
In compliance with the 
Canadian Privacy Legislation 

some supporting forms 
may have been removed from 

this dissertation.

While these forms may be included 
in the document page count, 

their removal does not represent 
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

O n  t w o - s a m p l e  s e q u e n t ia l  t e s t in g  p r o c e d u r e s  b a s e d

ON STRONG APPROXIMATION PRINCIPLES

by

Abdulkadir Ahmed Hussein

A thesis submitted to the Faculty of Graduate Studies and Research in 

partial fulfillment of the requirements for the degree of 

Doctor of Philosophy

in

Statistics

Department of Mathematical and Statistical Sciences

Edmonton, Alberta 

Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 National Library 
of Canada

Acquisitions and 
Bibliographic Services

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque nationale 
du Canada

Acquisisitons et 
services bibliographiques

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-87993-3  
Our file Notre reference 
ISBN: 0-612-87993-3

The author has granted a non­
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

L ib rary  Release Form

N am e o f A u thor: Abdulkadir Ahmed Hussein

T itle  of Thesis: On two-sample sequential testing procedures based on

strong approximation principles

Degree: Doctor of Philosophy

Y ear th is  D egree G ran ted : 2003

Permission is hereby granted to the University of Alberta Library to reproduce 

single copies of this thesis and to lend or sell such copies for private, scholarly 

or scientific research purposes only.

The author reserves all other publication and other rights in association with 

the copyright in the thesis, and except as hereinbefore provided, neither the 

thesis nor any substantial portion thereof may be printed or otherwise re­

produced in any material form whatever without the author’s prior written 

permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate 

Studies and Research for acceptance, a thesis entitled On two-sample sequential testing 

procedures based on strong approximation principles submitted by Abdulkadir Ahmed 

Hussein in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Statistics.

Dr Edit Gombav LShnervisorY

ces)

Dr. Richard Cook (Umvefsity of Waterloo) 

July 18, 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If all the trees on earth were pens and the ocean were ink, with 
seven oceans behind it to add to its supply, yet would not the 

knowledge of God be exhausted in the writing: for God is exalted
in power, full of wisdom.

Quran, 31:27
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Abstract

Originating in Abraham Wald’s seminal work in the 40s, hypotheses testing 

in Sequential Analysis is now about 7 decades old. In spite of all the studies 

published in this area, little work has been done in the sequential testing of 

composite hypotheses. Composite hypotheses can arise when the parameter 

of interest is not a single point or when nuisance parameters are present along 

with the parameter of interest.

The objective of this thesis is to develop parametric and nonparametric 

fully-sequential procedures for testing two-sample hypotheses. The approach 

taken to reach this goal is based on the strong invariance principles (Csorgo 

and Revesz 1981) and is inspired by the work of Gombay (1996, 1997, 2002a, 

2 0 0 2b, 2 0 0 2c).

Specifically, we will use Rao’s efficient score and Wald’s statistic pro­

cesses and functionals of them for the sequential testing of two-sided, two- 

sample, null hypotheses against two-sided alternative hypotheses with un­

known nuisance parameters. The extension of these test procedures to the 

multi-sample case will also be discussed.

Nonparametric counterparts of the two-sample parametric tests, based 

on U-statistics with anti-symmetric kernels, will be developed.
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Finally, Monte Carlo simulations will be carried out to compare the 

test procedures developed in the thesis to the fixed-sample t-test and group 

sequential t-tests of Pocock and O’Brien-Fleming in terms of total sample 

sizes, average stopping times, power, and robustness to deviations from the 

normality assumption.
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Conventions and notations:
Throughout the thesis, we will use lower-case letters to indicate random vari­
ables as well as their observed copies. Also, the following notations will be 
used;

Symbol Meaning
xt =' 0(4>(t)) or x t =  0(4>(t)) a.s. lim sup Xt is almost surely finite

xt =  Op(<j>(t)) ( x t = op(<p(t)) ) AA is bounded (converges) in probability
a.s. Almost sure convergence
V ; Convergence in distribution

V Equality of (finite dimensional) distributions
LIL Law of Iterated Logarithm
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Chapter 1 

Introduction

1.1 Sequential testin g  o f com posite h yp oth e­
ses

Sequential testing of hypotheses began in 1943 when Abraham Wald devel­

oped what is known as the “Sequential Probability Ratio Test” (SPRT). Let 

x 1,x 2, -• • be a sequence of independent and identically distributed

random variables with a common one-parameter distribution F(.]6) and a 

corresponding pdf Wald’s SPRT procedure for testing the simple null

hypothesis Ho : 0 =  8o vs the simple alternative Ha '.8 =  91 is to stop sam­

pling and accept H0 as soon as Ln > A  or stop sampling and accept Ha as 

soon as Ln < B, where 0 < B  < 1 < A  are constant stopping boundaries 

dictated by error probabilities a  =  PgQ (Reject H0) and /3 — PSl (Reject H a ) ,  

and

t =  niu f ( x j ,  Bp)

n nr=i/(̂ i)
is the likelihood ratio based on the n  observations available thus far. The 

sample size, N , at which the boundaries are crossed, is a random variable. The 

mean of N  is known as Average Sample Number (ASN) or average stopping

1
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time. Wald and Wolfowitz (1948) showed that the so defined SPRT procedure 

is optimal in the sense of minimizing both Ee0{N }  and Eqx{N }  among all 

tests possessing a finite ASN under both Hq and Ha and with errors a  and f3.

Clearly, the original SPRT did not deal with composite hypotheses, 

which were composite either because of the null and/or alternative param­

eter spaces not being single points or because of the presence of nuisance 

parameters. Wald attempted without much success to adopt the SPRT to 

the composite hypotheses case by introducing the weight functions approach. 

Another attempt to extend the SPRT to the case of nuisance parameters pro­

duced the so-called “Invariant SPRTs” (Ghosh 1970). This method consists 

of reducing the composite hypotheses to simple hypotheses through maximal 

invariant statistics by transforming the data as well as the hypotheses of in­

terest and then applying Wald’s SPRT procedure. According to Lai (2001), 

this approach has two drawbacks. Firstly, it necessitates the specification of 

a suitable alternative hypothesis, thus introducing some restrictions on the 

hypotheses to be tested under the maximal invariants. Secondly, the log Ln is 

no longer a random walk under the maximal invariants, so, the rich arsenal 

of the random walk theory, used by Wald-Wolfowitz to show optimality, is no 

longer applicable. A third practical drawback is the complexity of the test 

procedures derived from this approach, which require special tables.

In a case where the hypotheses of interest are composite because of 

the presence of nuisance parameters, a third approach suggested by Bartlett 

(1949), Cox (1963) and Breslow (1969) is based on using the likelihood ratio,

2
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or an asymptotically equivalent form of it, under the assumption of contiguity. 

The method replaces nuisance parameters in the likelihood ratio by their re­

stricted MLEs and uses Wald’s SPRT procedure. This approach relies on the 

assumption of contiguity, i.e., on the assumption that the distance between 

the value of the parameter under the null hypothesis, 6q. and its value under 

the alternative, Oi, is such that \6\ — 6q \ =  0 (N ~ ^ 2), where N  is a sample 

size larger than that at which the sequential procedure reaches its decision. 

Alternatively, Gombay (1996, 1997) relaxed the contiguity assumption and 

provided some tests based on the generalized sequential likelihood ratio along 

with their asymptotic critical values at significance level a. Gombay (2002c) 

discussed why the Bartlett-Cox type of asymptotics fail under noncontiguous 

alternatives and compared the tests of Gombay (1996, 1997) to the sequen­

tial t-tests of Barnard (1947) and Rushton (1950, 1952), which are invariant 

SPRTs.

Whitehead (1978) adopted and improved the Bartlett-Cox approach by 

using closed triangular stopping boundaries. Anderson (1960) originally pro­

posed this type of boundaries to reduce the expected sample size of the SPRT 

as an alternative to the open-ended Wald boundaries. Whitehead (1997) con­

tributed much to the popularization of the triangular tests, to the extent that, 

recently, many clinical trials using these procedures have been conducted.

Sequential testing of hypotheses was introduced into the biomedical and 

clinical trials field during the 50s (Armitage 1960). As an alternative to the 

SPRTs, Armitage et al. (1969) suggested and studied the so-called “Repeated

3
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Significance Test” (RST). Its key idea is to perform conventional fixed-sample 

significance testing on the cumulative data every time an observation arrives. 

That is, no conventional fixed-sample tests will be performed if the total sample 

size attainable at the end of the study is no- The null hypothesis of interest is 

then rejected at the first inspection when the conventional fixed-sample test 

rejects it. The critical values, zai, i =  1, ...,no, used for the intermediate 

testing, are obtained either by numerical integration as in Armitage et al. 

(1969) or from the approximating continuous time Wiener processes (Siegmund 

1985). In any case, the RST approach did not solve the nuisance parameters 

problem.

Since, in double-blinded multi-centre clinical trials, frequent inspections 

may not be feasible, Pocock (1977) introduced a “group sequential” version of 

the RST. This approach performs a repeated significance testing only period­

ically as opposed to continuously testing after each observation. The conven­

tional testing is performed at the pre-specified inspection times, k =  1,..., K, 

with a fixed number of patients (group of patients) recruited between each two 

inspection times; that is, the number of patients, — n*_i, recruited between 

the (k — l ) th and kth inspection is the same for all k = 2 The  critical 

values, zak, k = 1,..., K , used for the intermediate testing, are obtained from 

the joint distribution of the K  conventional test statistics by requiring that 

the overall significance level is a pre-specified a, i.e.,

P{ Reject Ho at any k < K }  = a.

O’Brien and Fleming (1979) modified the constant boundary of Pocock’s orig-

4
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inal group sequential method (i.e., zak =  constant for all k < K  ) to a square 

root boundary. In 1981, the O’Brien-Fleming method was used in the famous 

Beta-Blocker Heart Attack Trial (BHAT 1982) . The original group sequential 

methods did not accommodate nuisance parameters. Jennison and Turnbull 

(1997) suggested group sequential t and F  tests and provided recursive formu­

lae for use in numerical computation of the boundaries. In general, obtaining 

exact boundaries for group sequential methods is a computationally intensive 

task, a disadvantage for group sequential methods if the number of interim 

analysis, AT, is large. Jennison and Turnbull (1999) provide a detailed discus­

sion of classical and recent developments in the group sequential methodology.

In the nonparametric field, sequential methodology for testing the equal­

ity of two or more distribution functions has undergone substantial develop­

ment. However, this research has been largely concentrated on rank score 

statistics, developed for censored survival data. Chatterjee and Sen (1972), 

Majumdar and Sen (1978) and Sinha and Sen (1983) studied linear rank statis­

tics for staggered entry survival data. Jones and Whitehead (1979, 1981) used 

log-rank and Gehan-Gilbert score rank tests. Tsiatis (1984), Slud and Wei 

(1982), Sellke and Siegmund (1983), Slud (1984), and Gu and Lai (1998) used 

rank score tests for censored data with random staggered entry. Murray and 

Tsiatis (1995) considered the sequential use of the Kaplan-Meier estimator for 

survival distributions. For the non-censored case, Miller and Sen (1972) de­

rived weak invariance principles for U-statistics with symmetric kernels. Sen 

(1981) gives a detailed discussion of the use of such U-statistics in the sequen-

5
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tial testing of hypotheses. Also, Gombay (20006) used anti-symmetric kernels 

for change-point problems.

1.2 O verview  o f th e  th esis

As mentioned in the previous section, sequential testing of hypotheses in 

the presence of nuisance parameters has not yet received an adequate fully- 

sequential treatment. Most of the fully-sequential tests used in practice are 

based either on RST methods adapted to special cases with no nuisance pa­

rameters (c.f., Siegmund 1985) or on the Bartlett-Cox type asymptotics (c.f., 

Whitehead 1997) in which contiguity assumption is crucial.

In the cases where nuisance parameters are present and treatment effect 

differences might not be small enough (i.e., the contiguity assumption might 

be violated), Gombay (1996, 1997, 2002a, 2002b, 2002c) developed a class of 

one-sample two-sided tests using generalized sequential likelihood ratio and 

strong invariance principles (Csorgo and Revesz 1981, Einmahl 1987, Einmahl 

1989, Csorgo and Horvath 1993). The main attractive features of Gombay’s 

approach are

a) Simple accommodation of the nuisance parameters.

b) Easy-to-compute approximate boundaries (critical values) which do not 

require any numerical integration.

c) A generality allowing application of the methods to a wide class of dis­

tribution families including the exponential family.

6
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This thesis has three objectives:

1. Development of a class of two-sample sequential composite hypotheses- 

testing procedures and their extension to the multi-sample case. The 

methodology allows for random treatment allocation schemes and is 

based on Rao’s efficient score and Wald statistics.

2. Development of a class of nonparametric procedures, counterparts of the 

above two-sample parametric procedures, using U-statistics with anti­

symmetric kernels.

3. Empirical comparison of some of the parametric and nonparametric tests 

developed in the thesis to the fixed sample t-test and group sequential t- 

tests of Pocock and O’Brien-Fleming (Pocock 1977, O’Brien and Fleming 

1979, Jennison and Turnbull 2001) in terms of power, maximum sample 

size (truncation point), average stopping time, and robustness to non­

normality.

Specifically, in Chapter 2 we shall compare two-treatments in a clinical 

trial where patients arrive sequentially over time and are assigned to one of 

two treatments (e.g., experimental and standard) with allocation probabilities 

of A and (1 — A), 0 < A < 1 . Asymptotic results for functionals of the Rao 

score and Wald statistics and for their weighted versions will be developed 

under Hq- Tests based on these asymptotic results are proposed in the same 

chapter, and Monte Carlo simulations are carried out in order to assess the 

power, Type I error and average stopping time of the tests. In Chapter 3,
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the asymptotics of the functionals in Chapter 2 will be developed under the 

alternative hypothesis, and the consistency of the tests discussed in Chapter 

2 will be proved. A methodology for obtaining the power and moments of the 

stopping time of these tests will be highlighted, with particular emphasis on 

the case of the one-dimensional parameter of interest.

In Chapter 4, we will present some straightforward extensions of the 

results of Chapters 2 & 3 to the multi-sample hypotheses testing and multiple 

comparison problems. In Chapter 5, we will construct nonparametric test 

procedures for the two-sample case by using U-statistics with anti-symmetric 

kernels. Finally, in Chapter 6 , we will carry out some Monte Carlo studies to 

compare the two-sample parametric and nonparametric methods of Chapters 2 

and 5 to the group sequential t-tests of Pocock and O’Brien-Fleming (Jennison 

and Turnbull 2001).

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Two-sample parametric tests 
and their asymptotics under H o

2.1 Prelim inaries

In clinical trials, the comparison of at least two treatments (e.g., active treat­

ment and a placebo) is important and often encountered. For the two-treatment 

comparison, assume that patients arrive sequentially and are being assigned to 

either an experimental treatment (E) or a standard treatment (S) with alloca­

tion probabilities of A and (1 — A), respectively. At any stage, say, k =  m  +  n, 

of such a sampling plan, we would have two independent sequences of ob­

servations, Xi, X2 , ■ ■ ■, xm and yl ,y 2, . . .  ,yn, coming from patients assigned to 

the experimental and standard treatments, respectively. These independent 

observations can be continuous or discrete measurements. We assume that 

the distributions of the two streams of observations have densities of the same 

fu n ction a l form  b u t w ith  different param eter vectors. T h e parameter vectors  

are partitioned into components of interest and nuisance components.

We assume the existence of a re-parameterisation under which the two

9
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densities have different functional forms, and but share

the same set of parameters, (9, r}).

In this chapter, the composite null hypothesis,

Hq .6  = 0o r) £ O2, 

will be tested against the two-sided alternative

Ha -.6 + Oo r i e f y ,  (2 -1)

where 8  e Di C IT*, tj e  D2 C IRP and thus, f  =  (0,t?) e  ft =  Q 1 x ft2 C JRd+p.

This type of hypotheses are of interest in clinical trials where exper­

imental and standard treatments are being compared and there is no prior 

knowledge of the direction of difference. It is also worth mentioning that the 

methods of this thesis for testing the above hypotheses do not have provision 

for early stopping under Ho. In fact, according to Armitage and Berry (1994) 

using procedures for early stopping under H0 is not recommended because 

such cases have no ethical imperative, and the data collected will certainly be 

useful in learning more about the characteristics of the standard drug. Exam­

ples of trials in which continuing to the planned end of the trial is desired in 

the absence of evidence against Ho are given, for instance, in Whitehead and 

Thomas (1997) and Donaldson et al. (2000).

Since the nuisance parameter, 77, is common to both distributions, we 

assum e th a t th e  above null h yp oth esis represents equality  o f th e  d en sities of 

the two populations, i.e., fi{x\9a,rj) =  / 2(y;0o,*7) =  f(x-,0o,rj). In such cases, 

the two sequences of observations will be combined and denoted by z i , . . . ,  Zk, 

where k =  m  +  n.

10
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Before establishing the asymptotic null distribution of functionals of 

Rao’s score and Wald statistics, we will give some necessary notations and 

regularity conditions. Denote by

a2
m )  =

M t )  =

' d2

lo g /i(x i ; 0

lo g /2(yi; 0

(2 .2 )

d&dtij

entries of the expected Fisher information matrices of the first and second 

population, respectively, where i , j  =  1,2 . . .  ,d  + p. We shall partition these 

matrices based on the partition of the parameter vector £ =  For exam­

ple, we write,

I = h i  112  

h i  I 22
(2.3)

where I u  =  ( - log A {xi ? ̂ )) dxd> ^  h { x u i ) )

I 22 = log / i(x i ; o )  • The inverse of I  will also be partitioned and

denoted by

= ( £ £ ) •  (2.4)

Analogous notations apply to the matrix J. In general, given any partitioned 

matrix

A = (  A u  A n
V 21 A 22

we shall be denoting the partitioned inverse of it by

A - 1 A 11 A 12 
A21 A22

Also, we define

M ( 0  =  [ A / + ( 1 - A ) J ] ( 0 ,  

11
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which will be partitioned as above whenever needed.

Suppose that (6, rj) is always a point in an open subset Cl C IRd+p. The 

following regularity conditions are required.

Cl. Distribution functions Fg(.]6,r)), g = 1,2, are identifiable over Cl.

C2. There exists an open subset, Do C Cl, containing the true value of the 

parameter under Ho, (do, tf), such that the partial derivatives

d d2
W i loS f ,(x ;()  ^ - l o g ^ g  fg(x',0

exist and are continuous for all x G IR, £ G D0, and g =  1,2, indicating 

the first and second population, respectively.

C3. For each and m, n =  1 ,2 ,3 ,. . . ,  the score equations

m  n

X ! v ,  log fi(xi] 0Q,rj) +  v „  log f 2(yj]00,T)) =  0
i = l i=i

^ V ^ o g /iC x i;^ )  +  ^ V €log / 2( % ; 0  = 0

3= 1i= 1

have unique solutions, fjk, £k, in Cl0 where k  =  m + n.

C4. Under the setup of C2, there are functions M \(x), M2(x) such that 

J  Mi(x)u(dx) < oo; Ee0tr,[M2(X) \  < oo

with

d_
log fg(x-,£)

d 2
d&dC log f g(x ;0 <  M 2(x ),

12
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d 3
log fg(xi£)

d&d§jd£k

for all £ € flo, 1 < i , j , k  < d  + p and g = 1 , 2 .

<  M 2(x )

C5. log f g(x;£) =  0, 1 <  i < d + p, £ e  Qq, g =  1,2.

C6. / « ©  =  - E { [ ^ l o g / i ( u ; 0 ] ,  M O  =  ~Et  [sg jjlo g A fa ;? )] ,

and J -1(£) exist and are continuous for all £ G and 1 < i , j  < d + p.

C7. Varc [ g ^  log f g(x-,0Q,v) < oo for 1 <  i , j  < d + p, g =  1 , 2 .

C8- £*0, J  4 log / ff(z;0o,*?)
2+<5

< oo, i =  1 , 2 , d+p, g = 1,2 and (5 > 0 .

Remark 2.1 Conditions Cl - C6 are the usual classical regularity condi­

tions guaranteeing the existence and consistence of a sequence of MLEs (c.f, 

Lehmann (2001) and Serfling (1980)). The last two conditions are, respec­

tively, required by the Law of Iterated Logarithm (Serfling 1980) and by the 

strong invariance principles of Komlds et al. (1975) and Einmahl (1987) that 

are used in this thesis.

We shall state a Lemma that is useful in proving our results. Horvath

(1993) provides a proof of this lemma.

Lemma 2.1 (Horvath, 1993) Let (A ; i  < i < oo} be a sequence of in­

dependent and identically distributed random vectors such that Eflij =  0 , 

ESij =  1, ESijSu =  0 (j I), E\0ij\2+5 < oo for some 8 > 0, 1 < j , I  < d. 

Then, as no — > oo,

( d /  k n 2\  1/2

< x + bd(log n0) exp(—e x),

13
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where

a(x) — (21ogx) 1/ 2 (2.5)

and

bd(x) =  2 log x +  ^  log log x  — log r (^< 0  (2 .6 )

with T(c) =  J0°° yc 1e vdy.

2.2 R a o ’s efficient score sta tistic

We shall use Rao’s efficient score statistic to test H0. If under Ho, £ =  £ 0 is a 

completely specified parameter value, then the general form of Rao’s statistic 

would be

Rk = vkr\t;0)v£,

where Vk =  Ar1/2 V* log /i(x ,;£0) +  £ ”=1 V* log f 2{yj-,Co) . 7(£o) is the

expected Fisher information matrix (Serfling 1980) under H0, denotes the 

vector of partial derivatives with respect to £, and the superscript t denotes a 

vector or matrix transpose. In the current problem, however, a nuisance pa­

rameter is present and has to be replaced by its restricted maximum likelihood 

estimator under iJ0; that is, Rao’s statistic becomes

Rk = Vk X - l (0o,ri)VZ, (2-7)

where

14 =  AT1/2 J 2  Ve los  A te ;  °o, Vk) +  v * los  v k)
,i=i j=i

(2 .8)

14
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and fjk is the restricted MLE of the nuisance parameter 7?, which is the solution 

of the equation

X  V ,l°g /i(x i;tf0,<?) +  J ^ V „ lo g /2(%;0 o,*7) =  X  V , log/ ( * ;  0 O,1?) =  0 ,
j=l i= 1

(2.9)
*=i

and E(0o,*?) =  This fact is rigorously stated in the following

theorem which approximates Rk in (2.7) by means of Wiener processes.

T heorem  2.1 Under Hq, if conditions C1-C8 hold, then there exist indepen­

dent Wiener processes, Bj(t), j  =  1 ,2 ,. . . ,  d, such that for a  < 5 —

sup |i?[nt] — U(nt)\ °==' 0 (n  "(loglogn)1/2),
l< t < 0 0

where [nt] indicates the closest integer to nt,

(2 .10)

= VM S

U(x) =
i = 1

E (0O,*?) =  [Af11^ ,* ? ) ] -1 =  [(AZ +  a - A J J ) 11] - 1 ^ ,* ? ) ,  (2.11)

<5 > 0.

Proof. Suppose for simplicity of notation, that under H0, the true value of 

the nuisance parameter, common to both populations, is 77. Re-write (2.8) as

Vk = AT1/ 2

+  AT1/ 2 

+  k - 1/2

X  V<? log h  #o, v) + X  Vfl log (%
.*=1 J=1
m m

X  Vfl log/i(x;; 0 0 ,7)*.) -  X  Vfllog/i^jflo,*?)
i = l

n
t= 1

X  Vo log f 2(yf, 0 0 ,fjk) -  X  Vfl tog M y j ; 0 0 ,*?)
J= i j=i

(2 .12)

15
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The last two terms in the above sum represent errors committed in esti­

mating r) by its MLE rjk. These errors can be linearized by using a three-term 

Taylor expansion of V#lo g fi(x t]6o,r)k) and V#log f2(yj]9o,fjk) around the 

true parameter value rj so that

14  =  AT1/ 2

+  k~l/2(r ik -v )

^ 2  log f d xu Oo, *?) +  V* log M yjtfo , v)
, i = l  3=1

1oS  h  (xi ; 0 0 ,  ri) +  2̂ V fc? l o S  / a  (Vi; eo > v)
.*=1 j=1

+  c(fc,f?*), (2.13)

where fjk < V* < V and denotes a r f x  p-matrix of second order partial 

derivatives, first with respect to components of 9 and secondly with respect to 

components of rj. The term e(k,rj*) is a row vector whose rth component has 

the form

1 P P (  1 m r)3 1
- k - w ■ £ £ m ,  g ^ f r log/ , ( * , ; » * )  |

V “  1 ^  y t  — X J

+ ^“1/J E E - n) {r E logI—1 q \ j—1 )

By the Law of Iterated Logarithm (LIL) and by C4, the terms in the 

curly brackets are almost surely 0(/c“1/2(log log k)1/2). On the other hand, by 

Lemma 2.1 of Gombay and Horvath (1994), ^ ^ ( f i k q -  Vq)(m  -  m) is almost 

surely 0(1). Hence,

16
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In order to obtain an expression for (»)fc —77), we shall analyse the following 

three-term Taylor expansion of the pooled data log-likelihood under H0,
k

J ^ V q lo g / te j f lo . iy  -  V„ log f(Zi]do,rj)\
i= 1

Wfc -  n) VS2 log *>)+ v*),
i— 1

(2.15)

lim sup
fc—>00

1 J*
t  V l 2 lQg / f o  0 o,v) + 1 2 2 (6 0 ,rj)

„  ( (loglogk f l 2\
= — j  a -s-

where V22 is a p x p-matrix of partial derivatives with respect to the compo­

nents of p. By the same arguments leading to (2.14), the error term above is 

almost surely of amplitude O ^ logÎ l — . On the other hand, by C4 and the 

LIL we have

k

t = l

Thus, we have

& f(zi,6o,ri) =  J J V j a l o g / ^ t f o . ^  +  ^ a - ^ j

+  c  ^ 0 °g i°s fc)3/2^

=  k (Vk -  *l) |  \  Y 2  V ^2 log f ( Zi' 0°> 6) +  I2 2 1

-  ^ fc- .) /22 + o ( (logl̂ fc)3/2)

=  k ( n k - v ) ° ( ^ ^ ) - m k - v ) i 2 2

+  Q ^ (loglogfc)3/2^

r, f ( lo g \o g k f /2\
=  °   jfcV2 J  ~  k(V k  -  V ) h 2

+  0  ^ (log log A;)3/ 2 ̂

17
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where the last equality follows from the Lemma 2.1 of Gombay and Horvath

(1994). Since, by C6 , I 2 2  is invertible, we have

(*ik-v) =
i—1

+  (2-16)

Collecting (2.13), (2.14) and (2.16), we obtain

Vk = k- 1' 2 

+  AT1/2

Y2 log /i(xi5 *o, ri) + Y Ve log MVjrfo, n)
i—1

k

i= 1

3=1

-1
•^22 ( # 0 ,7 ? )

- m - n
jfc E  v fcj log/ i (xo 0o, 1?) +  -  V2 , log f 2(yf,0 0 ,7?)

+  ^ ( i ™ ^ )

n

+  X ^ v ^ log^2^ ' ;<9°>^
j = l

Again, by C6  and LIL, 

lim sup

3 = 1

XZ Vft, log f i  {Xi]0o,ri)
i= 1

+ 0 /  (log log A;)3/2 \
V Jfc1/2 J •

(2.17)

lim sup

~  5 3  V 0t)log / 1  tfo, 1?) +  7i2
4=1  

1 ”
~ 5 3  V«*»log M V irfo’V) +  J i2n 

ĵ=i

^  / (loglog k)V2\
( w5—J ’

/(loglog A;)1/2\
=  °  (  fciA'   j

It follows, therefore, after neglecting errors that are at most O  ̂ ,

V„ =  A;"1/2

+ A:"1/2

£ V«l°g f i ( xu 0 o, 7?) +  J ]  log / 2 (?/,■; 0  0,7?)
4=1
fc

J = 1

.4 = 1
2̂2 (00, T?) [—A/12 ~  (1 — A)Ji2]

, / ( lo g lo g kf / 2\
+ 0  (  m  )

18
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If we re-arrange terms, 14 takes the following final form,

m
Vk =  k~1/2Y ^  [Vglog f i (x i;d0,r)) -  V t?l o g / 1 Ori ; 0 o , 7 7 ) / 221 { A /1 2  +  ( 1  -  A ) J i 2 } ]

i= 1 
n

+  k 1/2^  [Vglog f 2(yj]B0,v) ~  loghiyj'i^o ,v)h^  {A/12 +  (1 -  A)Ji2}] 

+  0 ( M ^ ) = a  +  B t +  0 (( !2 i ^ ! )  (2, 8)

Observe that 14 in (2.18) consists of the sum of the independent d- 

dimensional random vectors, zj, defined by

{ Ve l o g 0 O,*?) -  V„ lo g /^ x , ; ^ , ? ? ) ^ 1 {A/12 +  (1 -  A)Ji2} wp A

Vfllog f 2 (yj')&o,v) ~  V q lo g ^ ^ jj^ o j^ ) ^ 1 {A/12 +  (1 — A)Ji2} wp A'
(2.19)

where A' =  1 — A, i — 1 ,2 , . . . ,  k = m  +  n. By C5, Ezi =  0 for all i. This 

equation, along with our treatment allocation rule, implies that

Cov(I4) =  E =  AEj +  (1 -  A)E2,

where Ei and E2 are the covariance matrices of the terms in Ck and Dk 

respectively. Now,

Ei =  In  +  {XI12 +  (1 — A) J i2} I 2 2 I 2 2 k2.2 {A/21 +  (1 ~  A) J2i}

— ^1 2 ^ 2 2  {A/21 +  (1 — A)J2i} — {A/12 +  (1 — A)Ji2} I 2 2 1 21 

=  In  +  {A/12 +  (1 ~  A) J i2} I 22 {A/21 +  (1 — A) J 2i — I 2 1 }

-  W M i  +  a - A ) / , ! } .  (2 .2 0 )

19
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Similarly, covariances of the terms in Dk are given by

£ 2  =  J n  +  {A/12 +  (1  — A) J 12} I2 2 I 2 2 I 2 2 {A/21 +  (1 — A)J21}

— J 1 2 I2 2  {A/21 +  (1 ~  A) J 21} — {A/12 +  (1 — A) J 12} I 22 J21

— Ju  +  {A/12 +  (1 — A) J 12} / 2 2 {A/21 +  (1 ~~ A) J2i — J 21}

— J 1 2 I 2 2  {A/21 +  (1 — A) J2i} . (2-21)

So,

Cov(Ufc) =  AEi +  (1 -  A) £ 2

=  A/11 +  (1 ~~ A) J n  +  {A/12 +  (1 ~~ A) J 12} I 22

x {A2/ 2i +  A(1  — A) J2i — A/21 +  A(1  — A)/2i +  (1 — A)2J2i — (1 — A) J21}

— {A/12 +  (1 — A)J12} I 22  {A/21 +  (1 — A)J21}

=  A/11 +  (1 — A) J n  +  {A/i2 +  (1 — A) J 12} I 22

x , {A/21 +  (1 ~  A) J 2i — A/2i — (1 ~  A) J 21} — {A/12 +  (1 — A) J 12} / 2 2

— {A/12 +  (1 — A)J12} I 22  {A/21 +  (1 — A)J21}

— A/11 +  (1 ~  A) Jn  — {A/i2 +  (1 — A) J i2} I 2 2 {A/21 +  (1 — A) J 21}

=  A/11 +  (1 — A) J n  — {A/12 +  (1 — A) J 12} {A/22 +  (1 ~  A) J 22}

x {A/21 +  (1 ~  A) J 2i} , (2 .2 2 )

where the last equality holds since I 22 = {A/22 +  (1 — A)J22} under H(}. By

the inversion rules of partitioned matrices (Rao 1965, p.29), (2.22) is, in fact,

Cov(Vfc) =  £  =  [(XI +  (1 -  A) J ) 11] . (2.23)

Using C5, C8  and the fact that the above covariance matrix is symmet­

ric and positive definite and the zf in (2.19) are independent and identically

20
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distributed random variables under Ho, we can write

+ 0 ( (‘° y i )  a.»., (2.24)

where /3,: =  (fin ,. . . ,  1 < i < oo, are i.i.d. random vectors with Eflij =  0 ,

E ffj  = 1 , E fc fa  =  0  O' ^  0, £ | / % r 5 < oo, 5 > 0 , 1 < j , l  < d. Now, (2 .1 0  

follows from Lemma 3.3 of Gombay (1996) using similar steps to those in the 

proof of Theorem 1.1 therein.

□

Remark 2.2 From the proof of the Theorem, we can easily see that the al­

location probability, X, can be replaced by m /k  since, by LIL, \rn/k — X\ °= 

0((loglog A;)1/2/A;1/2), as k —► oo.

The following Corollary gives the asymptotic distribution of the maximal 

functional of R *. and a weighted version of it.

Corollary 2.1 Under the conditions of Theorem 2.1 and for any integer no 

(truncation point),

(i) lim„0_»oo P  ja(lograo) maxi<*,<„0 R%2 < t + 6d(logn0) |  =  ex p (-e_i), t €

1R where R^ = I4(f?o, f/fc) £ ~ 1 ( $ o , ( $ o ,  *)*,), aix ) and bd(x ) are defined 

in (2.5) and (2.6), respectively.

(ii) maxi<fc<no > supQ^^j B j(t)J as uq — > oo.

Proof.

(i) It follows directly from (2.24) and Lemma 2.1.

21
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(ii) From Theorem 2.1, it follows that for a = |  -  - f j ,

sup |% t] -  U(kt)| =' 0(k~ a(loglogk)1/2).
l< t< 0 0

So, for t = 1, we have,

IRk -  u(k)\ = ' o  (k~a{\og \ogky1/2) .

Taking max over 1 < k < n0 and remembering that almost sure bound­

edness implies boundedness in probability, we get

max (ka(loglogk) 1/2) \Rk -U (k ) \  = Op( 1).
l<fc<no

Now,

max
l<fc<no

— R k -  — U{k) 
n0 n0

k - i
<  max — max (A;a (loglog k ) - 1 ^2)

1<k<n0 Ho 1<k<n0 V '

x max (fc“ (loglogA;)"1/2) |R k -  U(k)\ =  op(l),
l<fc<no

and so, (ii) follows.

□

In order for this corollary to be useful in testing hypotheses, we need 

to replace the covariance matrix, S, by an estimated version. The following 

Lemma will allow us to do so.

Lem m a 2.2 I f  the conditions of Theorem 2.1 hold, then replacing T) in T,~1(60,ri) 

by its restricted MLE, r)k, does not change the limits in Cororllary 2.1(i) and

(ii).

22
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Proof. Let E denote the covariance matrix with r) replaced by f)k. From the 

approximation of V*, by i.i.d. terms in the proof of Theorem 2.1 we get that 

for any I, maxi<*,<; ||V*.|| — Op((loglogZ)1//2). Hence as n0 —> oo,

max (k /n 0)1/2R l/2 =  Op(uq1/2(logn0)1/2(logloglogn0)1/2).
l<fc<logno

By the assumptions, each component of the matrix B = E(0O, r)k) ~  E(0O, rf) 

is almost surely bounded, and max Vk is taken in the range log no < k < no, 

where the matrix B  is almost surely o(l). From these facts, we obtain the 

Lemma.

□

R em ark  2.3 In the preceding lemma, f)k need not be the unique solution of 

the restricted log-likelihood. All we need is that the estimator converges weakly 

to the parameter r) with a rate of at least l/^/log k. This can be attained by, 

say, a one-step estimator based on the Newton-Raphson iterative procedure 

(see Lehmann 2001, p.475). Therefore, condition CS, requiring r)k and £k to 

be the unique MLEs can be relaxed accordingly.

R em ark  2.4 From the theoretical point of view, we could use the unrestricted 

MLE, f]k, instead of the restricted one, rjk. However, since the use of the 

restricted MLE is what gives Rao’s score statistic its attractiveness and since it 

is hard to imagine any gain by using a less efficient estimator (the unrestricted 

MLE), we will concentrate, in this thesis, on the case where the restricted MLE 

is used.
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2.3 W ald’s sta tistic

In a similar manner to that used in Section 2.2, we now consider tests based 

on functionals of Wald-type statistic process. All notations and conditions C l 

- C8 of Section 2.1, along with the treatment allocation scheme therein, are 

still required for the results of this section. Furthermore, we write £ 0 =  (9q,tj)

of interest and the nuisance parameter, respectively.

For testing H q of Section 2.1 in a non-sequential situation where a nui­

sance parameter is present, Wald’s test statistic is given by

In a sequential setup, we will treat the statistic as a processes Wk and ob­

tain its strong approximations by means of Brownian motions, after a proper 

normalisation.

T heorem  2.2 Assume that conditions Cl - C8 hold under Hq, then there exist 

independent Wiener processes, Bj(t), j  =  1 ,2 ,. . . ,  d, such that for a  < |  —

and =  (0k,Vk)) where 9 k and f)k are the unrestricted MLEs of the parameter

w  = k ( e - e 0)[in ( i ) ] - \ e - o 0)t.

l< f< 0 0
sup |W[nt] -  U(nt)\ = 0 (n  “(loglogn)1/2) o.s., (2.25)

where

U(x)

W[«t] =  N ( ^ H - ^ o ) S - 1(^o)(0 H - 0 o)t

m Q) = [A/ +  (1 — A) J ]n (£0) =  M n (£0), (2.26)

6 >  0 .
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Proof. Using Taylor expansion and error analysis similar to that in the proof 

of Theorem 2.1, we have

“ 5 3 V ^lo g /i^ r.fo ) -  X > l o g / 2(%;£o)

— £ o)^ J ]  v f  log fi(x f,£ 0) +  J ] v |  log f 2{yj^o)
, i j

+ (0 ((loglog fc)3/2A:-1/2)) a.s.

(2.27)

By using C4, C6 and the Law of Iterated Logarithm,

V€ log / i ( x 4; £0) +  ] T  Vf lo§ / 2(%; f 0) 
. » j

+  (0((loglog k f ^ k ~ ^ 2)) a.s.

[A/ +  (1 — A) J]"

(2.28)

Hence, for 0 we have

\fk(8k - 6  0) =  - j | ] T  Vf log / i ( ^ ;^ 0) +  ] C V«log M yjrfo)
i j

+ (0 ((loglog k)3/2}:”1/2)) a.s.

M n
M 21

(2.29)

The covariance of the main terms on the right-hand side of the above 

equality is found to be

E(f0) =
M 11 V /  M 11
M 21 J \  M 21 (e0) =  Af” (e0)-

Now the rest of the proof proceeds in the same way as that of Theorem

2 . 1 .
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The following corollary and lemma are similar in spirit and proof to 

Corollary 2.1 and Lemma 2 .2 , so their proofs will be omitted.

C orollary  2.2 Under the conditions of Theorem 2.2,

(i) lim n^ooP ^a{logn0)maxi<k<no 2 < t + 6d(logn0)} =  e x p (-e  *), t  G 

IR where Wk = (dk — 0o)£- 1(£o)( f̂c — do)*, a(x) and bd(x) are defined in 

(2.5) and (2.6), respectively.

(ii) max1<fe<no suPo<t<i

Lem m a 2.3 Replacing f 0 in S  by either £k = (0,ijk), £ok =  Wo,Vk) 

or restricted MLE, £ofc = (do,rjk) and A by m /k  do not change the limits in 

Corollary 2.2(i) and (ii).

2.4 Test procedures

Let statk denote either of

R l  =  VkWo,Vk) ( M n )(0o,r)k)Vk (0o,r)k), (2.30)

W*k(l) =  ifik -  6o ) ( M n )~1(Qk,f)k)(6 k - d o Y (2.31)

w*k{2) =  (dk -d o )(M n )- \d o ,ftk)(dk -d o )1 (2.32)

or

=  ( i t  -  00) ( M " ) -1(e0,rit)(et -  «o)'. (2.33)
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As a consequence of the Corollaries 2.1, 2.2 and Lemmas 2.2 and 2.3, we can 

identify two, cc-level sequential testing procedures, truncated at n 0 observa­

tions.

Test 2 .1  (Test 1) Compute \fstatk for k =  1,2, ...,no and reject Ho at the 

first k when it exceeds

CVi = CVi(a, n0, d) = (a(logn0)) 1 [ -  log(- log(l -  a)) +  6d(logn0)] .

Fail to reject Ho if it is not rejected by k = no.

The functions a(x) and bd{x) are defined in (2.5) and (2.6), respectively.

A better finite sample approximation to the critical value in Test 2.1 can 

be obtained by using a result in Vostrikova (1981). In fact, using methods 

similar to those used in proving Corollary 2.1(ii), we can show that

where {N (t), 0 < t  < oo} is a diffusion process with backward equation

(2.34)

l<fc<no
max (statk) ^ 2 —' sup U1̂ 2(t) =  op(l). (2.35)

l< t< n o

Also, from Ito and McKean (1965)

{[/1//2(t); 1 <  t < oo} =  {A(logt); 1 <  t < oo}, (2.36)

and boundary condition
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On the other hand, from Vostrikova (1981), we have for a fixed T > 0,

p Cs"» > ■) - tSsS 5  f  4 *- 4  *»(?)) « »>
as x  — ► oo.

From (2.35), (2.36) and (2.37), we can get a better approximation, CV[ =  

CV((a, no, d), to the critical value of Test 1 by solving

(C,V^)<ie x p (-(C '^ )2/2) f , d . 4 _ /  1 \  1
a ~  2rf/2r ( d / 2 ) { g n ° { c v [ y  g n * + { c v i y + \ { c v { y ) )

(2.38)

Test 2.2 (Test 2) For k =  1,2, . . . ,  no, compute ^ s t a t k  and reject Hq the 

first time it exceeds CV\ d). Fail to reject Ho if it is not rejected by

k =  no- The critical value, C V , i s  obtained by using part (ii) of Corollaries

2.1, 2.2 and approximations to the crossing probabilities of a Bessel process. 

One such approximation is available from Borodin and Salminen (1996).

For the case of a one-dimensional parameter of interest, CV2 can be 

obtained from the well known formula (Borodin and Salminen 1996)

4 ^ ( - l ) fc /  ir2(2k + 1)2\  .

' - " -jS ̂ expr a r ) -  <2-39)

Using numerical integration, Delong (1980) tabulated the exact values of CV2 

for several dimensions and for almost all a  of practical importance. Also, 

Betensky (1998) offered a handy, but not very accurate, analytic approxima­

tion  to  boundary-crossing probabilities o f a B essel process w hich can  be used  

for calculating CV2 .

For the sake of completeness, we give in Table 2.1 some values of CV\ , CV[ 

and CV2 for a  and no used in later simulations.
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R em ark  2.5 In the important case of the Adaptive Biased Coin sampling 

scheme of Wei (1978), the (k +  l) th patient is assigned to one of the two 

treatments with probability p =  (1 — Dk/k)/2 and to the other with probability 

q — 1 — p, where Dk =  m  — n in our notation. In our case, we can write 

(Dk/2k)  +  1/2 =  m/k.  Therefore, using Lemma 3 of Wei(1978) in which he 

shows Dk/k  —>■ 0 a.s., as k oo, we have m /k  —» 1/2 =  A a.s. as k —> oo. 

Thus, in connection with Remark 2.2, our results remain valid.

2.5 A pplications

Exam ple 2.1 Consider a sequential clinical trial involving the comparison 

of two treatments, E and S, (Experimental and a Standard treatment) with 

continuous outcomes. We assume that patients are assigned to treatment E 

with probability A and to treatment S with probability 1 — A and that the two 

streams of observations have normal densities; that is, we have x \ , . . . ,  xm, .. .  

y i , . . . ,  yn, . . . ,  assumed to be, respectively, from N (p i ,  a2) and iV(p2, cr2)- We 

are interested in testing Ho : p,\ =  /j2 (a > 0 , unknown) vs Ha ■ ^ \ ^  Pi 

(.a > 0, unknown). Under the re-parametrization

Q Vi -  IH + P2 1
e =  =  m =  - 2,

the hypothesis to be tested is H0 : 6  =  0 (rji G (—oo,oo),?72 e  (0, oo)) vs 

H a  : 0 7̂  0 (r/i E (—00, 00), g? €  (0, 00)), and the log-likelihood of the two
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sequences up to  observations n  and m  are

- m
+ 01 E

i=l
Xi + 1?2

1 m

-;E*J
m

4 log’fc
i=l

m ,
-  — log 27T,

n

1 ”
- o E i / i  + 0 i

3=1 .

1 ( ~ e  A.
2 f/2 \ 2 i?2 r?2

.3=1
+ 02

1 "
' 2 & i

3=1

^logr?2
n ,

-  - l o g 2 7 r .

Expected inform ation m atrices of the  two populations under the  new param ­

eters are

1 1 1/

I  =
2%

6_ + Vi
\  2% V202 r}2

1

J

( 1
4r/2

1

2 m

\  2r]2 \ 2 t?2 772

2t72
j_

02
1 / 0  [ 0 i
% \2772 1/2

2?72
j_

02

. 1  (-!?_ + 3L 
772 \2?72 ^

JL  + 0 1 ' \
2772 V2172 02

172 V202 172

ifE+^y+j-
172 V202 172/ 21?2 /

2 _ ( ' ; ±  +  2 i
21?2 \ 2 0 2  172

_ J _  f - 8  | 171

172 \ 2 0 2  0 2

1 / - 0  , 01 v  +

\

172 V202 +  1?2 202 /
Rao’s efficient score of equation (2.8) can be verified to  be

Vk
1 /  nsi — ms2 \

y / k  \  777 +  77 J  ’

where s i  =  Y l x i an(i s 2 =  YhVj- Now, using the  restricted MLE, 

2 _  1   Si x i +  Sj Vj ( Si +  S'l'
m  + n 777 +  77
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and transforming back to the original parametrization under i^o : A*i =  A*2 =  /L 

we have
^  i 1 1

a2 A(1 — A)

Therefore,

R*k =  V k t - ' V l  =  j  I  ---- -  1 - =z . ~  x v
k k k \  m  + n )  a 2 A(1 -  A)

1 /  nsi — m S 2 \2 1 1

For Wald’s statistic we have

W, N(l) x - y

W[

2.2

■*(2 )

X
a l \{ l  -  A)

(1 +  2 @ ) ^ A ( 1 - A ) ) ’

fcA(l -  A) { x - y f

(2.40)

(2.41)

(2.42)

if we use the unrestricted MLE a\ =  (J2(x i “  x )2 +  12(Vj — y)2) / m  + n. Using 

the restricted MLE, <rf, and do =  0 we have

2

W*{3) =  k
x - y

at
x <JfcA(l -  A). (2.43)

R em ark  2.6 In the above example, the unrestricted MLE, a2, can be replaced 

by the pooled estimator,

c2 E M  -  *)2 + E M  -  y f
p m  + n — 2

This replacement would slightly improve power and does not disturb the asymp­

totic results developed in this chapter.

Exam ple 2.2 As in Example 2.1, suppose that we have patients enrolling se­

quentially into a clinical trial and being assigned to one of two treatments, E
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or S, with probability A or 1 — A, respectively, and binary outcomes being mea­

sured afterwards; that is, we obtain two streams of independent observations: 

x i , X { , . .. i.i.d. with density f ( x ; 7Ti) =  nf  (1 — 7Ti)1_a: and y i , . . . ,  y j , . ■.

i.i.d. with density / ( y ; ^ )  =  ^2 ( I -  7r2)1_w) and the two Bernoulli populations 

are independent of each other.

Let the hypothesis of interest be Hq : tx\ = ir2 v s  Ha : Tiy ^  7t2. A nat­

ural re-parametrization is (6 , rj) =  ( l o g ( j ^ - ^ 2-) ,lo g (^ ^ )) (Robbins 1974, 

Whitehead 1978). Under this re-parametrization, the two populations will 

have densities of different functional forms sharing the same vector of param­

eters. The log-likelihoods of the two sequences are now

l°g /i(#> y ;x ) =  Osi + ys1 - m  log(l +  ee+n) (2.44)

lo g /2(^ y ;x )  =  r)s2  — nlog(l +  en), (2.45)

respectively, with si =  Y^iLixi, s2 =  )Cj=i Dj- If can be verified that the

expected information matrices are

/  e0+r> e6+r> \
_  (1 +  ee+ri)2 (1 +  ee+Tt) 2

e0+n e0+r) ’
v (1 +  ee+ 7>)2  (1 +  ee + r >)2 )

\  (l +  ^ ) 2 /
Therefore, in terms of the original parameters and under H 0 : 6  = 0, the 

estimated version of the covariance matrix in (2.22) becomes

E =  7Tjfe(l -  TTk) x A(1 -  A),
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where 74 =  is the MLE of the common Bernoulli parameter under H()

Consequently,

14 =
l

v f
mee+n

1 +  ee+ri 6=0,7] =T)k

ns i — ms  2 

m + n

Hence,

R*k = T k k
ns i — ms 2  

m  + n
x x

7Tfc(l -  TTjfe) A(1 -  A) '
(2.46)

Similarly, for Wald’s statistic we have

W*k{l) =  k

and

log
TTjfc 1 ~  7T2fc 

1 — TTlfc 7T2fc
X

Wfc*(2) =  k log 7Ti k 1 — 7T2A:

A-7Tifc(l -  7flfc)(l ~ A)7T2fc(l ~  7T2fc) 
A7fifc(l -  7fijfe) +  (1 -  A)f2fc(l -  7T2jfe)

(2.47)

x A(1 -  A)fr2fc(l -  7r2fc) (2.48)
1 — 7Tife 7f2A;

if we use the unrestricted MLEs, wik = s \ /m  and jt2*, =  s2/n, for estimating the 

covariance matrix. In contrast, using restricted MLE and the null hypothesis 

value, 6 q =  0, we obtain

W*(3) =  k log Tfifc 1 ~  ir2fc 
1 — ififc 7T2fc

x A(1 -  A)tt*(1 -  TTjfe), (2.49)

where, nk =’ m +n

2.6 S im ulation  stu d y

We have carried out Monte Carlo experiments using Examples 2.1 and 2.2 

to assess the performance of Test 1 and Test 2 in terms of power and average 

stopping times. Both normally distributed outcomes and binary outcomes had 

the following parameter sets in common:
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1. Allocation probability: A =  0.5

2. Truncation points: no =  50,100,200,500

3. Nominal significance levels; a  =  0.01,0.05,0.1

For the normal case, we kept /Ji =  0, and /i2 was varied over the set 

{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. The common variance of the two 

populations was o2  = 1, which allowed assessment of power and average stop­

ping time for Test 1 h  Test 2 under standardized treatment differences of 

magnitude /i2 -

For the binary outcomes case, 7Ti was kept at 0.5 and 7T2 varied over 

the set {0.1,0.2,0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. These values correspond to 

odds ratios that are above as well as below 1.

Each scenario in these Monte Carlo simulations is based on 104 replicates. 

Taking values of A other than 0.5 did not change the results of the simulations 

and hence, we concentrated only on A =  .5. Also, it is worth mentioning that 

for the Bernoulli case, values of that are more extreme resulted in lower 

power and higher ASN, however, this did not affect the empirical a

Generally, these simulations suggest that the test procedures are consis­

tent against fixed alternatives, a fact justified by Theorems 3.1 &: 3.2; that is, 

as the truncation point, no, grows to infinity, the power of the tests goes to 

unity for any fixed alternative.

Specific comments about the Monte Carlo results are provided in the 

following subsections.
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2.6.1 Com m ents on Test 1

1. The results for Test 1 using normally distributed outcomes, Rao’s ef­

ficient score statistic, R k, and Wald’s statistic, are reported in

Table 2.2, using the CV[ of (2.38 ), and in Table 2.3, using the CV\ of 

(2.34). The truncation points are limited to no =  50,500 to illustrate 

the performance at small and large sample. We notice:

a. Test 1 using R*k is extremely conservative and has much lower power

than Test 2 (Tables 2.4-2.8) at small treatment differences but stops 

much earlier than Test 2 at large truncation points.

b. Test 1 using Wk^  is even more conservative than Test 1 using R*k.

c. In some simulations (not reported in this thesis), we observed that

Test 1 using Wk^  is very liberal and has, for instance, empirical 

a  =  0.13 corresponding to a nominal 0.05. This feature makes it 

even less attractive than Test 1 with Wk l̂\  Wk^  shows similar 

anti-conservative behaviour.

2. In some other simulations (not reported), less severe but similar patterns 

appear for Test 1 when binary outcomes are used.

2.6.2 Com m ents on Test 2

1. Test 2 using Rao’s efficient score statistic, R*k, and critical values CV2 

from Equation (2.39) performs very well for both normal (Table 2.4 ) and 

binary outcomes (Table 2.5). Its empirical Type I error (rows headed by
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fi2  =  0.0 or 7r2 =  0.5 ) is slightly on the conservative side and gets better 

for large truncation points.

2. Test 2 using W*k^  has a much larger average stopping time and a much 

more conservative significance level than Test 2 using R*k. This pattern 

persists for both the cases of normal outcomes (Tables 2.6) and binary 

outcomes (Tables 2.7).

3. Test 2 using Wk^  has a liberal empirical significance level at small sam­

ple sizes (truncation points no =  50,100), a phenomenon which disap­

pears at large truncation points (n0 — 200 or larger) for both normally 

distributed outcomes (Tables 2.8) and binary outcomes (Tables 2.9). The 

average stopping time for this test is much smaller than that of Test 2 

using R*k.

4. In other simulations, not reported, Test 2 using either Wk^  or Wk '3> 

resulted very conservative.

2.6.3 Conclusion

Prom the above comments on the Monte Carlo simulations, we recommend 

Test 2 with Rao’s efficient score for practical use for all truncation points. 

However, if early stopping is crucial and the truncation point (i.e., the total 

sam ple size atta in ab le  at the end of the trial) is large, it is safe and better to 

use Test 2 with Wald’s statistic W*k 2\
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Table 2.1: Critical values for d = 1 and a, ri0 of interest in later simulations.

no a CVi(no,a,d) CV[ (n0, ct, d) CV2 (a ,d )

50 .10 2.76 2.74 1.96
.05 3.20 3.02 2.24
.01 4.18 3.56 2.80

100 .10 2.83 2.80 1.96
.05 3.24 3.07 2.24
.01 4.17 3.60 2.80

200 .10 2.89 2.85 2.80
.05 3.28 3.12 2.24
.01 4.17 3.64 2.80

500 .10 2.95 2.91 1.96
.05 3.32 3.17 2.24
.01 4.18 3.69 2.80

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.2: Simulated power (P), and average stopping time (E N ) for Test 
1 using normally distributed outcomes (Example 2.2 ) with jUi =  0, a =  1 
and various Rao’s score statistic R*k and Wald’s were used with
critical value CV[ obtained from Vostrikova’s approximation, Equation (2.38). 
Treatment allocation probability was A — 0.5.

n0 M 2

a = 
P

0.01
E N

a = 

P
0.05

E N
a  = 
P

0.1

E N

Rao’s efficient score statistic
50

0.0 0.000 50.00 0.008 49.82 0.030 49.30
0.1 0.001 49.99 0.014 49.72 0.033 49.21
0.2 0.002 49.97 0.025 49.55 0.057 48.73
0.3 0.008 49.92 0.042 49.28 0.086 48.29
0.4 0.014 49.86 0.074 48.79 0.147 47.13
0.5 0.034 49.62 0.133 47.94 0.235 45.66
0.6 0.059 49.34 0.208 46.74 0.329 43.78
0.7 0.104 48.84 0.303 45.17 0.442 41.60
0.8 0.174 48.02 0.426 43.01 0.569 38.73
0.9 0.270 46.96 0.560 40.33 0.690 35.74

500
0.0 0.004 498.92 0.019 493.73 0.045 483.64
0.1 0.016 496.40 0.065 483.54 0.117 467.60
0.2 0.126 478.23 0.293 436.66 0.399 403.30
0.3 0.469 412.50 0.687 339.64 0.783 295.09
0.4 0.828 312.58 0.939 234.82 0.963 195.04
0.5 0.979 218.80 0.995 159.42 0.998 131.89
0.6 0.999 158.36 1.000 115.27 1.000 96.83
0.7 1.000 120.00 1.000 87.61 1.000 73.45
0.8 1.000 96.00 1.000 69.89 1.000 58.50
0.9 1.000 79.70 1.000 57.22 1.000 48.44

Wald’s statistic
50

0.0 0.000 50.00 0.002 49.98 0.006 49.94
0.1 0.000 50.00 0.002 49.99 0.009 49.89
0.2 0.000 50.00 0.004 49.96 0.019 49.75
0.3 0.000 50.00 0.011 49.91 0.039 49.55
0.4 0.001 50.00 0.028 49.74 0.070 49.20
0.5 0.004 49.98 0.046 49.60 0.126 48.55
0.6 0.008 49.97 0.092 49.19 0.202 47.54
0.7 0.015 49.93 0.151 48.64 0.304 46.21
0.8 0.034 49.85 0.242 47.77 0.425 44.56
0.9 0.069 49.67 0.355 46.46 0.544 42.65

500
0.0 0.001 499.71 0.010 496.97 0.029 491.12
0.1 0.014 497.70 0.051 488.81 0.099 475.78
0.2 0.113 482.48 0.269 446.88 0.366 419.46
0.3 0.435 426.67 0.660 355.19 0.766 311.88
0.4 0.821 327.22 0.925 252.06 0.964 213.33
0.5 0.978 237.79 0.996 173.57 0.998 147.28
0.6 0.999 175.68 1.000 129.82 1.000 109.19
0.7 1.000 137.32 1.000 100.82 1.000 85.49
0.8 1.000 112.12 1.000 83.03 1.000 70.47
0.9 1.000 95.07 1.000 70.11 1.000 59.21
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Table 2.3: Simulated power (P), and average stopping time (EN)  for Test 1
using normally distributed outcomes (Example 2.2 ) with /xi =  0, a = 1 and

* ( 1)various /a2. Rao’s score statistic R*k and Wald’s Wk were used with critical 
value CVi obtained from (2.34) and treatment allocation probability A =  0.5.

no At 2

a — 

P

0.01

E N

a = 

P

0.05

E N

a  = 

P

= 0.1

E N

Rao’s efficient score statistic
50

0.0 0.000 50.00 0.004 49.92 0.026 49.35
0.1 0.000 50.00 0.005 49.92 0.031 49.27
0.2 0.000 50.00 0.012 49.82 0.052 48.92
0.3 0.000 50.00 0.026 49.60 0.083 48.36
0.4 0.001 50.00 0.051 49.25 0.134 47.45
0.5 0.002 49.98 0.089 48.69 0.221 45.88
0.6 0.006 49.95 0.147 47.98 0.324 44.05
0.7 0.015 49.89 0.226 46.78 0.436 41.70
0.8 0.033 49.77 0.341 45.02 0.560 39.16
0.9 0.063 49.55 0.460 43.13 0.676 36.21

500
0.0 0.000 499.96 0.013 495.43 0.041 485.18
0.1 0.003 499.46 0.044 489.04 0.110 470.68
0.2 0.045 493.12 0.230 452.50 0.378 408.36
0.3 0.272 459.32 0.616 365.19 0.768 301.94
0.4 0.673 379.44 0.915 257.47 0.962 201.78
0.5 0.937 279.39 0.993 175.57 0.998 136.70
0.6 0.996 204.83 1.000 126.35 1.000 98.44
0.7 1.000 155.15 1.000 97.67 1.000 74.80
0.8 1.000 123.67 1.000 77.08 1.000 60.70
0.9 1.000 102.29 1.000 63.67 1.000 49.88

Wald’s statistic
50

0.0 0.000 50.00 0.001 49.99 0.006 49.92
0.1 0.000 50.00 0.001 49.99 0.007 49.92
0.2 0.000 50.00 0.002 49.99 0.017 49.80
0.3 0.000 50.00 0.005 49.97 0.035 49.59
0.4 0.000 50.00 0.012 49.92 0.067 49.27
0.5 0.000 50.00 0.024 49.83 0.118 48.64
0.6 0.000 50.00 0.049 49.66 0.195 47.74
0.7 0.000 50.00 0.087 49.38 0.299 46.29
0.8 0.000 50.00 0.148 48.88 0.410 44.82
0.9 0.000 50.00 0.240 48.01 0.535 42.85

500
0.0 0.000 499.96 0.008 498.00 0.025 492.52
0.1 0.003 499.54 0.036 492.34 0.089 479.67
0.2 0.035 495.30 0.218 460.28 0.355 423.59
0.3 0.237 468.20 0.600 378.04 0.744 320.37
0.4 0.641 395.34 0.904 275.24 0.959 217.68
0.5 0.928 300.48 0.991 192.30 0.998 150.39
0.6 0.994 226.06 1.000 141.80 1.000 110.88
0.7 1.000 176.18 1.000 111.07 1.000 87.17
0.8 1.000 142.47 1.000 91.34 1.000 71.93
0.9 1.000 121.49 1.000 77.36 1.000 60.89
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Table 2.4: Simulated power (P ), and average stopping time (EN)  for Test 
2 using Rao’s statistic, (2.40), normally distributed outcomes (Example 2.2 ) 
with fj>i =  0, <7 =  1 and various /x2- Critical value CV\ is obtained from (2.39), 
and treatment allocation probability A =  0.5 is used.

nn H2

a  =  

P

0.01

E N

a  =  

P

0.05

E N

a = 

P

= 0.1 

E N

50
0.0 0.006 49.96 0.041 49.62 0.086 49.02
0.1 0.010 49.94 0.051 49.53 0.103 48.83
0.2 0.021 49.87 0.087 49.19 0.156 48.20
0.3 0.042 49.73 0.148 48.56 0.239 47.18
0.4 0.081 49.45 0.238 47.58 0.347 45.71
0.5 0.143 49.00 0.351 46.23 0.476 43.74
0.6 0.228 48.30 0.478 44.55 0.608 41.45
0.7 0.342 47.29 0.612 42.43 0.729 38.90
0.8 0.466 45.98 0.730 40.19 0.828 36.35
0.9 0.597 44.38 0.828 37.85 0.898 33.90

100
0.0 0.008 99.88 0.043 99.13 0.089 97.87
0.1 0.016 99.78 0.067 98.62 0.124 97.02
0.2 0.044 99.35 0.145 96.91 0.228 94.24
0.3 0.110 98.26 0.278 93.69 0.394 89.40
0.4 0.227 96.14 0.456 88.79 0.581 82.80
0.5 0.394 92.56 0.645 82.25 0.754 75.08
0.6 0.585 87.51 0.802 74.92 0.878 67.23
0.7 0.757 81.43 0.909 67.61 0.951 59.90
0.8 0.879 75.11 0.966 61.14 0.984 53.76
0.9 0.951 69.10 0.990 55.62 0.996 48.87

200
0.0 0.008 199.75 0.045 198.12 0.092 195.38
0.1 0.026 199.19 0.097 195.77 0.165 191.57
0.2 0.101 196.61 0.258 187.93 0.370 179.45
0.3 0.280 189.49 0.519 172.50 0.635 159.75
0.4 0.541 175.98 0.763 151.90 0.850 136.45
0.5 0.789 157.58 0.922 129.89 0.957 115.01
0.6 0.931 138.28 0.982 111.63 0.992 97.96
0.7 0.985 121.54 0.997 97.38 0.999 85.41
0.8 0.998 108.28 1.000 86.74 1.000 76.01
0.9 1.000 97.98 1.000 78.31 1.000 68.69

500
0.0 0.009 499.27 0.047 494.92 0.096 487.87
0.1 0.063 494.61 0.182 479.06 0.279 461.92
0.2 0.334 466.01 0.570 419.41 0.684 385.91
0.3 0.748 399.34 0.897 331.65 0.942 293.69
0.4 0.961 320.91 0.991 257.57 0.996 225.75
0.5 0.998 260.94 1.000 208.55 1.000 183.07
0.6 1.000 220.37 1.000 176.12 1.000 154.52
0.7 1.000 191.76 1.000 152.96 1.000 134.25
0.8 1.000 170.51 1.000 136.36 1.000 119.31
0.9 1.000 154.44 1.000 123.18 1.000 107.95
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Table 2.5: Simulated power (P ), and average stopping time (EN)  for Test 2 
using Rao’s statistic, (2.46), binary outcomes (Example 2.2 ) with 7Ti =  0.5 
and various 7 12- Critical value CV2 is obtained from (2.39), and allocation 
probability A =  0.5 is used.

no 7T'2

a — 

P

0.01

E N

a — 

P

0.05

E N

a = 

P

0.1

E N
50

0.1 0.673 42.67 0.871 36.07 0.926 32.23
0.2 0.317 47.25 0.551 42.93 0.682 39.49
0.3 0.102 49.20 0.274 46.95 0.380 44.81
0.4 0.025 49.80 0.098 48.99 0.166 47.95
0.5 0.009 49.94 0.045 49.57 0.098 48.86
0.6 0.026 49.81 0.098 48.97 0.171 47.88
0.7 0.105 49.18 0.271 46.92 0.377 44.90
0.8 0.314 47.26 0.560 42.78 0.684 39.41
0.9 0.666 42.88 0.864 36.15 0.926 32.30

100
0.1 0.971 65.24 0.994 52.64 0.998 45.92
0.2 0.686 83.13 0.866 69.86 0.921 62.14
0.3 0.258 95.29 0.494 87.14 0.615 80.67
0.4 0.055 99.08 0.150 96.65 0.251 93.48
0.5 0.009 99.87 0.042 99.14 0.088 97.88
0.6 0.047 99.23 0.156 96.44 0.240 93.67
0.7 0.265 95.03 0.498 86.97 0.608 80.94
0.8 0.686 83.32 0.869 69.64 0.929 61.69
0.9 • 0.972 65.31 0.996 52.33 0.997 46.05

200
0.1 1.000 92.15 1.000 73.54 1.000 64.92
0.2 0.967 127.39 0.993 102.23 0.998 89.58
0.3 0.594 171.71 0.802 146.52 0.874 131.80
0.4 0.112 195.97 0.268 187.07 0.378 178.63
0.5 0.009 199.73 0.049 197.87 0.096 195.04
0.6 0.106 196.36 0.271 186.81 0.388 178.10
0.7 0.588 172.28 0.806 146.31 0.869 132.12
0.8 0.967 127.37 0.993 101.97 0.997 89.16
0.9 1.000 92.22 1.000 73.75 1.000 64.51

500
0.1 1.000 144.79 1.000 115.97 1.000 101.57
0.2 1.000 200.89 1.000 161.05 1.000 140.36
0.3 0.972 309.36 0.993 248.51 0.997 216.69
0.4 0.353 462.64 0.582 416.32 0.688 384.08
0.5 0.011 499.21 0.048 495.19 0.095 487.61
0.6 0.352 463.34 0.573 416.89 0.700 381.70
0.7 0.970 308.43 0.994 248.40 0.997 218.28
0.8 1.000 201.43 1.000 161.01 1.000 141.07
0.9 1.000 144.62 1.000 115.88 1.000 101.36
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Table 2.6: Simulated power (P), and average stopping time (EN)  for Test 2 
using Wald’s statistic, (2.41), for normally distributed outcomes (Example 2.2 
) with Hi =  0, a — 1 and various pi2 - Critical value CV2 is obtained from 
(2.39), and allocation probability of A =  0.5 is used.

n0 H2

a  =  

P

0.01
E N

a = 

P

0.05

E N

a = 

P

■ 0.1

E N
50

0.0 0.002 49.99 0.029 49.80 0.064 49.44
0.1 0.004 49.99 0.033 49.77 0.079 49.29
0.2 0.009 49.96 0.062 49.56 0.125 48.91
0.3 0.020 49.93 0.110 49.22 0.201 48.11
0.4 0.042 49.84 0.187 48.56 0.308 46.97
0.5 0.080 49.64 0.297 47.61 0.427 45.46
0.6 0.144 49.33 0.412 46.35 0.565 43.50
0.7 0.226 48.88 0.542 44.78 0.688 41.49
0.8 0.335 48.18 0.668 43.10 0.796 39.16
0.9 0.457 47.26 0.779 41.04 0.880 36.96

100
0.0 0.006 99.94 0.036 99.39 0.079 98.33
0.1 0.013 99.84 0.059 98.95 0.108 97.67
0.2 0.032 99.59 0.126 97.71 0.209 95.27
0.3 0.083 98.90 0.256 94.95 0.374 90.92
0.4 0.179 97.56 0.431 90.61 0.563 84.85
0.5 0.336 94.88 0.620 85.13 0.735 77.74
0.6 0.527 90.92 0.781 78.38 0.870 70.74
0.7 0.712 85.71 0.896 71.99 0.947 63.76
0.8 0.844 80.48 0.960 65.55 0.981 57.67
0.9 0.934 74.94 0.987 60.75 0.994 53.37

200
0.0 0.006 199.85 0.043 198.36 0.083 196.26
0.1 0.019 199.46 0.089 196.50 0.156 192.43
0.2 0.093 197.11 0.246 189.63 0.354 181.84
0.3 0.256 191.32 0.503 175.28 0.622 162.66
0.4 0.513 179.26 0.753 155.24 0.837 140.21
0.5 0.763 162.45 0.913 134.92 0.957 119.62
0.6 0.921 143.77 0.980 117.15 0.991 102.91
0.7 0.981 129.21 0.997 103.44 0.999 90.78
0.8 0.998 116.11 1.000 92.86 1.000 81.51
0.9 1.000 106.53 1.000 84.95 1.000 74.61

500
0.0 0.009 499.33 0.043 495.60 0.095 487.77
0.1 0.060 495.45 0.183 480.22 0.271 463.81
0.2 0.329 468.24 0.567 422.43 0.684 388.58
0.3 0.735 403.41 0.894 337.61 0.940 298.75
0.4 0.958 329.59 0.991 262.59 0.996 232.51
0.5 0.998 268.98 1.000 216.72 1.000 189.23
0.6 1.000 230.31 1.000 184.73 1.000 161.88
0.7 1.000 202.57 1.000 162.04 1.000 141.99
0.8 1.000 182.54 1.000 145.86 1.000 128.61
0.9 1.000 166.87 1.000 134.02 1.000 117.60
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Table 2.7: Simulated power (P), and average stopping time (E N )  for Test 2 
using Wald’s statistic, (2.47), for binary outcomes (Example 2.2 ) with TX\ =  0.5 
and various 7r2. Critical value CV2 is obtained from (2.39), and allocation 
probability A =  0.5 is used.

n 0 7r2

a  =  

P

0.01

E N

a = 

P

0.05

E N

a = 

P

0.1

E N

50
0.1 0.421 47.70 0.744 42.31 0.829 38.86
0.2 0.223 48.76 0.508 45.19 0.649 42.13
0.3 0.072 49.63 0.233 47.95 0.349 46.18
0.4 0.015 49.92 0.082 49.34 0.143 48.56
0.5 0.006 49.97 0.034 49.70 0.076 49.25
0.6 0.016 49.92 0.079 49.34 0.147 48.49
0.7 0.071 49.62 0.235 47.93 0.351 46.02
0.8 0.211 48.84 0.507 45.18 0.655 42.10
0.9 0.421 47.64 0.739 42.42 0.831 38.94

100
0.1 0.956 74.19 0.988 60.47 0.992 54.12
0.2 0.659 86.25 0.857 73.28 0.921 65.37
0.3 0.243 95.93 0.479 88.30 0.605 82.30
0.4 0.041 99.42 0.145 97.03 0.230 94.34
0.5 0.007 99.91 0.041 99.17 0.088 97.98
0.6 0.043 99.41 0.152 96.81 0.229 94.28
0.7 0.251 95.97 0.476 88.37 0.606 82.53
0.8 0.650 86.63 0.851 73.49 0.918 65.56
0.9 0.954 74.24 0.988 60.77 0.992 53.86

200
0.1 1.000 103.75 1.000 83.66 1.000 74.00
0.2 0.964 132.19 0.992 106.49 0.997 93.67
0.3 0.576 173.96 0.791 149.31 0.863 134.85
0.4 0.113 196.16 0.259 187.83 0.378 179.01
0.5 0.009 199.76 0.045 198.14 0.095 195.40
0.6 0.103 196.53 0.268 187.35 0.369 179.26
0.7 0.570 174.19 0.792 148.86 0.868 133.74
0.8 0.966 131.51 0.992 106.26 0.997 93.83
0.9 1.000 103.53 1.000 83.41 1.000 74.04

500
0.1 1.000 161.14 1.000 129.21 1.000 113.97
0.2 1.000 208.14 1.000 167.07 1.000 146.12
0.3 0.974 311.54 0.994 250.34 0.998 219.07
0.4 0.336 465.29 0.573 419.06 0.687 385.48
0.5 0.009 499.29 0.049 494.74 0.098 487.23
0.6 0.333 465.72 0.584 417.27 0.688 385.27
0.7 0.972 312.15 0.995 249.04 0.997 219.49
0.8 1.000 208.15 1.000 166.44 1.000 145.70
0.9 1.000 161.17 1.000 129.46 1.000 113.64
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Table 2.8: Simulated power (P), and average stopping time (EN)  for Test 2 
using Wald’s statistic, (2.42), for normally distributed outcomes (Example 2.2 
) with fii = 0, a  =  1 and various /X2- Critical value C \ 2 is obtained from 
(2.39), and allocation probability A =  0.5 is used.

a —■ 0.01 a  = 0.05 a  == 0.1

n 0 1*2 P E N P E N P E N

50
0.0 0.022 49.62 0.072 48.63 0.134 47.46
0.1 0.030 49.53 0.092 48.41 0.153 47.17
0.2 0.048 49.31 0.131 47.83 0.206 46.24
0.3 0.086 48.84 0.206 46.77 0.296 44.88
0.4 0.140 48.18 0.297 45.53 0.405 42.97
0.5 0.226 47.20 0.420 43.44 0.542 40.42
0.6 0.332 45.77 0.538 41.25 0.660 37.72
0.7 0.457 43.89 0.671 38.33 0.762 34.72
0.8 0.576 41.83 0.783 35.41 0.863 31.59
0.9 0.700 39.23 0.867 32.46 0.917 28.96

100
0.0 0.012 99.71 0.055 98.38 0.112 96.37
0.1 0.023 99.50 0.088 97.55 0.149 95.44
0.2 0.067 98.61 0.163 95.46 0.255 92.11
0.3 0.141 97.08 0.308 91.67 0.427 86.72
0.4 0.267 94.04 0.490 85.59 0.610 79.03
0.5 0.441 89.44 0.678 78.01 0.772 70.91
0.6 0.631 82.93 0.821 70.15 0.891 61.79
0.7 0.798 75.81 0.920 62.30 0.955 54.49
0.8 0.901 68.67 0.971 55.00 0.985 48.27
0.9 0.962 61.72 0.991 48.70 0.996 42.41

200
0.0 0.012 199.54 0.051 197.48 0.101 194.30
0.1 0.033 198.73 0.107 194.92 0.174 190.33
0.2 0.119 195.43 0.278 185.79 0.383 176.94
0.3 0.305 187.32 0.527 169.57 0.651 156.70
0.4 0.581 171.35 0.774 147.69 0.852 132.02
0.5 0.801 152.18 0.926 124.77 0.960 109.57
0.6 0.939 131.08 0.986 105.53 0.993 92.23
0.7 0.988 112.85 0.998 89.93 0.999 78.99
0.8 0.998 99.13 1.000 78.64 1.000 68.97
0.9 1.000 87.96 1.000 70.09 1.000 61.21

500
0.0 0.008 499.28 0.049 494.83 0.098 487.00
0.1 0.067 494.12 0.189 476.99 0.287 460.10
0.2 0.342 463.31 0.575 417.27 0.678 383.31
0.3 0.750 394.03 0.903 326.53 0.944 288.31
0.4 0.962 313.62 0.993 251.91 0.997 218.50
0.5 0.998 251.83 1.000 200.78 1.000 175.40
0.6 1.000 209.07 1.000 167.52 1.000 146.98
0.7 1.000 179.22 1.000 143.38 1.000 125.56
0.8 1.000 157.21 1.000 125.16 1.000 109.54
0.9 1.000 140.10 1.000 111.00 1.000 97.54
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Table 2.9: Simulated power (P ), and average stopping time (EN)  for Test 2 
using Wald’s statistic, (2.48), for binary outcomes (Example 2.2 ) with 7Ti =  0.5 
and various ir2. Critical value C \ 2 is obtained from (2.39), and allocation 
probability A =  0.5 is used.

no 7T2

a = 

P

0.01
E N

a  =  

P
0.05

E N
a  = 

P

= 0.1
E N

50
0.1 0.718 40.93 0.830 36.55 0.866 33.89
0.2 0.414 45.15 0.620 40.76 0.717 37.81
0.3 0.158 48.36 0.320 45.63 0.416 43.60
0.4 0.044 49.52 0.125 48.35 0.197 47.07
0.5 0.020 49.78 0.067 49.08 0.117 48.28
0.6 0.045 49.50 0.125 48.35 0.197 47.07
0.7 0.160 48.25 0.322 45.57 0.429 43.35
0.8 0.412 45.21 0.620 40.88 0.714 37.82
0.9 0.713 40.99 0.831 36.45 0.868 34.09

100
0.1 0.975 58.19 0.990 48.80 0.994 44.46
0.2 0.731 77.89 0.883 65.36 0.930 58.32
0.3 0.305 93.18 0.523 84.24 0.633 78.12
0.4 0.064 98.66 0.165 95.69 0.262 92.07
0.5 0.012 99.75 0.057 98.61 0.106 96.90
0.6 0.062 98.70 0.169 95.69 0.256 92.28
0.7 0.305 92.84 0.521 84.43 0.628 78.25
0.8 0.736 77.84 0.882 65.01 0.932 57.95
0.9 0.973 58.49 0.991 49.00 0.993 44.46

200
0.1 1.000 79.15 1.000 64.86 1.000 57.71
0.2 0.972 118.81 0.995 94.92 0.997 83.29
0.3 0.602 168.90 0.805 143.66 0.882 127.45
0.4 0.122 195.46 0.278 186.16 0.391 176.15
0.5 0.011 199.57 0.050 197.65 0.100 194.46
0.6 0.117 195.42 0.278 185.55 0.378 177.37
0.7 0.614 168.30 0.814 142.51 0.874 127.97
0.8 0.973 118.55 0.994 94.93 0.998 82.99
0.9 1.000 79.60 1.000 64.82 1.000 58.15

500
0.1 1.000 123.02 1.000 98.61 1.000 87.00
0.2 1.000 189.39 1.000 150.97 1.000 131.67
0.3 0.976 302.35 0.993 241.70 0.998 211.71
0.4 0.335 464.20 0.580 413.11 0.700 379.31
0.5 0.010 499.14 0.050 494.54 0.099 487.12
0.6 0.346 463.24 0.592 412.83 0.695 379.62
0.7 0.971 302.65 0.995 241.51 0.998 211.85
0.8 1.000 190.35 1.000 151.14 1.000 132.37
0.9 1.000 123.04 1.000 98.51 1.000 86.45
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Chapter 3 

Asym ptotic results under H a

3.1 P relim inaries

In this chapter, we will derive asymptotics of the test statistics in Chapter 

2 under the alternative hypothesis, Ha- In Section 3.2, we will discuss the 

distribution of R*k under Ha , whereas Sections 3.3 deals with Wk under Ha - In 

Section 3.4, we highlight some approximate methods for obtaining power and 

moments of the stopping time when the parameter of interest has dimension 

one.

To render the discussion and conditions more tractable, we assume through­

out this chapter that the observations come from the exponential family of 

distributions (Serfling 1980). To this end, let the canonical form of the log- 

likelihood be

logU x - A v )  =  T ^ (x )e t +  T^r,t + S «(x) _  A ^ (0 ,V), i = 1,2, (3.1)

where i indicates population, / ,  is the density function of the ith population 

after eventual parameter transformation, are vector valued functions of 

the data and A^(d,rj) are functions of the parameters only. Under Ho, i.e.,

46
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when / i  =  /2  =  / ,  we may drop the superscript denoting the population so 

that T2 =  T2(1) =  T2(2), and A ^ ( 0 (hr}) = A ^ ( e o,rj) = A(0o,tj); hence,

VvA^(0o,r}) = VvAW(0 0,7?) =  VnA(0o,fl).

Under Ha, we assume that there exists A*, 0 < A* < 1, such that m /k  —► 

A* a.s. We let rj* denote the true value of parameter r) and F* an open

neighborhood of the line X*(6o,r]*) +  (1 — X*)(0,rj*). The following regularity 

conditions will be needed for the results of the coming sections.

C9. All first- and second-order partial derivatives of A ^ , % = 1,2, exist; the 

functions i =  1,2, are continuous, and V vA(do,r)) has a

unique inverse in F* that is Lipschitz continuous of order one in each 

component of T).

CIO. Matrices V22A«(0,»;), V 20 2 A ^ ( 6 ,ti), i = 1 , 2, are positive definite, Lips­

chitz continuous of order one in each variable in T*. Furthermore, their 

inverses and the inverse of matrix A*V22A(1) +  (1 -  X*)X7 0 2 A ^  exist in

r*.

C ll. The third derivatives of A{0, r}) are bounded.

C12. £#11T!̂  112+5 < oo, i , j  — 1,2, for some S > 0.

3.2 Consistency for R £

As a consequence of the following theorem, we will see that Test 1 and Test 2 

are consistent for Rao’s score statistic process.
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T heorem  3.1 Under Ha , i f  C9 - C ll  hold, then 

limsup |Rl(0o,rjk) /k  -  [A*ci +  (1 — A*)c2]
fc->oo

x (A*/(0o,%A) +  (1 -  A*)J(»o,^)) [A*C! +  (1 -  A*)c2]t |

=  0(fc-1/2(loglog fc)1/2) o.s.,

where

d  =  -  VflA «(0o, ^ ) ,  (3-2)

C2 =  V ^ 2>(M*) -  V,A<2>(00 , 0 ,  (3.3)

and T]q is the solution of the equation

A*V„A«(0,if) +  (1 -  A*)V,A^(0,iy*) =  V„A(0o,7?). (3.4)

Before proving the theorem, we need a technical Lemma showing that 

under Ha , the restricted MLE, f)fc, almost surely converges to the point t/q .

L em m a 3.1 Under the conditions of Theorem 3.1, we have

limsup ||rjk -  7^|| = ' 0(fc“1/2(loglogfc)1/2). (3.5)
k—*oo

P ro o f L em m a 3.1. Since rjk is the MLE of r) under H0,

m  n

Y ^ T 2(Xi) +  ^ T 2(%) =  m V vA {1)(6 o,rjk) + n V flA {2 \ 9 (j,rjk),
i = l  j = l

or equivalently,

-  m  1 n

j  „  + 1  „ E w  =  (3 .6 )
i=1 j =1
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Subtracting A*Vr)A(1)(0,i7*) +  (1 -  X*)WnA^(d,ri*) from both sides of (3.6) 

and taking into account (3.4), we have

1 m - n

^  -  A*V„AL«(0,,n +  I  -  E T2(%) -  (! -  A* ) V ^ (2)( ,̂I7*)k m  '■ "'** ' ■ fc n . ,i=i i=i

(3.7)

Noticing that by the law of iterated logarithm,

lim sup
- m

— ^ T 2(xj) -  V„A(1)(0,»7*) =  0 (m _1/2(loglogm)1/2) a.s.,
TYl .

2 = 1

limsup II- ^ T 2(yj) -  V„,4(2)(0,t7*) =  0 (n  1/2(loglogn)1/2) a.s.,
n—+oo ^  . ,J=1

lim sup
/c—► oo

0 (k (log log A:)1/2) a.s.,

and

we obtain

lim sup
k—>oo

n
(1 — A)* — 0 ( k  1//2(loglogA;)1/2) a.s.,

lim sup
/c—>00

V,,A(do,Tjk) -  V nA(d0 ,T}Q) = 0 ( k  1/2(loglogfc)1/2) a.s.

This result combined with the fact that, by C9, V vA has a unique inverse 

which is Lipschitz continuous of order one, will complete the proof of the 

lemma.

□
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Proof o f Theorem 3.1. Re-write the score vector, 14, as

m n

Vk = -  V 0A ^ ( M k ) )  +  k~1/2E  ( r i2)(%) -  V ^ (2)(^ o ,^ ))
»=1 j = i
m n

=  j t 1' 2 ] T  ( i f M  -  v«>4<»(e,r(*)) + 1 -1/2 Z  ( r iw (w) “  V.A<2>(«,1?-))
i = l  j=1

+  k~l/2mci +  AT1/2nc2 + k~1/2 m { y g A ^ \d 0 ,r]fi) -  Ve^4(1)(0O;̂ fc))

+  fc-1/2n ( V ^ (2)(«o,i?o) -  V ^ (2)(0o,%))- (3-8)

By CIO, C ll  and (3.5),

V „,4 (0 o ,» h )-V „ ,4 (0 o ,7 7 (f)  =  (»7fc-J 7 o )V 22 A ( 0 o ,^ o ) + ( c )(A:_1/2(log logA :)1/2) )  a .s . ,  

and hence, by C ll, the relation (3.4), and (3.6),

Vk - V o  =  - ( V v A (&o,Vk) ~  V t , A ( 0 o , n o ) ) l 2 2 ( P o > V o )  +  (o(A T1/2(loglogfc)1/2) )

m  1 
k m

1
=  -  ™ -  Y ,  (T2^ )  “

™ i=1

-  i  I  E  (T2(%) -  V„A<2> (M * ))^ ( f lo ^ )
1=1

+  ^ ( lo g lo g k )1/2) j  a.s. (3.9)

Similarly, by using CIO and (3.5),

V 0 ( 0 O)  rjk) - V eA (l) ( 0 o ,  i?o) =  ( » h ~»?o) V*,2 A ( l ) ( 0 O , 7?(f ) + ( O  (AT1/2(log iog / c ) 1/2) )  a

(3.10)
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Now, by inserting (3.9) and (3.10) in (3.8), the efficient score vector Vk 

can be written as

m

i=1

+  k ~ l f 2 ^  { T i \ y j )  -  V eA {2 )(6 ,T}*)) +  k~1/2 m(rjk -  rft ) /2i(0o,»?o)
3=1

+  k - 1/2n(rjk - ‘n^)J2i(e0,Vo) +  (0 (£ T 1/2 (log log &)1/2))
m

= k l/2 X*cx +  k ^ 2( 1 -  A*)c2 +  k ~ 1 /2  J 2  {T ? \x i)  -  V eA^(d,r]*))
i= 1

3 = 1
m

-  k ~1/2 j  [ E  (T^ )  -
i=1

+ £  (r2(%) -  V vAW(6,ti*)) J£(0o,rfi)]l2i(0o,no)
j - 1

m

-  ^ 1/2i [ E  (T̂ )  - Vf,A{1)(°rf))l£Qo,vt)
i—1

+ E (r2 (» )~v ,x (2>(«,V))^'(»o,^)] * 4 M )
i=i

+  (0(AT1/2(loglogA;)1//2))

=  A;1/,2A*ci +  fc1/2(l -  A*)c2 +  Ck + Dk + (0 (k ~ l / 2  log log k;)) a.s.

(3.11)
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where, after re-arranging terms,

Ck =  At1/2 £  [ ( ^ ( x i )  -  V eA ^ ( 6 ,r,*))
i=1

- ( r 2(x<) -  V„A(1)(0,»7*))/221(0o ,O (A */2i(0o ,^) +  (1 -  A*)J21(0o^oA)) 

Dk =  At1/2 E ”=i [ ( ? f  (ifc) -

- ( T 2(%) -  V ^ ( ^ , ^ ) ) J 221(^o,%A)(A*/2i (^o,t/oa ) +  (1 -  A*)J21(0o, O )

The independent terms in Ck and Dk have mean zero. Their covariance struc­

ture can be calculated, but it gives a lengthy formula not needed for the proof 

of this theorem. Instead, by the law of iterated logarithm,

limsup \\k~1/2 Ck\\ — 0(AT1//2(loglogA;)1//2) a.s.,
fc—HX>

limsup ||Ar1//2Dfc|| =  O(AT1/2(loglog A;)1/2) a.s.,
k—>oo

and since rjk —> t]q a.s. implies that we can replace by T,~1 (0 o,t}q )

without disturbing the error magnitude, the theorem follows.

□

R em ark  3.1 From the proof of Theorem 3.1, one can see that the efficient 

score process {14} behaves, in the limit, as a zero-mean Gaussian process with 

finite covariance structure and a drift of order A;1/2. As R*k/k  constant 

> 0, by Theorem 3.1, the consistency of Tests 1 and 2, based on R*k, follows.

3.3 C onsistency  for

Using arguments similar to those in Remark 3.1, and the following theorem, 

one can conclude consistency for the procedures based on the test statistics

W*-
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Theorem 3.2 Under H a , i f  C9-C10 hold, then

k— > 0 0

lim sup
k-+ 00

limsup W f ]/ k  - { 6 -  d0 )[Mn (d,r,*)}-\e -  0O)‘| =  (0((loglogk f l 2^ 2)) ,

(3.12)

W f ]/ k - { e - B o ) [ M l\ 6 o , r f ) r \ 6 - B ^ \  =  (O((loglog k)1̂ 2))

(3.13)

and

limsup Wk{3 )/ k -  ( 0 - 0 o ) [ M u ( 0 o , » ? o ) ]  °= (0((loglog fc)1/2A; 1/2) ) ,

(3.14)

where t}q is the solution of

V nA{0o,ri) =  \[m E(T?\xf))+nE(T! 1 2){yj ))} -  j V nAtl\9 ,i ,* )+ faA ™ (6,r ,* ).

(3.15)

Proof. Using arguments similar to those leading to (2.29), we can write

Vk{dk - o 0) = Vk(e-0o) + y/k(ek -e )

=■ y/k{Q -  0O) +  Cfc +  Dk +  (0((log log k)3 /2 k~1/2)) ,

(3.16)

where

Ck =

and

\ fk
X ; t x(1)(x,) +  t 2(1)(x,) -  V ^ \ e , v *)

Dk =
L 3

M n
}(tfo,i?*) (3.17)

M n  \
M 2 i )  Wo,Vi- (3-18)
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Since the independent terms in Ck and Dk have mean zero, by the law 

of iterated logarithm it can be shown that

limsup ||AT1/2Ck|| =  0(fc_1,/2(loglogfc)1̂ 2) a.s.
fc—>oo

and

limsup ||A:_1/2Dfc|| =  ©(AT'^loglogfc)1/2) a.s.
k—> oo

Hence, almost surely, (Ok — Oo) — (0 — Oo) + (0((loglogk)l 2̂ k~1̂ 2'}). Now, 

if is used, since Lemma 2.1 of Gombay and Horvath (1994) guarantees 

enough closeness of the MLE £ to £, by CIO we have

W*{1)/ k  = ( 0 -  6o)[Mn (d,rt*)}-1(0 -  Orf + (0((loglogA;)1/2A:_1'/2))

and

w ; {2)/k  =  (19 -  O o K M ^ O o r fT 'V  -  *<>)* + (0((loglogk)V 2 k -V 2) ) ,

so that (3.12) and (3.13) follow. Analogous arguments would lead to (3.14) for 

if we realize that, almost surely, \\t)q —fjk\\ — (0((loglogA:)1//2/c_1//2)) . 

This result is a consequence of C9, Law of Iterated Logarithm and the fact 

that, under Hq, f}k is the solution of

tv,A(«0,i,) = y^r2(1|(xi) + X X ’fe),
i j

thus com p letin g  th e  proof.

□
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3.4 E xam ples

Example 3.1 (Example 2.1 continued): For Example 2.1, it can be easily 

seen that under the alternative hypothesis, H a ,

1 =  M f  =  a 2 +  A*(l -  \ ' ) ( m  -
1/12 lo

and

Rk/k  (fii -  n 2 )2 / W 2 +  A*(l -  A*)(/xi -  ii2)2},

where fxi,fX2 ,<?2 denote the values of the parameters under H a - Similarly, for 

the Wald statistics we have

w *(i) ,, A*(l -  A*)(/ii -  /x2)2
k a 2 +  A*(l -  \*)(pi -  H2 ) 2

and

p^*(2) jfc A*(l -  A*)(//i -  /x2)2((cr2 +  A*(l -  X*)(ni -  /x2)2)

Example 3.2 (Example 2.2 continued): For the problem of Example 2.2, 

by solving

X*VvA ^ ( d ,V*) +  (1 -  A*)V„A(21>(0,77*) =  V„A(0o,i?)

for rj, we can see that, under the alternative hypothesis,

(7T2 ) o =  A*7Ti  +  ( 1  -  A*)7T2 ,

where 7Ti, 7r2 denote the true values of the parameters. Notice that if A* =  1/2, 

then (7t2)q =  zay a ; that is, the point to which the restricted MLE converges 

is actually the midpoint between H 0 and H a -
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Calculating the drift for R*k, we see that

__________ (1 — A*)2(tTx +  7T2)2__________
k (A*7Ti +  (1 -  A*)7r2) ( l  -  A*7Ti -  (1 -  A*)7t2)

a.s.

For Wald statistics we have

1 — 7Ti 7T2fc
7Ti 1 -  7T2 2 A*7Ti (1 -  7Ti)(l -  A*)7T2(1 -  7T2)

X A*7r!(l -  7Ti) +  (1 -  A*)7T2(1 -  7r2) ’

W*i2)/ k ^  log ^
1 — 7Ti 7r2fe

7T i 1 -  7T2
X  A*(l — A*)(7T2)o (1 — (tT2 ) o  )•

3.5 A pproxim ations for Pow er and sam ple size  
distribution

ing the power, the expected sample size, and the probability that sample size 

exceeds a specified threshold, is quite important. For example, the probabil­

ity that the sample size for the sequential procedure exceeds that of a fixed 

sample procedure with the same power and significance level as the sequential 

procedure is often needed.

In this section, we shall discuss these issues with particular emphasis on 

the case of a one-dimensional parameter of interest.

The following two Lemmas give the covariance structure of 14 and ^/k{6 k— 

6 q), respectively, under Ha- For ease of notation, we adopt the convention that 

superscript * for a matrix means evaluation at (8 , i f ) ,  the superscript 0 means 

evaluation at (8 o,r}*), and no superscript means evaluation at (0o,»?o)- In 

particular, this convention means that for the matrix M,

In order to design a sequential trial, having a method for at least approximat-

(3.19)
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M* =  \*I(9,r)*) +  (1 -  A*)J(0,rf), (3.20)

M° =  \*I(d 0 ,T)*) +  (1 -  X*)J(do,T)*). (3.21)

Lem m a 3.2 Under Ha and C9-C12, V^t] — y/[kt]d is approximately a mean- 

zero Gaussian process with the covariance structure

La =  M*n  +  M12 { \ * I ^ r 2 2 I ^  +  (1 -  A*).J22 J‘2 2  J2 2  }

-  {x*r12i ^  + ( i-x* )J*12J22}M 21

-  M n  {A*I^ r21 +  (1 -  X*)Jr2\r 2l} , (3.22)

where d — A*ci 4- (1 — A*)c2, and c\, c2 are defined in equations (3.2), (3.3).

Proof. Prom (3.11), it is clear that V* is approximately a d-dimensional 

Gaussian processes with covariance

Ea =  Cov{Ck +  Dk) =  A*Ef +  (1 -  A*)E^,

where E^ are, respectively, covariances of terms in Ck and Dk. It can be 

easily seen that

E f  =  I*n  + M 1 2 l £ l ^ l £ M 2 i -  -  M 1 2 l£l*2l,

e 2 =  r n +  -  J(2J22 m 2i -  m 12j221j ;1.

Hence, the desired result follows by simple algebraic manipulations.

□
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Lem m a 3.3 Under Ha C9-C12, \fk{6 k — Oo) — Vkd is approximately a mean- 

zero Gaussian process with the covariance structure

M 24 )  (*o) +  V  ~  A*) J (0,*7*)] (  m * 1 )  (fo)> (3‘23)

where d =  ( 6  — 6 0 ).

Proof. The proof uses equations (3.16)-(3.18) and is similar to that of the 

previous Lemma. Hence, the proof is omitted.

□

Exam ple 3.3 For Example 2.1 of the two normally distributed treatment 

outcomes, the E^ for Rao’s efficient score depends on /ii and /X2 only through 

6 , which measures the standardized minimum clinically significant betterment 

achieved by the experimental treatment. The formula for Ea is given by

Ea =  { ^A*(2a +  16A*V02 -  12AV3#2 -  X*02 +  Aa6 94 X* -  4A*V402 + 2a4 02 X* 

+  6 2  -  2X*a -  8X*3 a 3 92 +  12<t504A*2 +  2a 5 04  -  8a3 94 X* +  4a 3 02

-  16A*2 a 6 04  +  28A*V604 -  24xt6A*404 +  6<t806A*5 -  18a806X*4 +  2Oa8 06 X* 3

-  1Oct806A*2 +  2<j8 06 X* +  8<t6A*504 -  6A*3 a 5 04  + 2a4 X*3 02) }

-T {cr2 ( - A V 0 2 +  X*2 a 3 92 -  l)2)}

For Wald’s statistic, however, the covariance under Ha is free of the parameter 

of interest 9 and is actually the same as the covariance under Ho,

E 1
A a 2 X*(l — X*)'

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Suppose that for the one-dimensional 6 , by using the above lemmas and 

results of Theorem 3.1, one has been able to calculate the variances of V&, 

under both H0  and IIA) and denoted them by o\ and o \,  respectively.

Let

n  =  M  {1 < k < n 0 : (R *k ) 1 /2  > CVx}

— inf <  k < n 0  : '

Since by Lemma 3.1, — o~^\J[ht]d is approximately a Wiener process,

one can approximate T\ by

inf j t  < n0 : | W(t) + y / b ^ d \  > ^ -C V X j . (3.24)

Hence, the stopping time for Test 1 using Rao’s efficient score statistics can 

be approximated by rnin{n0,T\). Similarly, the stopping time for Test 2 can 

be approximated by min{no, 72} with

72 =  inf [ t  < no : \ ftW (t)  +  t . l — a ^ d  > . IUo<7 qCV21 . (3.25)
t V <? a  V ° a  J

Therefore, the problem is reduced to computing the moments of the first pas­

sage time of a Wiener process through a non-linear barrier. In such cases, no 

closed form exists for the moments or for the density of the first passage time; 

however, much literature has provided approximate methods requiring numer­

ical integration. We believe that the most tractable one is that of Potzelberger 

and Wang (2001). Other related references include Scheike (1992), Novikov et 

al. (1999), Daniels (1996) and Ragimov (1993).

Remark 3.2 In Tests 2.1 and 2.2, when the process crosses the boundaries,
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we have statn > C V f and T2 statT2/no > C V f . On the other hand, since The­

orems S.l and 3.2, imply statk/k d (positive drift), we can, heuristically, 

approximate statTi/ri by the drift. Therefore, we can conclude that

n 0 > E t x >  C'Vf/d

and
InoCVi 

no >  E t2 >  y — ^— •

Using numerical values from Tables 2.2-2.9, we have seen that this lower bound 

is a good approximation of the average stopping time for tests based on Wald 

statistics.
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Chapter 4 

Generalization to g  treatment 
groups

4.1 P  r elim inar ies

Large multi-armed clinical trials in which several treatments have to be com­

pared with each other or against a standard one are becoming quite frequent. 

However, until now, few studies have been published on this issue. For in­

stance, by using a two-stage hypothesis-testing procedure, Siegmund (1993) 

and Betensky (1996) considered the comparison of three treatments with out­

comes that are normally distributed with known common variance and obser­

vations coming in triplets. This procedure starts with a sequential test of the 

null hypothesis of no difference among the three treatments (henceforth, the 

“global null hypothesis”) and once this hypothesis is rejected, the apparently 

inferior treatment will be removed and another sequential testing starts to 

com pare th e  rem aining tw o treatm ents. B o th  authors based  their procedure  

on RST methods, and their strategy is similar to the Fisher’s protected LSD 

in the fixed sample literature (Kuehl 2000). Gombay (2002a) gives an example
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of a sequential procedure comparing g normally distributed populations with 

known, common, variance by using generalized likelihood ratio and assum­

ing that observations arrive in ^-tuples. Also, Examples 6 and 7 in Gombay 

(2002c) provide sequential change-point procedures for testing the ANOVA 

global hypotheses.

In the group sequential literature, Jennison & Turnbull (1999, [16.1]) 

addressed the problem of testing a global hypothesis of no difference among g 

treatment groups with outcomes that are normally distributed. The authors 

provided O’Brien-Fleming & Pocock-type critical values for use in the case of 

balanced designs (i.e., designs in which groups of equal sizes are recruited in 

each treatment arm at each interim analysis) with known common standard 

deviation across treatments. In the case of unbalanced designs with unknown 

variances, Jennison and Turnbull (1999) suggested the use of the critical values 

for the balanced case with known variances as good approximations, whereas 

Follmann et al. (1994) suggested obtaining critical values by simulations.

In this chapter, we shall give some straightforward extensions of the 

results of Chapter 2 to the case of global hypotheses for g treatment groups. 

This extension will be discussed in Section 4.2. Application to the case of 

the one-way ANOVA for g treatment groups along with a small Monte Carlo 

simulation assessing power and ASN for g = 3 will be given in Section 4.3.
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4.2 E xtension  to  g  treatm ent groups

As in Chapter 2, we assume that patients arriving sequentially are assigned 

to one of i =  1,2,..., g treatments with probabilities Xt such that XX=i A =  1- 

At each stage of the trial, {;%•; i =  1,..., g, j  — 1,..., rii} independent observa­

tions are available, with the total number of observations being k = Yli=in*- 

Let fi(x]0,rj), i =  denote the population densities with different func­

tional forms sharing the same d-dimensional parameter of interest, d, and the 

same p-dimensional nuisance parameter, r). These densities are obtained by 

appropriately transforming the parameters of the original problem so that the 

hypotheses of interest become Ho : 0  =  0 o vs Ha ■ 0  ^  0 q and Tj unknown.

Conditions similar to C1-C8 of Chapter 2 are still required in order to 

extend Theorems 2.1, 2.2 and their corollaries to the case of g groups. The 

extension of the conditions to the general case is quite simple. For example, 

C3 requires that, for each £ € flo and nt =  1,2,3,..., the score equations

a nt

E E  v „  log/i(xy; 00,1?) = 0
i= 1 j = 1

and
a «>

i=i j=i

have unique solutions denoted by rjk and £fc, where k = n«- However, for

the error terms to be bounded, the number of treatment groups must be small 

compared to the total sample size at any given stage of the trial.

For the ith treatment group, let A be the population Fisher information 

matrix. Partitioned matrices will follow the notation of equations (2.3) and
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(2.4).

Under the above setup, Theorems 2.1, 2.2, Corollaries 2.1, 2.2, Lemmas 

2.2, 2.3 and their proofs will, apart from notational complications, extend to 

the general case of g treatments in a straightforward manner. The resulting 

Rao’s test statistic process is

R l  =  U fc( 0 o  , $ fc) M n ( 0 o , ^ ( M * ) ,

with
9 nt

Vk(6 ,f)k) =  V# log/*(:%; 0O,
i= l j = 1

“ • - (£?*)"•
Similarly, for Wald test statistics,

Wt m  =  { h - 8 <,){Mn (8 k, -«„)■,

and

w f  =  ( h - e a) [ M n ( e « A k T \ i t  -# o )‘,

where 0fc, f)k are unrestricted MLEs, and fjk is a restricted MLE. Furthermore, 

Tests 2.1 and 2.2 will straightforwardly apply in the general case.

R e m a r k  4 .1  B y using the above global hypotheses testing procedures, one can 

adopt a strategy similar to that of Siegmund (1993) and Betensky (1996). In 

that case, one would start with all the g treatments and use the tests of this 

chapter to eventually reject the null hypothesis and then discard the, apparently,
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most inferior treatment and continue with the remaining ones until only one 

best treatment is left or the terminal planned sample size is reached. The 

overall a can be controlled by using a methods such as Bonferroni.

4.3 A pplication  and sim ulations

As an extension of Example 2.1, suppose the measured outcomes, x. 

N(pi, cr2), are coming from treatment i — with probability Aj. Consider

the global hypotheses of interest H0  : pi = p 2 = ••• = pg = p vs Ha : Pi ^  p 

for at least one i and that the variance, cr2, is an unknown nuisance parameter. 

Without loss of generality, let = p. A transformation such as

a Ti T ■ r> n Tg d" T n 1
S i-i = ■ * =  2 ,.. . ,g ; eg = pi =  2 ~2 ~'i 0g+1 = 92 =  ^

leads to the equivalent null hypotheses H0 : 8 y — 02 = ■■■ = 9g- i  = 0 with 

nuisance parameters r)i, t]2, and the log-likelihood of the data is given by

1(6,r)\x) =  ^ 2  log (" i= ) + lQg 92 -  xlj +  r}2xij ( ^  + — 
j  V  27T 2 \ 2 t ] 2 rj2

%—L J — 1

, f - Q i - i  , Sg-i  , 9 i \  1 „  f ~ 0 i - i  , 0g-\  ,+  V2 Xij I -------- 1- —------1 ) — -r ]2  I ---------1- —----- 1----
V 9 2  2t]2  m j  2 V 92 2772 rj2/

Exam ple 4.1 By using the above described ANOVA setup, it can be shown 

that for g =  3,

Vk = ^  (x2. -  n 2 x._, X(3). -  n3 x . . y ,

M n (60 ,T]k)     (  ^  ~  ^  ^
V -̂ 2̂ 3 A2(l — A2) /  ’

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fix (a A \1—1 _  ~2 (  A3(l -  A3) A2A3

and

[M 'HO oA )]-1 =  %  V ^  h { l  _  X i ) J ,

where x L — YTjLx x ij> x - =  Z)f=i Z)j=i x*j > A* =  n i/k  and

al  =  I  Z f c #  ~  ®-)2
i=l

is the restricted MLE of a 2 under H0. Also, the unrestricted MLE of a2  is

i=l j=l

Hence,

=  —  -'1-— { (x 2 . -  n2x..)2A3(l -  A3) +  2 ( x 2. -  n 2 x..)(x3. -  n 3 x j A2A3
A:<7|Ai A2A3 1

+  {x3. -  n3x .)2A2(l -  A2) | ,

(4.1)

Wfe(2) =  5-fc{ A2(l -  A2)(x2. -  xx.)2 +  2A2A3(x2. - xi.)(x3. - xi.)

+  A3(l — A3)(x3. — xi.)2 } (4.2)

and

W l{z) = ak { A2(l -  A2)(x2. -  xx. f  +  2A2A3(x2. -  xi.)(x3. -  f  1.)

+  A3(l — A3)(x3. — xi.)2 } . (4.3)

The matrix [Mn (dk,fik ) ] ~ 1 and hence have lengthy expressions and will 

not be reported here.

Using the above example, we have carried out a small Monte Carlo sim­

ulation for Test 2 with R*k by using allocation probabilities A* =  1/3 for
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i =  1,2,3 and common variance o2  =  1 . The results of the simulation, 

in Table 4.1, indicate that our conclusions for Test 2 with R*k, given in Section 

2.6, are still valid for g — 3.
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Table 4.1: Simulated power (P), and average stopping time (E N ) for Test 2 
using Rl  of equation (4.1) with normally distributed outcomes (Example 4.1 ) 
with Hi =  0, a — 1 and various /x2, /i3. The critical value, CV2, obtained from 
Delong (1980) and treatment allocation probabilities Al =  1/3 for i = 1,2,3 
were used.

a  = 0.01 a = 0.05 a  — 0.1
no H2 N P E N P E N P E N

50
0.0 0.0 0.006 49.97 0.038 49.72 0.084 49.24
0.0 0.5 0.072 49.61 0.227 48.12 0.347 46.47
0.0 0.9 0.385 47.37 0.664 42.81 0.782 39.52
0.5 0.0 0.072 49.61 0.228 48.13 0.347 46.47
0.5 0.5 0.073 49.60 0.228 48.11 0.348 46.46
0.5 0.9 0.263 48.36 0.533 44.73 0.663 41.90
0.9 0.0 0.388 47.35 0.664 42.81 0.777 39.57
0.9 0.5 0.260 48.37 0.531 44.77 0.663 41.84
0.9 0.9 0.386 47.36 0.664 42.83 0.779 39.54

100
0.0 0.0 0.008 99.91 0.043 99.28 0.087 98.27
0.0 0.5 0.239 96.43 0.477 89.75 0.608 84.29
0.0 0.9 0.849 79.41 0.953 66.96 0.977 60.13
0.5 0.0 0.241 96.43 0.476 89.75 0.604 84.29
0.5 0.5 0.241 96.40 0.477 89.75 0.608 84.25
0.5 0.9 0.696 85.64 0.878 73.72 0.931 66.67
0.9 0.0 0.850 79.39 0.954 66.85 0.978 60.11
0.9 0.5 0.697 85.59 0.879 73.64 0.929 66.68
0.9 0.9 0.851 79.33 0.954 66.96 0.977 60.13

200
0.0 0.0 0.008 199.79 0.045 198.43 0.091 196.24
0.0 0.5 0.614 174.31 0.817 152.02 0.887 138.20
0.0 0.9 0.997 116.00 1.000 96.17 1.000 86.20
0.5 0.0 0.613 174.40 0.817 151.97 0.889 138.07
0.5 0.5 0.615 174.37 0.816 152.05 0.887 137.98
0.5 0.9 0.981 130.19 0.996 108.28 0.999 96.82
0.9 0.0 0.998 116.05 1.000 96.25 1.000 86.21
0.9 0.5 0.980 130.31 0.996 108.26 0.998 96.88
0.9 0.9 0.998 116.02 1.000 96.17 1.000 86.20

500
0.0 0.0 0.009 499.39 0.046 495.74 0.093 490.09
0.0 0.5 0.986 308.87 0.997 255.76 0.999 229.36
0.0 0.9 1.000 184.23 1.000 152.97 1.000 137.11
0.5 0.0 0.986 308.83 0.997 255.79 0.999 229.26
0.5 0.5 0.987 309.02 0.998 255.86 0.999 228.96
0.5 0.9 1.000 207.78 1.000 172.28 1.000 154.54
0.9 0.0 1.000 184.22 1.000 152.89 1.000 137.13
0.9 0.5 1.000 207.92 1.000 172.33 1.000 154.49
0.9 0.9 1.000 184.19 1.000 153.23 1.000 137.11
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Chapter 5

Two-sample nonparametric 
tests using U-statistics with  
anti-symmetric kernels

5.1 P  r elim inar ies

Consider the sequential comparison of two populations (treatments) in which, 

as in Chapter 2, observations come from the first population with probability 

A and from the second with probability 1 — A; that is, at each stage of the 

sampling, the investigator has a total cumulative sample of size k = m  + n, 

independent each from distribution F  and y i , . . . , y n independent 

from distribution G. One would like to test

Ho : F(x) =  G(x) for all x  e  IR (5.1)

Ha '■ F(x0) ^  G(xo) for some Xo £ IR

based on the sample at hand at every stage and come to a decision as soon

as possible. Early decision-making is dictated, especially in trials involving 

human lives, by ethical and economical reasons.

Many studies have been published on nonparametric methods for the
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sequential testing of (5.1). These studies concentrate mainly on rank score 

tests when observations are survival times with certain censoring mechanisms.

In this chapter, we will focus on non-censored observations and, unlike 

Sen (1981), use U-statistic based procedures with anti-symmetric kernels, i.e., 

kernels h(x ,y ) such that h(x,y) = —h(y ,x ) for x ,y  € IR, to test (5.1). In 

Chapter 6, we will compare the sequential methods so constructed with the 

two-sample t-tests of the Pocock and O’Brien-Fleming types studied in Jenni­

son and Turnbull (2001).

Originally, U-statistics were invented for unbiased estimation of a param­

eter 6 . For that purpose, people usually considered symmetric kernels without 

loss of generality, as all other kernels useful for that purpose can be sym­

metrized. For anti-symmetric kernels,

E[h(x, y)} =  0 if x = y.

Therefore, anti-symmetric kernels are suitable for testing hypotheses of the 

form (5.1). We point out that symmetrizing an anti-symmetric kernel will 

result in an identically zero U-statistic which is, obviously, not useful. For 

this reason, the weak invariance principles of Miller and Sen (1972) are not 

applicable. A detailed discussion of the general theory of U-statistics is given 

in Koroljuk and Borovskich (1994) and Lee (1990).

T h e  chapter is organized as follows: in section  5.2, w e w ill give a  defi­

nition of the U-statistic and its kernel, and the regularity conditions for the 

kernel, along with the main asymptotic results for the maximal functionals of 

the U-statistic. Based on these asymptotic results, we define in Section 5.3
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two testing procedures for (5.1), similar to Test 1 & 2 of Chapter 2, and give 

an illustrative application using sign and Gehan-Gilbert kernels. In Section 

5.5, the consistency of the test statistics is proved.

5.2 A sym p to tic  resu lts under H q

A kernel function, h(x,y), is called “anti-symmetric” if h(x ,y ) =  —h(y,x). 

For a given anti-symmetric kernel, h(x,y), define

hi(u) — E(h(x, y)\x =  u). (5.2)

We require the following regularity conditions.

C l. For all |t| <  t0  with t 0  > 0, the moment generating function of hi is 

finite; that is, E{exp(t hi(x))} < oo.

C2. The kernel, h, is non-degenerate; that is,

a2 =  Var (h\(x)) > 0.

To compare the two populations at stage k = m  + n of the sequential 

sampling when there are m  observations from population 1 and n  observations 

from population 2, we use the U-statistic

m n

u k = J 2  J 2 h (Xi' yj)-
i=1 j—1

L et S'j1'* =  y U - i  h i(x t) and =  Y2i= l hi{y%) w ith  hi defined in  (5 .2). 

T heorem  5.1 Under Hq, Cl and C2,

lim sup
k—*oo
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where

(3k =  A:_1/4(loglog/^“^(lo g ^ /lo g lo g A ;)1/2 — loglogA;) ^ 2. (5.3)

For the proof of Theorem 5.1, we need the following Lemma: 

Lemma 5.1 Assuming the conditions of Theorem 5.1,

lim sup
k—>oo

where (3k is defined in (5.3).

q(i) _  o(») =  0((3-k %

Proof o f Lemma 5.1 We have m  =  where L =  1 if the ith observa-
i—1

tion is from population 1 and zero otherwise. Since observations come from 

population 1 with probability A, it is clear that E(m) =  Ak, and so the law of 

iterated logarithm gives

lim sup
k—*oo

m  — Xk = 0 (a k), (5.4)

where ak = (A: log log k)1̂ 2. From Theorem 3.1.1 of Csorgo and Revesz (1981) 

on the increments of partial sums of independent identically distributed ran­

dom variables, we get

lim sup max max 8 k s l l) 4 — s P
fc-> oo l< l< k -a k 1 < j< ak l+l  1

= 1,

and from this the Lemma follows.

□
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Proof o f Theorem  5.1 We write,

m  n

Uk = n ^ h i ( x i )  - m ^ h i ( y j )  
i=1 j=1

m  n

+ ih (xu  yj )  ~ hi  (x * ) + h i  (yj)]
i= 1 j'=1

— Ak — Bk + Cf-.

Defining a new kernel h* (u , v) =  h(u, v) — hi (u) + hi (v) , we see that Ck — 

E E  h*(xi,yj). From the anti-symmetry property of h, it is easy to verify 

that the kernel h* is also anti-symmetric. By using properties of conditional 

expectation and Jensen’s inequality,

E\hi{x)Y  =  E {\E [h {x ,y ) \x \n  

< E{E[\h(x,y)\v\x]}

-  E^h(x,y)Y] < oo.

Therefore, it is easy to see that E\h*\ < oo for some v > 2. Also, since under 

H0, E[hi(x)] =  E[hi(y)}, it can be seen that

Var[h*i(x)] = Var {E[h*(x,y)\y]}

= Var{E[h(x,y)\x] -  E[hi(x)} + E[hi(y)]} = ForfO} =  0,

and h ence, th e  kernel h* is degenerate.
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Now denoting by Zj elements of (x j , . . . ,  x m, y i , . . . ,  yn), we have by The­

orem 2 of Dehling et al. (1986)

Ck = 5 3  h*(zh , zi2 )

5 3  h*(xh ,x i2) -  5 3  h*(yniyi2 )

=  0{k  log log A;) (5.5)

By the law of iterated logarithm as in (5.4), we get

n
— — (1 — A) ='0(fc  ^(loglogA;)1/2).
aC

Thus,

k lA k -  n /k  53hi(x»)
i= l

=  (1 -  A)SS +  (n/fc)(S(;) -  S® ) +  (n /k  -  (1 -  A))S|‘t>

=  (1 — A)Sj;^ 4- All* 4- A 2k~

By Lemma 5.1, (5.4), and the law of iterated logarithm,

l^ifcl =  < W )  (5-6)

\A2k\ =' 0(log log A:), (5.7)

and hence,

Similarly, we have

AS® x)(l 4- O fft-1). (5.9)

From (5.5), (5.6), (5.7), and (5.9), the Theorem follows.
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□

Based on Theorem 5.1, we can derive the following corollary giving weak 

convergence results for two functionals of Uk-

C orollary  5.1 Under the conditions of Theorem 5.1,

(i) lim p \a ( T )  max At3/2<7-1A-1/2(1 — A)-1/2|[/fc| < t +  d (T )l =  exp (—2e- *),
no— * 0 0  1 l<fc<no J

lim p ia ( T )  max fc-3/2<r_1A-1/2(l — \ )~ l/2Uk <  t +  d (T ) | =  exp(—e_t),
no— > 0 0  I l<fc<no J

where T  =  log(n0), a(T) =  (21ogT)V2, 

d(T) = 2 log T  +  (1/2) log log T  -  (1/2) logTr.

(ii) lim p i  max k ^ n ^ a ^ X ^ i l  -  A)~1/2 \Uk\ < i l
n 0 —*oo ll<fc<no J

=  f { ^ p  w t ) l < * }  =  2 E ” .o  y 5 ex p ( - ^ ( 2 m + 1)7(8^)),

where W ( t) is a standard Brownian motion,

lim p i  max k~xnT1'/2<j_1A_1/2(1 — X ) ^ 2Uk <  t l
no—>oo ll<fc<no J
=  P {  sup W(t)  < f )  =  2$(t) -  1, 

to<t<i J

where $(•) is the standard normal distribution function.

P ro o f o f C orollary  5.1 Theorem 5.1 implies that Uk/ko^JX(l — A) is well 

approximated by
M  (1 -  *)s£> -

<7 \/A (l — A)

But, since Mk is the partial sum of i.i.d. random variables with mean zero 

and standard deviation one ( we can see this by calculating the variance of
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the terms in the sum defining Mk), the Darling-Erdos and KMT invariance

principles will apply to Uk/ k a y / \ ( l  — A) to give (i) and (ii), respectively (c.f., 

Csorgo and Revesz 1981).

□

The following Lemma shows that the asymptotic results in Corollary 

5.1(ii) remain valid if the unknown variance is replaced by a consistent esti­

mator. In the case of Corollary 5.1(i), we need the convergence rate of the 

estimator replacing the variance to be of the order 0((log fc)-1/2).

Lem m a 5.2 Under H0 and conditions of Theorem 5.1,

(i) i fo \  ^  cr2, then

max (cr, 
l<fc<no

1 - o  l ) k  1n01/2A 1/2(1 -  A) 1/2t/fc| =  op(l).

(ii) i f  | dk - a  | =  op((log k) 1/2), then

a{T) max |(d^1 -  cr-1) A:_3/2A‘ 1/2(1 -  \ y 1/ 2 Uk\ =  op{ 1).
l<«<no

Proof, (i) By Corollary 5.1(ii)

fc_1no1/2|C/fe| =  Op (no1/2 (log n0)1/2),max
l<fc<log no

and

As

max k ln 0 1l2 \Uk\ = Op(l).l<k<no

max |cr — dk | =  0(1), (5.10)
l<fe<logno K J
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max | k 1 n01̂ 2a 1 Uk — k 1 n 0 1 2̂ ak 1 Uk\
l<fc<l°gno

< max |cr—1 — oT1! max k ^ n Z l 2̂ \Uk\
l<fc<logtio l<fc<logno

=  Op(no1/2(logn0)1/2).

Thus it is enough to examine the process in the range log no <  k < no- 

max k^T iQ ^ ja ^U k  -  (r_1C4|logno<fc<no K

< max \ak 1 — cr-1 | max k~1riQ1 2̂ \Uk\
logno<fc<no logno<fc<no

— Op(1),

as max 1ST1 — <t- 1| =' o(l).
log no<k<no

(ii) By Corollary 5.1(i),

max k~3 / 2 \Uk\ = Op((logloglogn0)1/2)
l<fe<logno

and

By (5.10),

max k 3 /2 \Uk\ = Op((loglogn0)1/2). (5-11)
l<fc<no

max |A: 3/2er 1 Uk — k 3 ^ k lUk\ < max |cr 1 — dk 1\ max k 3̂ 2|t4 |
K fc< logno  l<fc<lograo l<fc<logno

=  Op ((log log log no)1/2).

For the range logn0 < k < no, we have by the assumption

max k~zl2 \Uk\\vk X — o~l \ =  max fc_3/2|C7fe|op((log A;)-1/2)
log n 0 < fc< fio  ' log n 0 < fc < n 0 I P \ \  o  )

<  Op ((log log n0)_1/2) max k~3 /2 \Uk\
lograo<fc<no

<  Op ((log log n0)-1/2) Op((log log n0)1/2)

=  M 1)-
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By (5.11), the proof of part (i) of the Lemma is now complete.

□

5.3 Test procedures and exam ples

Let a  denote the level of significance, T  = log(n0), a(T) =  (2 logT)1/2, d(T) = 

2 logT + (1/2) log logT — ( l / 2 )logn and &k be estimator of a  with appropri­

ate convergence rates. Corollary 5.1 and Lemma 5.2 allow us to define the 

following sequential tests, truncated after no observations.

Test 5.1 (Test 1) For k — 2 ,3 , . . . ,  no calculate

Stop and reject Hq the first time it exceeds the critical value CV\(ot, no), where 

CVi(a, n0) =  a~l (T) [ -  log ( -  1/2 log(l -  a)) +  d(T)]; 

otherwise do not reject Hq.

If a one-sided version is desired, we replace |£4| by C4, and CVfia, n0) 

by C V fta, n0) =  a ~ \T )  [ -  log ( -  log(l -  a)) +  d(T)}.

As we have mentioned in Chapter 2, critical values CVi and CV{ give 

conservative tests. However, we have seen how, by using Vostrikova’s (1981) 

results, they can be improved.

Test 5.2 (Test 2) For k = 2 ,3 , . . . ,  no calculate

A:_1no1/2cr_1A'"1/2(l -  A)~1/ 2 \Uk\.
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Stop and reject H 0  the first time it exceeds critical value CV^a)-

CVfioi) is obtained from the distribution in Corollary 5.1(ii), and some 

of its values were already given in Table 2.1. For the one-sided version using 

Uk instead of \Uk\, we replace by CV£ («) =  <F_1(1 — a / 2), where $  is

the standard normal distribution function.

5.4 E xam ples

Exam ple 5.1 The sign kernel defined by

h(x, y) =  <
+1 if x  > y 
0 if x  =  y 
—1 if x < y

is useful for comparing the locations of two populations. In this case, a 2  — 1/3 

under the null hypothesis (Lee 1990).

Exam ple 5.2 Consider a sequential trial comparing two treatments with a 

survival endpoint. Let xi = {z i ,8Zi}  be the observation from the ith subject 

under treatment 1, where Zi is time from entry to study until either death or 

random right censoring occurs, and 5Zi is an indicator of death or censoring. 

Similarly, let yj — {vj ,5Vj} be an observation of a subject under treatment 

2. Assume the censoring mechanism is the same in the two groups, and inde­

pendent from the survival time, and that the data is analysed each time an 

event (death or censoring) occurs. In this situation, the Gehan-Gilbert kernel 

(Kalbfleisch and Prentice 2002),

h(x, y) = I ( z  > v, Sv =  1) -  I ( z  < v , 5 z = 1),

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where 7 is an indicator function and x = (z,Sz),y  = (v,Sv), can be used to 

test (5.1) sequentially.

5.5 C onsistency resu lts

Now we will analyse the process under the alternative hypothesis H a - Define

fj, = Eh(xi,y i)  (5.12)

h2 (xi) =  E(h(xi,yi)\xi) (5.13)

a\ = Vax(h2 (xi)) (5.14)

<73 =  E (h(x 1 ,y 2 )h(x2 ,yi)) - /z2. (5.15)

Under Ha -, we need the following regularity conditions:

C l. 0 < of <  00

C2. E  \h(yi, y2)\v < 00  with some v >  2 

C3. 0 <  .E \E{h[(xi,yi)h(x2 ,y2)] \ Xi,y2}\ < 00

C4. E h 2 {x\,y{) < 00

In the next theorem, we will show that the process k~3/2Uk converges 

weakly to the linear combination of two independent Ornstein-Uhlenbeck pro­

cesses.

T heorem  5.2 Under Ha, if  y  ^  0 and Gl-Cf are satisfied, then 

| k~3 /2 Uk -  ( l - A ) A  1/2 k 1/2y

-  A(1 -  A)1/2<73rx ( log[(l -  A)fc])

-  (1 -  A)A1/2er2r 2(log[AA;])| =  op(l),
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where T j and T2 are independent Om stein-U hlenbeck processes.

[AA;] [(1—A)*]
Proof. Define = E E h(xuyj)-

i=1 j=l

Since, m  < [AA;] implies n > [(1 — A) k] and conversely, m  > [AA;] implies 

n  < [(1 — A) A;] we can see that

0 m  — [AA;],
[AA:] [(1—A)fc] m  n
E E Hxi,Vj) + E E h(xi,yj) m  < [AA;],

\U k -  U l \  <  *=m j = 1 i= l  j=[(l-A)fc]
m  n m  [(1—A)fc]
E E ^ i . y j )  +  E E h(xi,yj) m  > [AA;],

i=[Afc] j = l  i=[Afe] j= n

where [.] indicates the integer part of its argument. The terms in the right- 

hand side of the above inequality are almost surely of order 0((loglog A;)1/2). 

Therefore, the asymptotic distributions of [4 / A;3/ 2 and U£/k3 / 2  are the same, 

and we will concentrate on U £.

For simplicity, from now on we will omit the integer part notation [•]. 

To derive the asymptotic distribution of U jl, we follow some of the ideas in the 

proof of Theorem 3 of Gombay (20006). Re-write U £  as

Xk ( l - A ) f c

u k  E  fate’ ~

i=1 j —1

Xk
+(1 -  A)A; h2 (xi)

i—1

= Ak + Bk ,

and let be the sigma-algebra generated by the sequence xq, xq,. . .  . Note 

the orthogonality of Ak to i.e., E[Ak\J-^} = 0.
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Define the conditionally standardized, independent, identically distributed 

and centered random variables

A k

where

so that

i—1

A k

a* = y j ) ~ hi(xi)}) l^}.
i= 1

( l - A ) f c

A k/(r*= zr
j=i

Given JFW, there exists an Ornstein-Uhlenbeck process Fi such that, as 

k —> oo,

(l-A)Jfc

A)fc) _1/2 Y 1  zi — r i ( ic'sK1 -  A)fc]) =S o(l),
3 =1

using strong invariance principles for independent and identically distributed 

random variables (Csorgo and Revesz 1981). To analyse the large sample 

behavior of <7*, we use properties of conditional expectations, and re-write it
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as,

Xk
E l

=  E l

Yyĥyj) -M̂)] î (1)
, i = l  

' Xk Xk

, i—1V*=l /
Xk

-  #  |  Ĵ 2[fc(xi,%-)][/»2(a;i)] I ^(1)

= ^ |  I j  -  \^ 2 fo (x i)J

Xk
= J 2 E [h2 ( x i ,y j ) \E {1)] + 2 ] T  E {h {x h y j)h{xu y j) \ E {1)}

= 1  l<i<l<Xk
t Xk \  2

J > 2(^ )  =  C'Afc +  2Dxk H i

Xk

i—1

T2Xk
. i—1

As k — >■ oo, by the strong law of large numbers and C2 and C4, we get,

EK2(x i,y i) (5.16)

and

f-'Afc a.5 tti 7 2 (
Xk

JO, Bh'ixuvi) . (5.17)

A&;Noticing that ( ) is a U-statistic with kernel

<t>(Xi,yi) =  | J '(1)} ,

by the strong law of large numbers for U-statistics (Koroljuk and Borovskich 

1994), we get 

2
(X k)(X k -  1)

DXk ^  E[cj)(xi, x2)] =  E[h(xi, yi)h(x2, yi) | ^ (1)]. (5.18)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now from (5.16)- (5.18) and the fact that, ^  ^  o and —> 1 as 

k — > oo, we have

a 2 J( X k f  E[h(xi,yi)h(x 2 ,yi)] -  k? =  o'3-

Thus, we get

|4fc/M AA0((l -  A)A:)1/2] -  r^ lo g K l -  A)*])| a=S o(l). (5.19)

Finally, the term Bk is the sum of independent, identically distributed 

random variables, so by strong invariance principles (Csorgo and Revesz 1981), 

there exists an Ornstein-Uhlenbeck process r2, such that

| ( ( 1  -  X)k(Xk)l^2)~1[Bk -  ( A A -  cr2r 2 (log(AA:))| =S o( 1). (5.20)

Putting (5.16), (5.19) and (5.20) together, we have

|£-3/2jry* _  (i _  A)Ax̂ 2A:1//2/x — A(1 — A)1//2cr3ri( lo g [(l — A)A:])

- (1  -  A)A1/2cr2r 2 (log(Afc))| =  op( 1).

□

Theorem 5.2 derives the distribution of the test statistic under the alter­

native hypothesis Ha - From it, we see that under Ha and for large k. k~^!2Uk 

is approximately normal with a bounded variance and an expected value in 

the order of k1/72. From here, the consistency of the test procedures described 

in section 5.3 will follow.
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Chapter 6 

Empirical comparisons and 
concluding remarks

6.1 P relim inaries

From a practical point of view, determining how the test procedures proposed 

in this thesis compare, at least empirically, to the group sequential methods is 

very important.

In Section 6.2, we will examine the performance of Test 2 (Test 2.2) by 

using both Rao’s efficient score and Wald’s statistics, and Test 2 (Test 5.2) 

by using the sign kernel of Example 5.1. These tests will be compared to the 

fixed-sample t-test and to the group sequential t-tests proposed by Pocock 

(1977) and Jennison and Turnbull (2001).

In Section 6.3, we will provide concluding remarks for the thesis and 

directions for further research.

6.2 M onte Carlo sim ulations

Throughout this section, we will call the Test 2 (Test 2.2) procedure using 

Rao’s efficient score process, defined in (2.30), the “ sequential Rao test” , the
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Test 2 (Test 2.2) procedure using Wald’s statistic process, defined in (2.32), 

will be called the “sequential Wald test” . Similarly, the Test 2 (Test 5.2) 

procedure using the sign kernel of Example 5.1 will be called the “sequential 

sign test” .

The design and results of the Monte Carlo simulations comparing these 

test procedures to the fixed-sample t-test and to the group sequential t-tests 

of Pocock and O’Brien-Fleming will be discussed in the next sections.

6.2.1 Param etric case

This section compares the sequential Rao and Wald tests to the fixed-sample t- 

test and to the group sequential t-tests of Pocock and O’Brien-Fleming (OBF) 

given in Jennison and Turnbull (2001). For this purpose, we use the setup of 

Example 2.1.

To briefly describe the Pocock and OBF group sequential t-tests with K  

planned interim analyses, let n*, denote the cumulative number of observations 

from both treatment groups at the kth interim analysis, k =  4 ,2 ,..., K  — 1 . At 

the terminal analysis, we have uk = no, which is equivalent to our truncation 

point. Jennison and Turnbull (2001) suggested the following t-test procedure: 

Reject Ho at the first interim, analysis when \tk\ > t f>ak where, tk is the usual 

two-sample t-statistic for testing Ho based on the nk observations available at 

the k th interim analysis, f  = nk — 2 , a*, =  1 — $(cfc), and $  denotes the cdf of 

the standard normal.

For Pocock, Ck — Cp, and for OBF, Ck =  cobf\J K /k. The two constants, 

Cp and Cobf, are obtained by numerical integration assuming the known
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variance, a 1 — I.

For the current simulations, we have chosen K  as small as possible for 

the Pocock test and as many as K  =  20 for OBF test wherever possible. In 

fact, Jennison and Turnbull (1999) suggest that choices of K  =  10 — 20 for the 

OBF and K  =  2 — 5 for the Pocock test are optimal for the two methods.

Each entry in Tables 6.1 and 6.2 and each point in Figures 6.1 and 6.2 is 

based on 104 Monte Carlo replicates using pseudorandom number generators 

of the IMSL fortran library. The simulations used the normally distributed 

outcomes of Example 2.1.

An initial guess of the truncation points, no, needed for the OBF and 

Pocock methods to attain a given fixed power at a fixed a  level, is calculated by 

using S+SeqTrial (2001) under the assumption of known standard deviation, 

<7 =  1. Consequently, this value is fine-tuned by simulations until the correct 

no for the unknown <7 case is found. For the sequential Rao and Wald tests, 

truncation points corresponding to fixed power and a  levels are obtained by 

simulation search.

In general, when comparing sequential tests, several performance mea­

sures have to be considered. These are the truncation point, average stopping 

time, number of interim analyses, and power. Figures 6.1 and 6.2 summarise 

simulation results when the truncation point, no, is fixed and therefore, com­

parison is made in terms of power and average stopping time for some optimal 

number of interim analyses, K . The meaning of the optimality here is regor- 

ously defined in Barber and Jennison (2002) and Barber and Jennison (1999).
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Figure 6.1 shows that for a fixed, moderately large truncation point 

(no =  240), the sequential Rao test is practically identical in terms of average 

stopping time and operating characteristics to the O’Brien-Fleming procedure, 

and that both procedures have higher power than that of Pocock. The sequen­

tial Wald test is as powerful as the OBF and sequential Rao tests, but has a 

smaller average stopping time than all other tests. Pocock’s test stops earlier 

than other tests, but it has the least power. Jennison and Turnbull (1999) 

reported this behaviour when comparing the Pocock and OBF tests to the 

fixed-sample test. The situation remains almost the same for small truncation 

points (See Figure 6.2), except that the sequential Rao and Wald tests are less 

powerful. This phenomenon was expected since the tests in this thesis were 

based on large sample theory.

On the other hand, if we fix power, then the comparison must be done 

in terms of n0 and average stopping times. Let n / be the sample size of the 

fixed, two-sample t-test attaining the same power as the sequential test under 

the same Type I error and treatment difference |/ii — /i2| =  9. Also, let EgN 

denote the average stopping time when the true absolute difference is 9 , and 

let n0 denote the truncation point of the sequential test. We use 100(^^)%  

and 1 0 0 (~ )%  as measures of the performance of the sequential tests.

Tables 6.1 and 6.2 show the simulation results in terms of these measures 

of performance for 1 — (3 = .8 , .9; a  = .05; and 9 = .1 , .2, .5, .9. It is clear 

from Table 6.1 that, at low power (80%) and small treatment difference, the 

sequential Rao and OBF tests have a similar performance with respect to
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both measures. The sequential Wald test saves, on average, more sample than 

do both the OBF and sequential Rao test while having the same truncation 

points. For low power and large treatment difference, the sequential Rao and 

Wald tests are inferior to OBF.

For high power (90%), the sequential Wald test is the most economical, 

followed at all treatment differences by the Rao and then by the OBF tests. 

All three methods have the same truncation points. Although, at high power, 

Pocock’s method may save slightly more sample than the sequential Rao, se­

quential Wald and OBF tests, it requires a substantially much larger total 

sample than the others, and hence, it may not be preferable.

In terms of the empirical significance level, the first column of Tables 6.1 

and 6 .2  shows that, for large total sample size, all tests maintain the nominal 

level. For small total sample sizes, the Pocock and OBF tests are statistically 

significantly anti-conservative (as Jennison and Turnbull (2001) also noticed), 

whereas the sequential Rao and Wald tests are statistically significantly con­

servative.

Other simulation results, not reported, for the case when A ^  .5 showed 

the same behaviour as above.
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Figure 6.1: Plots for normally distributed outcomes with 6  = /xi — common 
a — 1 , treatment allocation rate A =  .5 and total sample no =  240. For 
the OBF and Pocock test, the number of interim analyses are K  — 20, 5, 
respectively.
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Figure 6.2: Plots for normally distributed outcomes with 0 — fii — ̂  common 
<7 — 1, treatment allocation rate A =  .5 and total sample no =  40. For the OBF 
and Pocock tests, the number of interim analyses are K  — 20,5, respectively.
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Table 6.1: Results of simulations based on Example 2.1 Sequential Rao and 
Wald are compared to the results Pocock and OBF t-tests. Nominal a  =  0.05, 
1 — (3 — .8 , 6  — |/xi — p2|, and allocation rule A =  .5 are used. EgN  is the 
average stopping time for sequential trials when the true treatment difference 
is 0, no =  tik  is the truncation point, K  is the number of interim analyses, n j 
is the sample size of the fixed, two-sample t-test attaining the same power at 
the same a-level as the sequential tests, a  is the empirical size at the given 
total sample size, no-

& K  6  EgN 1 0 0( f £ ) %  n0 100(j*)%

O’Brien-Fleming
0.0498 20 0 .1 2420.25 77.08 3240 103.18
0.0502 20 0 .2 622.70 79.22 840 106.87
0.0506 15 0.5 101.73 79.48 135 105.47
0.0527 11 0.9 34.04 81.05 44 104.76
Pocock
0.0493 5 0 .1 2506.10 79.81 3860 122.93
0.0506 5 0 .2 632.20 80.43 970 123.41
0.0510 5 0.5 104.80 81.88 160 125.00
0.0520 3 0.9 35.06 83.48 48 114.29
Sequential'Rao
0.0500 0 .1 2392.49 76.19 3260 103.82
0.0480 0 .2 619.97 78.88 850 108.14
0.0450 0.5 104.35 81.52 140 109.38
0.0410 0.9 35.83 85.31 46 109.52

Sequential Wald
0.0490 0 .1 2377.36 75.71 3240 103.18
0.0490 0 .2 610.89 77.72 840 106.87
0.0510 0.5 98.40 76.88 135 105.47
0.0640 0.9 31.11 74.07 44 104.76

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.2: Results of simulations based on Example 2.1 Sequential Rao and 
Wald are compared to the results from Pocock and OBF t-tests. Nominal 
a  =  0.05, 1 — /? =  .9, 6  — \fxi — //2I, and allocation rule A =  .5 are used. EgN  
is the average stopping time for sequential trials when the true treatment 
difference is 9, no = u k  is the truncation point, K  is the number of interim 
analyses, n / is the sample size of the fixed, two-sample t-test attaining the 
same power at the same a-level as the sequential tests, a  is the empirical size 
at the given total sample size, no-

a K 6 EoN 1 0 0 ( f ? ) % nQ 1 0 0 (^ )%

O’Brien--Fleming

0.0499 20 0.1 2946.60 70.09 4380 104.19
0.0504 20 0 .2 741.30 70.47 1110 105.51
0.0503 15 0.5 122.90 71.45 180 104.65
0.0512 4 0.9 43.20 80.00 56 103.70
Pocock
0.0495 5 0 .1 2890.30 68.75 5100 121.31
0.0490 5 0 .2 723.60 68.78 1280 121.67
0.0515 5 0.5 118.60 68.95 205 119.19
0.0510 3 0.9 40.90 75.74 63 116.67

Sequential Rao

0.0490 n0 0.1 2894.90 68 .8 6 4400 104.66
0.0480 n 0 0 .2 734.50 69.82 1110 105.51
0.0450 no 0.5 122 .20 71.05 180 104.65
0.0410 nQ 0.9 40.60 75.19 56 103.70
Sequential Wald
0.0490 0.1 2885.54 68.64 4380 104.19
0.0490 0 .2 730.64 69.45 1110 105.51
0.0510 0.5 118.05 68.63 180 104.65
0.0610 0.9 36.45 67.50 56 103.70
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6.2.2 Nonparam etric case

In this section, we compare the sequential sign test ( Test 5.2, using the sign 

kernel of Example 5.1 ) to the two-sample group sequential t-tests of Pocock 

and O’Brien-Fleming defined in Jennison and Turnbull (2001). We employ 

a class of location and scale-contaminated normal distributions used by Afifi 

and Kim (1972). W ith probability A, we sample from the mixture population

f ( x)  =  (1  -  0 , 1) +  7 4>(x] a, c2) (6 .1)

and with probability (1 — A) from

g(x) =  (1 -  7)0(z; &t, 1) +  7 <j>{x\ a +  St, c2 ) ,  (6 .2 )

where </>(x; [A, a2) indicates density of a normal distribution with mean fi, and 

variance a2, 0 <  7  < 1 is the mixing proportion, and a, c, 6  are fixed parameters 

useful for tuning the skewness and kurtosis of the populations. A nice feature of 

these mixtures is that the two populations have all moments identical. Hence, 

the hypotheses Hq : F  = G vs Ha : F  ^  G are equivalent to H0  : 8  =  0 

vs Ha - 8  7̂  0. The common variance of the two populations is given by 

r 2 =  1 — 7  +  7 c2 +  7 (1  — 7 )a2. (Afifi and Kim 1972) provide formulae for the 

skewness and kurtosis.

We have considered populations generated from all combinations of the 

param eters: c — 1,2,3; a =  0,-51,2.56; 7  =  0, .1, .3 and 8  =  0, .2, .4. To 

aid interpretation, we reported in Table 6.3 the skewness (first row) and kur­

tosis (second row) of the populations considered. The nominal a  — .05 and 

allocation probabilities A =  .5 and .7 were used. Since our methods hinge
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on large sample results, we used truncation points n0 =  150,300. The group 

sequential tests had K  = 10 and K  =  3 interim analyses, respectively, for the 

O’Brien-Fleming and Pocock tests. Beyond these numbers of interim analyses, 

no substantial gain in sample size saving occurred. Indeed, a substantial loss 

of power occurred in the Pocock method. Each scenario was replicated 105 

times by using Fortran IMSL random number generators.

Since the results for no =  300 were similar, we reported in Table 6.4 

results for no =  150 only. We can summarise our findings in the following two 

points:

1. All methods maintained their nominal a  =  .05 very well under all com­

binations of a, c, 7 ; that is, non-normality did not matter under H0  for 

all total samples considered.

2. Under the alternatives, the sequential sign test is more powerful and 

saves, on average, more sample than the two group sequential t-tests 

do when populations are non-normal and remains comparable whenever 

the populations are perfectly normal (e.g., c = 1, a =  0 and any 7 ). To 

illustrate this phenomenon, we reported in Table 6.4 results for the case 

where 5 — .4, A =  .5, no =  150, with all combinations of c, a, 7  given in 

Table 6.3.

Finally, our simulation results are consistent with those of Afifi and Kim 

(1972), who compared Wilcoxon’s rank-sum test to the two-sample t-test for 

the fixed-sample design.
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Table 6.3: Skewness (first row) and kurtosis (second row) for several combi­
nations of mixture parameters for (6 .1) and (6 .2 ).

a
c==1 c== 2 c==1

7 =  .1 7 =  .3 7 =  .1 7 =  .3 7 =  .1 7 =  .3

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
3.00 3.00 4.44 4.57 8.33 6.49

0.51 0 .0 0 0 .0 0 0.27 0.35 0.45 0.40
3.00 3.00 4.58 4.59 8.47 6.47

2.56 0.06 0 .1 2 0.84 0.89 1.53 1.28
3.70 2.58 6.56 4.23 10.30 5.82
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Table 6.4: Power (first row) and average stopping time (second row) of the 
sequential testing procedures using (6.1) and (6.2). Test 2 uses the sign kernel 
of Example 5.1. Truncation point no =  150 and A =  .5 were used.

c==1 c==2 c==1

a 7 =  .1 7 =  .3 7 =  .1 7 =  .3 7 =  .1 7 =  .3

Sign test
0 .0 0 0.621 0.625 0.674 0.708 0.779 0.839

123.5 123.3 1 20 .2 117.9 112.7 107.0
0.51 0.622 0.625 0.678 0.713 0.782 0.841

123.4 123.3 120 .1 117.5 112.3 106.8
2.56 0 .6 8 8 0.638 0.782 0.784 0.864 0.891

119.3 122.5 112.4 112 .2 104.7 101.2

O’Brien-Fleming
0 .0 0 0.660 0.661 0.662 0.665 0.674 0 .6 6 8

124.6 124.5 124.1 123.9 122.9 123.3
0.51 0.661 0.662 0 .6 6 6 0 .6 6 8 0.673 0.671

124.6 124.4 124.0 123.9 122.8 123.3
2.56 0.662 0.660 0.671 0.663 0.681 0.670

124.3 124.5 123.4 124.1 122.0 123.4

Pocok

0 .0 0 0.600 0.600 0.607 0.608 0.619 0.616
120.9 121 .0 120.1 120.1 118.6 119.0

0.51 0.602 0.600 0.608 0.607 0.618 0.611
120 .8 120.9 120 .2 120.1 118.5 119.3

2.56 0.606 0.599 0.614 0.606 0.628 0.613
120.4 121 .0 119.0 120.3 117.2 119.3
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6.2.3 D iscussion

The Test 2 procedure of Section 2.2 using Rao’s efficient score and Wald’s

statistic of Example 2.1 are compared, via simulations, to the almost exact

group sequential t-tests of Pocock and O’Brien-Fleming. Test 2 using Rao’s

score showed a very good performance comparable to that of O’Brien-Fleming

even at small total sample sizes, and much better performance than Pocock’s

* (2 )method. Test 2 using Wald statistic, Wk showed better performance than 

all other tests for moderately large truncation points.

We have also seen that the Test 2 procedure of Section 5.2, using the sign 

kernel of Example 5.1, outperformed both O’Brien-Fleming’s and Pocock’s 

two-sample t-tests in terms of power and average stopping times even for 

moderately large sample sizes under distributions with non-normal shapes.

Moreover, no numerical integration is required in order to obtain the 

boundaries of this thesis’ procedures. Given these advantages, these proce­

dures might be more suitable than the group sequential procedures in many 

situations including those where continuous monitoring is feasible. However, 

the user has to be warned from using these methods if the final sample size 

(truncation point) is small.

6.3 C oncluding rem arks

In this thesis, the following results were obtained:

R l .  A class of parametric sequential testing procedures, based on Rao and 

Wald type statistics, were derived. These procedures were designed for
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testing a two-sample, simple null hypothesis of the form H 0 : 0 = 0o 

against the composite two-sided alternative hypothesis Ha . 0  ^  0 q 

when there is a vector of unknown nuisance parameters, r/. The proce­

dures have simple decision boundaries that do not require heavy com­

putations. Values of the boundaries can be found in the literature for 

many Type I errors and several parameter-of-interest dimensions of prac­

tical importance. The test statistics were examined under Ha and their 

consistency was demonstrated.

R 2. The simple extension of the above procedures to the case of multi-sample 

global hypotheses was indicated. An application of this extension to the 

one-way ANOVA for comparing three treatments was provided.

R3. Nonparametric two-sample procedures using U-statistics with anti-symmetric 

kernels were derived. These procedures dealt with the null hypothesis of 

equality of two distribution functions against a composite alternative, as 

in R l, decision boundaries and consistency results for the nonparametric 

test statistics were obtained.

R4. An important Monte Carlo simulation was carried out to compare the 

most recommendable of our test procedures, namely Test 2 using Rao’s 

efficient score and Wald’s statistic, to the popular group sequential t- 

tests of Pocock (1977) and O’Brien and Fleming (1979) (see also Jenni­

son and Turnbull 2001). The simulation revealed that Test 2 performs 

better than O’Brien-Fleming’s and Pocock’s t-tests in terms of average
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stopping time, power, and total sample required. Another set of Monte 

Carlo simulations compared the two group sequential t-tests against our 

nonparametric Test 2 based on U-statistics with observations from non­

normal distribution shapes. These simulations showed that the non­

parametric test had substantially higher power and lower stopping time 

compared to the power and stopping of the group sequential t-tests under 

deviations from the normality.

The results of the thesis are an incentive and a ground for further research

in the following directions:

D l .  The methodology can be further extended to the generalized linear mod­

els (GLM) adjusting treatment effect for prognostic factors (McCullagh 

and Nelder 1989). Usually, the GLMs have a vector of parameters, (3, 

measuring effects of a set of covariates, x,, characterizing observations, 

on the response. The response comes from exponential family whose 

mean is linked to x'/3 through some function, g. For example, in clinical 

trials comparing two treatments, one would be interested in the hypoth­

esis of the form H0  : j3\ =  0 where, B\ is the coefficient of the dummy 

covariate, Xu, representing treatments. In this setup, the rest of the 

/3 parameters are nuisance parameters in addition to the scale param­

eter, a.  Therefore, th e  tw o-sam ple sequential m eth od s o f C hapters 2-3  

can be reformulated in terms of GLM methods. The latter approach’s 

disadvantage is that it does not incorporate the random allocation mech­

anism allowed in Chapters 2-3, which may lead to some loss in efficiency.
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However, GLM approach would allow us to easily perform multiple com­

parisons by using the Bonferroni-type adjustment for a.

D2. Further research should look into applying the sequential analysis ap­

proach of this thesis to correlated data. This application can be done in 

two directions: in testing hypotheses about the parameters of the Gen­

eralized Estimating Equation (GEE) models for longitudinal data and 

in testing hypotheses about time series coefficients.
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