < 7.

(8.5 )> (valid with the

Next, we need to take care of the asymptotics of Hlly’f (35 (1.0)

notations A =3 —ay =a—f,a* =8 —ay=a—p3,6 =" and p=1—3) when s

goes to infinity. Similar to (4.7.46) in case (a), we find that

1,0
Hl,l (

) Z hy - s AU e prg=2B/a as s — 00,
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with h) = (;_1“); . ﬁ and h > 0. When s — 0, similar to (4.7.47), we have the following

asymptotic estimate
Hllf(s—ﬂ )=0 (S—B[3/2—6]/(a—ﬂ) exp [—Ca,ﬁ . S—B/(cc—ﬁ)]) 7 s —0

for some constant Cy, g > 0.

Finally, we obtain from (4.7.53) and the asymptotics

/ GY (y — 2)dz
B:(z)

am o
2 sin [7} tﬁl/ arctan [sﬁ} -Hllv’? (35
0

ds
(8,8) L 4B-1
(1706)) S Z’ CanB t )

for some constant C, g > 0. Thus, we complete the proof of the small ball nondegeneracy

property B(f —1,5) for case (c). O

Proposition 4.7.10 (HLS Mass Property and Upper Moments for SFD). As-
sume that () (with v —2 — 2H ) and A(-) satisfy the same conditions of Theorem 4.5./
(under the condition A < min(2a — «/B,d)) or Theorem 4.4.1 (under the condition
A < min(a,d)). When the parameters are in the range given by (4.7.38) the Green’s
function GY (x) satisfies the (G3) or (G&') with M(2(8—1) — ﬁa—)‘) In other words, there

exist strict positive constants C7 and Cy independent of t and x such that

sup / Gl (x —y)Ay —y)GY (2 — o )dydy < C- $28-D-2 (4.7.54)
R2d

z,x’' €ER4

and furthermore, denoting p(d§) = V(f)dﬁ

sup | |GV (€ — )P ul(dg) < Cy - 207D (4.7.55)

neRd JRd

Consequently, we have the upper p-th (p > 2) moment bounds for the solution ul(t,z).

Namely, there are positive constants Cy and Cy independent of t, p and x satisfying

a(@B+2H-2)-FA  _B(2a-))
E[lu'(t, 2)["] < C} - exp (C’g t Banan iy ~p2al32—a—,8/\>
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Proof. We need to show M(2(f — 1) — %) under conditions (4.7.38) and A < min(2a —
a/B,d),i.e. the estimates (4.7.54). This gives the upper bound accordingly. This has been
proved in [CHHH17, Theorem 3.14 and Lemma 7.3]. For the sake of completeness, we
give some details here. Applying Hardy-Littelewood-Sobolev inequality ([l.L.97, Theorem
4.3]), we can find

sup [ Gl (e = )~ )G~ )y
RQ

z,7’ €ER4

< sup /RM G (z =)y — V|Gl (2 — y)dydy’

x,x’ R4

2d—X\
2d—X\
d

_2d d
d tﬁ—l ‘y’a 2d—x
< GY (y)|7>d ~ / e — d
— |:/Rd| t (y)| Y R |y|d 2,3 2a_1tf8 Y
2d 2d—A
182 1 ol ) [P 182
~ 2B [/d WH22§ <|y| ) dy] <C-pPeTE
R

where we have employed change of variable y — t%/® .y and the estimate of H-function

H3;(y) obtained in [CHHH17, Lemma 7.1].
Next, we need to prove the inequality (4.7.55) under conditions (4.7.38) and A <

min(a, d). Let us recall some useful estimates for the Mittag-Leffler function Ej 5(—|z|%) =

Yoo % (see [GLLO02] or [WZO18] for example): when z — oo,

|Ega(—|2])| S|z + 1272,

On the other hand the Mittag-Leffler function Egz(—|z|?) is bounded when |z| ~ 0 for

B € (0,2). Therefore, the following inequality holds

Egg(—|z|Y S 1A |27 < .
Baa=FIM S LARI™ S 15

Using the equation (4.7.37) and the assumptions on A(+), we have

sup | G} (v —y)A(y)dy < sup | GY (z —y)|y| dy

zeRd JRA rzcR4 JRRY

sup [ G- en<lepag

zeR4

12
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B¢
Esp (—t |§| )‘ | dg

< -1 /

& 2 -
St~ '/Rd‘Eﬁ,ﬁ(—\é! )| 1€l de .

And the integral is well defined since

[ Vs (el leptae s [ 1 i Pt < oo,
R4 Rd

under the assumption A < min(«, d). Thus, we complete the proof.
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Chapter 5

Mean square stability of stochastic
theta method for stochastic
differential equations driven by

fractional Brownian motion

5.1 Introduction and main results

Numerical stability analysis of stochastic differential equations (SDEs) is an important
topic in numerical analysis and scientific computing. In order to get insight into the
stability behavior of numerical methods for SDEs, the authors in [Sch96, SM96] studied
the mean square stability of several numerical schemes for the following stochastic test

problem driven by standard Brownian motion (Bm)
dX(t) = AX(t)dt + pX(t)dB(t), A peC, (5.1.1)

with initial value X (0) # 0 with probability 1 and E | X(0) |?°< oo, where dB(t) is

interpreted in It sense. The solution of (5.1.1) is said to be mean square stable if

limE | X(¢) |*=0. (5.1.2)
t—o00
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As is well-known, the mean square stability of (5.1.1) is characterized by
Lo
Re(X) + QW <0,

where Re(\) denotes the real part of A. Higham [Hig00a, Hig00c] studied the mean square
stability properties of stochastic theta method and stochastic theta Milstein method for
the test equation (5.1.1). The A-stability (which means that the numerical method
preserves the stability of the underlying test problem unconditionally) of stochastic theta
method (STM) and the stochastic theta Milstein method are proved when 6 > 1 and
0> %, respectively.

Subsequently, the stability of the numerical method for nonlinear SDEs driven by
Brownian motion

dX () = f(t, X(£))dt + g(t, X (£))dB(t) (5.1.3)

received much attention in the past decades. Assume that the drift coefficient f satisfies
certain monotone condition, and the diffusion coefficient satisfies the linear growth con-
dition. The authors in [HMS03, Sch01] proved that the backward Euler method and the
split-step backward Euler method reproduce the exponential mean square stability of the
underlying nonlinear problem. More recently, some scholars studied nonlinear stability
under a coupled condition on the drift and diffusion coefficients. This condition allows
that the diffusion coefficient grows super-linearly. For example, Szpruch and Mao [SM10)]
studied the asymptotic stability in this nonlinear setting for the STM. Huang [Hual4]
proved that for all given step size At > 0, the STM with 6 € [1/2,1] is mean square

stable for stochastic delay differential equations under the following coupled condition:
1 _ ~
qu(t,u,v)+§\g(t,u,v) P<a|ul®*+8]|v %, Vi >0, u,v€R, (5.1.4)

with a+ E < 0. If there exist positive constant K; and K5 such that the drift coefficients
f also satisfy
| F(tu,v) P< Ky w2 4K o 2 (5.1.5)

then the STM with 6 € [0,1/2] is mean square stable under certain stepsize constraint.
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For more details for nonlinear stability of numerical method for SDEs we refer to [HK21]
and references therein.

In recent decades long memory processes have been widely studied and applied by
mathematicians and statisticians. In particular, the theory of stochastic differential equa-
tions driven by fractional Brownian motions have been well-developed and have found
applications in various fields (e.g. [BH(OZ08,Mis08]). For example, the thermal dynamics
characterized by a fractional Ornstein-Uhlenbeck process based on empirical observation
in [BSZ02] is applied in the pricing of weather derivatives; The fractional Langevin model
in [GZLC13], and the arbitrage in the financial market is eliminated in the case of ge-
ometric fBm in [HO03, Gua06]. The readers can also find interesting applications of
fBm in modeling anisotropic multidimensional data with self-similarity and long-range
dependence in [MVNG8, WD20] and references therein.

However, most of the SDEs driven by fBm do not have explicit solutions, whence
numerical method are required in practice. So far, there have been many studies on
the convergence of numerical methods for SDEs driven by fBm (cf. [NNO7, DNT12,
MS08, Dav08, HLN16, LT19, HLN21, KNP11, HHKW20, HHW21, CHL18]). However, the
numerical stability studies of SDEs driven by fBm have rarely been addressed. In this
works, we are concerned with the mean square stability analysis of stochastic theta method
for some stochastic test equations driven by fractional Brownian motion (fBm) in R?.
We focus our effort on the stability problem of the numerical scheme and try to avoid the
complicate issues of existence and uniqueness for the solution when H < 1/2. For this
reason we shall assume exclusively H > 1/2 throughout the chapter. We also assume
d = 1. First, a natural choice of the test equation is the extension of (5.1.1), namely,
we replace the Brownian motion in (5.1.1) by fractional Brownian motion. However,
an easy computation (similar to the one shown below) immediately gives that for any
parameters A and p, the solution to dX (t) = —AX (¢)dt + pX (t)dB*(t) with a nonzero
initial condition X (0) = x € R\{0} will never be stable in the mean square sense (or

any L, sense for any finite p). So, the first thing we shall do is to modify (5.1.1) to the
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following new type of test equations:
dX(t) = =Aet" ' X (t)dt + uX(t)odB(t), t>0, X(0)= X, (5.1.6)

with A > 0,1 € R and x > 2H, and odB* is for Stratonovich integration with respect to
fBm with Hurst parameter H > 1/2. Here, for simplicity we assume that X is a non-zero
constant. The existence and uniqueness problems of (5.1.6) and the more general form
(5.1.9) have been studied extensively in the last two decades. For precise results, we refer
to [FZ21] and the references therein. Notice that (5.1.6) has an additional factor ¢"*
than (5.1.1) in the drift term. By the chain rule formula (e.g. [Hul3, Proposition 2.7] or
[Mis08, Lemma 2.7.1]), we have X (t) = Xgexp(—At" + uBH(t)) and hence

E| X(t) |*=E(Xo)? exp [2(=At" + p*t*)] . (5.1.7)
This formula implies the mean square stability of the solution to (5.1.6) if
i)k >2Hand A >0 or (ii)kx=2H and — A+ pu?<0. (5.1.8)

Otherwise, the solution of (5.1.6) diverges in mean square sense as t goes to infinity. So
we only need to consider (5.1.6) for the above two parameter regions (5.1.8).

After we obtain the stability result for the above linear equations (5.1.6), we shall
next focus our effort on the numerical stability of the STM for the following nonlinear

SDEs which are long memory version of (5.1.3)
dX (t) = f(t, X (t))dt + g(t, X (1)) o dB" (1), (5.1.9)

where BT (t) is fBm with H > 1/2. Inspired by the conditions (5.1.4), (5.1.5) and (5.1.8),
we shall assume the coefficients in the SDE (5.1.9) satisfy the following conditions (we

assume d = 1):

Assumption 1. There exist constants x > 2H, A > 0, A > 0 and p > 0 such that for
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any t >0and x € R

Monotone condition : zf(t,z) < —Ast"la? (5.1.10)
Linear growth : | ft,z) |[< Aet™ |2 |, (5.1.11)
Uniform linear growth : lg(t,x) [<pl|x]. (5.1.12)

Remark 5.1.1. We mention that when k = 1, conditions (5.1.10) and (5.1.11) reduce
to the classical monotone condition and linear growth condition (which is discussed in
the Brownian motion case, e.g. [HMS03]). After the completion of the first version of
this chapter, the author found the mean square stability problem of (5.1.6) has been well
studied in [DHC19]. See (2.4) with A(t) = —Akt" 1, F(t,x) = 0 and C(t) = u therein.
Moreover, our assumptions (5.1.10)-(5.1.12) can be compared with [DHC19, (H1)-(H3)].
However, the method (see also proof of Theorem 5.5.1) used in [DHC19] seems to be

unapplicable to the general case (5.1.9).

Unlike the Brownian motion case, the stability problem of general SDE driven by
fBm is still shrouded in mystery. To the best of our knowledge, the global almost surely
exponential stability of SDE in the form of (5.1.6) with k = 1 was considered in [GANS18].
In the same paper, the local almost surely exponential stability, i.e. initial condition must
belong to a neighborhood of zero, was obtained for the general SDE (5.1.9) under some
suitable conditions on f and g. It is well known that the second moment of solution to
SDE under Bm exponentially decays to zero which implies the solution vanishes almost
surely by Borel-Catelli lemma (the reverse does not hold in general). However, it seems
there is no result on the long-time mean square stability analysis of the original solution of
(5.1.9) under Assumption 1. We mention some papers about the related moment bounds
of the solution X (¢) on finite time domain [0,7]. For example, the moment bounds is
given in [HNO7] when f(¢,X) = 0 and ¢(¢,X) = o(X). More recently, Fan and Zhang
[F721] obtained the moment bounds with irregular drift term. We shall show that under
the condition (5.1.10) and (5.1.11) and when g(¢, X (¢)) = ¢(t) X (t), the solution X (¢) of
(5.1.9) is mean square stable.

On the other hand, from the numerical viewpoint, we investigate the stability of the
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STM for the general equation (5.1.9) rather than (5.3.1) based on Assumption 1. We
hope the numerical results would also provide some insights for the theoretical stability
analysis of the solution to (5.1.9).

The numerical scheme that we propose to study is the stochastic theta method (STM)

to (5.1.9), which is some kind of implicit-explicit Euler-Maruyama scheme:

X1 = X+ 0f (tns1, X)) AL+ (1 — 0) f (tn, Xp) A + g(tn, X)V.E, (5.1.13)
(STM) where t,=n-At and VH =BH(t,,,)— B(t,),

n=0,1,2,--- and At > 0is a fixed stepsize.

Remark 5.1.2. Note that the function F(x) = x — 0f(t,z)At is one-to-one. By the
Lipschitz condition on f, the function F' is also surjective for At small enough. Hence,

one sees that the STM (5.1.13) is well-defined.

In particular, when f(t, X) = —Axt" !X and g(t, X) = uX, (5.1.13) becomes

X1 = Xp = KM - (b)) X1 At — kA1 = 0) - ()" ' XAt + - X, VE ) (5.1.14)

The main stability theorems we shall prove are displayed as follows:

Theorem 5.1.3. Let At > 0 be fizred and let \, u satisfy (5.1.8). For the test equation
(5.1.6) and the STM (5.1.14) we have the following statements.

(i) If Kk > 2H and \/_72/32/2; <0 <1, then the STM (5.1.14) is mean square stable for

the test equation (5.1.6), namely, lim E | X,, [*= 0.
n—oo

(it) If > 3/2 and 5 < 0 < 1, then the STM (5.1.14) is mean square stable for the test

equation (5.1.6).

(i) If k > 2H and 0 < 0 < 3, then the STM (5.1.14) is not unconditionally mean

square stable for the test equation (5.1.6).

Remark 5.1.4. It is not clear whether or not the STM (5.1.14) is mean square stable

when 2H < k < % and % <0< ”3;’2/.2;, which will be a topic for future research.
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Remark 5.1.5. The classical results of STM with 6 < % for SDFEs is mean square stable
when the stepsize At is small enough. We do not expect such a result because the recur-
rence relation in the following equation (5.1.15) is related to both n and step size At if
Kk # 1.

Some adaptive Euler-Maruyama scheme (e.g. [NSS19]) might be the topic of our

future research.

Theorem 5.1.6. Let At > 0 be fized and let X\, p in Assumption 1 satisfy (5.1.8). For
the SDEs with fBm (5.1.9) and the STM (5.1.13) we have the following statement.

(i) If (5.1.10) and (5.1.12) in Assumption 1 hold, then the STM (5.1.13) with 6 = 1

(i.e., the backward Euler method) is mean square stable for the equation (5.1.9).

(i) If (5.1.10), (5.1.11) and (5.1.12) in Assumption 1 hold, then the STM (5.1.13) with

\/665\/)\
V6eh/ 41

<0 < 1 is mean square stable for the equation (5.1.9).

Remark 5.1.7. For ODEs, the study of the asymptotic stability of numerical schemes
for the linear test equation leads to a criterion for the asymptotic stability of numerical
shcemes of nonlinear equation (see [Dah63,Dah78]). We still could not get similar results

and shall leave it as a topic for future research.

We shall prove Theorems 5.1.3 and 5.1.6 in Sections 2 and 3, respectively. Before we
end this section we would point out the new difficulties we encounter compared with the

classical Brownian motion (e.g. see subsection 2.5). We can write (5.1.14) as

_ 1 — k(1= 0)A(t,) LAt pVH -
Xpi1 = L X 1.1
+ ( 1+ HQA(tn_i_l)K_lAt 1+ /f@)\(tn_t'_l)ﬁ_lAt (5 5)

When H = 1/2 (i.e. the Brownian motion case), X, is the product of independent
variables and the corresponding computation is much easier. However, this is no longer

true in our fBm setting. We encounter two major difficulties:

1. The increments B (t,, 1) — B¥(t,) of the fractional Brownian motion depend on

the past history, which makes the stability analysis much more sophisticated.
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2. The fractional Brownian motion lacks martingale property or Markov property so
that some useful techniques such as conditional expectation seems impossible or at

least over-sophisticated.

To get around these difficulties we shall employ some other analysis and computation
techniques. In fact, in the proof of different parts of Theorem 5.1.3, we shall use different
techniques. For example, in the proof of part (i) of Theorem 5.1.3 we use the technique of
generalized polarization, raw moments formula of Gaussian distributions and the asymp-
totic properties of confluent hypergeometric function. On the other hand, the main tool
to prove part (ii) is the celebrated Gaussian correlation inequality. Finally, the statement
of part (iii) is proved through the strong law of large numbers of dependent random
variables. All of these are done in Section 5.2. Let us mention that the test equation
(5.1.6) has not been previously studied even when the fBm is replaced by the standard
Brownian motion and it is interesting to carry out the stability analysis of the corre-
sponding stochastic theta scheme for its own sake and for the comparison purpose. This
is also done in Section 5.2. The proof of Theorem 5.1.6 is analogous to that of part (i)
of Theorem 5.1.3 and is provided in Section 5.3. In Section Section 5.4, some numerical
simulations are presented to validate our theoretical results. Finally, some concluding
remarks are given in the last section.

Through the remaining part of this chapter, we use a, =< b, to denote that there are
two positive constants ¢; and cs, independent of n, such that ¢y lim,, o a,, < lim,, o0 b, <

co lim,,_, oo a,, for all n > 1.

5.2 STM: Mean square linear stability analysis

In this section we shall prove our main result, i.e., Theorem 5.1.3. The parts (i), (ii) and
(iii) are proved in subsection 5.2.2, 5.2.3 and 5.2.4, respectively.

Obviously, (5.1.14) is equivalent to the following recurrent equation

Xn+1 = (an(ea )‘7 At) + ﬁTL(e? )\7 Hs At)VnH) X” ’
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where k > 2H > 1 and

1= k(1 =0)A(t,)"'AL 1 — k(1 —0)An " tAL"
1+ KOA(tg1)" LA 1+ kO + 1)s— LA

1 1
Ol 2t ) = (a1~ T4 RO+ DI AR (522

an(0,\, At) =

(5.2.1)

For notational simplicity, throughout the remaining part of the chapter we denote v, (0, A, At),
Bn(0, A, 1, At) by «, and S, respectively. Note that (5.2.1) and (5.2.2) are well defined
if we require the condition (5.1.8) or otherwise the denominators in the expressions of «,

and (3, could be 0.

5.2.1 Heuristic arguments

Before the proof, we would like to explain why Theorem 5.1.3 could hold true heuristically,
namely, why the STM (5.1.14) is stable when 6 > 1/2 and is unstable when 6 < 1/2,

formally. Denote

Zn(At) = o, + BV (5.2.3)
Then we have
X1 = Xo [ [ Zu(at) = Xo [ (en + BV - (5.2.4)
k=0 k=0
Obviously, for fixed At, X\ and p,
1 —
lim an:——g, lim 3, = 0.
n—o00 9 n—o00

Notice that this is quite different than the setting with H = 1/2 where «,, and $3,, do not
depend on n because of the absence of (t,)*~! for K = 2H = 1 (see Section 3 for more

details). Formally, if we could think of {V;/'} in (5.2.4) as a sequence of finite numbers,
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then by the limits of «,, and f3,, we would have

n n - 1 .
_ 9 1-6\?2 0, ifg;<0<T1;
| Ko P Xo P [T (o0 + 6000 = (£57)
k=0 oo, f0<0<3,
However, the random variables {V;/’} in our setting are not uniformly bounded. Even
worse, they are long range dependent. Therefore, the above heuristic argument cannot be

applied directly to analyze (5.2.4), especially for the scenario of (mean square) stability.

Presumably, there are two ways to break these barriers.

(1) Choose @ carefully so that the oscillation caused by {V;} can still be manageable.

(2) Take « sufficiently large so that 3y - V;# converges to 0 fast enough so that influences

of {V;f'} can be neglected.

Our proof will follow these spirits but with much more sophisticated tricks and compu-
tations. For example, we need to use the asymptotics of the confluent hypergeometric

functions which comes from the moments of Gaussian variables.

5.2.2 The case of Kk > 2H and _Vze <6<1
\/3/2-e+1

In this subsection we prove part (i) of the main theorem, namely, we consider the case

when x > 2H and —/—— B2e o 6 < 1. Firstly, we state a useful lemma, which is a

\/3/2-e+1 T

generalization of polarlzatlon identity.

Lemma 5.2.1. [Kan08, Lemma 1] Let xy,...,z, be real numbers, and let sq,...,s, be

nonnegative integers and s =y ., s;. Then, we have
n S
1 S
e = 53 S () () S
v1=0 v =0 1 n i=1
where h; = s;/2 — v;

Proof of part (i) of Theorem 5.1.3. Our goal is to show

n—1
lim E[| X, [°] = lim E | X3 [[(Ze(At)*| =0, (5.2.5)
n—o0 n—oo k; 0
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where Z,(At) is given by (5.2.3) and X, is given by (5.2.4). We divide our proof into
three steps.

Step 1: Bound E | X,, |? by a confluent hypergeometric function.

Applying Lemma 5.2.1 with s; =--- = s, = 2 and s = 2n we have

Y

;ﬁ:ﬁ (At) 22:: Zi: S w( 1> (Z:) : LZ:l:hiZi(At)

with h; = 1 — v;. Note that Z;(At) = a; + 5; -
02 = 32 . (At)*". Thus we have

|74 4 N(pi,04) with u; = «; and

E|[[ 20| < (22;)' 3 ZE Z (1= ) - Zi(A)
k=0 T v1=0 vn—O i=1
= (22;)! S Y EQ) (5.2.6)

where @, = Qn(v1,- -+ ,v0; Z1(AL), -+, Z,(AL)) = D7 (1 — v;) - Z;(At). Tt is obvious

that Q,, is still a normal random variable, with mean ji,, and variance 62 given by

fin = fin (1, ) = > (=)= (=) -y,
=1 =1
and
n 2
62 =62(vy, o v) = E | D (1 —v) B Vi
=1

— Z(l — ;) (1 —v;) - BiB; ]E[VlHV;H] :

i,j=1

From the raw moment formula ([Winl2, Eq. (17)] or [AFVSF16, Appendix A]) it follows

n 2" o, f(2n+1 1 T
E[QR]Q :ﬁgi F( 9 )q)<_n7§a 2% 2)

(ot 2 11 g2
_ n : _ ) S o M 5.2.7
Nl ( 2 ) eXp( 25,%) <n+2’2’2&g ’ (5-2.7)

where we used Kummer’s transformation (see e.g. (5.7.5) of the appendix): ®(«,~,2) =

=

212



exp(z)®(y — a,v, —z). Here, ®(a,7,z) is Kummer’s confluent hypergeometric function
(see (5.7.4) or Chapter 13 in [OLBC10] for more details).
By employing the differentiation formula (5.7.6) and then (5.7.8), we have with the

substitution n = 52

2
K
yr A
n) Jo

This implies that e~ " (”T“, %, 77) is an increasing function with respect to the variable
n(= 2 My ) Thus, E[Q,]*" can be bounded by the value at fi,, with M, := fi,(0,--- ,0) =
> i, «; of this function, i.e.,

w20 o (2n+1 m2 11 m2
E Q)" < \FE‘F( 5 )-exp(—ﬁ)cb<n+§,§,?>. (5.2.8)

n

Step 2: Analysis of the confluent hypergeometric function in (5.2.8).

A key ingredient of our proof is to analyze the asymptotic behavior as n — oo of the
right hand of (5.2.8) and this is the objective of this step. We claim that there exists
a positive constant C' which might change from line to line (we shall not point out the

universal constants C' unless necessary in this chapter) such that

a 11 22 « 3 /a 3 2973 exp(2) 2
O(=-+-,-,=)<C-2:71T (— —>>< i<
( T 2) 2 1) T ra) S
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with a = 2n + % and 22 = T2 > C - n2" and n is sufficiently large. We shall show the

oh

3

key asymptotic behaviors of the confluent hypergeometric functions ®(a,b, z). The idea
is motivated by the Poincaré-type asymptotic forms (5.7.10) of confluent hypergeometric

function. In our case, since we have a = 2n + %, the parameter a also goes to infinity.

2

Fortunately, we have 2% = 0—72*; > (O - n?! (see the proof in the Appendix A), and the
parameter a is bounded from above by z since H > 1/2.

To prove the claim (5.2.9) we employ the integral representation of the parabolic
cylinder functions (5.7.9). For z > 0, by the variable substitution, the parabolic cylinder

functions are computed as follows:

P exp(—%) ® 1 1
— %2 —22 (=7 4+ t))dt
Ula, 2) TT+a) /o 2 exp( 2(2 +1))
at+l 22 o) 2.2
2%%3 exp(I)/ 1 2%s
= -4/ s—1)""2 exp(———)ds 5.2.10
e [ e -5 (5:2.10)
and
a—&-l 22 [e%s)
z QGXP(_Z)/ 2,1 ,2
Ula,—z) = "2 exp(—z°(=t* —t))dt
0= vt [ )
atl 22 o) 2.2
2977 exp(%) / 1 2%s
= 47 s+ 1) 2 exp(——)ds. 5.2.11
e [ et en-5 5:211)

00 2.2 oo I’ﬁz 52
< 2/ (s+ 1) 2exp(———)ds = / (s +1)* exp(——2-)ds
-1 -1 207
Basically, we know that 2% = 'Z"—;Ql > C'-n?" > n for n large enough. So, for sufficient large
n
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for all s > —1. Therefore, we can easily obtain

00 ~2 .2 e8] 72 .2
. m; s m; s
/_1 (s+ 1) exp(— 552 )dsg/_l exp (— 152 >ds

Recall the relation between ®(a,b,z) and the parabolic cylinder functions U(a, z)

given by (5.7.7). As a result, we get

a 11 22 25=% /a4 3 2
(5h 43 -G owte e vt
> T 12 Jr 271 exp(—) x [U(a, z) + U(a, —2)]
sap(e 3y, 2 Tren(R) 1
<C 2"%(— _> _ ) 1
1 2
a_3_(a 3 2972 exp(%)
=02 3F<_ _> —T 5.2.12
271 5 + 1 X F(%+a) ( )

Thus we finish the proof of our claim (5.2.9).
Step 3: Completion of the proof of part (i) of Theorem 5.1.3. Applying (5.2.6), (5.2.8)

and (5.2.12) with a = 2n + 3, 2% = 2’"% > (. nﬁ% = n?" > n we obtain

IN
~ Do
l\) :

3
~—| o
- 3
\V)
S

=
VR
[\}

N
+
—_
N— —

. o

S

ol
/_\/I\\
o 2
3%’33!0
N——

LS
N

S

+
N —
DN | —
SHES

3o

IN

<6"-mi” 6" - n2" 1—6 2"< (\/3/2¢)2" (1—9)2"
— 0 )

(5.2.13)

by Stirling’s approximation, where we apply the claim (5.2.9) in the above forth inequality

and the fact that 1 5 < 0 <1 in the above last inequality. Now, it is obvious to see from
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(5.2.13) that E[[[,_, ZZ(At)] = 0 as n — oo if

10 V372 e
V32e 1 e g > Y220 o7,
v o

proving part (i) of Theorem 5.1.3. O

Remark 5.2.2. We belicve our method can also work under the condition that Xq = 0
with probability 0 and E[| Xy |*] < co. For example, one can apply Hélder inequality
to (5.2.5) and then follow the same argument there. But this makes the computations
much more involved. We are not pursuing the detail along this direction to simplify our

presentation.

Remark 5.2.3. Following the same strategy as in our proof, we can prove more general

< 0 < 1, where M, —2-; then

results: For any integer p > 2, if m < , P ()
p/2

lim E(X?) — 0.

n—o0

5.2.3 The case of kK >3/2 and § <6 <1

In this subsection we shall prove part (ii) of Theorem 5.1.3. To begin with, let us recall the
celebrated Gaussian correlation inequality, and we are not giving the general statement

here.

Lemma 5.2.4. [LaM17, Theorem 2] Let n = ny+ns and X be an n-dimensional centered

Gaussian vector. Then for any ty,--- ,t, >0,
P{] X1 <t | Xy [t}
> P{| Xl ’S by eees ’ Xm |§ tnl} IED{' Xn1+1 ‘S tn1+1v s 7| Xn ‘S tn}'

Proof of part (ii) of Theorem 5.1.5. Let us consider

n p(n) n
Xoa =[1@@0)y = [0 T (Zuan)
k=1 k=1 k=p(n)+1
p(n) n
=@y I (Zan) 1z@o<o sor<ien (5.2.14)
k=1 k=p(n)+1
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n

= I Lzoza| (5.2.15)
k=p(n)+1

n

[[(Z(a0)

k=1

_l_

with p(n) = n/p, ¢(n) = n/q and 1/p+ 1/q = 1. Formally, we know Z;(At) converges
to ¢g = —15% < 0. Thus, the probability of the event {Z,(At) < 0: p(n) +1 <k < n}
converges to one.

Firstly, applying the following bound on the geometric mean by the arithmetic one

a};l...ap” <

n —

pP1+ -+ Pn
ag,: .- JCLTLZO7 P, 7pn€N+7
with py = pa = -+ = pgmy) = 2 and a1 = —Zpn)41(AL), -+, gy = —Zn(At) to the

second factor of (5.2.14) yields

p(n) n
Xopi = H(Zk(At))2 : H (= Zk(A1)? - 1z, (at)<0: p(n)+1<h<n)
k=1 k=p(n)+1
p(n) . " 2q(n)
< H(Zk(At))g : n—p(n) Z Zi(AL) - 1iz, (at)<0: p(n)+1<k<n}
k=1 p k=p(n)+1
(5.2.16)
By the Holder inequality, we then have
1 n 4
p(n) 2 1 n 4q(n)
EX?, , < |E|[(Z.(At)? E Zi(At
o< (BT — (A1)
k=1 k=p(n)+1
1
(P{Zk(At) <0:pln)+1<k< n}) !
1 W\ i
p(n) 2 1 n 4q(n)
< |E]](Z(At)* E > Zu(At) (5.2.17)
k=1 n = p(n) k=p(n)+1

As we explained in Remark 5.2.3, by the same methods as in the proof of part (i), there
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exists an M > 1 such that the first factor of (5.2.17) can be bounded by

1
p(n) 2
EJ[(Ze(at)* | <™ = Mmiv. (5.2.18)

For the second term in (5.2.17), we have from raw moment formula and Kummer’s

transformation (5.7.5)

E([ N Zﬂzk At} (n))

C ()2 4q(n) +1 1 Jinm
= 2(m)p (A T2} o[ =9 Z._r
Nt 2 an), 3; 262

p(n)
C' agin)on (4q(n)+1) T 11 Ay,
=—0 92a(mp (2 © - exp - 1o 2q(n) + =, =; — P
(n) =2 ) o) —9 )
NZ3 p 2 20, 2°2° 20,,
(5.2.19)

where fi,) = #An) Zzzp(n)ﬂ oy and 5§(n) =E [|#%n) Zzzp(n)ﬂ Bk - VkHﬂ. Then by
(5.2.9) and the same procedure as in Step 2, we can bound (5.2.19), namely, the second

factor of (5.2.17) by the following;:

=2 _9 2q(n) _9

4 1 [ I'(1/2 I fi
O5tamozmp ((Aa(n) + exp pn) | (1/2) o) exp | o)
p(n) 2 20’p(n) ['(2g(n) +1/2) \ 257, 267

4 1—6 4q(n)
< cpt< ¢ (—) — 0, (as n — 00). (5.2.20)

o) = 0

Combining (5.2.17)-(5.2.20), we conclude for the first summand (5.2.14)

E [Xg] < MP™). | co |¢1(”)_> 0,

1
S M e |i< 1 & p> o

|)—1n(M) o1

¢ |)

Co |
In(

Next, we treat (5.2.15). Denote C) (k) = 1_“(1_9):]"%71&%. It is easy to see that if

Br >0 (i.e. A >0, u>0), then

P{Z(At) < 0} =P{V}" < —ay/By = —Crpae(k)} = PV 2> Crpae(k)}
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and if B, < 0 (i.e. A >0, p < 0), then
P{Zi(At) < 0} =P{V;" > —a/Bi = —Chrpae(k)} = P{VT < Crpnelk)}-
Consequently, we have by the classical concentration inequality for normal variable V,/?

P{Zu(A1) < 0} SP{| V¥ <] Crpnelk) [} > 1 — 2exp {—%]  (p221)

Then, by the Gaussian correlation inequality (Lemma 5.2.4), we get

P{Z,(At) <0: p(n) +1 <k <n} >P{| V¥ || Crpne(k) | p(n) +1<k<n}

> H P{| VI |<| Crpne(k) [}

k=p(n)+1

L (-2 [19207]) 2z

k=p(n)+
Denote
Xn =1- H 1{Zk(At)§0: p(n)+1<k<n} -
k=p(n)+1

By the Weierstrass product inequality:

ﬁ(l—xi)21—zn:xi, Voxy, L1, €(0,1),

i=1 =1

we have

E[X,] <1- fi (1—2exp{—L£%%é%§LE}>

k=p(n)+1
- | Crwae(F) | | Crpae(p(n)) 2
< 1, < B 2,
< Qk z(:)ﬂ exp [ 2 < Cexp 2(AL)2A ,  (5.2.23)
—p(n

since when n is sufficiently large that Cexp|— | Cy .ac(k) |* /2(At)?H] < 1. Because X,
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is either 0 or 1, i.e. X2 = X,, we have for the second summand (5.2.15)

“

n

[ ](Z(an)? 'Xn} < (E{]ﬁ[(zk(m)f})i . (E(Xn))%

k=1 k=1

Crpae(p(n)) |? N . _
< OM2™ . _| A, At - M2 AR 2(s—1) ( A p)26—2H
<C exp { 2(At)ei exp e p(n) (At)

Here we applied E{szl(Zk(At))“} < M for some constant M > 1, which can be
proved analogously as in the proof of part (i) of the theorem. Hence, it is easy to see if

k> 3/2, p(n)?+=1) > C, - n2*= > n_then the above term converges to 0. O

5.2.4 The case of 0 <8< %

In this subsection we prove part (iii) of Theorem 5.1.3. First, we state the following

strong law of large numbers (SLLN).

Lemma 5.2.5. [HRV08, Theorem 1] Let &1, &, -+, &, be a sequence of square-integrable

random variables and suppose that there exists a sequence of constants Ry such that

R
sup | Cov(&n, Enir) |[S Ry, k> 1, Z * <0 forsome0<qg<1, (5.2.24)
n>1 Pt k1
and
0 - ] 2
Zwﬁ ) ogl” _ (5.2.25)
n
k=1
then the SLLN holds. More precisely, letting S, =Y., &, one has
—E
lim S = B(Sn) =0 almost surely. (5.2.26)
n—o0o n

With the help of this lemma we now give the proof of the last part of the theorem.

Proof of part (iii) of Theorem 5.1.3. Denote Yy = In X2, Y;, = In (ak + BkaH)Z and S, =
i Y... In the above definition if oy + BkaH = 0, then we put Y, := 0. Notice that
]EZ(; + BrVH)? is positive almost surely, so Y}, are well defined for & > 0. We shall apply
Lemma 5.2.5 to &, = Y,,. It is easier to verify that (5.2.25) holds. The main objective is

to verify the conditions in (5.2.24). For ¢ € (2H — 1, 1), the second condition of (5.2.24)
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holds if Ry x| k [?#72 for sufficiently large k. Thus, the proof of part (iii) in Theorem

5.1.3 is completed if we can show for some constant C'
sup | Cov(Yy,, Your) ISR, < C- | K P72 (5.2.27)
n>1

In fact, assume (5.2.27) and recall that if 0 < 6 < %, then by noting lim,, . a,, = —1779

and lim,,_,., 8, = 0, we have
li 11@(5) li 1zn:E[1( + AV =1 L= 0Y Cy >0
m — n) — 1M — nlo =N\ — = .
n—oo M n—oo M, Pt k k Yk 6 o

Therefore, by Lemma 5.2.5 with ¢ € (2H — 1,1), we get

Sh 1 Xn2 a.s
— = n(Xn) — Cy > 0.
n n

This implies (X,,)2 — oo almost surely. Consequently, by Fatou’s Lemma, one has
h_mE|Xn\22E[n_m |Xn|2} — oo,
n—oo n—r0o0

which completes the proof of part (iii) of the theorem.

So, it suffices to show (5.2.27). We shall show that | Cov(Y;,Y;) |<| i — 7 |*#7% as

~Y

| i — j |— oo which is obviously equivalent to (5.2.27). In fact,
Cov(Y;,Y;) =E [ln(ai + B VH)? In(a; + BjVjH)Q} -E [ln(ai + BiVZ-H)ﬂ E [ln(aj + @-V}H)ﬂ )

Denote the probability densities of normal variables V" and V' by fi(z) and f;(y). The

symmetric covariance matrix of V;” and V' is given by

2
i Pij0i0;

pijoi0j, O
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where o; := E[(V7)] =[ tis — t; "= At |7 and o; == \[E[(V/)?] =| tj1 — t; [T=]|

7

At |" are standard deviations of V"' and V7, p;; := is the correlation coefficient

0i0;
between V" and V. Clearly, p;; — 0 as | i — j | goes to infinity. Their joint distribution

has the following form

£ (o.0) 1 ( XTE—lx)
i(xyy) = exp| ———
A de ) 2
1 1 2 . 2
_ exp (—7 {x 2y Yy y_2D . (5.2.28)
210054/ 1 — pi; 2(1 = pjy) Lo 99

with X = [z,y]T. Without loss of generality, we can assume that i > j + 1. Then we

have using the joint density (5.2.28):

Cov(Y;, Y;) :/Rz [In(a; + Biw)* oy + Bjy)?] - [fi(w,y) — filw) f;(y)] dady
= /R2 [In(a; + Biz)* In(a; + B;y)?] - exp (—@ {x—; + y_z])

o;  0;
X | —exp Py |2 + y—2 + L exp | pij - it dF;(z)dF;(y)
2 022 032. 1 2 Y 005 ‘ I

2
where p;; = %, Pij = 1fi;2 . One should notice that p;;,p;; — 0 as | i — j | goes to
ij

ij

infinity. By the Holder inequality, Cov(Y;,Y;) can be bounded by

iy 1J

=

</ (e + fiw)"Ina + ﬁjyﬂzdﬂ(mwy))
R2
pzy y2
(Ll (35 5)
1 - 2y 2 1 . %
_ \/ﬁexp <pz‘j : ;Uj) ] dﬂ(x)dFj@)) =1 A% x B

We proceed to estimate A;; and B;;. To estimate A;; we only need to consider

/R [ln(a + 5@2}2 X \/217T_0 exp (—g) dr =< /R [ln(a + 50:1:)2]2 X e_édx

:/ [In(a + Bazp)ﬂQ X e Tdx +/ [In(a + Bam)Q]Q X e~z dx
|a+Boz|<1 |a+Boz|>1
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22
S/ [In(a + ﬁam)ﬂg dx + / [a + Box]* x e~ T dzx.
|a+Box|<1 |a+Box|>1

Here, we neglect the subscripts of «; and (; to simplify the notations. Obviously, there
exist constants ¢ and C' such that A; ; < C, and «, f defined by (5.2.1)-(5.2.2) satisfying

0<c<a,fp<C<oo. Next, for | i — j | = 0o, we deal with B;;:

~ 2 2
Pij | T Y
B, = — | =+ =
J / o ( 2 { i U;D
2
1 5. 1 1 2 2
— ———exp (p” xy) ] X ——— exp (—— {x—g + y_21) dxdy.
/1 — P?j 00 2700 2o} o

By variable substitutions z — v/20;z,y — \/iajy, we have

1

\/1_P12j

=C |:6Xp (2,51] [1’2 + y2D +
R2

2
B <C [exp (ﬁij [mQ + y2]) — exp (2p; - xy)] X exp (— [132 + yﬂ) dxdy

RQ

exp (4pij - vy)
1- P?j ’

2

— ﬁ exp (ﬁij [x2 + y2] + Qﬁija:y) } X exp (— [:172 + yQD dxdy .
— Pij

The above three integrals can be explicitly evaluated as follows:

/ exp (Zﬁij [x2 + yﬂ) X exp (— [9{:2 + yz]) dxdy = il —
R2 1 —2p;;
L 5 / exp (4pij - vy) X exp (— [1;2 + yQD dedy = 1 - - 7T ’
L —pj Jre 1 —pj; 1 4/3%
and
2

\/ﬁ /]1@2 exp (ﬁz’j [952 + ?JQ} + 2ﬁijl'y) X exp (— [CL‘Z + yﬂ) dzdy
— Pij

B 2 T
S Jo-mr-7

Thus to bound B;; we need to know the asymptotics of p;; and p;;. First, there exists a
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constant C'y such that

E[V'V = E [(B"(tit1) — B (t:))(B" (1) — B"(t;))]
1
=3 [(tivr = )2 = (tipr — t32)* = (6 — 1) + (8 = t541)*"]
At 2H
! 2) [ =5+ 1) =2(i = )* + (i — 5 — 1)*"] (5.2.29)
Hence,
E[VHVH]
< .. — < - |12H -2 ) 9.
0<py=—1= Clli—j "2 (5.2.30)
Consequently,
piy <Clli—3 P, py<Clli—j["]. (5.2.31)

Therefore, by the Taylor expansions as x — 0, we have

1 2

Bij <C : 7r2~“+1 - ™ o . ™
Pij Pij \/1 — 4p3; \/1 — % \/(1 — i)’ — i

1 —P?j 1 1 2

12, & ' - 5
-2 | Dij \/1 — P2 \/1 —4p3; \/(1 — Pij)* = Py

1—ﬁ< 2
- FZ__ 1—2p : Y R
1—/%2]' I Pij \/l—pw \/1—4p” \/(1—5@‘)2_@%’

<C (V2 = ot 1+ | 30+ 48— a6 ) 14157 = 7 = 200

<C|i—j [,
when | ¢ — j | is sufficiently large. As a result, we have
Cov(V,Y;) <C|li—j PP 2 A1) . (5.2.32)

This completes the proof of (5.2.27) and hence we finish the proof of part (iii) of Theorem
5.1.3. .
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5.2.5 Brownian motion case

In this section we consider the case when H = 1/2, namely, Brownian motion B = B.

The equation (5.1.6) becomes
dX(t) = —At" ' X (t)dt + uX(t) o dB(t), X(0)= Xo, (5.2.33)

where A\, u € Rand k > 2H = 1. Here, we assume that X, # 0 with a positive probability
and | Xy | is square integrable. We have X (t) = X exp(At" + pB(t)) and

E|X(t) P=E| Xo |” exp (2(=At" + p°t)) . (5.2.34)

So the solution is stable if (i) £ > 1 and A > O or (ii) K = 1 and —A+ | i |?< 0. Otherwise,
the solution of (5.2.33) is unstable.

The STM for the SDEs (5.2.33) in the Stratonovich sense can write (5.1.14) as

_ 1— k(1 —0)A(t,)"TAt uVy, _
X1 = X, 5.2.35
+ ( 1+ /ﬂ?@)\(thrl)K_lAt * 14 HG)\(tn+1>H_1At ( )

with ¢, = n - At and V,, = B(t,4+1) — B(t,). Notice that V,’s are mutually independent.

The equation (5.2.35) can also be rewritten as follows

X1 = XOHZk (At) = H o+ BeVi) - (5.2.36)

where

1 - ’%<1 - G)A(tn)n_lAt . 1— /@(1 — 9))\nn—1Atn
1+ /ie)\(thrl)nilAt 1 -+ /@(9)\(71 + 1);<;71At,€ )

1 B p
L+ KON (tpyr) S IAE 14 KON(n 4 1)"— 1AL

ap = ap(0, N, At) =

Bn = 571(97 )‘7 2 At) =

Obviously, we have the following.
o If k> 1, for every fixed At >0, A >0 and pu

1—
lim ozn:——e, lim 3, = 0.
n—o00 0 n—o00
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Therefore, we have

n

Ell Xus1 ] =Ell Xo PIT]E [| o + Vi ]

k=1

n 1o\ 0, if3<6<1;
| X [0} + Bi - At] — ) =

00, if0§9<%.

o If kK =1, (5.2.33) is reduced to the standard stochastic test equation (see also
[KB12]). Then
1 -(1-0))At s 1
) V. AR s W v.ve
Thus,

E| X, >=Ea+3-V,)’E| X, |*.

In this sense, the numerical stability (or non-stability) depends on the condition

&’ + %At <1 (or > 1),

e (1 =200 At + (=224 | [*) <0 (or >0).

Now, we can summarize the discussion above as the following proposition:
Proposition 5.2.6. For the test equation (5.2.33) and the STM (5.2.35), we have

(i) When k > 1, for any fized \, p, then the STM (5.2.35) is mean square stable for

the test equation (5.2.33) zf% < 0 <1 and is not mean square stable if 0 < 6 < %;

(ii) When k =1 and —2X+ | u |*< 0, then the STM (5.2.35) is mean square stable for
the test equation (5.2.33) if either % <O<1 forall At >0 0r0<6< % for At

satisfying
22— | pu]?

At < 2211
0< t<<1_29))\2,

(iii) When k =1, =2 + | pu [*>> 0 and 0 < 0 < 1/2, then the STM (5.2.35) is not mean

square stable for the test equation (5.2.33) for all At > 0.
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5.3 STM: Mean square nonlinear stability analysis

In this section, we shall study the p-th moments stability and the numerical stability of

the solution to the general SDEs driven by fBm.

5.3.1 Mean square stability

Beyond the well-posedness, as we mentioned in Section 1, it seems too complicated to
find the long time asymptotic behavior of (5.1.9). To the best of our knowledge, there are
few results on the convergence of E[| X (¢) |?] when ¢ goes to infinity. Thus, we focus on
the following simplified SDEs with g(t, X(¢)) = ¢(¢t)X (t) under the assumption (5.1.11)
and (5.1.12)

dX (t) = f(t, X (t))dt + c(t) X (t) o dB(2). (5.3.1)

In this case, (5.1.12) means | ¢(t) |< u for some p > 0.

Theorem 5.3.1. Let X(t) be the solution to SDE (5.3.1) with initial value X is deter-

ministic, and let p, k and \, p satisfy

(i) k>2H and A >0 or (i) k=2H and — X+ /L<O (5.3.2)

2

If f(t,x) in (5.3.1) satisfies (5.1.10) in Assumption 1 and c(t) satisfies | c(t) |< p for

>0, then E| X (t)|P — 0 as t — oc.

Proof. We can assume that p > 2 is an even positive number (for p is an odd positive
number, we can obtain the similar result from the Hélder inequality). Denote F;, =
exp|— fo s)dBf] and Y; = F; - X(t). Then by the chain rule formula (e.g. [Hul3,

Proposition 2.7] or [Mis08, Lemma 2.7.1]) we have

o= Foe 1(,X(0) = B 70, (F)7Y)).

Note that it is a deterministic ordinary differential equation for the function t — Y;(w)
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for every w € Q. Then by the condition (5.1.10) in Assumption 1, we get

d dY;
—YyP — Ypfl t
t bry —dt

dt
= Y (B TRt (F) 7Y < —pAst™Th Y
Thanks to Gronwall’s inequality, we have
t
YP < Y¥exp <—p)\li/ s"_lds) = X7 exp(—pAt"),
0
and
t
X ()P < XFexp (—p)\t"i +p/ c(s)dBf) :
0

Therefore, letting Cy = H(2H — 1), since fot c(s)dBY is a Gaussian process (in t) with
E[| fot ¢(s)dB |*| = Cy fot f; c(s)|s — r|*c(r)dsdr, we have

E[X(t)?] < Cexp (—p)\t“ +p*Cy /Ot /Ot c(s) | s—r |2 c(r)drds)

2
< Cexp <—p)\t’“‘ + %/ftm) .

So we have that E[X (¢)?] converges to 0 under the condition (5.3.2). O

5.3.2 Numerical stability

For the numerical stability of SDEs driven by f{Bm, we consider a more general diffusion
coefficient. More precisely, instead of g(t, X) = ¢(t)X we allow the diffusion term g to
be generally nonlinear satisfying (5.1.12). We hope this will shed light to the stability of
the original solution.

Now, we give the proof of Theorem 5.1.6.

Proof of Theorem 5.1.6. From STM (5.1.13), we have

X1 — O0f (tngr, X)) AL = X + (1 = 0) f(tn, Xp) At + g(tn, X)) VI (5.3.3)
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By the condition (5.1.10), we have
| F(6,X) P> (Ast™ )2 [ X7
We bound the square of left hand side of (5.3.3) as

‘ Xn+1_9f(tn+laXn+l)At ‘2

= (Xn—i-l)z + 92 | f(tn+1, Xn-i-l) |2 (At)2 - 29AtXn+1f(tn+1> Xn-‘rl) (5 3 4)

> (X)) + (0N k570 A (Xpy1)? +2 0 X st At (X00)?

= (Xot1)?[1+0 X K ti] At]?.

Step 1 (6 = 1): With the condition (5.1.12), it is clear that the square of right hand
side of (5.3.3) can be bounded by

| X+ g(tn, Xo) VT P<2[(X0)? + 12 X2V (5.3.5)

Therefore, we have from (5.3.4) and (5.3.5)

| X, P<2[+82- (V] | X P <2 H [oF + B3 (V2] X§, (5.3.6)

Jj=1

where
1 1%
ap = y Bn = .
L+ X k(t,) LAt L+ X k(t,)" 1AL

Let us rewrite [T}, [aF + B3(V7)?] in (5.3.6) as

2n n
112z =116V + )3V = 1a),
j=1 j=1

with ¢+ being the imaginary number and

Zoj1 = 5]‘/;H + ey, Zaj = BJV;H —
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Applying Lemma 5.2.1 with s; = =S89, =1,8= ZQ-Z sj = 2n, one has

7=1
2n 1 1 1 1 , 2n 2
= e . _ ZJZ Vj .
7S 3 () (o )= [Sua] - ean
Jj=1 v1=0 v2,=0 j=1
where hj = 5 —v; =

Thus, we get that

n

2n 2n 2 2
1> hizi = (Z h;B; - V}H> + (Z hjoy — Y hj%’)
j=1 j=1

Jj odd j even

m 2n 2n
(Z h;B; - ij> + (Z hjo; — ) hj%’)
j=1

j odd j even

Therefore, taking expectation on both sides of (5.3.6) and using Lemma 5.2.1, we obtain

E[| X, ]

HZ
<221:>!Ui Zzi (Z e ) <Z%>2n

J=1

IN

IN

::fl—l—fg.

Denote R = Z?Zl(—l)”f B;- V. Then R is a Gaussian random variable with mean

. 2 .
zero and variance o given by

2n 2
012{ =E (Z(_l)%ﬂj . V;H> < O . p2t2H-2x
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(see the computation in the appendix A). Thus, we have

E (i(—l)“fﬁj - Vf’) = 2'T(n +1/2) - (o)

j=1

S CanF(n + 1/2) X n(2+2H—2;~c)n )

By Stirling’s formula, we further have

2n
. on 22n 2n N i
Il < (2?1)' ?sup]E E (—1) Jﬂj"/j

Uj

4ncn
< F 1 2 . n(2+2H—2;¢)
< Gy T2
1 n—1 1
2

. nn(2+2H—2ﬁ) (

=" . nn(1+2H—2H) 0

Y

as n — oo since k > 2H > 1. For the term [y, as n — oo, we also have

2n
. on 22n 2n cn . 2(2—k)n
I, < [ onal ZO&j < " anC"-n2(1_”)”—>0.

e

Step 2 (0 < 1): Similar to (5.3.5), it follows with additional condition (5.1.11) that
the right hand side of (5.3.3) can be bounded by

| X (1= 0) f(tn, Xn) At + g(tn, X))V,
<3 (X2 | (1= 0)f(tny X)AL >+ | g(tn, X) VI ) (5.3.8)

<3(R2+ (1= 020w £57) AOPR2 4 @2X2(VH)?) |
Combining (5.3.4) and (5.3.8), we have

1460 Xkt AP (Xn1)® <3 (14 (1= 0)°(\ s i At + 2(VF)?) (X,)2.
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We can the above inequality as
(Xn)? <3 [ap + 85 - (V)] (Xam)?,

where «,, and (3, are given by

0 = 1 +[§1+_09;2§tgjit]§t)2 = [1+0 A 5215;—1 A2 (5.3.9)
Therefore,
X, <3 f[ (a2 + B2(VI)?) X2
= ﬁ(ﬁaVH +1a;) (B VI = 1ay). (5.3.10)

<.
Il
-

Thus by the same procedure as in Step 1 (0 = 1), taking expectation on both sides of
(5.3.10) gives

| X, ] <3"-E HZJ
3n 1 11 on 2n 2n
‘e  Frr) ()
= I3+ 1,

We can prove that the term E, converges to 0 by the same technique used for the term

I, in Step 1 (6 = 1). For the term I, we further have

. 3n 22n 2n o
li= G e (22 )
j=1
6" o )2n<1_9 )\>2”
= n - .= .
V2 - 2n(?”)2n 0 A
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Obviously, we should require that

to ensure I; — 0 as n — oo. The inequality (5.3.11) is equivalent to 6 >

1—60 )\
et

V6-e- 3

Ve~ (.87 since A > A. This completes the proof of Theorem 5.1.6.

\/éeJrl

5.4 Numerical Experiments

We shall carry simulations for the following three equations.

Example 5.4.1. Consider the following linear SDEs driven by fBm

dX(t) = =X~ k- t" X (t)dt + uX (t)dB (1),

with initial value X (0) = 3.

10”
m-u’lil

kel .ID-EE.'IiI

0 300

10
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102H

10 ana

Figure 5.1: 8 = 0.8 for Example 5.4.1 with A =9, u = 2.
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Example 5.4.2. Consider the following nonlinear SDEs driven by fBm

dX(t) = =X\-k-t"1X(t) — X3(t)dt + pX (t)dB" (),
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Figure 5.2: 0 = 0.4 for Example 5.4.1 with A =9, u = 2.

with initial value X (0) = 3.

Example 5.4.3. Consider the following nonlinear SDEs driven by fBm

dX(t) = —A-k-t" X (t) — X3(t)dt + (X (t) +sin(X (t)))dB" (1), (5.4.3)

with initial value X (0) = 3.

For the first test, we first fix A = 9,4 = 2,k = 2H and apply the stochastic theta
method with 8 = 0.8 and 6 = 0.4 for Example 5.4.1 with different Hurst parameters
H, respectively. We take the stepsize At = 0.5, and the mean square of the numerical
solutions over 5000 fBm samples are displayed in Figure 5.1 and Figure 5.2 on a log-log
scale, respectively. Besides, we also let kK = 2 > %, and the corresponding results of
numerical solution are shown in Figure 5.3. The expected stable and unstable behaviors
verify our theoretical results.

For the test of Example 5.4.2, we choose A =3, k =2, p =4 and H = 0.6. It is easy
to verify that the coefficients of the equation satisfy (5.1.10) and (5.1.12) in Assumption
1. We take 6§ = 1 and At = 0.5 and 1, respectively. The mean square of the numerical

solutions are displayed in Figure 5.5. As expected, the stable behavior of the numerical
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Figure 5.3: 8§ = 0.6 for Example 5.4.1 with k =2, A =9, u = 2.

solution is in agreement with Theorem 5.1.6.

Moreover, we consider a more general diffusion term g(t, X) = X(t) + sin(X(¢))
instead of ¢(t, X) = c(t) X (¢) with ¢(t) < p, in Example 5.4.3. We take A = 3, k = 2, and
H = 0.8. Figure 5.6 depicts the mean square of the numerical solutions with At = 0.5
and 1. The numerical results illustrate that the STM with § = 1 is also stable in this
case. We hope the numerical results can shed some light on the asymptotic property of

the solution of the nonlinear equations dX (t) = f(t, X (t))dt + g(t, X (t))dB(t) .

5.5 Concluding remarks

This work first focuses on the mean square stability of the stochastic theta method for

the time non-homogeneous linear test equation driven by fBm,
dX(t) = —Aet" ' X (t)dt + uX(t)dBH(t), X(0)=3,

whose solution is stable in mean square sense. For x > 2H it is proved that the mean
square A-stability of STM (5.1.14) is achieved for 6 > VP2 " and the stochastic theta

\/3/2-e+1

method cannot preserve the stability property of the test equation for # < 0.5 in the sense
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Figure 5.4: § = 0.5 for (5.4.1) with A =9, u = 2.

of almost surely and mean square. Moreover, if £ > 3/2 and % < 6 <1, then the STM
(5.1.14) is mean square stable for the above test equation. To illustrate our theoretical
results, we give some simulation results for the equation (5.4.1) with A =9, u = 2, At =
0.5 with different H and 6. The simulation results agree well with our theoretical claims.
On the other hand, we currently are not able to use our methods to deal with the case
1<6< VI hen 2H < k < 3/2. In this case, we simulate the equation (5.4.1)
\/3/2-e+1
with A = 9, = 2, k = 1.4 to test the stability by applying the stochastic theta method
with # = 0.5, At = 0.5 over the time interval 0 < ¢t < 2'3, the numerical results in
Figure 5.4 show that the method is still stable for 6 = % Thus, we conjecture that when
2H < k < 3/2 and % <0< Ve the stochastic theta method is still mean square
\/3/2-e+1

stable and this is our future research. Finally, we also study the stability of the STM

for nonlinear non-autonomous case
dX(t) = f(t, X(1))dt + g(t, X ()dB"(1).

Under some conditions on the coefficients f and g, it is proved that the STM method is
stable when 6§ = 1. Moreover, under a stronger condition on the coefficient of drift term

f, the STM method is stable when 6 > VOAXwhere A and A are defined (5.1.10) and
V6eX/A+1
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Figure 5.5: 6§ =1 for Example 5.4.2 (left:At = 0.5; right: At =1).

(5.1.11) in Assumption 1, respectively).

5.6 Appendix A: Proof of 2% = ; >n

3

S

In what follows, we show that 22 = 2

= > Cpg -n* > nasn — .

By the property of fBm one can get with notation 3;(At) := (1 — v;)5;(At)

Gn= Y Bu(AOGADEV,V)

m,j=0
(At)2H —~ - o . 2H . 2H - 12H
= S > Bn(AOBA) [T+ 1P+ [ = 1P =2 | 2]

m,j=0

(5.6.1)

When n and | m — j | are large enough, we have

m—F+ 1P+ m—j— 1P =2|m—j
1

1
BT - |
m—=7 m—=7

2H
+1-

H_2 - . 12H-2
<|m—j| :
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Figure 5.6: 6§ =1 for Example 5.4.3 (left:At = 0.5; right: At =1).

Therefore, we can bound (5.6.1) by

~2 _(At)zH ~ A 2. A o 2H s 1 |2H _ _ s |2H
On =5 E B (AL)5;( t)[]m J+H1+ | m—j—1| 2|m—7j| }
maJZO

<CADM Y~ Bu(At);(AL) [ m — j [P2< O(AD> (Z | B(Al) I%> :
mj

m=1

(5.6.2)

where we have used the discrete type Hardy-Littlewood-Sobolev inequality (see e.g. The-
orem 381 in [HLP88]) in the last step.

For any given At > 0 (and —A+ | 1 |*< 0 ), one observes that from (5.6.2)

(Z |5m<At>|%> < (Z )

(’{” ) <Z‘ (m +1)*" ~ Soxzwr }I)QH

2
H 2(1—k)+2H
< ] 1 . .6.
<C (m(m)a) (nV1) (5.6.3)

I
1 — kON(m + 1)~ 1At~

Thus, 62 < C-(nV1)*T2772% Recall that m,, := j,(0,---,0) = >_"" | a; and lim,, o, =
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5.7 Appendix B: Confluent Hypergeometric Func-
tions

In this section, we gather some important properties of Kummer’s confluent hyperge-
ometric functions ®(a,b, z) that are used in the main body of this work. The reader
can find more details in Chapter 13 of [OLBC10]. Kummer’s confluent hypergeometric
functions ®(a, b, z) is defined as

1
zkzl—l—gz—k ala+ 1)

(@)r )
(b)xk! T2t T (5.7.4)

®(a, b, z) = Z

k=0

where z € C. The following identity is called Kummer’s transformation (see e.g. 13.2.29
in [OLBC10))
P(a,b,z) = e*®(b—a,b,—z). (5.7.5)

A differentiation formula related to ®(a, b, ) is helpful to us (13.3.20 in [OLBC10]):

d" (b—a),

—[e7*®(a, b, 2)] = (—1)" o,

e ®(a,b+n,z). (5.7.6)

Kummer’s confluent hypergeometric functions ®(a, b, z) can be represented by the so-

called parabolic cylinder functions U(a, z) (13.6.14 and 13.6.15 in [OLBC10]):

22

B(a)2+ 1/4,1/2,22/2) :234”%: D U0 + Ula—2)]: (5.7.7)
D(a)243/4.3/2,222) =2 LEEDT i a). (5.7.8)

N

where I'(+) denotes the Gamma function. Recall the integral representation of the parabolic
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cylinder function Ul(a, z) by 12.5.1 in [OLBC10]

z

exp(—%)

4 * el 2 1
= 2 —w” /2 — dw, R > ——. 5.7.9
Il +a) /0 w2 exp(—w? /2 — zw)dw e(a) 5 ( )

Lastly, the Poincaré-type asymptotic forms of confluent hypergeometric function hold

(see 13.2.23 in [OLBC10)):

Za—b

['(a)

M(a, b, z) = d(a,b, z) < exp(z), as z — 00, (5.7.10)

1
r'(b)

where I'(+) is the Gamma function.
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