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ABSTRACT

The boundary vorticity method is developed to overcome
the extremely slow convergence of the existing numerical methods
of solution for the biharmonic.eQUatidn in polar coordinates.
This method determines numerically the vorticity function
at the boundary and has the advantage that two second order
partial differential equations are solved instead of a single
fourth order biharmonic.equation. The distinctive. features
of the new method are simplicity, computational stability and
a significant saving in computing time as compared with the
conventional method.

As an application of. the boundary vorticity method to
a class of forced convective heat transfer problems where the
secondary flow is set up immediately with the appearance of
body forces normal to the main flow in a channel, a well-known
problem of fully developed combined free and forced laminar
convection in uniformly heated horizontal tubes is solved
numerically.

In another class of forced convective heat transfer
problems where the density (or temperature) gradient is
parallel to the body force direction, thermal instability of
free convection flows appears. As an example, the onset of
buoyancy-generated longitudinal vortex rolls is studied both_
theoretically and experimentally for fully developed laminar

forced convection between two infinite horizontal plates where



each wall is subjected to identical uniform axial temperature
gradient but maintained at temperatures T] and T2 (T] > T2,

T] < T2 and T] =-T2) at Tower and upper surfaces, respectively.
The onset of longitudinal vortex rolls is verified for air by

a direct flow visualization technique using cigarette smoke

and is confirmed also by transverse temperature profile measure-
ment. The experimental results for the critical Rayleigh number
are compared with theory and the agreement is found to be good.

After studying the thermal instability in plane Poiseuille
flow, finite amplitude thermal convection considering the non-
linear effect in the post-critical regime is studied numerically
by using the boundary vorticity method and its improved (or
modified) iterative scheme based on the assumption that the
wave number does not deviate frgm that predicted by the linear
stability analysis.

A study of the Prandtl number effect for the forced
convective heat transfer with secondary flow reveals that all
the heat transfer results for Pr > 0(1) approach the asymp-
totic result for Pr > = by using a suitable parameter.

The results of the present investigation indicate
that the boundary vorticity method can be considered as a
general procedure for the numerical solution of forced con-

vective heat transfer problem with secondary flow.



ACKNOWLEDGEMENTS

The author wishes to extend his appreciation to

Dr. K.C. Cheng for his supervision of this thesis and also
throughout the four years! graduate studies,

Dr. G.S.H. Lock for his instruction in a series of graduate
courses on convection heat transfer,

Dr. W. Nakayama for his assistance and discussion in the
formulation of the thermal instability problem,

Mr. M. Akiyama for his contributions to the work described
in Chapter V by designing the testing apparatus and carrying
~out the preliminary experimental work including the develop-
ment of the flow visualization technique,

The staff members of the computing center at the University
of Alberta for their operation of the IBM 360/67 digital
computer in connection with the present numerical work,

The National Research Council of.  Canada for postgraduate
scholarship (1967-1970) and financial support for the con-
struction of experimental facilities through Grant NRC A-1655,
Miss Susan Schultz for her patience in typing this thesis,
Messrs. T.M. Hrudey, A. Semeniuk and S.W. Hong for their
editorial checking on part of the thesis.

His parents and wife for their constant encouragement.



TABLE OF CONTENTS

CHAPTER I INTRODUCTION voveiiininnnneennnnnnnns
CHAPTER II BOUNDARY VORTICITY METHOD ...........

2.1 Introduction ....iiiiiiiinenerenenneenans
2.2 New Numerical Method for the Computa-

tion of Boundary Vorticity ...... cereanes
2.3 Concluding Remarks ......eeeeeeeeecennnes

REf ereNCES vttt iiiiieereeoeneeenoonesonnsnnnn

Appendix 2.1 Gaussian Elimination Method ....

CHAPTER III BOUNDARY VORTICITY METHOD FOR
CONVECTIVE HEAT TRANSFER WITH

SECONDARY FLOW IN HORIZONTAL TUBES..

Introduction ...vieeeiiiiennenennnennnnas
Theoretical Analysis .vveeeeeeeeoneoeenns
Finite-Difference Approximations ........
3.3.1 Properties of Matrices ‘and the
Relaxation Factor ......oeveeevnne
3.3.2 The Application of the Boundary
Vorticity Method ........coveuu.n.
3.3.3 Errors and Mesh Sizes .....ceven..
3.3.4 Iterative Procedure .......ocee...
3.4 Flow and Heat Transfer Results ..........
3.5 Concluding RemMarks .....veeeeeeeecennnns.

www
W —

REferenCes L I N N N R R R R

CHAPTER IV ~ THERMAL INSTABILITY IN PLANE
POTSEUTLLE FLOW ....vevrrvvvececennns

Introduction viviviiienieenennneonnnnns
Theoretical Analysis ...eeevenn ceerteeeens
A Power Series SOTULtION vuivvvivnsnernnnns
Results and DiscusSSion v.veeveennnnnnenns
4 5 Concluding Remarks ...vveveeereneosenenes

et
Pwroo

References ....oveevees e e et ss st esnecasen e

Appendix 4.1. The Elements of Matrix [C ] .
Appendix 4.2 Numerical Results ........%9.....



CHAPTER V. AN EXPERIMENTAL INVESTIGATION OF

oro i
W N —

5.4

THERMAL INSTABILITY IN PLANE
POISEUILLE FLOW ..evevennnnnnnnnes

Introduction ...vieverennncoconnnnse

Experimental Apparatus and Procedure cos
Experimental Results and Discussion ..
Concluding Remarks v..eeveeecencee ceccee

References .....civeseeecncnnosonseoess ‘e
CHAPTER VI FINITE AMPLITUDE CONVECTION IN

DO

W N o=

6.4
6.5

References © 08 0.6 060000090 05 5 "0 82 008000 LI I I I I )

Introduction ..1 ...... teesaserrecan
Theoretical Analysis .oeeveesens e
Finite-Difference Approximations ...

6.3.1 Properties of Matrices and the

Relaxation Factor ....veeeee

6.3.2 The Application of the Boundary
Vorticity Method and Its Improved

Iterative SCheme .vvvveevvoss
Errors and Mesh Sizes .....0
A Comparison of the Method of

oo
o w

Unsteady State Solution, Boundary
Vorticity Method and Its Improved

Iterative Scheme tererteeiaaa
Results and Discussion ..eeevecennns
Concluding Remarks ...veeevveenonnnne

Appendix 6.1 Order of Magnitude Analysis

for Governing Equations ........

Appendix 6.2 Numerical Results .........

CHAPTER VII - GENERAL CONCLUDING REMARKS
LIST OF FORTRAN IV PROGRAMMING

ADDENDUM

126
126
130
134
154

156

157
157
163
172

173

178
181
216
219
221
225
231
237

264



3.

3.2

1

4.1

6.

1

LIST OF TABLES

The relation between the number of
boundary vorticity values to be deter-
mined and the repeated number of com-
putations required .......cccieiiiiiianann

The boundary conditions for the govern-
ing equations ..... Cecececsasessaneasaens .

Values of w and 8 at the center without
secondary flow .......... cesenene cesessenn

Critical values of Ri(AT > 0) below
which longitudinal vortex rolls have
priority of appearance over the T-S
waves (Pr =.0.7) ciiierennennnnnns Cereaees

A comparison of the method of unsteady

state solution, boundary vorticity method
and its improved iterative scheme for the
case of u = 0 and Ra/Ra* = 4.69 ..... cesas

23

43

46

113

179



Figure

1.1
2.1

(93]
f—

3.10
3.11

LIST OF FIGURES

Structure of the thesis .....ccveeee ceennn

Coordinate system for a physical model
with boundary conditions .............. cee

Coordinate system and numerical grid .....
The linear relation between &p and Yy eeen

Convergence of numerical solution for heat
transfer results ...... teceressesecasans .

Comparison of velocity and temperature
distributions along central vertical

Tine from the present study with experi-
mental and theoretical results from

Mori et al. ..ovveevennn. Ceeesestsasaenas -

Comparison of velocity and temperature
distributions along central vertical line
from the present study with experimental
data from Mori et al. ...... Ceecetscessnann

Comparison of velocity and temperature
distributions along central vertical line
from the present study with experimental

data from Mori et al. vvveviinrenneencanans
Streamlines and isothermals ..............
Distributions of secondary flow velocity

components U, V ..cietirennnes teresaeens e
fRe/(fRe)0 versus ReRa ........ ceetecinaan
Nu/(Nu)0 versus ReRa ...vivveeceenannnas ..
New correlation based on Nu/(Nu)0 versus

PrReRa ..ttt iiiinenerannesacsaans
System of coordinates ..... Cerecreereaenas

Thermal boundary conditions on the
bottom and top plates ....ceveececnccnnnns

14
38
53

56

62

64

65
67

68
70
72

73
88

89



Figure Page

4.3 Fully developed velocity and tempera-
ture distributions in the unperturbed

state ...ttt i i ittt 89
4.4 Neutral stability curves for longitudi-

nal vortex rolls ...ieiiiiereeeenenennnnnsns 103
4.5 Neutral stability curve for the case

T Ceeisenan 104
4.6 Critical wave number versus |u| ......... 106
4.7 Second critical eigenvalues of Ra ....... 107 -
4.8 Secondary flow streamlines and isothermals

of perturbation temperature .......... oo 109
4.9 Perturbations of axial velocity component 111
4.10 Comparison of thermal instability with

hydrodynamic instability ....... Meesesenes 112
5.1 Configuration and coordinate system ...... 128
5.2 Schematic diagram of experimental appara-

tus (unit inch) .o.iiiiiniiniiienrnnnnnnns 131
5.3 Comparison of experimental data with

theoretical velocity distribution at

y' =0 with h = 1 inch and Re = 160 ..... . 135
5.4 Comparison of experimental data with

theoretical velocity distribution along
transverse direction y' at z'/h = 0.5
with h = 1 inch and Re = 160 ..... ceceesan 136

5.5 Comparison of experimental data with
theoretical temperature distribution at
Y' =0 with Re = 140, h = 1 inch,
T = 1.85°F/in. and T, = 85.6°F at
x' = 62 inches .....%W........... cesesaeans 138

5.6 Secondary flow patterns for the case
H=0and h =1 19nch .iiiiiiinnrnennsnnnans 141

5.7 Comparison of.experimental data with
theoretical stability curves for longi-
tudinal vortex rolls....veveeeeennnes oo 143




Figure

5.8

5.9

5.10

5.11

5.12

6.3

6.4

6.5

6.6

6.7

6.8

Formation of secondary flow patterns
with free convection effect for the
case of negative u and h.= 1 inch .......

Comparison of. experimental data with
critical ReRa_ for the case [u| » = .....

Formation of secondary flow patterns
with free convection effect for the
case |u] > and h =1 inch .............

Transverse temperature measurement

data for |u| = ® .iiiiiiiiiiirieennreannns

Comparison of critical wave number versus
|u| from theory with experimental data
from post-critical regime .....ccveveevnn

Coordinate system and numerical grid .....

Effect of grid size on the convergence
of the flow and heat transfer results for

the case of Pr = 0.7, u = 0 and Ra =-8010.

Comparison of velocity profiles- from this
investigation with the approximate analy-
tical results of Mori and Uchida and
their experimental data for the case of

52

Pr = 0.7, u = 0 and Ra = 8010.52 .........

Comparison of temperature profiles from
this investigation with the approximate
analytical results of Mori and Uchida and
their experimental data for the case of
Pr = 0.7, u = 0 and Ra = 8010.52 ........

Lines of constant axial velocity for the
case of Pr = 0.7 and 4 = 0 ... eennenons

Isotherms for the case of Pr = 0.7 and

u=0.oo.oool ooooo ® 5 00 0 0 0068000000800

Lines of constant vorticity for the case
of Pr = 0.7 and 1 = 0 ...t eeerenoconnns

Secondary flow streamlines for the case
Of Pr = 0.7 and 2 = 0 ..iveiernnenennnnnns

145

148

149

150

152
164

176

183

184

187

189

191

193



6

6.

Figure

.9

10

11

.12

.13

.14

.15
.16

A7

Secondary flow streém]ines for the case

Pr =:0.7 and p = =30 tiiiiiiitrictenennnns 195
Secondary flow streamlines for the case

of Pr = 0.7 and [u| » ® toivrnrennennnnnns 197
Axial velocity distributions for. the

case of Pr =-0.7-and g = =30 ...ieeeeenee. 200
Temperature distributions for the case

of Pr = 0.7 and g4 = =30 ..iivevernnrcnnnnnn 201
(fRe)3/(fRe)0 versus Ra for the case of

u =20 and p = finite with Pr = 0.7 _,.,... 206
(fRe)3/(fRe)0 versus PrReRaT for the

case of |u| =+ © ..ttt 207
(Nu); versus Ra for the case of p =.0 ..., 210

(Nu)iAPru)(i=1,2,3) versus Ra with
u(= finite) as a parameter. for Pr = 0.7 .. 213

(Nu)i/(Nu)0 (i=1,2,3) versus PrReRaT for -
the case of |u| » = .. .iiiiinininnnnnnns 215



NOMENCLATURE

|~

An =coefficient of a power series
a - =radius of a tube or wave number, 27h/)
aij =element of a matrix |
c =-C] a3/4vu, defined in equation (3.8)
C] =axial pressure gradient, 8P/3Z
02 =axial temperature gradient, 3aT/3Z
o =complex wave speed
cij =element of a matrix.
D =differentiation with respect to z, d/dz
f =friction factor, defined in equations (3.27),
(6.25), (6.26) and (56.27) or a function
f' =a function
G =a function defined by equation (4.9)
Gr =Grashof number, defined in equations (4.5)
and (6.9)
g =gravitational acceleration
h =grid size or distance between two parallel plates
h =average heat transfer coefficient
i =imaginary unit
=unit matrix
k =thermal conductivity
ki =element of a vector
L =Tlinear operator
M,m =integers

max(xi) =maximum value of X; s i=1,2,...



N =integer

Nu =Nusselt number defined in equation (3.27),
(6.28) to (6.30) and (6.32) to (6.34)

0(x) =order of x

P =pressure

Pr =Prandtl number, v/k

p =dimensionless pressure disturbance

p' =pressure disturbance

R =radial coordinate

Ra =Rayleigh number, PrGr defined in equations (3.8)
and (6.9) '

Re =Reynolds number defined in equations (3.8), (4.5)
and (6.2)

Ri =Richardson number, -Ra/64 PrRe2

r =dimensionless radial coordinate, R/a

T = temperature

t' = time

t =dimensionless time, t',v/h2

U,V,W =velocity components. in R, ¢ and Z directions or
x's, y' and z' directions

U,V,w =dimensionless velocity components in R, ¢ and

Z directions or dimensionless velocity distur-
bance in x', y' and z' directions

u',v',w' =velocity disturbances in x',y' and z' directions
X,Y =Cartesian coordinates

X,¥,2 =dimensionless Cartesian coordinates

x',y'sz' =Cartesian coordinates

X =unknown vector

YA =axial coordinate



e’

v

gl

=dimensionless Laplacian operator, 3278r2'+:a/r8r
+ 32/r23¢2 or 3?/ay2'+2327322'
—v2v2

2 4 5/R3R + 32/R23¢2'

=Laplacian operator, 82/3R
or 82/ay'2'+ 32/32'2

=dimensionless Laplacian operator in x, y and z
directions, az/ax2 + 82/8y2 +.32/822

=absolute value or determinant

=matrix

=summation

=éoéffiéfent.of thermal expansion

=differeﬁce 

=temperature difference between two plates,-T]-TZ
=small quantity

=dimensionless temperature difference,. (T-T: )/CczaPr,

defined in equation (3.8) or. d1mens1on1ess tempera-
ture disturbance

=temperature disturbance
=thermal diffusivity
=wavelength of vortex rolls:

=viscosity or parameter, Reth/AT, defined in equa-
tions (4.3) and (6.9)

=kinematic viscosity
=dimensionless vorticity function
=vorticity function

=density

=constant

=shear stress or temperature gradient along x'direc-.
tion, 8T/3x'



¢ =polar angle

¢u =basic velocity profile. function, 8(2-22)

ée' =basic temperature profile function, 2/3 ° (z-Zz3+z4)
Y =dimensionless stream function

’w' = stream function.

w =relaxation factor

Superscripts.

-1 = jinversion of matrix
(n) =nth number of iteration

! =perturbation quantity, dimensional quantity or
other specified quantity

- : =mean value

* =critical value or function of. z only

o =value at previous iteration step

Subscripts

b = boundary point or basic quantity in the unper-
turbed state

c . = characteristic quant%ty

i,J =space subscripts of grid point

3.k =space subscripts of grid point

M =mixed mean temperature

0 =condition for pure forced convection or maxjimum

quantity




I1

=value

at wall

=1in corresponding directions.

=quantity based on axial temperature gradient.

=vector or matrix

=value obtained from average gradient at lower.

plate

=value
plate

'=va1ue1

=value

=value

obtained from

obtained. from
obtained from

obtained from

average gradient at. upper

-overall balance
_average gradient along pipe wall

overall balance



CHAPTER I

GENERAL INTRODUCTION

When body forces (buoyancy, Coriolis and centrifugal
forces) act in a direction normal to the main flow for fully
developed laminar forced convection in channels of various
shapes, a secondary motion will be set up after the dimen-
sion]esé characteristic parameter deterﬁined by the given
body force and tie flow field reaches a critical value. This
secondary motion is known to modify the axial velocity profile
and temperature field with subsequent increase in the friction
factor and the Nusselt number. For the familiar cases of
uniformly heated horizontal tubes, tubes rotatfhg about an
axis perpendicular or parallel to the axis of the tube and
curved pipes, the secondary motion will be set up with the
appearahce of the body forces and the critical value of the
characteristic parameter governing the onset of secondary
flow can be considered as 0. On the other hand, under certain
circumstances the body forces acting on the fluid element may
not be large enough to overcome the stabilizing effects of
viscous and thermal diffusion leading to a thermal instability
problem.

The secondary flow pattern will depend on a particular
combination of the kind of body forces and the géometrica]

shape of the flow passage but is known to be qualitatively



similar for different body forces with the same geometrical
shape of the. channel. Although various noncircular channels
may be encountered in practical design configurations, con-
sideration is given here to only two important geometrical
shapes, namely, circular tube and rectangular channel.

In order to put the scope of the present work into
proper perspective, the possible combinations of the body
force (buoyancy, Coriolis or centrifugal force) with circular
tube or rectangular channel for the convective heat transfer.
prob1ems will be considered next:

(a) For a combination of circular tube with buoyancy
force, we can mention the familar problems of uniformly heated

horizontal tube and uniformly heated tube rotating about an

axis parallel to the axis of the tube. The former deals with = ¢

body force due to temperature variation in the gravitational
force field and the latter deals with the body force due to
acceleration in the rotating field.

(b) A combination of buoyancy force in the gravita-
tional field or accelerating rotating field with the rectan-
gular channel leads to several interesting cases. For the
horizontal rectangular channel, secondary flow can arise When
the walls are uniformly heated or either the side wall or
the bottom wall is maintained at higher temperature. For
the 1imiting case of a flat rectangular duct or a parallel-
plate channel, a secondary flow in the form of an infinite

pairs of vortex rolls may appear at a certain critical




value of the characteristic parameter depending on the hydro-.
dynamic and thermal conditions. The thermal instability
problem for the fully developed Taminar forced convection
between two infinite horizontal plates will be studied exten-
sively in this thesis. For a fully developed lTaminar flow in
uniformly heated horizontal rectangular channel with a large
aspect ratio (width/height), a boundary-value problem for the
free convection exists near the side walls and thermal in-
stability problem may exist in the central region.

(c) A combination of centrifugal force and circular
tube can be found in forced convective heat transfer in curved
pipes. Curved pipes and spiral pipes are used extensively
in various heat exchanger equipments.

(d) A similar combination of centrifugal force and
rectangular channel can be found in the form of curved rec-
tangular channels in various heating and cooling equipments.
In particular, a curved rectangular channel with large aspect
ratio (height/width) may lead to a limiting case of tangential
flow between two concentric cylinders giving rise again to a

stability problem.

(e) A combination of Coriolis force and circular tube
can be found in the form of a heated straight tube rotating
about an axis perpendicular to the axis of the tube for the

cooling of gas turbine blades.

(f) A combination of Coriolis force and rectangular

channel with various aspect ratios can arise in the form of



uniformly heated rectangu]ar channel rotating about an axis
perpendicular to the axis of the channel. It is interesting
to note that the limiting case of a parallel-plate channel
with infinite plates parallel to the rotating axis also leads
to a stability probiem.
It is npted that more than one kind of body forces
may coexist in a given forced convection problem; For example,
for the uniformly heated helical tubes with small radius of
curvature, buoyancy and Coriolis forces may have to be conside-
red in addition to the centrifugal forces under certain circum-
stances. Furthermore, the inclined tube effect may be of
importance. After considering possible combinations of the
body force and the geometrical shape, the methods of theore-
tical analysis available in the literature for forced convec-
tive heat transfer with secondary flow will be reviewed briefly.
For the low characteristic parameter region near the
critical value (zero or finite), the intensity of the secon-
dary flow is rather weak and a perturbation method is known
to be applicable. However, it is also known that Morton's
perturbation method diverges quickly with the increase of
the characteristic parameter and fails to yield solution for
the practically important range of characteristic parameter.
Morton's perturbation approach is also limited to the secon-
dary flow problem involving circular tube and cannot be
readily appliied to the noncircular channel such as square

channel problem. On the other hand, for the post-critical



regime near the critical characteristic parameter, a per-
turbation theory based on Stuart's energy-balance method is
known to be applicable to the fully developed laminar forced
convection with secondary f]pw between two infinite parallel
plates which is a 1imiting case of a rectangular channel with
large aspect ratio. However, an appreciable error is found
for flow and heat transfer results at a characteristic para-
meter say ten times the critical vaiue, At this point, it

may be c¢f interest ic note that in the case of buoyancy forces,
the momentum and energy equations are coupled. For the case
of centrifugal forces, the momentum and energyféquations are
uncoupled within the assumption of constant physical proper-
ties. However, the methods of analysis for various,cbnvective
heat transfer problems with secondary flow are similar.

For the high characteristic parameter regime, the
intensity of the secondary flow is strong and the flow field
may be divided into a core region and a boundary layer near
the wall. In the core region the viscosity and heat conduction
can be neglected and the body force is approximately balanced
by a pressure gradient across the cross-section. Consequently,
the secondary flow in the direction of body force can be con-
sidered as approximately uniform in the core region. Oﬁ the
other hand, inside the boundary layer near the wall, the body
force is small and the secondary flow is driven by a pressure
gradient. Although the boundary-layer technique proves to

be very useful for the prediction of flow and heat transfer



results in high parameter regime, the assumption of uniform
boundary Tayer thickness along the entire wall does lead to
some error and the method must be considered as an approximate
one. For the convective heat transfer in. the circular tube
with strong secondary flow, the analysis involves the solutions
of the governing equations for continuity, momentumAandvenergy
for the flows in both the core region and the boundary layer
such that the two solutions match at the edge of the boundary
layer. The above method using basic equations cannot. be
readi]& applied to the noncircular. channel and the extension
of the Stuart's energy-balance method considering the balances
of kinetic energy and entropy production for the boundary
layers is found to be more convenient.

The above brief review on the analytical methods of
solution for forced convective heat transfer with secondary
flow reveals clearly that no analytical method is available
for the approximate solution in the intermediate range of the
characteristic parameter. One of the purposes of this in-
vestigation is to bridge the gap between the perturbation
method for the relatively low parameter range and the boundary-
layer technique for the high parameter region by the numeri-
cal solution using the newly developed algorithm called '
boundary vorticity method. The new numerical method of.
analysis is believed to have wide applicability to various
forced convective heat transfer problems with secondary flow.

In order to demonstrate the applicability of the newly deve-



loped numerical technique, combined free and forced lTaminar
convection for fully developed flow in uniformly heated
horizontal tubes is studied numerically in this thesis.
After studying the thermal instability problem in plane
Poiseuille flow, the boundary vorticity method is again
employed to solve the finite amplitude thermal convection
problem in the post-critical regime for the plane Poiseuille
flow. The onset of thermal instability in plane Poiseuille
flow is also verified experimentally by using air as a work-
ing fluid.

The following schematic diagram serves to demonstrate

the general structure of the thesis, the topics treated and

the interrelationships among them.
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CHAPTER II

'BOUNDARY VORTICITY METHOD

2.1 Introduction .

In steady state two-dimensional fluid mechanics pro-
blems, we often encounter. the solution of a quasi-linear
partial differential equation involving a biharmonic operator,

namely, the following vorticity transport equation:

2 2
, 9vVTY! , dvVIY!
alp ] - aw ] - 2 2 T t
oy' ax' 9x'  dy' v V]V]w f (2'])
or alternatively,
' 3g' _ ay' 3E' _ 2.0 _ £
Byl 93X X ayn AY] V]E f (2.2)
g = vy (2.3)
2 32 4?2
where V.l = ) + 5 and f' is a known function.
ax' oy'

Analytical solution of the above fourth order quasi-linear
elliptic partial differential equation (2.1) is in general

very difficult and the finite-difference method is used most
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commonly in recent years for the solution of various engineer-
ing problems.

The numerical solution of the biharmonic equation
without the nonlinear terms in equation (2.1) has been
studied for many years. In 1954, Cornock [2.1] showed a
rather tedious conventional finite difference approximation
to the biharmonic equation formulated in Cartesian coordinate
system. He also suggested that it is probably advantageous
to use two second order equations instead of a fourth order
one. In 1958, Conte and Dames [2.2] successfully solved the
biharmonic equation by an Alternating Direction Method. With
the symmetry property of the iterative matrix, they derived
an iteration parameter which leads to a quite fast convergence
rate. However, for a problem formulated in polar coordinate
system, with or without nonlinear terms, the iteration para-
meter cannot be found. 1In 1960, Keller [2.3] proved that the
"best" biharmonic numerical scheme converges much slower than
the "best" Laplace scheme. Recently, Newell and Bergles
[2.4] solved combined free and forced convection problem in
horizontal circular tubes similar to the one which will be
discussed in Chapter III by using point successive over-
relaxation or underrelaxation method. Their results show
that it requires considerable computing time which is con-
sidered to be impractical (11 hours on IBM 7040 to obtain a
solution for an intermediafe parameter).

Summarizing the above brief literature survey, we can



11

conclude that the existing finite-difference iterative method
is too inefficient.and impractica] for solving the fourth.
order partial differential equation involving biharmonic
operator particularly for the problem formulated in polar
coordinate system. The slow convergence rate and the rather
involved algebraic expression for the biharmonic operator

as compared with a harmonic operator may discourage us from
further attempt in the‘numerical solution. Before the refer-
ence [2.4] appeared, an attempt had been made to solve the
combined free and forced convection problem in horizontal
circular tubes using the technique employed in my earlier
work [2.5]. The numerical methods used in references [2.4,
2.5] are similar. However, the technique used in [2.5] was
found to be too inefficient for the problem formulated in
polar coordinates. Consequently, the boundary vorticity method
was developed where the undefined vorticity function on solid
boundaries can be determined numerically. Because of this
development, the fourth order partial differential equation
(2.1) can now be reduced to a Poisson's equation (2.3) and a
quasi-linear second order partial differential equation for
vorticity function (2.2). As pointed out in references [2.1]
and [2.3], it is not difficult to see the advantages of the
present method. The number of iterations required for a con-
vergent solution will be much less than the point successive
overrelaxation or underrelaxation method employed by Newell

and Bergles [2.4]. Besides the fluid mechanics problems, we
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can cite many probiems in solid mechanics where this simple
and yet efficient numerical method can be applied. It will
be seen that the method can be applied to the problems which

will be discussed in Chapters III and VI with considerable

success.
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2.2 New Numerical Method for the Computation of Boundary

Vorticity
In order to demonstrate the method clearly without

any loss 0f generality, the nonlinear terms in the equations
(2.1) and (2.2) will be omitted for the present discussion.

For the numerical solution of the problem which will be con-
sidered in Chapters III and Vi, the nonlinear terms in equa-
tions (2.1) and (2.2) are linearized by taking the values of
%%; and %%; obtained from the previous iteration step. Neg-
lecting the nonlinear terms, equations (2.1), (2.2) and (2.3)

can be put in the following dimensionless forms, respectively:

4 4 4
e At Tk (2.4)
9X axza_y2 3y4
or alternatively,
2 2
) 3" & _
t == f (2.5)
X oy
2 2
) o ¥ _
+=—%=% (2.6)
X oy

For simplicity, we consider the solution of equations (2.5)
and (2.6) for a region of unit square (see Fig. 2.1} with

boundary conditions identical to the ones which will be used
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in Chapter VI. The number of meshes considered is 3 x 3 = 9.
Usually, for the problems studied in this thesis, it will
require about 500 to 160Q meshes to obtain a numerical solu-
tion with a truncation error of the order of 10'3. The

coordinate system, boundary conditions and nodal points are

shown in Fig. 2.1.

f’ 18 420
B(1,1)
12 4
c(o,1) 8 16 On boundaries OA and BC
:3_41: = ?
2 11 3 V7 15 v 9y 0. ¢ )
3 I
--—h—-’-
] 10 2 6
3 L 14 On Tines of symmetry 0OC
' and AB
9 1 5 13
- X vy =&=0
0 TS I A(1,0)
3 3 ?
17 19

ng. 2.1 Coordinate system for a physical
model with boundary conditions

Physically, the lines OA and BC represent parts of two infinite
horizontal plates and lines 0OC and AB represent lines of
symmetry. For the problem which will be studied in Chapter

VI, there is an infinite number:of vortex rolls appearing

between the two infinite horizontal plates. By the symmetry,
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only the region OABC needs consideration for the study of a
vortex roll. .

The significance of tﬁe boundary Vorticity method is
to determine the boundary vorticity numerically on the boun-
dary lines.OA and BC and propose to use equations (2.5) and
(2.6) instead of equation (2;4) for obtaining a greater con-
vergence rate and simpler algebraic expressions. Two methods:
are available for the determination of the boundary vorticity
and these will be discussed next.

Method (a): Referring to Fig. 2.1, the equations.

and the boundary conditions are

On boundaries On Tines of symmetry
0A and BC AB and 0C
2 2
ax2 Yy 3y
2 2
2L+ 25 =7 £=1? £ =0 (2.7)

It is seen that we must determine the vorticity & on
the boundaries OA and BC such that the stream function ¢y = 0
on the same Tines. '

Using a five-point finite-difference approximation
and considering the boundary conditions in (2.7), the system
of linear algebraic equations to be solved after discretizing

the equation in (2.7) is shown below as
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4 2 0o o 1 0o o of |yl = 2 .g]-
1 -4 1 0 0o 1 0 of |u,| £,
0 1 -4 1 0 o 1 of |u, £s
0 0 2 -4 0 0 0 1 Vg Ea {2.8)
1 0 0o 0 -4 2 o of |y Es
0o 1 0 o 1 -4 1 o [u Eg
o 0o 1 0 o 1 -4 1]y, £,
0 0 0 1 0 0o 2 -4 |ug £q

N J L8 4
a1 1 o] Te)] -n? [, - TE]
10 -4 1| |z e £
o 1 1 -4l |z f £
i s 7] s

It is noted that the elements g], g4, 55 and gg shown on the
right-hand side of equation (2.8) and the last columm vector
of equation (2.9) are the unknown boundary vorticities to be
determined. We further note that a total of 12 algebraic
equations for 16 unknowns are obtained. Theoretically, we
can eliminate 8 unknowns at the interior points 2, 3, 6 and
7 with the following four equations remaining for the 8

unknowns at the boundary points 1, 4, 5 and 8,
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.1 = I . ~ T
¥ ayy 21, a3 el 5]+ 4
by 31 3 3 Ayl | &, kg (2.10)
Vg 331 335 33 ag| | &g kg
Vg | 31 %2 %3 a4 | %8 kg
e . = e - b p—
or in a vector form,
wb =Agb+£ (2..]])

where subscript b refers to the boundary points. Using the
remaining boundary condition ¢ = 0 on boundaries OA and BC,

the boundary vorticity can be obtained as

g, = - Al k. (2.12)

The above elimination method is'impractical for a system with
say 10 unknowns since the matrix A cannot be found readily.
The following numerical technique may be suggested
to evaluate the matrix A and the vector k. - We note that
there are a total of 20 unknowns for the elements of. the
matrix A and the vector k. By assuming 5 different vectors
for g and solving the equations (2.8) and (2.9), 5 different
vect;;; Yy can be obtained and 20 equations exist for the 20
unknown ;;éments of the matrix A and the vector k. This
procedure is also impractical for a large system with say 100

unknowns.
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It will be shown that the most significant point of
the boundary vorticity method is the fact that we do not
need to solve for all the bourdary vorticities simultaneously.
It is possible to apply a line iterative scheme to cbtain a
convergent solution. We note that a very efficient numerica]r
technique called Gaussian elimination method (see Appendix 2.1)
can be applied to solve a system of algebraic equations with
a tridiagonal matrix.. Then, the system of algebraic equations on
each vertical line (see Fig. 2.1) with a tridiagonal matrix can
be solved simultaneously. Employing the line iterative method,
we are able to solve the boundary vorticity exact?yv(on each
Tine separately) together with the other unknowns on each
Tine and iterate until the solution converges.

For example, consider the first line at x = %1 the

algebraic equations for this line can be written as follows:

" 2
4 1 le,| = |[n?r, -, - ¢
2 2 - &1 - &
1 -4 | hf, - g, - € (2.13)
3 378 "%
[ = — 7] — 2 =
4 2 0 o |u | = |ne - ug
4 2
i -4 1 ol |v hle, - ¥
2 2 -~ Vg
) (2.12)
0o 0 2 e |y hlg, - vg
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It is noted that the values on the 1line x = % from the latest

iteration step are to be used in the above equations (2.13)
and (2.14). After eliminating the unknowns at points 2 and

3, we obtain the following linear relation between w], w4

and g], 54.
Y = a a g + k
1 [-]1 12 1 1 (2.15)
2 1221 222] |%4 ko

The discovery of the linear relation (2.15) is the key to
the success of. the boundary vorticity method. We can easily
obtain the boundary vorticities (51 and 54) by using the

boundary conditions ¢, = ¥, = 0. The result is
1 4

(2.16)

k

The procedure of finding the elements 311> 925 2575 555 1

and k2 is shown schematically below:
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Assume.g] = ¢ and 54 =c,

)

Apply Gaussian elimination method to
equations (2.13) and (2.14) and solve
for & and ¥.

Store the values
w] = ci and ¢4 = cé

Similarly, we may further assume E] = €3 £4 = Cy and E] = Cg>
_ . - = 1 = 5

£4 = Cg and obtain the corresponding values w] C3»s ¢4 Cy

and Yy = cé, b, = cé, respectively. Using the values c; and

c{ (i=1,2,...,6) and equation (2.15), we have the following

6 linear algebraic equations for a;j and ki (i,3=1,2).
(¢, ¢, 0 0 1 0] 'a”' = —c]' ]
0 0 ¢y S 0 1 2y cé
c c 0 0 1 0 a (o
0 0 C3 C4 0 1 a9 Ca
Cs Cg 0 0 10 k] cé
_0 0 Cg Cq 0 ]J _kz ] _cé_
The elements aij and ki (i,j=1,2) can now be found provided



21

that the matrix is not singular. By USing equation (2.16),
the boundary vorticities gl and 54 can then be determined.
Now, on the line x. = %, six equations (see equations (2.13)
and (2.14)) with six unknowns are solved. We note that the
obtained values for w] and ¢4 must be zero theoretically but
numerically they are found to be the order of.10'7 as com-
pared with the maximum value inside the region. Next we may
move to the line x = %, and iterate using the same procedure

until the errors are within a prescribed limit given by

max(e],ez) < g = 0(10'5) (2.18)

where

jgdn) - g{n-1)

€, = .} '
b i |

o p{nd =)
2 i l¢§n)|

Method (b): Alternatively, we may formulate the pro-

blem as
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On boundaries On line of symmetry
OA and BC AB and 0C
2 2
3%y , 3% _ - -
=g v =0 v=10
(2.19)
2 2
§_§_+8_§=f g:? E:O
ax dy

In contrast to method (a) the values of & on the boundaries
OA and BC are to be determined such that %%—= 0 on these lines.
The procedure‘described in Method (a) can now be applied

except that the fo]iowing equation should be used instead of

equation (2.14).

1 2 0 o ka] = | n?g,
2
1 -4 1T 0 Y h“g, - ¢
2 2 6
2 (2.20)
0 1 -4 1 ws h g3 - ¢7
0 0 2 1 Ay, h2g4
.y a— - - e

where Aw] = wz - w]7 and Aw4 = w]S - w3.
The boundary vorticity g] and 54 must,ndw be detgrmined such
that Ay, = Ay, = 0.

Finally, we note that the technique developed here
can also be extended to the case where the number of boundary

vorticity va]ues'fo be determined is either less or greater
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than two on each line or block. Table 2.1 shows the relation
between the number of boundary vorticity values to be deter-

mined and the corresponding repeated number of computations

required.

Table 2.1 The relation between the number of
boundary vorticity values to be
détermined and the repeated number
of computations required

Number of boundary 1 2 3 4 . . . N
vorticity values

Number of elements for 2 6 12 20 . . . N(N+1)
matrix A and vector k

Number of Computations‘ 2 3 4 5 . . . N+l
required to determine

&b

Total number of com- 3 4 5 6 . . o N+2

putations on each line
or block
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2.3 Concluding Remarks

| (a) Because of the extremely slow convergence of the
biharmonic equation, the boundary vorticity method is very
effective particularly for a problem formulated in polar
coordinate system. For example, for the combined free and
forced convection problem in horizontal circular tubes which
will be considered ih Chapter III, the line iterative technique
using the boundary vorticity method converges in approximately
5 minutes on IBM 360/67 for an intermediate parameter in com-
parison with 11 hours on IBM 7040 required by using the con-
ventional method [2.4]. According to the above comparison,
the new method is estimated to be about ten times faster than
the conventional method employed in [2.4].

(b) Considering the boundary conditions Y = Yy =Yg =

Yg = 0 and combining equation (2.8) and (2.9), we have the

following system of linear algebraic equations:

4 1 -n¢ 0 1 0 0o o] 521 - [ o ]
1 -4 0 -h% 0 1 (N | 0
2/h¢ 0 -4 1 0 0 10 |]g, h%f,
0 2/k2 1 -4 0 0 (I het,

1 0 o 0 -4 1 k% 0 |fvg 0
0 1 o o0 1 -4 o -n? v, 0
0 0 10 2/ 0 -4 1 |[g hefg
K 0 o 1 o0 2/m% 1 -+ |e7] _?zfz_

(2.21)
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The boundary vorticity method can be considered essentially

the same as the procedure to determine the unknowns on each
. . . 21

vertical line (w2,~w3, £y5 &3 On line x = 3 and Ygs Y75 &g

57 on line x = %) simultaneously. If we put equation (2.21)

in the vector form, we have

Ax=k. | (2.22)
Letting,
A=D-E-F (2.23)
where
p=[e o], E=Jo -1, =[]0 o7,
0 B 0 0 -1 0
B=|-2 1 -n® o] and 1=}1 0 0o o] = an unit
2 matrix,
1 -4 0 -h 01 0 0
2/h2 0 -4 1 00 1 0
0o 2/m? 1 -a 0 0 0 1

the 1line successive relaxation procedure is (see reference

[2.6])
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) - @ - wp) T - e+ epx (™

+ (D - wE)”! K C (2.24)

where w is the relaxation factor..

It is noted that a method using the direct inversion of the
submatrix B converges as well as the boundary vorticity method
does. The repeated computations for finding the elements

a and ki in equation (2.17) can be avoided. However, an

ij
efficient technique for the direct inversion of the submatrix

B or generally the following submatrix is required.

B=1CH
(2.25)
G C '
where
c=[-2 1 0 0], H=-n1
1 -4 1 0
0 1 -4 1
0 0 1.-4

and
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0o . .00 O
0 . . 0 0 2/n°

(c) By carefully examining the system of linear alge-
braic equations (2.21), another new iterative scheme may be

suggested. Following equations (2.21) and (2.22) and Tetting,

A=D'-E' -F (2.26)

where
pr=[8 0 0 o], e=Jocoe o],

o B 0 O HoOooo

o o B 0 1000

o o o B 0 I HO
Er=lon o], 8=[4+ 1].

00 01 1 -4

00 0 H

00 00
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and I = 1 0 = an unit matrix,
0 1

the line successive relaxation procedure [2.6] this time is

x(n'l']) = (Dl - wgl)'] {(] - w)g' + wE'}L(n)

+ oD - wE') Tk . (2.27)

Now the Gaussian elimination method (see Appendix 2.1) can
be readily applied here for the direct inversion of the sub-

matrix B' or generally the following submatrix.

E' = —-4 ] ¢
1 -4 1 0
1 -4 1
(2.28)
1 -4 1
0 ] -4 ]
_ T4
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By comparing equation (2.24) with equation (2.27),
we note that the latter iterative scheme avoids the difficulty
of using the direct inversion of the submatrix B (see equation
(2.25)). Consequently, computing time for finding the ele-
ments aij and ki in equation (2.17) can be saved. This
improved iterative scheme is employed in Chapter VI with
apprcximately one-quarter of computing time being saved as
compared with the boundary vorticity method for a problem
formulated in Cartesian coordinates.

(d) A further systematic numerical experiment is
necessary to compare all the conventional techniques with the
newly developed boundary vorticity method and the improved
iterative scheme discussed in part (c) for various engineering

problems so that a designer may choose a simple and yet effi-

cient procedure for a particular problem.
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Appendix 2.1 Gaussian Elimination Method [2.7]

If we have a system of linear algebraic equations.
Ax=k

with a tridiagonal matrix A, .

_A. = F b] -C-‘ s
-az b2 -c2 -0
-ag bz -c3
“a.2 bpo2 tCp2
0 "1 bn-] “Cn-1
" by J

then a numerical procedure called Gaussian elimination method
or Crout's (or Cholesky's) method may be used to solve for
X. The procedure is carried out by using forward elimina-

tion and then backward substitution as described below:

hy = ¢cy/by 5 hy =c /(b - ah 1), m=2,3,...,n-1




p]=k];

and

Py = (k. +ap._;)/(b, -

amhm-1)’
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m=2,3,...,0



'CHARTER III

BOUNDARY VORTICITY MEFHOD FOR CONVECTIVE HEAT TRANSFER

WITH SECONDARY FLOW IN HORIZONTAL TUBES*

3.1 Introduction

The effects of the dodﬁ] neiix secondary flow caused
by unbalanced buoyancy forces in heated horizontal fubes on
such important design parameters as friction factor and
Nusselt number have been studied both theoretically and
experimentally by several investigatbfs in recent years.
Trefethen [3.2] pointed out that the secondary flow patterns
caused 'by buoyancy forces in heated horizontal tubes, centri-
fugal forces in curved pipes and Coriolis forces in radial
rotating tubes for fully developed laminar flow are at least
qualitatively similar, and compared the flow and heat trans-
fer data from the three types of tubes. Morton's analysis
[3.3] on the free convection effects for fully developed
laminar forced convection in uniformly heated horizontal
tubes by a perturbation method is applicable only for rather
small parameter (ReRa) region. del Casal and Gill [3.4]
analysed the same problem by the same method considering the .
variation of density in the axial direction and throughout

the cross-section without the usual assumption of a constant

* A sEmewgat condensed earlier version of this work is reported
in [3.1 .
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pressure gradient. Mori and Futagami [3.5] presented a
theoretical investigation for'the_prbblem.qonsidered7by
Morton. [3.3] dealing with. high ReRa region by a boundary-
layer approximation. The high ReRa regime is characterized
by strong secondary flow, and the flow field may be divided
into a core region and a boundary layer near the wall.
Mathematically, the core region is governed by a hyperbolic
type equation and the boundary layer is‘govefned by a para-
bolic equation. It is of interest to note that the solution
in the neighborhood of top and bottom stagnation points may
be improved, if the regions are described by eiliptic equa-
tions. Recently, Newell and Bergles [2.4] presented corre-
lations for the effects of free convection on water—for the
so-called glass tube and infinite conductivity thermal boundary
conditions. It is noted that their correlation curves are
considerably below the experimental data for air 6btaiﬁéd

by Mori et al. [3.6]. Furthermore, the convergence rate of
the iterative technique used by them is extremely slow and
not practical from the viewpoint of computing time. Faris
and Viskanta [3.7] further extended Morton's perturbation
approach by expanding the dependent variable in ascending
power of Gr/Rez. Recently, Siegwarth et al. [3.8] extended
the boundary layer approximation employed in [3.5] to the
problem with relatively small core velocity for the cases of
Pr = 1 and Pr — «». Their correlation curve predicts nearly

the same result as the one obtained by Mori and Futagami [3.5].
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The purpose of this chapter is to present a numerical
solution for a steady fully developed laminar forced convec-
tion with buoyancy effects in uniformly heated horizontal
tubes with an aim to bridge the gap between the perturbation
solution [3.3] for small parameter (ReRa) and the boundary-
layer approximation [3.5] for large parameter (ReRa) by using
line iterative over- (or under-) relaxation coqp]ed with the
newly developed boundary vorticity method. It will be seen
later that the gap has now been successfully closed and the
numerical technique employed can save the computing time
greatly as compared with the one used by Newell and Bergles
[2.4]. The effect of Prandtl number on flow and heat transfer

results is also studied.
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3.2 Theoretica]_Ana]ysi;

Consider a steady hydrodynamipa]]y and thermally
fully developed Newtonian laminar flow in a horizontal
circular tube under axially uniform wall heat flux and
peripherally uniform wa]] témperature at any axial position.
The fiow will be referred to cylindrical coordinates (R, ¢,
Z) as shown in Fig. 3.1.
The following assumptions are hade in this analysis:
(a) Viscous dissipafion and compression work are negligible.
(b) The axial direction derivatives are zero except that
pressure and temperature gradients are constant, namely
9P/3Z = Cy and 3T/3Z = Cy

(c) The variations of physical properties are small. The
density is considered to be constant except for its .
variation in. the R- and ¢- directions buoyancy terms.

Referring to the value at the wa{l, the equation of
state for negligibly small variation of static pressure may

be written as,
E! -1 = _l.(T -T)=8(T-T)) (3.1)
D T w w’' ° . :

This expression is exact for an ideal gas, and represents a
reasonable approximation for real gases. For 1iquids, the

above equation (3.1) is valid only for the case when the
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N-1
N+1 N

Fig. 3.1 Coordinate system and numerical grid
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temperature difference is small. A different formuiation
for the equation of state considering the temperature depend-

ency of density is required for a fluid with large tempera-

ture difference.

With the foregoing assumptions, the goverhing equa-
tions for fully developed laminar flow are:

Continuity equation

3a{RU) , 3V _
sxt t5e =0 | (3.2)
Momentum equations
QU vau Vi 1ap oz U2 9V,
oR R 9¢ R 3R 1 R2 RZ 99
- Bg(Tw - T)cos ¢ (3.3)
3V , v 3V L uv _ _ 1 3P 2y 4 2 3V
Uk *®se T R - T wRas VIVt i7ag T R2)
+ Bg(T, - T)sin ¢ (3.4)
aW . V3w _ _123P 2
Ué—ﬁ"" iw = 57 + v V]w (3.5)
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Energy equation

9T V 3T oT _ 2
Uﬁ+ﬁw+ Wa—z-- K V-!T (3.6)
where
Vz=i_+l-i_+_l.ﬁ_
1 BRZ .R,BR R2.8¢2

The momentum equations (3.3),-(3.4), and (3.5) and
the energy equation (3;6) are qﬁasi-]inear, second order
partial differentiaf'equgtions‘of»e11iptic type.

Because qf,éymmetry with respect to vertical center
line, it is only fequred to consider the right (or left)

half of the circular region. The boundary conditions are:

U=V=W=T, -T=20 at pipe wall

3¢ 3¢ excluding the center point (3.7)
3V _ y - W _ 3T |
3% - U = 3% - 5 0 at the center

First derivatives with respect to X are introduced to satisfy

the symmetry property at the center.

Introducing the following non-dimensional transformations,
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C(X,Y,R) = a(x,y,r), (U,V,H) = (u,v,Cw)v/a,

= 3P/3Z, C, = 8T/5Z, C = - C,a°/4vu = Re/(2W),
(3.8)

o
—
)

T, - T =C CyaPre, Pr = v/k, Re = 2aWp/u,

Ra Bg C284/VK,

and a dimensionless stream function vy,

-1 __ 3
R A X (3.9)

the momentum and energy equations (3.3) to (3.6) can be
restated in the following dimensionless form after eliminating
pressure terms between equations (3.3) and (3.4) and using

the continuity equation (3.2).

Vorticity transport equation for secondary flow:

= Vzg - Rac(%% sin ¢ + %-%%-cos o) (3.10)

=

98 + VvV
"ar r

[+

¢

where the vorticity function is defined by

2 2
_ o2, _ 3 1 3y 1 37y
E = Voyp = 22 + = + — (3.11)
arz r ar r2 a(1)2
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Axial momentum equation:

3W , V oW _ 2 K :
UW +F8——VW+4 (3.12)
Energy equation:
36 v 36y _ 2
PY‘(UW + v W) = Ve +w (3.13)

We should note that the vorticity function is introduced to
apply the boundary vorticity method and avoid using biharmonic
operator V4¢ in the equation (3.10). The boundary conditions
corresponding to the governing equations are tabulated in.
Table 3.1 for easy reference.

The boundary conditions can be employed directly in
the numerical computation except those marked as *1, *2, *3
and *4. For the conditions *1, *2 at the center, it is
usual to avoid it by an extrapolation or other approximation
to obtain one more algebraic equation for the value at the
center. In this study, it is proposed to circumvent the
difficulty by transforming equations (3.12) and (3.13) into
Cartesian coordinate system and use the center point and the
adjacent four points for the finite-difference formulation.
By doing so, the boundary conditions %% %% = 0 can be

posed naturally without introducing any artificial error.

and

For the conditions *3 and *4, the boundary vorticity method
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discussed in Chapter II is found to be particularly effective.
Referring to Table 2.1 in Chapter II, the number of unknown
boundary vorticity to be determined on each radial line is
found to be one for the present problem. Thus it requires
three repeated computation on each Tine. The detailed alge-

braic equations and procedure will be discussed in the next

section.
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3.3 Finite-Difference Approximations

Referring to Fig. 3.1, the axial momentum and energy‘ﬁ
equations (3.12) and (3.13) can be approximated in the follow-

ing finite-difference form.

0
o0 L g = Fiorg iy Fiage - Tilgen
i,J 2(Ar) r'i 2(A¢)
_fia,g o % i
(ar)
(3.14)
L Ty o T
rs 2(Ar)
R RNE U9 L Wl U A Y 15 N
7 2 i,J
rs (29)
where
g = ] v Gi,j=4 When fi,jzwis\]’
c = Pr, Gi,j = wi,j when 'fi,j = ei,j’

Superscript o signifies the values at previous
- iteration step,

and 1=2,3,....M, j=1,2,...,N+1.
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The above equation (3.14) cannot be readily applied to the
center point (i=1) since the original equations (3.12) and
(3.13) are singular at the center. However, the difficulty
can be overcome by writing the equations in Cartesian coordi-

nates using the boundary conditions *1 and *2 in Table 3.1.

The result is given as,

+ f - 4f;

foo1 - Tooner _ Fo,1 * 2% w241 F T2 N+

(8]
% Vi.j 2(Ar) = (ar) 2

+ G]’j (3.15)

A numerical experiment was performed to check the adequacy
of the treatment of the singularity at .the center. The follow-

ing table demonstrates that the procedure is very satisfaétory.

Table 3.2 Values of w and 6 at the center
without secondary motion

0.9999 0.1877 (M=20, N=10)

1.0000 0.1875 (exact solution)
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It is believed that the treatment of the singularity at the
center point is quite general and can be applied equally to
the other problems formulated in polar coordinates to avoid
unnecessary errors.

The vorticity transport equation (3.10) and the equa-
tion for stream function (3.11) can also be approximated in

the finite-difference form with the following substitutions.

c =1, 61’j = - RaC(—— sin ¢ + % Q% cos ¢)i,j when fi,j = gi,j,
c =0, Gi,j = - gi,j when fi,j = wi,j
i=2,3,...,M+1, j=2,3,....N -

The first derivatives %%, %% and 5% are to be approxi-

mated by using five-point finite-difference formula.

‘-

—ed - - : Cae _
57 (fg ; - 6fy ; + 18F5 o - 10f, , - 3Ff; ;)/(12ar), i=2
= (fi_z’j - 8F5 4.5 T 8Fiu.5 - Fisz,j )/7(12ar), i=3,4,.,M-1

= - (fylg 5 - 6fy_p 5 + 18fy ¢ 5 - 106, .

- 3fM+1,j )/(12Ar), i=M (3.16)



48

af.

The expression for —+24 s similar. In the computation of
' 2

1

3¢

5% .
3_.‘11:0

» the following approximations are used noting that 5

3¢

at ¢ = 0 and ¢ = 7.

3

36 = (8fi’2 - fi’3)/(6A¢)s Jj=1

.3.

1

(1

= (- fi,z + 8fi,3 - fi’4)/(]2A¢), j=2

S (fy 50 = 8F4 51 * 84 gun = Ty 5ag)/(1208), 323,401
= (fi,N-z - 8f; N1t fi’N)/(]2A¢), j=N

= (f; no1 - 8F; y)/(689), =N+ (3.17)

Properties of Matrices and the Relaxation Factor

Rearranging equations (3.14) and (3.15), we obtain

Ar Ar o
i,if

Ar |2
i-1,5 7 2 (EEg) Ity

I}
]
—
-
>
©-
St
N
™
—~
—
+
Q
N
<
)
L
L"
S
u—',
de
<
(2R
1
—

+ (1 -0 12 v ')fi,j+]] - Gi,j(Ar)2 (3.18)
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and

Ar o - Ar 0O
-4y 5 (0 -0 vy )Ty = - (0 + 0% vy 5)T5 nag

]

2
Because of the nonlinear terms, the properties of the coeffi-
cient matrices of equations (3.18) and (3.19) are;
(a) real,
(b) non-symmetric,

(c) diagonally dominant if and only if

Ar Ar o
IZri - GTT'U1,JI 2T
riA¢ o .
|o > Vs .| <1 for all i,j except (3.20)
>J at the center point
and
cAL v .| <1 at the center.
2 i,j!' —

Since the matrices are not symmetric and their eigenvalues

0

change from step to step (due to the corrections of uj j and

v? j)’ the determination of optimal relaxation factor is very

difficult. But fortunately, as long as the property (c) is

held, the numerical computation is always stable and a conver-
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gent solution can be obtained with an over—re]axétion factor
of near unity. For the case when the property (c) is not held
at all the points, an under-relaxation factor ranging from

0.2 to 1.0 may be used to stabilize the numerical computation.
Numerical solution may be extended further to higher parameter
by using the under-relaxation factor but only at the expense

of considerable computing time.

3.3.2 The Application of the Boundary Vorticity Method

As pointed out in Chapter II, the numerical computa-
tion of a fourth order elliptic partial differential equation
requires a tremendously large computing time, particularly,
for the present problem formulated in polar coordinates.
Consequently, the bouﬁdary vorticity method was developed
to solve the present prob}em. The detailed procedure will
be shown next.

Replacing the dummy function fi,j in equation (3.14)

respectively, we have

by gi and wi

sJ >3’

Ar 0 Ar 2
"'1 + 2 u.i’j)g.i_‘l’j - 2[] + (!"]-Ad)) ]gi’

—
—
]
moj >
et

J

Ar Ar 0
- T UL 508540,5

Ar 2 rifé o
- ()T L0 =7 vy 508 50

riA¢ 0 2

-+
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and

Ar Ar 2 ' Ar
(.l = Zri)wi-l,j = 2[] + (riAé) ]wi’j + (] * EF;)¢i+],j

- (r?£¢)2 [wi’j_] + wi’j+]] - (Ar)z Ei,j (3-22)

Using the boundary conditions gi 1 = gi N#T 51 . = 0, for

. _ N - od -
equation (3.21) , wi,] = wi,N+1 = w],j 0 .and 5y = =0
(or Uu,j = wM+2,j), for equation (3.22), and considering the
radial Tine j=2, we have the following linear algebraic equa-

tions in matrix forms.

rBz ¢, i -52,2 1- ’_Kz B
As B3 C3 0 £3,2 K3
Ay By Cy 4,2 Ky
Av-2 Bu-z2 Cn-2 EM-2,2 Ku-2
Mu-1 Bu-1 Cn-a] |BM-1,2 Ky-1
B 0 Mo B w2 | | % G SMe1,2

(3.23)

and



where,

B

Av-1 Bm-1 CM-1

Ay By Cy

(Aj1*Cye1) B

r.A¢
- (Ary2 (. 1 v?’z)gi’s

2
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Ar
cr = 1 + AC
2ry
. Ar 2
Ky = - (riA¢) ¥ .3

First of all, we assume EM+1,2 = gé]) in the above equations
(3.23) and (3.24). Using the Gaussian elimination method,

we are able to solve equation (3.23) simultaneously for

gi,Z’ i=2,3,...,M. Substituting the obtained vorticity func-
tion into the right-hand side of equation (3.24) and again

| applying the Gaussian elimination method, the values for
stream function can be found. Then, we store the value
wM+1,2 = wé]). Secondly, we assume 5M+1,2 = géz) and follow
the same procedure to obtain wM+],2 = wéZ) but observing

the Tinear relation between gb and wb’ we can obtain gb such

that wb = 0.

A
({1 (1))

b » *b
(5(3,)0)

///////, - &

() {2

Fig. 3.2 The linear relation between Eb and wb
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The expression for gé3) is

(1) (2)
5~ % (2) (3.25)

(3) . 2
B e (O b2y + g
b b

Using gé3) and solving equations (3.23) and (3.24) again, we
obtain Ei,z and ¢i,2’ 1=2,3,...,M which are the numerical.
solutions on the radial line j=2. Then we move on to the

next lines, j=3,4,...etc. and iterate them. By this method,
we find that the values of the stream function on the boundary
r = 1 are numerically around the order of ]0'7 as compared
with the largest value at interior points. Theoretically,

of course, the stream function must vanish on the boundary.

The error of the above magnitude may be caused by a round-off

error using a single precision.

3.3.3 Errors and Mesh Sizes

The accuracy of the results and computing time required
are important factors in the numerical calculation. The order
of magnitude of errors and the computing time required should
be estimated so that within an allowable computing time,a
satisfactory result with errors less than a prescribed limit
can be obtained. The analysis of all possible errors and a

numerical experiment on mesh sizes are necessary before the

numerical solution.
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In the process of solving the system of partial
differential equations (3.9) to (3.13) and associated boundary
conditions, errors may come from the following sources:

(a) 1inherent error resulting from the finite-difference
approximations for the governing partial differential
equations and the related boundary conditions,

(b) the convergence of each partial differential equation
and the nonlinear terms,

(c) round-off errors.

In the usual computation, the error source (a) may
have the largest magnitude of error as compared with the other
two sources. The inherent error is closely related to the
mesh size, the magnitude of secondary velocity in the non-
linear terms and the second, third and higher dérivatives in
the finite-difference approximation. In this study, both
central difference and two-point non-central difference are
used as the approximations for the nonlinear terms. Although
the latter always assures that the matrices would be diagonally
dominant, the accuracy is very poor as shown in Fig. 3.3. Two
alternative methods of determining the same flow and heat
transfer parameters are used to check the accuracy of thé
numerical results. Initially, non-central difference for the
nonlinear terms with 20 x 10 gfids is used in the computation
to accelerate the convergence. Central difference with 40 x
20 grids is finally used to complete all the numerical computa-

tion. It is noted that central difference with 32 x 32 grids
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Fig. 3.3 Convergence of numerical solution for
heat transfer result
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is also used to extend the solution to the higher parameter
region for the case of Pr = 0.72. _Error source (b) is con-
trolled such that the order of error is two orders less than
the inherent error. The inhérént error in this study is of
0(10'3). Thus a preécfibed error for all the dependent vari-

ables are set as

] |
i4; 5 - -5

e = ) < 0(107%) (3.26)
)

1,3

Regarding error source (c), we note that the round-off error
should not grow as long as the matrices are diagonally
dominant. There is another way of checking the round-off
error in the Gaussian elimination method and the boundary
vorticity method applied here. The computed. numerical values
of the stream function on the boundary can be interpreted as
the order of round-off error which is found to be of 0(10'7)
in comparison with the lTargest value of the stream function
at interior points for all grid sizes, namely, 20 x 10,

40 x 20 and 32 x 32. For each RaC, it requires 1 ~ 2 minutes
using 20 x 10 grids for initial computation énd 2 ~ 3 minutes
for’40 x 20 grids in final calculation. It requires much

larger computing time for higher Nusselt number ratio region.

On the other hand, we cannot obtain convergent solution using
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central difference for the present grid size of 40 x 20 when
the Nusselt number ratio is greater than approximately 2.5.
It is signficiant to note that the computing time
required by Newell and Bergles [2.4] for the numerical solu-
tion of similar problem with biharmonic operator is about
11 hours on IBM 7040 to obtain a complete solution for one
RaC in the intermediate region with a grid size of 20 x 20
and about 2.5 hours on IBM 7094. 1In contrast, the present
numerical method requires only about 5 minutes using 40 x 20
grids on IBM 360/67 which is estimated to be about one-tenth

of the computing time required by them for the comparable

situations.

3.3.4 Iterative Prpcedure

In this study, the line successive over- (or under-)
relaxation method [2.6] and the boundary vorticity method are
employed to solve the system of nonlinear algebraic equations.

The equations are linearized by taking u? . and v? j equal

153

to their previous values. That is, the system of nonlinear
equations are replaced by another system of linear equations.
Referring to equations (3.9) to (3.13), the procedure for
numerical solution is:
(a) Assign values for Pr, RaC, M and N.
(b) The value of Wi at each node point is obtained by

solving equation (3.12) in finite-difference form and

satisfying the boundary conditions using the assumption



(c)

(d)

(e)

(f)

(g)
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that u? and v? . being equal to the previous values

i3 1,
of an assumed flow pattern at the beginning.

The calculated values of W, j and still the same values

for u? j and v? j are substituted into the finite-differ-
s ]

ence form of equation (3.13) to compute ei,j satisfying
the corresponding boundary conditions.

Substituting the obtained ei,j into the finite-difference
form of equation (3.10) and still using the same u?’j

and v?’j, the values for gi,j and wi,j are solved by
applying the boundary vorticity method.

The new values for u?,j and v?’j are computed from the
finite-difference form of equation (3.9).

Using the new u?’j and v?’j, outer iteration from steps

(b) to (e) is repeated until equation (3.26) is satisfied.

The obtained wi,j

flow and heat transfer characteristics.

and ei j are used to calculate the

The expression for the parameter ReRa can be obtained from

equation (3.8) as

ReRa = 2w RaC

The number ¢f inner iterations in steps (b), (c) and (d) is

not very restrictive. In this study, it is set to be less

than 30.
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3.4 Flow and‘Heat Transfer Results

The product-of friction factor and Reynolds number
(fRe) and the Nusselt number (Nu) can be obtained by consider-
ing either the average values for velocity and temperature
gradients, respectively, along the pipe wall, or the overall
force and energy balances, respectively for the axial length

dZ. The results are

> _ |13y
(fRe) = _W . 2aWp _ , _Orw
I gz ¥ W
8
(fRE) s —_—
Il "
— (3.27)
(Nu) cBa) L, L 13rly
I k - —_—
[we'|
-2
(Nu);p = ==
II |W9|

where subscript I denotes the value of the parameter obtained
from the average gradient along the pipe wall and subscript

11 denotes the value of the parameter obtained from the overall
balance. Simpson's rule is used to obtain the average quanti-

ties indicated above.

In order to show the convergence of the numerical solu-
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tion, the ratio of the Nusselt numbers Nu/(Nu)o js plotted
against the parameter ReRa in Fig. 3.3 for two different mesh
sizes M = 20, N =10 and M = 40, N = 20, using central and
two point non-central differences for the nonlinear terms.

It is seen that the heat transfer results obtained from the

above two definitions coincide, using central difference with

mesh size M = 40 and N = 20, indicating the accuracy of the
numerical solution.

For comparison, the heat transfer results from Morton's
analysis [3.3] using perturbation method and Mori and Futagami's
boundary-layer approximation [3.5] are also shown in Fig. 3.3
for the case Pr = 1. It is seen clearly that for the values
of the parameter ReRa ranging approximately from 2 x 103 to
4 x 104, neither the perturbation method nor the boundary-
layer approximation is effective. In contrast, the aumerical
solution clearly bridges the gap between the perturbation
solution and the boundary-layer approximation. Relative
merits of these three methods are of interest.

In order to further assess the accuracy of the numerical
solution, the axial velocity and temperature profiles along
the central vertical 1ine from this analysis are compared
against the experimental data given in [3.6] and theoretical
curves given in [3.5] for Pr = 0.72 and ReRa = 0.89 x 105
in Fig. 3.4. A good agreement #s observed between the numeri-

cal solution and the experimental data for the velocity dis-

tribution. Numerical solution predicts higher value than
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experimental data near the bottom and slightly lower value
near the top (¢ = 0). Similar remarks also apply to the
temperature profiles with the exception that rather substan-
tial discrepancy exists between numerical solution and
experimental data near the top (¢ = 0). In Fig. 3.5, the
experimental data [3.6] are further compared with the numeri-
cal results for the same value of.Nu/(Nu)0 = 1.62 but at
different ReRa (= 5.04 x 10%). The general trend is similar
but the discrepancy reduces somewhat. One further comparison
at higher value of Nu/(Nu)0 = 2.0 is shown in Fig. 3.6. A
rather good agreement is found for velocity profiles. For
temperature profiles, experimental and numerical data check
quite well near the bottom part (¢ = 7) and an improved agree-
ment is observed near the top part (¢ = 0) as compared with
fhose shown in Figs. 3.4 and 3.5.

Summarizing the above comparisons, it can be said
that the agreement for velocity profile is quite good and
the agreement for temperature profile is reasonable near the
bottom part but rather poor near the top part (¢ = 0). This
inconsistency in temperature distribution needs further con-
sideration. For the region in question, r = 0 ~ 7.0 and
¢ = 0, it is clear that the temperature distributions from
the experimental data and numerical solution are definitely
on the opposite side of the temperature distribution for the
case of pure forced convection without secondary flow. Focus-

ing our attention on temperature distribution along the vertical
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center line, it is well known that the effect of the buoyancy
force is to shift the location of the maximum value toward the
bottom wall and decrease the magnitude of the value near the
top wall. The discrepancy may be caused by the difference
betwéen the assumption of uniform circumferential wall tempera-
ture in the theoretical analysis and the probable non-uniform
distribution of wall temperature in the experiment. The
theoretical curves given by Mori and Futagami [3.5] are seen
to be inadequate for ReRa = 0.89 x ]05 as shown in Fig. 3.4.
The above discrepancy between experimental data and numerical
solution is also reflected in the heat transfer result which
will be discussed later. We also note that the assumption
of uniform boundary-layer thickness along the circumference
in the boundary-layer approximation may also lead to some
errors near the top and bottom walls.

The streamlines and fsotherma]s for Pr = 0.72 and
ReRa = 0.8976 x ]05 are shown in Fig. 3.7. The temperature
drops very gradually from the top to the center. This behavior
clearly contradi?ts the experimental data. As the parameter
ReRa increases, the centers of circulation move toward the
side walls.

The distributions of secondary velocity components
u, v for representative values of ReRa with Pr = 0.72 are
shown in Fig. 3.8. It is seen that the downward velocity
component v becomes more uniformly distributed in the core

region as ReRa increases. This trend confirms the asymptotic
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of uniform boundary-layer thickness along the circumference

in the boundary-layer approximation may also lead to some

errors near the top and bottom walls.

The streamlines and fsotherma]s for Pr = 0.72 and
ReRa = 0.8976 x 105 are shown in Fig. 3.7. The temperature
drops very gradually from the top to the center. This behavior
clearly contradicts the experimental data. As the parameter
ReRa increases, the centers of circulation move toward the
side walls.

The distributions of secondary velocity components
u, v for representative values of ReRa with Pr = 0.72 are
shown in Fig. 3.8. It is seen that the downward velocity
component v becomes more uniformly distributed in the core

region as ReRa increases. This trend confirms the asymptotic
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behavior of Mori and Futagami's boundary-layer approximation
[3.5]. But the distribution of radial velocity u along the
vertical central axis is not symmetric with respect to the
horizontal central axis. This contradicts with Mori and
Futagami's assumption [3.5].

The effect of Prandtl number on flow result is shown
in Fig. 3.9 where fRe/(fRe)0 is plotted against ReRa. This
figure serves to show the range of applicability in terms of
the parameter ReRa for both boundary-layer approximation
and numerical solution. It is seen that for the range con-
sidered, considerable discrepancy exists between the two pre-
dictions. However, it appears that at higher value of the
parameter the two predictions épproach each other. It is
noted that the effect of Prandtl number on friction factor
is negligible for large Prandtl number.

The effect of Prandf] number on heat transfer result

is shown in Fig. 3.10 where Nu/(Nu)0 is plotted against ReRa

with Prandtl number as a parameter. For Pr = 1, the two

curves from boundary-layer approximation and numerical solu-
4

tion approach‘each-bther at around ReRa = 4 x 10" indicating
good agreement thereon. However, for the case Pr = 0.72
considerable difference exists between the two results aside
from the fact that boundary-layer approximation cannot be
applied to the low ReRa region. It is also seen that the
effect of Prandtl numbe; on Nu/(Nu)O is similar to the effect

of ReRa on the ratio Nu/(Nu)O.
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The result of numerical solution for heat transfer
shows clearly that an asymptotic line exists for each Prandt]
" number. Consequently, for Nu/(Nu)0 > 1.75, an estimate for

heat transfer result may be made by extending the existing

curves linearly in Fig. 3.10. Fig. 3.10 also shows clearly

the respective range of applicability for the perturbation

. method, numerical method, and boundary-layer. approximation.

In Fig. 3.10, it is of. interest to observe that the

Pr = 1 and Pr = 16 almost equals

distance between the curves

to the distance between the curves Pr = 10 and Pr = 100 for

a given value of Nu/(Nu)O. This observation enables us to
study the asymptotic behavior for Pr > <. For the case when
Pr + » and the secondary motion is weak, the nonlinear terms

in momentum equations (3.10) and (3.12) are negligible. On

the contrary, the advective terms in the energy equation (3.13)
should be retained in view of the large Prandtl number effect.
Based on the above observation, the two parameters Pr and

RaC can be combined into one parameter PrRaC characterizing

The parameter PrRaC also

Re/(2w)

the asymptotic solution for Pr - =,

can be transformed into PrReRa by using the relation C =

in equation (3.8). The curves
coordinate PrReRa with Pr as a
The curve corresponding to N =

Siegwarth et al. [3.8] is also

Nu/(Nu)y = 0.190 (PrReRa) /% by using the relation GP =

(2Nu) .

for Nu/(Nu)0 versus the new
parameter are shown in Fig. 3.11.
0.471 (aP)1/% given by

shown after transforming into

PrReRa/

As pointed out in the Introduction (Section 3.1),
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this curve deviates from Mori and Futagami's solution for

Pr = 1 [3.5] by only about 1.5%. It is noted that for the
case of Pr = 0.72, the curve obtained by Mori and Futagami
[3.5] contradicts with both the presént numerical solution

and the perturbation method [3.3]. For the same value of
PrReRa, the numerical and peturbation solutions predict higher
heat transfer rate in the case of smaller Prandtl number. '
It is significant to note that with the present new correlation
the numerical solution for Pr = 0{1) already approaches the
asymptotic solution for Pr = . Furthermore, Siegwarth et al.
[3.8] also show that the curves for Pr = 1 and Pr > = are
identical. 1In other words, with Prandtl numbersranging from
0(1) to =», a simple correlation for heat transfer results

0(1) ~ «). For

exists for various Prandtl numbers (Pr
example, the heat transfer result is identical for a given
value of PrReRa regardless of the value of Pr within the
range of Pr = 0(1) ~ . This observation is believed to be
significant since separate numerical solution is not required
for various Prandtl numbersranging from 0(1) to . The
numerical results for flow and heat transfer are listed in

the Appendix for possible future reference.
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3.5 Concluding Remarks

(a) The application of the boundary vorticity method
in this numerical study is very successful with tremendous
improvement in computing efficiency. It is believed to have
wide applicability in solving the ré]ated similar problems.

(b) A combination of using Cartesian coordinates
at the center and cylindrical coordinates elsewhere proves
to be quite satisfactory to oveécome the singularity at the

-

center. The treatment is quite general and can be readily )
applied to the numerical computation of the other ehgineerihgs
problems formulated ip polar coordinates.

- (c¢) The numerical so]ution‘is effective up td a
reasonably high value of the parameter a%d clearly fi[ﬁs tﬁe

gap between the perturbation method and the boundary—1ayer

- s

approximation. The above observation is “important since the
same remark applies also to a class of brodﬁ]y sihi]ar

secondary flow prob]ems: L.c

(d) Plotting of all the numerical-results for various
Prandtl numbers based on Nu/(Nu)0 versus PrRéRa reveaig that
the Nusselt number for Prandtl number of order one already
approaches the asymptotic solution for the case df Pr > o,
This observation is significant since it suggests that we
need not carry out separate numerical solution
for various Prandtl numbers ranging from order one to infinity
in order to study the Prandtl number effect. This aspect of

Prandtl number effect points out the possibility of solving
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Graetz problem with buoyancy effect in the thermal entrance
region. |

(e) The results of the numerical analysis presented
are valid within the Boussinesq approximation. The dependency

of physical properties on temperature can also be readily

accommodated.
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Appendix 3.1 Numerical Results

fRe = [(fRe)I + (fRe)II]/Z, Nu =.[(Nu)I + (Nu)II]/Z

2

RaC w x 10 wo x 10 ('FRe)O (Nu)0

0 5.0 5.729 16.0 4.364

Pr = 0
1n°4 g we 2
RaC x w x 10 we x 10 fRe Nu
0.1 4,944 5.563 16.17 4,392
0.3 4.719 4,943 16.95 4.503
0.5 4,508 4.394 17.75 4,622
0.7 4.338 3.981 18.45 4,725
1.0 4,153 3.557 19.27 4,845
2.0 3.813 2.867 20.95 5.083
Pr = 0.1
-4 — 2
RaC x 10 w x 10 we x 10 fRe Nu
0.1 4.944 5.560 16.17 4.394
0.2 4.840 5.265 16.52 4,445
0.3 4,722 4,944 16.94 4,507
0.5 4.514 4.401 17.73 4.629
0.7 4,348 3.989 18.40 4,736
1.0 4.166 3.565 19.21 4,864
2.0 3.834 2.859 20.87 5.138




Pr = 0.72

RaC x 1074  wx 10 ws x 102 fRe Nu
0.1 4,946 5.525 16.17 4,425
0.2 4,854 5.183 16.48 4,542
0.3 4,756 4,836 16.81 4,674
0.5 4,594 4,288 17.41 4,919
0.7 4,471 3.902 17.90 5.122
1.0 4,331 3.495 18.48 5.369
2.0 4,058 2.782 / 19.72 5.921
4.0 3.795 2.204 : 21.07 6.535
7.0 3.591 1.823 22.28 7.072

10.0 3.439 1.611 23.24 7.399

20.0 3.199 1.263 25.05 8.196

30.0 3.049 1.074 26.30 8.742

35.0 2.988 1.002 26.81 8.981

40.0 2.945 0.9571 27.25 9.160

42.0 2.927 0.9377 - 27.41 9,233

Pr = 1

R -4 = — 2

aC x 10 w x 10 we x 10 fRe Nu
0.03 4,988 5.678 16.03 4,379
0.06 4.974 5.616 16.08 4.404
0.1 4,947 5.493 16.16 4,452
0.2 4,861 - 5.117 16.45 4,615
0.3 4,773 4,758 16.75 4.786
0.5 4,630 4,220 17.28 5.079
1.0 4,395 3.459 18.20 5.587
2.0 4,142 2.774 19.31 6.184




Pr

RaC x 10~ W X 10 wo x 10 fRe Nu
5.0 3.807 2.051 21.01 7.067
10.0 3.551 1.607 22.53 7.847
15.0 3.397 1.378 23.54 8.366
20.0 3.287 1.232 24 .33 8.764
25.0 3.182 1.109 25.06 9.102
70.0 2.795 0.7187 28.48 0.80

Pr = 2

RaC x 10~% w x 10 wo x 10 fRe Nu
0.06 4.975 5.539 16.07 4,465
0.1 4,952 5.343 16.15 4,587
0.3 4,826 4,504 16.57 5.170
0.6 4,685 3.833 17.07 5.724
1.0 4,556 3.354 17 .55 6.187
3.0 4,236 2.447 18.88 7.331
5.0 4,072 2.085 19.64 7.953

Pr = 4

RaC x ]0'4 w x 10 wo x 10 fRe Nu
0.06 4,977 5.331 16.07 4.645
0.1 4.961 5.024 16.12 4,897
0.2 4.921 4,490 16.25 5.391
0.4 4,855 3.923 16.47 6.006
0.7 4,781 3.479 16.72 6.568
1.0 4,724 3.207 16.92 6.957
2.0 4.596 2.707 17.40 7.799




RaC x 10°°  wx 10 we x 10° fRe Nu
0.03 4.996 5.703 16.01 4.375
0.06 4.996 5.679 16.01 4.394
0.1 4.996 5.626 16.01 4.234
0.2 4.994 5.445 16.02 4.578
0.4 4.988 5.076 16.03 4.898
0.7 4.982 4.686 16.05 5.293
1.0 4.976 4.422 - 16.07 5.595
2.0 4.958 3.923 ¢ 16.13 6.264
3.0 4.945 3.647 16.17 6.701
4.0 4.933 3.459 16.21 7.033
6.0 4.913 3.201 16.28 7.537

Pr = 100

RaC x 10°2  wx 10 we x 102 fRe Nu
0.1 4.997 5.628 16.01 4.434
0.2 4.998 5.453 16.01 4.578
0.5 4.998 4.946 16.01 5.047
1.0 4.998 4.450 16.01 5.610
2.0 4.997 3.965 16.01 6.295
3.0 4.997 3.701 16.01 6.744
5.0 4.997 3.388 16.01 7.366
6.0 4.996 3.28] 16.01 7.606

Pr = 500

RaC x 107  wx 10 we x 102 fRe Nu
1.0 4.998 4.945 16.01 5.048
3.0 4.998 4.161 16.00 6.000
6.0 4.999 3.701 16.00 6.748




CHAPTER IV

THERMAL INSTABILITY IN'PLANE_POISEUILLE,FLOW*

4.1 Introduction

In order to predict flow and heat transfer characteris-
tics for forced convection under the effect of body forces,
it is necessary under certain conditions to investigate the
onset of secondary motion and determine the most probable
flow pattern. Body forces acting in a direction normal to
the main flow can cause a pair of He]ica] vortex rolls, for
examples, in a heated horizontal rectangular Channel [2.5]
or a curved rectangular Channel [4.2]. In these cases, the
secondary flow appears as soon as the fluid is brought into
motion in the axial direction. However, when the aspect ratio
((side length in a direction normal to the body force)/( side
Tength in a direction parallel to the body force)) of the
rectangular channel approaches infinity, the body forces may
leave no effect on the main flow with small body force para-
meter and provides merely a potential of instability. As
the parameter increases beyond a certain value, the flow can
no longer maintain its original pattern and the secondary
motion results. The well-known examples are the Taylor

vortices [4.3] developed between rotating concentric cylinders

* The work repbrted in [4.1] is based on this part of the
dissertation.
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and Bénard cell [4.4] formed in a thin fluid layer heated
from below. Gill and del Casal [4.5] anhalysed the effect of
buoyancy and variable viscosity on two-dimensional velocity
profiles and gave a qualitative discussion on the instability
of the flow in view of Tollmien-Schlichting theory. However,
they did not consider stationary vortex-type secondary flow.
Recently, Mori and Uchida [4.6] examined forced convective
heat transfer between horizontal flat plates. The instabi-
lity of the flow in their problem is caused by a linear basic
temperature distribution only. Thus, the critical Rayleigh
number 1708 is exactly the same as the one observed in the
classical Benard's problem [4.7]. Sparrow, Goldstein and
Jonsson [4.8] studied the thermal instability in a horizontal
fluid layer considering the effect of boundary conditions

and nonlinear temperature profile caused by uniform internal
heat generation. Their results show that parabolic part of
the basic temperature profile destabilizes the flow and
changes the wavelength of the vortex rolls.

The purpose of this chapter is to investigate the
possibility of the onset of longitudinal vortex rolls for
fully developed laminar forced convection between two infinite
horizontal parallel plates with a constant axial temperature
gradient and at different or identical temperature levels at
the upper and Tower plates. For the present problem, the
uniform teﬁperafhre gradient along the main flow direction

also yields a nonlinear temperature profile. The convective
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motion of the main flow disturbance also affects the critical
Rayleigh number and changes the wavelength of the vortex
rolls. Thus, the instability of the flow can be considered
to depend on the following four factors:
(a) the wave number, a = 27h/(wavelength), which. characterizes
the mode of disturbance, .
(b) the linear part of. the basic temperature profile,
(c) the nonlinear part of the basic temperature profile,
(d) the convective motion of the main flow direction dis-
turbance.
We note that the factors (a) and (b) constitute the problem
studied. by Mori and Uchida [4.6] and the factors (a), (b)
and (c) govern the problem studied by Sparrow, Goldstein and
Jonsson [4.8]. It is evident that one additional factor is.
brought into consideration in the present study. Furthermore,
from the physical point of view, this problem can be con-
sidered to be more general as compared with the two earlier
works [4.6, 4.8]. It is worthwhile to point out an interest-
ing limiting case. If the vertical gradient of the linear
basic temperature profile is negligibly small in comparison
with that of the nonlinear part, then the factors (a), (c)
and (d) determine the flow. This situation corresponds to
the limiting case of axially uniformly heated horizontal
.rectangular channel [2.5] where the aspect ratio (width/
height) approaches infinity. |

An eighth order ordinary differential equation with
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eigenvalue Ra will be derived for the present problem énd
solved by employing a power series similar to that used in

[4.8].
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4.2 Theoretical Analysis

Consider a fully developed laminar flow between two
horizontal parallel plates with a constant .axial temperature
gradient v and a temperature difference AT between the upper
and lower plates at any axialnposition. The system of
coordinates is shown in Fig. 4.1 where two infinite horizontal
flat plates are located at z' = 0 and h, respectively. Under
certain conditions, an infinite number of pairs of vortex
rolls with alternating flow direction may appear between the
upper and lower plates. The wall‘temperatures on the bottom

and top plates are shown in Fig. 4.2 and can be expressed as
Ty =T ¥ ™', Ty = Ty = AT = Tg = AT + ' (4.1)

where AT is the temperature difference between the two plates
which may be negative, zero and positive depending on the
relative magnitude of TI and T2. Each case has its own signi-
ficance in the practical problem. The constant t is the

axial temperature gradient. The fully developed basic velo-
city and temperature distributions are illustrated in Fig. 4.3

and the expressions for the unperturbed state are

[ =y

' ' ¢
-% = 4%) 1 - (1= (4.2)
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Fig. 4.3 Fully developed velocity and temperé-
ture distributions in the
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b T Zeru(E) - 25t e (%)3] - (%)

=-Pr u ¢4(z) -z | (4.3)
where U0 is the maximum velocity in the unperturbed state,
Pr is Prandt]l number and u = Reth/AT. It.is noted that the
characteristic parameter u represents the effect of Tongitudi-
nal wall temperature gradient for the present probiem, and
Pru the magnitude of depérture of Tb from the linear distri-

bution.

The following assumptions are made to facilitate

the analysis:

(a) Boussinesq approximation is valid,

(b) physical properties are constant,

(c) disturbance quantities and their derivatives are taken
to be sufficiehf}y small for their products to be neg-
lected, i.e., the equations are linearized following a
procedure commonly employed in linear stability analysis.

In order to investigate the conditions under which
the steady fully developed laminar convection is stable
against small disturbances, we superimpose the perturbations

on the basic flow quantities as

U=1u, + u', V=v', H=wT-= Tb + 6' and P = Pb +p'

(4.4)

where U, V and W are velocity components in the x', y' and z'
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directions, respectively. Introducing the non-dimensional

quantities,

(x,y,2) = (x', ¥y', 2 )/h, (u,v,w) = (u',v;,W')h/v,

6 =0'/AT, p = p'h%/pv 2, t = t'v/h%, (4.5)

Grashof number Gr = ggATh®/v% and Reynolds number Re = Ujh/(2v)
and considering the equations expressing conservation of mass,
momentum and energy, the linearized equations for perturba-

tion components are obtained in the following dimensionless

form after eliminating pressure terms.

3 3 _ vl = . 9P _
(at + Re¢, 3 v ,y,z) u 5% - Re w D¢, (4.6)
3 ] 2 2
[(ﬁ * Red, 3y - Vx,y,z) V’yz-Re(D %y ax * D¢, axaz):I W
= Gr v (4.7)

(5 + Redy 5 - pi ¥ Z’y’ ) 8 = (1 +PruDé,) w- (u/Reu

(4.8)
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B where V2 = 32/8x2 + 32/3y2, Vi;y,z4= a?/axz + az/ay2 + aé/azz,
¢, = 8z(1-2),
6, = (22/3)(1 - 22° ‘2%,
and D = d/dz .

There are 4 unknowns u, w, p and 6 for 3 equations (4.6) to
(4.8). Since 3p/ax in equation (4.6) will be identically: zero in
later discussion, equations (4.6) to (4.8) represent a con-

sistent set of equations.

~In order to show the region of interest, we consider

the following general form of disturbance.

u = u*(z) G(x,y,t)
w = w*(z) G(x,y,t)
(4.9)
g = 6*(2) G(x,y,t)
p-= p*(z) G(x,y,t)

where G(x,y,t) exp[i(axx - ct) + 1 ayy],

a, = 2th/(wavelength in x direction),
ay = 2rh/(wavelength in y direction),
c =c.t* ici’ a complex quantity where
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. is the circular frequency of the oscillation and

¥ is the amplification factor.

For the present longitudinal vortex rolls, the wavelength in

x direction can be considered as infinitely long, and thus the

wave number can be set as a, = 0. Substituting equation (4.9)

with a, = 0-into equations (4.6) to (4.8), we have

s

-

[(p? - a%) + iclut = Re w* D4, (4.10)

[(D2 - az) + ic] (D2 - éz)w* = Gr az'e* 4 (4.11)

[ (D7 . a2) + iclex = - (1 + Pru Dog)w* ¢ (w/Re)u (4.12)
where a = ai + as in general but a = ay in thfs case and

ap/ax is neglected in equation (4.10). For marginal stability

¢ = 0 and we have
(02 - a?)u* = Re w* D¢, (4.13)
2 _ %) 2 g% ' (4.14)

(D w* = Gr a

5%-(02 - a%)e* = - (1 + Pru Do )w* + (u/Re)u* (4.15)
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Boundary conditions are

W* = Dw* = 6% = y* = 0 at z = 0 and 1 (4.16)

The axial perturbation momentum is supplied by the
main flow through the product of w* and Rechu on the right-
hand side of equation (4.13) and is balanced by the viscous
force on the left-hand side of the equation (4.13). The normal
direction momentum is supplied by the buoyant force term on
the right-hand side of equation (4.14) and is balanced by the
viscous force term on the left-hand side of the equation
(4.14). The thermal energy comes from two sources; one is
due to the vertical temperature gradient through the product
of (1 + Pru Dve) and w* and the other is due to the axiai
temperature gradient through the product of (u/Re) and u* on
the right-hand side of equation (4.15). These two contributions
are balanced by the conduction term on the left-hand side of
equation (4.15). For the 1imiting case when Re = 0 and
u = Reth/AT = 0, equation (4.13) and the terms Pru D¢, w*
and (u/Re)u* on the right-hand side of equation (4.15) vanish
identically. This corresponds to the horizontal thin fluid
layer problem heated from below [4.7] and gives us a critical
Ra* = 1707.8 with wave number a = 3.116. For the case when
u = 0 but Re # 0, equation (4.13) is retained but is seen to
be uncoupled with equation (4.15). This implies that the main

flow velocity distribution does not affect the stability of
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of the flow. This is a limiting case of the present probiem
and was. treated analytically and theoretically by Mori and
Uchida [4.6]. Let us focus our attention on equation (4.15)
now; if Pr = 0, the critical Ra* is affected by the term
(u/Re)u* only. On the other hand, if Prp is large the flow
ijs strongly affected by the main temperature distriubtion
and is seen to be almost linearly proportional to Pr or u.
In the limit as|u|+ o , a different characteristic tempera-
ture based on the axial temperature gradient is used and the
first term -w* on the right-hand side of equation (4.15) can
be neglected. The governing equations for this case will
be formulated later.

Eliminating u* and o* among equations (4.13), (4.14)
and (4.15) and denoting Ra = PrGr, we have the following

governing equation for w¥*,
(D2 - a2)4w* = - a2Ra[(D2 - a2) + ul]w* (4.17)

where

L = Pr(D? - a2)0¢e - D4,

2[4(1 + Pr)(2z - 1) - 8Prz(1 - z)D (4.18)

+

% Pr(1 - 62° + 423)(D% - a?)]



96

The boundary conditions corresponding to equation (4.16)

are now rewritten as,

W* = DwW* = (D2 - az)zw* =-(02 - a2)3w* =0 at z =.0 and 1

(4.19)

The third boundary condition, (D2 - az)zw* = 0, is obtained
by setting 6* = 0 in equation (4.14) and the fourth boundary

condition is derived by considering both equations (4.14) and

(4.15) and setting w* = u* = 0.
When|u|=|Rerh/ATI+ =, AT can no longer be taken as a

characteristic quantity. The quantity th is used instead of
AT for this case. Equations (4.14) and (4.15) are now

rewritten as

(0% - a?)%wx = Gr_ a% o (4.20)

p%-(Dz - az)e* = - PrRe D¢, w* + u* (4.21)

Similarly, corresponding to equations (4.17) and (4.18),

we have

(02 - a?)%* = - a% ReRa_[Pr(D? - a%)Dsy - Do Iw*  (4.22)

wheré subscript T signifies that the characteristic quantity
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th is used instead of AT for defining Ra. Upon comparing
the equation (4.22) with equations (4.17) and (4.18) we note
that the effect of linear temperature profile term a2Ra(D2 - az)w*
vanishes and the parameter Rau is now replaced by ReRaT. The
boundary conditions posed for equation (4.22) remain identical
to those given by equation (4.19).

In equation (4.22), if the effect of nonlinear tempera-
ture profile is much larger than the effect of main flow direc-
tion disturbance, tﬁen the last term on the right-hand side

of equation (4.22) can be neglected, and equation (4.22)

becomes

(Dz - a2)3w* = - a2 PrReRaT D¢e w* (4.23)

It is noted that the critical value of PrReRaT and

wave number a can also be obtained from the solution of equa-

tion (4.22) as the asymptotic case.
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4.3 A Power_SeriesASolution

In view of. the considerable comp]exity of equations
(4.17), (4.18) and (4.22), the numerical technique employed
by Sparrow, et ai. [4.8] seems to be most effactive for. the
present problem. The unknown function‘w*-in'equation.(4.17)

is expressed in the following power. series

3>

n" (4.24)

£
*
[
Hnes~18

n

where A's are. constant.coefficients. Applying the boundary
conditions (4.19) at z =.0, we have

4

= = = 242 = |
Ag = Ay =0, A, =22 Ay, Ag=3a Ay (4.25)

Substituting. the power series (4.24) into equation (4.17)

and after equating the coefficienté of z" on both sides of

the equation, the following recursion formula for An (n > 8)

is obtained.
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2 . 4 6 2 |
= 4a Am+6~'-6a Am+4 + [4a” - a®Ra(1 + 2Pr u/3)]Am+2‘,

>
|

m+8

-.[a® - a%Ra + 8Pr u a%Raf- (1 + 1/Pr) --2m - a%/12

m(m - 1)/2}]Am

16Pr u aZRa[(1 + 1/Prim + m(m =1 +m(m - 1)(m - 2)/6]Am_1:

4
4m(m - 1)Pr u a’Ra Ay o

4
“Ra A _s. ‘ (4.26)

-+

(8m/3)(m - 1)(m - 2)Pr u a

For the sake of brevity, the recursion formula for equation
(4.22) is omitted here. Now, the remaining four coefficients
Rys Az, Ag and A, in the series (4.24) still remain unknown.
The“boundary conditions (4.19) at z =.1 previde. the fol]owing

homogeneous algebraic equations for. these coefficients.

[C11 G2 Gz G [R2] =0
C21 C22 Ca3 Coa| | A3
(4.27)
C31 C32 C33 C34! | As
Cap Ca2 Cqz Cgaf | A;
| _ - e T
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where cij (i,3=1,2,3,4) are functions of Pr, u, a and Ra as
indicated in Appendix 4.1. But for equation (4.22), the
coefficients Cij's are functions of Pr, a and ReRa,r only.

The determinant of the coefficient matrix [cij] must
be zero in order that a nontrivial solution exists; thus
=0 - (4.28)

In seeking a set of parameters Pr, u, a and Ra (or Pr, a and
ReRaT) satisfying the condition (4.28), the values for Pr

and u (or Pr only when |u| » =) are preassigned, and the rela-
tion between a and Ra (or ReRaT) is sought. The set of
minimum Rayleigh number Ra (or ReRaT) and the corresponding
wave number a is the solution of the problem with the pre-
assigned Pr and u (or Pr). A1l computations are performed

by IBM 360/67 at the Computing Center of the University of

Alberta insuring accuracy for the first eigenvalues of Ra

such that

n+5 n
€55 1™ - Icyy]

s =
n+5
¢y

< 1073 (4,29)

and for the second eigenvalues e < 10'4. The values of the

wave number a and Rayleigh number Ra (or ReRaT) are considered

to be accurate up to four and five significant figures,
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respectively. |
In addition to obtaining the numerjca]\resu?ts for

nedtra]‘stability curves, secondary flow streamlines, per-
turbations of the aXial've]otity'and temperature distributions
are-also computed. Seéondary flow stream function ¢ is |

defined by v ='aw/azland w o= - 3y/ay.
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4.4 Results and Discussion

The results for neutral stability curves are shown
in Fig. 4.4 The effects of adverse linear temperature dis-
tribution, main flow direction disturbance and nonlinear
temperature profile (see the corresponding factors (b), (d)
and (c¢) in Section 4.1)_wi11 be explained clearly using this
figure.. First of all, if the flow is destabilized by the
adverse linear temperature distribution alone, then we obtain
a critical Ra* = 1707.8 and wave number a = 3,116 which are
exactly the same as those found in the classical Bénard
problem. For the case when the top plate is kept at higher
temperature level (T2 > T]), the flow is theoretically always
stable.

With Pr - 0 and pu # 0, the effect of main flow direc-
tion disturbance also destabilizes the flow, and the critical
Rayleigh number decreases from 1707.8 for the case T] > T2
and from infinity for the case T2 > T], respectively, as |u]
increases. Both solid and dashed curves representing positive
and negative Ra, respectively, approach to a definite value
which will be discussed in the next figure.

Similarly, for Pr # 0 and u # 0, the effect of non-
Tinear temperature profile also destabilizes the flow and”
fhe two curves for positive and negative Ra approach to each
other. It is interesting to note the asymptotic behaviour
for the case of |u| + « where the instability of the flow

depends on Pr and ReRaT only (see Fig. 4.5).



103

0010BO9 OV 02 089 v z - L8090 vo . zo

SLLO4 X3340A [eulpn}Lbuo) 40j SBAUND A3L|LQe}S [eANdN ¥'¥ ‘fL4

| / Cgzol o=
// / (l<2) oy INLVOIN ———
,,/. ,/ /EA 1) oy 3AILISOd —— ,/

[

1o

- -]

2
lLoa| ¥3awnN HoIZIAVYE TvDILIED

oL

™~

<t

0

N

yOl



© « |[M| ased a8y} 404 8AUND AIL[Lqels [edlnay G't ‘6L

104

| g
- 00E00Z 00LO90O¥Y OZ OL 9 ¢ 2 Il 90¥Y0 20 1O ol
| T T T T T T T rA

o <

o~ ™
o
1oy 3y 1VIILI¥D

o <

N =
=4

<t

(X



105

Fig. 4.5 shows an important and interesting limiting
case for Fig. 4.4. The solution for this case can be obtained
from equation (4.22) for the case when |p| » =. When Pr - 0,
the secondary flow is caused merely by the main flow direc-
tion disturbance, and the critical value is ReRa,r = 77865,

On the other hand, when Pr > 2 the value of the parameter
PrReRaT approaches asymptotically to 20355 and the wave num-
ber a approaches to 4.000. At Pr = 2 the value of PrReRaT
deviates only 2% and the wave number a deviates only'S% from
the limiting values of 20355 and 4.000,respectively.

With Pr as a parameter, the relation between critical
wave number a and the characteristic parameter u is shown in
Fig. 4.6. For the case T] > T2’ all the solid curves start
with the value of 3.116 and approach asymptotically to the
values for the 1imiting case [u| + =. For the case T, < T,,
all the dashed curves also approach to the limiting values
for the case |u| - . As Pr > 0, the trend of the curves
for the cases of T1 z T2 is seen to be opposite to that for
a higher Prandtl number. This is due to the effect of main
flow direction disturbance. As pointed out earlier in connec-
tion with Fig. 4.5, the wave number for the limiting case
|[u] + « is also seen to approach the value of 4.000 as Pr
increases.

Second critical Rayleigh numbers for the case T; > T,
are shown in Fig. 4.7. The values represented by the upper

curves are seen to be one order of magnitude higher than the
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first critical eigenvalues. The difference becomes even more
pronounced as u increases. The second critical values may
have no practical significance because they are computed on
the assumption of Poiseuille flow. The basic flow and tempera-
ture fields may differ considerably from the Poiseuille flow
profiles at a Rayleigh number which is one order of magni-
tude nigher than the first critical value. However, the '
results indicate that we may expect a flow pattern, deter-
mined solely from the first eigenfunction, to exist in some
regions of Ra near the first critical values, though non-
linear terms may play a role in the governing equations at
high Rayleigh number.

Figs. 4.8 (a, b and c) show secondary flow streamlines
and isothermals of perturbation temperature for three typical
cases. The values of ¢ and 6 are those obtained by setting
- A2/a = 1. For case (a), the isothermals have only one eye
since there is no maximum (or minimum) basic temperature in
the fluid, otherwise, two eyes exist such as shown in cases
(b).and (c). The horizontal zero perturbation line (6 = 0)
and the center of vortex move downward as u increases for
the case T] > T2. “For the case T2 > Tqs the movement is
opposite. Case (c) in Fig. 4.8 also shows a double vortex
structure, but the strength of the upper vortex is seen to
be about two orders of magnitude less than that of the main
vortex. These figures also indicate the location of the maxi-

mum temperature disturbance. This information can be utilized
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to detect the onset of instabi]ify as will be discussed in
the next chapter.

In Fig. 4.9, the perturbations of the axial velocity
component on line A-A (see the figure) are shown for several
combinations of Pr and u. In most cases, the minimum (or
maximum) perturbation velocity is located at approximately
z =1/4 or 3/4.

Finally, for the completeness of the present study,
it is necessary to show the region of parameters (Re, RaT,
Ra) where the longitudinal vortex rolls may have priority of
appearance. In Fig 4.10, the critical Re( = 5400) for two-
dimensional Tollmien-Schlichting waves is compared with the
thermal instability for Pr = 0.7. When the flow has a value
of Re less than 5400 but the values of Ra and RaT are above
the slant straight lines indicated in the figure for a given
vaiue of u = ReRaT/Ra, then this flow is considered to be
unstable predominantly for the vortex rolls. Gage and Reid
[4.9] pointed out that the critical Re for the T-S waves is
also influenced by the thermal structure of the flow. Thus,
the comparison shown in Fig. 4.10 must be considered as
tentative. A more convenient comparison can be made by using
Richardson number, Ri = - Ra/64 PrRez. According to the

analysis in reference [4.9] for the case T] > T2, Pr = 1

6 the vortex rolls

and u = 0, in the region Ri < - 0.92 x 10~
are more probable than T-S waves. The criterion is clearly

affected by the presence of u as shown in Table 4.1 for
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Pr = 0.7. It is also seen that at extremély low Re there

is a possibility of transverse or three dimensional vortex

rolls. .

Table 4.1 Critical values of Ri (AT > 0)
beTow which longitudinal vortex
rolls have priority of appear-
ance over the T-S waves .

(Pr = 0.7)
u 0 10 100 ®
Ri* x 10° -1.3 -0.91 -0.15 0

The assumption of fully developed laminar'flow ghohld
also be examined carefully since instability in the entrance
region might be significant under certain circumstances. To
.the best of the author's knowledge, the literature in this
area is not available. There a;e at least two factors which
may be important in.thé entrance region.

| (a) Due to the thinner thermal boundary layer in the
entrance region, the flow ﬁay be more stable.

(b) Due to the steeper temperature gradient in the
entrance region, the flow may be more unstable.

The effects of the above two conditions are seen to be oppo-
site with each other. For condition (a), the present study

is still valid. For condition (b), we note that when
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the influence of the secondary motion on the fully developed
basic velocity and temperature fields is negligibly small,
and»the growth or decay of the motion depends on the flow

and thermal structure of the fully developed region only,

the present results are still considered to be valid. There-
fore, the validity of the present analysis depends on the
stability of the flow in the entrance region. A further
study is required to explore the instability problem in the

entrance region. The numerical results are tabulated in the

Appendix 4.2 for reference.
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4.5 Concluding Remarks

(a) The linearized stability analysis is carried
out for.the fully developed laminar. forced convection. between
two infinite horizontal flat plates subjected to identical
uniform axial temperature gradient but maintained at tempera-
tures T; and T, (T] > T2’ T] < T2 and Ty = T2) at lower and
upper surfaces, respectively. The limiting case. of vanishing
axial temperature gradient and heating frpm below (T] > T2)
reduces to the problem studied by Mori and Uchida [4.6] and
also to the classical Béenard convection problem (Rol11-type
convection) [4.7] mathematically. 1In addition to the two
destabilizing effects such as the adverse vertical tempera-
ture gradient [4.7] and the nonlinear temperature profile
[4.8] considered in the literature, the present study con-
siders one additional destabilizing effect in the form of. the
convective motion of the main flow direction disturbance.
Consequently, from the viewpoint of destabilizing effects,
the present work can be considered as more general than the
earlier works. [4.6, 4.7, 4.8]. The effect of Prandtl number
on thermal instability is also studied comprehensively.

(b) The forced convection between two horizontal
flat plates considered in the present chapter. is destabilized
by linear and nonlinear parts of the basic temperature dis-
tribution and also by the convective motion of the main flow
direction disturbance. For the case of [p| = 0 (see equations

(4.3) and (4.15)), the linear part of. the basic temperature
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distribution dominates the instability of the flow. For the
case of Pr|u| +- = (see again equations (4.3) and (4.15)), the
nonlinear part of the basic temperature distribution destabi-
lizes the flow. Furthermore, for the case of Pr - 0 and

|[u| > = the convective motion of the main flow direction
disturbance plays an important role in destabilizing the flow.
It is interesting to note that when Pr > 0(1), the neutral
stability curves shown in Figs. 4.4 and 4.5 already approach
to their respective asymptotic values for Pr - «,

(c) The critical wave number a depends on the values
of Pr and pu. For example, for positive Ra, as u is increased
from 0, the wave number a starts deviation from 3.116 and
approaches to a limiting value at a certain value of u for
a given Prandtl number.

(d) Most recently, Kurzweg [4.10] studied stability
of natural convection within an inclined channel. He found
that the critical Grashof number for the onset of longitudinal
vortex rolls between inclined parallel plates with an angle

¢ with respect to the vertical is

Gr* = (const/Pr)csc ¢ (4.30)

or

Ra* sin ¢ = 1707.8 (4.31)

The problem treated by Kurzweg corresponds to the limiting



117

case u = 0 for the present problem if a plane channel is
inclined at the angle ¢ with respect to the vertical. It
is noted that the stability curves shown in Figs. 4.4 and
4.5 can also be applied to the inclined plane channel by
simply replacing Ra* and ReRaT* by Ra* sin ¢ and ReRaT*
sin ¢, respectively, for the inclination angle effect pro-
vided that the basic velocity and temperature profiles are

still given by equations (4.2) and (4.3), respectively.
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Appendix 4.1 The Elements of Matrix [cij]

1
Ci3 =57 * Ky ,5
Cig = 27 + K
18 = 7T v K7
2 4
_ 2a 3a
Coy =P +3—*+t5T + Ky

1
Coz3 =aT * Ko 5
Cop = 2+ + K
24 =57 T Ko 7
C.. = - 22 + 2a2 (l;az) + 3a4 (l-- a2) + K
31 7~ 17 3,2
2
2
_ a
C33 =1 -3+ K35
2
_ 1 a
C34 =37~ 50 * K3,7
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2 2 4
_ 4 a 4 3a"~ ., a
C4]—3a (-2—-])+3a (]-—2 1'8—)1'K4’2
.4
Chp = 32" * K4 3
4
enal a
Cqz =733~ + 3=+ Ky ¢

m
where K]’j = z

K, . = Z 2a% 18
3, [(n 4)T 7 n=-2)7-""n,J

2
- . 3a 3a
Kg,j ~ 2 [Re6]T = Tnad)T * T2y i, 3

j=2,3,5,17,

and B's are the coefficients in the following equation for

A (n > 8) [c.f. equation (4.26)].
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A, = By oRy + B A+ By gA5 + By Gh

Infinite series. for K's were terminated when the desired

convergence was. obtained.
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Pr = 100
M a Ra*
0 3.116 1707.8
0.075 3.399 1322.3
0.225 3.738 699.80
0.525 3.878 346.70
0.75 3.911 250.85
1.5 3.950 130.38
-1.875 4.021 -111.87
-1.125 4.043 -190.38
-0.75 4.069 -293.13
-0.525 4.104 -433.09
-0.225 4.256 -1174.8
-0.15 4.387 -2013.3
-0.075 4.761 -6094.9
Pr = 0.1
u a Ra*
0 3.116 1707.8
3 3.118 1693.0
7.5 3.127 1623.0
15 3.145 1441.9
22.5 3.159 1256.5
30 3.169 1098.4
45 3.179 864.97
60 3.184 708.49
75 3.186 598.43
-75 3.184 -954.09
-52.5 3.173 -1534.8
-37.5 3.151 -2447.0
-26.25 3.098 -4355.3
-18.75 2.988 -8273.1

Pr - 0
U a Ra¥*

0 3.116 1707.8
7.5 3.113 1661.2
15 3.105 1547.1
26.25 3.091 1341.0
45 3.073 1051.9
75 3.056 762.02
-75 2.%47 -1445.9
-52.5 2.907 -2390.4
-37.5 2.844 -4077.9
-30 2.777 -6078.2
-22.5 2.645 -10965.

Pr = 10
u a Ra*
0 3.116 1707.8
0.375 3.221 1568.0
0.75 3.397 1309.3
1.5 3.616 913.62
3 3.775 548.47
4.5 3.830 389.25
7.5 3.881 245.65
11.25 3.906 167.97
15 3.918 127 .59
-18.75 3.986 -109.36
-11.25 4,006 -186.05
-7.5 4,031 -286.34
-5.25 4.064 -422.83
-3.75 4.107 -618.79
-3 4.145 -804.18
-2.25 4,208 -1144.4
-1.5 4.331 -1957.7
-1.125 4.451 -2982.7
-0.75 -4.683 -5894.1
-0.675 4.760 -7205.5
-0.6 4.858 -9164.4
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Pr = 0.7 Pr.= 0.7
u a Ra* M a Ra*II
0 3.116 1707 .8 0 5.365 17610
1.5 3.128 1683.6 0.15 5.366 17636
3 3.160 1618.3 0.3 5.369 17712
5.25 3.223 1478.6 0.45 5.374 17839
7.5 3.284 1329.0 0.75 5.392 18252
15 3.415 943,66 1.125 5.432 19077
30 3.510 575.38 1.5 5.498 20267
45 3.546 410.98 2.25 5.741 23703
60 3.564 319.20 , . -
75 3.576 260.81
-75 3.667 -309.83
-52.5 3.687 -459 ,59 Pr = 0.1
-37.5 3.712 -676.76 :
-30 3.735 -884.47
-22.5 3.770 -1271.0 U a Ra*II
~-18.75 3.798 -1620.4
-15 3.836 -2220.4
-11.25 3.891 -3462.0 0 5.365 17610
-7.5 3.962 -7223.6 0.75 5.374 17677
-6.75 3.973 -9022.1 1.5 5.404 17877
3 5.521 18685
5.25 5.840 20941
7.5

6.279 24315

Second Critical Eigenvalues

Pr = 10

B a Ra 1
0 5.365 17610
0.075 5.359 18444
0.1125 5.364 19519
0.1875 5.471 23050
0.225 5

.597 25328
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Critical ReRavaor the case of |u| » =

. *
ReRaT .

Pr a
0 3.015 77864
0.1 3.192.. 56319
0.2 3.317 44212
0.4 3.481 30931
0.7 3.621 21305
1 3.702 16238
2 3.826 9047.3
3 3.876 6267.9-
5. 3.920 3881.7
7 -3.940 - 2811.2.
10 '3.955 1988.5
20 3.974 1006.6
40 3.984 506.40
60 -3.987 338.30
100 3,989 203.32
150 3.990 135.66

4.000

81.449
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CHAPTER V

AN_EXPERIMENTAL INVESTIGATION OF THERMAL INSTABILITY
IN PLANE POISEUILLE FLOW*

5.1 Introduction

The effects of buoyancy forces on fully developed
laminar forced convection in horizontal reétangu]ar channels
under the thermal boundary conditions of axially uniform
wall heat flux and peripherally uniform wall temperature
were studied by Cheng and Hwang [2.5] for various aspect
ratios. It was found that as the aspect.ratio (width/heigh;)
increases, the eyes of the vortices move further toward the
shorter vertical side walls. Consequently, the effect of
buoyancy forces is negligible as the aspect ratio approaches
infinity. However, in reality, another type of secondary
flow may arise leading to a thermal instability problem dis-
cussed in Chapter IV. The thermal instability of a horizontal
fluid layer subjected to various boundary conditions has been
studied very extensively, both theoretically and experiment-
ally in the past. For the horizontal fluid layer subjected
to an adverse temperature gradient (with the lower surface

temperature T] higher than the upper surface temperature Tz),

* More complete results of this work are reported in [5.1].
The contribution of Mr. M. Akiyama to the work described
here is clearly stated in the Acknowledgement.
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the system is potentially unstable because of its top-heavy
situation and the onset of secondary motion is marked by a
critical Rayleigh number. For a horizontal fluid layer with-
out forced flow, the system is always stable theoretically

if the upper surface %s maintained at higher temperature

than the lower surface, namely T2 > T]. However, with the
main flow in the horizontal direction and the fluid tempera-
ture less than both T] and T2, the region near the lower sur-
face will again be subjected to an adverse temperature gradi-
ent and the system is now potentially unstable. We can easily
see that the critical Rayleigh number would be higher when

T, > T4 than when T; > T,. In other words, with the main
flow in the horizontal direction, the onset of convection.is
always possible with either T] > T2 or T2 >_T].

A theoretical investigation of the thermal instability
was carried out in Chapter IV to determine the conditions
mahking the onset of longitudinal columnar vortices due to
buoyant forces in a fully developed laminar flow between two
infinite horizontal parallel plates (see Figs.4.1 and 5.1).
The thermal boundary conditions of uniform axial temperature
gradient and temperatures T] and T2 at the lower and upper sur-
faces, respectively,were considered. The theoretical results
in Chapter IV show that for the case of T] #-TZ, the critical
Rayleigh number depends on the dimensionless parameter u
characterizing the effect of the uniform axial temperature

gradient, and also Prandtl number. On the other hand, for



128

wa3sAs a1eulpaood pue uoLjyeanbLiuon

1'g* 6Ly




129

the case of T1 = T2, the critical ReRaT depends on Prandtl
number only. As shown in Fig. 5.1, the eigenvalue and boun-
dary-value problems may exist side by side for the horizontal
rectangular channel with aspect ratio say around 10.

Recently, Mori and Uchida [4.6] carried out a theore-
tical and experimental study on the effect of longitudinal
vortex rolls on forced convective heat transfer between two
horizontal plates for the 1imiting case of vanishing axial
temperature gradient T = 0 where the Tower plate is heated
isothermally and the upper plate is cooled isothermally.

More recently, Sparrow and Husar [5.2] reported an experi-
mental investigation on the occurrence and characteristics

of longitudinal vortices superposed upon the natural convec-
tion main flow on an inclined plate. Experimentally, the
lTongitudinal vortices were also observed by Terada and Tamano
[5.3] in Poiseuille flow, and by Chandra [5.4] and others

in Plane Couette flow, all heated from below.

In the present experimental investigation, the onset
of longitudinal vortices for the fully developed laminar
forced convection between two horizontal flat plates subjected
to uniform axial wall temperature gradient with air as a work-
ing fluid is studied to verify the theoretical results reported in
Chapter IV. The secondary flow in the present problem arises
from the destabilizing effects due to the adverse temperature

gradient and also the advective motion of the main flow dis-

turbance.
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5.2 Experimental Apparatus and Procedure

The schematic diagram of the testing apparatus is
shown in Fig. 5.2. Air from a centrifugal blower or air tap
passes through a settling chamber and enters a horizontal
rectangular channel (cross section 11" x 1" or 1/2"). The
test section is constructed by two mirror-Tike smooth brass
plates (6' x 1' x 1/8") with side walls made of marinite in-
sulator and reinforced by steel bars for accurate dimension.
In order to insure uniform heating, the heating elements and
the brass plates are separated by a 3/16" thick aluminum plate.
The heating elements consist of. 0.008" x 1/8" Nikrothal tape
wound around 1/16" thick mica sheet with a pitch of 3/8"
and the electrical insulation is provided by 1/16" thick mica
sheets. The heaters for each plate were subdivided into
thirteen segments in the direction of the main flow with each
segment consisting of one main heater and two guard heaters,
one on each side. Each heater can be controlled individually
by a voltage controller and two large capacity voltage con-
trollers were used to regulate the temperature difference
between the upper and lower plates. The surface temperature
of the flat plates is measured by iron-constantan thermo-
couples (0.01" dia.) embedded in the brass plates and elec-
trically insulated to minimize the electrical noise on the
temperature recording system.

The flow rate of the air is measured by providing a

metering orifice as shown in Fig. 5.2 where the pressure
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difference is measured by Chattock type manometer. The meter-
ing system is calibrated by a rotary type gas meter with an
error of. approximately 0.5 per cent. Throughout the experi-
ment, the Reynolds number is kept below 100 in order to
eliminate the growth of any undesirable hydrodynamic dis-
turbances which may be caused by any irregularity of the
flow passage.

Smoke generator is located at some distance ahead
of the metering orifice as shown in Fig. 5.2. This arrange-
ment yields a fairly uniform smoke distribution in the test
section. The flow visualization technique is confirmed by
the experimental verification of the well known critical
Rayleigh number of 1708 for the limiting case u = 0 and the
determination of the critical ReRaT by transverse temperature
measurement for the case |n| - < which will be described
later. It may also be of interest to note that the cigarette
smoke is selected for this experiment because of its smallest
particle size among the many smoke sources available.

Two types of test section are u;ed for the experiment.
In one series of tests, the channel height is kept at h =
172dﬁwith the upper plate having either heating elements or
water cooling system. The latter consists of nine indepen-
dently controlled segments arranged in the direction of main
flow [5.1]. For a given value of the Reynolds number and a
channel height h, an examination of the characteristic para-

meter p = Reth/AT shows that the parameter u can be increased
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by adjusting either the axial temperature gradient T.or the
temperature difference AT. However, there is an upper limit
to the value of the temperature gradient t to be imposed
since in the theoretical analysis (see Chapter IV), the
Physical properties are all considered to be constant except
for the density in the buoyancy term. We also note that for
a given channel height.h and the type of fluid such as air
the only way one can raise the Rayleigh number is by increas-
ing the temperature difference AT between the two plates.
Consequently, it is found that the value of the characteristic
parameter u can not exceed around 10 with h = 1/2". This
channel is found to be quite satisfactory for the experiment
with 1 = 0 and the positive Rayleigh number for u < 10.

In another series of tests, the channel height is
raised to h = 1" with the upper plate having heating element
only [5.1]. This modification enables us to carry out the
experiment at higher values of the characteristic parameter
1 and is found to be very satisfactory for the case of u = 0

and the case of negative Rayleigh number.
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5.3 Experimenta] Resu]ts.and-Discussion

In order to confirm fully developed laminar flow at
the test section, measurements for the. velocity profile in
the vertical.direction through the center of the channel are.
made at several axial stations. -The typical results- for the
measurements made at_the distance-x' = 57 in., 62 in., and
67 in., respectively, from the entrance of the. channel with-.
out heating are shown in Fig. 5.3 with comparison made against
the theoretical plane Poiseuille profile. It is found that
there is no differen;e between theiPoiseuijle profile for. the
parallel-plate channel and the theoretical result for the
rectangular- channel (11 in. x 1 in.) through the center. Since
a flow between two infinite horizontal parallel plates is.
simulated by a horizontal rectangular channel with. finite
aspect ratio, the extent of the influence of the two side
walls must be ascertained. For this purpose, the transverse
velocity profile through the center of the channel is also
measured with a typical result compared against. the theore-
tical curve for the rectangular channel in Fig. 5.4. Figs.
5.3 and 5.4 show clearly that the velocity distribution is
fully developed at the measuring stations even at relatively
high Reynolds number of 160. Consequently, with lower Reynolds
number, we are further assured of the fully developed flow
regime. It is also seen that a considerably wide central
region of around 7h (h = 1 in.) may be considered as fully

developed Poiseuille profile for the parallel-plate channel.
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We can conclude that the aspect ratios of the rectangular
channel used are sufficiently large to simulate plane Poise-
uille flow in the central region of the channel.

In addition to the confirmation of hydrodynamically
fully developed laminar flow, thermally fully developed tempe-
rature field is also ascertained by temperature measurements
at several axial stations and typical results of the tempera-
ture measurements in the vertical direction through the center
of the channel are shown in Fig. 5.5 for the thermal boundary
conditions of T] =-T2 and uniform temperature gradient (1.85°F/'
in.) in the axial direction. The solid curve in Fig. 5.5
represents the theoretical plane Poiseuille flow profile and
we can see that the agreement is good. We may add that the
linear temperature distributions in the axial direction for
both upper and Tower plate are quite satisfactory.

The primary purpose of this investigation is the
experimental determination of the critical Rayleigh number
for the onset of the Tongitudinal vortex rolls and the com-
parison with the theoretical neutral stability curves pre-
sented in Chapter IV. The onset of the columnar vortices
is determined by flow visualization and confirmed also by
transverse temperature profile measurement for the case of
|[u] » ». Based on the theoretical result for isothermals of
pertﬁrbation temperature reported in Fig. 4.8 of Chapter IV,
transverse temperature measurements are made at z' = h/4 from

the bottom plate surface in the central region of the channel
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in order to obtain approximately maximum temperature fluctua-
tion. For the purpose of flow visualization and photographing
the flow pattern from the exit of the channel, the channel is
illuminated by two 1ight sources through two side slits of

1/8 in. width located at 9 in. from the exit as illustrated

in Fig. 5.2. Temperature measurement is made using two-dimen-
sional traversing mechanism. for a thermocouple under smoke

free condition.

In this investigation, the experiment is done for the

following four cases:

(a) -The characteristic parameter p = Reth/AT = 0

or T =0, T] > T2 and Re # 0. This case is specifically de-
signed. to check the accuracy of the testing apparatus by
utilizing the well known critical Rayleigh number of 1708
regardless of the presence of forced flow. We note that the
variation of Reynolds number has no effect on the onset of
the secondary flow. However, at extremely low Reynolds num-
ber, the longitudinal vortices may disappear.

(b) The case of u > 0, Ra > 0 (T] > TZ)’ and T =
constant. The data for this case are obtained from the.
channel with height h = 1/2 in. and the magnitude of the
parameter p is Tlimited to around 7 because of the limitation
imposed by the height of the channel as explained earlier.

(c) The Rayleigh number is negative (T2 > T]) and

constant. The range of the characteristic parameter

T

used is -6 > u > -60. This case of negative Rayleigh number
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allows us to traverse the stable, neutral and unstable regions
by simply varying the Reynolds number. The data for this:
case are obtained from the channel with.h =1 in.:

(d) The limiting case of |u| + = where the top and
bottom plates are.kept at the same temperature with the uni-
form axial wall temperature gradient. This case is of
.interest in practical application.

The experimentai results- on the détermination of. the
critical Rayleigh number for. the above four.cases will be
explained. next. For case (a) with vanishing axial temperature
gradient, the eigenvalue probiem concerning with the onset
of the vortex rolls-is independent of the fully developed. vel-.
ocity profile and the problem is identical to that solved.by
Pellew- and Southwell [4.7]. The instability. of the problem:
is solely due to the adverse temperature gradient in. the
vertical direction. The flow patterns. of the vortex rolls
at Ra = 4160 for.the channel with h = 1 in.. are shown in
Fig. 5.6 for several different Reynolds numbers. For a
given Rayleigh number, the number of closed streamlines in-
creases as the Reynolds number decreases. This is c]ear]y
seen in Fig. 5.6. For the cases with Ra > 1708, the flow
pattern is very regular and the pitch of the vortex rolls:
does not seem to change appréciab]y. Mori and Uchida [4.6]
note thaf the wavelength predicted by the linearized theory

agrees with the experimental results only up to h =15 mm and

the wavelength remains constant if h > 15 mm. However, the
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result of the present study for the case h = 1 in. clearly
contradicts with their result. It is believed that as long
as the flow is fully developed. and the temperature difference
AT remains small enough so thét Bbusinnesq approximation is
valid, the linearized theory can be applied even for the case
when h > 15 mm. The results of flow visualization for. this
case with y = 0 are plotted in Fig. 5.7 where a cross. means
no detectab]e'secondary flow, a triangle means uncertain
situation and a circle means definitely observable secondary
motion. Since the experimental data confirm well the well-
known critical Rayleigh number of 1708, we may conclude that
the testing apparatus yields sufficiently accurate data.

For the reasons exp]ainedfearlier, the channel with
height - h = 1/2 in. is not suitable for. the experiments in-
volving the case when |u] > 8. Case (b) of the experiment
is conducted using this channel. For this case the instability
is caused by the presence of both the adverse temperature
gradient in the vertical direction and the product of axial
temperature gradient 7 and the main flow velocity disturbance.
An examination of the neutral stability curve for the case
of positive Rayleigh number (T] > T2) for the air (see Fig.
5.7) shows that the slope of the curve is rather small for
the value of u ranging from 1 to 10. Consequently, in order
to obtain a series of data crossing the theoretical stability
curve, we must adjust the temperature difference AT between

the two plates and this requires quite a long time. For this



143

"SLLOJ X33UO0A |eulpn3LBuoy 404 SBAUND ArLLLgeqs
[B2139409Y3 UILM e3ep | eruduLaadxs 40 uosiuedwoy  s'gHLy

| o | wasawvava oisivasovavio

OLs 9 ¢ g OLs 9 g 1|0

R . CC
T T ] [ 1 I Y Y B | | [

19vis x

NIVLYIONN v
. d18VLSNN o

|
]
T

o0 o000 @

I

%(TXxx

p)

“©
F

N

v

(o}

HOIFTAVY

' ey l J39NNN



144

series of experiment, the temperature difference AT ranges
from 20 to 35°F and the axial temperature gradient T ranges
from 1.5 to 4.0°F/in. The experimental data from flow visua-
1ization are plotted in Fig. 5.7. The difficulties encountered
by the channel with h = 1/2 in. can be overcome readily by
increasing the channel height to h = 1 inch.

The experimental data for the case of negative
Rayleigh number (T2 > T]) using channel height h = 1 in.
will be discussed next. It will be recalled that for the
horizontal fluid layer with main flow but with vanishing
axial temperature gradient, the flow is theoretically always
stable. MWith main flow and axial temperature gradient, the
instability is again caused by the adverse temperature gradient
which exists near the lower plate and the product of-axial
temperature gradient T and the main flow velocity disturbance
u'. An examination of the theoretical neutral stability curve
for this case (see Fig. 5.7) shows that it is convenient to
cross the neutral stability curve by changing the value of
u (or Reynolds number). For this series of tests, the tempe-
rature difference AT between the two plates is kept generally
between a few degrees to less than 10°F and the axial tempe-
rature gradient T is kept constant in each case with the
value ranging from 0.81 to 0.96°F/inch.

The experimental data from flow visualization for
the case of.negative Rayleigh number are compared against the

theoretical neutral stability curve in Fig. 5.7. Fig. 5.8
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illustrates a series of flow pattern starting from stable
state to post-critfca] regime.. At u = -9.45 and Ra = -1445,
we can see that laminar free convection from heated vertfcal
side wall extends to about 3h in the horizontal direction.
Noting that tﬁe channel width is 11h in this case, we con-
clude that the side wall effect is considerable. We can see
the distribution of smoke particles in the central region
which is still stable. This situation is marked as a cross
in Fig. 5.7. At p = -15.3 and Ra = -1460, we can barely
detect the motion of smoke particies in the horizontal direc-
tion and the extent of free convection-effect due to side
walls increases slightly. This situation is marked as a
triangle in Fig. 5.7 indicating the uncertain situation.. It
is seen that the smoke particles occupy the lower half of the
central region of the channel. At p = -22.8 and Ra = -1500,
three pairs of longitudinal vortices appear clearly and this
situation is marked as a circle in Fig. 5.7 indicating de-
finite instability. The deviation from the theoretical
stability curve for the two sets of experimental data at
higher values of Rayleigh number can be attributed to the.
free convection effect due to side walls and variable property
effect.” The remaining three sets of experimental data at
Tower values of Rayleigh number are considered to be quite
satisfactory and in particular at Ra = -800 the agreement
with theory is excellent.

The experimental data from flow visualization and
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transverse temperature measurement for thé 1imitfng case of
ju] > = are compared against the theoretical critical value
of ReRaT = 2.13 x ]04'in Fig. 5.9. One set of flow patterns
illustrating the gradual development of secondary flow starf-
ing from comblete]y stable state to the post-criticél state |
is shown in Fig. 5.10. The general situation is similar to
the ones discussed earlier. In addition to the photographic.
results, experimental data ffomAthe transverse temperature
profile measurement made at a distance z' = h/4 from the
lower plate surface are presented in Fig. 5.11 and these
correspond to the test run number 2 in Fig. 5.9. Referring'
to Fig. 5.11, at ReRa,r = 1.23 x 104, we can detect slight
variation of transverse temperature distribution but this:
result is marked as a cross in Fig. 5.9 indicating stability

because of its -rather uniform distribution and uncertain

2.65 x 104, we can see

nature of disturbansss. At ReRaT
definite fluctuation 6f transverse temperature profile around
mean temperature bdt this result is considered to be uncertain
in Fig. 5.9 since the pitch is not clearly defined yet. At
ReRaT = 3.37 x 104, we can see the periodic distribution
indicating the definite establishment of the secondary flow.
With further increase of ReRaT, the aﬁp]itude of the periodic
temperature distribution increases further indicating stronger
secondary flow intensity. For the Timiting case of [u| + =,
the experimental data from visuaiization and transverse tempe-

rature measurement confirm each other serving to demonstrate
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the adequacy of the flow visualization technique.

Fig. 5.12 summarizes the data for the variation of
wave number a = 2rh/(wave length) with the characteristic
parameter |u| in the post-critical regime. The curves for
critical wave number versus |u| from theory are also shown.
The results from thermocouple data are shown as square and
the solid circle or square represents the closest data point
near the theoretical curve for a given series of.tests. For
the limiting cas; of u = 0, the solid circles are.seen to be
located quite close to the theoretical value of a = 3.116.
The remaining data also do not deviate very far from the
theoretical value of a = 3.116. For the case when |u| » =,
the experimental data show a definite increase of the wave
number (or decrease of the wavelength) with the variation
of ReRaT. The solid circles and squares check very well again
with the theoretical value a = 3.621. For the case of nega-
tive u (or negative Rayleigh number), fhe solid circles
generally follow the theoretical curve but the other data
show some unceriain result. Because of the free convection
effect from the side walls, experimental errors and other
uncertainties, the above remark must be considered as tenta-
tive.

Fina]]y} we note that the case of |u| + = corresponds
to the limiting case of infinite aspect ratio for the combined
free and forced laminar convection in horizontal rectangular

channé] reported in reference [2.5]. For the problem dis-
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cussed in reference [2.5], secondary motion exists only near
the. side walls. Theoretical analysis in-Chapter IV.reveals
the possibility of secondary flow even in the case of infinite
aspect ratio. The present experimental study (see Fig. 5.10)
reveals further that witﬁ the aspect ratio of 11 used in the
experiment, another.type'of secondary flow in the. form of
longitudinal vortices due to thermal instability will appear
at a certain critical ReRaT depending on Prandtl number in
addition to the known secondary motion due to free convéction
near the side walls. The practical implication of Fig. 5.10
is significant since it reveals that with the aspect ratio

of arcund 10 for the horizontal rectangular channel, the flow
and heat transfer characteristics cannot be predicted with the
existing theory after reaching a certain critical ReRaT. For
example, according to reference [2.5], for the horizontal
rectangular channel with infinite aspect ratio, the secondary
flow has no effect on flow and heat transfer results. How-
ever, as confirmed by the present experimental study thermal
instability problem appears in practice. This also means
that the known Nusselt number of. 8.235 for fd]]y developed
laminar flow between two parallel plates with uniform wall

heat flux cannot be applied when the‘ReRaT reaches a certain

critical value.
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5.4 Concluding Remarks

(a) Experimental data on the onset of longitudinal
vortices for fully developed laminar forced convection bet-
ween two horizontal plates are compared with theory and the
agreement is found to be good. The accuracy of the testing
apparatus is ascertained by considering the limiting. case
of vanishing axial temperature gradient and heating from
below which has a known critical Rayleigh number of 1708.
The adequacy of the flow visualization technique used is
confirmed by the transverse temperature measurement at a
distance of h/4 from the bottom surface for limiting case of
lu| > .

(b) For the negative Rayleigh number case, the free
convection effect due to side walls is appreciable. The
exact reasons for the deviation of experimental data from
theory at higher Rayleigh numbers are difficult to assess.
However, free convection effect due to side walls and variable
property effect are believed to be the contributing factors.

(c) The flow visualization technique developed is
satisfactory for the present investigation and reasonably
good flow patterns are obtained for the secondary flow.
Based on photographic results, we can see the extent of free
convection effect due to side walls. The flow visualization
technique is expected to be effective particularly for the
experimental study dealing with post-critical regime. For

example, the measurement of the pitch of vortex rolls can be
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made readily.
(d) The practical implication of the present photo-

graphic results is believed to be significant since it reveals
that fof a horizontal rectangular channel with large aspect
ratio, say near the order of 10, the effect of longitudinal
vortices due to thermal instability must be considered in
addition to free convection effect near the side walls for

the evaluation of flow and heat transfer results after reach-
ing a certain critical value of the characteristic parameter.
Under this condition, we have boundary-value probliem- near

the side wails and thermal instability probiem in the central
region of the channel. At present theoretical study in this

area does not seem to be available in the literature.:
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CHAPTER VI

FINITE AMPLITUDE CONVECTION IN PLANE

POISEUILLE FLOW

6.1 Introduction

It is shown theoretically in Chapter IV and confirmed
experimentally in Chapter V that for fully developed laminar
forced convection between two finite horizontal flat plates,
longitudinal vortices (vortices with axis in the main flow
direction) occur if the destabilization due to buoyancy is
large enough to overcome the stabilizing effects of viscous
and thermal diffusion.

Several deficiencies or restrictions may be observed
in the application of the results of the linearized theory
for the thermal instability problem discussed in Chapter IV.
Specifically they are:

(a) Physical properties are assumed to be constant
and independent of temperature. The variation of density
with temperature is ignored except in association with
gravity (Boussinesq apbroximation). The variable property
effect may be significant for some fluids. This may limit
the range of app]icabi]ity of the numerical results.

(b) The basic velocity and temperature fields are
assumed to be fully developed. As pointed out in Chapter Iv,
the instability of flow in the entrance region may be signifi-

cant under certain circumstances.
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(c) The disturbances may not be considered to be
infinitesimally small. This can be discussed from two
points of view. Firstly, some type of finite amplitude dis-
turbance may occur before the appearance of the infinitesimal
disturbance. In other words, the flow may be disturbed by
a finite amplitude disturbance with characteristic parameter
below a certain critical value. Secondly, in the post-critical
'regime, thé amplitude of the small disturbance may grow and
the inertia. and advective terms in the governing equations
may no longer be considered to be relatively small.,

(d) The wavelength and preferred mode shape of the
longitudinal vortices may change in the post-critical regime,
but they cannot be predicted by using the linearized theory.
Similarly, with the linearized theory the amplitude of the

disturbance is unknown and the disturbance may grow exponen-

tially without Timit.
(e) The flow and heat transfer characteristics can-

not be determined. o
In order to overcome the above difficulties (c), (d)
and (e) due to linearized stability theory,many researchers
have considered finite amplitude problems for nonlinear pro-
cesses involving, for example, Taylor vortices between
rotating cylinders and the Bénard cells of thermal convection.
In 1923, Taylor [4.3] observed the vortex instability in
flow between rotating cylinders. He observed that a moderate

increase in the speed of the cylinders merely increases the
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intensity of the circulation in the vortices without altering
appreciably their spacing or position. In 1958, Malkus and
Veronis [6.1] made the first attempt to predict the heat
transfer rates fdr finite amplitude cellular convection. The
quasi-linear equations describing the fields of.motion and
temperature are expanded in a sequence of inhomogeneous
Tinear equations dependent upon the solutions of the Tinear
stability problem. An infinite number of steady state finite
amplitude solutions which formally satisfy the basic equations
are found to exist. A criterion for "relative stability" is
deduced which selects as the realized solution that one which
has the maximum mean-square temperature gradient. In 1958,
Stuart [6.2] described finite disturbances under subcritical
and supercritical conditions by using an energy method and
the shape of the amplitude functions obtained. from. the linea-
rized theory. In 1965, Roberts [6.3] considered the non-
linear Bénard conyection by using an approximate procedure.
By employing the concept of local potential, Roberts shows
the behavior of the preferred wave number as a function of
the Rayleigh number. The wave number a varies from 0 to 1%
for Rayleigh numbers ranging from 1708 to 4000. However, the
small variation of the wave number may not have significant
effect on the heat transfer result. 1In the same year, Fromm
[6.4] obtained numerical solutions of the quasi-linear equa-
tion for a horizontal fluid layer heated from below for both

free-free and rigid-rigid boundary conditions. The solutions
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are obtained for values of the Rayleigh number ranging from
the critical value to 107. In 1966, Mori and Uchida [4.6]
applied Stuart's approximate energy method for. nonlinear
mechanics of hydrodynamic stability [6.2] to fully developed
jaminar forced convection between two infinite horizontal
flat plates where the lower plate is heated isothermally and
the upper plate is cooled isothermally. Mori and Uchida
studied the problem in post-critical regime with Rayleigh
numbers ranging from the critical value up to nine times the
critical value and compared with experimental work. It is
noted that Stuart's method represents an approximation to

a pérturbation theory about the critical characteristic number
and so the energy-balance method cannot be expected to be
valid for a large range of Rayleigh number above the critical
value. For the analogous problem of rotating-cylinder flow,
it is estimated that for a Taylor number up to ten times the
critical value the largest error is about 7% for the torque.
It is significant to note that the problem treated by Mori
and Uchida [4.6] is identical to steady laminar Benard con-
vection with two-dimensional rolls. It is also of interest
to note that Stuart's integral theory was applied by Mori
and Uchida [6.5] in 1967 to forced convection heat transfer
in a curved rectangular channel with large aspect ratio
(height/width) where the vortex rolls are caused by an in-.
stability phenomenon due to centrifugal forces. In the same

year, Samuels and Churchill [6.6] applied finite-difference
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methods to compute hydrodynamic instability due %o natural
convection in an enclosed horizontal rectangular region
heated from below. Critical Rayleigh numbers were determined
for a series.of Prandtl numbers and length-to-height ratios.
For Rayleigh number greater than the critical value, the
Nusselt number, temperature and velocity fields were deter-
mined. In 1968, Plows. [6.7] presented numerical results for
two-dimensional. steady laminar Bénard convection. An itera-
tive numerical technique was used to calculate the Nusselt
number and the structure of the roll for Rayleigh numbers
ranging from 2000 to 22000 for the various Prandtl numbers
of 0.5, 1, 2, 6, 8 and 200. 1In these calculations, the roll
width was taken to be w/a where a = 3.117 corresponds to the
primary mode predicted by linear perturbation analysis. It
is noted that the l1iterature on the classical problem of the
Bénard convection is too extensive to be reviewed here; only
a brief review of some references which are related to the
present study is attempted.

The purpose of this chapter is to study the effects
of Tongitudinal vortex rolls in the post-critical regime.on
flow and heat transfer characteristics for fully developed
laminar forced convection between two infinite horizontal
parallel plates subjected to the same thermal boundary condi-
tions as those described in Chapter IV for linear stability.
analysis. The physical problem of interest here is the

finite amplitude thermal convection in plane Poiseuille flow
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considering the nonlinear effect on the flow structure and
temperature field. Because of uncertainty and the absence

of accurate theory, the wave number a for the post-critical
regime in this study will be taken to be the one which is
predicted by the Tinear stability analysis discussed in
Chapter IV for the primary mode. It is believed that the
above assumption on the wave number a provides a good appro-
ximation at least for the parameter near the critical value.
In view 27 the fact that Stuart's method is a perturbation
approach and leads to appreciable error for thermal convec-
tion at high Rayleigh numbers, a numerical solution is employed
for the present problem. Specifically, the boundary vorti-
city method is used in the numerical computation for the casé
of p =0 and Pr = 0.7 and an improved iterative scheme dis-
cussed in Section 2.3(c) of Chapter II is also applied in the
calculations for the cases of u = finite, Pr = 0.7 and [n]| +

with various Prandtl numbers.
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6.2 Theoretical Analysis

Consider a steady fully developed laminar forced
convection in the post-critical regime between two infinite
horizontal plates where the walls are subjected to the same
uniform axial temperature gradient but possibly differing
in temperature at any axial position. The onset of longi-
tudinal columnar vortices due to buoyant forces was the sub-
ject of investigation in Chapter IV. The subject of interest
here is the study of flow and heat transfer characteristics
after the longitudinal vortex rolls set in. .

In the formulation of the present probiem, the follow-
ing basic assumptions are made:

(a) Velocity and temperature fields are fully developed,
that is, all the first derivatives in the axial direction
are either constant or zero.

(b) Physical properties are constant and the Boussinesq
approximation is valid.

(c) Only the steady state solution is considered.

(d) The wave number a for the post-critical regime is taken
to be the one which is predicted by the linear stability
ana1y§is presented in Chapter 1IV. |

The coordinate system employed here is similar to that
shown in Fig. 4.1 except that the coordinate origin y' = 0
is now shifted horizontally by one-half wavelength to take

advantage of the symmetry (see also Fig. 6.1).

In order to investigate the flow structure and tempera-
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ture. field for the post-critical regime, perturbation quan-

tities are. superimposed. on the basic flow quantities as,

U = Ub +u', Vv, W=w,T-= Tb + 6' and ' P.= Pb + p' (6.1)
where the basic flow quantities Ub’ Tb and Pb satisfy the

well-known. equations for plane Poiseuille flow. The solutions
for the unperturbed state are:
2)

Uy = 4U0(z -2%) = U0¢u/2

T, =Ty - (UgTh/K) (2 - 223 + 2%)73 - zaT.
=T - Pr Réth g - ZAT (6.2)
¢y = 8(z - zz)
by = (2/3)(z - 22% + 2°)

where z = 2'/h, U0 js the maximum velocity in the unperturbed
state, T = 8T/ax' is a constant axial temperature gradient
and Re = Uoh/(2v).

Applying the assumptions (a) to (d) and equation
(6.1) to the. Navier-Stokes equations and the energy equation,

and subtracting the equations for plane Poiseuille flow from
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the respective Navier-Stokes equations and the energy equa-
tion then we obtain the equations for the‘perturbatioﬁ quan--
tities after eliminating pressure terms between y'- and z'-

direction momentum equaticns. The perturbation equations. are:.

Axial momentum equation

, , au

Vorticity transport equation for secondary flow

v"gi' + W' i = vv_lzg' - Bg %:ye_:. (6.4)

where the vorticity function is defined by

g = viy (6.5)

and the stream function y' is defined by

1 = l—a : ' = o 3y’
v azl s W : a_;lk'l's (6'6)
Energy equation
aT
1 39' 1 b |ae' - 2 1
UT+V'3—y—r+W ﬁ—r+w ﬁr--mﬁe (6.7).
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where Vf = 82/3y'2 + 32/82'2'
Note that the vorticity function is introduced here to apply
the boundary vorticity. method. The boundary conditions are:.

At the top and bottom plates u' = y' = 93yp'/3z' =06' =10 (6.8)

Along the vertical iines y' =0, 0 < z' < h and y' = wh/a one-

Half wave length, 0 < z' < h du'/3y' = y' = &' = 236'/ay' =0
For the purpose of simplification and convenience,
the above equations (6.3) to (6.7) and the boundary conditions,

(6.8) are reduced to non-dimensiona1-forms4by using the follow-

ing transformations,

(y*.2') = (¥,2)h, (u',v',w') = (Re u,v,w)v/h, 8' = ATe,

gv/h%, ¥' = vy, and the parameters Re = U0042V), (6.9)

gl

Gr = gBAThS/v%, Ra = PrGr  u = Reth/AT.

The results are:

Axial momentum equation

3¢
du o 8u U g2 (6.10)

Vorticity transport equation for secondary flow
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QL

v9—"=+w3—€=v2g-§—$e (6.11)

y

Q

where the dimensionless vorticity function is
"
E =V (6.12)

and the dimensionless stream function y is defined by

= = -
VEsr, W 5y (6.13)
Energy equation
u +v.a_e_+w%-w(Pr —8¢6+ 1) "—]-Vze (6.14)
H ay Z ¥ 3z r *

where V2 = azlay2 + az/az2

The boundary conditions are:

At the top and bottom plates u = ¢ = 3y/dz = 6 = 0
Along the vertical lines y =0, 0 <z <1 (6.15)
and y = w/a, 0 <z <1 du/3y = v = g = 38/3y = 0

At this point, it is noted that the no-slip boundary conditions
3y/9z = 0 at the top and bottom plates cannot be applied

directly but the boundary vorticity method discussed in
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Chapter II is found to be quite effective. The boundary vor-
ticity method is subsequently improved and a detailed compari-

son of the boundary vorticity method with the improved itera-

tive scheme is made in a later section.

For the case when |u| » =, it is not proper. to employ

AT as a characteristic temperature difference. The modified

non-dimensional quantities and the governing equations for

this case are given as:

_ _ 4,6 2 -
8' = Pr Reth 0_, Gr_ = gBth /v", Ra_ = Pr Gr_ (6.

16)

a¢
ou au u _ o2
v53,—+w§-z-+w-a-z—-\7u, (6.17)
306
9k 3¢ _ 2 T
V'BT"'W‘B—Z-- V°E -ReRaTW, (6.18)
- ,
v = 3y/3z, W = = 3y/ay (6.20)
and
96 a6 ¢
T T 8 _ g2
u + Pr(v v + w 55—) - Prw 57 = Ve, (6.21)
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For the case when p = 0, two parameters Pr and Ra
appear in equations (6.10) to (6.14). This case corresponds
to the forced convection problem between two horizontal
flat plates studied by Mori and Uchida [4.6] and equations
(6.11) to (6.14) are seen to be identical.to the governing
equations for the two-dimensional Bénard convection problem
solved, for example, by Plows [6.6]. For the case when p
js finite, three parameters Pr, p and Ra appear in equations
(6.10) to (6.14). On the other hand, when |u| » =, two para-
meters Pr and ReRaT appear in equation (6.17) to (6.21).

In equations (6:10) and (6.17), we see that the axial
direction disturbance is caused mainly by the product of the
vertical direction distrubance, w, and the main f]oﬁ velo-
city gradient, a¢u/82. This product is balanced by the
remaining inertia terms, v 3u/d3y and w du/3z, and also by the
viscous term V2u. In equations (6.11) and (6.18), the secén-
dary motion is seen to be driven by the urbalanced buoyant
force terms (Ra/Pr) 36/3y and~ReRéT aet/ay, respectively.

In the energy equation (6.14), the thefma] disturbance is

seen to come from three sources for. the case when u is finite;

(a) the term due to the convective motion of the main. fiow
disturbance, uu,

(b) the term due to the vertical direction convection through
linear basic temperature distribution, w,

(c¢) the term due to the vertical direction convection through

the nonlinear basic temperature distribution, w Pr u-

a¢e/az.
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For the case when u = 0, the sources (a) and (c) vanish and
the thermal disturbance comes solely from source (b). 1In
equation (6.21) for the case when |u| + =, we see that the
thermal disturbance comes from the convective motion of the
main flow disturbance, u, and the vertical direction convec-
tion through the nonlinear basic temperature distribution,

3¢6

Prwa_z—o

When |u| ~ « and Pr > = and ReRa_ is still very close
to the critical va]ue (see Chapter IV, Appendix 4.2 for the
case when |u| = «),the inertia terms, v 3£/3y and w 3&/3z
in equation (6.18) and the term representing the convective
motion due to the main flow disturbance u, in equation (6.21)
may be neglected as compared with the remaining terms in the
respective equations. By transforming (v,w) into (v,w)ReRaT,
only one parameter PrReRaT is left in the governing equations.
This observation for large Prandtl number effect is also con-

firmed by numerical results to be presented later.
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6.3 Finite-Difference Approximations

In view of the complexity of equations (6.10) to
(6.14) or equations (6.17) to (6.21) and the fact that appre-
ciable error is observed by applying Stuart's approximate
method to the analogous probiem of rotating-cylinder flow
for a high Taylor number, the finite-difference technique
and boundary vorticity method described in Chapter II will
be applied to the present rather complicated problenm.

Referring to Fig. 6.1, the main flow direction momentum
equation (6.10) and the energy equation (6.14) can be approxi-

mated by the following finite-difference form.

o (vO Fit1,k = F3-1.k 0 Fi.k+1 ~ fj,k-])
J.k 20y - J.k 20z

. - ..+ f.
fJ+1sk ijslzc fJ‘]sk (6.22)
(ay)
NF I LA Bl Y S S
(Az)2 .k
- - o 8¢u -
where o = 1, Gj,k = - "j,k(ig_)j,k when fj,k = Ug and
_ ) 0 ¢4
c = Pr, Gj,k = Pr wj’k(Pr u gyt ])j,k - Pryu Ui K wheﬁ
Fik ™ %,k
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The superscript o stands for the valiue obtained at the pre-
vious step and'j,k=2,3,...,M. The vorticity transport equa-
tion (6.11) and equation (6.12) for the stream functibn can
also be approximated in the form of equation (6.22) with

the following replacement..

_ . Ra (238
"Pr.()

o] 3y

0}
—
L J
o

ik when fj,k = E.

0 83k

and o - gj,k when fj,k = V.

J.k

where j=1,2,...,M+1, k=2,3,...,M.

For the case when |u| » =, equations (6.17) to (6.19)
and equation (6.21) can similarly be approximated in the form

of equation (6.22) with the following substitution for Gj K

G

08
. T = .
j.k - ReRa_ (55_ j.k when fj,k gj,k for equation (6.18)

for equation (6.21).

G.

¢
0 0 _
sk T Prows G vy e Ty T 95k

6.3.1 Properties of Matrices and the Relaxation Factor

Rearranging equation (6.22), we have
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Az O AZ42 Az 0o
(W + 0 Wy i fy ka1 - 200+ (Fp)T0F5 o+ (0 =0 Wy )F 5

(6.23)

i (%%)2 [(1 +0 3L V0 )

2 "j,k’Tj-1,k

+
-~
—

- Ay o _ 2

With the existence of the nonlinear terms, the pro-
perties of the coefficient matrix for equation (6.23) are:
(a) real,

(b) non-symmetric,

(c) diagonally dominant, if and only if

for all j's and k's. (6.24)

Since the matrices are not symmetric and their eigenvalues
vary from step to step during iteration, the determinaticn

of the optimal relaxation factor is very difficult. For
most of the compﬁtations in the present problem, a relaxation
factor of unity is used. An under-relaxation factor of 0.5

is often used to stabilize the numberical computation.
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6.3.2 The Application of the Boundary Vorticity Method and

Its Improved Iterative Scheme

The application of the boundary vorticity method and
its improved iterative scheme for solving equations (6.11) and
(6.12) without inertia terms and the associated boundary condi-
tions (6.15) were discussed clearly in Chapter II. The appear-
ance of the nonlinear terms v 3£/3y and w 3&/3z in equation
(6.12) does not make any essential difference in the applica-
tion of the boundary voriicity method and its improved itera-
tive scheme. Thus the detailed algorithm is not repeated
here. A comparison of the method of unsteady state solution
employed in [6.7], the present boundary vorticity method, and

its improved iterative scheme is made in subsection 6.3.4.

6.3.3 Errors and Mesh Sizes

In the process of computation, errors may arise from

the following sources:

(a) finite-difference approximation,

(b) errors due to the convergence of elliptic equations and
nonlinear terms,

(¢) round-off errors.

These factors were discussed clearly in subsection 3.3.3 and

are not repeated here. The prescribed error is kept to be

the order of 10°°.

Fig. 6.2 shows the convergence of the flow and heat

transfer results for the case of up = 0 and Ra = 8010.52 with
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respect to the number of divisions M for both y- and z-direc-
tions. The definitions of the flow parameter, fRe, and the
heat transfer parameter, Nu, are given later. Here the |
subscript 1 denotes the value evaluated at the lower plate
and the subscript 3 denotes the value obtained from an overall
force balance. It is seen that with the number of divisions
at M = 24, the value of (Nu)] already remains unchanged and
the difference between (fReh and (fRe)3 is.less than one per
cent for further increase of M. This indicates that the
numerical solution gives quite reliable results if the number
of divisions M greater than say 24. In the present work, )
values of M = 24, 28 and 40, are used for various orders of
magnitude of Rayleigh number for the case u = 0. For the
cases u # 0 and |u| - =, M = 28 is used. The number of divi-
sions, M = 40, is employed to extend the range of Ra for the
computation involving the case p = 0. However, the Rayleigh
number is extended only slightly from 105 to 3 x 105 but the
computing time increases substantially from around 10 minutes
for M = 28 to about 45 minutes for M = 40 on an IBM 360/67.
Because of the excessive computing time requirement, the

number of divisions, M = 40, is not employed for other cases

such as ¢ = finite and [p]| + .
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6.3.4 A Comparison of the Method of Unsteady State Solution,

Boundary Vorticity Method, and Its Improved Iterative

Scheme

Samuels and Churchill [6.6] employed a finite-differ-
ence technique to solve the thermal instability problem in |
an enclosed horizontal rectangular region. By using explicit
forward integration and the value of the boundary vorticity
evaluated at the previous time step, a time dependent solution
is obtained and consequently a steady state sclution is reached
after a sufficiently large number of time steps. The method
of unsteady state solution is also applied to the present
problem in an attempt to compare the boundary vorticity method
and its improved iterative scheme with the method used in
reference [6.6]. However, the computations are made only at
Ra/Ra* = 4.69 for the case p = 0 using the number of divisions
M = 10 and 20. Table 6.1 shows the results from these three
methods. It can Be stated that the method of unsteady state
solution requires longer computing time, a larger number of
cuter iterations and one additional storage step than the
present steady state solutions. In the computation for the
unsteady solution using the explicit forward integration tech-
nique, the time increment is restricted by the size of the
mesh because of numerical stability and furthermore it requires
a complete solution for the stream function at each time step.
Thus, it is believed that for a problem where the transient

(or unsteady) solution is not of interest, the steady state
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solution is much more economical from the viewpoint of com-
puting time and storage space. The results for the improved
iterative scheme listed in Table 6.1 show some improvement

in terms of computing time (with savings up to 1/4 of the
computing time) over the boundary vorticity method since the
repeated iteration is not required for finding the value of
boundary vorticity. The improved iterative scheme was con-
ceived only after all the computations for the case of u =0
had been completed. Thus, the improved iterative scheme is
employed only in the computations for the cases of u = finite
and [ul + o, Finally, we should note that the above compari-
son does not imply that the improved scheme is always better
than the boundary vorticity method since the comparison is
based only on the present problem formulated in Cartesian
coordinates and the iteration is carried out with a relaxation
factor of unity. The question of whether or not the improved
iterative scheme is advantageous in problems formulated in
polar coordinates cannot be answered without further numeri-
cal experiments using various relaxation factors. Consequently,

the improved iterative scheme must be interpreted only within

the scope of the present study.
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6.4 Results and Discussion

For the problem under conSidefation, three cases
result depending on the magnitude of the characteristic.
parameter u, namely, u =0, u = finite (negative or positive)
and |u| - ». The 1imiting case of p = 0 is ané]ogous mathe-
matically to. the classical steady laminar Bénard convection
with two-dimensional rolls whose heat transfer. characteris-
tics in the post-critical regime has been studie& very ex-
tensively in recent years. The analytical and experimental
works for this problem have been carried out notably to
explain the nature of turbulence using the mechanism of con-
vective cells due to buoyancy.

In order to carry out the detailed quantitative mea-
surements, Mori and Uchida [4.6] superimposed the fully
developed -main. flow to the steady laminar Bénard convection
between the two infinite horizontal rigid boundaries. They
presented the detailed comparisons between the experimental
data and the results from the approximate analytical method
which is a modification of the Stuart's method [6.2] for the
flow between rotating concentric cylinders with Taylor vor-
tex rolls. Since the problem treated by Mori and Uchida
represents the 1imiting case of u = 0 for the present problem,
it is possible to compare the results from the present numeri-
cal solution with the analytical and experimental results
of Mori and Uchida. The other limiting case of |u| > « is

also of considerable practical importance since it corresponds
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to the fully developed laminar flow without buoyancy effect
between two parallel plates subjected to the uniform wall
heat flux with the well-known Nusselt number of 8.235.

Before proceeding to the presen;ation of flow- and
heat transfer results, we should note that all the results
reported here are based on the assumption that the wave number
ijs taken to be the one which is predicted by the linear sta-
bility analysis reported in Chapter IV. Only a Prandtl num-
ber of 0.7 (air) is considered for the cases of u = 0 and
u = finite. The Prandtl number effect is studied only for
the case of |[u| + =. |

As noted earlier, the case of p = 0 affords detailed
comparison of the present numerical results with those of
Mori and Uchida [4.6]. For this purpose, the axial velocity
and temperature distributions along three vertical lines from
the numerical solution are compared with those of Mori and
Uchida based on approximate analytical solution and experi-
mental measurements in Figs. 6.3 and 6.4, respectively, for
the case of Pr = 0.7, up = 0 and Ra = 8010.52 = 4.69 (Ra*).

For the velocity profiles shown in Fig. 6.3, it is
seen that the experimental data generally lie between the
present numerical predictions and Mori and Uchida's analytical
results. In particular, we note that the analytical method
apparently predicts the wrong trend for the velocity profile
along the vertical line 2 near the central region (z = 0.5)

exhibiting a saddle shape velocity profile. This phenomenon
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--------- ANALYTICAL SOLUTION
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4 & * EXPERIMENTAL DATA ’AND UCHIDA

—THE PRESENT STUDY

Fig. 6.3 Comparison of velocity profiles from this
investigation with the approximate analy-
tical results of Mori and Uchida and their
experimental data for the case of Pr = 0.7,
p = 0 and Ra = 8010.52
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Fig. 6.4 Comparison of temperature profiles from this
investigation with the approximate analytical
results of Mori and Uchida and their experi-
mental data for the case of Pr = 0.7, 0 =0
and Ra = 8010.52.
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contradicts with both experimental data and numerical solution
and cannot be explained physically. It is further noted that
the numerical result agrees better with experimental data for
.2 < 0.2 along the vertical 1ine 1 and z > 0.8 along the ver-
tical line 3 than the analytical result. We clearly see the
distortion of the axial velocity profile from the parabolic
distribution due to longitudinal vortex rolls.

As shown in Fig. 6.4, the temperature profile along
the vertical liné 3 from. the numerical solution agrees very
well with the experimental data as compared with the analyti-
cal result. In particular, along the lines 1 and 3 the analy-
tical result predicts positive vertical temperature gradient
in the central region. in contrast to the negative one demon-
strated by both the experimental data and the numerical solu-
tion. For the temperature profile along the 1ine 2, both
the analytical solution and the numerical solution exhibit
positive vertical temperature gradient near the central region
with the point of inflection located at z =.0.5. In contrast,
the experimental data do not appear to show this trend. The
result of the present numerical solution shows that along the
line 2 the vertical temperature gradient reverses its sign
approximately from z = 0.3 to z = 0.7 indicating that heat
is conducted from the upper part to the lower part in this
region. We also note fhat in the same region along line 2
the secondary flow is relatively weak and at z.= 0.5 secondary

flow vanishes completely. Furthermore, this region of reversed
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vertical temperature gradient disappears at ieast along the
lines 1 and 3 as shown in Fig. 6.4. Noting that for steady
state the heat flow rate from the lower plate to the uppér
plate is conétant, we see that rather strong convection
motion due to secondary flow exists in the'regibn near y =0
(1ine 1), z = 0.5 and y = 1.008 (1ine 3), z = 0.5 to com-
pensate for the reversed heat flow. We can also gain some
insight abéut this_situation by examining the fsotherms which
will be presented next.

-It is instructive to examine the distributions of
constant axial velocity lines, isothermals, cdnstant vorti-
city lfnes and secondary flow streamlines for the case of
Pr = 0.7 and p = 0 at two different values of Rayleigh number,
namely, Ra = 8010.52 and 4 x ]04. Fig. 6.5 shows the con-
stant axial velocity lines. We note that without secondary
motion thé constant axial velocity lines are straight and
horizontal but with the secondary motion the .constant velo-
city lines are distorted. We can gain better understanding
of the profiles shown in Fig. 6.3 by considering the dis-
tributions of constant axial velocity lines along the lines
y =0, 0.504 and 1.008, respectively. It is clearly seen
that the saddle-shape velocity profile shown in Fig. 6.3 along
the 1ine 2 based on approximate analytical prediction [4.6]
is unreasonable. Fig. 6.5 shows that the higher constant
velocity lines are displaced from the lines bf symmetry y =0

and 1.008 and form a series of closed curves neaf the central

~
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region at y = 0.504. At higher value of Rayleigh number

Ra = 4 x 104, the value of the maximum axial velocity is
seen to decrease as compared with that at_Ra = 8010.52.
Fig. 6.5 also shows that the stronger secondary flow effect
manifests itself by the larger distance between two con-
stant axial velocity lines.

Figs. 6.6(a) and (b) show the distribution of iso-
thermals for the case of Pr = 0.7, p = 0 at Ra = 8010.52-and
4 x 104, respectively, based on the dimensionless temperature
difference (T - T])/(T] - T2). Without the secondary motion,
the isothermals are horizontal straight lines but with the
secondary flow effect the isothermals are distorted. As the
Rayleigh number increases, so is the distortion of the iso-
thermals. It is noted that the distance between two iso-
thermals in some region is larger than that in the other
region indicating that the advective term in the energy equa-
tion is dominant in that region. On the other hand, in the
vicinity of the stagnation points y = 0, z = 1.0 and y = 1.008,
z = 0 the conduction term is dominant. By looking at Fig. 6.6,
we can clearly distinguish the hot and cold regions by noting
the isothermal 1ine for (T - T])/(T] - T2) = - 0.5. We can
also clearly see that plumes of warm (cool) current impinge
strongly upon the cool (warm) plate indicﬁting the strong
effect due to nonlinear advection caused by the buoyancy
forces. MWe can gain further insight into the mechanism of

conduction heat transfer by considering the heat flow lines
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which are normal to the isothermal Iinegf The temperature
profiles along the. Tines 1; 2, and-3 shown in Fig. 6.4
correspond to the distributions of the isothermals at

y = 1.008, 0.504 and 0, respectively. Fig. 6.6 clearly in-
dicates.that the reversal of the sign. for the vertical tem-
perature gradient does not exist along the lines y = 0 and
1.008 contradicting with the prediction of the approximate
analytical solution [4.6]. On the other hand, the reversal
of the temperature grédient does indeed exist along the line

y = 0.504.

The distributions of the constant vorticity lines
for the case of Pr = 0.7 and u = 0 at Ra = 8010.52 and 4 x-]O4
are shown in Figs. 6.7(a) and (b), respectively. It is seen
that along the Tline of symmetry y =.b and 1.008, the vorti-
city function & vanishes. We know that the solid boundary
represents the source of the vorticity function and the vorti-
city function is generated at the top and bottom plates (with
negative sign) and dissipated into the central region as a
sink of the vorticity function (with positive sign). At
Ra = 4 x 104, we see that there are two sinks with & = 520
in the central region for the two strong sources of vorticity
function located near y = 0.65, 2z = 0 and y = 0.35, z = 1.0,
respectively, on the rigid boundaries. This is in contrast
to the one sink and two sources for Ra = 8010.52. We are

particularly impressed with the drastic change of pattern for

the vorticity as the value of the Rayleigh number increases
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from 8010.52 to 4 x 104. It is interesting to note that the
maxima of the absolute vorticity occur right at the bounda-
ries because here the horizontal shear stress is greatest.
The pattern for vorticity at Ra = 4 x 104 is rather complex.
Fig. 6.8 illustrates the streamlines for the case
of u = 0 at Ra = 8010.52 and 4 x 10%. For this case of
u =0, we can see that the two diagonal Tines are lines of
symmetry by substituting (u, -v, -w, -6, ¢, £, -y and -z) for
(u, v, w, 6, ¥, &, y and z) into equations (6.10) to (6.14).
For the Rayleigh number near the critical value, the stream-
lines are seen to be almost symmetric with respect to the
lines y = 1.008/2 and z = 0.5. However, Fig. 6.8 shows that
as the value of Ra increases, the streamlines are seen to be
compressed in the direction of the line y = 0, z = 0 and
y = 1.008, z = 1.0 representing slight distortion into an
oblong shape. It is interesting to note that the distribu-
tions of the stream function are much more smoother than
those of the vorticity function due to the fact that the
stream function is a twice-integrated version of the vorticity.

A1l the illustrations shown in Figs. 6.5 to 6.8 are

4

for the case p = 0 at Ra = 8010.52 and 4 x 10" to indicate

the build-up of the secondary flow intensity with the in-
crease of the Rayleigh number for Pr = 0.7. The profiles
for axial velocity and temperature shown in Figs. 6.3 and
6.4, respectively, can be contrasted with the distributions

shown in Figs. 6.5(a) to 6.8(b) along the vertical lines
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y = 0, 0.504 and 1.008. The numerical so]ution cTear]y
yields the detailed flow structure and sheds the Tight on
the detailed heat transfer mechanism. Before proceeding on
presenting the over-all flow and heat transfer results for
the 1imitfng case of u = O, some features on the flow struc-
ture in the form of streamlines for the cases of u = finite
and |p]| » = will be considered next.

Three typical secondary flow streamlines for the case
of u = -30 with a = 3.735 and Pr = 0.7 at three different
values of the Rayleigh number are shown in Fig. 6.9
indicate the gradual development of the streamiine patterns.
It is noted that the value of Ra = -1000 (see Fig. 6.9(a))
is not too far from the critical value of Ra* = -884.47 (see
Appendix 4.2 in Chapter IV). Since the unstable region is
confined further to lower part of the channel for the case
of negative u in comparison with the case of positive u, the
intensity of the secondary motion is seen to be much stronger
in the lower part than that in the upper part. This is also
reflected in the location of the minimum stream function
(the eye of streamlines) being situated in the lower part
of the channel and also to the left of the central vertical
Tine (y = 0.8411/2) of a vortex roll. Consequently, the up-
ward stream is much stronger than the downward stream. Fig.
6.9(b) shows that at Ra = -3000, the eye of the streamlines
is further shifted toward the vertical line y = 0 in the

region of the upward stream. The secondary motion is seen
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to be very weak near the upper right-hand corner and rather
weak near the lower right-hand corner as compared with the
secondary flow near the lower left-hand corner. At Ra =
-5000, the numerical technique fails to yield a convergent
solution with an error of 0(10'5) but numerical solution is
obtained with a larger error of.0(10'3) and the resulting
secondary flow streamlines are shown in. Fig. 6.9(c). As a
result of the weaker secondary motion in the upper part of
the channel and near the lower right-hand corner, two secon-
dary vortices with flow opposite to that of the primary vortex
appear. Although the numerical solution cannot be considered
to be sufficiently convergent at Ra = -5000, it is known that
single eye secondary motion is not always stable in the region
of the channel where the basic temperature distribution is
stable. At Ra = -5000, we see that the upward stream is much
stronger and the eye of the primary vortex is moved further
toward the vertical line y = 0. |

. For the case |u| » =, three typical secondary flow
streamlines at different values of the parameter ReRaT are
shown in Fig. 6.10 for Pr = 0.7 and a = 3.621. The patterns
for the streamlines shown in Fig. 6.10(a) and (b) are more
or less similar to those shown in Fig. 6.9(a) and (b),
respectively. At ReRaT = 1.5 x 105, the numerical technique
again yields a solution only with a relatively large error
of 0(10'3) and the situation is very similar to the case

shown in Fig. 6.9(c). In contrast to the case shown in
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Fig. 6.9(c), we cannot detect any secondary vortices-in the
form of reversed f]qw_for the case shown in Fig. 6.10(c).
We can conclude that within the range of the present investi-
gation the weaker secondary vortices in the form of reversed
flow do not exist for the case of |u] » « up to at least
ReRaT = 1.5 x 105. In making the above comparison between
the cases of negati;e p.and |u| > =, we musf-recognize the
fact that for the case |u| + =, the region in éxactly-the
upper half of the channel is completely stable and 6n1§ the‘
Tower half is unstable whereas for the case of negati#e 1
the unstable region occupies only part of the lower half of
the charnel. This observation can be seen from the basic
termperature distributions. For the case shown in Fig.
6.10(c), the secondary motion is seen to be rather weak in
the regions near-the upper and lower right-hand corners. We
may speculate that with the further increase of the value of
ReRaT the region of reversed flow may appear eventually.
In view of the above observations for Figs. 6.9 and 6.10,
the structure of the secondarymotion is still quite uncertain
beyond the range of the parameter Ra or ReRaT studied in
this investigation.

As noted earlier in Figs. 6.9(a) and (b) and also
Figs. 6.10(a) and (b), the intensity of the upward stream
is much stronger than that of the downward stream. It may
be of interest to see the effects of the strong upward stream

and weak downward stream for secondary flow on the axial

~
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velocity and temperature distributions. Figs. 6.11 and 6.12
show the distributions of the axial velocity and. temperature,
respectively, along the lines y =.0 and 0.8411 for the case

of Pr =.0.7, u = =30 at Ra = -1000 and -3000. 1In both

Figs. 6.11 and 6.12, solid lines represent the distribution
in the unperturbed state, dashed 1ines represent the distri-
butions along y = 0 (upward stream)and broken lines represent
fhe distributions along y = 0.8411 (downward stream). For
the case of Ra = -1000, both Figs. 6.11 and 6.12 show that
the deviations of the axial velocity and temperature profiles
from the unperturbed state are greater along the line y =0
than along the line y = 0.8411. For the case of Ra = -3000,
this trend is more pronounced. It is also interesting to
note that for the case of Ra = -1000 shown in Fig. 6.11,

the dimensionless axial velocity U/U0 is even slightly grea-
ter than 1 near y = 0.8411 and z = 0.43.

For the finite amplitude thermal convection probliem
under consideration, such overall quantities as resistance
coefficient and Nusselt number are usually of interest in
design. In view of the complexity of the present problem,
the product of .the friction factor and Reynolds number, fRe,

and the Nusselt number, Nu, are defined in several different

ways as follows:
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Fig. 6.11 Axial velocity distrubutions for the case
of Pr = 0.7 and |p]| »
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Fig. 6.12 Temperature distributions for the
case of Pr = 0.7 and u = -30
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(fRe); = =Y, at lower plate (6.25)

—
-h
-
o
~
[AM]
|

, at upper plate (6.26)

(fRe)y = [(fRe); + (fRe),1/2 = 4/[4(z-2°) + §1% ,

from. overall force balance (6.27)

.30 —2 YT 2
where f, = 2ulsovl, /00", fy = 2u|55rl 1=p/PU"s
fy = (3P/3x')h/pT% and Re = Ugh/(2v)

The above definitions for the parameter fRe apply to all
the cases considered in this investigation, namely, u = 0,

p = finite and |u| + = and the physical meaning of each de-

finition is obvious.

qqh FEl '
39, (6.28)

(Nu)y = 57 = (2/3) - Prouw+ 1 - (
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4 55
(Nu), = z2e = (2/3) - pru -1+ (89 (6.29)

(Nu)g = gy = [(Nu)y + (Nu),1/2 = Pr u(2/3 + u/2) (6.30)

where 93 and g, are the amount of heat conducted from the
lower and upper plates, respectively, to the fluid per unit
time per unit area and q3 is the netnenerdy?intreasefin -
the fluid per unit time per unit cross-sectional area.

The above expressions for the Nusselt number are
based on the temperature difference between the two horizon-
tal plates and applicable to the cases of u = 0 and u = finite
only. We note that for the case of u = 0, the definition
(Nu)] represents the total heat transported by'the system in
the steady state and is given by the mean temperature gradient
evaluated at the Tower boundary. Accordingly, the expression
(Nu)] is identical to the Nusselt number usually used in the
Benard convection problem and direct comparison is possible.
It is instructive io note that for the case of finite u,
(Nu)] and (Nu)2 represent the average heat transfer rate at
the lower and upper plates, respectively, .whereas (Nu)3 re-
presents the heat transfer rate in the main flow direction by
convection.

The case of |u| + = corresponds to the well-known

case of fully developed laminar flow between two parallel
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plates without secondary flow for the uniform wall heat flux
boundary conditions at the upper énd lower plates. Consequently,
for this case of |u] > w (or T, =T, = Tw), the expressions

for the Nusselt number are defined by using the mixed mean

temperature difference in accordance with the current prac-

tice as follows:

T, - Ty = PrRech 6(] g”a (¢ - 6.)Udydz/(T-n/a)
= PrReth (¢ - ®_ )y (6.31)
(M), = (T:f:M)k = : Eq):f_g:_;;:] (6.33)
g Gy » o, B (6.34)

1l
N
]
—
-
<D
]
D
(]
~
=

(M) = m=1y%
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where ¢, and 6, are defined in equations (6.2) and (6.16),
respectively, and 9 (i=1,2,3) has the same meaning as in
the cases of u = 0 and u = finite. It is noted that all

the average velocity and temperature gradients contained in
the above definitions {6.25) to (6.34) are evaluated by using
non-central five-point finite-difference formula and all
integrations are carried out by using Simpson's rule. The
expressions (Nu)1 and (Nu)2 represent the average heat trans-
fer rate at the lower and upper plates, respectively, and

Nu3 represents the overall heat transfer rate in the main flow
direction by convection which can be compared directly with
the usual definition in forced convection without secondary
flow. After defining the expressions for fRe and Nu, the
flow and heat transfer results for the present problem will

be considered next.

Fig. 6.13 shows the flow result in the form of the
ratio (fRe)3/(fRe)0 versus Ra for the cases of u = 0 and
p = finite (negative or positive) with Pr = 0.7. We note
that (fRe)0 = 9.0 for the case without free convection effect.
It is interesting to note that for a given value of Ra, the
value of (fRe)3/(fRe)0 is larger for the positve u as com-
pared with the negative u of the same value. Similarly,
Fig. 6.14 illustrates the variation of (fRe)3/(fRe)0 with the
parameter PrReRaT for the case of [u| » = with various

Prandtl numbers. The reason for using the product of Pr

and ReRaT as one parameter was explained earlier in section
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6.2. For the range of Ra(u= finite) or PrReRaT(lul + )
beyond the one shown in the figure, the present numerical
technique fails to yield a convergent solution. However,
for the case of u = 0, the present result clearly indicafés
an asymptotic behavior for the large Ra. For the case of
|u| » « with large Prandtl number, the effect of the secondary
flow on friction factor is seen to be negligible. This
obsérvation can also be seen by examining equations (6.18)
and (6.21). For a given finite value of PrReRaT with large
Pr, the value of ReRaT is small and the intensity of secondary
flow is weak. Consequently, the increment of the value of
(fRe)3 indicating the effect of sécondary motion on flow
result is not significant. Furthermore, Fig. 6.14 indicates
that at PrReRaT = 105 (about five times the critical PrReRaT),
the friction factor increases by about 15 per cent only for
Pr = 2 as compared with the case without secondary flow.
Unfortunately, theoretical or experimental data for flow are
not available in the literature for comparison with the pre-
sent results shown in Fig. 6.13 and 6.14. A numerical experi-
ment is also made to evaluate the wave number effect. For
the case of uy = 0, at Ra = 105 the difference of about 10%
and 25% for the flow result is observed as the wave number
is varied from 3.116 to 3.5 and 4.0, respectively.

In order to assess the accuracy of the present nume-
rical solution, comparison of the result of this investigation

for the case of pu = 0 with the analytical result of Mori and
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Uchida, their experimental data [4.6] and Plows' numerical
result [6.7] for two-dimensional steady laminar Bénard con-
vection is made in Fig. 6.15. Plows [6,7] considered the
effect at Prandtl number for the Rayleigh number ranging from
2000 to 20000. However, only the curve for Pr =-0.5 ~ 1 is
taken for comparison here. It is not surprising that the
result of the present numerical solution and Plows' numerical
result coincide exactly since the governing equations and

the boundary conditions are identical for the Bénard problem
with two-dimensional rolls between two rigid surfaces and the
present fully developed laminar forced convection between two
horizontal plates with longitudinal vortex rolls for the case
u = 0. The agreement of the two results serves to confirm the
accuracy of the present numerical technique.

Mori and Uchida's result from analytical solution
based on Stuart's method starts deviation at Ra = 3000 from
the results of the two numerical solutions and considerable
difference is seen at higher Rayleigh number. At Ra/Ra* =.9.0,
Mori and Uchida's result is seen to have about 25 per cent
error as compared with the numerical result. Mori and Uchida's
experimental data are also seen to lie below the two numerical
solutions. As mentioned in the Introduction, the solution of
the analogous problem of flow between rotating cylinders by
Stuart's energy-balance method is estimated to have a largest
error of ébout 7 per cent for the torque at a Taylor number

up- to ten times the critical value. Although similar energy?
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ba]ance method due to Stuart is used, the error .of 25 per
cent in heat transfer resu]t for the Dresent prob]em with

=0 and the error of 7- per cent in. f]ow result for ‘Taylor's
»prob1em represent qu1te a contrast. A compar1son W]bh Fromm's
numerical solution for Benard's prob]em [6.4] is also possible.
Since his graph1ca1.resu1t'cannot be read accurately, only
one datum point at Ra ='105'is plotted in Fig. 6.15 for.com-
parison and an excellent agreement is again observed. Although
the present problem for u = 0 is not exactly identical to
the Bénard problem except for the case of two-dimensional
rolls, nevertheless, the heat transfer results for thé two
problems are known to be similar and a comparison of numeri;é]
solution with experimental data [6.8] for Benard convection
ijs. also made in Fig. 6.15. A largest difference of 20vperf
cent based on numerical solution is observed at Ra = 3?5 * B
104 for the experimental data. B

A numerical experiment is also made to study‘theﬂ.

effect of variable wave number. As shown in Fig. 6.15, only
a few per cent difference is found for a rather wide range
of wave number from a = 3.116 to 5.0 at a high Rayleigh number‘u
of Ra =-105. For smaller variation of wave number and_at,g_: :
lower Rayleigh numbers, the difference is found to be e&éﬁf'"
smaller. Consequently, we can conclude that the present;’
assumption on wave number is a reasonable approximation-fdf‘
the heat transfer result at least for the case of u = 0.7;:‘

Heat transfer results. for Pr = 0.7 in the form of:
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(Nu)i/(Pru) (i=1,2,3) versus Rayleigh number with u (= finite)
as a parameter are shown in Fig. 6.16. By examining equations
(6.28) to (6.30), it is not difficult to see the reason for
taking (Nu)i/(Pru) (i=1,2,3) as a coordinate. Based on the
temperature difference, AT, for the definition of Nusselt
number we see that the effect of secondary flow does not
necessarily lead to increased heat transfer rate. The value
of (Nu)]/(Pru) represents the average heat transfer rate at
the lower plate and is seen to increase as Ra increases for
positive u < 15 and decrease for the other values of u. The
vaiue of (Nu)2/(Pru) represents the average heat transfer

rate at the upper plate and is seen to decrease as Ra increases
for all u's. The value of (Nu)3/(Pru) represents the overall
heat transfer rate for fluid and is seen to decrease as Ra
increases for all u's. The reason for a decreased overall
heat transfer rate can be explained easily by examining the
term (2/3 + u/2) in the expression for (Nu)3/(Pru). It is
noted that the mean velocity for perturbed flow is always
negative and its value decreases further as the intensity of
secondary flow (or Ra) increases. For u = 7.5, the behavior
for heat transfer results shown in Fig. 6.16 is rather complex,
For example, the value of (Nu)zﬂPru) becomes zero at some
value of Rayleigh number and from thereon the value for
(Nu)]APru)increases at higher rate with the further increase
of Ra. For u = 7.5, it is seen that the present configura-

tions is effective in removing heat from the lower plate but
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rather poor from the viewpoint of heating the fluid. 1In
general, it can be stated that the case of finite u is not
efficient for heating fluid and this observation. is believed
to be significant in a design problem.

Fig. 6.17 shows the results for Nusselt number ratio
(Nu)i/Nu)0 (i=1,2,3) versus PrReRaT for the case of |u| + =
with various Prandtl numbers. The reason for taking the
product of. Pr and ReRaT as a parameter. is based on the ob-
servation that for a given value of PrReRaT, the value of
(Nu)i/(Nu)0 (i=1,2,3) for Pr > 2 is seen to approach the
asymptotic solution for Pr - « with a maximum différence of
about 3 per cent. This observation on asympto?ic.behavior
for Prandtl number effect suggests that for the case of
lu| > = only one computation is required to predict the heat
transfer result for a Prandtl number ranging from say 2 to .
It is also seen in Fig. 6.17 that the value of (Nu)z/(Nu)0
for various Prandtl numbers is found to be appéoximate]y
one. This may be caused by the fact that the heat transfer
rate is not affected by the weak secondary motion near the
plate as shown in Fig. 6.10.

A brief outline on the order of magnitude analysis
for the governing equations is given in Appendix 6.1 and
numericai results for flow and heat transfer are tabulated

in Appendix 6.2 for possible future reference.
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6.5 Concluding Remarks

(a) The boundary vorticity method and its improved
iterative scheme (within the scope of. the present study) have
been shown to be quite effective for the numerical solution
of the present rather complicated problem. With.respect to
the determination of the boundary vorticity, the method of
unsteady state sclution employed.in [6.6] requires a longer
computing time and one additional step than the present tech-
niques. The numerical experiment shows that up to about one-
quarter of computing time can be saved by using the improved
(or modified) iterative scheme as compared with the boundary.
vorticity methed using. a relaxation factor of unity. This
does not. imply that the improved. iterative scheme is always
better than the boundary vorticity method if the relaxation
factor is other than one or for a problem formulated in
polar coordinates.

(b) The heat transfer result from the present numeri-
cal study for the case of u =.0 agrees exactly with the
numerical result reported in [6.7] for the Benard. convection
problem. This agreement serves to confirm the accuracy of
the present numerical technique. Mori and Uchida's approximate
analytical result [4.6] starts deviation from the present.
numerical result at Ra = 3000, and about 25 per cent error
is observed at Ra = 9.0 Ra*. Thus, we can conclude that
Stuart's method is valid only for Rayleigh number ranging up

to say Ra = 3.0 Ra* with a maximum error of about 10 per cent..
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Besides the present problem, the boundary vorticity method
and its improved (or modified) iterative scheme are believed
to be equally effective for the numerical solution of. a host
of other similar finite amplitude convection. problems in the
post-critical regime.

(c) The asymptotic behavior of the flow and heat
transfer results. for Pr > 0(1) observed in both the. combined.
free and forced convection problem (Chapter III) and the
thermal instability problem (Chapter IV) is also observed in
the present finite amplitude convection problem. Fig. 6.14
shows that the effect of secondary motion on the flow result
is negigible for Pr > 2 for the parameterPrReRaT within the
range of present investigation. Fig. 6.17 also shows that
for Pr 2 2, the heat transfer result already approaches the
solution for the large Prandtl number with a maximum error of
less than 3 per cent. This observation suggests that com-
putations for all the Prandtl numbers between 2 and « are not
required to study the Prandtl number effect.

(d) The assumption that the wave number in the post-
critical regime does not deviate from the critical value
determined by the linear stability analysis discussed in
Chapter IV is found to be a fairly good approximation for
the heat transfer result but a rather poor approximation for
the flow result in the case of 1 = 0. Due to considerable
computing time requirement, the numerical experiment was not

carried out for the other cases. However, it is suggested
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that the wave number in the post-critical regime shouid be
determined from a study in the entrance region instead of
the fully developed region considered in this study. From
the viewpoint of physicail reasoning, we have no reasons to
expect that the size and structure of the vortex roll should
be determined in the fully developed region alone. © is
believed that a study in the thermal entrance region will

shed some light regarding the variation of the wave number

in the post-critical regime.
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Order of Magnitude Analysis for Governing Equations

Appendix 6.1

For the sake of simplicity, the discussion on the
orders of magnitude of the terms representing compression
work, viscous dissipation and variable property effects will
not be made here. Referring to Fig. 6.1, the dependent variables

describing the steady state velocity, pressure and temperature

fields are written as,

(==~
"
==
o
+
=
-
-
]
<
.o
=
1l
3
.o
o
]
O
o
+
o
[+3}
=
o

(6.1.1)

-
1]

U_—I
+
<D

It is noted that the basic quantities Ub and Tb in the unper-
turbed state are given in equation (6.2) for the steady fully
developed plane Poiseuille flow and the perturbation quanti-
ties u', v', w', p' and &' are functions of space variables
x', y' and z' only.

To normalize the perturbation equations, we introduce

the following dimensionless quantities for dependent and-

independent variables,

u' = ucu, v! = ch’ w' = wcw, p = pcp, g' = ece,
x' = Lx, y' =-%% y and z' = %-z (6.1.2)
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where h is a distance between the two parallel plates and the

length %% is one-quarter of a wavelength. Observing the

governing equations and the physical character of longitudinal

vortex rolls, we find that
continuity equation 0(3v'/3y') = O(v aw'/3z"')

x'-direction momentum equation 0(v aquaz'Z) = 0(w' dUy3z')

y'-direction momentum equation 0(3pY/pdy') = 0(v azvyaz'z)

z'-direction momentum equation 0(Bg#@') = O(vazwvaz'z).

Using the above relations, the relationships between the

characteristic quantities are obtained as,

V. =w_m/a, W =.uc/Re, pcv Ve 2pv w/(ah) and

=
1}

6, Bg h/(4v) (6.1.3)

Substituting equations (6.1.1), (6.1.2) and (6.1.3)
into the continuity, momentum, and energy equations, the

equations for the perturbation quantities can be shown as:

du Vv oW _
EI-IK'I‘T'FSE--O (6.].4)
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o} ¢
u au ou Ju ou W u
eplg 5 * Byu 5x) * By(u g+ w 53) + 555
2 2. 2
) o u 1. 9"%u 2 u
= B,e. £+ g + 20U (6.1.5)
271 3x 2 ax? B2 3y az2
1Y 2 3x 1% ax 1 Yy 9z Ly
2 2 2
a7V T 3%y ay
2 ax2 By gy 4,2
SYATS TRMPSS TIPSO "R T 1
it 2 9x 1% 3x 1 oy 9z 2 9z
2 2 2
9w 1 9%w oW
te, 5 tg- 5+t 5+0 (6.1.7)
2 ax2 BZ 8y2 0z
Pre (¢—ua—e+Bua—e-)+PrB (v 38 + w 28) + Ra(& - (6.1.8)
1'2 5x 1% 3% 1YY 3y 3z ‘76 Y. .
CPru, o Ra o 2%, 1 0%, 3%
8 3z 16 2 5x2 By 5y | 52
where e, = Reh/(2L), e, = h#44L?), B, = u_/U, and B, = (%)2
€4 > €2 > By ¢’Yo 2 a’

Equations (6.1.4) to (6.1.8) can be reduced to equa-
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tions (6.3) to (6.5) and (6.7) by setting L > = for fully
deve]dped flow provided that Pr, B], Re and h are finite.

In addition to the fully developed flow assumption, by setting
By = ;§-+-0 for infinitesimal disturbance, equations (6.1.4)
to (6.1.8) can be further reduced to the lTinearized equations

discussed in Chapter 1IV.
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Appendix 6.2 Numerical Results

Pr = 0.7, u=20, a=3.116

Ra x 1073 (fRe); (fRe), (fRe); (Nu); (Nu), (Nu),

< 1.7087 9.0 ~ 9.0 9.0 1.0 -1.0 0
2.5 10.75  10.75  10.76  1.485 -1.485 0
3.5 11.822 11.82  11.85  1.820 -1.820 0
5.5 13.04  13.04  13.11  2.201 -2.201 0
8.0105  14.02  14.02  14.14- 2.493 -2.493 0

10.0 14.61  14.61  14.77- 2.664 -2.664 O

15.0 15.34  15.34  15.56. 2.872 -2.872 0

17.08 16.15° 16.15  16.44  3.096 -3.095. O

40.0 19.24  19.24  19.51° 3.912 -3.912 0O
100.0 23.50. 23.50  23.00- 5.083 -5.083 O
300.0 26.67  26.67  25.89  6.643 <-6.643 O
Pr = 0.7, u =0, Ra = 4 x 10%

a (fRe)] (fRe-)2 (fRe)3 (Nu)] (Nu)2 .(Nu)3
3.5 20.93  20.93  21.20  4.001 -4.001 0O
4.0 22.46  22.46  23.02  4.047 -4.047 O
5.0 25.69  25.69  26.37  4.038 -4.038 0

Pr = 0.7, u=0, Ra =1x 10°

a (fRe)] (fRe)2 (fRe)3 (Nu)] (Nu)2 (Nu)3
3.5 2.626  2.626  2.553 5.249 -5.249 0
4.0 2.984  2.984  2.875 5.408 -5.408 0
5.0 3.505  3.505  3.273 5.517 -5.517 0O
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Pr= 0.7, u=7.5, a=3.284
Ra x 1073 (fRe); (fRe), (fRe); (Mu);  (Nu), (Mu)g
< 1.3290 9.0 9.0 9.0 4.5 2.5 3.5
2.5 11.41  10.66  11.04  4.837  1.479  3.160°
5.0 12.98  12.38  12.71  5.005 0.8834 2.946
10.0 14.20  14.56  14.55  5.064 0.4405 2.752
20.0 i5.21  17.53  17.06  5.167 -0.0812 2.542
30.0 17.51  19.72  18.88  5.318 -0.4729 2.417
60.0 20.00  25.07  22.38  5.760 -1.326  2.220
100.0 21.96  32.11  25.20  6.205 -2.247  2.091
Pr = 0.7, u = 15, a = 3.415
Ra x 1073 (fRe); (fRe), (fRe); (Nu);  (Nu),  (Nu)g
< 0.94366 9.0 9.0 9.0 8.0 6.0 7.0
1.5 10.84 9.982 10.42  8.194 4.810  6.507
3.0 12.42  11.09  11.76  8.272 3.964  6.123
4.5 12.95  11.66  12.33  8.195 3.756  5.982
5.0 12.94  11.70  12.35  8.126. 3.790  5.976
Pr = 0.7, u = 45, a = 3.546
Ra x 1072 (fRe); (fRe), (fRe); (Nu); (Nu), (Nu),
< 4.1098 9.0 9.0 9.0 22.0  20.0 21.0
6.0 10.56 9.685 10.13 22.15 17.43  19.80
8.0 11.20  10.04  10.72 22.23 16.24  19.24
10.0 11.92  10.28 11.11 22.23 15.56  18.90
15.0 12.65  10.71  11.71 22.12 14.72  18.41
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Pr = 0.7, u =75, a = 3.576
-2
Ra x 10 (fRe)] (1"Re)2 (\‘Re)3 (Nu)] (Nu)2 (Nu)3
< 2.6081 9.0 9.0 9.0  36.0  34.0 35.0
4.0 10.72 9.722 10.23 36.17 29.48  32.84
6.0 11.81  10.17  11.0  36.23 27.06  31.67
8.0 12.40 10.43  11.42 36.16 25.92  31.07
10.0 12,73  16.60  11.70 35.52 25.28  30.70
Pr = 0.7, u= - 7.5, a = 3.962
Ra x 1073 (fRe); (fRe), (fRe)y (Nu); (Nu), (Mu)g
> -7.2236 9.0 9.0 9.0 -2.5  -4.5 3.5
8.0 9.371 9.116  9.229 -2.495 -4.440 -3.456
-9.0 9.999 9.334  9.674 -2.440 -4.306 -3.376
-10.0 10.40 9.455  9.930 -2.421 -4.239 -3.332
-15.0 11.93 9.899 10.91 -2.352 -4.014 -3.179
Pr = 0.7, u=-15, a = 3.836
Ra x 1073 (fRe), (fRe), (fRe)y (Nu); (Nu),  (Mu)g
> -2.2204 9.0 9.0 9.0 -6.0  -8.0 7.0
-3.0 10.33 9.440  9.888 -5.924 -7.438 -6.678
3.5 10.90 9.603 10.25 -5.893 -7.223 -6.558
-4.0 11.37 9.729 10.55 -5.869 -7.059 -6.464
-4.5 11.75 9.829 10.80 -5.847 -6.931 -6.391
-5.0 12.08 9.913 11.0  -5.830 -6.827 -6.331
6.0 12.61 10.05  11.34 -5.799 -6.664 -6.236
-7.0 13.03  10.15  11.60 -5.773 -6.544 -6.165
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Pr = 0.7, p = -30, a = 3.735
=3 '
Ra x 10 (fRe)] (fRe), ‘_(fRe)3 (Nu);  (Nu),  (Nu),
> -0.88447 9.0 9.0 9.0 -13.0 -15.0" -14.0
-1.0 9.623 9.236 9.430 -12.96 -14.40  -13.68
-2.0 11.96 9.955 10.96 -12.85 -12.53 -12.69
-3.0 12.96  10.23  11.59 -12.80 -11.90 -12.33
-3.5 13.30 10.35 11.84 -12.75 ~-11.72 -12.20
Pr = 0.7, p = - 75, a = 3.667
-2
Ra x 10 (fRe);  (fRe), (fRe)y - (Nu)y  (Nu), (Nu),
>-3.0983 9.0 9.0 9.0  -34.0 -36.0_  -35.0
-4.0 10.14°  9.443  9.795 -33.93 -33.]7 -33.55
-6.0 11.45  9.883 10.67 -33.89  -30.38 -32.14
-8.0 12.18 10.12 11.16  -33.82 -29.01 -31.43
-10.0 12.66 10.28 11.48 -33.74 -28.20 -30.99
Pr = 0.1, |u| + =, a = 3.192
ReRa_x107#  (fRe); (fRe), (fRe)g (Nu)y  (Mu),  (Nu)y
< 5.6319 9.0 9.0 9.0 8.235 8.235 8.235
6.5 9.768 9.359 9.564 8.372 8.245 8.308
7.5 10.34 9.602 9.975 8.478 8.246  8.363
8.5 10.80  9.782° 10.29  8.564 8.246 8.404
10.0 11.34 9.993 10.67 8.666 8.245  8.455
15.0 12.55 10.46 11.51 8.892 8.252 8.571
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Pr = 0.7, |u| > =, a = 3.621
-4
ReRaTxIO (fRe)] (fRe.)2 (1’Re)3 (N‘u)1 (Nu)2 (Nu)3
< 2.1305: 9.0 9.0 9.0 8.235. 8.235 8.235
3.0 10.44 9.577 10.01 9,154 8.188 8.673
3.5 10.94 9.761 10.36 - - 9.485 8.172 8.832
4.0 11.33 9.90 10.62 9.745 8.164 8.959
4.5 11.65 10.02 10.84 9.962 8.161 9.064
6.0 12.30 10.26 11.29  10.41 8.169.- 9.293
7.5 12.68 10.41 11.57 10.64 8.181 9.443
9.0 12.97 - 10.58 11.81 10.85 8.231 9.549
Pr = 2, |u| »=, a = 3.826
ReRaTx10'4 (fRe); (fRe), (fRe)y (Nu); (Nu),  (Nu)g
< 0.90473 9.0 9.0 9. d 8.235 8.235 8.235
1.0 9.137. 9.057 9. 097 8.691 8.234 8.460
1.5 9.624 g.246 §.436 9.960 8.192 9.080
2.0 9.983 9.370 9.680 10.66 8.167. 9.419
3.0 10.52 9.532 10.02 11.46 8.156 9.810
4.0 10.87 9.632 10.26 11.89 8.159 10.04
5.0 11.08 9.686 10.39 12.09 - 8.177 10.15
Pr = ju] + «, a = 3.955
-3
ReRaTxlo (fRe).l (fRe)2 (fRe)3 (Nu).l (Nu)2 (Nu)3
< 1.9885 9.0 9.0 9.0 8.235 8.235 8.235
3.0 9.026 9.011 9.019 9.803 8.258 9.036
5.0 9.069 9.028 9.049 11.16 8.244 9.717-
7.0 9.108 9.043 9.076 11.89 8.24¢ 10.09
8.0 9.126 9.049 9.088 12.14 8.250 10.21
9.0 9.142 9.055 9.099 12.34 8.254 10.32
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Pr = 100, |u| > =, a = 3.989

ReRa x1072 (fRe); (fRe), (fRe); (Nu)y (Nu), (Nu),
2.0332 9.0 9.0 9.0  8.235 8.235 8.235
3.0 9.0 9.0 9.0  9.747 8.275 9.013
5.0 9.001 9.0 9.001 11.16  8.272 9.722
7.0 9.007  9.001  9.007 11.90  8.280 10.10
9.0 9.002  9.001  9.001 12.35  8.284 10.34
10.0 9.002  9.001  9.001 12.47  8.292 10.40




CHAPTER VII

GENERAL CONCLUDING REMARKS

Boundary vorticity method is developed for the nume-
rical solution of the fu]l& developed laminar forced convec-
tion heat transfer with secondary flow. Mathematically,
forced convective heat transfer problems with secondary flow
can be classified into two categories. When the critical -
characteristic. parameter depicting the onset of secondary
flow is zero, the problem is a boundary-value problem. If
the secondary flow appears discretely only after a critical
value of the characteristic. parameter is reached, then the
problem is an eigenvalue problem for thermal instability.

At present no theoretical method of solution is
available for the whole range of the parameter characterizing
the intensity of secondary flow for the boundary-value pro-
blem. The reason is clear from the consideration of the
physiﬁal situation. For the characteristic parameter up to
intermediate range, the viscosity and heat conduction are
important throughout the whole region of the channel cross-
section. In the high parameter range, the viscosity and heat
conduction are negligibly small in the core region which
occupies the substantial part of the cross-section. It is
noted that the viscous and- heat conduction terms represent
the highest order terms in the governing equations. By its

very nature the perturbation method is valid only for the very
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small parameter region. On the other hand, boundary-layer
technique is an approximate method and is valid only for
the high parameter range. Besides closing the gap betweeh
the perturbation method énd the boundary-layer- technique,
the numerical solution using boundary vorticity method is
valid up to a reasonably high value of the parameter where
the asymptotic behavior for flow and heat transfer results
already appears and further results for the high parameter
region can be obtained by linear extrapolation.

In general, secondary flows, superposed on the main
axial flow in a tube, are found to increase the friction
factor and heat transfer coefficient. This fact can be
utilized in design problems.

As an application of the boundary vorticity method
to the boundary-value problem, the important practical pro-
blem of fully developed combined free and forced laminar
convection in uniformly heated horizontal tubes is solved
numerically and the results are compared with those available
in the literature.

After solving the-thermal instability problem for
fully developed laminar convection between two infinite
horizontal plates subjected to various thermal boundary
conditions with consideration also for Prandtl number effect,
the boundary vorticity method and its modified version are
applied to the finite amplitude thermal convection in the

post-critical regime with success.
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Eventually the bouﬁdary vorticity method diverges at
a certain.high value of the characteristic parameter and this
is believed to be éssociated with the change of the physical
character. For example, for the boundary-value problem at
high parameter, the viscous and conduction terms representing
the highest order terms can probably be neglected in the
central core region of the channel and yet the numerical
scheme is still based on the elliptic type equation. It
appears that a special method of treating the viscous and
conduction terms must be developed such that the difference
equations remain "well-behaved" in the high parameter range'
in érder to overcome the difficulty.

From the results of present investigation, the follow-
_ing general conclusions and suggestions for future work may
be made:

(1) The new algorithm for the numerical determination
of the boundary vorticity is believed to be sufficiently
general and have wide applicability to various forced convec-
tive heat transfer problems with secondary flow caused by
various body forces. .The algorithm utilizes the Gaussian
elimination method and the iterative technique by linearizing
the nonlinear terms. The method eliminates the need of solv-
ing a linearized biharmonic equation involving stream func-
tion. The numerical solution of the biharmonic equation in
polar coordinates is known to converge very slowly. The

method has the advantage of solving two second order partial
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differential equations instead of the fourth order one.

(2) The improved or modified method discussed in the
1ast'section of Chapter II is utilized in Chapter VI for the
cases of |u| # 0 and |u| + =. The modified method is shown
to be more efficient than the boundary vorticity method at
least for the problem treated. It can be stated that the
computing time required by the non-steady state solution
method employed by Samuels and Churchill [6.6] in obtaining
the steady state solution is much longer than the direct
steady state solution method employed in this investigation.
It is believed that the non-steady state solution method may
be applied only for the transient problems in view of the
availability of the boundary vorticity method.

(3) The variation of wave number with the characteris-
tic parameter for fully developed laminar forced convection
in the post-critical regime between two infinite horizontal
plates needs further investigation. It js suggested that the
wave number for the vortex roll may not be determined by
consideration in the fully developed region alone. It is
expected that secondary flow is already formed somewhere in
the thermal entrance region. The pitch of the vortex roll
in the entrance region may remain constant and only the inten-
sity of the secondary flow increases along the main flow
direction up to the point where the fully developed condition
prevails. From the physical reasoning, there is no reason to

expect that the size and structure of the vortex roll should
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be determined in the fully developed region alone. In this
connection, the present experimental facilities for thermal
instability in plane Poiseuille flow are believed to be cap-
able of shedding some light on the above speculation about
the wave number variation.

(4) If the speculation stated in (3) proves to be
true, then the thermal instability problem in the thermal
entrance region is of considerable practical importance.

The above observation also reveals that another series of
thermal instability problems forlexternal flow such as Blasius
problem involving longitudinal vortex rolls may exist.

(5) The observation of the asymptotic behavior in
flow and heat transfer results for Prandtl number effect 1is
noteworthy and significant. For example, by using a suitable
parameter the heat transfer results for the two secondary
flow problems studied in this thesis can be correlated such
that the results for a Prandtl number of order one already
approach the asymptotic results for Pr - =. It is to be
expected that the asymptotic behavior for Prandtl number
effect exists also for all the forced convective heat trans-
fer problems with secondary flow regardless of the source of
body forces. Furthermore, for large Prandtl number fluids,
the inertia terms in the momentum equations can be neglected.
This leads to a considerable simplification in the solution
of Graetz problem (thermal entrance problem) with significant

buoyancy effect. The asymptotic behavior for Prandtl number
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effect is also clearly observed in neutral stability curves
and the critical wave number for the thermal instability pro-
blem in plane Poiseuille flow.

(6) The results of present investigation suggest
that forced and/or free laminar convection from heated hori-
zontal cylinders or spheres may be solved numerically by
transforming the external region into a unit circle without
using the usual boundary-layer approximation. However, this
possibility remains to be explored in future.

(7) Besides the laminar convection problems with
secondary flow, the boundary vorticity method can be applied
to biharmonic boundary-value problems in solid mechanics.
This possibility will provide a new alternative approach to
the numerical solution of a class of engineering problems in
solid mechanics governed by biharmonic equation.

(8) The methods used in this thesis can also be
applied to mass transfer and chemical reaction phenomena where
the secondary flow arises due to the body forces acting in

the cross section normal to the main flow.
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¥%%f IST OF FORTRAN TV PROGRAMMING***

PRCGRAMS ECR THE PROBLEMS STUDIED IN CHAPTERS IT1T1,TV AND VI

*%x? IN COL. 6: THIS LINE IS A PART OF PREVIOUS CARD

—

THIS IS A PROGRAM FOR CHAP. III
COMBINED CONVECTION IN HORI. CIRCULAR TUBES

eNel aNeNele]

DIMENSICON R{33),PHI(33),2A(33),78(33),7C(33),AA(33),88

* (33,
1CC(33) 4DF(33433),W(33,433),T(33,33),V0(33,33),5(33,332),

* U(323,33),

2V{(33,33),A(33,33),8(33,33),C(33,33),AP(33,33),BP(33,33

),
2CP(23,33),WR2(33,33),RCT(23,33)

CCMMON MI,MyML1,NI,N,N1,0ME1,0OME2,0OME3,HI,HI2,HJ,HI2,

1ZA4ZB42ZC4R,4PHI
CCMMON MT1,MT2

PI=3.1415927
READ(5,60) M,MT1,MT2,¥T3,ACC
M: _NC. OF DIMS. IN _R=DIR.

MT1l: NC. OF INNER ITERATIONS IN SUBWT
MT2: NC. OF INNER ITERATICAS IN SUBVS
MT3: NO, OF OUTER TTERATIONS

OO OO

ACC: A PRESCRIBELC ERROR
XEAD(5,60) IREAD
MI=M=-1

Mi=N+1
N=M
C N: NC. OF DIVS. IN PHI-DIR.

NC=N/2
NI=N-1
N1=N+1

D3 2 I=1,.M1
DO 2 J=1,.N1
W(T,J)}=0.0

T(1,J)=0.0
va(i,J)=0.0
S(I’J)=0.0
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U(1,J)=0.0

V(I,J)}=0.0
IF(IREAD.EQ.0) GC TO 14
READ_INITIAL _VALUES

REAL{5,456) ({W (I,J),I=1,M1,42),J=1,N1,2)
READ(5,56) ({T {1,J),1I=1,¥M142)45J=1,N1,2)
REAC{5.56) {(V0(IsJ),1=1:M1,2).J=1,N1,2)

READ(5756) ((S (I,J}fI=19M192)1J=11N192)
REAC{S,56) ({U {I,03,1I=1sM1,2)+d=1,N1,2)
REALC(5456) ((V _(14J)s1=1+¥122)9+J=1sN1,2)

DG 1C0 I=2,M,2
11=1+1
11=1-1

DC 10C J=1,N1,2
W {14J)=0.5%(W (I1,J)+W {(T11,J))
T (T1,3)=0.5%(T (I1,J)+T (IlsJ))

VO(I:J)=0.5%{VO{11,J)+VC{I1,4))
S (I5J)=0.5*%(S (I1l,J)+S (II+J))
U (T,J)=0.5%{y (T1.J)+) (I1T,.0))

100

V {14J)=0.5%(V {I1,J)+V {II,4))
CONT INUE
DC_101 J=23Ny2

J1=J+1
Ji=J-1
NG 101 1=31.M1

W (T9J)=0.5%(W (I,J1)+W (I,4I))
T (14d3=0.5%(T (1,J1)+7 {1I,JI))

S (J134)=0.5%(S (J+J1)%S (I1,J1))

U (1,3)=0.5%{U (I,J1)+U (I,J1))
V {(I,J)=0.5%{V (I,J1)+V (1,J1)}
VO(1,J)=0.5%{V0(1,J1)+VO(,J1))

101
14

CONT INUE
HI=1.0/M
HI2=HI**2

FJ=PI/N
HJ2=HJ*%*2
PHI(1)=0.0

15

DO 15 J=2,4N1
PHI(J)=PHI(J-1)+FJ
R{1)=C.0

CEFINE ELEMENTS OF MATRICES
DC 1 I=2,M
R{I)=R{I-1)+HI

ZA(I)=0.5*HI/R(I)
Z3{I1)={HI/{R{I)*HJ) ) *=*2
ZC(I)=HI2/(R(1)*HJ)

BB(I)=2%{1.0+ZB(I))
CC{I)=1.0+ZA(T)
AA(T)=1.0-ZA(I)

CCONTINUE
BB(M1)=1.0

£A(M1)= 1.0

589
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CC(+13=2.0

38 22 I=1.M
BC 22 J=1.,N1
22 DF(1sJ)=4%H]I2

13 REAS(5450) PR,RAC,0ME1,CME2,0OME3"
WRITE(6450) PR,RAC,CME1,0OME2,0ME3
PRHI=C.S5FPR*HI

IT=1

IIT=1
e 12 COHTINUE

o€ 3 I=2,M

DC 2 J=1,4N1
A(Y,J)=AA({T)+0.5*HI*U(T,J)

B{I,J)=B6B(1)
ClILI)=CC(I)-0L.5%HI*U(I,I)
CCHTINLE

V)

2(1,1)=4.0
C{1,1)=1.0-C.5%HI*V(1l,1)

C SBLVZ FOR AXTAL VEL. W

) CALL SUBKT({1.04A9yByCsVaWyDF)
DO & I=2,M
BG & J=1,N1

AP{I,3)=AA(1)+PRHI*U(I,J)

BP(I,J)=BB(1I)
CPET, JI=CC(T)-PRHTI*UY(T,J)

6 CLNTIAUE
8P{1,1)=4.0
CP{1,1)=1.0-PRHI*V(1,1)

233 G T=1,M]1 :
BG ¢ J=1,\N1
S WR2{I,J¥=HI2*W{T,J)

C SCLVE FOR TEMPERATURE T
CALL SUBWT(PR,AP4BP,CP,V,T,UR2)
FINE T=MP, GRADS.

CALL SUBGT(RAC,TLRCT)
AP2LY BCUNDARY VORTICITY METHOD AND SOLVE FOR
VCRTICITY AND STREAM FUNCTICON

S Xl e]

CALL SUEVS{AA,BBsCLyA4ByCsRCTLVC,S,V)
FINT SECCNDARY FLOW VEL. COMPONENTS
CALEL SUBUV(S,UsVsERRGR)

(@)

WRITE(£4+51) ITLERROR
TF(I7 . GE.MT3.0R.ERRORL.ELACC ) GO TO 10
IT=TT7T+1

50 Te 12
'S EINT SRE AND NU
10 CALL FRENU{W,TsRAC)

WRITE(64552)
ARITE(6,53) ((W(I,J),I=1,M),J=1,N1)
WRITFE(£,54)

WRITE(S5453) {({T(I,J),1I=1,M),J=1,N1)
aR*T*(é 55)
HRITE(S5,53){{VO(I,J)»1=2,1),J=1,N1)




WRITE(6.53) ({S(Ty4)s1=2,M13,.0=1,N1)
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NRITE{6753) ((U(IQJ),I=19M)1J=19N1)
WRITE(6,553) ({(V(IyJ)sI=1yM);3J=1,N1)
WRITE(7256) ({W_{T12+J)eI=1sM1+2)2d=1,N1,2)

WRITE(7456) ((T (I,J),I=1,M1,2),J=1,N1,2)
WRITE{T7,56) {{VC{IsJ)sI=14M1,2)4+J=15N1,2)
WRITE(7,56) {({S (1-J),7=1,M1.2)+J0=1,N1,2)

WRITE(7,56) ({U (I+J)5I=15M152)4J=1,N1,2)
WRITE(7,56) ((V (I,4),I=1,M1,2),J=1,N1,2)

50 FGORMAT(5E10.3)
51 FORMAT({5X,3HIT=,14,5X,6HERROR=yE10.3}
52 FORMAT(S5X,SHWWWHW5X., 8HI=1 TC M,5X,9H.J=1,NC,N1)

532 FCRMAT(10E1l3.4)
54 FORMAT{5X,5HTTTTT+5Xs8HI=1 TO M,5X,9HJI=14NC4N1)

55 _FECRMAT{5Xs5HSSSSSe5X.9HI=2 T0O M1,5X,9HJ=1 TO N1)

56 FORMAT{20A4)
&€C FORMAT(415,E10.2)
END
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A SUBRQUTINE FOR SCLVING W AND T

SUBROUTINE SUBWT(PRsA+BsCsVsF.DF)

DIMENSION A(33,33),8{(33,33),C(33,33),V{23,33),F(33,33)
* b4
1DF(33,33),47ZA(33),7B8(33),7C{33),H(33,33) ,HP(33,33),PZV(

* 33,33),
2FK{33),P{33),Y(2CC),R(33),PHI(33)

_COMMON MI,M,M1,NI,N,N1,0ME]1,QME2,OME3, HI,HI2,HILHI2,

1ZA,ZB+ZCyR4PHI o
CCMMGN MT1,.MT2
CMEGA=0ME2

IF(PR.GT.0.8) OMEGA=0VNE1
IM=2
DG 1 J=1,4N1

IF(J.AEL1} IM=3
IMI=IN-1
H(IM ,J)=C{IMI,J)}/B(INT,J)

DO 1I=IM.M
HP{I,J)=B(I,J)-A(I,J)*H(I-1,J)
H(I,J)=C{I,J)/HP(I,J)

DO 5 I=2,M
BC 5 J=24N
PZV(T,J)=PR*ZC(1I*V{T,J)*0.5

15

IT=1
J=1
SF=0.0

SD=C.C
TM=2
FK{1)=2%F{2,N/2+1)+DF{1,1)+(PR*0.5*%HI*V(1,1)+1.0)*F(2,

* NI
DC 2 I=24M
FK{I1)=2*7B(I1)*F(1,2)+0F(1,1)

12

GO TO 3
FK{2)=A{24N1)*F({1,1)+2*ZB(2)*F(2,N}+DF{2,N1}

DC 4 1=3,M

i1l

FK{I)=2*%ZB{I}*F(1I,N )+DF{I,4nN1)
GC TC 3

FK{I)=(ZB{I)+PZV(I,JY)%F{I1,J-1)+(ZB(1)-PZV(I,J))*F(TI,J
* #1)+DF(I,J)
IF(I.CT.2) GO TC 6

FK{2)=FK{2)1+A{2,J)}%F(1,1)
CCNTINUE
IF{JeNEL1) IM=3

IMI=TN-1
P{IMI)=FK{IMI)/E(IMI,J)
D3 9 I=1IM,M

P{IN=(FK{I)+A(I,J3)*P(I-1))/HP(I,J)
FN=P{M)
DI=CMEGA®={FN-F(V,J))




F{Ma JI=F(M, 1} 4+D]T
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SF=ABS{F(M,J})+SF
SC=ABS{LI)+SD
I=M1

io

FN=P(I)+H{I,J)*FN
DI=CMEGA*(FN-F(I,J)})
F{l,J)=F(1-,J}+D1

SF=SF+ABS(F{I,J))
S0=SC+ABS(DI)

20

I=1-1
GC 70 10
J=J+1]

13

IF{J-N1) 11,12,13
ERR=SC/SF
I_E.( E PReLE .l_E.:S*._,C_B‘_._LT_,.__G,E_.O,.M.I_l.)_.G.D..”_I_D.,._.l..(,f

14

IT=IT+1
GG T¢C 15
CONTINUE

16

DO 16 J=2,N1
F{1,J)=F{1,1)
RETURN

END
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A SUBROUTINE FOR FINDING TEMP. GRADS.

SUBRCUTINE SUBGTIRALC,T.RCT)

DIMENSION T{33,33),RCT(33,33),ZA(33),ZB(33),ZC{33),R(3

* 3),
1PHI(32),TR(33,33}),TPH]I(33,33)

CCMMCN MI,My,M1,4,NI,NyN1,OMEL1,OME240ME3yHIyHIZ2yHIsHI2,

1ZA47ZB+yZCsRyPHI
CCMMON _MT1,MT2

EIP=HI*12
HJIP=HJ*12
DO 6 J=2,N1

6 T{1,J)=T(1,1)
DG 1 J=2,4N
TRI2:,J)={T (5, J)=6%T (4 +]18*¥T(3,J)=10%T(2,J)=3%T(1+1))

¥ /JHIF
1 TR{MyJ)I=—{TI{M-39J)-6%T{M~2,J)+18*T{MI,J)-10%T(MyJ))/HI

)

DC 2 I=3,MI
B0 2 J=24N
2 JR{T s =T (1-2, J)}=-8%T(I-1,J)48%T(J+1,3)=-T(1+2,J))/HIP

DO 3 I=2,.M
TPHI(I42)= {(T(I45)-6*T(I,4)+18*T(1,3)-10*%T(1,2)-3*T(1I,

* 13)/4H4P

3 TPHI(IsN)=—(T(I4N-3)—6%T{I,N-2)+18%T(I,N-1)
1-10*T{I,N})-3*T{I,N1}))/HJP
DC 4 T=2,M

DO 4 J=3,NI
4 TPHI(I4J)=(T{1,J-2)-8*T{I+J-1)+8=T{(I,J+1)-T(1,J+2))/HJ

= P

DC 5 I=2,M
D8 5 J=24N

5 RCTAL,J}=RACH(TE(I,J)XSIN{PRI(JII+TPHI(1,J)*COS(PHI(JI]

* )
1/R{T1))*HI2
RETYURN

END

585
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OO

A SUBRCUTINE FOR SOLVI..G VO. AND STREAM FUNCTION
(AN APPLICATIGN GF BOUNDARY VORTICITY METHOD)

SUBRCUTINE SUBVS({AA,8B;CC3A4BsCyRCT,VO,S,V)
DIMENSION AA(33),BB{33),CC{33),A133,33),8(33,33),C(33,
* 33).

1RCT(33,33),V0(33,33),5(33,33),ZA(33),28(33),2C{33),
2R(33) 4PHI{33),H{33,33),HP{33,33),HH{33),HHP(33),FKK{33
A R

32V(33,33),FK(33),P(33)1PP(33)9V0P(33,3),SP(33,3),V(331

*  33)
CCMMON MI M, M1, NToN,N1,OME]LOME2,0OMF3 4, HT yHT 2 oH.JoH.I2 s

1ZA,7ZByZCyR5PHI
CCMMON MT1,MT2
DO_1_J=2.N

H{2,3)=C{2,3)/8(2,J)
DO 2 I=3,¥
HP {1, J)=B{T,J)-A{f1,J)*H{T-1,J)

2 H{I,4J)=C(I,J3/HP(I,J)
HH(2)=CC(2)}/BB(2)
0C 31 I=3,M1

HHP(I)}=BB(I1)-AA(TI)*HH({I-1)
31 HH(I)=CC(I)/HHP(I)

1 CCNTINYF

DO 22 I=2,4M
DO 32 J=2,N

32 ZNE1,J)=ZCA{T)*V(1,J)%*0,.5
IT=1

19 Sb=0.C
$$=0.0
DG 3 J=2,N

BC 4 I=2,MI
ERAD)=AZ8(I)+ 7V (1, 3))*V0(I1,J=1)+(ZBA1)=ZV (1, J))*VOL T,

* +1)-RCT(I,J)
4 CONTINUE
P(2)=FK(2)/B(2,J)

DC 7 I=3,MI
T PLI)=(FK(IY+A{I,d)*P{I-1))/HP(I,4)
K=0

VOP(M1,1)=0.0
16 K=K+1
FR{M)=(ZB(MI+ZVIM,J))*VO{ M, J—1)+{ZB(M)—-ZV(M,J) ) EVG(MyJ

x +1)
1+C(N,J)*=VOP(M1,K)=-RCT (Myd)
S P(M)=(FKLM)+A(M,4)*P(ﬂJ))/HP(M,J)

V3P (M4K)=P (M) '
£LC 11 1I=2,MI
I=M1-17

11 VOP{I+KI=P(I)+H{I,J)*VOP{I+1,K)
B0 23 I=2,M

33 FRKKAI)=7ZB(I)*{S(1,J=1)+S{T1,J+1))-VQOP({I,K}*HI2




PP(Z)=FKK(2)/BB(2)

- D0 12 1=3,m3

B e | Z_UE&(I)S,LEK!&LD.:!AALIJEEEL-I:kl).l/_,H.iti.E.(_I_)wm
SP(MI,K)=PP(M1)

IF(K-2) 13,14,15
P{M =

T —

GC T0 16
14 VOP(M!,3)=100*SP(M1,13/(SP(M1,2)-SP{M1
G é e
15 pc 17 II=1, M1
I =M1-171
p =pp d
S(MlyJ)=SP(M173J
VO(MI,J?=VGP(MI,33

2113

_,.,.w~.,_,_,_,__,_____,__.._.._,._______._-_._._...__ .................

e,

~—— [0 =24 M B e
VG(I:J)=VCPfIs3)
DI=GME3*(SP‘I,3)-S(I,J’)
= +D

SS=SS+ABS(S(I,J)J

3 SD=SD+ABS(DI)
ERR=SD/Ss - T

IF(ERR.LE.IE—S.OR.IT.GE.MTZ)GO TO 18

IT=1T+1

P

—————

e UL

9
18 CCNTINUE
RETURN
e END
—

e SNSRI

S

R S R oo T
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A SUBRCUTINE FOR FINDING U AND V FROM STREAM FUNCTION

SUBROUTINE . SUBUV{SsUsVsERR]

DIMENSION S(33v333,U(33,33),V(33133),UU(33933),VV(33q3

* 3,
17A¢(33),ZB(33).,2C(33},R(33),PHI(33)

COMMON MI,M,MI,NI,N,NI,OMEI,OMEZ,OMEB,HI,HIZ,HJ,HJZ,
1ZA32B,2C,4R4PHI
CCMMCN MT1,MT2

DO 1 I=2,M
RH6=R (1 }*HJ*6
RH12=RHE6X2

UU(T,1)=(8%S{I,2)-S(1,33)/RHE
UU{T42)=(=S{1,2)+8*5({143)-5(144))/RH12

UULTaNT)=(SCT . NT)=8%S(1,N))L/RHE

VUL ToNI={ (I, N-2)-8%S{IyNI)+S(I:N)I/RH12

DC 1 J=3 NI :
1 UU(I.J)=.S(I'J—Z)—B*S(I.J—1)+8*S(I.J+1)—S(T.J+?))/RH1?

HI12=KI"12 | ]
DO 2 J=2uN
YV 22 0)={10%S5(25J)=18%5(32J)#6%S(44J)=S(5,.0))/8112

VV(M:J)=(S(M—3,J)-é*S(M-Z,J)+l8*S(M-l,J)—IO*S(M,J))/HI
¥ 12
Dg 2 1=3,M1

2 VV(IsJ)=(S(I+2,J3—8*S(I+1;J3+8*S(I-1yJ)-S(I-Z,J)J/HIIZ
VV(1,1)=(S(37N/2+1)—8*S(2,N/2+1))/(6*HI)*(-1)
DO 4 J=1.N1

Uu{l,Jd1=0.0
4 VW{lysJ)=VV(1l,1)
DO 5 I=2.M

VWw{Isl)} =0.0
5 VVW(I,N1)=0.0
SC=C.C

SuUvV=0.0
DO 3 I=1.M
DG 3 J=1.N1

DU=UU(I,J)-U{I,J)
DV=VVI(I,J)1-V(I,J)
SC=SD+ABS(DU)+ABS(DV)

SUV=SUV+ABS{UU(I,J))+ABSIVV(I,J))
Ul1,J)=0U(I,J)
3 VII1sJI=VYVI(I.J)

ERR=SE/SUV
RETURN
END
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aNelal

A SUBROUTINE FOR EVALUATING FRE AND NU

SUBRGUT INE_FRENU(W,T,RAC)

REAL MCTsMGW MHT,MUW,NUL,NU2
DIMENSION W(33,433),T(33,33),GT(33),GW(33),WTP{33)},WP(3
* 3

12A(33)528(33),Z2C(33),R(33),PHI(33)
CCMMON MI,M,M1,NI,N,N1,CME1,CME2,0ME3,EI4HI2,HI,HIZ,

1ZA972Bs7ZCyR4PHI

CCMNCN MT1,MT2
PI=3.1415927
DC 1 J=j.Ni

1 GWIII=— (W (M=3+3)/4=4FWI{M=2,]) /3+3%WIM=Ts )= 4*NW (M, J)) [H

GT{II=={TI{M-3,3)/4—4%T(M=-2,J)/3+3*T(M-1,J)-4*T(M,J3)/H
* 1

* 1
MET=GT{1)+GT{N1)
MCW=GW {1 J+GWINT )

nC z J=2’N’2
MGT=MCT+GT({J)*4
MGU=MGW+GW{JI*4

2 CCNTINUE

DO 2 J=3¢NI,2
MGT=MGT+GT (J)*2

3 MGW=MGUW+GW{J)*2

MGT=FJ*MGT/3*1.C/P1
MCW=HJ*MCW/3*]1.0/P]

DO 4 I=2,M
WIP(I)=W{I,)*T(I,1)+W(I,N1)*T(I,N1)
WP{I)=W(T ,I)+u(T,N1)

P00 5 J=2,Ny2
WTP{I)=WTP{I}+u(I,J)xT{I,,J)*4

5 WP(I)=WP(I)+W(T,J)*4

D3 6 J=34NI1,2
WTP{T)=WTP(I)+W (I, J)*T(1,J)%2

6 WP{I)=wWP{T)+n{T,J)*2

WTP({I)=HJIFWTP(1I)/3

4 WP{I)=HJ*HP(I)/3

MWT=0.0

MW=0.C
DC 7 1I=2,VM,2
MUT=MUT+RTPI{II*R(T)*4

7 MW=MW+WP(I)FR{I)=4

DC 8 I=3,MI,2
MAT=MWT+WTP(TI)FR(I)*2

8

MW=MW+WP{I)*R(I)*2
MAT=H(*MRKT/3%2.0/P1
MW=HET*MW/3%2.0/P1

FRE]=4*MGW/ MW
NUL=2%MREMGT/MAT
FRE2=8,.0/MW




NU2 =MW*%x2 / MWT
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RER A=2*MW*RAC
WRITE{6,53) RERA
WRITE(6450)

WRITE(6952) MGWsMGT yMWsMWT

WRITE(6,51)
WRITE(6,52) FRE1.,FRE2,NUL,NU2

50

52
53

RETURN
FGRMAT(1X,30HTHESE ARE MGHW, MGT, MW ANC MWT)
FORMAT(1X,22HFREL1,FRE2, NU1l AND NU2) . .

FORMAT{4E15.5)
FORMAT (10X s SHRERA= E15.5)
END

83
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THIS IS A PROGRAM FOR CHAP. IV
THERMAL _INSTABILITY

sEsEelnEeNele)

(FOR THE NONLINEARITY APPROACHING INFINITE ONLY)

DCUBLE PRECISION F(30)sP,UsAsRyPU,A2,A4yA69A8,B(80,7),
1C1,C2,C3,C4{80),C5({8C) 4C6(80) ,CT{80) sFKI4357)sC(4+4),
2EM1,FM2,0,HA,DR,DA(11),RA(11),STR(11) ,AA(22)sRT(21 ),

3STA,RO,RI D1 o
F(1)=1D0
DC 6 I=1,54

FOI+1)=F{I)/(1+1)
REAB{5,50) P,A,RQ
REAC(5,51) MM,DR

WRITE(6453) P,A,R3,DR,MM
P: PRANDTL NO.
A: WAVE NO.

OOy O

RC: INITIAL RAYLEIGH NO.
DR: INCREMENT GOF RAYLEIGH NO.

MM: NC. OF TERMS IN SERIES EXPANSION

23

INA=1 o
DC 15 IA=1,21
R=R[

A2=A%*A
A4=A2%A2
A6=A2*A4

- A8=A2*A6

DC 1 I=1,7
ng 1 J=1,7

IF({I.EQ.J) GC TG 2
B(I,J)=0
GO 10 1

=N

3{I,J)=1D0
CCNTINUE
B(442)=2%A2

B{6,2)=3%A4
Cl=4%A2
C2==6%A4

19

INR=1
DC 16 IR=1,11
C3=4%A6—-0.5%¥P*R*A2

MM1=MN+3
DC 4 M=2,MM
FM1=M*({M=1)

FM2=M*(M=-1)%(M~2)
C4{M)=—AB8+]12%PHR*XA2%= (0. S5+ M+A2/24+0.25%FM1 ) +6%R*A2
C5(M)=—12%PERFA2% (MEM+FM2 /61 —12%A2%M%R

C6(M)=—3%P*A4*RFM]
CT{M)=2%P*A4*R*FN2
N=2
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11 B3{8,N)=CI1*B{H,NI+CO*B{4,N}+CI*B(2,N)

B(9yN)I=C1*B(7,N)+C2*B{5,N)+C3*B(3,N)
B(10,N)=C1*B{8,N)+C2*B{64N)+L3*B{44N)+C4(2)*B(24N)

B{11sN)=C1l%B(9,NI+C2%B(T:NI+CI3%B(5,NI+C4(3)%B(3,N)+

1C5(3)=*B{2,N)
DC 5 ¥=4,MM
S B{M+8,N)I=C1*B{M+6,N)+C2*B{M+4 ,NI+C3¥B(M+2, N} +C4H{M)*

1B{M,N)+C5{M)I=B{M—1,N)+CE(MI*B{M-2,N)+CT(M)*B(M-3,N)
FK{1,N)=0D0
... FK(2,4N)=0DGC .

FK{3,N}=0D0O
FK(4,MN)}=0D0
DO 7 1=8.MM]

FK{1,N)=FK{1sN)+F{T1)*B(IsN)
FK{23N)=FK{2,N)+F(I-1)*B{I,N)
F(3:N)=FK{3:N)+{F(I1-4)—-A2%2*F(1=2) }*B(I,N)

7 FKL{4,N)I=FK{4yNI+(F{I-8)-3%A2*F(I-4) +3*%A4¥F{I-2) }*B{I 4N

* )
IF(N.LT.3) GO TO 8

IF{N.LT.5) GO TC 9
© IF{N.LT.7) GO TG 10
GG 10 12

8 N=3
GC 10 11
9 N=5

GC 70 11
1C N=7
GO T0 11

FINC ELEMENTS OF MATRIX
12 C(1,1)=0.54F(4)*B{4,2)+F(6)*B{642)+FK{1,2)
C(1,2)¥=F(3)+FK(],3)

C(1,3)=F{5)+FK{1,5)
Cl1l,4)=F(T7)+FK(1,7)
CI{2,1)=1+F(3)*¥B(4,2)+F(5)*B(6,2)+FK(2,2)

C{242)=0.5+FK{2,3)
Cl2,3)=F(4)+FK(2,5)
C(2:4)=F(6I+FK(2,7)

C(351)=—2%A2+B(4,2)*{1-A2)+B(6,2)*(0.5-A2/12)+FK (3,2}
C(32,2)=—2%A2+FK{3,3)
Cl3123)=1-A2/3+FK(3,3)

C(344)=F(3)—-A2/€C+FKI(3,7)
Cl4,1)=3%A4+B(4,2)*(1.5%A4—-3%A2)+B(6,2)*({1-1.5%

1A2+A4/8) +FK(4.2)

Cl4,2)=3%A4+FK(4,3) :
C(4432)==3%A2+0.5%A4+FK{4,5)
Cl4+4)=1-0.5%A2+A4/[40+FK(427)

EVALUATE THE DETERMINANT
CALL TRIM(4,C,D)
BA{TR}=D

RA(IRI=R
IF(IR.EQ.1) GO 70 17
DI=CA{IR-1)
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RI=RA{IR-1)
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SIR{IRI=CA{IR)I*CA{IR-1)
IF{(SIR{IR).LT.OC0) GO TO 18
CHANGE RAYLEIGH NO.

17
16
18

R=RA{IRI+DR/INR
CCNTINUE
IF{(TNR.GE.100C0CC) GO TO 20

R=R-DR/INR
INR=INR*10
GO0 _T10. .19

20

WRITE(6352) AyRsD4RILII
AA(TIA)=A
RT{TIA)=R

IF(IA.LE.2.0R.INA.GT.10) GO TO 21
STA={(RT(IA)-RT(IA-1))*(RT{TIA-1)-RT(IA-2))

IF (SIA.LE.ODQ) GO T7Q 22

21
15

CHANGE WAVE NO.
A=A+C.1/INA
CONTINUE

22

IF(INA.GE.100) GO TO 14
A=A-2%0.1/7INA
INA=INA*]0

50
51

GG T3 23
FORMAT(D15.2,2D15.4)
FORMAT(5X, 15,D15.4)

52
53

FORMAT(5X4D15.5,4D20.5) .
FORMAT(D15.2y3D15.4415)
END
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A SUBROUTINE FOR EVALUATING A DETERMINANT

o

SUBRCUTINE TRIM(ISIZE.AsY)

DCUBLE PRECISICN A(4443,Y
DO 71 M=2,ISIZE
Do 71 I=M,ISTZE

D0 71 J=M,ISIZE
N=M-1
71 _A(T50)=AfT2J)-ALT NI=AIN, JI/A(N,ND -

Y=1D0
DG 72 I=1,1SIZE
72 Y=Y*A{1.1)

RETURN
END
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TEIS IS A PROGRAM FOR CHAP. VI
FINITE AMPLITUDE CONVECTICN

(3f7ﬁ(ﬁF)L

CIMENSTICN GU(413,6GT(41),U(41,41),V{(4]15,41),W{41,41),T(4

. 1941’9
15{(41,41) ,V0(41,41) 3A{41541)5AA(41,41)5C(41,41),CC(41,4

* 1),

2DF{41541)yF1(41+41) +F2{41441) 4FF1{41,41),FF2(41,41),

3BS{41),HBS(41), SMAL1{41)
CoOMMGN B,OMEGA,REZY2,RD7Y,007,07,DY

COMNMON MI,M,M1
PI=3.141593
REAC(5,50) ITO,M,ACC,OMEGA

REAT{5,51) PRFMUyRAJAL,IWI,IW2
REAC(5,50) IREAD
ITO: NQ, OF CUTER JTERATICNS

M: NO. OF DIVS. IN Y- AND ZI-DIR.
ACC: 2 PRESCRIBED ERRGCR
GMEGA: RELAXATICN FACTOR

PR: PRANDTL NO.
FMUS NCNLINEARITY
RA: RAYIETGH NO.

OGO

Al: WAVE NO.
Ml=M+1
MI=M-]

IF{IREAD.EQ.0) GO TO 100
REAE(S:S?) ‘(U (J,K)1J=1,M1,2,1K=19M192)
C READ INITTAL VALUES

REAC{5,577 ({V (Js4K)yJ=14M1,2),K=14M1,2)
READ(S,S?) { (W (J,K’1J=19M112)1K=17M172)
REAC(54357) {47 (Ja2K)aJ=1aM142)+K=12M1s2)

REAC{5457) (IS (JyK)yJ=13M142)43K=14M1,2)
REAC(S,S?) ((VD(J,K),J=17M1'2)1K=1’M1y2)
DO 101 K=2,M,2

K1=K+1
KI=K-1
CO_101 J=1,M1,2 e

U (JyK)=0.5*{U (J,K1}+U (J,KI))
V {JsK)=0.5%{V (J,K1}+V {(J,KI)})
W (JeKI)=05%(W (J,K1)4W (J,KT))

T (JsKI)=0.5%{T (J,K1)+T (J,KI))
S (JsK)=0.5%(S (J,K1)+S (J,KI)}
VO{JsK)=0,5*{VO(J,K1I+VO(J,KI))

1C1 CCNTINUE
DO 102 J=27M12
Jil=J+1

JI=J-1
DC 102 K=1,M1
U (JaK)=0.5%(1 (J1,KI+U (JI.K))
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V (JeKI=0.5%{V (J1,K)+V

W (JeKI=0.5%{W (J1,K)I+W (JI,K))
T (JsKI=0.5%(T (J1,K)+T {JI,K))
S _{JsK)I=0.5%(5 (J1.XK)1+S _(JI.K))

VO({JyK1=0.5%(V0(J1,K)+VO({JII,K))

CCNTINUE
G0 70 30

CCNT INUE
DG 1 I=1,M1
U(1,13=0.0

V(I,1)=0.0
W (I b 4 l )==()o 0
T{1,11=0.0

S{1,1)=0.0
V0{I,1)=0.0
U(1,M11=0.0

V{I,M1}=0.0
W(I,M1)=0.0
T{(1,.,M1)=0,0

S{1I,M1)=0.0
vg{I,¥1)=0.0
V (1.1)=0.0

S {1,1)=0.0
VG(1,13=0.0
vV _(M1.,7)=0,0

S (¥1,1)=0.0
VC{NM1,13=0.0
CCNTINUE

INITIAL DISTURBANCE
CALL CIST{S,UsT4PI,AL)}
FIND SECCNCARY FLOW

CALL SUBVH{V,WsS)
DCY=(PI/{A1%M)) **2
DDZ=(1.0/M)*%2

DG 21 K=2,M
K1=K+1
KI=K=1

31

DG 31 J=2,.M

VO(JK)={S(J+1,KI+S{J=1,KI=-2%S(J4K))/DDY+{S(J,K1)+

1S(J2 K1 )=2%S{J»K))/DDZ

CCNTINUE

30 CCNTINUE

MH=M/?2

M1Q=M/4
M3Q=3%M/4
DY=PI/(AL%M)

DZ=1.0/M
COY=DY*=*
CC7=07%%2

CCZ8=4*CDZ/DY
DZ4Y=0Z/(4%DY)

RDZY=0DZ/DDY
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PRN74Y=PR*D74Y

PRUCZ=PR*FMU*DDZ
PR2UDZ=PR*%2%FMU*DDZ/ (DY*2)
PRDDZ=PR*DDZ/INDY*2)

GRZ2Y=RA*DDZ/ (2*PR*DY)
RDZY2=2%RDZY
B=—2*(1+RD7Y)

DG 2 K=24M
K1=K+1
KI=K-1

FKI=KI
Z=FKI/M
GUIK)=DDZB*{]1 .0-2%7)

GT(K)}=PR2UDZ* (8% Z¥*3/3~4%7%%2+2.0/3)+PRDDZ
CONTINUE
BS(2)=1.0/8

21

DO 21 K=3,M
HBS (K)=B-BS(K-1)
83(K)=1.0/HBS(K)

IT=C
CONT INUE
DEEINE_ELEMENTS OF MATRICES

DO 3 J=1,4M1
DU 3 K=2, M
HA=DZ4Y*W{ J.,K)

HB=PRDZ4Y*W{J,K)
C(J,K)=1.0-HA
CL{JsK)=1,0-HB

A{JsK)=1.0+HA
AA(J,K)=1.0+HB
HA=D74Y%V{J.K)

HB=PRDZ4Y*V{J,K)
F1(JsK)=—HA-RDZY
F2 (JsK)I=HA=RDZY

FF1{J,K)=—HB-RDZY
FF2(J,K)=HB~RDZY
DE{J.KI=GUI{KI*W{J K}

CONTINUE
SIGN=1
SOLVE FOR U

CALL SUBUT(A,C,F1,F2,U,DF,ERR1,SIGN)
DG 7 J=1.M1
DO 7 K=2,M

DF(JsK)=PRUDZ*U{J,K)-KW(J,KI*GT(K)
CCNTINUE
SIGN=-1

SCLVE FOR T _
CALL SUBUT(AA,CC,FFl,FF2,T,DF,ERR2,SIGN)

DE 11 J=2,M

J1=J+1
J1=J-1
DC_11 K=2,4M -
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11 DF(J,KI=GRZ2Y*(T(JT1.,KI-T{,1T,K))

C SCGLVE FOR VO. AND STREAM FUNCTION
c FIND FRE AND NU
e CALL _SUBVOS{A,CsF1:F2,DF sV05S,BS,HBS)
C FIND SECCNDARY FLOW
CALL SUBVWIV,W,S)
IT=1T+1

WRITE(6,52) IT,ERR1,ERR2
IF(IT.GE.ITO0.O0R.ERR1.LTLACC) GO TG 8

8 CONTINUE
VWMAX=0.0
DC 4] J=1,M1

DO 41 K=2,M
HA=ABS(V(J,K})/DZ
HB=ABS(W(J.K))/DY

VAMAX=AMAX1{VWMAX,HA,HB)
41 VWMAX=VWMAX/2
WRITE(6,58) VWMAX

WRITE(6,53) M,ACC
WRITE(6,54) PRyFMU,RA,AL
CALL FRENUS(U4+T PR FMUsGT,A14SM)

IF{ IWl.NE.1) GO T3 33
WRITE(6,555) ((U (J,K),K=1,4M1),Jd=1yM1,yMH)
WRITE(6.55) ((T (J.K) K=] M1} ,J=1,M1,MHE)

WRITE(6,55) {{U({JsK)yJ=1,M1),K=M1Q,M3Q,M1Q)
WRITE(6,55) ({T(J,K),J=1,M1),K=M1Q,M3Q,M1Q)

B3 IF(IW2.NE.1) GO _T0_34
WRITE(6455) ((U (J2K)yJ=1sM1,y4),+K=1,M1,4)
WRITE(6,55) ((T (JyK)1J=17M114)9K=1,M114)
WRITE{6+55) ({S (J.K)eJ=1,M144),K=1,M1,4)

WRITE(6455) ({VC{J,K)yJd=14M1y4),K=14M1,4)
WRITE(7557) ((U (JsK)yJ=13M142)4+K=14M1,2)
WRITE(T7s57) ({V {J281:J=1sM152) oK=1eM1 2] .

WRITE{74+57) {(W (JsK)3J=19M1,42),K=1,M1,2)
WRITE(7,57) ({T (J,K)yJd=1yM1,2},K=1,M1,2)
WRITE(7,57) {(S (J,K)pJ=1,M1,2),K=1.M1,2)

WRITE{7,57) ((VCO(J,K)sJ=1,M1,2)4K=1sM1,2)
34 CONTINUE

50 FCRMAT(215,2E10.3). e
51 FORMAT(2E10.3,2E15.7,215)
52 FORMAT{5X,3HIT=,15;5X,7HERRORS=,2E10.3)

53 FORMAT(SX,13HNA., OF. DIV.=.73,5X-11HPRE, FRROR=,F10,3)

54 FCRMAT(5X,3HPR=3E10.3,5X,14HNGN-LINEARITY=,E10.3,
13HRA=,E15.7,9HWAVE NO.=E15.7)
S5 _FCRMAT(11E12.4)

56 FORMAT(5XsE15.4,215)
57 FORMAT{20A4)
58 FORMAT(5X,6HMAXVW=E10.3)

sST0P
END
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A SUBROUTINE FOR READING INITIAL DISTURBANCE

1U{41,41),T(41,41),S{41,41)

COMMON B,0OMEGA,RCZY2,RDZY,D0Z407,DY

SUBROLUTINE DIST(S,U,T+PI1:A1)

DIMENSION SO(21),U0(21),TC(21),51{41),U1{(41),T1(41),

COMMON MI4M4NM1
REAC(5,50)({S3(K)yK=1,20])
READ{5,5031{UC(K)+K=1,20)

REALC(5,503{(TO{(K)4K=1,20)
5S0{21)=0.0
Ug(21)=0.0

T0{213)=0.0
K=1
DO 1 KK=2,21

KKI=KK-1
FM=KKI-K*%20.0/M
JF{FM) 1.3,3

W

FM1=1.0-FM
K=K+1
S1{K)=FM*SO(KKI )+FMI1%SO(KK)

UL{K)=FMUO(KKT )+FM1*UO(KK)
T1I(K)=FM:TO(KKI }+FM1*TO(KK)
IF({FM,GT.0.0) GO TQ 5

CCONTINUE
DO 2 J=24M
AY={J=1)*PI1/M

SA=-SIN(AY)/Al
CC=-CCS(AY)
DG 2 K=2.M

S{J,KI=S1{KI*SA
U{JsKI=ULIK}*CO*{-1)
T(J.K)I=T1{K)}*CO

CONTINUE
DO 4 K=2,M
Ul ,K)=-UL{K)*{~-1)

U{M1,K)=Ul1{K)*(~-1)
T(1,K)=-T1(K)
T(M1,K)=T1(K)

50

CCNTINUE
RETURN
FCRMAT (20A4)

END
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c A SUBROUTINE FOR SOLVING U AND T

SUBROUT INE_SUBUT(AsCsFlsF2sFsDE2ERROR s SIGN]

DIMENSIGN A(41,41),C(41,41),F1(41,41),F2{41,41),F(41:4%

* 1},
IDF{41+41).D(41),BP(41),0(41)

COMMCN B,OMEGA,RCZY2,RDZY,DCZ,DZ,DY
COMMON MI,M,M1

SFD=C.0
SF=C.C
pg 1 J=1.M1

IF{J.EQe.1) GO TO 2
IF{J.EQ.M1) GO T30 3
JI=J=1 '

J1l=J+1
DO 4 K=2,M
4 DIK)=F1{J KI*F{JT.KI+F2(J, KIFF{JT1,KI+NF(JyK)

GG 7C 5
DO & K=24M
D{K)=-ROZYR2*F{2.K)+DF(1.K)

(6NN}

GO 10 5
DO 7 K=2,M
D(K)=—RDZY2%F(M,KI+DF(MI,K)

wN W

CONTINUE
8P(2)=C(J,2)/8B
Q(21=D{21/8

DO 8 K=3,MI
KI=K-1
HA=B—-A{J.KI*BPIKT)

BP{K)=C{J,K)/HA
8 QIK)I={C{K)-A(J,K)*Q(KI)I/HA
EN= (DA M)=ALI M) 2C{MI) I/ (B=A(JM)EBPI(MT))

FO=FN-F{J,M)
SFD=SFD+ABS(FD)
SF=SF+ABS(FN)

F{JsM)=F(J,M)+OMEGA*FD
DC 11KK=2,MI
K=M1-KK

FN=Q{K)-BP(K)}*FN
FD=FN-F{J+K)
SED=SFD+ABS(FD)

SF=SF+ABS{FN)
F(J4KI=F(J,KI+OMEGA*FDC
11_CCONTINUE

1 CONTINUE
ERRCR=SFD/SF ~
RETURN

END
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A SUBROUTINE FOR SOLVING V3. AND STREAM FUNCTION
AN IMPROVED {MCDIFIED) ITERATIVE SCHEME

SUBROUTINE SUSVGS(A:C,FI,FZ:GTY,V »S+BS,HBS)

DIMENSION A(41741)yC(41:4l)yFl(41,4l},F2(4114139
IGTY(41,41)yV0(41,41)9S(41,41),85(41).HBS(#I);TVO(41),
28VD(41),TS(41)1HA(413,DVG(QIJyDS(4l),QS(4l),QVO(41)

COMMON B,GMEGA,RDZYZ,RDZY,DDZ:DZ,DY
I v e e
TS(1)=0.0
TS{M1)=0.0
DQ 2 Jy=2.M

JI=g-1
Ji=4+]
mwﬁmwﬁjl&__léw&iziﬂ.ﬁmwmW.Qm,_---.,,,._h--_..____ ~~~~~~~~~~~~~~~~~~~~~~~~ S
16 DS(K)=-RDZY*(S(JI 1K) +S(J1 7KJ)+DDZ*VO(JyK)
QS{2)=psS{2)/8
Do 7 K=3 ' M
7 QS(K)=(DS(K)-QS(K—1))/HBS(K)

TS(M)=QS (M)
e D0 8 KK= ﬂL~,~w-“~w-“~mM~“m~m- -
K=M1-KK

8 TS(K)=QS(K)—BS(K)*TS(K+1)
DO 35 K=o,M
15 S(JyK)=S(J:KJ+DMEGA*(TS{KJ~SlJyK))
BVO(2J=C(J72)/B :
e D03 K=3,M7 S .
HA(K)=B—A(J;K)*BVO(K~I)
BVO(K)=C(J,KJ/HA(K)
DVO(K)=F1(J,K)*VO(J—I,K)+F2(J,K)*VD(J+1,K)+GTY(J,K)
3 CONTINUE
DVO(2)=-2*S(J72)*A(J72)/DDZ
.-._MNJ.iME.l_LJ_a.Zli\LD.(_J:l,,_ZJJ.EZ_LJLZ.)iMDJ.J.:*.L:_2_.LtG~LY__LJ_LZL-___---,.".m-_mwm-w
DVO(M)=—2*S(J’M)*C{J7MI/DDZ
1+ Fl(J,MJ*VO(J—lyM)+F2(J:MJ*VO(J+1,M)*GTY(J,M)
QVD{(2)=DvQ(2) /8

O

-m...,......-_.,.........._..-._-....-....-._—...,._-.....-._—-_-...,.,..“.....-.-

DO 4 k=3,M1
4 QVO(K)=(DVU(K)—A{J,K)*QVO(K-I))/HA(K)
e TVOUM) = (DVG (M)~ —A.i.4.::E.LiQ\LO,mIJJJ_LB:.Aﬁ(Ji_M.)~£§_VA1.M_I-2-) ...............................
DO 5 KK=2,M] :
K=M1-KK
5 TVD(K)=QVO(K)—BVG(K)*TVO{K+1)
DG 2 k=2,M
vc(J,K)=vorJ,K)+CMEGA*(TVD(K)-votJ,K:)
_____________________ ——2_CONT INUE nmm“Nww~w“mhm~wnwmwwm*w_~*m~§~Mwmm_ummnmwummnn
RETURN
END

- m__.._._-...._~._A,,_.,.,.W_-Mwwmmmm---”*%mwww
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A SUBROUTINE FOR FINDING V AND W

SUBROUT INE _SUBVW(VaWsS)

DIMENSION V(41,41),W(41,41),S(41,41)
COMMCON B,OMEGA,RDZY2,RDZY,DDZ,DZ,4DY
COMMCN MT.M,M]

VeW2Y,Z DIR VEL #*2(DZ,DY)
DO 1 K=2,M
W{l,K)==2%S({2,K)

w(Ml,K)‘:Z*S(M,K)
DO 1 J=2,M
V{JKI=S{J,K+1}-S(J,K—-1)

W(J9sK)=S{JI-1,K}=S{J+1,K)
CONTINUE
RETURN

END
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c A SUBROUTINE FOR FINDING FRE ABD NU

SUBROUTINE_FRENLS{UsTsPR:EMUSGT2ALsSM)

DIMENSION U(41,41),T(41,41),GU1(41),GU2(41),6T1(41),
16T2141) 4GT{41),TUA(41+41) UA{41,541) ,5A141,541),
2UMKI41) , TUMK(41),SMK(41),6TY(41,41),6T7(41,41),
3PMUT(41),UP(41),C1L(41),Q2L(41)

COMMON B,OMEGA,RCZY2,RDZY.CDZ,DZ,DY

COMMON MI,M,M1 I

P1I=3.141593

DYA=DY*A1/(3*P1)

B0 1 J=1,M1

GUL(J)={=U(Jy5)/4+4%U(J34)/3-3%U(J,3)+4*U(J,2))/DZL

GTL(JI=(=T{Js5)/4+4%T(J,4)/3-3%T(J,3)+4%T{J,2))/DZ
GU2 (J)={UlJyM=3)/4=4%UlJyM=2) /3+3%U(J,MI)=4*UI,M)I/DZ

CT2()={T(J,M=3)/4~4%TLJyM=2)/3+3%T (I, MI)—4*T(J,M))/DZ

1 CONTINUE

oY22=2*DY

Dz222=2*DZ

O 2 K=24M

DO 2 J=2,M

GTY{JsKI=(T(JI+1,K)-T{J-1,K))/DY22

2 GTZ{JK)={T{J4K+1)-T{J,K-1))/DZ22

DC 3 I=1,M]

GTY{1,1I)=0

GTY(M1,1)=0

GIZ(I,1)=GT1(1)

GTZ(1I,M1)=GT2(1)

GTY(1,1)=0

3 GTY(I,M1)=0
DO 4 K=24M
GTZ(1,K)=(T(1,K+1)-T(1,K-1))/DZ222

4 GTZIM1,K)=(T{MI1,K+1)—-T(M1,K=1)1/DZ222

DC 5 K=lg4M1

FRI=K-1

Z=FKI/M

PMUT (K )=PR&FFMU* (2% 1 %%4/3-4*7%**3 /3+2%L/3)+1

UP(K)=4*{Z—-2%%x2)

D05 _J=1s.M1
UA{JsKI=UP (K} +U(J,K)/2

TUA(JSsKI=(T{JKI=-PMUT(K))*UA(J+K)

S CONTINUE

GULIM=GUL{1)+GUL(M1)+4*GU1l{M)

GTIM=CTL{1)+GTL(ML)+4*GT1l (M)

GI2M=CT2{1)+GT2(M1) +4*GT2(M)

GU2M=CU2({1)+GU2 (M1) +4*GU2 (M)

DO 6 J=3,MI,2

Ji=J-1

GUIM=GUIM+GUL (JI)*4+GUL(J)*2

GU2M=CU2M+GU2(J I} *4+GU2(J) *2

STINM=CGTIM+GT1{JI)*4+GT1(J)*2
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GI2M=GT2M+GT2 (JT)1*4+GT2(.))*2
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GUIM=GU1IM=*DYA
GU2M=CUZM*DYA
CIINM=GTIMEDYA e

GT2M=GT2M*DYA
DO 7 J=1,M1
UMK (I)=UATJ,1 ) +UAL I MT)+&=UA( T, M)

TUMK(J)=TUA(J,1)+TUA{J ML} +4%TUA(J,M)
DC 8 K=3,MI,2

D KI=K=Y e e
UMK{J)I=UMKIJ)Y+UA{J #KI ) *44+UA(J4K)%2

TUMK{ JY=TUNMK(J) +TUA(JsKI) *4+TUA(J4K) *2
CONTINUE

UNMK{J)I=UMK(JI*DZ/3
TUMK{J)=TUMK(J)*CZ/3
CONIINUE

UM=UNMK (1) +UMK (ML) +UMK{M)%s
TUM=TUMK{ 1)+TUMK(M1)+TUMK (M)*4
SM=SMK (1) +SMK(M1)+SMK(M)*4

Dg 6 J=3:Mi,2
JI=J4-1
UM=UMUMK(JI) *4+UMK(J ) *2

TUN=TUM+TUMK(JI}I*4+TUMK(J ) *2

CONTINUE
UM=UM*DYA

TUM=TUM*DYA
SM=C.C
HA=PR*EMU*2/3

Ql=HA+1-GT1IM
Q2=HA-1+GT2M
Q3=UM*PR*FML)

TM1=TLM/UM
TM2=TM1+1
FRE1=ABS{4+GUIM/2) /UM%X:2

FRE2=ABS{—4+GU2M/2) /UM*=*2
FRE3=4/UM**2
DC 10 J=1.M]

QIL{J)=HA+1-GT1(J)}
Q2L (J)=HA-1+GT2{J)
WRITE(£,54)

WRITE(6455}) (QIL{J),J=1,M1)
WRITET6755) (Q2L{J),J=1,M1)
WRITE(6,53)

WRITE(6,51) GULIM,GU2M,GT1M,GT2M
WRITE{6,50)
WRITE(6451) Q15Q25635TM1,TM2

50

WRITE(6,52) B
WRITE(6,51) FREL,FRE2,FRE3,SM,UM
EORMAT{2X, 26HTHESE ARE Q1 ,02,03,TM1,TM2)

51
52
52

FCRMATI{2X,5E15.7)
FORMAT(2X,33KTHESE ARE FRE1,FRE2,FRE3,M.S.5G,UM)

-1:3-3
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54 FORMATI{2X48HTHESE ARFE 10CAt H. T.RATE AT B8OTTIOM AND T0O
* P PLATE) -
55 FORMAT{11E12.4)

RETURN

END

e AT IN
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ADDENDUM

After the thesis was submitted to the eiamininq
committee, the auther received comments from Professor
E.M. Sparrow of the University of Minnesota regarding
Chapters V and VI. He suaggested that detailed experimental
details such as the installation and arrangement of thermo-
couples,measurements of velocity and temperature, and axial
wall temperature variation data shou]d’be reported for
possible future reference. In additionf he pointed out that
for the finite amplitude convection in plane Poiseuille flow
discussed in Chapter VI, the maximum velocity U0 in the un-
perturbed flow is no longer a—physica1 quantity known a
priori and consequently a correlation between the makimum
axial velocity U0 in the unperturbed-state‘and the mean axial
velocity U must be provided in order to utilize the flow and
heat transfer results presented in Chapter VI. This addendum
was prepared in order to accommodaté Professor Sparrow's
valuable squestions which materially contributed to the
completeness of the thesis.
1. The locations of the embedded thermocouples are shown in
Fig.Al(a) and the installation of a thermocouple is illus-
trated in Fig.A1(b). After drilling a hole with 1/16 inch
diameter, a thermocouple was embedded using electrical in-
sulator and a thermocouple wire was led in the transverse
direction outside the channel plate in order to avoid un-

desirable temperature gradient along the wire.
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2. The surface temperature of the flat plate was measured by
using iron-constantan thermecouples with a'diameter of 0.01
_inch. These thermocouples were connected tb a Speedomax G,
Model S,60000 Series temperature recorder (Leeds & Northrup
Company). Two typical data for the axial variation of wall
temperature for the cases of negative M and |M] >@ are shown
in Fig.A2(a) and (b), respectively. In the experimental
study, the axial temperature gradient was determined by
taking the mean value for the axial temperature gradients at
the lower and upper plates. The axial temperature gradient
at the lower plate was based on the temperature difference
and distance between the thermocouples Nos. 3 gnd 15. Simi-
larly for the axial temperature gradient at the upper plate,
the temperature indicated by the thermocouples Nos. 4 and 16
were used. It is noted that the linear variation of the
axial wall temperature is very satisfactory for both upper
and Tower plates. Regarding the uniformity of the temperature
distributions in the transverse direction, it is noted that
the vafiation of the temperature at 4 inches from the axial
center line (see Fig.Al1(a)) was generally found to be less
than 0.5°F as compared with the wall temperature at the
center of the plate.

3. Temperature and velocity measurements were made by using
two-dimensional traversing mechanism for a thermocoup1e and

a hot-wire probe under smoke-free conditions.The traversing
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direction of this device was adjusted carefully to be para-
11el to the edge of the lower plate of the channel. Dis-
tance between the location of measurement and the exit edge
of the channel was also carefully checked. A block with a
known hejght was used at several transverse locations ofvthe
‘test section to establish the reference height and adjust
the final leveling of the traversing device. Th's adjust-
ment was repeated before each series of tests. The tempera-
ture measurement was made by using a Leeds & Northrup 7555
type K-5 potentiometer which is 6apab1e o% detegting a volt-
age variation up to 0.1 microvolt which corresponds to a
temperature difference of about 0.003 °F. The velocity mea-
surement was done by using a Flow Corporation hot-wire
anemometer probe W3 and a constant teﬁperaﬁure anemometer
Model 900-A. The hot-wire was not calibrated and a linear
relationship between voltage and velocity was used. As can
be seen in Figs.5.3 and 5.4, the velocity ratio which re-
presents the voltage ratio shows reasonably good agreement
with theoretical curve. This observation confirms the appli-
cability ofithe Tinear relationship between voltage and velo-
city for the range of velocities investigated. |

4. The definition of the Reynolds number Re=U0h/(29) in
Chapter VI is based on the maximum velocity U0 for the un-
perturbed flow. The Reynolds number Re also appears in the

expression for the characteristic parameter M =Re T h/AT.
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For the practical utilization of the flow and heat transfer
results presented in Chapter VI, it is required to determine
U0 from the average axial velocity U. Fig.A3 shows the ratio
3U/(2UO) versus iRai for the cases of M =0 and M=finite.

By using this figure, the parameteru used in Figs.6.13 and
6.16 can be transformed into a new parameter 4=Re Th/ aT
where Re=Uh/(2»). Similarly, Fig.A4 shows the ratio 30U/ (2U;)
versus the parameter PrReRap for the case with |mj=~o. By
using Fig.A4, the pa}ameter PrReRaq used in Figs.6.14 and
6.17 can be transformed into a parameter where Re is based
on the mean axial velocity. It is well to note that the
problems treated in Chapters III and VI are basically simi-
lar except the geometrical shape. In Chapter III, the para-

meter PrRaC is finally transformed into PrReRa where Re is

based on the mean axial velocity.
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