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Abstract

Breast cancer (BC) continues to be one of the leading causes of cancer related
death among women. Despite continuous progress in screening, thagmbgreatment
of BC, a subset of patients experience recurrence and/or death. Optimal management of
BC has remained a challenge due to these-intBvidual variations in response to
treatment. Although the reasons for iAgdividual variations arelesive at this point of
time, the challenge now lies in identifying patients who are at higher risk for recurrence
and/or death. This in turn may aid in altering treatment modalities according to
individual 6s needs, enhancial geriod. hSo fagual i t
prognostication of BC has relied largely upon clinical staging combined with traditional
biomarkers such as Estrogen receptor, Progesterone receptor and human epidermal
growth factor receptor but these have remained imperfect estimatorssk for
recurrence. Messenger RNA molecules from microarray profiling studies that have so far
been in several clinical trials for BC prognostication have also seen limited success in
routine clinical use, highlighting the need for more robust biomsrka this thesis, |
have considered small n@moding RNAs (sncRNAs) as potential biomarkers for BC.
sncRNAs (< 200 nt in length) are a group of RNAs that are transcribed, yet not translated,
but perform an array of functions. Specifically, | have focusadfour sncRNAsI
MiRNAs, piRNAs, tRNAs and snoRNAs. Although the canonical functions of each of
these RNAs are different, these four RNAs appear to share some gene regulatory
functions predominantly at the pesanscriptional level, though there maydeeptions
for gene regulation even at a transcriptional level. miRNAs and piRNAs are classified as

master regulators of gene expression; whereas, tRNAs and snoRNAs are currently being



explored for gene regulatory functions. A possible mechanism by wiesle tmolecules

may exert regulatory roles is by generating distinct gene regulatory molecules (e.qg.,
mMiRNAs and piRNAs). The clinical relevance of miRNAs in the context of BC has been
well addressed. However, the contribution of the piRNAs, snoRNAs and@gRSI
beginning to emerge for BC etiology but their role in prognosis in BC are at best
rudimentary, if not, unknown. The main objective of this thesis was to identify miRNAS,
piRNAs, tRNAs and snoRNAs associated with BC prognosis, with outcomes of interes
being overall survival (OS) and recurrence free survival (RFS). sncRNAs were profiled
from 11 normal (reduction mammoplasty) and 104 breast tumor tissues using next
generation sequencing, which enables a genweide capture of sncRNAs. Two
statistical peadigms were adopted to identify prognostic markers from every class of
sncRNAsiI casecontrol (CC) and casenly (CO). While the former approach considered
only differentially expressed sncRNAs for survival analysis and may miss on a subset of
expressed icRNAs, the latter approach included all the sncRNAs profiled for a
comprehensive analysis. Individual classes of sncRNAs from CC and CO were subjected
to Univariate Cox proportional hazards regression modeling. Risk scores were
constructed using a pandl gignificant sncRNAs (which varied fromX4 for each class

of sncRNAs). Based on coff point estimated using receiver operating characteristics
curve, patients were classified into low and higgk groups. Further, risk scores were
investigated to iddify their potential as independent prognostic factors using
multivariate Cox proportional hazards regression model. Signatures from miRNAs,
piRNAs, snoRNAs and tRNAs independently showed association with both OS and RFS

T (i) risk scores were identifieds potential independent prognostic factors and (ii)



patients belonging to highsk group were associated with poor prognosis. sncRNAs
associated with OS were independently validated using TCGA dataset, strengthening the
study findings. To further gain dlogical insights of the prognostic sncRNAs, putative
gene (MRNA) targets regulated by miRNAs and piRNAs were identified from-an in
house gene expression dataset; these studies served as a proxy for functional validation.
Also, other sncRNAs (along withefr corresponding targets) embedded within snoRNAs
were identified. The identified targets were involved in key cellular pathways such as
apoptosis, cell cycle, cell migration and proliferation. Overall, my work has identified
novel sncRNA molecules as potial biomarkers for BC prognostication. This work on
genomewide profiling of sncRNAs using modern sequencing platforms significantly
augments the limited previous literature, and the data provided in this study therefore

extends the comprehensive sedatBC biomarkers.
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1 Introduction

1.1 Breast cancer

1.1.1 Incidence and mortality

Breast cancer (BC) is a malignant tumor that starts in the breast cells lining the
ducts or lobules. As the cesr progresses, it may spread to other parts of the body. It is
one of the most commonly diagnosed cancers in women worldwide; with approximately
1.7 million new cases being diagnosed. Approximately, 522,000 women die due to BC,
making it one of the mostommmon causes of cancer related deaths among women
Among Canadian women, BC accounted to 26% (n = 25,000) of all new cases diagnosed
with cancer and represented 14% (n = 5000) of all cancer related deaths fn Phéfe
has been an upsurge in the incidence rates of BC, mainly due to increase in awareness
and screening programs. Encouragingly, a decrease in the mortality rdsesabserved

owing to improved therapies.

1.1.2 Risk factors

Any factor that increases the chance of getting cancer is called a risk factor. Some
of the nommodifiable risk factors for BC include age, gender, family history, personal
history of BC, race, breast cellular changes, previous exposure to radiation, menarche and
menopausal times, pregnancy and breast feeding, breast tissue and boalederirséty
° Genetic mutations also contribute to the risk of developing BC, especially heredita
(familial) BC '®*2 The classical risk genes conferring familial BC inclBRCAland

BRCA2which are DNA repair enzymes. Life time risk of BC in inheriBRCA1
1



mutaton is 551 65% and that oBRCA2is 45%. Mutations of other genes suchAd,
TP53, CHEK2, PTEN, CDH1and STK11may also contribute as risk factors for BC,
categorized under familial risk with or withoBRCA mutations. Some the risk factors
that can becontrolled (or modifiable) include weight, diet, physical activity, alcohol

consumption, use of tobacco, oral contraceptive use, stress and &hxiety

1.1.3 Histological subtypes of breast cancer

Most often (5675%), BC starts in the cells lining the ducts, which are tubes
carrying milk from glands to nipple and are classified as ductal carcinoma. Similarly,
another class of BC exists, called lobular carcinomalB%) which begins in the
lobules (groups of celthat make the glands for producing mitk) Depending on the
extent of cell growth, BC can be broadly categorized into two classes: Carcinoma in situ
(cancer is localized and has not grown into the smding tissues) and invasive breast
cancer (cancer has grown into the surrounding tissues). Both ductal and lobular cancers
can be either in situ or invasive -$itu cancers are often curable but the-ifee risk of
breast cancer occurrence is high. Appmately 90% of all cancers diagnosed belong to
the invasive type. Severéls p e typesa of tnvasive carcinomas occur such as tubular
carcinoma, medullary carcinoma, mucinous/colloidal carcinoma, papillary carcinoma and
cribriform carcinoma. These aless frequent when compared to the invasive ductal and

lobular carcinomas. Some of the other rare histological subtypes of BC include

infl ammatory breast cancer, paget 6s di seas:s

breast*.



1.1.4 Molecular subtype classification of breast cancer

We now understand that breast cancer is not a single disease. Pioneering work by
Sorlie et al. revealed four main subtypes of BC based on gene expression profiling using
microarrays. Acording to this classification, BC can be classified into Luminal, which
can be further divided into Luminal A and Luminal B, HER2+ enriched and Triple
negative breast cancer (TNBCY'’ based on the expression patterns of hormonal
receptors estrogen receptor (E[J; here after referred to as ER), progesterone receptor
(PR) and human epidermal growth factor receptor (HERZ2). BC classification has evolved
further ower time and we now have further subtypes based on gene expressions profiles
(e.g. Claudidow). BC classifications have helped to understand the survival patterns of
each of these subtypes, their prevalence and tumor characteristics unique to the individua
subtypes; suggesting that each of these subtypes may behave as different disease entities
and this adds further complexity for optimal management of'8& Among these
subtypes, Luminal A is a good prognosis subtype of BC relative to other BC subtypes.
However, it is not uncommon to see patterns of late recurrences (local or distant
metastatic spread) in this subtype, sugggsiie need for further research to reduce the
mortality associated with this BC type. On the other end of the spectrum, we have the
TNBC subtype comprising 105% of all BCs, is associated with extremely poor
prognosis. The Luminal B and HER2+ enrichedtgpés show intermediate prognosis.
My thesis focus is restricted to identify prognostic markers for Luminal A and TNBC, as
these represent majority of invasive BCs with extreme ends of the prognoses spectrum.

Molecular subtypes of BC, along with their cheteristics are summarized in Table 1.1.



Table 1.1 Molecular classification of breast cancer

Molecular subtype

Prevalence

Marker expression

Representative Characteristics
1521

profile
Low proliferation rae;
ER+/PR+/HER2; Low grade;
. 1521 o Any type of Good prognosis;
Luminal A 30-70% cytokeratin(CK) ; Low relapse;
Ki67 1 low High survival rate;
Metastasis to bone, CNS, liver, lung
. 1601 ER+/PR+/HER?Z; More aggressive;
Luminal B Ki67 i high ; Intermediate/higher tumor grade;
Cyclin BT high High proliferation rate;
10-20% Intermedate/Worse prognosis;
ER+/PR+/HER2+ ; Fairly high survival rate but not as

(Luminal HER2)

Ki67 7 low or high

high as Luminal A,
Intermediate p53 mutations

HER2+
(HER2+ enriched)**?

5-15%

ER-/PR/HER2+

Aggressive;

High proliferation rate;
High tumorgrade;
Worse prognosis;
Recurrence rate high;
Metastasis frequent;
High p53 mutations

Basall*#

Triple Negative breast
cancer

15-20%

ER-/PR/HERZ ;
EGFR+ or CK5/6+

ER-/PR/HERZ ;
EGFR/CK-

High tumor size;

High tumor grade;

High frequency of lymph node
involvement;

More aggressive;

High recurrence rate (rsolikely
within 3 yrs);

High mitotic index

High p53 mutations

Poor prognosis

Normal breast like 1%

5-10%

ER-/PR/HERZ ;
CK5-/EGFR

Intermediate prognosis between
luminal and basal;

Do not respond to ne@djuvant tx;
Very rare;

Low proliferation;

Low grade;

Low p53 mutations

Claudin-low &2°

12-14%

Low expression of
genes involved in tight
junctions and
intercellular adhesion
including claudin 3,4,7,
occludin, Ecadherin ;
ER-/PR/HER2

Ove expresses a set of 40 genes
related to immune response;
Poor prognosis;

Overexpress genes linked to
mesenchymal differentiation and EM
(associated with acquisition of stem
cell properties)




1.1.5 Prognostic and predictive factors for breast cancer

Biomarkers to guide treatment decisions are broadly classified as either
prognostic or predictive factors. Prognosis is the estimate of the likely outcome of a
di sease. A prognostic factor is defined a
objectively measteable and that provides information on the likely outcome of the
cancer disease i n “aPrognosidfacera are therefone telpfuliind u a | o
identifying patients who are at risk for recurrencel/an death, which may eventually
help in modifying treatment modalities. On the other hand, predictive factor is defined as
Afa clinical or biologic characteristic tha
treatment (either in terms of tumor shlk age or #sRredistiveviatbry may
therefore aid in identifying patients who are likely to respond to a treatment. Some of the
factors that determines the prognosis of breast cancer include turaptysiph node
status, tumor stage, tumor grade, age, tumor type, receptor status, HER2 status, subtypes
based on gene expression profiling, proliferation rate, menopausal status, general health

and tumor recurrencg?®. Some of these factors are summarized in table 1.2.



Table 1.2 Factors determining breast cancer prognosis

Factor Features assessed Inferences
. . Generally, higher the size, poorer is the prognosis;
Tumor size Overall size of the tumor Size helps in determining the tumor stage
Nodes with tumor cell infiltration are associated with
Lymph node Number of nodes with poor prognosis;
status tumorcells Lymph node status is important for determining the

stage

Tumor size, lymph node

Tumorstage | g5 and metastasis

Higher stage is associated with poor prognosis

Cel morphology, division

Tumor grade

and tubule formation

Higher grade tumors are associated with poor progn

Histological and molecular

Invasive cancers are associated with poor prognosis

Tumor type Basal type and HER2+ enriched tumors are associa
subtypes . . .
with worse prognosis, compared to Luminal types
Positive expression of receptors tend to be associate
Hormonal Estrogen receptor, with good prognosis;

Receptor positive tumors can be treated with hormor
therapies;
ERand PR can act as prognostic and predictive factq

receptor status | progesterone receptor

Overexpression of HER2 associated with poor
prognosis;

HER2+ tumor patients respond to trastuzumab;
HER2 can be used as prognostic aredictive factor

Amount of HER2 protein
expressed in the surface of
cells

HER?2 status

Age Age at the time of diagnosiq Younger age is associated with poorer overall progn

BC prognostication relies largely upon the above mentioned traditional factors.
However, these molecules have limited efficacy in accuratelgigiieg the recurrence
risk and have necessitated the identification of newer molecules for prognosis. For
instance, lymph node status has been a good indicator of prognosis. Yet, 30% of patients
with node negative tumor develop recurrences within 10 yéa&milarly, tumor grade
iIs a qualitative assessment and comparative analysis between three independent
pathologists has shown less than 50% concord¥na®licating thathe accuracy of risk

estimates may vary considerably depending upon the individual who handles the samples.



Biomarkers currently in use (ER, PR and HERZ2) are highly informative but these markers
are also of limited utility to predict individual outcomés ER+ status in general
indicates good prognosis but Luminal A tumors have the potential for late recurfences
(>10 years). Likewise, HER2+ and PR are also good jstgrators but are imprecise
estimators of distant recurrenc®swarranting the need for other prognostic markers of
higher specificity and sensitivity. Availability of such markers as s&ode markers or

when usedn combination with the currently used ER, PR and HER2 markers may offer
to guide treatment decisions favoring better outcomes. ER, PR and HER2 markers are

unique in that they serve as both prognostic and predictive markers.

1.1.6 Gene expression signatures fordeast cancer prognostication

Recent advances in global gene expression profiling using microarray or next
generation sequencing platforms have informed our understanding of pathways
contributing to BC etiology>>* Based on this premise of unbiased profiling of global
gene expression, several research groups had taken upon the task of developing
multigene markers for BC prognosis. Further, developments in Tissue Micro Arrays
(TMASs) aided inlow- medium throughput profiling of a number of protein markers based
on immunohistochemistry (IHC), or DNA/RNA based Fluorescence in situ hybridization
(FISH). Once a gene signature is established, use @@ and custom microarray
platforms helped trsslate these findings to routine clinical use. Each of the tests
developed using these platforms have advantages and disadvantages and are summarized

below 3¢



1.1.6.1 IHC based multigene prediors

Two main assays were developed using [HEroEx Br and Mammostraf.
Both the tests use five antibodies. Overexpression of two or more of these markers have
been found to be associated with relapse in ProExXMBmmostrat is a commercially
available test (Applied Genomics Inc., Huntsville, AL) that estimates the risk of
recurrence in ER+, lymph node negative tamoxifen treated patients based on slide scoring
of five antibodies. Patients are then classified iloe-, intermediate and highrisk
groups. IHC platforms offer the advantages of low false discovery, less statistical
algorithms needed for data analysis and a comparatively lower cost for profiling.
However it is faced with other challengd$ such as variations involved in tissue
processing (Formalin Fixed and Paraffin Embedded or FFPE), quantitative scoring of
immunohistochemical staining, estimating the optimal-aftg for identifying risk
groups; all of which aa have a significant impact on determining the prognosis of a
patient. Nevertheless, the stand alone prognostic value of IHC is well established in
breast cancer with the routine use of ER, PR, HER2 and Ki67 as prognostic and/or

predictive markers.

1.1.6.2 FISH based multigene predictors

FISH based testing is predominantly used to estimate the expression levels of
HER2 gene. A multicolor FISH assay (to estimate copy numbers of three genes) has also
been developed by eXagenBC (eXagen Diagnostics, Inc., Albuquéiy)e® as a pure
prognostic assay for both node positive and negative ER+ patients. FISH assay is also
influenced by preanalytical variables and encounters other technical challenges as in

IHC when using FFPE specans.



1.1.6.3 RT-PCR based multigene predictors

Among the multigene assays, Oncotype Dx (Genomic Health, Inc., Redwood
City, CA) is one of the top assays considered for clinical decision making in BC. It is a
21 gene (16 informative and 5 reference genes) pragrevsd predictive assay based on
RNA extracted from FFPE sampl&s A recurrence score is computed based on these 21
genes and patients are classified into three risk groups: low, intermediate amiskigh
groups. Thidest was developed mainly for ER+ lymph node negative patients. However,
this study is slowly showing promise for lymph node positive patients as well. Since the
time of development of this assay, there has been a change in the classification of patients
based on the tripartite recurrence score. Oncotype Dx has entered into clinical trials
(TAILORx) and recent results from the trials provide prospective evidence that this
multigene prediction assay can be used to identify patients at low risk for recumtemce
can be spared from chemotherdfyOne of the major drawbacks of this test is that so
far, the benefit of adjuvant chemotherapy for patients belonging to the intermediate risk
group is not cleaf’. Another challenge with Oncotype Dx is the estimation of HER2
levels. IHC and FISH techniques are routinely used to estimate HER2 expression but
some studies have demonstrated discordance in HER2 expression léwelsnbRF
PCR and the traditionally used assays (IHC and Ff&H5ince this assay relies heavily
on HER2 expression, the recurrence score based classification of patients may be
guestionable. An independent studss conducted by Cuzick et al to compare the
recurrence score with prognostic score estimated using the traditional maB&®y$R,

HER2 and Ki67. Prognostic information provided by both the sets of markers was



similar, questioning the usefulness of tassay over the traditional markers, which are

simple to assess.

Another important test that is commercialized is PAM50 gene signature
developed by Parker et al. This agsvas mainly developed for standardizing subtype
classification of breast cancer and the identified gene signature also showed prognostic

benefit.

Other RFPCR based assays including Breast Cancer Two Gene Expression
Ratio H/IE (Aviar@A WA I nhe, CEarlrsabaiet ast
(Celera, Inc., Rockville, MD, USA)'® and the Breast BioClassifier (Associates in
Regional and University Pathologists, Salt Lake Qity, USA)*’ are also available, but
none have reached the stage of prospective validation and are still not available for

clinical application.

1.1.6.4 Microarray based multigene predictors

Prognostic assays developed usmgroarray platforms have typically used
fresh frozen tissue samples. In all these assays, it is vital to critically analyse the samples
for the presence of any normal cells as the number and expression of RNAs identified
depends largely on the compositiof the sample (tumor and normal cells). One of the
important and the first fully commercialized microarray based assays is Mammaprint
(Agendia BV, Amsterdam, The Netherlands), developed for ER+ orl{ERoh node
negative patients under the age of*81This is a 70 gene signature assay that is most
useful to identify extremes of disease outcome (low risk and high risk). The assay was

subsequently validated in an independent study and the 70 gene expressiomesignatu

10



stood out as the strongest predictor for metastasis free sufitlwever, the strongest
criticism faced by this assay is that the validation set also included samples from the
discovery set, leading to exestimatior?®>. MINDACT trial is a prospective study that
assesses patients based Adjuvant! online as well as the 70 gene expression Sfgnature
Patients who were classified as belonging to-t@k and highrisk in both the tests were
recommended adjuvant chemotherapy and endocrine therapy, respectively. However,
treatment for patients with discordant results from both the tests was either &djuvan
chemotherapy in addition to endocrine therapy or endocrine therapy alone. The whole

objective of this trial is to identify patients with low risk to avoid overtreatment.

Following Mammaprint, other microarray based assays have also been
developed, suchs Rotterdam signature (also called the 76 gene a¥sapyasiveness

gene signaturg, Nuvoselect assay>® amongothers.

With improving technological platforms, there has been a surge of biomarkers for
BC prognosis. Yet, the common practice is to assess the expressions of ER, PR and
HER2, since these molecules show both prognostic and predictive behavior. Different
assays have adopted different approaches to develop a multigene signature for BC
prognosis and various factors contribute to the identification of the best set of markers
with prognostic benefit. For instance, some assays have focused on proliferatiag gene
and other genes playing a role in hallmarks of cancer. Profiling these signatures require
careful assessment of the tumor sample obtained so as to include only tumor cells and not
the stromal cells. The type of samples obtained i.e. fresh frozen or $érRites have a

significant influence on the type of signatures obtained. While the probability of

11



obtaining intact RNA is higher in fresh frozen samples, yet obtaining and maintaining
such samples are not cedtective. On the contrary, FFPE samples agdily available

and are more useful to run a retrospective analysis with long folfoperiods. However,

the quality of mRNA obtained from such specimens in handling of fresh tissues is critical
for overall success of the assafisFor these reasons, some of the commercially available
assays are now testing the feasibility of the developed signature in FFPE samples. As
explained above, most of the assays have been developed for ER+ and lymph node
negative tumors. Ae risk assessment for other types of cancer is still in question. Even
though ER+ tumors are considered to be good prognosis tumors, the chances of late
recurrences is higher in this subtype. Therefore, when an assay is developed, it is critical
to incluce samples with longer followp periods. The main concerns regarding the
assays already developed arise over their scientific validity, true clinical utility,
cost/benefit ratios and their restriction to specific clinical settings. Currently, we also do
nat know if these assays perform better as s&ode markers or if they complement to

the traditional markers. If there is no benefit over the routinely used markers, the utility
of the newly developed markers is debatable. While the validation procesiseainidls

of the developed assays continue to make strides, we also need to identify other
biomarkers that may overcome the shortcomings of the developed assays and contribute

to better prognostication or prediction than the currently developed ones.

1.1.7 The need for prognostic markers
Over the past three decades, there has been an increase in the age adjusted
incidence rate of BC patients in the B’SHowever, if we consider the last ten years, the

incidence rate has been stable, owing to increased awareness and screening measures.
12



There has also been a steady decline in the death rates, suggesting improvements in BC
therapies. For instance, the five year relative survival rate was estimated to be 91%
2007 %%, Common clinical practice for BC treatment includes tumor resection, followed
by adjuvant systemic chemotherapy, endocrine therapies and/or radiotherapies. While
these therapies are benélc they are not free from dremssociated toxicities®.
However, while some patients tolerate treatments and respond better, others develop
toxic effects. Therefore there is an unmet need to accurately identifyptgsatvbo may
benefit more from treatment from patients who may not benefit and spare them from
unnecessary treatment. Despite improved adjuvant therapies and improved survival rates,
about 2030% of BC patients develop metasta&i®®® which at this point remains
incurable, leading to unfavorable outcomes. Therefore it is critical to identify patients
who are most likely to develop recurrence and/or die. This straitincaf patients based

on their risk for recurrence and/or death may help in developing tailored therapies and
enable further improvement in the survival rates. As explained earlier, several prognostic
and predictive markers are available but three (ERaRBRHER2) are routinely used.
Nevertheless, the need for biomarkers continues to exist as the traditional markers remain

as imperfect estimators of risk for recurrence.

1.2 Non-coding RNAs

For a long time, the field of molecular biology has been governethéogentral
dogma, which can simply be explained as DNA makes RNA, and RNA makes protein.
While this still holds good, recent discoveries have subverted this principle. A group of

RNASs t er ceoddi RO NMRNASO have been found t

13
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transcription and translation. These RNAs were previously considered not to play
significant roles in human system but we now understand that they are involved in
diverse roles ranging from gene regulation to alternative splicing to protein translation.
Seveal classes of nenoding RNAs have been discovered but these are broadly
classified into two groups based on their size: longcading RNAs (IncRNASs), which

are generally > 200 nucleotides and small-noding RNAs (sncRNAs), which are
generally less @#n 200 nucleotides. One of the major functions of these two groups of
RNAs lies in regulating gene expression. An important characteristic of INcRNAs is that
they contain exons and introns as in mMRNA/protein coding genes. As such, INcCRNAs
resemble proteigoding genes in terms of several sncRNAs embedded within. The focus
of this thesis is on sncRNAs. SncRNAs include several classes such as microRNAs
(miRNAs), piwkinteracting RNAs (piRNAs), transfer RNAs (tRNAs), small nucleolar

RNAs (snoRNAs), small nuck RNAs (snRNAs) and small interfering RNAs (siRNAS).

1.2.1 microRNAs (miRNAS)
MicroRNAs are small (~22nt), necoding, regulatory RNAs that control gene
expressionpost r anscri ptionally by binding to the

degradation or inhibitqtein translatio*®*,

1.2.1.1 Discovery of miRNAs

In 1993, Victor Ambros, Rosalind Lee and Rhonda Feinbaum discovered that
lin-4 , a heterochronigene involved in the temporal developmental pattei®.efegans
did not code for any protein, instead produced a pair of small RNAghe two small

RNAs were approximately 22 and 61 nucleotide in length and $&@guences
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compl ementary to the 30616mRNA%h Atltha samaltime,e gi o n
Gary Ruvkun and his colleaguesBruce Wightman and llho Ha discovered thatli

was post transcriptionally regtdal by lin4: lin-4 base paired wi4t h t he
leading to down regulation of lih4 translatiorf>. The smaller length RNA (~22nt long)
discovered by Lee et al, is the first member of microRNA familynaéls RNAs °-%3 |t
was only after seven years in the year 2000 that the second miRNA) (leas
discovered by Reinhart et &. The fact tha let-7 was conserved across species

revolutionized the research on small RNAs. As of April 2016, 2,588 unique mature

human miRNAs have been identified on the human geriofe

1.2.1.2 Location of miRNAs in human genome

mMiRNAs may be identified from the intergenic regions, or from exonic regions
or intronic sequences of protein coding and-postein coding transcriptional unit&®®
"L Further, some miRNAs may be in a distant location from other miRNAs, while some
others may be in proximity and may exist as clusters. A cluster, as defimtatRBase
(http://Iwww.mirbase.org/), is a group of miRNAs are located within 10kb of each other

2. miRNAs belonging to the same cluster may either b&arwscribed or transcribed

independently*"

1.2.1.3 Biogenesis of miRNAs

The biogenesis of miRNA begins in the nucleus where miRNA genes are
transcribed by RNA polymerase Il or Il into several kilobases long primary transcripts
(pri-mi RNAs) that are polyadenyl ate@® Rit the

MiRNAs contain stem loop structures and are cleaved at the stem of the hairpurestruct
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by cellular RNase class Il endonuclease 1l enzyme called Drosha along with
DGCRS8/Pasha into hairpin structures called precems®NAs (premiRNAS) which are
approximately 7@.20 nt long’’. The premiRNA harbos  a phBsphate and a 2
nucleotide overhang, characteristic of endonuclease Il enzymemipieA is then
transported to the cytoplasm with the help of Exportin 5 along with ®&R which is

then processed by the cytoplasmic dsRNase Il Dicer into ajppatedy 22 nt miRNA:

mi RNA duplex with 2 nt*®Theduplexnsquhwognd iyt it s
helicase and only one mature strand (~20nt long) enters the multicomponent complex
called RNA Induced Silencing Complex (RISC), which harbors argonaute proteins
(Ago), and the other complementary strand is degrdded/ostly, the strand with
relatively unstabl e b d°eThepnamiure miRNAt mediates 5 0 e |
gene expression regul ation by bi nding t o
untranslated region of target messenger RNA (mRNA). Depending on the
complementarit shared, the target mMRNAs may be degraded (if the two RNAs are
perfectly complementary to each other) or the protein translation may be inhibited (if

they share imperfect complementarit};)

1.2.1.4 Mechanisms of actin

The interaction between miRNA and target mRNAs predominantly occur at the
seed region (B nt in the 56end of the mi RNA) o f
through sequence complementafityThis interaction can havseveral consequendés
as outlined below. Two main effects have been obsénditect and indirect effects on
translation. In the direct effects, initiation of translation or pasiation of translations

inhibited. While in the former, the association of ribosome with target mRNA is
16



prevented, the latter includes premature ribosome fall off, reduced/stalled elongation or
co-translational protein degradation. Indirect effects of mMIRNRNA interaction
include deadenylation, resulting in degradation or increased turnover. These effects occur
in the cytoplasm, predominantly in the processing bodidso(fes), which are enriched

for factors involved in mMRNA degradation. The mRNAs whose protein formation is
prevented (by direct or indirect effects) may be sequestered inlibdi®s, which can be

used later for translation or can be degraded.

1.2.1.5 Different facets of miRNAs

Since their discovery in 1993, miRNAs have been studied in great tfejoth
their role as key players in normal developmental procéésesluding cell growth and
apoptosis®®® hematopoietic linage differentiatiorf’, muscle cell proliferation and
differentiation ®; tumorigenesi€®® and other disesed states such as cardiovascular
diseas€™?? autoimmune diseas&$™ and neurodegenerative diseaSes. The evidence
that miRNAs are deregulated in cancers was first observed and demonstrated by Calin et
al., in chronic lymphocytic leukemia in the year 2602They obseved deletion at 13q14
locus in chronic lymphocytic leukemia, which also harbored-aBR.6 cluster. This was
not only downregulated in cancer but was found to regulate BCL2. Since then, several
miRNAs have been reported as tumor suppres&ofS and oncogene®*'% It is now
known that miRNA regulate approximately 60% of the protein coding g&heapart
from their potential to distinguish normal samples from tumor samples, they have also
been valuable biomarkers in clinical diagnostics to help ttheeorigin of cancer in
disseminated conditiont§>. The relevance of miRNA profiling in cancer was established

when miRNA profiles accurately reflected the developmental lineage and differentiation
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state of tmors, in contrast to the inaccurate results obtained from the mRNA pfSfiles
Although the field of miRNAs is hardly 20 years old, yet it has seen a tremendous
progress to an extent that miR2 is already in phase Itlinical trials for Hepatitis C

106

virus infection™". Other miRNAs such as miB4a has reached phase | clinical trial for

Liver cancer®.

The role of miRNAs as biomarkeras been widely studied in several cancer

111,112

types and its significance as prognosfi€™®, diagnostic and predictive markers

1131145 \well established. miRNAs have also been extensively studied for breast cancer as
promising biomarkers'®**8. However, we have still not been able to obtain a consensus
MiRNA signature for BC prognosis as the science of identifying prognostic markers is
ever expanithg. This extensive research on miRNAs was the cornerstone to conduct this
thesis. Even though miRNAs have been identified as prognostic factors, there is paucity
of literature in comprehensive and whole genome mining of miRNA signatures for
prognosticatia. Recent annotations of miRNAs on the human genome and availability of
next generation sequencing (NGS) platforms for whole genome capture of miRNAs
stimulated my interest in independently replicating previous findings, and in the potential

to identify adlitional and novel miRNAs. NGS allows unbiased profiling of all miRNAs,

which are otherwise limited on array (hybridization) based methods.

1.2.2 Piwi-interacting RNAs (piRNAS)
piRNAs are a recently discovered (2006) class of smaltcooling regulatory
RNAs that are slightly longer (282 nt) than the miRNAs and whose role was believed

to lie predominantly in germline maintenance and development. However, recent studies
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indicate additional roles that piRNAs may play in somatic tissues as well. Similar to
MiRNAs, piRNAs also interact with Ago proteins to guide target specific gene regulation.
Two classes of Ago proteins exist: AGO and PIWAe{ment induced Wimpy testis).
While the former class more often interacts with miRNAs, the latter class is associated
with piRNAs. Four human homologs of AGO [AGO1, AGO2, AGO3, AGO4] proteins
and four of PIWI class of proteins are described. These are HIWI (PIWIL1), HILI

(PIWIL2), PIWIL3, HIWI2 (PIWIL4) proteins™®.

1.2.2.1 Discovery of j[RNAs

In the year 2006, piRNAs were isolated from mouse testis independently by
four groups'?**?® These RNAs were found to be more mtent than the other small
RNAs and it was estimated that every spermatid would approximately, contain at least
one million piRNAs. The mouse specific PIWI proteins were found to be expressed in a
temporal manner and these proteins were found to interidictsmall single stranded
moleculest?*'% Based on the length, two classes of RNAs were found to be interacting
with PIWI proteins: the length of one class of RNAs ranged fror2@6t *** and the
second class had a size range o032t *?° Initially they were believed to be part of
repeat associated siRNAs as they showed regulation of repetineents such as
transposons in the germline. With the observation that they were integrated with PIWI
proteins and that they did not require Dicer for their biogenesis, distinguished them from

both miRNAs and siRNAs and were thus named as-ipit@ractingRNAs or piRNAs'%.
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1.2.2.2 Genomic location of piRNAs

While one of the characteristic features of miRNAs is its evolutionary
conservation across species, piRNAs do not share sequence conséfVitiencept for
a uridine bias at the first ba$¥. In drosophila, piRNA clusters are mostly seen in the
repetitive sequences and in regions devoid of protein codingsgdn contrast to
MiRNAs, piRNAs arise from two genomic sources: piRNA clusters, which is the main
source and from protein coding gené$'?® Two types of piRNA clusters have been
identified, depending on the direction of transcription: unidirectional and bidirectional.
pi RNAs arising from the second source wer €
protein coding gene$® However, a recenstudy by Martinez et al., have observed
mapping of piRNAs to intronic regions of protein coding and-pmtein coding genes

(e.g., long norcoding RNAs)'?°.

1.2.2.3 Biogenesis of piRNAs

The biogenesis pathway of pNA remains elusive and majority of our
understanding stems from our knowledge on Drosophila pathway. Often, piRNA
biogenesis is also associated with silencing of target genes. piRNAs take two routes for
their processing: primary synthesis pathway and tbeorslary pathway/pingong
amplification 1333 It is believed that the primary biogenesis pathway is necessary to
initiate PIWI pathways, whdl the secondary pathway is necessary for both, maintaining
the piRNA levels and for target silencing. Primary synthesis begins with the transcription
from piRNA clusters by RNA polymerase Il. After further processing of these sequences,
the piRNAs pair wih PIWI proteins, and the pair may subsequenthgrter into the

nucleus and silence transcription of a target gene. Several proteins such as Zucchini,
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Aubergine (Aub), etc., have been found to play a role in the primary pathway of
drosophila but no concsive evidences have been drawn yet. In the somatic cells, we
only observe primary pathway, whereas in the germ cells, we observe both primary and

secondary pathways*

The secondary mechanism, known as the amptifin cycle involves only Aub
and Ago3 and not PIWI proteins. piRNAs generated from the primary pathway may enter
into the secondary pathway and subsequently bind with Aub. In this cycle, the binding of
piRNAs to Aub and Ago3 alternate with each other tdsequences that bind to these
proteins are complementary to each other. Briefly, the pifAdA complex binds to a
target RNA, cleaves it and generates a new sequence, which then binds with Ago3.
piRNA-Ago3 complex performs similar mechanism of cleavthg target RNA and

simultaneously generating the piRNA.

1.2.2.4 Mechanisms of action

Similar to the mechanism of miRNAs, piRNAs also associate with RISC
complex, forming piRISC and protects the genome by silencing transposons. piRISC can
also be effective in gensilencing, similar to miRNAS®. One of the recent discoveries
has also suggested deadenylation of mMRNA by piRNA in Drosophila embifydere
are other functionsf piRNA-PIWI complexes but their mechanisms of action remains

abstract.
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1.2.2.5 Functions of PIWI proteins and piRNAs
Functions of PIWI proteins can be classified under two categdries
Developmental functions and Regulatory functidffs The development functions can

further be categorized into germline and somatic functions.

1.2.2.5.1 Developmental functions

Yet again, our understanding on the development functions of PIWI proteins
originates from Drosophila, mic€.elegansand oher lower order organisms. The major
roles of PIWI proteins in germline function include the formation of germ cell,
maintenance of germline stem cells, meiosis, spermiogenesis and oogenesis. Gene knock
out and knockn experiments have revealed the cdnttion of PIWI proteins in these
functions. The significance of PIWI proteins has expanded beyond germ cells to somatic
tissues. For instance, they are known to mediate epigenetic regulation and stem cell
maintenance in Drosophila, maintenance of neobtadls in Planaria**® The
development of ciliates involves germline micronucleus and somatic macronucleus.
Certain amount of DNA sequences found in the somatic macronucleus has to be
eliminated during sexual reproduction and PIWI proteins are known to play a major role
in DNA elimination®*°. Knowing the relationship between cancer cells and stem cells, it
is not surprising to see the dysregiaat of PIWI proteins in human cancef4’,

indicating that they may also likely contribute to tumorigenesis.

1.2.2.5.2 Regulatory functions
PIWI proteins may serve as epigenetic suppressors or activators, depending on

the recruitnent of certain protein§"'*2 It has also been noticed that transposon coding
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genes are not methylated in the absence of PIWI proteins, reflecting to a loss of
epigenetic controt*®. piRNAs and PIWI proteins may both serve as upstream mediators
of epigenetic control and may also be involved in transcriptional gene silef{tifigy

The role of piRNAs and PIWI proteins in silencing transposonal activities is well studied.
It is believed that piRNAs occur as cluster, especially from the repetitive eletfferts
specific example would bé&é¢ flamenco region in flies, which harbors one of the largest
piRNA cluster. A disruption in the flamenco region interrupts with the production of
piRNAs, with a simultaneous increase in transposon acti¥ityAlso, the biogenesis
pathway of piRNAs also serves dual purpode generate piRNAs and to mediate gene
silencing. Cefractionation of PIWI proteins and piRNAs with polysomes has hinted at
the possibility of a potential role for PIWI proteins and piRNAgranslational control

122 One of the important observations is the role of piRNAs in-passcriptional gene
silencing. Although the mechanism still remains unclear, it is believed that piRNAs may
act in a maner similar to that of miRNAs. A study from Esposito et al. opened up newer
avenues for exploration in this domaffl. piR_015520 was found to negatively regulate
its host gene MTNR1A gene, offering new functions piRNAs, similar to miRNAs.
Other studies have also confirmed the relationship between piRNAs and its
corresponding target mMRNAS!*? even though it is not known if the piRNAs have any

seed squence that determines its complementary binding with the target mRNA.

1.2.2.6 Role of PIWI proteins and piRNAs in cancer development
PIWI proteins and piRNAs are new players in tumorigenesis. The first report to
suggest the role of PIWI proteins in cancer oagga from the study on seminomas by

Qiao et al**’. Extending on this study, Lee et al also observed phenotypic differences
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relating to induction of PIWI protein expressidrf. The® pioneering reports were
followed by other studies that focused on the understanding of the contribution of PIWI
proteins and piRNAs to cancer. Dysregulation of PIWI proteins have been detected in
breast cancer, cervical cancer and have been linked tgorcdiferation, apoptosis,
invasion and metastasts*™* Clinical significance of PIWI proteins have also been
reported. PIWI proteins have shown to posgesgnostic significance for gliomds>,
pancreatic cancer®, colorectal carcinom&’, to name a few. The expression patterns of
PIWI protins were found to be different in different BC stad&s indicating their
potential to be a biomarker but no study has yet highlighted the prognostic significance of
PIWI proteins for BC. Likewise, piRNAs have alsedm observed to be dysregulated
(serving as tumor suppressors or oncogenes) and thus influencing phenotypic effects in
different cancer types such as breast caf®eand bladder cancéf®, to name a few.
Given their diverse roles, the role of piRNAs as biomarkers has also been investigated.
Although literature is scanty in this regard, potential of piRNAs to serve as prognostic
and diagnostic biomarkers is high*>***° A thorough study on piRNAs as prognostic

markers for breast cancer is still lacking.

1.2.3 Transfer RNAs (tRNASs)

tRNAs are a class of small naoding RNAs which are 7985 nucleotides in
lengtht®! and are well known for their role in protein synthesis. A total of 625 tRNA
genes have been annotated so far in the human genome, of which 506 are tRNAs that
decode standard aminacids, three are selenocysteine tRNAs, three are suppressor
tRNAs, three are tRNAs with undetermined or unknown isotypes and 110 are tRNAs

predicted to be pseudogeff&sThe striking feature of a tRNA moleculeits complex
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clover shaped secondary structure that is made of three hairpin loops and one terminal
helical stem. A tRNA interacts with a messenger RNA at the anticodon loop and carries
the corresponding amino aci d degenagraledone3 06 en
amino acid can be encoded by more than one codon), it is implied that tRNAs will exist

for every codon that codes for an amino acid and these tRNAs are called as isoacceptors
but the wobble hypothesis reduces the number of tRNAs needad alhd46 tRNAs are

sufficient for 61 codon&®>164

1.2.3.1 Genomic location of tRNAs

Despite being one of the oldest molecules discovered so far, we do not precisely
know the exact genomic lations from which the tRNAs arise. In some organisms such
as trypanosomes, tRNAs are present in the boundaries of transcription&i?utitsome
instances, tRNAs have been identified as clusters (distance betwedRNA genes is

less than 1000 nucleotide'sy.

1.2.3.2 Discovery and biogenesis of tRNAs
The discovery of tRNAs dates back to 1956 when Paul Zamecnik and Mahlon
Hoagland identified an adaptor molecule that fiom#d as an intermediate carrier of

amino acids in protein synthegfé*

The biogenesis of tRNAs begins with the transcription of a tRNA gene by RNA
polymerase Il and with the help afanscription factors. The initial precursor tRNA is
subjected to trimming of the 56 | eader and
of CCA sequence at the 306 end. This sequer

acids to tRNAs. Often, tRNAenes embed intronic sequences which needs to be spliced
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out. tRNAs also undergo several modifications to become a structurally and functionally
stable molecule. In all these steps, they are termed as uncharged tRNAs and with the
attachment of aminoacykd tRNAs, they are termed as charged tRNA molecules or
aminoacylated tRNAs and this completes the formation of a mature tRNA. Only the

aminoacylated tRNAs can take part in protein synthé{<°

1.2.3.3 Functions of tRNAs

The wellestablished and well characterized function of tRNAs is its role in
protein synthesis. Over the years, their roles have expanded beyond their canonical
function in translation and a discussion on these other funscti@l ensue. Both charged
and uncharged tRNAs have various functidffs The uncharged tRNA molecules have
been found to play a role in regulating global gene expression. This has been specifically
seen in bactedi in response to amino acid starvation. During amino acid starvation, in
yeast and in mammals, uncharged tRNAs activates Gcn2p protein kinase by binding to a
specific domain named histidyiRNA synthetase (HisRS) domain. This activated domain
phosphorylags the translation initiation factor and thereby reduces global protein
synthesis’2 In all these, uncharged tRNAs are merely helping the cells to survive under
nutritional stress conditions. Apart from their significa in protein synthesis, they also
serve as intermediates in protein degradation mechartiSm&RNAs have also found
their way in regulating cell death. They prevent the binding of cytochrome c released
from the mitochondria to apoptotic protease activating factor 1 (Apafl) and thus inhibits

the cascade of apoptotic evehts
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One of the recently discovered functions of tRNAs is their processing to
generate tRNA fragmentsRFs)'’>. Although these tRFs were initially considered to be
degradation byroducts, significant roles have been identified for these tRFs, illustrating
the fact these fragments are functional molecules that pradotty arise during stress
conditions’®. Their roles have been identified in translational regulation during stress
conditions and have also been identified as regulators of gene expression, in a manner
similar to hat of mMiRNAs. Relative variations in expression levels of tRFs in tumor cells
as compared to normal cell§” and their role in silencing gene expression, thereby
influencing cell proliferatiort” or metastasi&’® implies that they may also contribute to
tumorigenesis. Reviews by Keam et'al and Shigematsu et af° have explained in
detail the types of tRFs, their generation and the functional significance. Interestingly,
there is also evidence indicating that tRF may possess characteristics of a miRNA, both
structurally and functionally (by redating gene expressiory’, thus expanding the
potential repertoire of tRNA functions. Based on the recent discoveries we now

understand that tRNAs may also potentially contribute to gene regulation.

1.2.3.4 Clinical relevance of tRNAs

tRNAs have remained as a challenge for biologists as these are not amenable for
large scale profiling until recently. However, components of the tRNA biosynthetic
machinery such as tRNA synthetases have been found to be deregulated in tumor
conditions %%, Structural intricacies and complexities possessed by tRNAs has
deterred the development of standard profiling platforms, winidhirn has limited our
knowledge on the clinical importance of tRNAs. In 2006, Dittmar et al. designed the first

microarray chip for tRNAs that captured tRNAs representative of all the amino acids.
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Tissue specific expression of tRNAs was also observedisnstudy™®. An insight into

the contribution of tRNAs to tumorigenesis was gained from the pioneering work by
PavonEternod et af®’. In this study, tRNA were found to be over expressed in breast
tumors and it was suggested that tRNAs may show potential as biomarkers t8% BC
Following this study, another study was attempted to understand the functional
consequences of tRNA overexpression in BC. Overexpression of initiator tRNA
(tRNAM®Y) was found to promote cell proliferation and increase the metabolic activity of
cells'® From these studies, it is cleaattour knowledge on the clinical importance of
tRNAs is primitive. Although tRNAs have been suggested to show promise as
biomarkers, no study has been attempted till date to identify tRNAs as prognostic,

diagnostic or predictive markers.

1.2.4 Small nucleolar RNAs (snoRNAS)

snoRNAs are one of the most abundant classes of sncRNAs that ranges-from 60
300 nt in length™®.. They are a highly conserved group of RNAs that are involved in
posttranscriptional modificatios and in maturation of other RNAs such as ribosomal
RNAs (rRNAs) and small nuclear RNAs (snRNAs). Approximately about 200 different

species of snoRNAs are present in every vertebraté®2ell

1.2.4.1 Genomic organizéion of SnoRNAs

As the name suggests, snoRNAs originate from the nucleolus of a cell, a
dynamic organelle that is found within the nucleus of a cell and is involved in rRNA
biogenesis and in cell cycle. snoRNAs are mostly encoded within the introns ehprot

coding and noprotein coding genes or have been found in the intergenic rejioris
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More than 90% of human snoRNAs originate in the intrdAsUsually one intron will

harbor one snoRNA. In other organisms such as yeast, metazoans and plants, they may be
found as independent genes, as gene clusters or as intronic gene tlustecRNAsare

most commonly associated with proteins and form small nucleolar ribonucleoprotein

complexes®,

1.2.4.2 snoRNA families

Most of the snoRNAs identified so far, fall into one of the two classes of
snoRNA family: @D box and H/ACA box**''%2 The former class of snoRNAs are
named as SNORDs and the | atter are named a
methylation and are associated with fouotpms. Fibrillarin is the core protein that is
responsible for methylation. C/D box snoRNAs share two sequence motifs which share
complementary sequenceC box (PUuUUGAUGA) and D box (CU
ends, respectively. SNORAs are involved inyssmuridylation and are also associated
with four proteins. The core protein responsible for this modification is dyskerin. This
family of snoRNAs share the sequence motifs H box (ANANNA) and ACA box (ACA)
and are characterized by hairfimgehairpintail structure. Small Cajal body RNAs
(scaRNAs) are the third class of snoRNAs that are located in the Cajal bodies and are
involved in methylation and pseudouridylation of RNA polymerase Il transcribed
spliceosomal RNAS?® All three classes of snoRNAs perform their function by base
pairing with target RNASs; whil e another C
exist that do not share complementarity with any RNA. These-t@oscriptional
modifications are importdrto enhance the stability of RNAs and to protect the RNAs

from hydrolytic degradatiofr*.
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1.2.4.3 Biogenesis of ShoORNAs

SsnoRNAs existing as independent genes are first transcribed by RNA
polymerase Il. These trangzed units are excised from both the ends by exonucleases
until the snoRNA boundaries are reached. Intronic sSnoRNAs can mature in twd ways
(i) they are excised as lariats during splicing of the host genes. The lariats are debranched
and trimmed from bdt the ends by exonucleases until the snoRNA boundaries are
reached. In the second pathway, introns are not excised by splicing but are instead

cleaved by endonucleolytic enzymes, which are then trimmed by exonuci&ases

1.2.4.4 Functions of SnoRNAs

The weltknown function of snoRNA is in rRNA processing and maturatidn
Other novel functions of snoRNAs are slowly coming to the fore and some of them are
outlined below. Dep sequencing generated data has revealed that processing of
snoRNAs may yield other smaller RNAs including miRNAs and piR’AS™’. Since
mMiRNAs are considered as master regulators of gene expression, snoRNAs may
indirectly be believed to be involved in gene regulation. Recent discoveries have
demonstrated the involvement of snoRNAs in alternative splitfhgSNORD115 was
shown to share complementarity with exon Vb region of serotonin receptor. Vb region
contains silencer for splicing, as a result of which this exon is not included in the mRNA,
resulting in shorter product. Whereas base paimhigSNORD115 with exon Vb,
eliminates the action of the silencer, permitting the inclusion of exon Vb, resulting in a
normal receptor. Other mechanisms of how snoRNAs regulate alternative splicing have
been proposed but conclusive results are yet to bainglot One of the indirect

mechanisms through which snoRNAs participate in gene regulation is through its
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processing to other sncRNAs such as miRNAs and piRNAs. The pathological importance
of snoRNAs began to be understood from the observation that acgenas containing
SNORD115 and SNORD116 was deleted in the neurodevelopmental genetic disorder: the
Prader Willi syndromé®®. Subsequently, other studies have demonstrated altered levels
of snoRNAs, indicatingtheir possible involvement in disease conditions, including
malignancies. Similar to miRNAs, snoRNAs can also be classified into oncogenes and
tumor suppressors, based on their over or under expression in tumor cells, relative to
normal. snoRNA deregulatih has been observed in metabolic stress diséf8and in
chronic conditions such as chronic lymphocytic leukeffitahepatocellular carcinoma

202 colorectal cance?®® and endometrial cancét, prostate cancer among others. Their
roles have also extended to being biomarkersliagnostic and progmstic. Their
diagnostic significance has been observed for lung caficeand their prognostic
relevance has been highlighted in colorectal carf€erlung cancer’®>?*® chronic
lymphocytic leukemig®, peripheral T cell lymphom&”. Elevated levels of snoRNA
biogenesis has beeobserved in breast cancer and their significance in breast

tumorigenesis has been demonstr&f®d® yet a comprehensive study on identifying

snoRNAs as prognostic markers for BC has not bebligmed so far.

1.3 Profiling platforms for small non-coding RNAs

A number of gene expression profiling platforms have been adopted for small
RNAs also. However, small RNAs pose several challenges in developing a profiling

210213

platform - (i) small size of these RNAs makes it difficult to design a

complementary probe or a traditional primer, where often, the size of a probe/primer is
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egual to or more than the size of small RNAs, (i) miRNASs, for instance can differ by a

nucleotide and this distinction is difficult to obtain unless the platform is highly sensitive

to detect even one nucleotide difference, (iii) The GC content of miRNAsgraatly,

thus making it difficult to standardize the melting temperatures for annealing reactions in
a genome wide study, (iv) rapid rate of discovery, making it difficult to reuse the data

generated on platforms using grented probes, based on thastixg annotation.

Nevertheless, three main platforms used for profiling small-cooliing RNAS
include microarray, quantitative Reverse TranscripRatymerase Chain Reaction
(qRT-PCR) and next generation sequencing (N&S)Every platform has its own merits

and demerits and a summary of these platforms are provided below.

1.3.1 Quantitative reverse transcription polymerase chain reaction (QRTPCR)

One of the commonly adopted techniques is 4R that relies on cDNA
geneated from RNA, followed by real time PCR that quantifies the product in real time.
While gRT-PCR offers the advantage of being highly sensitive and specific with a high
dynamic range (six orders of magnitude), only limited number of RNAs can be
interrogaed on this platforni*™. It is expensive, labour intensive and the optimal reaction
conditions may vary according to sequence specific differences. The difficulty in
designing optimal probes for detecting small RNAsd the dependence on a pre
determined set of RNAs based on a specific genomic build makes this incompatible for
large scale profiling of RNAs. However, this platform may be best suited to validate or

probe for candidate molecules and especially whesatle amount in limiting™.
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1.3.2 Microarray

This is a hybridization technique that relies on pairing of RNAs to its
complementary sequences printed on a chip. The problem of small size of RNAs poses
challenges’*?. Microarrays are less sensitive when compared to-BRR and as with
qRT-PCR #%% the analysis might be restricted to a single class okcutds, in a
specific genome build. A platform with low sensitivity will generate many false negative
calls, whereas higher sensitivity and reduced specificity would result in a higher number
of false positives. The chance of identifying novel RNAs is maliand capturing of
RNAs with single nucleotide differences is challenging. The dynamic range of this
platform is moderate (four orders of magnitude) but it allows profiling of higher number
of molecules (compared to gFACR) at a lesser costt??!7 Replication and
comparison of previous study findings generated from using microarray is difficult due to
differences in the RNA content printed on the chip. The laclalwlity to perform
absolute quantification of molecules renders it more suitable for comparing relative
abundances of molecules that fall within the dynamic range of the platform between two

conditions such as normal and diseased.

Although both these tboiques (QRTPCR and microarray) have their own advantages,
these methods rely on a pletermined set of RNAs based on a specific genome build,
thereby leaving us blinded to the functions of other RNAs that cannot be captured

because of platform limitatio
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1.3.3 Next generation sequencing (NGS)

NGS refers to sequencing of millions of reads in parallel, yielding higher
throughput*” and more coverage, necessitating the use of powerful computing skills and
algorithms foranalysis®*® Several platforms are available within NGS. The platform
used for the current study is lllumina Genome Analyzer lIx. An overview of lllumina
sequencing is as follows>?%2!? sequencing in llumina takes place on a solid glass
surface called as flow cell which has sequencing templates (primers). Total RNA is
isolated from the sample andsie fractionated and the band corresponding to the size
of small RNAs is extracted (~200 bp). Alternatively size selection can also be performed
following the addition of adapters. Adapters which are short known sequences of DNA
and are complementary tbe lawn of primers found on the surface of the flow cell are
added to both the 36 and 506 ends of t he
binding sites for reverse transcription and for PCR amplification. RNA with adapters has
to be specifically set#ed to remove the adapter dimers formed, if any. An agarose gel is
again run to select the band corresponding to RidApter to be used for sequencing.

The length of RNA to be inserted between the two adapters is user specific and is called
t he Oenngstelrdt. ISequencing is carried out in
split into two columns and each column is further divided into tiles. There are about 100
tiles per lane. Either one sample can be loaded per lane or multiple samplesczatete |

in a single | ane where every sample RNA
sequence is very similar to barcode that helps in identifying the respective products.
Similarly, index sequence helps in identifying the samples even after they are
multiplexed. The process of loading multiple samples in a single lane is called
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omultiplexingbé. Adapter sequences in the s
flow cell. Following hybridization, clusters (clones of the same sequence of RNA) are
gnerated for each and every RNA sequence.
and clones are generated by an amplificati
process generates about 1000 identical copies of every single RNA templategsGiteste
generated to intensify the signal emitted by the fluorescent labeled nucleotides added
while sequencing. Sequencing is done using reversible terminator technology, also called

as 6sequencing by synthesi s6é. dhicieaideste c hnol
sequence millions of clusters in the fl ow
nucl eotides are reversibly terminated i . e.
blocked to prevent any further addition of nucleotides. Durirtdy es2quencing cycle, a

single fluorescently labeled nucleotide is added to the growing chain. Soon after the
addition of a single nucleotide, the label is imaged to identify the base and the terminator

is enzymatically cleaved to allow the incorporatiorhaf next nucleotide.

Based on the insert length and the sequencing direction, two types of sequencing
can be done in lllumina Single end sequencing and Paired end sequencing. Single end
sequencing is commonly used for short insert lengths and thens@gmeroceeds in
only one direction. For small RNA expression profiles, single end sequencing is adopted.
Paired end sequencing is done for slightly longer insert lengths6@ip) and the
sequencing proceeds in both the directions (forward and regéemsds). Mate pair

sequencing is done for generating libraries with longer insert lengtid|2
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The advantage of NGS is that it offers absolute quantification of molecules,
higher coverage, high sensitivity and specifiéity It does not require the knowledge of
genomic annotation (prerequisite for gRCR and microarray) and the reads can be
assembled de nové® This platform overcomes the problems of hybridization
encounered in sequencing technique, is capable of capturing reads with even a single
nucleotide difference and is useful for identifying novel RNAs. It exhibits high dynamic
range ¢ 10 orders of magnitude), enabling quantification of low amounts of molecules
ard allows parallel quantification of multiple RNA types, not restricted to one particular
class. Since NGS does not depend on any particular genome build, reanalysis of the
existing data based on the current genome build is possible. However, sequersgag bia
may be introduced due to the number of steps involved in sample preparation; data
analysis and interpretation is complex due to the large volumes of data being generated.
Of the three profiling platforms, NGS is the also the most expensive butsetefthe
costs by allowing mining of all small RNA classes which is not possible on microarray or
gRT-PCR platforms. With several uskrendly bioinformatics platforms now available
for data analysis, complexity of data and its mining once consideredtatitom for NGS
has now been overcom¥. The rationale for my choice of NGS as the profiling platform

stems from the above considerations.

1.4 Rationale to conduct the study

sncRNAs are attractive molecules afarest for reasons mentioned below:

Extracting long RNAs from easily available FFPE blocks has been challenging.

However, due to their small size, shcRNAs have been demonstrated to be highly stable in
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nature, withstanding the effects of formalin and ottigsues processing effects. The
expressions of these molecules have also remained invariant between fresh frozen and
FFPE tissue$?*??°. These properties make them attractive as large repositories of FFPE
blocks are housed in pathology departments and when combined with clinical data, are

ideal for biomarker discovery and validation studies.

Compared to messenger RNAse thumber of sncRNAs identified so far are fewer
in number, which makes the understanding about these molecules and handling of the

datasets fairly easy.

sncRNAs are less prone to gene variant mechanisms such as alternative splicing.

Therefore analyzing tlse molecules are less complicated.

sncRNAs have been isolated from almost all the tissue types and biofluids such as
serum and plasma and have demonstrated to be highly stable in these biosg8tfifens
228 Therefore developing less invasive and easily procurable markers for BC (and other

cancers or diseases) prognosis seems plausible.

Lastly, shcRNAs work a step higher in the hierarchy of gene regulai
signaling pathways. The pleiotropic nature and/or redundant properties of sncRNAs
draws more attention towards these molecules as altering the expression of a single RNA
may have substantial effects on gene expression networks; suggesting th&NhAsse

may also be helpful for therapeutic interventions.
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1.5 Hypothesis

Deregulation of small nenoding RNAs contributes to intémdividual differences

in disease trajectory and eventual treatment outcomes in breast cancer.

1.6 Objectives

(i) To comprehensively prdé and identify differentially expressed small non
coding RNAs from normal breast tissues and breast tumor tissues.

(i) To identify miRNAs associated with prognoses (Outcomes: overall survival and
recurrence free survival).

(i) To identify prognostic relevance shcRNAs profiled (piRNAs, tRNAs and

SnoRNAS).

Materials and methods common for all the small -noding RNAs will be
explained in chapter 2 and methods specific for each and every RNA will be explained in
their respective chapters. The three specific divjegg mentioned above have been
organized into different chapters. Objective 1 is elaborated in chapter 3 of this thesis and
objective 2 is explained in chapter 4. Identification of other smaHamaliing RNAs i.e.,
the piRNAs, tRNAs and snoRNAs (objecti8ghave been explained in chapters 5, 6 and
7, respectively for more clarity. Further, overall discussion, conclusions and the potential

future work are outlined in chapter 8 followed by appendix (chapter 9).
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2. Materials and methods

US Nation& Cancer Institute and the European Organisation for Research and
Treatment of Cancer (NEHORTC) at their First International Meeting on Cancer
Diagnostics (From Discovery to Clinical Practice: Diagnostic Innovation,
Implementation, and Evaluation), recomanded specific guidelines for tumor based
biomarker discovery, validation and reporting. McShane et al, laid guidelines on
reporting practices, called AREporting rec
studi es o whnown tas REMARMW guidelire*. | have adhered to these
guidelines in identifying and reporting prognostic markers for BC in this thesis. Briefly,
REMARK guidelines call for: (i) explanations about the markers under investigation, a
clear satement of the study objectives and hypothesis; (ii) description of the patient
cohorts as well as characteristics of the specimens used for the study; (iif) estimation of
the sample size needed to conduct the study; (iv) methods adopted, (v) ovesall stud
design and the various statistical methods adopted (including the method to estimate
optimal cutoff point) and the results thus obtained (which includes hazards ratio,
confidence interval); (vi) validation of the initial findings from discovery cohoraun
external dataset and (vii) discuss potential limitations and implications of the study for

future research.

2.1 Sample size calculation
Number of samples needed to detect statistically significant differences of the
measured sncRNAs between the two comspa groups i.e., cases and controls was

estimated using the following web tools:
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http://bioinformatics.mdanderson.org/MicroarraySampleSize/ and
http://linus.nci.nih.gov/brb/samplesiZel. | considered the following parameters to
estimate the sample sizes: U (acceptable
(desired power to conduct the study) = 80% and a fold difference of 2 or more in
sncRNA expression. Under these conditions, at @44 samples were required in each
group (controls and cases). This study included 11 control samples and 104 cases, thus

meeting the statistical requirements to enable data interpretations with confidence.
2.2 Clinical characteristics of the samples used fahe study

2.2.1 Discovery cohort

Samples included in the discovery cohort were obtained from women in Alberta,
Canada. Written informed consent was obtained from all the study participants and the
study was approved by the local Institutional Research Ethicsmittee (Health

Research Ethics board of Alber@ancer Committee).
Controls:

Eleven apparently healthy breast tissues obtained from reduction mammoplasty
surgery were considered as normal samples and will henceforth be called as controls.
These samplewere stored as flash frozen (FF) tissue specimens. The tissue samples

were assessed by a pathologist and were confirmed to be free of malignancy.
Cases:

Breast tumor tissues from one hundred and four cancer patients diagnosed with

invasive ductal breastancer were obtained to conduct this study and will henceforth be
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called as cases. These samples, along with their complete clinical characteristics were
accessed from Alberta Cancer Research Biobank/Canadian Breast Cancer Foundation
tumor bank (http://wwwacrb.ca/). All the patients were nametastatic at the time of
diagnosis (except one) and the samples were collected between the years 1996 and 2008.
The median follow up period was 2927.5 days or 8.02 years (rangé:6IZb days) and

the median age #te time of diagnosis was 50 years (rangei Z9 years). Patients were
classified into different molecular subtypes based on their immunohistochemical profiles
that considered estrogen receptor (ER), progesterone receptor (PR) and human epidermal
growthfactor receptor (HERZ2) expression levels. More than 50% (n = 62) of the patients
belonged to Luminal A subtype with positive expression status for ER, PR and negative
status for HER2 receptor. Thirty patients were diagnosed with triple negative breast
caner (TNBC) based on low to negligible expression of all three receptors. Ten patients
showed positive expression status for all the three receptors and were classified as
Luminal HER2 subtype. Two patients were positive for ER and PR and their HER2 status
was unknown. Since the overall tumor grade was high, these were classified into Luminal
B subtype, as described earli&f. Luminal HER2 and Luminal B samples will
henceforlh be called as Luminal B. Of the 104 patients, 25 underwent neoadjuvant
therapy and 79 underwent adjuvant therapy, with predominant treatment option being the
administration of TAC (Taxotere/docetaxel, Adriamycin and Cyclophosphamide; n = 57).
Despite stadard care of treatment, 46 patients died and 61 patients experienced
recurrence. All the tissue samples were preserved as Formalin Fixed Paraffin Embedded
tissue blocks (FFPE). A pathologi®r. Richard Berendtgxamined tumor cellularity in

H&E stained sctions from each of these blocks and found that all of the 104 samples
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exhibited O 70% tumor cell s. The percent

70% (n = 7), 8 90% (n = 13), 90% (n = 24), 95% (n = 35) and 100% (n = 25).

2.2.2 External validation cohort (TCGA)

Samples profiled by The Cancer Genome Atlas (TCGA) and preserved as FF
tissues were accessed for use as external validation cohort. The data access committee
from TCGA approved the study protocol and use of data sets. A total & BO&ases
were available in TCGA dataset. | filtered the samples based on the following criteria, to
make the dataset comparable to the discovery cohort from Alberta (n=104): (i) female
patients, (ii) absence of any previous malignancy, (iii)-nm@tastat at the time of
presentation, (iv) non Caucasian samples were removed based on tHecketd
ethnicity, and (v) invasive ductal carcinomas. 479 samples were retained after filtering
for the above mentioned criteria. Data on the hormone receptos statiavailable for
332 patients, using which, | classified the samples into Luminal A (n = 203), Luminal B
(n = 58), TNBC (n = 52) and HER2+ enriched (n = 19)umor stage information was
available only for 328 saples. Samples in TCGA dataset was sequenced using two
platformsi lllumina Genome Analyzer lIx and Illlumina HiSeq. Of the 328 samples, 156
were sequenced using the former and 172 were sequenced using the latter. Samples
sequenced from lllumina Genome Ayadr would have been the ideal external dataset
for comparison with the discovery cohort but the number of events (n = 8) from this
subset of samples was less to run a survival analysis, therefore samples sequenced using
lllumina HiSeq platform was used aa external dataset. Since the discovery cohort did
not include any HER2+ enriched samples, | removed these samples from TCGA dataset,

resulting in a sample size of 162. | considered only samples with a fopigveriod of >
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3 years for patients withouhg events, based on a previous study that defined the follow
up period for recurrence or survival analysiverall, | was left with 84 samples for
survival analysis, with death reported for 27 patients. TCGA tmtked time to
recurrence and hence | attempted only the survival analysis. The percent distribution of
tumor cells (cellularity) in TCGA dataset were as follows: (i)i380% = 14, (ii) 55

70% = 19 and (iii) 79 100% = 50. One sample did not have amfpiimation on tumor
cellularity. Compared to the discovery cohort, in which all the samples had tumor
cellularity > 70%, the number of samples with > 70% tumor cellularity were less in
TCGA dataset (at 60% of the total n=84). All these differences, imguitie platform

differences were taken into account for finer interpretations of the data.

Patient demographics of discovery and external validation cohorts are summarized in

Table 2.1.
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Table 2.1. Patient demographics of discovery and external validatiocohorts

Discovery cohort

External validation cohort

Characteristics from Alberta from TCGA
(n=104) (n=84)
Median age at diagnosis in years (rand 50 (247 79) 54.5 (35i 90)

Median follow up time from diagnosis i
days (range)

2927.5 (170 6125)

18815 (1747 3807)

Molecular subtypes

Luminal A 62 51
Luminal B 12 18
Triple Negative 30 15
Menopausal status

Pre 37 24
Post 75 46
Peri 11 3
Unknown 1 11
Family history of Breast Cancer

Yes 40 N/A
No 58 N/A
Unknown 6 N/A
Stage

| ’ 8 25
I 79 47
I 16 12
IV 1 0
Overall Grade

Low 36 N/A
High 67 N/A
Unknown 1 N/A
Vital Status

Alive 58 57
Dead 46 27
Relapse Status

Relapse 61 N/A
No relapse 43 N/A
Treatment type

Adjuvant 79 84
Neoadjuvant 25 0
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2.3 Isolation of total RNA for small RNA sequencing

I homogenized all the control samples, stored as FF tissues using TRIzol
(Invitrogen) and isolated total RNA using Qiagen RNeasy kit according to manufacturers'
instructions. Total RNA from FFPE tissues was isolated using RecoverAll Total Nucleic
Acid Isolation Kit (Life technologies) through the services of PlantBiosis Ltd
(Lethbridge, Alberta, Canada; http://www.plantbiosis.com/). RNA quality and quantity
were analyzed with Bioanalyzer 2100 and RNA Nano Chips (Agilent Technologies). The
RNA extracton protocols that have been followed for this study have previously been
optimized for FF and FFPE tissues wherein the use of different extraction protocols in a
comparative miRNA study was shown to result in expression profiles that are highly

reproducilte and strongly correlated between FF and FFPE tissue t§pes

2.4 Small RNA sequencing

Services from PlantBiosis Ltd were utilized preparing small RNA libraries and for
small RNA sequencingBasic bioinformatics support, i.e., from generating fastq files to
.bam files were also offered by PlantBiosis Ltd and the details are as follows: Small
RNAs were sequenced using TruSeq Small RNA Sequencing Kit (lllumina), TruSeq SR
Cluster Kit v5CS-GA (lllumina) and TruSeq SBS Kit ¥v&A (lllumina) according to
manufacturerdds instructions. This sequenci
RNAs, ranging between 15 and 40 nt in lengilnerefore, size fractionation was
performed to include only sagnces less than 200nt, after adapter ligatAdh.the
samples were sequenced on lllumina Genome Analyzer lIx witby@é singleend

protocol (7 belonged to index and 29 base sequence for alignment with genome build).
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Base calling and demultiplexing veercompleted using CASAVA 1.8.2 with default
settings, followed by trimming of adapters wusing CutAdapt software
(http://code.google.com/p/cutadapt/). Sequences longer than 17 nucleotides2and
nucleotides were retained. Quality trimming was performecktain only reads with a
Sanger quality score coff of 30. The quality of the sequenced reads after adapter
trimming was assessed using FASTQC software
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). One tumor sample was not
processed furthedue to poor quality and was therefore excluded, leaving 103 tumor
samples for further analysis. Trimmed sequences were then aligned to the reference
genome using Bowtié and were allowed a maximum of two mismatchésman hg19
genomic assembly (UCSC), downloaded from lllumina iGenome repository was used as
a reference for mapping. Aligned sequences were saved as .sam files, converted to more
memory efficient .bam files and sorted by genomic position. Sequencingwadata

submitted to Gene Expression Omnibus (GEO accession ID GSE68085).

2.5 Sequencing data analysis

2.5.1 Discovery cohort

For analysis of NGS data, | used Partek Genomics Suite v 6.6 (PGS, Partek®
Genomics Suite software, Version 6.6 beta, Copyright © 2009 Partek 3t. Louis,
MO, USA). The .bam files of 103 tumor samples and 11 normal samples served as input
files to PGS. Four classes of sncRNAs, i.e., miRNAs, piRNAs, tRNAs and snoRNAs

were studied in this work and individual data analysis was performed for elass of
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sncRNA. The following databases were used to annotate the .bam files to different
SncRNA classes:

miRBase v20 (http://www.mirbase.org/) for mature miRNAS,

PiIRNA bank(http://pirnabank.ibab.ac.in/index.shtmf)for piRNAs,

UCSC (http://gtrnadb.ucsc.edti)for tRNAs,

and Ensembfhttp://grch37.ensembl.org/index.html) for snoRNAs

For every class of sncRNA, all the sncRNAs that registered a read count of one
was annotated from the dataset. The dataset was normalized using reads per kilobase per
million method (RPKM), a welestablished ntbod used for normalizing sequencing
data™.

Separate small RNA libraries were constructed for different batches of tissue
specimens profiled. Hence the datasets were adjusted for potential batch effects using
ANOVA model. Overall, the samples used for this study were sequenced in four different
batches: Batch 1 = 8 TNBC samples; Batch 2 = 16 Luminal A samples; Batch 3 = 11
normal samples; 10 TNBC samples & 23 Luminal A samples; Batch 4 = 25 Luminal A
samples, 10 uminal B samples & 11 TNBC samples. Sequencing was performed in
different batches for the following reasons: (i) to initially explore the feasibility of
profiling sncRNA, (ii) as a quality control (QC) step to determine the quality and
amenability of speanens available for higthroughput sequencing and (iii) to contain
costs at the exploratory stage. Many of the technologies used in biology are often
encountered with variations arising from technical and biological factors. Our whole
objective of perforrmg an experiment is to capture signals arising from biological source
and not from technical source. One of the main sources of variations is called as batch
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effects, whi c h, as de-Oroupsead measyrememtsetkat have a l
gualitatively different behavior across conditions and are unrelated to the biological or
scientific var® @ne leampleiofna reasors forbaltch ceffects is the
processing of samples on different days. The pesef batch effects in a dataset may
lead to inaccurate biological conclusions, creating difficulty in reproducing the results.
However, if a dataset that is confounded by batch effects is analyzed, it becomes difficult
to distinguish the results thus abted from those that would arise from real biological
effects. Therefore, it is imperative to understand the dataset or in other words, perform an
exploratory analysis well before performing the real experiment and interpreting the
results. There are sena methods to quantify and correct for batch effects and this has
explained in detail by Leek et #l. One of the methods that | have adopted is to cluster
the samples using Principal component analysis (PCA) quantify the amount of
variation arising from the presence of batch effects using ANOVA model. The presence
of batch effects warranted data correction for batch effects. The option for correcting for

batch effects is in built within PGS.

For subsequerdnalysis, SncRNAs were filtered for read colintncRNAs that
had> 10 read counts in at least 90% of the samples (normal and tumor samples inclusive
for casecontrol approach and only tumor samples for eadg approach; the two
statistical approacheme explained in section 2.6) were retained for all the downstream
analysis. PCA plot of filtered raw counts of each class of sncRNA corrected for batch
effects was used for identifying potential sample outliers. Samples deviating from three
standard devigons were identified as potential sample outliers. After removing sample

outliers, .bam files were reloaded into PGS and the dataset was normalized and corrected
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for batch effects. Further, the same filtering cut off was applied to retain sncRNAs for
dowrstream analysis. For all the downstream analysis, batch effects corrected normalized
counts of filtered sncRNAs was used. Gmay ANOVA test was used to identify
differentially expressed (DE) sncRNAs with fold change (B@.0 and false discovery

rate (FIR) cut off< 0.05.

2.5.2 External validation cohort

Eighty four samples from TCGA dataset were considered as the external
validation cohort. | analyzed the .bam files of 84 samples using PGS. All the sncRNAs
which registered a read count of one were atedt and the dataset was normalized
using RPKM method. Further, the dataset was adjusted for batch effects using ANOVA

model, considering the following variables: batch ID, plate ID and tissue source site.

2.6 Survival analysis
| performed the statistical alyakes under the able guidance of Dr. Sunita Ghosh.
2.6.1 Discovery cohort

Two commonly used statistical approaches were adopted for this study: Case
control (CC) approach and Cagely (CO) approach. The difference between these two
approaches lies in the selextiprocedure of sncRNAs for survival analysis. In the CC
approach, only DE sncRNAs were tested for their association with outcomes (Overall
Survival, OS and Recurrence Free Survival, RFS). In contrast, CO method is unbiased,
i.e., it includes all of the &iRNAs profiled in the tumor samples (following the data
filtering criteria described above), thus allowing a wider dataset for interrogation and is

not influenced by expression differences between normal and tumor samples, thus
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eliminates the bias introdacd by t he defined AdAnor mal samp
offers a chance to identify molecules, which would have otherwise been missed in a DE

list identified from CC approach and also includes those RNAs which may be
preferentially expressed in tumor sdegalone and not in normal samplelere again,

all the sncRNAs retained after applying the filter cut ofilQ read counts in at least 90%

of the tumor samples) were subjected to survival analysis.

More often than not, higthroughput techniques suffe&som the problems of high
dimensionality (a higher number of markers but lower number of samples) and
collinearity (correlation between two markers), leading to the generation of instable co
efficients in a traditional Coproportional hazards regressiodel*’. In such cases, the
inclusion of individual miRNAs to build a model may not yield reliable results, whereas
considering miRNAs as continuous variables and constructing risk scores overcomes
both these problemd-or both OS and RFS, sncRNAs obtained from CC and CO
approaches were considered as continuous variables and were subjected to Univariate cox
proportional hazards regression analysis, along with permutation test (n = 10,000) using
6gl mper mé paistidalgpgpgrami @S aRd RES were defined as the time period
between the date of surgery and until an event occlrrddath in case of OS and
recurrence in case of RFS. Any sncRNA that was significant in the permutation test with
p < 0.1 were considerefbr further analysis. All the subsequent analysis was performed
using SAS version 3.85AS institute Inc., Cary, NC). sncRNAs that were significant in
the permutation test were used for constructing a risk score for each sample. The formula

for risk scoreconstruction is as follows:
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YOIYRET B 1 zi & @'Y wherei & @'Y lisdthe individual risk score for
SncRNA j on sample i, anid is the parameter estimate obtained from the univariate
analysis for soRNA j 8. For all the sncRNAs, two separate risk scores were constructed
for CC and CO approachesne for OS and another for RFS. In order to dichotomize the
samples into two risk groups low-risk and highrisk groups, receiver operating
characteristics curve (ROC) was used to determine the optimadffcyint for
dichotomization. Risk score was now considered as a dichotomous variable and was
subjected to univariate and multivariate cox proportional hazagtessgon model to
investigate whether the risk score would emerge as a potential independent prognostic
factor. The following variables were considered as potential confounders: age at
diagnosis (continuous variable), tumor stage (I, Il vs I, 1V), tugrade (high vs. low)

and TNBC status (Luminal vs. TNBC). The final multivariate model included those
variables which were significant with p < 0.05. Luminal A, Luminal B and Luminal
HER2 were collectively called as Luminal group. Kaplan Meier plots weed @sr
assessing the median survival function between the two risk groupsahkgests were
performed to compare the survival distributions between the two risk groups. P < 0.05
was considered to indicate statistical significance. Hazard ratio (HR) tlaeid
corresponding 95% confidence interval (Cl) are reported for the univariate and

mul tivariate Cox6 regression model

2.6.2 External validation cohort
Normalized counts that were adjusted for batch effects were used for extracting

the normalized valigeof prognostic sncRNAs identified from the discovery cohort. As
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pointed out earlier, samples selected from TCGA dataset were sequenced in lllumina
HiSeq, whereas the discovery set samples were sequenced in lllumina Genome Analyzer.
Due to the fact that N& platform specific differences in read counts may potentially
influence the risk scores we did not adopt the risk scores araffqudints generated in
discovery set. An independent risk score was constructed using the prognostic SncRNAs
and ROC was emgied to dichotomize the sample into two risk groups. Univariate, and
multivariate Cox proportional hazards regression analysis was performed using the
following variables: age at diagnosis (continuous variable), tumor stage (I, Il vs. 1ll and
IV), TNBC stdus. TCGA dataset lacks information on tumor grade. However, tumor
grade did not influence the multivariate analysis even in the discovery set (data not
shown). Therefore | reasoned that lack of information on grade in the TCGA data set may
not influence e study findings. External validation was carried out only for sncRNAs
associated with OS. Since the numbers of recurrences were minimal in the external
dataset, sSncRNAs associated with RFS (identified from the discovery cohort) could not

be validated.

An overall workflow of this study is outlined in Figure 2.1. Methods outlined in
this section are common for all the sncRNAs and more specific methods are elaborated in

the subsequent chapters.

77



Figure 2.1 Overall Workflow of the study
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3 Profiling of small non-coding RNAs from human breast tissues

I normal and malignant

3.1 Small noncoding RNAsas global regulators of gene expression

A cell 6s phenotype is | argely determine
Proteins, as we know are translated from messenger RNAs (mRNAs) and we have
observed dysregulation of proteins and their correspondiRijAs in several diseased
conditions, when compared to their normal countergasthough mRNAs are placed a
step higher in the hierarchy of protein expression regulation, there are molecules such as
small ron-coding RNAs (sncRNAs) that may be placed a step even higher than the
MRNAs and a comprehension of these molecules may in turn enable efficient regulation
of proteins. It is therefore vital to identify these molecules and understand their behavior
in a dseased condition. SncRNAs are molecules which are less than 200 nt in length that
serve a multitude of functions ranging from gene regulation to splicing to protein
synthesis. Several classes of RNAs such as miRNAs, piRNAs, snoRNAs, tRNAs etc., are
encompssed within the sncRNA famify The class of sncRNAs is ever expanding with
the discovery of newer molecules, along with our understanding on the roles of these
molecules. miRNAs have largely been studied as remslaif gene expression. RNA
world is predominantly governed by bgs&r complementarity and miRNAs are a
classic example of such an interactfoh The roles of otér sncRNAs are being studied
from different angles. For instance, piRNAs are well studied for their role in germline
development and maintenanté tRNAs are crucial for protein synthesis andRNAs
are known for their classic role in post transcriptional modificatfofi$ie roles of these
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other molecules are no longer restricted to their classical functions but are slowly
expanding to other domairisan important domain being gene regulation. piRNAs are
now known to play important roles in somatic tissues and studies are now emerging to
show that piRNAs may also be classified as master regulators of gene expression which
may exert its action, in a maer similar to that of miRNAS™*2. Several of these
regulatory molecules (miRNAs and piRNAs) are also known to be embedded within
slightly largermolecules such as snoRNA%'® and tRNAs'’. Recent studies have also
identified the emergencd these regulatory molecules from the processing of ShHoRNAs
and tRNAs. Thus, there is an indirect contribution of snoRNAs and tRNAs to gene
regulation and a more direct role in gene regulation is an active and emerging area of
research. For instance, dygrea | at i on of snoRNAs have | ed
phenotype®?° which may imply an indirect mechanism of snoRNAs in gene regulation.
Also, tRNAs have been found togyl a key role in activation of protein kinase GCN2
2122 hinting at the possibility of gene expression regulation by tRNAs. With all these
insights, it may now be possible to call the sncRNA familglabal regulators of gene
expression. ldentifying molecules that are dysregulated in a diseased condition and the
genes that are regulated by these molecules may give us clues on the overall
understanding of the mechanisms contributing to a condition and also serve as

possible therapeutic targets.

82



3.2 Objectives

Specific objectives of this chapter are to profile and identify differentially expressed
(i) miRNAs, (i) piRNAs, (iii) tRNAs and (iv) snoRNAs from human breast tissues

(reduction mammoplasty vairhor).

3.3 Methods

Methods on isolating RNA, sequencing of sncRNAs and data analysis has been

explained in detail in sections 2.3, 2.4 and 2.5.

3.4 Results

3.4.1 Descriptive analysis of sequencing data

A total of 10,016,964 reads and 164,237,348 reads were detecteadnoral and
tumor samples, respectively. Of these, approximately 50% of the reads were retained in
the normal samples after adapter trimming and 59% of the reads were retained in the
tumor samples. Of the reads retained after adapter trimming, 4,255&d6 frem
normal tissues and 84,240,355 reads from tumor tissues were aligned to human genome
(hg19). The overall read length distribution of the aligned reads showed a size range from
17 to 27nt (since only reads with-27 nt length were retained), withpgaak observed in
22 nt length, which corresponds to the average length of mature miRNAs (Figure 3.1).
These aligned reads were mapped to four classes of smatbdorg RNAsi miRNAs,
piRNAs, snoRNAs and tRNAs. Table 3.1 summarizes these findings fromahand
tumor breast tissues. While mature miRNAs (21 nucleotides) were adequately covered,

the longer length transcripts from other sncRNAs may be potentially -veplesented
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due to the limitation in the read length specified in the sequencing prottmeever, the
annotated RNAs may include RNAs representing different transcript lengths (actual
length of the RNAs, as given in respective databases). For instance, piRNAs discovered
so far range from 282nt. Even though the sequencing protocol captordg reads up

to 27 nt, these aligned well with several of the longer piRNAs up to 32 nt. Figure 3.2

indicates the number of piRNAs identified under each transcript length.

Figure 3.1 Overall read length digribution of aligned reads
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Table 3.1 Descriptive statistics of NGS data

Parameter Normal Tumor
(n=11) (n=103)
Total reads 10,016,964 164,237,348
Reads retained after adapter trimming 5,060,588 97,204,377
Number of aligned reads 4,255,616 84,240,355
Number of unaligned reads 804,972 12,964,022
Reads mapping to miRNAs 1,174,977 24,344,516
Reads mapping to piRNAs 307,485 3,899,537
Reads mapping to tRNAs 124,352 8,122,670
Reads mapping to snoRNAs 163,49 1,447,469

Figure 3.2 Transcript length of the piRNAs identified from normal and tumor
tissues

160 -
140 -

142
134
120

120 - 105
100 -

80 - 70 62

60 - 43
40 -

20 _ l

0 1 T T T T T T

26nt 27nt 28nt 29nt 30nt 31nt 32nt
Transcript length

Number of piRNAs annotated

3.4.2 Exploratory analysis of sequencing data

Reads mapping to different classes of sncRNAs were annotated ¢oenliff
sncRNA IDs. The dataset of each of the classes of sncRNAs was analyzed for potential
batch effects and was also interrogated for potential sample outliers. The datasets were
first filtered for read counts only those RNAs with a minimum of 10 readunts (raw

counts) in at least 90% of the samples (hormal and tumor samples inclusive) were
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retained. The datasets were normalized (including all the RNAs) and were then filtered
for read counts (based on the raw counts). The normalized counts of fitidiesi were
guantified and corrected for potential batch effects using ANOVA model. Along with this
technical variation, biological variation was also captured for comparison and to ensure
that only the technical variations are removed. Mean F ratios ofthethiological and
technical variations (in this case, batch) were measured and were compared to the mean F
ratio of error. Those variations having a mean F ratio above the error bar (which is
always 1) are considered as a source of variation to thestla®&isce the variation from
biological source (tumor and normal tissues) is expected, this variation was not adjusted
for. All the four sncRNAs had measurable amounts of batch effects (Table 3.2, Appendix
figures 9.1.1i 9.1.4). The datasets were adjustedbatch effects and the mean F ratio
values dropped to zero, value less than the error ratio of 1, indicating the dataset has been
corrected for batch effects (Appendix figures 9i19.1.4). The datasets, after adjusting

for batch effects, were integated for potential sample outliers and for each of the
datasets; unique/overlapping samples from different sncRNA datasets were identified as
outliers (Table 3.2). These samples were removed and the datasets (without outliers) were
reloaded, normalizediltered for read counts, adjusted for batch effects and analyzed for

differential expression of sncRNAs between normal and tumor tissues.

Table 3.2 Results of exploratory analysis of sequencing data

Dataset aalyzed Mean F ratio of batch Number of sample
(before batch correction) outliers
mMiRNA 3.81 1
piRNA 10.02 1
SNORNA 19.73 3
tRNA 14.48 1
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3.4.3 Identification of differentially expressed sncRNAs

The annotated reads of each class of sncRNAs were filtere@ddrcounts, as
explained above. The dataset normalized and filtered for read counts and adjusted for
batch effects were interrogated for differential expression of sncRNAs. All sncRNAs
exhibiting fold change> 2.0 and FDR< 0.05 were classified as differgally expressed
sncRNAs. The number of DE RNAs identified from each dataset and the steps involved
in arriving at the DE list are summarized in Table 3.3. The list of DE sncRNAs is given
in the Appendix table 9.1. Further, unsupervised hierarchicalecingtof samples for
each class of sncRNAs revealed clear separation of tumor and normal samples;
illustrating that the samples are differentiated by the relative expression of a common set

of sncRNAs rather than by unique sncRNAs (Appendix figures 9.92.2.4).

Table 3.3 Identification of differentially expressed sncRNAs

Analysis step mMiRNAs piRNAs tRNAs SnoRNAs
Number of RNAs annotated 1423 676 572 768
RNAs retained after filtering 126 42 148 88

Differentially expressed RNAs 80 25 76 40
Up-regulated RNAs 48 17 76 9
Downregulated RNAs 32 8 0 31

3.5 Discussion

The class of nowwoding RNAs are broadly categorized into small and long non
coding RNAs, based on their sizeThe focus of this study is on small noading RNAs
which are < 200 nt in length. Several classes of RNAs fall under the category of
sncRNAs and these include miRNAs, piRNAs, snoRNAs, tRNAS. dthe discovery of
miRNAs, their roles in various key cellular mechanisms &ffd their potential as
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promising biomarkers for cancéf*® and other disease phenotypes ¥agvolutionized

our understanding of neending RNAs®*’, which were for a long time largely ignored in

the mistaken belief that they served no meaningful roles in somatic Asllsve
understand today, necoding RNAs serve a wide repertoire of functions, with substantial
roles in gene regulation and knowledge in this area is growing exponentially. Given the
widespread biological functions of small RNAs, comprehensive profiligcamparison

of the expression patterns of these RNAs in a-cas&rol study would serve as a cue for
understanding the consequences of their abnormal expression patterns in the diseased

state.

3.5.1 Technical considerations

An inert problem in high throughptgchniques is the occurrence of batch effects,
the inclusion of which would result in spurious associatifn#\lthough reports have
suggested that the problem of batch effects is less encountered in NG®dtita,NGS
data is not free from it°. | acknowledge this fact as batch effects were observed and
guantified in this study. However, | used ANOVA model to adjust for batch effects and
the same was confirmed when thean F ratios of batch effects were found to zero,
indicating the absence of technical variation. Moreover, PGS calculatesvtieepfor
batch effects too, when we analyze for differential expression of RNAsvalue of 1
was found after batch effect®reection (which was p <1 before correction) for each

studied small RNA class, indicating negation of batch effects from the datasets.
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3.5.2 microRNAs

In recent years, microRNAs have gained prominence as valuable biomarkers for
several cancer types, includin@€BAlthough considerable progress has been made in this
field, clinical application of these RNAs as prognostic markers has not yet been possible
because of the generation of different signatures by different studies with only a small
number of overlappingiolecules. This discrepancy may be attributed to several reasons,
the primary being the use of different profiling platforms. While there are ~2,588
miRNAs identified so far, as reported in the miRBase, only a few hundreds have been
captured on microarragr qRT-PCR platforms, of which even fewer have been detected
in breast tissues, since miRNAs are tissue specific. On the other hand, NGS profiling of
the entire miRNAome, including even the less abundant ones, can now be used to probe
the larger repertod, which was evident from this study. Approximately, breast tissue
specific mMiIRNAs comprise 55% (n = 1,423) of the total mMiRNAs (n = 2,588 annotated
thus far) and these were captured from the 11 normal breast tissues and 103 breast tumor
tissues used fohe study. 80 miRNAs were also found to be DE, with 48agulated
and 32 dowrregulated miRNAs. Of these 80 miRNAs, | interrogated the direction of
expression of a subset of mMiRNAs showing prognostic significance (see chapter 3) with
the published miRNA mfiling studies in breast cancer and other cancer types. All of the
tested miRNAs exhibited excellent concordaffe€. These findings gave the confidence

to further mire the NGS data to interrogate other sncRNAs.

3.5.3 Piwi-interacting RNAs
A new class of noitoding RNAs called piRNAs was discovered in mouse testes

in 2006 °**". They were found to be involved in maintaining genome stability by
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regulating the expression of transposons in germ &élland for a long time, their roles
beyond germ cells rem@d uncertain; however, with increasing focus on these
molecules, their occurrence in somatic cells has been observed and their functional roles
in somatic cells are beginning to be uncoveféd Using a sequencing platform to
profile piRNAs, we observed the presence of 676 piRNAs in breast tissues, confirming
their existence in somatic tissues. In contrast to their occurrence as clusters ielggrm c
they have been observed mapping to known transcripts in somatic’®celis breast
tissues alone, we noted that around 85% (576 of the 676 total piRNAs profiled in our
dataset) of the piRNAs mapped tooes and introns of known protein coding andon
coding transcripts. Since piRNAs abundantly map to known genes, it remains to be
determined i f they are dependent on the ho
they carry their own promoter. A feof the piRNAs also mapped to other rooding

RNA classes such as miRNAs, tRNAs and snoRNAs (Figure 3.3). These piRNAs shared
genomic ceordinates with the other classes of ncRNAs, either fully or partially. In case
of snoRNAs and tRNAs, several of th&rplAs were found to be completely embedded

within the larger tRNAs (n = 31) and snoRNAs (n = 38).
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Figure 3.3 Expression of piRNAs in breast tissues
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Filtering of these 676 piRNAs for read counts and déifidial expression analysis
identified 25 piRNAs with FC > 2 and FDR 0.05. The contribution of piRNAs to
tumorigenesis is beginning to be understood and characterization of the identified

piRNAs is required to gain insights into their specific functions.

3.5.4 Transfer RNAs

tRNAs are among the most abundant molecules present in cells, especially in a
metabolically active disease setting such as cancer, indicating higher rate of protein
synthesis in these celfé. Despie their abundance, they have received less attention as
biomarkers mainly due to the complexities involved in developing a profiling plafform
The extensive modifications that a tRNA undergoes during mntadoraand the
complicated structure of mature tRNA have deterred the development of a profiling
platform as these structural intricacies interfere with reverse transcription and

hybridization protocol€£®®% In 2006, however, Dittmar et al. developed a microarray
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method to profile tRNAs on a genormede scale. These microarray protocols could also
distinguish between tRNA isoacceptdPs Although this is a major leap in the field of
tRNA profiling, the method requires custamade arrays (which may not tend to be cost
effective for large scale profiling experiments) and has limited dynamic range for
quantification®’. However, a recent report by Meng et al. confirmed that a wider range of
molecules such as the class of sncRNAs, including tRNAs can be profiled using NGS and
from clinically archived specimens, preserved as FF or FFPE tissue BfodRNAs,
however posed challenges even in Higltoughput sequencing platforms, mainly due to
their compact tertiary structure and the presence oftpasscriptional modifications.

This limits the adapter binding effency and reverse transcription, both of which are
needed to generate libraries and to perform sequencing experiments, resulting in the
generation of truncated sequences from a large subset of tRNAsDespite this
difficulty in tRNA sequencing, | observed a higher number of reads aligning to tRNAs (n

= 8,247,022) when compared to piRNAs (n = 4,207,022), snoRNAs (n = 1,610,928) and
SnRNAs (n = 435,276) but only secondary to miRNAs 25,003,223)This observation

may be attributed to the abundance of tRNAs in the cells and tissues and despite the
challenges in the sequencing of tRNAs with high secondary structure or base

modifications.

lllumina sequencing protocols are still emi@g to overcome the inherent
limitations described above. | expect a higher number of reads than reported, if the
sequencing limitations are overcome. Also, the small RNA sequencing protocol using
TruSeqg Small RNA library preparation kit has been desigaecapture RNAs possessing

56 phosphate and 36 hydroxyl group. Ligat.
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possess these modification but these adapters can also ligate to other RNAs, albeit
inefficiently, which may therefore contribute to tloevier abundance of reads mapping to
tRNAs. Also, given the read length restriction adopted in our sequencing analysis (17
27 nt), it may not have been feasible to capture full length tRNAs. Therefore the reads
captured in this study may likely be the fmagnts of tRNAs but it is not certain if these
fragments are representative of mature full length tRNAs or if they represent actual
physiological products (identified as tRFs). Nevertheless, results from this study and
other studies* confirm that tRNA sequences can be accurately captured using small
RNA sequencing and the reads captured from our study represent the known tRNAs
identified and annotated -ttate across all chromosomgRable 3.5). Till date, in the
human gaome, 625 tRNA genes (including pseudogenes) have been idefifjfiefi

which 571 were profiled in this study. tRNAs predominantly arise from chromosome 6 (n
= 175), followed by chromosome 1 (n = 137). In thitadat of 571 tRNAs, | have also
observed a similar pattern of distribution (Table 3.4), with 170 tRNAs arising from
chromosome 6 and 132 from chromosome 1, indicating an unbiased genome wide

capture of tRNAs using the NGS platform.
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Table 3.4 Distribution of tRNAs profiled in the breast tissues

Number of tRNAs identified in Number of tRNAs identified
Chromosome :
human genome in our dataset
1 139 132
2 28 22
3 12 10
4 5 4
5 24 21
6 175 170
7 26 25
8 14 9
9 8 6
10 6 3
11 19 16
12 16 14
13 7 7
14 23 22
15 11 10
16 34 33
17 42 38
18 4 4
19 14 12
20 7 4
21 2 1
22 1 1
X 7 6
Y 1 1

76 tRNAs were upegulated in breast tumor samples, which independently
confirms the findings from PaveBternod & al. who also reported an overall -up
regulation of tRNAs in breast can®®r In the current study, tRNAs coding for 14 amino
acids (Arg, Asn, Asp, GIn, Glu, Gly, His, Leu, Lys, Met, Phe, Ser, Val ande®eC(
clearly showed high DE (FC > 2 and FBR0.05). The global ugregulation of tRNAs
may be attributed to the high metabolic activity of the cancer cell requiring higher rates
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of protein synthesis and tRNAs per se may serve diversearmnical roles ithe cell.
Although this phenomenon (global wpgulation of tRNAS) is observed for BC, it

remains to be seen if similar patterns of expression exists in other cancer tissues.

In the study by Pavekternod, the authors also pointed out the differences in
tRNA isoacceptor levels, correlating with the codon preferences of genes involved in
tumorigenesi€®. Although we did not focus on coddspacceptor correlations, we did
observe differences in tRNA isoacteplevels for specific amino acids (Appendix table
9.2) in our study, which may correlate with the codon preferences of the genes. For
instance, tRNAYTD and tRNA(CC®) were expressed in higher amounts when
compared to tRNAYCCD. Similarly, tRNA-UCAS) t{RNARUCAN and tRNASTY were
over expressed, when compared to tRRA*®) and tRNA®(™®. tRNAs coding for
GIn, Glu and Val also showed preferential expression of certain isoacceptors. In contrast,
expression changes of isoacceptorstRNAs coding for Ser, Gly and Lys remained
invariant. In this study, | have observed preferential expression of certain isoacceptors
over the others. However future studies are necessary to identify the codon preferences of
genes involved in breast tumaogigesis and subsequently correlate it with the tRNA
isoacceptor levels. Studies of this kind may further help us understand how tRNAs may

directly be involved in breast tumor development.

Overall, this is the largest study to attempt comprehensive pmpifintRNAS.
Although sequencing platform imposed technical difficulties in profiling tRNAs, this
study still stands as a proof of principle experiment to demonstrate that tRNAs can be

captured, even at the ismceptor levels through traditional sequeng@nafocols
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3.5.5 Small nucleolar RNAs (snoRNAS)

One of the lesser studied class of sncRNAs is the small nucleolar RNAs which
plays a major role in post transcriptional modifications of other RNAs and in ribosomal
RNA biogenesis®’. This RNA also acts a hub to promote interplay of other RNA
molecules. Although this class of RNAs is not known to be directly involved in gene
regulation, it may influence gene regulation in an indirect way. @inie emerging
fields of research focuses on the processing of SnoRNAs to other regulatory sncRNAs
such as miRNAS*™ and piRNAs'®, thus addressing the role of snoRNAs in gene
regulation. The clinical relevance of snoRNAs is also slowly coming to the fore as
potential biomarkers for various cancer typ%®® Therefore there is a pressing need to
understand these molecules from different perspectives. Although snoRNAs may also be
captured using a microarray platform, NGS serves as a better choice (for reasons
explained in 1.3.3) tenable comprehensive profiling of snoRNAs. So far genome wide
profiling of snoRNAs has not been a common sight in literature and this dataset, which
has captured 768 snoRNAs is the largest dataset interrogated for any cancer type.
snoRNAs are well known tbe embedded within the intronic regions of protein coding
genes’. | also observed a similar trend in the genomic location of snoRNAs, where a
majority of the snoRNAs profiled (449 out of 768), mapped to thenitrregions of the
protein coding genes. A total of 40 snoRNAs were also found to be dysregulated,
suggesting their possible involvement in breast tumorigenesis. However, their exact roles

in breast tumorigenesis remain to be delineated.

Overall, | was ale to profile a total of 768 snoRNAs from breast tissues. Given

the sequencing protocol adopted in this study (36 cycles single end protocol) with read
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lengths ranging between 17 and 27 nucleotides, it is highly likely that the 768 snoRNAs
may not represeérthe entire snoRNAome. Since fldingth snoRNAs have a minimum

length of 60 nucleotides, the identified snoRNAs may actually be fragments of snoRNAs.
Increasing the number of sequencing cycles may help identify additional snoRNAs and

confirm the originof the profiled fragments.

3.6 Conclusions

In literature, especially in breast cancer literature, it is common to see studies
focussing exclusively on miRNAs. In this study, | have attempted a comprehensive
profiling of four sncRNAs, exhibiting some percentagé commonality in their
contribution to gene regulation. While we now know substantially about miRNAs, our
knowledge on other sncRNAs is still rudimentary and such a comprehensive study may
cater to better understanding about these molecules and of éhetye under study.
When compared to other published studies, the number of RNAs annotated and
interrogated under each class of sncRNAs is the largest in this study. It is also one of the
rare studies to have complete clinical annotation and long falfpweriod for all the
samples, which is one of the critical determinants of a good biomarker study. While this
chapter has focussed exclusively on genovite profiling of sncRNAs, subsequent
chapters will delve into the clinical significance of the fouassks of sncRNAs and

identify potential biomarkers for breast cancer.
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4 Next generation sequencing profiling identifies miR674-3p
and miR-660-5p as potential novel prognostic markers for

breast cancer

4.1 Introduction

The global burden of breast cancer (BC) is 1.7 milkonl is one of the leading
causes of cancer related death among women and the most frequently diagnosed cancer
in 140 of 182 countries, as per the 2012 statistiédthough advancements in diagnosis,
screening ath awareness help identify BC at an early stage, optimal management has
remained a challenge due to its histological and molecular heterogénaitst varying
response to therapies even within clinical subtygfeBC °. Identification and validation
of prognostic markers that can stratify patients based on their risk for recurrence and/or
death may help in optimizing therapies to improve disease outcomes and quafiy of li
Estrogen Receptor (ER) and Human Epidermal Growth Factor Receptor 2 (HER2) are
widely being used as both prognostic and predictive markers but remain as imperfect
estimators of the risk for recurrenteWhile, messeger RNA (mMRNA) signatures from
global gene expression profiling have also been put forth as potential prognostic markers
for BC *8, their utility is limited to specific clinical settings This further emphasizes the
need to identify robust prognostic markers with higher sensitivity, accuracy and

reproducibility.
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MicroRNAs (miRNAs, 1825 nt) are evolutionarily conserved small roading
RNAs that have shown promise as both diagnostic and prognostic biomarkers for several
cancer typed”. Predominantly, miRNAs behave as ptrianscriptional regulatorsf gene
expression, promoting either mRNA degradation or translation inhibition, depending
upon the complementarity shared between the seed sequence of miRNAs and the
corresponding 3' untranslated region of the target sequé&fiteHowever, studies have
shown that they also activate gene expressibnBeing pleiotropic (one rRNA
regulating several mRNAs) ainighly redundat (several miRNAs targeting one mRNA)
in nature™, the impact of miRNA dysregulation in cancer is complex and yet promising

in the overall landscape of tumorigenesis and prognostication.

Although several studies hatghlighted the significance of miRNAs as diagnostic
1617 and prognostic markers for various canc€¥ including BC?*%, a consensus
signature has not yet been identified due to differences in the profiling platforms
employed, analytical approaches implemengasnple types (e.g. adjacent normal tissues
or reduction mammoplasty specimens) used for analysis and tumor heterogeneity. The
majority of the studies have utilized profiling platforms such as microarray ofR{fH,
which are limited to the detection ohéwn targets at the time of assay development.
Hybridization platforms are also burdened with the problems of cross hybridization,
background signal, low sensitivity and limitations on the dynamic range of detection.
These problems are now overcome by N@gheration Sequencing (NGS) platforfiis

NGS also offers the advantage of capturing not just miRNAs but a whole repertoire of

small RNAs, even those present in low abundaficehus enabling a comprehensive
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analysis of small RNAome. However, despite several advantages offered by NGS, only

few studies have utilized NGS platform to identify prognostic markers fc?®BC

Statistical methods implemented in a study also play a vital role in determining the
reproducibility of findings in a prognostic signature. Two methods to identify prognostic
markers are widely used in the published literdtuhe casecontrol (CC)approactf>?3
and the casenly (CO) approach®'®? While the former method utilizes a set of
differentially expressed miRNAs for downstream analysis, the latter offers the advantage
of being unbiased in selecting miRNAs for further analysis. Although each of the
methods has been used in published miRNA studies, no study has analyzed a dataset

using both the methods to compare and identify the best approach.

In this study, lhypothesized that relative variations in miRNA expression in tumors
and/or apparently normal (nenalignant) tissues contribute to iriedividual
differences in disease tegjtory andeventual treatment outcomdsprofiled miRNAs
from 104 breast cancers, predominantly of Luminal A and triple negative subtypes and 11
normal tissues (reduction mammoplasty speosheusing the NGS platform. The
specific objectives were as folle: (i) to identify differentially expressed miRNAs in
breast tissues (normal vs. tumor tissues) and (ii) to identify miRNAs as prognostic
markers (outcome: Overall Survival, OS and Recurrence Free Survival, RFS) for BC and
validate the signates using arexternal dataset. have identified a total of twelve
MiRNAs associated with OS and/or RFS for BC. Of these twelve, the prognostic
significance of ten miRNAs already reported in literature forH26 been replicated. To
the best of mknowledge, this ishe first study to report two novel miRNAs (mbB¥4

3p and miR660-5p) for BC prognosis.
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4.2 Materials and methods

Details on samples used for the study as discovery and external validation cohorts
have been explained in detail section 2.2 (2.2.1 for discome cohort and 2.2.2 for
external validation cohortplso, the methods that were followed for total RNA isolation,
small RNA sequencing andequencedata analysisand survival analysis have been

elaborated in 2.3, 2.4, 2.5 and 2.6, respectively
Specificmethods for analyzing miRNA data are explained below.

4.2.1 gRT-PCR validation of select miRNAs
gRT-PCR experimest were performedin collaboration withD r . Koval chuk

laboratory in University of Lethbridge and | analyzed and interpreted the data.

Using sampls for which RNA was available following NGS, the expressions of
three dowrregulated miRNAs whose FC ranged frein3 to-5.8 and one upegulated
miRNA with FC = 12.8 was validated using gfRTCR. This was done to exemplify the
dynamic range of detectioma concordance between NGS and ¢RJIR. This analysis
included two representative miRNAs (m8¥4-3p and miR660-5p) that were identified
to be of prognostic value and considered as novel in BC:9855p (FC =-2.3), miR
5743p (FC =-5.8), miR769-5p (FC =-1.3) and miR660-5p (FC = 12.8) were validated
using miScript Il RT kit (QIAGEN), miScript SYBR Green PCR kit (QIAGEN) and their
corresponding miScript Primer Assays according to manufacturers' instructions. All
assays were performed in triplicateaad human RNU& (QIAGEN) served as the
loading control. Foleexpression changes of miRNAs were calculated using th8<2

method®®.
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4.2.2 Breast tumor transcriptome analysis (MRNA) and identification of targets

for miRNAs

Messenger RNA (mRNA) expression datasets generated previously (GEO
accession ID GSE22820) using Agilent microarraytfptan were available Hhouse
(collaboration with Dr. John Mackeydr 176 tumor samples and 10 normal (reduction
mammoplasty) samples. Of these, the raw files were available for 149 tumor samples and
for all the normal samples. Since HER2+ samples wertte utibzed in the NGS
experiment for miRNAs, | removed HER2+ samples from the gene expression data as
well, leaving 141 tumor samples and 10 normal samples for the analysis. Seventeen
tumor samples matched with the tumor samples in the discovery cohdrfousdGS
experiment. Raw intensity values were Quantile normalized and log 2 transformed, and
oneway ANOVA was performed to identify DE genes with FC > 2.0 and FDPRoffudf
0.05 (PGS 6.6). | performed two experiments to choose the right sample set for
identifying gene targets. First experiment was carried out using all the tumor samples (n
=14l)and nor mal samples (which wildl haedn c ef or
the second experiment was performed using the 17 matched tumor samplestiaad all
normal samplef whi ch wi | | henceforth be cBH I ed a

MRNAs were identified from both the experiments.

| first predicted mRNA targets for miRNAs associated with OS and iREfico
using TargetScan database (Version 6.2p{iwww.targetscan.org/). The targets thus
obtained were overlapped with DE mRNAs generated from touse dataset (from
both the experiments). The benefit of using mMRNA datasets from breast tissues is that

they act as a proxy for functional validatiof mRNA targets identified by the silico
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prediction algorithm. | did not restrict identification of targets only to those exhibiting
inverse relationships with miRNAs (such asragulated miRNAs were matched with
downregulated genes and vice vershjt any correlation of miRNA to mRNA was

captured since the miRNARNA interactions are more complex than the direct
regulation of targets by miRNAs. Gene ontology (GO) terms were identified for targets

of every mIRNA separately using DAVID bioinformaticstools v6.7
(http://david.abcc.nciferf.gov/f>.  Onl'y clusters with &nrichm

were used to identify specific GO terms related to cancer with p<0.05.

4.3 Results

Initial results on profiling of MiRNAs and identification of DE miRNA®

summarizd in Chapter %3.5).
4.3.1 miRNAs as prognostic signatures for OS and RFS

Casecontrol approach:

A total of 1,423 miRNAs were annotated, of which 126 were retained after
filtering for read counts from normal and tumor tissueghty DE miRNAs were
identified with FC> 2.0 and FDR< 0.05 (Appendix Table 9.1)As explained in the
methods, these 80 miRNAs were treated as continuous variables and were subjected to
univariate Cox malysis, followed by permutation test. Four miRNAs were associated
with OS and two mi RNAs were associated wit
and two miRNAs identified for OS (Tabke1) and RFS (Tabld.2), respectively were
used for constructinthe risk score. A risk score eaff point of 1.07 for OS was used to

dichotomize the cases into lewg O 1. 0 7 )-riskagrotips (i 1@™). Similarly,
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samples were grouped into the two risk groups based on #udf Qdint estimated for

RFS (0.72). Riskscore was then treated as a categorical variable and entered into the
univariate Cox model. Tumor stage, grade, age at diagnosis and TNBC status were
considered as other clinical covariates and were first tested for their significance in the
univariate Ca model. Tumor stage, grade and age at diagnosis were considered as
potential confounders, and, irrespective of their significance in the univariate analysis,
they were entered into the multivariate model along with the risk score. The-hgkher
group wa found to have both shorter OS (Hazard ratio, HR = 2.71, p = 0.00 4.8
Figure4.1) and RFS (HR = 2.2°p = 0.003; Tablel.3, Figure 42), after adjusting for

confounders (tumor stage and age at diagnosis for OS and tumor stage for RFS).

Table 4.1 List of miRNAs significant for Table 4.2 List of miRNAs significant for

Overall Survival Recurrence FreeSurvival
miRNA ID Univariate | Permuted mMiRNA ID Univariate | Permuted
Cox p-value | p-value Cox p-value | p-value

hsamiR-210-3p 0.01 0.02 hsamiR-210-3p 0.01 0.02
hsamiR-15a5p 0.02 0.03 hsamiR-425-5p 0.05 0.08
hsamiR-6605p 0.03 0.04 hsamiR-193b3p 0.09 0.09
hsamiR-146b5p 0.04 0.05 -

hsamiR-374a3p 0.04 0.05 hsamiR-15a5p 0.08 0.10
hsamiR-374a5p 0.04 0.06

hsamiR-27a3p 0.06 0.07

hsamiR-574-3p 0.08 0.07

hsamiR-221-3p 0.07 0.08

hsamiR-196a5p 0.07 0.09

hsamiR-425-5p 0.05 0.10

Table 4 The tables above indicate the list of mMiRNAs associated with OS (Table 4.1) and RFS (Table 4.2)
from both CC and CO approaches, along with their corresponding univariatevatxes and permuted p
values. All the miRNAs identified in CC approach wererntified in the CO approach as well and are

indicated in red.
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Probability of OS

Figure 4.1 miRNAs Kaplan Meier plot
for Overall Survival (Case-control)
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Figure 4.2 miRNAs Kaplan Meier plot for

Recurrence Free Survival (Caseontrol)
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Figure 4: KaplanMeier plots for the CC approach using the risk score were constructed to determine the

survival differences between ldwsk and highirisk groups. Significant survival dérences existed

between the two risk groups, as indicated by thérkgk @ values. In both OS (Figure 4.1) and RFS

(Figure 4.2), patients belonging to higisk group showed poor prognoses.
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Table 4.3 Univariate and Multivariate result s of miRNAs from Casecontrol

approach
Overall Survival Recurrence Free Survival
Univariate Multivariate Univariate Multivariate
Parameter analysis analysis analysis analysis
HR p- HR p- HR p- HR p-
(95% CI) | value | (95% CI) value (95% CI) value (95% CI) value
. 2.44 2.71 1.95 2.27
Risk score | 1 »gi 468y 001 | (1381 5.35) | 90%4| (1.167 3.20) | 901 | (1.33-3.88) | 0-003
Tumor 0.42 0.36 0.42 0.34
stage | (0221 0.81)| *%1 | (0181 074) | %01 | (0.237 0.76) | %O | (0.181 0.65) | 001
Tumor 1.93 1.52
grade | (0.991 3.55) | °0° (0.88i 2.63) | 014
Age at 1.05 1.04 1.02
diagnosis | (1.02 1.09) 0.003 (1.017 1.07) 0.02 (0.991 1.05) 029
TNBC 0.88 0.75
status | (0.43i 1.77) 0.71 (0.391 1.41) 0.37

HR = Hazard Ratio; Cl = Confidence Interval; TNBC = Triplegative Breast Cancer

Table 4.3: miRNAs significant for OS (left panel) and RFS (right panel), identified from CC approach
were used to construct a risk score. Receiver Operating Characteristics Curve was used to dichotomize
samples into low and highsk groups. Univariate Cox proportional hazards regression model was run for
risk score and for other clinical parameters. In the multivariate analysis, risk score was significant with
p<0.05 after adjusting for confounders. Multivariate analysis resutlicdte that patients belonging to

high-risk group were at higher risk for death and recurrence (Hazard ratio.> 1.0)

Caseonly approach:
One hundred and forty seven miRNAs retained after filtering for read counts. These
MiRNAs were treated as continuomariables and were subjected to univariate Cox
analysis followed by the permutation test. In this analysis, 11 miRNAs and 4 miRNAs
were associated with OS (Talllel) and RFS (Tabld.2) respectively, and were used for
constructing the risk score. A rislcae cutoff point of 4.65 for OS was ed to
dichotomize the cases into le§y O 4 . 6 5 )-riskagrotips t>i4d5). Similarly,
samples were grouped into two risk groups, based on theffqubint estimated for RFS

(1.17).
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Probability of OS

Risk score was then treated as a categorical variable and enterdteintuvariate Cox
model. Similar to the cassontrol approach, the highesk group was found to have
both shorter O$HR = 2.76, p = 0.002; Table 4.Eigure4.3)and RFS (HR = 1.85p =

0.02; Table4.4, Figure4.4), after adjusting for confounders iftor stage for OS and

RFS).
Figure 4.3 miRNAs Kaplan-Meier plot for Figure 4.4 miRNAs Kaplan-Meier plot
Overall Survival (Caseonly) for Recurrence FreeSurvival (Caseonly)
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Figures 4.3 and 4.4KaplanMeier plots for the Casenly approach using the risk score were constructed
to determine the survival differences between ilask and higlirisk groups. Significant survival
differences exi®d between the two risk groups, as indicated by thirdmds i values. In both OS (Figure
4.3) and RFS (Figure 4.4), patients belonging toihigk group showed poor prognoses.
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Table 4.4 Univariate and Multivariate results of miRNAs from Caseonly approach

Overall Survival Recurrence Free Survival
Univariate Multivariate Univariate Multivariate
Parameter analysis analysis analysis analysis
HR p- HR HR p- HR
(95% CI) value | (95% CI) value| (95% CI) value (95% ClI) value
. 2.48 2.76 1.68 1.85
Risk score| 1 541 461y | 9004| (1.47i 5.19) | 92| (0.907 2.82) | °9° | (1.097 3.14) | 002
Tumor 0.42 0.37 0.42 0.38
stage ©0.22i 0.81) | 91| (0.10i 0.72) | %994 (0.23i 0.79) | %01 | (0.207 0.71) | 0003
Tumor 1.93 1.52
grade | (0.99i 3.75) | %0 (0.88i 2.63) | >4
Age at 1.05 1.02
diagnosis (1.021 1.09) 0.003 (0.991 1.05) 029
TNBC 0.88 0.75
status ©0.43i 1.77) | %71 0.391 1.41) | 937

HR = Hazard Ratio; Cl = Confidence Interval; TNBC = Triple Negative Breast Cancer

Table 4.4 miRNAs significant for OS (left panel) and RFS (right panel), identified from CO approach
were used to construct a risk score. Receiver Operating Characteristics Curve was used to dichotomize
samples into low and highsk groups. Univariate Cox proportiahhazards regression model was run for

risk score and for other clinical parameters. In the multivariate analysis, risk score was significant with
p<0.05 after adjusting for confounders. Multivariate analysis results indicate that patients belonging to

high-risk group were at higher risk for death and recurrence (Hazard ratio > 1.0).

4.3.2 Validation of OS-associated miRNAs in an external (TCGA) dataset

Eleven miRNAs that were significant for OS in the CO approach were validated
using an external dataset (TCGA)isk score was constructed using the eleven miRNAs.
Anoptimalcutof f poi nt was deter mined usililg ROC,
and high risk (>1.13). Risk score which was considered as a categorical variable was
significant with a pvalue of 0.1 after adjusting for tumor stage. Similar todiseovery

set, high risk group had shorter survival period with a HR of 2.07 (FigGrd@able4.5).
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Table 4.5 Univariate and Multivariate results of miRNAs for Overall Survival
(External Validation cohort/TCGA)

Univariate analysis Multivariate analysis
Parameter HR -value HR -value
(95% CI) P (95% Cl) P
. 2.16 2.07
Risk score (0.921 5.05) 0.08 (0.871 4.92) 0.101
0.32 0.26
Tumor stage (0.137 0.78) 0.01 (0.17 0.67) 0.005
. . 1.03
Age at diagnosis (1.003i 1.06) 0.03
0.63
TNBC status (0.191 2.12) 0.46
HR = Hazard Rati o; Cl = Confidence I nterva

Table 4.5: Risk score was constructed in the TCGA dataset using the 11 miRNAs associated with OS and
an optimal cubff point was estimated usirROC, which dichotomized the samples into low and -nigk
groups. Univariate Cox proportional hazards regression model was run for risk score and for other clinical
parameters. In the multivariate analysis, risk score was significant with p = 0.hdjfieting for tumor
stage. Multivariate analysis results indicate that patients belonging teaiskgfroup were at higher risk
for death (Hazard ratio > 1.0).

Figure 4.5 miRNAs Kaplan-Meier plot of the external dataset (TCGA)
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Figure 4.5: KaplanMeier plots were used to estimate OS in Gasly approach. Log rank test was
performed to assess differences in survival between the two risk groups. Patients belonging teritie high

group had shorter OS.
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4.3.3 gRT-PCR validations of miR-99b-5p, miR-574-3p, miR-769-5p and miR-

660-5p

The expressions of miB9b-5p with a FC 0f2.3, miR574-3p with a FC 0t5.8,
mMiR-769-5p with a FC of1.3 (downregulated) and mi60-5p with a FC of 12.8 (up
regulated)were tested in qRPCR to cofirm the direction of effect and relative
guantification agreement between NGS and -¢IR.Except for miR660-5p, that was
up-regulated (Figure 4.6), remaining three miRNAs were found to be significantly-down
regulated in tumor tissues relative to norreaimples in gRIPCR experiments (Figure

4.7), which supported the NGS findings.

Figure 4.6 qRT-PCR validation of miR- Figure 4.7 qRT-PCR validation of
660-5p down-regulated miRNAs
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Figures 4.6 and 4.7:0One upregulated miRNA (Figure 4.6. miB60-5p, FC = 12.8) was validated in a
subset of samples (9 normal samples and 56 tumor samples). Threeedplated miRNAs (Figure 4.7.
miR-574-3p, miR99b-5p and miR769-5p) were validated in a subset of samples (11 normal samples and
60 tumor samples). All the miRNAs were significantly (*=p<0.05) differentially expressed, similar to the
results obtained in NG®latform. miR5743p and miR660-5p were also found to be associated with

Overall Survival.
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4.3.4 ldentification of potential targets for miRNAs and their role in cancer

biology

The inhouse transcriptome (MRNA) datasets available for BC were accessed
(GEO acession ID GSE22820§' and analyzed for DE of mRNA$rom two
experiments, as outlined in the methods (refer 4.th2e first experiment that included
all the tumor samples, 5,399 genes (MRNAs) were DE, with genes showing up
regulation and 4,799 genes showing dawgulation. In the experiment that included
only matched tumor sample3,869 genes (MRNAs) were DE, of which 628 were up

regulated and,241 were dowsregulated.

A combined total of 4,762 targetwere predicted by TargetScan for the 12
MiRNAs associated with OS and/or RF§038 targetq~22% ofin silico predicted
targets)overlapped with the DE genes identified from the experiment including all tumor
samples while in the matched datasenly 698 targets (~15% of in silico predicted
targets) overlapped with the mRNA expression dataset. This low percent overlap between
in silico and in situ comparisons is expected when breast tissue specific expression
signatures filtered for histological and raollar subtypes are used to interrogate the
potential interactions between mMIRNARNA. The profiled interactions with
transcriptome data also serve as an approach for functional validation of the miRNA

targets within breast tissues and minimize the nurobfaise positive targets identified.

In the experiment with all tumor samples, a totall®1 clusters were fourahd
when filtered for clusters witenrichment scor¢ES)O  1a t6tal of 75 clusters were
found for the 12 miRNAs. However, in the matdiaataset, #otal of 168 clusters were

found and when interrogated for gene ontology (GO) claasifiess witharES O 1. 3,
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clusters were retaineldhave summarized the number of genes and gene ontology clusters
identified from boththe experiments aa comparison table in Table 4.6. | also compared

the gene ontology terms for the targets of each of the miRNAs. Overall, | observed
excellent concordance between the two experiments, suggesting that the use of matched
or unmatched samples may not haverafqund impacton the identification of gene

targets for the miRNAs.

Table 4.6 Comparison of gene targets between all tumor samples and matched
sample dataset

# targets overlapping between : # clusters with
S Nt . # Enrichment .
#in in silico prediction and in- clusters Enrichment score>
. o house dataset 1.3
miRNA ID silico
targets
Al Matched Gene Al Matched Al Matched
tumor tumor tumor
samples | Overlap samples samples
samples samples samples
miR-660-5p 149 31 25 20 8 2 5 1
miR-574-3p 13 3 2 2 0 0 0 0
miR-425-5p 212 30 24 17 11 2 2 0
miR-374a3p;
. 680 123 110 90 30 22 11 9
miR-374a5p
miR-27a3p 1212 193 183 141 51 47 19 13
miR-221-3p 446 64 60 45 19 25 11 13
miR-210-3p 32 8 6 6 1 1 1 0
miR-196a5p 295 48 46 34 13 13 6 5
miR-193b-3p 222 34 30 26 7 4 1 0
miR-15a5p 1275 213 181 148 48 48 19 15
miR-146b5p 226 36 31 24 3 4 0 1

Table 4.6: Targets predicted for the 12 miRNAs were overlapped with gene expression dataset and
compared using all the tumor samples and using only matched tumoilesdaiasets. Excellent
concordance was observed in terms of number of gene targets and gene ontology clusters. Since only two

targets were identified for miB74-3p, gene ontology classification was not possible.
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However, to maintain brevity and clarity,am only summarizing the gene
ontology classification table (Table 4.7) obtained for matched sankjtas. the clusters,
statistically significant GO terms (p < 0.05) related to cancer were identified.
Specifically, the following terms were interrogatettanscription, blood vessel
development, angiogenesis, cell growth, cell morphogenesis, cell motion, cell migration,
cell signaling, mammary gland development, cell differentiation, cell proliferation, cell
division and cytoskeletal organization. Targefs8oout of 12 miRNAs (miRL5a5p,
mMiR-27a3p, MiR374a3p, MmiR374a5p, miR221-3p, miR196a5p, miR146b5p and
mMiR-660-5p) were enriched for any one of the aboventioned terms. Targets of miR
5743p, miR4255p, miR210-3p and miR193b3p were clustecewit h an ES O

when matched miRNANRNA data sets were used and were therefore not probed further.
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Table 4.7 Gene ontology classification of targets obtained from matched dataset

Gene ontology
term

miRNA ID

Gene targets

Transcription

hsamiR-660-5p

EGR2, NPAS3, ZBTB34, RFX4, EPAS1, NFATS5, ETV1,
NR3C1, MEIS1

hsamiR-374a3p;
hsamiR-374a5p

CEBPA, HLF, ZBTB34, EGR2, BACH2, RFX4, EPAS1,

ARID5B, ONECUTZ2, TLE4, CREBS, NFIX, NEUROG?2,

NR3C1, TCEAL7, LMX1A, MEIS1, EBF3, PNRC1, GBX2
HOXA10, SHOX, NFIB

hsamiR-221-3p

CDKN1C, SOX10, FOS, NTF3, GATA4, HOXA7, NFATS5,
IGF1, GLIZ, FOXP2, ZFP36, ZFP36L2, EIF4AE3, QKI,
TNRC6B

hsamiR-196a5p

ING5, ERG, ZNF516, HOXAS5, E2F7, BCL11A, HOXA7,
HOXA9, TGFBRS3, HABP4, IGF1, HMGA2, LIN28B,
FOXP2

hsamiR-27a3p

MEF2C, ING5, ZNF516, ZBTB34, E2F7, PPARG,
ONECUT2, SOX7, EHF, PRDM16, SOX8, NPAS3, HOXA
NR1D2, BCL11A, NFAT5, HOXA10, ERG, SMAD9,
RUNX1T1, PPARGC1B, NRIP2, FOXP2, FOXN4, ZFHX4
HOXC11, ATF3, EBF3, BCORL1, NEUROD4, CAND1,

NFIB

Cell
morphogenesis

hsa-miR-374a3p;
hsamiR-374a5p

BMP2, EGR2, NTF3, ONECUT2, NEUROG2, L1CAM,
LMX1A, SLIT3, SEMASA, EPHA4, DMD, GBX2, CNTN4

hsamiR-221-3p

NTF3, PVRL1, DCX, GLI2, CXCL12

hsamiR-27a3p

EGFR, SEMAGA, MAP1B, PRICKLE2, ONECUT?Z, LIFR,
TGFBR3, RELN, NRXN1, NGFRDCX, CACNA1A

Cell motion

hsamiR-374a3p;
hsamiR-374a5p

SEMASA, EPHA4, EGR2, NTF3, ARID5B, GBX2,
NEUROGZ2, L1CAM, CNTN4, LMX1A, PPAP2B, SLIT3

hsamiR-221-3p

NTF3, PVRL1, WASF2, EMX2, IGF1, KIT, DCX, GLIZ2,
CXCL12

hsamiR-196a5p

PDGFRA, TGFBR3, IGFISEMA3A

hsamiR-27a3p

RET, MET, IGF1, NRXN1, COL5A1, SEMAGA, BTG1,
TGFBR3, NEUROD4, RELN, NGFR, DCX, PPAP2B

hsamiR-15a5p

BDNF, PVRL1, PODXL, TGFBR3, IGF1, RELN, SEMASA
LAMC1, CX3CL1, PPAP2A, FGF2, PPAP2B

Angiogenesis

hsamiR-374a3p;
hsamiR-374a5p

SEMASA, EPAS1, FGF9, GBX2, TGFA

hsamiR-15a5p

RTN4, MEOX2, FGF9, PLCD1, FGF1, FIGF, FGF2

Cell migration

hsamiR-221-3p

PDGFA, IGF1, KIT, CXCL12, PIK3R1

hsamiR-27a3p

RET, BTG1, MET, TGFBR3, NEUROD4, RELN, DCX,
PPAP2B, COL5A1

hsamiR-15&5p

PODXL, TGFBR3, RELN, LAMC1, CX3CL1, PPAP2A,
FGF2, PPAP2B
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Table 4.7 (continued) Gene ontology classification of targets obtained from matched

dataset

Gene ontology
term

miRNA ID

Gene targets

Cell proliferation

hsamiR-221-3p

ZFP36L2, PDGR, EMX2, IGF1, KIT, NRG1, GLIZ,
CXCL12

hsamiR-196a5p

TGFBR3, IGF1, FOXP2

hsamiR-15a5p

TXNIP, FGFR1, FGF7, FGF9, E2F7, IGF1, FOXP2, PTHL
BDNF, TRIM35, TBRG1, TGFBR3, ADAMTS1, RARB,
LAMC1, AXIN2, PPAP2A, FGF1, NRG1, FIGF, FGF2,
HTR2A

hsamiR-221-3p

NTF3, PVRL1, PDGFA, FGF14, GATA4, KCNA1,
CACNB4, CXCL11, GLIZ, NOVA1

hsamiR-27a3p

STX1A, FGF14, CACNB2, NRXN1, GRIA4, LEP, SPRY2
ECE2, PDE7B, WISP1, HOXC11, FGF1, CACNA1A,

Cell signaling
NOVAL, DTNA
STX1A, KCNC4, FGF9, NLGN1, PTHLHBDNF, WISP1,
hsamiR-15a5p KIF1B, HOXC11, PVRL1, GRM7, FGF1, CHRNE, FGF2,
HTR2A
hsamiR-221-3p RECK, PDGFA, WASF2, QKI, CXCL12
Blood vessel

development

hsamiR-15a5p

RTN4, RECK, MEOX2, FGF9, TGFBR3, QKI, PLCD1,
FGF1, FIGF, FGF2, PPAP2B

Cytoskeleton
organization

hsa-miR-146b5p

PRC1, WASF3, TLN2, WASF2, ABL2

Response to
estrogen stimulus

hsamiR-27a3p

PPARG, MAP1B, PDGFRA, MMP13, CCNA2

Positive
regulation of cell
differentiation

hsamiR-27a3p

LEP, LPL, ACVR2A, SMAD9, BTG1, CSF1, PPARG,
MAP1B, NGFR

Regulation ofcell

hsamiR-15a5p

FGF7, FGF9, FGF1, FIGF, FGF2

division
Regulation of cell hsamiR-15a5p RTN4, EXTL3, WISP1, TSPYL2, SEMA3A, NRG1, FGF2
growth CRIM1

Mammary gland
development

hsamiR-221-3p

IGF1, NRG1, GLI2

Mesenchymal cell
differentiation

hsamiR-374a3p;
hsamiR-374a5p

BMP2, GBX2, CYP26A1

Table 4.7: The identified miRNAs significant for OS and RFS (n=12) from both the approaches were

interrogated for mMRNA targets, followed by identification of Gene ontology terms.

4.4 Discussion

In this study,l identified two miIRNAs (miR574-3p and miR660-5p) as potential
novel prognostic markers for BC, associated with OS. They have not been reported

earlier for BC, for their association with either OS or RFS. Overall, from both the
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approaches (CC and CO) adegtfor the study, eleven miRNAs and four miRNAs were
significant for OS and RFS, respectively. Out of the four miRNAs identified for RFS,

three miRNAs (miR210-3p, miR4255p and miR15a5p) were also significant for OS.

Although it is common to see eithef the two approaches, i.e., either CC or CO
methods for identifying prognostic markers, | have adopted both the approaches to
identify the most suitable method for the studlg.expected, higher numbers of mMiRNAs
were identified as significant in the C&pproach. Eleven miRNAs were significant for
OS and four miRNAs were significant for RFS in the CO approach as opposed to four
and two miRNAs significant for OS and RFS, respectively, in the CC method2bh@iR
3p, MiR4255p and miR15a5p were significanfor both OS and RFS. A total of 12

nonredundant miRNAs were found to play a role in BC prognosis.

Overall, the differential expression in normal vs. tumor tissues and direction of
effects show excellent agreement with what is known from publishedtliter as

detailed below.
Novel prognostic miRNAs for BC

Of the 12 miRNAs identified in this study, two miRNAs (miR4-3p and miR
660-5p) are potential novel prognostic markers for BC. Both the miRNAs were DE in a
tumor vs. normal comparison, with m#¥4-3p being dowsregulated (FC =5.8) and
miR-660-5p being upregulated (FC = 12.8) in the tumor samples. A similar direction of
effect has been observed for mBR4-3p and miR660-5p for ovarian cancer?,

3

colorectal ancer ** and gastric cancef*, and chronic lymphocytic leukemid,

respectively. However, this is the first repoft @ potential prognostic role for these
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miRNAs in BC, although mechanistic insights are required to understand their

contribution to tumorigenesis.
mMiRNAs with dual roles as tumor suppressor and oncogene

In this study, miR15a5p was found to be wpegulaed in breast tissues (FC =
12.16) and the same direction of expression was observed in Kaposi sdfcanth
papillary thyroid carcinoma¥. However, in other cancer types suctcalrectal cancer
% nonsmalkcell lung cancer (NSCLCY and pituitary tumoré?, it is expressed in the
opposite direction (downregulation). Amongst BC reports, Kodahl et al. have reported
an upregulation of this miRNA™ and a recent report by Shinden et al. has shown miR
15a as an independent prognostic marker for*B8Gimilarly, miR27a3p, which was
found to be upgegulated in tumors (FC = 6.45) in our study, is in accordance with the
direction of expression observed in pancreatic caficend glioma*’. Tang et al. have
also reported miR7a to be an oncomiR, the high expression of which promotes breast
tumor growth and metastasis and is associated with poor OS in BC p&ti¢tusiever,
it is downregulated in bladder cancer, compared with the normal sarfipléEhe
observations on miR5a5p and miR27a3p point to the dual roles of an oncogene and a

tumor suppressor and their relativéermay be governed in a tissgpecific manner.
mMiRNAs as oncogenes

| observed high expression (FC = 1.98) of AMiES-5p in breast tumors compared
to the normal samples, which is concordant with the results published by Kodahl et al. for

BC “%. Likewise, Peng et al. have also observed the oncogenic function ef26iR
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which promotes cell proliferation, cell cycle progression, migration and invasion in

gastric cancet’.

Up-regulation of miR146b in tumors and its adverse effect on survival has been
demonstrated in lung canc&“® thyroid carcinoma® and prostate cancéf, among
other cancer types. Interestingly, miR6b5p has also been reported to beregulated
in BC, which is in accordance wittmy results (FC = 1.42) and is known to repress

BRCA1 expression, thereby promotiogll proliferation®.

miR-221 is a widely studied oncogene whose high expression is invariably
associated with poor outcomes in several cancer §jpesincluding BC. | also report

the same direction of expression in tumor tissues with a FC of 1.27.

Cell proliferation, migration, invasion and metastasis have been found to be
promoed in BC>"*°, glioblastoma™*®’ head and neck canc®rand gastric cancér®*
due to high expressions of mR0, miR196a and miR374a (including miR374a3p
and-5p), demonstrating their oncogenic potential. Their role as prognostic markers has
also been studied in ¢habovementioned cancer types.was able to identify their
prognostic significance following the CO approach, and these findings could have been
missed if only the CC approach had been used. The read counts of the two groups
(normal and tumor) revealetiat these miRNAs were indeed present in higher amounts
in tumors relative to the normal samples; the average read counts f1&3p, miR
196a5p, miR374a3p and miR374a5p in the normal samples were 2.5, 9.2, 0.7 and
1.09 respectively as against 5930,7.6, 46.1 and 108.9 for the tumor group. The lower

read counts in normal samples have limited our ability to consider them in a CC study
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due to our stringent filtering criteria. Overall, the patterns of DE and prognostic

significance for the above miRNAmirror observations from other cancer types.
MiRNASs as tumor suppressors

In this study, apart from miF6743p, MiR193b3p was also found to be down
regulated (FC =4.3) in tumors compared to nhormal samples, which is in agreement with
the studies on emthetrioid adenocarcinonta, pancreatic cancéf, oesophageal cancer
®” and gastric cancéf. Evenin BC, Li et al. have reported a dowegulation of miR
193b in BC cell lines, and the low expression of fai#8b was found to be associated

with shorter diseastee survival®.
Functional roles of the identified prgnostic miRNAs

The prognostic significance for recurrence or survival of an associated miRNA is
better appreciated from the aspect of potential functional impact on cellular signaling and
metabolic pathways, as these contribute to cell death, invasioovanall outcomes for
the patient. Apart from functional insights, the potential for development of therapeutics
is also important. Keeping these factors in mind, the following discussion is focused on
the delineation of pathways using GO terms that areifsgmly enriched by the

identified prognostic miRNAs.

Databases such as TargetScan, miRanda (http://www.microrna.org/) and PicTar
(http://pictar.mdeberlin.de/) have predicted mRNA targets, but a validation of the
predicted targets adds more credenda ilico predictions. To this end,first predicted
the targets for all 12 miRNAs using the commonly used databasegetScan; these

were then compared with DE mRNAs obtained from théadnse BC transcriptome
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dataset. GO terms were identified withpesific focus on terms pertaining to hallmarks
of cancer. Interestingly, targets of eight miRNAs were found to be relevant for cell
growth and development, indicating that these miRNAs may play key roles in
tumorigenesis. Wo targets (DAB2IPand SAMD4A) were found for miR574-3p, of
which DAB2IP is involved in apoptosf, cell survival”®, among other functionand

SAMDA4A functions as a translational regulatbr
Validation of the identified signatures

In a biomarker study, a validation of the findings across different platforms is
critical to rule out technical artifacts. Four miRNAs exhibiting different FC (lowest FC
being -1.3) were valideed using gRIPCR, with two of the representative miRNAs
identified as significant in survival analysis. The validation of representative miRNAs
confirms crosplatform concordance and the relative utility of the signatures identified.
However, validationsising independent cohorts are also crucial for a biomarker study as
they facilitate inteistudy concordance of expression trends and signatures. NGS data for
BC with a larger sample size and complete clinical information are limited in the public
domain. | used the available data from TCGA project and applied stringent filtering
criteria to obtain a dataset that would be comparable to the discovery set. A total of
eleven miRNAs which were found to be associated with OS from the CO approach were
consideredor validation using the TCGA dataset. Multivariate analysis revealed that the
risk score was significant with p = 0.1 after adjusting for tumor stlgeough for the
initial analysis using discovery sketonsidered p < 0.05 as nominal, the TCGA ddtase
did not meet this threshold, presumably due to modest sample size (n=84) and events

(n=27) compared to the discovery set (sample size, n=104 and events, n=46).
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Nevertheless] still observed the same direction of effect (Hazard Ratio), i.e., patients
belonging to the highiisk group vere associated with shorter suval period and this

validates thenitial observations from the discovery set.

Several differences existed between the discovery and validation datasets: (i) the
NGS platform for discovery s&vas Genome Analyzer lIx where as for the validation set
was HiSeq; (ii) the risk score coff point were estimated individually due to NGS
platform differences; (iii) TCGA samples considered for this study were fresh frozen
breast cancer tissues wherd#as discovery set of breast cancer tissues were from FFPE
blocks, (iv) information on tumor grade was not available for TCGA samples and (v)
percent cellularity differences were also noted between the discovery and validation
cohorts (see methods). Howeyvalespite these differences amother characteristics
(Table 2.1) samedirection of effects (Hazard Ratim)as observeth both the discovery
and validation cohorts. The apparent lack of statistical significance (defined nominal
value of 0.05) in the OSnalysis attempted with TCGA data may be due to the
differences between the two cohorts as well as tdithi,ed sample size and limited
number of events in the validation set affecting the power. Further validation of findings
is warranted using indepéent cohorts and higher sample size and events. Overall, two
novel miRNAsare reporteds potential prognostic markers for breast cancer. Remaining
mMiRNAs reported in this study showed excellent concordance to the published reports for

their role in BC prgnosis.

4.5 Conclusions

In summary, a total of twelve naedundant miRNAswere identified to be

associated with OS and/or RFS. As explained above, ten of the identified miRNAs have
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been reported in literature as associated with BC prognosis and lendst dopfioe
findings in this independent study. However, two miRNAs (#hi-3p and miR660-

5p) have not been reported previously for BC prognosis. The use of NGS platform to
profile miRNAs on a whole genome level in BC has been limited thus far in liteeatdre

the data provided complements such efforts towards a comprehensive search for
biomarkers. The miRNAs reporteidr OS have also beewalidated in independent
dataset(TCGA) and functional characterization may help to understand the complex

interplay ofmiRNA mediated gene regulation.

Overall, despite the increasing feasibility of profiling miRNAs and their role in
prognostication, mechanistic insights in to the role of miRNAs, establishing gold
standard approaches for analysis, and confirmation ok tfiedings by independent
laboratories within the context of confounding variables (histological and molecular
heterogeneity, stage, grade and treatment) are needed to advance these promising

biomarkers into clinical validation.

There is also a growing by of evidence that other small ronding RNAs such as
tRNAs "2, snoRNAs’® and piRNAs’* may contribute to tumorigenesisowever their
role in BC prognosis is an area of active investigatidmerefore, a deeper exploration of
their roles may pave the way for a comprehensive understanding of the smedidnog
RNA classes, aiding in the discovery of newer diagnostic and prognostic beyséok

BC.

mMiRNAs therefore served as a logical starting point for my thesis in that validation

of the prognostic miRNAs identified 4ate not only strengthens the study premise but is
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also a reflection on the optimization of data mining approachesstist rigor, overall
study design for use of NGS data for understanding the contribution of other sncRNAs to

BC.
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5 Piwi-interacting RNAs and PIWI genes as novel prognostic
markers for Breast cancer

5.1 Introduction

Piwi-interacting RNAs (piRNAs, 24 32 nt in length) belong to a class of small
regulatory RNAs that include microRNAs (miRNAs) and small interfering RNAs
(siRNAs) . Mature forms of thse RNAs associate with biogenesis pathway proteins
such as Argonaute (AGO) class of proteins: miRNAs and siRNAs with AGO préteins
and piRNAs with PIWI protein® to guide target specific gene regulatibhi Gene
regulation exerts control at transcriptional and fistscriptional levad and piRNAs, in
association with PIWI proteins, aivolvedin both levels™°. For a long time, the only
roles of PIWI proteins were believed to be in the regulation of transpdbans in the
maintenance and development gérminal stem cells*® ; however, the functions of
piRNAs and PIWI proteins as epigenetic regulators have recently started to emerge. It is
now known that PIWI proteins, which are guided by piRNAs bind to specific targets
(based on sequence specific complementarity) and recruit chromatin modifiers to enable
transcriptional repressiolf. Apart fom this, a direct association between the piRNA
PIWI protein complex and stem cell development and maintenance has been established
14 Cancer stem cells form a critical fraction of a tumor mass required for inessant
cell proliferation, and may underlie resistance to drugs and radiation; accordingly, cancer

stem cells are believed to contribute to tumor recurrence’®
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The role of the piRNAPIWI protein complex in podfanscriptional gene
regulation is also slowly garnering attention. Although the exact mechanism remains
elusive, investigators initially have reported the sequence specific complementary
binding of a piRNA to a target messengdd R ( mMRNA) at the 30 wunt
(UTR) and subsequent gene regulation, in a manner similar to that of miE&Ak is
increasingly being recognized that teequence based complementarity may not be
restricted to 36 UTR and may expand to 50U
0. Given the diverse functions of piRNAs and PIWI proteins, it is evident that these
molecules maylso contribute teumorigenesis®.

Human homologues of PIWI proteins (originally describedPadement induced
wimpy testis in Drosophila) identified thus far are PIWIL1 (HIWI), PIWIL2 (HILI),
PIWIL3 and PIWIL4 (HIWI2) 2% Although the expression of PIWI proteins in somatic
tissues has been known since 1998, our major understanding of these molecules stem
from germ cells. Only recently, have researchers demonsttegiegossible involvement
in tumorigenesis. Aberrant expressions of these genes and proteins in malignancy have
been associated with hallmarks of cancer and have also shown promise as potential
prognostic and diagnostic markers for different cancer typedn this regard, the
differential expression of piRNAs and therefore their oncogenic or tumor suppressor
roles have also been observed in various cancer tif&sand a few studies have
highlighted their association with clinicopathological factdrsAn even smaller number
of studies have reported the relevance of piRNAs as prognostic/diagnostic miatkers
however, the study designs of the majority of these studies are limited to candidate

piRNA molecules or are challenged with limited sample sizes.
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Given the currenknowledge that piRNAs and PIWI genes (i) are abundantly
expressed in somatic tissues, (ii) are potential biomarkers for cancer and (iii) are involved
in gene regulation and in normal developmental processes, extensive profiling and
characterization stues are needed to understand ¢batributionof these moleculet
tumorigenesis. The contribution of both piRNAs and PIWI genes to breast cancer has not
been comprehensively studied and is the focus otttapterl hypothesized that varying
levels of pPRNAs and their upstream biogenesis pathway (PIWI) genes contribute to
breast tumorigenesis and act as prognostic markers for breast céheespecific
objectives were (i) to identify differentially expressed piRNAs and PIWI gene transcripts
(mRNAS) (heeafter referred to as PIWI genes) in breast tumor tissues relative to normal
(reduction mammoplasty) breast tissues, (i) to identify piRNAs and PIWI genes as
prognostic markers (outcomes: overall survival, OS and recurrence free survival, RFS)
and (i)to i dentify complementary gene ( mRNA)

associated with breast cancer prognosis.

5.2 Materials and methods

Details on clinical characteristics of samples used for the study (discovery and
external validation cohorts), isolati of total RNA, profiling of piRNAs and statistical
analysis involved in identifying piRNAs with prognostic significance and the methods
employed for external validation of the identified prognostic markers are explained in
detail in chapter 2 (sections2?2 2.3, 2.4, 2.5 and 2.6). Methods that are more specific for

this chapter and those that have not been explained elsewhere are explained below:
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5.2.1 Validation of piRNA

gRT-PCR experimest were performedin collaboration withD r . Koval chuk

laboratory in Uiversity of Lethbridge and | analyzed and interpreted the data.

One randomly chosen representatipgRNA showing prognostic significance
(hsa_piR_009051was validated with the total RNA isolated from normal and tumor
samples. gRPPCR was performed using &cript Select cDNA Synthesis Kit (Biad)
and a SsoFast EvaGreen Supermix{Biaed) according to manuf ac
Primer forthe selected piRNA was designed as described else?hene the sequence

is asfollows: piRO0O9051F : -GEA GAG TGT AGC TTA ACA CAAAG3 6, - pi R

00905tR: -CEAGTT TTT TTT TTT TTT TAG TTG GGT3 6 . R Ndéived as
loading control and the primer sequenass RNUG2-F : -C&®@ TTC GGC AGC ACA
TAT AC-3 6, RRUG6ABG® GGC CAT &T AAT CTT CT-3 6 . Al | assays
done in triplicates, data was analyzed using tR&%hethod®®, and results arshown as

fold induction of piRNA
5.2.2 PIWI genes as prognostic markers for breast cancer

To identify PIWI genes with prognostic relevance, | accessedhtheuse gene
(mMRNA) expression daset generated using Agilent microarray platform for ten normal
breast tissues (obtained from reduction mammoplasty) and 141 breast tumor tissues from
gene expression omnibus (GSE2282Y)The data was quantile moalized and log2
transformed using PGS. Differential expression analysis was performed usHiapne
ANOVA to observe the expression patterns of the four human homologues of PIWI
gene (PIWIL1 T PIWIL4). Survival analysis was performed for OS and RFS dsines
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were 42 deaths and 77 recurrence events in this dataset. Treating the four genes as
continuous variables, univariate Cox regression analysis was carried out; PIWI genes
withp O wakre isBd for constructing a risk score and ROC estimated tieabptit

off point for patient stratification into low and higlsk groups. Risk score was then
treated as dichotomous variable; univariate and multivariate analysis was performed,
considering tumor stage, grade, age at diagnosis and TNBC status asabotenti

confounders.

5.2.3 Identification of gene targets for significant piRNAs and their functional

roles

Of the eight prognostically significant piRNAs, six were DE and were of
immediate interest for gene target prediction. Recent evidence has suggested (i)
interaction between piRNAs and mRNAs through basé complementarity and (ii) a
possible inverse correlation between piRNA expression and its corresponding mRNA
targets'®>?° Since all the six piRNA&selected for target prediction) were-tggulated, |
extracted only the dowregulated genes (mRNAs), with FC > 2.0 and FDR 0.05 (as
determined by onavay ANOVA) from the irhouse gene expression dataset. The breast
tissues (tumor tissue and normal regrctmammoplasty specimens) used in both the
NGS and mRNA expression experiments are from the same clinics in Alberta. Although
ot her possible mechanisms of action viz.,
suggested, | focused initially on the putative
genes. I extracted the f ast aegdated geres toems o f
Ensembl database (GRCh3tp://grch37.ensembl.org/index.hinif and obtained the

fasta sequences of the six piRNAs from piRNA Bank (hghit;//pirnabank.ibab.ac.ip/

145



31 As such, there are no target prediction databases available for piRNAs. However,
predictions based on the list of input genes (in this study, deguated genes in breast
cancer tissues) were obtained using miRanda v 3.3a algofithmwi t h al i gnmen't
170 and en e r-2Dkcalimbl?. dlsesestrimentuiffs have been adopted
from a previous study by Hashim et al.,, that has successfully predicted target
complementary sequences fargiven set of piRNAs using these -oifs 2°. While
alignment score is indicative of the degree of complementarity shared between piRNA
and target mRNA, free energy is indicative of the stability of the RNA paineidre

higher alignment score and lower free energy value is important to identify potentially
stable piIRNAMRNA pairs. Potential functional insights of the targets (with a focus on
biological processes) identified were obtained using DAVID bioinformatms
(http://david.abcc.ncifcrf.govA® and | reporigene ontology (GO) terms related to cancer

with p < 0.05in the current study

5.3 Results

Details on profiling of piRNAs and identification of DE piRNAs from small RN

sequencing data are summarized in chapter 3 (3.5)

5.3.1 piRNAs are potential independent prognostic markers for breast cancer
Casecontrol approach:
In summary, 676 piRNAs were profiled from breast tissues (normal and tumor
tissues inclusive) and 42 werdaimed after filtering for read counts in the CC approach.
25 piRNAs were DE (Appendix Table 9.1), distributed as 1-ragulated piRNAs and 8

downregulated piRNAs with F& 2.0 and FDR< 0.05.
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Of the 25 DE piRNAs, three piRNAs each were significaetifputed p value
0.1) in the univariate analysis for OS (Table 5.1) and RFS (Table 5.2) and were used to
construct the individual risk scores. Two piRNAs (i.e. hsa piR_009051 and
hsa piR_021032) were significant for both OS and RFS. The receiver operating
characteristics curve (ROC) estimated-afitpoints for OS and RFS were 2.04 and 0.07,
respectively, dichotomizing the patients intofowi sk (O 2. 04 for OS an
and higfirisk (> 2.04 for OS and > 0.07 for RFS) groups. The risk scoresfoane to
be significant after adjusting for tumor stage and age at diagnosis for OS (Table 5.3) and
tumor stage for RFS (Table 5.3). Patients belonging to thei itisghgroup were

associated with poor OS (Figure 5.1) and RFS (Figure 5.2).

Table 5.1 List of piRNAs significant for Table 5.2 List of piRNAs significant for
Overall Survival Recurrence FreeSurvival
DiRNA ID Univariate Permuted DiRNA ID Univariate | Permuted
Cox p-value p-value Cox p-value | p-value

hsa_piR_009051 0.01 0.01 hsa_piR_017061 0.02 0.02

hsa_piR 021032 0.01 0.03 hsa_piR_009051 0.03 0.05

hsa_piR 015249 0.06 0.07 hsa_piR_021032 0.03 0.06

hsa_piR_020541 0.07 0.09 hsa_piR_004153 0.08 0.06
hsa piR_017716 0.09 0.08
hsa piR_019914 0.09 0.09

Tables 5.1 and 5.2:Overall, four piRNAs and six piRNAs were significant for OS (Table 5.1) and RFS
(Table 5.2), respectively from the CO approach. However, the CO approach identified piRNAs also
included all of the piRNAs significant in the CC approach (threed8 and three for RFS) and are
indicated in red color.
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Probability of OS

Figure 5.1 piRNAs Kaplan-Meier plots for
Overall Survival (Casecontrol)

Probability of RFS

Figure 5.2 piRNAs Kaplan-Meier plots for
Recurrence FreeSurvival (Casecontrol)
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Figures 5.1 and 5.2:Risk scores were constructed using piRNAs significant in univariate Cox analysis
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estimation of optimal cubff point (indicated in parenthesis). Patients belonging to-higihgroup were
associated with poor OS (Figure 5.1) and poor RFS (Figure 5.2), witlambgp value < 0.05.
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Table 5.3 Univariate and multivariate results of piRNAs from Casecontrol

approach
Overall Survival Recurrence Free Survival
Univariate Multivariate Univariate Multivariate
Parameter analysis analysis analysis analysis
HR p- HR p- HR p- HR p-
(95% CI) value (95% CI) value (95% CI) value (95% ClI) value
, 2.31 2.29 2.53 2.79
Risk score| ;) ,7i422) | 901 | (1247 227y | 01| (1257 5.16) | OO | (1.361 5.69) | 0005
Tumor 0.40 0.42 0.38 0.34
stage (0.2171 0.78) 0.01 (0.2171 0.84) 0.02 (0.207 0.71) 0.003 (0.181 0.63) 0.001
Tumor 2.01 1.58
grade (1.0471 3.89) 0.04 (0.927 2.74) 0.1
Age at 1.06 1.04 1.02
diagnosis | (1.02i 1.09) 0.001 (1.017 1.08) 0.01 (0.997 1.05) 021
TNBC 0.99 0.84
status (1.167 3.29) 0.98 (0.457 1.55) 0.58

HR = Hazads ratio; Cl = Confidence interval

Table 5.3: Univariate and multivariate Cox analysis results for OS (left panel) and RFS (right panel) in
casécontrol approach is represented. Patients belonging td rfisghgroup were associated with poor

prognosis (HR> 1) and the risk score showed promise as potential independent prognostic factor (p <

0.05).

Caseonly approach:

665 piRNAs were expressed with at least one read count in any one of the tumor

sampl es

and

of

t hese,

53

varedrerpressedtinaat |@ast d

Wi

90% of the tumor samples. The raw data was adjusted for batch effects. Four and six

piRNAs (from the 53 filtered piRNAs) were significant in the univariate analysis for OS
(Table 5.1) and RFS (Table 5.2) with a permuted @ | uOel. TBe risk scores were
constructed using the four and six piRNAs for OS and RFS, respectively. ROC based

estimation of the cibff point further dichotomized the patients into two groups:ilow

ri sk

( O 2. 4-954ffoo RFSY8d hiiskl (> @44 for OS and >0.54 for
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RFS). For both outcomes, (i) the risk score showeglpe significance in the univariate
and multivariate analyses (Table 5.4) after adjusting for potential confounders (tumor
grade and age at diagnosis for OS and tumor stageRS) and (ii) the highisk group

patients showed poor OS (Figure 5.3) and RFS (Figure 5.4).

of OS
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¥
1
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Figure 5.3 piRNAs Kaplan-Meier plots Figure 5.4 piRNAs Kaplan-Meier plots
for Overall Survival (Case-only) for Recurrence FreeSurvival (Caseonly)
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Figures 5.3 and 5.4:Risk scores were constructed using piRNAs significant in univariate Cox analysis
with permuted pr al ue O 0. 1. S a mp Inte bw ane high ris#t groupsobasedn RGN |
estimation of optimal cudff point (indicated in parenthesis). Patients belonging to-tigikhgroup were
associated with poor OS (Figure 5.3) and RFS (Figure 5.4), wittalugp value < 0.05.
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Table 5.4 Univariate and multivariate results of piRNAs for casé only approach

Overall Survival Recurrence free Survival
Univariate Multivariate Univariate analvsis Multivariate
Parameter analysis analysis y analysis
HR HR HR -value HR -value
(95% Cl) |value| (95%Cl) |value| (95%cr |P ©@s%cr | P
. 2.36 2.09 3.08 3.07
Risk score| ; 317 4.26) | 0004| (1.1571 3.79) | %92 | (1.84i 5.16) | <0-0001| (1 gai 5.14) | <0-0001
Tumor 0.40 0.38 0.9
stage (0.217 0.78) 0.01 (0.207 0.71) 0.003 (0.217 0.72) 0.003
Tumor 2.01 2.01 1.58
grade (1.047 3.89) 0.04 (1.037 3.92) 0.04 (0.92i 2.74) 01
Age at 1.06 1.06 1.02
diagnosis | (.02 1.09) | %91 (1.02i 1.09) | %9 (0.991 1.05) | 2
TNBC 0.99 0.84
status | (0501 1.95) | 998 (0.457 155) | 08

HR = Hazards ratio; Cl = Confidence intervANBC = Triple Negative Breast Cancer

Table 5.4: Univariate and multivariate Cox analysis results for OS (left panel) and RFS (right panel) in
caséonly approach are represented. Patients belonginbigh risk group were associated with poor
prognosis (HR > 1) and the risk score showed promise as potential independent prognostic factor (p <
0.05).
5.3.2 The risk score for OS was significant in the external validation dataset

| extracted the batéladjustednormalized counts of the four piRNAs (significant
for OS in the discovery cohort) from the 84 samples in The Cancer Genome Atlas
(TCGA) dataset. A risk score was constructed for OS, and the ROC based estimation of
the cut off point dichotomized the samlénto lowir i s k0.1§) @nd highrisk (> -
0.18) groups. Similar to the results obtained in the discovery cohort, the risk score

showed promise as a potential independent prognostic factor (Table 5.5), and the patients

in the highirisk group were signif@ntly associated with poor OS (Figure 5.5; p<0.01).
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Figure 5.5 piRNAs Kaplan-Meier plot for external/TCGA dataset
(Overall Survival)
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Figure 5.5: Risk score was constructed using the piRNiygificant for OS (identified from the discovery

cohort). External/TCGA dataset also showed similar direction of effect with statistical significance,
confirming the results obtained in the discovery cohort.

Table 5.5 Univariate and multivariate results of piRNAs for Overall Survival
(External validation/TCGA dataset)

Overall Survival
Parameter Univariate analysis Multivariate analysis
HR -value HR -value
(95% Cl) P (95% ClI) P
. 3.02 3.22
Risk score (1.211 7.59 0.02 (1.221 8.52) 0.02
0.32 0.34
Tumor stage (0.137 0.78) 0.01 (0.147 0.88) 0.03
. . 1.03 1.04
Age at diagnosis (1.0037 1.06) 0.03 (101i 1.07) 0.006
TNBC status (0_18:|.6§_12) 0.46

HR = Hazards ratio; Cl = confidence interval; TNBQ'riple Negative Breast Cancer

Table 5.5: Risk score constructed using four piRNAs (identified as significant for OS in discovery cohort)
was adjusted for tumor stage and age at diagnosis and was found to be significant with p < 0.05 in TCGA
dataset (exteal validation set).
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5.3.3 Concordance of hsa_piR_009051 expression between NGS and gRCR
hsa_piR_009051 was found to beragulated in tumor tissues with a FC of 4.38.
The direction of expression of this piRNA was confirmed in a subset of the samples by
gRT-PCR (Figure 5.6) with a FC of 1.49 andvalue of 0.09, validating the findings
from NGS. Although the obtainedvalue was not less than 0.05 due to sample size
limitations (isolated RNA from FFPE was available in limited quantities due to several
experimental validations attempted for all the profiled sncRNAs), nevertheless this

experiment confirmed the direction of expression of hsa_piR_009051.

Figure 5.6 qRT-PCR confirmation of hsa_piR_009051
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O T T 1
Normal Tumor

Breast tissue

Expression of piRNA relative to

5.3.4 PIWI genesare promising prognostic markers for breast cancer

All four human homologues of PIWI genes were expressed in theuse breast
cancer gene expression dataset. Comparison with normal breast tissues revealed that two
genes (PIWIL1 and PIWIL3) were wupgubted and the remaining two (PIWIL2 and
PIWIL4) were dowrregulated in tumor tissues (Table 5.6). Theegulated PIWI genes

did not show statistical significance between normal and breast tumor tissues.
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Nevertheless, the expression of PIWI genes in bi@ashatic) tissues was confirmed.
Since these proteins are involved in piRNA biogenesis, | hypothesized that an aberrant
expression of these genes in breast cancer may contribute to abnormal expression of
piRNAs. Since piRNAs showed prognostic relevandeypothesized that genes coding

for PIWI proteins may also be involved in breast cancer prognosis. Of the four PIWI
genes, only the PIWIL3 and PIWIL4 genes were significant in the univariate analysis for
OS and were used to construct a risk score. Sitaldre piRNA analysis, ROC was used

to estimate the optimal duiff point for dichotomization of patients into léwi s k ( O
0.56) and highrisk (> 0.56) groups. The risk score was significant for OS after adjusting
for age at diagnosis and TNBC status (€abl7). In the case of RFS, PIWIL3 gene was
found to be significant. The potential of PIWIL3 gene as an independent prognostic
marker was confirmed in the multivariate analysis (Table 5.7). For both OS (Figure 5.7)
and RFS (Figure 5.8), patients belongitogthe higfirisk group were found to have
shorter survival.

Table 5.6 Differential expression of PIWI genes

PIWI gene Fold change Direction of expression p-value
PIWIL1 1.56 Up-regulated in tumor 0.06
PIWIL2 -2.51 Downregulated in tumor 6.97E5
PIWIL3 1.44 Up-regulated in tumor 0.12
PIWIL4 -1.95 Downregulated in tumor 0.0044

Table 5.6.0f the four human homologs of PIWI gene, PIWIL1 and PIWIL3 wereagulated but were
not statistically significant. PIV2 and PIWIL4 genes were dowegulated and were statistically

significant with p < 0.05.
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Probability of OS

Figure 5.7 PIWI Kaplan -Meier plot for Figure 5.8 PIWI Kaplan -Meier plot

Overall Survival for Recurrence FreeSurvival
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Figures 5.7 and 5.8PIWIL3 and PIWIL4 genes were significant for OS and were used for constructing a
risk score, whereas PIWIL3 alone was significamtR&S. Patients were dichotomized into low and high
risk groups based on ROC estimated-affitpoint. Patients belonging to higisk group were associated
with poor OS (Figure 5.6) and RFS (Figure 5.7).
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Table 5.7 Univariate and multivariate results of PIWI genes

Overall Survival Recurrence Free Survival
Univariate Multivariate Univariate Multivariate
Parameter analysis analysis analysis analysis
HR p- HR p- HR p- HR p-
(95% ClI) value (95% CI) value | (95% CI) value | (95% CI) value
Risk score
(for OS) 2.82 2.19 2.07 2.09
PIWIL3 (1.497 5.33) 0.002 (1.147 4.22) 0.02 (1.177 3.64) 0.01 (1.181 3.71) 0.01
(for RFS)
0.62 0.56
Tumor stage (0.247 1.57) 0.31 (0.28i 1.11) 0.09
2.31 1.75
Tumor grade (117 4.83) 0.03 (1.061 2.9) 0.03
Age at 1.04 1.04 1.01
diagnosis | (1.02i 1.07) 0.001 (1.027 1.07) 0.001 (0.997 1.03) 0.22
3.33 2.35 1.72
TNBC status (1771 6.26) 0.0002 (1157 4.79) 0.02 (1.077 2.79) 0.03

HR = Hazards ratio, Cl = Confidence intakvTNBC = Triple Negative Breast Cancer

Table 5.7:Univariate analysis was performed, considering PIWI genes as continuous variables. Two PIWI
OS with
O 0.15.
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downi regulaed genes (n = 2,735) identified in our gene expression dataset. Using
miRanda algorithm v3.3a and applying thei afits, a total of 350 (306 ndnedundant)

gene targets for six piRNAs were identified (Appendix Table 9.3). | did not consider
matched samplegbetween the piRNA data and the mRNA data) alone for target
prediction, but instead utilized all the samples from the gene expression dataset since the
previous study on miRNANRNA target identifications using the same mMRNA dataset

did not reveal profoundlifferences in the overall functional terms identified for the
targets (Section 4.3.4, Table 4.8} The identified gene targets were enriched for
angiogenesis, transcription, cell signaling, cytoskeletonnizgdon, membrane transport

and organization (Table 5.8).
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Table 5.8 Identification of piRNA gene targets and their functional roles

# of # of
piRNA ID gene GO Targets GO term
targets | clusters
. SSBP2, FOX04, NR5A2, ZNF177, Regulation of
hsa_piR_00906| 10 1 ZNF765 transcription
KCNMAL, CAV2, NRP1, SCN2B,
GLRA3, AKAP9, NRXN1, ATP1A2, Cell-cell sianalin
ESR2, PARK2, KCNMB1, SEMASA, ghaling
LEP, PDE7B, NPTX1, KIF1B,
KCNN1, SLC22A3
SEMASA, NRPL, PLXDC1, LEPR, Angiogenesis
CCBE1, ROBO4, TNFSF12
KCNMAL, TRPM3, TRPM6, CUBN, Transmembrane
SLC16A12, ATP1A2, SLC26A4, transport
, | SLC2A4, SLC22A3, SLC25A37, P
hsa_piR_021033 180 27 KCNH8, SV2B, NALCN, SLC25A26
TXNIP, KCNMA1, CAV2, GSTM3, Response to
LEPR estrogen stimus
TRIOBP, SHROOM4, MRAS, NEDD9| Actin cytoskeleton
FGD5, ARHGAP26, FGD4 organization
Regulation of
LEP, LEPR, GAB1, PDCD4, FGD4 MAPKKK cascade
GABL, PDCD4, FGD4 Regulation of JUN
kinase activity
hsa_piR_015244 1 0 FOXP2 Transcription
Response to
hsa_pR_004153 42 6 ALPL, CALCR, CAV1 glucocorticoid
stimulus
ALPL, PPARA, GNG2, FOXO04, Response to
ACVRI1C, SLC34A2 hormone stimulus
. LAMA4, EPAS1, TNFSF12, Blood vessel
hsa_piR_01771¢ 72 7 ANGPTL4 development
KCNK17, SLC23A2, P2RX3,
KCNMB1, SLC34A2, ATP13A4, lon transport
GRID1
EREG, LEPR, PLCD3, CXCL12 Angiogenesis
Positive regulation
hsa_piR_019914 45 7 EREG, LEPR, IGF1, GHR of signal
-7 transduction
Membrane

LY75, ARRB1, EHD2, GHR

organization

GO = Gene Ontology; GO clusters repradaiological processes; GO term includes cancer related terms

with p < 0.05
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5.4 Discussion

Prognostic significance of eight piRNAs for breast cancer are reported for the first
time. Four and six piRNAs were found to be associated with OS and RFS, respectivel
among which two piRNAs were common for OS and RFS. | also successfully validated
the prognostic significance of piRNAs associated with OS in an external dataset (TCGA).
Gene targets for possible regulation by candidate piRNAs have also been identified.
Although PIWI proteins have been studied by others as prognostic/diagnostic markers for
other cancer types, their prognostic relevance in breast cancer has not been examined.
This is the first study to demonstrate association of PIWI genes (as a proRWor
proteins) with OS and RFS for breast cancer. Overall, this is the first study to
comprehensively understand the significance of piRNAs and PIWI genes as prognostic
markers for breast cancer using large and independent datasets with complete clinical
annotation and a long follolup period. In this study, | have successfully captured the
pathway of events and individual entities-stpeam and dowstream of the piRNA
biogenesis.

The clinical relevance of piRNAs was first apparent when they were reporte
associated with clinicopathological factors such as lymph node $taarsd TNM stage
24 Nonetheless, our understanding of their contribution as prognostic markers is
rudimentary and warrants further exploration. In this study, eight piRNAs were identified
as novel prognostic markers for breast cancer. To date, there has only been one study that
has utilized sequencing data to interrogate piRNAs for breast cancer pesgnbsihis
study by Martinez et al., piRNAs associated with OS were identified for eleven cancer

types, including breast cancer. This study is therefore the first to identify piRNAs
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associated with RFS as Was OS. | compared the eight prognostically significant
piRNAs with their study findings and found that hsa_piR_009051 and hsa_piR_017061
were prognostically significant for renal clear cell carcinoma and colon adenocarcinoma,
respectively. hsa_piR_021P3was significantly associated with renal clear cell
carcinoma and lung squamous cell carcinoma prognoses. Significance of the remaining
five piRNAs in cancer prognosis remains unknown till date.

An important observation from this study is that we may inb&amore holistic
picture of piRNAs associated with outcomes if we adopt ai case approach. Case
control approach focuses on identifying prognostic markers which are differentially
expressed®™>® However, casenly approach interrogates the entire dataset in an

unbiased manne?’3°

and may thus yield higher number of prognostic markers. |
observed the same this study, where, with the cassly method, four and six piRNAs
were obtained for OS and RFS, respectively as opposed to three piRNAs each for OS and
RFS. The piRNAs identified in the casmly approach included the ones identified from
the caskcontol approach as well. Therefore, adopting a tasky approach may
provide a more comprehensive understanding of the markers under investigation.
Another major finding of the study was the identification of genes coding for PIWI
proteins as potential progstic markers for breast cancer. Of the four human homologues
of PIWI genes, two genes (PIWIL3 and PIWIL4) showed associations with OS, and
PIWIL3 alone showed an association with RFS. Earlier studies reported the prognostic
significance of PIWIL1 in softissue sarcomd® and glioma*’. High expression of

PIWIL2 transcript was found to be associated with decreased survival rate in colorectal

cancer*” and has also been found to contribute to cisplatin resistance in ovarian“@ancer
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Reports on the clinical significance of PIWIL3 and PIWIL4 remain scarce, and in
particular, this is the first study to identifiye contribution of PIWIL3 and PIWIL4 genes

to breast cancer prognosis. Further replication studies are warranted to better define their
prognostic roles.

The functional importance of PIWI proteins and piRNAs is no longer restricted to
the regulation ofransposons or the maintenance and development stem and germ cells.
For instance, PIWIL1 and PIWIL2 genes have been observed to promote -cell
proliferation in gastric** and breast tumor®. Similarly, piRNAs have also exhibited
involvement in several key cellular mechanisi® Based on previous studies that
piRNAs inhibit gene expression, analogous to miRNAs, | idedt®@6 gene targets (and
their roles) for six piRNAs using the-lmuse gene expression dataset (Table 5.8 and
Appendix Table 9.3). From the functional classification, it may be inferred that the
piRNAs actively contribute to tumorigenesis by regulatingegemvolved in several
pathways contributing to the development of cancer. However, | did not restrict the
analysis to gene ontology terms alone that identified terms related to cancer. | looked at
the targets identified for every piRNA individually andufm piRNAMRNA pairs
playing important roles in methylation, oxidative stress, and cell adhesion, among others,
the deregulation of which may contribute to an imbalance in cellular homeostasis. An
interesting observation was that hsa_piR_021032 was faurghdre complementary
sequence with target PIWIL& member of the human PIWI genes), showing alignment
score > 170 and energy score2d kcal/mol (Appendix Table 9.3Yhis PIWI gene was
observed to be dowregulated in the gene expression dataset aadpiR 021032 was

found to be upegulated in the tumor tissues, suggesting a possible repression of the
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PIWI gene by the piRNA. This proposed mechanism of PIWI regulation by piRNAs is

novel and requires further validation.

5.5 Conclusions

Using a cohort withcomplete clinical annotation and Idngrm follows up, |
identified piRNAs and PIWI genes as novel prognostic markers for breast cancer.
Identifying pIRNA gene targets from breast tissue datasets is rare in the literature, and
this study may open up reselaron the characterization of these piRMARNA pairs.
Deregulation of piRNAs and the involvement of the identified targets in key cellular
mechanisms suggest that piRNAs may be important contributors to breast tumorigenesis.
This is also the first time tha possible regulatory mechanism of PIWI genes by piRNAs
has been observed, but it remains to be established if this regulation is through direct
interaction or a complex network. Biomarker studies on piRNAs and PIWI genes and
proteins are promising fietdof research. Since piRNAs have exhibited stability in body
fluids such as blood’, serum and plasnf4, they may also serve as effective circulating
biomarkers. With improving prding platforms, availability of clinical samples with
extensive clinical annotations, will likely contribute to identification of additional
piRNAs, furthering our understanding of their mechanistic and prognostic contributions

to breast cancer and othdiseases.
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6 Genome wide profiling of ransfer RNAs andtheir role as novel

prognostic markersfor breast cancer

6.1 Introduction

The discovery that only 2% of the human genome encodes for prtertoding

portion) and that the remaining 98%tlje noncoding portion) harbor sequences with
structural, regulatory and functionadlevance, dispelled the loigeld belief that these
sequenceshould be considereasfi j u n k *.BMokgst the nortoding portion of the
genome which gets transcribed but not translated, two major classes of RNA exist based
on size: long norcoding RNAs (> 200 nt) and small naoding RNAs (sncRNAs < 200

nt) 2. Both the classes of RNA contribute to panscriptional level of gene regulation.
Several subcategoriesof sncRNAs exist including microRNAs (miRNAs), small
nucleolar RNAs (snoRNAs)piwi-interacting RNAs (piRNAs) small nuclear RNAs

(snRNAs) andtransfer RNAs (tRNAs].

While much of the focus has been on miRNAsunctional significance of other
RNAs is lessexploredin cellular processes and for thgotential roles as prognostic
markers in cancefransfer RNAs (tRNAs) ara 73-92 nt longclass of sncRNAS that
play a cucial role in protein synthesié\ total of 625 tRNA genes have been identified so
far in thehuman genome, of which 506 are tRNAs that decode standard amino acids,
three are selenocysteine tRNAs, three are suppressor tRNAs, three are tRNAs with

undetermined or unknown isotypes and 110 are tRNAs predicted to be pseudogenes

A version of this chapter has been resubmitted to Scientific reptetse¥isions. 169



Apart from playing a role in protein translatiaecent discoveries have suggested
that tRNAsmay play a vital role inactivation of protein kinase GCN2 regulation of
apoptosis’, and protein degradatich Fur t her mor e, processing of
mature or precursor tRNAs have given rise to another class of small RNAs called tRNA
derived fragments (tRFs). Previous studies have demonstrated that tRFs are not
degradation byroducts but are functional molecules that arise during stress conditions
19 Relative variations in expressiorvids oftRFsin tumor cellsascompared to normal
cells'?, and their role in silencing gene expression, thereby influencing cell prolifetation
or metastasis? implies that theymay alsocontribute to tumorigenesisnterestingly,
there is also evidence indicating thBF may possessharacteristics of a miRNA, both
structurally and functionally (by regulating gene expressiargimilar to miRNAs, tRFs
have also recently showed promise as prognostic marker for prostate tartbers
expanding the repertoire of tRNA functions but their clinicalvatee to BC remains
unexplored. While miRNAs are known to interact with mRNAs directly and promote
gene expression regulatioh™® recent studies have demonstrated contributions of tRNAs
to pog-transcriptional gene expression regulation. For instance, Maute et al, have
identified a functionally active tRNA derived microRNA (miRNA) that represses the
expression of protein coding gene by means of sequence complementarity to ThRNA
tRNAs may also act as a source for another molecule calledirgevacting RNA
(PiIRNA) **, which are equally considered as master regulators of gene expression as
previous studies have signed a similar role to miRNA¥"*®. This further expands the
functions of tRNAs, warranting the need for a deeper exploration into this class of

sncRNA.
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Dysregulation of proteisynthesismachinery has been observed in several tumor
cells and has been found to be one of the major contribfatonsalignant transformation
of cells #. Specifically, over expression of RNA polymerase Il and its protuc
(including tRNAs) has been observed in breast and ovarian cafiégrStudies on the
consequences of aberrant expression of tRNAs lerenstrated that ovexpression of
initiator tRNA can drive cell proliferatigrresulting in oncogenic transformatiéh As
such, tRNAs are now recognized for their pivotal role tmmorigenesis though a
comprehensive understanding b&t diverserolesin the biology of cancer is far from

complete

6 >>?° not many studis have focused on the

Despite their discoveryin 195
comprehensive profiling of tRNAs and explored thmatential to serve as biomarkers for
cancer. Pavoitternod et al. were the first to profile tRNAs using a microarray platform,
to demonstrate that over expression of tRNAs is a hallmark of breast cancer (BC) and
have postulated their potential utility bimarkers for BG'. However their significance
as prognostic markers for BC remains unexplored to date. In fact, the prognostic potential
of tRNAs has not been investigated for any type of cancer. Althdiere has been a
considerable progress in creating personalized treatment strategies for BC patients, based
on their ER, PR or Her2 receptor expression status, a subset of patients continue to
experience recurrence, leading to mortality. Factors cariindp to interindividual
variations in response to treatments and eventual clinical outcomes (Overall Survival,
OS; Recurrence Free Survival, RFS) may be ascribed in part, to the heterogeneous nature

of breast cancer (in terms of histological and molecsibtypes and morphologi€)*

The continuing discoveries of additional molecular subsets of BC (based on deep
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sequencing of tumor genomes) has called for the identification of how®larkers or
combinations of biomarkers that may perform better than the traditional markers alone, in
terms of prognostication or prediction. These molecular signatures may guide the

development of target therapies and in the selection of treatment.

In this study, | hypothesized that relative variation in expression levels of tRNAs
contribute to inteindividual differences in disease trajectory and in eventual treatment
outcomes. Small RNA libraries generated from 11 apparently healthy normal breast
tissue samples (obtained from reduction mammoplasty surgery) and 104 breast tumor
samples with complete clinical informatidfi were sequenced. The specific objectives
were to (i) profile and identify differentigl expressed (DE) tRNAs, (ii) investigate the
role of tRNAs as prognostic markers for BC treatment outcomes (OS and RFS), (iii)
validate the signatures in an external dataset, and lastipyegtigate the contribution of
tRNAs to gene regulation| confirm that tRNAs are globally upegulated in BC and

report for the first time, the prognostic significance of 27 tRNAs.

6.2 Materials and Methods

| have summarized the clinical characteristics of samples (discovery cohort and
external validation/TCGA cohort)sed for the study (section 2.2), RNA isolation (section
2.3) and sequencing protocols (section 2.4), sequencing data analysis (section 2.5) and
statistical analysis (section 2.6) involved in identifying and validating prognostic markers

in Chapter 2.

| have explained below the methods specific for tRNAs and these have not been

explained elsewhere in the thesis.
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6.2.1 Cross platform concordanceto validate expression of select tRNAs

gRT-PCR experimest were performedin collaboration withD r . Koval chuk
laborabry in University of Lethbridge and | analyzed and interpreted the data

Total RNA isolated from either FF tissue (normal) or from FFPE blocks w
subjected to gRIPCRusing iScript Select cDNA Synthesis Kit (BRad) and SsoFas
EvaGreen Supermix (BiRad) accordingtomanuf act ur es. wo tRNAsst r uct
showing prognostic significance and a FC of > 2.0 were chosen for validation using total
RNA from nine normal samples and 44 tumor samples. These samples were also used for
sequencing experiment. Ramdgrimers were used for reverse transcriptinmers for
analyzingchr6tRNA50-SerAGAandchr6tRNA51-SerTGAweredesigned with Primer3
software.The sequence of the primer pairs asgollows
chr6tRNA50-SerAGA-F: 56TAGTCGTGGCCGAGTGGTTA3 6 ,
chr6tRNA50-SerAGA-R : -G&AAACCCCAATGGATTTCTA-3 candfor
chr6tRNA51-SerTGA-F : -TAGTCGTGGCCRGTGGTTA-3 6 ,
chr6tRNA51-SerTGA -R: -GRABACCCCAATGGATTTCAA-3 6GAPDH served as
the loading controlPrimers for analyzing GAPDH by gRFCRare described elsewher
3L All experiments for qRTIPCR were done in triplicasedata was analyzed using the

*®Ghethod®?, and results are shown as fold inductionRiXIAs.

6.2.2 Genomic distribution of tRNAs, identification of regulatory RNAs embedded
within tRNAs and their roles in gene regulation
With the objective of identifying the possible sites of origin of tRNAs, |
overlapped the genomic -@ydinates of all the tRNAs profiled (n = 571) with the

geromic coordinates of mMRNAs and IncRNAs using PGS.
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Previous studies have reported that tRNAs may also act as reservoirs for other
regulatory RNAs such as miRNA3and piRNAs". Therefore the genomic awdinates
of all 571 tRNAs were overlapped with the genomieoedinates of mature miRNAs and
piRNAs. Since miRNAs and piRNAs are considered as master regulators of gene
expression, potential mMRNA targets were identified froeneg (MRNA) expression
dataset that was available in house (GEO accession ID: GSE2%82he dataset
included 10 normal breast tissues (obtained from reduction mammoplasty) and 141 breast
tumor tissues. PGS v 6vas used for all the analysis. Raw data was quantile normalized
and log2 transformed, and mRNAs exhibiting FC > 2.0 and EDMRO5 were identified

as DE using ANOVA.

MRNA targets for piRNAs embedded within tRNAs were identified using
miRanda v 3.3a. TheiRNAs identified to be within the tRNAs were found to be up
regulated in tumor tissues, relative to normal breast tisSu&kerefore, fasta sequences
of t he 36 UTRSs -requfatedageres downmadedbdh iEnsembl database
(GRCh37)* and fasta sequences for piRNAs (whicch were affagulated in the study)
were accessed from the piRNA bank (hg ¥MRNA-piRNA pairsshowing sequence
complementarity, with alignment score 170 and energy score -20 kcal/mol were
identified. The targets thus identified were interrogated for gene ontology classifications
to gain functional insights. Gene ontology classification watopaed using PGS and
gene ontology terms (biological process) showing enrichment schf®and a gralue<

0.05 were considered.
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6.3 Results

All the profiling results of tRNAs and the details on identifying differentially

expressed tRNAs are summarized iapter 3 (3.5).

Overall, 76 tRNAs were DE with FC > 2 and FDR cut off 0.05 (Appendix Table
9.1) and all 76 tRNAs were wegulated in tumor tissue compared to normal tissue,

indicating a global wpegulation of tRNAs in BC.

6.3.1 tRNAs are associated with breascancer prognosis
Two approaches (CC and CO) were adopted to identify tRNAs as potential

prognostic markers for B&/igde methods, 2.5.1).

Casecontrol approach
In the CC approach, survival analysis was restricted to 76 DE tRNAs that were
subjected tounivariate Cox proportional hazards regression model followed by

permutation test. | found three tRNAs (chr6.tRN8&rAGA, chr6.tRNA585erAGA and

chr6.tRNASL-SerTGA) to be associated with OS, with a permutaten@! ue O 0.

(Table 6.1). These three tRNAs were used to construct a risk score for all cases, and then
the cases were dichotomized into two groups based on the ROC estimat&dpoint
(1.05).Cass with a risk score O 1 :ikandaighdsk > 1 .
groups, respectively. Further, the risk score was adjusted for tumor stage and age at
diagnosis. Higkrisk group patients were found to have shorter OS (hazard ratio, HR =
2.68, p=0.02, Cl = 1.19 5.99; Table 6.2 Figure 6.1). Interestingly, none of the DE

tRNAs were found to be associated with RFS.
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Table 6.1 List of tRNAs significant for Overall survival

tRNA ID Univariate Cox p-value | Permuted p-value

Chr6.tRNA166AlaAGC 0.02 0.04
Chr17.tRNA1GGIyTCC 0.04 0.05
Chr6.tRNA147SerAGA 0.04 0.06
Chr6.tRNA145SerAGA 0.04 0.06
Chr6.tRNA5-SerAGA 0.06 0.07
Chr16.tRNA2ArgCCT 0.04 0.08
Chr6.tRNA50-SerAGA 0.07 0.09
Chr12.tRNA8AIaTGC 0.08 0.09
Chr6.tRNA148SerTGA 0.07 0.09
Chr6.tRNA172SerTGA 0.07 0.09
Chr6.tRNA143LysTTT 0.06 0.09
Chr14.tRNA2LeuTAG 0.07 0.09
Chr6.tRNA51-SerTGA 0.08 0.09
Chro.tRNA4ArgTCT 0.06 0.10

Table 6.1: Two approaches were adopted to select the set oA$Rfdr survival analysis. In the CC
approach and CO approach, 76 DE tRNAs and 216 tRNAs (retained after filtering for read counts) were
selected for Univariate Cox proportional hazards regression model (outcome: OS), followed by permutation
test. Table 6.Includes OS significant tRNAs (permutedbpa |l ue O 0. 1) from both t
CC and n =14 in CO). The CO approach also included the tRNAs that were significant in the CC approach,
which are indicated in red color.

176



Figure 6.1 tRNA Kaplan -Meier plot for Overall Survival (Case-control)
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Figure 6.1: Probability of OS is plotted over time and the Kapldeier plot indicate that in CC, relative to

low-risk group, patients belonging highrisk group are associated with poorer OS.

Table 6.2 Univariate and Multivariate results of tRNAs for Casecontrol approach

Univariate analysis Multivariate analysis
Parameter
HR p-value HR p-value
(95% CI) (95% ClI)
. 2.39 2.68
Risk score (1.075.33) 0.03 (1.195.99) 0.02
0.40 0.50
Tumor stage (0.21:0.78) 0.01 (0.251.01) 0.05
2.01
Tumor grade (1.043.89) 0.04
. . 1.06 1.05
Age at diagnosis (1.021.09) 0.001 (1.021.09) 0.002
0.99
TNBC status (0.501.95) 0.98

HR = Hazard Ratio; Cl = Confidence Interval; TNBC = Triple Negative Breast Cancer

Table 6.2: Risk scores were constructed from the three tRNAs (significant for OS) identified from CC.
Patients were dichotomized into low and high risk groupsethaon ROC estimated eoff point.
Univariate Cox analysis was run for risk score and other clinical variables (included in the table). Risk
score was further adjusted for potential confounders and was found to be significant (p < 0.05). Patients

belongirg to highrisk group were associated with poorer OS (HR > 1).
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Caseonly approach:

571 tRNAs were profiled from tumor tissues alone, of which, 216 were retained
with O 10 read counts in at | east 90% of
normalized and adjusted for batch effects. From the 216 tRNAs (treated as continuous
variables), 14 RNAs eachwere significant for OSTable 6.1) and RFS (Table 6.3),
respectivelyin the permutation test, following Univariate Cox gs& The 14 tRNAs
significant for OS,ncluded the three tRNAs that were significant in the CC approach.
The estimated dpnal cutoff point for defining risk groups was 7.23, and patients were
stratified into lowr i s k ( O 7 -risk §rpupsa(>» M23jdr OF Bimilar to the CC
approach, highiisk group was found to be associated with shorter OS (HR = 2.78, p =
0.0008,Cl = 1.5371 5.07, Table6.4, Figure6.2). In contrast to the CC approach, 14
tRNAs were found to be significant for RFS (Tabl&). A risk score cubff point of -

3.11 separated cases into two survival groups and therislgigroup was found to be
assocated with shorter RFS (HR = 1.86, p = 0.02, Cl = 1.1813, Table6.4, Figure
6.3). For both OS and RFS, risk score was found to be significant after adjusting for

confounders (tumor stage, grade and age at diagnosis for OS and tumor stage for RFS).
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Table 6.3 List of tRNAs significant for Recurrence Free Survival

tRNA ID Univariate Cox p- | o o ted p-value
value
Chr6.tRNA166AIaAGC 0.03 0.03
Chr1.tRNASGGIUCTC 0.05 0.04
Chr1.tRNA7ZGIUCTC 0.05 0.04
Chr6.RNAS7-GIUCTC 0.07 0.06
Chr1.tRNA74GIuCTC 0.07 0.06
Chr1.tRNA71GIuCTC 0.07 0.06
Chr1.tRNA59GIUCTC 0.08 0.06
Chr6.tRNA7ZGIUCTC 0.08 0.07
Chr1.tRNA118HisGTG 0.1 0.08
Chr6.tRNA152ValCAC 0.13 0.08
Chr1.tRNA116GIuCTC 0.11 0.09
Chr2.tRNA19GlyGCC 0.12 0.09
Chr6.tRNA128GlyGCC 0.11 0.09
Chr1.tRNA133GlyCCC 0.12 0.09

Table 6.3: Two approaches were adopted to select the set of tRNAs for survival analysis. In the CC
approach and CO approach, 76 DE tRNAs and 216 tRNAs (retained after filtering dorowats) were

selected for Univariate Cox proportional hazards regression model (outcome: RFS), followed by
permutation test. Table 6.3 includes RFS significant tRNAs (permutedp ue O 0. 1) from CO
= 14). None of the tRNAs were identified as associated RS from the CC approach.
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Figures 6.2 and 6.3 Probability of OS (Figure 6.2) and RFS (Figure 6.3) is plotted over time and the
KaplanMeier plots indicate that relative to lersk group, patients belonging to higisk group are

associateavith poorer OS and RFS.
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Table 6.4 Univariate and Multivariate results of tRNAs for Case-only approach

Overall Survival Recurrence Free Survival
P Univariate Multivariate Univariate Multivariate
arameter analysis analysis analysis analysis
HR p- HR p- HR p- HR p-
(95% CI) | value | (95% CI) | value | (95% CI) | value | (95% CI) | value
. 2.33 2.78 1.89 1.86
Risk score| ; 59418y | %01 | (1535.07) | 00| (1.133.19) | 902 | (1.103.13) | 02
Tumor 0.40 0.46 0.38 0.39
stage (0.21-0.78) 0.01 (0.230.93 0.03 (0.200.71) 0.003 (0.21-:0.73) 0.003
Tumor 2.01 2.49 1.58
grade | (1.043.89) | %94 | (1.264.93) | %' | (0.922.74) | 01O
Age at 1.06 1.05 1.02
diagnosis | (1.021.09) | %%%| (1.021.09) | ©%%| (0.981.05) | O%
TNBC 0.99 0.84
status | (0.501.95) | 998 (0.451.55) | 958

HR = Hazard Ratio; Cl = Confidence Interval; TNBC = Triple Negative Breast Cancer
Table 6.4: Risk scores were constructed from the 14 tRNAs (significant for OS and RFS) identified from
CO. Patients were dichotomizeadto low and high risk groups based on ROC estimateebffypoint.
Univariate Cox analysis was run for risk score and other clinical variables (included in the table). Risk
score was further adjusted for potential confounders and was found to be sigr{fica 0.05). Patients
belonging to higkrisk group were associated with poorer OS (left panel) and RFS (right panel) with HR >
1.

6.3.2 tRNAs prognostic of overall survival are validated in an external dataset

The batch adjusted normalized counts for tRNAs@ased with OS (identified in
the CO approach) were extracted from TCGA dataset. Similar to the discovery cohort,
risk scores were constructed for every sample and the samples were dichotomized into
low and highrisk groups based on the eff point (-0.9) estimated using ROC. In the
multivariate setting, the risk score was adjusted for tumor stage and age at diagnosis.
Statistical significance obtained (p = 0.15) for the risk score indicated a trend similar to
the original study (similar direction and gratude of effect) but did not meet imposed
nominal pvalue threshold of p < 0.05. Overall, the results from external cohort were
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supportive of the original study findings that tRNAs are potential prognostic factors;
high-risk group was associated with pepOS (HR = 1.97, p = 0.15, Cl = 0.79%4.95,

Table 6.5, Figure 6.4).

Figure 6.4 Kaplan-Meier plot for Overall Survival (External/TCGA dataset)
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Figure 6.4: Probability of OS is plotted over time ftime TCGA dataset. Kapladeier plot indicates that,
relative to lowrisk group, patients belonging to higisk group are associated with poorer OS, similar to

discovery cohort.
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Table 6.5 Univariate and multivariate analysisof tRNAs for Overall Survival
(External/TCGA dataset)

Univariate analysis Multivariate analysis
Parameter
HR -value HR -value
(95% Cl) P (95% CI) P
. 2.28 1.97
Risk score (0.921 5.66) 0.08 (0.791 4.95) 0.15
0.32 0.29
Tumor stage (0.137 0.78 0.01 (0.111 0.74) 0.009
. . 1.03 1.03
Age at diagnosis (1.003i 1.06) 0.03 (1.017 1.06) 0.02
TNBC status © 18:[62 12) 0.46

HR = Hazard ratio; Cl = Confidence interval; TNBC = Triple Negative Breast Cancer

Table 6.5: Risk score was constrget using the 14 tRNAs (significant for OS) for all the 84 samples
accessed from the TCGA dataset. Patients were dichotomized into low and high risk groups based on ROC
estimated cubff point. Univariate Cox analysis was run for risk score and other aliniariables
(included in the table). Risk score was further adjusted for potential confounders and was found to be
significant with p = 0.15). Similar to the discovery cohort, patients belonging terisiglgroup were

associated with poorer OS (HR > 1).
6.3.3 Relative expressions of chr6.tRNA50SerAGA and chr6.tRNA51-SerTGA

are validated using gRTFPCR

Two representative tRNAs, chr6.tRNASErAGA and chr6.tRNASBerTGA,
exhibiting a fold change of 2.56 and 2.61, respectively in NGS platform, were validated
usingqRT-PCR. Both tRNAs were found to be-oggulated in tumors relative to normal

tissues in gRIPCR experiments (Figure 6.5).
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Figure 6.5 qRT-PCR validation of up-regulated tRNAs
45 +
40 - *
35 -
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O n T
chr6.tRNA50-SerAGA chr6.tRNA51-SerTGA

Figure 6.5: Theexpressions of two prognostically significant tRNAs that were also differentially expressed
were validated using qRPCR with GAPDH as the internal normalizer. Both the tRNAs areegplated

in breast tumor, relative to normal (control) tissues, confagrttie findings from NGS experiment. * = p <

0.05.
6.3.4 tRNAs harbor regulatory RNAs and thus contribute to gene regulation

Genomic origins (distinct genes or intergenic or intragenic regions) of tRNAs are
not well understood . However, in this study, | obseha a fraction of tRNAs appears
to originate from the intronic regions of protein coding or-pootein coding genes. For
instance, when | mapped the genomicocdinates of the 571 profiled tRNAs to the
genomic ceordinates of messenger RNAs (mRNAs) alwhg nonrcoding RNAs
(IncRNAs), | observed that ~ 15% (n = 86) of the tRNAs were embedded within the

intronic regions of MRNAs and ~ 12% (n = 66) were embedded within the introns of

INcRNAs (Appendix Table 9.4).

Since we now understand that tRNAs may asbas a reservoir for microRNAs

(miRNAs) and piwiinteracting RNAs (piRNAs), the genomic -oodinates of the 571
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tRNAs were mapped to the genomic-aalinates of mature miRNAs and piRNAs. 45
tRNAs were observed to harbor piRNAs (Appendix Table 9.5) aedRNA was found

to harbor a miRNA (Appendix Table 9.5). The identified piRNAs were subsequently
interrogated for differential expression using data generated from our previous studies
(Chapter 5)*. Nine piRNAs (from among the 45 piRNAs annotated to tRNAs) were
found to be ugpegulated (Table 6.6). The lone miRNA observed to be within the

genomic ceordinates of a tRNA was not found to be differentially expressed.

Further, to understand the contribution of pi#N(thereby the tRNAS) to gene
regulation, | first identified mMRNA targets based on (i) the complementary sequences
shared by pi RNAs and the 36UTR of mRNAs
between piRNAs and mRNAs. Since the nine piRNAs weredaw be ugegulated,

2241 genes which were found to be demggulated in tumor tissues (gene expression
dataset), were considered as potential targets for the nine piRNAs. However, when
filtered for stringent alignment and energy scores (Table 6.6)arfets (genes) were
identified. To understand the functional relevance of the identified targets, gene ontology
classification was performed and the identified gene ontology terms (biological
processes) are summarized in Table 6.7. The identified targetsfound to be involved

in key tumorigenic pathways, including apoptosis and angiogenesis.
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Table 6.6 List of gene targets identified by piRNAs embedded within tRNAs

tRNA ID
(Fold change)

piRNA ID
(Fold change)

MRNA targets
(Down-regulated)

chrl.trna68GlyGCC hsa_piR_000291
(1.68) L 71) TNKS, ZC3H6, ZHX3
. SCN2B, SH3TC2, SEMA6D, SLC16A4, SYNPO,
Chrz'”?ilggglyGCC hsa_?ilfzs_5(;00765 TMTC1, TSHZ2, TIFA, TRPM3, WFIKNN2,

ZSCAN12, UBQLNL, APCDD1, CNRICES2

chr6.trnal3LysCTT

hsa_piR_000794

RRAD, SLC2A4, SEMA3E, RPL18, ZNF366, WSCD

(14.79) (1.94) B3GAT1, CACNA1B, CES2
chr6.trna5SerAGA hsa_piR_015249
(2.46) (2.42) NONE

chr6.trna87GIuCTC

hsa_piR_017716

SEMAS3G, SCARAS3, SIRPA, RSPO1, SPGA2,
RPS9, SLC34A2, ST8SIA2, TMCC3, TLN2,
TNFSF12, TRIM2, TIFA, ZNF395, TXNRD2, VPRBH

(1.35) (1.51) ADAM11, ACVR1C, ANGPTL4, ACACB, ALS2CL,
APOL4, ALPL, ARID5A, ATP13A4, ACSM1,
CLEC4M, CLIP3, CCDC120, CCDC38
chr19.trna8SeC(e)TCA | hsa_piR_019912
(18.15) (16.64) SDK2,SYNPO
chrl2.trnal3AlaTGC hsa_piR_020485 SLC2A4, SEC63, TMEM87A, USP31, VPS13A,
(1.14) (1.12) AKR1C1, ABCG5, ALG9
chr2.trna3AlaAGC hsa piR_020496
(1.87) (1.87) ALGY
chr5.trnal5valAAC hsa_piR_020829 SCN2B, SACS, RYR1, SNCAIP, WNT5B,
(9.57) (9.58) ARHGAP26, CAPN6, CD34

Table 6.6:45 piRNAs were found to be embedded within tRNAs, of which nine piRNAs were found to be
differentially expressed. Since these 9 piRNAs wereaglated, potential targets were identified from the
genes that were downegulatel in breast tumor tissues. A total of 76 gene targets were identified for the 9
piRNAs.
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Table 6.7 Gene ontology classification for the piRNA targets

ne ontol IRNAS regulating mRNA target
Gene ontology MRNA targets P s regulating | targe
classification expression
SEMAGZE, hsa_piR_000794,
Regulation of angiogenesis TNFSF12, ANGPTL4, hsa piR_017716,
CD34 hsa_piR_020829
Apoptotic nuclear changes ACVR1C hsa_piR_017716
SLC2A4, hsa_piR000794, hsa_piR_02088
Fat cell differentiation CLIP3, hsa_piR_017716,
WNT5B hsa_piR_020829
TNKS, hsa_piR_000291,
Regulation of Wnt signaling APCDD1, hsa_piR_000765,
pathway RSPO1, hsa_piR_017716,
WNT5B hsa_piR_020829
Doxorubicin and
Daunorubicin metabolic AKR1C1 hsa_piR_020485
process
Negative regulation of
intracellular estrogen ZNF366 hsa piR_000794
receptor signaling pathway,
Progesterone metabolic AKR1C1L hsa_piR_020485
process
Hematoppleth stem cell CD34 hsa_piR_020829
proliferation

Table 6.7: Representative gene ontology terms with enrichment scor8 antl pvalue < 0.05 are listed.
Each row in columns two and three represent the mRNA targets involved in the functions and the
corresponding piRNAs predicted to bind to these targets.

6.4 Discussion

This is the first study to profile tRNAs on a genome widales using NGS and to
identify their prognostic significance for BC. 571 tRNAs were profiled and | found that
14 tRNAs each, were associated with OS and RFS. Amongst these, one tRNA was found
to be associated with both OS and RFS. The results also shawi& slirection of

effect in an external dataset, thereby strengthening the study findings.
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This study provides proof of principle experiments in support of the idea that a
comprehensive tumor profiling of tRNAs will offer mucleeded insights in to new
biomarkers for BC prognosis. The two approaches used in the study, CC and CO (do not
depend on controls used), are widely accepted means to identify markers of prognostic
significance. Although, it is not common to adopt both approaches in a single sitidy, b
the approaches have been attempted in this study to compare and understand their
similarities and differences, in terms of number of signatures and/or the unique or
common signatures captured. As anticipated, the number of prognostically significant
tRNAs identified were higher in a CO approach since the number of tRNAs interrogated
for survival analysis was also higher. In the case of OS, three tRNAs were found to be
significant in CC approach, while 14 tRNAs were identified in CO approach. No tRNAs
were associated with RFS in CC approach whereas 14 tRNAs were found to be
significant from a CO approach. Therefore, adopting a CO approach not only offers a
larger dataset to probe for markers but is also a better option to understand the
importance of moleules which would have otherwise been missed in a CC approach that

focusses only on DE tRNAs.

A stringent filtering criterion was adopted, that enabled to identify tRNAs present in
high amounts, and in most, if not, all of the samples (highly expressdmnast
frequently expressed). This is one way to improve the chance of reproducibility of the
obtained signatures. |l ndeed, al | the 14 tR
at | east 90% of the samples (excéeopthe one,
samples) in the external/TCGA dataset, and therefore the overall expression levels were

considered as comparable to the discovery dataset. Results of survival analysis from
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TCGA dataset showed a similar direction of effect; patients belonginiglteriek group

were associated with poorer OS, validating the findings from the discovery cohort. The
risk score, however, did not reach statistical significance due to the limited sample size
and number of events (death) in the cohort, a finding consistérdependent biomarker
studies when TCGA dataset was considered for the studies outlined in this*thesis
Recurrence events reported for the TCGA dataset are lower than OS and hence the data

was not amend for RFS analysis.

To build a model for multivariate analysis, | did not include individual tRNA
molecules identified from the univariate analysis but constructed a composite risk score
using these RNAs for the following reasons: (i) a complex interpfagiomolecules
exists, where each molecule contributes significantly towards a phenotype; (ii) several of
the tRNAs identified are highly correlated (Appendix Tables 9.6 and 9.7) and the pattern
of correlation is more pronounced for tRNA isoacceptors § 6.9). While this was
expected for isoacceptors, it was also interesting to observe fairly high correlation (r = >
0.8) between tRNA genes coding for Ser and Leu (specific reason not known). This
problem of collinearity which generally leads to spuriassociations® of the variables
with the outcomes was also overcome by constructing a risk score, which is usually not

affected by correlated variables.

Recent studies have highlighted the importance of tRNAs as aesturother
regulatory RNAs such as piRNAS and miRNAs™, which act as master regulators of
gene expression. To this end, | observed that 46 tRNAs potentially harbor these
regulatory RNAs. | also identified that among these 46 regulatory RNAs (piRNAs,

mMiRNAS), nine piRNAs were DE. The nine piRNAs were predicted to target a total of 76
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MRNA targets from gene expression dataset obtained from breast tissues. Since these
targetsare obtained from breast tissues, this dataset may serve as proxy for functional
validation. Gene ontology classifications of these targets were enriched for key
tumorigenic pathways such as angiogenesis, apoptosis and stem cell maintenance (Table

6.7).

Although 1 have identified a potential indirect role of tRNAs in breast
tumorigenesis, yet one needs to confirm if these tRNAs are indeed giving rise to these
regulatory RNAs or if a portion of tRNA merely share sequence similarity to piRNAs.
One level of gidence from this study to say that these piRNAs may be embedded within
the tRNAs is that the expression of piRNAs and tRNAs were found to be in the same
direction. All the nine piRNAs and their corresponding host tRNAs wenegiplated in
breast tumor sisues (Table 6.6). A series of experiments are needed to confirm the
piRNA origins to tRNAs: These include (i) the expression studies to correlate piRNA and
host genes showing similar direction of expression, (i) demonstrate interactions of
piRNAs with PWI proteins, which are the drivers of piRNA biogenesis, (iii) demonstrate
direct interaction between the piRNAs and the identified mRNA targets thrugh luciferase
expression systems, and (iv) assess potential functions in cellular activities (apoptosis,

cell migration, cell proliferation etc) using cell based assays.

Frequently used methods to estimate theofupoint for patient stratification into
two survival groups aré median cupff point of the risk score and ROC based-afit
point. While calculting the median is the most commonly adopted method, thisftut
point is arbitrary’” and does not take into account the sensitivity and specificity of the

estimated cubff point. Conversely, ROC based estimationgiders these and is a more
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reliable measure for cutff point estimatior?". ROC based estimation was therefore used
to determine the cudff point for patient stratification. Overall, this study hass$ied the

parameters set by REMARK guidelin€gor biomarker discovery and validation.

6.5 Conclusions

This is the first study to comprehensively profile tRNAs using NGS and to
understand their contribution to B&ognosis. Despite the technical challenges involved
in sequencing tRNAs, this study has demonstrated a near complete capture of all the
annotated tRNAs using the data from the adopted NGS platform. Results from this study
also indicate that tRNAs may engeras promising prognostic biomarkers for BC and an
observation of the same trends of association with BC prognosis in an external dataset,
reaffirms the initial study findings. However, it remains to be seen if these tRNA
molecules may perform better aargtalone biomarkers or if these can complement the
existing prognostic markers for BConfirmation of the processing of tRNAs to other
regulatory RNAs may add a new dimension to the existing knowledge on tRNAs, which
may also be beneficial for therapieupurposes. | believe that the findings from the
current study will encouragenore researchers to contribute to delineate the fine
molecular mechanisms. Although much remains to be ascertained regarding the various
aspects of tRNAs, deeper exploratiortoirthis class of RNAs may help us better

appreciate the hitherto unexplored biological consequences of these RNAs.
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