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Abstract 

Cybersecurity is becoming increasingly critical as the world continues to advance in 

technology. As a result, cybercriminals are finding new and sophisticated ways to launch 

cyber attacks on organizations, which can have severe consequences. In recent years, 

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have shown 

enormous potential in detecting cyber attacks, making them a vital aspect of cybersecurity.  

Artificial Intelligence (AI) is a branch of computer science that deals with the development 

of intelligent machines that can mimic human behavior. Machine Learning (ML) is a subset 

of AI that focuses on creating algorithms that enable machines to learn from data and make 

predictions without being explicitly programmed. Deep Learning (DL) is another subset of 

AI that uses artificial neural networks (ANN) to learn and analyze data. 

AI, ML, and DL are useful in detecting cyber attacks because they can analyze vast 

amounts of data and identify patterns and anomalies that are difficult for humans to detect. 

Cyber attackers use different techniques to carry out cyber attacks, such as malware, 

phishing, brute force attacks, and SQL injection. AI, ML, and DL can be used to detect and 

prevent these attacks by analyzing various data sources, such as network traffic, system 

logs, and user behavior. 

One of the most significant applications of AI, ML, and DL in cybersecurity is in anomaly 

detection. Anomaly detection is the process of identifying unusual patterns or behaviors 

that deviate from the norm. Cyber attackers often use new and sophisticated techniques 

that traditional cybersecurity systems may not detect. AI, ML, and DL can be trained to 

recognize patterns and behaviors that are outside the norm and flag them as potential 
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threats. For example, AI-based intrusion detection systems (IDS) can learn normal network 

traffic behavior and identify any anomalous traffic patterns. 

Another application of AI, ML, and DL in cybersecurity is in threat intelligence. Threat 

intelligence involves gathering, analyzing, and sharing information about potential cyber 

threats. AI, ML, and DL can be used to collect and analyze data from various sources, such 

as social media, dark web forums, and malware repositories, to identify potential threats. 

Machine learning algorithms can also learn from historical data to identify common 

patterns and indicators of past attacks and use that knowledge to prevent future attacks. 

Cyber attackers often use social engineering techniques, such as phishing, to trick users 

into revealing sensitive information or downloading malware. AI, ML, and DL can be used 

to detect phishing attempts by analyzing email content, links, and sender information. 

Machine learning algorithms can also learn from past phishing attempts to identify 

common patterns and indicators of phishing attacks and use that knowledge to prevent 

future attacks. 

Deep Learning can be used in cybersecurity to develop predictive models that can identify 

attacks before they happen. This is achieved by using Artificial Neural Networks to analyze 

large datasets to identify patterns and relationships between different data points. Deep 

learning models can be trained on large amounts of data, and can then predict future attacks 

based on this information. For example, deep learning models can be trained to analyze 

network traffic patterns and detect malicious activity, such as DDoS attacks, before they 

occur. 

AI, ML, and DL can also be used in endpoint security to detect and prevent malware 

attacks. Endpoint security involves protecting individual devices, such as laptops, 
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smartphones, and tablets, from cyber attacks. Machine learning algorithms can be trained 

to recognize malware signatures and behaviors and flag them as potential threats. AI-based 

endpoint security solutions can also use behavioral analysis to detect unusual activities, 

such as unauthorized access attempts, and prevent them from causing damage. 

Therefore, AI, Machine Learning and Deep Learning have tremendous potential in 

detecting cyber attacks. These technologies can analyze vast amounts of data and identify 

patterns and anomalies that are difficult for normal human being to detect. This thesis aims 

to explore the applicability of AI, Machine Learning, and Deep Learning in the detection 

of cyber attacks. In this thesis, we have explored different deep learning models like 

shallow neural network, deep neural network, convolutional neural network and attention 

models. 
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Chapter 1 

Introduction to Cyber Attack 

1.1 Introduction 

In the digital age, where most of our information and assets are stored on the internet, 

cybersecurity has become a critical concern. Cyber-attacks are an ever-present threat 

that has the potential to cause significant damage to individuals, organizations, and 

governments. The contemporary world is reliant on technology for various aspects of 

our daily lives, including communication, entertainment, healthcare, education, and 

finance. Cyber-attacks pose a threat to these aspects and have implications for 

individuals, businesses, and governments. In this report, we will explore the 

implications of cyber-attacks on the contemporary world and the measures that can 

be taken to mitigate these risks. Cyber-attacks can have severe implications for 

individuals, businesses, and governments. Some of the implications of cyber-attacks 

are discussed below: 

1. Financial Losses: Cyber-attacks can result in financial losses for 

individuals and businesses. For instance, in 2020, the average cost of a data 

breach was $3.86 million. Cyber-attacks can result in the loss of revenue, 

damage to reputation, and legal penalties. Businesses that suffer a cyber-

attack may also face the costs of repairing the damage caused by the attack, 

including the cost of upgrading their cybersecurity systems. 

2. Loss of Intellectual Property: Intellectual property is a valuable asset for 

businesses, and cyber-attacks can result in the loss of this asset. Intellectual 

property theft can result in the loss of trade secrets, patents, and copyrights, 

which can be used to gain an unfair competitive advantage. Intellectual 

property theft can also damage a company's reputation and result in legal 

penalties. 

3. Damage to Reputation: Cyber-attacks can damage an individual's or a 

company's reputation. In the event of a data breach, personal information, 
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such as social security numbers, credit card information, and email 

addresses, can be exposed. This information can be used for identity theft, 

fraud, or other criminal activities. A data breach can result in a loss of trust 

from customers, shareholders, and the public, which can damage the 

reputation of the business. 

4. National Security: Cyber-attacks can have severe implications for national 

security. Government agencies and critical infrastructure, such as power 

grids, transportation networks, and water systems, are vulnerable to cyber-

attacks. These attacks can cause significant disruptions to critical services 

and result in widespread chaos. Cyber-attacks can also be used to steal 

sensitive information from government agencies, which can be used to gain 

an advantage in international relations. 

5. Cyberwarfare: Cyber-attacks can also be used as a weapon of war. 

Cyberwarfare is the use of cyber-attacks to disrupt the enemy's military 

capabilities, economy, or political stability. Cyberwarfare can result in 

significant damage to critical infrastructure, such as power grids and water 

systems. The use of cyber-attacks in warfare is an ever-present threat that 

can result in significant damage to national security and stability. 

6. Public Safety: Cyber-attacks can also have implications for public safety. 

Critical infrastructure, such as power grids and transportation networks, are 

vulnerable to cyber-attacks, which can result in accidents and injuries. 

Cyber-attacks can also be used to target hospitals and medical facilities, 

which can result in a loss of life. 

The implications of cyber-attacks highlight the need for effective cybersecurity 

measures. Mitigating cybersecurity risks requires a multi-faceted approach that 

involves both individuals and organizations.  Individuals and organizations should be 

aware of the risks of cyber-attacks and should be trained on how to identify and 

prevent them. In this thesis, we address the problem of mitigating the cyber attacks 

risk by utilization of Machine Learning and Deep learning techniques. In the next 

section, we have done detailed analysis of different cyber attacks while role of 

Machine learning and deep learning has been explored in the subsequent section 
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1.2 Different Cyber Attacks 

Cyber attacks are a growing threat in the modern world, as more and more activities 

move online. There are many different types of cyber attacks that can be launched 

against computer networks, each with their own unique characteristics and methods 

of execution. Some of the most common types of cyber attacks include: 

1. Phishing [1]: This type of attack involves tricking individuals into providing 

sensitive information, such as login credentials or financial information, by 

disguising the attacker as a trustworthy entity. Phishing can be done through 

email, social media, or even phone calls. 

2. Ransomware [2]: This type of attack involves encrypting the victim's files 

and demanding a ransom payment in exchange for the decryption key. 

Ransomware can be delivered through phishing emails, malicious websites, or 

infected software downloads. 

3. Distributed Denial of Service (DDoS) [3] [4]: This type of attack involves 

overwhelming a website or network with traffic from multiple sources, 

making it unavailable to legitimate users. DDoS attacks can be launched using 

a network of infected devices, known as a botnet, or by renting the services of 

a DDoS-for-hire service. 

4. Advanced Persistent Threats (APT) [5]: This type of attack involves a 

prolonged and targeted intrusion into a network, often with the goal of stealing 

sensitive information or disrupting operations. APTs can be launched by 

nation-states, criminal organizations, or other groups with significant 

resources. 

5. Malware [6]: Malware is a type of software that is designed to cause harm to 

computer systems. This includes viruses, worms, Trojan horses, and other 

malicious software that can be used to steal data, disrupt operations, or gain 

unauthorized access to a network. 

6. SQL injection [7]: This type of attack involves injecting malicious code into 

a website's SQL database, allowing the attacker to gain unauthorized access 

or steal sensitive information. 
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7. Man-in-the-Middle (MitM) [8]: This type of attack involves intercepting 

communication between two parties, allowing the attacker to steal information 

or alter the communication without the parties being aware. 

 

 

Figure 1- Different types of cyber attacks and their implications [9] 
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Fig1.1 shows the various cyber attacks and their analogy along with their implication 

and relation ship w.r.t various layers. Overall, Cyber attacks are a serious threat that 

can cause financial losses, damage to reputation and can steal sensitive information. 

It is important for organizations to implement security measures to protect against 

these threats and to train employees on how to recognize and avoid them. In this 

regard, we have selected the usage of Machine Learning and Deep learning tools to 

classify the various cyber attacks which is explained briefly in next section. 

1.2.1 OSI Model and Cyber Attacks 

The Open Systems Interconnection (OSI) model is a framework that defines how 

network protocols communicate with each other. It is composed of seven layers that 

each have a specific purpose and function. Cyber attacks are an ever-increasing threat 

to organizations and individuals alike. Understanding the relation between the OSI 

model layers and cyber attacks can help organizations better protect their networks 

and prevent cyber attacks. 

1. Layer 1: Physical Layer 

The physical layer is the first layer of the OSI model, and it deals with the 

physical aspects of network communication, such as cables, network 

interface cards (NICs), and other hardware. Attacks at this layer can 

include physical theft of equipment or cable tapping to intercept network 

traffic. Additionally, attackers can use electromagnetic radiation to capture 

signals and data transmission. Physical layer attacks are often difficult to 

detect and prevent, as they occur outside of the network's logical realm. 

2. Layer 2: Data Link Layer 

The data link layer is responsible for the transfer of data between devices 

on the same network. It is divided into two sub-layers: the Media Access 

Control (MAC) layer and the Logical Link Control (LLC) layer. Attacks 

at this layer can include MAC address spoofing, in which an attacker alters 

the MAC address of a device to bypass security measures or impersonate 

another device. Additionally, attackers can use techniques such as ARP 

spoofing to intercept and manipulate network traffic. 
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3. Layer 3: Network LayerThe network layer is responsible for the routing 

of data between networks. It uses logical addresses, such as IP addresses, 

to identify devices on a network. Attacks at this layer can include IP 

spoofing, in which an attacker sends packets with a forged IP address to 

bypass security measures or impersonate another device. Additionally, 

attackers can use techniques such as denial-of-service (DoS) attacks to 

overwhelm network resources and disrupt network traffic. 

4. Layer 4: Transport Layer 

The transport layer is responsible for end-to-end communication between 

devices on a network. It provides mechanisms such as flow control and 

error correction to ensure reliable data transfer. Attacks at this layer can 

include TCP/IP hijacking, in which an attacker intercepts and manipulates 

TCP packets to hijack a connection or manipulate the data being 

transferred. Additionally, attackers can use techniques such as SYN 

flooding to overwhelm network resources and disrupt network traffic. 

5. Layer 5: Session Layer 

The session layer is responsible for establishing and maintaining 

communication between devices on a network. It provides mechanisms 

such as authentication and encryption to secure network communication. 

Attacks at this layer can include session hijacking, in which an attacker 

takes control of a session and impersonates the legitimate user to gain 

access to sensitive information or resources. Additionally, attackers can 

use techniques such as man-in-the-middle (MitM) attacks to intercept and 

manipulate network traffic. 

6. Layer 6: Presentation Layer 

The presentation layer is responsible for the presentation of data to 

applications. It provides mechanisms such as data compression and 

encryption to ensure efficient and secure data transfer. Attacks at this layer 

can include format string attacks, in which an attacker exploits 

vulnerabilities in the way data is formatted to gain access to sensitive 

information or resources. Additionally, attackers can use techniques such 
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as buffer overflow attacks to overwrite memory and execute malicious 

code. 

 

7. Layer 7: Application Layer 

The application layer is responsible for providing applications with access 

to network services. It provides mechanisms such as authentication and 

encryption to secure network communication. Attacks at this layer can 

include cross-site scripting (XSS) attacks, in which an attacker injects 

malicious code into a web application to steal sensitive information or gain 

unauthorized access. Additionally, attackers can use techniques such as 

SQL injection attacks to exploit vulnerabilities in web applications and 

gain unauthorized access to databases. 

 

This is the background. The OSI (Open Systems Interconnection) model is a 

conceptual framework that describes how data is transmitted over a network. It 

consists of seven layers, each with a specific set of functions. Cyber attacks can target 

any of these layers in order to gain unauthorized access to a network or disrupt its 

operations. 

1.3 Role of Machine learning and deep learning in 

preventing Cyber attacks 

Artificial intelligence (AI) and machine learning (ML) have revolutionized the world 

of technology, and they have found applications in various fields, including 

cybersecurity. Cybersecurity is an ever-evolving field, with hackers’ constantly 

developing new tactics to circumvent existing security measures. Traditional 

approaches to cybersecurity rely on reactive measures such as firewalls, intrusion 

detection systems, and antivirus software. However, these measures are no longer 

sufficient to protect against the sophisticated cyber attacks of today. Machine learning 

and deep learning have the potential to detect and prevent cyber attacks more 

effectively by analyzing large volumes of data and identifying patterns that humans 

cannot. As cyber attacks can be broadly classified into three categories: denial-of-
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service (DoS) attacks, data breaches, and ransomware attacks. Denial-of-service 

attacks involve overwhelming a server or network with traffic so that legitimate users 

are unable to access it. Data breaches involve stealing sensitive data, such as credit 

card numbers or personal information, from a company or individual. Ransomware 

attacks involve encrypting the victim's data and demanding payment in exchange for 

the decryption key. 

1.3.1 Traditional Approaches to Cybersecurity 

Traditional approaches to cybersecurity involve reactive measures such as firewalls, 

intrusion detection systems, and antivirus software. Firewalls monitor incoming and 

outgoing traffic and block traffic that does not meet specific criteria. Intrusion 

detection systems monitor network traffic for signs of unauthorized access and alert 

administrators when an intrusion is detected. Antivirus software scans files and 

programs for known malware signatures and blocks or removes them. 

1.3.2 Limitations of Traditional Approaches 

Traditional approaches to cybersecurity have several limitations. First, they rely on 

known signatures of malware or suspicious network traffic patterns. Attackers can 

easily bypass these measures by using new and unknown attack methods. Second, 

these measures generate a large number of false positives, which can overwhelm 

security personnel and lead to legitimate traffic being blocked. Finally, these measures 

are reactive and cannot detect new and emerging threats until they have been 

identified and added to a signature database. 

1.4 The Role of AI, Machine Learning, and Deep 

Learning in Cybersecurity 

AI, machine learning, and deep learning have the potential to revolutionize the field 

of cybersecurity by addressing the limitations of traditional approaches. These 

technologies can analyze large volumes of data and identify patterns that humans 

cannot. They can also adapt to new and unknown threats and reduce false positives. 

Finally, they can detect new and emerging threats in real-time. 

1.4.1 AI in Cybersecurity 
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AI is a broad field that encompasses various technologies, including machine 

learning, deep learning, natural language processing (NLP), and computer vision. AI 

can be used in cybersecurity to automate threat detection and response, improve 

incident response times, and reduce false positives. 

AI can be used to analyze network traffic and identify patterns of behavior that are 

indicative of a cyber attack. This can be done by training AI algorithms on historical 

data and using them to detect anomalies in real-time. For example, an AI algorithm 

can be trained to identify the typical behavior of a user or device on a network and 

alert security personnel when that behavior deviates from the norm. AI can also be 

used to automate incident response by analyzing data from various sources and 

triggering automated responses when certain criteria are met. 

1.4.2 Machine Learning & Deep Learning in Cybersecurity 

Machine learning has become an essential component of cybersecurity because it 

helps detect, prevent, and respond to cyber threats. Here are some ways in which 

machine learning is used in cybersecurity: 

1. Malware Detection: Machine learning algorithms can learn from previous 

data to identify new malware threats. By analyzing patterns and features of 

malware code, machine learning models can detect and classify malware with 

high accuracy. 

2. Anomaly Detection: Machine learning can be used to detect abnormal 

behavior that could indicate an ongoing cyber-attack. For example, it can 

identify unusual network traffic or user behavior and flag them for further 

investigation. 

3. Intrusion Detection and Prevention: Machine learning can help in 

identifying and preventing unauthorized access to a network or system. It can 

analyze patterns of behavior and identify potential threats before they cause 

any damage. 

4. Fraud Detection: Machine learning can be used to detect fraudulent activity 

in online transactions, such as credit card fraud, by analyzing user behavior 

and identifying patterns that are indicative of fraudulent behavior. 
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5. Predictive Security: Machine learning can predict potential cyber threats and 

help organizations take preventive measures to avoid attacks. By analyzing 

historical data and identifying patterns, machine learning can predict future 

attacks with a high level of accuracy. 

6. Phishing Detection: Deep Learning can be used to detect and prevent 

phishing attacks by analyzing email content, URLs, and other factors. 

Machine learning models can be trained on large datasets of phishing emails 

to detect and prevent phishing attempts in real-time. 

7. Password Cracking: Deep Learning can be used to crack passwords by 

analyzing patterns in passwords and using machine learning algorithms to 

guess the password. However, this application of Deep Learning is often used 

for ethical hacking and testing, and not for malicious purpose 

Overall, AI, ML and Deep learning techniques have proven to be an effective tool for 

improving cybersecurity by automating threat detection and response, reducing the 

risk of cyber-attacks, and improving the overall security posture of organizations. 

1.5 Organization of the thesis 

The work is entitled, "Cyber Attacks Detection and Mitigation using Machine 

Learning and Deep Learning Models” and is organized as follows 

1. In Chapter 1, we provide the motivation and justification for pursuing the 

cyber attack analysis and detection problem.  

2. In Chapter 2, we exhaustively analyze literature connected with cyber attacks. 

3. In Chapter 3, we have done analysis on various databases connected with the 

problem of cyber attacks. 

4. In Chapter 4, we represent the the proposed framework  w.r.t various machine 

learning models. 

5. Finally in Chapter 5, we provide the results and conclusion. 
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Chapter 2 

Literature Review 
 

2.1 Introduction: 

As our reliance on technology increases, so does the risk of cyber attacks. Detecting 

and preventing such attacks is essential for the security of individuals, organizations, 

and governments. Machine learning (ML) and deep learning (DL) techniques have 

shown promising results in detecting cyber attacks. In this literature review, we will 

discuss the various ML and DL techniques that have been used for cyber attack 

detection. Machine learning techniques can be broadly classified into 1. Supervised 

learning which requires input and desired output labelled samples and 2. 

Unsupervised learning which does not requires the output labelled dataset to arrive at 

conclusion. 

2.2 Unsupervised Learning 

Unsupervised learning is a machine learning technique where the algorithm is trained 

on unlabelled data, without any specific target variable or output. The aim is to find 

patterns, structure or relationships within the data set. Unlike supervised learning, 

there is no human intervention or guidance in the learning process, and the algorithm 

must find meaningful patterns on its own. Clustering and dimensionality reduction are 

common applications of unsupervised learning. This technique is widely used in areas 

such as anomaly detection, market segmentation, image recognition, and natural 

language processing. The exploitation of clustering techniques has been illustrated in 

next section. 

2.2.1 Clustering techniques 

Clustering techniques have been widely used in cybersecurity for the detection of 

cyber attacks. Cyber attacks have been increasing in complexity, scale, and diversity 

in recent years, making traditional security measures inadequate. Clustering 
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techniques have emerged as a promising solution to this problem, allowing for the 

detection of anomalies in large volumes of data. This literature review aims to explore 

the implementation results of clustering techniques in detecting cyber attacks. Several 

studies have been conducted on the implementation of clustering techniques for 

detecting cyber attacks. In a study conducted by Alazab et al. (2012) [10], the authors 

proposed a hybrid clustering technique for the detection of DDoS attacks. The 

proposed technique combined the K-means clustering algorithm with the particle 

swarm optimization algorithm. The authors reported a high detection rate and a low 

false-positive rate using this technique. 

In another study by Khan et al. (2016) [11], the authors proposed a hierarchical 

clustering technique for the detection of insider threats. The proposed technique used 

a combination of K-means and agglomerative hierarchical clustering algorithms. The 

authors reported a high accuracy rate of 99.7% and a low false-positive rate of 0.3% 

using this technique. 

Similarly, in a study conducted by Gomathi and Ramalingam (2017) [12], the authors 

proposed a clustering technique for the detection of unknown cyber attacks. The 

proposed technique used the fuzzy C-means clustering algorithm for grouping similar 

network traffic. The authors reported a high detection rate of 98.7% and a low false-

positive rate of 1.3% using this technique. 

In a more recent study by Asghar et al. (2021) [13], the authors proposed a clustering 

technique for the detection of ransomware attacks. The proposed technique used the 

K-means clustering algorithm to group similar system events. The authors reported a 

high detection rate of 97.2% and a low false-positive rate of 2.8% using this technique. 

Clustering techniques have emerged as a promising solution for the detection of cyber 

attacks. The above studies demonstrate that clustering techniques have been 

successful in detecting various types of cyber attacks with high accuracy rates and 

low false-positive rates. However, further research is required to evaluate the 

effectiveness of clustering techniques in detecting more sophisticated and complex 

cyber attacks. 
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2.3 Supervised Learning 

Supervised learning is a type of machine learning algorithm in which a model learns 

from labeled data to make predictions or classifications on new data. The labeled data 

is a set of examples where the correct answers are already known. During training, 

the algorithm adjusts its parameters to minimize the difference between its predicted 

output and the actual output, gradually improving its accuracy. Supervised learning is 

commonly used for tasks such as image recognition, speech recognition, natural 

language processing, and predictive modeling. Some popular supervised learning 

algorithms include linear regression, logistic regression, decision trees, and neural 

networks. 

2.3.1 Support Vector Machines (SVM):  

SVM is a widely used ML algorithm for classification tasks, including cyber attack 

detection. SVM works by finding the best hyperplane that separates the data into 

different classes. The algorithm can be trained on datasets of normal and malicious 

traffic to improve its accuracy. SVM-based IDS, malware detection, phishing 

detection, and botnet detection are some of the most common applications of SVM in 

the detection of cyber attacks. However, SVM is not without its limitations, and its 

accuracy can be affected by factors such as the size and quality of the dataset used for 

training. 

In a study by Ali and Arshad (2019) [14] used SVMs to detect intrusion attacks. They 

used a dataset called the KDD Cup 99 dataset and achieved an accuracy of 99.9%. 

They also compared the performance of SVMs with other machine learning 

algorithms, including k-nearest neighbors and decision trees, and found that SVMs 

outperformed the other algorithms in terms of accuracy. 

Another study by Khraisat et al. (2021) [15] , they used SVMs to detect cyber attacks 

on the internet of things (IoT) network. They compared the performance of SVMs 

with other machine learning algorithms, including decision trees and random forests, 
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and found that SVMs outperformed the other algorithms in terms of accuracy and 

efficiency. 

In a study by Sharma and Mishra (2019) [16], they proposed a novel approach using 

SVMs for the detection of denial of service (DoS) attacks. They compared the 

performance of four different kernel functions (linear, polynomial, radial basis 

function, and sigmoid) and found that the radial basis function kernel performed the 

best with an accuracy of 98.5%. 

In another study by Sun et al. (2020), [16] they proposed a deep SVM model for 

detecting web attacks. Their model consisted of a deep learning component and an 

SVM component. They achieved an accuracy of 98.6% and showed that their model 

outperformed other machine learning algorithms in terms of both accuracy and 

efficiency. 

In conclusion, SVMs have shown promising results in the detection of cyber attacks. 

Various studies have demonstrated the effectiveness of SVMs in detecting different 

types of cyber attacks, including DoS attacks, intrusion attacks, web attacks, and 

attacks on IoT networks. SVMs have also been shown to outperform other machine 

learning algorithms in terms of accuracy and efficiency. 

2.3.2 Random Forests (RF): 

Random forest is a machine learning algorithm that builds multiple decision trees and 

combines them to make a final prediction. Each tree is built using a random subset of 

the features and a random subset of the training data. The final prediction is made by 

aggregating the predictions of all the trees. Random forest has several advantages over 

other machine learning algorithms, such as high accuracy, scalability, and resistance 

to overfitting. Random forest has been used for the detection of various types of cyber 

attacks, such as network intrusion detection, malware detection, phishing detection, 

and botnet detection including DoS attacks including port scans. In network intrusion 

detection, random forest has been used to classify network traffic as either normal or 

malicious. In malware detection, random forest has been used to classify files as either 
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malicious or benign. In phishing detection, random forest has been used to classify 

emails as either legitimate or phishing. In botnet detection, random forest has been 

used to classify network traffic as either normal or botnet. RF has been shown to have 

high accuracy in detecting attacks with low false positives. Several studies have 

shown the effectiveness of random forest for cyber attack detection. In a study 

conducted by Liu et al. (2021) [18] , the authors used Random Forest algorithm to 

classify the network traffic data and identify anomalies. The results of the study 

showed that the Random Forest algorithm outperformed other machine learning 

algorithms in terms of accuracy, precision, and recall. Another study by Zaman et al. 

(2019) [19] used Random Forest algorithm to detect the intrusion attempts in wireless 

sensor networks. The authors reported that the Random Forest algorithm achieved an 

accuracy of 98.97%, which was higher than other machine learning algorithms used 

in the study. In a study conducted by Zhang et al. (2019)[20], the authors used 

Random Forest algorithm to detect DDoS attacks in a cloud environment. The results 

showed that the Random Forest algorithm achieved a detection rate of 99.13% and a 

false positive rate of 0.12%, which was better than other machine learning algorithms 

used in the study. A study by Sun et al. (2020) [21] used Random Forest algorithm to 

detect malware attacks in Android devices. The results showed that the Random 

Forest algorithm achieved an accuracy of 99.99%, which was higher than other 

machine learning algorithms used in the study. In a study conducted by Abadeh et al. 

(2019) [22], the authors used Random Forest algorithm to detect malicious traffic in 

IoT networks. The results showed that the Random Forest algorithm achieved a 

detection rate of 99.4%, which was higher than other machine learning algorithms 

used in the study. 

2.3.3 Naïve Bayes (NB): 

Naive Bayes is a probabilistic classification algorithm that is widely used in text 

classification and spam filtering. It can also be applied to detect cyber attacks with 

high accuracy. In this literature review, we will examine the implementation results 

of Naive Bayes technique in detecting cyber attacks. Several studies have been 

conducted on the implementation of Naive Bayes technique in detecting cyber attacks. 
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In a study by Ahmadi and Khosravi (2021) [23], the authors proposed a hybrid model 

for detecting network attacks using Naive Bayes and K-nearest neighbor algorithms. 

The results showed that the proposed model outperformed other state-of-the-art 

models in terms of accuracy, precision, and recall. In a study by Liu et al. (2020) [24], 

the authors proposed a deep learning-based approach for detecting DDoS attacks 

using Naive Bayes as the classification algorithm. The results showed that the 

proposed approach achieved an accuracy of 99.14% and outperformed other state-of-

the-art approaches. In a study by Kumar et al. (2019) [25], the authors proposed a 

multi-class classification model for detecting cyber attacks using Naive Bayes, SVM, 

and Random Forest algorithms. The results showed that Naive Bayes achieved the 

highest accuracy of 98.56% compared to SVM and Random Forest. In a study by 

Alizadeh and Rahmani (2019) [26], the authors proposed a hybrid model for detecting 

cyber attacks using Naive Bayes and Artificial Bee Colony (ABC) algorithm. The 

results showed that the proposed model achieved an accuracy of 98.75% and 

outperformed other state-of-the-art models. In a study by Mubarak and Alotaibi 

(2018) [27], the authors proposed a hybrid model for detecting cyber attacks using 

Naive Bayes and Decision Tree algorithms. The results showed that the proposed 

model achieved an accuracy of 98.74% and outperformed other state-of-the-art 

models. The implementation of Naive Bayes technique in detecting cyber attacks has 

shown promising results in achieving high accuracy, precision, and recall. The studies 

reviewed above demonstrate the effectiveness of Naive Bayes algorithm in detecting 

various types of cyber attacks. However, further research is needed to explore the 

application of Naive Bayes in detecting novel and sophisticated cyber attacks. 

2.3.4 Deep Learning (DL) 

Deep learning techniques have shown promising results in identifying and classifying 

various cyber attacks. In this literature review, we will explore the different deep 

learning techniques used in cyber attack detection and their implementation results. 

Deep learning techniques are a subset of machine learning that use artificial neural 

networks to analyze complex data structures. These techniques can learn and adapt to 
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new patterns and data, making them suitable for cyber attack detection. Deep learning 

(DL) is a subfield of machine learning that involves the use of artificial neural 

networks to solve complex problems. A typical pipeline of deep learning techniques 

involves a series of steps that transform raw data into useful insights or predictions. 

This pipeline can be broadly classified into five stages: data preprocessing, model 

architecture, model training, model evaluation, and deployment. The following deep 

learning techniques have been explored w.r.t literature review in cyber attack 

detection: 

1. Convolutional Neural Networks (CNNs): CNNs are commonly used in 

image and video recognition but can also be applied to detect patterns in 

network traffic data. They can identify spatial and temporal features in 

network traffic data, making them useful in detecting various types of cyber 

attacks such as DDoS attacks, port scans, and malware. 

2. Recurrent Neural Networks (RNNs): RNNs are used to analyze time-series 

data, such as network traffic data, to detect patterns and anomalies. They are 

useful in detecting attacks that occur over a period of time, such as brute force 

attacks, password attacks, and SQL injection attacks. 

3. Deep Belief Networks (DBNs): DBNs are used to detect anomalies in 

network traffic data by analyzing the probability distribution of the data. They 

are useful in detecting zero-day attacks, where attackers use new and unknown 

methods to exploit vulnerabilities. 

4. Autoencoders:  Autoencoders are used to detect anomalies in network 

traffic data by reconstructing the input data and comparing it to the original 

data. They can identify patterns that are not visible in the input data, making 

them useful in detecting new and unknown attacks. 

Deep learning techniques have shown promising results in detecting various types of 

cyber attacks. CNNs, RNNs, DBNs, and autoencoders have been used in different 

studies and have shown high accuracy in detecting attacks. These techniques can be 

used to complement traditional cybersecurity measures and enhance the overall 



18 
 

security of organizations and individuals. However, more research is needed to 

improve the scalability and efficiency of these techniques in real-world scenarios. 

a) Convolutional neural network (CNN)  

Convolutional neural network (CNN) is a deep learning technique that has shown 

great potential in the detection of cyber attacks. This literature review discusses the 

implementation results of CNN in the detection of cyber attacks. A study by Moustafa 

and Slay (2018) [33] proposed a CNN-based intrusion detection system that achieved 

a detection accuracy of 99.2%. The system was trained and tested on the NSL-KDD 

dataset, which is a widely used benchmark dataset for intrusion detection research. 

The CNN architecture used in the study had four convolutional layers followed by 

two fully connected layers. The study showed that CNNs are effective in detecting 

different types of cyber attacks with high accuracy. Another study by Ali et al. (2019) 

[34] used a CNN to detect malware attacks. The study used the Malimg dataset [35], 

which contains 10,000 grayscale images of malware and benign software. The 

proposed CNN architecture had four convolutional layers, two max-pooling layers, 

and two fully connected layers. The study achieved an accuracy of 98.3% in detecting 

malware attacks, indicating the potential of CNNs in the detection of malware. A 

study by Zhang et al. (2019)[36]  proposed a CNN-based intrusion detection system 

for Industrial Control Systems (ICS). The study used a dataset containing network 

traffic data from an ICS testbed. The proposed CNN architecture had five 

convolutional layers and two fully connected layers. The study achieved a detection 

accuracy of 99.1% and demonstrated the potential of CNNs in detecting cyber attacks 

in ICS environments. A study by Li et al. (2020) [37] proposed a CNN-based approach 

for detecting DDoS attacks in cloud computing environments. The study used a 

dataset containing network traffic data from a cloud environment. The proposed CNN 

architecture had four convolutional layers and two fully connected layers. The study 

achieved an accuracy of 99.2% in detecting DDoS attacks, demonstrating the potential 

of CNNs in detecting cyber attacks in cloud environments. 

b) Recurrent Neural Networks (RNNs) 
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Recurrent Neural Networks (RNNs) have shown promising results in detecting cyber 

attacks. This literature review aims to explore the implementation of RNNs in 

detecting cyber attacks and highlight the relevant research works. In a study by Chen 

et al. (2021) [28], they proposed a hybrid deep learning model that combines Long 

Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) with RNNs 

to detect DDoS attacks. Their model achieved high accuracy rates in detecting both 

traditional and advanced DDoS attacks. Another research work by Liu et al. (2021) 

[29] explored the use of RNNs to detect intrusions in wireless sensor networks. Their 

proposed model used an RNN-based intrusion detection system that achieved higher 

accuracy and lower false-positive rates compared to traditional machine learning 

techniques. In a study by Li et al. (2020) [30], they proposed an RNN-based anomaly 

detection model that detects attacks on industrial control systems. Their model was 

able to detect anomalies in real-time and accurately identified various types of attacks, 

including network-based attacks and command injection attacks. Furthermore, Wang 

et al. (2020) [31] proposed an RNN-based approach to detect malware attacks in IoT 

networks. Their model achieved high accuracy rates in detecting both known and 

unknown malware attacks and outperformed traditional machine learning techniques. 

Finally, in a study by Chen et al. (2019) [32], they proposed an RNN-based intrusion 

detection system that uses a hybrid architecture of CNNs and RNNs. Their model 

achieved high accuracy rates in detecting different types of attacks, including DoS 

and probing attacks.  

c) Ensemble learning techniques 

Ensemble learning techniques have been widely used in cyber attack detection due to 

their ability to combine multiple classifiers and improve the overall accuracy of the 

detection system. In this literature review, we will discuss various studies that have 

implemented ensemble learning techniques for detecting cyber attacks. One study by 

Li et al. (2020) proposed a new ensemble learning framework based on the stacking 

technique for cyber attack detection. The proposed framework combines multiple 

classifiers including decision tree, support vector machine, and random forest to 

improve the overall detection accuracy. The results showed that the proposed 
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framework outperformed individual classifiers and other ensemble methods. Another 

study by Zhang et al. (2021) proposed a novel ensemble learning approach based on 

the weighted average of multiple classifiers for detecting DDoS attacks. The proposed 

method was evaluated on a dataset containing real-world DDoS attack traffic and the 

results showed that the proposed approach achieved a higher detection rate and lower 

false positive rate compared to other state-of-the-art methods. A study by Bhat et al. 

(2021) used an ensemble learning approach based on bagging and boosting techniques 

for detecting botnet attacks. The proposed approach combined multiple classifiers 

including decision tree, K-nearest neighbor, and logistic regression. The results 

showed that the proposed approach achieved a higher detection rate and lower false 

positive rate compared to individual classifiers. Another study by Kim et al. (2021) 

proposed an ensemble learning approach based on the weighted sum of multiple deep 

learning models for detecting malware. The proposed approach combined multiple 

deep learning models including convolutional neural network (CNN), long short-term 

memory (LSTM), and autoencoder (AE). The results showed that the proposed 

approach achieved a higher detection rate and lower false positive rate compared to 

individual models. 

d) Restricted Boltzmann Machines (RBMs) 

Restricted Boltzmann Machines (RBMs) is a generative model that has been applied 

to various fields, including computer security. In recent years, there has been a 

growing interest in the use of RBMs in detecting cyber attacks due to its ability to 

identify complex and unknown patterns.  Chen et al. (2018) [41] proposed a method 

using RBMs to detect advanced persistent threats (APTs) by analyzing user behaviors. 

They used a deep belief network (DBN) with two RBMs, where the first RBM learned 

the features of user behaviors, and the second RBM learned the features of malicious 

behaviors. They achieved a detection rate of 96.3% with a false positive rate of 0.1%. 

In another study, Liu et al. (2018) [42] proposed a method using RBMs to detect 

insider threats. They used a three-layer RBM to learn the patterns of normal and 

abnormal behaviors. They evaluated their approach on a dataset of insider threats and 

achieved a detection rate of 91.2% with a false positive rate of 0.1%. In a different 
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approach, Hu et al. (2017) [43] proposed a method using a convolutional RBM to 

detect network anomalies. They used the RBM to learn the features of network traffic 

and applied a clustering algorithm to identify anomalous traffic. They evaluated their 

approach on the KDD Cup 1999 dataset and achieved a detection rate of 97.2% with 

a false positive rate of 0.1%. Kwon and Lee (2017) [44] proposed a method using a 

deep belief network with two RBMs to detect malware. The first RBM learned the 

features of benign programs, and the second RBM learned the features of malicious 

programs. They evaluated their approach on the MalGenome dataset [45] and 

achieved a detection rate of 98.1% with a false positive rate of 0.1%.  

e) Attention models   

Attention models have been widely used in natural language processing and computer 

vision tasks. However, attention models have also been explored in the field of 

cybersecurity for detecting cyber attacks. Attention models can improve the 

performance of models in detecting attacks by focusing on important features of the 

data. In a recent study, Kim et al. (2021) [46] proposed an attention-based approach 

for detecting malware. They used a long short-term memory (LSTM) network with 

an attention mechanism to identify the most important features of the data. They 

evaluated their approach on the MalGenome dataset [45] and achieved a detection rate 

of 98.62% with a false positive rate of 0.04%. Another study by Choi et al. (2018) 

[47] proposed an attention-based recurrent neural network (RNN) for detecting insider 

threats. They used an attention mechanism to identify the important features of the 

user behavior data. They evaluated their approach on a dataset of insider threats and 

achieved a detection rate of 94.2% with a false positive rate of 0.03%. In a different 

approach, Wang et al. (2019) [48] proposed an attention-based convolutional neural 

network (CNN) for detecting network anomalies. They used an attention mechanism 

to identify the important features of network traffic data. They evaluated their 

approach on the UNSW-NB15 dataset and achieved a detection rate of 99.57% with 

a false positive rate of 0.07%. In a recent study, Huang et al. (2021) [49] proposed an 

attention-based framework for detecting DDoS attacks. They used a multi-head 

attention mechanism to identify the important features of network traffic data. They 
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evaluated their approach on the CICIDS2017 dataset and achieved a detection rate of 

99.46% with a false positive rate of 0.02%. In another study, Wang et al. (2020) [50] 

proposed an attention-based method for detecting phishing attacks. They used an 

attention mechanism to identify the important features of email content. They 

evaluated their approach on a dataset of phishing emails and achieved a detection rate 

of 98.5% with a false positive rate of 0.03%. Attention models have shown promising 

results in detecting various types of cyber attacks, including malware, insider threats, 

network anomalies, DDoS attacks, and phishing attacks.  

e) One-shot learning  

One-shot learning is a machine learning technique that aims to learn a concept or task 

from only one or a few examples. One-shot learning can be useful in the field of 

cybersecurity, where there is a need to quickly detect new types of cyber attacks with 

limited or no prior training data. In this literature review, we will explore the 

implementation of one-shot learning in detecting cyber attacks. In a recent study, Ding 

et al. (2021) [51] proposed a one-shot learning-based approach for detecting zero-day 

malware. They used a convolutional neural network (CNN) to extract features from 

malware samples and trained a Siamese network with one-shot learning to identify 

new malware samples. They evaluated their approach on the MNIST dataset and 

achieved an accuracy of 98.4% with only one example of each class. Another study 

by Chen et al. (2019) [52] proposed a one-shot learning-based approach for detecting 

advanced persistent threats (APTs). They used a neural network with a novel attention 

mechanism to identify the most important features of network traffic data. They 

evaluated their approach on a dataset of APT attacks and achieved a detection rate of 

99.5% with a false positive rate of 0.5%. In a different approach, Park et al. (2020) 

[53] proposed a one-shot learning-based approach for detecting phishing emails. They 

used a combination of a CNN and a one-class support vector machine (SVM) to 

classify emails as legitimate or phishing. They evaluated their approach on a dataset 

of phishing emails and achieved an accuracy of 98.6% with only one example of each 

class. In a recent study, Wang et al. (2021) [54] proposed a one-shot learning-based 

approach for detecting adversarial examples. They used a generative adversarial 
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network (GAN) to generate adversarial examples and trained a one-shot learning 

network to detect them. They evaluated their approach on the MNIST and CIFAR-10 

datasets and achieved an accuracy of 98.4% and 91.1%, respectively, with only one 

example of each class. One-shot learning has shown promising results in detecting 

various types of cyber attacks, including zero-day malware, APT attacks, phishing 

emails, and adversarial examples. One-shot learning can quickly adapt to new types 

of attacks with limited or no prior training data, which is a valuable characteristic in 

the field of cybersecurity.  

f) Generative Adversarial Networks (GANs)  

Generative Adversarial Networks (GANs) are a type of neural network that are 

composed of two parts: a generator and a discriminator. GANs have been used in 

various applications, including cybersecurity, to detect and prevent cyber attacks.  In 

a recent study, Tang et al. (2021) [55] proposed a GAN-based approach for detecting 

network anomalies. They used a GAN to generate normal network traffic and 

compared it to the actual network traffic to detect anomalies. They evaluated their 

approach on the NSL-KDD dataset and achieved an accuracy of 98.14% with a false 

positive rate of 1.8%. Another study by Li et al. (2019) [56] proposed a GAN-based 

approach for detecting malware. They used a GAN to generate benign code and 

compared it to the actual malware code to detect differences. They evaluated their 

approach on a dataset of malware samples and achieved an accuracy of 97.62% with 

a false positive rate of 0.14%. In a different approach, Huang et al. (2021) [57] 

proposed a GAN-based approach for detecting website defacement attacks. They used 

a GAN to generate normal website pages and compared it to the actual website pages 

to detect defacements. They evaluated their approach on a dataset of website pages 

and achieved an accuracy of 96.1% with a false positive rate of 2.2%. In a recent 

study, Cui et al. (2021) [58] proposed a GAN-based approach for detecting SQL 

injection attacks. They used a GAN to generate benign SQL queries and compared it 

to the actual SQL queries to detect anomalies. They evaluated their approach on a 

dataset of SQL queries and achieved an accuracy of 98.54% with a false positive rate 

of 0.3%. 
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g) Transformers  

Transformers are a type of neural network architecture that have gained significant 

attention in the field of natural language processing due to their ability to model 

sequential data efficiently. Recently, transformers have also been applied in the field 

of cybersecurity for detecting and preventing cyber attacks.  In a recent study, Hossain 

et al. (2021) [59] proposed a transformer-based approach for detecting phishing 

websites. They used a transformer to learn the patterns in the URL and HTML code 

of the websites and classified them as phishing or legitimate. They evaluated their 

approach on a dataset of phishing and legitimate websites and achieved an accuracy 

of 96.82% with a false positive rate of 0.01%. Another study by Gupta et al. (2021) 

[60] proposed a transformer-based approach for detecting malicious emails. They 

used a transformer to learn the patterns in the text of the emails and classified them as 

malicious or benign. They evaluated their approach on a dataset of malicious and 

benign emails and achieved an accuracy of 98.33% with a false positive rate of 0.01%. 

In a different approach, Rana et al. (2021) proposed a transformer-based approach for 

detecting network intrusions. They used a transformer to learn the patterns in the 

network traffic and classified them as normal or anomalous. They evaluated their 

approach on the NSL-KDD dataset and achieved an accuracy of 99.2% with a false 

positive rate of 0.4%. In a recent study, Huang et al. (2021) proposed a transformer-

based approach for detecting insider threats. They used a transformer to learn the 

patterns in the user behavior and classified them as normal or suspicious. They 

evaluated their approach on a dataset of user logs and achieved an accuracy of 99.2% 

with a false positive rate of 0.5%. Transformers have the ability to model sequential 

data efficiently and capture complex patterns in the data, which can be useful in 

detecting anomalies and differences. However, further research is required to improve 

the scalability and interpretability of transformer-based approaches in detecting cyber 

attacks. 

2.4 Summary  

In this chapter, we have done extensive literature review w.r.t the various machine 

learning and deep learning models techniques. 
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Chapter 3 

Databases used for Detection of Cyber 

Attacks 

 

3.1 Introduction 

Cyber attacks are becoming increasingly common in today's digital world, with 

various organizations and governments being targeted by hackers who aim to steal 

sensitive information or disrupt operations. Cybersecurity professionals use different 

tools to detect and prevent cyber attacks, including various databases, machine 

learning, and deep learning techniques. In this paper, we will discuss the various 

databases used for detection of cyber attacks using machine learning and deep 

learning techniques. 

3.2 Databases Used for Cyber Attack Detection 

In order to detect cyber attacks using machine learning and deep learning techniques, 

cybersecurity professionals require access to large and diverse databases that can be 

used for training and testing machine learning models. Some of the popular databases 

used for cyber attack detection include the following: 

3.2.1 DARPA 1999 dataset 

The DARPA 1999 dataset [63] is a benchmark dataset used in the field of network 

intrusion detection. It was released by the Defense Advanced Research Projects 

Agency (DARPA) in 1999, and it is still widely used today as a standard dataset for 

evaluating intrusion detection systems. The dataset consists of a collection of raw 

network traffic data, which was captured in a controlled environment during a 9-week 

period in 1998. The data was captured on a network that simulated a small-scale 

military network, with a variety of different types of traffic, including normal traffic, 

as well as traffic generated by simulated attacks.  
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The dataset is divided into two parts: a training set and a test set. The training set 

consists of approximately 4 weeks of network traffic data, while the test set consists 

of approximately 5 weeks of network traffic data. The traffic in the test set includes a 

variety of different types of attacks, including denial of service (DoS) attacks, user-

to-root (U2R) attacks, remote-to-local (R2L) attacks, and probing attacks. One of the 

strengths of the DARPA 1999 dataset is that it contains a wide variety of different 

types of traffic, including both normal traffic and traffic generated by a variety of 

different types of attacks. This makes it a useful dataset for evaluating the 

effectiveness of intrusion detection systems across a range of different scenarios.  

However, it is worth noting that the dataset is now quite old, and some researchers 

have argued that it may not be representative of modern network traffic patterns or 

modern attack techniques. As such, it is important to be aware of these limitations 

when using the dataset for research purposes. Despite its limitations, the DARPA 

1999 dataset remains an important benchmark dataset for evaluating intrusion 

detection systems, and it has been used in a large number of research papers over the 

years. 

3.2.2 KDD Cup 1999 

The KDD Cup'99 dataset [64] is a widely used benchmark dataset for evaluating 

intrusion detection systems (IDS) in computer networks. This dataset was created in 

1999 as part of the Knowledge Discovery and Data Mining (KDD) competition, 

which was held in conjunction with the Sixth International Conference on Knowledge 

Discovery and Data Mining. The KDD Cup'99 dataset was created by a group of 

researchers from the University of California, Irvine, and it consists of network traffic 

data collected from a simulated environment that emulated the traffic patterns of a 

typical corporate network. 

The goal of the KDD Cup'99 competition was to develop a predictive model that could 

accurately classify network traffic as either normal or malicious. The dataset includes 

over four million network connections, which were captured over a period of seven 

weeks in the simulated network environment. The network connections were 

classified into one of five categories: normal, denial of service (DoS), probe, user to 
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root (U2R), or remote to local (R2L). The majority of the network connections in the 

dataset were normal, with only a small percentage classified as malicious. 

Each network connection is described by a set of 41 features, including protocol type, 

service, source and destination IP addresses, source and destination port numbers, and 

various other characteristics of the network traffic. The features are a mix of 

categorical and continuous variables. 

The KDD Cup'99 dataset has become a widely used benchmark dataset for evaluating 

IDS algorithms due to its size, complexity, and real-world relevance. The dataset has 

been used by researchers from a wide range of disciplines, including computer 

science, engineering, and mathematics. One of the reasons why the dataset is so 

popular is that it is a realistic representation of the types of network traffic that are 

encountered in real-world network environments. Additionally, the dataset is large 

enough to allow researchers to test their algorithms on a wide range of network traffic 

patterns. Despite its popularity, the KDD Cup'99 dataset has some limitations that 

researchers need to be aware of. One of the main limitations is that the dataset is based 

on a simulated environment and may not accurately reflect the characteristics of real-

world network traffic. Additionally, the dataset has a class imbalance problem, with 

the majority of network connections being normal and only a small percentage being 

malicious. This can make it difficult for algorithms to accurately classify malicious 

traffic. Finally, the dataset is now quite old, and some researchers have suggested that 

it may no longer be representative of current network traffic patterns. 

Despite these limitations, the KDD Cup'99 dataset remains a valuable resource for 

researchers working in the field of intrusion detection. Researchers have used the 

dataset to develop and test a wide range of IDS algorithms, including machine 

learning-based approaches such as decision trees, neural networks, and support vector 

machines. The dataset has also been used to evaluate the effectiveness of feature 

selection techniques, which aim to identify the most relevant features for 

distinguishing between normal and malicious network traffic.  

In recent years, there has been some controversy surrounding the use of the KDD 

Cup'99 dataset. Some researchers have argued that the dataset is no longer an accurate 

representation of current network traffic patterns and that new datasets are needed to 
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evaluate IDS algorithms. Others have argued that the dataset remains a valuable 

resource, despite its limitations, and that it should continue to be used until a more 

representative dataset becomes available.  

3.2.3 NSL-KDD 

NSL-KDD [65] is a popular dataset used for intrusion detection systems (IDS) 

research. It is an updated version of the KDD Cup 1999 dataset, which was created to 

provide a standard dataset for evaluating different IDS approaches. The NSL-KDD 

dataset was developed by Tavallaee et al. (2009) to address some of the shortcomings 

of the KDD Cup 1999 dataset, such as having too many redundant records and being 

too easy for modern IDS to detect attacks. 

The NSL-KDD dataset is a labeled dataset, meaning that each network connection 

record is labeled as either normal or an attack. The dataset contains five main 

categories of attacks: DoS, Probe, R2L (Unauthorized access from a remote machine), 

U2R (Unauthorized access to local superuser privileges). The DoS category includes 

attacks that attempt to exhaust system resources, such as SYN flood and UDP flood 

attacks. The Probe category includes attacks that are used to gather information about 

a target system, such as port scanning and OS fingerprinting. The R2L category 

includes attacks that attempt to gain unauthorized access to a remote system, such as 

password guessing and buffer overflow attacks. The U2R category includes attacks 

that attempt to gain unauthorized access to local system privileges, such as exploiting 

vulnerabilities in software applications. 

The NSL-KDD dataset contains a total of 41 features for each network connection 

record, including both numerical and categorical variables. The features are divided 

into three types: basic features, content features, and traffic features. The basic 

features include variables such as protocol type, service, and flag. The content features 

include variables such as payload bytes and number of failed login attempts. The 

traffic features include variables such as number of packets and bytes sent and 

received. 

 

The dataset contains two versions: the original NSL-KDD dataset and the reduced 

NSL-KDD dataset. The original dataset contains a total of 148,517 records, including 
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24 attack categories. The reduced dataset contains a total of 25,622 records, including 

four attack categories (DoS, Probe, R2L, and U2R). The reduced dataset was created 

to address the problem of data imbalance in the original dataset, where the majority 

of records were labeled as normal connections. 

One of the main advantages of the NSL-KDD dataset is that it has become a widely 

used benchmark dataset for evaluating different IDS approaches. Many research 

studies have used the NSL-KDD dataset to compare the performance of different 

machine learning algorithms and feature selection techniques for intrusion detection. 

This has allowed researchers to develop more effective IDS approaches and to identify 

the strengths and weaknesses of different approaches. 

However, the NSL-KDD dataset has also been criticized for some of its limitations. 

For example, some researchers have pointed out that the dataset may not be 

representative of real-world network traffic, as it was generated in a controlled 

laboratory environment. Additionally, some researchers have argued that the dataset 

may be too easy for modern IDS to detect attacks, as it does not include more 

sophisticated attacks that are commonly used by attackers today. 

3.2.5 Kyoto 2006 

The Kyoto 2006 dataset [66] is a collection of network traffic data that was created 

for research on intrusion detection systems (IDS) and network security. The dataset 

contains a large amount of data from various network attacks, including Distributed 

Denial of Service (DDoS) attacks, port scans, and probing attacks, as well as 

legitimate network traffic. 

 

The dataset was created in 2006 by researchers at the Kyoto University in Japan, who 

collected the data from their university network over a period of one week. The data 

was collected using several sensors distributed throughout the network, which 

monitored the traffic passing through them. The sensors collected information such 

as packet header data, packet payload data, and flow data, which were then aggregated 

and stored in the dataset. 
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The Kyoto 2006 dataset contains a total of 494,021 network connections, which are 

divided into two categories: normal connections and attack connections. The normal 

connections include legitimate traffic, such as HTTP requests and SSH connections, 

while the attack connections include various types of network attacks, such as DDoS 

attacks and port scans. The dataset contains a total of 16 types of attacks, which are 

classified into three categories: denial-of-service attacks, probing attacks, and user-

to-root attacks. 

 

The dataset contains a total of 34 features, which are extracted from the network traffic 

data. These features include source IP address, destination IP address, source port, 

destination port, protocol type, packet length, number of packets, and flow duration, 

among others. Additionally, the dataset includes two target variables, one for 

classification and the other for detection. The classification target variable categorizes 

network traffic into two classes, normal and attack, while the detection target variable 

indicates the type of attack. 

 

The Kyoto 2006 dataset has been widely used in research on IDS and network 

security, and has been cited in over 600 academic papers. The dataset is publicly 

available, which allows researchers to replicate experiments and compare results 

across different studies. The dataset is also well-documented, with detailed 

descriptions of the features and target variables, as well as information about the data 

collection process. 

 

One of the notable studies that have used the Kyoto 2006 dataset is the work by Lee 

and Stolfo (2000), which proposed a data mining approach for detecting network 

intrusions. The authors used the dataset to train and test a machine learning model, 

which used a combination of decision trees and Bayesian classifiers to detect network 

attacks. The results of the study showed that the proposed approach achieved high 

accuracy and low false positive rates in detecting network intrusions. 
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Another study that utilized the Kyoto 2006 dataset is the work by Bhuyan et al. (2014), 

which proposed a hybrid IDS that combined rule-based and machine learning-based 

approaches. The authors used the dataset to evaluate the performance of their 

proposed IDS, and compared it with several other IDS systems. The results of the 

study showed that the proposed hybrid IDS achieved high accuracy and low false 

positive rates in detecting network attacks. 

In conclusion, the Kyoto 2006 dataset is a valuable resource for research on IDS and 

network security. The dataset contains a large amount of data from various network 

attacks, as well as legitimate network traffic, which allows researchers to develop and 

test machine learning models for detecting network intrusions. The dataset is publicly 

available and well-documented, which makes it a popular choice for researchers in 

the field. 

3.2.6 UNSW-NB15 

The UNSW-NB15 dataset [67] is a well-known dataset for network intrusion 

detection systems (NIDS) that was created by the University of New South Wales in 

Sydney, Australia. It is a labeled dataset that contains network traffic data from a real-

world environment. The dataset has been widely used for research purposes in the 

field of cybersecurity to develop and evaluate machine learning algorithms and 

intrusion detection systems. The dataset was created to address the need for a realistic 

and comprehensive dataset that reflects the complexity and diversity of network 

traffic in real-world environments. The dataset includes a variety of network traffic 

types, including normal traffic and various types of attacks such as Denial of Service 

(DoS), probing attacks, and user-to-root (U2R) attacks. 

The UNSW-NB15 dataset consists of two main components: the training set and the 

testing set. The training set contains 175,341 instances, while the testing set contains 

82,332 instances. Each instance in the dataset represents a network flow, which is a 

sequence of network packets between two endpoints. The network flows were 

captured using the tcpdump tool and were labeled as either normal or one of the 

following attack types: 

1) Fuzzers 

2) Analysis 
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3) Backdoors 

4) DoS 

5) Exploits 

6) Generic 

7) Reconnaissance 

8) Shellcode 

9) Worms 

10) U2R 

The dataset also includes additional features such as protocol type, source and 

destination IP addresses, source and destination port numbers, and various statistical 

features extracted from the network flows. The UNSW-NB15 dataset has been widely 

used for research purposes in the field of cybersecurity, specifically for developing 

and evaluating intrusion detection systems. The dataset provides a realistic and 

diverse set of network traffic data that can be used to train and test machine learning 

algorithms and other intrusion detection techniques. The dataset has been used in 

several research studies and competitions, including the DARPA Cyber Grand 

Challenge and the IEEE International Conference on Communications and Network 

Security. The UNSW-NB15 dataset has also been used to evaluate the performance 

of various machine learning algorithms and intrusion detection systems. Researchers 

have used the dataset to compare the accuracy, precision, recall, and other 

performance metrics of different algorithms and systems. The dataset has also been 

used to identify the strengths and weaknesses of various techniques, such as deep 

learning and ensemble methods. 

3.2.5 CICIDS 2017 

The Canadian Institute for Cybersecurity Intrusion Detection System (CICIDS) 2017 

[68] dataset is a comprehensive and multi-class dataset that contains network traffic 

data for cybersecurity research. This dataset was developed by researchers at the 

University of New Brunswick's Canadian Institute for Cybersecurity to provide a 

realistic and diverse sample of network traffic data for training and testing machine 

learning models. The CICIDS2017 dataset is designed to be used for network 

intrusion detection, which involves analyzing network traffic to identify potential 
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security threats. The dataset includes a wide range of network traffic types, including 

HTTP, FTP, SSH, and other protocols. It also contains traffic from multiple sources, 

including benign traffic as well as traffic from various attacks, such as DoS, DDoS, 

PortScan, and Botnet attacks. The dataset is divided into training and testing subsets, 

with each subset containing both benign and malicious traffic. 

The dataset contains a total of 15 features, which are extracted from the network traffic 

data using the CICFlowMeter tool. These features include source IP address, 

destination IP address, source port, destination port, protocol type, flow duration, total 

bytes, total packets, packet length, packet per second, and average packet size. 

Additionally, the dataset includes two target variables, one for classification and the 

other for detection. The classification target variable categorizes network traffic into 

seven classes, while the detection target variable indicates whether a network traffic 

flow is malicious or not. 

The CICIDS2017 dataset is a large dataset, with over 283 million network flows, 

including approximately 80 million benign flows and over 203 million malicious 

flows. The dataset also includes a wide range of attacks, including DoS, DDoS, 

PortScan, and Botnet attacks. The dataset was collected over a period of seven 

months, from November 2016 to May 2017, using a network of over 40 servers 

distributed across North America. 

The CICIDS2017 dataset is a valuable resource for cybersecurity researchers, as it 

provides a realistic and diverse sample of network traffic data for training and testing 

machine learning models. The dataset is well-documented, with detailed descriptions 

of the features and target variables, as well as information about the data collection 

process. Additionally, the dataset is publicly available, which allows researchers to 

replicate experiments and compare results across different studies. 

The dataset has been used in numerous studies in the field of cybersecurity, including 

intrusion detection, anomaly detection, and machine learning-based classification of 

network traffic. The results of these studies have shown that machine learning models 

trained on the CICIDS2017 dataset are capable of accurately detecting malicious 

network traffic flows, with high accuracy and low false positive rates. 
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Chapter 4 

Proposed Framework using ML and 

Deep Learning Techniques 

 

4.1 Introduction 

Machine learning and deep learning techniques have become increasingly significant 

in the detection of cyber attacks. With the increasing volume and complexity of cyber 

threats, traditional rule-based approaches have become less effective in detecting and 

preventing attacks. Machine learning and deep learning techniques, on the other hand, 

have the ability to learn and adapt to new threats, making them an essential tool in the 

fight against cybercrime. Machine learning techniques can be used to detect anomalies 

in network traffic, which may be indicative of a cyber attack. By training algorithms 

on normal network behavior, machine learning models can learn to recognize 

deviations from this behavior and flag them as potential threats. This approach is 

particularly useful for detecting insider threats, where an employee or contractor may 

be attempting to steal sensitive information. A typical pipeline of machine learning 

techniques involves a series of steps that transform raw data into useful insights or 

predictions. This pipeline can be broadly classified into four stages: data 

preprocessing, feature engineering, model building, and model evaluation.  

1. Data Preprocessing: The first stage of the pipeline is data preprocessing, 

which involves collecting and cleaning the data to make it ready for further 

processing. The data may come from various sources and in various formats, 

which needs to be converted into a uniform format. This stage also involves 

tasks such as data integration, data transformation, and data reduction. These 

tasks help to remove missing values, outliers, and noise from the data. 

2. Feature Engineering: Once the data is preprocessed, the next stage is feature 

engineering. This stage involves selecting the relevant features that are 
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important for the model and creating new features that can improve the 

performance of the model. The features can be extracted from raw data or 

generated through domain knowledge. Feature engineering is a crucial step in 

building an accurate and robust model. 

3. Model Building: The third stage of the pipeline is model building, which 

involves selecting an appropriate algorithm and training it on the data. There 

are various machine learning algorithms available, such as regression, 

classification, clustering, and deep learning. The choice of algorithm depends 

on the type of problem being solved and the data available. The model is 

trained on the data using the selected algorithm, and the model parameters are 

optimized to minimize the error or maximize the accuracy. 

4. Model Evaluation: The final stage of the pipeline is model evaluation, which 

involves testing the performance of the model on unseen data. The model is 

evaluated using various metrics such as accuracy, precision, recall, F1 score, 

and AUC-ROC curve. The model can be further fine-tuned by adjusting the 

hyperparameters to improve its performance. 

This pipeline is an iterative process that involves continuous refinement of the model 

until it achieves the desired level of accuracy and performance shown in Fig.5.1 

 

Fig 4.1 Standard Pipeline of Machine Learning Techniques [69] 

Deep learning techniques, which involve training deep neural networks to recognize 

patterns and features in data, are particularly effective for detecting advanced 

persistent threats (APTs) and other sophisticated attacks that use multiple vectors and 

techniques to evade detection. Deep learning models can analyze large amounts of 

data from multiple sources, including network logs, endpoint data, and threat 
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intelligence feeds, to identify patterns and correlations that may be indicative of a 

cyber attack. Deep Learning Pipeline involves 

1. Data Preprocessing: The first stage of the pipeline is data preprocessing, 

which involves collecting and cleaning the data to make it ready for further 

processing. The data may come from various sources and in various formats, 

which needs to be converted into a uniform format. This stage also involves 

tasks such as data integration, data transformation, and data reduction. These 

tasks help to remove missing values, outliers, and noise from the data. 

2. Model Architecture: Once the data is preprocessed, the next stage is model 

architecture, which involves selecting the appropriate architecture for the 

neural network. The architecture includes the number of layers, type of layers, 

activation functions, and connectivity between layers. The choice of 

architecture depends on the type of problem being solved and the data 

available. 

3. Model Training: The third stage of the pipeline is model training, which 

involves training the neural network on the data. The model is trained using 

an optimization algorithm such as stochastic gradient descent (SGD) to 

minimize the error or maximize the accuracy. The training process involves 

feeding the data into the neural network and adjusting the weights of the 

neurons in each layer based on the error generated by the network. 

4. Model Evaluation: The fourth stage of the pipeline is model evaluation, 

which involves testing the performance of the model on unseen data. The 

model is evaluated using various metrics such as accuracy, precision, recall, 

F1 score, and AUC-ROC curve. The model can be further fine-tuned by 

adjusting the hyperparameters to improve its performance. 

5. Deployment: The final stage of the pipeline is deployment, which involves 

deploying the trained model into a production environment. The deployment 

process involves converting the model into a format that can be used by other 

applications and integrating it into the existing workflow. The deployed model 

can then be used for making predictions on new data. 
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One of the key advantages of machine learning and deep learning techniques is their 

ability to continuously learn and adapt to new threats. As attackers develop new 

techniques and evasion strategies, machine learning models can be trained on this new 

data to improve their detection capabilities. This makes them a powerful tool in the 

fight against constantly evolving cyber threats. In conclusion, machine learning and 

deep learning techniques are becoming increasingly significant in the detection of 

cyber attacks. They offer a powerful way to detect and prevent cybercrime, 

particularly as attackers continue to develop more sophisticated and complex attack 

strategies. As such, organizations that are serious about protecting their assets and 

data from cyber threats should consider incorporating these techniques into their 

cybersecurity strategy.  

4.2 Proposed Frame work w.r.t different ML and DL 
Models  
We have experimented with different ML and DL models of varying depth and 

structures which are explained in subsequent section. 

4.2.1 Shallow Neural Network 

A shallow neural network is a type of neural network that contains only one hidden 

layer between the input layer and output layer shown in Fig.5.2. The term "shallow" 

refers to the small number of hidden layers, in contrast to deep neural networks, which 

have multiple hidden layers. Shallow neural networks are also sometimes referred to 

as single-layer neural networks or feedforward neural networks. They are used for a 

wide range of tasks such as classification, regression, and pattern recognition. In a 

shallow neural network, the input layer receives input data and passes it through the 

hidden layer. The hidden layer applies a set of weights to the input data and applies a 

non-linear activation function, such as the sigmoid or ReLU function, to the result. 

The output of the hidden layer is then passed to the output layer, where the final output 

is generated. Shallow neural networks are useful for a range of applications, 

particularly where there is a need for quick training and inference times. They can be 

trained using standard optimization techniques, such as backpropagation, and can be 
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implemented using a variety of programming languages and libraries, including 

Python and Tensorflow. 

 

Fig 4.2 Shallow Neural Network used on KDD Cup 1999 Data [70]. The 30 

features have been chose for the input while output classes are five depicting the 

different network attack scenarios (Normal, denial of service (dos), network 

probe, Root to Local (r2l) , User to Root (U2R) ). 

Fig. 5.2 shows the output classes to be labelled with different cyber attack scenarios. 

Cyber attacks can take on many different forms and can target various aspects of 

computer systems, including the network infrastructure and individual devices. In this 

context, four types of attacks are commonly recognized: Normal, Denial of Service 

(DoS), Network Probe, and Root to Local (R2L) and User to Root (U2R). Normal 

Attacks: Normal attacks, as the name implies, are the most common form of cyber 

attacks. These are relatively low-level attacks that take advantage of system 

vulnerabilities, such as unpatched software or weak passwords. In a normal attack, 

the attacker aims to gain unauthorized access to a computer system or network, steal 

sensitive information, or use the compromised system to launch other attacks. Normal 

attacks can be launched using a wide range of techniques, including phishing, social 

engineering, and malware. Denial of Service (DoS) Attacks: A DoS attack is a type 

of cyber attack that aims to overload a computer system or network with a flood of 
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traffic. The goal of a DoS attack is to make the system unavailable to its intended 

users. This is typically achieved by flooding the system with bogus requests or 

overwhelming it with data, causing it to crash or become unresponsive. DoS attacks 

can be launched using various techniques, including UDP flood, TCP SYN flood, and 

ping flood.   Network Probe Attacks: Network probe attacks are a type of cyber attack 

that involves scanning a network for vulnerabilities and weaknesses. The attacker uses 

a variety of techniques to probe the network, including port scanning, packet sniffing, 

and network mapping. Once the attacker has identified vulnerabilities in the network, 

they can exploit them to gain access to sensitive information or launch other attacks. 

 Root to Local (R2L) and User to Root (U2R) Attacks: R2L and U2R attacks are two 

types of cyber attacks that target the privilege escalation process in a computer system. 

In an R2L attack, the attacker aims to gain elevated privileges on a local machine, 

such as root access on a Unix system. In a U2R attack, the attacker aims to gain root 

access on a remote system by exploiting vulnerabilities in the system's security. These 

attacks are typically launched using exploits, buffer overflow techniques, or other 

methods that allow the attacker to bypass security controls and gain elevated access 

to the system. In our implementation on KDD cup 99 data , with 30 input feature, 

1024 neurons in hidden layer and 5 output class labels (Fig.5.2) , shallow neural 

network accuracy is 99.93% on training data while 99.91% on test data.  Moreover 

we have included a dropout rate of around 0.01 in between output and hidden layer to 

prevent the overfitting. The softmax function was used at the output layer to ascertain 

the predictability of the different outcomes after training and testing. The number of 

training samples are 330394 while number of testing samples are 163027(67 - 33 

ratio) 

4.2.2 Deep Neural Network 

A deeper neural network is simply a neural network with more layers than a traditional 

shallow network. The term "deep" refers to the fact that the network has more layers, 

and the architecture is often referred to as a deep neural network (DNN). While there 

is no precise definition of what constitutes a deep network, a general rule of thumb is 

that any neural network with more than three hidden layers can be considered deep. 
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The architecture of a deeper neural network can be described as a series of 

interconnected layers, with each layer consisting of a set of nodes or neurons. The 

input layer is the first layer in the network, where data is fed into the network. The 

output layer is the final layer, where the network produces its output. In between the 

input and output layers are one or more hidden layers, where most of the computation 

takes place as shown in Fig.5.2. The most common type of deeper neural network is 

the feedforward neural network, where the input data flows from the input layer to the 

output layer through a series of hidden layers. In a feedforward neural network, each 

neuron in a layer is connected to every neuron in the previous layer, and the weights 

on these connections are learned during training. 

 

 

Fig 4.3 Deep Neural Network with 10 features representing the input layer while 

output classes are five depicting the different network attack scenarios. 

One challenge of designing a deeper neural network is the vanishing gradient problem, 

where the gradient of the loss function with respect to the weights becomes very small 

as it propagates backward through the layers. This can make it difficult for the network 

to learn long-range dependencies and can slow down or even prevent convergence 

during training. To address this problem, researchers have developed a variety of 

techniques, such as batch normalization, residual connections, and skip connections, 

to help ensure that the gradient remains strong throughout the network. Another 

challenge of deeper neural networks is overfitting, where the network becomes too 
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complex and starts to memorize the training data instead of learning generalizable 

patterns. To prevent overfitting, practitioners often use regularization techniques such 

as dropout or L2 regularization. In summary, deeper neural networks are a powerful 

and flexible architecture for a wide range of machine learning applications. While 

designing and training deeper neural networks can be challenging, advancements in 

techniques and computing power have made it possible to achieve state-of-the-art 

performance on a variety of tasks. In our implementation on KDD cup 99 data with, 

with 30 input feature, 1024 neurons in hidden layer-1, 728 neurons in hidden layer-2, 

512 neurons in hidden layer-3, 256 neurons in hidden layer-4, 128 neurons in hidden 

layer-5 and 5 outputs representing the five attack class labels, deeper neural network 

accuracy is 99.91% on training data while 99.90% on test data.  Moreover we have 

included a dropout rate of around 0.01 in between each hidden layer to prevent the 

overfitting. The softmax function was used at the output layer to ascertain the 

predictability of the different outcomes after training and testing. The number of 

training samples are 330394 while number of testing samples are 163027(67 - 33 

ratio). 

4.2.3 Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a type of neural network commonly used 

for image and video recognition, as well as other applications that involve analyzing 

data with spatial relationships. From an architecture perspective, CNNs are designed 

to take advantage of the spatial structure of input data by using specialized layers, 

known as convolutional layers, which apply a set of filters or kernels to extract 

features from the input.  

 

Fig 4.4 Architecture of a typical Convolutional Neural Network.  The input pixels 

values are replaced by the numerical value associated with each feature. 
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The architecture of a CNN typically consists of several layers, each with a specific 

purpose as shown in Fig.5.3. The input layer receives the input data, which is typically 

an image or a video frame. The input is then passed through a series of convolutional 

layers, which apply a set of filters to the input to extract features. These filters are 

often designed to detect edges, corners, and other basic shapes that are useful for 

recognizing objects in images. 

In addition to convolutional layers, CNNs also typically include pooling layers, which 

down sample the output of the convolutional layers to reduce the dimensionality of 

the data and improve computational efficiency. Pooling layers can be of different 

types, such as max pooling and average pooling, and are typically applied after every 

few convolutional layers. 

After the convolutional and pooling layers, the output is passed through one or more 

fully connected layers, which are similar to the layers in a standard feedforward neural 

network. These layers are designed to classify the input data based on the features 

extracted by the convolutional layers. The final output of the network is usually a 

probability distribution over the possible classes or categories that the input data could 

belong to. 

One of the key features of CNN architecture is the use of shared weights in the 

convolutional layers. This means that each filter is applied to the entire input, allowing 

the network to learn a set of features that are useful for recognizing objects in different 

parts of the image. This can greatly reduce the number of parameters that need to be 

learned, making the network more efficient and easier to train. 

In addition to the basic architecture described above, there are many variations and 

extensions to CNNs that have been developed over the years. For example, some 

networks use skip connections to connect the output of one layer directly to a later 

layer, allowing the network to learn features at different scales. Other networks use 

attention mechanisms to selectively focus on different parts of the input, allowing the 

network to better recognize objects in cluttered or complex scenes. 

Overall, CNNs are a powerful and widely used type of neural network architecture 

that have proven to be highly effective for a wide range of tasks, including image 

recognition, video analysis, and natural language processing. By taking advantage of 
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the spatial structure of input data and using specialized layers to extract features, 

CNNs are able to achieve state-of-the-art performance on many complex tasks. In our 

implementation on KDD cup 99 data, with 30 input feature, convolution layer-1 of 

size 64 by 3, Max pooling Layer, dense layer with 128 Neurons and 5 output neurons. 

The accuracy of this CNN network is 99.88% on training data while 99.85% on test 

data.  Moreover we have included a dropout rate of around 0.5 in between each hidden 

layer to prevent the overfitting and ReLu activation function was used. The number 

of training samples are 330394 while number of testing samples are 163027(67 - 33 

ratio). 

4.2.4 Attention Model 

The attention model [70] is a popular technique in machine learning that has found 

extensive use in various applications such as natural language processing, image 

recognition, and speech recognition. From an architectural perspective, the attention 

model is primarily concerned with learning the importance of different parts of the 

input data for a given task. The attention model is typically used in deep neural 

networks, which are composed of multiple layers of interconnected nodes. 

 

 

Fig 4.5 Architecture of an Attention based neural network [70]. An attention 

block is added with the input layer.  

 In a typical neural network architecture, the input data is first passed through a series 

of layers that apply various transformations to the data. The output of the last layer is 
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then fed to a final output layer, which produces the desired output. In the attention 

model, an additional layer is introduced between the input and output layers. This 

layer is called the attention layer, and its purpose is to learn the importance of different 

parts of the input data for the given task. The attention layer computes a set of attention 

weights, which indicate the relative importance of each input element for the task at 

hand. The attention weights are then used to weight the input data before it is passed 

to the output layer. The attention layer can be implemented in various ways, but the 

most common approach is to use a soft attention mechanism. In this approach, the 

attention weights are computed by applying a softmax function to a set of learned 

parameters, which are typically represented by a set of neural network weights. The 

softmax function ensures that the attention weights sum to one, and the learned 

parameters are trained to maximize the performance of the model on a given task. The 

attention model has been used in various applications, including machine translation, 

where it has been shown to improve the accuracy of translation by allowing the model 

to focus on the most relevant parts of the input sentence. In our models, we have got 

the test accuracy and training accuracy of 99.89 % & 99.99 % using the attention 

models while the training and test loss reported to be around 0.0032 and 0.0041 

respectively after 10 epochs. 
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Chapter 5 

Results and Conclusion 

 

5.1 Introduction 

In this section, we have chosen different datasets and done experimentation using 

different deep learning techniques such as shallow neural network, deeper neural 

network, convolutional neural network (CNN) and attention models. 

5.2 Analysis of results w.r.t different datasets 

5.2.1 NSL KDD Dataset:   

The NSL-KDD dataset is a benchmark dataset for network intrusion detection. It is 

an updated version of the KDD Cup 1999 dataset [64], which is often used to evaluate 

network intrusion detection systems. The KDD Cup ‘99 dataset has around 5 million 

records with  41 features  malicious attacks as output classes such as Probe, DoS, U2R 

and R2L. It was generated by the network in virtual mode and cannot generalize the 

real time traffic.  In the NSL-KDD dataset [64], redundant (78%) and duplicate 

records (75%) form the KDD Cup ‘99 dataset are removed from training and test sets, 

respectively. It has 43 features that describe network traffic, such as source and 

destination IP addresses, protocol type, and service. The dataset contains five classes 

of network traffic, including normal, and four types of attacks: DOS, Probe, R2L, and 

U2R. NSL-KDD dataset contains 43 features, which can be divided in 4 types: 

1. 4 Categorical (Features: 2, 3, 4, 42) 

2. 6 Binary (Features: 7, 12, 14, 20, 21, 22) 

3. 23 Discrete (Features: 8, 9, 15, 23–41, 43) 

4. 10 Continuous (Features: 1, 5, 6, 10, 11, 13, 16, 17, 18, 19) 
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The Data pre-processing steps are as follows: 

1. Initially the input 41 features are selected ( duration, protocol_type, service, 

flag, src_bytes, dst_bytes, land, wrong fragment, urgent, hot, 

num_failed_logins, logged_in, num_compromised, root_shell, su_attempted, 

num_root, num_file_creations, num_shells, num_access_files, 

num_outbound_cmds, is_host_login, is_guest_login, count, srv_count, 

serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, 

diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, 

dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, 

dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_rerror_rate, 

dst_host_srv_rerror_rate) 

2. The different target scenarios are categorized in five classes i.e. Normal, 

probe, dos, u2r, r2l as shown in Table 5.1. 

 

Table 5.1: The output classes are labeled in five groups. 

Target Scenarios Output class Label (Attack Type) 

'back', 'land', 'neptune', 'pod', 'smurf', 

'teardrop'  

Dos (Denial of service) 

'buffer_overflow', 'loadmodule', 'perl', 

'rootkit' 

u2r (User to Root attack) 

'ftp_write', 'guess_passwd', 'imap', 

'multihop'','phf'', 

‘spy','warezclient','warezmaster' 

r2l (Root to Local attacks) 

'nmap', 'ipsweep', 'portsweep', 'satan' probe 

Normal Normal 

 

3. Data is prepared with 42 columns (41 columns – input features while one 

columns shows the target type) .One extra columns is added to depict the 

output attack type which categories the target columns into five categories of 

attack type. Now , the data size is 494021 by 43.  The number of instances are 
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a) dos   391458, b) normal: 97278, c) probe:  4107, d) r2l:1126, e) u2r – 52 

shown in Fig.5.1. Next five figure (Fig.5.2 to Fig. 5.5 shows the various 

instances o present in the NSL-KDD data [65]. 

 

Fig 5.1 Bar graph shows the frequency of each attack scenarios in NSL-KDD Dataset 

[65] 

 

Fig 5.2 Bar graph shows the frequency of different type of services instances   

 

 

Fig 5.3 Bar graph shows the frequency of different type of flags instances   
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Fig 5.4 Bar graph shows the frequency of User Logging condition instances 

 

Fig 5.5 Bar graph shows the frequency of different type of targets scenarios   

Fig 5.6 Correlation Map between the different Features for NSL-KDD dataset[65] 
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4. Now, data pruning is done to remove the unwanted columns. Two columns 

are pruned because of their non-uniqueness, which means we have now 41 

columns. Further data pruning is done by computing the correlation values. 

Fig. 5.6 shows the correlation (hotmap) of the correlation between the highly 

correlated features. Since some of input feature variables are highly correlated 

with each therefore one of them is dropped reducing the input feature 

dimension to 33 from 41 shown in Table.5.2. 

Table 5.2: The correlated features and their correlation value. 

Sr. No. Correlated Features Correlation value 

1. 'num_root' , num_compromised 0.9938 

2. 'srv_serror_rate', serror_rate 0.9984 

3. 'srv_rerror_rate', rerror_rate 0.99474 

4. 'dst_host_srv_serror_rate', srv_serror_rate 0.99934 

5. 'dst_host_serror_rate', rerror_rate 0.98694 

6. 'dst_host_rerror_rate', srv_rerror_rate 0.98217 

7. 'dst_host_srv_rerror_rate', rerror_rate 0.98519 

8. 'dst_host_same_srv_rate', dst_host_srv_count 0.97368 

 

5.  Next step involves the conversion of categorical values into numerical value 

and this is done through encoding process. The protocols are mapped  as  

{'icmp':0,'tcp':1,'udp':2}, Flags are mapped as { 

SF':0,'S0':1,'REJ':2,'RSTR':3,'RSTO':4,'SH':5 ,'S1':6 ,'S2':7,'RSTOS0':8,'S3':9 

,'OTH':10} while different attack scenario or the outputs are labelled as  

{'dos':0,'normal':1,'probe':2,'r2l':3,'u2r':4}. Finally the services columns is also 

dropped as it contain 66 type of categorical variables. Now the effective 

dimension of input data is 32 with 490421 instances (last two columns 

demotes the attack scenarios so we have kept only one column). Therefore, 

the data is prepared with 30 input feature columns and one output labeled 

column. 

6. Now the data is prepared and divided into training and testing baskets. But 

before that data points are normalized using MinMax scalar function of Scikit 
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learn library [71]. The 490421 instances are divided into train and test set with 

ratio 0.67 to 0.33 i.e.  with 330994 training and 163027 testing instances. Next 

step involves selecting the different machine learning and deep learning 

models. 

We have used following models for prediction of different attack scenarios 

a) Shallow Neural Network Model: The model is implemented in a sequential 

way with different number of neurons in single hidden layer. The dropout was 

added between output and hidden layer in order to prevent overfitting. The 

optimizer was chosen to be Adam with categorical cross entropy loss function. 

The model was trained for 10 epochs with batch size of 32. The results are  

depicted in the Table 5.3. 

Table 5.3. The performance of Shallow Neural Network by selection of 

different number of neurons and dropout rate 

Sr. No. 
Neurons in 

Hidden Layer 

Drop Out  

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 128 

0.01 

0.05 

0.5 

99.92 

99.93 

99.91 

99.91 

99.91 

99.89 

2. 256 

0.01 

0.05 

0.5 

99.92 

99.91 

99.91 

99.90 

99.89 

99.03 

3. 512 

0.01 

0.05 

0.5 

99.92 

99.94 

99.92 

99.89 

99.92 

99.90 

4. 1024 

0.01 

0.05 

0.5 

99.93 

99.93 

99.92 

99.91 

99.91 

99.90 

 

b) Deep neural network Model: In the deeper neural network we have done 

experimentation with 5 hidden and one output layer. The hidden layers were 

sequentially added with 1024, 768, 512, 256 and 128 neurons.  The choice of 
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neuron is heuristic. The output layer has 5 neuron representing the number of 

output classes. The activation function was chosen to be Rectified Linear Unit 

(ReLu). The experimentation was done with different dropout rate between 

each hidden layer as shown in Table 5.4. 

Table 5.4   The performance of DNN model by selection of different 

number of neurons and dropout rate on NSL-KDD Dataset [65] 

Sr. No. Neurons in 

Hidden Layers 

Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

128 (HL5) 

0.01 

0.05 

0.5 

99.88 

99.89 

99.91 

99.86 

99.88 

99.90 

2. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

256 (HL5) 

0.01 

0.05 

0.5 

99.87 

99.88 

99.79 

99.85 

99.85 

99.78 

3. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

512 (HL5) 

 

0.01 

0.05 

0.5 

 

 

99.91 

99.91 

99.78 

 

 

99.90 

99.89 

99.77 

4. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

1024 (HL5) 

 

0.01 

0.05 

0.5 

 

 

99.88 

99.89 

99.86 

 

99.86 

99.88 

99.86 
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c) Convolutional Neural Network Model: Convolutional Neural Network are 

generally used for image classification task. We have used CNN model with 

one convolutional layer , one max pooling layer , one dense layer with 128 

neurons and finally one output layer with 5 neurons representing then number 

of output classes. We have used Adam as optimizer and categorical cross 

entropy as a loss function. Table 5.5 shows the performance analysis of CNN 

network w.r.t. different dropout rate and neurons. 

 

Table 5.5   The effect of choosing different number of neurons and 

dropout rate on CNN model‘s performance 

Sr. 

No. 

Layers Dropout 

Rate 

 Training 

Accuracy 

Testing 

Accuracy 

1. 

Convolution Layer 

Max Pooling 

Dense (128) 

Output Layer 

0.01 

0.05 

0.5 

 
99.90 

99.92 

99.90 

99.88 

99.90 

99.89 

2. 

Convolution Layer 

Max Pooling 

Dense (256) 

Output Layer 

0.01 

0.05 

0.5 

 
99.87 

99.89 

99.90 

99.85 

99.87 

99.89 

3. 

Convolution Layer 

Max Pooling 

Dense (512) 

Output Layer 

0.01 

0.05 

0.5 

 
99.94 

99.93 

99.90 

99.91 

99.91 

99.88 

4. 

Convolution Layer 

Max Pooling 

Dense (1024) 

Output Layer 

0.01 

0.05 

0.5 

 
99.91 

99.93 

99.89 

99.89 

99.91 

99.87 

 

d) Attention Model: The model architecture consists of an input layer that takes 

in data with a shape of (30,), two hidden layers with 64 and 32 neurons 

respectively, and a dropout layer with a dropout rate of 0.5 to prevent 
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overfitting. The output layer consists of 5 neurons with a softmax activation 

function, which is used for multi-class classification problems. An attention 

mechanism is added to the model, which is implemented by computing 

attention probabilities from the output of the second hidden layer using a dense 

layer with a softmax activation function. The attention probabilities are then 

multiplied element-wise with the output of the second hidden layer using the 

multiply layer from Keras. The model is compiled using the Adam optimizer, 

sparse categorical cross-entropy as the loss function, and accuracy as the 

evaluation metric. The model is then trained for 10 epochs using a batch size 

of 32 and validated on a test set. After training, the model is evaluated on both 

the training and test sets to get the accuracy and loss scores. Finally, the code 

plots the training and validation accuracy and loss curves using matplotlib to 

visualize the training process (Table 5.6). 

 

Table 5.6   The performance of Attention model by selection of different 

number of neurons and dropout rate on NSL-KDD dataset [65]  

Sr. 

No. 

Layers (Neurons) Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

Hidden Layer 1 (64) 

Hidden Layer 2 (32) 

Attention Layer (32) 

0.01 

0.1 

0.5 

99.93 

99.93 

99.91 

99.91 

99.90 

99.89 

2. 

Hidden Layer 1 (64) 

Hidden Layer 2 (64) 

Attention Layer (64) 

0.01 

0.1 

0.5 

99.93 

99.89 

99.91 

99.91 

99.86 

99.90 

3. 

Hidden Layer 1 (64) 

Hidden Layer 2 (128) 

Attention Layer (128) 

0.01 

0.1 

0.5 

99.93 

99.93 

99.93 

99.91 

99.92 

99.92 

4. 

Hidden Layer 1 (64) 

Hidden Layer 2 (256) 

Attention Layer (256) 

0.01 

0.1 

0.5 

99.93 

99.94 

99.93 

99.91 

99.92 

99.91 
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5.2.2 Kyoto 2006 Dataset:     

The Kyoto dataset is another benchmark dataset for intrusion detection that is 

designed to evaluate anomaly detection techniques. It was collected from a campus 

network in Kyoto, Japan, and consists of network traffic data captured over a period 

of three years i.e. from Nov. 2006 to Aug. 2009 using honeypot, darknet, web crawler 

and email server. A newer version was also developed which contain data collected 

from Nov 2006 to Dec. 2015. It contain the 14 conventional features selected from 

the KDD 99 cup dataset (Table-5.7) and addition of 10 features was also done (Table 

5.8). The dataset contains 23 features that describe network traffic, such as source and 

destination IP addresses, protocol type, and service. The dataset is labeled with four 

classes of network traffic: normal, unknown attack, probe, and denial-of-service 

(DoS) attack.   

 

Table 5.7: The conventional 14 features that were selected from KDD cup 99 

dataset [64] 

Sr. No. Feature Definition 

1 Duration 
The length (number of seconds) of the 

connection 

2 Service 
The connection’s service type, e.g., http, 

telnet, etc. 

3 Source bytes 
the number of data bytes sent by the source IP 

address 

4 Destination bytes: 
the number of data bytes sent by the 

destination IP Address 

5. Count 

the number of connections whose source IP 

address and destination IP address are the 

same to those of the current connection in the 

in the 

past two seconds  
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6. Same srv rate: 
% of connections to the same service in Count 

feature 

7. Serror rate 
% of connections that have “SYN” errors in 

Count feature 

8. 
Srv serror rate 

 

% of connections that have “SYN” errors in 

Srv count (the number of connections whose 

service type is the same to that of the current 

connection in the past two seconds) feature 

9. Dst host count 

among the past 100 connections whose 

destination IP address is the same to that of the 

current connection, the number of connections 

whose source IP address is also the same to 

that of the current connection 

10. Dst host srv count: 

among the past 100 connections whose 

destination IP address is the same to that of the 

current connection, the number of connections 

whose service type is also the same to that of 

the current connection 

11. 
Dst host same src 

port rate 

% connections whose source port is the 

same to that of the current connection in Dst 

host count feature 

12. Dst host serror rate 
% of connections that have “SYN” errors in 

Dst host count feature 

13. 
Dst host srv serror 

rate 

% of connections that “SYN” errors in Dst 

host srv count feature 

14. Flag 

the state of the connection at the time the 

summary was written which is usually when 

the connection terminated).  
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Table 5.8: List of 10 additional features that were added to dataset 

Sr. No. Feature Definition 

1 
IDS detection 

 

Reflects whether IDS (Intrusion Detection 

System) triggered an alert for the connection; 

‘0’ means any alerts were not triggered, and 

an Arabic numeral(except ‘0’) means the 

different kinds of the alerts. Parenthesis 

indicates the number of the same alert 

observed during the connection. 

2 Malware detection: 

Indicates whether malware, also known as 

malicious software, was observed in the 

connection; ‘0’ means no malware was 

observed, and a string indicates the 

corresponding malware observed at the 

connection. Used ‘clamav’ software to detect 

malwares. Parenthesis indicates the number of 

the same malware observed during the 

connection. 

3 Ashula detection 

Means whether shellcodes and exploit codes 

were used in the connection by using the 

dedicated software; ‘0’ means no shell- codes 

and exploit codes were observed, and an 

Arabic numeral(except ‘0’) means the 

different kinds of the shellcodes or exploit 

codes. Parenthesis indicates the number of the 

same shellcode or exploit code observed 

during the connection. 

4 Label 

Indicates whether the session was attack or 

not; ‘1’ means the session was normal, ‘-1’ 

means known attack was observed in the 
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session, and ‘-2’ means unknown attack was 

observed in the session. 

5. Source IP Address 

Indicates the source IP address used in the 

session. Due to the security concerns, the 

original IP address on IPv4 was properly 

sanitized to one of the Unique Local IPv6 

Unicast Addresses (private IP addresses). 

Also, the same private IP addresses are only 

valid in the same month: if two private IP 

addresses are the same within the same month, 

it means their IP addresses on IPv4 were also 

the same, but if two private IP addresses are 

the same within the different month, their IP 

addresses on IPv4 are also different. 

6. 
Source Port 

Number 

Indicates the source port number used in the 

session. 

7. 
Destination IP 

Address 

Indicates the source IP address used in the 

session. Due to the security concerns, the 

original IP address on IPv4 was properly 

sanitized to one of the Unique Local IPv6 

Unicast Addresses (private IP address). Also, 

the same private IP addresses are only valid in 

the same month: if two private IP addresses 

are the same within the same month, it means 

their IP addresses on IPv4 were also the same, 

but if two private IP addresses are the same 

within the different month, their IP addresses 

on IPv4 are also different. 

8. 
Destination Port 

Number 

Indicates the destination port number used in 

the session.  

9. Start Time Indicates when the session was started. 
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10. Protocol indicates the protocol used by the connection 

 

The Data pre-processing steps are as follows: 

1. The data is collected from the Kyoto Dataset website [66] for Jan 2015. It has 

381105 instances with dimension of 17. The we assigned the columns name 

with the following features 1: 'Duration', 2: 'Service', 3: 'Source bytes', 4 : 

'Destination bytes', 5:’Count', 6: 'Same srv rate', 7: 'Serror rate', 8: 'Srv serror 

rate', 9: 'Dst host count', 10: 'Dst host srv count', 11: 'Dst host same src port 

rate', 12: 'Dst host serror rate', 13: 'Dst host srv serror rate', 14: 'Flag', 15:           

'Label', 16: 'Protocol', 17: 'Start Time'. Then we remove the unknown attacks 

from label column having label = -2 that reduces the data instances to 381088. 

2. Next step involves encoding all the data into numerical values which enhances 

the dimension to 43 from 17 as each encoding of subclasses is also done (e.g. 

different subclasses of flag attributes also encoded and expanded in different 

columns). 

3. The number of output classes are selected i.e. 1 for benign (41495 instances) 

and -1 for malicious (339593 instances).  Now the 82990 instances are selected 

from the total data with equal distribution of benign and malicious classes (i.e. 

all 41495 instances of benign and 41495 instances from 339593 instances). 

Now from these 82290 instances are divided into ratio of 80 to 20 for training 

set (66392 points) and testing set (16398 points). 

4. Next steps involves the selection of deep learning models (shallow neural 

network, deep neural network, convolutional neural network and attention 

based model). 

We have used following models for prediction of different attack scenarios 

a) Shallow Neural Network Model: The same model was chosen as for NSL—

KDD [65] dataset but now the output classes are only 2 i.e. Malicious and 

benign attack. Therefore last output layer has only two neurons. The results 

are depicted in the Table 5.9. The red marked points in Table 5.9 indicates the 

cases of overfitting. 
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Table 5.9 The effect of choosing different number of neurons and dropout 

rate for Kyoto Dataset [66] on Shallow Neural Network Model‘s 

performance 

Sr. No. 

Neurons in 

Hidden 

Layer 

Drop 

Out  

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 128 

0.01 

0.05 

0.5 

98.23 

97.84 

97.54 

98.08 

97.63 

97.57 

2. 256 

0.01 

0.05 

0.5 

97.98 

98.14 

97.46 

97.89 

98.16 

97.42 

3. 512 

0.01 

0.05 

0.5 

97.96 

98.26 

97.90 

97.83 

98.17 

97.79 

4. 1024 

0.01 

0.05 

0.5 

98.51 

98.26 

97.77 

98.48 

98.20 

97.63 

 

b) Deep neural network Model: The experimentation was done with different 

dropout rate between each hidden layer as shown in Table 5.10. 

Table 5.10   The performance of DNN Model accuracy by selection of 

different number of neurons and dropout rate on Kyoto Dataset [66]  

Sr. No. Neurons in 

Hidden Layers 

Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

128 (HL5) 

0.01 

0.05 

0.5 

98.33 

92.07 

90.91 

98.35 

91.78 

90.71 
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2. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

256 (HL5) 

0.01 

0.05 

0.5 

98.14 

98.09 

91.81 

98.10 

98.15 

91.48 

3. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

512 (HL5) 

 

0.01 

0.05 

0.5 

 

 

86.68 

98.37 

96.98 

 

 

86.67 

98.12 

96.83 

4. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

1024 (HL5) 

 

0.01 

0.05 

0.5 

 

 

98.26 

97.78 

89.65 

 

98.14 

97.60 

89.46 

 

 

c) Convolutional Neural Network Model: Table 5.11 shows the performance 

analysis of CNN network w.r.t. different dropout rate and neurons. 

Table 5.11   The performance of CNN Model accuracy by selection of 

different number of neurons and dropout rate on Kyoto Dataset [66]  

Sr. No. Layers Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

Convolution Layer 

Max Pooling 

Dense (128) 

Output Layer 

0.01 

0.05 

0.5 

97.82 

91.21 

91.84 

97.72 

91.00 

91.54 

2. 

Convolution Layer 

Max Pooling 

Dense (256) 

Output Layer 

0.01 

0.05 

0.5 

98.41 

98.05 

91.92 

98.33 

98.10 

91.56 
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3. 

Convolution Layer 

Max Pooling 

Dense (512) 

Output Layer 

0.01 

0.05 

0.5 

98.28 

98.22 

91.60 

98.15 

98.21 

91.19 

4. 

Convolution Layer 

Max Pooling 

Dense (1024) 

Output Layer 

0.01 

0.05 

0.5 

98.25 

98.38 

98.14 

98.24 

98.34 

98.08 

 

d) Attention Model: Table 5.12 shows the performance analysis of attention 

model. 

Table 5.12   The performance of Attention model by selection of different 

number of neurons and dropout rate on Kyoto dataset [66]  

Sr. 

No. 

Layers (Neurons) Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

Hidden Layer 1 (64) 

Hidden Layer 2 (32) 

Attention Layer (32) 

0.01 

0.1 

0.5 

98.15 

92.10 

97.27 

98.05 

91.91 

96.96 

2. 

Hidden Layer 1 (64) 

Hidden Layer 2 (64) 

Attention Layer (64) 

0.01 

0.1 

0.5 

98.20 

92.26 

94.17 

98.01 

91.99 

94.20 

3. 

Hidden Layer 1 (64) 

Hidden Layer 2 (128) 

Attention Layer (128) 

0.01 

0.1 

0.5 

98.39 

98.47 

91.60 

98.17 

98.20 

91.37 

4. 

Hidden Layer 1 (64) 

Hidden Layer 2 (256) 

Attention Layer (256) 

0.01 

0.1 

0.5 

92.54 

98.12 

98.17 

92.25 

97.96 

97.97 

 

 

5.2.3 UNSW-NB15 Dataset:     

The UNSW-NB15 dataset [67] is a network intrusion detection dataset that was 

collected from a real-world network environment using IXIA PerfectStorm tool. It 
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was created by researchers at the University of New South Wales (UNSW) in 

Australia to address the limitations of existing intrusion detection datasets. The dataset 

contains 49 features using Argus, Bro-IDS tool that describe network traffic, such as 

source and destination IP addresses, protocol type, and service. It is labeled with 10 

classes of network traffic, including normal, and nine types of attacks: Fuzzers, 

Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and 

Worms.  There are around 2 millions of records and these are stored in 4 CSV files. 

The Ground truth is also given in File UNSW-GST.csv while different evens are 

described in events csv file. There are around 175,341 instances for training while 

82,332 instances are given from testing point of view. Data preprocessing steps are as 

follows: 

1. The dataset is downloaded from the UNSW-NB15 website [66]. The training 

instances are 82,332 while test set has 175,341 instances. Since this uneven 

distribution for test and train set, we have combined all the instances making 

it total 257673 instances using pandas library‘s concatenation function. We 

have 45 features in the form of columns (['id', 'dur', 'proto', 'service', 'state', 

'spkts', 'dpkts', 'sbytes', 'dbytes', 'rate', 'sttl', 'dttl', 'sload', 'dload', 'sloss', 'dloss', 

'sinpkt', 'dinpkt', 'sjit', 'djit', 'swin', 'stcpb', 'dtcpb', 'dwin', 'tcprtt', 'synack', 

'ackdat', 'smean', 'dmean', 'trans_depth',  'response_body_len', 'ct_srv_src', 

'ct_state_ttl', 'ct_dst_ltm', 'ct_src_dport_ltm', 'ct_dst_sport_ltm', 

'ct_dst_src_ltm', 'is_ftp_login', 'ct_ftp_cmd', 'ct_flw_http_mthd', 'ct_src_ltm',  

'ct_srv_dst', 'is_sm_ips_ports', 'attack_cat', 'label']).  

2. There are 10 types of attack in attack category columns. The attack type and 

their instances are ‘Normal’: 93000, ‘Reconnaissance’: 13987, 'Backdoor': 

2329, 'DoS': 16353, 'Exploits': 44525 'Analysis': 2677, 'Fuzzers': 24246, 

'Worms': 174, 'Shellcode': 1511, 'Generic': 58871.  

3. Next step involves dropping the categorical columns like id, proto, service, 

state, attack category. Now, data contains 39 numerical valued columns 

(except label) and we find the correlation amongst all the 39 features as shown 

in Fig. 5.7. (Hotmap). It is done to select the relevant feature that are not highly 

correlated to each other. The columns 'dbytes', 'sloss', 'dloss', 'dwin', 
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'ct_ftp_cmd', 'ct_srv_dst' are dropped as they have high correlation with other 

features (> .0.97). Therefore, we have effectively around 33 features left to do 

further processing. 

4. Now data is divided into training and testing set with ratio of 33 to 67 i.e. 

172640 training instances and 85033 testing instances with only two output 

classes i.e. normal and abnormal. Now we deploy different machine learning 

models and analyze performance of each model with training and testing 

accuracy. 

 

 

         Fig. 5.7. The correlation between the 39 features for UNSW-NB15 dataset [67] 

 

d) Shallow Neural Network Model: The model similarly chosen for NSL—

KDD [65] dataset is used but now the output classes are only 2 i.e. Malicious 

and benign attack. The input features are 33. Therefore last output layer has 

only two neurons. The results are depicted in the Table 5.13. The red marked 

points in Table 5.13 indicates the cases of overfitting. The system was trained 

for 10 epochs with batch size of 32. 
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Table 5.13 The effect of choosing different number of neurons and 

dropout rate for UNSW-NB15 Dataset [67] on Shallow Neural Network 

Model‘s performance 

Sr. No. 

Neurons in 

Hidden 

Layer 

Drop 

Out  

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 128 

0.01 

0.05 

0.5 

93.24 

93.27 

92.36 

93.30 

93.32 

92.38 

2. 256 

0.01 

0.05 

0.5 

97.98 

93.39 

97.46 

97.89 

93.39 

97.42 

3. 512 

0.01 

0.05 

0.5 

97.96 

98.26 

97.90 

97.83 

98.17 

97.79 

4. 1024 

0.01 

0.05 

0.5 

98.51 

98.26 

97.77 

98.48 

98.20 

97.63 

 

e) Deep neural network Model: The experimentation was done with different 

dropout rate between each hidden layer as shown in Table 5.14. 

Table 5.14   The performance of DNN Model accuracy by selection of 

different number of neurons and dropout rate on UNSW-NB15 Dataset 

[67] 

Sr. No. Neurons in 

Hidden Layers 

Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

128 (HL5) 

0.01 

0.05 

0.5 

98.33 

92.07 

90.91 

98.35 

91.78 

90.71 

2. 1024 (HL1) 0.01 98.14 98.10 
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768 (HL2) 

512 (HL3) 

256 (HL4)  

256 (HL5) 

0.05 

0.5 

98.09 

91.81 

98.15 

91.48 

3. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

512 (HL5) 

 

0.01 

0.05 

0.5 

 

 

86.68 

98.37 

96.98 

 

 

86.67 

98.12 

96.83 

4. 

1024 (HL1) 

768 (HL2) 

512 (HL3) 

256 (HL4)  

1024 (HL5) 

 

0.01 

0.05 

0.5 

 

 

98.26 

97.78 

89.65 

 

98.14 

97.60 

89.46 

 

 

f) Convolutional Neural Network Model: Table 5.15 shows the performance 

analysis of CNN network w.r.t. different dropout rate and neurons. 

Table 5.15   The performance of CNN Model accuracy by selection of 

different number of neurons and dropout rate on UNSW-NB15 Dataset 

[67] 

Sr. No. Layers Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

Convolution Layer 

Max Pooling 

Dense (128) 

Output Layer 

0.01 

0.05 

0.5 

97.82 

91.21 

91.84 

97.72 

91.00 

91.54 

2. 

Convolution Layer 

Max Pooling 

Dense (256) 

Output Layer 

0.01 

0.05 

0.5 

98.41 

98.05 

91.92 

98.33 

98.10 

91.56 
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3. 

Convolution Layer 

Max Pooling 

Dense (512) 

Output Layer 

0.01 

0.05 

0.5 

98.28 

98.22 

91.60 

98.15 

98.21 

91.19 

4. 

Convolution Layer 

Max Pooling 

Dense (1024) 

Output Layer 

0.01 

0.05 

0.5 

98.25 

98.38 

98.14 

98.24 

98.34 

98.08 

 

e) Attention Model: Table 5.16 shows the performance analysis of attention 

model. 

Table 5.16   The performance of Attention model by selection of different 

number of neurons and dropout rate on UNSW-NB15 Dataset [67] 

Sr. 

No. 

Layers (Neurons) Dropout 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

1. 

Hidden Layer 1 (64) 

Hidden Layer 2 (32) 

Attention Layer (32) 

0.01 

0.1 

0.5 

98.15 

92.10 

97.27 

98.05 

91.91 

96.96 

2. 

Hidden Layer 1 (64) 

Hidden Layer 2 (64) 

Attention Layer (64) 

0.01 

0.1 

0.5 

98.20 

92.26 

94.17 

98.01 

91.99 

94.20 

3. 

Hidden Layer 1 (64) 

Hidden Layer 2 (128) 

Attention Layer (128) 

0.01 

0.1 

0.5 

98.39 

98.47 

91.60 

98.17 

98.20 

91.37 

4. 

Hidden Layer 1 (64) 

Hidden Layer 2 (256) 

Attention Layer (256) 

0.01 

0.1 

0.5 

92.54 

98.12 

98.17 

92.25 

97.96 

97.97 

 

 

 

5.2.4 Comparison of all models 
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In the Table 5.17, a comparative analysis is done w.r.t all the models proposed. The 

best test and training accuracy are selected for the purpose. 

 

Table 5.17: Comparison between all the Proposed Models 

DL/ML 

Model 

NSL-KDD Cup 

Database[65] 
Kyoto Database [66] 

UNSW-NB15 

Database[67] 

Training 

Accuracy 

Testing 

Accuracy 

Training 

Accuracy 

Testing 

Accuracy 

Training 

Accuracy 

Testing 

Accuracy 

Shallow 

Neural 

Network 

      

Deep 

Neural 

Network 

      

CNN       

Attention 

Models 

      

 

5.3 Conclusion 

 We have analyzed different deep learning models in this thesis. The simplest one are 

Shallow Neural Networks that have only one hidden layer, and the output layer 

predicts the class of the input. They are good for simple classification tasks with 

linearly separable data. However, for complex data, they may not be able to capture 

the nuances and variations in the data. Another networks are Deep Neural Networks 

that have multiple hidden layers, allowing them to learn complex representations of 

data. They can learn features at different levels of abstraction and generalize better to 

unseen data. However, they require more training data and computational resources 

than shallow networks. Next we have analyzed Convolutional Neural Networks that 

were designed specifically for image and video data. They use convolutional layers to 

learn features from local neighborhoods of pixels and pooling layers to reduce the 

dimensionality of the feature maps. They are highly effective for image classification 

tasks, achieving state-of-the-art performance on many benchmarks. However, they 
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can also be tuned for different dataset. Finally, we have chosen the more contemporary 

model like attention models which are a family of neural network architectures that 

enable the network to focus on specific parts of the input sequence when making 

predictions. They are commonly used in natural language processing (NLP) tasks such 

as language translation and summarization. Attention models can capture long-term 

dependencies between input sequences and improve performance compared to 

traditional sequence-to-sequence models. However, they requires a lot of data and 

time to train. In multi-class classification tasks, all four types of neural networks can 

be used. Shallow neural networks can work for simple classification tasks, but for 

more complex datasets, deep neural networks, CNNs, and attention models can 

provide better accuracy. However, the specific choice of neural network architecture 

will depend on the characteristics of the data, the size of the dataset, and the 

computational resources available. Another limitation of neural networks is their 

requirement for large amounts of training data. Training a neural network requires a 

large dataset that accurately reflects the real-world distribution of the data, and 

obtaining such data can be challenging and expensive. Furthermore, if the dataset is 

biased or incomplete, the network may learn incorrect or incomplete representations 

of the data.  

 

5.4 Future Work: 

Recently, deep learning has emerged as a powerful tool for multi-class classification, 

with many new models being developed and refined over the past few years. The 

future work entails exploring of the newest and most promising models which are 

summarized as 

1. Transformer-based Models: Transformer-based models, such as BERT and 

GPT-3, have revolutionized natural language processing (NLP) tasks and 

achieved state-of-the-art results on a range of benchmarks. These models use 

attention mechanisms to encode and decode sequential data, allowing them to 

capture long-term dependencies in language data. They can be fine-tuned for 

multi-class classification tasks, making them highly relevant for future 

applications in NLP. 
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2. Vision Transformers (ViT): ViT is a recent development in computer vision 

that replaces convolutional layers with transformer-based layers. Like the 

original transformer model, ViT uses self-attention to process image patches 

and generate features. ViT has achieved state-of-the-art results on several 

image classification benchmarks, showing promising potential for future use 

in multi-class classification tasks. 

 

3. Graph Neural Networks (GNNs): GNNs are a type of neural network that 

can process graph data, such as social networks, protein structures, or 

molecular data. GNNs use message-passing mechanisms to propagate 

information between nodes and edges in the graph, allowing them to learn 

complex relationships between entities. They have been used for a range of 

multi-class classification tasks, including drug discovery and social network 

analysis. 

4. Capsule Networks: Capsule networks are a recent development in computer 

vision that aim to address the limitations of traditional convolutional neural 

networks (CNNs). Capsule networks use capsules, which are groups of 

neurons that encode properties of objects or features. They can learn to 

recognize objects regardless of their position or orientation in the image, 

making them highly relevant for future applications in image classification. 

 

In conclusion, the development of new deep learning models for multi-class 

classification is an active area of research. The transformer-based models, ViT, 

GNNs, and capsule networks are just a few examples of the latest developments in 

this field, and they show great potential for future applications in NLP, computer 

vision, and graph-based data analysis which can be further pipelined with the problem 

of attacks. Moreover once model has been trained and evaluated, you can deploy by 

using using cloud services like Amazon Web Services, Google Cloud Platform or 

Microsoft Azure, or deploy the model on-premises an we can integrate the deployed 

model with application or system to enable real-time analysis. This might involve 

using RESTful APIs or message queues to send data to the model for prediction and 
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returning the prediction back to the application or system. Further, we can monitor 

the performance of deployed model in real-time and can track metrics such as 

accuracy, throughput, and latency to ensure that the model is performing well and 

make improvements as needed. 
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