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ABSTRACT The linking-domain extraction (LDE) decomposition method is a new non-overlapping domain
decomposition method for parallel circuit simulation. However, the original LDE method is inefficient in both
the computational procedure and storage cost. In this work, a novel hierarchical LDE (H-LDE) method is
proposed to further improve the LDE method, which leverages all the hidden features of LDE that are not
exploited in the original work to perform a multi-level decomposition of power systems. The LDE-based
matrix equation solution computation procedure is first proposed to eliminate the necessity of computing the
entire matrix inversion, and then the multi-level computation structure is proposed for fast matrix inversion
of the decomposed sub-matrices. The mathematical complexity of the H-LDE method is analyzed, which is
used to derive the two principles for decomposing a power system. These principles can be applied on both
parallel and sequential compute architecture. The 4-level LDE decomposition is applied on the IEEE 118-bus
test power system and implemented in both sequential and parallel, which is used to verify the validity and
efficiency of the proposed H-LDE decomposition method. The simulation results of various benchmark test
power systems show that the proposed H-LDE method can achieve better performance than the classical LU
factorization and sparse KLU method within a certain system scale.

INDEX TERMS Circuit simulation, domain decomposition, graphics processing unit, inverse matrix calcu-
lation, linear equation solver, parallel processing, power system simulation.

I. INTRODUCTION
Electromagnetic transient (EMT) circuit simulation is an
important tool to study a power system’s behaviour under
transient-level faults. However, the simulation process slows
down significantly when the circuit scale expands [1].
Therefore, parallel computing techniques are increasingly
needed and involved in circuit simulation area, which always
utilizes the domain decomposition to first decompose the
large system into small subsystems and then handle the de-
composed subsystems in parallel [2], [3]. In non-overlapping
domain decomposition, each interface node belongs to an
unique subsystem and thus the iteration computation can
be avoided. For example, the Schur complement method
is a matrix-based non-overlapping decomposition method

used in EMT simulation [4]–[7], which is different from the
latency-based non-overlapping decomposition method such
as the transmission line modeling (TLM) method [8], [9] and
latency insertion method (LIM) [10], [11].

The new linking-domain extraction (LDE) non-overlapping
decomposition method [12] is similar to the Schur comple-
ment method, but it can find the general matrix inversion
formulation of the circuit conductance matrix that can be
expressed as the sum of a linking-domain matrix (LDM)
and a diagonal block matrix (DBM). The efficiency of the
LDE method is achieved by computing the inversion of the
small decomposed block matrices (in serial or parallel, which
occupies much smaller computational latencies compared to
computing the whole matrix equation) and then assembling
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the inverted block matrices via a correction matrix to obtain
the inversion of the entire conductance matrix. However, this
process is not scalable due to several reasons: 1) For large-
scale power systems, the conductance matrix is large and
sparse, but the inverted matrix is usually dense, which costs
much more storage than simply solving the matrix equations
and makes the LDE method inapplicable. Therefore, the LU
factorization [4] is used in EMTDC/PSCADTM [13] and fast
sparse solutions such as the KLU [14] and NICSLU [15]
methods are also widely applied in power system simulators
such as SPICE [16]. 2) The original LDE method decomposes
the conductance matrix once, which may also result in a
large size of the decomposed block matrices and computing
the inversion of the block matrices is also costly. Therefore,
although the LDE method has a strong mathematical base,
it seems that it can only achieve better performance than
than classical solvers in simulating a very small-scale power
system.

To improve the original LDE method, in this work, the
hierarchical LDE (H-LDE) decomposition method is pro-
posed, which utilizes all the hidden features of the LDE
method to achieve an all-around improvement. First, the ma-
trix equation solver computation procedure based on LDE is
proposed, which avoids computing the entire matrix inver-
sion so that the storage cost is reduced significantly; sec-
ond, a multi-level decomposition structure is proposed to
reduce the computational cost of inverting the decomposed
block matrices. The approximate complexity of H-LDE de-
composition is analyzed, based on which the two decom-
position principles are presented to instruct the detailed de-
composition configuration for a specific number of decom-
position levels: before the last level, the decomposition does
not need to find a balance between the sizes of the DBMs
and LDM; and in the last level, the decomposition should
take the balance between DBMs and LDM into considera-
tion. The detailed decomposition logic depends on the power
system topology at hand, the parallelism capabilities of the
parallel platform used and the number of decomposition
levels.

The IEEE 118-bus test system is used to verify the va-
lidity and efficiency of the proposed H-LDE decomposition
performance, both the sequential and GPU-based parallel im-
plementation are discussed. The performance of H-LDE is
also compared with the LU factorization and KLU method
in several standard benchmarks, which shows the H-LDE
method is much more scalable than the original LDE method
and could achieve better performance than the pure LU factor-
ization. The computational time also shows that the H-LDE
cost lower time than the sparse KLU solver within a certain
system scale. The paper is organized as follows: Section II
introduces the LDE method and improved LDE calculation
procedure. Section III presents the proposed hierarchical LDE
method. In Section IV, the GPU-based implementation for
the test system is described, and the simulation results are
presented in Section V. Finally in Section VI conclusions are
drawn.

II. IMPROVED LINKING-DOMAIN EXTRACTION BASED
DECOMPOSITION METHOD
LDE is a matrix-based decomposition method, which is able
to obtain the general formulation of the matrix inversion and
compute the inverse in parallel [12]. However, computing the
entire matrix inversion may be costly and meaningless. In this
section, the mathematical formulation of the LDE method is
introduced, and the improved LDE calculation procedure is
proposed to optimize the matrix equation solution.

A. LDE MATRIX DECOMPOSITION
Given a power system containing N nodes, a N × N conduc-
tance matrix G will be generated. Then G could be decom-
posed into two separate matrices: the diagonal block matrix
Gd and the linking-domain matrix L:

G = Gd + L (1)

The number of block matrices in Gd depends on the number
of subsystems decomposed. Figure 1 illustrates the case of
two decomposed subsystems: there are n1 nodes in subsystem
S1 (matrix G1) connecting with n2 nodes in subsystem S2
(matrix G2) via a conductance or voltage source (note that if
two interface nodes are connected via a current source then it
will not be revealed in the conductance matrix). The linking-
domain matrix L (N × N) is composed of several matrices
with all-zero elements and a small linking-domain Ls with
size of (n1 + n2) × (n1 + n2). If the number of decomposed
subsystems is larger than two, the linking-domain matrix will
contain several small linking-domains (L1

s , L2
s , . . ., Lm

s ), and
these small linking-domains may not have a integral matrix
format if the interface nodes are not continuous in node in-
dexes.

For a common network, the linking-domain matrix L can be
expressed as a transformation from a diagonal matrix � (k ×
k), and the transformation matrix C is a rectangular matrix
(N × k) of which the element values are only equal to 1, −1,
or 0.

L = C�CT (2)

Note that k is the number of links connecting the decomposed
matrices. Take the case of two decomposed subsystems as an
example, as shown in Fig. 1(b)(c), � has k negative elements
in diagonal, and C is composed of all-zero matrices and a
small transformation matrix Cs with size of (n1 + n2) × k.
Cs can be regarded as two parts: the upper n1 rows C(1)

s and
the lower n2 rows C(2)

s ; every column of C(1)
s only has one

element equal to −1, and the other elements are equal to 0;
while every column of C(2)

s only has one element equal to 1,
and the other elements are equal to 0.

Then the general formulation of the inverse matrix of G =
Gd + L could be found based on the Woodbury matrix iden-
tity [17]:

G−1 = (Gd + L)−1 = G−1
d − G−1

d CQCT G−1
d (3)
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FIGURE 1. Example of LDE decomposition of two subsystems: (a) decomposition of G, (b) � matrix, and (c) transformation matrix C.

where:

Q = (�−1 + CT G−1
d C)−1 (4)

B. IMPROVED LDE COMPUTATION PROCEDURE
Although computing the matrix inversion G−1 directly could
accelerate the simulation process significantly when the the
conductance matrix G does not change over the simulation
duration, the storage and I/O cost increase dramatically when
the power system scale expands. Therefore, in this paper, the
LDE computation procedure is improved accordingly.

The improved computational procedure is used to solve
the matrix equations without storing the inverted conductance
matrix. The goal is to solve for the node voltages v:

Gv = ieq (5)

Applying the LDE matrix inversion:

v = G−1ieq = [G−1
d − G−1

d CQCT G−1
d ]ieq

= G−1
d ieq − G−1

d CQCT G−1
d ieq

= vDBM − G−1
d C(�−1 + CT G−1

d C)−1CT vDBM

(6)

where vDBM = G−1
d ieq is the solution of each decom-

posed subsystems. The matrix inversion process of (�−1 +
CT G−1

d C) can also be avoided to reduce the computational
and storage cost:

v = vDBM − G−1
d C(�−1 + CT G−1

d C)−1CT vDBM

= vDBM − G−1
d CvLDM

(7)

where vLDM is the solution of the matrix equation below:

(�−1 + CT G−1
d C)vLDM = CT vDBM (8)

As stated in the matrix inversion procedure, C and CT ma-
trix have very special features, which enables the G−1

d C and
CT vDBM to be obtained extremely simple without multiplica-
tion operations. Therefore, the improved LDE solver compu-
tation procedure can be executed as follows:

1) compute G−1
d and vDBM = G−1

d ieq;
2) compute T = G−1

d C;
3) compute �−1 + CT T and solve vLDM ;

4) compute the final solution v = vDBM − TvLDM ;
Using the above improved LDE computation procedure, the

storage cost can be dramatically reduced. For a N × N con-
ductance matrix that is decomposed into m sub-matrices with
equal sizes, the storage cost of the improved LDE method is
O[m(N/m)2 + k2] = O(N2/m + k2), which is reduced nearly
m times over the original LDE method. Although the storage
is still large compared to the sparse LU factorization based
solvers, the benefits of the fast solution process can be re-
flected within a certain power system scale.

III. HIERARCHICAL LDE METHOD
From the above procedure it can be observed that the com-
putation of G−1

d cannot be avoided although the computation
of G−1 is eliminated. Since only the diagonal block matrices
in G−1

d are non-zeros, the storage cost can be reduced sig-
nificantly. However, for large-scale power systems, the con-
ductance matrix could not be decomposed in a fine-grained
fashion because such decomposition will result in a large
� matrix that is not beneficial to the overall performance.
Therefore, the LDE decomposition will generate large block
matrices in Gd even after decomposition, which makes the
computation of G−1

d also costly.
Fortunately, the LDE method is essentially a matrix inver-

sion method, which is able to accelerate the matrix inversion
process of the block matrices in Gd . This means, although the
LDE matrix inversion is not used in the improved computation
procedure, it can also be used to compute G−1

d , and this appli-
cation of LDE method is just to decompose the subsystems
into further sub-subsystems. Based on this, the multi-level
LDE decomposition is proposed, which is called “hierarchical
LDE (H-LDE) method”.

A. MULTI-LEVEL LDE DECOMPOSITION
When the decomposed subsystems also have relatively large
scales, computing the inversion of block matrices in Gd still
requires a lot of compute effort. In the H-LDE decomposi-
tion, the computation of G−1

d could be executed based on the
second or even higher level LDE decomposition to reduce
the computational time. Thus the application of LDE method
could be extended to simulate power systems in a hierarchical
manner: the improved LDE computation procedure is applied
for the first level LDE decomposition to reduce the storage
and computation cost, because there is no need to compute the
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FIGURE 2. Demonstration of hierarchical LDE decomposition.

inverse of the whole matrix; then, the second or higher level
LDE decomposition could be computed using the original
LDE matrix inversion procedure, because the goal of multi-
level LDE decomposition is to obtain G−1

d quickly.

B. COMPUTATIONAL COMPLEXITY ANALYSIS OF
HIERARCHICAL LDE
Assume the complexity of inverting a N × N matrix is O(N3).
Then the original LDE method has a complexity of O[N3

j +
k3], where Nj is the maximum size of the decomposed block
matrices, and k is the number of links connecting these de-
composed subsystems (SSs). However, this is not applicable
for the H-LDE method, because complexity of computing
G−1

d should be re-evaluated. Assume that there are r levels of
LDE decomposition in total, and the decomposed subsystems
nearly have the same size while the number of links between
the decomposed sub-subsystems are also the same for the de-
composition of different subsystems. This assumption may be
not rigorous, but considering that the power system topology
is not dense and the connections are relatively distributed on
average, this assumption is just an approximation and makes
sense in the complexity analysis. As shown in Fig. 2, after
the ith-level decomposition, there are m(i) subsystems decom-
posed from each subsystem located on the upper level in
Fig. 2, and each decomposed subsystem contains N(i) nodes
with total k(i) links connecting these subsystems. The rela-
tionship between N(i) and m(i) are:

N(i−1) = m(i)N(i) (9)

N = m(1)N(1) = . . . =
(

i∏
1

m(i)

)
N(i) (10)

The actual parallelism applied for different level depends
on the parallel capabilities of the hardware platform, which
greatly impacts the computational complexity. Therefore, the
complexity analysis should be performed in two cases for each
level: parallel case and sequential case.

Parallel Case: In this case, the matrix inversion processes
for each block matrix are computed in parallel. If the m(i) de-
composed block matrices after the i(th)-level LDE decomposi-
tion can be computed in parallel, then the computational time
for each subsystem in (i − 1)(th)-level that are decomposed
into m(i) subsystems has the computational complexity of:

O[ fp(N(i−1), k(i−1))]

= O[ f (N(i), k(i) ) + k(i)
3 + tp(i)], i < r

(11)

O[ fp(N(r−1), k(r−1))] = O[N3
(r) + k(r)

3 + tp(r)], i = r (12)

where f (N(i), k(i) ) is the computational complexity for the
(i)th-level decomposed subsystems: f = fp if the (i)th-level
can also be computed in parallel, else f = fs. tp(i) denotes
the overhead of launching the ith level threads for parallel
computation, which cannot be neglected and can even be the
dominant part of the overall cost when i is large. Because
generally the performance will slow down for the higher level
parallel computation in the nested parallelism of the compute
platforms such as the GPU.

Sequential Case: In this case, the the matrix inversion
processes can only be computed in sequential, which makes
the computational time for each subsystem in (i − 1)(th)-level
after the i(th)-level LDE decomposition has the computational
complexity of:

O[ fs(N(i−1), k(i−1))] = O[m(i) fs(N(i), k(i) ) + k(i)
3] (13)

O[ fs(N(r−1), k(r−1))] = O[m(r)N
3
(r) + k(r)

3], i = r (14)

Here, the inversion of m(i) decomposed block matrices is
computed in sequential, and in this work, if the (i − 1)(th)-
level could not be parallelized, then the i(th)-level could
only be computed in sequential. Then the total complexity
O[ f (N(0), k(0))] actually can be obtained in a recursive way,
as illustrated in Fig. 3, assuming the (1 ∼ q − 1)th level com-
putation is parallelized and (q ∼ r)th level computation is
sequential.

C. SPECIFIC DECOMPOSITION PRINCIPLES
Based on the complexity analysis, the number of decomposi-
tion levels and the number of decomposed subsystems in each
level can be evaluated given a specific power system topology
and parallel platform. Generally, two decomposition princi-
ples are proposed to improve the decomposition performance.

Principle 1: In the (i = 1 ∼ r − 1)th level, make the num-
ber of connecting links k(i) to be smaller than the size of
the decomposed subsystems N(i); and in the rth level, make
a balance between k(r) and N(r).

This principle is inspired by (11)-(14), as can be seen that if
k(i) > N(i) in the (i = 1 ∼ r − 1)th level, then O[k3

(i)] will be
the dominant part of the complexity no matter in the parallel
case or sequential case, which means, there is no need to
perform a higher level decomposition. And in the rth level,
the balance should be made between k(r) and N(r) because it is
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FIGURE 3. Recursive complexity analysis of the hierarchical LDE
decomposition.

the last level and should make sure that O[ f (N(r−1), k(r−1))]
is minimized, just like the one-level traditional LDE method.

Principle 2: The launching of a higher level should achieve
a lower computation time but not result in a larger latency, that
is, for parallel computing:

O[ f (N(i), k(i) ) + k(i)
3 + tp(i)] < O[N3

(i−1)] (15)

where tp(i) contains the overhead of launching child kernels
for parallel computation as well as the latency of synchroniza-
tion between the kernels. And for sequential computing:

O[m(i) fs(N(i), k(i) ) + k(i)
3] < O[N3

(i−1)] (16)

This principle is used to judge whether a deeper decom-
position is required, because the common parallel platforms
such as GPU have limited capabilities of parallelism and the
overhead of launching child kernels is significant. For sequen-
tial computation, the decomposition should also make sure
the sum of computational time for each subsystem compu-
tation is smaller than the latency without decomposition. For
example, when decomposing a 60 × 60 block matrix into 3
20 × 20 block matrices for sequential computing, it should
be guaranteed that 3 × t20 + tk20 < t60, where t20 denotes the
computational time of inverting a 20 × 20 block matrix, and
tk20 denotes the computing time for the Q matrix with size
of k × k and correcting the block matrices with the Q matrix.
Practically, the computational time of inverting a matrix given
a specific size can be evaluated in advance, then the decision
can be made on whether a deeper decomposition is necessary
or not.

IV. CPU-BASED SEQUENTIAL AND GPU-BASED PARALLEL
IMPLEMENTATION
The dynamic parallelism feature [18] of GPUs enables nested
kernel function execution, which is suitable for the H-LDE
decomposition architecture. In this section, both the CPU-
based sequential and GPU-based parallel implementation of
the IEEE 118-bus [19] test system is described for demonstra-
tion.

A. SEQUENTIAL AND PARALLEL CONFIGURATION
The IEEE 118-bus power system [19] is chosen as the test sys-
tem to show the application of the proposed H-LDE method,
which contains 118 buses, 54 generators, 177 lines, 9 trans-
formers, and 91 loads. The equivalent network topology is
illustrated in Fig. 4, where the bus number is shown on each
node. For sequential H-LDE computation, let r = 4, q = 0,
which means there are 4 level of LDE decomposition applied.
The reason of choosing r = 4 is explained in the following
part, and when the system scale increases, the level of LDE de-
composition can increase to achieve the optimal performance.

For parallel implementation, the dynamic parallelism fea-
ture [18] of GPUs is utilized. The dynamic parallelism enables
the kernel function to create new kernel functions on the GPU
device dynamically. For example, the grid A that is a collec-
tion of several parallel threads is the first-level parallelism, in
which every thread launches a new grid B. Grid A is called a
“parent” grid, and the one launched by it is called “child” grid.
Launching a set of new “child” grids also introduces a con-
siderable cost including the latency of launching kernels and
synchronizing these kernels. Therefore, if the child kernels do
not extract much parallelism and there is not much benefit
against their non-parallel counterparts, then the little benefit
may be canceled out by the child kernel launching overheads.
As an example, we use r = 4, q = 2 for parallel H-LDE com-
putation of the 118-bus power system, which means there are
4 levels of LDE decomposition in total and the first two levels
are computed using the GPU dynamic parallelism, while the
3rd and 4th level are computed sequentially.

B. TEST SYSTEM DECOMPOSITION
Following the two principles proposed in Section III(C), the
4-level H-LDE decomposition is shown in Fig. 4. The parti-
tion lines are highlighted in different line types for different
levels, and the number shown besides a partition line denotes
the number of links connecting the decomposed subsystems,
that is, k(i). Note that this work only shows a specific partition,
which may not be the optimal solution.

First-Level: As shown in Fig. 4, in the 1st level decomposi-
tion, the 118-bus is decomposed into 4 subsystems: SS-1, SS-
2, SS-3 and SS-4 with sizes of 30, 30, 28 and 30 respectively.
The number of links connecting the decomposed subsystems
is 15, which means the size of Q matrix is k(1) = 15. This
decomposition follows the Principle 1, making k(1) < N(1),
then after the inversion of the 30 × 30 and 28 × 28 matrices
is computed in sequential or parallel, G−1

d is obtained, and fi-
nally the improved LDE solver procedure (7) can be applied to
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FIGURE 4. Topology partitioning of the IEEE 118-Bus test power system using the 4-level LDE decomposition.

solve the unknown state variables, which is extremely simple
and can achieve a good speed-up.

Second-Level: The 2nd ∼ 4th-level decomposition is ap-
plied to compute the inversion of the SS-1, SS-2, SS-3 and
SS-4 conductance matrices, therefore, the actual computation
sequence is performed as a bottom-up pattern, from the 4th-
level to the 2nd -level. Taking SS-1 as an example, the 30 nodes
are decomposed into 2 subsystems with the block matrix
size of 15 × 15. This is also decomposed following Principle
1, making k(2) < N(2). For parallel computing, as instructed
by Principle 2, the overhead of launching the second-level
parallelism should be smaller than the benefit from parallel
computation of the block matrices inversions. We can see that
k(2) = 6 and N(2) = 15, which could meet the requirement
(15) through experimental results; that means the second-level
decomposition could benefit from the parallel computation us-
ing a small linking-domain matrix. For sequential computing,
the second-level decomposition could obviously achieve bet-
ter speed-ups since computing the 30 × 30 matrix inversion
involves much more computational efforts than computing
two 15 × 15 matrices inversions. The second-level decom-
position for SS-2, SS-3 and SS-4 has the same logic and
procedure.

Third-Level: The third level block matrix inversion is com-
puted in sequential as configured in Section IV(A), which
means that the decomposition should take the actual com-
puting time of the matrix inversion with a specific size into
consideration. For example, the 15 × 15 block matrix is de-
composed into 2 block matrices with sizes of 8 × 8 and 7 × 7,

and based on Principle 2, the decomposition should satisfy
t8 + t7 + tk3 < t15, where tx denotes the computational time if
inverting a x × x block matrix, and tk3 denotes the computa-
tional time of inverting the generated Q matrix and correct the
block matrix with the Q matrix. Since in this partition k(3) = 5
for the worst case, it can be verified on the implemented com-
puting platform (both CPU and GPU) that the requirements
can be satisfied.

Fourth-Level: The final level decomposition follows the
same logic as the third level decomposition, but as indicated
in Principle 1, it should also make the balance between k(4)

and N(4). In fact, this principle is not very rigorous, and in this
case, N(4) = 4 or 3, k(4) is also equal to or smaller than 3.

Fifth or Higher Level: From Fig. 4 it can be seen that for
N(4) = 4 or 3, making a higher level LDE decomposition is
not necessary. Because computing the inverse of a 4 × 4 ma-
trix does not involve much overhead, and if it is decomposed
into smaller matrices, computing smaller matrix inversions
and correcting them with the Q matrix will introduce extra
latencies, which are larger than the benefit of decomposition
and simply violate the Principle 2.

From the above multi-level decomposition configurations,
it can be observed that the maximum matrix that is actually
required to be inverted is 4 × 4 for block matrices and 6 × 6
for Q matrices (k(2) = 6). The 15 × 15 Q matrix (k(1) = 15)
is not required to be inverted due to the proposed improved
LDE computation procedure (7); the 30 × 30 and 28 × 28
block matrices inversions are actually assembled using the
inverted 4 × 4 and 3 × 3 block matrices of the 4th-level
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FIGURE 5. Assembling process for inverting the block matrices of the first-level decomposition with a 4-level H-LDE decomposition.

decomposition, as shown in Fig. 5. Therefore, the computa-
tional effort of H-LDE is greatly reduced compared to the
original LDE method that computes the 30 × 30 and 28 × 28
block matrices inversions directly.

C. AUTOMATIC SYSTEM DECOMPOSITION
In this example, the test power system is decomposed manu-
ally to show the detailed application of the proposed H-LDE
method. For the automatic decomposition of a specific level,
reducing the number of links between sub-blocks is the key
point to reduce the computation time. In fact, that is also
an important task in sparse solvers and this problem of op-
timal decomposition is essentially the k-section problem in
graph theory. The bisection and k-way heuristic algorithms
are widely used to solve this kind of problem, and the re-
lated packages are also available in Metis [20], KaHIP [21],
Scotch [22], etc. However, there is still lot of work to do
to decompose a power system at multi-level, since the num-
ber of decomposition levels is variable. If mi is a constant,
then the k-section algorithm can be used in each level of
decomposition until the minimum node set is reached, which
can be determined in advance according to the experimental
computational latency on the used computation platform. For
example, in this case, the minimum size of the node set is
set at 3. Integrating the proper partitioning algorithms into the
multi-level decomposition of H-LDE method remains to be
investigated in the future work.

V. SIMULATION RESULTS AND VERIFICATION
In this section, the matrix equations of the IEEE 39, 57,
118, and 300 bus benchmark test power systems [23] and
the auto-generated 400/500/600-bus power systems are solved
using the H-LDE method, and the speed-ups are evaluated
on both the IntelTM i5-7300HQ 2.GHZ CPU with 8 G RAM
and the NVIDIATM Tesla V100 GPU platform with 5012
cores [24] by comparing with the Gauss-Jordan method, origi-
nal LDE method, LU factorization with Gauss’s algorithm [4]
and KLU sparse matrix equation solution [14] method. The
synchronous machine and other equipment models used in the
test cases are the same as those of PSCAD/EMTDCTM [13].
The AC4A type exciter control is also attached to the machine
model.

A. SPEED-UP OF GPU-BASED PARALLEL H-LDE
COMPUTATION
The performance evaluation of GPU-based parallel H-LDE
computation is separated from the CPU-based sequential
computation, because they have different orders of magnitude
in latencies and different application contexts. In this case,
the conductance is regarded as changeable during simulation,
therefore, the Gauss-Jordan (GJ) method is chosen as the
base, since the pure LU factorization without re-ordering has
a slightly larger complexity for a changeable conductance
matrix and could not expose much parallelism possibilities
compared to the GJ method. The matrix equation solution
time of the proposed H-LDE method is compared with the
traditional Gauss-Jordan (GJ), Schur Complement (SC) and
original LDE (O-LDE) method. In this work, 2-level dynamic
parallelism is exploited: the computation procedure of the GJ
method could be not expose much parallelism, although some
rows and columns of the pivoting or reduction operations can
be computed in parallel; the matrix inversion of the block
matrices generated by the SC and O-LDE method could be
computed in parallel for the first level parallelism, but the
application of the second level parallelism for computing the
decomposed block matrices in parallel should be evaluated for
different sizes of the block matrices due to the overhead of
launching child kernels. For the H-LDE method, the 4-level
decomposition and 2-level dynamic parallelism are already
described in Section IV(B). Note that since the history item
updating also occupies a considerable time for each power
equipment, in this comparison, only the matrix equation so-
lution time is recorded and compared.

The computational time under different number of decom-
posed subsystems for SC and O-LDE, and under different
levels of H-LDE are shown in Fig. 6. Note that the GJ method
was selected as the base, which is not shown in the figure.
The time-step size is set at 20 μs, and 5000 steps of matrix
equation solution time in total was recorded. From Fig. 6
we can see that the SC and O-LDE method can achieve
their maximum speed-ups over the GJ method when mss

reaches to 5 and 6 respectively. That is their full potential be-
cause they are both one-level decomposition methods. How-
ever, H-LDE could achieve the maximum speed-up of 36.1
over the GJ method at fourth level (4-L), nearly 2 times of
performance over the original LDE method, which is quite
significant.
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FIGURE 6. GPU-based computational time comparison between the SC,
O-LDE and H-LDE method under different numbers of decomposed
subsystems and different decomposition levels (Latencies of 5000
time-steps of matrix equation solution).

Besides, it can also be observed that as the number of levels
increases, the improvement of speed-up slows down, which
means that the hierarchical LDE could only divide the topol-
ogy with a certain number of levels to achieve the maximum
performance, and when r is greater than that number, the
performance will slow down, as analyzed in Section IV(B).

B. SPEED-UP OF CPU-BASED SEQUENTIAL H-LDE
COMPUTATION
The sequential computation is commonly used in EMT power
system simulators, and in this case, the IEEE 39, 57, 118, and
300-bus benchmark test power systems are evaluated using
the H-LDE method. To extend the system scale, the 400, 500
and 600-bus topologies are also generated using the random-
ized link generation with the row density of 4, which is in
the typical row density range of power system conductance
matrices [14]. Typically, there are two types of circuits that
may influence the selection of proper solvers: circuit with
constant conductance matrix, such as the IEEE 118-bus sys-
tem; circuit with changeable conductance matrix, such as the
AC power system with switches installed or the multilevel
modular converter (MMC) circuit in AC/DC grids. All of
the IEEE benchmark AC test power systems have constant
conductance matrices, in this work, to obtain a changeable
conductance matrix, several time-varying loads are installed
in the power system. For example, in the IEEE 118-bus power
system, the original consumed active and reactive power of
the load on Bus 3 are 0.414 pu and 0.1062 pu; in this case
study, the consumed power is changing from [0.8-1.2] times
of the original load every 1 ms, that is, every 50 time-steps
with the 20 μs time-step size.

Constant Conductance Matrix. For a constant conduc-
tance matrix, the LU factorization and KLU sparse solver
have obvious advantages over the GJ method, since the L
and U matrices can be computed in advance, and in the sub-
sequent time slots solving LUx = b can be simplified into
the forward and backward substitution: solving Ly = b and
Ux = y. Similarly, the corresponding matrices (G−1

d , C, and
Q = (�−1 + CT G−1

d C)−1) in the H-LDE method (6) can also

TABLE I Computational Time and Speed-Ups of 5000 Steps With Constant
Matrix

0Sp-LU: H-LDE speed-up over LU factorization with Gauss’s algorithm;
0Sp-KLU: H-LDE speed-up over KLU.

be obtained in advance. Note that in this case, the procedures
(7)(8) are not required since they are targeting reducing the
computational effort for a changing Q matrix but not reducing
the storage cost. Therefore, for a constant conductance matrix,
the H-LDE can be executed as:

v = [G−1
d − G−1

d CQCT G−1
d ]ieq

= G−1
d ieq − G−1

d CQCT G−1
d ieq

= vDBM − (G−1
d C)Q(CT vDBM )

(17)

In this process, only the matrix multiplication operations are
required, and since G−1

d is a block diagonal matrix, and C only
contains a small number of 1/−1 elements with the rest of 0
elements, the computation of each time-step will be extremely
fast. And compared to storing the entire matrix inversion, the
storage cost is also reduced a lot, as analyzed in Section II(B).

The computational time (ms) of different test power sys-
tems are shown in Table I, the duration of simulation is 0.1 s,
which is 5000 steps with 20 μs time-step size. Note that the
latency is the pure matrix equation solution time without the
power equipment circuit and history item updating latency in-
volved for a pure comparison of different computational meth-
ods. In this case, the matrix input format for the KLU program
is transferred into column compressed format in advance [14].
As can be observed in the results, the H-LDE method is al-
ways better than the LU factorization with Gauss’s algorithm
in the 600-node system scale, because without the re-ordering
and pivoting techniques involved, the generated L+U matrix
is a dense matrix and thus requires more computational effort
compared to the simple multiplication operations in H-LDE.

However, since the sparse techniques are included in the
KLU package, the H-LDE shows less scalability than KLU
due to the sparsity of the generated L+U matrix. When the
system scale is smaller 400-bus, H-LDE can achieve better
performance; but when the system scale increases larger, the
decomposed block matrix sizes increase, and then the influ-
ence of large storage and I/O cost could not be omitted, al-
though the H-LDE method requires much less storage than the
original LDE method. The scalability of H-LDE on different
processors with different RAM sizes may be different, but this
result at least shows that the H-LDE method can only achieve
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TABLE II Computational Time and Speed-Ups of 5000 Steps With
Changeable Matrix

better performance than the sparse LU method such as the
KLU method within a certain system scale.

Changeable Conductance Matrix. For a changeable con-
ductance matrix, the entire H-LDE computation procedure
(6)(7)(8) is required; for example, the maximum size of matrix
equation to be solved in the IEEE 118-bus configuration is
15 × 15 in solving (8), and the maximum size of matrix to
be inverted is 6 × 6 as discussed in Section IV(B), which
are much smaller than the 118 × 118 conductance matrix.
Besides, if only the values of matrix elements change but
the node connections do not change (that is, the non-zero
elements locations do no change), the computation of the
H-LDE method can also be accelerated a lot like the KLU
method. The pre-processing of KLU including the permuta-
tion to block triangular form (BTF) and fill-reducing ordering
could be reused for each time-step due to the same matrix
pattern; and the H-LDE can hold the same multi-level parti-
tion at each time-step, which means the structure of assem-
bling the high-level small inverted block matrices remains the
same. Note that when nonlinear characteristics are inserted
into the main circuit equation, for example, the surge arresters
or nonlinear transformer models are applied, the solver needs
to iteratively solve the equation. Therefore, the nonlinear case
can also be regarded as the changeable conductance matrix
case.

The computational time of 5000 time-steps of different test
power systems are shown in Table II, the H-LDE speed-up
over the LU factorization without sparse techniques involved
is increasing as the system scale increases, which shows that
the H-LDE method is more scalable than the pure LU fac-
torization. For the KLU, since the pre-processing procedures
are involved, it could not obtain good performance in the
small scale system. But as the fill-in reducing algorithms are
applied, the generated L+U matrix is still a sparse matrix
and thus the method can scale very well when the system
scale expands. For the H-LDE method, the computational
procedure for computing the block matrices inversions can be
significantly accelerated, and thus within the 400-bus system
scale it can even achieve better performance than the sparse
KLU method. It can be expected that if the CPU multi-core
parallel architecture is utilized, the block matrices inversions
can be computed in parallel to achieve a faster speed.

In EMT simulation, large power systems can usually be first
decomposed into small subsystems using the latency-based
transmission line models due to the small time-step size, and

then the H-LDE method could be applied for the small sub-
system simulation. Therefore, although sparse techniques are
suitable for large-scale circuit simulation, the H-LDE method
can also be applied for the fast and parallel EMT power sys-
tem simulation within a certain power system scale.

VI. CONCLUSION
The linking-domain extraction (LDE) decomposition method
is a new non-overlapping domain decomposition method that
can be used for fast circuit simulation. However, the original
LDE method is not efficient in computational procedure and
not scalable due to the large storage cost. In this paper, the
capability of LDE method is fully exploited by the proposed
hierarchical LDE (H-LDE) method. First, the LDE computa-
tion procedure is improved to avoid storing the entire inverted
conductance matrix to reduce the storage cost. Based on this,
the detailed decomposition configuration for a specific num-
ber of decomposition levels is presented. Then, the complexity
of H-LDE decomposition is analyzed, based on which the
two decomposition principles are proposed to improve the
decomposition performance. Based on the proposed decom-
position principles, the IEEE 118-bus test power system is
decomposed into 4 levels to demonstrate the application of the
H-LDE method. The simulation results and speed-ups over the
original LDE method, the classical LU factorization and the
KLU sparse matrix equation solvers show that the proposed
H-LDE method could achieve a better performance in the
400-bus level power system. Therefore, the H-LDE method
can be applied for the fast and parallel power system circuit
simulation within a certain power system scale. There is still
room to improve the H-LDE method or explore the possibility
of integrating some sparse techniques into the H-LDE method
to fit for larger power system simulation problems in the future
work.
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