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Abstract.

In rocks where th. « teeply dips into the pit wall, the potential exists for
toppling failures io occur ir. + highwall. The mechanisms of toppling failures are
complex and are probably the least understood of all the mcdes of pit slope failure.

A theory defining the toppling mechanism and explaining the mechanisms of
formation of the toppling failure plane in terms of the system of nonlinear equations, was
formulated in this thesis. The derived equations are based on beam theory which is
widely used in civil and mechanical engineering. The resultant system of equations is
solved numerically using the Newton-Raphson method.

A computer model based on this theory was written to show the validity of the
theory in practice, and a backanalysis of the failure of the 50-A-5 pit at the Luscar Mine,
Cardinal River Coals Ltd. was done using this computer model.

During the course of the work new concepts concerning the toppling mechanism
were formulated, and others were clarified.

An understanding was acquired that flexural toppling, block toppling and block
flexural toppling are three distinct stages of one deformation process rather than three
different toppling mechanisms.

It is possible to generalize at this stage, and to say that the failure in the flexural
toppling mode will result in most cases in subsequent block or block flexural toppling.

Failure of the slopes by flexural toppling is governed by the shear forces generated
by interacting blocks of bending rock columns. After the rock blocks start to split into

smaller and smaller columns the resultant failure surface can be found as the plane of



highest tensile stresses.

Higher strength parameters define a stronger slope which v . sustain more
loading without a failuic, but could fir~'" fail in  inore violeut way - . the slopes
defined with lower strength parameters which tend to break part’ "'y at an earlier stage.

The progressive block fl. \ural and block toppling above the basa: surface created
by flexural toppling -ill create additional zones of fractt -ed rock which may connect to
form a new failure plane with an unfavourable inclination an' .hus lead to triggering of

an unexpected shear failure.
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Nomenclature

o, angle between the side of a tilting block and the vertical

B angle of the failure plane with the horizontal

r a-+y+¢-90°

Yo unit weight of water

o sliding distance of blocks  the foot of the slope in question, for onc
iteration step

C angle of the slope below the crest

N slope angle above the crest

0(x), angle of tangent to the deflection curve with horizontal

A, angle between the reaction P, and the vertical

£n angle between sides of a toppling and a sliding block

o(x), normal stress

t(x), shear stress

b, angle of internal friction

W angle of rock columns (cantilevers ) with the horizonial

al height of the rock steps on the slope face below the <2 :st

a2 height of the rock steps on the slope face above the crest

b spacing of joints

b~ thickness of cantilever

d, height of a cantilever

E, Young's modulus of rock

e,;  excentricity of acting force with respect to the contact point of a

toppling block
F, loading force acting at the end of a cantilever

height of the rock slope under consideration
h',, height of the water column below the cantilever (stepped base)
h,, height of the ground water column

moment of inertia



length of a cantilever

number of rock steps

bending moment

reaction force between toppling blocks

moment of area ahove the neutral axis about the neutral axis
seismic force

continuous reacti-'u force between cantilevers [kN/m]

point reaction fare between cantilevers (rock blocks) [kN]
singularity function

uplift water force

shear force

water force acting on the side of a block

weight

weight of a block

length between the beginning and the point of action of the seismic force
length of the contact between two cantilevers

length of the submerged part of a cantilever

deflection of a cantilever

distance of outer fibre from the neutral axis



1. INTRODUCTION

As stated by Richings (1981),"although the role of slope stabit*:+ ™. not changed,
there have been changes in the mining industry that have affected ::* . eotechnician
engaged in slope stability studies. The deposits currently being mineit .+ -~ aluated are

technically difficult, capital intensive, and economically marginal....As a 1ulc. they are of
a lower grade, more remotely located, and more technicallv difficult 1o develop. It should
be noted at this point that not all of the difficulties encountered arc inherent in the
orebody. Some have been generated by the imposition of new mining regulations”. In
addition, the need for capital in the mining industry had outstripped most mining
companies' ability to provide this financing internally. Mining companies have therefore
been prime targets for oil companies anxious to diversify, or, alternatively, they have been
required to turn to bank loans to finance projects. Some of these are business loans that
are secured by assets and revenue from sources not associated with the project. The
mining investor or decision maker is, therefore, often more sophisticated financially, but
less sophisticated in mining terms. In this case, the -iability of the project must be
clearly shown before any financial commitment. The impact of these changes will be
to force the geotechnician and mining engineer to attempt to quantify the risk and the
financial implications of a slope design.

The mining engineer over the last few years has relinquished his responsibilities
for making the judgment on pit slope angles and leaned heavily on the geotechnician to
provide him with a single answer. There is, of course, no single answer. The mining
engineer who is in a position to see all of the picture should make the decision on what
slope design is feasible. To do this, he must be supplied with the probability of failure
associated with the slope design angle and this should be expressed in some useful form.
To assess the implications of the failure, the mining engineer must know whether the
failure will be large or small, and whether it will be fast or slow. With that information,
he may be able to say whether he can live with the slide, and he will at least be able to

begin to quantify its economic implications. The answer may be very different for an
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interim in-pit slope and the one that contains a permanent haul road or dcfines a pit limit
bordering on a metallurgical plant or major dump.

Furthermore, as stated by Aydan, Ichikawa, Shimizu and Murata (1991), the
stability of rock slopes associated with the construction of power plants, highways and
open pit mines is always of paramount importance during the lifetime of these structures.
In comparison with slopes in soils, the failure modes in rocks are various and are
generally governed by the structure of discontinuities rather than by the properties of the
intact material. Therefore, any design scheme for rock slopes must consider all the
kinematically possible modes of fuilure.

The design of stable open pit walls in the foothills and mountain surface coal
mines of Alberta and British Columbia is essential to ensure safety of the operations.
Simultaneously the economics of the operations demand that these pit slopes be cut at as
steep an angle as possible to minimize the amount of waste rock it is necessary to
excavate. Much engineering time and effort are therefore devoted to identifying the
potential modes of slope failure, to analyzing the pit wall stability and to designing
remedial measures in case of instability.

In many cases the pits are developed in steeply - dipping strata. Often it is
desirable to excavate the footwall parallel to the strata to avoid undercutting the strata and
initiating footwall failure. Much work has been done to address the stability of bedded
footwall slopes and design guidelines for the support of bedded fcotwall slopes have been
proposed. However, on the other side of the pit where the bedding dips in the opposite
direction to the pit wall and, with steep bedding, the potential exists for toppling failures
to occur in the highwall. The mechanisms of toppling failures are complex and are
probably the least understood of all the modes of pit slope failure; as a result techniques
for the analysis and assessment of the stability for the various potential modes of toppling
failure are in their infancy and muach work needs to be done to further develop practical

design guidelines for this situation.



2. TOPPLING FAILURES - LITERATURE REVIEW

2.1. Geological and structural descri, tiv* Hf the problem.

2.1.1. Physical Environment.

The first classification of the toppling failure that was widely accepted by the
geotechnical and geological society was the one published by Goodman and Bray in 1976.
Following their paper, "Toppling is a mode of failure of sl es involving overturning
of interacting columns. In rock, such columns are formed by regular bedding planes,
cleavage, or joints which strike parallel to the slope crest and dip into the rock mass; this
contrasts with the structure of slides in which the controlling discontinuities dip into the
open space. Toppling mechanisms also operate in soft rocks and soils with vertical or
backward inclined tension cracks. Since folding is well known as a deformational
mechanism in layered rocks, and overturning is recognized as a fundamental failure mode
for dams and retaining walls, it is surprising that folding and overturning were not until
recently recognized widely in rock slopes. Such failures prove to be widespread in many
different kinds of rock masses".

Cruden (1989), Cruden and Hu (1990) and Hu and Cruden (1992), formulated a
thorough geological definition of the toppling failure, as well as the necessary
terminology. They also showed, that toppling can occur over a much wider range of
discontinuity orientations than stated by Goodman and Bray. Cruden and Hu used
conveniently the fact, that rock slopes formed in the rock mass could be classified
according to their orientation with respect to the orientation of the penetrative
discontinuities, such as bedding planes or schistosity. Cruden and Hu (1990) summarised
the terminology defined by Powell (1875) and Calloway (1879) in the following manner:

Cataclinal slopes are such slopes, in which the penetrative discontinuity dips in

the same direction as the slope.
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Anaclinal slopes are the slopes in which the penetrative discontinuity dips in the
direction opposite to the slope.

Orthoclinal slopes are the slopes, in which the azimuth of the dip direction is
perpendicular to the azimuth of the slope direction within the range of +20
degrees. .

Pl gioclinal slopes are the remaining slopes which are oblique to the strike of the
bedding or to another sty ~ture.

Cataclinal slopes may be further d.vided into overdip slopes that are steeper
than the dip of the discontinuity and underdip slopes that slope less than
the dip of the discontinuity. Slopes parallel with the dip of the
discontinuity are called dip slopes.

Both cataclinal and anaclinal slopes containing steeply dipping penetrative discontinuities
are potentially susceptible to toppling. It is possible to find favourable conditions for
natural toppling everywhere. Of course, such conditions can be created in any steeply

dipping layered rock strata by mining activity.

2.1.2. Modes of toppling

"The modes of failure that have long been recognized in slopes of jointed rock
masses involve sliding on a surface within the mass, and falling or detachment from
surfaces close to the edges of the mass; i.e. sliding failures by either translational or
rotational movement, and rock-falls" (de Freitas and Watters, 1973). Certainly multiple
modes of failure are common; however it is now evident that these modes, even when
interacting, cannot explain all the failures that can be found in slopes of jointed rock.
There are failures observed having a structure that cannot be explained by sliding. These
can occur above surfaces whose dip would not allow sliding to develop with the present
angles of friction and sometimes they occur above surfaces on which sliding has already
taken place. As noted by Freitas and Watters a third mode of failure can occur in rock

slopes in addition to sliding and rock falls. This third mode of failure is toppling.
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There were few case histories dealing with toppling published before 1976. Some

early descriptions of toppling failures were given for example by Zaruba and Mencl

(1969), de Freitas and Waters (1973), Heslop (1974) and by Bukovansky, Rodriguez and

Cedrun (1974). In none of these papers did the authors try to analyze the mechanisn:
which triggered the failure.

In 1976, Goodman and Bray presented the first classification of toppling failures.

Their classification has become broadly accepted, and included the following terminology:

Flexural toppling (fig.2-1, page 7) can occur in rocks with one preferred
discontinuity system oriented to form a rock slope composed of semiccntinuous
cantilever beams. These columns break in flexure as they bend forward. It is
obvious that thinner layers of the same length tend to bend more and transfer the
load to the thicker layers. Erosion or mining activity can trigger this mechanism.
Failure then starts at the toe and progresses backwards, creating wide, deep
tension cracks. The lower portion of the slope is covered with disoriented and
disordered blocks. The bending and cracking continue until the line of the tension
cracks intercepts the crest of the slope, provided that the geology did not change
through the slope. The bending is gradual and there is no obvious base of this
mechanism that could be discovered by drilling. "Water levels will vary greatly
from one drill hole to another since there may be little or no hydraulic
communication across the cantilevers. Flexural toppling occurs most notably in
slates, phyllites, and schists" ( Goodman and Bray 1976).

Block toppling (fig. 2-2, page 8) can occur in the rocks with more than one
system of joints, typically with one system of bedding planes and two systems of
widely spaced joints. Longer, overturning columns at the crest of a slope are
leaning on the shorter blocks at the toe creating a system of toppling and sliding
blocks. "The base of this disturbed mass is better defined than in the case of the
flexural toppling; it consists of a stairway which, generally, rises from one layer
to the next" (Goodman and Bray, 1976). Because of the opened system of joints

and interblock caves throughout the disturbed zone, the water pressure will not be
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high. Block toppling occurs mostly in thick-bedded sedimentary rocks such as

limestones and sandstones, as well as in columnar jointed volcanics.

Block flexure toppling (fig. 2-3, page 9) is characterized by
pseudo-continuous flexure of the numerous blocks in highly jointed rock.
Sliding is concentrated at the toe and there is a combination of sliding and
toppling in the rest of the unstable slope. Sliding occurs either directly as a result
of the thrust applied by the upper overtirning block on the lower resisting block,
or as a result of steepening of the joint angles ~f the toppling column, or as a
combination of these two mechanisms. The character of the disturbed zone is
again widely open but with fewer edge to face contacts than in the case of block
toppling. Typical rocks susceptible to block flexural toppling are interbedded
sandstone and shale, interbedded chert and shale, and thin bedded limestone.

Secondary toppling is a mode of behaviour "which may be excited by
another, independent phenomenon where overturning would otherwise be unlikely
to occur" (Goodman and Bray, 1976). In the paper Goodman and Bray described
Slide head toppling, Slide base toppling, Creep toppling, Slide toe toppling and

a Tension crack toppling.



Figure 2-1 Flexural toppling.



Figure 2-2 Block toppling.



Figure 2-3 Block flexural toppling.
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2.1.3. Structural control of toppling .

Cruden (1989) pointed out that toppling may occur on cataclinal slopes when
B+(90-y) > ¢ 2-1)

where P is the dip of a slope, y is the

dip of a discontinuity, and ¢ is the
angle of internal friction of the i
discontinuity. Equation 2-1 is valid for By
zero cohesion on ihe ¢::continuity, and
for o,= 0 (fig.2-4). These conditions -

are valid only at the surface of the

. . ) 26
slope where the maximum stress G, 1s ; o o

paraliel to the slope. In both figures ©

is an angle between a normal to the

Figure 2-4 Stress distribution on the surface

discontinuity and the direction of o,
- of a rock slope.

What this equation really says is, that

under these conditions, sliding on the
discontinuity is possible. That certainly
does not mean that toppling is also
possible. This equation can be taken as

the broadest limit outside of which

toppling is excluded. The geomeiry of

such a slope is shown in fig. 2-5.

According to Cruden (1989), it is likely

that on the underdip cataclinal slopes Figure 2.5 Geometry of the slope with
only Flexural toppling can develop discontinuity.

under gravity only by the gradual

folding of the layers when the driving force in this case is the weight of the rock released

on the surface by weathering processes. The driving force necessary for the triggering
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of any toppling process can be generally created by any activ 1. which would sufficiently
steepen the rock slope or change the loading of the rock, proiided that the geometry of
the rock-slope system is favourable for toppling (page 3).

According to Hu and Cruden (1992) Block flexural topples may also develop under
gravity alone. This kind of topple occurs where the ratio of the spacing of strike joints
to the bedding thickness is less than two. Toppling retrogresses gradually into the rock
mass without creating any discontinuity at the base of the topple. In other words, no
sliding surface is developed at the base of the failing rock mass. The movement is slow
and finally the rotating rock layers again become stable without collapse of the rock
slope. "Toppled bedding surfaces in block flexural topples appear smoothly folded in cross
sections on scales much larger than the individual blocks, and bedding orientations
gradually change along bedding layers" (Hu and Cruden, 1992). As the blocks move,
little fine debris can enter the loosened rock structure .

Block toppling develops when the ratio of spacing of strike joints to the bedding
thickness is larger than two and external forces may assist its initiation. The dip of
bedding on the opposite side of the rupture surface can change by over 10°. Rupture
surfaces are perpendicular to both bedding surfaces and the strike of joints; they
generally extend less than 10 m and dip at around 35° downslope. Sliding on rupture
surfaces either follows the strike joints or partly cuts through thin layers and partly
follows the joints. When the rock mass is composed of layers of different thickness,
sliding surfaces generally follow the weakest planes in the thicker units.

Block topples can be further divided to Chevron topples and Multiple block
topples. Chevron topples are formed by only one layer of the blocks above a single
rupture surface and they are characterized by steeper slopes (not less than 35°) When the
toppled masses slide away, toppling progresses another few meters up the slope creating
new sliding surface. Multiple block topples are formed by several "storeys" of toppled
rock and they are characterized by the slopes gentler than 35°. In this thesis Hu and
Cruden's classification, which is consistent with the original Goodman and Bray paper

will be used.
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2.1.4. Toppling on cataclinal slopes.

According to Cruden and Hu (1990) the common mode of failure on overdip
slopes is sliding, governed by the geometry of a slope and discontinuities and by the
strength parameters of the discontinuities. They did not observe toppling on these slopes.

The common mode of failure on the dip slopes. according to the same authors, is
buckling. Sometimes buckling can be associated with toppling. Buckling generally can
occur where the bedding layers are steep and the ratio of the thickness and the height is
small.

Cruden (1989) pointed out that toppling may occur on underdip slopes when the

geometry of a slope is as shown on

fig. 2-6 and the basic condition

given by equation 2-1 is fulfilled.

Figure 2-6  Geometry of the underdip slope
with discontinuity.

2.1.5. Toppling on anaclinal slopes

The equation (2-1, p.10) is valid on anaclinal slopes including the comments. It
is certainly true that as the rock mass topples, there must be some sliding between the
toppled blocks. Wyllie (1980) documented such a movement in a Rocky Mountain
surface coal mine. Commonly the failure mechanism is the combination of toppling on

bedding and sliding on the cross joints. Common toppling was, according to Cruden and
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Hu (1990), confined to cases where

$>(90-¢) V ¢>2¢ (2-2)

assuming that the angle of friction

on the joints is the same as that on
the bedding planes.
Geometry of an anaclinal

slope is shown in the fig. 2-7.

Figure 2-7 Geometry of the anaclinal slope with
a discontinuity.

2.2. Toppling models.
The models used for analysis of the toppling failure can be divided into three
categories:  a) Limit equilibrium models.
b) Numerical models.
¢) Physical models.

2.2.1. Limit equilibrium models.

Limit equilibrium models are mathematical models usually exploiting the closed
form solutions of the forces acting on the structure of interest. The equilibrium can aiso
be expressed in the terms of stresses. There are some questions about the role of limit

equilibrium analysis as well as about the role of the other methods. However, this
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problem will be discussed in section 2.2.4. of this chapter .

The first basic, and till now the only limit equilibrium model of toppling is that
of Goodman and Bray (1976). They presented a simple analysis of block toppling on a
positively stepped base. This model was later upgraded several times, (Scavia et al 1990,

Piteau et al 1981) but the core

of all the successive approaches

remained unchanged. It was

formed by the static equations
formulated by Goodman and
Bray (1976). Consider the
regular system of blocks shown

in the fig. 2-8. A slope at angle

0 was excavated in a rock mass

with layers dipping at 90-a. ‘= — e -
. . ‘ Figure 2-8 Model for limiting equilibrium analysis
The toppling base is formed by of toppling on a stepped base.

a stepped surface with general

inclination . The constants a,, a,, and b shown in the figure are given by

Y, = mMa,-b)

Yo =Vpa ~ G — b 2-3)

The height difference between two blocks below and above the crest, and the height of

the step n is

a, = Ax tano 2-4)

At the top of the slope, y, / Ax < cot a and blocks are stable unless a > ¢. This

assumption is reasonable because the blocks close to the crest are short. Below the stable



zone blocks tend to topple, the
upper leaning on the lower
ones. At the toe of the slope
blocks are again shorter; 'y, /
Ax < cot o, and they will not
topple under their own weight.
However, the force transmitted
from the unstable region can
still cause these blocks to
topple or slide. That is the
reason why all the
blocks,starting with the first
toppling one, must be tested
both for sliding and toppling.
Forces acting on a toppling
block are shown in the fig. 2-9
and forces acting on a sliding
block are shown in the fig. 2-
10.

Figure 2-9 Forces acting on a toppling block.

Figure 2-10 Forces acting on a sliding block
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In a similar way to the geometry of the slope, the points of application of the acting
forces can be calculated (eq.2-5).

M, =y
Below the crest: "oy
lﬁt = Y; B ‘zl
M = - a -
For the crest: L" - T~ % 2-5)
n =Y T &
M =y -a
. n n 2
Above the crest: L -y,

Finally, the force P,, necessary to prevent toppling, and the force P, necessary
to prevent sliding can be calculated (eq. 2-6).

P (M -uAx) + (w,]2)(y,sine~-Ax cosa)
L

n-1t

(2-6)
w,(ncosa -sina) )

1

2

P P - B

n-1;s n

The factor of safety was defined by dividing the applied friction coefficient by the
friction coefficient required for equilibrium with the given support force P,.
Unfortunately, for this kind of failure, the definition is not the happiest one as noted by
Zanbak (1983).

Goodman and Bray's analysis deals only with the initial situation in the slope
before any deformation occurs. However, once a column of rock starts to overturn, the
acting forces start to change and the friction, necessary for equilibrium, changes as well.
At the beginning, the magnitudes of overturning moments and subsequently the

magnitudes of sliding forces increase, but later, when the blocks come again to the face
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to face contact, it drops sharply, and the calculated safety factor can rise above one,
suggesting that the slope becomes stable again. Actually, according to Goodman and
Bray (1976), this is exactly the case in many natural slopes.

An interesting case history of using of a variant of the method described above
was presented in 1981 by Piteau, Stewart and Martin. They used this analysis formulated
for block flexural toppling for analyzing a flexural toppling failure in a metal mine in
Australia. They imbedded into the original solution various gravitational forces and water
forces. However, thecre could be some doubts concerning the classification of the mode
of toppling with respect to the original terminology of Goodman and Bray. The
photograph. presented as an example of the flexural toppling resemble more block
toppling in one case and block flexural toppling in the other case. The biggest difference
between Piteau's observation and the definition of the flexural toppling mode is the
presence of a well developed basal discontinuity at the base of the topple classified by
Piteau as a flexural one. The same discrepancy will be noted in the chapter concerning
numerical methods.

This case history pertains to both bench design and overall slope design of a high
wall in an open pit iron mine in Australia. Toppling in this case occurred along foliation
joints developed along schistosity. As could be expected, the spacing of the foliation
joints was found to be extremely important, and it varied from 30 cm to 150 cm. The
authors of this analysis found that the best correlation between the model results and
between the real slope behaviour was for an assumed spacing of the joints of 10 m. The
big difference between the input and real field spacings was explained by a variation of
the stresses along the joints. With increasing depth the stresses increase, and so does the
shear strength along the joints. The other rxplanation was based on the assumption that
it was not likely that there were many persistent foliation joints on the scale of the slope.
On the other hand the spacing of the foliation in the benches was assumed to be 1.5 m.

It is not very surprising that with these assumptions the overall slope was found
safe and the benches unsafe. What is interesting in this case history is that after adjusting
the method according to field observations, it described the real situation with reasonable

precision, and even reacted correctly to ground water level changes. It is even more
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interesting if it is realized that the method, according to the authors, was used for
simulating the flexural toppling mechanism, which is not consistent with assumptions
imbedded in the original Goodman and Bray analysis of the block toppling on a stepped
base. However, the most important information to be learned from this paper is that the
discontinuity sets important for the overall slope stability are not necessarily important
for the bench stability and vice versa. As a result of this fact a mine slope can be stable,
and the bench can fail, or the benches can be stable and still there might be an overall
slope failure.

Another interesting example of using the "stepped base block toppling analysis"
was given by Wyllie (1980). Three case histories of toppling failures of rock slopes were
described in his paper. Two of them were simple block toppling failures suitable for the
analysis used. The third case, failure of the high wall in an open pit coal mine on the
eastern foothills of the Rocky Mountains, was an example of complex block toppling or
flexural toppling. Features characterizing this failure, and the geological conditions of the
site were identical to those observed at the locality studied in this thesis. The coal
occured as an interbedded sequence between folded shales and sandstones. On the south
limb of the asymmetrical syncline, layers with a spacing of about 2 m were overturned
and dipped at about 70° into the pit. The beds formed tall, narrow slabs that underwent
a toppling movement, which reduced support at the toe of the slope so that, eventually,
the upper slope started to move. The first cracks were observed after seven months when
the pit was 10 m deep. The pit was carefully monitored and it was mined to the designed
depth of 150 m. About 18 months later the slope movement started to accelerate.
Tension cracks developed at the top of the mountain approximately 300 m above the pit
bottom, and about 600,000 m* of material failed along the pit crest. After that, all
movements slowed down to the level of few mm a day or less. Wyllie believed that the
decrease in the rate of movement was due to a drop of ground water pressure within the
slope, as well as to an increase in the resistance, as deformation changed the edge-to-face
contact between blocks to face-to-face contact again. From this note it was obvious that

the author believed that it was the block toppling failure mode that governed the
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deformations. Unfortunately, Figure 5 in Wyllie's showing the bedding at the crest of the
pit resembled more block flexural toppling than flexural toppling mode of failure. It was
inferred that the continued movement of the toppling failure had removed support from
the toe of the upper slope, and this had triggered the upper slide.

Analysis of the toppling failure was carried out using the Goodman and Bray
model for block toppling with one slight modification that enabled the incorporation of
different angles of internal friction for the sides and the base of slabs. Results showed
that a friction angle of 25° on the sides and 42° on the base of the blocks was required for
equilibrium. These are approximately correct values for shale and sandstone, respectively.
After this minor improvement of the original method, the ai.ulysis provided reasonable
answers. However, as mentioned by author, there is one important drawback of the
procedure used. That is that the angle of a failure surface must be selected. The angle
governs the height of the slabs that, in turn, has a significant affect on their tendency to
topple. It is obvious from the character of the analysis that the calculated stability
condition of the slope is highly dependent upon the angle selected for the failure surface.

Another case history using the model of toppling on a stepped base was published
by Teme and West (1983), who studied the influence of allowing or not allowing drainage
of the ground water on some secondary toppling failure mechanisms in discontinuous rock
slopes.

Piteau snd Martin (1981) and Zanbak (1983) presented design charts for rock
slopes suscepuible 10 tuppling which were based on the calculations using the Goodman
and Bray mndel.

The paxt immgortar’ -ien forward among the limit equilibrium analysis of toppling

was presented in 1990 Ly Scavia, Barla and Bernaudo .

2.2.1.1. Probabiliss. .t ¥ility 2~aiysis of block toppling failure.
The role of st istics +. <k mechanics and in geotechnics has generally played
an increasingly more anporfant role in the recent years. This seems to be the logical

direction of development. While the <omputational methods are dealing sometimes with
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minute details, the knowledge of a rock mass structure in particular cases is often very
crude. Picking up one set of information from laboratory and field tests, and running
them through some ¢ the numerical models may be dangerous, and it can only be hoped
that the result is ~t too far from reality. Statistics offers an opportunity to take into
account all availaule data, and gives also an answer about the credibility of final results.

In 199. scavia, Barla and Bernaudo presented a 2-D limit equilibrium analysis of
rock blecks «¢5ting on a stepped failure surface using a Monte Carlo simulation procedure
and Ma: »ov Chains theory. Knowing the variability of the parameters describing the
stru- nive uf a rock mass, a number of possible failure paths are generated using a Monte
Carli: »:mulation. For each formed failure surface, the statistical distribution of the
interaction forces is calculated, again using a Monte Carlo simulation. Then the
probability of failure of one or more blocks is calculated using the Markov Chains theory.
Thus the influence of veriability of geometrical and strength parameters is incorporated
into the original model to which the hydrostatic, seismic and externally applied forces

were added.

2.2.1.2. Probabilistic rock structure modelling

According to Miller (1983), slope stabilities in discontinuous rock masses are
primarily controlled by geologic structures because displacements occur along surfaces
of weakness. Potential failure structures can be divided into two groups. Within the
group of major structures are discontinuities such as faults, lithologic contacts, or other
features with lengths comparable to the size of the study area. Within the group of minor
structures are joints, foliation, and bedding planes. As noted earlier, stability of each
slope should be evaluated in terms of structures important for stability of that particular
slope. For example, stability of an overall slope and of a bench in the very same open
pit could be governed by different structures. Discontinuity characteristics such as
orientation, spacing, and length are random variables that can be modeled by statistical

distributions estimated from mapping data. Mapped fracture orientations are plotted, for
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example, on Schmidt's lower-hemisphere projection, which allows contouring of pole
densities that appear as clusters of points on the plot. Fach cluster represents a fracture
set. A histogram can be now constructed for eachi churacteristic (dip, dip direction,
spacing, length etc.) in a given design set, and the probability distribution that best
describes the data is then determined. Once having the basic statistical information, a
satisfactory simulation model should be selected.

The fracture set simulation procedures based on Monte Carlo techniques as used
by Scavia, Barla and Bernaudo (1990) rely on random sampling of the probability
distributions of fracture set properties, and they are not capable of incorporating known
spatial correlations, and they often require excessive amounts of computer time.

Xing (1988) published the mathematical model of probabilistic analyses for a
jointed rock slope in which a Monte-Carlo simulation technique, based on the random
sampling of vectors with a jointly n-D normal distribution, was used, and the . orrelation
between the failures was taken into account.

Kulatilake and Wathugala (1991) put down block development of eight 3D joint
geometry modelling schemes that investigate statistical homogeneity, incorporate
corrections for sampling biases and applications of stereographical principles. As they
stated, a joint geometry pattern may vary from one statistically homogeneous region to
another. Each statistically homogeneous region should be represented by a separate joint
geometry model. This kind of assumption suggests that there could be some correlation
among the structural features within some geoiv '~ 1l region, but this fact is still not
incorporated into the model.

Unfortunately, the geological structures within some particular area are almost
always spatially correlated, and in omitting this fact, an important piece of information
is ignored. However, geostatistic methods can be employed to determine the nature and
extent of the correlation (Miller, 1983). In classical statistics the samples collected to
describe an unknown population are assumed to be spatially independent. In contrast,
geostatistics is based on an assumption that in particular area samples are spatially
correlated, and that this correlation can be statistically and analytically expressed as a

function called the variogram function. Typically, weak second-order stationarity is
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assumed in such an analysis, and estimates of the variogram functions are computed along
the main vector line of each design set. An example of a probabilistic analysis of bench
stability for use in designing open pit mine slopes, utilizing the previously defined
principles, was given in 1983 by Miller.

Another example of a local probability slope stability analysis introducing
geostatistics was given in 1988 by Young and Hoerger. As they implied, procedures
such as ordinary kriging, indicator kriging or mononodal kriging, are applicable to both

scalar and vectorial randcim vanabies. In other words the joint orientation, for example,

can be regionalised as ¢ ~riatle by separating dips from dip directions and assuming
their mutual independenc ‘ctional data or vectorial variables can be directly
regionalised to study joint : - . it should be noted that geostatistics is genvral, and

applicable to any character  oarameters of physical properties for geotechiical
materials such as strength values, elastic or plastic constants and flow parameters.
Considering the dispersion of these parameters around their mean values as well as their
spatial variations, the local probability analysis is a natural choice for solving various
geotechnical problems. Unfortunately, the numerical procedures currently used in rock
mechanics are based on deterministic methods and they are still waiting modification

to a stochastic approach.

2.2.2. Numerical models

Numerical methods have been used with remarkable success in mechanical and
aerospace engineering. As they were imported to rock mechanics, so was a design
methodology that emphasized precise predictions of system behaviour. It has been
suggested by Whyatt and Julien (1988) that there are four possible uses of the numerical
model analysis: as an ultimate design tool, as a method of last resort, as an aid to
judgement and as the calibrated model.

Using numerical methods as an ultimate design tool is, especially in geotechnics,

a risky business. As recent numerical models are still of a deterministic nature, the
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system properties and mechanics of the studied rock mass must be defined as if they are
exactly known. However, the difficulties and uncertainties inherent in defining of the
rock mass properties are widely recognized, and it is acknowledged that as ultimate
design tools numerical methods are inadequate. Unfortunately, for different reasons a
similar conclusion can be drawn about each category of the design tools available.

As a method of last resort, numerical methods are sometimes used to establish
some basis for design, when empirical or analytical methods are not available. They
provide in this case, the only tool which can support an engineer's judgement in some
untypical or new conditions.

As an aid to judgement, numerical models can be used for studies that identify the
most threatening failure mechanisms as a guide to further site investigation, or assess the
relative merits of alternate designs. Simply, the purpose of modelling data-limited
problems is to gain understanding and to explore potential alternatives. In other words,
numerical models are used to develop the intuition of the designer rather than providing
design specifications.

Finally as a calibrated model, numerical methods are used as powerful design tool,
and have often proved to be valuable in back-calculations of the cause of disastrous
failures. The calibration process recognizes that rock mass behaviour often deviates
significantly from that predicted by field and laboratory tests. However, it should be
noted that the calibration process is not unique for numerical models and is widely used
in almost all the modelling fields.

The most useful methods using numerical procedures are finite elements, boundary
elements, distinct elements and finite difference methods. Models built up using these
methods are now broadly used in geotechnics.

According to Brady and Brown (1985), the basis of the finite element method is
a division of the defined domain surrounding the excavation into an assembly of discrete,
interacting elements. The assumption made in the method is that transmission of internal
forces between the edges of adjacent elements can be represented by interactions at the
nodes of the elements. The procedure, as originally created, seeks to analyze the

coniinuum problem. As noted by Cundall, Voegele and Fairhurst (1975), attempts are
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being made to overcome this restriction by incorporating joint elements to model
discontinuities. (Goodman,1976; Shi, Goodman and Tinucci, 1985; Shi and Goodman,
1988), but even with this kind of element the displacements must necessarily remain
small. This is important point, because often in general, and almost always in the case
of toppling, the behaviour of a structure after failure is a matter of interest. The
advantage of generally all ditferential methods, including finite eleme. ts, is their ability
10 deal with non-linear behaviour.

In the boundary elements methods the problem is specified and solved in terms
of surface values of the field variables of traction and displacement. As only the
boundary of a problem is defined, the method provides a unit reduction in the dimensional
order of a system, resulting in significant advantage in computational efficiency,
compared with the differential methods. However, these methods are best suited to
modelling linear behaviour.

In the situation where the rock mass behaviour is dominated by discontinuities,
(when their stiffness is much lower than that of the intact rock), the elasticity of the
blocks can be neglected, and they mev be ascribed rigid behaviour (Brady and Brown,
1985). Cundall (1987) was the first to treat a discontinuous rock mass as an assembly of
quasi-rigid blocks interacting through deformable joints of definable stiffness. In his
distinct element method the algorithm is based on a force-displacement law specifying the
interaction between the quasi-rigid rock units, and a law of motion which determines
displacements induced in the blocks by out-of-balance forces. According to Cundall
(1987), the distinct element method was originally developed to model the progressive
failure of rock slopes, and is normally used to determine if a rock mass will fail under
a given set of applied loads (including gravity), or to celculate the displacements that are
accumulated if the system finally stabilizes. The method uses Newton's law of motion
to obtain velocities and displacements from unbalanced forces, and a dumping mechanism
to remove elastic strain energy as the blocks displace to an equilibrium position.

The finite difference method, in general, involves division of the body into a
number of two dimensional elements interconnected at their gridpoints (ITASCA,1987).

At each gridpoint, the equations of the motion are solved with respect to time. The
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resulting equations from the finite difference and finite element methods are identical for
particular examples.

There are some other methods available dealing with a discontinuous rock mass,
which have been developed in recent years. In 1988 Shi and Goodman presented a new
method for computing stress, strain, sliding and opening of rigid rock blocks. In the same
year (1988) Canizal and Sagaseta developed a numerical model for the analysis of
discontinuous systems formed by parallelepiped blocks. Chen and Xiong (1991)
published an elastic-viscoplastic block theory for rock masses established by introducing
the deformations of discontinuities. This method does not necessarily demand
employment of a numerical technique. Unfortunately, information about these methods
is not sufficient to make a judgement about their versatility, and so it was accepted by
the author of this thesis that they are suitable exclusively for the purposes listed by their
creators. There are not many examples in the literature of using some of the numerical
methods for modelling the toppling failure. In 1991 Omr and Swindels used the finite
difference numerical code FLAC (Itasca, 1989) to model the flexural toppling failures
identified in the field studies of Western Australian open pit gold mines. Failures occur
there in a variety of highly to completely weathered rocks containing well developed,
closely spaced foliation planes. An absence of penetrative discontinuities that may yield
a basal release surface is a characteristic for the geology of the region. A number of
flexural toppling failures of hanging walls were apparently progressive in nature,
occurring over time spans of several minutes to weeks, and giving rise to a final, broadly-
circular shape, both in plan and section. Analysis mirrored well this circular shape in the
displacements vectors. Unfortunately, it is obvious that the location of the failure plane
was not found and neither was the answer about post failure deformations and potential
stabilisation, which is so characteristic for the toppling failure. The conclusion must be
drawn, that even this commercially available routine is too general to model such a

specific and complex failure mode as toppling.
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2.2.3. Physical models.

Physical models are sometimes used when the numerical or analytical procedures
are incapable of describing the structure under investigation, when the structure is of great
importance, or whenever the results from mathematical modelling are too unusual or
peculiar. They are usually costly and time consuming. On the other hand, they are
sometimes able to provide better descriptive and cicarer answers that any other methods.
They were successfully used all over the world in many engineering fields such as bridge
construction, tunnelling or geotechnics, as well as in geology where they were, for
example, employed to model continental drift. Even if they have been gradually replaced
by computer models in recent years, there have been some interesting studies carried out
on behaviour of discontinuous rocks around the world.

As noted by Goodman (1976), in the physical model study, the real situation
under consideration is replaced by a prototype, which will be duplicated at a convenient
scale with a minimum of distortion with respect to the more important properties. The
word prototype refers to an idealization of the field problem in which only those factors
considered essential and relevant for the purpose of the study have been retained.

In 1985 Niyom and Sakurai published results from a study of potential toppling
failures of varying dip of discontinuities and with different joint patterns by physical
modelling, using two-dimensional aluminum block models. "At first, aluminum bars were
stacked on the platform or base arm hinged to the main framework of the model. Then,
by rotating the rotating arm which was initially set in the vertical direction, detailed study
of the movement or displacement of the block model could be performed by using tracing
paper attached to the platform for recording minute movements of the whole block model
in a grid system". The most important target of this study was to find an empirical
equation that could explain the failure behaviour in toppling. It was observed that for any
joint (frame) inclination producing block movements, there was a base line that separates
the displaced portion of the blocks from the unmoved portion. The angles from this base
line to the platform were in the range of 5 to 10° for any joint inclinations and for y/x =
1 to 2 (Figure 2-11). Knowing the degree of initial movement and the base angle, and

taking into account the consideration of the behaviour of toppling failure observed from
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block models, a relationship of displacement of two different points was expressed by
equation 2-7. In the equation d, and 8, are displacements, (x,, y,) and (x,, y,) are
coordinates at two points A and B, and © is an angle in degrees between platform and

—:l - m @-7)
o Yo~ X, tan®
base line (Fig. 2-11). The study comparing all displacements measured from block
models, and displacements

obtained by using the

empirical equation (2-7)

7 Major jeint
showed good agreement °‘°““"‘Q\\ >
between two sets of data. It <\\‘M % )
was also observed that Buye tine
stability of toppling mode of \: _ x
failure is lowest for a small = o= tore

degree of joint inclination and

becomes higher when joint

inclination increases. The

Figure 2-11 Relative displac:ment of toppling

authors also suggested that failure.

displacements of toppling
could be determined by an empirical equation providing the sufficient monitoring of the
slope is carried on.

Barton (1974) simulated rock slope performance by a physical joint models. The
models were two dimensional, discontinuous sets of approximately 40 000 discrete blocks
divided by three groups of joints with angles of dip of 0°, 66° and 90°. The models were
consolidated and stressed by rotating the model plane from a horizontal to vertical
position, and then slopes were excavated in attempt to simulate the excavation of real
slopes in jointed rock, while under realistic distributions of stress. Two models which
were identically jointed, but which differed in the level of horizontal stresses, were

compared.
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According to numerical studies it was expected that failure should initiate at the
zones of high stress gradients around the toe of the slope. Also it seemed to be
reasonable to expect that the "high-stress" slope models would fail at smaller slope angles
and/or excavation depths than the "low-siress” models. To the contrary, this anticipated
behaviour proved wrong. Failure did not initiate at the toe, and by measuring the
deformations, which were very small or zero in this zone, it was proved that it was not
a region of the high stress gradient. Furthermore, the "high-stress” models proved to be
much more stable than the "low-stress" ones. As a resuit the conclusion was drawn that
only the vertical self weight induced stresses need to be considered in design of high
slopes.

Several back analyses employing a simple equilibrium method of slices were
performed. They were based on the assumption that the shear and normal stresses acting
on the surfaces of shear failure were due only to self weight, and the horizontal stresses
were ignored. There was relatively close agreement found between theory and model
performance. It was eventually perceived that the normal and shear stresses acting on a
steeply inclined joint set before excavation, reversed in magnitude when slopes were
excavated above the same joints. This phenomenon could be understood as a kind of
"overconsolidation" due to the fact that the slopes were originally consolidated under
much higher normal stresses than the ones acting later during the failure. The effect of
this preconsolidation was increasing the degree of interlocking of the rough surfaces of
the tension joints, and thereby also increasing their shear strength. The effect was tested
and proved correct in the subsequent laboratory tests on the rough rock joints.

In 1990 Warburton published the results of a study which tested, by means of the
physical model, results from his mathematical block model. An assembly of medium
density fibre board divided into blocks by 13 discontinuity planes was used as a prototype
of a discontinuous rock system. The most important observation made in this study was
that blocks which started to slide sometimes became stable again after undergoing some
tilting or toppling movement. This behaviour has been observed many times in practice
in the failures where toppling was involved.

As stated by Milller and Hofmann (1970): "The excavation of high rock slopes



29
is an infringement on nature which makes considerable changes on the conditions of
equilibrium." To study the influence of time effect, different strength parameters and
different size and shape of the rock mass block structure, the authors decided to use a
physical model built as two-dimensional body of equivalent materials which was
subjected only to its own weight, and was regularly and continuously subdivided by two
systems of joints. A slope was formed by excavation in horizontal layers at constant time
intervals. It was demonstrated how differently a slope failure may develop over the
course of time, and how different the picture at a particular moment of the development
may be, depending on the geological conditions along an obviously pre-defined slip
surface. Cases of block toppling failure or block flexural toppling followed by sliding or
even by wedge failure were illustrated. (The case of toppling at the Havelock mine in
Swaziland followed by a wedge failure was described by Heslop in 1974). The study
showed clearly that the degree of separation along the two sets of joints makes a great
difference to the deformation process. Depending on whether the separation along the
joints is high or low and whether it is equal or different, shear displacements and toppling
of the strata will occur along the set that consists of more persistent joints. It is therefore
important to assess the continuity or discontinuity of the jointing, i.e. the degree of
separation.

To close this section it should be noted that no mathematical or computer model
can replace a good physical model as an aid to comprehend rock failure mechanisms
which are not well understood. This is certainly the case with :up~ling, and a good

physical model study would be a great help for further computer modelling.

2.2.4. Discussion of the role of Limit equilibrium, Numerical and Physical models.

There are neverending discussions in papers, as well as on the grounds of
universities, about the role of the numerical, analytical or physical approaches in solving
variety of engineering problems. Usually, as is common to human nature, everybody, or
almost everybody advocates the method he or she is using. It is logical, and there is

nothing wrong with that. Everybody is most familiar with the method they are us‘ng, and
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it probably serves well for the intended purposes. Unfortunately, as with each human
product, no method or model is perfect; each has its advantages and its drawbacks. To
obtain the best results for the questions asked, the purpose of a study must be clearly
defined, and then the model picked which best suits the study purpose. An important
issue, in using some method or approach, could be, for example, such an abstract thing
as the experience in using that particular method.

The characteristics and advantages of three main groups from the family of
modelling tools were given in the previous section. The variety of methods discussed was
restricted by the narrow field of engineering, and by author's personal selection.

In the rest of this chapter the main limitations of the methods will be covered,
and an attempt will be made to suggest the kind of problems, or purposes for which each
method is the best when neglecting a personal experience factor. What is meant by the
personal experience factor is expressed clearly by the fact that even the best method can
fail when used by an inexperienced person, as well a5 by the fact that sometimes
remarkable results are achieved by an experienced engineer vith relatively simple tools.

The most important drawback of the limit equilibrium analysis of stability, as
implied by Manfredini and Martinetti (1975), is the incapability of evaluating the
progressive failure phenomenon. Generally, the joints show a brittle behaviour which is
characterized by both a peak and a residual strength. The maximum available strength,
or simply the strength, depends essentially on the mechanical properties of the particular
soil or rock mass and on the distribution of the normal stresses along the potential failure
surface. The exact evaluation of the distribution of the normal stresses generally requires
consideration of the deformation characteristics of the soil but for majority of cases it
could be approximated by some averages, as in the case of most of the methods of slices
with sufficient precision. The real problem lies in the fact that the limit equilibrium
method applied to a slope in near-failure conditions implies that the maximum strength
is reached simultaneously by all the points on the failure surface; this does not actually
occur. This could mean serious difficulties in the design and evaluation of the stability
of a slope in a strain softening materials. Unfortunately, one of the important structures

with distinctive strength softening behaviour is joints in rocks, which govemn the
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behaviour of the rock mass.

Limit equilibrium methods are generally not used, and were never intended to be
used, for calculating the rock deformations.

It will probably not be far from the truth to say, that conceptually limit
equilibrium methods are close to the end of their development. That does not mean that
they cannot be made more sophisticated 2nd better aimed than they are now. They are
also much easier to use; they consume much less input data time, computer time and
computer space than numerical methods. There are almost no grounds for comparison
of limit equilibrium models with physical models, because the purpose of using them is
usually very different.

Limit equilibrium methods in the geotechnical field are still the basic tool
predominantly used for design purposes, and in majority of the cases they provide
adequate answers in reasonable time and cost ranges. They are simple to operate and
simple to understand, and so it is much easier to avoid some fatal mistakes when using
limit equilibrium methods than when using, for example, finite elements.

Numerical methods are in all aspects more complicated than the limit equilibrium
methods. They are sti!l under extensive development, and so all the comments are going
to be made with respect to the present state of development.

Numerical methods are in general still restricted to relatively small deformations.
This is not a big problem in case of deformations prior to failure. It could be a more
important problem in case of deformations induced by yielding, which could be for some
materials quite large and can involve developing of local cracks or other discontinuities.
It is certainly a serious problem in case of toppling, when deformations can be measured
in dozens of metres without knowing if the failure is going to be stabilised again at some
later stage of overturning of the toppling blocks.

Another important drawback of numerical methods is their incapability of dealing
effectively with discontinuities. Even if it is accepted as a fact that the elements
developed for modelling discontinuities in the case of finite elements are working
satisfactorily, they are again restricted to small deformations. In the case of distinct

elements the ability of modelling the block behaviour is better (there are not sufficient



32
tests of the method done yet), but the method as developed by Cundell (1987) is unable

to take in accourit the failure through the solid rock which could be in progress at the
same time as the deformations along the joints. This could be unfortunately the case with
toppling.

Even if theoretically possible, there is still not a numerical method model capable
of producing a (!car definition of the failure surface. For example, a commercially
successful finite difference program such as FLAC was not still ready in 1989 to deal
with this important problem (Orr and Swindells 1991).

Another important disadvantage of modern numerical models, and =specially of
finite elements, is their need for excessive computer space and computing time. For
example, if such an attempt is made, and the uncertainty of the knowledge of the elastic
parameters and the exact values and directions of stresses in the real rock or soil were
expressed in form of some probability distribution function at each node, then even when
using simple Monte Carlo simulation the capacity and speed of current personal
computers would be insufficient. But as shown for a much simpler model (Scavia, Barla
and Bemaudo, 1990), the difference between the stochastic and deterministic approach
could be the difference between a stable and an unstable slope as a result of the
calculation.

Finally, the complex, and the time consuming data input process for numerical
models is an important reason why this kind of model is still not being accepted by
geotechnical engineers working at the actual structures, but they remain in the domain of
the research projects, specially when dealing with geotechnical back analysis.

The last category of models discussed in this review is the group of physical
models. One obvious disadvantage is the time necessary for their construction, and the
expenses connected with this time consumption and sometimes with the laboratory
equipment. The second disadvantage of physical models is their incapability of dealing
with a combination of several parameters influencing the behaviour of actual geotechnical
structures. Physical models are restricted to choosing a few, generally one or two,
parameters and to scaling the model with respect to these parameters, restricting the affect

of the rest of them to a minimum.
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However, when choosing the most suitable type of the model for the intended
purpose knowing the disadvantages of that particular method, it is possible to minimize
their effect, and obtain the best possible results.

For example when using numerical models for studying some particular
mechanism in some theoretical structure, there are no problems with uncertainties
involving either the structure or the forces acting in this structure, as they are determined
a priori as unique input parameters. A researcher can gradually change different
parameters, obtaining exact answers about the reaction of each particular structure to
changes of the parameters. That can help in understanding of behaviour of that structure
in real situations. A similar case is back analysis, when the practical outcome is known,
and model parameters can be changed to obtain that particular outcome. Again, this helps
to understand the mechanisms taking place in some problematic geotechnical situation.
Time is not an important factor for this kind of study, and the person carrying on the
research is usually so familiar with the model that the complicated input is not a problem.
There is certainly a great potential in the field of numerical models, but the time when
these models are able to fully replace limit equilibrium and physical medels is still far
ahead.

Physical models are generally used for the purpose of research and in some special
cases for the design purposes, =s noted earlier in this chapter. Therefore the time
necessary for carrying them out and their cost are not usually an important issue. The
fact that a study is focused on a few parameters could even be an advantage for study
purposes, because it is obvious which parameters affected behaviour of that particular
model. This is not always the case in numerical models studies.

Finally, as believed by the author of this thesis, there is a single feature which is
the most important one for any kind of model used in design of structures in the ground.
There must be good correspondence or harmony among all the parts of the model. There
is no point in using the most sophisticated procedures when calculating one relevant
parameter, while neglecting, or using some very approximate procedure when calculating
another important parameter. For example, when using an exact numerical method for

calculating stability of a slope, neglecting the fact that the knowledge of geology,
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lithology, the geological structures as discontinuities, strength parameters, material
parameters and the form of functions relating material deformations to acting forces is
only very approximate, the result is an exact number, but without any knowledge as to
the chance that it is correct. In the very same answer, there is no information about the
position of this result within the spectrum of all possible answers. For example, the results
of the numerical model study may indicate the failure of the structure. What is the
chance that the result, and the parameters used for calculating def - mations within this
structure are correct? Is there some other combination of interpretation of the geological
and engineering exploration results with much higher probability of occurrence? The
answer is, likely, yes. There is certainly an outcome with higher probability of occurrence
than the one based on randomly picked input parameters even when using judgement

based on previous experience.
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3. Theoretical approach.

3.1. Introduction.

Goodman and Bray (1976) described three basic modes of toppling, and classified
them as Block, Block-flexural, and Flexural toppling. In the same paper they presented
a simple analysis of Block toppling failure which, however, did not allow a search for
the critical failure plane. Since then only a few attempts have been made to polish the
original idea, and a number of case histories (Scaiva et al 1990, Piteau et al 1981) were
presented where authors tried to use this theoretical analysis to deal with slopes where the
geology did not satisfy almost any of the Goodman and Bray boundary conditions.
Simply nothing better was available.

At the same time several mining companies throughout the world (Australia, (Orr
et al 1991), Western Europe, (Scaiva et al 1990), Western Canada, (Hebil, 1993))
encountered geological conditions where toppling was the main failure mechanism, and
their open pits experienced some major failures. That was the reason why in the year
1992, Luscar Ltd contacted the Mining, Metallurgical & Petroleum Engineering
Department of University of Alberta, and asked for the researck: that w ~uld provide them
with a procedure which would enable them to design stable pit siopes in geological

conditions favourable for toppling.



36

3.2. Description of the problem.

The logical approach for dealing with this kind of probiem would be to use some
numerical routine such as finite elements or finite differences. Unfortunately, available
programs use equations based on elastic theory, and a basic assumption of tiieory of
elasticity is the one of continuity in the studi 1- >dia. In other words, in classical linear
elasticity theory it is assumed that displacements and displacement gradients are
sufficiently small that no distinction need to be made between the Lagrangian and
Eulerian descriptions. Several elements have been created for modelling discontinuities,
but these elements are also restricted to small deformations. On the other hand,
deformations taking place during toppling could be of magnitude of dozens of metres.
They could be, and often are combined with sliding on the developed failure plane, and
after undergoing this movement the toppling failure may stabilize without the overall
collapse of the slope. Deformations taking place during biock toppling, and flexural
block toppling failures are obviously governed by discontinuities rather than by elastic
properties of rock, and even in the case of flexural toppling, discontinuities are still as
much of importance as the rock properties . For all these reasons, it would be necessary
to develop a new model based on a combination of finite elements and distinct elements,
but development of such a model would not only be difficult and time consuming, it also
would be unlikely to be practical for mining design purposes. After discussion of the
possible approach with officials of the Luscar company it was decided that the model
used for the problem would be a a gridless routine capable of calculating stresses and

deformations. .



3.3. Flexural toppling failure.

The model finally proposed for
this failure mode was a system of
interacting and noninteracting
cantilevers (Fig. 3-1). This model is of
course not a perfect approximation of
reality, but assuming that rock behaves
in a brittle manner, and that
deformations within the solid rock
before failure in tension are small, (in
contrast the relative deformation
between rock columns can be large).
then all the practical models have one
important common feature, and that is
that the maximum bending moment
occurs just above the support.

Examples of some possible
of the

interacting rock columns together with

static models system of

their characteristic moment diagrams

are shown in Fig. 3-2, 3-3, and 3-4.
The

moments of the arrangements in Fig. 3-

maximum bending

2 and Fig. 3-3 are the same, but the
deflection curves of the cantilevers are
The

arrangement in Fig. 3-2 is the rore

obviously very different.

realistic one of the two. The static
model in Fig. 3-4 (next page) is

probably the closest approximation to
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Figure 3-1 System of two independent
groups of three interacting cantilevers.

Figure 3-2 System of interacting
cantilevers.

Me)

Figure 3-3 System of very long simple
beams.




reality. On the other hand, solution of
this problem would be possible only
by using a numerical model, such as
finite elements, but it is questionable
if such a model would be able to
handle deformations of cantilevers of
length of dozens of meters. It is very
likely that the basic assumption about
small deformations would not be
fulfilled. Furthermore the benefit of

such a high precision model with
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Figure 3-4 System of beams lying on an
elastic foundation.

respect to the information usually available about strength properties, for example in

mining, would be questionable.

For the reasons mentioned before, the solution for the system of cantilevers in

Fig. 3-2 was derived on the basis of the beam theory (appendix A). The system of forces

hypfosin¥-Xyni

Ground water level

Qn= k'Wn'ln l

Wo= Ypdy-cosy

Figure 3-5 Forces acting on one of the interacting
cantilevers (flexural toppling).
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acting on the one of the interacting cantilevers is shown in Fig. 3-5. They are reactions

between cantilevers, the weight of the cantilever, water forces and seismic forces.

In the figure:

reaction with the overlying cantilever

R reaction with the underlying cantilever

W, e weight of the cantilever

| I height of the water column below the cantilever
o VR unit weight of water

Q. e seismic force

The equations for the model in Fig. 3-2, (system of interacting cantilevers), were
derived according to the beam theory with follewing assumptions and boundary
conditions.

Bending stresses:

1) Transverse cross sections perpendicular to the centroidal line of the
beams before bending remain plane and perpendicular to the
centroidal line in their deformed configuration.

2) Beams bend without twisting.

3) Beams consist of homogeneous and isotropic material which obeys
Hooke's law.

4) Beams are straight with a rectangular cross-section.

5) The angle of internal friction, and the cohesion on bedding planes
between the beams are zero.

6) The shape of the loading of the cantilever in question by reactions with

overlying and underlying cantilevers is assumed to be a constant
distributed load.

Shearing stresses:

7) Plain sections warp, but the shearing strain has little affect on the
normal strain and, thus on the normal stresses.

8) Consequently, it is assumed that sections that are plane before

deformation remain plane after deformation.
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Equations describing the shear force V(x), (3-1), bending moment M(x), (3-2),
angle between the tangent with the beam and horizontal 0(x), (3-3) and the deflection
y(x), (3-4) are derived and presented in the Appendix A as equations (A-39), (A-40), (A-
41) and (A-42).

In these equations:

f, e reacticn with the overlying cantilever

reaction with the underlying cantilever

W, e weight of the cantilever

Yo o eeeeree unit weight of water

Q, seismic force

Geometrical parameters are shown in the figures A-1, ....... A-8 in the appendix A.

In these equations the reaction with the overlying cantilever, the reaction with the
underlying cantilever, shear force, bending moment. the angle between the tangent to the
deflection curve with horizontal and the deflection itself are unknowns. There are actually
five unknowns introduced and only four eq  ns available. Unfortunately it is
impossible to formulate any helpful boundary dition in terms of moments or shear
forces; this is the main reason why the equation for deflection is introduced. The
boundary condition in terms of defiections will be formulated later, together with the
corresponding system of equations.

The shear force within the beam is given as
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Bending moment
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(3-3)
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And finally the deflection
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In the presented system of equations there are:

V(x) n n 3-1
M(x) n n 3-2
0(x) n n 3-3
y(x) n n 3-4
r n-1 0

So it is obvious, that another n-1 equations are needed to solve the system.

To be able to formulate the missing equations, some other assumptions must be

made:

9) During bending, all cantilevers remain in contact, and on the contact

they follow the same deflection curve.
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10) The shape of the deflection curve can be replaced at any arbitrary

point of the curve by a circle of some particular radius.

Now it is possible to formulate another system of equations.

¥x,), =YX 1)n (3-5)

When taking into account assumption 10), about the shape of the deflection curve,

this equation expresses the fact
that across the system of n
cantilevers it is possible to define
n-1 points with the same
deflection, lying on the line
which intersects the centre of
concentric circles, defined by this
centre and by the n-1 points with
the equal deflection (Fig. 3-6).
Introduction of equation 3-5 was
important for another reason, and

that was the necessity to ensure

Figure 3-6 Common radius of the system of
concentric circles.

the compatibility of deformations within the system of interacting cantilevers.

Unfortunately by introducing equation 3-5, an additional n-1 unknowns (distances X,

where the deflections are equal) were introduced. But from the equation of circle there

can be defined additional geometrical conditions. This equation was derived in Appendix

B as equation B-7. Using the general form for n cantilevers equation B-7 yields:

Yn =X,

1
(l —cosB)i (3-6)
"1 +cosb
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Notice that in the system of Equations 3-6 there is only one 0, because at the points x,,
as they are defined, the angle 0 is constant.
Now it is possible to define the new system of equations which includes Equations

3-4, 3-5 and 3-6. In this system, where X, is an input, there are :

y n n 3-6
X, n-1 n-1 3-4
r n-1 n-1 3-5
6 1 1 3-4

So finally this system is determinate, and can be solved.

There are not many available methods for solving the system of nonlinear
equations, in this particular case the system of 3n-1 equations. Certainly all of them are
based on numerical procedures. The most common method which would be applicable
for solving this problem is the Newton-Raphson method for a nonlinear system of
equations (Press, Flannery, Teukolsky and Vetterling, 1989).

There is, in fact, another geometrical relation that can be used.

n-1

Yo =¥, - c0s0)_d, 3-7)
i1
and
n-1
x, =x, +sinfy d, (3-8)

j=1
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or rearranging Equation 3-8

X —X

P (3-9)
Y4

Jj=1

0 = arcsin

The meaning of these equations
is obvious from Fig. 3-7.

Introduction of Equation

3-9, simplifies the solution

considerably. Equations 3-7, 3-

8 and 3-9 express geometrically i

the compatibility of

deformations of the system of

interacting cantilevers, and then

using equation 3-3 the system

Figure 3-7 Simplified geometrical relations for the
for n-1 unknown reactions can  system of cantilevers.

be solved. Substituting, for

example, Equation 3-8 for x(8), into the equation 3-3 there are:

6 1 1 3-8

r n-1 n-1 3-3
This system is obviously determinate, and can be solved for the unknown reactions
between cantilevers. Solution will be again made using a numerical procedure,
specifically the Newton-Raphson method. Subsequently, the inner forces acting within
each of the n cantilevers can be calculated from the equations 3-1 and 3-2. At the same

time the shape of the deflection curve can be determined from equation 3-4.
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Unfortunately, for the reasons explzined in Chapter 4 and in Appendix H, the
approximation of the contact force by the uniformly distributed load r, would not always
work during solving the system of nonlinear equations. For such a case another system
of equations is presented as equations 3-10, 3-1i, and 3-12. The new system is identical
to the previous one with the exception of the reaction between cantilevers which is
approximated by a force R, acting at the end of the shorter cantilever. The condition
about continuity of deflections throughout the system of cantilevers was droppped out;
instead the continuity is assumed to exist only at the end of the shorter cantilever.
Derivation is presented in the Appendix A (equations A-43, A-44, A-45).

Now the bending moment is

= Wn 2
M(x), = -2-(ln—x) -R (X USX,, x>+

+R, (x, n ~X)USX, , ~X> -

- sz6mw (xv,n-l -x)g u<xv,;|—l x>+ (3-10)
Y, Siny

+

3
6 (xm-x) U<x, , x>+

+Q, %y -x)u<x0’,l -X>
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the angle of tangent to the deflection curve with horizontal
R

-1
; [(xr.n -1 _x)2 u<xr,n -1

Wn 3 43 2
EIB(), = 10,2~k - x> -x, ]+

R 2
+ ?" [x,, ~X)? USX, x>~ X1 -

Y, siny
24

[y =) UK, g =X> =X 1] + (3-11)

¥, sing
+
24

4
[¢x,, -x)* U<X,,~X> =X, ] +

* % (o -x)° UXgp ~*> _xé.n]

and finaliy the deflection

Wn 4 13
Ely(x), = EZ[(ln—x) -1, (1-4x)] -

- h[(x

-3 > —y2
6 rn-1 x) USX, %> Xy n-1(%

r,n-1

-3x)] +

+ —6—" [, %) u<x, ,-x> ~x? %, ,~32)] +
3-12
Q, (3-12)

t o [(xq, - Xy us<xg, -x> —xé n (g =321 -

. Y, siny
120
¥, siny

4
=5 [(x, ’"_‘—x)s UK, ~X> = 5Xyp 1 (X, %) *

4 5
[(x, -2 u<x, ,~x> ~5%,,(x,,, ~ %) + X, (5 - u<x,,~x>)] -

+ Xy (5 ~U<K, 1 ~%>)]
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The last step of the stability procedure is straightforward. Accepting the
assumption that the cantilever in question failed when the acting tensile stress surpassed
the strength in tension, or the acting shear stress surpassed the shear strength, then the

following well known equations can be used to calculate:

_
t@)y, = 2D s (3-13)
Ib
and
MG)§
0y = _(’_‘lli'_mg (3-14)
for rectangular crossection
= _bh (3-15)
Conse 2 4
and finally
- d
—_— (3-16)
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3.4. Block toppling failure.

Block toppling failure cannot be described by only one set of equations.
Assuming that there is some cohesion along joints, the blocks have to overcome this
cohesion first before the toppling can take place. That is the reason why, in the case of
this failure mode, first the strength of the rock columns will be tested for acting bending
moments and shear forces, and if the strength of the rock with joints is overcome then

the separated blocks would be tested for toppling.

3.4.1. Bending of columns of rock with a cressjoint system.

The model accepted for this failure mode foliow s in the beginning a similar path
to the model for the flexural toppling failure. Therc are going to be introduced two
changes which will not alter dramaticaily the form of equations already presented in the
part 3.3., but first, the failure plane searching routiie is going to be very different, and
second, the new load F, (page 51) is going to be introduced into the system of equations
3-1, 3-2, 3-3 and 3-4.

In section 3.3.,
for the flexural mode of

failure, it was assumed

that cantilevers would
break at the place of
maximum rmoment.
This does not

necessarily have to be

true in the case of

block toppling failure.

Because of the presence

Figure 3-8 Inline arrangement of two systems of

of cross joints, the jemendicular joints.

failure plane can follow

some path, defined by bedding planes and cross joints, which lies above the plane of
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maximum moments.

The arrangement of discontinuities in Fig. 3-8 (Inline arrangement of two systems
of perpendicular joints) was used, for example, by Scavia, Bernaudo and Barla (1990).
They were dealing with a system of joints and bedding planes persistent in both vertical
and horizontal directions. In this case, it is obvious from the Figure 3-8, and it was
confirmed by simple program based on Goodman and Bray equations, that the rock is
going to fail along the faiiure plane B. Path A or any other path is in this case out of
question, and is against the physical law which says that the movement, in this case a
deformation, will always follow the path of minimum work.

The situation
in Fig. 3-9 (Offset

arrangement of two

systems of

perpendicular joints)

is different. Blocks

on any path below
the path A have to

overcome moments

acting against the

sense of rotation, and

have to break
through the solid

) Figure 3-9 Offset arrangement of two systems of
rock. It is very perpendicular joints.

likely, and it will be
tested by the model, that the final failure plane will be quite close to the path A.

There is, theoretically, a possibility that the failure plane could be developed even
below the path B (Fig. 3-8, Fig. 3-9). Such a deformation would demand that the lower
block revolves around the corner of the stepped base of an upper block, shifting at the
same time all blocks behind up the hill without breaking through some of the joints. In

the authors opinion such a situation is extremely unlikely and has not been observed in



51
any available case history or physical model. On the other hand, the assumption about
the planar character of the failure plane, as well as the assumption about the position of
the failure plane corresponds well with results of the physical modelling presented by
Miller and Hofmann in 1970. Equations describing the inner forces acting within
columns of toppling blocks defined by the stepped failure surface, as well as the equations
for their deformations are developed in the Appendix B.

In open pit mining, the pit is created in a series of steps, bench after bench, and
during each step a new failure plane can develop, loading underlying rock columns by the
weight of the failed mass. The magnitude of this force, F, is a function of the state of
the deformation of the failing rock, which determines the shape of the rock mass block
above the failure plane. It was noted in the first chapter, that the whole toppling process
is highly time dependent. This additional force is a typical example of such a
dependency. The whole overturning process can last from several hours to days or
months, changing the magnitude of the force acting at the top of the next, resisting layer.
Unfortunately, it is beyond the scope of this thesis to deal with dynamics of the process.

The force F was not included in the flexural toppling equations for twe reasons.
First, as cited in Chapter 2, flexural toppling does not usually develop a failure plane.
However, there are not enough observations available to be sure, and what is more, those
which are available were made by Cruden (1989), Cruden and Hu (1990) and Hu and
Cruden (1992) on natural slopes. Within the mining conditions, it is therefore theoretically
possible that a failure plane might develop. It is however assumed that for the flexural
toppling mode only one, if any, failure plane would develop in a highwall. This
assumption will be tested by the model, and if necessary, the flexural toppling equations
can be easily extended to include the force F.

Forces acting on one of the interacting cantilevers in case of block toppling are
shown in Fig. 3-10. The notation of variables in the figure is exactly the same as for
flexural toppling (Fig. 3-5). There is however introduced the new force F. The meaning

of this force was explained in the previous paragraph. Also the length of the continuous
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Figure 3-10 Forces acting on one of the interacting
cantilevers (block toppling).

load describing the
reaction with the
overlying cantilever is
different. The reason
for this change is the
possible stepped
character of the basal
failure plane as shown
in Fig. 3-11.

Equations for the
model in Fig. 3-11
(System of interacting

cantilevers on a stepped

52

| J— spacing of joints

Figure 3-11 System of interacting cantilevers on the
stepped base (block toppling).
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base), were derived according to the beam theory under the identical assumptions as the
equations for flexural toppling.

Equations describing the shear force V(x), (3-14), bending moment M(x) (3-15),
angle between the tangent to the beam and the horizontal 8(x),(3-16) and the deflection

y(x),(3-17) are derived and presented in the Appendix B as equations B-26, B-27, B-28
and B-29.

Shear force within the beam is given as

V(x), = w,(l,~x) +r, (x,,-X) u<x, -x> -1, (mb-x) u<mb-x> -

B rn -1 (xr,n -1 ".X) u<‘xr

"X

+Qnu<xo'n -x> +Fn—- 3-17)

Y w Sin‘l’ A 2 A
- 2 (xv,n -1 "X) u<xv,n -1

-x> +

Y, siny
2

)2 -
(xm X) U<x,,-x>

Bending moment

,-x)’

+

M(x), =w,

s D xPucx x> - 8 (mb-x)* u<mb-x> -
E(x"" X)° U<x,,~x > m

r (3-18)

n-1 _\2 - _
——‘—2—(Jc,’"_l x)° U<x,, | ~x>

Y WSinq’ A 3 A
- 6 (xv,u -1 ‘X) u<xv,n -1

-x> +

(%,,~%)° u<x, ,-x>+

Y, Siny
6

+Q, (%o “X)U<Xy, ~X> +F,(l,-x)
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The angle between the tangent tc the deflection curve and the horizontal

- Wa 3_43
Elﬁ(x),l = -—6— [(ln-x) —l,,] +

+ T -¥\3 37 r, _3 3
& &, , XY u<x, x> ~X,,) 3 [(mb-x)’ u<mb-x> - (mb)] -

r
-1 3 3
-— [(xr.n-l_'x) U<Xy =X ~Xrpl -

6

Y, siny R
- ”'24—— (&, -x)* u<x, et

Y, siny 4 4
+ e Foi %) u<x,,—x>-x, al *

(3-19)

a4
—X> -xv,n-ll +

Q,

+ -x)2u<x,, —x> - 2+F"1_2_([\2
"i‘[(xq.n x) u xQ,. X (xQ',.)] —2'[(,, JC) .,,/]
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And finally the deflection:

Ely(x), = ﬁ[(z' -x)*-12(1-4x)] +
S Y S "

+ L"-[(x -x)*u<x, -x>-x_ (x, -4x)] -
240 rn r\*rn

- %[(mb )" u<mb-x>-(mb)(mb-4x)] -

LS

3
24 [(x' n-1 —X)4 u<x’.'l -1 x> “Xrn- l(xr.n -1 -4X)] *

(3-20)
+ —?" [(xg, ~x)u<x,, x> -xé,i,,(xo',l -3x)] +

+ % [, ~x) - 130, -30] +

. ¥, siny
120
120

4 5
[, u<x,,~x>-5x,,(x,, ~X) +X,,(5 ~u<x,,~*>)} -

A 5 A -4 a
[(z.m_l—x) USK, oy %> 5%, (X, py=2)+

.S u
+Xy 01 (5 — U<k, ~x>)]

Solution of this system of equations is basically the same as for flexural toppling.
The only difference is caused by the stepped character of a base. To formulate the
geometrical equations describing the continuity of deformations, it will be necessary to
shift the point x,, (the point of constant angle 0) several times, to follow the stepped base.
From the mathematical point of view this means only a little inconvenience. At the point
of shifting the new O is always going to be introduced, but an additional system of
equat.r: .11 be easily added to the original one by repeating the equavior: {3-16) k times
for k difierent cross sections through the system of cantilevers in q::estion. Unfortunately,

while this solution would be ideal if the exact shape of the reaction force along the
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cantilever was known, it breaks down if the shape is not known (Chapter 5). It would
be very difficult if not impossible to express the shape of the real reaction in form of a
mathematical function and so. as for flexural toppling, another system of equations
involving the point reaction force R is introduced:

In this system the bending moment is

M), = (1 -x)* +
n 2 n

+R (x, ” -X) U<x, e R, (x,',,_l -X) U<x, n-1"%> "

Y, Siny
6

(3-21)

szml" - 3 a
- : (xm_l—x) U<,

-x> +

-x)3 -
(xwl X)’ u<x,,-x>+

+Q, (X, ~X)u<xy, -x>+F (I, -x)

the tangent to the deflection curve with horizontal

wn 3
EIf(x), = 5 ((,~xy>-1;1+

K

2
2 [(xr,u _x)2 u<xr,u x> _xr,u] -

n-1 2 2
- —5— [(xr,n-l _x) u<xr,n-l x> —xr,n- l] -

Y, Ssing
w24 [Eopes

Y, Sing
24

O
2

(3-22)

%) u<k,, ,-x> —f:,,_,] +

+

4
[(x, %) u<x, -x> -x,} +

F
(e -xYusxg, - x> - (%, ’")2] + _2_" (@, -2 -



57

and the deflection

wn 4 13
Ely(x), = —2-2[(1,.-11) -1, (1-4x0)] +

R _ 2
—6—[(x"" x)’ u<x, . ~x>~x,,(x, , ~3x)] -

- g‘l [(xr'"_l~x)3 u<x,,  -x> _xrz,n-l(xr,n—l -3x)] +
+ —6—" [(xo ~x)’u<xg, - x> -xé',, (xp, 301+ (3-23)

F
219 -1 ¢, 301 +
Y, sing
+
120

ywsinw
120

.‘ 4 s
[x, %U<z, ,~%> = 5%,0(%,, = X) +X,, (5 - u<x, ,~x>)] -

A 5 a 24 A
[, ~X) U<k, ~x>~5%,, (%, ;-X)+

.5 .
+ Xy p (O U<k

vn-1 —x>)]

Equations 3-21,3-22 and 3-23 were introduced in Appendix B as equations B-31, B-32
and B-33.

Finally the last step can be done, and the acting normal and shear stresses can be
calculated from equations 3-10 and 3-11, and the safety factor axpressing the ability of
rock columns to resist the breaking through the joints can be calculated as the fraction of

the available strength of the last, n™ cantilever to the strength required for equilibrium.
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3.4.2. Toppling and sliding of rock coi»mns.

The failure plane searching routine is exactly the same for bending, as well as for
the toppling states of block toppling failure, and it was described in the previous section.
Simply, if there is a cohesion acting on the crossjoints, first the rock columns must be
tested for the strength (3.4.1.), and if this strength is overcome, then they will be tested
for toppling. In the case of zero cohesion the whole procedure shrinks into the test of the
system for toppling. The position of the failure plane is given by the geometry of the
discontinuities, and it is independent of the cohesion acting on the crossjoints.

In the sketch of the system of blocks on the stepped base (Fig. 3-12),

Figure 3-12 Geometry of the system of blocks on the stepped base
kinematically free to topple or slide.

a slope at angle ¢ is excavated in a rock mass with layers dipping at y. The angle of



59
overall inclination of the stepped failure plane is f. Input parameters for defining the
geometry of this slope are the width of blocks (constant in the figure 3-12), the spacing
of joints, the angle ¢ of the slope in question, the angle n of the original slope and the
height of the hill, h, or alternatively the distance of the top of the hill from the toe of the
slope.

Now, if the angle, £, of excavated slope, and the dip of cros:i:it.iv, ©0-y, are both
greater than the angle of internal friction, ¢, all blocks will tend to slide, and the only
force which can possibly stop the movement i t¥:2 resistance of the rock mass debris
gradually accumulating at the toe of the slope.

If the dip of crossjoints, 90-y, is smaller than the angle «f internal friction ,¢, all
blocks in the interacting system are kinematically free to either siide or topple, depending
on their geometry, inclination and the forces caused by reaction with adjacent blocks. In
order to formulate the problem, the following assumptions are made:

1) The moving blocks are either toppling or sliding, they never slide and

topple at the same time.
The original Goodman and Bray toppling model (1976) is based on this assumption, and
without it, the whole problem would be geometrically indeterminate.

2) Blocks do not change their mode of movement. That means that the toppling
blocks will only topple, and the sliding blocks will only slide at any stage
of the deformation.

This assumption, at some stage of the progressing deformation, ceases to be true.

When this happens, the modelling has to be interrupted, and the last available information
will be from the step preceding the critical state. It will be obvious later, from the text,
that both assumptions are much better grounded than they might seem to be as formulated
now, without explanation.

From assumption 1) it follows that the solution of the problem depicted in Fig. 3-
12 can be divided into two categories. For each block within the system it is possible
to define both sliding and toppling forces, and then to calculate the force necessary for
equilibrium in sliding, and in toppling. It is assumed, that the larger of these two forces

determines the mode of movement for each block. That is, if the force necessary for
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equilibrium of a block in toppling is positive and larger than the force necessary for
equilibrium in sliding then the block will topple. From assumption 2) it follows that the
block will never slide, but it can become stable again. In this way all the blocks in the
system can be divided into the groups of either sliding, toppling or stable blocks.
Forces acting on one toppling block of the system of interacting, separated rock

columns is shown in the Fig. 3-13.

Rym1 C03 0t

Figure 3-13 System of forces acting on one (toppling) block from the
system of intera. ting rock columns.

in Fig. 3-13 :
P, ... reaction with the upper block
Pt e reaction with the lower block
R, e reaction with the stepped base
U, e uplift water force

The nomenclature for the rest of the forces is the same as that for flexural toppling.

In Fig. 3-13 there are six different directions in which forces are defined to act.
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In reality, the situation is more complicated. Gravitational forces act in the vertical
direction, water forces can be defined in the direction perpendicular to the block, the
seismic force is assumed to act in the horizontal direction, but all three reactions are free
to act in some unknown direction. Now there are three equilibrium equations available,
two for each of two perpendicular directions and one for moments, and four unknowns
(P...» R, and both directions). Notice that only one of the reactions P, and P, , is actually
unknown, because the other one was determined from the analysis of an adjacent block.
To solve the problem, another assumption has to be accommodated:
3) At the corner - face contact of two blocks the direction of the reaction force
is inclined from the normal to the face by the angle of internal friction ¢.
Now the direction of reactions P, and P, is known, as shown in Fig. 3-13. If the block
in question is in contact with the corner of the adjacent block, it is at the angle of
internal friction ¢, and if the block in question is in contact with the side of the adjacent
block it is at the angle A. The angle A is function of the angle of internal friction ¢ and
of the difference in the inclinations of adjacent blocks, and is defined in Appendix D.
In the case of face to face contact, the reaction is inclined from the normal to the faces
by the angle of internal friction ¢.
The contacts that occur within a system of toppling blocks are shown in Fig. 3-14.

It is obvious from this figure that

three different moment
equilibrium equations have to be
defined for three different cases
of contact combinations to
calculate all possible magnitudes
of reaction P, ,. These equations
are defined in Appendix E as
equations E-8, E-9 and E-10 for

the cases a), b) and c) in Fig. 3-

14. Figure 3-14 Possi !¢ contacts between toppling
blocks.
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Case a)
- P, (sinA,l -cosi,d,) L1 [ (3-24)
" cosde, , cosde, ,
Casc b)
P - P"(cosd)ems—smd)d,,, N 1 [ (325
cosde, , :osde, ,
and finally Case c)
P - P, (cosbe, s -sindd,) L1 (€] (326)

sinA,l, sinlnln

As mentioned before, for the face to face contact both reactions P, and P, are
parallel and they are inclined from the normal to the face by the angle of internal friction
¢ (Appendix E). This situation is defined by equation 3-25, Case b.

The direction and magnitude of the reaction R is not of interest just now, but
knowing P, and P,, , it can be easily calculated from either parallel or verticai
equilibrium equations.

For sliding, the situation is slightly different. All sliding blocks are parallel, and
the unknowns are not only reactions P, ,, R, and their directions, but also the position of
both forces. Clearly another assumption is needed. This assumption can be obtained by

generalising the assumption 3 by defining the direction of the reaction between the block
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and the stepped base.

4) The dirzction of the reaction force between the stepped base and the
base of the sliding block is inclined from the normal to base by the angle of
internal friction ¢.

The system of forces acting on one sliding block from a system of interacting rock

columns is shown in Fig. 3-15.

cosoy,

Vet XvnC0S

Otn

A
Xy

Y Xvn-1€05 C2n G“V i A )
Ywiv,lcosa&

Figure 3-15 System of forces acting on one (sliding) block from the
system of interacting rock columns.

: 7W xvncos Qn

The nomenclature in the figure is the same as in Fig. 3-13. There are 4 unknowns
present in Fig. 3-15 (R, and the position of both reactions), but for equilibrium

equations in the directic 1s perpendicular and parallel with bedding planes no information



about the position of reactions in question is needed.

There are two kind of contacts, (shown in Fig. 3-16 next page), which may occur
with a sliding block within the frame of the for.aulated assumptions. Face to face
contact with another sliding block, or the contact with the face of an upper toppling
biock. Equations 3-21 and 3-22 describing the sliding of blocks are derived in Appendix
F as equations F-12 and F-13.

P, (sin, - cosA, tan([)) - [A]tanT" + [B]

(3-27)
n-l cos¢ -sin tan(T")

and

=P - [AltanI’ +[B] (3-28)
" cosd -sind tan(D)

There is theoretically
another kind of contact possible
between the last toppling, and the
first sliding blocks, in addition to
those shown in Fig. 3-16. When

the deformation or movement is

sufficient, the last toppling block

can be allowed to topple so much

that it would rest its' comer on the Figure 3-16 Possible contacts for the

face of the first toppling block  sliding blocks.
(Fig. 3-17, next page).



Unfortunately, at that moment the
assumptions 1 and 2 are no longer
valid, all blocks are free to slide and
rotate around the corners of the
stepped base, and the whole
situation becomes highly
unpredictable, and it cannot be dealt
with in terms of a limit equilibrium
approach. It is too soon to talk
about the compuier model at this
stage, but it should be at least noted,

that if this situation happens to
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Figure 3-17 Excluded face-corner kind of
contact for the sliding and toppling blocks.

occur, the computation will be terminated, and the last available result will be the one

before the critical one. This problem was actually one of the reasons why the assumption

2 was formulated. Fortunately, it is quite likely that for most of real the situations before

the contact shown in Fig. 3-17 is established, the failure will regain the face to face

contact again, and so this highly important state of deformation could be evaluated. The

situation after establishing the critical contact can be reasonably described by the

movement of a rock mass sliding on a stepped base, because the chance that the toppling

movement would stabilize after reaching the problematic stage is likely close to zero, and

it can be assumed that the toppling block will continue to revolve till it establishes contact

between its' face and the stepped base. The new situation can be easily evaluated by

using any of the widely available shear stress based limit equilibrium methods.
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4. SOLUTION OF THE SYSTEM OF EQUATIONS FOR FLEXURAL
TOPPLING.

In Chapter 3 the basic equations describing behaviour of a system of cantilevers
loaded by a bending momen: were defined in terms of linear equations in two different
forms. Equations 3-3, 3-4, 3-19 and 3-20 were defined with continuous and constant
reaction while equations 3-11, 3-12, 3-21 and 3-22 were defined with point reaction.

The continuou= reaction would probably be closer to reality for most of the cantilevers in the
system and, in the case of an inline arrangement of crossjoints (flat base), the solution would
be easier. The derivation of the mathematical solution is presented in Appendix H.2. The
system of reactions derived from the solution is a set of average reactions ensuring a
constant angle of the tangents to the deflection curves along a defined radius across the
system of cantilevers (Figure 3-6). For a different x coordinate along the cantilever (different
radius), a different average reaction would result from the system, and it would have to be
decided which position gives the deformation closest to the real one. Unfortunately, the
solution is restricted to the radii common to all the cantilevers, and is thus restricted by the
length of the shortest cantilever in the system. (Obviously, choosing a radius farther from
the origin, which does not intersect some of the shorter cantilevers, neglects the support
provided by those shorter cantilevers, and gives a result for a different system thon the one
desired). Furthermore, in the case of an offset arrangement of crossjoints (stepped base) it
is impossible to find a radius intersecting all the cantilevers. It would be theoretically
possible to calculate the deformation at the origin and at the end of each cantilever thus
expanding the system of equations to 2 n, and thus following the shape of the base. This
would be an optimal solution provided that the shape of the reaction is known. That is not
the case (the shape is assumed to be continuous and constant), and an additional n-1
unknown reactions is introduced into the system, making the system indeterminate.

The system of point reactions acting at the ends of cantilevers might not be as close to the

real distribution of the reaction force in the block of interacting cantilevers as would be the
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system of continuous constant reactions, but it can be determined for all possible geometrical
arrangements; that is the fundamental advantage of this system, and the reason why it was
selected to be used in the model. The derivation of the mathematical solution of the system
is presented in Appendix H.3.

To solve problems in more than two dimensions, which is the case for the system of
equations describing bending columns of rock, it is necessary to find points mutually
common to N unrelated zero-contour hyperpianes each of dimension N-1. Analytical
solution of such a problem is impossible However, once the approximate location of a root,
or of a piace where there might be a root, is identified then the problem can be solved by
using the Newton - Raphson method generalized to multiple dimensions (Press, Flannery,
Teukolsky and Vetterling, 1990). Solution of a system of nonlinear equaticns defined in

Chapter 3. can be found in the form

1
,
[ox,) = Ex—I (-] -1

where the matrix of partial derivatives is defined on the next page (Equation 4-2). Solution
of such a system is obviously rather complicated, and time consuming. Allowing for 30
iterations at each step, the computer has to solve thirty times a system of 2 n linear equations
for n cantilevers. In reality a rock slope usually consists of several hundred cantilevers and,
assuming that the slope is unstable, the computer would have to solve subsequently the
system of thirty times 2n, 2n-1, 2n-2 .... 2 equations. For example, for the system of 900
cantilevers the computation iime would be over 80 hours on the SUN work station.

When the assumptions for the equations were formulated in Chapter 3, it was
assumed that the origin of all cantilevers is fixed or, in other words, that the origin of the
cantilevers will not move during loading. This assumption introduces great difficulties into
the solution. Because the position of the cantilevers after loading is unknown prior to

calculation, so is the distance from the origin of points with equal deflections, and thus the
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position of the common radius cannot be determined. An assumption which makes thiv
solution possible (Equation 3-8) makes the system nonlinear. It was shown on a system o7
as many as 50 cantilevers, and over a range of Young's modulae from 10 to 80 GPa, by
comparing the linear and nonlinear routines that the calculated deformations are so small that

the differences in reactions are of no practical relevance, and that the linear system can be

used with negligible error being introduced.
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The solution of the linear system can be then found in the form

[F,)=[k,]IX,] (4-3)

where the matrix of coefficients [k,] (equation 4-4) is defined as

(R, y, 0 0 0 0 0 0 0 0
R y R, O 0 0 6 o0 o0 0
R OR Yy 00 6 0 0 0
0 0 Ry, R O 06 0 o0 0
0O ORORY. 0 0 00

(@-4)

2 2 2
00000 0. 0 ©0 Rnyn
2 2

To illustrate better how was this matrix form d. rather than constants (k, , , k, ,...k,,)
the unknowns belonging to the constants were used.

Numerical solution of the system 4-3 is straightforward. The only problem is the size
of the matrix with respect to the size of the RAM of common PCs. Fortunately, matrix 4-4
is a sparse matrix, and there are programming techniques available allowing the reduction

of the size of the matrix to (n,4).
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5. TOPPLING MODEL

5.1. Description of the model.
As mentioned in previous chapicrs, a slope susceptible to toppling is a slope
consisting of distinct layers of rock divided by bedding planes, dipping at an unfavourable

angle into the slope, such as the one in Figure 5-1.

%

Figure 5-1 A rock slope susceptible to toppling.

Before the layers of the rock can start to bend, subsequently break, and then possibly
topple in the block flexural or block toppling modes, the shear strength on at least some
of the becding planes must be overcome. Obviously, this cannot happen on all bedding
planes simultaneously. Somewhere in the slope there exists a point where the shear
strength/shear stress ratio is a minimum. Even if this ratio is less then unity it is not a
sufficient condition for the shear failure to occur along this critical bedding plane. The
shear strengih/shear stress ratio is not constant along the bedding plane, and so the

deformation has the character of progressive failure with, the deformation spreading from
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the point of origin causing a simultaneous redistribution of stresses. This rather
complicated process is replaced in the model by the assumption that failure first takes
place along the bedding plane next to the cantilever with the lowest average shear
strength/average shear stress ratio (denoted as the shearing safety factor, SSF, in the rest
of the text). Derivations of these average stresses are presented in Appendix G.

The process of calculation of stresses in the system of interacting cantilevers was
explained in Chapters 3 and 4, and the flow chart of the computation is shown in
Appendix H (page 205). To briefly characterize this process it is important to realize
that, once all loads are known, to calculate the deformation of cantilevers is a simple
mathematical problem. What makes this problem complicated is the fact that a.significant
portion of these loads, namely the interaction forces (called reactions in the text), are
unknown. But these reactions are the main component of the normal forces responsible
for the available shear strength of the rock. Hence, the solution is really about the
determination of reactions. Once the reactions are known, all stresses, SSFs and
deformations of cantilevers in the system can be calculated, and a decision about the
slope behaviour can be made.

The result of plotting SSFs alc- : a rock slope would be a curve with , for

noninteracting
antllevers ; ock 2

block 3
. block 4

bleck $

Figure 5-2 Rock slope consisting of blocks of interacting
cantilevers and blocks of non-interacting cantilevers.
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example, minima above strong cantilevers (high Youngs Modulus) holding the load from
softer rock leaning from above, or short cantilevers imbedded among longer ones (area
of benches in the highwall) etc. In a slope like the one in Figure 5-1 there would be
several local and, of course, one absolute minimum with SSF less then one.

It was assumed in the model that the shear resistance on these critical contacts is
zero, and the only forces transmitted through the contacts are .zactions which act normal
to the contact surfaces. This assumption is not unreasonable because, if the calculation
reveals that the average SSF on the contact is less than one, then shearing on the contact
will take place, and it is unimportant how big is the resistance against the movement.

At this stage the cantilevers in the slope are divided by the frictionless surfaces
into blocks of interacting cantilevers, and into the zones where cantilevers do not interact
(do not lean on the lower ones). An example of such a slope is shown in Figure 5-2
(previous page).

The program starts with the slope as shown in Figure 5-1. But as explained
earlier, the slope cannot behave as a system of cantilevers defined by bedding planes
before the shear takes place on at least a few surfaces. To find these surfaces, the
program calculates SSFs for all cantilevers in the slope 5-1, and divides the cantilevers
into blocks of interacting cantilevers, and zones of non-interacting cantilevers (the upper
cantilever does not lean on the lower one) such as those illustrated in Figure 5-2. The
blocks of interacting cantilevers can be considered initially to behave as very thick
homogeneous cantilevers. Now a new, stiffer slope has been defined but the forces in
this new slope are again unknown. The routine then iterates around again, determining
new SSFs, and creating an increasingly stiffer slope. It was shown by numerous tests or
fictional slopes that, after the third run, the changes in the geometry of the slope (size ¢
the blocks of interacting cantilevers and the zones of non-interacting cantilevers) become
insignificant, and at the same time the resultant geometry does not depart too far from the
basic assumptions formulated in Chapter 3.

After the model of the slope has been created, the program starts to test the slope
against shear failure along bedding planes within the newly composed blocks. The

strength of a block depends on the normal stress and the shear strength parameters of the
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weakest bedding plane within that block. If the iowest SSF determined is less than one,
the block containing this lowest SSF splits into two thinner interacting blocks. now
divided by a frictionless surface. Thus a new slope is defined, and the stresses are
recalculated. The splitting continues as long as there is a composite block in the slope,
and the SSF in that block is less than one. When the splitting is completed, the resulting
system of cantilevers is tested for the tensile strength. When the maximum tensile stress
exceeds the tensile strength of a block or single cantilever, it is assurmed that this block
or cantilever breaks, and the surcharge load is assigned to the cantilever below. This,
again, defines a new slope, and the procedure returns to the splitting routine (beginning
of the paragraph). Wken all splitting and breaking is finished, either the rest of the slope
is stable or the whole slope has failed.

The broken blocks and cantilevers are free to topple or slide along the established
failure surface; however the program does not determine whether such sliding or toppling
occurs. In case of siiding, the stability problem is of a very different nature, and a
classical method of slices could be used to suit the specific geometry of the slope. In
case of toppling, the mechanism defining behaviour of the slope above the failure plane
is very complex. It is a combination of toppling, sliding, and further breaking of the rock
columns, in some cases buried below already broken layers. A routine capable of handling
such a problem would have to be of very different nature than the one used for

establishing the failure plane.

5.2. The computing routine.

The body of the program is divided into four independent routines. The first one
(Input) generates the data describing the geometry of the highwall as defined by the user.
The second one (Fredy) incorporates, into the input, the results calculated from the
previous runs, the third one (Inshav) tests the slope for the minimum shear strength/shear
stress ratios and builds up the new slope from the blocks defined by those extreme ratios
smaller than one. Finally, the last routine (Flex) calculates the shear and tensiie stresses
acting within the interacting blocks and does the splitting and breaking of the rock

columns in the slope.
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The first and the second routines do not involve in any calculations directly related
to the bending of the rock columns.

The third routine (Inshav) which builds the model of the slope to be tested,
resembles closely the main, fourth routine Flex. It shares with Flex subroutines which
calculate the reactions between the cantilevers, and also the structure of the routine is
similar to Flex.

Flex is the main part of the model. It is based on the theory described in Chapters
3 and 4, and its logic structure, as well as the Fortran source codes of all routines, is

presented in Appendix 1.
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6. BACKANALYSIS OF THE FAILURE OF THE HIGHWALL AT THE 50-A-5

OPEN PIT COAL MINE AT THE LUSCAR MINE, CARDINAL RIVER COALS
LTD.

6.1. Introduction.

The Luscar Mine of Cardinal River Coals Ltd. is situated in the foothills of the
Rocky Mountains at Luscar, Alberta, approximately 50 km southwest of the town of
Hi’nton and 340 km west of Edmonton. The exact location of the pit, and its plan is
shown in Appendix J.

Mining began at Luscar in 1921. Complex geology and rugged terrain at Cardinal
have resulted in a series of open pits which are mined by the truck and shovel method.
Expansion over the years have established the capacity at the current 2.6 million tonnes
per year.

In recent years, the mine has experienced several stability problems, which were
thought to have been originated by a toppling mechanism. Unfortunately, at that time,
there were no methods for assessing the hazard of failure by toppling, except for the
simple analysis by Gcodman and Bray (1976) (Chapter 2), and that was meant to be more
of an illustration of the problem, rather than an analysis.

The proposed method allows calculation of deformations and stresses caused by
interacting columns of rock defined by bedding planes and cross joints, if present, and
utilises the Mohr-Coulomb strength criterion to test the rock for failure. Furthermore the
computer program based on the method enables modelling of the subsequent mining steps,
thus following the real development of the mine, and tracing the failure potentially
progressing with excavation of each bench. It was proved, as expected, that shear stresses

on the bedding planes govern the stability of a slope susceptible to toppling.
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6.2. Engineering geology of the 50-A-5 pit (Hebil, 1993)

The 50-A-5 pit was one of several geologically similar pits located along the side
of a northwest trending ridge which slopes to the north at 23 degrees and is cut into a
series of hills by several alpine valleys. A two phased development of the 50-A-5 south
wall produced a 600 m long excavation into one of these hills. The top of this hill was
at the 1940 m elevation and was located approximately 78 m above and 214 m behind
the crest of the south wall.

The excavated highwall ranged between 90 and 120 m in height. However, the location
of the hillside behind the wall resulted in an overall slope height of about 213 m in the
central part of the pit.

A simplified cross-section (Figure 6-1) through the highest part of the south wall
was used for the analysis. The highwall was excavated in the southern limb of an
overturned syncline/anticline fold pair which plunges to the northeast at 23 degrees. The
axial plane of the syncline dips to the southwest at about 40 degrees, intersecting the wall
at approximately the 1758 m elevation. The mine plan is shown in Appendix J, (Figure
J-2).

guEEd Conglomerate

8 3 Sandstone
., 107m . 167 m , I Coal
S 'l ,I 7‘ (Jewel seam)
—————1L

Figure 6-1 Cross-section through the highwall of the 50-A-5 pit
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The hillside and highwall above the axial plane are susceptible to toppling because

of overturned bedding which dips south at 60 to 70 degrees into the slope. Bedding
below the axial plane is right way up and dips 20 to 30 degrees south.
Several joint sets occur in the rock above the axial plane but two dominant ones affect
slope stability. One near vertical set strikes northeast, approximately perpendicular to the
trend of the highwall. A second set is cross jointed approximately 90 degrees to bedding.
This set dips between 25 and 40 degrees north out of the south wall.

The south wall was excavated entirely within Members of the Luscar Formation.
Member "D" is the uppermost sub-unit and occurs in the syncline at the bottom of the
south wall. It consists of massive siltstones and sandstones with minor shale and coal
beds. This sub-unit at the top of the syncline did not cause any stability problems, and
because of that it was not included in the analysis, and it is not shown in the figure 6-1.

The Jewel Coal Seam intersects the highwall at about elevation 1783 and defines
the base of this sub-unit.

The Torrens Member is located in the central third of the south wall and consists
mostly of interbedded siltstones and sandstones. This sub-unit is called Zone 1. It is
characterised by an 1¢ m thick, massive sandstone which underlies (bedding is
overturned) the Jewel Sezm.

Marine shales of the Moosebar member are found in the upper third of the
highwall. The lowermost Gladstone Member, consisting of thinly interbedded siltstones
and shales (Zone 2), is located in the lower half of the hillside above the pit crest.

The 11 m thick Cadomin c:anglomerate occurs halfway up the hillside. It separates
the Luscar Formation from the thin-bedded shales and siltstones of the idikanassin
Formation which form the top part of :ke hill.

Rocks in the Luscar Formation rang~ in unconfined compressive strength from 150
MPa for the Torrens Sandstone to 25 to 50 MPa for the Moosebar Shales. Interbedded
sequences of sandstone, shale and siltstone have strengths the* are .atermediate between
these values and average between 25 and 70 MPa.

Friction angles for discontinuities vary from 16 degrees for bedding planes in

carbonaceous shales to 35 degrees for joint surfaces in sandstone. The friction angle
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along sheared coal surfaces averages 20 degrees. Cohesion between these surfaces is less
than 20 kPa.

Ground water levels in the south wall of the 50-A-5 Pit were obtained from
development drilling logs. These placed the water table 60 m below ground surface.

This depth was determined to be below the base of the failure.

6.3. Highwall design and development (Hebil 1993)

The 50-A-5 south wall was designed at an overall slope angle of 45 degrees with
12 m high benches having 65 degree bench face angles and 6.5 m wide safety berms.

Mining of the 50-A-5 Phase 2 wall started in February, 1989 and was completed
by the summer of 1991. Slope movement was first observed in mid-September, 1989
when the upper two benches were excavated to the 1840 m elevation. This produced a
25 to 30 m high cut in the hillside which extended the 280 m long Phase 1 south wall
250 m further west. This extension initiated toppling almost immediately. Back facing
obsequent scarps developed on the crest and benches of the highwall. Over the next
several months small obsequent scarps developed progressively upslope to the top of the
hill where eventually a 9 m wide tension crack defined the southern limit of the failure.
By February 1990, when excavation of the 1780 bench was under way, nearly all the
benches above this elevation had failed.

It is necessary to realize that Electronic Distance Measurement survey techniques
used for monitoring the 50-A-5 pit are only capable of measuring surface displacements,
and no borehole measurements were included in the monitoring program. Consequently,
the positioi. of the failure plane(s) was not recorded, and also the amount of deformation
caused by toppling and shearing movements respectively could not be identified. On the
other hand, it is unlikely that the final deformation of the surface, which at the crest area
was as large as 20 m, can be explained in terms of toppling only. Unfortunately, the
presented method, as well as all methods known to the author of this thesis used 111
stability calculations in geotechnics, cannot give any information about behaviour of a
rock slope after the failure. Hence, not being able to distinguish between deformations

before failure and after failure, and between deformations caused by toppling and
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deformations caused by sliding, the comparison of field measurements and the analysis
results could not be <ione in terms of displacements.

There is, however, still a strong support for the correctriess of the analysis results.

First, the safety factor against the shear failure calculated by the Luscar personnel
(Hebil,1994) using the Janbu method is close to 2, even when using the
combination of weakest strength parameters for each rock subunit. Hence, the
shear failure was not likely to be the triggering mechanism of the deformation of
the slope.

Second, the stepped character of the deformation of the surface (Figures 6-2, 6-3, 6-4 and
6-5 on the following pages), which developed during the excavation, supports the
theory that toppling was present during slope movements. That is also what was
agreed on by the geological and geotechnical personnel of Cardinal River Ltd.

Third, the calculated sequence of the consecutive failures following the excavation of the
slope and the calculated volume of the rock involved in the failure zones
correspond very well with the real sequence of deformation and volume of
involved rock measured by the monitoring system on the surface (Hebil 1994).

Fourth, provided that the movements monitored on the surface (20 m at the crest area)
were based on some deeply seated failure plane, which was the only explanation
offered when using any conventional stability analysis, the amount of rock debris
which would have failed into the pit must have been in order of millions of tons
of rock (K. Hebil, 1993). In reality, .ae amount of rock debris removed from the
pit after failure was in order of tens of thousands of tons. There was no other
explanation of this phenomenon offered 6ther than the result of this analysis (deep
seated toppling failure with shallow based shear failure; section 6.4., Figure 6-12),
and this explanation was accepted as satisfactory by the Luscar geotechnicians.
The presence of the solid block in the centre of the slope, as predicted by the

model (Figure 6-12) is very interesting. Unfortunately, there were no deep seated

measurements which would allow the direct conformation of its existence.



Figure 6-3 At the pit crest on the section line looking N (Figure J-1)
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Figure 6-4 On the section line (elevation 1890 m) looking N (Figure J-1).

Figure 6-5 A crack at the top of the hill.
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6.4. Analysis of the failure
The analysis was made on the Sun work station which allowed modelling of the

full extent of the slope by the program described in section 2.

The following strength parameters, selected from the lower end of the range

offered by geological survey and engineering testing, were used in the analysis.

Internal angle cohesion tensile strength t

of friction [kPa] [kPa} [m]
coal 25 4 2 12
Torz. sandstone 35 250 150 18
zone 1 25 10 5 1
zone 2 16 8 4 0.5
conglomerate 38 500 300 11

t* ....cantilever thickness within bed

The results of the analysis of the slope shown in the figure 6-1 are graphically
presented in Figures 6-6 to 6-12 where each figure corresponds to one mining step. All
deformations shown are due to bending, and the mechanism of the deformation was
defined in the thesis as flexural toppling. The failed rock is shown as the spreading solid
black area above the lowest basal failure plane. The slope geology and geometry was
identified in Figure 6-1.

Following the results of the analysis, the failure started with mining of the first
bench (elevation 1852 m) by breaking of a few cantilevers above the crest which were
too short to interact with the lower and longer ones (Figure 6-6). The failure above the
crest region spread even more with mining of the second bench (elevation 1840 m), and
also the cantilevers in the second bench were lost (Figure 6-7). Mining of the third bench
(elevation 1828 m) triggered the failure along the whole base plane by which the
uriderlying cantilevers were trimmed to equal lengths, creating below the failed rock a

very stable zone with very smooth distribution of shear stresses (Figure 6-8). Thus
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mining bench number four (elevation 1816 m) caused only seme minor damage right
below the conglomerate which holds the upper portion of the slope (Figure 6-9).
Extracting the rock in the fifth bench (elevation 1804 m) completed the failure of the
highwall, all the benches were lost (Figure 6-10). Mining bench six (elevation 1792 m)
further reduced the support of the conglomerate and extended the damage on the face
(Figure 6-11). Finally, mining the seventh bench (elevation 1768 m) caused the collapse
of the conglomerate, and all the rest of the slope up to and beyond the crest of the hill

(Figure 6-12) creating at the same time a crack at the top of the hill.

Figure 6-7 Second bench - elevation 1840 m



Figure 6-10 Fifth bench - elevation 1804 m
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Figure 6-12 Seventh bench - elevation 1768 m

It should be noted that changing the strength parameters changes the distribution
of the failure within the slope to some extent, but it does not change the character of the
failure. For example, by increasing the internal angle of friction in the critical zone 2 to
25 degrees, the extensive failure illustrated in Figure 6-8 will move to the next mining
step, and will be more violent with some minor breaking in the upper portion of the
slope. This could possibly lead to a disastrous failure instead of the controlled one

because the potential energy stored in the resisting svstem at the time of the failure (the



86

weight of resisting cantilevers) would be much higher. But basically within the range of

the given ' parameters, the program predicts very closely the sequence of
deformatio. itored on the surface, and described in section 6.3.
Itis app. 1. from Figure 6-8 that very large shear forces must act on the base of

the stable block of rock columns in the middle of the slope, and that this block may
possibly fail by simple plane shear. Some other routine should be used for that analysis.
When treating the slope as a system of two interacting blocks, one within and the second
above the stable area, simple shear plane failure analysis can be done, and results are

presented in the following table .

¢ [deg.] ¢ [kPa) SF
block 1 16 0
block 2 30 130 1.1
block 1 22 0
block 2 35 350 2.2

It is important to realize that the slope above the bottom of the pit is broken along
multiple failure planes at multiple elevations. The blocks released by flexural toppling will
in most cases start to topple in block or block flexural toppling modes, depending on the
shape of the toppling blocks. This toppling movement will cause even more breaking
within the slope, creating additional local failure planes. Prediction of further behaviour
of such a slope is extremely difficult, and would also depend on the dynamics of the

deformation process.

6.5. Influence of bedding dip.
For comparison, the stability of two other slopes differing in dip with otherwise
identical geological strata were tested. Results of these analyses are presented graphically

in Figures 6-13 to 6-28 (following pages).



Dip 50 degrees:

........... = Cong]omcl‘ate
Sandstone
107 m ) 107 : P Tl Coal

Figure 6-13 Cross-section through the highwall - dip 50°

Figure 6-14 First bench
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Figure 6-15 Second bench

Figure 6-17 Fourth bench
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Figure 6-18 Fifth bench

Figure 6-19 Sixth bench

‘ &
Figure 6-20 Seventh bench
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Dip 70 degrees:

Conglomerate
Sandstone

Figure 6-21 Cross-section through the highwall - dip 70°

Figure 6-22 First bench
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Figure 6-23 Second bench

Figure 6-24 Third bench

Figure 6-25 Fourth bench
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Figure 6-26 Fifth bench

Figure 6-27 Sixth bench

Figure 6-28 Seventh bench
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The reason why, from all the program input param~ters, the dip was chosen to
be altered was not accidental. The purpose of this thesis was to develop a method
capable of predicting of behaviour of slopes susceptible to toppling. The only way to
prove that this method has a validity in practice was to test it on a real case history, and
subsequently a computer program had to be creaicd. "o do a real parameter study using
this program could be a topic for another thesis, and is obviously far beyond the scope
of this thesis. For this reason, after the consultation with Luscar personnel, the parameter
which is believed to be critical for toppling by both authors of the thesis and Luscar
geotechnicians (the dip of strata), was chosen to be tested in two additional runs
prescnted on previous pages. There was, in fact, another reason for this decision. A new
pit is under excavation at Cardinal River in almost identical geological conditions as the
pit 50-A-5, except the dip which is close to 50°. Preliminary results from the monitoring
program showed so far zero deformations, and so did the computer model. In Figures 6-
14, 6-15 and 6-16 the slope remains intact, and only after mining the fourth and the
seventh benches (Figures 6-17 and 6-18) does some damage to the slope occur at the top
region. The deformations are negligible, because the bottom part of the slope remains
intact.

On thé other hand increasing the dip to 70° causes the overall collapse of thc slope
after mining the seventh bench. An important aspect of comparison of the 50-A-5 slope
(dip 62°) with the slope with the dip of bedding 70° is the relatively (with respect to the
total volume) smaller damage of the slope with the steeper dip before the overall collapse.
It is understood that by failing partially during the excavation, the 62° slope "released"
some of the potential energy stored in the system, and consequently it was able to resist
the enormous load (energy) released by the failure of the conglomerate in the middle of

the slope after excavation of the seventh bench (Figure 6-8).
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7. SUMMARY AND CONCLUSIONS

1) A new theory defining the toppling mechanism in terms of equations is
formulated in this thesis, and a computer model based on this theory shows the validity
of the theory in practice.

2) The comparison of the computer simulation with a case history shows that
behaviour of a rock slope composed of bedded layers dipping at an angle which favours
toppling deformation can be modeled with satisfactory precision as a set of interacting
rock cantilevers.

There are two major reasons for the previous assertion based on the results of the
backanalysis of the failure of the highwall at the Luscar Mine of Cardinal River Coals
Ltd.

First, the calculated sequence of the consecutive failures following the excavation
of the slope, and the calculated volume of the rock involved in the failure zones,
correspond very well with the real sequence and area of deformation as measured by the
monitoring system on the surface.

Second, if the movements monitored on the surface (20 m at the crest area) were
based on some deeply-seated failure plane, which was the only explanation offered when
using any conventional stability analysis, the amou it of rock debris which would have
failed into the pit would have been in order of millions of tons of rock (K. Hebil, 1993).
In reality, the amount of rock debris removed from the pit after failure was in order of
tens of thousarnds of tons. No other explanation of this phenomenon has been offered,
other than the result of this analysis (deep-seated toppling failure with shallow based
shear failure; section 6.4., Figure 6-12), and this explanation was accepted as satisfactory
by the Luscar geotechnicians.

3) It was conceived that flexural toppling, block toppling and block flexural
toppling could be three distinct stages of one deformation process rather than three
different toppling mechanisms. Any deformation in a toppling slope starts with a

bending, however smail this movement may be, and in case of separation of the rock
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block from the base could continue as a block toppling, and then possibly as a block
flexural toppling (This is not to say that block and block flexural toppling could not exist
in their own right).

4) 1t is possible to gerieralize at this stage, and to say that the failure in the
flexural toppling mode will result in many cases in subsequent block or block flexural
toppling. This further deformation may finally stabilize without causing an overall
collapse of the slope. That does not mean that the slope will not collapse in some
different failure mode like, for example, plain shear.

5) It is obvious, from the analysis results, and also from the developed theory, that
the stepped base, such as used by Goodman and Bray in 1976 -~r der'vation of their
equations, can rarely exist in reality. The original Goodmans and Bra. approach was
developed much further in section 3.4.2. At that stage, it became obvious that the basic
toppling or rather the overturning case is the one where rock blocks are overturning on
a planar rather than stepped surface. Unfortunately, this deformation mechanism cannot
be solved in terms of simple, safety factor based analysis, and probably some distinct
element based routine would be necessary for the solution of the problem. Therefore the
overturning on the stepped base, being a rather exceptional case, was not included in the
computer model.

6) Faiiure of slopes by flexural toppling is governed by the shear forces generated
by interacting blocks of bending rock columns. After the rock blocks start to split into
smaller and smaller columns, and ultimately into the set of primary columns defined by
individual bedding planes, the resultant failure surface can be found as the plane of
highest tensile stresses.

7) Higher strength parameters define a stronger slope which would sustain more
loading without a failure, but could finally fail in more violent way than the slopes
defined with lower strength parameters which tend to break partially at an earlier stage.

8) The progressive block flexural and block toppling above the basal surface
created by flexural toppling will create additional zones of fractured rock defined by
lower strength parameters which may connect to form a new failure plane with an

unfavourable inclination, and lead to triggering of an unexpected shear failure.
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8. RECOMMENDATIONS.

The program in its present form can be used successfully to analyze bedded slopes
such as those defined in section 3.4.1 for potential toppling without any restrictions. The
result of the analysis is the position and the extent of the failure plane (the program deals
with the progressive character of the failure). The program is also designed to be able
to follow the seque ‘al excavation or creation of the slope, for example that during open
pit mining.

1) It would be useful at this stage 10 run a parametric study with the present
model. It would add to the understanding of the toppling mechanism, and it would also
help to clarify the priorities in the further developmen! of the model.

The very first thing which could be imprcved rather easiiy is the routine for
entering data defining a water table (subroutine input). At the present stage it is rather
too complex, and it lacks necessary flexibility.

2) Secondly, at the present stage the model iteratcs around the splitting routine
until any SSF (page 71) is smaller than unity, and then calls the breaking routines (see
the flowchart in Figure I-1). The program would run faster if the sequence of the
calculation was changed in such a way that, : fi - each successful splitting, the breaking
routines were called before another test for splitting was run. In this way, for some cases,
larger blocks would fail at once without first being split into smaller units thus speeding
the calculation up without changing results.

3) Third, it would be useful, if the position of the failure plane determined by the
program were compared to the position of the real failure plane determined either from
the core drilling or from geophysical testing.

4) The last recommendation which is made with respect to this model concerns
the offset arrangement of crossjoints (Figure 3-9, page 50). The program now simulates
the slope with an inline arrangement of joints which is rather rare in reality. Mostly,
crossjoints are persistent only over several layers of rock, and so the offset arrangement

of joints is more realistic. The resultant failure plane should not change very much



97

except that it would be curved at its top portion with a smaller vertical crack at the end,
instead of being divided by only a vertical crack from the rest of the slope. The
difference between thz two routines would lie in the state of the rock above the separation
plane. The inline arrangement of joints leads directly to the block toppling mechanism
which wcild then be solely responsible for block flexural toppling. The offset
arrangemct of joints would leave the failed rock column already broken in several
pieces.

A new routine resembling subroutine Newton would have to be written for this
case. i’he matrix of coefficients would be identical to the matrix 4-4, page 69 ¢ -cept for
several new coefficients at the places of some of the zeroes. The mathematical solution
of the problem is straightforward. Unfortunately, the programming part would be
difficult. In the present solution, advantage was taken of the sparsity of the matrix 4-4.
The new matrix would still be a sparse matrix, but the position of the new coefficients
would only be determined after the failure of some cantilever, thus complicating the
solution, because the shape of the matrix will change with each calculation step. This
could actually exclude the possibility of taking advantage of sparsity of the matrix, and
basically destroy any possibility of a reasonable solution of the problem for a real slope
with several hundred cantilevers using commonly available computers (time and RAM
size concerns).

There is also a possibility of ignoring these new coefficients, accepting the error
in the solution, and then only the geometry of the slope tracing routines (Chan, Change)

would change. This way seems to be the more promising at present.
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Appendix A.

Derivation of equations of the system of interacting cantilevers for hlock flexural
toppling.

There are generally two ways to deal with this problem. First, to find a form of
the Airy's function for the given boundary conditions, and then either to try to find a
closed form solution or to solve the equations by numerical methods. Second. to usc
beam theory. In this thesis beam theory was used. (The reasons for this choice were
covered in the theoretical part of the thesis, chapter 3.).

This derivation is divided into several sections. Each section deals with a single
load, and the final equations for combination of all loads for n cantilevers are simply the
sum of all loading states. In the following derivations y(x), is a deflection of the n™
cantilever at a point x, ©(x), is an angle of the tangent to the deflection curve of the n"
cantilever at a point x with horizontal, M(x), is a bending roment in the n" cantilever at
a point x, V(x), is 4 shear force in the n" cantilever at a point x, and w(x), is a loading
function of the n™ beam at a point x.. For a single cantilever n=0.

Choosing the shape of the loading function then the basic equations of beam

theory are given as:

%’ = w(x) (A-1)
% = V) (A-2)
B e (A-3)
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L -oc0 (A-4)

Fortunately, for this particular problem the character of a loading of a system of
cantilevers is such that all the bending moments, shear forces, and resultant deflections
always occur on only one side of a cantilever, and so a little unusual but advantageous
system of the axes as well as of the convention of the directions of the bending moments,
shear forces, and deflections can be introduced. The chosen coordinate system is obvious
from the following figures, and the inner forces as well as the deflections are assumed
to be positive for the loading acting in the positive direction of the y axis, and negative

for the loading acting in the negative direction of the y axis.

A.l. The own weight of a single rock cantilever.
A sketch of a loading of a cantilever by the gravity forces of the cantilever itself

is shown in Fig. A-1 .

In

Figure A-1 Sketch of the loading of the single cantilever by it's own
weight.
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For the constant crossecticn of the cantilever, the loading is coistant with respect to

X. Then for the n" cantilever :
w(x),=w, (A-5)

Following equation A-1:

V), = [ w,dx = w, [x];

(A-6)
Vx),= w,(l,-x)
From equation A-2:
A x2 Iy
M), =w,[ 0,02, lx-21;
A-7
- (A-7)
M), =w,—
2
From equation A-3:
w, w
EI8(), =" [, -xydx= < G0
wle (A-8)
at x=0 ; 6(x),=0 = c¢,=-

6

EIB(x), == (- -1,]
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And finally from equation A-4:

—\4
(l.. JC) -l:(l—x)]+c3

_ W,l _ N 3 _ W"
Ely(s), =~ 10,07~ 1;1dx = <21

at x=0 ; yx),=0 =c,= %wnl: (A-9)

wn 4 3
Ely(x), = 210, 0)*-1,(-40)]

A.2. Loading by the underlying cantilever.
A sketch of the loading of the cantilever by the reaction caused by interaction with

the underlying cantilever is shown in the Fig. A-2:

In

ln - X en " Xrnd

figure A-2 Sketch of the loading of an n™ cantilever by the
reaction with the underlying cantilever.
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The loading is assumed to be constant with respect to x :

U<X, . ~X> =0 for X, <X

r(x)n—l = rn—l u<xrn-1_'x> (A'lﬂ)
u<x ., ,~x>=1 for x_, >x

Because of character of the loading the Singularity Step function "u" must be introduced.

Then from equation A-1:

V(X)n_l = frn_l u<xm_l -x>dx = I, (x'.ﬂ-l —x) u<xr'"_l -X> +C,

ax=x,, ; Vx),,=0=¢-=0 (A-11)
V(x)n-l = rn-l (xr.’l‘l _x) u<xr.n_l —x>

From equation A-2:

r
= - = _nl —x)2
M(x)n-l - frn-l (xr,n-l_x) UK py x>dx = ) (x,.,,-l X)” u<x,

.n—l_x> +c2

A-12
at x=%x,, ; Mx),,=0 = ¢,=0 ( )

r
_Tha 2
M®),_, = ':2 %) UK, x>
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From equation A-3:

r r
_ "n-1 2 - _ 'n-1 _\3 _
EB(x),_, = —?f (%, oy XY UK, ~X>dX e (o1 ~X) USK, , =X> * €4

r A-13
at x=0 ; 6(x),,=0 = ¢;=- "6" x,3_,,_1 (A-13)
rn-l 3 3
EIf(x),_, = —g— [(x,'n_,—x) U<X,,_, ~x> -x,',,_l]
And finally from equation A-4:
LR
Ely(x), , = "Tl (%, g =0 UK,y =2> =X, ()X
r., &, %
= "6‘ [—= ; <X, , | —X> ~-x2,,_1(xm_l—x)] +c,
(A-14)

1
at x=0 ; y©x),, =0 = Ca=§ru-1xr4ﬁ-l

r,_
EIy (x)n -1 - —5'4% [(xr,. -1 _x)4 u<xr,n -1 x> _xl?,u— l(xr,n -1 "4X)]
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A.3. Loading by the overlying cantilever.
A sketch of the loading of the cantilever b the reaction caused by interaction with

the overlying cantilever is shown in the Fig. A-3:

Figure A-3 Sketch of the loading of an n™ cantilever by the
reaction with the overlying cantilever.

The loading is assumed to be constant with respect to x :

u<x_,-x>=0 for x <x

_r(x)n = r" u<xr'"-x> (A"IS)

u<x ,~x>=1 for x_,>x

"o

The Singularity step function "u" was again introduced and from equation

A.l.follows:

-Vx), = f r,u<x, -x>dx =r,(x_,—X) U<x,,-x>+c,
atx=x, ; WVx,=0 = ¢ =0 (A-16)

-Wx), =1, (x,,~X) u<x, x>
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From equation A-2:
_ < - rn 2
-Mx), = f r"(xm—x) u xm-x>dx oty (x,'"—x) U<x,,~x>+c,

at x=x, ; M@x,=0 = ¢,=0 (A-17)

,
-M@), = —25 (x,, -x)? u<x, x>

From equation A-3:
~EI® 2 -x)? u< ->dx—r” - u<x, x>+
=), = —z—fx,'n X)" U<x,,-x _—6—(x"" X)  U<X,,~X>+Cy

at x=0 ; 6(x),=0 = c3=—£6-'5xm (A-18)

ril 3 3
- EI0(x), = € [Cx, ,~x)" u<x, ,-x>-x, |

And finally from equation A-4:

Tn 3 3
-Ely®), = [ 2 [, 0w, -x )

r. (x _-x* 3
[—E—u<x, x> -x,,(x,,-%)] +¢,

6 4 (A-19)

at x=0 ; yx),=0 = c4=-;-rnx:’,,

r
- EI)’(X),l = ?Zi- [(xr n —x)‘ U<x,,~x> - x,?'"(xr"l -4x)]
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A.4. Loading by the underlying water.
A sketch of the loading of a cantilever by the hydrostatic forces generated by the

water on the lower surface of the cantilever is shown in the Fig. A-4:

Is- Xvn) Xvail

Figure A-4 Sketch of the loading of the lower surface of a cantilever
by hydrostatic forces.

Loading is a linear function of a distance x :

u<x,, -x>=0 for x, _,<x

VOO, =Y (. X) UK, o> (A-20)
( ),. 1= Yw¥ua va-1 u<xv,n-l-x>=l for Xy p-12%
From equation A-1:
y
V(x)u—l = f Yw(xv,n-l _x) u<xv.il-l ~x>dx = 7‘9 (xV,n-l -x)z u<xVJl“l x> ¢
at x =xv'n..1 : V(x)n-l =Q = ¢, = 0 (A-ZI)
V@), 1 = 22 (5, 3 UK,y X
n-1 2 va-1 -1
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Yw Yw
M®),_, = —2—(x X u<x,, ~x>dx = -?(xm_l-x)3 U<X,, |
A-22
at X=X, ; Mx),_,=0 = c,=0 ( )
Yw 3
M(x)n-l (xv,n l-x) u xvn 1 x>
From equation A-3:
El8(x),_, = f L &y 4% U<x,, ,~x>dx = ( o1~ %) UK, =X +Cy
yw 4 (A-23)
at x=0 5 6,70 == - ta
BB,y = 32105y USE, 2 )
And finally from equation A-4:
Yw 4
Ely(x),_, = [(xv,n 17X USK, x> xv.n 1Jax
_ Y Bppr P
L Y a24)
1
at x=0 ; yx),,=0 = ¢, 120Y (5 -u<x,,
El), ., = =[x, 0 usx,, x>~ -5x) 1 (X g = %) + xv',, 15 -u<x,, ,-x)]

120
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A.S. Loading by the overlying water.

A sketch of the loading of a cantilever by the hydrostatic forces generated by the

water on the upper surface of the cantilever is shown in the Fig. A-5 :

In

l“ - xV kil 72 xv'n

Figure A-5 Sketch of the loading of the upper surface of a cantilever
by hydrostatic forces.

Loading is a linear function of a distance x :

u<x,,-x>=0 for x, <x

~V(X), = ¥,,(%,,,~X) U<x,,~x> (A-25)

u<x, -x>=1 for x, 2x

From equation A-1:

-Vx), = f Yy ¥y %) U<X,  ~x>dx = _7_23 (x, '"—Jc)2 USX, , ~X> +C;
at x=x,, ; V®),=0 = ¢,=0 (A-26)

-V), = % (%) U<x, x>
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From equation A-2:

-M@), = [

ar x=x,, ; M(x),=0 = ¢,=0 (A-27)

2 _Y 3
(x,,~X)" u<x, ,-x>dx = —6—"’ (x,,~%) u<x,,-x>+c,

-M(»), = —2——‘" (x,, %) u<x, ,-x>

From equation A-3:
EBG. = [ e -0 u<x -xodr= Y00 -0t u<x. x>+
), —f?(xm x)’ u X, 0% ‘EZ(""" x) u X, x> +Cy
at x=0 ; 6(x),=0 = c3=—%x:’,, (A-28)

-EIo(x), = %"— (x,, -x)  u<x, x> —x:, |

And finziily from equation A-4:

- Ely(x), = f ;;43 [x,, -x)* u<x, x> -x: Jdx

Y (.rc‘,.,,—ltt)5 8 _
at x=0 ; yx),=0 = ¢ = Floywx:,,(S ~U<x,,~X>)

Y
-Ely(x), = F‘:) (&, -2 u<x, ,-x> - 5x) n (X, =%) +x2 (5 —u<x, ,~x>)]
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A.6. Loading by seismic forces.

A sketch of a cantilever loaded by seismic forces is shown in the Fig. A-5.

I

3

Figure A-6 Sketch of loading of a cantilever by seismic forces.

Force Q, is expressed as a function of the weight of a cantilever W [kN], and of

a dimensionless coefficient k, as:

Q=-kW (A-30)

The loading of a car:ilever n by the force Q, with respect to the x is:

Q®),=Q,% <Xgn~X> (A-31)



Where 8<> (Dirac function) is another Singularity function expressed as:

u<x,,-x>=0 for x>x,,

du<x,, - x>
U<xg, x> =1 Jor x<x,,

dx

= 6<xo'n -x> A

Then from equations A-l and A-32:

V@), = [Q,8<x,,~x>dx

Vix), = Q, U<Xgo,~X>

From equation A-2:

M), = f Q,u<xy, ~x>dx = Q,(x,, ~N)U<Xy, ~X>
a X =Xon > M(x),, =0 = <, =0

M@), =Q, (xo "X U<XG, ~X>

From equation A-3:

Q
EIB(x), = f Q,(xg, %) u<xy, -x>dx = —2—"(xo n -x)2u<xQ',, -x>+c,

at x=0 ; 6(x),=0 = c2=——023(x0'"2

EI8R), = % (g, ~ XV u<xy, —x> -~ (x, ]
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(A-32)

(A-33)

(A-34)

(A-35)
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And finally fom equation A-4:

Ely(x), = f % [(xo.,, -X)2u<xo T —xé'n]dx

Q, (xg,~%)
= _2 [_Q.!?__ u<_x<?"l ~-x> -xé.n (xO.n —x)] +C3
(A-36)

a x=0 ; yx),=0 = c3=%0nx3',l

E(x), = % (g, — %) U<x,, x> —31\:5,,l (gn %)+ 2x$ ]

A.7. Derivation of equations for combination of loads for n cantilevers.

The geometry, and the system of numbering, used for the derivation is shown in
the Fig. A-7:

!

Figu:z A-7 The geometry of the system of n interacting
cantijazes,
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A sketch of a combination of loads acting on one of the system of interacting

cantilevers is shown in Fig. A-8.

Ground water level
Qn = k-Wp-ln
Wo= 7,dp-cO5¥

hypifesin Wexyny

Figure A-8 A sketch of a combination of loads acting on
one of the system cf interacting cantilevers.

Final equations for the system of interacting cantilevers loaded by a combination
of forces are simply derived by adding separated loading states together, using the law
of superposition.

So the resultant load w, acting on the cantilever is equal to:
q(x), = Wx),- r(®),_;* r(x),- v(x),_, + v(x),+ QX), (A-37)
Using equations A-5, A-10, A15, A-20, A-26,A-31 and A-37

q(x), =w,-r,_, USX, 1 ~X> + T, USK, , ~X> =

-y, siny (x, -1 -X) U<x, n-1"%>+ (A-38)

+y, 80y (x,  ~x) u<x, x> +Qb<x,, - x>
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Similarly using equations A-6, A-11, A-1(, A21, A-27 and A32 the resultant shear

force V,, is equal to

Vx), = w"(l,l -X)-r,, (Jc,’"_1 -X) USX, | ~X>+r, (x,_n -X) u<x, ,-x>-

sin sim
_Yusind v, sin

2
5 -1 -X)° u<x

v,n-1

-x> +

(x,,~0)% u<x, -x>+ (A-39)

+ Qu<xQ',l -X>

Using equations A-7, A-12, A-17, A-22, A-28 and A-33

W, 2_"n1 2 "n 2
M (x)u - '2—(1,, —X) - 2 (xr,n-l —x) u<xr,n-l x>+ _2_ (xr,n ‘X) u<xr,n x> -
g siny i (A-40)
- _“’.8__ (6 3 -x)} USK, , | =X> + hid e (,x:v'"—)c)3 U<x, ,-x>+
+Q, Xy, ~X)U<xy, ~X>
From equations A-8, A-13, A-18, A-23, A-29 and A-34
EIB(), = 2 [ -xP-13] - =] 3 >
®), = —6—[( %) 1] - o (O ey ) U, %>~ 20, 4]+
+ 2 (5,2 <, ;> =) -
ri Kpp XY USX,, ~X> =X, ]
Y, siny " 4 (A-41)
- 24 [(xv,n-l_x) u<xv,n-l x> _xvﬁ'll +
Yw

+

sin
2 W (Cx,, -x)* u K,y x> ~x2 al*

+ —Qz—" [Cegn — XV u<xg, - x> - (x,,)°]
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And finally from equations A-9, A-14, A-19, A-24, A-30 and A-35

wn 4 13
Ely(x), = EZ[(I" ~x)" -1, (1-4x)] -

I'" -1 4 3
- —2—4_ [(xr,n -1 -x) u<xr.n 17X X p (xr,n -1 ~4x)] +

" 4 3
: ‘—: Xy )t u<x x> - x, (x —4x)] +

(A-42)

-x)? u<x,, =x> —xé n (xo’,l -3x)] -

e ¥ [(x, -x)u<x, -x>-5x2 (x, -x)+x2.(5 -u<x, -x>)] -
120 v, v, v,n vn vn wn

Y, siny
) ‘;20 [(xv'""l —x)5 u<xV.n-1 x> - Sx:,n-l (xv,n-l_X) *

s
+Xyn-1 (5 -—u<x, -1 -x>)]

Unfortunately, for reasons explained in appendix H, the approximation of the
contact force by the uniformly distributed load would not always work during solving the
system of nonlinear equations. For such a case another system of equations is presented
as equations A-43, A-44, and A-45 (next page). The new system is identical to the
previous one with the exception of the reaction between cantilevers which is
approximated by a force acting at the end of the shorter cantilever. The derivation is

analogous to the derivation of the force F (appendix B), and so only the resultant

equations are presented in this text.
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Analogous to equation A-40

w
Mx), = 7" (,-x*-R_, (p oy XY UK, =x> + R (X, ~X)U<K_,~X> -
sin sin (A-43)
il Gty ey ) UK, x>+ v, S (x,,~%) u<x, ,~x> +

6

+ Q,l (x n” X) U<xo, X>

to equation A-41

w R
EIB(), = 10,0~ ] = [0y 2 Ut =0 =2 1]+

R
5 1060 st x> - -
_Y,siny (A-44)

4 4
24 [(xv,n-l —x) u<xv,n-l x> —xv,n-l] +

sin
L T RN

+ —Qi’l (%o, -x)? U<Xg, ~X> - xé ]
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and finally from equation A-42

wn 4 13
Ely(x), = EZ[(I"'X) -1, (1-4x)] -

R
g—l [(xr'"_l —x)3 u<xr’”_l -X> —x:"_l(xr,"_ ) —3x)] +

+—_

R
" (X, ,-X) UK, x> = XX, ~3)] +
(A-45)

& [(xg, ~ XV u<xq, - x> ~Xgn(g,~3%)] -

sin
' lezow [0, XU, %> =525 (%, %) + Xy (5 ~ U<, ,~x>)] -

Y,sing
) wl20 [(x".'l‘l _x)5 USX,py~X> —S‘x\:n-l (xv.n-l —Xx) +

5
+'xv,u-l (5 - u<xv,,,_1 _x>)]



Appendix B.

Derivation of equations of the system of interacting cantilevers for the block

toppling.

For the following derivation beam theory is being used, and the derivation is
again divided into several sections. The nomenclature, the shape of the functions and the

basic equations B-1, B-2, B-3 and B-4 introduced in Appendix A as A-1, A-2, A-3 and

A-4 are the same.

L (B-1)
%xM—- = V(x) (B-2)
2 - M) (8-3)
% -8(x) (B-4)

Also the same are the equations for all loads, except the reaction with overlying

cantilever.
It is however necessary to define the new load acting at the end of each cantilever.

In open pit mining, the pit is created in a series of steps, bench after bench, and during
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each step a new failure plane could develop, loading the under-lying rock columns by the
weight of the failed mass. The magnitude of this force is a function of the state of the
deformation of the failing rock which determines the shape of the rock mass block above
the failure plane. This force will be introduced as some function of the height of the
failed blocks, and it will be called F.

B.1. Loading by the failed rock .
The sketch of a cantilever loaded by the weight of already failed rock is shown
in Fig. B-1.

In

oY

Figure B-1  Sketch of the loading of a single cantilever
by the weight of already failed rock.

It is obvious from Fig. B-1 that the force F, is not a function of x. As a resuit the

inner shear force is constant over the cantilever, and has the magnitude of the load F,.
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From equation A-1

V), = F, (B-5)

From equation A-2:

M), = ["F,dx = F,(,-%)

(B-6)
Mx), =F (1, -x)
From equation A-3:
F
EIB(), = [E,(, -x)dx = -0+,
F
at x=0 ; 6(x),=0 = ¢,= ——2'1(1,,)2 (B-7)

- Fn _v\2 _ 2
EIB(x), = 7[(1,, xy -()]
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And finally from equation A-4:

Ely®), = [ -';— [, -%? ~L;1dx

F, (, -x)
= -2-[-13—— ~12d, - 0] +c,
at x=0 ; yx),=0 = c3=—31—Fnl,? (B-8)

F 2 3
Ely(x), = —6'5 [q,-x?-31,(,-x)+21,]=

- % (¢, -2 - 17 (¢, - 30)]

There are several ways to define the force F,. It seems to be reasonable to
determine the force F, as a weight of the broken part of a cantilever in question. This
assumption will be accepted for both block, and block flexural toppling modes of failure.
Equations describing the toppling, and sliding forces are derived in appendices E and F;
equations describing the geometry of toppling blocks are derived in the appendix D.

Another problem is the determination of the character of the failed rock mass.
There are basically two ways to deal with this problem. First, the failed rock could be
assumed to behave as a debris, but determination of strength properties may proved to be
difficult in some cases. Second, the deformation of the failed blocks can be followed by
geometrical equations, comparing them at the same time with the changing safety factor.
Again, there is the problem of determining the residual strength parameters on the failure

plane, and at some stage the problem of interlocking of the failed rock blocks might
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prove to be extremely difficult to model. In the computer model the failed rock will be

dealt with as a rock debris.

B.2. Loading by the overlying cantilever.
A sketch of loading of a cantilever by the reaction caused by interaction with an

overlying cantilever is shown in Fig. B-2.

ln' Xen Xen

L JO— spacing of joints

Figure B-2 Sketch of the loading of an n™ cantilever by the reaction
with the overlying cantilever (block toppling).
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Loading is assumed to be constant with respect to x:

r(x), = r,u<x, ,~x>-r, u<mb-x>
where
u<x_,-x>=0 for x <x (B-9)
u<x ,-x>=1 for x ,2x

u<mb-x>=0 for mb<x

u<mb-x>=1 for mb>x

Then from Fig. 2

V@), = Vi), - V'), (B-10)

Where V'(x) is the shear force caused by continuous load from the point x,,, to the
origin, and V"(x) is the shear force caused by continuous load from the distance mb to
the origin. From superposition, the difference of these shear forces is the shear force
caused by the loading in the Fig. 2. It should be mentioned at this time that the sign for
prime (') does not mean derivative of x in this thesis. The derivative is always written
in the full form (for example, df/dx). The following primed characters are simply the

names of componeris of the resultant, unprimed inner force or deformation characteristics.



From equation B-1:

Vi), = f r,U<X, ,~x>dx =T, (X, -X) U<x,,~X>+c,
atx=x, ; Vi®,=0 = ¢, =0 (B-11)

/
Vix), =r, (x,,~x) u<x,, -x>

and

Vi), = f r, u<mb-x>dx = r,(mb-x) u<mb-x>+c,
at x=mb M VI(X)“ =0 = ¢, = 0 (B-IZ)

V'(x), = r, (mb-x) u<mb-x>

And finally from equations B-10, B-11 and B-12
V), = r, (x, ,-X) u<x, ,-x> - r, (mb-x) u<mb-x> (B-13)

It is obvious from equation B-13 that between the point at the distance mb, and between
the origin, the shear force remains constant, as it should be according to Fig. B-2.

Similarly to the shear force equation, the moment equation holds:

M), = M'(x), - M"(x), (B-14)
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From equation B-2:

r
tx) = = 2
M(x), = f r, (%, ,~X) u<x_,-x>dx = —5"- (X, =XV <x,,~%> +¢,

at x=x., ; M(x), =0 = ¢,=0 (B-15)

M'(x) =£5(t -x)? u<x_ -x>
n 2 “rn rn

and

M"(x) = f r.(mb-x) u<mb-x>dx = Tn (mb-x)? u<mb-x> +c
n n 2 2
at x=mb ; M'(x), =0 = c,=0 (B-16)

Mx), = -r2—" (mb-x)? u<mb-x>

Finally from equations B-14, B-15 and B-16

M(x), = % (x, ;%) U<x,_,~x> - —r,j' (mb-x)* u<mb-x> (B-17)

It is obvious from equation B-17 again that between the point at the distance mb, and

between the origin, the moment remains constant as it should be according to Fig B-2.
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Following the same procedure as for the shear force and for the moment

quations:
EIO(x), = EI®'(x), - EI6"(x), (B-18)

From equation B-3

EIO'G), = 2 [ (v, -2 us,,-x>dx = 2 (x, -2 u<x, x> +
*), _Ef(x'-" x)" u<x, ,~x ——6-()Cm X)" U<x,,~X>+cy
r
at x=0 ; 0, =0 = c3=~€"x,?,, (B-19)

r
EI8'(x), = —61 [Cx, %)’ u<x, x> —x,?,,]

and

EI0'(x), = % [ (b~ u<mb x> = % (mb-x)° u<mb-x> +c,
r
at x=0 ; 0x),=0 = c,= --g” (mb)? (B-20)

EI0'(x), = -'6! [(mb-x)? u<mb-x> - (mb)]
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Finally from equations B-18, B-19 and B-20:

rn 3 3
EIB(x), = r [Cx, - -X) U<x,,~x>-x.,] -

(B-21)
r :
-—6’1 [(mb-x)? u<mb-x> <mb)?]
The last step is derivation of the equation for deflection.
Ely(x), = Ely'(x), - Ely"(x), (B-22)
From equatic:: i~
’ :
Eh'(x), = . f E" (v, %)’ u<x,_,-x> —xf,,,]dx
&, 0"
= E" [—— e e 3’,,(xm-x)] +c,
(B-23)

at x=0 ; y(),=0 = ¢,= % x:,,

/ - rn 4 3,
Ely'(x), = —2—4-[(x, a0 UK, x> X (X, -4x))]



and

Ely"(2), = %‘- [(mb-x)® u<mb-x> - (mb)*} dx

r Y )
= é [(mb_x) u<mb-x> - (mb)(mb-x)] + c,
(B-24)
at x=0 ; y®),=0 = c,= %rn (mb)*
r
Ely"(x), = i[(mb-x)" u<mb-x>-(mb)*(mb-4x))
And finally from equations B-22, B-23 and B-24
EI — r’l - 4 < -— - 3 ._4 -
Yy = = M=) U<y 0> %, (%, ,~4x)]
(B-25)

- —rzi[(mb -x)* u<mb-x> - (mb)*(mb-4x)}

B.3. Derivation of equations for combination of loads for n cantilevers.
The geometry, and the system of numbering, used for the derivation is shown in

Fig. B-3 (next page).
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Figure B-3 The geometry of the system of n interacting
cantilevers. (Block toppling).

A sketch of a combination of loads acting on one of the system of interacting cantilevers

is shown in Fig. B-4 .

Ground water level

Qn - k.w".l“
= 7 dycosy

————f

hyp=fsiny-xyy

=

vl [sin ¥ Rypy

Figure B-4 A sketch of combination of loads acting on one
of the system of interacting cantilevers (block toppling).
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Final equations for the system of interacting cantilevers on the stepped base (Fig. B-3)
loaded by a combination of forces (Fig. B-4) are again derived by adding each of the
loading states, using the law of superposition. Notice that the length of the submerged,
lower surface of each cantilever is marked by a hat because, in the case of the stepped
base, obviously &,, # x,,.

So the resultant load w, acting on the cantilever is given by:

q(x), = wx),~ r(x),_, + rx),~ v(x),_, + v(x),+ Qx), + F(x), (B-26)

Similarly using equations A-6, A-16, A-21, A-27, A-32, B-5 and B-13 the resultant shear

force V,, is equal to:

Wx), =w,(l,-x)+r, (x, " -X) U<X,,-x>-r, (mb-x) u<mb-x> -
- rn -1 (xr,n -1 ‘X) u<xr,n -1 x>+

+ Qnu<xo,n -x> +F’l - (B-27)

Y, sing
2

A 2 A Y WSinw 2
(x‘,'"_l -x)" u<X, 1" X> 5 (x, " -X) u<x,, -x>



Using equations A-7, A-17, A-22, A-28, A-33, B-6 and B-17

(,-xy ,

M =
(x)ll wﬂ 2

r, ) r, )
+ > (x, . -X)"U<x, ,~x> - > (mb-x)* u<mb-x> -

Y (B-28)
-—(x

5 o -x)% u<x

r,n-1 x> -

Y, siny
- 6 (‘xv,n-l

Y, siny

-x)% u<kt

-x> +

3
-1 (xv,n X ) u<'xv,n x>+

+ Q(xo_n “X)U<Xgy, ~X>+ F,(,-x)

From equations A-8, A-18, A-23, A-29, A-34, B-7 and B-21

wn 3 53
EIf(x), = r3 [@,-x-L1+

r
+ En [, %) usx, x> -x )] - % [(mb-x) u<mb-x> - (mb)’] -

r
-1 3
- [(xr.n-l _x)3 UK, py~X> _xr.u-l] -

6 ’ (B-29)
v, sing o s 4
- 24 [(xv,n—l ~X) u<xv,n-l x> —xvﬁ‘ll +
Y, siny
+
24

4
[(x, %) u<x,, -x>-x,,] +

F
+ 22'1 (g, =3 u<xg, ~3> ~ (5,1 + 5 [, =2 ~ ()]

5
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And finally from equations A-9, A-19, A-24, A-30, A-35, B-8 and B-25

Ely(x), = ~2{(L-x)*-12(1-4x)] +
o240 " "

" 4 3
+ >4 [, )" u<x,,-x>-x,.(x  ~4x)] -

- Eri[(mb _2)* u<mb-x>—(mb)*(mb-4x)] -

rn—l 4 3
) 24 [(x’-"‘l ~X) u<xr.n—l x> —x'yn'l(xr,n-l -4x)] +

(B-30)
+ —6—" [(xg, ~ %) U<Xg, ~X> -3xé',, (xpn %)+ 2x(3),n] *

F
+ ?" [, -x)® =302 -x) +21)] +

. Ywsing
120

Y, siny
120

5 4 5
x, ” -X)’U<x, x> 5x‘,',l (x, n -X) +X, (5 —u<x, n -x>)] -

A 5 a a4 A
[(xv,n-l "X) u<xv,n-l x> - va,n-l (xv,n-l ‘X) +

.5 .
+X, 01 (S - U<k, ~x>)]

Unfortunately, from reasons explained in appendix H, the approximation of the
contact force by the uniformly distributed load would not always work during solving the
system of nonlinear equations. For such a case another system of equations is presenied
as equations B-31, B-32, and B-33 (next page). The new system is identical to the
previous one with the exception of the reaction between cantilevers which is
approximated by a force acting at the end of the shorter cantilever. The derivation is
analogous to the derivation of the force F, and so only the resultant equations are

presented in this text.



Following equation B-28

M) = —2(l -x) +
n 2 n

+R, (x, . -X) u<x, x> - R _, (x -1 ~X) U<X, _, —X>~

rn-1

Y, siny v, siny

6 (xAv,n -1

-x>+

-x)° u<i

- ,, -x)% u<x, x>t

+Q,(xp, ~X)u<xy, - x> +F (-

equation B-29

w
EIB(), = 2 [y x -

n 2 2
* 7 [(x' e -x) u<‘xr.n x> -xf.'l] -

n-1 2 2
- ) [(xr,n—l—x) u<xr,n-i_‘x> _xr,n—l]_

Y, siny .
Sy (&, ﬁ_l—x)“ u<k,, |
. Y, Siny

24

F
+ 9,2—" (79 ~X)’U<xg, ~X>- (o1+ ?" [, -x)? - )]

‘4
-X> —xv',,-l] +

4 4
[Cx, . -X)" U<x, i A B
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and finally following equation B-30

wn 4 ;3
Ely(x), = z[(ln -x)' -1, (1-4x)] +

Rn 3 2 3
+ 3 (x,,-x) u<x_,-x>-x;,(x ,-3x)] -

R
- %l[(xr,n—l __x)3 u<xr,n-1 x> —xrz.n-l(‘xr,n-l —3x)] *
Q
+ —6—" (g, — % u<xy, - x> —xcz,,,,(x 3%+ (B-33)

F, -

- d,-x -1:d,-30]+

. Y, siny
120

_Y,,siny
120

4 5
[x,, -x) UK, ~X> = 5%, (X, ~X) +X,, (5 - u<x,,~x>)] -

a a a4 a
[(xv,n-l __x)S u<xv,n-l x> - S'xv.n-l (xv,n-l - x) +

.5 n
+ Xy -1 (8 -u<x, -1 -x>)]
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Appendix C

Geometrical equations of circle.
The equation of the circle with the center on the y axes (Fig. C-1) is:

2+ (y-y ) =y, (C-1)

%

Figure C-1 Notation of the geometry of a circle.

Then from equation C-1 it follows

x2 +y2 -—2yyo = 0 (C"2)

and, from the fig. C-1

= cosf (C-3)
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and consequently

S SN C-4
Yo (1 -cosb) 4
then from equations C-2 and C-4
2 2
0=x?+y?- ¥ __ (C-5)
(1 -cosB)

multiplying equation C-4 by (1-cos8) yields

0 = (1 -cosB) (x2 +y?) -2y?

(C-6)
0 =x2+y?-cosBx? -cosfy? - 2y?
and finally
1-cosd.3
y = x (52502 (C-7)
1 +cosB

Equation C-6 has two roots, but the negative one is not of interest.
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Appendix D.

Geometrical description of the toppling movement of interacting blocks on a
stepped base.
To model the motion of a system of toppling rock blocks, it is necessary to find
a relation between the motion of any two adjacent blocks of the system. This can be
done in terms of geometrical relationships which express the angle of rotation of one
block as a function of rotation of the adjacent block. There are actually four different

geometrical cases to describe.

D.1. Two toppling blocks - case A.
The geometry of the case A is shown in Fig. D-1.

Figure D-1 The geometry of rwo toppling blocks on the stepped base -
case A.
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In Fig. D-1 the height |, of the block n, the width d, and the height b (spacing of
joints) of the step AEB, and the angle of rotation of the block n are known. The
unknown is the angie of rotation of the block n+1. From the Fig. D-1 a basic gcometrical

equation can be formed:

BD DC

: == (D-1)
sinBCD  sina,,,

In the equation D-1 :

BD = JAB? + AD*-2 AB AD cos BAD

d
AB: d2+b2=.____n_
Y &n cosBAE
d
AD=‘/lz+d2= n__-AC
" " cosCAE

BAD =CAB+a, (D-2)
CAB = CAE - BAE

lll
CAE = arctan:i-

BAE = arctan-:—
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From the triangle ACD:

a, D-3
—sine? = Dc=2ADsin52£ (D-3)

and
BCD =ACD +ACE
a, 1
ACD =90‘3' = —2- (180-(!")
(D-4)
ACE =90-CAE
l
CAE = arctan——
d’l
So all components of the equation D-1 are known, and the angle a,,, can be
expressed as :

. DC .
@,,, = arcsin [E sin BCD] (D-5)

Where BD, DC and BCD are given by equations D-2, D-3 and D-4.
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D.2. Two toppling blocks - Case B.
The geometry of the case B is shown in the Fig. D-2:

nel

Figure D-2 The geometry of two toppling blocks on the stepped
base - case B.

In the Fig. D-1 the heights I, and 1 ,, of blocks n and n+1, the width d, and the
height b (spacing of joints) of the step FMH, and the angle of rotation of the block n, a.,
are known. The unknown is again the angle of rotation of the block n+1. From the Fij:.

D-2 the basic geometric equation for the case B can be formed as:

«,, =a, +NJG (D-6)

The angle NJG can be expressed as:

NJG = min[%‘f sinNGK] (D-7)
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in equation D-8

GN =\/FN* + FG*-2 FN FG cosNFG

FN = ,/D,f +N?
NFG = NFM - GFM (D-8)
NFM = arctzmdi

n

GFM =¢«,-90 +¢§

Where v is the angle of bedding planes with horizontal (see Fig. D-3).

JN

» ®-9)

and finally

NGK =90 -NGH
NGH = arcsin[ 2 sin GHN]
GN
HN = b-HM
HM =d, tan HFM (D-10)
HFM = a,-90+4
GHN = FHN = NFM - HFM

bil
NFM = arctan-—

«,



146
D.3. The lower block is sliding, the upper block is toppling - case C.
The geometry of this situation is shown in Fig. D-3.

= @p o,

Figure D-3 Geometry of the movement of one sliding and one
toppling block on the stepped base.

The angle a.,, is an unknown in this case, and is a function of the distance A, that the
lower block has slid.
Derivation of this functional relation is straightforward:

From Fig. D-3 it follows:

A

—_—= E"

,-b) (D-11)
En =y —90+1;J
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and from equation D-12

Al
{d,-b

«,,, = arctan +90-¢

As mentioned at the beginning of this appendix, there is a fourth basic case
geometrically possible. This case is shown in the fig. D-4. Unfortunately, when the

upper block tends to topple, and the lower block slides so far that the contact corner to

Figure D-4 Critical position of the blocks after the contact
corner-corner was established.

corner is finally established, any further movement has so many geometrical variants that
its' mathematical description in terms of geometrical equations is unsatisfactory. If this
situation occurs during computation, the last safety factor of the present state of

deformation will be the one just before the corner-corner contact occurs.
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Appendix E.

Derivation of equations for the system of toppling blocks.

The system of forces acting on one block from the system of interacting, toppiiny

blocks is shown in the Fig. E-1.

Run-COS 0y

Yo XvnCOS Ctn

va-1 €08 Otn G“V

Yo Qvn.l Cos Q&

Figure E-1 System of forces acting on one from the system of
interacting blocks.

T = \¥,y XynC€0S a2

There are actually several possible arrangements of how three blocks can be in contact
when toppling. It is obvious from Fig. E-1 that whatever the combination, the only forces
changing their direction are the contact forces P, and P, ,. The rest of the forces are not
affected by the adjacent blocks. The nomenclature of the acting forces remain the same
as for the cantilever equations (Appendices A,B), the only new element is the uplift force
U,

The contacts that can occur within a system of toppling blocks are shown in the
Fig. E-2 (next page). Case a) shows blocks below the crest, case b) is a crest block and

case c) depicts blocks behind the crest. When the deformation is in progress, case a) may
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all cases the contact is
always between a a) b) c)
cormer and a plane.
The contact force P is
assumed to act in the
direction inclined from

the normal to the

contact plane by the

) Figure E-2 Possible contacts between toppling blocks.
angle of internal

friction ¢.

Geometry of possible arrangements is shown in figures E-3 and E-4.

The angle of the force P, with vertical ............... 90-(c,-¢) = P~y
The angle of the force B, with the blockn+1..... @+{ay.y-a, )=p*E, =Aa

Figure E-3 Geometry of toppling blocks - block n being the higher one.
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The angle of the force P, with vertical ............... 90-(0t,. 1+ #) =p—arper
The angle of the force F, with the blockn ......... P-(op. -2, )=0~F, =n

Figure E-4 Geometry of the toppling blocks - Block n being the lower one.

From the Fig. E-1 the moment equilibrium of the forces can be defined for the
three different cases in the Fig. E-2 as:

Case a)
0= PnSinA'nln —PuCOS)‘ndn + Vn,nen,l - Vn,n-len,S -
dll . l'l l'l 3 n
~W, cose, > + Wnsmani + Q,.COS“,.E - Qnsma"—z— T (E-1)

d l
—Fncosan—i'l +Fnsina"3" -P,_,cosbe,,+U.e,,
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Case b)

0=P coscbe",S - P sinpd, +V, vV

nn nl - n,n—len,3_

d

d, )
- W, cosa, >t W, sine., = 2" - (E-2)

= +@ cosa, — - Q, sina
2 <, "2 <.

d,
-F cosa, "y " +F sina, = -P,_ cosde, ,+U,e,,

Case ¢)

0=Pncosd>e -P,sindd +V, e, -V e

nn-1%n3 -

dll H n l’l d’l
- W"cosan-E- + Wnsman—i '+Q,,cosa"5 -Q,sine, — -

"y (E-3)
n < lu 3 :
—Fncosa"—z— +F"sman5 -P,_sinA l +U e
Then from equation E-1
P, (sinA,l, -cosA,d)
= +
n-1 cosd)en"
1 d N -
* cos(ben,, [v, nnnl Vn,n-len,S - Wncosan?" + W"Sln(!"—z- + (E-4)
~ L, d, d, .1,
+ 2 cose, = -Q,sina, --2~ F,,cosan—z— +F sina, —+U,e,,]



From equation E-2

_ P, (cosde, 5 -sindd,)

P
nl cose, ,
NUR S | 7P W "\ W sing o7 (E-5)
COS¢e"’4 [ u,nen,l n.n—len,3 nCOS&, _2_ pSIne, — + -

+C lﬂ_ H dn_F dn+F : "+U
.;ncosanz Q"sma"—z— ncosan? nSine, —+Ue )]

At the very beginning, before any movement takes place, all sides of all blocks
are paralle]l because they are in face to face contact position. For this situation equation
E-5 will be used for all geometrical arrangements for calculating the safety factor of the
slope (§, = 0; A, = ¢, see figures E-3 and E-4) .

And finally from equation E-3

P - P, (cospe, 5 -sindd,) .

n-1

sinh I,
1 d 1
* —S-III—A—T [ Vn.nen,l - Vn,n-len,3 - Wncosan-z- * Wnsman _2' + (E-6)
n'n

n 3 dll d’l 3 lll
+anosau3 —Qnsman-a —Fncosa"—z- +Fnsma"—2- +U,e,,l
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It is possible to define

d .
[C] = [ Vn,uen.l - Vn.n-len.S B Wncosan?n + ulnsnlan'zﬂ +

(E-7)
n : dll d’l : n
+ Q"cosan-i- —Qnsma"-i- - F cosa, > +Fusman5 +U,e,,l
Equations E-4, E-5 and E-6 then appear as equations E-8, E-9 and E-10.
P - P, (sinA,l -cosh,d,) L1 (€ (E-8)
n-l cosde cosde
nd4 nd
p - P, (cosde, s -sindd,) L1 (€ (E-9)
n-1
cosde, , cosde, ,
and
p - Dalcosbe,ssinbd) | 1 o (E-10)

sin, I, sinA, [,
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Appendix F.

Derivation of equations for the system of sliding blocks.

The system of forces acting on one block from the system of interacting blocks

is shown in the Fig. F-1.

Ryni€OS %y

Figure F-1 System of forces acting on one block, from the systern
of interacting blocks.

The figure is identical to the Fig. E-1 with one exception. The reaction R, does not act
at the corner of the block and its' position is unknown. This is the reason why an
assumption about the direction of the force is made, and the reaction force R is assumed
to act in the direction inclined from the norma’ to the contact plane by the angle of
internal friction ¢. The rest of the forces are defined the same way as for the toppling

movement, and their directions are shown in Fig. F-1. The nomenclature of the forces in
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the figure remains the same Zs in

appendix E Fig. E-1, and in the
appendices A,B.

The contacts that can occur

within a system of sliding blocks are
shown in the Fig. F-2. It is obvious

from the figure that all sliding

blocks are assumed to be in face to T
face contact, except the first one,

which is in corner- face contact with

the last toppling block.  This Figure F-2 Excluded face-comner kind of

tact for the sliding and toppli .
restricted number of possible contact for the sliding and toppling blocks

contacts is caused by the assumption, that the blocks in question either slide or topple,
but never change the mode of

movement.  Another assumption

accommodated is the one which

bans the contact between the corner

of the toppling block, and the side
of the sliding block as shown in
Fig. F-3. This kind of contact

would make the previous J

assumption unreasonable, and it

would allow highly unpredictable

movements of both sliding, and

toppling blocks. A more detailed

C . . . Figure F-3 Possible contact for the sliding
explanation is given in the main blocks

body of the thesis.
The geometry, including contact forces, their direction and the position of the

blocks from the Fig. F-2, is shown in the Fig. F-4 (next page).
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Figure F-4 Geometry of the system of two sliding and one toppling blocks.

From Fig. F-1, equilibrium of forces parallel to the sliding blocks can be defined

for the two kinds of contact in Fig. F-2 as:

I: 0=P,ccosi, ~P,  sing-R cos(a,+{+$-90)+ (F-1)
+F cosa, -Q sina, - U, + W, cosa,

and

l: 0 =P,sing-P, sind - R,cos(e, ¥ +$-90)+ (F2)
+F,cosa, -Q,sina, - U, + W, cosa,
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And again from Fig. F-1, equilibrium of forces perpendicular to the sliding blocks

can be defined for the two kinds of contact in Fig. F-2 as:

1: 0=Psin, -P, cosd-R,sin(a,+§ +$-90)+

+ VM -V, +F,sina, + W sina_ +Q,cosa,

an-1

and

1: 0=P,cosh-P, cosd-R, sin(a, +{y+$-90)+
+ VM—V

a1 T Fpsina, + W sine, +Q, cose,

Then, from equation F-1

R - 1
" cos(e, + ¥+ -90)

{P,cosA, -P,_ sind +

+F,cosa,-Q,sina, - U, + W, cosa,]
From equation F-2

R - 1
" cos(a,+y +$-90)

[P, sing - P, _,sing +

+ F,cose, -Q,sina, - U, +W, cosa, ]

(F-3)

(F-4)

(F-5)

(F-6)



From equations F-3 and F-5

0=Psin P, cosp-—oin V6750
" cos(e, + ¥ +¢ -90)

[P,cosA, -

- P,_ sing +F, cosa, -Q,sina, - U, + W, cosa,] +

+ V’!,’l - V

n-1 *Fpsine, + W sina, +Q, cose,

From equations F-4 and F-6

sin(a, + ¥ +¢ -90)
cos(a, + ¢ +¢ -90)

0=P, cosp-P, ,cosd - [P,sind -

- P,_,sind +F,cosa, -Q,sina, - U, + W,cosa, ] +

+V -V

wn~ Van-1 +F, sine, + Wnsman +Q,cosa,

Finally, from equation F-7

P sin, -cosA,tan(e,+§ +-90)
P = " : -
n-t cos -sindtan(e, + W +¢ -90)

_ LF,cosa, - Q,sine, - U, + W,cose, Jtan(e, + § +¢ -90)

cos¢ -sindizn(a, + ¢ + ¢ -90)
. Von = Vap-1 * Fpsine, + 557 sine, +Q, cose,,

cosd -sintan(e, + v + ¢ ~90)
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(F-7)

(F-8)

(F-9)
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and from equation F-8

[F,cose, - Q,sina, - U, +W ce . [tan(a o $H-90)
nolo T cos¢ -sindtan(a + ¢ +¢ -90)

(F-10)
. VM - VM_l +F sine, + W, sime, +Q, cosa,

cos¢ -sindtan(a, +¢ -90)

It is possible to introduce

[4] = [F,cosa, - Q,sine, - U, + W,coun |
[B] = [Vn,n - Vn,n-l
IF=a,+¢+$-90

+F sine, + W, sina, + Q,cosa | (F-11)

Then equation F-9 now appears as

» P,(sin, - cos, tan(T)) - [A]tanl" + [B]
n-1° cosd - sin tan(T)

(F-12)

and equation F-10 appears as

p _, - p - _lAlanl (5] (F-13)
n1 " 0" Cosd - sin tan(T)
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Appendix G.

Shear strength on the bedding planes.

The problem of calculating the stability of a set of cantilevers against shearing lies
in incapability of the program to express the progressive mode of failure which very
likely takes place between two bending cantilevers. The failure initiates at the place of
the lowest strength/stress ratio, and then gradually spreads along the bedding plane.
However, the overall shear stability on the bedding planes can bc expresse.i in terms of

average stresses.

Shear force within the composite beam can be calculated as:

V(x),, = W,,(l,, -X) +Rnu<xr'" -X> - R"_l u<x'_’"_l -t>+ Fn

Y. siny 2
+Q, UXop %>~ ”T (-1~ UK, p-y ~X> (G-1)
sin
+ v > v «,,~x)° u<x,,-x>

Maximum shear stress can be then calculated as

T OYmax =57 (G-2)
wa

The summation of the shear force over the length of the cantilever equals

lll

3 | 4
O pnax = = [ ), (G-3)
2 ¥ 2bhn{
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or

r}ll

{
3 T, mae = 25h {fw(z -x)+ fR f 4+[F,
0

(G-4)
S ‘II v,n -1
f xv, -x)* - [ (V.0 27D
and after simplification
3 L
Z t(x)n.max = [Wu —2’1 * Rnxr,n -Rn-l'xr,n-l +Fln +
2bh, (G-5)
Y, SV
* T xv,n - v,n-l)]
The average shear stress over a cantilever equals
= _E___T(_i)_;"-"ﬂ (G-6)

aver l
n
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Normal stress acting across the cantilever can be expressed as

nln R +F xv,n
5t Y. 2 (G-7)

on,aver = l

and consequently shear strength can be expressed as

1’-.s'trength =C +tan¢ Gn,aver (G-s)



163

) Appendix H
Solution of the system of nonlinear equations for toppling.

H.1. Newton - Raphson method.

To solve problems in more than two dimensions, which is the case of the system
of equations describing bending columns of rock, it is necessary to find points mutually
common to N unrelated zero-contour hyperplanes each of dimension N-1. Analytical
solution of such a problem is impossible, however, once the approximate location of a
root, or of a place where there might be a root is identified, the problem can be solved
by using the Newton - Raphson method generalized to muitiple dimensions (Zress,
Flannery, Teukolsky and Vetterling, 1990).

A typical problem gives N functional relations to be zeroed, involving variables

X;,1=123,.... ,N:

6. S ,x,) =0 i=1,2,snt (H-1)

Then if the entire vector of values x; is denoted as X, each of the functions f; can be, in

the neighbourhood of X, expanded in Taylor series

n

[(X+8X) =f(X)+Y gg 6x;+0(8X?) (H-2)

j1 %

By neglecting terms of order 8X* and higher, the set of linear equations can be created
for the corrections 8X that move each function closer to zero simultaneously. Equation
H-1 can be rewritten as

~ % (H-3
xN+Y —Ltéx,=0 -3)
003, Stox

g
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or

X

Lox, = -f(X) (H-4)

J

&

'~

n
)Y
j=1

Equation H-4 can be solved for 8x; knowing the magnitude of the function f, and its'

derivatives 9f; /0x; for the initial guess of x. The corrections are then added to the

solution vector,
x" = x" + bx, i=12,.n (H-5)

and the process is iterated to convergenc .

H.2. Bending equations for the Newton - Raphson method.

Flat base-continuous reaction.

Equation H-4 can be written in the matrix form as:

KA

.} [ 6x, ] [ ]
ox, Ox, Ox, Ox,
% % K & 8%, L
ox, ox, ox, o, | x = (H-6)
A A . A
o o, ox, o, | 8%, | | T




Function f, (force F, included) was derived for the flat base in appendix A as

w r
_ n 3_43 n-1 3. 3
J, = —6—[(1,,—.xn) ~l,,]-———6 [Cx, %) U<z, ~%,> =X, 4]+
oI xYu<x -x>-x27-
E[(Jc,',l X,)" U Xy %y X,
Y, Siny

4 4
- 24 [(xv,n-l —x..) u<x ',n-l—xn> "'xv.n—l] +

. Yosiny

: a, 49, ., 3
>4 [(x,,, %) u<x, ,~x,> -x,,] + —65 [(,~=x)P-11+

F
* —i'-' [¢,-x)* -A)1- EB(),

For the first cantilever equation H-7 yiclds

fi = 1=

r n 3 3
+ E [(xr,n _‘xn) u<xr,n X, —x’.ﬂ] -

Y, siny
- w24 [0y oy %) U<, 2> - x:,n-l] +
szmw 4 4 qil 3 3
i T [(x"'" _x'l) u<xv.n X "Xyl * —6 [(l,, ‘x,.) - l,,] +

F
+ —2—" (¢, -x)* -()"1-EBW),
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(H-7)

(H-8)
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and for the last cantileveri,n=1,2,.....1

5= —';— [, -x )3~ 1] -

n-1 3
B [(xr,n—l —xn) u<x,

3
6 ,n—l_xn>—xr,n-l] -

v, sing 4 = ~4
- 24 [(xv,n-l -xn) u<xv,n -1 _xn> - ‘xV.’l" 1] *
Y wSinlll 4 4
24 [(xv.n ~X,) UK, ™ Xp> e

Q

- EI8(x),

F
e A i (RPN (8 B
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(H-9)

At this stage, in the equation H-10 (next page), singularity functions vanished from

the brackets following unknowns r, 1d r,, . The reason is simple; to calculate the

unknowns, tae coordinate x, has to be chosen on the cantilever contact (r, # 0), and in

that case the singularity function is defined to be 1.
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From equation H-7

f,- %[—3l:x"+3l"x: X3+

2 2
AU, X, > 3% X USK, <X, > +3X, X, USX, X, -

’
LY
6
3 3
=X, U<X, ,~X,> ~X,n) -

r
n-1¢.3 _ 2,2 _ 2 - _
6 ['xr,n-l u<xr,u—l xn> 3xr,u-l‘xnu<xr,n-l xn> + 3xr,n—lxn u<xr,u—l xn>

3 3
~ X U<X, | ~X,> ~Xppalt

sing 4 3 2 2
w
+ T[x‘, AU, X, >~ 4%, X UK, ~X,> +6X, X USX, ~X,> -

3 4 4
- 4xv',,x,,u<xm-x"> X USX, - X,> —xv‘,,] + (H-10)

vsiny 3 2 2
P A 5 - - - - -
Xy p-1USX, ,  —X> 4xv',,_1x"u<x x,> +6Jc,,’,,_,x,,u<xv’,‘_l xX,>

24 v, N v,n-1

3 4 4
-4x, X UKy g Xy H X USK, X, ~Xy 1]t

n

Q. 2 _ 2 .2
+—2—[xQ.,,u<me x > 27:0’"1«:"u<x0’,l X, >+ X UKy =X, > xo’,,]+

F, 2
+ > (-2 x, +x,] - EIO(x),
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Than equation H-10 can be rearranged to

w r r Y siny
_ ng2 n_2 n-1_2 w 3
J,=x,[-—=! +

- 5’ n —_2_ TN ) -1 6 xv,n-lu<xv,n l—xn> -
YwSin"lJ 3 qn 2
- xv.nu<xv,n X~ - —2_1" _Fnln]
2 W, Fn L szmq" 2
+tX, [+ 71" + Exr,n N ) xr,n-l - 4 'xV.'l-lu<xv,n-l —xn> +
: I
R Y, sy o q,

‘1
n
xv.nu<xv,n -xu> + —2_1" + ?] +

4 (H-11)

3 W Iy Iy YwSi‘n“IJ
+ X n-lu<xv,n—l —xn> -

6 6 6 6 v

Y, siny d,
- 6 =X, UK, "X, >~ —] +

24 u<xv,n~l_xn> B

in sin
+x: [_ sz “l’ YWZ lIJ u<xv'n _x">] _

¥, Siny

L U<X
24

sin
~EIB(x), - Zzﬁﬂ[x:

) 4 4
(4 vn-1 _xll> _xV,’l‘l] + [xy'" u<xV,’l —x’l> - xv'”]

Now in all the brackets there are only constants with respect to 6, and so the

equation H-11 can be rewritten as

f,=x[D,]+x[E]+x.[F,]+x2IG,] - EI0 -
(H-12)

4 4 Y, sing 4
- [xv,n-l u<xv,n-l ~Xp> _“\'v.n-l] + [xv,n

4
a U<x,,-x,> - X, ',,]
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In these equations

N W2 Ty 2 Tpy 2 Y, SinY
[D,] = [——2—"1,l ——é-'x,',. +L21-xm_l e 3'"_

(H-15)

in Y,siny
[G,,] = [‘ 24 u<xv.n~l—xn>— 24 u<xv —xn>] (H-IG)
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X, was defined in chapter 3 by equation (3-7). For the flat base equation (3-7)

is unchanged

n-1

x, =x +sin0y 4,
i

Now the final step can be easily done, and for the flat base:

To 1512 B yox, o (F 32 2 (G 140 T g
— = — +[E ]2x + X, —— + X, — -
B A Mt e o "ap
In equation H-18
axn n-1
—— =cos0) d.
0 0%
Finaliy for the flat base from equation H-18
Fr _ o503 d (D] +[5.125, +[F 1357 + (G145 -EI
F il [[D,) +[E,1 2%, +[F,13x, +(G ] 4x,|
=

From equation H-7 (dropping the singularity functions)

af 1 3 31
_a_r_n = -g [(xr,u "xn) ‘x,.’,‘J

n

(H-17)

(H-18)

(H-19)

(H-20)

(H-21)



171

and

%,

or,

(H-22)

= ’% [(xr,u—l ‘x,,)s 'xr3,u-l]

Now the matrix of partial derivatives from equation H-6 can be specified closer in terms

of equations H-20, H-21, and H-22.

3 s ]
—fl 0O 0 O 0 0 —jl
dr, 06
-% 9[2- 0 0 0 0 E.é
Or, or, a0
d, G J
0 L% 4. o o &
or, or, a0

3 3 (H-23)
o0 BH 4 o &
or, or, a0
or,, or,, &
0O 0 0 o© 0 I ifﬁ
or,, 00 |

Matrix H-23 is a sparse matrix, and so some special routine for its inversion can be used,
as well as any general routine such as LU decomposition, Gauss elimination or Gauss-
Jordan elimination. Solution of the system of equations H-6 can be then found in the

form

-1
[ox,]) = [Ej_;'_] A (H-24)

ox

n

Where all the expressions in brackets are matrices.
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H.3. Bending equations for the Newton -Raphson method.

Stepped base-point reaction.

Function f, (equation H-4) was derived for the stepped base in Appendix B
(equation B-32) as

i -1 -
R (NN EE (R (A

n-1

2

2 2
- |:('xr,n-l —xn) u<xr,n—l —xn> —'xr,n—l:I M

2 2
+ ?" [(xr,n —xn) u<xr.n _xn> —x'.'l] -

(H-25)
Y, Sing

a 4 a A4
24 [(xv,n—l —xn) u<xv,n-l X, —xv.’l'll *

Yw

siny
+ 4 i, , -x,) u<x, nF> x: 4

+ = g, %) Uiy, -x,> -xg,1 - EIB(),

For the first cantilever (n=1) equation H-25 yields

=‘_vg - 3_3+f_n_ —x V2 (1 )21+
Ja 5 @,-x)-1;] 5 (@, -x)" - ()]

2 2
+ —25 [Cx, %) u<x,,-x,>-x,,] -

Y, sing i )
R yw LR A SR A W (H-26)
. Y, siny

4
o (x,, -x,)* u<x, nXn> X

. 2
+ —21 [(xg, -x) u<xg, ~X,>~X%g,) -~ EIO(x),



173

and for the last cantilever i (n=1,2,3,......,1)

P -x - L x -y -
f,= 215 -1+ 21 -5 -0

n-1 2 2
- 7 [(‘xrn l—x) Xrn- e e _xr,n-l]—

y sing )
- w24— (. —xn)4 U<E,, x> - x:'"_l] + (H-27)

Y, Siny

-x )? - -4
24 [(xV,II x’l) u<xv,n x’l> xv,n] +

+ -?2— [(xg, % )? u<xy, ~X,> —xé ] ~ EI0(x),

- ;’1 u<x,, ,=%,>2(x,
+7"u~:x -x,>2(x, —x) ( -

v
~ — U<
74" s A

(H-28)

- & - 3 n _
X,> 4(x, -1 x,) Fm

Y A ox
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but
n-1
X, =%, =(n-1)(mb) +sinfy d, (H-29)
i1
and
3x Jn
—2 =cosB d. (H-30)
%, %
then from equations H-28 and H-30
G/ Jon y sin? 2
-a—el = cos0, 2; 4l x, Wy R, \u<x,, -x,>+Ru<x,  -x>-—* u<,,  -x,>%,
’l =
sin
+ Y ‘I’u<xwl —-_x">x3"l + Qnu<x0'n—x"> +Fn) +
2 W, ysiny Y. sinys
+xn (—3! +—= u<xv,n—l_'xn> xv,n-l - W2 u<xv,n -xn> xv,u) +
in
;f‘ (- W l"u<JEv."_l—xn>+ sz U<X, ~X>)+

W
n ;2 .
+ (_‘_2‘ Zn +Rn—lu<xr,n-l_xn>xr,n-l _Rnu<xr,n“"‘n>xr,n ¥

Y,sin? .3 ¥,siny 3
+ > u<k, X, >%,, - USK, , ~X>X,, -

— — - AY - "f Ad
Qu<xp,~X,>x,, ~F 1} - &4

(H-31)
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Now in all round brackets there are only constants with respect to 6, and so

equation H-31 can be rewritten as

jg" =x [H]+x (1) +x [ ]+IK)] (H-32)

n

In equation H-32

[H ,,] = (wnl. - Rn—lu<xr,n—l _xn> + Rnu<xr,n _xn> -

sin? sin
— u<£vw-l_xn>'fvzﬁ-l + 1 IIIu<xv,n -xn>xv2',, * (H-33)
+QuU<xg,~%,> +F))
= w, Y,siny | ¥ siny
i7,]= (“7" + wszm USE,, X >X, - wS U<x,,~X,>X,,) (H-34)

ANE LUk PR szzm ! U<X,,"X,>) (H-35)

2 vn-1 “n
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’l
[K] [(“ l *R,ju<x,,  -x>x | -RuU<x, -X>x .+

szin‘f’ 3 Y,siny , (H-36)

USK, =X, K0y - “USX,  "XPX,,

+

- Qu<xg,~x,>x5,-F,l) - El]

From equation H-25

A
oR

——[(x -x,Yu<x, - x,> =] (H-37)

and

= -l[(x,,, XK x> =] (H-38)

R, 2™ ral

Now the new matrix of partial derivations (equation H-6) can be specified closer

(see next page).
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The system of coefficients in the matrix H-39 is obviously more complicated than the one
described in matrix H-23. The reason is that in the system H-39 for each cantilever are
defined two equations; one for the point of contact with an overlying cantilever,and one
for the point of contact with an underlying cantilever. Thus this matrix has twice as
many members than the matrix H-23. However matrix H-39 is again a sparse matrix and
so a special routine based on Gausse-Jordan elimination can be used to avoid handling
n times n operations when sclving the system of equations H-6 . The general solution

of the system H-6 can be again found in the form H-24.
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Appendix |

Fortran source codes.

I.1. Program Input
Program Input asks the user for input parameters, and creates data files containing
geometrical and physical information to be used by the other routines, or to be altered
manually by the user, and then used by the other routines.
Resulting data files:
Geom.dat - geometrical descripti “he slope in horizontal -vertical (X,Y)
coordinate system
Fyzic.dat - physical parameters of the slope
Input.dat - length, depth and Young's Modulus of every cantilever in the slope,
and the length of the water column between cantilevers.
Distan.dat - strength parameters, and their distance from the origin.
FF.dat - creates the preliminary version of FF.dat from zeros
Geom.dat - geometrical description of the slope in horizontal -vertical (X,Y)
coordinate system
F-ic.dat - physical parameters of the slope
" out.dat - len.th, depth and Young's Modulus of every cantilever in the slope,
and 1" © length of the water col..nn between cantilevers.

Distan.dat - strength parameters, and their distance from the beginning.

PROGRAM INPUT

C  asks the user's data, and stores then:i in the data file

C  to be used later by program Flex
INTEGER NH,INP
PARAMETER (NP=2000)
REAL DETA,DZETA,DPSLETA,ZETA,PSI,DSBETA,SBETA
REAL HEIGHT(10),HC,BENCH,RATIO,BHAT
REAL HWATER,VX(NP),KOEF,GAMA,DGAMA
LOGICAL SWITCH



SWITCH=.FALSE.
PRINT*, 'input h1 {m]-press enter"’
READ* HEIGHT(1)
PRINT?*, 'input h2 [m]-press enter '
PRINT* i there is no h2 input ('
READ* HEIGHT(2)
IF (HEIGHT(2).L.T.1.)GO TO 1
PRINT®, 'input h3 {m]-press enter’
PRINT* 'if there is no h3 input 0'
READ* HEIGHT(3)
IF (HEIGHT(3).LT.1.)GO TO 1
PRINT®, 'input b4 [m]-press enter '
PRINT*,'if there is no h4 input 0'
READ* HEIGHT(4)
IF (HEIGHT(4).LT.1.)GO TO 1
PRINT®*, ‘input h5 [m]-press enter’
PRINT* 'if there is no hS input 0'
READ*,HEIGHT(5)
IF (HEIGHT(5).LT.1.)GO TO 1
PRINT*, 'input h6 [m]-press enter '
PRINT*,'if there is no hé input 0’
READ* HEIGHT(6)
IF (HEIGHT(6).LT.1.)GO TO 1
PRINT*, 'input h7 {m]-press enter '
PRINT*,'if there is no h7 input 0’
READ* HEIGHT(7)
IF (HEIGHT(7).LT.1.)GOTO 1
PRINT*, 'input h8 [m]-press enter'
PRINT™*.'if there is no h8 input 0’
READ* HEIGHT(8)
IF (HEIGHT(8).LT.1.)GO TO 1
PRINT®, 'input h9 [m]-press cuter '
PRINT*,'if there is no h9 input ¢'
READ* ,HEIGHT(9)
IF (HEIGHT(9).LT.1.) GO TO 1
PRINT*, 'input h10 [m]-press enter '
PRINT*,'if there is no h10 input 0'
READ* HEIGHT(10)
IF (HEIGHT(8).LT.1.)GOTO 1
PRINT?Y, ‘input h water [m]}-press enter '
PRINT*,'if there is no water input 0'
READ* HWATER
IF (HWATER.LT.1.)THEN
SWITCH=.TRUE.
ENDIF
I=1
IF(HEIGHT(I).NE.O.)THEN
I=1+1
GO TO2
ELSE
NH=]-1
ENDIF
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PRINT*HC=7
READ* HC
PRINT®* 'enter the angle of the highwall ZETA and bedding pl. PST'
READ*,DZETA,DPSI
PRINT?*,'enter the slope angle ETA, and the slope behind the top'
PRINT®* 'if the slope behind the top goes downhill enter -(angle)
PRINT®* 'the slope behind the top must be less than',90-DPSI
READ*,DETA,DSBETA
RADIAN=3.141592654/180
ZETA=DZETA*RADIAN
PSI=DPSI*RADIAN
ETA=DETA*RADIAN
SBETA=DSBETA*RADIAN
PRINT*,WIDTH OF THE BENCH -7
READ*,BENCH
PRINT®,

& ‘enter the density of the rock [kKN/M"3] and the width BHAT'

READ* DGAMA BHAT
GAMA=DGAMA*1000.
PRINT?*,'enter the height/width cantilever ratio'
READ*,RATIO
PRINT®*,'enter the blasting koef.(>1)'
READ*,KOEF
This is the end of the input dialog
CALL GEOMETRY(NH,HEIGHT,HC,BENCH,ZETA,PSILETA SBETA,

& SWITCHHWATER,GAMA,VX ,KOEF,BHAT,
& RATIO)

END

CCCCCCCCCCCCCCCCCCCeeeeceeeeeeeeeeecceccccceeeccececceecc

SUBROUTINE GEOMETRY(NH,HEIGHT,HC,BENCH,ZETA,PSI,ETA,

& SBETA,SWITCH,HWATER,GAMA,VX,KOEF,BHAT,
& RATIO)

INTEGER NP
PARAMETER (NP=2000)
REAL HEIGHT(8),HC,BENCH,ZETA PS) . ETA,CONV,GAMA,SBETA, TBETA
REAL HWAT,HWATER,VX(NP),RATIO,KOEF,BHAT
REAL BASE(20),XG(20),YG(20),XC(20),% C(20)
REAL XV(20),YV(20),XVC,YVC XVT,YVT,XVE,YVE
REAL XCC,YCCXCT,YCT,XCE,YCE
REAL XGNEW(20),YGNEW(20),XCNEW(20),YCNEW(20)
REAL XCCNEW,YCCNEW,XCTNEW,YCTNEW ,XCENEW,YCENEW,YVENEW
REAL XVNEW(20),YVNEW(20), XVt EW,YVCNEW XVTNEW,YVTNEW,XVENEW
LOGICAL SWITCH
INTEGER NH
OPEN (UNIT=10,FILE="GEOM.DAT}
BETA=3.141592654/2-PSI
TBETA=BETA-SBETA
PRINT*,'BETA=',BETA
DO 1 1=1,NH
BASE(D=HEIiGHT(I)/TAN(ZETA)



1 CONTINUE

XG(1)=0.

YG(1)=0.

IF (NOT.SWITCH)THEN

XV(1)=0.

YV(i)=0.

ENDIF

XC(1)=-BENCH

YC(1)=0.

DO 2 [=2,NH
XG(I)=XG(I-1)+BASE(I-1)}+BENCH
YG(1)=YG(I-1)+HEIGHT(-1)

IF (NOT.SWITCH)THEN

XV(D)=XG(I)
YV()=YG(])

ENDIF
XC(D=XG(I-1)+BASE(1-1)
YCO)=YG()

2 CONTINUE
XCC=XG(NH)+BASE(: 'H)
YCC=YG(NH)+HEIGH i (NH)
XCT=XCC+HC/TAN(ETA)
YCT=YCC+HC
IF (NOT.SWITCH)THEN
HWAT=YCT-HWATER
PRINT*'XCC=",XCC
PRINT*,'YCC=',YCC
PRINT*,'enter XVC and YVC'
PRINT*,'Y VC must be within',YG(NH),'and ,HWAT,limits.’
READ* XVC,YVC

ENDIF

IF (NOT.SWITCH)THEN
YVT=HWAT
XVT=(YVT-YVC)/TAN(ETA)+XVC

ENDIF

C rotation of axes

DO 3 I=1,NH
XGNEW(I)=XG()*COS(BETA)+YG(I)*SIN(BETA)
YGNEW()=-XG(I)*SIN(BETA)*+YG(I)*COS(BETA)

XCNEW(1)=XC(I)*COS(BETA)+YC(I)*SIN(BETA)
YCNEW(I)=-XC(I)*SIN(BETA)+YC(I)*COS(BETA)
3 CONTINUE

XCCNEW=XCC*COS(BETA)+YCC*SIN(BETA)
YCCNEW=-XCC*SIN(BETA)+YCC*COS(BETA)

XCTNEW=XCT*COS(BETA)+YCT*SIN(BETA)
YCTNEW=-XCT*SIN(BETA)+YCT*COS(BETA)
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XCENEW=XCTNEW+YCTNEW/TAN(BETA-SBETA)
YCENEW=0.0
XCE=XCENEW*COS(BETA)-YCENEW*SIN(BETA)
YCE=XCENEW*SIN(BLTA)+YCENEW*COS(BETA)
IF (NOT.SWITCH)THEN
IF (HWAT.LT.YCE)THEN
YVE=HWAT
XVE=YVT/TAN(BETA)
ELSE
YVE=YCE
XVE=XCE
ENDIF
ENDIF
PRINT*'YCE="YCE
PRINT*'YCT=,YCT
1 JINT* 'XCE=",XCE
\*  NOT.SWITCH)THEN
0 4 '=1,NH
X VNEW(1)=XV(I)*COS(BETA)+YV(I)*SIN(BETA)
YVNEW(1)=-XV(1)*SIN(BETA)+YV(I)*COS(BETA)
CONTINUE

XVCNEW=XVC*COS(BETA)+YVC*SIN(BETA)
YVCNEW=-XVC*SIN(BETA)+YVC*COS(BETA)

XVTNEW=XVT*COS(BETA)+YVT*SIN(BETA)
YVTNEW=-XVT*SIN(BETA}+YVT*COS(BETA)

XVENEW=XVE*COS(BETA)+YVE*SIN(BETA)
YVENEW=-XVE*SIN(BETA)+YVE*COS(BETA)

ENDIF

CONV=180/3.1415927

WRITE(10,5)

FORMAT (T6,ZETA",T22,'ETA",T40,PSI',T55,BETA")

WRITE(10,6)ZETA*CONV,ETA*CONV,PSI*CONV,BETA*CONV

FORMAT (T3.F8.5,T21,F8.5,T38,F8.5,T53,F8.5)

WRITE(10,7)

FORMAT(T20,'No',T40, HEIGHT")

DO 20 i=1,NH
WRITE(10,8),HEIGHT(I)
FORMAT(T19,13,T39,F4.1)

CONTINUE

WRITE(10,10)HC

FORMAT(T20,'HC',T39,F3 1)

WRITE(10,11)

FORMAT(T25,'X COORDINATE',T45,'Y COORDINATE")

DO 21 I=1,NH
WRITE(10,12)1,XG(1), YG(I)
FORMAT(TS,'G',12,T28,F8.4,T47,F8.4)
WRITE(10,13)LXC(),YC()
FORMAT(TS,'C',12,T28,F8.4,T47,F8.4)
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21 CONTINUE
WRITE(10,14)XCC,YCC

14 ' TITS,CC',T28,F8.4,T47 F8.4)
I $)XCT,YCT

15 1w \5,'CT', T28,F8.4,T47,F8.4)
WRi.. 116)XCE,YCE

16 FORMA [(T5,'CE', T28,F8.4,T47,F8.4)
IF (NOT.SWITCH)THEN

WRITE(10,17)

17 FORMAT(T25,’X COORDINATE',T45'Y COORDINATE')
DO 22 I=1,NH

WRITE(10,18),X V(I),Y V(1)

18 FORMAT(TS,'V',12,T28,F8.4,T47,F8.4)

22 CONTINUE
WRITE(10,19)XVC,YVC

19 FORMAT(TS,'VC', T28,F8.4,T47,F8.4)
WRITE(10,24)XVT,YVT

24 FORMAT(TS,'VT', T28,F8.4,T47,F8.4)
WRITE(10,23)XVE,YVE

23 FORMAT(TS,'VE', T28,F8.4,T47,F8.4)

ENDIF

CALL CANTILEVER (XGNEW,YGNEW,XCNEW YCNEW,
& PSIZETA,ETA,BETANH,XCCNEW,YCCNEW,XCTNEW,XCENEW,
& CONV,GAMA,SWITCH,VX,SBETA,KOEF,BHAT,XVNEW,YVNEW,
& XVCNEW,YVCNEW . XVTNEW,YVTNEW.XVENEW,RATIO)
END
CCCCCCCCCCCCCCCeeeeeeeececceececececceecececceecceeceeccececececccc

SUBROUTINE CANTILEVER (XGNEW,YGNEW ,XCNEW,YCNEW,
& PSI,ZETA,ETA,BETA ,NH,XCCNEW,YCCNEW XCTNEW ,XCENEW,
& CONV,GAMA,SWITCH,VX,SBETA,KOEF,BHAT,XVNEW,YVNEW,
& XVCNEW,YVCNEW XVTNEW,YVTNEW,XVENEW,RATIO)
INTEGER NH,LK,SWIT
INTEGER NP
PARAMETER (NP=2000)
REAL XGNEW(20),YGNEW{20),XCNEW(20),YCNEW(20),EMODUL(NP)
REAL XCCNEW,YCCNEW, XCTNEW,XCENEW,DEPTH(NP)
REAL XCANT,XAPEX(40),YAPEX(40),LENGTH(NP),BHAT,CONV,GAMA
REAL XVNEW(20),YVNEW(20),XVCNEW,YVCNEW XVTNEW,Y VTNEW,XVENEW
REAL VX(NP),TANG,SBETA,RATIO,XDEPTH(NP)
REAL REACH,DIST(10),BMODUL(10),BDEPTH(10)
REAL COHESION(10),Fi(10), TENSILE(10),KOEF
INTEGER DIS
LOGICAL SWITCH

C  determines the number and the lengths of cantilevers
OPEN(UNIT=19,FILE='FYZIC.DAT')
OPEN(UNIT=20,FILE='INPUT.DAT)
OPEN(UNIT=21,FILE='DISTAN.DAT")
OPEN(UNIT=22,FILE='FF.DAT)
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148

PRINT?* ‘enter the DISTANCE 1, DEPTH 1, AND L
‘RINT*.'if there is only one dis' ce-cuter 0 for the DIS o'

READ®, DIST * * JDEPTH(1),BMODUL.(1)
PRI™ T* 'enter FI,COHES. and TENS'LE & I'R. for the DISTANC
READ* FI1{1),COHESION(1),TENSILE(1)
IF(DIST(1).EQ.0)THEN

D'

DIST(1)=XCENEW+50

DO 148 1=1,NP
DEPTH(I)=BDET TH(1)
EMCDUL)=BMODUL(1)*1000000000.0
CONTINUE

GO TO 149
ENDIF
PRINT*, 'enter the DISTANCE 2, DEPTH 2, AND E 2'
PRINT* 'if DISTANCE 2 = END, enter 0 for the DISTANCE '
READ* DIST(2),BDEPTH(2),BMODUL(2)
PRINT?* 'enter FI,COHES. and TENSILE STR. for the DISTANCE 2’
READ* Fi(2),COHESION(2),TENSILE(2)
IF(DIST(2).EQ.0)THEN

DIST(2)=XCENEW+50

DIS=2

GO TO 146
ENDIF
PRINT* 'enter the DISTANCE 3, DEPTH 3, AND E 3'
PRINT*,'if DISTANCE 3 = END, enter O for the DISTANCE '
READ*,DIST(3),BDEPTH(3),BMODUL(3)
PRINT* 'enter FI,COHES. and TENSILE STR. for the DISTANCE 3'
READ* FI(3),COHESION(3),TENS!! F(3)
IF(DIST(3).EQ.0)THEN

DIST(3)=XCENEW+50

DIS=3

GO TO 146
ENDIF
PRINT*'enter the DISTANCE 4, DEPTH 4, AND E 4'
PRINT?*'if DISTANCE 4 = END, enter 0 for the DISTANCE '
READ*,DIST(4),BDEPTH(4),BMODUL(4)
PRINT* 'enter FI,COHES. and TENSILE STR. for the DISTANCE 4'
READ* FI(4),COHESION(4), TENSILE(4)
IF(DIST(4).EQ.0)THEN

DIST(4)=XCENEW+50

DIS=4

GO TO 146
ENDIF
PRINT* 'enter the DISTANCE 5, DEPTH 5, AND E §'
PRINT*,'if DISTANCE 5 = END, enter 0 for the DISTANCE '
READ* DIST(5),BDEPTH(5),BMODUL(S)
PRINT*,'enter FI,COHES. and TENSILE STR. for the DISTANCE §'
READ* FI(5),COHESION(S),TENSILE(S)
IF(DIST(5).EQ.0)THEN
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DIST(5)=XCENEW+50

DIS=5

GO TO 146
ENDIF
PRINT* 'enter the DISTANCE 6, DEPTH 6, AND E 6'
PRINT* 'if DISTANCE 6 = END, enter 0 for the DISTANCE '
READ*,DIST(6),BDEPTH(6),BMODUL(6)
PRINT* 'enter FI, COHES. and TENSILE STR. for the DISTANCE 6'
READ* FI(6),COHESION(6),TENSILE(6)
IF(DIST(6).EQ.0)THEN

DIST{6)=XCENEW+50

DIS=6

GO TQ 146
ENDIF
PRINT* 'enter the DISTANCE 7, DEPTH 7, ANDE 7
PRINT*,'if DISTANCE 7 = END, enter 0 for the )I<”
READ*,DIST(7),BDEPTH(7),BMODUL(7)
PRINT* 'enter FI,COHES. and TENSILE STR. for tt ..u~iA L7
READ*,FI(7),COHESION(7),TENSILE(7)
IF(DIST(7).EQ.0)THEN

DIST(7)=XCENEW-+50

DIS=7

GO TO 146
ENDIF
PRINT*,'enter the DISTANCE 8, DEPTH 8, AND E &
PRINT™*.'if DISTANCE 8 = END, enter 0 for the DISTANCL -
READ*,DIST(8),BDEPTH(8),BMODUL(8)
PRINT*,'enter FI,COHES. and TENSILE STR. for the DISIANCE 8
READ* FI(8),COHESION(8),TENSILE(8)
IF(DIST(8).EQ.0)THEN

DIST(8)=XCENEW+50

DIS=8

GO TO 146
ENDIF
PRINT*,'enter the DISTANCE 9, DEPTH 9, AND E ¢
PRINT*,'if DISTANCE 9 = END, enter 0 for the DISTANCE '
READ*,DIST(9),BDEPTH(9),BMODUL(9)
PRINT* 'enter FI,COHES. and TENSILE STR. for the DISTANCE 9’
READ* FI(9), COHESION(9),TENSILE(9)
IF(DIST(9).EQ.0)THEN

DIST(9)=XCENEW+50

DIS=9

GO TO 146
ENDIF
PRINT*,'enter DEPTH 10, AND E 10’
READ*,BDEPTH(10),BMODUL(10)
PRINT*,'enter FI,COHES. and TENSILE STR. for the DISTANCE 10’
READ* FI(10),COHESION(10),TENSILE(10)

DIST(10)=XCENEW+50

DIS=10

REACH=0.0
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REACH=0.0
I=1
151  IF(REACH.LT.DIST(1))THEN
DEPTH(1)=BDEPTH(1)
print* 'depth’,i,'=",depth(i)
IF(1.GT.NP)THEN
PRINT*'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
EMODUL(1)=BMODUL(1)*1000000000.0
I=1+]
REACH=REACH+BDEPTH(1)
GO TO 151
ENDIF
IF(DIS.GE.2)THEN
152 iF(REACH.GE.DIST(1).AND.REACH.LT.DIST(2))THEN
DEPTH(1)=BDEPTH(2)
IF(L.GT.NP)THEN
PRINT*,'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
EMODUL(1)=BMODUL(2)* 1000000000.0
I=1+1
REACH=REACH+BDEPTH(2)
GO TO 152
ENDIF
ENDIF
IF(DIS.GE.3)THEN
153 IF(REACH.GE.DIST(2). AND.REACH.LT.DIST(3))THEN
DEPTH(1)=BDEPTH{3)
IF(L.GT.NP)THEN
PRINT* 'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
EMODUL({1)=BMODUL(3)*100000000" "
I=I+1
REACH=REACH+BDEPTH(3)
GO TO 153
ENDIF
ENDIF
IF(DIS.GE.4)THEN
154 IF(REACH.GE.DIST(3). AND.REACH.LT.DIST(4))THEN
DEPTH(1)=BDEPTH(4)
IF(1.GT.NP)THEN
PRINT* 'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
EMODUL(l)=BMODUL(4)* 1000000000.0
I=I+1
REACH=REACH+BDEPTH(4)
GO TO 154
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ENDIF
ENDIF
IF(DIS.GE.S)THEN
155 IF(REACH.GE.DIST(4).AND.REACH.LT.DIST(5))THEN
DEPTH(I)=BDEPTH(5)
IF(1.GT.NP)THEN
PRINT* 'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
EMODUL(i)=BMODUL(5)* 1000000000.0
1=1+1
REACH=REACH+BDEPTH(5)
GO TO 155
ENDIF
ENDIF
IF(DIS.GE.6)THEN
156 IF(REACH.GE.DIST(5).AND.REACH.LT.DIST(6))THEN
DEPTH(1)=BDEPTH(6)
EMODUL(I)=BMODUL(6)* 1000000000.0
IF(.GT.NP)THEN
PRINT*'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
I=1+1
REACH=REACH+BDEPTH(6)
GO TO 156
ENDIF
ENDIF
IF(DIS.GE.7)THEN
157 IF(REACH.GE.DIST(6).AND.REACH.LT.DIST(7))THEN
DEPTH(I)=BDEPTH(7)
EMODUL(1)=BMODUL(7)* 1000000000.0
IF(1.GT.NP)THEN
PRINT* 'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
I=I+1
REACH=REACH+BDEPTH(7)
GO TO 157
ENDIF
ENDIF
IF(DIS.GE.8)THEN
158 IF(REACH.GE.DIST(7).AND.REACH.LT.DIST(8))THEN
DEPTH(I)=BDEPTH(S)
EMODUL(I)=BMODUL(8)* 1000000000.0
IF(LGT.NP)THEN
PRINT*'ALLOWABLE NUMBEP OF BLOCKS EXCEEDED'
STOP
ENDIF
I=I+1
REACH=REACH+BDEPTH(8)
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161

149

10

GO TO 158
ENDIF
ENDIF
IF(DIS.GE.9)THEN
IF(REACH.GE.DIST(8).AND.REACH.LT.DIST(9)) THEN
DEPTH(I)=BDEPTH(9)
EMODUL(1)=BMODUL(9j* 1000000000.C
IF(I.GT.NP)THEN
PRINT*ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
I=1+1
REACH=REACH+BDEPTH(9)
GO TO 159
ENDIF
ENDIF
IF(DIS.EQ.10)THEN
IF(REACH.LE.DIST(10))THEN
DEPTH(1}=BDEPTH(10)
IF(I.GT.NP)THEN
PRINT*'ALLOWABLE NUMBER OF BLCCKS EXCEEDED
STOP
ENDIF
EMODUL.(I)=BMODUL(10)*1000000000.0
I=1+1
REALH=REACH+BDEPTH(10)
GO TO 161
ENDIF
ENDIF
SWIT=1
K=2
XAPEX(1)=0
YAPEX(1)=0
DO 1 [=2,2*NH-1
IF(SWIT.EQ.1)THEN
XAPEX(1)>XCNEW(K)
YAPEX(I)"YCNEW(K)
ELSE
XAPEX()=XGNEW(K)
YAPEX(I)=YGNEW(K)
K=K+l
ENDIF
SWIT=SWIT*(-1)
CONTINUE
I=1
K=1
XCANT=DEPTH(1)/2.
IF (XCANT.LT.XAPEX(1+1))THEN
print*,'testl 1’
PRINT*'NP="NP,’K="K,XCANT='XCANT
LENGTH(K)=YAPEX(I)+TAN(ZETA-BETA)*(XCANT-XAPEX(1))

188



K=K+
IF(K.GT.NP)THEN
print* ‘test]’
PRINT*,'’ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF

XCANT=XCANTHDEPTH(K-1)+DEPTH(K))/2

GO TO 10

ENDIF

I=1+1
20 IF (XCANT.LT.XAPEX(I+1))THEN
print* 'test22"
PRINT*'NP='NP,/K="K,XCANT=,XCANT
LENGTH(K)=YAPEX(I)-TAN(BETA)*(XCANT-XAPEX(I))

K=K+1
IF(K.GT.NP)THEN
print*,‘test2’
PRINT*'ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF

XCANT=XCANTHDEPTH(K-1)+DEPFTH(K))/2

GO TO 20

ENDIF

I=1+1
IF (LLT.2*NH-1)GO TO 10

30 IF (XCANT.LT.XCCNEW)THEN
print*,'test33'
PRINT* 'NP='NP,K=' K, XCANT=",XCANT
LENGTH(K)=YAPEX(I)+TAN(ZETA-BETA)*(XCANT-XAPEX(I))

K=K+1
IF(K.GT.NP)THEN
print* 'test3’
PRINT*ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF

XCANT=XCANT+(DEPTH(K-1)+DEPTH(K))/2

GO TO 30

ENDIF

40 IF (XCANT.LT.XCTNEW)THEN
print*,'test44'

PRINT*,'NP='NP,K='K, XCANT=,XCANT
LENGTH(K)=YCCNEW+TAN(ETA-BETA)*(XCANT-XCCNEW)
K=K+]

IF(K.GT.NP)THEN
print*,'test4’
PRINT*,ALLOWABLE NUMBER OF BLOCKS EXCEEDED'
STOP
ENDIF
XCANT=XCANTHDEPTH(K-1)+DEPTH(K))/2
GO TO 40
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ENDIF
50 IF (XCANT.LT.XCENEW)THEN
print*,'test5S5’
PRINT* 'NP="NP/K="K ,'XCANT="XCANT
LENGTH(K)=TAN(BETA-SBETA)*(XCENEW-XCANT)
K=K+1
IF(K.GT.NP)THEN
print*,'tests’
PRINT*'ALLOWABLE NUMBER (. BLOCKS EXCEEDED'
STOP
ENDIF
XCANT=XCANT+(DEPTH(K-1)+DEPTH(K))/2
GO TO 50
ENDIF
kR ko ok ok ok ok o ok o o o o o o ok ok o ok o o o o o ok ok ke ko o o ok ok ok ke ok o ok ol Ok ok ok ok ok o ok ke K ok ok K ok ok
C calculates the heights XV of the water columns between cantilevers
C
IF (NOT.SWITCH)THEN
XDEPTH(1)=DEPTH(1)
IF (NH.GE.2)THEN
J=1
DO 60 [=2,NH
TANG=(YVNEW(I)-YVNEW(I-1))(XVNEW(I)-XVNEW(I-1))
61 IF (XDEPTH(J).LT.XVNEW(1))THEN
VX(I)=TANG*(XDEPTH(J)-XVNEW(I-1))+YVNEW(I-1)
J=]+1
XDEPTH(J)=XDEPTH/J-1)+DEPTH(J)
GO TO 61
ELSE
ENDIF
60 CONTINUE
ENDIF

TANG=(YVCNEW-YVNEW(NH))/(XVCNEW-XVNEW(NH))
62  IF (XDEPTH(J).LT.XVCNEW)THEN

VX(J)=TANG*(XDEPTH(J)-XVNEW(NH))+YVNEW(NH)
J=1+1
XDEPTH(J)=XDEPTH(J-1)+DEPTH(J)
GO TO 62

ELSE

ENDIF

TANG=('YVTNEW-YVCNEW)/(XVTNEW-XVCNEW)
63  IF (XBEPTH(J).LT.XVTNEW)THEN

VX(J)=TANG*(XDEPTH(J)-XVCNEW)+YVCNEW
J=1+1
XDEPTH(J)=XDEPTH(J-1)+DEPTH(J)
GO TO 63

ELSE

ENDIF



64

65

66

110

111

222

43

72
71

IF (XDEPTH(J).LT.XVENEW)THEN
VX(J)=TAN(BETA-SBETA)*(XVENEW-XDEPTH(J))
J=3+1
XDEPTH(})=XDEPTH(J-1)+DEPTH(J)
GO TO 64
ELSE
J=)-1
ENDIF
IF (J.LT.K)THEN
=i+l
VX(J)=0.00
GO TO 65
ENDIF
ELSE
DO 66 I=1,K
VX(1)=0.00
CONTINUE
ENDIF
DIST(DIS)=XCENEW
WRITE (21,110)
FORMAT (T10,NO. OF DIST.)
WRITE (21,111)DIS
FORMAT(T15,i2)
WRITE (21,2)
FORMAT(T15,DIST', T30, COH",T45,FI', T60, TENS.STR.")
DO 222 I=1,DIS
WRITE (21,3)DIST(1),COHESION(I),FI(I), TENSILE(I)
FORMAT(T14,F6.2,T29,F6.2,T45,F4.1,T62,F6.2)
CONTINUE
WRITE(19,43)
FORMAT(T16,BHAT,T28,RATIO")
WRITE(19,44)BHAT,RATIO
FORMAT(T15,F5.1,T30,F3.1)
WRITE (19,4)
FORMAT(T15,GAMA',T40,’PSI',T65, /KOEF')
WRITE (19,5)GAMA,PSI*CONV,KOEF
FORMAT(T12,F8.1,T38,F9.6,T64,F6.2)
WRITE(20,9)
FORMAT(T10,N")
WRITE(20,11)K
FORMAT(TS,14)
WRITE(20,6)

FORMAT(T3,Ne', T15,/LENGTH',T30,,DEPTH',T50,EMODUL',T70,'VX")

DO 71 I=1,K

WRITE(20,7)I,LENGTH(1), DEPTH(I), EMODUL(),VX(I)
FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,E10.3,T69,F6.2)

WRITE(22,72)1
FORMAT(T4,14,T45,'0.00")
CONTINUE
END
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1.2.

192

Program Fredy

Program Fredy reads the output files created by Flex during previous runs, and

incorporates the results from the previous runs into the data files created by Input.

147

47

196

197

Affected data files:

Input.dat - the original length of cantilevers as calculated by Input is reduced by
the length which was broken of during the previous runs of Flex..

FF.dat - weights of the broken cantilevers are assigned to the proper positions in
the slope replacing the zeroes written by Input.

Brake.dat - the results written by Flex into the Result.dat are incorporated into
the list of the broken cantilevers including the‘r position in the siope

PROGRAM FREDY
INTEGER NP
PARAMETER (NP=2000)
INTEGER {,J,K,L,M,N.NUM,MERGE
INTEGER FAIL(NP),BRAK(NP,10),BREAK(NP,10)
REAL LENG(NP),FLEN(NP),LENGTH(NP),F(NP),DEPTH(NP),EMOD(NP)
REAL DPSIL,PSI,DZETA,ZETA,GAMA HA P WAT(NP),BHAT
REAL HEIGHT(10),HEIT(10),BENCH,AR(10),BEN,RATIO
CHARACTER®*5 FAL
OPEN(UNIT=90,FILE="RESULT.DAT',STATUS='OLD")
OPEN(UNIT=91,FILE=INPUT.DAT ,STATUS='OLD')
OPEN(UNIT=93,FILE='FYZIC.DAT',STATUS="OLD')
OPEN(UNIT=94,FILE='FF.DAT")
OPEN(UNIT=95,FILE='GEOM.DAT' ,STATUS="0OLD")
PRINT®, 'Enter the number of the border cant. MERGE'
READ*, MERGE
PRINT?*, 'Enter the number of benches NUM.'
PRINT*,'NUM can not be less than 2'
READ*, NUM
PI=3.141592654/2.
READ(93,147)BHAT,RATIO
FORMAT(/,T16,F6.1,T30,F4.1)
READ(93,47)GAMA,DPSI
FORMAT(/,T12,F1.1,T37,F7.4)
PRINT*GAMA='GAMA PSI=',DPSI
PSI=DPSI*3.141592654/180.
READ(95,196)DZETA
FORMAT(/,T3,F4.1)
PRINT*,'ZETA=',DZETA
ZETA=DZETA*3.141592654/180.
READ(95,157)
FORMAT(2X)
DO 194 I=1,NUM
READ(95,195)HEIT(I)



193

195 FORMAT(T39,F5.1)
194 CONTINUE

READ (95,198)BEN
198 FORMAT (///,T27,F6.1)

BENCH=BEN*(-1)

DO 298 I=1,NUM
AR(1)=TAN(3.141592654/2.-PSI)*(HEIT(1)/TAN(ZETA))~BENCH)
HEIGHT(I)=COS(3.141592654/2.-PSI)*(HEIT(I)-AR(1))

298  CONTINUE

READ(90,44) M

44 FORMAT( ",I5)

IF (NUM.E- Y)THEN

OPEN(UNIT=92,FILE='BRAKE.DAT')

DO 60 I=1,M
WRITE (92,5¢)
50 FORMAT(TS,'I' T10,'1',T15,',T20,'1", T25,"1",
& T30,'1,T35,'1',T40,'',T45,'1")
60 CONTINUE
REWIND(UNIT=92)
ELSE
OPEN(UNIT=92,FILE='BRAKE.DAT,STATUS='0OLD)
ENDIF

READ(91,40) N
40 FORMAT(/,T8,15)

READ(91,45)
45  FORMAT(2X)
DO 30 I=1,N
READ(91,4)K,LENGTH(I),DEPTH(I),EMOD(I), WAT(l)
4 FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,£10.3,T69,F6.2)
IF(.GT.10) THEN
IF(LENGTH(I).L.T.C.4)THEN
N=I-1
GO TO 555
ENDIF
ENDIF
PRINT* 'LENGTH',1,'=" LENGTH(I)
30 CONTINUE
555  CLOSE (UNIT=91)
OPEN (UNIT=20,FILE='INPUT.DAT)
READ(90,46)
46 FORMAT(2X)
DO 3! I=1,M
READ(90,42) FAL
42 FORMAT(T29,A6)
IF (FAL.EQ.'G)THEN
FAIL(I)=1
ELSE
FAIL(1)=0
ENDIF
READ(92,43)BRAK(I,1),BRAK(1,2),BRAK(I,3),BRAK(1,4),



&  BRAK(,5),BRAK(L,6),BRAK(1,7),BRAK(],8),BRAK(],9)
43 FORMAT(TS,12,T10,12,T15,12,T27,12,T25,12,
& T30,12,T35,12,T40,12,T45,12)
3t CONTINUE
CLOSE (UNIT=92)
OPEN (UNIT=96,FILE='BRAKE.DAT)

DO 131 I= I M
PRINT*'FAIL'\1,'="FAIL(l)
131 CONTINUE

DO 11 =1 M
BRAK(I,1)=FAIL(])
1t CONTINUE
CCCCCECCCCCCCCCCCCECCCECCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeee
:BLOCK- creates BREAK from Is c
CCCCCLNCCCCCCLECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
00 12 1=1,N
DO 122 J=1,10
BREAK(L,J)=1
122 CONTINUE
12 CONTINUE
K=1
L=1

DO 13 I=MERGE,MERGE+M-1
DO 133 J=2,10
BREAK(L,J)=BRAK(K,L)

=L+1
133 CONTINUE
L=1
K=K+l
13 CONTINUE
DO 531 I=1,N

WRITE(96,533)BREAK(],1),BREAK(1,2), BREAK(1,3), BREAK(1,4),
&  BREAK(],5),BREAK(I,6),BREAK(],7),BREAK(],8),BREAK(I,9)
533 FORMAT(TS,12,T10,12,T15,12,T20,12,T25,12,
& T30,12,T35,12,T40,12,T45,12)
531 CONTINUE
DO 14 I=1,N
F(D=0.0
FLEN(1)=0.0
14 CONTINUE
DO 15 I=I,N
HA=0.0
DO 155 J=2,NUM
HA=HA + HEIGHT(-1)
IF (BREAK(1,J).EQ.0)THEN
LEN%i(I)=HA
FLEN(I)=LENGTH(I)-LENG(I)
F(I)=FLEN(1)*GAMA*COS(PSI)* BHAT*DEPTH(I)
LENGTH(I)=LENG(I)
GO TO IS5

194



ENDIF
155 CONTINUE
15 CONTINUE
WRITE(20,912)

912 FORMAT(T10,N")
WRITE(20,112)N
112 FORMAT(TS,14)
WRITE(20,612)
612 FORMAT(T3,No',T15 LENGTH', T30, DEPTH',T50,'¢ # 1. . IL'T70,VX')
DO 16 I=I,N
WRITE(20,7)I,LENGTH(I), DEPTH{I),EMOD(1), WA T(1)
7 FORMAT(T2,13,T15,F6.2,T10,F6.7. T48.E10.3.T62.1°6.2)
WRITE(94,29)L, LENGTH(),FLLEN(I),F(1)
29 FORMAT(TS,13,T15,F6.2,T25,F6.2,T40,E12.7)
16 CONTINUE
CALL INP2(N,LENGTH,DEPTH,WAT,EMOD,RATIO)
END

FhAEKRRRRRRE kKRR KRRk kKRR KRk Rokk kR ok kk ko k gk k ¥k

SUBROUTINE INP2(N,LENGTH,DEPTH,VX,EMODUL,RATIO)
INTEGER N,NP,K,I
PARAMETER (NP=400)
REAL LENGTH(NP),DEPTH(NP),VX(NP),EMODUL(NP)
REAL TOP,BOTTOM,SIDE,DOWN,LEN(NP),DEP(NP), WAT(NP)
REAL EMOD(NP),MOD,MODUL,RATIO
OPEN (UNIT=80,FILE=INPUT1.DAT)
I=1
K=1
9  TOP=0.
BOTTOM=0.
DOWN=0.
SIDE=0.
MOD=0.
10  IF (LLEN)THEN
TOP=TOP+LENGTH(l)
BOTTOM=BOTTOM+DEPTH(l)
DOWN=DOWN-+1
MOD=MOD+DEPTH(I)*EMODUL(I)
SIDE=TOP/DOWN
MODUL=MOD/BOTTOM
IF (SIDE/BOTTOM.GT.RATIO)THEN
1=1+1
GO TO 10
ELSE
DEP(K)=BOTTOM
LEN(K)=SIDE
IF (LEN(K).GT.VX(I)) THEN
WAT(K)=VX(l)
ELSE
WAT(K)=LEN(K)*0.98
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ENDIF
EMOD(K)=MODUL
K=K+l
I=1+1
GO TO 9
ENDIF
ENDIF

WRITE (80,2)

2 FORMAT(T10,'N’)
WRITE (80,3)K

3 FORMAT(TS,14)

WRITE(80,6)
6  FORMAT(T3.No'T15,LENGTH' T390, DEPTH',T50,EMODUL',T70,'VX")
DO 71 I-1 K
WRITE(80,7)1, LEN(I),DEP(I), EMOD(I), WAT(I)
7 FORMAT(T2,13,T15,F6.2,T30,F5.2,T48,E10.3,T69,F5.2)
71 CONTINUE
END

I.3. Program Inshav
Program Inshav builds the model of the slope to be tested by Flex, from the
blocks of cantilevers,and the zones of non-interacting cantilevers.
Resulting data file:
Input3.dat - information about the length,width and the Young's modulus of all
blocks and non-interacting cantilevers in the slope (geometry of the new

slope), and about the length of the columns of water in the slope.

PROGRAM INSHAV

INTEGER N,NP,K,DIS

INTEGER RUNCNT,RUN

PARAMETER (NP=2000)

REAL LENGTH(NP),WEIGHM(NP),WEIGHT(NP)

REAL DEPTH(NP),GAMA ,EMODUL(NP),PSID,PSI BHAT
REAL X(NP),XV(NP),COHESION(10),FID(10),FI(1.)), TENSILE(10),KOEF
REAL DEP(NP),DIST(10),F(NP)

COMMON /ABBA/RUNCNT,RUN

COMMON /BBBA/ DEP

OPEN (UNIT=20,FILE=FYZIC.DAT,STATUS="0ld")
OPEN (UNIT=21,FILE=INPUT.DAT,STATUS="0ld")
OPEN (UNIT=22 FILE='DISTAN.DAT,STATUS='old")
OPEN (UNIT=23,FILE=FF.DAT,STATUS='old")

OPEN (UNIT=24 FILE='F.DAT')

OPEN (UNIT=91,FILE=INPUT3.DAT)

PRINT*,'Enter the number of runs'



E-N

55

66

233

60
71

10

READ*,RUN
RUNCNT=1

READ (22,1)DIS
FORMAT (/,T15,12)

READ (22,11)

FORMAT(2X)

DO 2 I1=1,DIS
READ (22,3)D° 1(1). 'OHESION(I),FID(1), TENSILE(I)
FORMAT(TI3,, 29,F6.2,T45,F4.1,T62,F6.2)

PRINT 4, DIST\1),COHESION(I),FID(I), TENSILE(])
FORMAT(T16,F6.2,T29,F6.2,T44,F5.1, T62,F6.2)

CONTINUE

READ (20,55)BHAT

FORMAT (/,T15,F5.1)

READ (20,5)GAMA,PSID,KOEF
FORMAT(/,T13,F7.1,T38,F9.6,T64,F6.2)
PRINT*'GAMA="GAMA,'PSI=",PSID,KC.: =" KOEF
READ(21,66)N

FORMAT(/,T9,14)

PRINT*'N='N

READ (21,6)
FORMAT(1X)

DO 60 1=1,N

READ(23,233)F(l)

FORMAT(T39,E13.7)
READ(21,7)K,LENGTH(I), DEPTH(I),EMODUL(), X V(l)
FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,E10.3,T69,F6.2)
IF(.GT.10) THEN

IF(LENGTH(I).LT.0.4)THEN
N=I-1
GO TO 71
ENDIF

ENDIF
CONTINUE
PSI= PSID *(3.141593D00)/180.D00
DO 72 I=1,DIS

FI(T)= FID(I) *(3.141593D00)/180.D00
print 44, FI(I),FID(1),DIST(I)
FORMAT(T16,F6.4,T29,F6.2,T40,F6.2)

CONTINUE
DO 61 I=1,N

print 8, LLENGTH(I), DEPTH(I),EMODUL(I), X V(I)

FORMAT(T2,13,T15,F5.2,T30,F5.2,T48,E10.3,T69,F5.2)
CONTINUE
DO 10 I=1,N

WEIGHM(1)=0.0D0

WEIGHT(1)=0.0D0

WEIGHM(I) =GAMA*DEPTH(I)* BHAT*COS(PSI)*KOEF

WEIGHT(I) =GAMA*DEPTH(I)* BHAT*SIN(PSI)
CONTINUE
CALL ISAAC(N,EMODUL,X,LENGTH, WEIGHM,PSI,
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& DEPTH,BHAT,XV,DIS,DIST,
& COHESION,FLF)
END
CCCCCCCCCCCCCCCCCCCeeeeeceeeeeeccceeccecececeecceccecceececcceccc

SUBROUTINE ISAAC(N,EMODUL,X,LENGTH,WEIGHM,PS|,
& DEPTH,BHAT,XV,DIS,DIST,
& COHESION,FLF)

C  program solves the system of nonlinear equations for n cantil.
C

C EMGODUL....Young's modulus[Pa]
C / /. INERTIA...Moment of inertia

C / " :depth GAMA .....Density of rock [N/m”3]
C / /o

C Lreinens /o

C :bhat: /length

C : 2/

C Leveeenntd

C

INTEGER NTRIAL,N,NP,AN,AB,1,DAB,DIS
PARAMETER(NP=2000.NTRIAL=25)

DOUBLE PRECISION ALPHA(NP,4),BETA(NP)
REAL XV(NP),REAC(NP),X(NP)

REAL INERTIA(NP),LENGTH(NP), WEIGHM(NP),EMODUL(N?)
REAL PSLXLEN(NP),DEPTH(NP),BHAT

REAL COHESION(10),FI(10)

REAL DIST(10),F(NP)

REAL LENG

REAL DEP(NP)

INTEGER COUNT

COMMON /BBBA/ DEP

LOGICAL DONE

DONE=FALSE.

COUNT=0

(I RIS IR ISR RIS LRSS R 2222 2222 RS2 12222222t lsd)

*BLOCK I- calculates reactions between blocks in question*
CRBER R R AR RS R R R R Rk kR kR h ek ko k kR &
C INLINE calculates distances where reactions are acting
400 CALL INLINE(LENGTH,XLEN,N)
DO 401 I=IN
REAC(1)=0.0
401 CONTINUE
CALL INERT(N,NP,BHAT,DEPTH,INERTIA)
C DO LOOP 1 locates the crest block DAB
LENG=0.
DAB=0
AN=1
print*,'n=',n
DO 1 I=I,N
IF (LENGTH(I).GT.LENG)THEN



LENG=LENGTH()
DAB=I
ENDIF
1 CONTINUE
kkgkk kR kR ke kR kR kg Rk Kk
C next block calculates reactions from AN to the crest
CDAB........... number of the crest block

C AB.......DAB
t23 23223 33322332222 203 8
PRINT*, ‘DAB=",DAB
IF(DAB.EQ.1)THEN
AN=1
AB=2
GO TO 202
ENDIF
10 IF (AN.LT.DAB)THEN
AB=DAB
ELSE
AB=DAB+1
ENDIF
NB=AB-AN+I

CALL USRFUN(AN,AB,NB,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,

& XV,ALPHA,BETA,XLEN,F)
print*,'NB=' NB,'AN="AN,'/AB=",AB
PRINT®*,'reactions to the crest'
CALL NEWTON(NB,ALPHA,BETA,X)
DO 402 I=AN,AB
REAC(1)=0.0
402 CONTINUE
C DO LOOP 2 renumberes reactions from AN to AB
J=AN
DO 2 I=1,2*NB-3,2
REAC(J)=X(D)
J=I+1
2 CONTINUE
(22222232 R 3 2R E 2333322332233
C DO LOOP 3 locates the first 0. reaction before crest if any,
C and sets AB to the number of the located cant. |

EREEERRERRR KRR AR IR RE R kR kR kR
K=AN
DO 3 I=K,J-1
IF(REAC(I).LE.0.0)THEN
IF(1LEQ.AN.AND.AN.LT.DAB-1)THEN
AB=AN+1
GO TO 201
ELSEIF(I.EQ.AN.AND.AN.EQ.DAB-1)THEN
GO TO 202
ELSEIF(I.EQ.AN.AND.AN.EQ.DAB)THEN
AB=DAB+1

199
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GO TO 202
ELSEIF(1.LEQ.DAB-1)THEN
AN=DAB
AB=DAB+I
GO TO 202
ELSE
AB=l
GO TO 201
ENDIF
ENDIF
3 CONTINUE
IF (AN.LT.DAB)THEN
AB=DAB
ELSE
AB=DAB+1
ENDIF
GO TO 202
201  CALL ITER(N,AN,AB,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,
& XV, XLEN,REAC,ALPHA,BETA X,DAB,F)
IF (AB.NE.N)THEN
IF(AN.EQ.1.AND.AB.EQ.DAB)THEN
AN=DAB
AB=DAB+1
GO TO 202
ELSEIF(AN.EQ.DAB-2.AND.AB.EQ.DAB)THEN
AN=DAB-1
AB=DAB
GO TO 10
ELSEIF(AN.LT.DAB-2.AND.AB.EQ.DAB)THEN
AN=DAB
AB=DAB+1
GO TO 202
ELSE
GO TO 10
ENDIF
ELSE
GO TO 501
ENDIF
C
202 CALL ITERUN(N,AN,AB,WEIGHM,LENGTH,INERTIA ,EMODUL,PSI,
& XV, XLEN,REAC,ALPHA,BETA,X/F)
DO 20 J=1,N-1
PRINT*,'/REACTION'J,'=" REAC(J)
20 CONTINUE

501  CALL SHEARS (N,WEIGHM,LENGTH,INERTIA,PSI,.EMODUL,DIS,DIST,
& XLEN,XV,REAC,F,BEPTH,BHAT,COHESION,FI)
GO TO 400

END
CCCCCCCCeeeeecceeeceeeceeccecccececececcecececccceececccececeecccececcececcce



SUBROUTINE SHEARS (N,WEIGHM,LENGTH,INERTIA PSI,EMODUL,DIS,DIST,
&  XLEN,XV,REAC,F.DEPTH,BHAT,COHESION,FI)
INTEGER NP,N,DIS
INTEGER LK,J,DOWN
INTEGER RUNCNT,RUN
PARAMETER (NP=2000)
REAL REAC(NP),BHAT,XLEN(NP),STRE.FF(NP)
REAL PSI,GAMAW,GAMW,DEPTH(NP),STREN(NP),SF(NP)
REAL WEIGHM(NP),LENGTH(NP),INERTIA(NP). EMODUL(NP)
REAL F(NP),XV(NP),SHEAR(NP),SHEAV(NP),FORCE
REAL LEN(NP),DEP(NP),EMOD(NP), WAT(NP),BOTTOM,MOD,SIDE
REAL COHES,COHESION(10),FIK,F1(10),DIST(10)
COMMON /ABBA/RUNCNT,RUN
PARAMETER (GAMAW=9.81D03)
GAMW=GAMAW*SIN(PSI)/6.D0

C for the first cantilever the reaction from below and the loading
C caused by the water below are zero.

C

ok ok ok 3k abe ke o ok e o oK ok 3 ok o ok 3 ok ok ok ot o ok ok e e oo e o oK K o ok o ok ok ok oK ok R o o ok ok
*block 1

print*,'Test 1'
DO 300 I=1,2*(N-1)
SHEAR(1)=0.0
SHEAV(1)=0.0
300 CONTINUE
SHEAV(1)=((WEIGHM(1)*LENGTH(1)**2)/2+REAC(1)*XLEN(1)
& +F(I)*LENGTH(1)+GAMW*(XV(1)**3))/LENGTH(1)
DO 10 I=2)N-1
J=2*12
K=2*]-1
SHEAV(I)=((WEIGHM(I)*LENGTH(I)**2)/2+REAC(1)* XLEN(I)
& -REAC(I-1)*XLEN(I-1)+F(1)*LENGTH(1)
& +GAMW*(XV(1)**3-XV(I-1)**3))LENGTH(I)
10 CONTINUE

C For the last cantilever the reaction from above is zero.
J=2%N-2
K=2*N-1
SHEAV()=((WEIGHM(N)*LENGTH(N)**2)/2
& -REAC(N-1)*XLEN(N-1)+F(N)*LENGTH(N)
& +GAMW*(XV(N)**3-XV(N-1)**3))/LENGTH(N)

C The next block calculates shear stresses, and shear forces
C and tests if the resulting SF is greater than 1.
XCANT=0.0
DO 11 I=],N
XCANT=XCANT+DEPTH(I)
DO 600 J=1,DIS
IF((XCANT-DEPTH(1)/2.).EQ.DIST(J)) THEN
IF(FI(J).LE.FI(J+1))THEN
COHES=COHESION(J)



FIK=FI(J)
1.0 TO 601
ELS:
IF(J.LT.DIS)THEN
COHES=COHESION(J+1)
FIK=FI(J+1)
GO TO 601
ELSE
COHES=COHESION())
FIK=FI(J)
GO TO 601
ENDIF
ENDIF
ELSEIF((XCANT-DEPTH(I)/2.).LT.Di3T(J)) THEN
COHES=COHESION(J)

FIK=FI(J)
GO TO 601
ENDIF
600 CONTINUE
601 QMAX=0.0
STRE=0.0

QMAX=(BHAT/2.)*(DEPTH(I)**2/4)
SHEAR(I)=((SHEA V(I)*QMAX)/(INERTIA(I)* BHAT))/1000.

C WRITE (97,*) 'SHEAR',l,'=" SHEAR(l),kPa'
C WRlTE (97,t) o o o o o o o ol o ok o ok ok oo ok oo ok o ok K ok ak okt
STRE=(REAC(I)+F(I/GAMAW*XV(1)**2)/2
& +HWEIGHM(I)*LENGTH(1))/2)(LENGTH(I)* BHAT)

STREN(1)=COHES+STRE*TAN(FIK)/1000.
SF(I)=STREN(I)ySHEAR(I)

c WRITE(91,8)I,SHEAR(1),STREN(1),SF(I)
C print*,'SF="SF(I)
c8 FORMAT(T6,13,T20,F7.2,T30,F7.2,T40,F7.2)

11 CONTINUE

SRR RI R RSB E R KRR AR RN R R R AR R R R R ARk ke R R Rk Rk k ok kkokk bk

*FIRST ROUND-creating the first set of blocks acc. to SF *

PEREERBERE R B R R RE R RN RRERR R RS R RN R R AR R RNk GR Rk kR Kk k%

C

AAREEREE RS R KRR R R KRR RN R R BN R Rk kb kR kB p ke Rk kK

*BLOCK 1 - finds the number of the longest cantil.-crest block *
SRR EREE LR R R R R RR R ARk R R RNk R SRR bR bRk bk kbR ek bk k kR kg ok
TYPIC-DEPTH(1)
LONGEST=0.
DO 1 I=1,N
IF (LONGEST.LT.LENGTH(I))THEN
LONGEST=LENGTH(})
NTOP=I
ENDIF
1 CONTINUE

BERE. AERREEBEREERE KRR RR KRR R ER R R AR E KRR R RS R R Rk kSRR R RR R R R RS

*BLOCK 2- finds the distance of the crest block from the beginning*

AR RRRERRER RN R R R R RERERER R R R AR LR R SRR R RE KRR KRR R KRk ek Rk kR

202



XTOP=0.
DO 2 I=1,NTOP
XTOP=XTOP-+DEPTH()
2 CONTINUE

AR RR R KRR KRR REE KRR ERRE R KRR R R R R R R R RO KRR KRRk

*BLOCK 3- makes the first round set of blocks*
10200k ok o o ok K ok ko ok ok e o ok o o ok ok K ok e ok ook ok ok o ok ol ol ok ok ol ok ok ok o K
PRINT*RUN no.,RUNCNT
K=1
SIDE=0.
BOTTOM=0.
FORCE=0.
DOWN=0.
MOD=0.
DO 12 I=I,N
SIDE=SIDE+LENGTH(I)
BOTTOM=BOTTOM+DEPTH(I)
FORCE=FORCE+F(l)
DOWN=DOWN+|
MOD=MOD+BEPTH(I)*EMODUL(I)
IF ((ABS(SF(1)).GT.ABS(SF(I+1)).AND.

& ABS(SF(I+1)).LT.ABS(SF(I+2)).AND.
& ABS(SF(1+1)).LT.1).0R.
& REAC(1).EQ.0.)THEN

DEP{K)=BOTTOM
FF(K)=FORCE
LEN(K)=SIDE/DOWN
EMOD(K)=MOD/BOTTOM
IF (LEN(K).GT.XV(I))THEN
WAT(K)=XV(I)
ELSE
WAT(K)=LEN(K)*0.98
ENDIF

SIDE=0.
BOTTOM=0.
FORCE=0.
DOWN=0.
MOD=0.
K=K+1
ENDIF
12 CONTINUE
K=K-1
DO 13 I=I,N
LENGTH(I)=0.
DEPTH(1)=0.
Fd) =0.
EMODUL(I)=0.
XV(1)=0.0
13 CONTINUE
N=K

03
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DO 14 1=1N
LENGTH(I)=LEN(I)
DEPTH(I)=DEP(])

F() =FF()
EMODUL(1)=EMOD(I)
XV(1)=WAT(I)

14  CONTINUE

CEYI I TR RS RTINS RS2 AR 2 RE RS MR L 2 0
FEEEEERREBPA R RSB Ak R kR kR o kR KR

IF (RUNCNT.EQ.RUN)THEN
REWIND(UNIT=91)
WRITE (91.3)
3 FORMAT(T10,'N’)
WRITE (91.4)K
4 FORMAT(TS,14)
WRITE(91.6)
G FORMAT(T3,No',T15,' LENGTH', T30, DEPTH', T50,EMODUL",T70,'VX")
DO 71 I=1.K
WRITE(24,244)LFF(1)
244 FORMAT(T20,13,T40,E12.7)
WRITE(91,7)1,LEN(I),DEP(I), EMOD(I), WAT(I) -
7 FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,E10.3,T69,F6.2)
PRINT 72,1, LEN(I),DEP(1),EMOD(I), WAT(I)
72 FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,E10.3,T69,F6.2)
71 CONTINUE
PRINT*,'DATA READY'
STOP
ENDIF
RUNCNT=RUNCNT+I
END

Program Inshav shares subroutines Usrfun and Newton with Flex.

L.4. Program Flex.

Program flex is the main routine of the model. It calculates the stresses and
deformations in the siope, and changes the geometry of the slope according to those
changes.

Resulting data file:

Result.dat - gives the information about which cantilevers were broken and which

remain intact .

The structural chart of the program is shown in the next page.
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PROGRAM FLEX
INTEGER N,NPK,DIS
PARAMETER (NP=2000)
REAL LENGTH(NP),WEIGHM(NP),WEIGHT(NP),F(NP)
REAL DEPTH(NP),GAMA ,EMODUL(NP),PSID,PSI,BHAT
REAL X(NP),XV(NP),COHESION(10),FID(10),F1(10), TENSILE(10),KOEF
RFAL DEP(NP),DIST(10),DI
LOGICAL RDATA
COMMON /ABBA/RDATA,KOEF
COMMON /BBBA/ DEP
OPEN (UNIT=20,FILE='FYZIC.DAT',STATUS='0ld")
OPEN (UNIT=21,FILE='INPUT3.DAT,STATUS='"0ld")
OPEN (UNIT=22,FILE='DISTAN.DAT ,STATUS="0ld")
OPEN (UNIT=23,FILE=F.DAT ,STATUS='old")
OPEN (UNIT=24,FILE=FF.DAT ,STATUS="old")
OPEN (UNIT=10,FILE='INPUT.DAT,STATUS='0ld")
OPEN (UNIT=65,FILE='CHEC.DAT’)
RDATA=.TRUE.
READ (22,1)DIS
FORMAT (/,T15,12)
READ (22,11)
FORMAT(2X)
DO 2 I=1,DIS
READ (22,3)DIST(1), COHESION(!),FID(I), TENSILE(I)
FORMAT(T13,F6.2,T29,F6.2,745,F4.1,T62,F6.2)
CONTINUE
READ (20,55)BHAT
FORMAT (/,T15,F5.1)
READ (20,5)GAMA PSID,KOEF
FORMAT(/,T13,F7.1,T38,F9.6,T64,F6.2)
READ(21,66)N
FORMAT(/,T9,14)
READ (21,6)
FORMAT(1X)
DO 60 1=1,N
READ(23,9)F(I)
FORMAT(T39,E13.7)
READ{(21,7)K,LENGTH(I),DEPTH(I), EMODUL(I),XV(I)
FORMAT(T2,13,T15,F6.2,T3¢,F6.2,T48,E10.3,T69,F6.2}
IF(1.GT.10) THEN
JIF(LENGTH(I).LT.0.4)THEN
N=|-1
GO TO 71
ENDIF
ENDIF
CONTINUE
PSI= PSID *(3.141593D00)/180.D00
DI=0.
DO 711 I=1,N
DI=DI+DEPTH(I)
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711 CONTINUE
DIST(DIS)=DI
DO 72 I=1,DIS
FI(1)= FID(I) *(3.141593D00)/180.D00
72 CONTINUE
DO 10 I=1,N
WEIGHM(1)=0.0D0
WEIGHT(1)=0.0D0
WEIGHM(I) =GAMA*DEPTH(1)*BHAT*COS(PSI)*KOEF
WEIGHT(I) =GAMA*DEPTH(I)*BHAT*SIN(PSI)
10 CONTINUE
CALL ISAAC(N,EMODUL,X,LENGTH,WEIGHM,PSI,
& DEPTH,GAMA ,BHAT,WEIGHT,XV,DIS,DIST,
& COHESION,FI,TENSILE,F)
END

CCCCCCCCCCCCeeeeeeeeceeeeeececcecececeecceeceeccececceeccecceeccecccece

SUBROUTINE ISAAC(N,EMODUL,X,LENGTH,WEIGHM,PSI,

& DEPTH,GAMA,BHAT,WEIGHT,XV,DIS,DIST,
& COHESION,FI,TENSILE,F)
C  program solves the system of nonlinear equations for n cantil.
C
C EMODUL.....Young's modulus[Pa]
C / I INERTIA...Moment of inertia
C / / :depth GAMA......Density of rock [N/m*3]
C / !/
C |- /o
C :bhat :  /length
C : 2/
C o o/
C

integer NTRIAL,N,NP,AN,AB,I, NUM,DAB,ND,DIS
parameter(NP=2000,NTRIAL=25)

double precision ALPHA(NP,4),BETA(NP)

real XV(NP),REAC(NP),X(NP),F(NP)

real INERTIA(NP),LENGTH(NP), WEIGHM(NP),EMODUL(NP)
real PSI, XLEN(NP),DEPTH(NP: GAMA BHA™

real TEST,WEIGHT(NP),LENG

real DEP(NP),XCANT

real COHESION(10),FI(10),TENS,TENSILE(10),DIST(10)
integer NOR,COUNT

COMMON /BBBA/ DEP

logical DONE

DONE=.FALSE.

COUNT=0
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*BLOCK 1- calculates reactions between blocks in question®*
SERFERANSR SRR RE SRR IS AR SRS AL RS E R R AR R R RN RS KRR kR RNk R ¥
C INLINE calculates distances where reactions are acting
400 CALL INLINE(LENGTH,XLEN,N)
DO 401 I=1N
REAC(1)=0.0
401 CONTINUE
CALL INERT(N,NP,BHAT,DEPTH,INERTIA)
C DO LOOP 1 locates the crest block DAB
LENG=0.
DAB=0
AN=1
DO 1 I=1,N
IF (LENGTH(I).GT.LENG)THEN
LENG=LENGTH(I)
DAB=I
ENDIF
1 CONTINUE
BESRB RS BRREA RS SRR RER kXK
C next block calculates reactions from AN to the crest
C DAB........... number of the crest block

C AB....... DAB
TSRS 3322822202 2828
IF(DAB.EQ.1)THEN
AN=1
AB=2
GO TO 202
ENDIF
10 iF (AN.LT.DAB)THEN
AB=DAB
ELSE
AB=DAB+l
ENDIF
NB=AB-AN+l

CALL USRFUN(AN,AB,NB,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,

& XV,ALPHA,BETA ,XLEN,F)
C PRINT*'REACTIONS TO THE CREST'
C PRINT*'AB=",AB, AN=AN
CALL NEWTON(NB,ALPHA ,BETA X)
DO 402 I=AN,AB
REAC(I)=0.0
402 CONTINUE
C DO LOOP 2 renumberes reactions from AN to AB
J=AN
DO 2 1=1,2*NB-3,2
REAC@J)=X()
J=J+1
2 CONTINUE

SEEERRRLEERUER NN RN LSRR R RS EEER
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C DO LOOP 3 locates the first 0. reaction before crest if any,
C and sets AB to the number of the located cant. |

C AB..... I
kKGR E kR ek kR Rk kR ok
K=AN
DO 3 I=K,J-1
IF(REAC(I).LE.0.0)THEN
IF(LEQ.AN.AND.AN.LT.DAB-1)THEN
AB=AN+]
GO TO 201
ELSEIF(1.EQ.AN.AND.AN.EQ.DAB-1)THEN
GO TO 202
ELSEIF(LEQ.AN.AND.AN.EQ.DAB)THEN
AB=DAB+1
GO TO 202
C
ELSEIF(1.EQ.DAB-1)THEN
AB=AN+1
GO TO 202
C
ELSE
AB=1
GO TO 201
ENDIF
ENDIF
3 CONTINUE
IF (AN.LT.DAB)THEN
AB=DAB
ELSE
AB=DAB+I
ENDIF
GO TO 202

201  CALL ITER(N,AN,AB,WEIGHM,LENGTH,INERTIA EMODUL,PSI,

& XV, XLEN,REAC,ALPHA,BETA X ,DAB,F)
IF (AB.NE.N)THEN
IF(AN.EQ.1.AND.AB.EQ.DAB)THEN
AN=DAB
AB=DAB+1
GO TO 202
ELSEIF(AN.EQ.DAB-2.AND.AB.EQ.DAB)THEN
AN=DAB-1
AB=DAB
GO TO 10
ELSEIF(AN.LT.DAB-2.AND.AB.EQ.DAB)THEN
AN=DAB
AB=DAB+1
GO TO 202
ELSE
GO TO 10
ENDIF
ELSE
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GO TO 501
ENDIF
202 CALL ITERUN(N,AN,AB,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,
& XV, XLEN,REAC,ALPHA,BETA X,F)
DO 20 J=I,N-1
20 CONTINUE
CALL DEFLEX(N,WEIGHM,LENGTH,INERTIA ,EMODUL,PSI,
& XV,REAC,XLEN)

SEEEFEREP PN R R RS R AR R R R AR KA E KRR RS KRRk b kR KR k&

*BLOCK 2-does the splitting and the breaking of cantilevers*
CRAEEEI R KRR AR I AR E R R AR R RN AR P AR R R R Kok KRR ko ok ok o o ok ok ke

PRINT*/NOR='NOR,” ND='ND,) N='N

501  CALL MOMENT (N, WEIGHM,LENGTH,INERTIA,PSI,EMODUL,
& NOR,XV,REAC,XLEN,F,DEPTH,GAMA BHAT,
& DIS,DIST,COHESION,FI, WEIGHT, TEST,NUM,ND,TIP)
IF(N.LT.ND.AND.TIP.LT.1.0)THEN
GO TO 400
ELSE
PRINT*,'DEVIDING FINISHED'
ENDIF
XCANT=0.0
DO 502 I=1,NUM
XCANT=XCANT+DEPTH(I)
502 CONTINUE
DO 503 I=1,DIS
IF((XCANT-DEPTH(NUM)/2.).LE.DIST(I)) THEN
TENS=TENSILE(l)
GO TO 505
ENDIF
503 CONTINUE

505  I¥ (TEST.GE.TENS)THEN
DO 504 1=1,DIS
IF{XCANT.LE.DIST(1)) THEN
IF(I.LEQ.1)THEN
DIST(1)=DIST(1)-DEPTH(NUM)
IF(DIS.GT.1)THEN
DO 604 3=2,DIS
DIST(J)=DIST(J)-DEPTH(NUM)
604 CONTINUE
ENDIF
ELSE
IF(XCANT-DEPTH(NUM).LT.DIST(I-1)) THEN
DIST(I-1)=XCANT-DEPTH(NUM)
DO 704 J=1,DIS
DIST(J)=DIST(J)-DEPTH(NUM)
704 CONTINUE
ELSE
DO 804 J=I,DIS



DIST(J)=DIST(J)-DEPTH(NUM)

804 CONTINUE
ENDIF
ENDIF
GO TO 605
ENDIF
504 CONTINUE
ENDIF

605 DO 507 1=1,DIS
507 CONTINUE
IF (TEST.GE TENS)THEN
CALL CHAN (DEPTH,ND,NUM,COUNT,DONE,NOR)
CALL CHANGE(N,NUM,LENGTH,WEIGHM,DEPTH,EMODUL. INERTIA,
& WEIGHT,XV,F,DONE,PSI)
ELSE
DONE=TRUE.
CALL CHAN (DEPTH,ND,NUM,COUNT,DONE,NOR)
PRINT*,THE REST OF THE SLOPE STABILE'
STOP
ENDIF

IF (N.EQ.1)THEN
DONE=.TRUE.
CALL CHAN (DEPTH,ND,NUM,COUNT,DONE,NOR)
PRINT*, 'FAILURE COMPLETED!
STOP
ENDIF
GO TO 400
END
CCCCCCCCCCCCCCeceecececeececeececeeeeeeeecceeceeceeececcceecceccececc

SUBROUTINE USRFUN(AN,AB,NB,WEIGHM,LENGTH,INERTIA,
& EMODUL,PSI, XV,ALPHA,BETA,XLEN,F)

INTEGER NP,NB,AN,AB
INTEGER R,LJ,K,.M,P
PARAMETER (NP=2000)
DOUBLE PRECISION ALPHA(NP,4),BETA(NP)
REAL EMODUL(NP),PSL,GAMAW,GAMW
REAL WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP)
REAL UR(NP),F(NP).XV(NP)

@]

PARAMETER (GAMAW=9.81D03)
GAMW=GAMAW*SIN(PSI)/120.D0

for the first cantilever the reaction from below and the loading
caused by the water below are zero.

AB first cantilever in the block

AN last cantilever in the block

NB....number of cantilevers currently in question

Each cantilever is evaluated in two crossections for reaction and
deflection;for adjacent cantilevers reaction and defl. are equal.

osNoNoNeNeNo D)



C Therefore there are 2*NB-2 BETAS and (2*NB-2)*3 ALPHAS
C Linear eq. with coefficients ALPHA and BETA
C ALPHA(, 1)*R(m)+ALPHA(i,2)*R(n)+ALPHA(i,3)* Y(m)+BETA(i)=0

I T I T T IR RSS2 23R 22 2222 222 22 2l 2
DO 303 1=1,2*(NB-1)
BETA(1)=0.0D0
DO 304 J=1,4
ALPHA(I,J)=0.0D0
304 CONTINUE
303 CONTINUE
EASERBNEERER R R R AR R ER R R R R F Rk kKRR Rk
IF (LENGTH(AN).LE.LENGTH(AN+1))THEN
o

BETA(1)=(WEIGHM(AN)/24.)*(-LENGTH(AN)**3*(LENGTH(AN)-4.*XLEN(AN)))

& +(F(AN)6.)*(-LENGTH(AN)**2)*(LENGTH(AN)-3.*XLEN(AN))
& -GAMWH*(-XV(AN)**4)*(XV(AN)-5.*XLEN(AN))

C
ALPHA(1,3)=(1.D0/6)*2. DO*(XLEN(AN)**3)
ALPHA(1,4)=-(EMODUL(AN)*INERTIA(AN))
ELSE

BETA(1)=(WEIGHM(AN)24.)*((LENGTH(AN)-XLEN(AN))**4
& -LENGTH(AN)**3*(LENGTH(AN)-4.*XLEN(AN)))
& +(F(AN)/6.)*((LENGTH(AN)-XLEN(AN))**3
& -LENGTH(AN)**2*(LENGTH(AN)-3.*XLEN(AN)))
& -GAMW*(-XV(AN)**4)*(XV(AN)-5.*XLEN(AN))
C
ALPHA(1,3)=+(1.D0/6.)*2.*(XLEN(AN)**3)
ALPHA(1,4)=-(EMODUL(AN)*INERTIA(AN))
ENDIF

C for the last cantilever the reaction from above is zero
[=2*AB-2
K=2*AB-1
R=AB-1
C BETA and ALPHA are for newton, and are calculated from 1...J
J=2*NB-2

IF(LENGTH(AB).GT.LENGTH(AB-1))THEN

BETA(J)=(WEIGHM(AB)/24.D0)*((LENGTH(AB)-XLEN(R))**4
& -LENGTH(AB)**3*(LENGTH(AB)-4*XLEN(R)))
& +(F(AB)/6)*((LENGTH(AB)-XLEN(R))**3
& -LENGTH(AB)**2*(LENGTH(AB)-3*XLEN(R)))
& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(RY))

& -GAMW*(-XV()**4)*(XV(I)-5*XLEN(R))

ALPHA(J,3)=-(1.D0/6)*2*(XLEN(R)**3)
ALPHA(J,4)=-(EMODUL(AB)*INERTIA(AB))

212
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ELSEIF(LENGTH(AB).LE.LENGTH(AB-1))THEN

BETA(J)=(WEIGHM(AB)/24.)*(-LENGTH(AB)**3*(LENGTH(AB)-4* XLEN(R)))
& +(F(AB)/6)*(-LENGTH(AB)**2*(LENGTH(AB)-3*XLEN(R)))

& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(R))

& -GAMW*(-XV(I)**4)*(XV(I)-5*XLEN(R))

ALPHA(J.3)=-(1.D0/6.)*2.*(XLEN(R)**3)
ALPHA(J.4)=-(EMODUL(AB)*INERTIA(AB))

ELSE
ENDIF

M)........ number of the cant. in the block

(R)........ cant. below (M)

() e water below cantilever (M)

(K)........ water above cantilever (M)

between adjacent cant. there are two values for water hight
for flat base they are equal, for stepped base they differ
(1,(P)....are coef. (M),(R) shifted to 1,nb

IF(NB.GT.2)THEN
DO 10 M=AN+1,AB-1
R=M-1
[=2*M-2
K=2*M-1
BETA and ALPHA calculated from 2 to
J=2*(M-AN)
P=J+1
IF(LENGTH(M).GT.LENGTH(M-1).AND.LENGTH(M).LE.LENGTH(M+1))THEN

m+li ___XLEN(k)=l(m)=XLEN(M)
m [
re-1=R [ XLEN()=I(m-1)=XLEN(R)

cross -ion L. closer to the beginning of the cantilever

BETAQ) - { WEIGHM(M)/24)*((LENGTH(M)-XLEN(R))**4

& -LSENGTH(M)**3*(LENGTH(M)-4*XLEN(RY)))
& YA ((LENGTH(M)-XLEN(R))**3
& ~-LENGTH(M)**2*(LENGTH(M)-3*XLEN(R)))

& FAMV ALV **4) (X V(K)-5* XLEN(R))
& - AMWE X v. )*54)*(XV(I)-5*XLEN(R))

Al PHA(,1~-(1.220/6)*2*(XLEN(R)**3)
ALPHAG ,2)=-(EKDUL(M)*INERTIA(M))
ALPHA(J,3)=
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& (1.D0/6)*((XLEN(M)-XLEN(R))**3-XLEN(M)**2*(XLEN(M)-3*XLEN(R)))
ALPHA(J,4)=0.0D0
C crossection 2, closer to the end of the cantilever

BETA(P)=(WEIGHM(M)/24)*(-LENGTH(M)**3*(LENGTH(M)-4* XLEN(M)))
& +(F(M)/6)*(-LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(M))
& -GAMW*(-XV(I)**4)*(XV(I)-5*XLEN(M))

C
ALPHA(P,1)=-(1.D0/6)*(-XLEN(R)**2*(XLEN(R)-3* XLEN(M)})
ALPHA(P,2)=0.0D0
ALPHA(P,3)=(1.D0/6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(M)))
ALPHA(P,4)=-(EMODUL(M)*INERTIA(M))

ELSEIF(LENGTH(M).GT.LENGTH(M-1).AND.LENGTH(M).GT.LENGTH(M+1))THEN

C
C m+l { I XLEN(k)=l(m)=XLEN(M)
Cm [
C m-l [ XLEN(i)=l(m-1)=XLEN(R)
C crossection 1, closer to the beginning of the cantilever
IF(XLEN(M).GT.XLEN(R))THEN
UR(M)=1.0D0
ELSE
UR(M)=0.0D0
ENDIF
BETA(J)=(WEIGHM(M)/24)*((LENGTH(M)-XLEN(R))**4
& -LENGTH(M)**3*(LENGTH(M)-4*XLEN(R}))
& +HF(M)6)*((LENGTH(M)-XLEN(R))**3
& -LENGTH(M)**2*(LENGTH(M)-3*XLEN(RY)))
& +GAMWH*(-XV(K)**4)*(XV(K)-5*XLEN(R))
& -GAMW?*(-XV(I)**4)*(XV(1)-5*XLEN(R))
C
ALPHA(J,1)=-(1.D0/6)*2*(XLEN(R)**3)
ALPHA(J,2)=-(EMODUL(M)*INERTIA(M))
ALPHA(J,3)=(1.D0/6)*((XLEN(M)-XLEN(R))**3*UR(M)
& -XLEN(M)**2*(XLEN(M)-3*XLEN(R)))
ALPHA(J,4)=0.0D0
C crossection 2, closer to the end of the cantilever

IF(XLEN(M).GT.XLEN(R))THEN
UR(R)=0.0D0
ELSE
UR(R)=1.0D0
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ENDIF

BETA(P)=(WEIGHM(M)/24)*((LENGTiit M)-XLEN(M))**4
& -LENGTH(M)**3*(L M 3TH(M)-4*XLEN(M)))
& +F(M)/6)*((LENGTH(M)-XLEN(M))**3

& -LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
& +GAMWH*(-XV(K)**4)*(XV(K)-5* XLEN(M))

& -GAMWH*(-XV(I)**4)*(XV(I)-5*XLEN(M))

ALPHA(P,1)=-(1.D0/6)*((XLEN(R)-XLEN(M))**3*UR(R)
& ~XLEN(R)**2*(XLEN(R)-3*XLEN(M)))
ALPHA(P,2)=0.0D0
ALPHA(P,3)=(1.D0/6)*(-XLEN(M)**2*(XLEN(M)-3* XLEN(M)))
ALPHA(P,4)=-(EMODUL(M)*INERTIA(M)
ELSEIF(LENGTH(M).LE.LENGTH(M-1).AND.LENGTH(M).GT.LENGTH(M+1)) THEN

+1 [ I XLEN(K)=I(m+1)=XLEN(M)
1

333

-1[ I XLEN(i)=l(n =XLEN(R)

O0O0O0O0O0

crossection 1, closer to the beginning of the cantilever

BETA(J)=(WEIGHM(M)/24)*(-LENGTH(M)**3*(LENGTH(M)-4*XLEN(R)))
& HF(M)/6)*(-LENGTH(M)**2*(LENGTH(M)-3*XLEN(R)))
& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(R))
& -GAMWH*(-XV(D)**4)*(XV(I)-5*XLEN(R))

C
ALPHA(J,1)=-(1.D0/6)*(-XLEN(R)**2*(XLEN(R)-3*XLEN(R)))
ALPHA(J,2)=-(EMODUL(M)*INERTIA(M))
ALPHA(J,3)=(1.D0/6)*(-XLEN/*1)**2*(XLEN(M)-3*XLEN(R)))
ALPHA(J,4)=0.0D0

C crossection 2, closer to the end ¢ <= cantilever

BETA(P)=(WEIGHM(M)/24)*((LENGTH(M)-XLEN(M))* *4
& -LENGTH(M)**3*(LENGTH(M)-4* XLEN(M)))
& +F(M)/6)*(LENGTH(M)-XLEN(M))**3

& .LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(M))

& -GAMW*(-XV(I)**4)*(XV(I)-5*XLEN(M))

ALPHA(P, 1)=-(1.D0/6)*((XLEN(R)-XLEN(M))**3

& -XLEN(R)**2*(XLEN(R)-3* XLEN(M)))
ALPHA(P,2)=0.0D0
ALPHA(P,3)=(1.D0/6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(M)))
ALPHA(P,4)=-(EMODUL(M)*INERTIA(M))

ELSEIF(LENGTH(M).LE.LENGTH(M-1).AND.LENGTH(M).LE. LENGTH(M+1))THEN



C 1
C |
C m+l | 1 XLEN(K)=I(m)=XLEN(M)
Cm [ I
C m-){ I XLEN(i)=Km)=XLEN(R)
C 1
C
BETA())=(WEIGHM(M)/24)*(-LENGTH(M)**3*(LENGTH(M)-4*XLEN(RY)))
& +(F(M)/6)*(-LENGTH(M)**2*(LENGTH(M)-3*XLEN(R)))
& +GAMWH*(-XV(K)**4)*(XV(K)-5*XLEN(R))
& -GAMW*(-XV(D)**4)*(XV(I)-5*XLEN(R))
C
+ 44,1 =(1.DO/6)*(-XLEN(R)**2*(XLEN(R)-3*XLEN(R)))
" N=(EMODUL(M)*INERTIA(M))
+ ~0/6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(R)Y))
Al. -9
C cr.s -»er to the end of the cantilever
BETA(P)=(WEIGHM(M)/24)"(-LENGTH(M)"3‘(LENGTH(M)-4*XLEN(M)))
& +{F(M)Y6)*(-LENGTH(M)**2*(LENGTH(M)-3* XLEN(M)))
& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(M))
& -GAMW*(-XV(D)**4)*(XV(I)-5*XLEN(M))
C
ALPHA(P,1)=-(1.D0/6)*(-XLEN(R)**2*(XLEN(R)-3* LEN(M)))
ALPHA(P,2)=0.0D0
ALPHA(P,3)=(1.D0/6)*(-XLEN(M)**2*(XLEN(M)-3* XLEN(M)))
ALPHA(P,4)=-(EMODUL(M)*INERTIA(M))
ELSE
ENDIF
10 CONTINUE
ENDIF
DO 11 I=1,2*(NB-1)
BETA(I)=(-1)*BETA(l)
c write(93,*) 'beta’,i,’="beta(i)
do 12 j=14
c write(93,*)'alpha’,i,j,=',alpha(i,j)
12 continue
11  CONTINUE

END

PEREEERBEREAIRRBSRERER RN KRR ERRERR R K&

SUBROUTINE NEWTON (NB,ALPHA,BETA X)
INTEGER LJ,K,NP,NB
PARAMETER (NP=2000)
DOUBLE PRECISION ALPHA(NP,4),BETA(NP)
REAL X(NP)
M=(NB-1)*2
DO 1 I=1,M
X(1)=0.0D0
1 CONTINUE

216



ALPHA(1,4)=ALPHA(1,4)/ALPHA(1,3)
BETA(1)=BETA(1)/ALPHA(1,3)

DO 10 1=2,M,2

J=l1+1

K=I-1
C loop 10 nulifies all values to the left from diagonal and
C changes all values in the diagonal to 1.

IF(J.LT.M)THEN
ALPHA(1,2)=(-ALPHA(L,1))*ALPHA(K.4)+ALPHA(1,2)
ALPHA(1,3)=ALPHA(1,3)/ALPHA(],2)

BETA(I)=((-ALPHA(I,1))*BETA(K)+BETA(I))YALPHA(I,2)
ALPHA(J.2)=(-ALPHA(J,1))*ALPHA(K,4)+ALPHA(J,2)
ALPHA(J,3)=(-ALPHA(J,2))* ALPHA(]1,3)+ALPHA(J,3)
ALPHA(J,4)=ALPHA(J,4)YALPHA(J,3)

BETA(J)=(((-ALPHA(J,1))*BETA(K)+BETA())-ALPHA(J,2)

* *BETA(I)/ALPHA(J,3)

ELSE

K=1-1
ALPHA(1,4)=(-ALPHA(1,3))*ALPHA(K,4)+ALPHA(1,4)

BETA(I)=((-ALPHA(1,3))*BETA(K)+BETA(I))/ALPHA(1,4)

ALPHA(1,4)=1.00D0

ENDIF

10 CONTINUE
DO 11 I=M-1,1,(-2)
C loop 11 nulifies all values to the right from diagonal
=[+1]
K=I-1

IF(LNE.1THEN
BETA(I)=(-ALPHA(1,4))*BETA(J)+BETA(])
BETA(K)=(-ALPHA(K 3))*BETA(I)+BETA(K)

ELSE
BETA(I)=(-ALPHA(1,4))*BETA(J)+BETA(l)

ENDIF

11  CONTINUE

Loop 12 is changing matrix X(i), for finding the new
values of ALPHA and BETA. Matrix X(i) is sent to
subroutine USERFUN for new iteration.
DO 300 =1 M
WRITE(92,*) 'X',1,'=",BETA(I)
300 CONTINUE
DO 12 I=I M
X(D=BETA(I)
12 CONTINUE
END

KRR RERER KRR R RE R R R R RS kR o Rk kR R bk

oNoReNe!

0
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SUBROUTINE INLINE (LENGTH,X. EN,N)
INTEGER NP
PARAMETER (NP=2000)
REAL LENGTH(NP),XLEN(NP)
DO 02 M=],N-1
P=M+1
IF(LENGTH(M).LE.LENGTH(P))THEN
XLEN(M)=LENGTH(M)
ELSE
XLEN(M)=LENGTH(P)
ENDIF
02 CONTINUE
C
END
CCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeeececccece

SUBROUTINE CHANGE(N,NUM,LENGTH,WEIGHM,DEPTH,
& EMODUL,INERTIA, WEIGHT,XV,F,DONE,PSI)
INTEGER N,NP,NUM
PARAMETER (NP=2000)
REAL LENGTH(NP), WEIGHM(NP),DEPTH(NP),EMODUL(NP),INERTIA(NP)
REAL XV(NP),F(NP),WEIGHT(NP)
REAL CRACK,PSI
LOGICAL DONE
FTTIII P RS TSRS RS2SR 2222323243 2221222222222 2tsd ]
C DONE logical which skips or enters block 1 set in ISSAC
C NUM number of the cantilever with highest tensile stress
C CRACK weight of the NUM cant. scaled to the length of NUM-1 cant.

SURE RN AN SRS R s R R R E RN Rk K&

*block 1-

(2RI IS S TR R E2 2 222322 E 22222 2s )]

IF(NOT.DONE)THEN
CEERBES RSB R RER AR ERR RS R R RARE R R R AR R AR R R R AR R R R AR Rk kR kR R k&
*BLOCK 1.1-increases the weight of the NUM-1 cant. by the weight of *
* the failed cant. N scaled to the length of the NUM-1 cant.*
TENBARR RN B R RS EREEERESRR R R T E R R R AR R R AR R KRR R R R R R Rk E R RNk
IF (NUM.NE.1)THEN
IF(LENGTH(I)TAN(PSI).GT.DEPTH(I)) THEN
CRACK=(WEIGHM(NUM)*LENGTH(NUM))/LENGTH(NUM-1)
WEIGHM(NUM-1)=WEIGHM(NUM-1)+CRACK
ENDIF
FNUM-1)=F(NUM-1)+F(NUM)
ENDIF

SEARLPR DA XXX ERNE SR EESERA RN RSB RN SRR E Nk E kR ke Rk kkkk

*BLOCK 1.2-renumbers all cants. above the broken one*
SREBEREERAERERE SRR E R AR RS SRR R RS R R Rk Rk R Rk R K KRk k ok
IF NUM.LT.N)THEN
DO 1 I=NUM,N-1
LENGTH(1) =LENGTH(I+1)
WEIGHM(I) =WEIGHM(I+1)



WEIGHT(I) =WEIGHT(I+1)
DEPTH(I) =DEPTH(I+1)
EMODUL(I) =EMODUL(1+1)
INERTIA(I)=INERTIA(1+1)
XV()  =XV(+1)

FA)  =F(+1)

1 CONTINUE
ENDIF
ENDIF
500 N=N-I
101  END

CCCCCCCCCCCCLeeceeeeeceeceececceecececeecececeececececcececcecececcec

SUBROUTINE ITER(N,AN,AB,"WEIGHM,LENGTH,INERTIA,EMODUL,PSI,

&  XV,XLEN,REAC,ALPHA,BETA,X,DAB,F)
INTEGER N,NP,NB,AN,AB,DAB
INTEGER I,J
PARAMETER (NP=2000)
REAL EMODUL(NP),PSI
REAL WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP)
REAL F(NP),XV(NP)
DOUBLE PRECISION ALPHA(NP 4),BETA(NP)
REAL X(NP),RHOLD(NP),REAC(NP)
200 NB=AB-AN+I
CALL USRFUN(AN,AB,NB,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,
&  XV,ALPHA,BETA,XLEN,F)
C IF (N.GT.745)THEN
C PRINT*' REACTIONS RETURN'
C PRINT*'AN="AN, AB='\AB
C ENDIF
CALL NEWTON(NB,ALPHA,BETA,X)
Write (92’#)'t**#"**.*‘t‘#‘tt‘*t“*#‘##t*'
DO 404 I=AN,AB
REAC(I)=0.0
404 CONTINUE
J=AN
DO 14 1=1,2*NB-3,2
REAC(J)=X(l)
J=)+1
14  CONTINUE
C IF (N.GT.745)THEN
C PRINT*'REAC AB-1 =,REAC(AB-1)
C ENDIF
IF(AB+1.LE.N.AND.REAC(AB-1).GT.0.DO)THEN
DO 15 I=AN,AB-1
RHOLD(I)=REAC(I)
15 CONTINUE
AB=AB+1
IF(AB.EQ.DAB)GO TO 300

(¢}



GO TO 200
C
ELSEIF(AB+1.LE.N.AND.REAC(AB-1).LE.0.DO)THEN
REAC(AB-1)=0.0D0
IF (AB-AN.GT.1)THEN
DO 16 I=AN,AB-2
REAC(H)=RHOLD(I)
16 CONTINUE
ENDIF
AN=AB
AB=DAB+1
GO TO 300
ELSEIF(AB.EQ.N.AND.REAC(AB-1).GT.0.DO)THEN
GO TO 300
ELSEIF(AB.EQ.N.AND.REAC(AB-1).LE.0.DO)THEN
REAC(AB-1)=0.00D0
IF (AB-AN.GT.1)THEN
DO 18 I=AN,AB-2
REAC(I)=RHOLD()
18 CONTINUE
ENDIF
ELSE
300 ENDIF
END

Lt s PR TSI R R 1SR S S 2R SRS R R RS2 222 222 22 2 2ttt dd)

SUBROUTINE ITERUN(N,AN,AB,WEIGHM,LENGTH,INERTIA,
&  EMODUL,PSL,XV,XLEN,REAC,ALPHA,BETA X F)
INTEGER N,NP,NB,AN,AB
INTEGER 1,J
PARAMETER (NP=2000)
REAL EMODUL(NP),PSI
REAL WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP)
REAL F(NP),XV(NP)
DOUBLE PRECISION ALPHA(NP,4),BETA(NP)
REAL X(NP),RHOLD(NP),REAC(NP)
200 NB=AB-AN+l
CALL USRFUN(AN,AB,NB,WEIGHM,LENGTH,INERTIA,EMODUL,PS],
&  XV,ALPHA,BETA XLEN/F)
C IF (N.GT.745)THEN
C PRINT*, ' TO THE END'
C PRINT*/AN='AN, AB=/,AB,NB=\NB,N='N
C ENDIF
CALL NEWTON(NB,ALPHA BETA X)
I write (92,#)"t#"“t“‘t‘#t‘*#'#i*i##*“*'
DO 404 1=AN,AB
REAC(1)=0.0
404 CONTINUE
J=AN
DO 14 I=1,2*NB-3,2
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REAC(J)=X(I)
J=}+1
14 CONTINUE
C IF (N.GT.745)THEN
C PRINT*'REAC (AB-1)=",REAC(AB-1)
C ENDIF
IF(AB+1.LE.N.AND.REAC(AB-1).GT.0.D0)THEN
DO 15 I=AN,AB-1
RHOLD(I)=REAC(l)
15 CONTINUE
AB=AB+l
GO TO 200

ELSEIF(AB+1.LE.N.AND.REAC(AB-1).LE.0.DO)THEN
REAC(AB-1)=0.0D0
IF (AB-AN.GT.1)THEN
DO 16 1=AN,AB-2
REAC(1)=RHOLD(I)
16 CONTINUE
ENDIF
AN=AB
AB=AN+1
GO TO 200
C
ELSEIF(AB.EQ.N.AND.REAC(AB-1).GT.0.D0)THEN
GO TO 350
C
ELSEIF(AB.EQ.N.AND.REAC(AB-1).LE.0.DO)THEN
REAC(AB-1)=0.00D0
IF (AB-AN.GT.1)THEN
DO 18 I=AN,AB-2
REAC(I)=RHOLD(l)
18 CONTINUE
ENDIF
ELSE
350 ENDIF
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

SUBROUTINE CHAN (DEPTH,ND,NUM,COUNT,DONE,NOR)
INTEGER NP

PARAMETER (NP=2000)

INTEGER LJ,K,L,NOR

INTEGER ND,NUM,COGUNT
INTEGER CANT(NP,3)

REAL DEPTH(NP),DEP(NP),LEN(NP)
REAL XBEGIN,XEND,XF

COMMON /BBBA/ DEP

LOGICAL DONE

CHARACTER*4 FAILED(NP)



OPEN(UNIT=96,FILE="RESULT.DAT")
OSSR NSRS ECESE AR EE LRSS LR AR RSB RE R A BN AR ERE RSk SR
DONE logical which skips or enters block 1 set in ISSAC
NUM number of the cantilever with highest tensile stress
NOR the original number of cants. before any cant. is
broken of; (N original)
CANT real with 3 columns:
column 1....original cantilever number
column 2....failed (0) or not failed (cant. no.)
column 3....order in which the cant. failed
FAILED character marking the failed cant.
COUNT logical real originally set in ISSAC which skips
or enters block 1.1 and then counts the failed cantilevers
and sets the column 3 of CANT in the block 3

SRR RASRRAEE RS R AR R E R RSB R R KRR R AR RN ER KRR Rk kR Rk kR Rk &

*BLOCK 1.1-sets the starting valules to CANT and then it is switched of*
SRAC LR ERREE R AN R EERE AR E R R R AR E AR R SRR SRR SRRk Rk ke kR ek ke k Rk Rk k k&
IF(COUNT.EQ.0)THEN
DO 2 I=1,NOR
K=I
CANT(L,1)=K
CANT(1,2)=K
CANT(1,3)=0
2 CONTINUE
ENDIF

[EI XIS TSRS S SRR 2222222222222 22 22222222222ttt dts 2

*BLOCK 1.2-finds the distance of the broken block from the beginning*
NSRS RN E PR R R R AR AR E SRR R AR E AR AR R A AR R AR RS R Rk kR ek k k&
IF (NOT.DONE) THEN

5 XEND=0.0

XBEGIN=0.0

DO 6 I=1,NUM

XEND=XEND+DEPTH(I)

6 CONTINUE

XBEGIN=XEND-DEPTH(NUM)

OOOOOO0O0OOO0000

C
ERRR SN SRR R R RS R AR ERER R AR SR E RN RSk Rk kR bk kR ki kR R Rk kR %
*BLOCK 1.3- renumbers elementary blocks behind the broken block*
. and changes the number ND of elementary blocks  *
SR RGP RN ERPR RN R EE AR R E R R R R SRS AR ARG AR R R E N B kR Rk n ko kKRR Rk
XF=0.0
770 DO 77 L=I,ND
XF=XF+DEP(L)
IF (XF.GT.XBEGIN.AND.XF.LE.XEND)THEN

CSHEGAERE R RSN AR RS SRR R AR ARREEE R kR

*BLOCK 1.3.4-sets the values of CANT*
R ER RN BERRRLERRER A ER R R E R R R R %
COUNT=COUNT+1
DO 3 I=1,NOR
IF(CANT(],2).EQ.L)THEN
CANT(1,3)=COUNT
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CANT(1,2)=0
K=I+1
IF(K.LT.NOR)THEN
DO 4 J=K,NOR
IF(CANT(J.2).NE.O)THEN
CANT(J.2)=CANT(J,2)-1
ENDIF
4 CONTINUE
GO TO 100
ENDIF
ENDIF
3 CONTINUE
100 XEND=XEND-DEP(L)
DO 78 J=L,ND-1
DEP(J)=DEP(J+1)
78 CONTINUE
ND=ND-1
ENDIF
IF (XF.GT.XEND)THEN
GO TO 79
ELSE
IF (XF.GT.XBEGIN) THEN
XF=0.0
GO TO 77}
ENDIF
ENDIF
77 CONTINUE
771 GO TO 770

ENDIF
T T TP T T T T TP T
*END OF THE BI.OCK 1 *

SEREERRRKEREEX AN RAREEE XL R R R U RRRERRER SRR LR KRR R RE R bRk Rk R E

C79 DO 200 I=1,NOR
C PRINT*,CANT(],1),CANT(1,2),CANT(,3)
C200 CONTINUE

ERERRERREERRRKER RS EERRER AR ERBERERREREREE R RRE - I SRR EER RS R RE SIS RSk

*BLOCK 2-when the breaking is "DONE" block 2 writes the results of breaking*
REREERRREREERER R R BB KRR R AR RE R AR SRR AR SRR R R AR S SE R SRS S USSR B SRR bk kR R Rk e E
79 IF(DONE)THEN
DO 55 I=1,NOR
FAILED(I)='G’
IF(CANT(I,2).EQ.0)THEN
FAILED(l)="FAIL"
ENDIF
55 CONTINUE
RARARERERERER SR B RSB R B AR KSR R RN B RS ERGEBE Rk RE S e bk B k&
IF (NOR.EQ.0)THEN
REWIND(UNIT=10)
READ (10,331)ND
331 FORMAT (/,T8,14)
READ (10,332)
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332 FORMAT(2X)
DO 333 1=1,ND
READ(10,334)LEN())
334 FORMAT(TI5,F6.2)
IF(1.GT.10) THEN
IF(LEN(I).LT.0.4)THEN
ND=I-1
NOR=ND
GO TO 434
ENDIF
ENDIF
333 CONTINUE
NOR=ND
434 DO 355 1=1,NOR
FAILED(I)='G'
355 CONTINUE
335 WRITE(96,91)NOR
91 FORMAT(TS,15)
WRITE(96,81)
81 FORMAT(T10,CANT.NO.")
DO 561 I=1,NOR
K=l
WRITE(96,71)K,FAILED(I)
7 FORMAT(T15,13,T30,A)
561 CONTINUE
STOP
ENDIF
BUSERNESRAERREE R R R R AR KT R AR E RS R B RS AR R SRR R R E Rk
WRITE(96,9)NOR
9 FORMAT(T8,I5)
WRITE(96,8)
8 FORMAT(T10,CANT.NO.)
DO 56 1=1,NOR
K=l
WRITE(96,7)K,FAILED(I)
7 FORMAT(T15,13,T30,A)
56 CONTINUE
ENDIF

LI TR YRR E R T2 2222 222222222222 222222222t Rittss

C If the breaking was not finished block 2 was skipped and
C the number of cantilevers is decreased by 1 to N-1, then
C the program returns to ISSAC, to calculate new reactions
[T T3 E RS2SRRSR 2222222 2R a0 R 2202222222222 Rttt
END
CCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeeeceeecceecececceecececcc
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SUBROUTINE INERT(N,NP,BHAT,DEPTH,INERTIA)

INTEGER N,NP

REAL BHAT,DEPTH(NP),INERTIA(NP)

DO 601 I=1N
INERTIA(I)=0.0D0
INERTIA(I)=(BHAT*DEPTH(I)**3)/12.D00

601  CONTINUE
END

REERKEERRER R KRR SRR ER ARG ER R A KRR E R R E R Rk EE R Rk k%

SUBROUTINE MOMENT (N,WEIGHM,LENGTH.INERTIA,PSI,EMODUL,
& NOR,XV,REAC,XLEN,F,DEPTH,GAMA,BHAT,
& DIS,DIST,COHESION,FI, WEIGHT,TEST,NUM,ND,TIP)
INTEGER NP,N,KN,ND,NOR,DIS,CHEC
INTEGER LK,J,NUM,KCRIT
PARAMETER (NP=2000)
INTEGER STORE(NP)
REAL COHES,COHESION(10),FIK,FI(10)
REAL DIST(10),STRE,KOEF
REAL REAC(NP),MOMEN(NP),STRES(NP),GAMA BHAT,SPLIT
REAL PSI,GAMAW,GAMW ,DEPTH(NP), WEIGHT(NP),STREN(NP),SF(NP)
REAL WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP),EMODUL(NP)
REAL F(NP),XV(NP),SHEAR(NP),SHEAV(NP),TEST,TIP
REAL LEN(NP),DEP(NP),EMOD(NP),WAT(NP),FF(NP)
LOGICAL RETURN,RDATA
COMMON /ABBA/ RDATA,KOEF
COMMON /BBBA/ DEP
PARAMETER (GAMAW=9.81D03)
GAMW=GAMAW*SIN(PSI)/6.D0

C for the first cantilever the reaction from below and the loading
C caused by the water below are zero.
C

EERRREERERRER KRR RE R R KRR KK

* block | reads data *
ShhkRE ek R kbR kR bk k
IF (RDATA) THEN
RDATA=.FALSE.
READ (10,1)ND
1 FORMAT (/,T8,14)
READ (10,2)
2 FORMAT(2X)
DO 3 I=1,ND
READ(24,244)FF(I)
244 FORMAT(T39,E13.7)
READ(10,4)K,LEN(1),DEP(1),EMOD(I), WAT(})
4 FORMAT(T2,13,T15,F6.2,T30,F6.2,T48,E10.3,T69,F6.2)
IF(1.GT.10) THEN
IF(LEN(I).LT.0.4)THEN
ND=I-1
NOR=ND
GO TO 55
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ENDIF
ENDIF
3 CONTINUE
NOR=ND
ENDIF
(R S T R R E S R R R R F 222022 R 2322232322822 2 2% 1]
*block |
55 DO 300 I=1,2*(N-1)
MOMEN((1)=0.0
SHEAR(1)=0.0
SHEAV(1)=0.0
300 CONTINUE
MOMEN(1)=(WEIGHM(1)/2)*LENGTH(1)**2
HREAC(1)*XLEN(1))
+GAMW*XV(1)**3
+F(1)*LENGTH(1)

B R R

SHEAV(1)=((WEIGHM(1)*LENGTH(1)**2)/2+REAC(1)*XLEN(1)
& +F(1)*LENGTH(1)*GAMW*(XV(1)**3))LENGTH(1)

DO 10 1=2,N-1
J=24]-2
K=2*I-1
MOMEN(I)=(WEIGHM(1)/2)*LENGTH(1)**2
+REAC(I)* XLEN(I))-(REAC(I-1)*XLEN(I-1))
-GAMW*XV(J)**3+GAMW*XV(K)**3
+F(1)*LENGTH(l)
SHEAV(I)=((WEIGHM(I)*LENGTH(I)**2)/2+REAC(I)* XLEN(l)
-REAC(I-1)* XLEN(I-1)+F(1)*LENGTH(1)
+GAMWH*(XV(I)**3-XV(I-1)**3))/LENGTH(I)
10 CONTINUE

PR BPRPR

C For the last cantilever the reaction from above is zero.
J=2*N-2
K=2*N-1
MOMENN)=(WEIGHM(N)/2)*LENGTH(N)**2
<(REAC(N-1)*XLEN(N-1))
~-GAMW*XV(J)**3+GAMW*XV(K)**3
+F(N)*LENGTH(N)
SHEAV(I)=((WEIGHM(N)*LENGTH(N)**2)/2
-REAC(N-1)*XLEN(N-1)+F(N)*LENGTH(N)
+GAMW*(XV(N)**3-XV(N-1)**3))/LENGTH(N)

PR PR

C
CRENEERRIEECE R LSRR SRR SRR E R E R R P RN R AR Rk R RN kR k%
C The next block calculates shear stresses, and shear forces
C and tests if the resulting SF is greater than 1.
SRR SR EREREER R R SR E SN E RN RN R kAR ARk Rk R E B e Rk K%
XCANT=0.0
DO 11 I=I,N
XCANT=XCANT+DEPTH(I)
DO 600 ;=1,DIS
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IF((XCANT-DEPTH(1)/2.).EQ.DIST(J))THEN
IF(FI(J).LE.FI(J+1))THEN
COHES=COHESION(J)
FIK=FI(J)
GO TO 601
ELSE
IF(J.LT.DIS)THEN
COHES=COHESION(J+1)
FIK=FI(J+1)
GO TO 601
ELSE
COHES=COHESION(J)
FIK=FI())
GO TO 601
ENDIF
ENDIF
ELSEIF((XCANT-DEPTH(1)/2.).LT.DIST(J)) THEN
COHES=COHESION(J)

FIK=FI(J)
GO TO 601
ENDIF
600 CONTINUE
601 QMAX=0.0
STRE=0.0

QMAX=(BHAT/2.)*(DEPTH(I)**2/4)
SHEAR(I)=((SHEAV(1)*QMAX)/(INERTIA(1)*BHAT))/1000.
STRE=(REAC()+F(I){(GAMAW*XV(I)**2)/2
& +HWEIGHM(D*LENGTH(I))/2)/(LENGTH(I)*BHAT)
STREN(1)=COHES+STRE*TAN(FIK)/1000.
SF(I)=STREN(1)YSHEAR(I)
11  CONTINUE
IF(CHEC.EQ.CXTHEN
DO 147 I=IN
WRITE(65,*)1,'SF=",SF(1)
147 CONTINUE
CHEC=10
ENDIF
C Loop 14 iinds the smallest SF which is less then 1.1
400 RETURN=.FALSE.
SPLIT=1.1
TIP=1.1
K=1
14  IF(ABS(SF(K)).LT.SPLIT)THEN
DO 144 J=1, KN
IF(STORE(J).EQ.K)GO TO 145
144 CONTINUE
SPLIT=SF(K)
TIP=SPLIT
KCRIT=K
ENDIF
145  IF(K.LT.N)THEN
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K=K+1
GO TO 14
ENDIF
C The next block calls DEVIDE if SPLIT is less then 1.0.
IF (SPLIT.LE.1.0) THEN
CALL DEVIDE (KCRIT,N,LENGTH,DEPTH,XV,EMODUL,STORE,
KN,ND ,NOR,GAMA ,BHAT,PSI, WEIGHT,WEIGHM,RETURN
,LEN,EMOD,WAT,F,FF)
IF(RETURN)THEN
GO TO 400

&
&

ENDIF
IF (N.NE.ND)THEN
GO TO 15
ELSE
GO TO 148
ENDIF
ELSE
C DO 146 I=1 KN
C WRITE(65,*)1,'STORE=",STORE(])
Cl46 CONTINUE
148 PRINT* 'DEVIDING FINISHED-THE REST STABILE'
ENDIF
CALL INERT(N,NP,BHAT,DEPTH,INERTIA)
DO 13 I=1LN
STRES(I)=(MOMEN(1)*DEY 1 H(I))/(2*INERTIA(]))
& -(WEIGHT(I)*LENGTH(I))/(DEPTH(I)*BHAT)
& -F(1)*(sin(psi)/cos(psi))/(DEPTH(I)*BHAT)
% LES(I)=STRFS(1)/1000.
13 CONTINUE
TEST=0.
DO 12 I=1,~
IF (STRENU).< ¢ EST)THEN
TE* "=STRES(I}
NUM=]
ENDIF
12 CONTINUE
15 END

[III TR TR SIS IS RS II 2Rt ad 2222 difs st slssditsssy]

SUBROUTINE DEVIDE(KCRIT,N,LENGTH,DEPTH,XV,EMODUL,STORE,
& KN,ND ,NOR,GAMA,BHAT,PSI,WEIGHT,WEIGHM,RETURN
& ,LEN,EMOD,WAT,F,FF)

INTEGER KCRIT,DOWN,NP,1,NUM,NUME,KN

INTEGER ND,NOR

INTEGER N

PARAMETER (NP=2000)

INTEGER STORE(NP)

REAL XEND,XCENT,XBEGIN,XFCENT,WEST,BOTTOM,LAN,EMO
REAL LEN(NP),DEP(NP), WAT(NP),EMOD(NP),GAMA,BHAT,PSI



REAL LENGTH(NP),DEPTH(NP), XV(NP),EMODUL(NP),F(NP),FF(NP)
REAL WEIGHM(NP),WEIGHT(NP),KOEF,FORCE

LOGICAL SKIP,RETURN,RDATA

COMMON /ABBA/ RDATA KOEF

COMMON /BBBA/ DEP

SKIP=.FALSE.

ARREERKRKRELREEEERRERERR KR AU RS R RRAEREEA R RSP E RS R ARk E AR E R RS

*block 2 finds distances to the beginning,end and the centre *

* of the critical block *

KRR RN R AR R R R ARG RR R AR RN R R AR RN R
XEND=0.0
XCENT=0.0
XBEGIN=0.0

DO 6 I=1,KCRIT
XEND=XEND+DEPTH(I)
6 CONTINUE
XCENT=XEND-DEPTH(KCRIT)/2
XBEGIN=XEND-DEPTH(KCRIT)

BREERRRRKERREEREEREREERERRRE R R R RS R R E R bk Nk ek kK

*biocks 3,4 find the geometry ala bl. 2 for elementary blocks*
ERREREE KRR R RRRERRE R R AR AR R AR RSN KRR RN Rk %
XFEND=0.0
DO 77 I=1,ND
XFEND=XFEND+DEF(])
IF(XFEND.GE.XEND)THEN
NUME=!]
GO TO 100
ENDIF
77 CONTINUE

BERRERER R KRR R RSk Rk R R Bk k&

* bhlock 4
LI 322321222222 R3 2282 EE3 333322228 )
100 XFCENT=0.0
DO 7 I=1,ND
XFCENT=XFCENT+DEP(l)

IF(XFCENT.GE.XCENT.AND.XEND-DEP(NUME).NE.XBEGIN)THEN

IF(XFCENT.EQ.XEND)THEN
XFCENT=XFCENT-DEP(I)
NUM=I-1
GO TO 101

ELSE
NUM=I
GO TO 101

ENDIF

ENDIF

7 CONTINUE

SRR EEREERERERREREER AR SRR RS ER R AR R B R AR SRR R SRR RS SRk AR SRR B Rk

*block 5 tests if the critical block is elementary or composed
ERREREKEREEREERREEEE SRR R EE R R A S AR ERE RS LR SR E A SR SRR EE Rk E %
101 IF(XEND-DEP(NUME).EQ.XBEGIN)THEN

KN=KN+1
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STORE(KXN)=KCRIT

SKIP=TRUE.
RETURN=.TRUE.
ENDIF
P I L R T R I YRR R TR 1 33 P 2222 2222222222222 2Rl d)
*block 6 - if crit. cant. is compose. 4 calculates the sizes*
. of new blocks, and renur. »r blocks up the slope *

BEESEEFERESREREERERES R RER R kY KRR RREEREEFRARER R R Rk ERREX

IF (NOT.SKIP)THEN
N=N+1
IF(KCRIT.LT.N-1)THEN
DO 8 1=N,KCRIT+2,-1
DEPTH(I) =DEPTH(I-1)
LENGTH(I)=LENGTH(I-1)
F(1) =F({-1)
EMODUL(I)=EMODUL(I-1)
Xv@ =Xv(-1)
WEIGHM(1)=WEIGHM(I-1)
WEIGHT(I)=WEIGHT(I-1)
8 CONTINUE
DO 88 I=1,KN
IF(STORE(I).GT.KCRIT)THEN
STORE(I)=STORE(1)+1
ENDIF
88 CONTINUE
ENDIF
DEPTH(KCRIT)=XFCENT-XBEGIN
DEPTH(KCRIT+1)=XEND-XFCENT
C
¢ Loop 9 calculates parameters for the first split block
WEST=0.0
DOWN=0.0
BOTTOM=0.0
FORCE=0.0
EMO=0.0
LAN=0.0
DO 9 [=1,ND

WEST=WEST+DEP(I)

IF (WEST.GT.XBEGIN.AND.WEST.LE.XFCENT)THEN
LAN=LAN+LEN(I)
EMO=EMO+EMOD(I)*DEP(I)
DOWN=DOWN+I
BOTTOM=BOTTOM+DEP(])

FORCE=FORCE+FF(I)
ENDIF
IF (WEST.GT.XFCENT)GO TO 110
9 CONTINUE
110 LENGTH(KCRIT)=LAN/DOWN
EMODUL(KCRIT)=EMO/BOTTOM
F(KCRIT) =FORCE
IF (WAT(NUM).LT.LENGTH(KCRIT))THEN
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XV(KCRIT)=WAT(NUM)
ELSE
XV(KCRIT)=LENGTH(KCRIT)*0.98
ENDIF
WEIGHM(KCRIT) =GAMA*DEPTH(KCRIT)*BHAT*COS(PSI)*KOEF
WEIGHT(KCRIT) =GAMA*DEPTH(KCRIT)*BHAT*SIN(PSI)
¢ loop 10 calculates the parameters for the second split block
WEST=0.0
DOWN=0.0
BOTTOM=0.0
FORCE=0.0
EMO=0.0
LAN=0.0
DO 10 I=1,ND

WEST=WEST-+DEP(I)

IF (WEST.GT.XFCENT.AND.WEST.LE.XEND)THEN
LAN=LAN+LEN(I)
EMO=EMO+EMOD(I)*DEP(I)

DOWN=DOWN+1]
BOTTOM=BOTTOM+DEP(I)
FORCE=FORCE+FF(I)
ENDIF
IF (WEST.GT.XEND)GO TO 111
10 CONTINUE
11 LENGTH(KCRIT+1)=LAN/DOWN
EMODUL(KCRIT+1)=EMO/BOTTOM
F(KCRIT+1) =FORCE
IF (WAT(NUME).LT.LENGTH(KCRIT+1))THEN
XV(KCRIT+1)=WAT(INUME)
ELSE
XV(KCRIT+1)=LENGTH(KCRIT+1)*0.98
ENDIF
WEIGHM(KCRIT+1)=GAMA*DEPTH(KCRIT+1)*BHAT*COS(PSI)*KOEF
WEIGHT(KCRIT+1)=GAMA*DEPTH(KCRIT+1)*BHAT*SIN(PSI)
ENDIF
DO 11 I=1,N
WRITE(11,%)1,’ DEPTH="DEPTH(I)
11 CONTINUE
IF (ND.EQ.N)THEN
PRINT*,'DEVIDING FINISHED'
ENDIF
END
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Subroutine Deflex.

Subroutine deflex calculates deflections of the cantilevers in the slope.

SUBROUTINE DEFLEX(N,WEIGHM,LENGTH,INERTIA,EMODUL,PSI,LAN,
& XQ,X,XLEN)

INTEGER NP,N

INTEGER R,IJ KM

PARAMETER (NP=200)

DOUBLE PRECISION X(NP),Y(NP)

DOUBLE PRECISION EMODUL(NP),PSL,GAMAW GAMW

DOUBLE PRECISION WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP)

DOUBLE PRECISION UR(NP),F(NP),Q(NP),XQ(NP),UQ,LAN(NP)

PARAMETER (GAMAW=9.81D03)

GAMW=GAMAW*SiN(PSI)/120.D0

for the first cantilever the reaction from below and the loading

caused by the water below are zero.

DO 300 I=1,2*(N-1)
Y(1)=0.0

300 CONTINUE

O0OnN00O0nO

IF (LAN(1).LT.LAN(2))THEN
Y(1)=((WEIGHM(1)/24)*(-LENGTH(1)**3*(LENGTH(1)-4*XLEN(1)))
& +(X(1)/6)*2*(XLEN(1)**3)

& +Q(1)/6)*((LENGTH(1)/2)**2*((LENGTH(1)/2)-3*XLEN(1))
& +F(1)/6)*(-LENGTH(1)**2)*(LENGTH(1)-3*XLEN(1))
& -GAMW*(-XV(1)**4)*(XV(1)-5*XLEN(1))
& )/(EMODUL(1)*INERTIA(1))
ELSE
IF(.LENGTH(1)/2.LT.XLEN(1))THEN
UQ=0.0D0
ELSE
UQ=1.0D0
ENDIF

Y(1)=((WEIGHM(1)/24)*((LENGTH(1)-XLEN(1))**4

& -LENGTH(1)**3*(LENGTH(1)-4*XLEN(1)))

& HX(1)/6)*2*(XLEN(1)**3)

& HQ(1V6)*((LENGTH(1)/2-XLEN(1))**3*UQ

& -LENGTH(1)/2#*2*((LENGTH(1)/2)-3*XLEN(1)))
& HF(1)/6)*((LENGTH(1)-XLEN(1))**3

& -LENGTH(1)**2*(LENGTH(1)-3*XLEN(1)))

& -GAMW*(-XV(1)**4)*(XV(1)-5*XLEN(1))

& /NEMODUL(1)*INERTIA(1))

ENDIF

J is smaller than |

D, () ORI reaction with the lower cantilever
X(K).oorirrerared reaction with the upper cantilever

b (( ) T tangent at the contact with the lower cantilever

X(L).ooorinnns tangent at the contact with the upper cantilever
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M related to the upper cantilever

B % TORUOe related to the lower cantilever

unknowns X() are related to the indexis of function (J,1);the rest
of the expressions (constants) are related by their indexis (M,0) to
the number of the cantilever they are acting on.

IF(N.GT.2)THEN

DO 10 M=2N-1
R=M-1]
J=2*M-3
[=2*M-2
K=2*M-1

IF(LAN(M).GT.LAN(M-1).AND.LAN(M).LT.LAN(M+1))THEN

crossection 1, closer to the beginning of the cantilever

IF(LENGTH(N)/2.LT.XLEN(R))THEN
UQ=0.0D0
ELSE
UQ=1.0D0

ENDIF

Y(=((WEIGHM(M)/24)*((LENGTH(M)-XLEN(R))**4

&
&
&
&
&
&
&
&
&
&

-LENGTH(M)**3*(LENGTH(M)-4*XLEN(R)))
“(X({J)/6)*2*(XLEN(R)**3)
+HX(K)Y6)*(XLEN(M}-XLEN(R))**3-XLEN(M)**2*(XLEN(M)-3*XLEN(R)))
+HQ(M)/6)*((LENGTH(M)/2-XLEN(R))**3*UQ

-(LENGTH(M)/2)**2*((LENGTH(M)/2)-3*XLEN(R)))
+(F(M)/6)*((LENGTH(M)-XLEN(R))**3

-LENGTH(M)**2*(LENGTH(M}-3*XLEN(R)))
+GAMWH*(-XV(K)**4)*(XV(K)-5*XLEN(R))
-GAMWH#*(-XV(1)**4)*(XV(1)-5*XLEN(R))

Y(EMODUL(M)*INERTIA(M))

crossection 2, closer to the end of the cantilever

Y(K)=((WEIGHM(M)/24)*(-LENGTH(M)**3*(LENGTH(M)-4*XLEN(M)))

&
&
&

-(X(JY6)*(-XLEN(R)**2*(XLEN(R)-3*XLEN(M)))
HX(K)/6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(M)))
HQ(M)/6)*(-(LENGTH(M)/2)**2*((LENGTH(M)/2)-3*XLEN(M)))



&
&
&
&

ELSEIF(LAN(M).GT.LAN(M-1).AND.LAN(M).GT.LAN(M+1))THEN

O o000 o
3 3=

C

+HF(M)/6)*(-LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
+GAMW#*(-XV(K)**4)*(XV(K)-5*XLEN(M))
-GAMW*(-XV(1)**4)*(XV(I)-5* XLEN(M))
Y(EMODUL(M)*INERTIA(M))

crossection 1, closer to the beginning of the cantilever

IF(XLEN(M).GT.XLEN(R))THEN
UR(M)=1.0D0
ELSE
UR{M)=0.0D0

ENDIF

IF(LENGTH(N)/2.LT.XLF ‘R))THEN
UQ=0.0D0
ELSE
UQ=1.0D0

ENDIF

Y(D)=((WEIGHM(M)/24)*((LENGTH(M)-XLEN(R))**4

PRRRERPRRRRR

-LENGTH(M)**3*(LENGTH(M)-4*XLEN(R)))
-(X(3)/6)*2*(XLEN(R)**3)
+HX(K)/6)*((XLEN(M)-XLEN(R))**3*UR(M)

-XLEN(M)**2*(XLEN(M)-3*XLEN(R)))
+Q(M)/6)*((LENGTH(M)/2-XLEN(R))**3*UQ

-(LENGTH(M)/2)**2*((LENGTH(M)/2)-3* XLEN(R)))
+F(M)/6)*(LENGTH(M)-XLEN(R))**3

-LENGTH(M)**2*(LENGTH(M)-3*XLEN(R)))
+GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(R))
-GAMW*(-XV(1)**4)*(XV(I)-S*XLEN(R))

Y(EMODUL(M)*INERTIA(M))

crossection 2, closer to the end of the cantilever

IF(XLEN(M).GT.XLEN(R))THEN
UR(R)=0.0D0
ELSE
UR(R)=1.0D0
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ENDIF
IF(LENGTH(N)2.LT.XLEN(M))THEN
UQ=0.0D0
ELSE
UQ=1.0D0
ENDIF

Y(K)—((WEIGHM(M)/24)'((LENGTH(M)—XLEN(M))"4
-LENGTH(M)**3*(LENGTH(M)-4*XLEN(M)))
«(X(J)/6)*((XLEN(R)-XLEN(M))**3*UR(R)
-XLEN(R)**2*(XLEN(R)-3* XLEN(M)))
+(X(K)/6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(M)))
+(Q(M)/6)*(LENGTH(M)/2-XLEN(M))**3*UQ
-(LENGTH(M)/2)**2%((LENGTH(M)/2)-3* XLEN(M)))
+F(M)/6)*((LENGTH(M)-XLEN(M))**3
-LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
+GAMW*(-XV(K)**4)*(XV(K)-S*XLEN(M))
-GAMW*(-XV(I)**4)*(XV(1)-5* XLEN(M))
Y(EMODUL(M)*INERTIA(M))

Po Pr P> P> Po Po Po Po P P Po

ELSEIF(LAN(M).LT.LAN(M-1).AND.LAN(M).GT.LAN(M+1))THEN

C

C m-

Cm [
Cm

C

C crossection 1, closer to the beginning of the cantilever

Y(I)=((WEIGM(M)/24)*(-LENGTH(M)**3*(LENGTH(M)-4* XLEN(R)))
& -(X(3)/6)*\-XLEN(R)**2*(XLEN(R)-3*XLEN(R)))
& HX(K)6)*(-XLEN(M)**2*(XLEN(M)-3*XLEN(R)))
& HQMY6)*(-(LENGTH(M)/2)**2*((LENGTH(M)/2)-3*XLEN(R)))
& +F(M)/6)*(-LENGTH(M)**2*(LENGTH(M)-3*XLEN(R)})
& +GAMWH*(-XV(K)**4)*(XV(K)-5*XLEN(R))
& -GAMW*(-XV(I)**4)*(XV(I)-5*XLEN(R))
& Y(EMODUL(M)*INERTIA(M))
WRITE (95,*)LENGTH' M,'=" LENGTH(M)
WRITE (95,*)XLEN',R,'=", XLEN(R)
WRITE (95,*)XLEN'M,'=  XLEN(M)
WRITE (95,*)X",J,'=",X(J)
WRITE (95,*)X'K,=" X(K)
WRITE (95,*)Y',I,=",Y(1)
C crossection 2, closer to the end of the cantilever

IF(LENGTH(N)/2.LT.XLEN(M))THEN
UQ=0.0D0
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ELSE
ug 0Do
ENDIF

Y(K)=((WEIGHM(M)/24)*((LENGTH(M)-XLEN(M))**4

PRRRRRRRRRR

-LENGTH(M)**3*(LENGTH(M)-4*XLEN(M)))
-(X{1)/6)*((XLEN(R)-XLEN(M))**3
-XLEN(R)**2*(XLEN(R)-3*XLEN(M)))
+(X(K)/6)*(-XLEN(M)**2*(XLEN(M)-3* XLEN(M)))
+Q(M)/6)*((LENGTH(M)/2-XLEN(M))**3*UQ
-(LENGTH(M)/2)**2*((LENGTH(M)/2)-3*XLEN(M)))
+(F(M)/6)*((LENGTH(M)-XLEN(M))**3
-LENGTH(M)**2*(LENGTH(M)-3*XLEN(M)))
+GAMW*(-XV(K)**4)*(XV(K)-5* XLEN(M))
-GAMW*(-XV(I)**4)*(XV(I)-5*XLEN(M))
Y(EMODUL(M)*INERTIA(M))

ELSE
ENDIF
CONTINUE
ENDIF
for the last cantilever the reaction from above is zero
[=2*N-2
J=2*N-3
K=2*N-1
R=N-1
IF(LAN(N).GT.LAN(N-1))THEN
IF(LENGTH(N)/2.LT.XLEN(N-1))THEN
UQ=0.0D0
ELSE
UQ=1.0D0
ENDIF

Y(1=((WEIGHM(N)/24)*((LENGTH(N)-XLEN(R))**4

&
&
&
&
&
&
&
&
&

-LENGTH(N)**3*LENGTH(N)-4*XLEN(R)))
-(X(J)/6)*2*(XLEN(R)**3)
HQNY/6)*((LENGTH(N)2-XLEN(R))**3*UQ

(LENGTH(N)/2)**2*((LENGTH(N)/2)-3* XLEN(R)))
+HF(N)/6)*((LENGTH(N)-XLEN(R))**3

-LENGTH(N)**2*{LENGTH(N)-3*XLEN(R)))
+GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(R))
-GAMW*(-XV(I)**4)*(XV(I)}-5*XLEN(R))

){EMODUL(N)*INERTIA(N))

ELSEIF(LAN(N).LT.LAN(N-1))THEN

Y(1)=(WEIGHM(N)/24)*(-LENGTH(N)**3*(LENGTH(N)-4*XLEN(R)))

&
&
&
&

(X(J)/6)*2*(XLEN(R)**3)

+HQ(N)/6)*((LENGTH(N)2-XLEN(R))**3*UQ
(LENGTH(N)/2)**2*((LENGTH(N)/2)-3* XLEN(R)))

+HF(N)/6)*(-LENGTH(N)* *2¢(LENGTH(N)-3* XLEN(R)))
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1

& +GAMW*(-XV(K)**4)*(XV(K)-5*XLEN(R))
& -GAMWH*(-XV(1)**4)*(XV(1)-5*XLEN(R))
& )Y(EMODUL(N)*INERTIA(N))

1

ELSE

ENDIF

DO 11 I=1,2*(N-1)
WRITE(95,*)'Y'L'=,Y(l)

CONTINUE

END

1.6. Subroutines Newton and Usrfun (nonlinear version).

C
C

01

C

10

SUBROUTINE NEWTON (nonlinear version)
program solves the system of nonlinear equations for n cantil.

integer NTRIAL,N,NP,NB,M,L,J

real TOLX

parameter(TOLX=1.0E-8)

parameter(N=3,NP=15 NTRIAL=25)

double precision X(0:NP),ALPHA(NP,NP),BETA(NP),XLEN(NP)
double precision XF(NP),DELTA(NP)

double precision INERTIA(NP),LENGTH(NP),WEIGHM(NP),PSI
double precision EMODUL,DEPTH,GAMA,PSID,BHAT ERRF
logical SWITCH,DONE

parameter(BHAT=1.}

data X(0),X(2)/0.0D00,0.017D00/

SWITCH=_FALSE.

DONE=.FALSE.

OPEN (UNIT=91,FILE='B.dat",STATUS='old")

READ (91,*) EMODUL,GAMA,PSID,DEPTH,XLEN(1)
PRINT*, EMODUL,GAMA,PSID,DEPTH

DO 01 I=1,N

READ (91,*) LENGTH(I)

PRINT*, LENGTH(I)

CONTINUE

close (UNIT=91)

PSI= PSID *(3.141593D00)/180.D00

DO 10 I=1,N
WEIGHM(I) =GAMA*DEPTH*COS(PSI)
INERTIA(I)=(BHAT*DEPTH**3)/12.D00
CONTINUE
X(1)=WEIGHM(1)/3.0D00

NB=2

200 DO 100 M=1,NTRIAL

C

DO 101 I=1,NB
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C
C
C

C102

Clol

.

4]
40

20

21

22

100
23

24

BETA(I)=0.0D0
DO 102 J=1,NB
ALPHA(1,J)=0.0D0
CONTINUE
CONTINUE
CALL USRFUN(NB,WEIGHM,LENGTH,INERTIA, EMODUL,PSI,DEPTH,
XLEN,SWITCH,X,ALPHA,BETA)
DO 40 1=1,NB
DO 41 J=1,NB
PRINT*, 'ALPHA',1J,=', ALPHA(1,])
CONTINUE
CONTINUE
BETA(1)=BETA(1)ALPHA(1,1)
ALPHA(1,NB)=ALPHA(1,NBYALPHA(1,1)
DO 20 1=2NB
J=1-1
IF (1.NE.NB)THEN
ALPHA(I,NB)=(ALPHA(I,NB)-ALPHA(J,NB)* ALPHA(I,}))/ALPHA(L,I)
BETA(1)=(BETA(I)-BETA(J)* ALPHA(I,J))/ALPHA(L1)
ELSE
ALPHA(I,NB)=(ALPHA(I,NB)-ALPHA(J,NB)* ALPHA(1,J))
BETA(I)=(BETA(I)-BETA(J)* ALPHA(L,J)/ALPHA(L])
ALPHA(I,NB)=1.D00
ENDIF
CONTINUE
DO 21 I=I,NB-1
BETA(I)=BETA(NB)*(-ALPHA(I,NB))+BETA(l)
X(I)=X(1)+BETA(l)
CONTINUE
X(NB)=X(NB)+BETA(NB)
IF(X(NB-1).GT.0.0D00)THEN
ERRF=0.0D00
DO 22 1=I,NB
ERRF=ABS(ERRF+BETA(l))
XF(1)=X(1)
DELTA(I)=BETA(l)
CONTINUE
ELSE
GO TO 29
ENDIF
IF (ERRF.LT.TGLX)GO TO 23
PRINT* M
CONTINUE
IF(NB+1.LE.N)THEN
NB=NB+1
X(NB)=0.017
SWITCH=FALSE.
DO 24 1=1,NB-1
X(1)=WEIGHM(I)/3.700
CONTINUE
GO TO 200
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30
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ENDIF
DO 30 I=1,N
PRINT*,BETA",l,'=,DELTA(I)
PRINT*,’X",1,'=", XF(1)
CONTINUE
END

CCCCCCCCCeeeeeceecceceeeececeeeccecceccerccccecccccccecccceccc

sNoNoNoNeRoNo Ko N Ko NeNo O]
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SUBROUTINE USRFUN(NB,WEIGHM,LENGTH,INERTIA,EMODUL,
PSI,DEPTH, XLEN,SWITCH,X,ALPHA ,BETA)

INTEGER NP,NB

LOGICAL SWITCH

PARAMETER (NP=15)

DOUBLE PRECISION ALPHA(NP,NP),BETA(NP),X(0:NP)

DOUBLE PRECISION D(NP),E(NP),F(NP),G(NP),DEPSUM

DOUBLE PRECISION EMODUL,PSI,DEPTH,GAMAW

DOUBLE PRECISION WEIGHM(NP),LENGTH(NP),XLEN(NP),INERTIA(NP)

DOUBLE PRECISION XR(0:NP),EF(NP),Q(NP)

PARAMETER (GAMAW=9.81E03)

X(N)......... R(1),R(2),...,R(N-1),THETA

XR..uvueeen length where the reaction acts
GAMAW........ water density

PSI.......... angle of the cantilevers with horisontal
UV...cooeves singularity function for water
UR........... singularity function for reactions

L0 N seismic force

EF........... force applied by the allready failed rock

XLEN(n)......x coordiante of the points with constant theta

THETA........ angle between tangent at XLEN(N) to the bent
cantilever and the streight cantilever

PRINT*,'NB=NB
IF(CNOT.SWITCH)THEN
PRINT*,’XLEN1',XLEN(1)
XLEN(1)=LENGTH(1)*0.6D00
DO 01 I=2,NB
DEPSUM=0.0D00
DO 02 J=1,I-1
DEPSUM=DEPSUM+DEPTH
CONTINUE
XLEN()=1.0D00* XLEN(1)+SIN(X(NB))* DEPSUM
PRINT*, XLEN',L, XLEN(I)
CONTINUE
0 03 1=1,NB-1
IF (LENGTH(I).LT.LENGTH(I+1))THEN
XR()=LENGTH(I)
ELSE
XR(I)=LENGTH(I+1)
ENDIF
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CONTINUE
ENDIF
SWITCH=.TRUE.

XR(0)=0.0D00
X(0)=0.0D00
DO 20 1=1,NB-|
D(I)=-(WEIGHM(I)/2)* LENGTH{I)* *2-(X(1)/2)* XR(I)**2
+HX(I-1)2)*XR(I-1)**2
+GAMAW?*SIN(PSI)/6)* XV(I-1)**3*
UV(I-1)-(GAMAW*SIN(PSI)/6)*XV(1)**3*UV(1)-(Q(1)/2)*
LENGTH(I)**2-SF(I)*LENGTH(l)

E()=(WEIGHM(1)/2)*LENGTH(I)+(X(1)/2)*XR(I)
-(X(-1)2)*XR(-1}
(GAMAW?*SIN(PSI)/4)*XV(I-1)**2*
UV(I-1)+HGAMAW*SIN(PSI)/4)*XV(1)**2*UV(I)+HQ(1)/2)*
LENGTH()+EF(I)/2

F(1)=-WEIGHM(1)/6-X(1)/6+X(1-1)/6
HGAMAW?*SIN(PSI)/6)*XV(I-1)*
UV(I-1)(GAMAW*SIN(PSI)/6)* XV (1)*UV(1)-Q(1)/6

G(I)=(-GAMAW*SIN(PSI)/24)*UV(1-1)-(GAMA W*SIN(PSI)/24)*
uv()
G(1)=0.0D00
CONTINUE

D(NB)=-(WEIGHM(NB)/2)*LENGTH(NB)**2
+HX(NB-1)/2)* XR(NB-1)**2

+HGAMAW*SIN(PSI)/6)* XV(NB-1)**3*
UV(NB-1)-(GAMAW*SIN(PS1)/6)* X V(NB)**3*UV(NB)-(Q(NB)/2)*
LENGTH(NB)**2-EF(NB)*LENGTH(NB)

E(NB)=(WEIGHM(NB)/2)*LENGTH(NB)
~(X(NB-1)/2)*XR(NB-1)
(GAMAW*SIN(PSI)/4)*XV(NB-1)**2*
UV(NB-1)HGAMAW*SIN(PS1)/4)*XV(NB)**2*UV(NB)+(Q(NB)/2)*
LENGTH(NB)+EF(NB)2

F(NB)=-(WEIGHM(NB)/6)+X(NB-1)/6
HGAMAW*SIN(PSI)/6)*XV(NB-1)*
UV(NB-1)-(GAMAW*SIN(PSI)/6)* XV(NB)*UV(NB)-Q(NB)/6

G(NB)=(-GAMA W*SIN(PSI)/24)*UV(NB-1)-(GAMAW*SIN(PSI)/24)*
UV(NB)
G(NB)=0.0

ALPHA(1,NB)=-EMODUL*INERTIA(})
DO 30 I=2,NB
DEPSUM=0.0D00



DO 31 J=1,I-1
DEPSUM=DEPSUM-+DEPTH
31 CONTINUE
ALPHA(I,NB)=COS(X(NB))*DEPSUM*(D(I)+E(1)*2* XLEN(I)+F(I)* 3*
& XLEN(I)**2+G(1)*4*XLEN(I)**3)-EMODUL*INERTIA()
30 CONTINUE
ALPHA(1,1)=1./6.*((XR(1)-XLEN(1))**3-XR(1)**3)
DO 32 1=2,NB-1
ALPHA(L1)=1.D00/6.*((XR(I)-XLEN(I))**3-XR(1)**3)
ALPHA(L1-1)=-1.D00/6.*((XR(I-1)-XLEN(I))**3-XR(I-1)**3)
32 CONTINUE
ALPHA(NB,NB-1)=-1./6.*((XR(NB-1)-XLEN(NB))**3-XR(NB-1)**3)
X(0)=0.0D00
DO 40 1=1,NB-1
BETA(I)=-((WEIGHM(1)/6)* ((LENGTH(I)-XLEN(I))* *3-LENGTH(I)**3)
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40 CONTINUE

-X(I-1)/6* ((XR(I-1)-XLEN(1))**3-XR(I-1)**3)+

X(AY6*((XR(1)-XLEN(I))**3-XR(I)**3)-
EMODUL*INERTIA(I)*X(NB))-

(GAMAW*SIN(PSI)/24)*((XV(I-1)-XLEN(I))**4*UV(I-1)-XV(I-1)**3)
HGAMAW*SIN(PSI)24)*((XV(I)-XLEN(1))**4*UV(I)-XV(1)**4)~

(Q(/6)*((LENGTH(I)-XLEN(I))**3-LENGTH(I)**3)+
(EF(1)/2)*((LENGTH(I)-XLEN(1))**2-LENGTH(1)**2)

BETA(NB)=-((WEIGHM(NB)/6)*((LENGTH(NB)-XLEN(NB))**3-
LENGTH(NB)**3)-X(NB-1)/6*((XR(NB-1)-XLEN(NB))**3
-XR(NB-1)**3)-EMODUL*INERTIA(NB)*X(NB))
(GAMAW*SIN(PSI)/24)*((XV(NB-1)-XLEN(NB))**4*UV(NB-1)

PRERRRR

END

-XV(NB-1)**4)+H({(GAMAW*SIN(PSI)/24)*

((XV(NB)-XLEN(NB))**4*UV(NB)-XV(NB)**4)+

Q(NB)/6((LENGTH(NB)-XLEN(NB))**3-LENGTH(NB)**3)+

EF(NB)2((LENGTH(NB)-XLEN(NB))**2-LENGTH(NB)**2)-

CCCCCCCCCeeeeeeeecececcecceecccececcecceccecceccceccceccccce

1.7. List of subroutines

Program Input:

Subroutine Geometry - calculates the shape of the slope in X.Y coordinates X

being parallel with horizontal.

Subroutine Cantilever - rotates X,Y axes into new position, where Y is parallel

'rograr r°r

!
.

with the dip of bedding planes, and calculates the lengths of the

rock and water columns in the new coordinate system.

Subroutii.. Inp2 - builds an alternative model of the slope from blocks of defined
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length/depth ratio (was not used for the back analysis).

Program Inshav:

Subroutine Isaac - slightly different version of the routine used in Flex. It is a
driving part of the program calling and organising the rest of routines.
Takes also care of calculation of the reactions between the cantilevers
before crest.

Subroutine Shears - Calculates the shear stresses in the slope, and builds the new
slope from the composed blocks according to SSF (shear strength /
shear stress ratio - Shear Safety Factor).

Subroutine Usrfun - see Flex

Subroutine Iterun - see Flex

Subroutine Iter - see Flex

Subroutine Inline - see Flex

Subroutine Inert - see Flex

Subroutine Newton - see Flex

Program Flex:

Subroutine Isaac - driving part of the program calling and organising the rest of

the routines. Takes also care of calculation of the :vactions between the
cantilevers before crest.

Subroutine Usrfun - calculates values of the coefficients from the matrix 4-4 and

the values of the functions from the matrix 4-3.

Subroutine Newton - solves the system of linear (or non linear) equations defined
in equation ? using the values provided by Usrfun.

Subroutine Iter - calculates reactions between cantilevers before the crest which
could not be handled by Isaac.

Subroutine Iterun - calculates reactions between cantilevers behind the crest

Subroutine Inline - Calculates the distances of the point reactions from the
beginning of each cantilever. ‘

Subroutine Inert - calculates mments of inertia for tested cantilevers.

Subroutine Chan - registers all changes below the broken cantilever caused by
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breaking of the cantilever. Keeps track of proper indexing of the
cantilevers.

Subroutine Change - takes care of indexes of cantilevers laying above the broken
one.

Subroutine Moment - Calculates the shear and normal stresses in the cantilevers,
and also calculates SSFs.

Subroutine Devide - makes the splitting of unstable cantilevers marked by

Moment and also takes care of proper indexing.
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Location of the Luscar Mine, Cardinal River Coals Ltd and the 50-A-5 open pit

coal mine,

The exact location of the 50-A-5 open pit mine is shown in Figure J-2 (next page),

and the plan of the pit, including the position of the analysed cross section, is shown in

Figure J-1.
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Figure J-1 Plan of the 50-A-5 pit
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Figure J-2 Location of the 50-A-5 open pit mine
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