

Establishing CRISPR/Cas9 in Lipomyces starkeyi

Introduction

Lipomyces starkeyi is an oleaginous yeast, meaning that it synthesizes and stores high amounts of intracellular lipids. This specific yeast can store lipids at concentrations higher than 60% of its dry cell weight.¹ Due to these high concentrations of lipids, L. starkeyi is a desired organism for the production of biofuels and other oleochemicals.² However, there is a lack of knowledge and of genetic tools when trying to engineer the cells to produce these lipids for our use. The genome editing tool, CRISPR/Cas9 is efficient and simple, therefore desirable for the engineering of *L. starkeyi.*³ The goal of this project is to adapt the Yarrowia lipolytica plasmid based CRISPR/Cas9 system for usage in *L. starkeyi*.

Methods

Replacing the Y. lipolytica promoter with L. starkeyi P_{PYK1}

- The PYK1p was amplified from *L. starkeyi* genomic DNA template using PCR.
- An Asc1 and Sma1 restriction digest was done on the pCRISPRyl (*Yarrowia lipolytica* optimized) plasmid to cut out the promoter in order to insert the new PYK1 promoter. (figure 1 b.)
- An Asc1 and EcoRV restriction digest was done on the PYK1p.
- The PYK1p and pCRISPRyl were ligated together, now referred to as pCRISPRLs.
- The ligated pCRISPRLs was transformed in *E. coli* and plated for colonies.
- Plasmid candidates were purified and verified by restriction digest. (figure 1 c.)

Insertion of guide RNA

- pCRISPRLs was digested with AvrII. (figure 1 d.)
- Gibson Assembly reaction was performed on the pCRISPRLs and Lig4 hybridized oligos, and then transformed in *E.coli* and plated for colonies. (figure 1 e.)
- Plasmid candidates were purified and verified by sequencing.

Homology donor (pUC19 Lig4 Hygro) digestion

A HindIII restriction digest was performed on the plasmid and then PCR purified.

Confirming protein expression in *L. starkeyi* strains transformed by Agrobacterium tumefaciens

- Strains were grown up to midlog phase.
- Proteins were extracted via TCA. (trichloroacetic acid)
- Proteins were separated by SDS-PAGE. (sodium dodecyl sulfate polyacrylamide) gel electrophoresis)
- A semi dry transfer to a PVDF membrane was completed...
- The Western blot was performed with FLAG-HRP (horseradish peroxidase) antibodies and enhanced with chemiluminescence to expose on xray film. (figure 2.)

Zoe Lau, Bonnie McNeil, David Stuart

Department of Biochemistry, University of Alberta

Results

figure 1 b. pCRISPRyl Asc1 & Sma1 restriction digest gel figure 1 c. pCRISPRLs ligated plasmid candidates

		control
) bp	Int	د ••••
) bp 0 bp	BIH BI	

figure 1 d. pCRISPRLs AvrII restriction digest gel

inearized

10000 br 8000 br

figure 2. Western blot indicating that the strains express the cas9 gene

IA	
+NLS	
RLs Hybridize gRNA oligos, Digest pCRISPRLs with AvrII	
Insert via Gibson Assembly	
vrll P _{PYK1Ls} Cas9 +NLS	
pCRISPR <i>Ls</i>	
Lig4 gRNA	

figure 1 e. Gibson Assembly reaction pCRISPRLs candidates: mini preps of plasmid

Conclusions

- pCRISPRLs vector was successfully constructed.
- > PYK1p promoter was successfully inserted
- \succ gRNA insertion requires validation
- The homology donor was successfully digested.
- Western Blot indicated expression of the cas9 protein.

Future Directions

Use CRISPR/Cas9 to knockout Lig4 as proof of concept

Literature Cited

- (1) Lin, J., Shen, H., Tan, H., Zhao, X., Wu, S., Hu, C., Zhao, ZK. (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. http://dx.doi.org/10.1016/j.jbiotec.2011.02.010
- and Chemicals. http://dx.doi.org/10.3389/fmicb.2017.02185 (3) Schwartz C., Hussain M., Blenner M., Wheeldon I. (2015) Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. http:/dx.doi.org/10.1021/acssynbio.5b00162

Acknowledgements

- Thank you to my amazing lab team for teaching me so much this summer and giving me an enriching experience.
- Thank you to my sponsors for making this program possible for me to be a part of.
- Thank you to the WISEST team for providing this awesome program and for continuing to make positive change for women in STEM!

Select for Lig4 Knockouts on Hygromycin B

(2) Shuobo, S., & Huimin, Z. (2017) Metabolic Engineering of Oleaginous Yeasts for Production of Fuels