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Abstract— This study investigates the pitching motion of an 

elastic filament flapping in a uniform laminar flow. The Lattice 

Boltzmann Method (LBM) as the fluid solver and the Lattice 

Spring Model (LSM) as the solid structure solver are employed 

to solve filament motion in the flow. The LBM and LSM are 

both mesoscopic models based on the kinetic theory. However, 

their emergent behavior captures the continuum properties of 

the system. The boundary force effects on the near fluid nodes 

are calculated using Immersed Boundary Method (IBM). The 

mutual behavior of the flow and deformable filament has been 

examined in a channel to understand the role of flexibility, 

oscillation frequency, and pitching amplitude on lift and drag 

coefficients. It can be inferred from the results that the lift 

coefficient (
LC ) is mainly affected by pitching amplitude (θ0), 

and its fluctuation amplitude showed significant values while θ0 

equals 3° and 5°. In contrast, changing the frequency has a 

negligible effect on
LC . Moreover, the drag coefficient (

DC ) 

increases with the frequency until it reaches the maximum 

amount at 0.13; afterward, it decreases sharply. In addition, 

lower pitching amplitude causes a higher
DC . Considering the 

rigidity effects, the results revealed that increasing rigidity does 

not always coincide with a reduction in the filament's ending 

fluctuation. The filament's end tends to have an increase in 

oscillation amplitude when the non-dimensional rigidity 

number exceeds 0.01. 
Keywords: Flexible filament, pitching motion, fluid-structure 

interaction, immersed boundary method, lattice Boltzmann method 

 

I. INTRODUCTION 

The last few years have seen an increased interest in studying 

the behavior of filaments as an abstraction for modeling 

physical phenomena like flag flapping and bio-locomotion [1-

6]. Filaments, due to their slender and flexible structure, can be 

a prototype for understanding different phenomena like 

swimming and flapping motions ranging from whales to insects 

[7]. For instance anguilliform swimmers' style, categorized as 

undulatory motion, can be modeled by filaments due to their 

elongated fairly uniform body [8]. So based on their complex 

structure and motion type only a specific range of oscillation 

frequencies are meaningful [9]. The mutual interaction of a 

flexible solid structure with the surrounded fluid is challenging 

due to their free motion and complex geometries. Numerical 

modeling gives insight into the interplay between the solid and 

fluid-structure to investigate their collaborative effects [4]. So 

far, LBM has proved to be a reliable method, especially dealing 

with complex geometries. It solves the problems in the 

mesoscopic scale and is considered to be a bottom-to-up 

methodology that employs the discrete Boltzmann equation to 

reach macroscopic properties. In addition, the existence of a 

solid structure (especially elastic solid) inside the fluid flow 

domain needs a closer and distinct treatment that is known as 

the Fluid-Structure Interaction problem. In this respect, LSM is 

proved to be a promising approach capable of tracking solid 

interaction with the environment and its deformation due to 

exerted forces. It consists arrangement of invariant Hookean 

springs in a lattice with specific stiffness to describe the 

flexibility and deformation of the solid. Moreover, fast grid-

regeneration of the LSM has emerged a new interest in coupling 

them together in different fields of studies [10, 11]. This model 

can be directly mapped onto linear elasticity theory through the 

correct choice of spring constants.  

 

A significant number of researches have been conducted on 

contributive parameters on the filament's motion. Yuan et 

al.[12] and Li et al. [2] studied the flexibility effects of filaments 

with different lengths and mass ratios using IBM carried out on 

the particles in a viscous flow. Gerivani and Nazari [13] 

employed the IB-LBM along with lattice Spring Damper Model 

on viscoelastic filaments in which it is capable of predicting 

elastic filaments either. The effects of mass ratio and filament's 

length on oscillation patterns have been studied thoroughly. 

Tian et al. [4] exerted the IB-LBM to predict fish movement in 

entrainment and Karman gait regions. They attempt to model 

single and multiple filaments in a uniform flow. The separation 

distance, geometrical properties of the filament, and Strouhal 

number of the shedding flow behind a rigid cylinder were 

analyzed thoroughly for both regions. Within this area of 

investigation, a number of investigations have been devoted to 

studying drag and lift effects on the hydrodynamic forces acting 

on the body. 



   

The focus of the works in this paper is on the influential 

parameters, frequency, and pitching amplitude, on the lift and 

drag coefficients. Although the filament motion can be a 

combination of heaving and pitching motions, only the pitching 

motion is considered in this study. Pitching motion is 

responsible for the most percentage of the thrust forces. So, it is 

worth considering how big is its effects on the lift, drag 

coefficients.  

    Moreover, in order to have an insight into flexibility 

influence on the free end of the filament, different rigidities 

magnitudes have been investigated. 

 

II. NUMERICAL MODEL AND METHODOLOGY 

 LBM for the fluid domain 

The LBM tracks the fluid behavior via the assembly of 

particles using the distribution function 
if  at position r and 

time t. It consists of two processes: collision and streaming. The 

LBM equation with external force is given as below:  
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here, ie  is the lattice speed that streams the particles with the 

time intervals of t  to the neighbor node. The collision step is 

characterized by the non-dimensional relaxation time that is 

related to viscosity, 2 1
( )

2
sc = −  where 

2

sc is the speed of 

sound; it embraces all the evolutions that happen to the 

distribution function.  eq

if  is the equilibrium state of the 

density distribution function, which is described as: 
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    The D2Q9 lattice structure is employed that is accompanied 

by 
iw weight coefficient, u local velocity, and  density.  

    Exerting the external force in the simulation field may vary 

based on the method that is trained. Here, the discrete-forcing 

method proposed by Guo et al. [14] is considered: 
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(3) 

here, ( )r represents Lagrangian point position and ( , )iF r t  

Lagrangian Elastic force density due to the deformation of the 

structure. The force is accompanied in the simulation field in 

two stages, momentum exchange at time 
2

dt
t +  as ( , )

2

t
F r t

  

and after the collision at t+dt as ( , )iF r t . 

 Immersed Boundary Method (IBM) 

    Objects immersed and fluid have an interaction with each 

other. This interaction affects the fluid covering the boundary 

and the deformation of the boundary in an elastic structure. This 

phenomenon is obviously observable in aquatic locomotion, red 

blood cells moving in the vein (Cardiac fluid dynamic) [11], 

and engineering structures. In order to impose a no-slip 

boundary condition on the solid boundary, the promising IBM 

has been employed. The basic idea is to approximate a boundary 

by a set of off-lattice marker points that affect the fluid only via 

a force field. In other words, IBM is employed to tackle the 

forces that each phase imposes on the other. It leads to the 

necessity of an interpolation stencil to couple the lattice and the 

marker points that can be set either diffusely or sharply [15]. 

The whole scenario is described by Eulerian and Lagrangian 

systems mathematically. The Eulerian system is represented by 

a fixed, regular grid (x,t) on which the fluid lives, and the 

Lagrangian system is an ensemble of marker points (
ir )  to 

describe material properties of the solid [16]. Due to the 

displacement of the 

    The forces describe the fluid-structure interaction equations 

on the boundary nodes that are indicated as: 
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where bU and 
bu are the velocity on the boundary points and 

non-forced velocity that is: 

1

( , ) ( ).
n
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=
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(5) 

So the external force on the interface can be imposed as: 

1
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bS  is the arc length of boundary division and ( )ij bD r r−  is 

the Dirac's delta function as the critical ingredient for IBM, 

which is expressed as: 
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Function d(r) is: 
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    Since they are different systems, to couple them together, the 

information between these two systems should be transferred 

via velocity interpolation and force spreading. 

 

 LSM for the solid structure 

    In the LSM, the particles of a solid structure are connected to 

each other through linear invariant springs. To acquire higher 

accuracy, the spring constants, type of lattice, and the mass of 

particles should be selected carefully. The isentropic springs' 

mechanical behavior is described by Youngs Modulus E and 

Poisson's ratio  that assign quantities of 1

3
 =  and 

8

3

nk
E =  



   

in the simulation. 
nk  is the normal springs stiffness that can be 

related to the diagonal spring stiffness 
n nk −

 as 
2

n n
n

k
k −= . In 

this study, a square spring arrangement is employed, in which 

each massless spring is connected to four straight and four 

diagonal springs [17]. It has been proved that the macroscopic 

properties of the filament can be converted into spring stiffness 

using arguments from standard continuum mechanics [18].  

    By calculating the ijr , relative position vector between 

neighbor nodes i and j, the forces associated with deformation 

of each lattice point can be considered as: 
4 5

1 1

.spring

ij n ij n n ij

i i
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III. COMPUTATIONAL MODEL 

    For bodies placed parallel to upstream, understanding the 

forces acting on the interface has paramount importance. 

Although the flow may remain uniform, the flow near the fluid-

body interface may be unsteady and cause displacement of the 

body. In the case of filaments, due to their slender structure, 

their motion can be a combination of heaving and pitching 

movement. The former one refers to the linear motion along the 

vertical axis, and the latter is defined as the angular motion that 

can be described as: 

0( ) cos(2 )t ft   = + .  (10) 

 

 
                  Figure 1. A schematic of pure pitching motion. 

 

    As shown in Fig. 1, 
0  is the pitching amplitudes of the 

leading edge. The oscillation frequency and phase offset of the 

motions is contributed as f and   in the equation, respectively. 

The non-dimensional pitching frequency can be tracked by 

Strouhal number ( fL
St

U

= ) as an important parameter, in 

which L is the characteristic length and U
 the uniform inlet 

velocity. 

 

    A robust hybrid model is needed to be presented to explore 
the link between the fluid-structure interaction of an elastic 
filament. In this regard, the LBM for the fluid domain and LSM 
for solid deformation are combined together. In addition, to 
investigate boundary interactions IB-LBM as an advantageous 
approach in simulation of moving boundaries have been 
employed [19]. In order to investigate the effects of pitching 
amplitude and Strouhal number on drag and lift coefficients, the 
simulation of a flexible filament with the length of L=40 and 
width of 5 has been carried out (see Fig. 2). It is placed in the 
center of the channel. Other crucial parameters' magnitude is 
mentioned in Table 1. Not included in Table 1. are the uniform 
inlet velocity that equals 0.05 and Reynolds number equals 300. 
It is worth mentioning that all the units are described in lattice 
units. 

 

Table 1. Physical parameters used in the simulation. 

St θ0 Ca 
0.005-0.27 (interval: 

0.01) 

3-15 (interval: 2) 0.001, 0.005, 0.01, 0.1, 

0.55, and 1 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2. The schematic of the filament and the channel. 

 

    To ensure free-slip boundary condition on the lower and 

upper surface of the channel, a non-equilibrium bounce-back 

condition is applied [20]. Also, uniform velocity for inlet and 

outflow boundary conditions are considered. The corners at the 

inlet and outlet points are treated carefully. In order to 

investigate flexibility effects on the filament fluctuations, 

Capillary number is introduced as: 

2 3

EI
Ca

U L 

=   

(11) 

 

    It represents the ratio of elasticity forces to the viscosity 

effects where E, I and ρ are elasticity, moment of inertia and 

density of the filament, respectively. 

 

    Based on the forces calculated on the boundaries, drag and 

lift coefficient can be defined as: 
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    In which 
xF  and

yF are horizontal and vertical fluid forces 

generated on the surface. 
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IV. RESULTS 

    The mean value of 
DC  and 

LC  in each cycle based on the 

Strouhal number and pitching amplitude variations are shown 

in Fig.3a and Fig.3b. There is a slight and subtle difference in 

mean values of 
LC across St variation. However, it mainly 

affects 
DC  where a peak point is revealed at St=0.13. For lower 

St, the drag increases until it reaches the maximum amount that 

is because of viscosity effects on the surface and high 

deformation pattern that can be interpreted as fluid forces 

domination on the filament. Increasing hydrodynamic forces 

over filament not only causes higher oscillation amplitude and 

deformation, but also it is compatible with the increase of
DC . 

As shown in Fig. 4, the flapping takes place at lower St with a 

higher rate, which leads to higher 
DC . The results agree with 

the findings in [8, 13].  
 

 

(a) 

 

(b) 

Figure 3.The variation of drag and lift coefficients as function of  a) Strouhal 

number  and b) pitching amplitude for Ca=0.01. 

 

    It can be inferred from Fig. 3b that θ0 impose the same 

effects as does the St on 
DC . This can be interpreted as the 

fact that increasing θ0 results in a reduction of instantaneous 

pitching amplitude (Eq. 10) during the flapping cycle [21]. 

Contrary to 
DC , 

LC  reveals insignificant dependency to St. 

However, with higher pitching amplitude, 
LC increases 

subsequently.  
 

 
 
St=0.13 

   

 
St=0.2 

   
 t=20000 t=20500 t=21000 
Figure 4. The filament deformation at St=0.13 and 0.2 for three sequential 

time steps at Ca=0.01. 

 

    Fig.5 shows the oscillation amplitude of different pitching 

amplitudes. As it is evident lower pitching amounts (especially 

θ0=3,5), oscillation represents greater amplitude changes. 

However, the mean 
LC in Fig. 3b it is almost close to zero. 

 
Figure 5. The time history of CD for θ0=3,7,13. 

 

    It is reasonable to accept that the more rigid (higher Ca) is 

the filament, the lower is the filament's end motion. However, 

as shown in Fig. 6, increasing the rigidity of the filament (higher 

Ca) does not always result in lower ending displacement. For 

0.01Ca  , although the filament tends to a more rigid state, the 

distance between the two ends of the filament increases. Also, 

the amplitude of the oscillation pattern decreases, which leads 

to a narrower displacement. It can be related to the natural 

frequency of the flapping motion that creates resonant. Similar 

results have been found in [17]. 
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Figure 6. The time evolution of filament's ending motion for different 

rigidities. 

 

    Fig. 7 depicts the instantaneous streamwise velocity contour 

at three different instant time steps. The control parameters for 

this case are: Ca=0.01, St=0.01, and θ0=15°. As shown in the 

figure, the vortices are prone to increase and lose their 

coherence by the passing of time. The shed vertices become 

more significant, and their number increases at t=55. The 

flapping characteristics expand the velocity vector in the x-

direction and bending region of the filament. At the bending 

point, the velocity increases.   
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Figure 7. The x-components velocities contour of fluid around flexible 

filament   at t=25,35,55. 

 

    That is, the fluid exerts force to push the filament to its 

previous state. When the structure moves and deforms there is 

going to be a deformation force pushing the structure back to its 

preferred position and the geometry changing of deformable 

body results in a time-dependent effect on the local flow. 

Likewise, when the fluid is moving, the structure moves as 

same fluid velocity local to all the structure points. 

 

V. CONCLUSION 

 

    This study used IB-LBM combined with LSM to analyze the 

effects of Strouhal number and pitching amplitude on lift and 

drag coefficients over a flexible filament flapping at Reynolds 

number of 300 for a specific range of parameters. 
LC shows 

subtle sensitivity to the St variation; however, by increasing θ0, 

it tends to augment sensibly. On the other hand, 
DC maintains 

an incremental trend with St until it reaches a peak at 0.13St =  

and decreases sharply afterwards. That can be described 

because of a higher rate of deformation. θ0 imposes almost the 

same effect on 
DC that is lower θ0  causes higher 

DC  and by an 

increase in its magnitude 
DC increases too. Moreover, the role 

of flexibility on the free end of the filament is studied. The 

ending motion magnitude is reduced by increasing rigidity until 

it reaches 0.01Ca = ; afterward, the oscillation increases with 

higher amplitude. A closer look at the x-component velocity 

contour at St=0.01 shows that by increasing, the flapping of the 

filament velocity on the bending point increases. It is because 

of the fluid forces that impose the filament to its previous 

condition. 

 

 

 

REFERENCES 

 
[1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-

Hankel type involving products of Bessel functions," Phil. Trans. Roy. 
Soc. London, vol. A247, pp. 529–551, April 1955. (references) 

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 
2. Oxford: Clarendon, 1892, pp.68–73. 

[3] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange 
anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New 
York: Academic, 1963, pp. 271–350. 

[4] K. Elissa, "Title of paper if known," unpublished. 

[5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. 
Abbrev., in press. 

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy 
studies on magneto-optical media and plastic substrate interface," IEEE 
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th 
Annual Conf. Magnetics Japan, p. 301, 1982]. 

[7] Kim, W. and H. Choi, Immersed boundary methods for fluid-structure 
interaction: A review. International. 

[8] Afra, B., et al., Direct numerical simulation of freely falling particles by 
hybrid immersed boundary–Lattice Boltzmann–discrete element method. 
Particulate Science and Technology, 2019. 

[9] Yuan, H.-Z., et al., A momentum exchange-based immersed boundary-
lattice Boltzmann method for simulating a flexible filament in an 
incompressible flow. Computers & Mathematics with Applications, 2014. 
67(5): p. 1039-1056. 

[10] Gerivani, H. and M. Nazari, Proposing a lattice spring damper model for 
simulation of interaction between elastic/viscoelastic filaments and fluid 
flow in immersed boundary-lattice Boltzmann framework. Journal of 
Molecular Liquids, 2019. 296: p. 111969. 

tU/L

y
/L

38 40 42 44 46 48 50

3

3.5

4

4.5

5

Ca=0.001

Ca=0.005

Ca=0.01

Ca=0.1

Ca=0.55

Ca=1



   

[11] Moriche, M., O. Flores, and M. García-Villalba, On the aerodynamic 
forces on heaving and pitching airfoils at low Reynolds number. Journal 
of Fluid Mechanics, 2017. 828: p. 395-423. 

[12] Kang, S.K. and Y.A. Hassan, A comparative study of direct‐forcing 
immersed boundary‐lattice Boltzmann methods for stationary complex 
boundaries. International Journal for Numerical Methods in Fluids, 2011. 
66(9): p. 1132-1158. 

[13] Guo, Z., C. Zheng, and B. Shi, Discrete lattice effects on the forcing term 
in the lattice Boltzmann method. Physical review E, 2002. 65(4): p. 
046308. 

[14] Xiong, Q., et al., Nanofluid flow and heat transfer due to natural 
convection in a semi-circle/ellipse annulus using modified lattice 
Boltzmann method. International Journal of Numerical Methods for Heat 
& Fluid Flow, 2019. 

[15] Afra, B., et al., Fluid-structure interaction for the flexible filament's 
propulsion hanging in the free stream. Journal of Molecular Liquids, 2021. 
323: p. 114941. 

[16] Afra, B., et al., An immersed boundary-lattice Boltzmann method 
combined with a robust lattice spring model for solving flow–structure 
interaction problems. Applied Mathematical Modelling, 2018. 55: p. 502-
521. 

[17] Zou, Q. and X. He, On pressure and velocity boundary conditions for the 
lattice Boltzmann BGK model. Physics of fluids, 1997. 9(6): p. 1591-
1598. 

[18] Smits, A.J., Undulatory and oscillatory swimming. Journal of Fluid 
Mechanics, 2019. 874. 

[19] Lua, K.B., et al., Effects of pitching phase angle and amplitude on a two-
dimensional flapping wing in hovering mode. Experiments in Fluids, 
2015. 56(2): p. 1-22. 

 

 

 

 

 

 

 

 

 

 

 


