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  Trans -11 18:1 [vaccenic acid (VA)] is the most abundant 
ruminant-derived  trans  fatty acid (rTFA) in the food chain 
and has sparked major interest due to mandatory labeling 
of all  trans  fat on foods in North America. This interest has 
also been simulated by the recent announcement by the 
Food and Drug Administration to retract the generally rec-
ognized as safe (GRAS) status of “artifi cial”  trans  fatty acids 
( 1 ). VA is also the precursor to endogenous synthesis of 
conjugated linoleic acid (CLA), the fi rst rTFA to be recog-
nized as having numerous health-related effects. Interest-
ingly, a growing body of evidence from studies in animal 
models has suggested a bioactivity for VA independent of 
its conversion to CLA. More specifi cally, VA has been shown 
to attenuate complications observed in the metabolic 

       Abstract   Vaccenic acid (VA), the predominant ruminant-
derived  trans  fat in the food chain, ameliorates hyperlip-
idemia, yet mechanisms remain elusive. We investigated 
whether VA could infl uence tissue endocannabinoids (ECs) 
by altering the availability of their biosynthetic precursor, 
arachidonic acid (AA), in membrane phospholipids (PLs). 
JCR:LA -cp  rats were assigned to a control diet with or 
without VA (1% w/w),  cis -9,  trans -11 conjugated linoleic 
acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 
8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), 
in the liver and visceral adipose tissue (VAT) relative to 
control diet ( P  < 0.001), but did not change AA in tissue 
PLs. There was no additive effect of combining VA+CLA 
on 2-AG relative to VA alone ( P  > 0.05). Interestingly, VA 
increased jejunal concentrations of anandamide and those 
of the noncannabinoid signaling molecules, oleoyletha-
nolamide and palmitoylethanolamide, relative to control 
diet ( P  < 0.05). This was consistent with a lower jejunal 
protein abundance (but not activity) of their degrading 
enzyme, fatty acid amide hydrolase, as well as the mRNA 
expression of TNF �  and interleukin 1 �  ( P  < 0.05). The 
ability of VA to reduce 2-AG in the liver and VAT provides 
a potential mechanistic explanation to alleviate ectopic 
lipid accumulation.   The opposing regulation of ECs 
and other noncannabinoid lipid signaling molecules by 
VA suggests an activation of benefit via the EC system 
in the intestine.  —Jacome-Sosa, M., C. Vacca, R. Mangat, 
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 MATERIALS AND METHODS 

 Animals and diets 
 Rats of the JCR:LA- cp  strain that are homozygous for the corpu-

lent trait ( cp/cp ) have a complete absence of the leptin receptor in 
the plasma membrane and spontaneously develop symptoms as-
sociated with the metabolic syndrome and the prediabetic state 
typically observed in humans; including obesity, insulin resistance, 
and dyslipidemia ( 28 ). Male JCR:LA- cp  rats were raised in our 
established breeding colony at the University of Alberta, as previ-
ously described ( 29 ). At 8 weeks of age, rats (n = 5) were random-
ized and assigned to one of four diets (control and experimental 
diets) for 8 weeks and had free access to food and water. 

 The control diet was prepared by adding 1% cholesterol and 
15% w/w of fat to an 85% basal mix diet (Harlan Laboratories; 
TD.06206) that contained 42% of energy from carbohydrate, 
23.7% of energy from protein, and 34% of energy from fat, as 
previously described ( 5 ). Experimental diets were prepared by 
adjusting the fatty acid composition (replacing oleic acid with 
VA, CLA, or VA+CLA) of the control diet to provide approxi-
mately 1% w/w of VA (VA), 1% w/w of  cis -9,  trans -11 CLA (CLA), 
or both 1% w/w of VA + 0.5% w/w of  cis -9,  trans -11 CLA 
(VA+CLA). The amount of VA in the diet ( � 2% of total energy 
from VA) was chosen based on previously published studies ( 2–
4 ) and was intended to be compared with health effects of mod-
erate doses of rTFA previously examined in human clinical trials 
( 30 ). The fat composition of the control and experimental diets 
is shown in supplementary Table 1. Control and experimental 
diets were isocaloric and had a constant PUFA to SFA ratio of 0.4 
and a constant n6 to n3 PUFA ratio of 8. Purifi ed VA was synthe-
sized by chemical alkali isomerization from linoleic acid-rich veg-
etable oil ( 31 ). Semi-purifi ed  cis -9,  trans -11 CLA (G-c9t11 80:20) 
containing 59.8% of  cis -9,  trans -11 CLA and 14.4% of  trans -10, 
 cis -12 CLA was kindly provided by Lipid Nutrition. The fatty 
acid composition of diets was confi rmed by gas chromatograph 
analysis ( 32 ) of the fat blend samples (  Table 1  ).  After euthaniza-
tion, samples of the hypothalamus, skeletal muscle, visceral adi-
pose tissue (VAT), liver, and jejunal mucosa segments of the 
intestine were excised and snap-frozen at  � 80°C until analysis. 
Animal care and experimental procedures were conducted in 
accordance with the Canadian Council on Animal Care and 
approved by the University of Alberta Animal Care and Use 
Committee-Livestock. 

 Tissue lipid extraction 
 Tissues (0.2–0.3 g) were homogenized and total lipids ex-

tracted with chloroform/methanol (2:1, v/v) containing internal 
deuterated standards for AEA, 2-AG, OEA, and PEA to quan-
tify for recovery effi ciency ([ 2 H] 8 -AEA, 20 ng/ml), ([ 2 H] 5 -2-AG, 
200 ng/ml), ([ 2 H] 2 -OEA, 20 ng/ml), and ([ 2 H] 4 -PEA, 20 ng/ml) 
(Cayman Chemical, Ann Arbor, MI). This mixture was washed 
with 0.25 vol of 0.9% KCl according to the Folch procedure ( 33 ) 
to separate the phases. Samples were centrifuged and the lipid-
containing lower phase was transferred to clean tubes and evapo-
rated to dryness under a stream of nitrogen at room temperature. 
After lipid extraction from tissue samples, lipid classes were sepa-
rated by solid phase extraction using commercial silica cartridges, 
Strata SI-1 (Phenomenex, Torrance, CA). Samples were reconsti-
tuted in 500  � l of chloroform, vortexed, and loaded to the col-
umn followed by washing with 10 ml of chloroform to elute 
neutral lipids. The fractions containing ECs were then eluted 
with 10 ml chloroform/methanol (9:1, v/v), evaporated to dry-
ness under nitrogen, and reconstituted in methanol until analy-
sis by LC/MS. The fractions containing PLs were eluted with 
10 ml methanol and stored at  � 20°C until further preparation 

syndrome, including dyslipidemia, fatty liver disease, and 
low-grade infl ammation ( 2–5 ). It has been proposed that 
the lipid-lowering and anti-infl ammatory effects of VA may 
be partially associated with its ability to ligand activate 
PPAR � -regulated pathways ( 6, 7 ) by acting directly in the 
intestine ( 6 ) and adipose tissue ( 5 ). In general, bioactive 
long chain fatty acids also act by modifying the composition 
of membrane phospholipids (PLs) and potentially replac-
ing or interfering with the synthesis of PL-derived lipid sig-
naling molecules, including endocannabinoids (ECs) ( 8, 9 ). 
However, the incorporation of VA into membrane PLs and 
potential effects on EC pathways remains unknown. 

 ECs, the endogenous ligands for cannabinoid (CB) re-
ceptors, are lipid-derived messengers that have emerged as 
key regulators of appetite behavior, energy metabolism, and 
intestinal infl ammation. The most common ECs include 
arachidonoylethanolamide [anandamide (AEA)] and 
2-arachidonoylglycerol (2-AG); and are derivatives of the 
PUFA, arachidonic acid (AA; C20:4, n-6), in PLs and can be 
modulated in response to dietary PUFA intake ( 10–13 ). In-
creased plasma EC concentrations, due to alterations in the 
activity/expression of enzymes regulating their biosynthesis 
and degradation, are associated with abdominal obesity, dys-
lipidemia, and insulin resistance in humans ( 14–16 ). Intrigu-
ingly, CB receptor over-activity can result in tissue-specifi c 
metabolic effects. For instance, central and hepatic CB recep-
tor activation leads to hyperphagia ( 17 ), hepatic de novo li-
pogenesis, and insulin resistance ( 18–20 ). In contrast, in 
animal models of experimental colitis, increased CB receptor 
signaling has been shown to ameliorate smooth muscular ir-
ritation ( 21 ) and the T cell-mediated aberrant immune re-
sponse ( 22 ); thus, counteracting the excessive infl ammatory 
responses/signs in intestinal disease conditions. Therefore, 
nutritional interventions that target tissue-specifi c EC path-
ways could be used as potential therapeutic strategies for 
treatment of obesity-associated metabolic diseases. 

 A recent study in hypercholesterolemic subjects pro-
vided the fi rst evidence that a dairy product naturally en-
riched with VA and CLA decreases plasma concentrations 
of AEA in a dose-dependent manner ( 23 ). However, the 
direct effect of VA on EC regulation was not able to be 
determined in this study. Furthermore, given the bioactive 
properties of VA to favorably modulate whole body energy 
metabolism and low-grade infl ammation ( 5, 24 ), we pro-
posed to explore novel regulatory effects of VA on tissue 
ECs as a potential mechanism of action for these meta-
bolic effects. In order to address the specifi c role of dietary 
VA alone or in combination with CLA in EC metabolism, 
we supplemented the diets of an established rodent model 
of metabolic syndrome (the JCR:LA- cp  rat) with these bio-
active long chain fatty acids, and examined tissue concen-
trations of CB receptor ligands, AEA and 2-AG, and the 
biosynthetic precursor, AA, in membrane PLs. We also 
analyzed two noncannabinoid lipid signaling molecules, 
oleoylethanolamide (OEA) and palmitoylethanolamide 
(PEA), which only differ from AEA by their acyl chain and 
have been shown to induce satiety ( 25, 26 ) and exert anti-
infl ammatory effects through activation of the PPAR �  
receptor ( 27 ). 
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forming fatty acid methyl esters (FAMEs). The FAMEs were 
fl ushed with N 2  and stored at  � 35°C until analysis and fatty acids 
were separated by GC with fl ame ionization detector (Varian 3900; 
Varian Inc., Mississauga, ON) using a 100 m CP-Sil 88 fused-silica 
capillary column [100 m × 0.25 mm i.d. × 0.2  � m fi lm thickness 
(Varian Inc.)] as previously described   ( 32 ). The FAMEs were 
identifi ed by comparison with retention times of commercial GC 
reference FAME standards (FAME mix #463 and CLA FAME 
#UC-59M) from Nu-Chek Prep Inc. 

 Measurement of fatty acid amide hydrolase protein 
expression in the jejunum 

 Samples of the jejunum were washed with phosphate-buffered 
saline, and a 2 cm segment was cut from 10 cm below the pyloric 
sphincter. Mucosal samples were then scraped from jejunal seg-
ments. Proteins from jejunal mucosa homogenates were sepa-
rated by SDS-PAGE on Tris-acetate polyacrylamide gels (3–8%; 
Invitrogen), transferred to a polyvinylidene difl uoride mem-
brane  , and incubated with anti-fatty acid amide hydrolase (FAAH)1 
rabbit polyclonal antibody (1:1,000; catalog number 9179; Cell 
Signaling Technology®) and anti- � -actin mouse polyclonal anti-
body (1:5,000; catalog number ab8226; Abcam®, St Louis, MO), 
as previously described ( 36 ). Detection was achieved using anti-
rabbit and anti-murine secondary antibodies and the ECL ad-
vance detection system (Amersham Biosciences). Results are 
expressed as a ratio of target protein: � -actin protein. 

 Enzyme activity assays 
 The activity of FAAH and  N -acylphosphatidylethanolamine 

phospholipase type D in jejunal mucosa was measured by stan-
dard assays, as previously described ( 37 ). 

 Measurement of pro-infl ammatory genes in the jejunum 
 Total RNA was isolated from frozen segments of jejunal mucosa 

using TRIzol® (Invitrogen, Canada), as described in the manu-
facturer’s protocol, and reversed transcribed into cDNA using 
MultiScribee reverse transcriptase (high-capacity cDNA reverse 
transcription kit; Applied Biosystems, Foster City, CA). The expres-
sion of CB1, FAAH, and the pro-infl ammatory cytokines, TNF �  

for fatty acid analysis. Recovery of ECs in the chloroform/metha-
nol (9:1, v/v) eluates was confi rmed by LC/MS and estimated to 
be higher than 90%. Purity of the PL fraction was confi rmed by 
TLC using heptane/isopropyl ether/acetic acid (60:40:4, by vol-
ume) as previously described ( 34 ). 

 Analysis of ECs and AEA analogs 
 Samples were analyzed by LC-ESI-MS using an Agilent 1200 

series HPLC coupled to a 3200 QTRAP mass spectrometer (AB 
SCIEX, Concord, ON, Canada). LC separation was performed 
through an Ascentis Express C18 column (7.5 cm × 2.1 mm, 2.7  � m 
particle size) at a fl ow rate of 0.3 ml/min. Two mobile phases 
were used: mobile phase A, methanol with 0.2% formic acid; and 
mobile phase B, 50 mM ammonium formate (pH 3). The gradi-
ent elution method started at 85% A from 0 to 0.1 min; then the 
mobile phase A linearly increased to 95% from 0.1 to 2 min and 
was held for an additional 2 min (from 2.1 to 4 min). Then, the 
mobile phase was returned to 85% A and was held at this compo-
sition for 6 min equilibrium time prior to the next injection. The 
mass spectrometer was operated in the multiple reaction moni-
toring scan mode under positive ionization. Nitrogen was used as 
curtain gas, for drying, and as nebulizing gas. AEA, 2-AG, and the 
two  N -acylethanolamines (OEA and PEA) in their protonated 
forms [M+H] +  were identifi ed as peaks with the appropriate  m/z  
values and quantifi ed by comparison with their external synthetic 
standards that were run under the same conditions  . The multiple 
reaction monitoring transitions monitored were as follows: AEA 
 m/z  348 → 62 (35 eV); AEA-d8  m/z  356 → 62 (35 eV); 2-AG  m/z  
379 → 287 (18 eV); 2-AG-d5  m/z  384 → 287 (18 eV); PEA  m/z  
300 → 62 (30 eV); PEA-d4  m/z  304 → 62 (30 eV); OEA  m/z  326 → 62 
(30 eV); OEA-d2  m/z  328 → 62 (30 eV). The linear range for the 
calibration (standard) curves for AEA, PEA, and OEA was 5–500 
ng/ml and for 2-AG was 0.1–10  � g/ml. Because 2-AG and 1-AG 
undergo rapid isomerization ( 35 ), results for 2-AG were reported 
as the sum of the individual peaks of 2-AG + 1-AG. 

 Fatty acid analysis in PLs 
 PL fractions were transesterifi ed using 0.5 N methanolic base 

(metallic sodium in methanol) (Sigma-Aldrich) at 80°C for 15 min 

 TABLE 1. Fatty acid composition of control and experimental diets        

Fatty Acid Control Diet VA Diet CLA Diet VA+CLA Diet

C12:0 1.0 1.2 1.2 2.1
C14:0 3.6 4.2 4.4 7.6
C14:1 0.3 0.4 0.4 0.7
C16:0 19.0 18.1 17.7 22.6
C16:1 1.2 1.0 1.0 1.1
C18:0 11.0 10.9 10.6 7.7
C18:1  trans -9 0.5 0.5 0.4 0.2
C18:1  trans -11 (VA) 1.3 8.8 1.0 8.8
C18:1  cis -9 (oleic acid) 35.6 27.9 26.3 17.3
C18:1  cis -11 1.9 1.4 1.3 0.8
C18:2 n6 13.7 13.9 13.6 12.7
C18:3 n3 1.7 1.7 1.7 1.7
 cis -9,  trans -11 CLA 0.2 0.3 8.8 4.1
Summaries
   SFA 37.5 37.6 37.3 45.2
   C12:0, C14:0, C16:0 23.6 23.5 23.3 32.2
 PUFA 15.6 15.8 15.4 14.4
  cis MUFA 40.0 31.6 29.8 20.5
  trans MUFA 4.2 11.4 3.0 10.7
 n6 13.8 13.8 13.8 13.8
 n3 1.7 1.7 1.7 1.7
 n6:n3 ratio 7.9 7.9 7.9 7.9
 PUFA:SFA ratio 0.4 0.4 0.4 0.3

Values are expressed as percentage of fatty acids.
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control diet ( P  > 0.05).   All dietary treatments (VA, CLA, 
and VA+CLA) signifi cantly reduced ( P  < 0.01) the concen-
trations of OEA ( � 20,  � 19, and  � 17%, respectively) while 
only VA reduced the concentration of PEA (21%,  P  < 0.05) 
in the skeletal muscle relative to control ( Fig. 1 ). 

 Dietary supplementation with VA alone or in combination 
with CLA decreases the concentration of 2-AG and AEA 
analogs (OEA and PEA) in the liver and VAT 

 Supplementation with VA, CLA, or VA+CLA signifi -
cantly reduced 2-AG concentrations in the liver (83%,  P  < 
0.001; 47.6%,  P  < 0.05; and 74%,  P  < 0.001, respectively) 
relative to control diet. Interestingly, the VA diet (but not 
the VA+CLA diet) lowered liver 2-AG concentrations by 
68% as compared with the CLA-fed group ( P  < 0.05). In 
addition, VA or VA+CLA supplementation (but not CLA) 
resulted in decreased ( P  < 0.001) concentrations of the 
 N -acylethanolamines, OEA (to not detectable levels) and 
PEA ( � 57 and  � 56%, respectively) in this tissue as com-
pared with control (  Fig. 2  ). AEA was not detected in the 
liver of JCR:LA- cp  rats.  

 VA and VA+CLA (but not CLA) signifi cantly ( P  < 0.05) 
reduced the concentrations of 2-AG ( � 86 and  � 87%, re-
spectively) and OEA ( � 59%,  P  < 0.05 and  � 74%,  P  < 0.01, 
respectively) in VAT as compared with control (  Fig. 3  ).  

 Collectively, results from this study suggest that there 
were no additive effects of combining VA with CLA on re-
ducing EC concentrations in liver and VAT. 

 Supplementation with VA increases the concentration of 
AEA and AEA analogs (OEA and PEA) in the jejunum 

 Unexpectedly, dietary supplementation with VA (but not 
CLA or VA+CLA) signifi cantly increased jejunal concen-
trations of the EC, AEA (3.8-fold,  P  < 0.05), and its ana-
logs, OEA (1.7-fold,  P  < 0.05) and PEA (1.9-fold,  P  < 0.01) 
(  Fig. 4  ).  It is important to note that VA did not alter food 
intake in the present study (data not shown) or in previous 
studies using different animal models ( 2, 3, 38, 39 ). There-
fore, it is unlikely that increased AEA concentrations in the 
jejunum (following VA treatment) would result in an appe-
tite stimulatory effect as a result of CB receptor activation. 

 Effects of dietary supplementation with VA, CLA, or their 
combination on tissue PL fatty acid composition 

 We analyzed tissue PL fatty acid composition to determine 
whether changes in tissue EC and  N -acylethanolamine 
concentrations were due to alterations in the availability 
of their biosynthetic precursors in membrane PLs (  Table 3  ).  

and interleukin 1 �  (IL-1 � ) relative to the housekeeping gene,  Actb  
( � -actin), was assessed by quantitative real-time PCR, using the 
StepOne™ Plus real-time PCR system (Applied Biosystems) and 
StepOne™ software (version 2). The PCR contained cDNA tem-
plate, 100 nM of commercially available premixed target-specifi c 
primers, and TaqMan® FAM™-labeled probe (Applied Biosys-
tems) for CB1, FAAH, TNF � , IL-1 � , and  Actb . Thermal cycling con-
ditions were as follows: 95°C for 20 s, followed by 40 cycles of 95°C 
for 1 s and 60°C for 20 s. Relative mRNA expression for each target 
gene was normalized to  Actb  mRNA and quantifi ed using the com-
parative cycle threshold (Ct) method. Data were expressed as the 
ratio of target mRNA expression relative to  � -actin. All assays were 
performed in triplicate. 

 Caco2 cell culture and measurement of FAAH inhibition 
on infl ammatory cytokines 

 Caco2 cells (ATCC) were cultured in MEM (M4655; Sigma) 
with 10% fetal bovine serum and 1% penicillin/streptomycin 
and kept at 37°C in 5% CO 2  and 95% humidity. Cells were grown 
in 6-well plates and seeded at 10 6  cells per insert (24 mm diam-
eter, 0.4  � m pore polycarbonate inserts). Cells at passages 15–25 
were grown for a minimum of 18 days and used for experimenta-
tion between 18 and 21 days. Cells were maintained for 12 h in 
1% fatty acid-free BSA after which they were treated with vehicle 
control, VA (100  � M), or VA (100  � M) + URB597 (FAAH in-
hibitor; Cedarlane) (1  � M) in the presence or absence of OEA 
(10  � M) for 24 h  . Following this, the cells were challenged with 
lipopolysaccharide (LPS) (1  � g/ � l) for 24 h  . During this time, 
fresh vehicle control or VA (100  � M), URB597 (1  � M), OEA 
(10  � M) in 0.5% BSA was added. Total RNA was isolated from 
Caco2 cells and reversed transcribed into cDNA. The expression 
of TNF �  relative to the housekeeping gene, GAPDH, was as-
sessed by quantitative real-time PCR using SYBR Green (Applied 
Biosystems). 

 Statistical analysis 
 All results are expressed as mean ± SEM. Statistical compari-

sons between dietary groups were analyzed using one-way ANOVA 
followed by Tukey’s post hoc test. The level of signifi cance was 
set at  P  < 0.05 (Graph Pad Prism 5.0, USA). 

 RESULTS 

 Supplementation with VA alone or in combination with 
CLA does not affect EC concentrations in plasma, brain, 
or skeletal muscle 

 Contrary to our hypothesis, dietary supplementation 
with VA, CLA, or VA+CLA for 8 weeks did not affect EC 
concentrations in plasma (  Table 2  ), the hypothalamus 
(data not shown), or skeletal muscle (  Fig. 1  ) relative to 

 TABLE 2. EC and  N -acylethanolamine concentrations in plasma of JCR:LA- cp  rats fed control or experimental 
diets for 8 weeks          

Control VA CLA VA+CLA

Mean SEM Mean SEM Mean SEM Mean SEM

2-AG  a  ND — ND — ND — ND —
AEA  a  8.9 4.1 5.6 0.6 7.9 0.4 6.4 1.9
PEA  a  145.9 11.1 145.2 2.5 144.1 6.0 146.9 3.3
OEA  a  62.1 6.8 59.3 1.8 59 6.5 57.9 3.1

Values are mean ± SEM, n = 3. Means did not differ,  P  > 0.05. ND, not detectable.
  a   Nanomoles per milliliter of plasma.
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not affected by any experimental diet (VA, CLA, or VA+CLA) 
relative to control ( P  > 0.05). VA- and VA+CLA-fed rats 
had lower concentrations of the OEA precursor, oleic acid 
( � 35 and  � 40%, respectively), while VA-fed rats only 
had lower amounts of the PEA precursor, palmitic acid 
( � 21%), in liver PLs relative to control rats ( P  < 0.001). 

Interestingly, we found that VA supplementation increased 
the EC precursor, AA, in liver (30%,  P  < 0.001) and skele-
tal muscle (11%,  P  < 0.05) PLs compared with control diet. 
VA+CLA-fed rats also had increased amounts of AA (20%) 
in liver PLs relative to control rats ( P  < 0.01). The incorpo-
ration of AA in VAT, jejunal, and hypothalamus PLs was 

  Fig. 1.   EC (A, B) and  N -acylethanolamine (C, D) concentrations in the skeletal muscle of JCR:LA- cp  rats 
following dietary supplementation with VA, CLA, or VA+CLA. Values are mean ± SEM, represented by verti-
cal bars (n = 5). Means without a common letter differ ( P  < 0.05  ).   

  Fig. 2.   EC (A) and  N -acylethanolamine (B, C) concentrations in the liver of JCR:LA- cp  rats following dietary 
supplementation with VA, CLA, or VA+CLA. Values are mean ± SEM, represented by vertical bars (n = 5). 
Means without a common letter differ ( P  < 0.05). ND, not detectable   
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could not be explained by changes in their biosynthetic 
membrane PL precursor (AA). 

 We also assessed the PL incorporation of VA and CLA 
in all tissues analyzed. As expected, VA- and VA+CLA-fed 
rats had higher ( P  < 0.001) concentrations of VA in liver 
(8-fold), VAT (4.5-fold), skeletal muscle (10-fold), and 

CLA- and VA+CLA-fed rats had lower ( P  < 0.001) amounts 
of oleic acid ( � 15 and  � 17%, respectively) in VAT PLs, 
while only VA+CLA rats had lower concentrations of oleic 
acid ( � 33%,  P  < 0.01) in jejunal PLs relative to control 
rats. Collectively, fi ndings from fatty acid analysis in tissue 
PLs suggest that the regulatory effect of VA on tissue ECs 

  Fig. 3.   EC (A, B) and  N -acylethanolamine (C, D) concentrations in VAT of JCR:LA- cp  rats following dietary 
supplementation with VA, CLA, or VA+CLA. Values are mean ± SEM, represented by vertical bars (n = 5). 
Means without a common letter differ ( P  < 0.05).   

  Fig. 4.   EC (A, B) and  N -acylethanolamine (C, D) concentrations in the jejunal mucosa of JCR:LA- cp  rats 
following dietary supplementation with VA, CLA, or VA+CLA. Values are means ± SEM, represented by verti-
cal bars (n = 5). Means without a common letter differ ( P  < 0.05).   
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of the key enzymes responsible for the synthesis of these 
 N -acylethanolamines, but no differences were found be-
tween groups (data not shown,  P  > 0.05). We then mea-
sured the expression of FAAH, their primary hydrolyzing 
enzyme. Interestingly, while VA- and VA+CLA-fed rats had 
higher jejunal mRNA expression of FAAH compared with 
the control group (1.4-fold,  P  < 0.05 and 1.6-fold,  P  < 0.01, 
respectively), the protein abundance of this enzyme was 
reduced in VA-fed rats only ( � 34%,  P  < 0.05) (  Fig. 6A–C  ).  
However, the protein activity of jejunal FAAH did not dif-
fer between groups ( Fig. 6E ,  P  > 0.05). We also found that 
VA tended to lower jejunal mRNA expression of CB1 relative 

jejunal (3.8-fold) PLs compared with rats fed the control 
diet. The incorporation of VA into the hypothalamus of 
JCR:LA- cp  rats was found to be at trace amounts (0.1 g/100 g 
total fatty acids). 

 CLA was not detected in tissues of VA-fed rats, suggesting 
limited incorporation of CLA (produced from VA desatura-
tion) into tissue PLs. Furthermore, CLA was only incorpo-
rated in the liver, VAT, hypothalamus, and jejunal PLs of 
CLA-fed rats (<1 g/100 g total fatty acids) and to a lesser 
extent in tissue PLs of rats fed the VA+CLA diet ( P  < 0.05). 

 The magnitude of incorporation of VA in membrane PLs 
is tissue dependent 

 To associate the tissue-specifi c effects of VA with its mag-
nitude of incorporation, we conducted a comparison of 
VA in tissue membrane PLs (  Fig. 5  ).  VA was incorpo-
rated in VAT (1.8 g/100 g fatty acids), followed by the liver 
(1.6 g/100 g fatty acids), jejunum (1.5 g/100 g fatty acids), 
skeletal muscle (1.0 g/100 g fatty acids), and hypothala-
mus (0.1 g/100 g fatty acids). 

 Dietary supplementation with VA alters the mRNA and 
protein expression of FAAH, but does not affect the 
mRNA expression of CB1 receptor in the jejunum 

 To determine whether selective increase of AEA, OEA, 
and PEA in the jejunal mucosa by VA could be associated 
with synthetic or degradative pathways, we fi rst measured 
the mRNA expression and protein activity of jejunal  N -
acylphosphatidylethanolamine phospholipase type D, one 

 TABLE 3. PL fatty acid composition in tissues of JCR:LA- cp  rats fed control or experimental diets for 8 weeks          

Fatty Acids  a  

Control VA CLA VA+CLA

Mean SEM Mean SEM Mean SEM Mean SEM

Liver
 16:0 16.4 b 0.7 12.9 a 0.3 15.7 b 0.4 14.6 ab 0.5
  cis -9 18:1 (OA) 6.0 b 0.3 3.9 a 0.1 5.2 b 0.2 3.6 a 0.1
  trans -11-VA 0.2 a 0.1 1.6 c 0.0 0.7 b 0.0 1.6 c 0.1
  cis -9,  trans -11 CLA ND — ND — 0.6 b 0.0 0.3 a 0.0
 20:4  n 6 (AA) 19.7 a 0.7 25.2 b 0.5 18.5 a 0.7 24.2 b 0.6
VAT
 16:0 10.8 1.2 9.5 0.1 11.3 1.3 10.3 0.1
  cis -9 18:1 (OA) 11.8 b 0.3 11.6 b 0.2 10.0 a 0.2 9.8 a 0.2
  trans -11 VA 0.4 a 0.1 1.8 c 0.0 0.7 b 0.1 1.9 c 0.0
  cis -9,  trans -11 CLA ND — ND — 0.8 b 0.1 0.6 a 0.0
 20:4  n 6 (AA) 15.0 1.3 13.9 0.2 14.5 0.9 14.1 0.3
Hypothalamus
 16:0 17.6 0.3 17.1 0.3 17.2 0.4 18.2 0.4
  cis -9 18:1 (OA) 21.4 0.3 21.9 0.2 21.0 0.7 20.7 0.6
  trans -11 VA) ND — 0.1 b 0.0 0.04 a 0.0 0.1 b 0.0
  cis -9,  trans -11 CLA ND — ND 0.0 0.1 c 0.0 0.08 b 0.0
 20:4  n 6 (AA) 9.9 0.2 9.6 0.2 10.2 0.5 10.3 0.6
Muscle
 16:0 19.8 1.9 21.3 0.7 21.0 0.6 17.1 0.8
  cis -9 18:1 (OA) 5.3 0.4 5.3 0.4 5.7 0.4 4.6 0.4
  trans 11 VA 0.1 a 0.1 1.0 b 0.0 0.1 a 0.1 1.2 b 0.1
  cis -9,  trans -11 CLA ND — ND — ND — ND —
 20:4  n 6 (AA) 11.7 a 0.3 13.0 b 0.3 11.8 ab 0.4 10.8 a 0.3
Jejunal mucosa
 16:0 13.2 0.5 11.6 0.3 13.0 0.3 12.5 0.8
  cis -9 18:1 (OA) 8.3 b 0.1 7.2 ab 0.4 7.7 b 0.6 5.6 a 0.4
  trans -11 VA 0.4 a 0.0 1.5 c 0.1 0.6 b 0.1 1.4 c 0.1
  cis -9,  trans -11 CLA ND — ND — 0.5 b 0.0 0.2 a 0.0
 20:4  n 6 (AA) 14.5 0.6 18.3 1.5 14.7 1.5 20.0 1.6

Values are mean ± SEM, n = 5. Means in a row with superscripts without a common letter differ,  P  < 0.05. OA, 
oleic acid; ND, not detectable.

  a   Grams per 100 grams total fatty acids.

  Fig. 5.  Incorporation of VA in tissue PLs in JCR:LA- cp  rats supple-
mented with VA for 8 weeks. Values are mean ± SEM, represented 
by vertical bars (n = 5). Means without a common letter differ, 
 P  < 0.05.   
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expression of TNF �  was not reduced by VA in the absence 
of OEA ( P  > 0.05), suggesting that OEA is required for the 
observed anti-infl ammatory properties of VA in this cell 
model. 

 DISCUSSION 

 Dietary supplementation with VA reduces liver and VAT 
2-AG without altering the availability of PL biosynthetic 
precursor 

 Increased plasma EC concentrations have been found 
to be positively correlated with visceral fat mass and waist 
circumference in humans ( 14–16 ). Consequently, the ECS 
has been proposed as a critical target for the treatment of 
abdominal obesity and associated metabolic abnormalities 
in the metabolic syndrome. While pharmacological block-
ade of the CB1 receptor with rimonabant has shown some 
clinical success, the adverse psychiatric side effects associ-
ated with this drug have led to its withdrawal as a treat-
ment option ( 43 ). Given that the ECS can be modulated 
in response to dietary fat ( 9 ), nutritional interventions 
with tissue-specifi c effects could be an attractive alternative 
approach to clinically target the systemic ECS during met-
abolically abnormal conditions. 

 To our knowledge, this is the fi rst report to demonstrate 
that despite a lack of a direct effect on either the plasma or 

to the other diets; however, this did not reach statistical 
signifi cance ( P  > 0.05) ( Fig. 6D ). 

 Dietary supplementation with VA reduced the mRNA 
expression of pro-infl ammatory cytokines in the jejunum 

 The EC system (ECS) is upregulated in human infl am-
matory bowel diseases and experimental models of colitis 
and colorectal cancer growth ( 21, 40–42 ). During these 
conditions, an overactive ECS is proposed to be an adap-
tive response to counteract the consequences of infl amma-
tion, such as T cell-mediated aberrant immune response 
( 41 ). Therefore, we explored whether the increase in jeju-
nal AEA, OEA, and PEA that we observed was associated 
with intestinal infl ammation. Indeed, the expression of 
pro-infl ammatory cytokines [TNF �  (  Fig. 7A  ) and IL-1 �  
( Fig. 7B )] in the intestine was signifi cantly lower in rats fed 
the VA-supplemented diet compared with the control rats 
( � 80 and  � 64%, respectively;  P  < 0.05).  

 Caco2 cell culture to verify VA action on 
anti-infl ammatory pathways 

 We tested the anti-infl ammatory properties of VA alone 
or in combination with the FAAH inhibitor, URB597, in 
the presence or absence of the FAAH substrate, OEA, in 
the Caco2 cell model of human intestinal epithelial cells. 
Treatment with VA alone reduced the LPS-induced mRNA 
expression of TNF �  by 64%, while addition of URB597 did 
not result in reduction in Caco2 cells (  Fig. 8  ).  The mRNA 

  Fig. 6.  Jejunal mucosal mRNA expression of FAAH and CB1 and protein abundance and activity of FAAH 
in JCR:LA- cp  rats fed control or experimental diets for 8 weeks. The mRNA expression for FAAH (A) and 
CB1 (D) is relative to the housekeeping gene,  � -actin. A representative blot (B) and graph (C) for FAAH 
relative protein abundance are shown. FAAH activity (E) was not signifi cant within groups. Values are mean 
± SEM, represented by vertical bars (n = 5). Means without a common letter differ,  P  < 0.05  .   
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rather due to incorporation of VA into PLs. Thus, it is 
plausible that an increased incorporation of VA (relative 
to AA) into the lipid precursor of 2-AG (i.e., diacylglyc-
erol) may occur during PL remodeling. This modifi cation 
would result in the synthesis of a VA-derived glycerol com-
pound instead of synthesis of 2-AG, thereby leading to de-
creased concentrations of 2-AG, but this requires further 
investigation. 

 Effects of VA on tissue EC concentrations are associated 
with its incorporation into tissue PLs 

 Previous studies in the JCR:LA- cp  rat have shown that 
the lipid-lowering effects of CLA are enhanced by the 
addition of VA when compared with dietary supplemen-
tation with CLA alone ( 24 ). In this study, we provide evi-
dence that VA per se can independently reduce tissue 
2-AG concentrations corresponding with its magnitude of 
incorporation into tissue PLs when compared with CLA 
( Table 3 ). Our fi ndings also reveal that effects of VA on 
EC concentrations may be tissue-specifi c and parallel the 
extent of VA incorporation into respective tissue mem-
brane PLs ( Fig. 5 ). We note that while the incorporation 
of VA in peripheral tissues (VAT, liver, and jejunal mu-
cosa) is within the same general level, the lower hypotha-
lamic incorporation of VA suggests a decreased active 
transport of VA across the blood brain barrier, but this 
requires further investigation. Further studies are also 
needed to determine the mechanism of how the incorpo-
ration of VA into tissue PLs mediates a lowering of EC con-
centrations in liver and VAT. 

 Increased jejunal AEA, OEA, and PEA by VA is associated 
with downregulation of FAAH protein expression and 
may explain the anti-infl ammatory properties of VA 

 We have observed that VA re-equilibrates intestinal and 
hepatic lipid homeostasis while exerting differential tran-
scriptional regulation in both organs, as reflected in 
mRNA levels of sterol regulatory element-binding protein 
1 (SREBP1) and FAS ( 5 ). In this study, we found a consis-
tent effect of VA to decrease 2-AG concentrations in the 
liver and VAT. In contrast, jejunal concentrations of AEA 
and its analogs (OEA and PEA) were selectively increased 
following VA treatment alone. This selective increase of 
jejunal  N -acylethanolamines by VA could not be explained 
by changes in their biosynthetic PL precursors, but associ-
ated with a reduction in protein expression of the enzyme, 
FAAH (known to hydrolyze AEA, OEA, and PEA). Nota-
bly, feeding n3 long chain PUFAs is associated with an in-
crease in the FAAH inhibitor, arachidonoyl-serotonin 
(AA-5-HT), and other jejunal long chain PUFA-serotonins 
(also capable of inhibiting FAAH activity in vitro) in mice 
( 46 ). Interestingly, in the present study, we found discor-
dance between increased mRNA levels and reduced pro-
tein abundance of FAAH in the jejunal mucosa upon VA 
supplementation, which suggests a compensatory mecha-
nism for the reduced protein and infers an active feedback 
pathway for the enzyme. Furthermore, the protein activity 
of FAAH was not different between groups ( Fig. 6E ). Al-
though it is plausible that VA supplementation may stimu-
late the formation of lipid mediators that regulate FAAH 

the brain ECs, dietary supplementation with VA can effec-
tively decrease liver and VAT 2-AG concentrations in a rat 
model of metabolic syndrome. Our fi ndings resemble 
those reported for n3 long chain PUFA (in the form of 
krill oil) in the Zucker  fa/fat  rat ( 44 ) and may also suggest 
a putative mechanism of action for the ability of VA to 
decrease ectopic lipid accumulation and hepatic TG secre-
tion ( 5 ). The rationale for this hypothesis is that CB recep-
tor activation in the liver and VAT can lead to increased de 
novo lipogenesis and visceral adiposity ( 18, 19, 45 ), both 
of which are attenuated by VA ( 3, 5 ). Interestingly, effects 
of VA on liver and VAT 2-AG concentrations cannot be 
explained by changes in AA levels in membrane PLs, but 

  Fig. 7.  Jejunal mucosa mRNA expression of pro-infl ammatory cy-
tokines in JCR:LA- cp  rats fed control or experimental diets for 
8 weeks. The expression of TNF �  (A) and IL-1 �  (B) is relative to the 
housekeeping gene,  � -actin. Values are mean ± SEM, represented by 
vertical bars (n = 5). Means without a common letter differ,  P  < 0.05.   

  Fig. 8.  Effect of VA in the presence or absence of OEA and the 
FAAH inhibitor, URB597, in the intestinal Caco2 cell model of in-
fl ammation. The expression of TNF �  is relative to the housekeep-
ing gene, GAPDH. Values are mean ± SEM, represented by vertical 
bars (n = 5). Means without a common letter differ,  P  < 0.05.   
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altering membrane and lipid raft function, but this war-
rants further investigation. 

 In conclusion, we demonstrate that dietary supplemen-
tation with VA exerts a tissue-specifi c regulation of ECs 
that could be used as an attractive alternative approach to 
target the ECS during conditions of metabolic syndrome 
and intestinal infl ammatory diseases. We have shown that 
VA effectively reduces liver and VAT 2-AG concentrations 
corresponding with its previously observed properties to 
benefi cially modulate lipid storage compartments. We 
have also provided evidence that VA can act indepen-
dently of CLA, which seems to be associated with its incor-
poration into tissue PLs. Additionally, the present fi ndings 
delineate a unique opposing regulation of VA on AEA and 
its  N -acylethanolamine analogs that cannot be explained 
by changes in their biosynthetic PL precursors. Rather, 
our results suggest an inhibitory effect of VA on the pro-
tein expression of FAAH in the intestine that may result in 
activation of protective pathways of the ECS in this organ. 
Collectively, fi ndings from this study have provided a po-
tential novel mechanism of action for the health benefi ts 
of VA and highlight the need for further investigation 
to explore the effi cacy of VA on intestinal infl ammatory 
diseases.  

 The authors thank Sharon Sokolik and Sandra Kelly for their 
excellent technical assistance associated with this project. 
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