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Abstract

This research work attempts to outline algorithms for guaranteeing a nonobtuse
triangulation, under various geometric constraints, of convex polygonal regions.
'T'o begin with, the polygonal region is simplified to consist merely of an arbitrary
quadrilateral. Five cases can be identified. and at least one guaranteed nonobtuse
algorithm is presented for each simplified case. In the process of doing so, scme
classification characteristics of arbitrary quadrilaterals are identified. Due to time
constraints, the algorithims developed were not modificd 1o have the geometric con-
atrinints reintroduced. This work only serves as aosmall theoretical basis for much
further work that this melding of Computational Geometry and Finite Element

Analvsis (Fnginecering) requires.
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Chapter 1

Introduction

The focus of this rescarch is to attempt to devise an optimal method and/or es-
tablish results about triangulating, or tiling with nonoveriapping triangles, an ar-
bitrary convex polvgon such that no angles in the triangulation exceed 90%. thit
is, that all angles are nonobtuse. Right angles are valid nonobtuse angles, but for
reasons outlined later. a distinction is made between the desirability of raght versus
acute angles.

[deally. as well. a number of constraints in addition to nonobtusceness are to be
satisfied by the triangulation method(s) developed. or at least as many of them are
to be satisfied as possible. During development of solution approaches. most of the
constraints are dropped in the process of simplifving the problem. The idea was
to reintroduce the constraints and refine the solution method(s) to take them into
account. so that the nonobtuse triangulation satisfies the necessary constraints:
however, due to time constraints. that was not accomplished.

The main problem addressed i this work is the simplifiecd problem of develop.
ing an optimal guaranteed method for a nonobtuse tiling of an arbitrary convex
quadrilateral: the criterion of “optimaliny” is interpreted as that of using as few
added vertices and edges as possible in the guaranteed tiling method. An addi
tional criterion which is strongly desired. but not demanded. s that the placement
of added vertices be as Hexible as possible while still guarantecing a nonobtuse
tiling of a given quadrilateral. Quadrilaterals are considered to fall into cases of
having zero. one, two opposite, two adjacent, or three obtuse angles.

This research focusing on arbitrary convex quadrilaterals hias shown even the
highly simplified instance to be much more comples than expected. In brief, the
results of this thesis are a few classilication characteristies of the quadrifateral
cases mentioned above. and a few simple results. or tools. that may prove nseful
in later rescarch. plus at least one guaranteed tiling mcthod for cach of the cases
of quadrilaterals.

This thesis is organized in the following wianner:

Chapter 2 contains necessary preliminaries in the wav of notation and definition



standards. and a few basic lemmas. that are used throughout this work.

Chapter 3 explains the motivation behind triangulation in general. why nonob-
tuseness is relevant in triangulation, and how and why the issue of quadrilateral
triangulation relates to Professor Joe’s work on automatic triangulation programs.
‘The staternent of the simplified constrained triangulation problem as the focus of
this research is restated as a number of subproblems.

Chapters 4 to 7 develop solutions to the subproblems. where an attempt is
made to present an algorithm to fully solve each subproblem. At the very least, a
fairly positive statement can be made about the worst case theoretical solution to
the subproblems.

Chapter 8 contains one altempt to apply the theoretical solutions developed
here to actual larger (non-quadrilateral) triangulation problem (taken from [J86]),
where the solution methods (as developed in this research) had to be “stretched”
in application. to acconumodate problem arcas for which the solation methods were
not designed. Chapter 8 concludes with a brief summary of 1he main results. some
proposals for further rescarch. and some final comnents aud shservations.



Chapter 2

Preliminaries

In this chapter some notation and deliuitions arve introduced. used in descriptions
throughout this work. and some basic lemmas are stated that can be used in
devising solutions and proving them correet.

Delinitions do not change in any part ol this work: however, some notational
changes are made later ou. for convenience. They ave fonnd in the section to which
they pertain.

2.1 Definitions

Let ¢ denote the measuve of an angle. in degrees.

Define:

¢ acute angle: 0° < ) < 0%,

e right angle: ) = 90°.

e nonoblusc: 0° < § < =™,

o obluse angle: YU° < 8 . 1S80°.

e straight angle: ¢ = 180

e I an obfuse triangle. the maximun of the three angle measures Is an obtusce
angle.

o In a right triangle. the maximum ol the three angle measures is a right angle.
e In a nonobluse triangle. no angle exceeds 99°.
o In an acule trianglc. no angle exceeds or equals Y0,

o The (. y) coordinates of a point Eare denoted by (1,0 F,).



o A\ simple polygon has no internal interfaces (“holes™) or cdges that cross each

other.

2.2 Notation

o Vertices are denoted by capital letters. such as A. B, H. etc., regardless of
whether they are permenently added to a polygon. or used only as temporary
markers. An edge or line segment joining vertices A, B is denoted as AB.

s Lengths of edges are denoted by lower case letters. e.g., len(MP)=|MP| =
7.

e Angle measures are denoted both by naming three vertices that define the
angle. prefixed with the symbol “£7 and by lower case Greek letters, e.g.,
angle 24180 = S angle L0413 = o angle L3¢V = 5. All angle measures

are in degrees.

o A partitioned angle has subangles denoted by the angle measure with a sub-
seript. e, corner C ol a polygon ¢ with angle measure 5: adding edges to
corner ' (thus partitioning the angle) creates angles 5. 532, ete.

o [teqions are denoted by calligraphic levters. e.g.. F.'H. Regions can consist
only of edges or lines. or part of edges or lines: or of an area defined by curves
and lines or edges. either including the boundary curves and lines/edges, or
not.

o Idycs actually added to the interior of a polygon are solid: edges or lines used
within a polvgon to delimit arcas. or as temporary edges (i.e., altitudes) are
of various kinds of dashes.

o Semucircles or sciidisks are. in the context of this work. always defined by a
line scgment or edge that is taken to be the diameter of the curve. A semicir-
cle is denoted by <4 3. where an edge or line segment with endpoints 4 and
3 is taken as the diameter of the semicircle. A semidisk is denoted by ©AB,
where 4 and 13 are similaly taken as the diameter endpoints. A semicircle
A3 consists only of the curve itself. whereas a semidisk .48 consists of
the curve plus the arca enclosed between the curve and the diameter AB.

e The bonndary edges of a polvgon 2 ave collectively called 9P,

2.3 Lemmas for General Use

The following lemmas will be useful for later chapters on the nonobtuse triangula-
tion of quadiilaterals.



Lemma l: Let AABC be an obtuse triangle with obtuse angle £.4C° 5. Adding
altitude DC, where D € A B, partitions obtusc angle AAC B into two acute angles.
and partitions AABC into two right triangles, AACLD and ABC ).

Proof: Obtuse angle £ACB is partitioned into angles £A4C D and £13C7D),
which are both acute, since ZDACHLACD = 90° in triangle AAC D and LDBC+
LBC'D =90° in triangle ABCD. O

Lemma 2 (the Semicircle Rule): Angle ZACB of AABC is obtuse, right.
or acute, if (' is inside, on, or outside, respectively, the cirele with diameter AU/
(See Figure 2.3.1.)

. i3 .
I igure 2.3.1: 4 is thuse. right or acute if ¢ s nsiude. on.
or outsuie the semicircle, respectively,

Proof: Let £AC B be an inscribed triangle in a circles as in Figure 2.3.2, left

ilfustration. A\ well known theorem of plane geometry states that the measure
of the inscribed angle is 3 = 3 where » = the measure. (ol length) of are A[3.
Thus when 4B = a diameter of a circle and vertex € of .03 lies on the cirele,

= 180°. so 7 = 90°. (See Figure 2.3.2. right illustration.)

"1\.&//'

~

Figure 2.3.2: ' on semicircle —A B, so v = s/2 = 90°

For the case where C is inside the semicirek  no matter where inside the semiceir-
cle € lies, we can extend the line AC so that it intersects the seimicirele at point 7

See Figure 2.3.3. left illustration. Since (" is on the semicivele angle ZAC ] = 90,



Figure 2.3.3: Hlustrations 1o prove Lenima 2 for C' inside or outside semicircle

Then since angles £CAB and LC'AB are equal, and angle ZCBA < (C'BA, it
follows that v = ZBCA > LBC'A = 90°, s0 7 1s obtuse.

Similarly, when C lies oulside the semicircle, let ' be the point where AC
intersects the semicirele. See Pigure 2.3.3. right illustration. Again, LCAB =
/C" AR but now £CBA > ("B then £AC'B = 90° > £AC 3 = 5: 50 7 1s acute.
O

Lemma 3 (The Right Angle Bound Rule): Suppose AD and DC are
edges of a convex polygon. and the angle & at D is obtuse or straight. Extend two
lines from D inside the polygon that form right angles with AD and DC'. These
lines will be referred to as Right Angle Bound lines. A second vertvx £ existing
or placed anywhere such that it is brackeled by the Right Angle Bound ‘'ines, and
joined to D, is guaranteed to be positioned such that the two subangles formed
by partitioning obtuse angle & are both acute. If £ lies on one of the Right Angle
Bound lines. one of the subangles is a right angle. and the other is acute if § < 180°.
or a right angie if & = 180°. I [ lies oulside one of the Right Angle Bound lines,
one of the subangles is obtuse. and the other is acute. 1 6 is a straight angle, the
Right Angle Bound lines coincide to form a perpendicular line DV = DU to AC
at D in this case. if / lies on D23 (= DU) then both subangles are right angles;
in anyv other location. joining [ o £ creates one obtuse and one acute angle.

L N ’

- “
PR \\//
N/

D D
Figure 2.3.4: (Left) £'D is to partition ZADC = & into acute 6, and a3
(Right) Right angle bounds DU, DV such that £ADV = O DU = 90°

Proof: Joining £ to D will partition angle £A4DC = & Into two angles; let the



right one be angle ZC DL = o1, and the left one be angle 210D = o, See Figure
2.3.4, left illustration.

Form Right Angle Bounds DV, such that angle 21DV = 90°, and DU, such
that angle ZC DU = 90°. Sce Figure 2.3.4, right illustration.

If E is placed between DA and DU, outside the Right Angle Bound line DI -
for example at position £ in Figure 2.3.5. left illustration - then & > 20 DU = 9o,
so &) is obtuse. Then &, = & — 8, and since & < 180°. 8, is acute. Similarly, placing,
E between DC and DV, outside the Right Angle Bound line 4DV - for example,
at position £ in Figure 2.3.5, right illustration - makes 04 > £Z4DV = 90°, s¢ 8
is obtuse. Then & = 6§ — b, and since § < 1807, 8y 1s acule.

LU v

1N ’

Figure 2.3.6: Left: L5 on Right Angle Bound ine 207 = &) = 9ne,
Right: £y bracketed by [L.V] = bLoth &,. 0, acute.

]

Placing £ ou hne DU - for example. at £y in Figure 2.3.60 left tHlustration -
makes &) = £CDLU = 90°. Theno il 6 is a straight angle. it mmust be that 6, = 90°©
oo; otherwise. 6, = & — 8) < YU°. that is. acute. The case for placing I on the

DV Rignt Angle Bound line is similar: £ on DV = 0, = £ADV = 90 and b is
acute.

Finally, placing £ such that it is bracketed by the Right Angle Bound lhines -
for example, at £ in Figure 2.3.6. right illustration - guarantees that &, < £
and 6, < £ADV; so both are acute. O



In using Right Angle Bounds, the property of “bracketing” may be viewed
in two wavs. Firstly. that the Right Angle Bounds intersect the edges OF of a
polvgon. as in Figure 2.3.7: in this case, regardless of the orienlation of the polygon,
the part of the boundary @F considered to be enclosed by the Right Angle Bounds
is found by intersecting @4 with the Right Angle Bound lines. For example,
in Figure 2.3.7, left illustration, the Right Angle Bounds are Z:ADV and LCDU,
equivalent in meaning to Right Angle Bound lines DU, DV ; then dABC DN (sector
V DIy = [V, 1] = [{7. V] on edge BC. Similarly in the right illustration in Figure
2.3.7, intersecting &P with the Right Angle Bounds DU, DV is understood to be
([, V] = [V.U] on edge AB. NoT [V, U] = segments VB4 BC+CD+ DA+ AU

ol 1.
1] A [
//X A <
C [ B D ¢

Figure 2.3.7: Loft: £ADV 0 2CDU A ABCD = [V 0] = [17.V] on edge
BC. Right: Similar interaction/intersection: [ V] = [Vo0] on edge A B.
despite the different orientation of the polygon.

Another way to “view” or use the Right Angle Bounds is to consider P to be
oriented with one edge taken as a horizontal “base”. and consider the Right Angle
Bound “mark™ at its intersection with the base. Sce Figure 2.3.8. This 1s a more
useful method in algorithms. where detecting if a vertex (like B3) is bracketed by
Right Angle Bounds (sayv. 207 and V) becomes a anatter of comparing r- or
y—coordinates.  In Figure 2.3.8. vight illustration. the comparison V..U, < By,
showing that 3 is not “hracketed™ by Right Angle Bounds DU DV is more easily
detected (computationally) than discerning that DU DV both intersect side BC
of 7. and o do sot bracker /3. 1n Figure 2.3.3. left illustration. having oriented
£ so edge 1B is a base. the comparisons 3, < Y,. N, < -, easily show that
Right Angle Bounds C'Y.CN cnclose an interval [Y N] on edge AB: likewise. the
comparisons 1, < 3, < (7, show that DU DV “bhracket”™ corner B

Lemma 4: In a convex. simple polvgon of four or more sides, any vertex
followed by two vertices both with nonobtuse angles. has an altitude existing from
the lirst vertex to the edge between the two following nonobtuse-angle vertices.

Proof: See Figure 2.3.9. Let vertices . and B exist in that order in a
polygon, with angle & followed by nonobtuse angles 5 and 3. respectively. If v is

o]
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Figure 2.3.8: Left: Right Angle Bounds [V, X] from ¢ and [V.67] from .

Right: V.. 07, < /4, = [3 not “bracketed™ by Right Angle Bounds D070 DV

a right angle, the altitade o teivially 200 = s acotes 1t should be possible to
project 1) omo € B0 and this projection is the basepoint ol the aititade from 1)
to C'B. ITC'D cannol be projected onto €000 mast bhe bhecanse edge € is oo
short. Buat then in following the rest ol the polvgon edges Tromn 13 bhack to 1) cither
3 is obtuse. or the polyvgon is not convex, or edges cross other edges. But none of
those is the case. Therefore. the projection of C°D onto edee CH. and henee the
altitude from D 1o edge 130 does exist. O

- I3 - 3 - I3
Figure 2.3.9: (left) Project €70 oo C 3 (cemre) I the projection doesnnt
exist, then since . is acute. tracing the path fron: 3 hack to /2 must mean
the polygon is nonconvex. OR that angle 3 must he ohitase,
(Right) The altitude basepoint is trivially ¢ when 5 = 90°,

Y



Chapter 3

The Research Problem

In this chapter an overview is given of motivation for the triangulation problem in
general, and sotne carrent theory and approaches to solutions: a brief explanation
follows of the larecr problem of triangulation (or tiling) of convex regions. from
which this rescarch problem is derived: the refinement to the problem of tiling
convex regions. of insisting that all angles be nonobtuse. is then presented. followed
by a simplification and restatement of the research problem.

3.1 Triangulation Problem Overview

The linite element method for solving partial ditferential equations seeks approxi-
mations 1o the solution of the PDE at the vertices of a mesh covering a polygonal
arca in which the solution function is defined. (A “polygonal arca”™ may have in-
ternal interfaces (“holes™). whereas “polyvegen” refers to a region without internal
interfaces.) Quadrilaterals and triangles are two common mesh elements used to
tile polygonal areas. Compared to quadrilaierals, triangles are more flexible in
filling arcas that have highly irregular boundaries (with respect to edge length and
change of direction), and likewise for openings within the polygonal region ([1.89]).
Triangles also are more suitable because they are siimplices in two dimensions; that
is, they are the simplest space-filling configurations into which their spaces can be
partitioned ([IF87}).

It is well known that every polvgon can be dissected into nonobtuse triangles
(IMo6U]). However, the triangulation. to be useful in engineering problems, must
satisfy a number of constraints that greatly complicate the triangulation problem.
If vertices are allowed on the sides of triangles (as in Figure 3.1.1). then the exis-
tence of a nonebtuse triangulation is obvious and a nearly equilateral triangulation
is possible ([G81]). Unfortunately. one of the constraints is that vertices cannot be
allowed on the sides of triangles.

A wide range in angle sizes within the triangulation can affect the computations
for which the triangulation is intended ([T80}). Error analyses indicate that when

10
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Figure 3.1, Hlegal triangulation: Voon side €7 8ol ANCT LS,

using triangular clements to tile a region. the greatest acenracy (of the solution
of the finite element problent) is obtained when all angles are nearly equal - that
is, all triangles are ncarly cquilateral triangles. Not only angle sizes are to be as
nearly equilateral as possible (in a really good triangulation). but within a given
subregion of the domain to be tiled. the triangles should be all ol approsimately the
same size, This is because the boundary edges are viewed ~as defining o series of
length scales for the trianguiation. in the vicinity of the howndary™ ([IS86]). Very
small boundary edge lengths imply very snall triangular elements to be used in
that region: where the boundary edges are long. a more “comfortable™ triangular
element size can be chosen to hielp the rriangulation mect other eriteria (such a
the number of triangular elements requested to be present in the triangulation, o
a maximum triangle size).

It used to be thought that avoidance of small angles wias necessary for cons
vergence of the finite element method. bhut this was found nor 1o be so ({BATG)).
Nevertheloss. stall angles may fead to ill-conditioned matiices tencountered i the
linite clement method . so s hest 1o avoid them (fBGssshs What has been
shown 1o be essential is that no angle o the triangulation bhe too close 1o 1802,
Since significant changes i triangle size across sabregion bonndaries can canse
siall angles i the triangulation ([ISSG]). sach size cliges along houndaries of
adjacent subregions miust bhe limited. 2\ gradual chionee i tramgalar element size
throughout the triangulated region is thus necessary il the polyvgonal region hias
highly irregular boundaries: this type of mesh. o which not all triangles are of the
same size, is known as a graded mesh.

A great deal of work has been done i the arcas of controlling triangle size and
shape, both in an initial phase of mesh generation. and in later phases of mesh
smoolhing where both interior and boundary edge mesh vertices may be subtly ad:
justed in position to improve the triangulation overall (that isomake st hever sitisfy
certain criteria). Very little work has been addressed to the problem of controlling
angle size within the mesh, and almost no rescarcli has been dedicated to guaran-
teeing angle sizes within a mesh. The present rescarch work concentrates only on
the phase of mesh generation. concentrates prisnarily on guarantecing, nonohtinse
angles, and only secondarily on controlling triangle shiape and size.

Within cach partition of a polvgonal avea 12 (which tiay iuclnde par of the



boundary of £7), the tiling element size is a function of the node spacing (dis-
tance between neighbonring nodes) or node density (nodes per unit length ov area)
([1°'87]). The node spacing may be determined by an explicit function supplied by
a user, or may be implicitly defined by the variation in edge lengths ([F87], [1S86]).
Where the spacing function is implicitly defined. “the given boundary data control
the spacings on the boundary, and this in turn controls the element size in the
interior of the domain™ ([FF87]). Thus the number ol vertices added, both on the
boundary of P and in the interior of P, is determined by the spacing function,
whether explicitly or implicitly defined. The spacing and number of added vertices
on the boundary of F is highly dependent on the complexity chavacteristics of the
edges comprising the boundary of P, and in the vicinity of the houndary, the spac-
ing and number of added interior vertices is likewise controlled by the boundary
characteristies. Further within the interior of P, however. the shapes and sizes of
the final triangles can be more independent of the boundary characteristics, and a
freer hand can be used to control their shape and size. although it must be kept
in mind that “the shapes -0 the final triagles. and the resulting "quality” of the
mesh. depend on the method used to generate prospective nodes. and the various
vests to which they are subjected™ ([IF87]). In most previous work. the objectives
of “good” interior node placement strategies have been triangle size and shape,
with no or little regard for resulting angle sizes.

Discussion in other papers (i.e.. [F87]) has looked at the sensitive interaction
between the spacing [unction and the resulting mesh quality. as “the minimum
value of the spacing function ... controls the node density in the most refined
portion of the mesh™ ({F87]).

A
/

A

Figure 3.1.2: Overlay of rectangnlar grid: add

diagonal to cach rectangle. then deal with edge cases.

A number of schemes hiave been developed that use the idea of overlaying a
rectangular grid onto P (or onto a partition of P. where different sizes of grids
are used to vary the triangle size in different partitions of Pj), and taking the
interior grid poiuts as the mesh points of the triangulation (see Figure 3.1.2). Each
rectaugle entirely within P is casily tiled nonobtusely by simply adding a diagonal;
the real ditliculties arise along the boundary, where rectangular elements are only
partly within P; more diflicultics arise where the boundary 1s very complex, with
a wide variety of edge lengths. Nonetheless. this method fias been *massaged”
into a guaranteed all-nonobtuse triangulation method ([BGS88]). where edge cases



(along the boundary) are laboriously dealt with, although successfully. However, it
proves to be nonrobust with regard to internal interfaces in 220 Also, small angles
are created near the boundary of P with the approach taken by [BGSSS] Although
large angles have proven to be the more pertinent concern. the problems (matrix
il-conditioning) caused by small angles cannot be ignored.

3.2 Convex Polygon Triangulation Problem

As mentioned before, [BGS88] have presented a guaranteed method for nonobtuse
tiling of simply connected polygons, by using a rectangular grid overlay and then
dealing with edge cases. Also, [C89] has presented a method of guarantecing a
tiling with angles in [30°, 120°] that incorporates the notion of a regular orirregular
grid overlay. However. [C89]'s solution reguires conditions on the input. making,
it less general and less robust than could Le wished. Specitically. a mathematical
relation must exist amongst the houndary edges of the polyvgonal region 17 for
[C89]'s method to work. whereas more robust methods imake no sueh requirement
of the input polygon .

In addition to the lack of stringent requircments on /2 like the aboveoa veally
general and robust triangulation scheme should be ~able to maintain the greatest
possibility of mesh patterns, ie. the number of clements aronnd o node s not
fixed and the relative positions of the nodes are not predetermined by mathemat.
ical formulae™ ([L83]). According to the saine author. any regnlar grid scheme
cannot efficiently meet the above requirements and handle complex and/or irregn-
lar boundaries (including interior interfaces). and so “the concept ol superimposing,
a rectangular grid has to be abandoned completely™ ([L85]).

This is not to say that placing vertices (either on the boundary or within /)
in anyv sort of uniform pattern is futile or degrades the guality of the poeneriated
mesh. In [J&6] a quasi-uniform mesh is used i the interior of a convex polyeon Lo
guide the placement of interior vertices. allowing lair fexibihity of placement while
still guarantecing triangle shape and size vnd no obtuse angles (strictly within an
interior region of P). In fact for well-shaped nearly-cquilateral triangles, at least a
quasi-uniform grid of interior vertices is no less than expected.

The arca 1o be triangulated may he conves or nonconves: it may be corpli.r,
where [JS86] identities several propertios of the houndary that contribute to “com-
plexity’. Ouneis a sizable variation in the lengths of the homndary edges ol the area,
as the range of lengths in the input boundary edges affeet the uniformity of triangle
size in the resulting triangulation ([J86]). I the polyveon to he triangulated is very
complex. or even just nonconvex. a simplifying approach is to partition the polygon
in several convex subpolygons and then triangulate cach subpolygon ({J86]).

Not just any tiling of the polygonal region will do. Some triangulation algo-
rithms can require time-expensive checking for overlap of o (potentiai) triangle



with an already-existing (inverted) triangle. or with the polygonal boundary. “By
choosing (an appropriate) suitability eriterion. the overlapping check couid be com-
plete avoided, and the boundary check limited to the most suitable of the potential
clements. The “max-min’ angle criterion is the best of such criteria, and the result-
ing triangulation is the famous Delaunay triangulation” ([1.849]). (For a definition
of a Delaunay triangulation. see [PS85].)

Thus the Delaunay triangulation is found to be a very useful triangulation. so
inany efforts in automatic triangulation programs have been directed to that end
([Ps=5]. [1.89]). However. the Delaunay triangulation is defined for the convex
hall of a domain. Therefore. nonconvex domains have to be first decomposed into
simpler convex subregions ([L89]). Even if the region Is already convex, if it is
complex (and hence difficult to triangulate). decomposing the region into several
simpler convex subdomains can greatly facilitate both triangulation itself and the
grading process (UBTI (1301, [.JSS(S]).

To be nseful in engineering problems. the resulting triangulation must satisfy
a number of constraints that greatly complicate the process ol triangulation.

o N\ viccnrtinuin .\//41('“(.(/ ui added ('(lg(' and interior vertices s in!])osed. The
mininuun spacing is cither a function defined implicitly by the lengths of the

input edges. or user-supplied.

o (related to above) A minituum spacing is also required between any added
interior vertex and any input or added edge of £. This is to prevent a
‘rarrowing” within /2. as a small distance between an interior vertex of P
and anv edge of 72 effectively “defines™ an edge of (small) length to take Into
account with respect to the spacing function ([J86]).

e Necarlyv cqual or {optimalivy equal triangle size. where the size is based on the

spacing function.

e Nearly equal angles in all angles created in the tiling of P (with allowance
made for the fact that the angles defined by JP cannot be other than left

alone or optinally partitienced),

e No vertices existing on the side of a triangle in the tiling. Any two triangles
in the tiling sl
; o

¢ should intersect along one whole side. i a single point, or not
at all (IBGS8K

|
N

The minanam spacing and Liiungle sizc constraints together set a rough ceiling
on the number of trianeles that can exist in a tiling. However. the time complexity
of a uling algorithng is mintimally equal to the number of edges e the tiling that the
algorithm must report: therefore. a strong interest lies in tiling with the mnimum
nnmber of triangles.
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This also implies minimizing the number ol added vertices onany edge and in
the interior. since any vertex added onto O must have an added edge (within £7)
connected to it, and any vertex added to the interior of /7 must have at least four
edges connected to it to ensure nonobtuse angles at that vertex.

Therefore. “derived”™ constraints are

s Minimize the number of triangles used to tile /2.

e Minimize the number of added vertices on any edge or within the interior.
(Note: henceforth, "edge vertex™ means “a vertex added on an edge™, and
“interior vertex” means ~a vertex added to an interior area” )

There are a great many algorithms and variants of mcthods on tiling of convex
regions. Within the larger (or “real™) problem of satisfactorily tiling a convex
region. is a refinement of the problems in insisting that all angles in the resulting
tiling be nonobtuse. The use of nonobtuse tiling and the adjustiments to the above
tiling constraints that are required to mcorporate nonobtuseness are outhined in
the next section.

3.3 The.Simplified Problem

If there are 1o obtuse angles o the triangulation. then the matrices enconntered
in the finite element method possess properties that are important with respect
1o the analvsis of iterative methods for solving the linear svstem of cquations
in the finite clement method ((BGSSS]). Alsol some technigques within the finite
element method requiire the centre of the ciranneirele of cach triangle 1o satisfy a
certain property which is true iU and ondy it no angle is greaier than 90° ([B1G90]).
As well. nonobtnse triangnlations are important in unstructured finite difference
approximations to partial dilferential equations ([1"Fo1]).

‘Thus nonobtuse triangulation is essential to cortain technignes available within
the finite clement method. and this alone makes it worthwhile to incorporate ghar-
antees of nonobtuseness into antotnatic mesh generation programs. Given that a
polyvgonal region can be partitioned into convex subregions. a gnaranteed method
of nonobtusely tiling a convex subregion can then be made o part of the solution
of nonobtusely tiling nonconvex regions.

[BEYL] have recently announced the development ol a guaranteed nonobtuse
polygon triangulation method. which relies fundamentally on a procedure to nonoh,-
tuschy tile o triangle that has any namber ol vertiees sitnated onits edges. Briefly,
for cach triangle edge with n vertices situated on it an interior edge is added to
the triangle that “slices™ off the edge containing the » vertices: the “slice”™ of the
triangle is then tiled nonobtusely such that w = 1 of the o vertices are projected



onto the “new” interior edge of the triangle: simultancously. the method guaran-
tees that a minimam number of vertices are added as necessary to other edges of
the triangle. Lo accommodate the nonobtuse tiliag of the triangle *slice”. Thus
cach iteration of the procedure reduces by one the number of verticeson a triangle
edge, and once n = 0 the triangle is easily nonobtusely tiled.

This is an attractive idca; however, no constraint other than the number of
added edge vertices is imposed upon the nonobtuse tiling of a polygon. As already
explained, minimum spacing between edge vertices is a critical factor in ensuring
smooth gradations of triangle size, and hence the reduced risk of small angles due
to large changes in triangle size. In a given tiling by the method of [BE91] (by
hand), even of a polygon that is merely a “nicely-shaped” triangle with one vertex
on an edge. a huge variation in triangle sizes within the tiling occurs, as well as
extremely small spacings, both between vertices on the polygon edges and between
interior vertices and the polygon edges (Tnarrowing”). As a theoretical method it
is quite interesting, but more work would be required to have it meet the previously
mentioned triangulation constraints.

The present rescarch took a different approach than [BE91]. as the problem
arose from [J86]'s work on tiling convex polyvgons. [I86] shrinks a convex polygon
uniformly to obtain an interior area. int{f?): each boundary edge of inl(P) is
at least a distance » from 2. Then uf(F) i1s triangulated nonobtusely on a
quasi-uniform mesh.  he strip between the boundary and (nt{ ) remains to be
triangulated. and it is in this boundary strip that, nufortunately. difficulties arise
in guaranteeing a nonobtuse triangulation. This research is intended to shed some
light on or to solve that problem.

It may be possible to divide the boundary strip into gquadrilaterals: if this can
be doune. and an algorithm can be developed guarameeing that the quadrilaterals
in the boundary strip can be tiled nonobtusely. then the entire convex region has
been tiled nonobtusely.  This would be the desired extension of [J86]'s work to
enarantec a nonobtuse tiling of a convex region. which may be a partition of a
larger (convex or nonconvex) region. Or. a polygonal region (convex or not) might
be partitioned into a set of convex guadrilaterals. to obtain a nonobtuse tiling.
Within the conves quadritaterals 1o be tiled. all constraints as inherited from the
parent problem must be satislied. as well as any constraints arising from requiring
all nonobtusce angles.

Initially. most constraiuts are disregarded to simplify the problem. However, it
must eventually be remembered that to maintain approximately even triangle size
within the larger conuvex region 2. edge vertices must be added o the boundary of
cach quadrilateral Q according 1o the spacing function defined for P. In addition,
where vertices must be added (in the process of nonobtuse tiling) to the edges
of quadrilaterals that share edges with other gquadrilaterals. those vertices must
be “required” or “allowed™ in both quadrilaterals, to satisfy the constraint that
vertices do not exist on the sides of triangles in the final tiling. This “matching”
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problem was not addressed in this research due to time constraints.

Therefore. the current research problem is that of developing methods to guar-
antee a nonobtuse tiling of P where P = Q, a convex quadrilateral. At first it
is assumed that @ has only the four corner vertices: solutions for this situation
might then be extended to situations where @ has any number of added edge ver-
tices, which would be considered as straight angle “corners™ of @ = P2 (no longer
a “quadrilateral™). With no “shrunken” interior tnt(Q2). ¢ in this case would be
an instance of the situation mentioned in [J86] where the shrunken area inside P,
int(P), is degenerate, in particular, where int(P) = O.

All the constraints from the problem of convex polvgon tiling are inherited,
with the change that the constraint:

e Nearly equal angles in all angles created in the tiling of Q.
must be amended to:

e All angles should be as nearly equilateral as possibles and no obtuse (or
straight) angles should exist in the tiling: also. no angle should be smatler
than min{smallest angle € Q. uscr-defined mintvany angled.

As welll the nonobtuse angle requircment gives rise ta o couple ol other con
straints. his is due to the fact that an mtevior degree-Tonr vertex s Tmited inats
usefulness with respect to flexibility of positioning. Sce Figare 33,10
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Figure 3.3.1: Degree-4 added vertes: (left) “nailed™ with right angles
Lo ntcrior ((IU('\ (centre) af the n(l(l((l vertes tmoves with its attached
edges. one or Tore obtuse angles vesult: (right) il an edge shifts, but the
posluon of the added vertex remains fixed. Ohtuse ‘mﬂl(( s) can result,

H the vertex must be moved. the right angles at the added interior degree-fonr
vertex are lost. unless the edges conneated to it can move ceactly correspondingly.
Il the edges are attached to other vertices that are not moved, or even cannol be
moved (for ustance. corner vertices of (). one or more obtuse angles result from
moving the added interior degree-four vertex (Figure 3.3 centre illustration).
Similarly, moving one of the other vertices to which the added interior degree-four
vertex is connected. results in a loss of right angles at the added mterior degree-
four vertex. and so creates one or more obtuse angles at the added nterior vertex
(Figure 3.3.1. right illustration).
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Figure 3.3.2: Degree-3 added vertex: (left) “nailed” with right angles
to an edge: (centre) if the added vertex moves with its attached edge, an
obtusc ;mf;lc is created; also. (right) if the edge moves. but the position
of the added vertex remains fixed, an obtuse angle is created.

A similar case anplies to added edge vertices that are of degree three (see Figure
3.3.2). where two edges are the partitioned boundary edge (or “parent” edge, as
it does not necessarily have te be a boundary edge of the original input polygon),
and the third edge is an added interior edge connecting the added vertex to some
other vertex in the polvgon. To be part of an nonobtuse tiling. the angles at the
degree-three added edge vertex must be maintaincd al right angles: any shifting
of cither the added vertex or the added interior edge will create an obtuse angle
(Figure 3.3.2. centre and right illustrations).

Thus desree-three and degree-four vertices limit options as to placement of
added edee and interior vertices. Both degree-three edge and degree-four interior
vertices are. ol course. perfectly valid elements of a nonobtuse tiling. However,
it s best to have a flerible placement range. as this will probably facilitate re-
introducing the dropped constraints (especially those referring to minimum vertex
spacing. or average triangle size. or angle size). So. to maximize the flexibility
ol positioning the added edge and interior vertices in solutions. it is also highly

desirable to:

e Minimize the use of degree-four interior and degree-three edge vertices in
tiling .

3.4 The Refined Problem Statement; Case 0 So-
lution

The basic problem is that of tiling a quadrilateral Q with nonobtuse triangles.
O as given is convex. with arbitrary edge lengths. Q has no vertices other than
its four corner vertices, and no interior edges connecting opposite corner vertices.
This tiling is. optimally. 1o satisfy the constraints “inherited” (so to speak) from
the parent problem in [J86].

To simplify the problem. the following constraints arve dropped from considera-

tion:
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o Mintmum spacing ol added edge and interior vertices,

e Minimum spacing between input or added edges of Q. and any added interior
vertex (“narrowing” allowed. if necessary. for now).

e Nearly equa! triangle size.

e Ncarly equal angles: allow arbitrarily small angles. bu ro angles greater than
90°..

The following constrains are retained:
e No vertices on sides ol triangles.

e Aim to minimize the use of degree-four interior vertices and degree-three
edge vertices.

e Al to tile @ with the mninwmn numbo, of nonobtuse triangles,

o Sirong clfort must be made to wmimize the number of added edge and
Interior vertices.

The last two constraints retained elfectively mininnze the number of edges added
to the mnterior of Q. and hence affect (by minimizing) the thne complexity of any
resulting algorithms,

Thus the simplified problem statement is:

Given a nondegenerate convex quadrilateral Q. consisting of lonr corner vertices
and four non-crossing cdges joining those vertices. determine the nininum monber
of nonobtuse triangles needed. inthe worst case. to tile QL subject to the previously
mentioned four constraints, f (Q has:

CASE 0 no obtuse or straight angles,

CASE 1 une obtuse or straight angle.

CASE 20 two opposite obtuse angles. one of which may bhe a straight angle.
CASE 2a two adjacent obtuse angles. one ol which may he a straight angle.
CASE 3 three obtuse angles (none of which can be straight angles).

Also. in the worst case. what is the minimum number of extra vertices needed both
on the boundary and in the interior of Q7

Case 0 is trivial. so it is solhved in the next subscction. Cases 1o 200 2a, and 3

are discussed in Chapters 1. 5. 6 and 7. respectively.
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3.4.1 Case 0: () has No Obtuse Angles

() 15 then necessarily a rectangle or square.
Solution: Add one diagonal to obtain two right triangles and no added (edge

or interior) vertices.



Chapter 4

Case 1: Q@ has One Obtuse or
Straight Angle

Let the coruers of Q be denoted as 4130 and D.oin clockwise order, having angle
Thus B is opposite [J. Q is convex. so 90° < ¢ < 180°. Fach of o3 and ~ is
€ (0.90]. Scctious that deal with & strictly < ISU° are separate from sections that

measures a..3. 5 and o. respectively. with ¢ being the sole obtuse or straight angle.

consider the special case 6 = [80°.

4.1 The Problem With @ € Case 1

Sometimes. simply inserting a diagoual joining 12 and 13 can resolve the obtuse
angle & into nouobtuse angles and satislactorily tile Q. (Hopelully this also does
not partition alreadyv-nonobtuse 4 into 3 and 4, that are foo small.) This is not
impossible even if § is a straight angle: in this case. [) very conveniently lies at the
basepoint of the altitude from /2 1o triangle side AC. See Figure 1T

Define:

o /BDC = 4.

o LD =0,

Thus the first step for a Case | gquadrilateral will always be to try to resolve
obtuse & by joining D to its opposite corner f3 since. il this works. the ntter
minimum of added edges (one) and added vertices (none) are used.

It's casy to construct cases where joining 1 10 13 leaves one of &y or 6, obtuse.
See Figure 4.1.2.

In that situation. a vertex must be added 10 Q. The question of where the
added vertex can and should he best placed. within the constraints retained for
tiling Q. occupies the rest of this chiapter.

<
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Figure 4.1.1: Edge 3D alone can resolve é into nonobtuse angles.

C:

Figure 4.1.2: Joining D to f3 can leave an obtuse angle (shown as arc)

Note that one sitnation is simply a mirror reverse of the other. Acute corner B
is always opposite obtuse corner Doand a mirror reverse of the situation where &,
remains obtuse is the case of 8; remaining obtuse. wheve the o-angle subscripts |
and 2 are switched. and vertex labels -4 and ¢ are simply exchanged. Hencelortn
not a lot of attention will be paid to distinguishing very carefully between the
situations; a solution devised for the situation where o) remains obtuse. is perfectly
valid for the 8 situation. with some adjustment of angle subscripts. and relabeling
corners ol Q (exchanging vertex labels o4 < ('L and their angle labels a < 7).

For the case 8 = a straight angle. this is a case where D on edge AC (in AABC)
is not conveniently the basepoint of the altitude from 3 to triangle side AC. Since
the case § = 180° is a limiting case. discussion ol it is deferred to the end of this
chapter.

4.2 The Nailed Vertex Solution

In this case. use Lemma 1. and drop an altitude from £ through the remaining
obtuse angle to firmly resolve it into two nosobtuse angles. This solution adds a
“nailed™ edge vertex (of degree three) to Q.

o Lot situation | = & is obtuse, To reselve &y, drop an altitude frem D to edge
BC. adding vertex /1o edge BC. See Figure 12010 left. Angle 62 is left as

I~
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Figure 4.2.1: By Lemuma L resolve obtuse angle by altitude 11

originally labeled; the partitioned angle o5 1s ceplaced by oy and &y

o Let situation 2 = & is obtuse. To resolve & drop an altitude from 1) to edge
B A adding vertex H to edge B4 See Figure (12000 vight.

o For completeness’ sake. let sitnation 3 = joining corners ) and 13 leaves

neither 8; nor &, obtuse. This requires no further work. {(See Figure (10101

Since situation 3 requires no prool and Lennna Ioguarantees the solntions for
situations 1 and 2. this “nailed vertexs™ method is guarantecd to prodace o nonob-
tuse tiling ot Q. Therefore:

Minimum (best case): two nonobtuse triangles. uo added vertices (interior
ot boundary).

Maximum (worst case): three nonobtuse triangles (at least vwo of wiineh are
right triangles). one added nailed edge vertes.

4.2.1 Using the Semicircle Rule

Is there a simple way to detect situations 1 or 2 withont actually calenlating angle
values? Yes. using Lenuna 2 (the Semicirede Rule),

Basically. if corner D € -=BC. then &p is obtuse: il corner 1) € - A1 then
8> is obtuse. If neither of the previous is the case. then joining 1) to I3 resolves
§ into two nonobtuse angles. In Figure 1.2.2. A is the midpoint of edge 3¢
so |BM| = |MC| = »r. where r is the radius of the semiciveles The algorithm
employing au altitude to resolve obtuse angles is called & Nailed Vertex algorithin.

Add edge DB to Q.

/= see if oy is obtuse 7/
r— |BC/2.

M — (B4 C)/2.



H (jA1] < ) THEN

Add altitude D/, where H is on 3C. to Q.
Flsl /7 see il &, is obtuse &/

¢ (13.0])2

M — (B + )2

I (M| < r) THIEN

Add altitude DH . where Hois on Bototo Q.

ENDIF

ENDIF

By Lemnmas 1and 2, this algorithm is guaranteed. However. it is unattractive
due to the possibility of adding a nailed edge vertex .

Note that adding edge DB first doesn’t permit skipping the tests for é; and/or
O

With the above algorithin for the nailed method. the best and worst case results
are the same as before: optimally. joining D to B tiles Q with two nonobtuse tri-
angles: otherwise an altitude is used to resolve the remaining obtuse angle. adding
a nailed edge vertex and producing three nonobinse triangles (two of which are
right triangles) tiling Q.

4.2.2 Using the Right Angle Bound Rule

Using Lemma 3. establish right angle bound lines D17 such that £C DU = 90°, and
DV such that 24DV = 90°. and see il they bracket B: if so. D can be joined to B
with assurance that neither &) nor 82 will be obtuse. If B does not lie within DU
and DV. we can still use the previous (inelegant) solution. i.e.. drop an altitude
through the remaining obtuse angle. The difference here is in the test used to
detect which situation is occurring,.

The Nailed Vertex algorithm using Lenuna 3 to detect obtuse angles is:



Add edge DB to Q.
Orient Q so that the longer of C'13 or A3 is a horizontal “base™.
Extend DU and DV so that they intersect the horizontal “hase™.
(Call the intersection points 7 and V" also. See Figure 1.23))
/" U, is a-coordinate of U. */
IF (', < B,) THEN
/* 61 is obtuse; use Lemma | to resolve it v/
Add altitude DH, where H is on O3, to Q.
ELSKE
IF (B, < V) THEN
/™ 62 is obtuse; use Lemima 1 to resolve it */
Add altitude DI, where [ is on A w6 Q.
ENDIF

ENDI

VB 3 T

Figure 4.2.3: Orient Q so reac{|AB]|C B} is horizontal hases extend 26
and DV to intersect the horizontal “base™. For both cases (€713 buse or
AD i)élb'k')- B, € [\:,u[‘f] = 0.0y both nonobtuse.

- Iy I3 A
Figure 1.2.1: Left, C 88 base: B, < Vo 0 = 0, obtuse:
Right. AR base: V..U, < 13, = &, obtusc.

Given the ordering of vertices as (' — D — 1 as in Fignres 123, 4201, and
4.2.5. with Q oriented so that the longer of €3 ind A3 s a horize stal “hase™ . the

I
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' Hy { BV
Figure 1.2.5: Left, O3 base: Ve, U, < B = 6§, obtuse;
Right, AA13 base: B, < Vi, L, = 62 obtuse.

ordering of U and V' is always with V' to the left of U. Many following illustrations
of example quadrilaterals are “flipped” so that the edge intersected by the Right
Angle Bound lines DU and DV is now at the top of the figure. and so we will
always sce U to the left of V.

[17.3] never brackets H: that is. H & (7. V7). More specifically. since we have
used 11 bothr on edge CB and A B, as required. to partition whichever of §; or &,
respectively, remains obtuse after joining DD to B. we can say

Lemma 5: In a Case | gquadrilateral. when one ol 8 or 6, remains obtuse
after joining D to 3. the Right Angle Bounds from D never bracket the altitude
basepoint H of DH.

Proof: Consider the case when ¢, is obtuse and H lies on A B (the other case
is just the mirror reverse). and assume /1 € ({.1V). Consider Q" = HBC D, and
et the angles of this quadvilateral be . o~ and 8" at #H. B. . and D. respectively.
Sinee 1€ (V) 20D < £LODU L s0 6" 1s acute. But then i = 90° (since DH is
an altitude to AB). & is acute. and. as given in Q. both ~.:9 are nonobtuse. But
then 34 5 + & 4+ 5 < 360°.

Therefore 1 & (17.V). O

It may certainly be the case that 17 = H when 6, is obtuse. or that V = H when
o, is obtuse. This simply means that sides DC' and AB, in the first case, or sides
D and C B, in the second case. are parallel, and that @ is a trapezoid. This may
be taken as something of a limiting case, for given that § is obtuse and DC{| 4B or
DA|C B, it must be that 8 = 90°. one of a or 7 also = 90°. and the other must be
acute. See Figure 4.2.6. In this very simple special case, nonobtuse tiling consists of
adding altitude DA to Q. thus effectively cutting off the right-triangle “ear” ADH
of the trapezoid. and adding a diagonal - cither one - (o the remaining rectangle.
Thos tuding /1 =07 or Vs a special {and probably unusual. in practice) case. In
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those cases where a Right Angle Bound vertex label overlays an altitude basepoint
iabel, the Right Angle Bound label will generally take precedence in the figure,

C D C . 2
B v=ng 4 B o=
Figure 4.2.6: L7 = [l = Q is a trapezoid. casily tiled in one of two ways,

Using the above moditication of the Nailed Vertex algorithim, the hest and worst
case results are the same as before: optimally, joining 1 1o 3 tiles ©Q nonobtusely
with two nonobtuse triangles: otherwise an altitude is used to resolve the remaining
obtuse angle. adding a nailed cdge vertex and producing three nonobtuse triangles
(two of which are right triangles) tiling Q.

4.3 Floating Vertex Method for (Q € Case 1

We now attempt to employ both Lemmas 2 and 3 in tiling Q). Assume that simply
adding diagonal DB to Q does not resolve ¢ into nonobtuse &y and d,0 50 that we
need to add at least one vertex to Q).

If we considered adding an inferior vertex Hoto Q. U would have to Le of
degree five. as it is highly unlikely that 1 of degree four. connected to the corners
of @, would have four right angles. Thus an added /interior vertex implies an
added edge vertex. Since we want to minhnize the number of added vertices of
etther vartety. this does not seem too attractive an idea.

Given that it is sometimes impossible to resolve Case 1 by adding only the
D3 edge to Q. s the Nailed Vertex mnethod the best possible solution? That s,
given that an cdge vertex mest be added 1o resolve an obtuse angle that rearains
after adding diagonal OB to Q. can the added cdge vertes be changed from being
“nailed” o oposition as an altitode hasepoinm. 1o having sotne range within which
its positioning may vary. but will still enable @ 1o bhe tiled nonobtusely and sat-
isfactortly? If so. the added edge vertex wonld be called o ~Hoating™ vertex. and
the range within which it can be positioned. while still tiling Q nonobtusely and
satisfactorily, a “viable arca™.

See Iigure 4.3.1. Staiting with diagonal DB and altitnde DI, swap diagonal
DB for the other diagonal of quadrilateral DC BH - in the example in Fignre 4301,
this is the C'H diagonal; then move [ along the top edge (in the example, this is
edge AB) to a “better” position 1. (The vertex is relabeled as W hecanse the
label H is still kept as a marker of the altitude from 1) to the top edge of Q)



Figure 4.3.1: (Left) Start with altitude DH and diagonal D B:
(Center) Switch diagonal DB for CH; (Right) Move H along AB to 1V

where the tiling has nicely shaped nonobtuse angles.

I the example shown (Figure 4.3.1. right). all the angles are nonobtuse in the
final tiling. and in shifting the position of Woslightly along edge AB we find that
the angles do rcniam nonobtiuse.

This floating corter method looks like a much more attractive solution than
the previous nailed vertex method. The added edge vertex is of degree four rather
than three; this alone “frees™ it from being nailed. Also. the fact that the added
edge vertex is floating. rather than nailed at an altitude basepoint. result in some
leeway in positioning that will directly affect vertex spacing. triangle sizes, and
angle sizes in the finished tiling. There is still the “problem” (if it can be called
s0) of partitioning an already nonobtuse angle. but that is unavoidable when Q
has only one obtuse angle. and a degree-four edge vertex is being added to Q.

Since a guaranteed method (the Nailed Vertex method) has been proved, why
would another solution using a floating vertex be desirable? This was discussed in
Section 3.3. where the larger problem was explained as triangulating the boundary
strip between P and int(P) from LI86]'s work. This could even arise in trying to
nonobtusely tile a convex or nonconvex region. in which the first step is to partition
the region into convex guadrilaterals. In either case. each quadrilateral is to be
tiied nonobtusely, and there will be instances where quadrilaterals will share edges.

Therefore. where a vertex must be added (in the process of nonobtuse tiling)
to an edge of a quadrilateral. where that edge is shared with another quadrilateral.
that vertex must be “required”™ or ~allowed™ i both quadrilaterals. to satisfy the
constraint thal vertices do not exis' on the sides ol triangles in the final tiling.
Allowing the edge vertex position te float may well be eritical in getting tlie vertex
position aloug the shared edge to coincide. while still gunaranteeing that all angles
are nonobtuse in the triangulzaion of the two quadriiaterals thal share an edge.

4.3.1 Approaching the Floating Vcrtex Solution

The current problem is: change the added edge vertex from being nailed at an
altitude basepoint H. to being able to “float™ within some viable area; this includes

s
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being able to tell when such a viable arca would exist or not. and what delimits
the viable area wh 1 1t does exist.

As in the example in Figure 4.3.1, one added tloating edge vertex: of degree
four, seems to be an ideal solution, if it can be discovered where the floating vertex
can and can’t be placed; when it can and can’t. or shouldn™t. be used: s 1t always
better (if possible) to use the floating vertex method than the nailed vertex method
with respect to triangle size. angle size, edge vertex spacing: ete.

Where can’t W go. and why? If placement of W can be restricted by con-
straints that will guarantee nonobtuse angles in the final tiling of (2. whatever is
left over after the restrictions must be a viable arca. (Or so it is hoped!?)

From now on in illustrations, @ will be oriented so that the edge intersected by
both Right Angle Bound lines DU and DV is at the top of the figure. (I1 DU and
DV intersect two different edges of Q, they must bracket a vertex of @ between
them, which can then be joined to 1) with the gnarantee that both subangles
obtained by partitioning & will be nonobiuse. We have assumed that this is not
the case. so botlhh DU and DV ointersect the <ame edec of Q.) This edge will be
referred to as the “top” edge. regardless of whether it is 8 or A The opposite
edge, having D as one endpoint. is the “hottom™ edge. Thus it is expected to see
[7 always to be to the left of V. The top edee will not bhe oriented horizontally;
rather, one of the other edges of Q. contair-ing 1) as an endpoint. will be ortented
horizentally, Also. to simphify the discussion. tignres will often (hat not always) be
restricted to one or the oihier case of A3 heing the top edges or €3 heing, the top
edge. One is just a mirror-reverse of the other anvway, and can he “converted™ by
simply exchanging vertex lubels 4 < O (and similarly angle Labels o 2 4).

i

Let the angle designations in the finished tiling be as shown in Figure 1.3.2

A<

Figure 1.3.2: Angle destgnations in final tiling by floating vertex methaod.

There does not need to be any constraint to guarantee that angles 5 and 4,
are guaranteed acute as their parent angle 5 is nonobtnse 1o start with, except,
that the subangles of 5 should not be too smallif it can Le helped. (Similarly with
aj.ay. and their parent angle o in the mirror-reverse case.)

Therefore there are five angles that need grzrantees:



1. £ODW = 6. 4. LtCWD = ws.
2. LADW = é,. 5. LAWD = wa.
3. LBWC = wy.

(Recall that ZBDC = ¢, and LBDA = &; so using a floating vertex W to
partition 6 creates two “new” angles, ZCDW = é3 and LADW = 6;.)

If a viable area can be found for each angle, where placing W in that viable
arca guarantees that the particular angle will be nonobtuse, then the intersection
of all viable areas must jointly -uarantee all angles to be nonobtuse.

4.3.2 Guaranteeing Nonobtuse 63 and &,

‘To guarantee that both & and é8; will be nonobtuse. use Lemma 3. See Figure
4.3.3, where Right Angle Bounds DU and DV have been sketched in. Assume
that DU and DV do not bracket B. From Lemma 3, W™ € [{7. V'] on the top edge
of Q@ = neither &0 nor &, will be obtuse. Thus to guarantee & and é,. the viable
area is [V

D C
Figure 4.3.3: Right Angle Bounds DU DV,

4.3.3 Guaranteeing Nonobtuse w; and w3

To guarantee that angles w; and ws will be nonobtuse. Lemma 2, the Semicircle
Rule, 1s used.

See Fignre 1.3.10 Both semicireles from the sides of @ intersect the top edge
of (). since a and 3 are nonobtuse. Let the points of intersection be H and [ as
shown. That is. Ir will ahwavs be the point of intersection of a semicircle that has D
as one diameter endpoint. and the top edge: and £’ will always be the intersection
point of the other semicircle. with the top edge. /= B if 3 =90°. and H = A if
a = 90° (or I = C.if ~ = 90° in the mirror-reverse case).
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Figure 4.3.4: (Left) OB as top: ©ABNBC = F. :DC N BC = ],
(Right) AB as top: SADNAB = H: &CBNAB = F,

Figure 4.3.4 shows both situations (1ot merely mirror reverses of cach other).

In the right illustration, H is on semicircle = AD, so that angle 24111 2 90°,
and thus DH is an altitude to top edge A, Sumilavly. I = - BC 0 A marks

the altitude basepoint from " to AB. This is not surprising: by Lemana 4. both
altitudes must exist. since both obtuse corner ) and nonobtuse corner ¢
followed by two nonobtuse corners. - and 3.

Likewise, as in Figure 4.3.40 left illustration. semicivele - <€) interseets with
top edge BC at altitude basepoint I and I is similarly found to he the altitude
bascepoint of the other semicirele with the top cdge.

Define vegions F = [BoFyand Ho= Ay or (OO as in Figure 1305,

ate

F = [B.F)
H = [\ 1)

D C

Figure <1.3.5: Altitudes from corners to top cdge detine regions F oand H

I. Since H = portion of top edge inside semicircle A0, W € region 'H =
LAV D = g 1s obluse.

I

Since F = portion of top edge mside semicirele 20 W€ region Fo=
A{l)"i( T = “<} l\ UIHH.\(‘.

Therelore, 1o suarantee that angles o and wy are both nonobtusces the viable
area must (so far) be [£7H] on the top edge ol Q.
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Is it possible that this area is empty, that is, that /7 = H? No, since DH is
the altitude to the top edge. and CF (or A F) is also an altitude to the top edge;
therefore F1'= K = D = C (or D = A). Also, we would never see the altitudes
DIf and C'F {or AF) crossing so that £ and H “overlap™. since HD and FC (or
F'A) are parallel lines, both perpendicular to the top edge of Q.

4.3.4 Guaranteeing Nonobtuse 63, ¢4, w; and w3

At this point we will consider the intersection of viable areas for w;,ws, 63 and &4.
See Figure 4.3.6.

Figure 1.3.6: Regions F = [B. F).H = [A. H). and [V U]

By i . uab, H g {U.V), where H is the altitude basepoint {from D to the top
edge of  Since H ¢ (U V), U &€ [A.H) = "H. (However. notice that UV = H is a
perfectly valid occurrence, only probably rare, as it implies that @ is a trapezoid.)
Also, since U is always to the left of V' (assuming & < 180°). V' ¢ [4, H]. However,
Ve (F.B] can casily happen, as it does in Figure 4.3.6. U € (F, B] can also
happen: sce Figure 4.3.7. In this case there is no viable area in which to place W
guarantecing that all of é3,68,.wy and wy are nenobtuse. So the Floating Vertex
method fails in this case. and the Nailed Vertex method must be used. (Since
mirror-reverse drawings and discussion are not given. note that the roles of H and
[" (and H.F) are veversed in the above discussion if the bottom edge of Q 1s AD
instead ol €¢°D))

T'o finish developing the Floating Vertex method. assume that [U. V]N[H. F] #
O: that is. that [7is to the leftof Foor U7 = F.

When the viable area is nonempty, [H, F)n U V] = [/, L}, where U either
overlays /1 (but the label {7 takes precedence). or is strictly to the right of H: and
L is the leftmost of £ or V. This viable area [L. L] guarantees angles w,,ws, é3, and
& to be nonobtuse. Restricting the viable arca to ({7 L) guarantees all of them to
be acute {which may be very desirable): otherwise one or more of them are right
angles.
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Figure 4.3.7: Left: When [U. V] € F, W € [U, V] would leave £ BW (=
obtuse. Right: Easiest solution is to use the Nailed Vertex method.

4.3.5 Guaranteeing Nonobtuse >

To continue with the Floating Vertex idea. assume [H. FIO L. V] # O, To guar-
antee the final angle. w,. use Lemiia 2. the Semicirele Rule. Let the semidisk that
has the bottom edge of Q as diameter be labeled. for convenicnce. as semidisk
Z=50CD or &AD.

This case proved the most difficult to guarantee. Whether or not 2 interscets
the top edge of @ is highly dependent upon the interaction of edge Iengths of Q.
and not always obvious to predict. Certainly the ~height™ of the top edge of Q
above the bottom edge has much to do with it. but so do the angles at the bottom,
and lengths of the sides. of Q. However. a finite number of classes of interaction
emerge from experimentation and drawings:

1. ZN top edge = O. Then W placed anywhere on the top edge of Q is outside
Z, so that the entire top edge is a viable arca for w.. Sce Fignre 1.3.8.

1) C’

Figure 1.38: ZNAB = 0= W anywhere on A3 = w, will be acute.

3

o

ZN top edge = one point Z;. Then the top cdge of Q is tangent 1o Z at Zy.
and W placed al Zy = wy = 90°: W placed anywhere else along the top edge
= wo will be acute. Thus the viable arca for «, is still the entire top edge of

Q.

-
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3. Z0N top edge = [Z,;, Z,]. Sce Figure 4.3.9. Z “intrudes” into the top edge of
(2. Neither “top”™ corner of @ could possibly be in Z, as Q has only one obtuse
angle 6. The viable area in which W can be placed to guarantee that w, will
be nonobtuse, becomes split into two subareas, {. Z,] U [Z;, B]. Depending
on the size of Z (clearly dependent on the length of the “bottom™ edge of Q)
and the amount Z “intrudes” into the top edge of @ (clearly dependent on
the “height” of @), the viable subareas can be quite small; what is of more
concern, however, is that W may be forced into a position near a corner
vertex of @, and triangle sizes in the tiling can be very unequal.

Figure 4.3.9: Left: When A B — Z = [A. Z1]u 2. B].

(Right) placing W in either viable area == very unequai triangle sizes.

4.3.6 Guaranteeing All Nonobtuse Angles
Assume [{, FIN [ V] # O, Again. to jointly guarantee «» with the other angles,
consider the intersection
(L] —-(Zn{.L)Hus
of the viable areas for wy.ws.wy, 84, and 8. where

{Z[. Z_)} if both Z]. Z-_) - [‘I_"'. L]
{Z} or {Z,}. whichever is the only one
S =< in [0 L] (as Zy in Fig. 1.3.10. below):
{Zb i Zy e [U. L):
) otherwise.
Again, because of the unpredictability of the interaction of Z. a number of
disjoint classes emerge:

Lo Zn [t L] = O. Then viable arca = {U. L].

2. 20U L) = Zy. one point. Then viable area = [(7. L].
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(U, L] = [Z2, Z1]. Then viable area = (U, Z,] U [%,. ).

viable area = [V, Z.]

C-'

Figure 4.3.10: Z can partially, but will never entirely, obscure [, vi.

Thus it is seen that for cach “class™ of interaction. a viable area exists.

Is it possible that the viable arca shrinks 1o nothing? No: see Fignre 13011,
As the height of Q decreases. the viable arca conld get quite simall, However, since
DU L DC and DC is the diameter of semicirele 2

cthere will dlways bhe room
between {” and Z, to place W',

Figure LAl 0 L DO and 120

bemg the diameter of 2

= |U.Zy} = O only when {7 = 27, = D.

So if [H. F]O [U. V] # O. a viable arca always does exist in which to place W

and use the Floating Vertes method. As @ ~“Hattens”™. 2 will obscure more of the

top edge, and the distance between €7 and Zo will shrink. As 2 gets taller, Z, and
Zy will approach one anothier, coincide and meld into one point Zy, then 2N AR =
@, so that the viable area = [{/. L] (if not ).

Figures 4.3.12 and 4.3.13 show a few completed tilings using the Floating Vertex
method.

[U, L] (when not ©) shrinks both as the “height™ of O decreases (as in Figure
4.3.10) and as 6§ — 180°. In both cases the width of the arca shrinks to a locality
to the right of and including {": in the former case. the right endpoin: of the viable
area is likely to be Z,. in the latter case it is more likelv 1o be 1.



C
Figure 4.3.13: Viable area for W= [( V] W placed 1o tile Q acutely.

The algorithm for the floating vertex method is ordered such that the viable area
for 6; and 6, is found first. as establishing Right Angle Bounds from D indicates
which edge is the top edge. Having found the top edge. the altitude basepoints
Fand H o can be found: otherwise it is not known whether to take altitude CF
(to top edge AB) or AF (to top edge C'B). The intersection with semicircle Z is
taken last.

Establish Right Angle Bounds DU7. DV such that £ODU = £ADYV =
Yp°.
Let top edge = edge on which @ N DI exists.
[I* (edge on which Q N DV exists 3% top edge) TEHTN
/* U V] bracket B 7/
Add edge DB to Q
ELSE
Let 1, J be the endpoints of the top edge, with [ adjacent to D.
Orient @ so that the bottom edge is horizontal.
Let N = other endpoint of bottom edge.
= NJn .
H=o-DInlJ.
Viable = [FL H]n {17V,

3
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IF (Viable = ©) THEN
/* Can’t use a Floating vertex. use a Nailed vertex 7/
ELSE  /* Can use Floating Vertex ™/
Let Z = ODAN.
Viable = [l7. L] - (Z n [U. L]).
Place VW in viable area; add edges WD and WA w0 .
/™ Where W is placed depends on what is desired regarding
minimuin angle size/edge vertex spacing. triangle size. cte. */
ENDIF
ENDIF

When the floating vertex algorithm works (i.c.. when [ L] # O), the best and
worst case results are a little improved: joining D to B tiles Q with two nonobtuse
triangles: otherwise. a degree-fonr Hoating edge vertex is added. to tile Q into three
nonobtuse triangles. If W is placed in the interior of the viable arca then all new
angles in the finished tiling ave acute (except possibly oo 01V = 7. and/or a, 4,5
if they are input as right angles). Otherwise one o1 more new angles will be right
angles.

4.3.7 Final Issues

W placed anywhere in the viable arca guarantees nonobtuse angles in the tiling of
¢, by definition of the viable arca. Adjusting the position of 1 changes triangle
sizes and angle sizes. Fxperimentation sceims 1o sugeest that usaally placing {1
at the position where the biscctor of o interscets the top edge is optimal: that is.
of all the positions within the viable arca. placing WWoat the & biseotor maximizes
the minimum angle in tiling @ by the floating vertex method. This is not strictly
always the case: it seems to depend highly on the eeometey of Q. 1 the location
where the é-bisector intersects the top edge is not within the viable area (i, it
lies within Z). then placing W as close to that location as possible has the same
eflect. "This often means placing W at L. the rightimost ¢nd of the viable area,
which wonld gnarantee at least one vight angle o the finished tiling, but still,
the minimum angle of all possible tilings by the floating vertes method is often
maximized with 7 at that position.

In Figure 4.3.14, the Right Angle Bounds. altitudes /7 and /1, and semicirele
Z are shown; the viable arca that remains after the intersection of all these arceas
is {U, Z,). In Figure 4.3.15, U is chosen as the location of 11 iu Figure 1.3.16, Z,,
which is the closest point in the viable area to the intersection of the é-bisector and
the top edge. is chosen as the location of W', Note that 11" = %, maximizes the
minimum angle. Although in both cases. due to the geometry of Q. the triangle
sizes are quite uneven. W = Z, is better than W = (7. This can be especially
noted in that with W = 7, it is more nearly the case that | AW = [DW] = |AD];
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since L) s the edge of minimum length in Q. the position for W should adhere
to a minimum vertex spacing as defined by the input edges. This is much more
closely attained by using W = Z, than with W = U.

/(‘)blst.(g//___\

Figure 4.3.14: Viable area can become quite small as Q
“flattens”™ towards its obtuse corner.

\
10
D C
3

Figure 4.3.15: Position W at (7 finished tiline (anele nicasures shown
5 l) S J

4.4 Tiling @ € Case 1 When § = 180°

When o = 130°. D becomes a vertex on edge A€ of triangle AABC. Let E be the
altitude basepoint on AC from vertex B. If ) = E. then adding DB to Q resolves
L2 into two right angles. by Lemmia 1 (Again. it is hoped that 4, and 3, are not
too small.) Otherwise adding D3 1o Q leaves cither 8, or 8, obtuse. See Figure
At

Fhis can be casily resclved (by Lemina 1) with an altitude through the remain-

ing obtuse angle. To avoid actually having 1o caleulate angle measures. Lemma
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Figure 14.3.16: Position 7 at Za finished tiling Gangle mcasures shown)

/ 2L 0
o rT:-\(l C

D MDD

Figure 41 Adding DB 1o ¢ tiles Q i and o IS s an altitade,
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2 is used to detect which situation is occurring, by calculating distances between

L

points. T'he details of doing so are not repeated here.
3

13 '
( \
A \ b‘f)-,'\/ ¢ oA - 4/( ’

L
Figure 4.0.2: Using Lemima 2 1o detect, and Lemma 1 1o resolve, obtuse angle.

The algorithm in this case is (see Figure 4.4.2):

Add edge DB 1o Q.
IF (D e &BC) THEN

/% 6 is obtuse 7/

Add altitude DH 1o Q. where H € CB and DH 1 BC'.
ELSEIF (D € =54 B) THEN

/7 6, is obtuse ~/

Add altitade DI 1o Q. where H € AB and DH 1 AB.
IENDIF

The best and worst case results are the same as before: optimally, joining D to
13 tiles 2 nonobtusely with two nonobiuse triangles: otherwise an altitude is used
to resolve the remaining obinse angle. adding a nailed cdge vertex and producing
three nonobtuse triangles (at least two of which are right triangles) tiling Q.

4.4.1 Using Lemma 3 when ¢ = 18(°

When o = 180°, the Right Angle Bounds from £ behave like an altitude from D,
and U = V. Again, if D = E. then {7 = V' = B and simply adding DB tiles Q
into two right triangles. Otherwise V' = {7 (call it V) lies on 4B or BC. Note that
Voas essentially nailed due to & = [80°.

See Figure .43, Adding DV 1o Q cuts off a right triangle “ear” and leaves an

mnner Case 1 Q' = ABV D where vs = v is the obtuse corner. o and /3 are acute,
and ¢ = 6, = 90°. Thus the Floating Vertex method cannot really be applied
to (@ in this case, as [, V] = V' is a single point. However. either the Floating

Vertex or Nailed Vertex method can be used on the inner Case 1 @', as previously
outlined. although attempting to use the Floating Vertex method on quadrilateral
Q' = ABV can lead to four triangles in Q = ABCD (three from the Floating

Vertex method in Q' plus the one right triangle car).

10



Figure 4130 Right Angle Bounds (7 = V' =nailed” on /40 Q= AV,



Chapter 5

Case 20: Q has Two Opposite
Obtuse Angles

Let the obtuse corners of Q be D and B. which are opposite one another. Assume
for now that both 6.9 < 130°. (The case where one of them is a straight angle is
deferred to the end of this chapter.)

Hoadding edge 1743 10 O leaves none of ;... 4, or 4, obtuse. the tiling is
finished. In fact. as D and I3 move closcr to being overtop one another, the angles
o1, d2. 3 and 3, all become more uniform in size - the smaller pair increase. the

larger pair decrease. as in Figure 5.0.1.

- o
Fignre 5.0.0:0 1213 alone can tile (2 nonobtusely. with the subangles
hecoming more aniforny as £ “raoves over™ 1) (so that 3, = [7,).

Howeveroas 1) wod I3 move apait. or as the nonobiuse angles a and ~ decrease,
it s ore hikely that one or more ol 8y.8,. .3 and .3, may hecome obtuse. as in

leure 5 )
Pigure 5.0.2.

5.1 Using the Semicircle Rule

Obtuse angles remaining after edge DB has been added to Q are easily detected

4

using Lemuna 20 the Semicircle Rule. However. given that an obtuse corner of Q

ix followed by an nouobtuse-angled corner. and then by an obtuse-angled corner,
there s no gyuarantec that altitudes from obtuse corners exist on both possible



B 13 A ‘_i)’
A A </'/X>\ ~ ‘Y ~_
Q/ \ O
D C & D

D

Figure 5.0.2: Adding BD to Q can easily leave obtuse angle or angles

edges of Q. Figure 5.1.1 illustrates that altitudes Hp and F), from 1) exist. and
altitude Fy frome £ exists. but titude Hy from 13 to cdee DO does not exist
(within Q. that is!).

I I3
2 ;“.:\‘ .\‘_/ 1
e \\ / (
J\\\ O\ //’—/_,-
'y \:\\}";”/ ‘
My

Figure 5.1.1: Left: Obtuse angles can be resolved with altitudes as
needed. Right: Not all altitudes will exist. bt those necessary will exist.

Still. using Lemma 2 to detect obtuse angles remaining after addiug D13 10 Q.
and then Lemma 1 to resolve them by dropping an altitude throush them. will
work. If &, is obtuse (as i Figure 500007, then W3 caniiol bet so ait ailiticde cannol
be needed from B to edge DC'. Similarly with o, beig obtuse preventing . from
being obtuse. and vice versa. 1 is quite possible that two alternate interior angles
will be obtuse - that is. o) and Faoor Iy and oL T that casc two taited added colpe
vertices are used. as in Figure 3.1.2.

Stce 11 cannot be forctold swhethor 6, 1 o 2 Olsities artcefe- will rernain after
adding edge D13 10 Q. no tests are skipped o the {oliowine basic alvorthinn. h
should be poussible to make it a bhit mnore sophisticated. in that. viven that both é
nor

and Fare < RO G s cortaan that &) s obtirse, neither it= other ~half™ o
the obtuse partition in its triangle. 4,0 will Les and suntlarly for the rest of 6,009,
and 4,.

In general thens a siimple Natled Vertes adgorithng is:

Add sdue DIs 10 Q.
IF (cover & -DC) THEN
/7 angie 3p is obtuse */
Drop altitude from /2 1o V. on edee ¢ 1),



Figure 5.1.2: A corner of @ within a semicircle = an obtuse angle;
resolve with altitude. Similarly for §; and/or 3, obtuse.

ENDIF
IF (corner D€ - 413y THEN

/7 angle & is obtuse 7/

Drop altitude from £ 1o W oon edge 13.4.
ENDIF
I (corner 5 € --DA) THEN

/" angle Ju s obtuse 7/

Drop altitade from 13 to X on edge DL
FENDIF
7 (corner 1) € 3¢y THEN

/7 angle o) is obtuse 7/

Drop altitude from 1310 Y on edge 3¢,
ENDIF

Right Angle Bounds from 3 and D can also be used as the test to detect
which situation is occurring: but it is better to use the Semicircle Rule, as simpler
cotmputation 1s required {and the resulting tiling would be no different). However.
Right Angle Bounds more easily show that in the worst case. four triangles (rather
than threeas in Case 1) are necessary.

Consider Figure 5.1.20 since adding )1 10 Q leaves oy obtuse. B ¢ Right Angle
Bound A0V (where Vowould fall on edge 4 £3). Likewise. since adding DB to Q
leaves 3 Ghtases [0 ¢ Rieln Angle Bonnd ¢ 12N (where N would fall on edge
1)y has torm Right Angle Bonnds DU ADY where V.U € AB- likewise,
torne Right Angle Bounds BN A8 where XY € OO ADW. W e [V U],
and OBZ 7 € [Y.N] can be formed to guarantee nonobtuse angles at D and
£3. then Qi partitioned futo two nonebtuse iriangles ADW and CBZ, and a
quadrilateral W EBZ D is left in the middle. which must be tiled by at least two
triangles. Thus three triangles are not sulficient 1o tile a worst-case instance of
(2 €Case 200 Also.adding 1213 10 Q will at worst leave two obtuse triangles 4DB
and BCD (with obtuse angles &, and ;. respectively, as in Figure 5.1.2). both of
which by Lemimia T ean be tiled nonobtusely via an altitude from the obtuse angle.
Fhus four triangles are also the maximum necessary in the worst case.

Soc e dbove alyorithm i~ guarantcocd.



The above discussion also shows how the Floating Vertex method can be applied
to @ € Case 20. In a case where adding D/f3 to Q would leave two obtuse triangles
{as in Figure 5.1.2). adding instead the two altitudes through the obtuse angles
that would remain (for example, in Figure 5.1.2. these are odges DU and BV
(and not DB), or in Figure 5.1.1, adding edges BFy and DF) leaves an interior
quadrilateral - for example, FgBFpD - with two opposite Y0° angles; henee of the
two remaining angles. either both are also Y0° angles, or one is obtuse and one is
acute (thus an inner Case 1). Thus at least one of the altitudes is guaranteed to
partition an obtuse angle into nonobtuse angles.

For the inner Case 1L it is possible that a viable avea may exist for the Floating,
Vertex to be applied. This is basically viewed as adding D13 and both altitudes as
indicated above. then, if it will leave no obtuse angles. switching the diagonal and
moving one or both altitude basepoints into a viable arca. For instance, in Figure
S5.0.20 veplace DI Ly VI then W ocan be moved hoth 1o the vight feloser towards
By up to the point where angle ZADW would be a vight angle: and to the loft,
no farther than its original position (the altitude hascepoint ). Right Angle Bounds
from D intersected with the altitude basepoints from D and its adjac nt vertex
would delimit the viable arcac if it exists (as in Case 1), Similarly 1t is possible

that V7 can benoved to the left along O D 1o tile Q in more of & “zigzae™ pattern.

This would still result (when it works) in tiling Q into four nonobt - 1 isles. as

i the worst case. Lut more flexibility of vertes positioning wou' i - wained.
Therefore:

Minimuim (best case): two nonobtuse triangles. no ader. - tcos (interior or

boundary).

Maximum (worst case): fonr visht trianelos, using two added mailed cdpe ver
s £ S !
T es.

5.2 Allowing Straight Angles

Assume. without loss of generalite, that o = IX0% and 5 ¢ 90180y The other
case is sunplv a matter of switching vertex labels and angle labels,

Asin Case 1o o = 130° makes 1) a vertex on side VW (ad ¢ can bhe oriented so
that this s a “hase’) of obtuse triangle A 480 where angle 3 is obtuse, 1f 1) = [,
where £ is the altitade basepoint from 13 1o AC then (by Lennmna 1) adding edge
DI 1o Q tiles Q satisfactoriiy, This s a conventent but not 1o likely situation.

More likely D will not lie at the altitade hasepoint of 120 Then joining 1) to 3
will leave one or more of 8. 8.9, and 4, vuruse. It s impossible to have one of
Fy or 45 obit se without having cither 8, or &y, respectively. obtuse as well: for if
neither of &) nor &, 1s obtuse. they must both be rvieht aneles. and so by Lemma |
D7 iy an altitude resolving 7 into nonobtuse angles.



Thus. the possibilities are that adding 243 to Q leaves
e no obtuse angles;
e only angle é; or 6, obtuse;

e a pair of angles ([81, 6.] or [B2,8,]) obtuse.

5.2.1 Using the Semicircle Rule

Obtuse angles remaining after adding edge D3 to @ can be resolved (by Lemma
1) with an altitude through them. Again Lennma 2 can be used to detect obtuse

angles without calculating angle measures. See Figure 5.2.1.

o S

(1

e - .

Figure 5.2.1: Lemma 2 detects obtuse angles: again. resolve via altitudes.

The algorithm tn this case is basically an extension of that for a Case 1 quadri-
lateral, with tests added to check 7. 3, after checking é,. 6..

Add edge DB to Q.
[F (D e ~[pCYy THEN
/™ oy is obtuse 7/
Drop altitade from 1) 1o 1 on edee 075,
/0 Is possible that 4, 05 obtuse. 7/
(e - - Ay THEN
/7 ds s obtuse T/
Dvop altitude from 13 1o 1 o edee V).
ENDIF
FNDIEF
I (e -AB) THEN
/¢ s obtuse 7/
Drop altitude from /2 to {1 on edge A5,
/7 10s possible that 3 is obtuse. 7/
s e D) TiilN
/= 3y is obtuse 7/
Drop altitude from £2 to I on edge /0.
ENDIF
ENDIF

16



Like the previous situation (where neither o nor 3 were straight angles). Right
Angle Bounds can be used to detect obtuse angles. but i s stimpler to use the
Semicircle Rule.

The best and worst case results are the same as helore: at minimun, two right
triangles tile Q. with one edge and no vertices added 1o Q: at worst, four right
triaugles tile Q. with three edges and two nailed vertices added 1o .



Chapter 6

Case 2a: Q has Two Adjacent
Obtuse Angles

Suppose 5.8 are the angles larger than 90°. As in the other cases. the situation
where one of 5 or 8 is a straight angle is dealt with last. Therefore. until explicitly
stated, in discussing Case 2a quadrilaterals it is assumed that neither 5 nor 8 is a

straight angle.

6.1 Introduction

Let @ = ABCD with angles &4 € (W0, 180). @ 1s vonsidered to be oriented so
that edee 13 Vacts as a horizontal “bhase™ (though the orientation should not really
matier).

Stnplyv drawing diagonals leaves obtuse angles - if not at 8;.0,.4; or 7-. then

clsewhere i Q. (See Figure 6.1.1.)

D
i/ /\/Q\
L
B A

Figure 6.1.1: Diagonals can resolve some obtuse angles but create others.

Trying to apply the Nailed Vertexs method to Case 2a fails: to attempt 1t, retain
a diagonal. resolve the other obtuse corner by an altitude. then make the altitude
basepoint (situated on the diagonal) into a degree-five interior vertex by connecting
it to the other vertices ol Q and 1o a nailed altitude basepoint. See Figure 6.1.2, left
ustration. But obtuse angles can remain (.o & in the illustration). so essentially

the Natted Vertex method is unsuitable for Case Za gquadrilaterals



D

B T A B T A
Figure 6.1.2: (Left) Altitude from C marks location of 1" (Right) “Bend”
the BD diagonal and ¥ can somewhat “float™. still tiling Q acutely.

After a bit of experimenting, it was realized that the interior vertex did not
have to be on a diagonal. Consider “bending™ the diagonal: then the interior vertes
becomes more properly a degree-five interior vertex. where four edges connect to
@’s corners and the last edge inust become a nailed added eedge vertex, See Figure
6.1.2. right illustration.

The tuterior vertex would have 1o be positioned so as 1o satisfactoriy resolve
both adjacent obtuse corners of Q. and nouc of the five angles of U conld he obtuse.
Even 90° angles would not be really desirable at 1 as they would be sensitive to
becoming obtuse if the vertoy was shifted at all (Tor whatever reason). Hopefully
the already-acute corners o and 3 ol Q would not be partitioned into ey small
angles. hut that could he only a hope. not a constraint.

However, since the ain is 1o use as few added vertices as possithle, 1t secins to
be even more useful to let the interior vertes =sink™ to the base., i 1y to find a
viabie area for 1 as a Floating Vertex on the hase of Q in Case 2a quadrilaterals,
This uses only one added vertex and adds (at best) two cdges 1o Q. To the tinal
tiling of Q Ly the Floating Vertex method - il it works! - et the angle designations
be as follows (see Figure 6.1.3):

Figure G.1.3: Case 20 angle desigaations for Floating Vertex method.

It is cortainly not necessarily the case that edge V3 s the longest edge. as it
happens to be i most (or allj ol the Case 2a figures herein, However, even i edgpe
BC or A1) is the longest edge (it cannot very well be the top edee C D, Lenma 4

guaranices that altitudes to cdge A2 from obtuse corners € and D exist: so edge
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AL will always be the “Lase™ edge, and edge 4B is where a viable ¢ ca 1s looked
for, in which to place W for the Floating Vertex Method.

6.2 Using the Semicircle Rule

Again, the attemnptis to try 1o delimit a viable area in which to place W by using
Lemia 2. This is tried first because Lemina 2 relies on comparing distances, not
on calculating lines and mtersection points (as an implementation using Lemma
3 would); so it 1s much simpler. If it does not work entirely, whatever does work
can possibly be retained for further nse; those aspects for which Lemma 2 is not
suitable can be attempted to be guarainteed (if possible) by some other approach.

j 3
B R, H

Figure 6.2.1: crangle gnarantees and regions F.H defined by Semicircle Rule.

See Figure 62,10 Similar to Case 1. the intersection of -~ B with base AB
mdhcates the altitude bascpoint £ from corner C: likewise - DA N AB = H. the
altitude bascpoint from /. By Lemma L both £ and /] are guaranteed to exist
on A B since Fand o are bhoth nonobtuse. Again. altitude basepoints F and H
delimit regions F = [8. /') and H = (1. A]. IUis guaranteed that interval [£. H] #
O.as =1 2 C =D (and then @ is o degenerate quadrilateral).

As in Case 1, semidisk -CL = Z may or may not touch or intersect base
AL depending on the geometry of Q. (Recall that by the Semicircele Rule, W e
Z = LCW D = w, will be obtuse.) However. it /s alwavs guaranteed that [F.H]N
(AB = Z) # O, If Z does not intersect A/30 or does so at one point Zy, this is
obvious: it = perhiaps less obvious hut stll trae when 2 =intrudes™ into 4B, so
that V3 - 2 = [ Z o {20 B 102 could “enclose™ [ 1], then none of wy, w,
or wy would he guarantecable (1o he nonobiose).

To see that Z never “encloses™ botle £ and [, assume first that C'D||AB.

Then CH. DI L CD and - 1) = 2 having ("D as diameter. means there is
always space between CF.DO and 2 anil 17 = ¢ and 1/ = D (and then Q is

degenerate). This is very similar to Section 1.3.6 (see Figure -1.3.11). Next, assunie
C'D is vt paratlel o A3 however, CF and D] ave alwavs parallel. so that if one

1Y



of them ~shifts into™ the 2 region. the other will correspondingly shift away trom
Z. Thus one of £ or I may be € Z, but not both,

So there is always a viable area [F, H] N (A - Z) in which to place 3 that
guarantees nonobtuse angles wy,ws and wy.

By Lemma 2.

o W & F = ws nonobtuse.
e W &H = w; nonobtuse.
o W & Z = w; nonobtuse.

Observations:

It is not possible for both a and B to be right angles because both v and & are
obtuse. Thus. it may be that B = . or A = H: but both cannot simultancounsly
be true in any mstance of a Case 2a quadrilateral.

Also. the hicher obtuse corner vertex cannot be adjacent to a right angle base
corner. i.e.. i C s higher than 120 1t cannot be that /8 = [0 or conversely if
D, > C, it cannot he that (V= /70 See Fianre G220 For examplenif ¢ is higher
than D. for angle ¢ to bhe obruses edge ¢ muast fie above the dashed 90° line. So
i 3 =90° D, > C_ . and il o =90°.C, > [),.

' ¢’
|
B i3 d )
Figure 6.2.2: The higher corner cannot be obtuse if it is adjacent to

a right angle lower corner: only the lower obtuse corner can.

To continue trying to usc Lemma 2 o outhne/implenent the Floating Vertex
method for Case 2a quadrilaterals. the idea is to continue subtracting, from (9,
areas in which 1t is known that one ol wi.wu.wn. 01.0:. 5. or 5 will he obtuse,
Whatever is left of @ alter this.is a viable area o which to place 1 sueh that cach
of the angles mentioned above is nonobtinse.

Therefore. as i Figure G.2.3.
e D& - A verifios &) acnte.
o ("¢ W verifies , acute.

e D& (W verifies &, acnte.
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A

Figure 6.2.3: Four semicircle checks can verify W is placed to guarantee
acute angles 6y, 85,7 and 42 - but not where to place W on AB.

o C & & DW verifies 41 acute.

Angles 3 and a are given as nonobtuse. These checks can ecrify if Wois placed
to nonobtusely tile Q. but they do not indicate where to place 10 that is. they do
not delimit a viable arca for W assurming one crists!

6.3 Intersecting with Right Angle Bounds

Since Lennma 2 appears inadeguate to establish a viable area. let us see what use
can be made of Lemma 3. Whatever is useful from applyving Lemma 2 can be
retained; to wit, guaranteeing angles wyp.ws and wy by restricting W& F.H or Z.
To use Lemma 3, orient @ so that AB acts as a horizontal ~base”™ and establish
Right Angle Bounds Y. X] from (" and [V.07] from ). extending them (and the
bascline) as necessary, Sce Figure 6301

- T‘_ 13 Y X [ ’
Figure 6.3.1: Right Angle Bounds [Y. X from ¢ and [V 0] from D.

Anv ol Y. N U or Vomay pass through the sides of Q. as V7 does in Figure 6.3.1,
rather than directly intersecting the base Af3. Of course il the two Right Angle
Bound lines from an obtuse corner mtersect different edges of @, this means they
bracket some vertex of (. as in Figure 6.3.1 {V.07] brackets 3. \When this happens,
for purposes of comparison in using the Right Angle Bound rule. the Right Angle



Bound line (i.e.., DV in Figure 6.3.1) is extended to intersect the horizontal base
line.
The Right Angle Bounds can guarantee angles as tfollows:

o e N.X]N[B.A] = 7,92 nonobtuse.
o W e [V.U]N[B.A] = 0,.62 nonobtuse.

Therefore to guarantee all of v, 72,6, and o, the viable avea is YL N O [V T
[B.A]l. Combining this with the information gained from using Lemma 2.
viable area is

Y. XINn[VUIN[F HIN (A~ 2)

where A — Z is the area left over after the interaction with sciuidisk ') = T as

L}

in Case 1. it may be that AB —~ 2 = cotive edge AB or A8 -2 = [ A 2 |UZ.. B

; : A\
; AEANY
-': : ; : \\\
[3 ‘ n Z'l Zl ; L \\ |
Y F 8 " IIH

Figure 6.3.2: A fairly comuplex Case 20 example with viable avea [, 00,

Figure 6.3.2 shows a lairly complex sitaarion where the viable aeea for 10 s
found as follows:

DXV ) =000 = (VU = VU] = Va4

The larger the arca in which W can be placed while still gouarantecing all an-
gles. or at least guaranlecing as many of thew as possible . of licy cannot all b
guaranteed. the more Hexibility is gained.

In all Case 2a quadrilaterals. lines €Y and D7 ave parallel as they are hotly
defined as 90° with the top edge ("D of Q. As = becomes larger. X dranwes near Lo
Y, and X = )Y when 5 = 180% Likewise as @ heconmies Larger. point Voapproachies
U, and V' = U7 when 6 = 180°.

Also, H = U & CD||A: then also Y = F. See Figure 6.3.3. When ) s
closer to Bl both Y and 7 shift to the lett, away from overlaving points [ and
f . respectively, Thus. D lower than ¢ = DY U)oy [F0H] = [FOU] Shnidlarly, 7
lower than /) = Y. () [#o 1) =Y. 1]
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_— / ik
13 Y o= [ =10y 3 Y F (" H A
Figure 6.3.3: Left: CD||BA = F =Y H=U;1l D, <(,.
Yoand U7 shift left of £ they shift right if ¢, < D,,.

6.4 Solutions for () € Case 2a

At first the interaction between elements of Clase 2a quadrilaterals seems unpre-
dictable. There is a laivlv complex and/or subtle interaction between angle sizes
and cdge lengths, Angle sizes can remain exactly the same. and only edge lengths
(henee vertex position) ditfer. creating cutively different situations. 't is difficult to
erasp the dynamics of this interaction. which is unfortunate. as some understanding
of it would aid in developing theories and algorithims for arbitrary quadrilaterals of
Case 2a. “Experience alone can teach most people the innnense complexity of in-
teractions bhetween many factors. and the mathematical solution of such problems
scems to be e only means of clearly conceiving the nature of such phenom-
ena” ([H1

Despite this. a number of solutions for Q € Case 2a can be shown to guarantee
a nonobtuse tiling. using at best one oo fod edge vertex. tiling @ into three nonob-
tuse triangles. and at worst two adid- . Clge vertices. tiling Q into four nonobtuse
triangles.

tu the following discussion. the notation is that (D = Z. where it must be
understood that the boundaryof Z is an acceptable location for a vertex, creating a
rieht angle. but that the intervior is nof. If Z intrudes into edge <1 B (partitioning it),
the notation U2 — 2 st be anderstood 1o inelude the boundary of the semicircle
—-C'D. but not the interior. so that A8 — 2 = [\ Zju [Z,. B].

6.4.1 Solutions With One Added Floating Edge Vertex

First of all. assume that a viable arca in which to place WWoon A B exists: that is,
that

NX]InVUIN [ U0 (AB - Z) # O

Then W can be placed as optimally as possible within the viable area, tiling Q
into three nonobtuse triangles with one floating added vertex H oon edge BA. By
definition of the viable arca. all angles in Figure 6.1.3 are guaranteed nonobtuse,
and Qs tiled satisfactorily, A few examples are shown in Figures 6.4.1 to 6.4.4. As



can he seen. placement of W was made with some particular aspect of the resulting,
tiling in mind. though of course any location within the viable arvea results i a

(slightly) dilferent but valid nonobtuse tiling,.

]
]
H
i
l
!

|

|

l.-x 15/ l i

B Loat
) Yo I UH 0 H
Figure 6.4.1: Example: viable area = [FU 0] to maximize &0 choose W=
C! €
----- e 1) N P
H V4 __:‘l\ BN / 12
- : i \,
o / / \
\ / N 7
| i \ Ve
/3’/ ¥ SRR /)’/ AV \ \
R U1 W ‘
Figure G.-1.2: FExample: viable arca = 00 = 0 when W= midpoint (P07
( '
0 /\\‘; . T S

[

Figure 6.4.3: Example:r viable avea = {/. 2] O[22, 0] Rights place W

left viable arca: choose W= Z,. closest 1o the = bisector, to maxinize 3

6.5 When No Viable Area Exists

Next assinne that the viable area is empty, that s than



7y

(sbist:n'l-;:r
Figure $.1.1: Same example {viable area = [/ Z2 ) ulZ.17]). Now place W in

right viable area. Choose W = Zy. closest to the & bisector. to maximize 4.

V. XA V.0 A [ HIn(AB = 2) = O

The solution in this situation requires retaining the altitude from the highcr of
o Do it ¢, = Dy, cither altitude. This s uselul as it s guaranteed. by the
following Lemma. to partition @ into a rigit triangle “ear” and an instance of an

“inner” Case D guadritateral and Case 1 is known to be solvable.

Lemma 6: Dropping altitades (/7 and O/ frein obtuse corners C"and D,
respectively. of Q€ Case 2al resolves at least one of the obruse corners into two
acute ansles. Honly one corner is resolved into 1wo ac e angles. 1Uis the ~higher”
of ¢" and D where “higher™ means the corner with the greater length altitude
from base £2-4. 1f both obtuse corners ol Q are resolved by dropping altitudes.

then O, = 1), and the interior section of @ is a rectangle.
N ¢ < p]
D
( TN
s 2N
; o
fv)' ! \
/o i A
AN
ASS Y e 2 N
I3 ’ 1 ]

Proof: Sco Figire G50 Drop altitude ¢F fron: obtinse corner € of Q. and
likewise drop altitude D47 fron obtuse corner 120 We then have two right triangles
as “ears” on cither sides and a quadrilateral in the centres ol which the bottom two
angles are both right. Thus the sumof the top two angles is 1307, Then either both
the top angles in the interior section are rvight angles {and so the interior section

of Q@ is o rectangle). or one s obtose and one s aente. U

For the moment, and without loss of gencraliny. assiwne £), > €, as i the
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accompanying diagrams. The other situation merely involves switching vertex and
angle labels. Therefore assunme edge D is added 1o Q. cutting off right trigngle
ear AAH D and leaving inner Case L instance Qy = H BC 1 where the angles will
be designated (= 90°). 3. obtuse . and acute o= Ox) See Figure 6,522

/

llUu'L 0.5. i\ccp altitude D1 = Cas~c | = B0 tvinain- with = obt e,

As recalled fronn the Case I discission. adding an edec trons € to its Gpposite
corner Hocither {l; resoives ., Tt actte ST TR IR IR E obises ol (i leaves
~1 obtusc,

6.5.1 Proof That - Cannot Be Resolved by 7/
Given that in the “original™ ¢ = ABCOCDY N0 f e A8 2 O,

1L s impossible for sitnation (1) to arises The nest Letsa cod oo <howine thi-

Lemma 7: Ina Case 2a quadrilaterad. the Right Ancele Bounds trom the higher
obtuse corner strictly Lracket the basepoiny of the aliitnde fronn the hielier obtuse
corver to the buse Bl whorcas the Phelit Nele Boaal Do the donar obtiee
corner do not bracket the hasepoint of the aliinnde o tiee Lower ohtnse carner
to the base 340 I ¢ = [)  then ) i I e oo Rael Naele

Jounds may be said 1o hracker the altirade haaepoint

N
Figure 6.5.3: Lemma 70 Right Angle Bounds frons the higher corner bracket
altitnde basepoint [rom thal corncr: not <o for the lower Corner of ()0 i i



i voof: See Figure 6.5.3. Without loss of generality. let 1) be higher than C.
n by Lemna 6. £DCF = 90°, and since £DCY = 90°. Y is Lo the right of F.
Cceadl that ¥ = /' & CD|jAB; then neither € nor D is higher than the other,
and that is not the case here.) Since CFDH (both are altitudes 1o B.A) and
CY|DU T s to the right of H. From Lemma 6, D being the higher corner of Q
mcans that altitude )M partitions obtuse corner 6 into acute & = LADH (since
i triangle AAHD. angle ZAHD is a right angle). aud & = ZHDC. Since by
definition £-ADV = 90° and & is acute. ¥ is always to the left of H. Therefore.
corner {7 higher than corner C = [U, V] strictly brackets #.

As for the lower obtuse corner C. as just mentioned. Y is to the right of F.
When 5 = 180°,X =Y. Butsince, in Q' = HICD. ~; + ¢; = 180°, and &, # 0°.
then -, < 180°. So X # Y. but rather X is to the right of 7. and so [X. Y] does
noi bracket [0 O

This savs nothing abont [(V] bracketing 70 which tmay or may not happen
(in Figure 6.5.3 it does happen): likewise it says nothing about [X. Y] bracketing
/1 or not (which again in Figure 6.5.3 does happen).

Sinee in the “original”™ Q@ = ABCD. DN X [VLOIn A D (AL - Z2) = O.
and €7, < D, the Right Angle Bounds [V} from 2 bracket f {even it €y = D,
awd then {0 = . this can be said to be true). Then it is impossible for this Case

4-

I to be resolved by joiniug the obtuse corner € 1o its opposite corner [1; for. were
this possible. the Right Augle Bounds [Y.X] fromy (" would have to bracket A.
But since in this solution. altitude DH is kept because it resolves § into acute &
and &, then by Lennma 6 0t omust be that D, 2 Coand by Lemma 7 the Right
Angle Bounds [VoO] from 1 Lracket the altitude basepoint 1. Then if Right Angle
Bonnds [Y.N] fromn € bracketed 11 alsoo it mast be thia DN VLU [P H] #
O, This area could never be within 2. for il 11 were. g would Le obtuse. and it 1s
Kriown that g is a right angle. So simply adding edge €711 1o Q - the optimal Case
I solution - in addition to cdge DH (assumiug D, > ). will never solve Q.
Therelore. only situations (i) and (i11) need be “solved™. Sitnation (11) is that
the temaining obtuse angle (52) is towards the “hase™ 420 et Q@ € Case 2a in
which this situation develops be said be @ of Class BASEL Situation (i) is that
the remaining obtuse angle (50 is towards the retained altitude: simifarly, let Q €

Case 2ain which this situation develops he said be Q of Class ALT.

6.6 Guaranteed solutions for Class BASE

triangle ciar AAH D and an inner instance of Case 1 Q) = [T BCD. with 5 obtuse.
{The mirror reverse case occurs when £, > (') and altitude CF s retained to
partition Q inte right triangle car ABFC and Case | Qp = AFCD with 6 obtuse.)

Asain. assume (< 2,0 and altitude DI s vetained to partition @ into a right



Since ~ < 180°.Y # X: then [Y. X} is on A this information. plus knowing
that H is strictiy to the right of X (by detinition of Class BASE ) and hkewise )
is strictly to the right of 7 = a viable area exists on A o whinch to place Woand
tile Q' = 11 BC' D by the Floating Vertex method. Even thongh o nailed vertex {an
altitude basepoint) has to be added, the other added edge vertex 3Wovan loat 1o
some degree (depending on the extent of the viable arca). This tiles @ into tour
nonobtuse triangles. at least two of which ave right triangles.

It is gnaranteed that a Floating Vertex solution exists for the inner Case |
instance. that is, that a nonempty viable arca exists on £ {or £V the mirrvor
reverse case). To sec this. recall that X # Y unless 5 s o stranght angle (whicho it
has been assumed is not the case: that situation is dealt with latery: <o if the viable
area for Q; is [V, X1, it is therefore nonempty. When the viable areais [V Z,]0 this
also is guaranteed nonempty: see Figure 6.6.1. As base S5 rises towards the top of
Q. both Y. Z:) and (4,07 shrink. However, sinee €Y v o 200 L oD and 2
has CF) as dianmerer. it s impossible that seinicindde 2 conbd ianersect €7 or DU
At worst. Y = Z, only when Y = ¢ = Z,0 and then ¢ s degencrate: similarly
with respect to Do and Zy Thos i the viable aveacis 1Y D200 000 also noncmpty.
So solving the inner Case 1 by the Floating Vertes method is aluaus possible.

e
//\\ / \\\
A TRIT I AT T T T
T __‘_\__.,__/ =

Fioure G.6.0 As 34 edec visess P20V, F 000 Shvindc bai do not disappear,

\\

Y

1 !
Figure 6.6.2: Place Win viable arca (Y. 2] = 2 vight ¢ 2 acute tnangles,

Fignre 6.6.2 shows a completed tiling for the example in Prgmre 6520 10 s

placed at Z,. as it is the closest point i the viable arca vo the = bisector. so angle

= LCHTD = 90°.

59



fherefore, o guaranteed solution s to add vertices [oor M oand W oto AB.
whete the ahitnde bascepoiut £ or Hois nailed. a1 can floar (within a viable
arcicas delined )z and three edges (CF or DH . and CWL D) resoiving Q into four
triamgeles (a1 least two of which are right triangles).

6.7 Guaranteed solutions for Class ALT

Assuine ', = D, and. arbis arily, altitude CF s vetained to create the inner Case
1 G, = AFCD. Bt ¢, = ), = CDJJAS: then @y is a trapezoid with right angles
[AFC and 20 DA, Then it is impossible that adding DF to Q, would leave angle
LF DO = 8, {towards retained altitude C' F) obtuse. since triangle AFC D is a right
triangle (with right angle 5 = ). So for @ € Class ALT of Case 2a, C, # D,.
Therefore assune withont loss of generality that ¢, > 17,0 but do not relain
altitade CF o form the inper Case 1 as before: just “sketel in™ the altitude (for
reference. Since (O € Class AL Right Angle Bounds from the (lower) obtuse
corner 12 do not enclose the altitude basepoint F. Thus Right Angle Bound C DU
mrust be sueh that 17 is 1o the left of Fo Also. YU = Vo left of £ also.
Then. & < I80° = (7, = Vo that i Voeither overlavs {7 {0 a s a straight angle)

TR R ll.\ to the Teft of {7 See l'-l.'.glll'-.' .7 1.
4
A~
ya \\L)
VTN
‘/' ' ' | \\\
s ™
/ f ' AN
7/ ;- ! ~
/ ! \
Ve ‘ ! ~
YA 4 \ AN
/ - )
I3+ L R
[ (I I

Fieure G700 Class VLT Fdees €78 4+ D leave o, towards altitude C'F. obtuse.

Plins in Class ALY {aud this may be taken as an alternate definition), Right
Angle Bounds from the obtuse corner that is nof resolved by its altitude (this is
the “lower™ obtuse angle). e on V3 steictly witliin the vegion from the basepoint
of the other altitude to the corner of the cut off right triangle “ear”™ of @Q; that
is. when O, < Dy Right Augle Bounds {Y.N] [rom ¢ lie within H U [, D] (not
Shown): when Dy, < 0 Rieln Angle Bonnds (V207] frome O lie within F U [B.C]
(as i Frgure G701

Withont loss of generadity. assame €, = 1), Tt is known that 1 € (VLU IN[YL X

ouarantees angles o 0o o and 20 1o bhe nonobtuse. Y s ot he left of {7 on A B sirice

LU



CY||DU and X is 1o the right of F'since £B3CF <907 50 O VU] YN CF.

By definition of F' as semicircle = BC intersected with edege AW ¢ (BUF) =
angle /BW C = wy is obtuse. Then, since the sum ZB8W T + 200D+ 2DW A =
wa 4w +wp = 180°. aud w is known to be obtuses wo 4 o0y <0 90Y: 50 both oy and
Woare acute.,

Therefore. wi,wy are guarantecd acute by placing W PUN] Vo] FL

Thus placing W in the viable overlap Y, NN VU] € F (for the mirror case,
H) guarantees angles &, 82, 51 2. o, and oy to be nonobtuse. (The mirror reverse
situation is not discussed. but it shonld be obviously the same with exchanging,
of vertex and angle labels. notably wy = ) This tiles @ iito three triangles
(see Figure 6.7.2. left ilustration): nonobtuse triangles AW D and AW and
obtuse ABWC with £BW C = w3 obtuse. By Lenuma by is casily resolved by
an altitude from 117 to T on BC. as in Figure 6.7.20 right illustration. ((The mirror
reverse situation would place 77 on A D)

o

Al D

/ & ‘\",";{\

-~ / h “
VAR VN
) / /
. / 4 e
. . / / o ‘:;/ S
\~.\ l // J .
/ ) // ‘\'\ /\\\“"I .// \

Y N A e W
151 S0 Bl /3 i A

Figure 6.7.2: Left: Place Woin V07 € F o= o still obrose,

Right: The solution for Claxss ALT: use Floating WWoand semi-nailed 70

Thus Q in Class ALT is gnaranteed 1o he nonchiusely tited fnto fonr tianples.
at least two of which are right triangles. nsing added edge vertices 10 on A3 and T
on BC (or AD). Since the position of Hocan Hoat within Yo N [VoO] Gassining,
8, < 180°). and the position of T is solely dependent on the position of 10
is only “semi-nailed™; that is. the positions ol both vertices are flesible to some
degree, with 77s position dependent on H s position.

6.8 Other Two-Vertex Solutions

A couple of other solutions arc presented here: they are as “optimal™ as the pre-
vious ones with respect to number of triangles used to tile Q. and some of them
may be simpler to implement. since they rely on altitude hasepoints (casier to cal-
culate?) than Right Angle Bounds, Also. when flexibility of position for the added

G



edge vertices is an issue (during the process of “matching™ added edge vertices in
adjacent quadrilaterals), one of them may be “more suitable” than the previously
discussed methods, At any rate, the “extra”™ methods shiow that there isa “choice”
of more than one solution.

6.8.1 Using Altitudes Exclusively in Class BASE

Assume that (', < D, and so altitude DH has been vetained. Adding altitude
("1 1o the inner Case 1 Qy cuts off a right triangle ear L0 BC . leaving yet another
inner Case | QY = HEFCD. still with ' = £17C' D obtuse. However. then Right
Angle Bound FCX is such that CX[[AB. and thus H € [¥. X]; so adding edge
C H to Q assuredly resolves the remaining obtuse angle LFCD. This is illustrated
in Figures 6.8.1 and 6.8.2. This tiles @ into four triangles. three of which are right
triangles. and adds two nailed vertices I and Ho1o edge AB.

1
\\
............................................................. \
Ny
p L N
B Y H A
Figure 6.3.1: Keep both altitudes Cf and DI = two triangle “ears”

+ inner Case 1 = [1FCD with 5 obtuse: but now € [N Y.

|

!
‘ \A\AL \\
B i

Figure 6.8.2: Siuce /1 € [N Y] resolve 5 with a diagonal.

Or. this can be seen equivalently as adding edge ('] to @y = HBCD, and
resolving obtuse 92 = ZHC B by altitude C'F; this is then using the Nailed Vertex
method.

This choice of solution (looking at it either way) is guite unappealing; essen-
tiallv. it is keeping both altitudes and joining cither the remaining obtuse corner to
its opposite corner in the inner Case 1 (the altitude bascepoint of the other obtuse
corner): or. if 'y = D, and HFCD is a rectangle. either diagonal can be used.



Therefore, this guaranteed solution consists of adding hoth altitude basepoints
F and H to AB, and three edges (DH.CF. and CIH or DI, resolving @ into
four triangles (at least three of which are right triangles). No caleulation of Right
Angle Bounds is necessary.

6.8.2 Placing 7 on Top of ¢}

Assume that AB —Z = [4, Z,|U[Z,, B], and that YO N[OV OO E ) € (X0 Z2).
Then placing W in viable arca [Y, X]n V. U] TE U] would leave oy obtuse, hut
all other angles would be guaranteed nonobtuse. Another solution in this sitnation
is to place 117 within the viable area € Z. and the remaining obtuse angle (o) can
be resolved by dropping an altitude through it to a nailed vertex 17 on edge 7).
This tiles Q into two right triangles (created by 7') in the middler and two acute
“ears” on either side. This is itlustrated in Fignre 6,53,

g !

’ — -5 - - \
/""(T:_ ! Y
[T \
/ TS _\ﬁ.‘;\.f:' - \‘;

151 -

Figure 6.8.3: Left: Place Woin viable aven theres VON T 200 Teaving oy obtuse.

Right: Resolve w, with altitude to 77 an €71 froneh more conad triangle sizes),

Using added edge vertices Woon AL and 17 o O is avadn a0 “seimnd patled”
method. in that the position of W can tloar within the viable avea and the position
of T is dependent on the position of W This tiles 2 tn fonr tianeles Car feast two

of whiclo will Le right tricngles),

6.8.3 Allowing Straight Angles

Assume, without loss of generalityv, that = = I80% and o € (900 Ix0). The other
case is simply a matter of switching vertex labels and anale labels,

This situation is exactly that of Lemma 2 in [BEYTL Do the worst case. (BEEOT] s
solution results in five right triangles, using one nailed imerior vertex and one naled
edge vertex: sce Figure 6.3.1. I the best cases (BEYT S solution resndis i three
right triangles. when the perpendicalarto B¢ Trom C and the perpendicuiar to A1)
from D intersect very conveniently at a point on 42 Gwhich we can call W see
Figlll'(‘ 6.8.5 (”l(‘ tersection voint becumoes the narled added t'(l},},c‘ VOTTeN ). 1 s

is a convenient. but not to - Lhedel renmstance. Otherwise, IBEOH s sobition
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results in four right triangles, using two nailed edge vertices: see Figure 6.8.6. In
each sitnation. the added nailed edge vertices are always guaranteed to be on the
“Lase” of the obtuse triaugle. where the “base”™ is defined as the edge opposite the

obtuse angle.

1 T A B TE A
Figine 6.5 1 [BEI] worst case. Left: Perpendiculars romn C and Right Angile
Bound ADV meet at M. inside triangle; add edges BA. C M. DA and A A:

then resolve obtuse ZAM B with altitude. Right: Result: 5 right triangles.

.
A

D
/
B >,

Figure 6.83.5: [BEY] hest case. Poerpendicular from ¢ and VDV intersect on
base edge AR add that as a nailed vertex o Result: three right triangles.

AN A oW H A
Pigure 6.8.6: [BEY1] “average” case. Left: Perpendiculars trom € and D
don’t meet inside triangle: Right: add CX N AB = 11 and altitude DH.

Right: Result: four right triangles. using two nailed vertices.

The solutions presented in this chapter are all easily extensible to the case of a
straight angle. Figure 6.3.7 shows the situation where a viable area - in this case,
since v = 180°, then X = Y and a viable “spot™ is all that remains - exists as
No= Y o= Voo Hn LN Placing Woar N =) tiles @ o three triangles,

of which two are right triangles. using one nailed vertex on the “hase™ edge. The

(§8!



difference between this solution and that of [BES1] is that in {BEOT]L the best case
solution only “happens™ precisely when X =Y = V' siwce [BEO1] onlyv consider
one right angle bound line. In the solution presented heve. the best case solution
1s possible whenever X = Y € [V.U] N [FL U] which is much more likely to occur.
Also, the [BEYI] solution of three right triangles alters subtly to become two right
triangles and one triangle that is a right triapgle £ N = Y = VO Lot an acute
triangle otherwise.

D D
™ . Y AN
s ( e / Tl §
- ‘/ -~ .
i l / e e ,;.,;.,_\:::_
B FUVXH { A8 i A

Figure 6.3.7: Left: Viable "spot™ = N =Y € D0 [Fo ] o use 1 N2 Y
Right: Best case: | nonobtuses 2 right triangles. Wstll ~nailed™ ar 90v 1o o)

Figure 6.8.8 illustrates the Class BASE solution. when N o=} lies ontside of
V.U [P H]: altitude DH s retained since ) < D0 creating an inner Case |
where adding edge CH would leave 45 obtuse. The solation again s to c.oose

H = X = Y. a solution exactly the same (in this sitaation) as that of [BlY1]

D 1)
R oA
¢ 7 s~ PEaye
B FXVYOH [ A 13 W A
Figure 6.53.8: Letftr Class BASE: VO] Ng= Y ) = Ot add DH - inner Case 1

adding C/1 would leave =2 obtuses Right: Class BASE solution: W viable
“spot” = four right trianeles nsine two natlted vertices on V3L

Figure 6.8.9 illustrates the Class ALT solution. when N = ) Hes within M.
Since the Right Angle Bound lines X = ) and DV intersect within QL it s

here that {BE9L] would add that intersection point M to Q and enud vup at its worst
case solution (five triangles. one nailed edge vertex and one nailed interior vertex).

Using the ALT solution, we add W= X =1 € H. and edges W and WL Then
the remaining obtuse angle AW D = o is resolved via an altitude 1o 7 on A1),

This vesults in four right triangles. using two nailed edge verticesowhich ave added
to diffcrent edges of Q.
Observe that in all solutions of Case 2a where one of the ohitnse angles is a

straight angle. none of the solution methods partition the alreadyv-acnte angles o
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Figure 6.8.9: Lelt: Class ALT: C's Right Angle Bounds X' =13 (= viable spot)
fic in ‘H; Right: Class ALT solution: W at viable “spot”™ € H -+ nailed altitude
bascpoint 1" on AD =- 4 right triangles. 2 nailed vertices. one each on base. side.

and # - not even the worst case (ALT) solution. [BE91]'s worst case solution does
partition both a and 4. but perhaps this is considered a reasonable price to ensure
that only one nailed edge vertex is addeds and 1o guarantee 1o which edge it will

be added.

6.8.4 Conclusion

Guarantecing a solution lor whatever situation of @ € Case 2a has been accom-
plished.  All the solution methods are relatively simple. None of the solution
methods partition the already-acute angles a and 3 of Q. The established results

ares

Minimum (best case): Three triangles tile Q. nsing one added Hoating vertex
on cdge /3.

Maximum (worst case): Four triangles. at least two of which are right
triangles. tile Q. using two added edge vertices: either

o lloating vertex Hoon 8 and nailed altitude basepoint £oor /1 (on H3).

o Hoating vertex Woon A8 and semi-natled altitnde basepoint 17 on a side”
A or Bom ol Q.

e tloatine vertex Mon V3 and semi nailed altitnde bhasepoint 17 on the ~“top”
cdge D of Q.
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Chapter 7

Case 3: Q has Three Obtuse
Angles

Let the obtuse angles be 30~ and o o clodkwise order. Note that in Case 3.
there cannotl be a situation where any one ol the obtnse angles s o steaight angle:
ot herwise there conld be at most only one other obtuse aneles Pheretfores in Case
3.0 € (0.90°%). and cachh ol Jo~ 0 & (907 IS0%0,

A Few Notation Updates

The given quadrilateral is Q. and its houndary edges (vollectively) are denoted s
9Q.

[n Case 3 quadrilaterals. using Lemna 2 (the Semicirele Rule) will create a
semicircle with a given edge as a diameters any sach semicirele will be designated
as <=1/ . where [ is the edge (or line scgment) that is the diameter of the semieircle.
Using Lemma 3. with three obtuse augles. gives six Righn Angle Bounds vertiees
on Q. These will be [V, X from ¢ and (V0] frome 10 as betore aned [S0R] from
B.

Since none of the corners in o Case 3 <|ll&ull'ilnh‘l'nl i followed Dy two acute ans
gles. Lemma 1 cannot guarantee that any altivndes will exisr s most lkely that
some will. but that will be by chance, Partitioned angles are not always subscripted

when concentrating on a subpolvgon that inchides the partitioned angle.

7.1 Using the Semicircle Rule

We can first see it any use can be drawn lronn applying the Semicirele Rule plus the
Right Angle Bound Rule. First. consider how the ddea of one interior degree-five
vertex plus one added edge vertex can be transterved i0at alloto Case 3 froim Case
2a where it was originaliy tried.

G



To do this, a viable arca within @ must be established in which to place a
central vertex £2, snch that joining I2 to cach of the corners leaves no obtuse angles
At Lhose corners. Since this leaves £ of degree four. either theve are four right angles
at £, which is acceptable but not preferred: or there remains at least one obtuse
angle at 2. which, as before. can be resolved by dropping an altitude through it.

Designate the angles at vertex £ by naming LBEC as ¢, and the vest ¢z, ..., €
o cockwise Tashion. The size of 1 depends on how many edges must be added
to 1 (and joined 1o vertices added elsewhere within or on (2) to adequately tile Q.

If I+ can exist at the intersection point of four semicircles that have edges of (2 as
diameters, then [5 can be of degree four and @ is tiled into four right triangles. See
Fignre 7.1.1. There cannot be an area within Q that is outside all four semicircles,
otherwise the sum of the four angles at £ would sum to < 360°. Therclore £ can
he outside of at most three semicircles (and so it will definitely be inside one of
thernn).

Fieure T.1.1: Case 3 where degree -1 overtex tiles (2 but usually this won 't be so.
&8 <3 Z A

A more workable idea would be that £ should be outside as many semicircles
as possible. Placing £ within the fourth semicircle creates an obtuse angle at I,
in the triangle consisting of the edge of Q (whicl is the diamcter of the fourth
semicircle) joined to £, The most obvious method to resolve this obtuse angle is
via droppi = an altitude to the edge of Q 1o partition the obtuse triangle into two
right triangles (by Lermuma 1), adding a nailed edge vertex .

Basicallv. the above (inelegant!) method consists of choosing one edge of Q to
be the recipient of an added nailed vertex HWosinee £ will necessarily be of degree
five (at least). Semicireles from the other three edges of @ are calculated and a
spot outside all of them found: 2705 placed there. conncected 1o cach corner of @,
and an altitude dropped from £+ 1o the chosen edge of Q to vesolve the obtuse angle
At 1 Thus. four “chuices™ of solution are innnediately available. LEach situation
is illustrated. in Figure 7.1.2 to 7.1.5.

If nothing else (altheugh inclegant) it docs provide for some choice in the place-

ment of the added edge vertex. should such flexibility be needed.
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Figure 7.1.2: Choose cdge B for Wy place £ € (Q - A3
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Figure 7.1.3: Choose edge C'D for W place 17 € (Q —~ (Y8 G-

A .
Figure 7.1.0: Choose edge A D for W place e (@ — 1 W
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A Vi
Po Chouse edge 43 for W place [2 € (Q — (- BCU--CDU--DAY).

Figie 7.

7.2 Adding the Right Angle Bounds

However. it is not entirely suitable as is: the flaw lies in the fact that. in Cases
Uoand Za the Right Anale Bounds frony an obtuse corney ol O dlways encompass
part of the boundary 9@ of Q. In particular. for ('ase 2a. the intersection of Right
Angle Bonuds from the two obtuse angles alwavs only “mattered” (in devising the
Floating Vertes snethod ) long Q. In Case 3. however. the Right Angle Bounds
froms three obtise areles will intersect so as not o include any part of 30Q. but
rathier intersect i oo region entirely oo fun Qo Siuee s obtuse. the Right Angle
Bottis from 73 o not o dude edges 02 wad BC except 2 vertex B Likewise.
since 5 is obtuse. the 2ight Augle bounds from €7 do nat include edges BC and
i) oexcept at O Fiaally the Right Angle Bounds from /2 do not include edges
C 1 and DOV exeept s ) Phicrefores the intersection of Right Angle Bounds {rom
13.C and 12 st be o the intertor of €.

The resilt of this, as scen in the exanple of Fignre 72,00 15 a strip. or arca.

alone JOQ that does ot He within the irersection of Le Rieht Nugle Boands from

all obtuse aneles. Yer all or part of fmay well e owlsed: three semicireles drawn
from Uiree edees of (. wheres again, the fonrth edge of ¢ has been chousen™ o
be the recipient of an added natled edge vertes W The area within the semicircle
fhat has the “chosen” edece as Jiameter, is not considered to Le “invalid” placement

arca Tor the added interior Homting vertex £

7.2.1 An Algorithin (Guarantee Not Included)

Figure 7.2.2 shows that placing A outside of three semicircles may sull place it
outside of the intersection of the Right Angle Bounds of the three obtuse angles.
So the above method based solely on use of the Semicirele Rule is not guaranteed.

Recombining this knowledge with the previous “nelegant” idea.
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Figure 7.2.2: I outside three semicireles but aiso ontside Rieht Angle Boands



First. ~choose” an cdege to be the recipient of the nailed added edge

vertex W
(Ii: Figure 7.2.3. this is edge A
Fstablish the largest possible area outside the three scmicircles from

the other edges of O
For example, in both Fignres 7.2.2 and 7.2.3. this arca is(Q—-(-BCUCDU
<1745, where it st be remembered that the semicirele boundary is a viable
location in which to place a vertex (it creates avight angleg. bu the inside of the

semsicirele tor disky is nat part of the viable arca {(tha jocation wonld create an

obtuse angled
Establish the Right Aungle Bounds for each obtuse corner of @ and take
their intersection. (This will be an area within (Q.)

Take the intersection ol the arca within all Right Angle Bound lines.
and the aren oulsode the three scinidisk=. Call this area Al (Assume.

for now. that A s nonempty,)
Place £ anvwhere within A (possibly to satisfy some constraints re-

garding minimun angle size. or triangle sizes o minimeamn distance

of IY from an edge of ).
Drop an altitude from 727 to the chosen edge of .

Foand one naited cdee vertex W as in the example of
}

e

This tiles Q int two right and three nonobtuse (right or acuted triangles. using

cees biterior floating v

Figure 7.2,
s (
A
NS .
N

A
N (Q— semicircles))

Figure 7.2.3: Choose eag

canteed that A s nonempty, it is. another edge must

[C s by ne s g
s “chosen™ as the rectpaent edee for 11 and the attempt repeated of taking the

|



area of intersection within ol Right Angle Bound Hnessand the area outside one
new and two of the previoos sennidisks.

Using an interior degree Hve vertex, aiid an altitusde 1o resahve any rennani g,

obtuse angle 1s sinply the most chvious thing 1o dol abthoueh melesant.

Qll('x’tiuxl\'t

o Is it guaranteed that o viable area always exists? Noo {192 has suggested o
counterexample where a viable area does not existssee Fipnre 72000 Whet her
a viable area exists ur not appears heavily dependent on the geametry of Q.
the relationship between edge lengths, vertex position. and angles of Qo until
this clusive relationship can be identitied. it cannot be nsed only observed
in action. so to speak. It would be useful to have some criteria {other than
the result of an actual atiempt to find a viable area) based on thie geometry

of & quadrilateral instance. to "pre-screen’ or fuether classify quadnlaterals,
| ANRY|

2. Why partition corner (4 IUs already acatel T can o shoudd be Jeft alone,

Figure 7.2.4: No viable arca exists inside the Right Augle Bounds
intersection {(the inner trapezoid) and also oufside 3 sermicireles.



792 A Guarantced Algorithm for Class 1 of (Q € Case 3

Rather than answering these questions at the moment.another tack was found via
which to artive at a enaranieed nonobtie triangulation for o certain class of Q €

Case 3.

Lemma 8: Joining the two opposite obtuse angles of an instance of a Case
3 eadrilateral resolves AT LEAST ONE of the opposite obtuse angles into two

acute angles.

Frgure 7.2.5: F 8 and at leist one of 7, and o are guaranteed acute.

Proof: Sce Fieure 7.2.5. Add edee 1212 10 Q. partitiontisg (2 nto two triangies.
O = 4 O 4 o
Label the two aneles nearest Coas & and F0 the others as oo 520 Smice is obtuse.
& ! H H

3y & T 9. so both ey = a4,

Anele o is acute and > 0% therefore 3, -+ 00 < is0c. Thus both ol 42 and
O ovannol b obtuse: cither they are Loth acute o ol s acite and the other is
ubituse.

Therefore. adding edge 113 10 (Q resolves at least one. and possiblv both. of 6

atid nto two acute angles, O

Figure 7.2.6 illustrates the three possibilities o Lenona = In the center and
right drawing. the angle sizes are exactly the same. and there is only a shift in the
vertex positions (hence in edge length) that creates the entirvely different situations.

Given this. let Class | be Q € Case 3 such that adding edge DB to Q resolves
both & and 3 into acute angles: let Class 2 be Q € Case 3 such that one of 35 or
oo reinains obtuse after adding D63 to Q.

Then o suaranteed method 1o tile ¢ € Class 1 with nonobtuse triangles is
casily Tonnd. using one added intevior vertex and one aled edge vertex. It s not
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Firenre 7.2.00 Add {748 1o [ Fooeti. L re=obved qnto acite aneles. & not:
S resolvied. 9 ot

Center: borh obtuse angles resolved: Riehit: o

attractive, since both, vertices are nathed s bont i s sananteed . dand <o s o thetter)
fast resort than before,

')
o

Algorithm for ¢ £ Class 1 of Case
A l'llj_"l‘ 1317 vo (_'). R e~olves both o aned ¢
to oo 37 (Resolves - 0

Drop analtitnde fromm €
Add edee V10 Q.
',.lHL',il'\ clol Vv and AV

Ndddine edee £V creates two angdes ot
sinee 26D s o strateht aneles cithier they ave botle vielo angle-,
GF otic b~ aciibe gl this athies e ol
I an obtuse anele renin-, drop o dtiende frone fovbvonel nnoro HF
oteither f5 Vv or 1)L
i Preare 710

Ghor tailod vertes
ad

Result: Fourright trianelesowith one e
Plour riehn trianeles, with one
T s an example of the litver situation

pradled tterien

CONLre): ur. LHe Honohise ain
one uatled edge vertex. Fignre 7.2
Fven for Q € Class b ool Case 30 this solution hos some dighly noattractive

features:
An interior degree four vertex. as explained o Section 330 0 not really de

sirable. heing very sensitive to any chiange o vertes or edee position.
> Pspecialiv o nailed interior vertex,

2. 1f not the above. fwo nailed vertiees
Having a nailed edge veotex s bad enongli!
But again there

Idea: Bend the 81 diagonal downwards, ~o fet [0 i,

would he the problem of finding o viable area within whicl to place [97 5o



b 7.7 00 03 resolves both ¢ and I there ds casly
o srstoec s nonobtuse triangulation aleorithon.

angles are suaranteed: this turis out workably {when such a viable area

exists) bt ineleganily,

3 T his can very casily resubt ina wede range intriangle sizest compare triangles

AW ED and DAL o Figure 7.2.7.

1 Somne ¢ olrcmddy small angles can casily result. as angles 28B40 LW ED in
./ [ . o
Fignre 7.2.7. Again. why partition corner 47 [Us adveady acute! Tt should

he deft alone!

7.3 A Guaranteed Algorithm for Class 2 of @ €
Case 3

At this point ot seems one st be resigned 1o adding more than one interior and
ot edee vertes for @ ¢ Class 20 The idea ol adding more interior vertices is
somewhat mose appealing than adding more edge vertices. if the interior vertices
may less directly affect the number ol edge vertices that must be added (and
more importantly, perhaps affect less the completed iriangulations in adjoming
quadrilaterals).

Assume edge 2D s added to Q € Class 20 then an altitude is dropped through
5 froun O to £ on BD. This makes triangle ALBD i a Case 2a ~quadrilateral”
sy = ABLED where one of 3, or & is obtuse. and angle £BFED = ¢ is a straight
angle. See Figure 7.3.1. The solutions in this casce are found in Section G6.8.

The solutions for Q. are detailed in Section 6.8.3. [t may be possible to tile
(22, into three nonobtuse triangles. with WWin a viable area. &5 in Figure 7.3.2.
right illustration. @z, in Class ALT or BASE are tiled into four right triangles,



Fianre T80 200 = CF s Lelts Case Zaowith Spoc - 0907,
l{l‘_'..hl (..'l,\(‘ ';",_ \'\ill': 3 PR [

using cither two nathed vertioes on the sanne cdees o on adjineent cdees tsee igare
G.S.S and 6.0 An exarnple of Q4 i Class AT B shown i Figure 782 ol
Hlustration. With the top iwo vight triangles AL C and SO this tides ()

altogether into.s at besic fi e irianeles aned at worstoax vieht triangles.

7.4 Nirre Elegance, Less Certainty

A less curnbersone approach mighit be 1o cat off the “ea” containine 4 {so that
already-acute o can be lefUnnpariitioned ) adding two vertices 1o the sides of (e
then se ot degree tive vertes inside the npper pentagon. See Fignre 70T which
also shows the angle designations in the fivisbed viline GF woch can be acconn
plished).

The advantages for which vo annin developine this ~olution are:

o Lot interior vortex £ Hoat within a viable area inside pentagon SO DU
a viable area can be fonndn tNoter 7 92] bas =hoave than this s not always
possibles see the example of Fienre o200 Hhovever. the idea to develop.
should this approach scund worthwhile, is o Lo abie to presscreen or apply
some eriteria to Case 3 quadrilaterals. to iden v liely candidates for ths

approact. To date this has vot heen researched.)
o The side vertices B and ¢ should be mas Hloating as possible”™ as well,

This idea scems very attractive. but is only partially developed. As bhefore it
is not gnaranteed that a viable arca lor £ cun be found: if it can. a sequence of

Sernicirele Rule and Right Angle Bonnd Rule checks can verify thar 1Y and 1 are



W

|
1
ALT: solve with 11 = N =Y (& H)and 1 on Vi Rights Qg has a viable

Figure 7.3.2: Case 2a solutions for (2o, € Class 2 of Case 3, welt: (0, € Class
mspot” N =1 € [RoSIo i) = 40 place W there to tile Qu., optimally.

Figure 7.1.1: Left: A “nice idea™ (if it works!): Right: Angle

designations in finished tiling (if possible).



placed adequately to tile @ nonobtuscly. but o not indicate where to place 1V
aud T An iterative or intnitive approach seeims. o far. to work bestt Al the
information to hand is not nnderstood / nrassaged T well cnougll into one o more
crules” 1o either guaranteed if a viable area exists for f70 o 1o state granbien
ously) exactly where the side vertices should be placed, Due to space constraints,
the partial results are not presented here.

7.5 Conclusion

Lemma partitions @ £ Case 3 into Class T guadrilateralsswhere adding B lean

a Case 1 ~quadrilateral”™ @y = ABED where the only obtuse angle i NIV
and into Class 2 quadrilate . als, where adding 130 leaves i Case Za “quadrifateral”
Qo = ABED. where vne ol 3, ur s obtuse, and ¢ = P80

Scection 1.2.2 detatls the ~olation Lor (0wl Liest (2, v tiled into two right
triangles. at worst o hiree nonobtnse triangles, @t least two of which are right
triangles. This tiles the “pavent” quadrilatead ¢mto Bost Toin viehit trianeles,
and at worst five triangles. of which Tour aive vieht trianeles.

Seetion 6.8 details the solution for Qe at bhest Qo v tiled into three trinneles.
of which two are right triangles: at worst (7., i~ tiied into fom vieht trisngles. This
tiles the “parent” quadrilateral Q o Lest hive teianeles. ol which fone are rieht
triangles: and at worst. six cieht trianules. Te s an open problem to deterne
whether live nonobtuse triangios sullice Hhie worst Case

From even the few examples in this chapter, it s castlhy observed thar very
sinall angles and very smaldl Prianetes can requentiv oo i scec==lulT tihues,
An attempt to find “icer” method ends up o Tar) rels e o intnition i placing,
vertices {(difficult to incorporate o a cotnpnter prograst) or Herative. Tposition
test-reposition as necessary” methods. At least one stinnbline block appears to
be the lack of criteria upon which to base a classilication of (2 ¢ Case 30 the only
criteria found so far is that from Lemma S

Some exploratory work was done on finding subcases 1020 o Za within Case 3
quadrilaterals - that s, adding an edge or cdges to (o part Hion (2 into instances of
Case 1. 20. or 2a. for which a solution is kiown: then the subtilings wontdd (1dealiv)
constitute a nonovbtuse tiling ol the Targer (2. Phe variety ol ways in which other
Case instances could be found within an instance of Q€ Case 3 was somet hine of a
surprise. This was an opportunity to see how woll the solution methods for Cases
1. 20 and 2a lent themselves o the ~matching” problem. where vertices added
to edges shared by more than one guadrilateral must be “required” or Tallowed”
in both quadrilaterals. to maintain an existing nonobtose tiling i both adjonnng
quadrilaterals.  Again. due o Hime and space constraints. those results are not
reported herer the little roscearch done in this arca served mainly to indicate that
the problem can be quite tricky!



Chapter 8

Applications and Concluding
Remarks

This chapter consists of a “real” example drawn from [186]. a list of topics lor

farther research. and some concluding remarks.

8.1 “Real-Life” Application: An Example

This section presents a “real” example drawn from [J36]. 1o which results in this
thesis are applicd. or attempted to be applied: in partitioning a nonconvex polygon
o conves subregions. @ pentagon. rather than a quadrilateral.is encountered, and

the solutions in Chapters 1o 7 were not really designed for pentagons!

S~

J £ b
l

o/

| 13 -

CFigure .11 Exanmple 1 lrom [J86].

Figure &.1.1 is taken from [J86); a nonconvex domain hea been partitioned
imo five convex subdomains. and cach subdomain is to be tiled. Of course each
subdomain is te be tiled with triangles of a certain size. varving across subdomain
Dounearies by a set limit. so that the final mesh over the arca is smoothly graded;



but for now that constraint lias been dropped. and the only ainiis to see how it goes
applying the techniques learued in rescarch to this input to obtain a suaranteed

nonobtuse tiling of the entire nonconvex domain.

J JN J_
{ \ -/ N !
\
\
\
\
\\
' \
H Y- =1 1
N / Ny N

Figure 8.1.2: Polygon 1 = quadrilaterad H010N: e fN D I T ndes L

Conves partition P quadvibocral AO00N D winh anale o W obtuse. See
Figure 8.1.2. Note that o/ < YO N] = Right Angle Bound- from o so joining, [
to J resolves ZINH T into acnte aneles. requiving one added edge and no added
verty oy,

ax partition P2 is pentagon VG L with four adjacent obtuse angles,
Ces ~ading to the last forur vertices: therefore the obtse aneles arve destenated

Ao At that order, conererclockwises Sec Pigure S04

N

Figure 8.1.3: Polygon P2 = pentagon VS 1] AL with four adjacent obtuse angles,

To “solve™ this polygon we attemnpt to hind a viable area Tora central degree-five

vertex by laking the intersection of Right Angle Bounds frov the obtase angles,

N



which will be a region inside thie pentagon; this region is then intersected with
what is left of the polygon after the area of as many semidisks (based on polygon
cdges) as possible is subtracted from it. It turns out in this case that even with a
semicirele drawn from cach edge (that is, with each edge as diameter), a part of
the polygon is still “viable™. and that the intersection with all Right Angle Bounds
from obtuse angles, is still not empty! See Figure 8.1.:1. So, vertex W is placed
anywhere in the viable arca, and joined to each corner of the pentagon. casily
resulting in a nonobtuse tiling. requiring one added floating interior vertex W, and

five added cedges.

Figure 81,10 A small viable avea remains! Place 1 there. join to all corners.

Convex partition P3is quadrilateral A8V Lo with angle LBV L obtuse (and
angle 204K a right angle). See Figure S50 Again. A € V. X] = Right Angle
Bounds from V. so joining 4 to V7 resolves LBV L into acute angles. requiring one

added edpge and no added vertices,

Figure 8.1.5: Polvgon P3 = coadiiaieral A BV e [NV = AV iles B3

e
<



Clonvex partition P4 is again a pentagon, BCDEV Owith this time only three
adjacent obtuse angles. and two adjacent vight angles. Phe obtuse angles are
designated ¢, v, and J, counterciockwine, See Figure 81,40,

L o ey D
¢
]
AW -
3 -
Figure 3060 Polveon P1o= pentegon with three adjacent obinse angles.

To “solve™ this polyvgon we again attempred to lind a viable area Tor o central
degree-five vertex by the sanie method. A fair size arca existed as the intersection
of Right Angle Bounds from corners 3.1 and Voand a small spot did exist as (174
- all semicireles): however. the intersection of this small spot. and the Right Anple
Bounds arca. did not overlap. Sece Figure S01.7.

19 o 1)
/’//’/
.
\ .
\ T .
% D

Figure 8.1.7: P No viable arca exist=! Clioose recipient edge for 7 place 11 in
semicircle from that edge (in RARB intersection). add edges to cortiers and 7'

So. an cdge (arbitrarily. the lougest edge in the polygon) was chosen to be the
recipient of an added edge vertex T - in Figure <0170 the cdee chosen was the
bottom B edge: vertex W was placed inside the semicirele extending from 307
but outside all other semicircles. and within the Right Angle Bounds overtap. Thus
only one angle at W will be obtuse - angle £B1WC W is joined to cach corner



of P1. and an altitude is dropped through the last remaining obtuse angle ZB8W(C
to nailed edge vertex T'. This results in a nonobtuse tiling requiring one added
floating interior vertex W, one nailed edge vertex 7. and six added edges.

Convex partition P5 is quadrilateral E GV, with angle £ GV obtuse (and
angle ZEFG a right angle). See Figure 8.1.8. F € [Y.X] = Right Angle Bounds
from . so joining [£ to (7 resolves LFGYV into acute angles. requiring one added
edge and no added vertices.

\
\\ //.
v\
Figure 8.1.8: Polygon P55 = quadriiateral GV [0 e ENY o B tiles PO,

The completed tiling (see Figure S019) Das. i addition to the original interior
vertex 3. two interior vertices added. which are relabeled as W and Wl as they
are inserted into convex partitions P2 and Ploand one nailed cdge vertex added,

1.
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Figure 8.1.9: Example U lrom LIsG] - compleredtiling.

8.2 Summary of Results

Eight lenunas regardiug resolution ol Obtise angles and some characteristies of

convex quadrilaterals have heen established and proved nsefnls A least one guar

N



anteed method for nonobtase tiling of quadrilaterals has been shown and proved
for cach case of guadrilateral. The best and worst case results of cach guaranteed

method are as follows:

Case 0: Minimum (best case) = Maximum {worst case): one added cdge
and no added vertices tile Q € Case 0 inte two right triangles.

Case 1: Minimum (best case): one added edge and no added vertices tile Q €
Case 1 into two nounobtuse wriangles.
Maximum (worst case): two added cdges and one added vertex. whose
position. under certain conditions. may be flexible within a limited area,
tile Q € Case | into three nonobtuse triangles.

Case 20: Minimum (best case): onc added edge and no added vertices tile
(€ Case 20 into two nonobtuse triangles.
Maximum (worst case): three added edees and two added vertices tile
() € Case 20 into four nonobtuse triangles.

Case 2a: Minimum (best case): Two added cdges and vne added Hoating ver-
tex tile Q € Case Zainto three nonobtuse triangles.
Maximum (worst case): Three added cdges and tao added vertcees tile
(Q € Case 2a into four nonobtuse triangles.

tase 3: Minimum (best case): A special case exists. which would probably be
quite rarely encountered in practice. in which fonr added edges and one
added nailed vertex tile Q € Case 3 into fonr right triangles. 1Vhen «a
viable wia ceists in which 1o place a Hoating vertex. five added edges.
and one cach added interior and edge vertex. can tile @ € Case 3 uito
five triangles.
Maximum (worst case): A guaranteed method has been presented such
that six added edges and three added vertices tile Q) € Case 3 into six
right triangles.

8.3 Possible Extensions of Research

Further research: Topics that sound tantalizing with respeat to lurther rescarch
in this arca wclnde:

o Firmly reintroduce the dropped constraints. roquiring further changes in the

algorithms, and see il the alporithims survive this <tep!



e Start out with a quadrilateral ¢ that has cevenly spaced cdge vertices on some
or all of its edges. These would be considered “corner” vertices where the
angles at these vertices are straight angles: so. strictly speaking,. (2 would not
be a quad-ilateral. However, @ would have only four non-straight angles.

e Start out with a quadrilateral @ that. having undergone the shrinking process
described in [J86], has a degenerate evenly shrunk interior it Q) = a point
or a line inside Q. not connected Lo its edges (“Hoating™ within Q). Try using
a line with or without vertices added. at even spacing. and then not
spaciig.

at evien

e investigate the possibility that the arca of intersection, for f7 = « Uase 3,
of Right Angle Bounds from three obtuse angles (as in Figure 7.2.1) could
be used as inf(P) in an adaptation of [JRG].

e Extend the results hierein to convex polvgon /7 sides o 50600 This has
already been done somewhat in the ¢ samples i Section S0 thongh the

$
results haven™t been “formallv™ extended or proved oy anyvthing.

e Given that the algorithms can snurvive the reintroduction of some of the
dropped constraints (to make them practical). what would o complexity anald
vsis of even these fow siniple algorithins be? Whint is the complexity of finding
the intersection of Right Angle hounds from v obinsc (not straieht) angles?
Does it linearly increase with o or not?

o It llli‘r’,lll e illl(?l'(’\ﬁlill}_’) to try ¢ ul'])ul'ill.!ll"_g some ol the ideas (l('\'t'lu]n'(l here
as olements of 2 relinement algocithing to be used onan existing tveshe 1
given mesh can be cmoothed 10 ahnost entireiy rednce or elinguate abtise
angles. that would probably he pust as acceptable as an originally pencrated
nonobtuse mesi.

o Could the principles found in this rescarch he extended 1o make sense
three dinensions?

8.4 Conclusion

This research attempted to find and prove an optimal guaranteed method for
nonobtuse tiling of arbitrary convex quadrilaterals in cach case of the quadrilateral
having zero. one. Lwo opposite. two adjacent. or three obtnse angles. 1o thiat ex-
tent the rescarch has heen suceessful. as at feast one suaranteed method his been
found for each case of quadrilaicral. The criterion of “Optimadity” can be gues-
tioned with regard to quadrilaterals with three obtuse angles, as whether five or six
triangles is required in the worst case. has ot heen fulls answered, Tmposing only

()



the condition of convexity on the input quadrilateral leaves a very wide margin for
Loth =nice™ and ~pathological™ input quadrilaterals: to a fair extent this was one of
the most challeaging aspects of the problen. However, the methods for nonobtuse
tiling herein have been proved for even the most patholegical cases.

I addition. a nunber of simple lemmas have been proved that serve both to
guide in resolving obtuse angles, and to classify arbitrary convex quadrilaterals.
A brief look at how well the results developed are cross-transferable to situaticns
for which they were not really designed. showed that the essence of the ideas may
have some promise in being expanded to become more generally usefull if only to
soerve as springboards for more sophisticated ideas about guaranteeing nonobtuse
tilings.

An intangible but crucial result. that is cqually as nmportant as the proved
methods and Temas hierein. is the fundament al realization that althoigh the tiling
problem ai first Jooks to be guite simple in the case of gquadrilaterals. it can easily

hecome considerably more complex than expected,
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