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Abstract 
 

 

 

This dissertation aims to propose a new and practical method to obtain 

equivalent fracture network permeability (EFNP), which represents and 

replaces all the existing fractures located in each grid block for the reservoir 

simulation of naturally fractured reservoirs. To achieve this, first the 

relationship between different geometrical properties of fracture networks and 

their EFNP was studied. A MATLAB program was written to generate many 

different realizations of 2-D fracture networks by changing fracture length, 

density and also orientation. Next, twelve different 2-D fractal-statistical 

properties of the generated fracture networks were measured to quantify 

different characteristics. In addition to the 2-D fractal-statistical properties, 

readily available 1-D and 3-D data were also measured for the models showing 

variations of fracture properties in the Z-direction.  

 

The actual EFNP of each fracture network was then measured using 

commercial software called FRACA. The relationship between the 1-, 2- and 

3-D data and EFNP was analyzed using multivariable regression analysis and 

based on these analyses, correlations with different number of variables were 



 

 

proposed to estimate EFNP. To improve the accuracy of the predicted EFNP 

values, an artificial neural network with the back-propagation algorithm was 

also developed.  

 

Then, using the experimental design technique, the impact of each fracture 

network parameter including fracture length, density, orientation and 

conductivity on EFNP was investigated.  On the basis of the results and the 

analyses, the conditions to obtain EFNP for practical applications based on the 

available data (1-D well, 2-D outcrop, and 3-D welltest) were presented.  This 

methodology was repeated for natural fracture patterns obtained mostly from 

the outcrops of different geothermal reservoirs. The validity of the equations 

was also tested against the real welltest data obtained from the fields. 

 

Finally, the concept of the percolation theory was used to determine whether 

each fracture network in the domain is percolating (permeable) and to quantify 

the fracture connectivity, which controls the EFNP. For each randomly 

generated fracture network, the relationship between the combined fractal-

percolation properties and the EFNP values was investigated and correlations 

for predicting the EFNP were proposed. As before, the results were validated 

with a new set of fracture networks. 
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1 

 

1 Introduction 
 

 

 

 

 

 

1.1 Overview 

Mapping fracture networks and estimating their properties such as porosity and 

permeability to be used as input data in simulation studies are two critical steps 

in the modeling of naturally fractured reservoirs. The data to achieve these two 

tasks are almost always insufficient and mostly limited to well scale 

measurements, seismic maps, and outcrop studies. Any quantitative 

information about fracture networks obtained through these sources would 

make the accurate preparation of static models possible. It is essential to use 

limited quantitative data effectively in fracture network studies for accurate 

estimation of reservoir performance in any subsurface modeling study.  

 

The most challenging parameter of fracture networks to be fed into the flow 

simulator is permeability. In fact, all fractures placed in each grid block could 

be replaced by an equivalent permeability value representing all of those 

existing fractures. Numerical methods to calculate the equivalent permeability 

values for a given fracture network system exist; however, they could be 

significantly time consuming, especially in highly fractured-complex 

reservoirs.  
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This dissertation focuses on this critical problem, namely practical estimation 

of fracture network permeability. Chapter 2 covers the application of the 

fractal geometry for characterizing and analyzing 2-D fracture networks. In 

this chapter, the relationships between different fractal-statistical properties of 

fracture network features and equivalent facture network permeability (EFNP) 

are shown. Also, after quantifying different features of fracture networks using 

the fractal dimension, the results of conducting an experimental design 

technique to show the influence of each fracture network property on the 

EFNP is presented.  

In chapter 3, an application of artificial neural networks to improve the 

accuracy of EFNP is given. This chapter also compares the EFNP values 

obtained from two different methods, i.e. multivariable regression analysis 

(MRA) and artificial neural networks (ANN). The models were developed 

using natural fracture patterns and validated using synthetic fracture patterns. 

Statistical and fractal characteristics of twenty natural fracture patterns 

collected from the outcrops of geothermal reservoirs were measured and then 

correlated to the EFNP using MRA and several empirical equations with 

different numbers of variables were proposed. Next, synthetic fracture 

networks were generated and used for validation purposes. The EFNP of these 

synthetic fracture networks were predicted using the derived empirical 

equations. As a final effort, we took advantage of the capability of ANN to 

improve the correlations obtained through the MRA.  

Chapter 4 explains the proposed procedure for calculating the EFNP for a set 

of fracture patterns mapped from the outcrops of geothermal reservoirs in 
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southwestern Turkey. Their EFNP values were predicted using the new method 

proposed in the thesis and it is shown that the computed permeability values 

are comparable to those obtained with a commercial software package and 

actual permeability values obtained through field tests.  

Chapter 5 extends the previous works to fracture network permeability 

estimation using the statistical and fractal properties data conditioned to 

welltest information based on the existing strong correlation between the 

statistical and fractal parameters of 2-D fracture networks and their 

permeability shown in previous chapters.  

 

In chapter 6, a more complex and realistic 3-D network system is considered. 

Variation of fracture network characteristics in the z-direction was presented 

by a multi-layer system representing three different facieses with different 

fracture properties. Using available 1-D, 2-D, and 3-D data, MRA was 

performed to obtain EFNP correlations and then the derived equations were 

validated against a new set of synthetic fracture networks. Next, minimal 

amount of 1-D, 2-D and 3-D data needed to accurately map fracture network 

permeability was determined for different fracture network characteristics.  

 

In chapter 7, the concepts of percolation theory and fractal geometry are 

combined to define the connectivity characteristics of 2-D fracture networks 

and a new approach to estimate the EFNP is introduced. The fractal 

dimensions of different fracture network features (intersection points, fracture 

lines, connectivity index, and also the fractal dimensions of scanning lines in 

X- and Y- directions), and the dimensionless percolation density of fracture 
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networks are computed. The method is based on the proposed correlations 

between the EFNP and a percolation term, (ρ'-ρ'c). This term is obtained using 

the relationships with the fractal and statistical properties of fracture networks 

mentioned above. The method introduced was validated using different 

fracture patterns representing a wide range of fracture and length values. In 

addition, a correlation between the number of fractures in the domain and the 

minimum size of the fracture length is presented to estimate the shortest or 

minimum fracture length required to have a percolating system for a given 

number of fractures in the domain. 

 

As this is a paper-based thesis, each chapter has its own conclusions.  In 

chapter 8, the major contributions of this dissertation and also 

recommendations for future works are presented. 

 

1.2 Literature review  

The natural fractures in the subsurface reservoirs strongly control the fluid 

flow, as fluid along these fractures can flow more quickly and over larger 

distances than it could flow through the matrix itself (Murphy et al., 2004) 

unless they are sealed with later depositions. The correct estimation of the flow 

properties of fractured rocks is crucial in modeling of hydrocarbon reservoirs, 

nuclear waste repositories, and geothermal reservoirs. Despite the extensive 

work on characterizing fractured rocks conducted over the last few decades, 

predicting fluid flow within the host rocks is still a challenging work 

(Berkowitz, 1995). Literature relevant to the research done in this dissertation 

is reviewed under several different titles as given below.  
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1.2.1 Modeling approaches for naturally fractured reservoirs 

Two well-known modeling approaches commonly used in simulating flow in 

naturally fractured reservoirs (NFR) are dual-porosity and discrete fracture 

network (DFN) models. The dual-porosity approach was first presented by 

Barenblatt and Zheltov (1960) and Barenblatt et al. (1960) to model NFRs. In 

this approach, each medium, i.e. a porous matrix and the fracture network, is 

superimposed and mutually communicating (Bogdanov et al. 2003). Warren 

and Root (1963) later modeled fractured porous media as an idealized two 

equivalent fracture and matrix media consisted of identical rectangular matrix 

blocks separated by an orthogonal network of fractures. In this model, fluid 

flow occurs in the fracture network and the matrix blocks feed these networks. 

Dual-porosity models are limited in capturing the complex structure of fracture 

networks; though, they are useful in describing the complex process of matrix-

fracture interaction.  

 

Later, Pruess and Narasimhan (1985) introduced the MINC (multiple 

interacting continua) model, which discretizes the matrix block into smaller 

units. This approach is often used to simulate fractured geothermal systems. 

The major problem associated with the dual porosity and MINC approaches is 

the specification of equivalent hydraulic properties, especially permeability, 

for the fracture network. 

 

On the other hand, the discrete fracture network (DFN) models are more useful 

in describing the complex structure of fracture networks (Narr et al. 2006; 

Parney et al. 2000). The DFN models are more capable in addressing the 

connectivity characteristics of fracture networks compared to the dual-porosity 



6 

 

models (Dershowitz et al. 2000). However, they are limited in modeling 

complex dynamic processes. 

 

Generally, a simulation grid block containing fractures acts as an effective 

medium whose properties can be represented by equivalent values, for instance 

an equivalent fracture network permeability tensor (Long et al, 1982). For any 

kind of dynamic modeling approach, one needs to define the equivalent 

fracture network permeability values for each grid block and the accuracy of 

the simulation strongly depends on this parameter (Bourbiaux et al., 1998).  

 

The influence of fracture properties in particular is significant on the results as 

the fracture system preferentially controls the hydrodynamics of fractured 

reservoir (Mourzenko et al. 2001). In fact, fracture network permeability is one 

of the critical input data to the simulator and controlled by topological and 

geometrical properties of the networks. A great deal of effort has been devoted 

to characterize those properties (Berkowitz, 1994). Despite remarkable efforts 

to characterize fractured reservoirs properly and to simulate their 

performances, due to complex fracture network geometry, modeling of such 

systems is still considered to be a difficult task. In other words, this complex 

geometry prevents direct feeding into the reservoir simulators (Bourbiaux et 

al., 1998, 1999). As a result, at a crucial stage in the simulation modeling of 

these reservoirs, this geometry (with all its defined properties) must be scaled 

up i.e. converted into essential parameters for running any simulator, and the 

results for instance equivalent permeability could be then fed into single or 

dual porosity (or dual porosity-permeability) simulators (Petrel Manual, 2007). 

However, one of the big challenges in numerical simulations of this type of 
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reservoirs is the specification of those equivalent permeability values for the 

fracture network.  

 

1.2.2 Estimation of effective fracture network permeability 

values 

Several methods have been proposed to calculate effective (equivalent) 

fracture network permeability (EFNP). Oda (1985) introduced a method for 

calculating equivalent permeability tensor of a fractured reservoir using the 

geometry of fracture network. The method does not require a flow simulator to 

obtain the permeability tensor; also it does not account for the fracture 

connectivity; and thus, it is limited to well-connected fracture networks. In 

other words, it would underestimate equivalent fracture permeability when 

fracture density is low.  

 

 Long et al. (1985) and Cacas et al. (1990) developed 3D fracture flow models 

and then Massonnate and Manisse (1994) introduced a 3D fracture flow model 

which takes into account the matrix permeability. Lough et al. (1996) 

developed a 2D fracture flow model taking into account the contribution of 3D 

matrix flows. Odling (1992) introduced a 2D model by considering the matrix 

permeability. Later, Bourbiaux et al. (1998) proposed a method to calculate the 

equivalent permeability by applying a pressure drop between the two sides of 

the parallelepiped network with a specific boundary condition. Using their 

model, the equivalent permeability for incompressible steady-state flow 

through the actual 3D fracture network can be calculated.  
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Min et al. (2004) presented a method to calculate equivalent fracture 

permeability tensor of fractured rocks using stochastic representative 

elementary volume (REV) approach. In their method, the equivalent 

permeability values were calculated using the two-dimensional distinct 

element code UDEC (Itasca, 2000). Nakashima et al. (2000 and 2001) 

presented an up-scaling technique by the boundary element method to estimate 

the effective permeability of naturally fractured reservoirs. Teimoori et al. 

(2003) used the same method to improve the computation of effective 

permeability tensor in naturally fractured reservoirs. 

 

Semi-quantitative analyses have shown that fracture network characteristics 

have direct implications on fracture network permeability. Basically, fracture 

connectivity, length, density, aperture, and orientation are the crucial 

parameters of each fracture network controlling the permeability of the 

network. For instance, Babadagli (2001) speculated that perpendicular 

fractures to the direction of the flow probably reduce the permeability. Also, as 

fracture length and density increase, the connectivity of a fracture network will 

increase (Rossen et al., 2000); and the hydraulic properties of fractured 

reservoirs are primarily dependent on the degree of fracture interconnection. A 

fracture network must have a percolating cluster to be permeable. Hence, the 

connectivity is of the primary importance in this analysis. Zhang et al (1996) 

showed that with an increase in fracture aperture and density, permeability of 

the network also increases.  

 

Fracture connectivity controls many principle properties of fractured reservoirs 

and the permeability is the most critical one (Berkowitz, 1995). For example, 
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Long and Billaux (1987) observed that, due to low fracture connectivity at a 

field site in France, roughly 0.1% of fractures contribute to the overall fluid 

flow (i.e., permeability). This parameter, however, is difficult to quantify and 

embedded in the fracture network permeability correlations. Other parameters 

including fracture length, density, aperture and orientation also play a critical 

role on the equivalent fracture network permeability.  

 

1.2.3 Fractal properties and the fracture networks  

Along with the statistical properties such as distribution functions of fracture 

network properties, fractal characteristics are used for quantification purposes 

since the natural fracture patterns were observed to be fractal objects (Barton 

and Larsen, 1985; La Pointe, 1988; Barton and Hseih, 1989). The fractal 

dimension, which is a non-integer value, shows the tendency of an object to 

spread or fill in the space where it is located (Berkowitz and Hadad, 1997).  

 

Later, a limited number of studies reported that fractal properties have 

implications on the equivalent fracture network permeability. For example, La 

Pointe (1997) stated that flux and mass fractal dimension of discrete fracture 

networks have a linear proportionality which implies that fractal dimension 

probably is a useful index of the flow properties of fractured rocks. 

 

The fractal dimensions of different network properties such as length, density 

and orientation of fracture needs to be measured as these parameters control 

the hydraulic properties of fracture networks. For example, higher fractal 

dimension means more complex and denser fracture network (Matsumoto et al. 
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1992; Babadagli, 2001) and the denser networks yield higher fracture 

permeability. 

 

It is expected that the fractal dimension of different network properties yields 

different values even if the same technique is applied. Also, the fractal 

dimension of the same fracture network property can be estimated using 

different techniques such as box-counting, sand-box and scanline and they may 

yield different values as those techniques measure different fractal 

characteristics (Babadagli, 2001).  

 

There are a few techniques to measure fractal dimension. The standard 

technique proposed to quantify the spatial distribution of irregular objects is 

called box-counting (Mandelbrot, 1982). In this methodology, different box 

sizes are selected and overlaid on fracture network. Then, the number of boxes 

filled with fracture lines is counted. The number boxes filled with fracture lines 

vs. box sizes are plotted on log-log scale and the slope yields the fractal 

dimension (Barton and Larsen, 1985). 

 

The mass dimension (sand-box) technique is also used to measure fractal 

dimension. In this method, a circle with a specific size and center was overlaid 

on the fracture domain and the number of features (fractures or points) located 

inside the circle is counted. The procedure is continued increasing the size of 

the circle with the same center. Then, the number of counts is plotted against 

the size of circle, on a log-log scale and the slope of the straight line yields 

mass fractal dimension (Bunde and Havlin, 1995).  
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The quantification of fracture orientation is critical in assessing the equivalent 

fracture network permeability. For example, it is expected that perpendicular 

fractures to fluid flow direction have negative effects on the network 

permeability, while parallel ones cause an increase in permeability (Babadagli, 

2001). The scanline method proposed by Babadagli (2001) was used to 

consider the effect of orientation. In this method, a number of squares with 

different size but the same centre was used. The number of fractures touched 

by a scanline in a specific direction in an L-size square was counted. This 

procedure was repeated for each square of different sizes. Then on a double 

logarithmic scale, the size of squares, L, was plotted against the total number 

of the counts. The slope yields the fractal dimension.  

 

The lacunarity is related to the degree of gappiness (or hole or porosity) or 

texture of an irregular object and can be used to differentiate fractal objects 

with exactly the same fractal dimension but different appearances. In fact, two 

fractal objects may look different despite having the same fractal dimension. In 

this case, fractal dimension may not be sufficient to differentiate between the 

two patterns, and other characteristics of the network need to be considered. 

Lacunarity is a useful tool for this purpose (Hamida and Babadagli, 2005 and 

2007). 

 

1.2.4 Use of artificial neural networks (ANN) in fracture 

network analysis 

When the relationships between variables are nonlinear and complicated, it is 

believed that multivariable regression analysis may not be capable of fully 
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capturing these relationships. In these situations, the artificial neural networks 

(ANN) are preferred. Artificial neural networks (ANN) are computer models 

that mimic the functions of the human nervous system through some parallel 

structures comprised of non-linear processing nodes which are connected by 

weights. These weights establish a relationship between the input and output of 

each node in the ANN (Nikravesh et al., 2003). These systems process the data 

and then learn the relationships between the given data in a parallel and 

distributed pattern. This characteristic makes the ANN capable of capturing the 

complex relationships among many different parameters (White et al., 1995).  

 

ANNs have a layer-based structure. The first and last layers are called input 

and output layers, which contain artificial neurons or so-called processing 

elements (PEs) exactly equal to the number of input and output parameters 

respectively. There is another layer called a hidden layer located between the 

two previous layers. Although all ANNs have generally the same layer-based 

topology, the number of hidden layers and PEs in these three kinds of layers 

varies depending on the problem (Rezaee et al., 2006).  

 

For permeability estimation problems, supervised algorithms are generally 

preferred (Wiener 1995). Therefore, a supervised back propagation neural 

network (BPNN) with given both the input and output values during the 

learning (training) process is suitable (Wong and Nikravesh, 2001). 

 

1.2.5 Percolation theory and fracture network  

In addition to fractal geometry, the percolation theory has been turned out to be 

useful for analyzing fracture networks. The percolation theory is a powerful 
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concept for studying different phenomena in disordered media, especially for 

analyzing the transport properties of random systems.  

 

Significant amount of work has been performed to solve network related 

problems in different areas of science and engineering using the classical 

theory of percolation since it was first introduced by Broadbent and 

Hammersley (1957). Scaling equations and universal constants and exponents 

are well defined for systematic lattices (Kirkpatrick, 1971; Stauffer, 1979; 

Sahimi, 1993; Berkowitz and Ewing, 1998). Fracture networks are random 

systems and the continuum percolation was introduced as an alternative to the 

lattice percolation. 

 

First attempts on modeling fracture networks were on lattice networks 

(Stauffer and Aharony, 1994). However, due to the nature of fracture 

distribution within host rocks, percolation of fracture networks needed another 

class of percolation called continuum percolation (Mourzenko et al., 2005). 

The necessity of this approach was justified by Khamforoush et al. (2008) as 

the transport properties of fractured networks are affected not only by the 

individual properties of fractures and but also their connectivity properties.  

 

Berkowitz (1995) reported that fracture connectivity could be used to study 

most of the fundamental properties of fracture networks which can be 

mathematically modeled by percolation theory (King et al., 2002). The most 

important characteristics of the continuum percolation is an appropriate density 

parameter equivalent to occupancy probability in the lattice percolation 

(Mourzenko et al., 2005). 
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An appropriate density parameter equivalent to occupancy probability in the 

lattice percolation was defined in the continuum percolation (Mourzenko et al., 

2005). Also, Balberg et al. (1984) introduced the excluded volume (in 3D) 

concept which could play a critical role in continuum percolation. It is defined 

as the volume into which the center of other similar objects should not be 

placed in order not to have any overlap (intersection). However, it should be 

mentioned that this definition is valid if the objects are placed uniformly in 

space (Adler and Thovert, 1999). Mourzenko et al. (2004) combined fracture 

density in a unit cell with excluded volume and ended up with a dimensionless 

density. Since this dimensionless density is related to the excluded volume, the 

macroscopic properties of the fracture networks are independent of fracture 

shape (Koudina et al., 1998; Bogdanov et al., 2003a and 2003b; Mourzenko et 

al., 2004; Huseby et al., 1997; Huseby et al., 2001).  

 

Mourzenko et al. (2004 and 2005) studied a 3-D model containing 2-D fracture 

planes (polygons) with power-law size distribution uniformly located in the 

space. Then, they triangulated each fracture network to solve flow equations 

and calculate permeability. They stated that a dimensionless fracture density is 

an appropriate equivalent parameter in continuum percolation which is 

independent of fracture shape. They also proposed a general equation by 

combining fracture density weighted by fracture conductivities and a universal 

function of a dimensionless fracture density which takes into account fracture 

shape and size distribution.  

 

King et al. (1999) used percolation theory to estimate the distribution of the 

shortest path between two wells and also the distribution of the breakthrough 
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times and associated uncertainty by simple algebraically calculation rather than 

the traditional time-consuming numerical simulation. 

 

Odagaki et al. (1999) investigated the 2-D systems with correlated distribution 

for a model granular system and a lattice gas and found that correlated 

distribution of percolating objects affects the percolation properties in both 

statistic structure and dynamic processes. 

 

Nolte et al. (1989) studied the effect of contact areas of fractures on their flow 

properties and showed that the effect of tortuosity of the flow path on fluid 

transport is controlled by the proximity of the distribution of these paths to a 

percolation threshold. They also presented a model which could be used to 

determine how far the systems are located above the percolation threshold. 

 

Very recently, more emphasis was given to the estimation of fracture network 

permeability through the percolation theory. Khamforoush et al. (2008) studied 

the percolation threshold and permeability of anisotropic 3-D fracture 

networks. They found that the percolation threshold in the X- and Y-directions 

decreases as anisotropy increases but in the Z-direction an opposite trend can 

be seen. Koudina et al. (1998) calculated the permeability of a 3-D network 

consisting of polygonal fractures and studied the data relative to the 

percolation threshold and found that permeability exponent, i.e., "t" ( K≈(ρ'- 

ρ'c)
t 
) in 3-D, was in very good agreement with the universal exponent in 3-D 

reported by Stauffer and Aharony (1994); the effect of the fracture shape was 

also investigated. 
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Zhang and Sanderson (2002) studied the connectivity of 2-D fractures in terms 

of fracture density, orientation and length. They found that fracture density is 

the controlling parameter of the percolation threshold and fracture connectivity 

is dependent only on this parameter as long as the fractures have much a 

smaller length relative to the size of the region of interest. Also, at or above 

this critical point, i.e., percolation threshold, the permeability of the system 

increases with an increase in fracture density. 

 

Masihi et al. (2005) applied the percolation theory concepts on fractured 

reservoirs to analyze the reservoir performance and showed that the 

performance parameters can be predicted very quickly by some semi-analytical 

universal curves. Later, Masihi et al. (2007) determined the two scaling curves 

of connectivity of isotropic fracture systems which could be used to estimate 

fracture connectivity and its associated uncertainty very quickly. They also 

applied the percolation concepts to a field example from the Bristol Channel 

basin. 

 

The percolation threshold of different simple systems in the percolation 

continuum has been determined by different researchers; for example, the 

percolation threshold of randomly oriented sticks in 2-D in terms of 

dimensionless density (ρ') has been reported to be 3.6 (Adler and Thovert, 

1999). For analyzing any fracture system, the percolation threshold needs to be 

estimated theoretically and compared with the actual density of fractures in the 

system (Berkowitz and Balberg, 1993).  

 

Conventional methods of fracture network modeling, more specifically 
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permeability estimation, suggest generating many different -random- 

realizations of possible fracture network configurations and then flow 

simulation for each one has to be performed. Having a practical technique to 

quickly estimate the equivalent fracture network permeability using available 

fracture network properties and percolation theory will reduce the 

computational work needed in the conventional characterization and 

simulation of fractured systems.  

 

1.3 Statement of the problem 

Despite the recent efforts to characterize fractured reservoirs properly, 

simulation of flow in such systems has remained a difficult task mainly due to 

complex fracture network geometry. 

 

Petrophysicists, hydrogeologists, and reservoir engineers are interested in 

measuring permeability values of complex subsurface reservoirs as input data 

for simulation studies. Direct measurements of permeability using wireline 

devices or welltest methods are rarely applicable in fractured reservoirs and are 

usually expensive. Even if these tools are available at acceptable costs, direct 

permeability measurements are usually unevenly and sparsely distributed. 

Although they might be useful in homogeneous reservoirs, it is difficult to 

obtain meaningful permeability values of fracture networks for the whole 

reservoir structure through these techniques.  

 

In practice, the only source of high resolution data to aid in permeability 

estimation is provided by well logging. However, due to the complexity of the 
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fractured reservoirs, to the best of our knowledge, no universally applicable 

method of estimating fracture network permeability from well logging data 

exists. The main problem is that the fracture systems are random in nature and 

limited 1-D (well) data is not sufficient to represent the whole (3-D) system. 

Single well data provide information in 1-D, which naturally lacks the 

information about the length of fracture extension and more importantly, 

connectivity. Network permeability requires this information and limited data 

(density and aperture) obtained from wells may not be sufficient to obtain 

meaningful information about 3-D characteristics of fracture networks related 

to the permeability. 3-D network permeability obtained from pressure transient 

tests represents an average “global” value and cannot account for the regional 

changes in permeability, which is a common issue as network characteristics of 

fractures change in lateral and vertical directions considerably due to their 

random nature. 

  

In addition, most of the methods mentioned in the “Literature Review” section 

for calculating the equivalent fracture network permeability (mainly the 

numerical techniques) require fracture network discretization and a significant 

computational effort due to a great number of nodes needed for computations, 

especially when dealing with a highly fractured reservoir. This is an additional 

cost to the simulation of hydrocarbon and geothermal reservoirs.  

 

Therefore, it is critical to develop simpler and more accurate correlations to 

predict the equivalent fracture network permeability for practical purposes. 

Obviously, the new technique proposed should be based on different scenarios 

(possibility) of all available information on fracture networks for practical 
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purposes including core (1-D), outcrop (2-D) and welltest (3-D) data. Often 

times, they all may not be available and one has to utilize the existing data for 

permeability estimation. 

 

1.4 Solution methodology 

The objective of this thesis work was to propose a practical and accurate 

approach to estimate equivalent fracture network permeability (EFNP) values 

for 2-D networks. To define correlations for the EFNPs, extensive 

quantification of fracture network properties are needed. For this purpose, 

fractal and percolation characteristics of randomly generated 2-D fracture 

networks (in the MATLAB environment), were defined and tested against 

“actual” EFNPs obtained from an existing software package (FRACA). This 

software package is one of the very limited commercially available tools to 

perform fracture network modeling and simulation applications. Our solutions 

rely on the accuracy of this software package and there is no any other possible 

and practical way to create significant number of experimental trials of EFNP 

calculations to eventually generate correlations. This software package has 

been tested (Bourbiaux et al., 1998) and commonly used in the industry (Veire 

et al., 2007). 

 

All possible combinations of fracture network properties and many different 

random realizations of them were used in the analysis in this dissertation. After 

this experimentation process, correlations were obtained using multivariable 

regression and artificial neural network methods. A validation process was 

applied at the end using fracture configurations that were not used in the 
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correlation development exercise. The methodology proposed was also applied 

on natural fracture systems and validated against unbiased samples of fracture 

networks. 

 

Through the methodology, a relatively simpler approach was proposed for 

practical estimation of EFNP at different scales using any possible 

combination of available data including 1-D (well related) and 2-D (outcrop) 

and even 3-D (well test) data to be eventually fed into the flow simulators.  
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2 Effective Parameters on Fracture Network 

Permeability 

 

 

 

 

 

 

2.1 Overview 

Fracture network mapping and estimation of its permeability constitute two 

major steps in static model preparation of naturally fractured reservoirs. The 

equivalent fracture network permeability (FNP) is controlled by many different 

fracture network parameters such as fracture length, density, orientation, 

aperture, and single fracture connectivity.  

 

The objective of this chapter was to determine the relative importance of the 

different fracture network parameters using the experimental design approach 

(2- and 3-level design). Five different 2-D fracture data sets were generated for 

random and systematic orientations. In each data set, twenty different 

combinations of fracture density and length for different orientations were 

tested. For each combination, ten different realizations were generated. The 

results were presented as Pareto charts.  
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2.2 Generation of fracture network models 

To generate 2-D random fracture networks in square domains, a numerical 

algorithm was developed. Each fracture network is composed of linear 

fractures with fracture centers distributed randomly according to a uniform 

distribution. In this algorithm, the fracture length was considered as a 

categorical variable. Either a constants value for it (20m, 40m, 60m and 80m) 

was used or a distribution was assigned (normal distribution with a mean value 

of 20m, 40m, 60m or 80m). The fracture density (as the number of fractures 

per 100x100 m
2
 area) was defined also as a categorical variable (50, 100, 150, 

200, and 250). The orientation was considered creating two fracture sets in 

each domain with different directions as follows: (1) NS-EW, (2) NW-SE & 

NE-SW, and (3) totally random orientation (Table  2.1).  

 

 

 

Table  2.1 The variability of the each fracture network parameters used in the generation of 

fracture network models. 

Fracture Parameter Value 

Constant (20, 40, 60, 80) 

Length(m) Variable (Normal distribution with a 

mean value of 20, 40, 60, 80) 

Density(#/domain) 50, 100, 150, 200, 250 

N-S & E-W 

NW-SE & NE-SW Orientation 

Random 
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The conductivity (aperture) of fractures was kept constant in the derivation of 

the FNP correlation. For further sensitivity analysis, it was changed for a few 

cases to clarify its effects on the FNP.  

 

In total, five different data sets were generated: (1) N-S & E-W fractures with 

fixed length (2) N-S & E-W fractures with variable length (3) NW-SE & NE-

SW fractures with fixed length (4) NW-SE & NE-SW fractures with variable 

length and (5) random orientation with fixed length. Figure  2.1, Figure  2.2 

and Figure  2.3 show examples of these two-dimensional patterns with 

different orientation. Each figure represent 100x100 m
2
 plane. 

 

 

 
 
Figure  2.1 Fracture network with two fracture sets, N-S & E-W and fixed length. 
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Figure  2.2 Fracture network with two fracture sets, NW-SE & NE-SW and fixed length. 

 

 

Figure  2.3 Fracture network with random orientation and fixed length. 
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Each data set has twenty different scenarios which cover a wide range of 

possible combinations of length and density values as shown in Table  2.2 and 

Table  2.3. Each scenario has ten different realizations generated using 

different random seeds which yield a total of 200 runs. Those runs were 

repeated for the five different cases listed above (three different orientations 

and fracture length distribution types with the same and variable length). 

Eventually, the total number of runs turned out to be 1000. 

 

Table  2.2 Two fracture sets in the domain with directions NW-SE & NE-SW and fixed length 

(FD: Fractal dimension). 

Box Counting  

FD 

Sandbox Counting 

FD 

Box 

Counting 

FD Length 

(m) 
Density 

Intersection 

Point 

Mid 

Point 

Intersection 

Point 

Mid 

Point 

Scanline  

FD  

(in X 

direction) 

Scanline  

FD  

(in Y 

direction) 

Connectivity 

Index 

Maximum 

Touch with 

X Scanline 

Maximum 

Touch with 

Y Scanline 
Lines 

Permeability 

(mD) 

20 50 1.08 1.408 1.328 1.555 1.605 1.437 0.616 7072.2 7070.8 1.293 8.322 

20 100 1.555 1.638 1.604 1.707 1.318 1.324 1.199 14142.2 14145.9 1.465 22.247 

20 150 1.74 1.733 1.551 1.503 1.338 1.317 1.812 21212.8 21216.3 1.552 71.728 

20 200 1.835 1.817 1.681 1.491 1.347 1.37 2.477 28282.4 28283.2 1.62 131.307 

20 250 1.878 1.857 1.856 1.541 1.363 1.365 2.976 35350 35354.3 1.648 177.957 

40 50 1.564 1.401 1.65 1.366 1.131 1.145 2.902 14140.2 14142.5 1.429 69.346 

40 100 1.803 1.647 1.565 1.404 1.112 1.113 5.911 28283.3 28285 1.583 176.614 

40 150 1.867 1.745 1.671 1.428 1.118 1.115 8.776 42427 42426.6 1.651 297.858 

40 200 1.911 1.817 1.886 1.352 1.132 1.134 11.499 56569.2 56571.8 1.7 403.728 

40 250 1.915 1.854 1.935 1.403 1.126 1.122 14.575 70714.1 70710.6 1.737 527.569 

60 50 1.703 1.398 1.59 1.265 0.93 0.932 7.444 21213.1 21213.2 1.457 124.91 

60 100 1.812 1.641 1.531 1.198 0.94 0.934 14.875 42426.5 42424.9 1.596 269.127 

60 150 1.841 1.754 1.7 1.241 0.929 0.932 22.666 63638.5 63639.4 1.682 389.361 

60 200 1.849 1.823 1.62 1.342 0.934 0.936 30.224 84852.2 84850.3 1.722 534.268 

60 250 1.855 1.859 1.632 1.286 0.928 0.929 37.907 106066.6 106062.6 1.76 685.512 

80 50 1.727 1.401 1.903 1.501 0.86 0.859 12.064 28282.7 28284.9 1.456 134.642 

80 100 1.78 1.638 1.773 1.903 0.859 0.859 24.008 56568.4 56567.6 1.586 287.947 

80 150 1.8 1.754 1.771 2.122 0.859 0.859 36.095 84852.8 84855 1.665 430.228 

80 200 1.801 1.817 1.671 1.788 0.859 0.859 47.925 113136.7 113137.6 1.705 603.897 

80 250 1.804 1.86 1.74 1.808 0.859 0.859 59.979 141420.9 141422.2 1.73 731.907 
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Table  2.3 Two fracture sets in the domain with directions NW-SE & NE-SW and variable 

length (FD: Fractal dimension). 

Box Counting  

FD 

Sandbox Counting 

FD 

Box 

Counting 

FD Length 

(m) 
Density 

Intersection 

Point 

Mid 

Point 

Intersection 

Point 

Mid 

Point 

Scanline  

FD  

(in X 

direction) 

Scanline  

FD  

(in Y 

direction) 

Connectivity 

Index 

Maximum 

Touch 

with X 

Scanline 

Maximum 

Touch with 

Y Scanline 
Lines 

Permeability 

(mD) 

20 50 1.083 1.396 1.423 1.524 1.348 1.409 0.594 7014.1 7011.7 1.312 7.039 

20 100 1.524 1.633 1.729 1.622 1.383 1.377 1.16 13903.6 13902.2 1.45 23.709 

20 150 1.738 1.751 1.802 1.584 1.327 1.324 1.719 20569.7 20570.9 1.538 69.25 

20 200 1.818 1.814 1.917 1.511 1.368 1.38 2.267 27661.5 27661 1.599 118.259 

20 250 1.881 1.849 1.856 1.6 1.322 1.344 2.885 34549.9 34553.1 1.645 167.823 

40 50 1.565 1.402 1.935 1.444 1.189 1.188 2.826 14001.2 14001.1 1.42 65.471 

40 100 1.805 1.637 1.78 1.45 1.141 1.142 5.585 27884.7 27884.1 1.558 184.384 

40 150 1.872 1.748 1.758 1.431 1.117 1.111 8.522 41616.6 41611.6 1.652 280.764 

40 200 1.911 1.814 1.723 1.473 1.111 1.111 11.283 55866.7 55869.7 1.697 411.096 

40 250 1.922 1.86 1.802 1.437 1.124 1.128 14.131 69860.4 69863.6 1.735 495.838 

60 50 1.69 1.401 1.531 1.2 0.933 0.93 7.172 20897.1 20894.9 1.465 121.551 

60 100 1.807 1.625 1.57 1.289 0.926 0.929 14.851 41982.3 41980.1 1.612 250.268 

60 150 1.849 1.749 1.838 1.29 0.928 0.928 22.493 63175.1 63173.1 1.672 399.481 

60 200 1.862 1.815 1.7 1.367 0.929 0.926 29.096 83946.2 83945.6 1.719 545.515 

60 250 1.87 1.853 1.717 1.414 0.927 0.928 36.994 104983.9 104981.8 1.755 678.4 

80 50 1.713 1.399 1.676 2 0.856 0.857 11.862 28040.4 28042 1.453 131.304 

80 100 1.785 1.625 1.762 1.86 0.857 0.857 23.747 55972.4 55971.5 1.582 293.921 

80 150 1.795 1.736 1.7 1.815 0.857 0.858 35.561 84288.3 84287.4 1.664 402.936 

80 200 1.801 1.808 1.69 1.686 0.857 0.857 47.435 112088 112088.8 1.715 552.664 

80 250 1.805 1.841 1.676 1.778 0.857 0.857 58.932 139992.2 139992 1.745 740.174 

 

 

 

 

2.3 Fractal analysis of 2-D fracture models 

Natural fracture patterns show fractal behavior (Barton and Larsen, 1985; La 

Pointe, 1988; Barton and Hseih, 1989). In their pioneering work, Barton and 

Larsen, (1985) and later Barton (1995) analyzed the fractal dimension of 

fracture trace maps from a different tectonic settings and lithologies using box-



A version of this chapter has been published 

 

Jafari, A. and Babadagli, T.: “A Sensitivity Analysis for Effective Parameters on 2-D Fracture 

Network Permeability,” June 2009 SPE Reservoir Evaluation & Engineering Journal. 

 

27 

counting technique. Bonnet et al. (2001) later concluded that the geometry of a 

fracture system cannot be completely defined by a single fractal dimension and 

the fractal dimension of other geometrical parameters such as density, length 

and orientation and aperture and fracture surface roughness needs to be 

considered. 

 

It is expected that the fractal dimension of different network properties yields 

different values even if the same technique is applied. Also, the fractal 

dimension of the same fracture network property can be estimated using 

different techniques such as box-counting, sand-box and scanline and they 

yield different values as those techniques measure different fractal 

characteristics (Babadagli, 2001). Hence, different methods should be used to 

measure the fractal dimension of different fracture properties. 

 

The connectivity of fracture networks is very critical parameter controlling the 

fluid flow in impermeable or low permeable formations (Long and Balliaux, 

1987; Margolin et al., 1998). Therefore, we started with measuring the fractal 

dimension of the distribution of the fracture intersection and mid-points that 

represent the connectivity and density of the network, respectively, using 

different methods. The fractal dimensions of other network properties such as 

length, density and orientation of fracture were also measured as these 

parameters control the hydraulic properties of fracture networks. For example, 

higher fractal dimension means more complex and denser fracture network 

(Matsumoto et al. 1992; Babadagli, 2001) and the denser networks yield higher 

fracture permeability. 
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The fractal techniques we applied in this study are briefly described below:  

 

2.3.1 Box dimension (box-counting) method  

This is a standard technique proposed to quantify the spatial distribution of 

irregular objects (Mandelbrot, 1982). In this methodology, different box sizes 

are selected and overlaid on fracture network. Then, the number of boxes filled 

with fracture lines is counted. The number boxes filled with fracture lines vs. 

box sizes are plotted on log-log scale and the slope yields the fractal dimension 

(Barton and Larsen, 1985). Using this technique, the fractal dimensions of 

intersection points, mid-point and fracture lines were measured. The following 

equation shows the relationship between the box size, number of filled box and 

fractal dimension: 

 

                                           N(r) α r
-D

                                     (1) 

 

where N(r) is the number of the filled boxes and r is the box sizes and D is 

fractal dimension. 

 

2.3.2 Mass dimension (sandbox) method  

In this method, a circle with a specific size and center was overlaid on the 

fracture domain and the number of features (fractures or points) located inside 

the circle is counted. The procedure is continued increasing the size of the 

circle with the same center. Then, the number of counts, M(r), is plotted 

against the size of circle, r, on a log-log scale and the slope of the straight line 

yields mass fractal dimension (Bunde and Havlin, 1995):   
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                                            M(r) α r
Dm

                                      (2) 

 

The mass dimension method was used to measure the fractal dimension of 

fracture intersection points and mid-point. 

 

2.3.3 The scanline method  

Fracture orientation is one of the critical parameters that affects the hydraulic 

properties of fracture networks. For example, it is expected that perpendicular 

fractures to fluid flow direction have negative effects on the network 

permeability, while parallel ones cause an increase in permeability. Therefore, 

the quantification of orientation is critical in assessing the FNP (Babadagli, 

2001). 

 

The scanline method proposed by Babadagli (2001) was used to consider the 

effect of orientation. In this method, a number of squares with different size 

but the same centre was used. The number of fractures touched by a scanline in 

a specific direction in an L-size square was counted. This procedure was 

repeated for each square of different sizes. Then on a double logarithmic scale, 

the size of squares, L, was plotted against the total number of the counts. The 

slope yields the fractal dimension. In this study, two scanline directions (X and 

Y) were considered. 
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2.4 Analysis of the results and derivation of FNP 

correlation 

Fracture network permeability (FNP) values for each scenario in different data 

sets were obtained using a software package (FRACA). The generated fracture 

network data was imported to the software and the network permeability was 

determined for each case.  

 

The equivalent permeability of a fracture network in this software is 

determined by discretizing each fracture of the fracture network into fracture 

elements such as rectangles, and defining a number of nodes representing 

interconnected fracture elements. In the next step, while imposing boundary 

pressure conditions and fluid transmissivities to each couple of neighboring 

nodes, fluid flow through the discretized network is determined. The flow rate 

solution is unique and by using the Darcy's law, the equivalent permeability in 

the considered direction can be determined (Bourbiaux et al, 1998; Cacas et al. 

2000). 

 

In this exercise, the fracture aperture (conductivity with the unit of mD-m) was 

fixed for all fractures initially. For the sensitivity analysis, the conductivity 

term was also changed. The last column in Table  2.2 and Table  2.3 shows the 

results for different cases. There are totally four data sets but only the two 

cases with fixed length are presented (Table  2.2 and Table  2.3). The 

magnitude of permeability is dependent on measurement direction. Hence, the 

permeability measurement is a vector quantity (Nelson, 2001). In this chapter, 

we consider permeability in only x-direction.  
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In addition to the fractal properties, a few other network characteristics were 

included in the analysis. The connectivity index was defined as a ratio of the 

number of intersection points to the total number of lines. We also considered 

the maximum number of touches of the scanlines in both x- and y-directions. 

This corresponds to the number of touches obtained for the whole fracture 

network that was obtained during the scanline fractal dimension measurement.  

 

As seen in Table  2.2 and Table  2.3, the fractal dimensions of all data sets lie 

between 1 and 2 which indicates the fractal nature of the networks. If the 

fractal dimension of a fracture network is close to one, strongly directional 

flow anisotropy is expected (Barton and Larsen, 1985). The fractal dimension 

typically increases with increasing fracture density and length.  

 

Six network properties were determined as the most influential parameters 

through an extensive regression analysis for each data set. Figure  2.4 through 

Figure  2.8 show the relationship between those parameters and the FNP. Only 

the cases with two fracture sets in NW-SE & NE-SW directions and fixed 

length are included in those figures. Since the other data sets show a similar 

trend between the parameters and fracture network permeability, their plots are 

not presented here. 
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Figure  2.4 Fracture length vs. FNP for the model with two fracture sets in NW-SE & NE-SW 

directions and fixed length. 

 

 

 

Figure  2.5 Fracture density vs. FNP for the model with two fracture sets in NW-SE & NE-SW 

directions and fixed length. 
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Figure  2.6 The fractal dimension of intersection points obtained using the box-counting vs. 

FNP for the model with two fracture sets in NW-SE & NE-SW directions and fixed length. 

 

 

 

 

Figure  2.7 Maximum touch with scanlines in X direction vs. FNP for the model with two 

fracture sets in NW-SE & NE-SW directions and fixed length. 
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Figure  2.8 Maximum touch with scanlines in Y direction vs. FNP for the model with two 

fracture sets in NW-SE & NE-SW directions and fixed length. 
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systematically but the relationship is not linear (Figure  2.4). This non-linearity 
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depending also on the orientation. This is expected as the fracture density 
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The relationship between the FNP and the fractal dimension of intersection 

points (obtained by box-counting) is shown in Figure  2.6 for different lengths. 

The shortest fracture length case (20 m) yields a wider range of fractal 

dimensions. For higher fracture length cases, the relationship becomes more 

linear. 

  

Figure  2.8 shows an increase in the FNP with increasing maximum touch with 

scanline in X and Y directions. This relationship is also non-linear. 

 

Figure  2.9 shows the relationship between the FNP and the box-counting 

fractal dimension of fracture lines for different densities. It is interesting to 

note that the change is similar for all density cases and all the curves are almost 

overlapped.  

 

Figure  2.9 Fractal dimension of fracture lines using box counting vs. FNP for the model with 

two sets in NW-SE & NE-SW directions and fixed length. 
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Figure  2.10 shows the comparison of the FNPs of different data sets. As the 

density and length increase, the FNP increases. Note that the fracture models 

oriented in N-S & E-W directions have higher FNP compared to the other 

models with fractures in NW-SE & NE-SW directions. 

 

 

Figure  2.10 Comparison of FNPs with different directions regarding to fracture length and 

density. 
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FNP. Eventually, the following equation was observed to be the best 

correlation between the fracture network properties and the FNP: 

 

                             fxxdxcaeY
bx ++++= )ln()ln()ln( 432

1                                (3) 

 

where Y denotes logarithm of permeability, x1 is the fractal dimension of 

intersection points using box counting, x2 is the maximum touch with scanlines 

in X direction, x3 is the maximum touch with scanlines in Y direction, x4 is the 

box-counting fractal dimension of fracture lines. The constants a, b, c, d and f 

are the empirical constants which are 25.0081, 0.0462, 2.8952, -1.7052 and -

34.6746, respectively. 

 

To validate Eq. 3, another data set with random fracture orientation was 

created (Table  2.4).  
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Table  2.4 Fractures with random orientation and fixed length used to verify Eq. 3 (FD: Fractal 

dimension). 

Box Counting  

FD 

Sandbox Counting 

FD 

Box 

Counting 

FD 
Length 

(m) 
Density 

Intersection 

Point 

Mid 

Point 

Intersection 

Point 

Mid 

Point 

Scanline  

FD  

(in X 

direction) 

Scanline  

FD  

(in Y 

direction) 

Connectivity 

Index 

Maximum 

Touch 

with X 

Scanline 

Maximum 

Touch 

with Y 

Scanline Lines 

Permeability 

(mD) 

20 50 1.162 1.389 1.471 1.666 1.565 1.592 0.732 6271 6411.7 1.336 5.609 

20 100 1.577 1.623 1.930 1.834 1.424 1.522 1.435 12781.8 12668.2 1.504 27.343 

20 150 1.778 1.737 1.722 1.689 1.746 1.692 2.225 18925 19273.1 1.595 74.673 

20 200 1.868 1.806 1.827 1.865 1.546 1.530 2.853 25203.4 25366.6 1.657 124.025 

20 250 1.905 1.851 1.673 1.695 1.444 1.405 3.640 31793.3 31533.5 1.701 161.214 

40 50 1.605 1.384 1.623 1.381 1.180 1.204 3.478 12518.6 12937.7 1.501 77.643 

40 100 1.843 1.608 1.667 1.526 1.223 1.223 6.530 25526.4 24957.6 1.647 155.048 

40 150 1.913 1.717 1.786 1.695 1.236 1.237 9.439 37071.3 38459.9 1.722 266.795 

40 200 1.941 1.772 1.690 1.628 1.220 1.225 13.395 49687.1 52065.4 1.769 395.592 

40 250 1.957 1.815 1.747 1.683 1.177 1.167 16.858 64215.3 62891.1 1.798 459.049 

60 50 1.747 1.374 1.571 1.423 1.038 1.029 8.096 19184.8 18615.6 1.588 120.310 

60 100 1.912 1.581 1.575 1.531 1.052 1.059 15.968 37746 38245.3 1.714 274.240 

60 150 1.940 1.681 1.745 1.513 1.039 1.044 24.705 55872 57694.6 1.774 424.930 

60 200 1.964 1.722 1.762 1.573 1.039 1.041 32.229 75284.6 76324.5 1.814 583.337 

60 250 1.970 1.758 1.611 1.555 1.041 1.029 40.944 98140.7 92938.3 1.838 696.129 

80 50 1.839 1.344 1.605 1.518 0.979 0.969 13.702 26071.7 24958.9 1.641 185.112 

80 100 1.941 1.516 1.583 1.438 0.993 0.984 27.270 51452.3 49982 1.761 384.561 

80 150 1.967 1.591 1.653 1.474 0.980 0.982 41.930 75965.5 77090.8 1.816 621.084 

80 200 1.980 1.653 1.589 1.467 0.980 0.980 56.216 101970.6 102215.2 1.847 825.885 

80 250 1.984 1.660 1.566 1.434 0.986 0.981 70.622 128651.7 125923.1 1.866 1018.037 

 

 

 

 

Then, the FNP value of this fracture data set was predicted using the derived 

equation (Eq. 3) and plotted against actual FNP given in the last column of 

Table  2.4 (Figure  2.11). A seen, a good agreement was obtained between the 

actual and predicted FNPs.  
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R2 = 0.9551
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Figure  2.11 Actual vs. predicted fracture network permeability (FNP) plot to validate Eq. 3. 

 

 

 

2.5 Sensitivity analysis using experimental design 

Experiments can be used as a screening device to determine the importance of 

each variable and their combinations on the results (Cox and Reid, 2000). The 

full factorial and fractional factorial designs are used to determine the 

importance of each input variable on the output of the experiment or process 

(Saxena and Vjekoslav, 1971). 

 

In order to perform a sensitivity analysis and determine the relative importance 

of the network properties used in the above analysis considering the interaction 

among those network properties, the experimental design technique was 
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applied. We begin this analysis using the network properties only with fixed 

single fracture conductivity (aperture). Then, we changed the conductivity of 

single fractures in the network to investigate its effect compared to the network 

properties.  

 

In general, when the objective of the study is to determine which variable has 

the largest impact on the result of the process; the full factorial and fractional 

factorial design are preferred. The factorial design can be used as a screening 

device to evaluate quickly the importance of each variable and their 

combinations on the results and to keep the size of the experiment manageable 

(Cox and Reid, 2000). In this analysis, only two levels of each variable are 

considered. The factorial design has certain advantages over the commonly 

used method known as ‘one variable at a time’ where the levels of one variable 

are changed at a time but other variables are kept fixed. The factorial design 

requires fewer experiments; hence is less expensive and less time consuming 

and also makes it possible to determine the ‘interactions’ which is the 

combined effect of two or more variables. 

 

Two levels is a special case of factorial designs where each variable is studied 

at the two extreme levels and the number of the experiments is written as: 

 

                  runsdesignFactorialofNumberK =2                        (4) 

 

where 2 stands for the number of levels of each variable and K is the number 

of the variables (Saxena and Vjekoslav, 1971). If the effect of one variable is 

positive, it means that increasing the value of that variable from low to high 
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level will increase the response. If the effect is negative, it means that the 

response will decrease by increasing the value of that variable from low to high 

level (Montgomery, 2005). When the number of variables increases (e.g. 

exceed six), according to above correlation, the number of required runs 

increase significantly that makes the process unfeasible. In these situations, 

fractional factorial design can be used (Saxena and Vjekoslav, 1971). 

 

2.5.1 Sensitivity analysis- 1 

In this chapter, four variables, i.e. length, density, orientation, and conductivity 

were considered for two level full factorial designs. High and low levels of the 

values listed in Table  2.2 and Table  2.3 were considered (optimistic and 

pessimistic cases) for simplicity and they were presented by 1 and -1, 

respectively. Since we used permeability in X direction, we assumed that 

fracture permeability in the case with fractures in N-S & E-W direction is 

higher (optimistic case) than that in NW-SE & NE-SW direction (pessimistic 

case) (Table  2.5). 

 

 

 

Table  2.5 Levels for three fracture parameters (sensitivity analysis -1). 

 

Variable 
Optimistic 

(1) 
Pessimistic (-1) 

Length 80 20 

Density 250 50 

Orientation N-S & E-W NW-SE & NE-SW 

Conductivity 1500 1000 
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Sixteen tests (or runs) are needed for all possible combinations of two levels of 

these four variables (K) to form the matrix of runs (design matrix) according to 

the following relationship: 

 

       runsdesignFactorialofNumberK 1622 4 ==               (5) 

 

Once the design matrix is built, the experiment is performed (Saxena and 

Vjekoslav, 1971). Table  2.6 shows the uncoded design matrix with 

corresponding results. No two rows are identical; and Table  2.7 shows the 

equivalent design matrix with coding. 

 

 

Table  2.6 Uncoded two level factorial design matrix of runs with results. 

 

Run 

No. 

Length 

(m) 

Density 

(#/area) 
Orientation 

Conductivity 

(mD.m) 

Permeability 

(mD) 

1 20 50 NW-SE & NE-SW 1000 8.322 

2 80 50 NW-SE & NE-SW 1000 134.642 

3 20 250 NW-SE & NE-SW 1000 177.957 

4 80 250 NW-SE & NE-SW 1000 731.907 

5 20 50 N-S & E-W 1000 3.809 

6 80 50 N-S & E-W 1000 177.507 

7 20 250 N-S & E-W 1000 149.451 

8 80 250 N-S & E-W 1000 1066.250 

9 20 50 NW-SE & NE-SW 1500 19.725 

10 80 50 NW-SE & NE-SW 1500 228.451 

11 20 250 NW-SE & NE-SW 1500 252.487 

12 80 250 NW-SE & NE-SW 1500 1057.600 

13 20 50 N-S & E-W 1500 15.048 

14 80 50 N-S & E-W 1500 246.611 

15 20 250 N-S & E-W 1500 287.985 

16 80 250 N-S & E-W 1500 1683.890 
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Table  2.7 Coded two level factorial design matrix of runs with results. 

 

Run 

No. 
L D O C Kx 

1 -1 -1 -1 -1 8.322 

2 1 -1 -1 -1 134.642 

3 -1 1 -1 -1 177.957 

4 1 1 -1 -1 731.907 

5 -1 -1 1 -1 3.809 

6 1 -1 1 -1 177.507 

7 -1 1 1 -1 149.451 

8 1 1 1 -1 1066.250 

9 -1 -1 -1 1 19.725 

10 1 -1 -1 1 228.451 

11 -1 1 -1 1 252.487 

12 1 1 -1 1 1057.600 

13 -1 -1 1 1 15.048 

14 1 -1 1 1 246.611 

15 -1 1 1 1 287.985 

16 1 1 1 1 1683.890 

 

 

 

As mentioned earlier, one of the advantages of the full factorial design is that 

in addition to the determination the effect of each variable, the effect of 

combination of these variables (interaction) can be evaluated (Saxena and 

Vjekoslav, 1971). There are eleven combinations for these four variables.  

 

Table  2.8 shows the calculation matrix of four variables and their 

combinations, where L, D, O and C stand for length, density, orientation and 

conductivity, respectively. Their all different possible combinations such as 

LD, LO, LC, DO, DC, OC, LDO, LDC, LOC, DOC, and LDOC were included 

in the sensitivity analysis.  
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Table  2.8 Calculation matrix with the result of four variables (L=Length, D=Density, 

O=Orientation and C=Conductivity) and the combinations of these variables. 

Run 

No. 
L D O C LD LO LC DO DC OC LDO LDC LOC DOC LDOC Kx 

1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 8.322 

2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 134.642 

3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 177.957 

4 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 731.907 

5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 3.809 

6 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 177.507 

7 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 149.451 

8 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1066.250 

9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 19.725 

10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 228.451 

11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 252.487 

12 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1057.600 

13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 15.048 

14 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 246.611 

15 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 287.985 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1683.890 

 

 

 

The factor effect shows the influence of each factor (variable or combination) 

on the response of the experiment. Hence, to determine the effect of each 

variable and their combinations on the response of the experiment, the 

difference in the average response for the two-level of the factor is calculated 

as follows (Mason et al. 2003): 

 

Factor effect = average response at one level − average response at a 

second level 

                                                                                                     (6) 
 

For example, the effect of fracture length on the fracture network permeability 

is calculated as follows: 
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509.551
8

985.287048.15487.252725.19451.149809.3957.177322.8

8

890.1683611.246600.1057451.228250.1066507.177907.731642.134

=






 +++++++

−






 +++++++
=LE  

 

The effects of each variable and their combinations are presented in Table  2.9 

as a vector of effects. 

 

 

Table  2.9 Vector of effects. 

 

Factor Absolute Effect 

Density 571.676 

Length 551.509 

Length/Density 366.433 

Conductivity 167.744 

Length/Orientation 127.982 

Orientation 127.433 

Density/Conductivity 121.355 

Density/Orientation 114.474 

Length/Density/Orientation 110.428 

Length/Conductivity 108.817 

Length/Density/Conductivity 73.750 

Density/Orientation/Conductivity 47.602 

Orientation/Conductivity 41.385 

Length/Density/Orientation/Conductivity 31.561 

Length/Orientation/Conductivity 25.425 

 

 

 

Also the vector of effect is presented in Figure  2.12 as a Pareto chart. It is 

observed that, fracture density, length and their combination have the most 

remarkable effect on the FNP. This effect is quantitatively seen in Figure  2.12 

as relative to the other parameters. In having a percolating fracture network 
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with random orientation, the fracture density and fracture length mutually play 

a critical role. 

 

Figure  2.12 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.5. 

 

 

 

2.5.2 Sensitivity analysis- 2 

In the next sensitivity analysis, we reduced the number of parameters to three 

by taking the top three single most influential parameters in Figure  2.12 

(density, length, and conductivity). We generated another model where 

fractures are only in E-W(X) direction to minimize the orientation effect. They 

are distributed in E&W direction with angles between 0
o
 and 10

o
. For this case, 

we considered three variables of which the extreme values are presented in 

Table  2.10.  
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Table  2.10 Three variables and their extreme levels (sensitivity analysis -2). 

Variable Optimistic(1) Pessimistic(-1) 

Length 80 20 

Density 250 50 

Conductivity 1500 1000 

 

 

 

The result of the factorial design is shown in Figure  2.13 as a Pareto chart. The 

fracture length has higher effect on the FNP than fractures density. One can 

infer that, as fractures preferentially are oriented in one direction, the fracture 

length is more critical in having a percolating network compared to the fracture 

density.  

 

 

Figure  2.13 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.10. 
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2.5.3 Sensitivity analysis- 3 

In the third sensitivity analysis, we defined another data set where maximum 

length, density and conductivity were different from the previous data set and 

also the fracture orientation defined in N-S & E-W direction only. These 

properties are presented in Table  2.11.  

 

 
Table  2.11 Levels for three fracture parameters (sensitivity analysis -3). 

 

Variable Optimistic(1) Pessimistic(-1) 

Length 60 40 

Density 150 50 

Conductivity 2000 500 

 

 

The results are presented in a Pareto chart (Figure  2.14). As seen, the 

conductivity has the most influence on the fracture network permeability 

because the range of conductivity variation (from 500 to 2000 mD.m) is high.  

 

Figure  2.14 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.11. 
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The three sensitivity analyses done so far imply that there exists a limit where 

single fracture conductivity (or parameters such aperture, surface roughness 

that control the conductivity) starts controlling the FNP. This is a critical point 

as typical practice to determine the FNP is to use 1-D well data and extend it to 

the whole reservoir. Practitioners typically use the average fracture aperture 

value and the number of fractures obtained from core and image log data to 

estimate the FNP and to construct the fracture permeability map. This, 

however, lacks important information regarding the connectivity and average 

fracture length to the extent of whole reservoir (2-D or 3-D data). Although the 

fracture aperture values obtained through core or log data are useful 

information and could be extrapolated to the rest of the reservoir, the fracture 

density obtained through these sources is limited to the vicinity of wellbore 

and may not be representative of the whole system. Hence it is critical to 

determine beyond which values of single fracture properties like aperture, 

fracture network properties become the controlling parameters. Beyond this 

critical value, the wellbore related data may not be useful to determine the FNP 

for the whole reservoir. A few more sensitivity analyses as similar to the 

previous ones were performed to eventually determine this limiting 

characteristic fracture network and single fracture values. 

 

2.5.4 Sensitivity analysis- 4 

In this case, the conductivity was kept constant (1000 mD.m). The two levels 

of each variable were presented in Table  2.12.  
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Table  2.12 Levels for three fracture parameters (sensitivity analysis -4). 

 

Variable Optimistic(1) Pessimistic(-1) 

Length 80 20 

Density 250 50 

Orientation N-S&E-W NW-SE&NE-SW 

 

 

 

The Pareto chart is given in Figure  2.15. As seen, like the first sensitivity 

analysis, the fracture density and length and their combination are the most 

influential factors on the FNP. 

 

 

Figure  2.15 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.12. 
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2.5.5 Sensitivity analysis- 5 

This case is exactly the same as the first data set but this time the conductivity 

range is wider (Table  2.13).  

 

 

Table  2.13 Levels for four fracture parameters (sensitivity analysis -5). 

 

Variable Optimistic(1) Pessimistic(-1) 

Length 80 20 

Density 250 50 

Orientation N-S & E-W NW-SE & NE-SW 

Conductivity 2000 500 

 

 

The results show that, like sensitivity analysis-1, the fracture density and 

length are the most influential factors (Figure  2.16).  

 

Figure  2.16 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.13. 
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The conductivity turned out to be more important than the combination of 

density and length but the density and length individually are still the 

dominating parameters. Note that this case represents the highest values and 

the widest range of all four parameters. Although the highest conductivity 

values were used, the network characteristics still dominate over the single 

fracture characteristics. 

 

2.5.6 Sensitivity analysis- 6 

This data set in terms of orientation is similar to the second data set, but the 

ranges of length, density and conductivity were decreased to the lowest values 

(Table  2.14).  

 

 

Table  2.14 Levels for three fracture parameters (sensitivity analysis -6). 

 

Variable Optimistic(1) Pessimistic(-1) 

Length 40 20 

Density 100 50 

Conductivity 1000 500 

 

 

 

The results are shown as a Pareto chart in Figure  2.17. In this case, the density, 

length, and their combination are still the dominating parameters over single 

fracture conductivity. 
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Figure  2.17 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.14. 

 

 

 

2.5.7 Sensitivity analysis- 7 

This case has the same orientation as the data sets used in the second and sixth 

sensitivity analyses. Unlike the sixth data set, the highest values of the length, 

density and conductivity were used (Table  2.15).  

 

 

Table  2.15 Levels for three fracture parameters (sensitivity analysis -7). 

 

Variable Optimistic (1) Pessimistic (-1) 

Length 80 60 

Density 250 200 

Conductivity 2000 1000 
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The Pareto chart given in Figure  2.18 shows the results. Here, the conductivity 

became the most influential factor on the FNP. 

 

 

Figure  2.18 Pareto chart of the absolute effect of different variables and their combinations for 

the case given in Table 2.15. 
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problems. Fortunately, the authors' 2-D fracture network data set is close to a 

linear problem. Therefore, the authors decided to use 2-level designs for this 

problem.  

 

Here we performed a three-level design for a case which is similar to the 

sensitivity analysis # 5 (Table  2.13) in terms of the range of each variable. In 

this exercise, only three variables (length, density, and conductivity) were 

assigned three levels and the last one (orientation) has only two levels as given 

in Table  2.16. The results of this experiment are shown in Figure  2.19. In this 

case, the R-squared value is equal to 0.994.  

 

 

Table  2.16 Levels for four fracture parameters (three-level). 

 

Variable High middle Low 

Length 80 40 20 

Density 250 150 50 

Orientation N-S & E-W _______ NW-SE & NE-SW 

Conductivity 2000 1000 500 
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Figure  2.19 Pareto chart showing the results of the three-level factorial design. 

 

 

 

As a next step, the high-order interactions were not considered (Figure  2.20), 

and the R-squared value became 0.988, which is very close to the previous 

one. Hence, Figure  2.19 and Figure  2.20 suggest that single (linear) factors 

such as fracture length and density are the most influential parameters on the 

response (FNP), which is similar to the two-level design given in Figure  2.16. 

This validates that our assumption on the linearity of relationship between 

different fracture network parameters and the FNP and also using the two-level 

full factorial design to minimize the number of runs without affecting the 

results.  
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Figure  2.20 Pareto chart showing the results of the three-level factorial design. 

 

 

 

It is necessary to mention that the second order interaction terms cannot be 

ignored in some cases and in this chapter, the second order terms often come 

on top three in the ranking, such as length/Density in Figure  2.12, Figure 

 2.13, Figure  2.15, Figure  2.16 and Figure  2.17, Length/Conductivity in 

Figure  2.14 and Figure  2.18, and Length^2 in Figure  2.19, etc.  

 

The work presented in this chapter is based on 2-D fracture networks and the 

following conclusions apply to this assumption as well as others stated in the 

chapter. 
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2.7 Conclusions 

1. The effects of fracture network parameters, namely fracture density, 

length, connectivity, orientation, and aperture on the fracture network 

permeability (FNP) were studied. The most influential fracture network 

characteristics were identified to be the box-counting fractal dimension 

of intersection points and fracture lines, and maximum touch with 

scanline in x- and y-directions. A correlation between them and the 

FNP was obtained through a non-linear multivariable regression 

analysis and validated.  

 

2. It was shown that among four parameters and their combinations, the 

fracture density and length, and their combination have the most 

important impact on the FNP since they are the parameters having 

direct impact on obtaining a percolating network. In general, the 

network properties dominate over single fracture conductivity to be 

effective parameters on the FNP.  

 

3. The conductivity of individual fractures starts becoming the dominating 

term over the network properties as the density and length values 

decrease reaching certain -low- range and the conductivity is high 

enough (sensitivity analysis-3). This is also true for the cases of high 

fracture density and length but high single fracture conductivity 

(sensitivity analysis-7). The network properties dominate over single 

fracture conductivity in the case of low fracture density and length, and 

low single fracture conductivity.  
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3 Artificial Neural Networks for Predicting the 
Equivalent Fracture Network Permeability 

 

 

 

 

 

 

3.1 Overview 

This chapter presents a new and practical approach to estimate the equivalent 

fracture network permeability (EFNP) using two different methods, i.e. 

multivariable regression analysis (MRA) and artificial neural networks (ANN). 

Different statistical and fractal characteristics of twenty natural fracture 

patterns collected from the outcrops of geothermal reservoirs were measured 

and then correlated to the EFNP using MRA and several empirical equations 

with different numbers of variables proposed. Next, synthetic fracture 

networks were generated and used for validation purposes. The EFNP of these 

synthetic fracture networks were predicted using the derived empirical 

equations. Also as a final effort, we took advantage of the capability of ANN 

to improve the correlations obtained through the MRA.  

 

3.2 Derivation the empirical equation 

Twenty different 2-D natural fracture patterns were selected representing 

characteristic fracture networks. Ten of them were collected from different 
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sources in the literature and a great portion of them were from the outcrops of 

geothermal reservoirs (Table  3.1).  

 

 

Table  3.1 Sources of natural fracture patterns used in the chapter. 

 

Pattern Reference 

1 Babadagli, 2000 

2 Babadagli, 2000 

3 Babadagli, 2001 

4 Babadagli, 2001 

5 Babadagli, 2001 

6 Babadagli, 2001 

7 Babadagli, 2001 

8 Odling, 1992 (A) 

9 Odling and Webman, 1991 

10 Odling and Webman, 1991 
 

 

 

 

The other ten patterns were acquired from the outcrops of the producing 

formations in the Kizildere, Germencik, and a few other smaller size 

geothermal fields in western Turkey. Some representative patterns are shown 

in Figure  3.1. 
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a.   Outcrop of a producing formation (limestone) in the Kizildere field. 

 

 

           
b. Outcrop of a producing formation (limestone) in the Karahayit-Pamukkale field. 

 

15 cm 

15 cm 
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c. Outcrop of a producing formation (marble) in the Germencik field. 

 

            
d. Outcrop of a producing formation (marble) in the Germencik field. 
 

Figure  3.1(a, b, c and d) Typical natural (outcrop) fracture patterns from the geothermal fields 

in western Turkey used in the chapter. 

15 cm 

15 cm 
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Although the images are at meter-scale, to be consistent with the previous 

chapter that used 100x100 m
2
 synthetic network patterns (Jafari and Babadagli, 

2008), the images were first digitized in a 100x100 m
2
 square domain. The 

same process was repeated at the original scale, as will be explained later. For 

comparison, representative synthetic fracture patterns are given in Figure  3.2.  

 

 

 
a. Two fracture sets oriented in NW-SE & NE-SW. 
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b. Two fracture sets oriented in N-S & E-W. 

 

 
c. Fractures distributed randomly in all directions. 

 

 

Figure  3.2(a, b and c) Typical synthetic of natural patterns representing different fracture 

network characteristics (density, length, orientation). 
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Five statistical and fractal characteristics of the networks were measured as 

they showed the highest correlation with the EFNP in the previous chapter for 

synthetic networks (Jafari and Babadagli, 2008). They are given in Table  3.2. 

Different fractal features of fracture patterns using different fractal techniques 

were considered in addition to the statistical parameters shown in the previous 

chapter (Jafari and Babadagli, 2008). Using a commercial software package 

(FRACA), the equivalent permeability tensor of each fracture model with 

constant conductivity was calculated. In this exercise, the permeability in the Z 

and Y directions were not taken into account and only the permeability in the 

X direction of the equivalent permeability tensor was considered (Table  3.2).  
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Table  3.2 Natural fracture patterns in the 100x100 m
2
 square domain. 

 
FD of Intersection 
Points using Box 

Counting 
Technique 

Connectivity 
Index 

Maximum 
Touch with X 

Scanning Lines 

Maximum 
Touch with Y 

Scanning Lines 

FD of Fracture 
Lines using Box 

Counting 
Technique 

Conductivity 
mD.m 

Permeability  
mD 

1.867 1.064 15608 21143 1.557 1000 28.801 

1.820 1.704 15396 17481 1.521 1000 85.936 

1.892 1.516 19585 24571 1.598 1000 108.988 

1.750 1.407 13331 15887 1.443 1000 56.751 

1.774 1.465 15486 16721 1.487 1000 43.032 

1.870 1.422 18933 24001 1.576 1000 104.354 

1.872 1.275 15916 31323 1.630 1000 106.506 

1.800 1.271 13364 16592 1.528 1000 49.509 

1.769 1.745 16978 17563 1.567 1000 66.102 

1.770 1.496 14366 18920 1.562 1000 70.835 

1.298 1.500 489 317 1.270 1000 23.991 

1.347 1.100 759 763 1.369 1000 10.387 

0.797 1.091 114 266 1.264 1000 38.106 

1.672 1.218 4720 5612 1.484 1000 11.863 

1.660 1.149 4071 3094 1.493 1000 5.649 

1.378 1.020 860 1210 1.481 1000 88.345 

1.577 1.041 4697 2680 1.513 1000 9.085 

1.893 2.611 4767 5473 1.682 1000 98.342 

1.647 1.369 1687 1758 1.583 1000 21.625 

1.653 1.558 996 1281 1.515 1000 29.411 

FD: Fractal Dimension 

 

 

 

 

The first and fifth columns in the table show the fractal dimension of fracture 

intersection points and fracture lines, respectively, in the domains using the 

box counting technique. The second one is the number of fracture line 

intersections divided by the number of fracture lines or density. The third and 

forth ones are defined as a result of the intersection between fracture lines and 

imaginary scanning lines in each X and Y direction. 
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Then, the relationship between these parameters and EFNP was researched 

through multivariable regression analysis and three empirical equations were 

derived with 4, 5 and 6 independent variables (Table  3.3). 

 

 

Table  3.3 Derived equations for EFNP (K) with different number of independent variables 

(Method: MRA). 

Independent 
Variables 

Derived Equation 

4 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+ln(x4)+f 

5 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+e*ln(x4)+f*ln(x5)+g 

6 Ln(K) = a*exp(b*x1)+c*ln(x2)+d*ln(x3)+e*ln(x4)+f*ln(x5)+g*ln(x6)+h 

 

 

 

Jafari and Babadagli (2008) proposed an equation to predict the EFNP (the 

same as the first equation in Table  3.3 but different constant coefficients). 

Initially, this equation was applied on natural fracture patterns. The 

comparison of the actual and calculated EFNPs is shown in Figure  3.3. 

Though the same scale (100x100 m
2
) was used, the correlation is not very 

strong due to the fact that the equation was derived using synthetic (and 

random) patterns which show topologically different characters (poor 

connectivity, dead-end fractures, isolated fractures, etc. exist in the synthetic 

ones).  
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Figure  3.3 Actual EFNPs vs. estimated ones using the Jafari and Babadagli (2008) equation 

with 4 independent variables for natural patterns. 

 

 

 

In Table  3.3, K stands for permeability in mD. In the first equation, x1, x2, x3 

and x4 are the fractal dimension of fracture intersection points using the box 

counting technique, maximum intersection (touch) between fracture lines and 

the imaginary scanning line in X direction, maximum intersection (touch) 

between fracture lines and the imaginary scanning line in Y direction, and 

fractal dimension of fracture lines using the box counting technique, 

respectively. In the second equation, x1, x2, x3, x4 and x5 are the fractal 

dimension of fracture intersection points using the box counting technique, 

maximum intersection (touch) between fracture lines and the imaginary 
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scanning line in X direction, maximum intersection (touch) between fracture 

lines and the imaginary scanning line in Y direction, fractal dimension of 

fracture lines using the box counting technique, and fracture conductivity 

respectively. In the third equation, x1, x2, x3, x4, x5 and x6 are the fractal 

dimension of fracture intersection points using the box counting technique, 

connectivity index, maximum intersection (touch) between fracture lines and 

the imaginary scanning line in X direction, maximum intersection (touch) 

between fracture lines and the imaginary scanning line in Y direction, fractal 

dimension of fracture lines using the box counting technique, and fracture 

conductivity, respectively. In all these equations, a, b, c, d, e, f, g and h are 

constant coefficients.  

 

Having seen poor correlation with the existing correlation derived by Jafari and 

Babadagli (2008) using 800 synthetic patterns of different fracture network 

characteristics (Figure  3.3), new equations were generated by MRA using only 

20 natural patterns from different geothermal reservoir outcrops patterns. The 

equations are the same types as given in Table  3.3. The comparisons of actual 

and calculated EFNP values are shown in Figure  3.4, Figure  3.5 and Figure 

 3.6. These plots show the reliability of the equations and they slightly increase 

with increasing variables.  
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Figure  3.4 Actual EFNPs vs. estimated ones using the equation with 4 independent variables 

for natural patterns. 
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Figure  3.5 Actual EFNPs vs. estimated ones using the equation with 5 independent variables 

for natural patterns. 
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Figure  3.6 Actual EFNP vs. estimated ones using the equation with 6 independent variables 

for natural patterns. 

 

 

 

To validate these equations, different synthetic patterns according to the 

following algorithms were generated. First, synthetic 2D fracture models 

within 100x100 m
2
 square domains were generated (typical patterns are shown 

in Figure  3.2). A wide range of fracture lengths, densities, and orientations 

were considered in the patterns used for this validation process. In each model, 

fracture seeds are distributed according to a uniform distribution and each 

fracture is represented as a line in the fracture domain. The range of each 

fracture parameter in this algorithm is as follows:  
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(1) Fracture length (in meters):  (a) constant: 20, 40, 60, and 80 and (b) 

variable with a normal distribution and a mean value of 20, 40, 60, and 

80,  

 

(2) Density (# of fractures/domain): 50, 100, 150, 200 and 250 (domain is 

100x100 m
2
), and 

 

(3) Orientation: Two fracture sets in the domain with the directions of (a) 

N-S & E-W, (b) NW-SE & NE-SW and (c) totally random.  

 

It should be mentioned that instead of aperture, conductivity was used, which 

is related to aperture since the product of the intrinsic fracture permeability and 

the fracture aperture with parallel walls is defined as conductivity (Bourbiaux 

et al. 1998). Each data set had twenty different combinations of length and 

density. Also, five different realizations using different random number seeds 

for each combination were tried, to include the effect of randomness. Each of 

these models could represent one grid cell in the dual-porosity simulators. 

Then using the same software, their equivalent fracture permeability was 

measured. In order to validate the derived equations, these permeability values 

were estimated using these equations and plotted versus each other for 

comparison purposes (Figure  3.7, Figure  3.8 and Figure  3.9).  
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Figure  3.7 Actual EFNP vs. estimated ones using the equation with 4 independent variables. 

Validation of the equation derived for natural patterns using synthetic patterns. 
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Figure  3.8 Actual EFNPs vs. estimated ones using the equation with 5 independent variables. 

Validation of the equation derived for natural patterns using synthetic patterns. 
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Figure  3.9 Actual EFNP vs. estimated ones using the equation with 6 independent variables. 

Validation of the equation derived for natural patterns using synthetic patterns. 

 

 

 

 

The results show that the new equations with 4 and 5 variables derived using 

natural patterns showed reasonably good correlation for high permeability 

cases (higher density and longer fractures, i.e., well connectivity). The 

equation with 6 variables represented an opposite case and the deviation from 

the actual values was significantly higher for higher EFNP cases. Obviously, 

the nature of the synthetic fracture patterns is different and this difference is 

pronounced clearly through this analysis. For example, the additional 

parameter used in the 6-variable equation is the connectivity index and when 

this parameter is added in the MRA, the correlation becomes much weaker as 

seen in Figure  3.9. In fact, the density and length distributions of natural and 

synthetic (random) patterns can be approximated as they are statistical 
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parameters but the connectivity characteristics depend on the nature of the 

fracturing process and may differ in natural and synthetic patterns. In other 

words, synthetic and natural fracture patterns may have the same density and 

fracture length distributions (statistically similar to each other) but connectivity 

is a topological parameter that has to do with the nature of the fracturing 

process (and other parameters like lithology) which may not be approximated 

as a random process. Also note that in generating synthetic patterns we 

assumed that fracture seeds are distributed according to a uniform distribution 

which may not be always the case in the field. This directly affects the 

connectivity rather than density and length as they are predefined parameters. 

These observations indicate that one has to pay attention when generating 

fracture networks through the discrete fracture network approach or similar 

techniques to represent the natural pattern, especially from an EFNP point of 

view.  

 

The efforts made so far compared natural and synthetic pattern characteristics 

by generating 100x100 m
2
 (typical numerical grid size scale) synthetic patterns 

and approximating the meter-scale natural patterns to the same size. The next 

step is to analyze the effect of the domain scale on the correlations and scale 

dependency of the EFNP. To achieve this, we focused on a much smaller 

fracture domain (meter-scale) using the same patterns at their original scale. 

The same natural patterns were digitized in a 1x1m square domain. Some 

patterns were larger than 1x1m
2
 (at higher scales) and they were excluded in 

this analysis. Exactly the same procedure followed for the bigger scale was 

applied to derive new correlations based on the equations (with new 

coefficients this time) shown in Table  3.3. Then the equations were tested to 
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predict the EFNPs. The correlations are good for 4 and 5 variable cases 

(Figure  3.10 and Figure  3.11, respectively) except two patterns.  

 

 

5

6

7

8

9

10

5 6 7 8 9 10

Ln K(actual), mD

L
n

 K
(e

st
im

a
te

d
),

 m
D

 
Figure  3.10 Actual EFNP vs. estimated ones using the equation with 4 independent variables 

for 1x1 m
2
 square domain. Derived using only natural patterns. 
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Figure  3.11 Actual EFNP vs. estimated ones using the equation with 5 independent variables 

for 1x1 m
2
 square domain. Derived using only natural patterns. 

 

 

 

These two patterns belong to a different lithology showing fracture patterns 

strongly oriented in one direction. When the 6-variable equation is used, one 

may observe additional two patterns showing deviation (Figure  3.12). They 

belong to much smaller size patterns than 1x1m
2
 but are stretched out to this 

size while digitizing and are placed in a 1x1m
2
 domain. Other than those 

exceptions, the patterns showed reasonably good correlations. 
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Figure  3.12 Actual EFNP vs. estimated ones using the equation with 6 independent variables 

for 1x1 m
2
 square domain. Derived using only natural patterns. 

 

 

 

In summary, the equations given in Table  3.3 are useful in estimating the 

EFNP of not only the synthetic but also the natural fracture patterns. One has 

to pay attention, however, to the scale dependency and use proper coefficients 

at different scales. 

 

3.3 Artificial neural networks 

We also attempted to improve the accuracy of the equivalent fracture network 

prediction. It is believed that the relationships between the EFNP and different 
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fracture networks parameters are nonlinear and very complicated; thus, 

multivariable regression analysis may be limited in capturing these complex 

relationships. Therefore, an ANN was selected to capture relationships 

between the EFNP and fracture network parameters, and was compared with 

the MRA analysis results. 

  

A back propagation network with a supervised learning procedure was selected 

to model the problem, and different input variables and numbers in the input 

layer, different numbers of the hidden layers (between input and output layers), 

and neurons in each of these hidden layers were tested. In these structures, only 

one output in the output layer was defined (Figure  3.13).  

 

 

Figure  3.13 Topology of a back propagation network used in this chapter.  

 

 

 

First, all natural fracture patterns data were put together and divided into three 

sets: 1) Training set 2) Validation set and 3) Test set. The “Training set” was 

used to train the network and capture the existing relationship. In the training 
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process, inputs and the target are given and the network calculates its error, i.e. 

the difference between the target and response, and adjusts its weights on the 

connections between the different neurons. In order to prevent memorizing of 

the data set by the network, another set called the “Validation set” was fed 

during the training process. Thus, as soon as error for this set starts increasing, 

the training process stops. The last data set, i.e. the “Test set” was used to 

check the ability of the network to predict unseen or new data (MATLAB 

user’s guide). The plot of the training, validation and test errors is shown in 

Figure  3.14. Note that in the training process, some synthetic patterns were 

also used in addition to the natural ones, to be able to have extreme values of 

EFNP (covering the whole range). 

 

 
 

Figure  3.14 The error of three different data sets (training, validation and test) during the 

training process. 
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Then, the real equivalent fracture permeability values of all these three data 

sets are plotted versus the estimated ones by the trained network, which shows 

a very promising correlation coefficient (Figure  3.15). 

 

 
 

Figure  3.15 Cross plot of actual EFNP of the entire data set (training, validation and testing) 

versus the estimated ones. All natural patterns with some addition of synthetic patterns were 

used for training, validation, and testing. 

 

 

 

Finally, only the input parameters of the synthetic fracture patterns are given to 

the trained network and it predicts the equivalent fracture network permeability 

values. The results are shown in Figure  3.16. Compared to the cases given in 

Figure  3.7, Figure  3.8 and Figure  3.9, the reliability of the correlations 

improved significantly.  
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Figure  3.16 Cross plot of actual EFNP of synthetic fracture patterns versus the estimated ones. 

 

 

 

3.4 Conclusions 

1. The relationship between different statistical and fractal parameters of 

fracture networks and their equivalent fracture network permeability 

(EFNP) for natural patterns obtained from geothermal reservoir 

outcrops was studied. It was shown that the parameters that could be 

used for derivation of the empirical equations to predict EFNP are 

fractal dimension of fractures intersection points and fracture lines 

using box counting technique, connectivity index, maximum number of 

intersections between fractures and imaginary scanning lines in the X 
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and Y directions, and conductivity.    

 

2. The equations given in Table  3.3 are useful in estimating the EFNP of 

not only the synthetic but also the natural fracture patterns. One has to 

pay attention, however, to the scale dependency and use proper 

coefficients at different scales.  

 

3. The connectivity was found to be a critical parameter in using synthetic 

(or random) approaches in generating/representing natural fracture 

networks. The density and length distributions of natural and synthetic 

(random) patterns can be approximated as they are statistical 

parameters but the connectivity characteristics depend on the nature of 

the fracturing process and may differ in natural and synthetic patterns. 

In other words, synthetic and natural fracture patterns may have the 

same density and fracture length distribution (statistically similar to 

each other) but connectivity is a topological parameter that has to do 

with the nature of the fracturing process (and other parameters like 

lithology) which may not be approximated as a random process. These 

observations indicate that one has to pay attention when generating 

fracture networks through the discrete fracture network approach or 

similar techniques to represent the natural pattern, especially from an 

EFNP point of view.  

 

4. It was found that a BPP network with one hidden layer containing 5 

neurons is capable enough to capture the relationship between the 

fracture network parameters as inputs and the EFNP as an output. This 
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type of ANN configuration yielded more reliable correlations compared 

to the ones obtained with the MRA.  
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4 Effective Fracture Network Permeability of 
Geothermal Reservoirs 

 

 

 

 

 

 

4.1 Overview 

This chapter presents a new, simple, computationally efficient and practical 

method to accurately calculate effective fracture network permeability (EFNP) 

values for fracture dominated reservoirs. A set of fracture patterns from the 

outcrops of geothermal reservoirs in southwestern Turkey were chosen and 

their EFNP values were predicted using the new method; the computed 

permeability values are comparable to those obtained with a commercial 

software package and actual were tested. The proposed method is based on 2D 

fracture outcrop data, and is therefore limited to 2-D fracture networks.  

 

4.2 Selection of data 

In our previous work, only synthetic fracture patterns were used to derive 

empirical equations (Jafari and Babadagli, 2008, 2009a, and 2010a). However, 

the mechanism of fracturing and the stress-strain regimes of natural patterns 

caused by the matrix heterogeneity (and other lithological characteristics) are 

totally different for each natural pattern; synthetic generated patterns are not 
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able to mimic these processes properly. As a result, the fracture connectivity of 

natural patterns may differ substantially from the synthetically generated ones. 

Therefore, it was decided to use natural fracture patterns from various 

reservoirs and formations with different characteristics for this work. To 

simplify analysis, the stress-strain regimes are not considered. However, many 

different fracture patterns were collected and classified based on reservoir type 

and lithology. The fracture patterns implicitly represent different fracture 

mechanisms due to variations in properties of reservoir rocks. Fracture patterns 

from six different regions/reservoirs (as indicated in Figure  4.1) and three 

different lithologies at several different scales are employed for the statistical 

representation of fracture network characteristics.  
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Figure  4.1 Plate tectonics map and location of geothermal fields in southwestern Turkey. Five 

points in the lower map indicate the field and outcrop locations where fracture patterns were 

photographed. (http://neic.usgs.gov/neis/eq_depot/2003/eq_030501/neic_tgac_anaflt1.gif) 

 

 

A total of twenty two different fracture patterns at different scales were 

selected from different locations representing the geothermal reservoir 

formations in southwestern Turkey. Thus, seven different geothermal 
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reservoirs in five different fields including the ones from two major fields, i.e. 

Kizildere and Germencik, were studied and the outcrop fracture patterns were 

mapped (Babadagli, 2001).  

 

Figure  4.1 shows the tectonic map of Turkey and the locations of studied 

areas. The outcrops of geothermal reservoir rocks were mapped for 

multivariable regression analysis in order to derive empirical correlations 

which in turn could be used to calculate equivalent fracture network 

permeability (EFNP). Lithologies include marble, quartzite and limestone. 

Table  4.1 presents the field names (or location of the outcrops) and the 

associated lithology.  
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Table  4.1 The geothermal reservoirs with different lithologies in southwestern Turkey used in 

this chapter. 

Fracture 
Pattern 
Number 

Field Name Lithology 

1 Field 1 Omerbeyli - Germencik  Marble 

2 Field 1 Omerbeyli – Germencik Marble 

3 Field 1 Omerbeyli – Germencik Marble 

4 Field 1 Omerbeyli – Germencik Marble 

5 Field 1 Omerbeyli – Germencik Marble 

6 Field 1 Omerbeyli - Germencik Marble 

7 Field 1 Omerbeyli – Germencik Marble 

8 Field 1 Omerbeyli – Germencik Marble 

9 Field 1 Omerbeyli - Germencik Marble 

10 Field 2 Salihi - Kursunlu Marble 

11 Field 2 Salihi - Kursunlu Marble 

12 Field 3 Buldan (Kizildere formation) Limestone 

13 Field 3 Buldan (Kizildere formation) Limestone 

14 Field 3 Buldan (Kizildere formation) Limestone 

15 Field 4 Salavatli Marble 

16 Field 5 Kizildere (upper formation) Limestone 

17 Field 5 Kizildere (upper formation) Limestone 

18 Field 5 Kizildere (upper formation) Limestone 

19 Field 5 Kizildere (upper formation) Limestone 

20 Field 5 Kizildere (upper formation) Limestone 

21 Field 5 Kizildere (lower formation) Quartzite 

22 Field 5 Kizildere (lower formation) Quartzite 

 

 

 

Representative fracture patterns are shown in Figure  4.2 (a, b, c and d). As 

can be seen in the photos, most fractures are open to flow in the outcrop 

samples. In only one area, we observed fractures filled with minerals. In our 

analyses, all fractures are assumed to contribute to flow, i.e., they are not 

plugged by mineralization.  
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(a) Outcrop: A producing formation (limestone) in Field 5 lower formation (photo and fracture 

trace map). 

 

 

                                                                                                                       
(b) Outcrop: A producing formation (limestone) in Field 5 upper formation (photo and fracture 

trace map). 

 

 

                                                                                                                      
(c) Outcrop: A producing formation (marble) in Field 1 (photo and fracture trace map). 

15 cm 

15 cm 

15 cm 
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(d) Outcrop: A producing formation (marble) in Field 1 (photo and fracture trace map). 

 

Figure  4.2 (a, b, c and d) Samples of natural fracture patterns (outcrop) from different 

geothermal fields in southwestern Turkey used in the chapter. 

 

 

 

4.3 Data preparation  

In accordance with the previous chapters, the 2D maps of natural fracture 

patterns were digitized using a 100x100 m
2
 domain size and the fractal and 

statistical parameters of each fracture pattern were calculated. Image analyzer 

software ImageJ (Ferreira and Rasband, 2010) was employed to compute 

lacunarity. Lacunarity is a measure of gappiness (or hole or porosity) or visual 

texture of a fractal, and is useful for differentiating between two fractals having 

the same fractal dimension but different textures; it is defined as follows: 
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The lacunarity, Λ,  is calculated as the variation in pixel density for different 

ε (grid size). Initially, the number of pixels within each grid box is counted 

using a standard non-overlapping box count. For each ε, a coefficient of 

variance is computed from the standard deviation (s) and the mean (M) of 

number of pixels per box. The open source software, Fraclac V.2 for ImageJ 

(Karperien, 2005, Rasband, -2010), computes the lacunarity based on the pixel 

density at different box sizes for an image. A homogeneous fractal has a low 

lacunarity whereas an increase in void space in the texture of a fractal leads to 

an increase in lacunarity (Hamida and Babadagli, 2005).  

 

The digitized fracture patterns were exported to commercial fracture modeling 

software (FRACA) to calculate their equivalent fracture network permeability 

(EFNP). A 3D model with a grid block size of 100x100x10 m
3
 was constructed 

and each digitized 2D fracture pattern (i.e. the digitized mapped fracture traces 

from outcrops) was imported into the 3D model in such a way that all fractures 

were considered to be vertically touching the top and the bottom of the layer. 

The EFNP was calculated for the 3D model using the software package 

(FRACA). The EFNP values for all patterns are tabulated in Table  4.2.  
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Table  4.2 Statistical and fractal parameters of natural fracture patterns digitized using a 

100x100 m
2
 square box. 

FD of 
Intersection 
Points using 
Box Counting 

Technique 

Connectivity 
Index 

Maximum 
Intersection 

Points with X 
Scanning 

Lines 

Maximum 
Intersection 

Points with Y 
Scanning 

Lines 

FD of Fracture 
Lines using 

Box Counting 
Technique 

Lacunarity 
Conductivity 

mD.m 
Permeability  

mD 

1.774 1.465 15486 16721 1.592 0.372 1000 43.032 

1.786 1.303 15384 16494 1.583 0.404 1000 29.384 

1.678 1.360 10582 17700 1.565 0.442 1000 79.516 

1.870 1.422 18933 24001 1.625 0.360 1000 104.354 

1.549 1.046 8782 9515 1.427 0.478 1000 33.702 

1.769 1.745 16978 17563 1.596 0.355 1000 66.102 

1.770 1.496 14366 18920 1.604 0.308 1000 70.835 

1.869 1.152 15429 21813 1.626 0.296 1000 74.336 

1.554 1.069 8972 9876 1.415 0.470 1000 15.964 

1.771 1.016 11581 11543 1.522 0.370 1000 11.863 

1.634 1.250 18745 6399 1.491 0.427 1000 5.649 

1.745 1.066 14206 15393 1.567 0.426 1000 9.085 

1.872 1.275 15916 31323 1.646 0.348 1000 106.506 

1.820 1.395 17544 14811 1.581 0.393 1000 28.909 

1.800 1.271 13364 16592 1.561 0.342 1000 49.509 

1.704 1.447 8242 19627 1.597 0.301 1000 77.034 

1.867 1.064 15608 21143 1.623 0.304 1000 28.801 

1.820 1.704 15396 17481 1.582 0.474 1000 85.936 

1.892 1.516 19585 24571 1.651 0.325 1000 108.988 

1.750 1.407 13331 15887 1.580 0.389 1000 56.751 

1.722 1.444 12047 16869 1.565 0.507 1000 66.149 

1.690 1.352 10674 14886 1.501 0.499 1000 36.678 

FD: Fractal Dimension 
 

 

 

 

The fractal dimensions for different features of these 2D fracture networks 

(fracture intersection points and fracture network itself) are between 1 and 2 

indicating that these fracture patterns are fractal. The fractal dimensions listed 

in Table  4.2 are in line with the field observations of similar fracture patterns 
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obtained for other geothermal reservoirs of similar lithology (Acuna et al., 

1992 and 1995, Sammis et al., 1991 and 1992). 

 

4.4 Multivariable regression analysis and derivation of 

correlations 

An extensive multivariable regression analysis was performed to determine the 

type of relationship (linear or nonlinear –exponential, logarithmic) that might 

be present between the parameters given in columns 1 through 7 (inputs) and 

the EFNP listed in the last column (output) in Table  4.2. Seven parameters for 

deriving EFNP correlations were considered in the derivation process. These 

parameters are as follows: 

(1) Fracture intersection points: This is the set of points representing the 

intersection of two fractures. It represents the connectivity and directly 

relates to the permeability. The fractal dimension of the distribution of 

these points was measured by the box-counting technique. 

 

(2) Connectivity index: A ratio of the number of intersection points to the 

total number of fracture lines. 

 

(3) Maximum intersections with X- and Y-scanning lines: The number of 

intersections (hits) of the imaginary scan lines with a fracture (obtained 

for the whole fracture network pattern in both X- and Y- directions). 

The scan line distances were selected as 1/10 of a grid-block in both the 

x- or y-directions. In other words, when a 100x100 m
2
 grid is used, 

there are 1000 scan lines in each direction. Based on a sensitivity 
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analysis, the latter number of scan lines was found to adequately 

characterize all the fractures with different sizes. The number of 

intersections (hits) obtained for the whole pattern represent the density 

and orientation of the fracture network and are related to the length of 

the fractures.  

 

(4) Fractal dimension of fracture lines: Fractal dimension of fracture lines 

obtained by standard box counting techniques. 

 

(5) Lacunarity: As defined in Eq. 1. 

 

(6) Conductivity: Corresponds to the product of aperture and width of a 

single fracture. 

 

The first and fifth columns in Table  4.2 show the fractal dimension of fracture 

line intersection point and fracture lines in the domains using the box counting 

technique, respectively. An example of box-counting plot [log(r) vs. log n(r)] 

is given in Figure  4.3; it indicates the straight line behavior and upper and 

lower cut-offs of the fractal behavior.  
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Figure  4.3 Log (r) vs. log n(r) plot showing the slope (box counting fractal dimension) and the 

upper and lower cut-offs (within the 1m – 16m range, the behavior is fractal as indicated by a 

straight line) of the fractal behavior. The box size (r) is in meters. Here n denotes the number 

of boxes filled with the feature (fractures). 

 

 

 

In the second column, connectivity is defined as the number of fracture line 

intersections divided by the number of fracture lines or density. The third and 

fourth columns give the number of intersections between fracture lines and 

imaginary scanning lines in each X and Y direction, respectively. The sixth 

column shows lacunarity. The seventh column is the conductivity of each 

fracture which is used in lieu of aperture. Fracture conductivity is defined as 

the product of the intrinsic fracture permeability and the fracture aperture 
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(parallel wall model; Bourbiaux et al. 1998). Note that all the fractures were 

assigned a constant conductivity value of 1000mD-m. It should be stressed that 

the conductivity (single fracture aperture) does not play a critical role as 

compared to the network properties such as fracture density and length above 

the percolation threshold (Jafari and Babadagli, 2009a). The only exception is 

very low density and short fracture networks, and even for this type of fracture 

system the single fracture conductivity and fracture network properties are of 

equal importance. Therefore the assumption of constant conductivity is 

justified. The last column in Table  4.2 is the equivalent fracture network 

permeability calculated using the FRACA software.  

 

Once the best correlation type, i.e., linear, logarithmic, exponential etc., 

between each input parameter (given in Table  4.2, columns 1 through 7) and 

the EFNP (Table  4.2, column 8) was determined, correlations (equations) with 

different numbers of the independent variables (inputs) were generated. In 

order to investigate the effect of the lithology, three different  scenarios were 

considered that used: (1) all the available data points, (2) only fracture patterns 

in marble lithology, and (3) only  fracture patterns in  a specific reservoir with 

the same lithology (marble). 

 

For all the three scenarios, the equations, given in Table  4.3, were applied. The 

constants in the correlations differ from scenario to scenario. In Table  4.3, Rn 

is the correlation coefficient for each scenario, n being the scenario number 

(n=1, 2, 3).  

 

 



 

A version of this chapter has been accepted for publication 

Jafari, A. and Babadagli, T.: “Effective Fracture Network Permeability of Geothermal 

Reservoirs,” Geothermics: International Journal of Geothermal Research and its Applications. 

 

98 

Table  4.3 Equations for predicting EFNP with different numbers of independent variables and 

corresponding regression coefficients for three different scenarios (1: entire data set, 2: 

marbles only, 3: Field 1 only [see Table 4.1 for details]). 

Independent 
Variables 

Derived Equation R1 R2 R3 

3 Ln(K) =A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E 0.73 0.87 0.86 

5 Ln(K) = A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E.Ln(X4)+F.Ln(X5)+G 0.93 0.93 0.90 

6 Ln(K) =A.exp(B.X1)+C.Ln(X2)+D.Ln(X3)+E.Ln(X4)+F.Ln(X5)+G.Ln(X6)+H 0.93 0.94 1.0 

 

 

 

 

In the first equation (Table  4.3), X1, X2 and X3 are the fractal dimensions of 

fracture intersection points, fractal dimensions of fracture lines and lacunarity, 

respectively. In the second equation, X1, X2, X3, X4 and X5 are the fractal 

dimensions of fracture intersection points, connectivity index, maximum 

number of intersection points between fracture lines and the imaginary 

scanning lines in X and Y directions, and fractal dimensions of fracture lines, 

respectively. Finally, in the third equation, X1, X2, X3, X4, X5 and X6 are the 

fractal dimensions of fracture intersection points, connectivity index, 

maximum number of intersection points between fracture lines and the 

imaginary scanning lines in X and Y directions, fractal dimensions of fracture 

lines, and lacunarity, respectively. In all these equations, A, B, C, D, E, F, G 

and H are constant coefficients, and K is the EFNP in the X direction in mD. 
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4.5 Validation 

To validate the derived correlations, a total of ten new fracture patterns were 

chosen from the same geothermal reservoirs in southwestern Turkey (but not 

used in the deriving the correlations) and two other sources (Odling 1992, 

Odling and Webman 1991) as tabulated in Table  4.4.  

 

Table  4.4 Natural fracture patterns used for validation purposes. 

 

 

 

Using the correlations, and the fractal and statistical parameters of the latter 

fracture patterns, the EFNPs were obtained for each of the three scenarios. 

Then, the EFNPs were calculated using the FRACA, and the results are 

compared in Figure  4.4, Figure  4.5 and Figure  4.6. In these figures, the 

FRACA permeability refers to a permeability value calculated by assuming 

that all the fractures have a constant conductivity (aperture) value. The 

calculation of EFNP using the proposed correlations was significantly faster 

than the computation with FRACA, which requires significant amount of 

computer time to perform a flow simulation and calculate the EFNP even for 

relatively simple fracture patterns.  

Pattern Reference 

1 Babadagli, 2000 (Figure 4) 

2 Babadagli, 2000 (Figure 3) 

3 Babadagli, 2001 (Figure 4) 

4 Babadagli, 2001 (Figure 2-o) 

5 Babadagli, 2001 (Figure 2-n) 

6 Babadagli, 2001 (Figure 3) 

7 Babadagli, 2001 (Figure 2-p) 

8 Odling, 1992a (Figure 1-a) 

9 Odling and Webman, 1991 (Figure 2) 

10 Odling and Webman, 1991 (Figure 7) 
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Figure  4.4(a, b and c) FRACA equivalent fracture network permeability values versus the 

predicted ones using correlations for all 22 fracture patterns. The graph given inside the plot in 

Figure 4.4a shows the correlation without the three patterns at mm (thin sections) and cm (rock 

pieces) scale (see Figure 4.7). 
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Figure  4.5(a, b and c) FRACA equivalent fracture network permeability values versus the 

predicted ones using correlations derived for only marble lithologies (first eleven data points in 

Table 4.1). The graph given inside the plot in Figure 4.5a shows the correlation without the 

three patterns at mm (thin sections) and cm (rock pieces) scale shown in Figure 4.7.  
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Figure  4.6(a, b and c) FRACA equivalent fracture network permeability values versus the 

predicted ones using correlations derived for only Field 1 (first nine data points in Table 4.1). 

The graphs given inside the plots in Figures 4.6a and 4.6c show the correlation without the 

three patterns at  mm (thin sections) and cm (rock pieces) scale given in Figure 4.7. 
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4.6 Analysis and discussion 

Previously, we used synthetic patterns to generate correlations between the 

network properties and equivalent fracture network permeability (EFNP), and 

the correlations were validated using natural patterns (Jafari and Babadagli, 

2008; 2010a). The present chapter utilizes natural fracture patterns that show 

topological differences from the commonly used synthetic random fracture 

networks. The synthetic patterns may not reflect certain network characteristics 

observed in natural patterns such as fracture connectivity and the presence of 

isolated and dead-end fractures. To overcome the limitations of synthetic 

patterns, only natural fracture patterns were used for the derivation and 

validation of the proposed correlations.  

 

For the correlations with three independent variables, three patterns showed a 

large deviation from the correlation (Figure  4.4a, Figure  4.5a and Figure 

 4.6a). These are the patterns obtained at mm (Patterns - 1 and 3 obtained from 

thin sections shown in Figure  4.7a and c) and cm (Pattern 2 obtained from a 

rock piece shown in Figure  4.7b) scales (note that twenty two patterns 

obtained at mm, cm and meter scales were used at 100x100 m
2
 box size in the 

correlation development exercise).  
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a. Pattern 1                                                                      1 mm 

 

 

 

 

 

b. Pattern  2.                                                                        4 cm 

 

 

 
 

c. Pattern  3.                                                                    1mm 

 

 



 

A version of this chapter has been accepted for publication 

Jafari, A. and Babadagli, T.: “Effective Fracture Network Permeability of Geothermal 

Reservoirs,” Geothermics: International Journal of Geothermal Research and its Applications. 

 

108 

 
 

d. Pattern 4.                                                                     10 cm 

 

 

 
 

e. Pattern  5.                                                                      10 cm 

 

 

 
 

f. Pattern  6.                                                                         4 cm 
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g. Pattern  7.                                                                10 cm 

 

 

 

 
 

h. Pattern  8.                                                                         3 m 
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i. Pattern  9.                                                                 2 m 

 

 

 
 

j. Pattern  10.                                                             1.4 m 

 

Figure  4.7(a, b, c, d, e, f, g, h, i and j) Fracture patterns used for validation of correlations. 

 

 

 

Therefore, these three patterns represent relatively uniform characteristics of 

the network with a low fracture density. These types of characteristics are 
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represented by the lowest fractal dimension of fracture intersection points, 

maximum intersection points between fracture lines and the imaginary 

scanning lines in X and Y directions and the fractal dimension of fracture lines. 

When these three patterns are excluded, much better correlations were 

observed even with only three independent variables. These plots are 

illustrated in Figure  4.4a, Figure  4.5a and Figure  4.6a. All the patterns shown 

in these figures are at meter scale similar to the ones displayed in Figure  4.2 

and represent more complex fracture patterns. The fracture patterns used in the 

validation process are given in Figure  4.7.  

 

Regardless the type of the pattern and the scale, the five parameter correlation 

shows significant improvement as presented in Figure  4.4b, Figure  4.5b and 

Figure  4.6b. Addition of three new parameters and the exclusion of the 

lacunarity parameter results in a much better correlation for all types of 

patterns. The inclusion of lacunarity in the correlation is useful in reducing the 

number of other parameters if the fracture patterns show a complex structure, 

usually obtained at larger scales (meter-km).    

 

Figure  4.4c, Figure  4.5c and Figure  4.6c show the results for six parameters. 

The first two cases (Figure  4.4c and Figure  4.5c) show a slight improvement 

when the lacunarity parameter is added to the 5-variable equation. The third 

case, however, presents significant deviations for the one small scale (mm-cm) 

pattern. In other words, the correlation developed for a single field did not 

yield a good agreement for a wide range of fracture network pattern types. The 

lacunarity parameter had a negative effect on the results as opposed to the 

other cases (the whole data and marble only scenarios) when only the patterns 
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from a single field were considered. When the small scale patterns (Patterns 1, 

2, and 3 in Figure  4.7) were excluded, the 6-variable case showed a 

remarkable improvement as can be observed through the comparison of Figure 

 4.5b and the small plot embedded inside the graph in Figure  4.5c.  

 

For the third scenario (single field), the equation with a high correlation 

coefficient is the 5-variable equation. Generally speaking, the correlation 

coefficients for the third scenario are much smaller than those for the first two 

scenarios. The reason could be the different nature of the fracture patterns used 

for derivation and those employed for validation purposes. Only data from a 

particular location (Field 1) were used in deriving the correlations, and the 

resulting correlations were verified by using natural fracture patterns from 

different fields. The patterns from Field 1 were presumably exposed to the 

same tectonic history. Patterns used for validation, however, have different 

tectonic histories and represent different rock characteristics (Table  4.3). In 

other words, the fracture network topology, rock properties, and the tectonic 

history for Field 1 data set are different from the fracture patterns used in the 

validation process. 

 

Above observations indicate that the 5-variable equation is the best correlation 

for predicting the EFNP regardless of the pattern complexity, type, and scale. 

The accuracy can be improved for complex patterns by the addition of 

lacunarity (6-variable equation in Table  4.3). 
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4.7 Comparison of the results with numerical well test 

permeability values 

In an attempt to demonstrate how 3-D data could be useful for the 

improvement of EFNP correlations, the numerical well test EFNP permeability 

was added to the correlations given in Table  4.3. Numerical pressure 

drawdown tests were performed on natural (Jafari and Babadagli, 2009b) and 

synthetic (Jafari and Babadagli, 2010b) fracture networks using FRACA 

software and observed that a single well test EFNP may not be sufficient to 

represent the nature of the fracture network. The previous chapter that used 

natural patterns (Jafari and Babadagli, 2009b) was applied in a single layer 

model with a single well, whereas the subsequent work (Jafari and Babadagli, 

2010b) included non-uniform fracture network properties in the z-direction by 

forming the model with three different layers (assigning different fracture 

densities for each layer) with five wells.  

 

Figure  4.8 presents a comparison of the EFNPs obtained through three 

different approaches: 

(1) EFNPs (x-direction permeability, Kx) obtained from the FRACA 

software (2005) like the ones given in the last column of Table  4.1, 

 

 (2) EFNPs obtained from the pressure vs. time plot obtained from FRACA 

software (numerical drawdown test),   

 

(3) EFNPs obtained from the correlations, which combines the equation 

with 5-independent values (given in Table  4.3) with the well test 
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permeability obtained from the numerical well test exercise. 

 

Figure  4.8 Comparison of the EFNP’s obtained from three different approaches:  

(1) EFNPs (x-direction permeability, Kx) obtained from the FRACA software (2005) like the 

ones given in the last column of Table 4.2, 

(2) EFNPs obtained from the pressure vs. time plot obtained from FRACA software (numerical 

drawdown test), 

(3) EFNPs obtained from the correlations, which combines the equation with 5-independent 

parameters (given in Table 4.3) with the welltest permeability obtained from the numerical 

well tests. 

 

 

 

The cases include the ten validation patterns given in Table  4.4 and eight 

additional patterns obtained from different parts of the outcrop regions of the 

fields shown in Figure  4.1. The EFNP from the numerical drawdown tests 

using the pressure vs. time data obtained from FRACA is considerably lower 

than the EFNP obtained directly from the FRACA. When an additional well 

test parameter is added to the correlation derived with 5-independent 
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parameters (the second equation in Table  4.3), which makes it an equation 

with 6-independent variables (five 2-D fractal-statistical data and drawdown 

permeability), it yields a good agreement with the FRACA EFNPs. This 

exercise shows that well test EFNP does not adequately represent the entire 

network characteristics. This is mainly due to the fact that the well test derived 

permeability is dominated by major fracture networks and the drainage area 

and the location of the well. When we added 2-D fractal and statistical data to 

the well test permeability, the quality of the correlation is improved 

significantly as it considers not only 3-D well test permeability data but also 

fractures of any size (or scales) and all 2-D fracture network characteristics 

including density, length, orientation, and connectivity. 

 

4.8 Comparison of the results with well test permeability 

values from the Kizildere geothermal field in Turkey 

In a final attempt, the build-up measurements reported earlier (Arkan et al. 

2002) for five wells (KD-6, KD-15, KD-16, KD-21 and KD-22) in the 

Kizildere geothermal field, Turkey, were selected to apply the derived 

equations in this work. The actual well test measurements in the literature were 

available only for this field and the comparative analysis was performed using 

this data. The locations of these wells are shown in Figure  4.9.  
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Figure  4.9 Location of the investigated wells (KD-6, KD-15, KD-16, KD-21 and KD-22) in 

the Kizildere geothermal field (Arkan et al. 2002). 

 

 

 

The well tests were run and analyzed at different dates after mechanical 

reaming (DARMA), i.e. calcite cleaning. As Arkan et al (2002) concluded that 

the permeability generally decreases with days after mechanical reaming with 

some exceptions, we decided to use the well test permeability values for all 

five wells at the smallest DARMA, which has the least calcite deposition 

inside wellbore and, as a result, with minimal effects on the pressure behavior 

of the system. The well test data used in the comparison study are given in 

Table  4.5.  
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Table  4.5 Well test permeability for five wells in the Kizildere geothermal field, Turkey 

(Arkan et al. 2002).  

 

 

 

 

 

 

 

 

 

 

 

For this purpose, five 2-D outcrop fracture pattern images representing the 

producing formations were chosen. Each image was collected from different 

outcrop locations and they were illustrated in Figure  4.10.  

 

 

 

 

a) 

Well No. 
Permeability, 

mD 

KD-6 38.9 

KD-15 126 

KD-16 376 

KD-21 173 

KD-22 19.5 
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b) 

 

 

 

c) 
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d) 

 

 

 

e) 

Figure  4.10(a, b, c and e) Fracture outcrops from the Kizildere field used to test the equations 

given in Table 4.3 against the original well test results given in Table 4.5. 
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Next, their permeability values were calculated using FRACA software and 

also through three derived equations given in Table  4.3 based on three 

different scenarios: (1) all the available data points given in Table  4.1, (2) only 

fracture patterns in marble lithology, and (3) only fracture patterns in a specific 

reservoir with the same lithology (marble). The results were presented in the 

form of bar charts to compare the well test permeability values from five wells 

with computational ones (Figure  4.11, Figure  4.12 and Figure  4.13).  

 

 

 
 

Figure  4.11 Comparison of the well test permeability values of the five wells (Cases 1 to 5: 

KD-6, KD-15, KD-16, KD-21 and KD-22 respectively) given in Table 4.5 with the predicted 

values obtained from the FRACA software as well as three derived equations (given in Table 

4.3) for the first scenario. 
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Figure  4.12 Comparison of the well test permeability values of the five wells (Cases 1 to 5: 

KD-6, KD-15, KD-16, KD-21 and KD-22 respectively) given in Table 4.5 with the predicted 

values obtained from the FRACA software as well as three derived equations (given in Table 

4.3) for the second scenario. 

 

 
 

Figure  4.13 Comparison of the well test permeability values of the five wells (Cases 1 to 5: 

KD-6, KD-15, KD-16, KD-21 and KD-22 respectively) given in Table 4.5 with the predicted 

values obtained from the FRACA software as well as three derived equations (given in Table 

4.3) for the third scenario. 



 

A version of this chapter has been accepted for publication 

Jafari, A. and Babadagli, T.: “Effective Fracture Network Permeability of Geothermal 

Reservoirs,” Geothermics: International Journal of Geothermal Research and its Applications. 

 

122 

The following conclusions can be withdrawn from this exercise: 

(1) Out of three scenarios of five cases, the best agreement between the 

four computational permeability values (three equations in Table  4.3 

and FRACA software) and actual well tests were obtained for the 

pattern given in Figure  4.10a (the first case in Figure  4.11) and 

scenario-1 (the equations generated using all data). This image was 

obtained from an outcrop area just by the field and represents the upper 

portion (limestone) of the two-layer producing formation in the 

reservoir (the bottom one is marble-quartzite –see Figure 3 of Onur et 

al. (2003) for the cross sectional map of the reservoir).  

 

(2) The other scenarios (2 and 3 given in Figure  4.12 and Figure  4.13 

respectively) also yielded a good agreement for the same image (case 

#1). The only exception is Eq. 1 for the second scenario (Figure  4.11). 

This indicates that at least five-variable equation should be selected.  

 

(3) The reasons why a good agreement was obtained for the third scenario 

(Figure  4.13) for this case (case #1), could be attributed to the nature of 

the fractures. The images used to derive equations in this scenario 

belong to a different the Omerbeyli-Germencik field and it is marble. 

However, these -marble- outcrop images represent a vertical fracture 

dominated systems (two examples are shown in Figure  4.2c and d), 

which are similar to the image we used in the comparison study 

(Figure  4.10a). Also, note that the bottom reservoir of the Kizildere is 

a marble-quartize system, which might show a similar fracture structure 

to that of the Omerbeyli-Germencik field, and it also affect the well test 
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measurement along with the upper -limestone- formation.  

 

(4) Another image that showed a good agreement was from the same 

outcrop area and lithology but different fracture configuration (Figure 

 4.10b). This case yielded a good agreement for scenarios 1 (Figure 

 4.11, case 2) and 2 (Figure  4.12, case 2) except Eq. 1 for scenario 2 

(equations developed using only the marble cases). Interestingly, 

scenario 3 gave a disagreement for case 2 for all equations. This can be 

attributed to the reasons explained in item (3) above. Note that the 

pattern in Figure  4.10b shows a fracture set predominantly oriented in 

horizontal direction unlike the pattern in Figure  4.10a. 

 

Other three cases (cases 3, 4, and 5 that represent the patterns in Figure 

 4.10c, d, and e, respectively) did not show a good agreement for any 

scenario and image, and any method (FRACA and three derived 

equation given in Table  4.3). These images also represent a limestone 

lithology but were obtained from outcrop locations far from the field. 

Also, the fracture topology in these three patterns are remarkably 

different from the patterns shown in Figure  4.10a and b. No specific 

orientations of fractures are observed in Figure  4.10c, d, and e unlike 

the other two patterns. There is one set of fractures oriented in a 

specific direction in cases 1 and 2 (Figure  4.10a and b) containing 

almost parallel fractures and spanning two opposite sides of the 

patterns. However, in the other patterns (Figure  4.10c, d, and e), most 

fractures are like a disc (or circle) shape (Figure  4.10c and d) and have 

a high box-counting fractal dimension. It is obvious that this kind of 
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fracture system has less tendency to span the entire system and, as a 

result, gives lower permeability. In fact, the computational permeability 

values for cases 3 and 4 were substantially lower than the actual one in 

all three scenarios. Other factors like weathering can be distinguished 

and could be a reason of inconsistent results with the actual well test 

data. The image in Figure  4.10e (case 5) is a good example of this 

situation. 

 

(5) As a final point, one should mention that the field produces from two 

different reservoirs as explained in item (1) above. The lower reservoir 

is marble-quartzite and show a similar fracture patterns to the one in 

Figure  4.10a, which is vertical fracture dominated. Therefore, this 

particular pattern was able to represent the fracture pattern 

characteristics of both producing formations. 

  

In conclusion, this exercise showed the applicability of the approach we 

proposed to estimate fracture network permeability values in geothermal 

reservoirs. It is important to distinguish appropriate fracture outcrop patterns 

that represent the actual fracture topology in the producing formations. 

Available geological, petrophysical, and even production data can be used at 

least to have a basic idea about fracture orientation, type density and topology 

in the selection of outcrop images as representative of the reservoir. Once the 

fracture outcrop patterns are selected, the equations generated in this chapter 

with five, or more variables, can be applied to estimate fracture network 

permeability values.  
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4.9 Conclusions 

1. Correlations for predicting equivalent fracture network permeability 

(EFNP) are developed using natural fracture patterns for both 

correlation development and validation. It is shown that the equation 

with only five independent variables is the best one for predicting 

equivalent fracture network permeability. In this equation, the 

independent variables are (1) the fractal dimension of fracture 

intersection points, (2) the connectivity index, (3) maximum 

intersection points between fracture lines and the imaginary scanning 

lines in X and (4) Y directions, and (5) the fractal dimension of fracture 

lines. Although increasing the number of the independent variables to 

six by including lacunarity improved the correlation slightly, the effort 

required to characterize another parameter and include it in the 

correlation is not justified. 

 

2. The accuracy of predicted permeability mostly depends on the type of 

data that are used for the derivation of correlations. In other words, the 

fracture patterns being used for deriving a correlation must be similar to 

those present in the reservoir for which a production of EFNP is being 

made.  

 

3. The results of our work also indicate that the addition of lacunarity is 

useful in reducing the number of other parameters if the fracture 

patterns show complex structure, usually obtained at larger scales 

(meter-km).  
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4. The EFNPs obtained from numerical well (drawdown) tests did not 

match with the FRACA EFNPs. But, when the well test permeability is 

added to the equation with five independent variables (2-D fractal and 

statistical properties) given in Table  4.2, the quality of match with the 

FRACA EFNP’s improved remarkably.  

 

5. The three equations derived to estimate the EFNPs of geothermal 

reservoirs were also tested against the actual well test. This exercise 

showed the applicability of the approach we proposed to estimate 

fracture network permeability values in geothermal reservoirs. It was 

observed that it is important to distinguish appropriate fracture outcrop 

patterns that represent the actual fracture topology in the producing 

formations. Available geological, petrophysical, and even production 

data can be used at least to have a basic idea about fracture orientation, 

type density and topology. Once the fracture outcrop patterns are 

selected, the equations generated in this chapter with five, or more 

variables, can be applied to estimate fracture network permeability 

values.  
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5 Incorporation of 1-D, 2-D and 3-D Data to 
Estimate Fracture Permeability 

 

 

 

 

 

 

5.1 Overview 
 

Well log and core information, seismic surveys, outcrop studies, and pressure 

transient tests are usually insufficient to generate representative 3-D fracture 

network maps individually. Any combination of these sources of data could 

potentially be used for accurate preparation of static models.  

 

In the previous chapters, it was shown that there exists a strong correlation 

between the statistical and fractal parameters of 2-D fracture networks and 

their permeability. This chapter extends this work to fracture network 

permeability estimation using the statistical and fractal properties data 

conditioned to welltest information. For this purpose, 3-D fracture models of 

nineteen natural fracture patterns with all known fracture network parameters 

were generated initially. It is assumed that 2-D fracture traces on the top of 

these models and also 1-D data from imaginary wells which penetrated the 

whole thickness of the cubic models were available, as well as pressure 
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transient tests. Next, the permeability of each 3-D fracture network model was 

measured and then used for drawdown well test simulations.  

 

Finally, an extensive multivariable regression analysis using the statistical and 

fractal properties and welltest permeability as independent variables was 

performed to obtain a correlation for equivalent fracture network permeability.  

 

5.2 Preparation of data for equivalent fracture network 

permeability (EFNP) correlation 

This process consists of several steps. First, natural fracture network patterns 

from different sources representing different fracture network characteristics 

were selected. After measuring different statistical and fractal properties and 

obtaining well test permeability values by performing numerical well testing 

on the models generated from these patterns, a correlation between these 

properties and equivalent fracture network permeability was derived using 

multivariable regression analysis. 

 

5.2.1 Fracture network patterns used  

Nineteen different 2-D natural fracture patterns were selected in the correlation 

development process. Nine of them were taken from different sources in the 

literature which are shown in Figure  5.1.  
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a (Figure 4 of Babadagli 2000). 

 

 

 

 

 
b (Figure 3 of Babadagli 2000). 

 

 

 

 

 
c (Figure 4 of Babadagli 2001). 
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d (Figure 2n of Babadagli 2001). 

 

 

 

 

 
e (Figure 3 of Babadagli 2001). 

 

 

 

 

 
f (Figure 2p of Babadagli 2001). 

 

 

 

 

10 cm 

10 cm 

4 cm 



 

A version of this chapter has been accepted for publication 

 

Jafari, A. and Babadagli, T.: “Generating 3-D Permeability Map of Fracture Networks Using 

Well, Outcrop and Pressure Transient Data,” SPE 124077, SPE Reservoir Evaluation and 

Engineering Journal. 

 

131 

 
 

g (Figure 1a of Odling 1992 A). 

 

 

h (Figure 2 of Odling and Webman 1991). 
 

 

i (Figure 7 of Odling and Webman 1991). 

 

 

Figure  5.1(a, b, c, d, e, f, g, h and i) Some of the natural fracture patterns and their sources 

used for derivation of the correlations. 

3 m 

3 m 

3 cm 
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The other ten patterns were collected from the outcrops of the producing 

formations of different geothermal fields in western Turkey. Although these 

nineteen patterns had different size scales, for the sake of consistency and 

based on the modeling approach adapted in the previous chapter (Jafari and 

Babadagli, 2008), the patterns were digitized in a cartesian coordinate with 

100x100 m
2
 square domain.  

 

5.2.2 Measurement of statistical and fractal characteristics of 

the patterns 

In order to describe complex geometries in the nature quantitatively, fractal 

geometry can be used (Mandelbrot, 1982). Fractal objects under different 

scales seem self-similar and have their own dimension which is a non-integer 

number and is known as the fractal dimension (Addison, 1997). It is proven by 

several researchers that natural fracture patterns show fractal characteristics 

(Barton and Larsen, 1985; La Pointe, 1988; Barton and Hseih, 1989) and 

fractal geometry is able to quantify the spatial distribution of these 2-D 

networks. 

 

After digitizing the fracture patterns, they were exported and reconstructed in 

the MATLAB software’s environment. Then, their statistical and fractal 

properties were measured applying different techniques.  

 

First, the box counting technique was used to measure the fractal dimension of 

different fracture network properties including fracture intersection points, 

fracture mid points and fracture lines. The fractal dimension was obtained by 
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overlaying a set of different box sizes on the fracture network and counting the 

number of boxes contained different fracture features (fracture intersection 

points, fracture lines, etc) for each box size, and the plotting these numbers 

against the box sizes on a log-log scale. The slope of the straight line yields the 

fractal dimension of that specific feature of the fracture network (Barton and 

Larsen, 1985) according to the following relationship: 

 

                                          
DrrN −α)(                                       (1) 

 

where )(rN  is the number of the boxes contained different fracture features 

and r  is the box sizes and D  is the fractal dimension. In the developed 

algorithm for this chapter, the box counting fractal dimension of fractures 

intersection points and fracture lines was measured. 

 

Other different fracture network characteristics were quantified applying 

different statistical and fractal techniques. To consider the orientation effect, a 

square was overlaid on the fracture domain in such a way it covered the whole 

domain. Then, a set of imaginary scanning lines inside the square in X and Y 

directions were defined and the number of touches (intersections) between 

these scanning lines and fracture lines were counted. The effects of fracture 

orientation on the EFNP were taken into account through this method. To 

consider the intersection and connectivity of fractures in the domain, a new 

parameter called the connectivity index was defined as the total number of 

intersection point divided by total number of fracture lines. Four different 

fractal and statistical parameters were observed to show the strongest 

correlation to the EFNP (Jafari and Babadagli, 2008). The results of the 
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measurements of these parameters for nineteen natural fracture patterns are 

tabulated in Table  5.1. In this table, columns # 2 and 6 are fractal and # 3, 4 

and 5 are statistical parameters. All the fractal dimensions in the tables lie 

between 1 and 2 which shows their fractal nature. The readers are referred to 

our previous publication for further details on the above listed fractal 

characteristics (Jafari and Babadagli, 2008). 

 

 

Table  5.1 Different fractal and statistical characteristics and well test permeability values of 

the natural fracture patterns used in the derivation of the EFNP correlation. All cases have a 

constant single fracture conductivity value of 1000 mD.m. 

 

FD (Box-Counting) FD (Box-Counting) 
Pattern 

Intersection Point 

Connectivity 
Index 

Max Touch with 
X Scanning Line 

Max Touch with 
Y Scanning Line Lines 

Welltest 
Permeability, 

mD 

Kx, 
mD 

1 1.867 1.064 15608 21143 1.557 34.289 28.801 

2 1.820 1.704 15396 17481 1.521 46.252 85.936 

3 1.892 1.516 19585 24571 1.598 54.276 108.988 

4 1.750 1.407 13331 15887 1.443 48.682 56.751 

5 1.774 1.465 15486 16721 1.487 41.501 43.032 

6 1.870 1.422 18933 24001 1.576 52.291 104.354 

7 1.872 1.275 15916 31323 1.630 39.673 106.506 

8 1.800 1.271 13364 16592 1.528 42.223 49.509 

9 1.769 1.745 16978 17563 1.567 48.857 66.102 

10 1.770 1.496 14366 18920 1.562 48.498 70.835 

11 1.298 1.500 489 317 1.270 31.532 23.991 

12 1.347 1.100 759 763 1.369 19.762 10.387 

13 0.797 1.091 114 266 1.264 34.483 38.106 

14 1.660 1.149 4071 3094 1.493 8.303 5.649 

15 1.378 1.020 860 1210 1.481 24.775 88.345 

16 1.577 1.041 4697 2680 1.513 18.978 9.085 

17 1.893 2.611 4767 5473 1.682 42.942 98.342 

18 1.647 1.369 1687 1758 1.583 27.520 21.625 

19 1.653 1.558 996 1281 1.515 12.836 29.411 

FD: Fractal dimension 

Kx :  Equivalent Fracture Network Permeability obtained from the software (FRACA). 
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Next, they were exported to a commercial software package (FRACA) to 

measure their equivalent fracture network permeability (EFNP). Two 

assumptions were made in the measurement of the EFNP: (1) all fracture 

reservoirs consisted of only one layer, and (2) all fractures were entirely 

vertical. 

 

Permeability is a vector quantity because its magnitude is dependent on the 

measurement direction (Nelson, 2001). For this chapter, conductivity instead 

of aperture was used for measuring permeability (Jafari and Babadagli, 2008). 

The conductivity is the product of the intrinsic fracture permeability and the 

fracture aperture ( e ) with parallel walls. The intrinsic fracture permeability 

and conductivity according to Poiseuille’ law are expressed as 
12

2
e  and 

12

3
e  

respectively (Bourbiaux et al., 1998).  

 

In the FRACA package, first we imported the 2D fracture trace maps and a 

model with the above assumptions was built. The fracture network is 

discretized with a rectangular grid and then by applying a pressure varying 

linear boundary condition for each direction, mass balance equations are 

solved. Finally to derive the EFNP, flow rates across the block faces are 

computed (FRACA user manual). During this process, a constant fracture 

conductivity value (1000 mD.m) was entered for each single fracture for all 

patterns. We had showed in the previous chapter (SPE 113618 and SPEREE 

June 2009) that the conductivity does not play a critical role compared to the 

network properties such as fracture density and length (these two parameters 

are critical in order to be above the percolation threshold). The only exception 
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was low density and short fracture networks (however above the percolation 

threshold) and even this type of fracture system showed equivalent importance 

of the single fracture conductivity and fracture network properties (density and 

length).  

 

5.2.3  Numerical well test simulations on the patterns 

First, a 1x1x1 simulation grid cell with 100 m block size in X and Y and 10 m 

in Z directions (single-layer) for each fracture network pattern was defined in 

FRACA software and each fracture pattern was embedded in this model. Then, 

their equivalent fracture network permeability (EFNP) values were determined. 

In the next step, a 10x10x1 single porosity simulation grid cell with 1000 ft 

grid block size in the X and Y and 20 ft in the Z directions in a black oil 

simulator (ECLIPSE 100) was defined. Next, the EFNP for each fracture 

pattern exported from the FRACA software was placed in and repeated in all 

grid blocks. In other words, each grid contained the same EFNP of that fracture 

pattern). This was needed to be done to obtain a meaningful pressure transient 

period to measure the slope and the permeability. Then, one producer was 

placed in the middle of the model and the flow simulator was run. The 

reservoir PVT data of this model was taken from Odeh (1981). The principle 

components of EFNP matrix of each fracture pattern were used as directional 

permeability values in this black oil model and a drawdown test was run to 

obtain an average well test permeability using the pressure time relationship 

(Figure  5.2).  
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Figure  5.2 Pressure drawdown curve for the model with 10x10x1 gird cells in x, y and z 

direction respectively. 

 

 

 

Then, the average permeability of the model using this pressure curve was 

calculated for each one. In the middle-time region (MTR) of a drawdown test, 

that represent the radial flow regime, a plot of Pwf vs. log(t) is a linear curve 

and using its slope, the reservoir permeability was calculated (Lee, 1982). 

 

The results of well test permeability values for all patterns are given in Table 

 5.1. Only one of the principle components of the equivalent permeability 

tensor (Kx), of each 2D fracture pattern was considered throughout the chapter.  
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5.3 Analysis of the results and observations 

In Figure  5.2, due to small size of the reservoir, an abrupt pressure drop can be 

seen. The actual Kx/Ky obtained using FRACA was plotted in Figure  5.3.  

 

 

Figure  5.3 Actual Kx/Ky obtained using Fraca. Homogeneity line (Kx/Ky=1) is shown on the 

graph. 

 

 

 

More increase in this parameter (Kx/Ky) means more permeability anisotropy 

in the x-y plane. Obviously, there is a huge difference between these two 

directional permeability values for pattern # 15 due to the fact that most of the 

fractures in this pattern are oriented in the x-direction. Mean permeability 

values (sqrt (Kx*Ky)) for all fracture patterns are plotted against welltest 

permeability (all values in mD) in Figure  5.4.  
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Figure  5.4 Sqrt(Kx*Ky) versus welltest average permeability. 

 

 

 

A good correlation exists between these two variables; however at higher 

permeability values, there are some deviations from the main trend. Figure  5.5 

and Figure  5.6 compare the welltest permeability values obtained from 

ECLIPSE simulations with the actual EFNP values obtained from the FRACA 

permeability for the X and Y directions, respectively. 
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Figure  5.5 Comparison of actual EFNP (FRACA Kx) in the X-direction and average 

permeability obtained from drawdown welltest. 

 
 
 
 

 

Figure  5.6 Comparison of actual EFNP (FRACA Ky) in the Y-direction and average 

permeability obtained from drawdown welltest. 
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In these figures, the separation between the welltest and actual EFNP from 

FRACA in the Y-direction is much less than that in the X-direction, which 

suggests that the impact of the permeability value in the Y-direction is 

dominant and has more weight on the average reservoir permeability and 

performance.  

 

Seven cases in Figure  5.5 (permeability in the X-direction) showed significant 

deviation from the actual permeability and is highlighted by circles. The actual 

permeability in the X-direction of these cases is much higher than their welltest 

(average) permeability. All the patterns showing significant deviation (the 

circled cases in Figure  5.5) are given in Figure  5.7.  

 

 

 

                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

Pattern # 2                                                                  15cm 
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Pattern # 3                                                                               15cm  

 

 

 

 
 

Pattern # 6                                                                                15cm 

 

 

                                                   
 

Pattern # 7                                                                        15cm 
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Pattern # 10                                                                              15cm 

 

 

                                                   
 

Pattern # 15                                                                  4cm 
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Pattern # 17                                                                            3m 

 

 
Figure  5.7 Patterns showing significant deviation from the actual EFNP in Figure 5.5. 

 

 

 

One can infer through the inspection of these patterns that they all show 

anisotropic behavior. In other words, long, well connected and continuous 

fractures spanning the whole domain in the X-direction of the patterns exist 

and they control the flow and make anisotropy behavior. Shorter and 

discontinuous fractures are obvious in the opposite direction (Y-direction). 

This yields a disagreement with the well test permeability obtained through a 

single porosity model of a black oil simulator and the one obtained from the 

solution of flow equation on the actual pattern. 

 

After this extensive analysis, one has to emphasize several points regarding the 

mismatch for very high network permeability values as shown in Figure  5.4. 

The FRACA Kx permeability is by definition the average permeability between 

the two faces of the block perpendicular to the x-axis. As such, it represents 
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linear flow from one face to the next via the fracture network. All cases 

showing strong fracture continuity in the x-direction are therefore exhibit very 

high Kx permeability as expected. In this type of patterns, the nature of flow is 

essentially linear. By contrast, the well test would define a radial, or in case of 

strong heterogeneities elliptical flow regime. A mismatch between well test 

permeability and the square root of the Kx and Kx permeability values from 

FRACA at higher values of network permeability values (or more complex 

network structures) can be attributed to this. Modeling a well test based on the 

assumption of homogeneous permeability within each block may distort the 

well test pattern response, in fact forcing it to be radial while it would be 

fracture-dominated in reality when having large extent fractures spanning the 

entire grid block as observed in the cases showing deviations. Yet, however, 

visual characterization of fracture patterns is limited to 2-D images to 

implement any well test analysis on them using very limited commercial 

fracture network analysis software.  

 

In summary, as we worked on hypothetical reservoir models in this chapter to 

introduce a new approach, the validation was possible only through 

commercial packages (black oil or DFN type models) in which certain 

limitations still exist. A final note should be made in this regard that, in the 

previous chapter (Jafari and Babadagli, 2010b), we applied correlations 

obtained through the methodology introduced here and observed a reasonably 

good match for well test data of a geothermal reservoir, even for complex 

fracture network structures.  
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5.4 Derivation of equivalent fracture network 

permeability (EFNP) correlation using 1-D (single 

well), 2-D (outcrop) and 3-D (well test) data  

A practical approach in reservoir simulation is to utilize the available data to 

generate the permeability map of the fracture networks through an equation. 

Often times, data are limited to single well fracture information (1-D), outcrop 

analysis (2-D), or an average reservoir (or fracture network) permeability from 

well tests (3-D). In this section, we derive equations and then discuss their 

limitations and applicability conditions in terms of the availability of data 

related to fracture network characteristics.  

 

In order to derive an equation, multivariable regression analysis (MRA) was 

performed. As mentioned earlier, we previously tested seven fractal (including 

the box-counting dimension of fracture intersection and mid-points, the sand-

box dimension(mass dimension) of fracture intersection and mid-points, the 

fractal dimension of scanning lines in X- and Y- directions and the box-

counting dimension of fracture lines) and five statistical parameters (including 

fracture length, fracture density, connectivity index and the maximum touch 

with scanning lines in the X- and Y-direction) of 2-D synthetic fracture 

networks against the EFNP and determined the correlation type for each 

parameter, i.e., linear, logarithmic, exponential, etc. This exercise was 

performed using 800 random fracture networks (Jafari and Babadagli, 2009). 

Later, we tested the reliability of this equation on natural patterns (Jafari and 

Babadagli, 2010a).  
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Four out of twelve parameters were found to present the highest correlation 

coefficient (as given below). We selected these four parameters and correlated 

them to the EFNP. Then, the following type of equation was found to be the 

most accurate with the highest correlation coefficient to predict the EFNP after 

testing several other types of equations with the same number of independent 

variables (Jafari and Babadagli, 2009): 

 

                    675.34)()(705.1

)(895.2)046.0exp(008.25)(

43

21

−+−

+=

XLnXLn

XLnXKxLn

                     (2)                                               

 

where Kx denotes equivalent fracture network permeability in the X-direction, 

X1 is the box-counting dimension of intersection points, X2 is the maximum 

touch with scanning lines in the X-direction, X3 is the maximum touch with 

scanning lines in Y-direction and X4 is the box-counting dimension of fracture 

lines.  

 

Here, unlike the previous chapter (Jafari and Babadagli, 2009), only natural 

patterns were used in deriving the equations. We performed the same 

procedure for the MRA analysis on natural fracture patterns (Figure  5.1 lists 

and displays some of them) and added fracture connectivity index. The 

following equation was derived for the natural patterns: 

 

         116.10)(262.1)(658.41
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where Kx denotes equivalent fracture network permeability in the X-direction, 

X1 is the box-counting dimension of intersection points, X2 the connectivity 

index, X3 is the maximum touch with scanning lines in the X-direction, X4 is 

the maximum touch with scanning lines in Y-direction and X5 is the box-

counting dimension of fracture lines.  

 

Then due to wide distribution of permeability values, we again used logarithm 

of permeability to improve the correlation. Also we added the well test 

permeability to the independent variables. The following equation was 

obtained applying the same MRA analysis: 

 

                902.19)6(057.1)(754.1)(018.1

)(15.1)(626.0)035.0exp(867.18)(

54

321

−+++

−+=

XLnXLnXLn

XLnXLnXKxLn

       (4)                                       

 

where Kx denotes equivalent fracture network permeability in the X-direction, 

X1 is the box-counting dimension of intersection points, X2 is the fracture 

connectivity index, X3 is the maximum touch with scanning lines in the X-

direction, X4 is the maximum touch with scanning lines in Y-direction, X5 is the 

box-counting dimension of fracture lines and X6 is the welltest permeability 

and other variables are the same as the variables in the previous equation.  

 

 

5.5 Discussion 

In the Eq. 3 and 4, X1 and X5 shows the spatial distribution of fracture 

intersection points and fracture lines respectively and an increase in these two 
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parameters shows a huge number of intersection points and fracture lines with 

a wide distribution through the domain. X2 is defined as the total number of 

intersection points divided by the total number of fractures in the domain 

(fracture density). X1 and X2, in turn, can have some implications on the 

existence of a connected fracture path in the domain and as a result, higher 

permeability. X3 and X4 are used to take into account the orientation effect; 

since they quantify this property of the fracture network in both directions. If 

X3 and X4 are not roughly equal, it means that fractures in the domain are more 

oriented in one direction (anisotropic). If all fractures are oriented in one 

direction, the connectivity(X2) decreases due to lack of fracture intersection 

and permeability will go down too. In this situation, the critical parameter 

would be fracture length; if fractures with regard to their lengths can span two 

opposite sides of the domain, only permeability in that specific direction would 

increase. Generally speaking, the independent variables with bigger constant 

coefficients have more influence on the result (dependent variable). 

 

Figure  5.8 compares the EFNP values obtained through Eqs. 2, 3 and 4. Here, 

the permeability measured using the FRACA package was considered as the 

actual permeability or the base case (represented by the square symbol and 

bolder line). As seen, an addition of well test permeability and fracture 

connectivity index in the correlation provided remarkable improvement. The 

permeability values obtained by Eq. 4 (the circle symbol) yielded a much 

closer value to the actual one (the square symbol) except in one case (pattern 

#15). The only comment that can be made for this pattern is that it was 

obtained using a rectangular piece of rock (Figure  5.3 of Babadagli, 2001) 

unlike all other patterns. Hence, its characteristics in terms of the scale and 
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being representative of a fracture system are expected to be different from the 

others shown in Figure  5.7. In other words, all other patterns are either at a 

meter scale (Figure  5.1d, f, g, h, and i) or at a smaller scale, but present a 

relatively more orthogonal (or uniform) pattern texture (Figure  5.1a and c).  

 

 

Figure  5.8 Five different equivalent fracture network permeability values using welltest, Fraca 

software and derived equations with 4 (Eq. 2 derived in Jafari and Babadagli, 2009) and 5 and 

6 (Eq. 3 and 4 derived in this chapter) independent variables. 

 

 

 

The EFNP values obtained by Eq. 4 also showed a better agreement with the 

well test data (the diamond symbol in Figure  5.8) compared to the base case 

(the square symbol). One exception is pattern #17. This can be attributed again 

to the nature of the pattern. A set of long and continuous fracture groups 
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spanning the whole domain controls the flow and creates anisotropy. This 

could not easily be captured by well test simulation on a single porosity model 

converted from discrete fracture networks. But, this anisotropic nature of the 

pattern was captured through the fractal and statistical parameters used in Eq. 

4 as verified by a better match with the base case.  

 

In another effort to improve the accuracy and universality of the derived 

equation, we added one more data set, i.e., 1-D well data. This type of data 

provides limited information about the fracture density obtained through core 

and log analysis but is more abundant compared to 2-D (outcrop) and 3-D 

(well test) data. Generally, fracture network maps are generated based on 

limited well (1-D) data. Therefore, we added this type of data and derived a 

new equation with two more independents.  

 

We located an imaginary wellbore at the center of the models (listed in Table 

 5.1) in such a way to penetrate the whole reservoir thickness and with the same 

perforated thickness as equal as to the reservoir (i.e. 20ft) and then counted the 

number of the fractures intersecting the wellbore and the measured the fracture 

spacing in the vertical direction.  

 

To do this, all fractures were extended in the Z-direction with a 45-degree 

inclination so that the imaginary well could intersect some number of fractures. 

Note that the correlations given above (Eqs. 2, 3 and 4) were developed using 

the patterns with no inclination (extended 90 degrees) in the Z-direction. The 

fracture spacing and fracture wellbore intersection data are shown in Table 

 5.2.  
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Table  5.2 1-D, 2-D, and 3-D data used in the derivation of Eq. 6. 

 

FD (Box-
Counting) 

FD (Box-
Counting) 

Pattern 
Intersection 

Point 

Connectivity 
Index 

Max 
Touch 
with X 

Scanning 
Line 

Max 
Touch 
with Y 

Scanning 
Line 

Lines 

Welltest 
Permeability, 

mD 

Fracture 
spacing 

Fracture-
wellbore 

Intersection 

Kx,           
mD 

1 1.867 1.064 15608 21143 1.557 29.769 1.970 4 29.545 

2 1.820 1.704 15396 17481 1.521 45.348 2.737 3 118.545 

3 1.892 1.516 19585 24571 1.598 56.999 1.122 7 120.077 

4 1.750 1.407 13331 15887 1.443 51.362 2.444 4 78.485 

5 1.774 1.465 15486 16721 1.487 53.660 3.731 2 112.141 

6 1.870 1.422 18933 24001 1.576 53.659 7.071 1 112.141 

7 1.872 1.275 15916 31323 1.630 50.514 1.729 5 115.117 

8 1.800 1.271 13364 16592 1.528 43.774 4.092 2 56.001 

9 1.769 1.745 16978 17563 1.567 51.395 2.459 3 71.010 

10 1.770 1.496 14366 18920 1.562 49.397 3.235 3 81.104 

11 0.797 1.091 114 266 1.264 19.264 4.981 2 38.542 

12 1.672 1.218 4720 5612 1.484 16.949 3.049 3 36.981 

13 1.660 1.149 4071 3094 1.493 19.649 3.550 2 9.825 

14 1.378 1.020 860 1210 1.481 28.733 7.071 1 88.872 

15 1.577 1.041 4697 2680 1.513 26.524 2.538 3 15.212 

16 1.893 2.611 4767 5473 1.682 60.970 2.088 4 169.827 

17 1.647 1.369 1687 1758 1.583 33.349 2.739 3 23.733 

18 1.653 1.558 996 1281 1.515 28.947 4.311 2 53.588 

 

 

 

 

In addition to those, new well test permeability simulations were performed, as 

the fracture patterns in the Z-direction changed from the previous 

configuration given in Table  5.1. The 2-D fractal/statistical data are the same 

as before (columns 2 through 5) as the “surface” fracture patterns (X- and Y-

directions) did not change.  
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The same procedure was followed to derive another correlation for these 45-

degree inclined fracture patterns using MRA with 6 independent variables first.  

 

64.17)6(132.1)(362.1)(112.1

)(111.1)(894.0)011.0exp(37.17)(

54

321

−+−+

−+=

XLnXLnXLn

XLnXLnXKxLn

               (5)                                        

 

The equation type is exactly the same as in Eq. 4 but the constants are 

changed. Also using the new fracture patterns (with 45 degree inclination), the 

following correlation with 8 independent variables was obtained: 

 

 

677.14)8(763.0)7(555.0)6(979.0)(277.1

)(280.1)(218.1)(182.1)004.0exp(858.15)(

5

4321
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    (6)                               

 

where X7 and X8 are the fracture spacing in the wellbore and the number of the 

intersection between the fractures and the wellbore respectively, and other 

variables are exactly the same as the variables in the previous equation.  

 

As a final attempt, we considered only 1-D (single well) and 3-D data (well 

test). This is the most encountered situation as the well data (cores and logs) 

are more abundant compared to the others and well test analysis is more 

common in reservoir development compared to outcrop analysis. The 

following equation was derived using the same approach and method but used 

only 3 independent variables, namely well test permeability, fracture spacing 

in the wellbore, and the number of the intersections between fractures and 

wellbore: 
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                    435.297)(734.19

)(884.28)(412.88)(

3
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−+

+=

XLn
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                           (7)                                               

 

where Kx denotes equivalent fracture network permeability in the X-direction, 

X1 is the welltest permeability, X2 is the fracture spacing in the wellbore and X3 

is the number of the intersection between fractures and wellbore respectively.  

 

Figure  5.9 compares the five EFNP values obtained using different equations 

(Eqs. 5, 6, and 7). The addition of single well data (Eq. 6) improved the 

predictive power and accuracy of the correlation derived to calculate the 

EFNP. Only, one case showed a better correlation with Eq. 5 (pattern #3). 

Despite the minimal data used in the derivation, the EFNP value obtained from 

Eq. 7 surprisingly yielded a reasonable match with the base case EFNP 

(FRACA Kx). For some patterns, it showed an even better match than with the 

EFNP values obtained through Eq. 6 (Patterns # 3, 5, and 6). One may 

conclude from this exercise that, in general, with some support of 2-D 

fractal/statistical data, 1-D (single well) and 3-D (well test) data could be 

useful to accurately obtain the EFNP.  
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Figure  5.9 Five different EFNPs obtained using welltest, FRACA software (the base case), 

and Eqs. 5, 6 and 7. 

 

 

 

It should be emphasized that only one well was used for the 1-D fracture 

density data (Eqs. 6 and 7) as the grid size selected in this analysis represents a 

typical one-well drainage area. More wells for larger areas can be used in the 

analysis and the accuracy of the correlations, in which 1-D data was honored, 

would be improved by increasing the number of wells. Obtaining the optimal 

number of wells to be cored and logged for the 1-D data provision is a critical 

issue and currently under research.  
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5.6 Conclusions 

We proposed a practical approach to estimate equivalent fracture network 

permeability (EFNP) values. Four correlations were derived using nineteen 2-

D natural patterns representing different fracture network types of different 

scales. Five statistical and fractal properties of the fracture patterns (2-D data), 

well test permeability obtained through a numerical well test simulation (3-D 

data), and fracture spacing and the number of fracture intersections obtained 

from a single well (1-D) were used as independent variables in these 

correlations. 

 

Selection of the type of the correlations presented in this chapter for practical 

applications in the field totally depends on the availability of different types of 

data, i.e. 1-D, 2-D and 3-D. The eight-variable equation honors all these types 

of data and the best match to the actual EFNP obtained from single phase flow 

simulation on the fracture networks was observed for the correlation with eight 

independent variables (Eq. 6). The accuracy of the three-variable case (1-D 

well data and 3-D well test data) was surprisingly comparable to the six-

variable correlation (five 2-D fractal and statistical parameters from outcrop 

studies and the permeability obtained from a single well pressure transient 

data). Hence, 1-D single well data could be useful when it is used along with 

the permeability obtained from a single well pressure transient test. For a better 

accuracy, this can be supported by additional fractal and statistical 

measurements on 2-D patterns obtained from outcrop studies.  
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6 Equivalent Fracture Permeability of 
Multilayered Naturally Fractured Reservoirs 

 

 

 

 

 

 

6.1 Overview 

Conventionally, logs, cores, seismic and pressure transient tests are used as 

a data base for modeling naturally fractured reservoirs (NFRs). In previous 

chapter it was shown that a strong correlation exists between the fractal 

parameters of 2-D fracture networks and their permeability and also this 

fact that 1-D well (cores-logs) and 3-D reservoir data (well test) may not be 

sufficient in fracture network permeability (FNP) mapping and that 2-D 

(outcrop) characteristics are needed. This chapter is an extension of those 

studies where only 2-D (single layer, uniform fracture characteristics in z-

direction) representations were used.  

 

In this chapter, we considered a more complex and realistic 3-D network 

system. 2-D random fractures with known fractal and statistical 

characteristics were distributed in the x- and y-directions. Variation of 

fracture network characteristics in the z-direction was presented by a multi 

layer system representing three different facieses with different fracture 

properties. Wells were placed in different locations of the model to collect 

1-D fracture density and pressure transient data. In addition, five different 
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fractal and statistical properties of the network of each layer were 

measured. 

 

Using available 1-D, 2-D, and 3-D data, multivariable regression analyses 

were performed to obtain equivalent FNP correlations and then the derived 

equations were validated against a new set of synthetic fracture networks 

and the conditions at which 1-D, 2-D and 3-D are sufficient to map fracture 

network permeability were determined. The importance of the inclusion of 

each data type, i.e., 1-D, 2-D and 3-D, in the correlations was discussed.  

 

6.2 Building fracture network model 

Initially, synthetic fracture networks with random orientation were 

generated in 100x100 m
2
 domains. These fracture patterns had different 

length and density values (defined as the number of fractures per domain). 

To cover a wide range of these parameters, three different fracture lengths 

and densities (low, medium and high) spanning between very low (20m 

length 50 fracture/domain density) and very high (60m length 250 

fracture/domain density) values were used (Table  6.1). 

 

 

Table  6.1 Fracture length and density values used (with a random orientation) to generate 

the fracture network permeability correlations. 

Fracture 
Length, (m) 

Fracture density, 
(# / domain) 

Fracture  
Orientation 

20 50 Random 

40 150 Random 

60 250 Random 
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Then, based on varying fracture length and density, different fracture 

patterns were generated and each of them was imbedded into a separate 

layer of a 3-D multilayer reservoir with three layers. In these cases, fracture 

conductivity was kept constant (1000 mD.m) and the orientations of the 

fractures in the x-y and z-directions were random. Each of these models in 

the above table was then built in a commercial software package (FRACA). 

Figure  6.1a shows a 2-D map of a fracture pattern with fracture length 

equal to 40m and a fracture density of 150. Figure  6.1b presents a side 

view of one these models with three layers. Each layer has a 10m thickness. 

In each model, five imaginary wells were placed penetrating the reservoir 

through the whole thickness, i.e., 30 m (Figure  6.2).  

 

 

 

 
(a) 
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(b) 
Figure  6.1 A Sample of (a) top view of the 2-D fracture map of a pattern with a fracture 

length=40 m and a fracture density=150 in a 100x100 m
2
 domain, and (b) side view of a 

three layer fractured reservoir model. 

 

 

 
 

Figure  6.2 Plan view of a three layer fractured reservoir with five imaginary wells. 

 

 

 

In total, ten different fractured reservoir realizations with three layers were 

defined for each case to include the random nature of the patterns. Hence, a 

total of 100 runs were performed in developing the correlations as will be 
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explained in the next section. Each layer has a different fracture pattern 

even if the same density and length values were assigned. Note that, after 

applying an experimental analysis, the number of cases was reduced to an 

optimal value, which was found to be ten. These cases were represented in 

Table  6.2.  

 

Once each 2-D fracture pattern was generated and before embedding it into 

the FRACA software for building the 3-D model, its 2-D properties were 

obtained using a code written in MATLAB. Also, 1-D data was provided 

through analyzing the imaginary wells (mainly fracture density related 

information). Then, the actual equivalent fracture network permeability of 

each model in Table  6.2 was calculated using the software for the whole   

3-D volume (100x100x30 m
3
). Note that all possible combinations were 

covered as given in Table  6.2, i.e., lD-lL lD-lL lD-lL (Case 1, low-Density 

low-Length), hD-hL hD-hL hD-hL (Case 10, high-Density high-Length), 

mD-mL lD-lL mD-mL (Case 5, medium-Density medium-Length, low-

Density low-Length), mD-mL mD-mL lD-lL (Case 6, medium-Density 

medium-Length, low-Density low-Length), and the number of cases was 

reduced to an optimum value of ten after applying an experimental analysis 

as mentioned above. Finally, a drawdown test was performed for each well 

in each model using the well test option of the software.  
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Table  6.2 Ten different fracture reservoir configurations with three layers (L=Length, D= 

Density). l: low, m: medium, h: high. 

Cases for three layers 
Case 
No. 

Density and length  
characteristics of 

each layer 
Layer-1 Layer-2 Layer-3 

1 
lD-lL           
lD-lL            
lD-lL 

L=20, 
D=50 

L=20, 
D=50 

L=20, 
D=50 

2 
lD-lL        

mD-mL      
lD-lL 

L=20, 
D=50 

L=40, 
D=150 

L=20, 
D=50 

3 
lD-lL       

mD-mL    
hD-hL 

L=20, 
D=50 

L=40, 
D=150 

L=60, 
D=250 

4 
lD-lL         

hD-hL        
lD-lL 

L=20, 
D=50 

L=60, 
D=250 

L=20, 
D=50 

5 
mD-mL       

lD-lL      
mD-mL 

L=40, 
D=150 

L=20, 
D=50 

L=40, 
D=150 

6 
mD-mL    
mD-mL    
mD-mL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

7 
mD-mL    
hD-hL    

mD-mL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

8 
hD-hL         
lD-lL        

hD-hL 

L=60, 
D=250 

L=20, 
D=50 

L=60, 
D=250 

9 
hD-hL    

mD-mL    
hD-hL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

10 
hD-hL      
hD-hL      
hD-hL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 
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6.3 Fracture network permeability correlations 

The actual fracture network permeability (FNP) values for each case 

obtained through the software are shown in Table  6.3. The last column in 

the table is the average permeability calculated using: 

 

                                Kave = ( )minmax KK ×                                       (1) 

 

Table  6.3 Different fractured reservoirs (models) with corresponding actual equivalent 

fracture network permeability obtained from the software (FRACA). Kave is as described 

in Eq. 1. 

Cases for three layers 
No. Scenario 

Layer-1 Layer-2 Layer-3 

Kmax, 
mD 

Kmin, 
mD 

Kave, 
mD 

1 
lDlL    
lDlL    
lDlL 

L=20, 
D=50 

L=20, 
D=50 

L=20, 
D=50 

29.69 4.186 11.148 

2 
lDlL    

mDmL   
lDlL 

L=20, 
D=50 

L=40, 
D=150 

L=20, 
D=50 

51.189 4.545 15.252 

3 
lDlL  

mDmL   
hDhL 

L=20, 
D=50 

L=40, 
D=150 

L=60, 
D=250 

82.155 4.769 19.793 

4 
lDlL  

hDhL  
lDlL 

L=20, 
D=50 

L=60, 
D=250 

L=20, 
D=50 

66.975 4.828 17.981 

5 
mDmL   

lDlL   
mDmL 

L=40, 
D=150 

L=20, 
D=50 

L=40, 
D=150 

69.972 4.661 18.06 

6 
mDmL   
mDmL   
mDmL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

78.721 4.75 19.337 

7 
mDmL   
hDhL   

mDmL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

90.804 4.853 20.992 

8 
hDhL   
lDlL   

hDhL 

L=60, 
D=250 

L=20, 
D=50 

L=60, 
D=250 

90.095 4.895 21 

9 
hDhL   

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

108.57 4.858 22.967 

10 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

109.23 4.878 23.082 
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Also, as mentioned earlier, five imaginary wells were embedded in each 

model penetrating the whole thickness of the reservoir. 1-D data was 

extracted for each well in the model and averaged for five wells resulting in 

a single number per model. These values are shown in Table  6.4.  

 

 

Table  6.4 Different fractured reservoirs (models) with associated 1-D data. 

Cases for three layers 
No. Scenario 

Layer-1 Layer-2 Layer-3 

Fracture 
intersection 

Fracture 
spacing 

1 
lDlL    
lDlL    
lDlL 

L=20, 
D=50 

L=20, 
D=50 

L=20, 
D=50 

42 2.947 

2 
lDlL    

mDmL   
lDlL 

L=20, 
D=50 

L=40, 
D=150 

L=20, 
D=50 

38 3.24 

3 
lDlL  

mDmL   
hDhL 

L=20, 
D=50 

L=40, 
D=150 

L=60, 
D=250 

138 0.906 

4 
lDlL  

hDhL  
lDlL 

L=20, 
D=50 

L=60, 
D=250 

L=20, 
D=50 

118 1.092 

5 
mDmL   

lDlL   
mDmL 

L=40, 
D=150 

L=20, 
D=50 

L=40, 
D=150 

78 1.6 

6 
mDmL   
mDmL   
mDmL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

143 0.909 

7 
mDmL   
hDhL   

mDmL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

190 0.664 

8 
hDhL   
lDlL   

hDhL 

L=60, 
D=250 

L=20, 
D=50 

L=60, 
D=250 

186 0.676 

9 
hDhL   

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

241 0.527 

10 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

327 0.395 
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Fracture patterns in each layer were used separately to extract their 2-D 

data. Since each model has three layers with three different fracture 

patterns, three different sets of 2-D data exist for each model. Jafari and 

Babadagli (2008) correlated twelve statistical and fractal fracture networks 

properties to the FNP and observed that the following parameters showed 

the highest correlation: 

(1) Fractal dimension of fracture intersecting points (Technique: Box 

counting),  

(2) Fractal dimension of fracture lines (Technique: Box counting), 

(3) Connectivity index (Jafari and Babadagli, 2009),  

(4) Maximum touch with X scanning line (Jafari and Babadagli, 2009), 

(5) Maximum touch with Y scanning line (Jafari and Babadagli, 2009). 

 

The first two -fractal- properties were obtained through the classical box 

counting technique applied by Babadagli (2001) and Barton and Larsen 

(1985), respectively. The connectivity index was described by Jafari and 

Babadagli (2009a) as a ratio of the number of intersection points to the total 

number of lines. The maximum touch with scanning lines is the number of 

fractures touched by a scanline in a specific direction (X and Y) in the 

whole domain (Babadagli, 2001; Jafari and Babadagli, 2009a). 

 

These five different statistical and fractal properties were calculated for the 

networks assigned to each layer and presented in Table  6.5, Table  6.6 and 

Table  6.7. Table  6.5 and Table  6.6 show the 2-D statistical and fractal 

values for the least and the most conductive layers for each case, 

respectively. Table  6.7 shows the average of these values. Each of these 

will be used individually in the correlation development to also test the 

relative contribution of the layers.  
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Table  6.5 2-D fracture properties of the least conductive layer (short fractures with low 

density) in the three-layer model. 

Cases for three layers Fractal Dim. 
Fractal 
Dim. 

No. Scenario 

Layer-1 Layer-2 Layer-3 
Intersec. 

Point 

Connectivity 
Index 

Max. Touch 
with X 

Scanning 
Lines 

Max. Touch 
with Y 

Scanning 
Lines 

Lines 

1 
lDlL   
lDlL   
lDlL 

L=20,  
D=50 

L=20,  
D=50 

L=20,  
D=50 

1.234 0.780 6529 6269 1.348 

2 
lDlL    

mDmL   
lDlL 

L=20, 
D=50 

L=40, 
D=150 

L=20,  
D=50 

1.034 0.520 5736 6929 1.330 

3 
lDlL  

mDmL   
hDhL 

L=20,  
D=50 

L=40, 
D=150 

L=60, 
D=250 

1.234 0.860 6235 6213 1.332 

4 
lDlL  

hDhL  
lDlL 

L=20,  
D=50 

L=60, 
D=250 

L=20,  
D=50 

1.168 0.940 6401 6294 1.325 

5 
mDmL   

lDlL   
mDmL 

L=40, 
D=150 

L=20,  
D=50 

L=40, 
D=150 

1.186 0.720 6612 6136 1.335 

6 
mDmL   
mDmL   
mDmL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

1.917 9.533 35618 39181 1.720 

7 
mDmL   
hDhL   

mDmL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

1.902 8.913 37520 37241 1.721 

8 
hDhL   
lDlL   

hDhL 

L=60, 
D=250 

L=20,  
D=50 

L=60, 
D=250 

1.149 0.680 6345 6391 1.330 

9 
hDhL   

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

1.910 9.480 36213 40121 1.725 

10 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

1.654 43.576 98187 93035 1.831 
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Table  6.6 2-D fracture properties of the most conductive layer (long fractures-high 

density) in the three-layer model. 

Cases for three layers Fractal Dim. 
Fractal 
Dim. 

No. Scenario 

Layer-1 Layer-2 Layer-3 
Intersec. 

Point 

Connectivity 
Index 

Max. Touch 
with X 

Scanning 
Lines 

Max. Touch 
with Y 

Scanning 
Lines 

Lines 

1 
lDlL   
lDlL   
lDlL 

L=20,  
D=50 

L=20,  
D=50 

L=20,  
D=50 

1.234 0.78 6529 6269 1.348 

2 
lDlL    

mDmL   
lDlL 

L=20,  
D=50 

L=40, 
D=150 

L=20,  
D=50 

1.916 9.08 38336 38071 1.729 

3 
lDlL  

mDmL   
hDhL 

L=20,  
D=50 

L=40, 
D=150 

L=60, 
D=250 

1.955 43.164 95291 93902 1.835 

4 
lDlL  

hDhL  
lDlL 

L=20,  
D=50 

L=60, 
D=250 

L=20,  
D=50 

1.977 38.644 102500 88409 1.845 

5 
mDmL   

lDlL   
mDmL 

L=40, 
D=150 

L=20,  
D=50 

L=40, 
D=150 

1.936 8.753 36136 39398 1.728 

6 
mDmL   
mDmL   
mDmL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

1.917 9.533 35618 39181 1.72 

7 
mDmL   
hDhL   

mDmL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

1.966 40.404 97711 94150 1.836 

8 
hDhL   
lDlL   

hDhL 

L=60, 
D=250 

L=20,  
D=50 

L=60, 
D=250 

1.977 40.76 95095 97325 1.838 

9 
hDhL   

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

1.985 38.948 99159 92893 1.842 

10 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

1.967 43.576 98187 93035 1.831 
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Table  6.7 Average of 2-D fracture properties (arithmetic average of the least and most 

conductive layer values) in the three-layer model. 

Cases for three layers Fractal Dim. 
Fractal 
Dim. 

No. Scenario 

Layer-1 Layer-2 Layer-3 
Intersec. 

Point 

Connectivity 
Index 

Max. Touch 
with X 

Scanning 
Lines 

Max. Touch 
with Y 

Scanning 
Lines Lines 

1 
lDlL   
lDlL   
lDlL 

L=20,  
D=50 

L=20,  
D=50 

L=20,  
D=50 

1.234 0.78 6529 6269 1.348 

2 
lDlL    

mDmL   
lDlL 

L=20,  
D=50 

L=40, 
D=150 

L=20, 
D=50 

1.475 4.8 22036 22500 1.53 

3 
lDlL  

mDmL   
hDhL 

L=20,  
D=50 

L=40, 
D=150 

L=60, 
D=250 

1.594 22.012 50763 50058 1.583 

4 
lDlL  

hDhL  
lDlL 

L=20,  
D=50 

L=60, 
D=250 

L=20,  
D=50 

1.572 19.792 54451 47352 1.585 

5 
mDmL   

lDlL   
mDmL 

L=40, 
D=150 

L=20,  
D=50 

L=40, 
D=150 

1.561 4.737 21374 22767 1.532 

6 
mDmL   
mDmL   
mDmL 

L=40, 
D=150 

L=40, 
D=150 

L=40, 
D=150 

1.917 9.533 35618 39181 1.72 

7 
mDmL   
hDhL   

mDmL 

L=40, 
D=150 

L=60, 
D=250 

L=40, 
D=150 

1.934 24.659 67616 65696 1.778 

8 
hDhL   
lDlL   

hDhL 

L=60, 
D=250 

L=20,  
D=50 

L=60, 
D=250 

1.563 20.72 50720 51858 1.584 

9 
hDhL   

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=150 

L=60, 
D=250 

1.947 24.214 67686 66507 1.783 

10 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

1.81 43.576 98187 93035 1.831 

 

 

 

 

Finally, the pressure curves of drawdown test simulations for each well in 

different models were analyzed and the welltest permeability was 

calculated. Due to this fact that welltest analysis investigates the 3-D body 

of the reservoir, the resulted permeability values were considered as 3-D 

data. These welltest permeability values are shown in Table  6.8. 
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Table  6.8 Different fractured reservoirs (models) with associated well test (3-D) 

permeability data. 

Cases for three layers 
No. Scenario 

Layer-1 Layer-2 Layer-3 

Welltest K 
(Well#1), 

mD 

Welltest K 
(Well#2), 

mD 

Welltest K 
(Well#3), 

mD 

Welltest K 
(Well#4), 

mD 

Welltest K 
(Well#5), 

mD 

1 
lDlL   
lDlL   
lDlL 

L=20, D=50 L=20, D=50 L=20, D=50 31.044 22.827 22.245 11.136 20.042 

2 
lDlL    

mDmL   
lDlL 

L=20, D=50 L=40, D=150 L=20, D=50 22.45 22.477 14.871 23.453 15.011 

3 
lDlL  

mDmL   
hDhL 

L=20, D=50 L=40, D=150 L=60, D=250 383.325 67.254 98.799 57.535 75.037 

4 
lDlL  

hDhL  
lDlL 

L=20, D=50 L=60, D=250 L=20, D=50 232.061 112.143 69.96 25.699 88.365 

5 
mDmL   

lDlL   
mDmL 

L=40, D=150 L=20, D=50 L=40, D=150 41.429 63.798 33.057 37.506 69.227 

6 
mDmL   
mDmL   
mDmL 

L=40, D=150 L=40, D=150 L=40, D=150 263.35 93.235 94.081 139.798 76.149 

7 
mDmL   
hDhL   

mDmL 
L=40, D=150 L=60, D=250 L=40, D=150 369.72 171.514 69 65.118 107.993 

8 
hDhL   
lDlL   

hDhL 
L=60, D=250 L=20, D=50 L=60, D=250 524.337 191.93 166.854 107.378 137.726 

9 
hDhL   

mDmL   
hDhL 

L=60, D=250 L=40, D=150 L=60, D=250 1029.615 155.385 272.733 232.177 154.372 

10 
hDhL   
hDhL   
hDhL 

L=60, D=250 L=60, D=250 L=60, D=250 2220.827 141.403 454.835 194.503 180 

 

 

 

 

The next step after compiling the data was to apply a multivariable 

regression analysis to correlate these data to the equivalent FNP. In this 

exercise, different possible scenarios in terms of the availability of the 1-D, 

2-D and 3-D data were considered and for each case, a different equation 

was derived as described below. 
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6.3.1 Only 1-D Data 

The first possible scenario is based on the availability of only 1-D data, 

i.e., fracture data from image logs and cores. Two parameters were 

measured in each wellbore: (1) the number of the fracture intersection, and 

(2) the distance between intersecting fractures inside the well (Table  6.4). 

Then, the following equation was derived using these two dependent 

parameters: 

 

                  076.8)(367.1)(063.1)( 21 +−−= XLnXLnKLn ave
            (2) 

 

where Kave denotes the actual average FNP obtained using the software, X1 

is the number of fracture intersections and X2 is fracture spacing. As the 

software used does not provide individual well properties, an average value 

of all the properties from the five wells were used in this equation. 

 

6.3.2 Only 3-D Data 

In this case, all five wells in each model were independently considered and 

the following equation was obtained: 

 

026.2)(278.0)(168.0

)(301.0)(098.0)(142.0)(

54

321

+++

−−=

XLnXLn

XLnXLnXLnKLn ave
              (3)                       

 

where Kave denotes the actual average FNP, and X1, X2, X3, X4 and X5 are the 

average welltest permeability values from wells 1, 2, 3, 4 and 5, 

respectively. 
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6.3.3 1-D and 3-D Data 

By combining available 1-D and 3-D data, the following equation was 

derived: 

12.8)(02.1)(69.1)(59.0

)(26.0)(5.0)(143.0)(41.0)(

765

4321

+−−+

+−−=

XLnXLnXLn

XLnXLnXLnXLnKLn ave
           (4)                               

 

where Kave denotes the actual average equivalent fracture network 

permeability, X1, X2, X3, X4 and X5 are the average well test permeability 

from wells 1, 2, 3, 4 and 5, respectively, X6 is the number of fracture 

intersections in the well and finally X7 is fracture spacing. 

 

6.3.4 2-D and 3-D Data 

In this case, three different equations using both 2-D and 3-D data which 

took into account the 2-D properties of the least conductive, most 

conductive layers, and the average of these two layers (the arithmetic 

average of the least and most conductive layer values) were derived, 

respectively: 

 

97.1)(035.0)(312.0

)(208.0)(37.0)(153.0)(2.0)(

65

4321

+−+

+−−=

XLnXLn

XLnXLnXLnXLnKLn ave
         (5)                          

 

12.2)(0856.0)(187.0

)(14.0)(113.0)(09.0)(012.0)(

65

4321

+−+

+−−=

XLnXLn

XLnXLnXLnXLnKLn ave
       (6)                            

 

187.2)(126.0)(172.0

)(124.0)(068.0)(067.0)(042.0)(

65

4321

+++

+−−−=

XLnXLn

XLnXLnXLnXLnKLn ave
    (7)                        

 

 

where Kave denotes the actual average equivalent fracture network 

permeability, X1, X2, X3, X4 and X5 are the average well test permeability 
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from wells 1, 2, 3, 4 and 5, respectively, and X6 is the connectivity index in 

the 2-D plane of the least conductive, most conductive and average of these 

two layers (the arithmetic average of the least and most conductive layer 

values) in Eqs. 5, 6 and 7, respectively.  

 

6.3.5 1-D, 2-D and 3-D Data 

At this stage, with the assumption of the availability of all three types of 

data, three equations honoring all 1-D, 2-D and 3-D data were derived. 2-D 

properties of the least conductive, most conductive and the average of the 

most and least conductive layer values were taken into account, 

respectively: 

 

7.4)(018.0)(4.0)(8.0

)(5.0)(24.0)(44.0)(15.0)(32.0)(

876

54321

+−−−

++−−=

XLnXLnXLn

XLnXLnXLnXLnXLnKLn ave

                       (8) 
 

07.1)(1.0)(1.0)(4.0

)(02.0)(09.0)(02.0)(06.0)(14.0)(

876

54321

+−++

+++−−=

XLnXLnXLn

XLnXLnXLnXLnXLnKLn ave   

(9)                        

 

08.6)(125.0)(8.0)(8.0

)(16.0)(12.0)(06.0)(06.0)(05.0)(

876

54321

+−−−

++−−−=

XLnXLnXLn

XLnXLnXLnXLnXLnKLn ave

                (10) 

 

where Kave denotes the actual average equivalent FNP, X1, X2, X3, X4 and X5 

are the average well test permeability values from wells 1, 2, 3, 4 and 5 

respectively, X6 is the number of fracture intersection points, X7 is fracture 

spacing in the well and X8 is the connectivity index of the 2-D plane (of the 

least conductive, most conductive and an average of these values, 

respectively in Eqs. 8, 9 and 10).  
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The regression coefficients representing the reliability of the derived 

equations listed above are given in Table  6.9. 

 

 

Table  6.9 The regression coefficients of each derived equation listed above. 

Equation 
Regression 
Coefficients 

(R
2
) 

2 0.8287 

3 0.9291 

4 0.9516 

5 0.9515 

6 0.9976 

7 0.9974 

8 0.9529 

9 0.9999 

10 0.9999 

 

 

 

 

6.4 Validation 

To validate the derived equations (Eqs. 3 through 10), five new synthetic 

fracture sets were generated with different properties and random 

representations being totally independent of the cases used for correlation 

development. The five cases used for validation are presented in Table 

 6.10. 
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Table  6.10 New data set used to validate the derived equations. 

Cases for three layers 
No. Scenario 

Layer-1 Layer-2 Layer-3 

Kmax, 
mD 

Kmin, 
mD 

Kave,  
mD 

1 
lDlL  

mDmL   
hDhL 

L=20, 
D=50 

L=40, 
D=149 

L=60, 
D=250 

82.982 4.748 19.85 

2 
lDlL    

hDhL   
lDlL 

L=20, 
D=50 

L=60, 
D=250 

L=20, 
D=50 

62.585 4.854 17.429 

3 
mDmL  

lDlL   
mDmL 

L=40, 
D=149 

L=20, 
D=50 

L=40, 
D=149 

69.089 4.733 18.084 

4 
hDhL  

mDmL   
hDhL 

L=60, 
D=250 

L=40, 
D=149 

L=60, 
D=250 

96.489 4.855 21.644 

5 
hDhL   
hDhL   
hDhL 

L=60, 
D=250 

L=60, 
D=250 

L=60, 
D=250 

124.615 4.846 24.575 

 

 

 

 

Figure  6.3 through Figure  6.11 show the actual permeability values 

against the predicted ones for each equation given in Eqs. 3 through 10 

respectively. In each plot, a 45
o
 line was drawn to indicate the deviations 

from the actual data. 

 

As seen in Figure  6.3, the correlation is relatively high. This means that if 

the well data from five wells are fully available, one may obtain the FNP 

using only well data with a reasonably high correlation coefficient. Note, 

however, that this requires logging and coring five wells throughout the 

entire production zone within a 100x100 m
2
 area, which may not be a 

common practice in reality due to its high cost.  
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Figure  6.3 Actual average permeability against the predicted one using Eq. 2. 

 

 

 

The next question was whether single (or more) well test data can provide 

good correlations with the FNP with similar accuracy. To answer this 

question, only 3-D (well test) data and then the combination of 1-D and 3-

D data were tested. It was observed that the prediction accuracy is not in an 

acceptable range even if all drawdown tests from all (five) wells are 

included (Figure  6.4 and Figure  6.5). The reason behind this could be the 

high degree of the heterogeneity of fracture distribution. Hence, the well 

test data may not be sufficient to capture local changes in the fracture 

network characteristic and might have been dominated only by the most 

conductive layer. 
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Figure  6.4 Actual average permeability against the predicted one using Eq. 3. 

 

2.7

2.9

3.1

3.3

3.5

3.7

3.9

2.7 2.9 3.1 3.3 3.5 3.7 3.9

Actual Ln(Kave), mD

P
re

d
ic

te
d

 L
n

(K
a

v
e

),
 m

D

 
Figure  6.5 Actual average permeability against the predicted one using Eq. 4. 

 

 

 

 



 

A version of this chapter was presented and also submitted for publication                     177 

 

Jafari, A. and Babadagli, T.: “Calculating Equivalent Fracture Network Permeability of 

Multi-Layer-Complex Naturally Fractured Reservoirs,” SPE 132431, Western Regional 

Meeting, Anaheim, California, USA, 2010. 

 

Improvements can be obtained when 2-D data are combined with 3-D data 

(Figure  6.6, Figure  6.7 and Figure  6.8). One may notice that adding 2-D 

data to 3-D data improved the permeability prediction, especially when the 

2-D properties of the most conductive layer (Figure  6.7) were used. 

Although the average of the most and least conductive layer values yielded 

a better correlation for the FNP (Figure  6.8), the contribution of the data 

from the least conductive layer data was not as significant as the other two 

cases. This, in turn, shows that the layer with longer and higher number 

(density) fracture dominates the total fluid flow in the system and one has 

to pay attention to this layer in outcrop (2-D) data collection. 
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Figure  6.6 Actual average permeability against the predicted one using Eq. 5. 

 
 
 
 
 



 

A version of this chapter was presented and also submitted for publication                     178 

 

Jafari, A. and Babadagli, T.: “Calculating Equivalent Fracture Network Permeability of 

Multi-Layer-Complex Naturally Fractured Reservoirs,” SPE 132431, Western Regional 

Meeting, Anaheim, California, USA, 2010. 

 

2.8

2.9

3.0

3.1

3.2

3.3

3.4

2.8 2.9 3.0 3.1 3.2 3.3 3.4

Actual Ln(Kave), mD

P
re

d
ic

te
d

 L
n

(K
a

v
e

),
 m

D

 
Figure  6.7 Actual average permeability against the predicted one using Eq. 6. 
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Figure  6.8 Actual average permeability against the predicted one using Eq. 7. 
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Figure  6.9, Figure  6.10 and Figure  6.11 show the result of combining all 

three data types including 1-D, 2-D and 3-D data. Once again, the 

prediction power of the derived equations improved, especially when the 2-

D properties of the most conductive layer (Figure  6.10) or the average 

value of the most and least conductive layer properties (Figure  6.11) were 

considered. Note that the deviations are typically due to the high FNP cases 

as seen in Figure  6.4 through Figure  6.9. The addition of 2-D data of the 

most conductive layer resulted in a better agreement with the actual data as 

seen in Figure  6.10 and Figure  6.11.  
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Figure  6.9 Actual average permeability against the predicted one using Eq. 8. 
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Figure  6.10 Actual average permeability against the predicted one using Eq. 9. 
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Figure  6.11 Actual average permeability against the predicted one using Eq. 10. 
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6.5 Conclusions 

This chapter reports an approach to estimate the fracture network 

permeability (FNP) of complex, multi-layer fracture network patterns. 

Different data sets (1-D wellbore, 2-D outcrop, and 3-D well test data) were 

considered for different configurations such as low, high or medium 

fracture density-length combinations. Different scenarios were tested 

considering the availability of the data, i.e., 1-D or 3-D data only, their 

combinations, and 1-D, 2-D, and 3-D data altogether, and eight different 

equations were derived to estimate the FNP and the results were validated. 

 

The validation results revealed that using only 3-D data from different 

wells to predict the FNP would not yield good correlations due to wide 

spatial heterogeneity of the fracture properties in the reservoir, which 

cannot be captured from single-well tests. However, it was shown that 

having a combination of 1-D, 2-D and 3-D data would result in a more 

reliable equation. Also, it is recommended that the 2-D data of the most 

conductive layer in reservoir which has longer fractures with a higher 

density should be incorporated in the correlations. This type of layer 

dominates the total fluid flow regime in the whole system and hence needs 

to be weighed more than the other layers with lower conductivity. 1-D data 

from well logs and cores (the number of the fracture intersections and the 

distance between intersecting fractures) also yields a good correlation if 

enough wells representing the different parts of the reservoirs are logged 

and cored (5 wells in a 100x100 m
2
 area in our particular example). This, 

however, is an expensive practice compared to the well tests and outcrop 

analysis.  
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7 Percolation-Fractal Properties and Fracture 
Network Permeability 

 

 

 

 

 

 

 

7.1 Overview  

In practice, all available data including 1-D (cores, logs, drilling), 2-D 

(outcrop) and 3-D (pressure transient tests) and even seismic data are 

incorporated to build a fracture network and corresponding permeability 

model to perform simulation. Often times, however, only a limited amount 

of these data are available and alternative approaches are needed. One of 

the options is statistical techniques based on the percolation theory as the 

correct characterization of fracture network topology is a critical parameter 

to analyze the connectivity of opposite boundaries and to eventually 

estimate the permeability -percolating- of the system, and this can be 

achieved with this theory. In this chapter, the concepts of percolation theory 

and fractal geometry are combined to define the connectivity characteristics 

of 2-D fracture networks and a new approach to estimate the equivalent 

fracture network permeability (EFNP) is introduced.  
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7.2 Synthetic fracture patterns 

Using a developed algorithm, twenty different fracture patterns which 

cover all possible combinations of varying fracture parameters were 

generated. The randomly oriented fractures were distributed within a    

100x100 m
2
 sized domain according to a uniform distribution. In these 

patterns, the number of fractures per domain (density) and fracture length 

were of varying parameters. The number of fractures per domain varied 

between 50 and 250. Also, fracture length had a range of 20 to 80 meters 

(Table  7.1). Properties of each fracture pattern were defined as an average 

of ten different random realizations as given in Table  7.1. Then, using a 

commercial software package (FRACA), the equivalent fracture network 

permeability (EFNP) of each of these patterns was calculated. In this 

software, fracture conductivity is used instead of aperture for measuring 

permeability (FRACA, 2005) which is defined as the product of the 

intrinsic fracture permeability and the fracture aperture ( e ) with parallel 

walls. Also, the intrinsic fracture permeability and conductivity according 

to Poiseuille’ law are expressed as 
12

2
e  and 

12

3e  respectively (Bourbiaux et 

al., 1998). In all of the patterns, constant fracture conductivity, i.e., 1000 

mD.m, was assigned to all fractures in the domain.  Two assumptions were 

made for the measurement of the EFNP: (1) all fracture reservoirs consisted 

of only one layer, and (2) all fractures were entirely vertical. 

 

Each 2-D fracture pattern (in the form of trace map) was imported and then 

a model with the above assumptions was built. The fracture network in the 

FRACA software was discretized with a rectangular grid and then the mass 

balance equations were solved by applying a pressure varying linear 

boundary condition for each direction. Finally, the flow rates across the 
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block faces were computed to calculate the EFNP (FRACA, 2005). The 

EFNP values for each pattern are shown in Table  7.1. Because only very 

limited number of fracture clusters in each pattern at very low fracture 

length and density could span the two opposite faces of the domain, the 

average value of EFNP over ten different realizations for these patterns was 

fairly low.  

 

Table  7.1 Generated synthetic fracture patterns used in this chapter. 

 

1 20 50 5.609

2 40 50 27.343

3 60 50 74.672

4 80 50 124.025

5 20 100 161.214

6 40 100 77.643

7 60 100 155.048

8 80 100 266.795

9 20 150 395.592

10 40 150 459.049

11 60 150 120.310

12 80 150 274.240

13 20 200 424.930

14 40 200 583.337

15 60 200 696.129

16 80 200 185.112

17 20 250 384.561

18 40 250 621.084

19 60 250 825.885

20 80 250 1018.037

Fracture 

Length, m

Number of 

Fractures
Pattern

Permebaility       

mD

 

 

 

 

7.3 Fractal properties of the fracture networks 

Shortly after Mandelbrot’s well known book on fractals (Mandelbrot, 1982) 

in which many different synthetic and natural fractal objects were 
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introduced, fractality of natural fracture patterns were tested and reported 

(Barton and Larsen, 1985; La Pointe, 1988; Barton and Hseih, 1989).  

 

In this chapter, we took advantage of the usefulness of fractal geometry in 

the quantification of many different properties of fracture networks and 

developed an algorithm to calculate the fractal characteristic of generated 

fracture patterns (total number is 200, the different realizations of twenty 

different configurations is given in Table  7.1).  

 

We begin with the classical box counting dimension as first tested by 

Barton and Larsen (1985) for fracture networks according to the following 

relationship: 

DrrN −α)(
                                                      (1)                                 

 

 

where )(rN  is the number of the boxes (grids) containing different fracture 

features, r  is the box sizes and D  is the fractal dimension. In this 

commonly used technique, the fractal dimension is obtained by overlaying 

a set of different boxes (grids) with different sizes on the fracture network 

and counting the number of boxes containing different fracture features 

(fracture intersection points, fracture lines, etc) for each box size. A plot of 

the number of occupied boxes versus the size of those boxes is developed 

and then the slope of the straight line fitted to the points gives the fractal 

dimension of that specific feature of the fracture network. The fractal 

dimension of fracture intersection points and fracture lines was measured 

using this technique. 

 

Other fracture network characteristics were quantified by applying different 

statistical and fractal techniques. To consider the orientation effect, a 
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square was overlaid on the fracture domain. Then, a number of imaginary 

scanning lines in the X and Y directions (horizontal and vertical) inside the 

square were defined. Next, the number of intersections between these 

scanning lines and fracture lines were counted. This process was repeated 

with different square sizes and at the end, the number of intersections was 

plotted against the square size and the slope of the best fitted line was 

calculated (Babadagli, 2001). The effects of fracture orientation on the 

EFNP were taken into account with this method. If all fractures are either in 

the X (horizontal) or Y (vertical) directions, the fractal dimension using the 

X and Y-direction scanning lines would be different from each other; but in 

randomly uniform distributed fractures, these two fractal dimensions are 

expected to be close to each other.  

 

A new parameter called the connectivity index was defined as the total 

number of intersection point divided by the total number of fracture lines to 

take into account the connectivity (intersection). The results are presented 

in Table  7.2. One may notice that all the fractal dimensions lie between 1 

and 2 which indicates the fractal nature of a 2-D system and there is 

meaningful relation between the fractal dimensions and fracture length as 

well as number of fractures. Note that twelve different fractal and statistical 

characteristics of fracture networks were tested against permeability and 

five of them listed in Table  7.2 were observed to show the strongest 

correlation (Jafari and Babadagli, 2008). For further details about the 

measurement of these fractal properties, readers are referred to previous 

publications (Jafari and Babadagli, 2008 and 2009).  
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Table  7.2 Fractal dimension of different features of the synthetics fracture networks. 

20 50 1.162 1.565 1.592 0.732 1.336 5.609

40 50 1.605 1.180 1.204 3.478 1.501 77.643

60 50 1.747 1.038 1.029 8.096 1.588 120.310

80 50 1.839 0.979 0.969 13.702 1.641 185.112

20 100 1.577 1.424 1.522 1.435 1.504 27.343

40 100 1.843 1.223 1.223 6.530 1.647 155.048

60 100 1.912 1.052 1.059 15.968 1.714 274.240

80 100 1.941 0.993 0.984 27.270 1.761 384.561

20 150 1.778 1.746 1.692 2.225 1.594 74.672

40 150 1.913 1.236 1.237 9.439 1.722 266.795

60 150 1.940 1.039 1.044 24.705 1.774 424.930

80 150 1.967 0.980 0.982 41.930 1.816 621.084

20 200 1.868 1.546 1.530 2.853 1.657 124.025

40 200 1.941 1.220 1.225 13.395 1.769 395.592

60 200 1.963 1.039 1.041 32.229 1.814 583.337

80 200 1.980 0.980 0.980 56.216 1.847 825.885

20 250 1.905 1.444 1.405 3.640 1.701 161.214

40 250 1.957 1.177 1.167 16.858 1.798 459.049

60 250 1.970 1.041 1.029 40.944 1.838 696.129

80 250 1.984 0.986 0.981 70.622 1.866 1018.037

FD of 

intersection 

points

Permeability  

mD
Length

Number of 

Fractures

FD of X-

scanning 

lines

FD of Y-

scanning 

lines

Connectivity 

Index

FD of   

fracture 

lines

 

 

 

 

7.4 Percolation theory and fracture network 

permeability 

Percolation theory is a general mathematical theory which can be used to 

describe the connectivity and conductivity (permeability) of systems with 

complex geometry (Stauffer and Aharony, 1992). The advantage of using 

this theory is that many results can be expressed through simple algebraic 

relationships known as scaling law (power laws) ( King et al., 2002). 

Density of the objects placed randomly in space is directly related to the 

overall properties of the system of interest (Masihi et al.; 2005, 2007). The 

easiest model for understanding what the percolation theory is all about is 

an infinite lattice consisting of sites and bonds. Now, suppose some of 
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these either sites or bonds are occupied (open to flow) with a probability 

“p”. For small values of this “p”, most of the occupied sites (or bonds) form 

isolated clusters (connected occupied sites). As this probability increases, 

number of these clusters increase and also, some of those grow or merge 

into others and at a particular value known as percolation threshold, one of 

these clusters spans the entire domain and connects the opposite faces 

together. This critical value depends on the detail and dimensionality of the 

lattice or grid. Around this critical threshold, the following simple 

analytical term known as scaling law or power law exists (King et al., 

2002; Masihi et al., 2005, 2007): 

 

( ) ( ) cc pppppP >−
β

α                              (2) 

 

where ( )pP  is the probability that a site or bond connected to the spanning 

cluster in the domain. The exponent β  is known as the universal exponent 

and it is independent of the lattice characteristics, and only depends on the 

dimensionality of space. Hence, whether the system is lattice or continuum 

percolation, its value would be the same being 0.139 and 0.4 for 2D and 3D 

spaces, respectively.  

 

The above percolation analysis using lattice is called lattice percolation. 

However, in fracture analyses using this theory, fractures need to be placed 

randomly and independently within a continuum space. This is called 

continuum percolation and interestingly, the same scaling (power) laws 

with the same critical exponents as in lattice percolation apply to the 

continuum percolation (King et al., 2002).  

 

The major advantage of continuum percolation against the lattice 
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percolation in the analysis of fracture networks is that fractures can be 

placed at any location in the domain and are not limited to any specific 

points on the lattice. Also, the number of fracture intersections 

(connectivity) is not limited to any specific (maximal) number (Masihi, 

2005). It has been postulated that there is a relationship between the 

effective permeability of a system and its percolation properties presented 

by the following scaling law (Stauffer and Aharony, 1992): 

 

                                              ( )µ
α ceff ppK −                                                  (3)  

 

where effK  is the effective permeability, p and cp  are occupancy 

probability and percolation  threshold respectively, and µ  is a universal 

exponent. 

 

The main focus of this chapter was to improve the relationship given in Eq. 

3 to further develop a methodology to obtain equivalent (effective) fracture 

network permeability. The readily available 2-D fractal and statistical 

properties of fracture networks were used in this exercise.  

 

The most difficult part of using percolation theory in a continuum system is 

to define an equivalent term to the occupancy probability in lattice 

percolation. As suggested by Adler and Thovert (1999), this could be done 

by using the excluded volume concept. Thus, using the excluded volume 

(3-D objects) concept introduced by Balberg et al. (1984), the excluded 

area (2-D) of fractures was calculated using the following equation: 

 

                                                    22
lAex

π
=                                             (4) 
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where exA  is the excluded area and l  is the length of the fractures in the 

pattern. This equation is valid for isotropic (randomly and uniformly) 

oriented fracture patterns (Adler and Thovert, 1999). 

 

Next, the fracture density of each fracture pattern, which is defined as the 

number of fractures per domain area, was calculated using the following 

relationship suggested by Khamforoush et al. (2008): 

 

                                                              
2

L

N fr
=ρ                                                         (5) 

 

where ρ  is fracture density, frN  is the number of fractures in the domain 

and 2L  is the area of the domain, which was taken as 100x100 m
2
 in this 

chapter. 

 

Then, the dimensionless density of each fracture pattern was calculated as 

follows (Khamforoush et al., 2008; Adler and Thovert, 1999): 

 

                                       exA.' ρρ =                                                          (6) 

 

It is necessary to mention that by using an excluded area to dimensionless 

the fracture density, macroscopic properties of fracture networks become 

independent of fracture shape as shown earlier (Adler, 1992; Huseby et al., 

1997; Koudina et al., 1998; Whitaker, 1998; Mardia and Jupp, 2000; 

Huseby et al., 2001; Bogdanov et al., 2003a; Bogdanov et al., 2003b; 

Mourzenko et al., 2004; Vaentini et al., 2007; Khamforoush et al., 2008). 

 

For 2-D randomly oriented fracture sticks, the continuum percolation 

threshold in terms of dimensionless density ( )'cρ  has been determined to 
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be 3.6 (Adler and Thovert, 1999). Since the purpose of this chapter was to 

show any possible correlation between fractal-percolation properties and 

equivalent fracture network permeability (EFNP) and not specifically the 

percolation threshold for these finite-sized fracture patterns, to eventually 

propose a practical method to estimate EFNPs, this number was adopted 

and used throughout this chapter for the evaluation of the percolation 

properties of different fracture patterns. The results of the percolation 

analysis of different patterns are presented in Table  7.3. In this table, two 

fracture patterns ended up with a negative (ρ'-ρ'c) value and these 

permeability values were ignored. This can be attributed to the finite size 

effect of the fracture patterns as explained by King et al. (2002), i.e., it is 

possible to have connectivity and hence permeability, at much lower values 

than the percolation threshold due to the random nature of the process.  

 

 

Table  7.3 Percolation proeprties of different fracture patterns. 

20 50 254.777 0.005 1.274 -2.326 5.609

40 50 1019.108 0.005 5.096 1.496 77.643

60 50 2292.994 0.005 11.465 7.865 120.310

80 50 4076.433 0.005 20.382 16.782 185.112

20 100 254.777 0.01 2.548 -1.052 27.343

40 100 1019.108 0.01 10.191 6.591 155.048

60 100 2292.994 0.01 22.930 19.330 274.240

80 100 4076.433 0.01 40.764 37.164 384.561

20 150 254.777 0.015 3.822 0.222 74.672

40 150 1019.108 0.015 15.287 11.687 266.795

60 150 2292.994 0.015 34.395 30.795 424.930

80 150 4076.433 0.015 61.146 57.546 621.084

20 200 254.777 0.02 5.096 1.496 124.025

40 200 1019.108 0.02 20.382 16.782 395.592

60 200 2292.994 0.02 45.860 42.260 583.337

80 200 4076.433 0.02 81.529 77.929 825.885

20 250 254.777 0.025 6.369 2.769 161.214

40 250 1019.108 0.025 25.478 21.878 459.049

60 250 2292.994 0.025 57.325 53.725 696.129

80 250 4076.433 0.025 101.911 98.311 1018.037

Length
Number of 

Fractures

Permeability  

mD

Excluded 

Area (Aex)

Fracture 

Density (ρ)

Dimensionless 

Density (ρ') (ρ'-ρ'c)
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7.5 Analysis of the results and discussion 

To estimate equivalent fracture network permeability through Eq. 3, we 

begin with the relationship between fractal and percolation properties of 

generated fracture patterns. Figure  7.1 shows that as the fractal dimension 

of fracture intersection points increases, the dimensionless density (Eq. 6) 

increases for all fracture densities. The relationship is not linear and all the 

curves converge as the fractal dimension value approaches a fractal 

dimension value of two. Note that the dimensionless density is dependent 

on the number of fractures, fracture length, and also the shape and size of 

the domain. As expected, the fracture patterns with a higher number of 

fractures have higher fractal dimensions and after a critical value of the 

dimensionless density, the fractal dimension of the intersection points do 

not change regardless of the fracture density. 
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Figure  7.1 Fractal dimension (FD) of fracture intersection points vs. dimensionless density 

for different fracture densities and lengths. 
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In Figure  7.2 and Figure  7.3, the fractal dimension obtained through the 

scanning lines technique in both the X- and Y-directions is plotted against 

the difference between dimensionless density and the dimensionless 

percolation threshold (ρ'-ρ'c). The curves in these plots show the same trend 

as in Figure  7.1, because fractures were placed and oriented within the 

domain randomly and according to a uniform distribution and there is not 

any bias in their orientation. As can also be inferred from these figures, an 

inverse relationship exists between the fractal dimension of scanning lines 

in the X- and Y-directions and (ρ'-ρ'c). If fact, the more uniformly and 

randomly oriented the fractures were in the domain, the more similar the 

fractal dimensions of scanning lines in X and Y-directions. In other words, 

if fractures were oriented mostly in one direction, the fractal dimension of 

scanning lines in the X- and Y-directions would be different and as a result, 

they show a different trend against (ρ'-ρ'c).  

 

One may note that for a given number of fractures in the domain, as  the 

fracture length increases, the fractal dimension of the scanning lines in the 

X- and Y-directions decreases, especially near the percolation threshold at 

which (ρ'-ρ'c) will experience a continuous increase.  
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Figure  7.2 Fractal dimension of X-scanning lines (in X-direction) vs. the difference 

between dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for 

different fracture densities and lengths. 
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Figure  7.3 Fractal dimension of Y-scanning lines (in Y direction) vs. the difference 

between dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for 

different fracture densities and lengths. 
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The connectivity index was plotted against (ρ'-ρ'c) in Figure  7.4. A linear 

relationship is obvious. Both connectivity index and (ρ'-ρ'c) primarily 

depend on the number of fractures and fracture length as well as the domain 

size. For instance, for a given number of fractures in the domain, 

connectivity index and (ρ'-ρ'c) both increase by an increase in fracture 

length. It can also be noticed that fracture patterns with a higher number of 

fractures have higher (ρ'-ρ'c) values. 
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Figure  7.4 Connectivity index vs. the difference between dimensionless density and 

dimensionless percolation threshold (ρ'-ρ'c) for different fracture densities and lengths. 

 
 

 

Figure  7.5 illustrates the change of the fractal dimension of fracture lines 

with the dimensionless density. The behavior is not linear, especially close 

to the percolation threshold. One may infer from this plot that as the fractal 

dimension becomes bigger and approaches the value of two (this means 

that spatially the fractures are uniformly located within the entire domain), 
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the chances of having a percolating network increases. As a result of this, 

the dimensionless density increases accordingly. Finally, at higher 

dimensionless densities, the curves converge, representing a case of very 

well developed fracture networks in the system.  
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Figure  7.5 Fractal dimension of fracture lines vs. dimensionless density for different 

fracture densities and lengths. 

 
 

 

Finally, the equivalent fracture network permeability was plotted against 

(ρ'-ρ'c) in Figure  7.6. There is a non linear-direct relationship between 

these two parameters but an obvious trend is observed. Also, the higher the 

number of fractures in the domain, the higher the equivalent fracture 

network permeability (EFNP), especially around the percolation threshold 

[low values of (ρ'-ρ'c)]. For a given number of fractures, as fracture length 

increases, the (ρ'-ρ'c) and EFNP increase. At higher values of (ρ'-ρ'c), all 

curves converge and follow the same trend. To show this converging trend 

the points were connected, which is represented by solid lines. 
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Figure  7.6 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for different 

fracture densities and lengths. 

 

 

 

In the final attempt, the above plot was split into five separate (log-log) 

plots for each curve (Figure  7.7 through Figure  7.11) and a line was fitted 

to data in each plot which correlates the equivalent fracture network 

permeability to (ρ'-ρ'c). The general form of this relationship is as follows: 

 

( )µ
ρρ cAK ''−=                                          (7) 

 

where K  is the equivalent fracture network permeability, A  is the 

proportionality constant, µ  is the permeability exponent and finally 'ρ  and 

c'ρ  are dimensionless density and percolation threshold, respectively 

(Zhang and Sanderson, 2002).  

 

In all these plots (fracture patterns with different number of fractures), as 
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fracture length increases, the (ρ'-ρ'c) and accordingly the equivalent fracture 

network permeability increases. The value of the permeability exponent 

varies between 0.344 and 0.526 for each fracture pattern with a different 

number of fractures. However, as was mentioned earlier, two fracture 

permeability values were obtained as negative due to negative values of (ρ'-

ρ'c), which could be attributed to the finite size effect on the fracture 

patterns. Those negative values were ignored and that is why only three 

points exist in Figure  7.7 and Figure  7.8. If fact, this could be an 

indication that some systems with finite size start percolating with much 

lower probability density (or any other equivalent parameter) than the 

percolation threshold determined for infinite systems or even not do not 

percolate at a much higher probability density than the percolation 

threshold of infinite systems (King et al., 2002) due to the random nature of 

fracture networks.  
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Figure  7.7 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for a fracture 

pattern with Nfr=50. 

 



 

A version of this chapter has been submitted for publication                                            199 

 

Jafari, A. and Babadagli, T.: “Relationship between Percolation-Fractal Properties and 

Fracture Network Permeability of 2-D Fracture Networks,” 2010. 

 

K = 57.614(ρ'-ρ'c)
0.5257

R2 = 1

1

10

100

1000

0 1 10 100

K
, 
m

D

(ρ'-ρ'c)  
Figure  7.8 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for a fracture 

pattern with Nfr=100. 
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Figure  7.9 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for a fracture 

pattern with Nfr=150. 
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Figure  7.10 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for a fracture 

pattern with Nfr=200. 

 
 

 

K = 95.387(ρ'-ρ'c)
0.5089

R2 = 0.9986

1

10

100

1000

10000

0 1 10 100

K
, 
m

D

(ρ'-ρ'c)  
Figure  7.11 Equivalent fracture network permeability vs. the difference between 

dimensionless density and dimensionless percolation threshold (ρ'-ρ'c) for a fracture 

pattern with Nfr=250. 
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One possible application of the joint characterization of 2-D fractal-

percolation properties is that by correlating the fractal dimension of 

different features to (ρ'-ρ'c) and then (ρ'-ρ'c) to the equivalent fracture 

network permeability and deriving relationships, it would be possible to 

estimate the equivalent fracture network permeability of the fracture pattern 

of interest. In this case, the permeability estimation will be conditioned to 

both fractal and percolation properties of the systems which supposedly 

improve the accuracy of the estimation. Therefore, five parameters 

including the fractal dimension of intersection points (FDi), the fractal 

dimension of fracture lines (FDl), Connectivity index (CI), fractal 

dimension of scanning lines in the X-direction (FDx) and the fractal 

dimension of scanning lines in the Y-direction (FDy) were plotted against 

(ρ'-ρ'c). The equations for these correlations were presented in Table  7.4 

through Table  7.8. Note that in each table the first equation is for all 

fracture cases, i.e., all cases with a different number of fractures were put 

together to derive this equation. The other five equations in these tables 

were for different numbers of fractures, as shown by indices. If the number 

of fractures (in a sense, the fracture density) is known, one may select the 

particular equation corresponding to the known value of the number of 

fractures. This obviously increases the accuracy as indicated by a very high 

regression coefficient (the second column of the Tables 7.4) except in the 

case of the connectivity index value, which also yielded a very high value 

of regression coefficient for the all fracture cases (given as the first 

equation in the tables).    
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Table  7.4 Relationship between the fractal dimension of intersection points (FDi) for 

different numbers of fractures in the domain and (ρ'-ρ'c) along with the regression 

coefficient (R
2
). The first equation is for all fracture densities (number of fractures).  

Equation R2

FDi = 0.0452Ln(ρ'-ρ'c) + 1.7758 0.5408

FDi50 = 0.0949ln(ρ'-ρ'c) + 1.5632 0.992

FDi100 = 0.0575ln(ρ'-ρ'c) + 1.7362 0.9914

FDi150 = 0.0336ln(ρ'-ρ'c) + 1.8284 0.9989

FDi200 = 0.0284ln(ρ'-ρ'c) + 1.8579 0.9982

FDi250 = 0.0221ln(ρ'-ρ'c) + 1.884 0.9903  

 

 

 

 

Table  7.5 Relationship between the fractal dimension of fracture lines (FDl) for different 

numbers of fractures in the domain and. (ρ'-ρ'c) along with the regression coefficient (R
2
). 

The first equation is for all fracture densities (number of fractures).  

Equation R
2

FDl = 0.0526Ln(ρ'-ρ'c) + 1.5901 0.6842

FDl50 = 0.057ln(ρ'-ρ'c) + 1.4764 0.9948

FDl100 = 0.0653ln(ρ'-ρ'c) + 1.5232 0.998

FDl150 = 0.0381ln(ρ'-ρ'c) + 1.6463 0.978

FDl200 = 0.0478ln(ρ'-ρ'c) + 1.6362 0.9993

FDl250 = 0.0464ln(ρ'-ρ'c) + 1.6537 0.9999  

 

 

 

 

Table  7.6  Relationship between the connectivity index (CI) for different numbers of 

fractures in the domain and. (ρ'-ρ'c) along with the regression coefficient (R
2
). The first 

equation is for all fracture densities (number of fractures) .   

Equation R
2

CI = 0.7003(ρ'-ρ'c) + 2.0397 0.9991

CI50 = 0.6662(ρ'-ρ'c) + 2.6196 0.9984

CI100 = 0.6755(ρ'-ρ'c) + 2.3845 0.9981

CI150 = 0.7018(ρ'-ρ'c) + 1.9868 0.9979

CI200 = 0.701(ρ'-ρ'c) + 1.9081 0.9996

CI250 = 0.7003(ρ'-ρ'c) + 2.0397 0.9991  
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Table  7.7 Relationship between the fractal dimension of scanning lines in the X-direction 

(FDx) for different numbers of fractures in the domain and (ρ'-ρ'c) along with the 

regression coefficient (R
2
). The first equation is for all fracture densities (number of 

fractures).    

Equation R
2

FDx = -0.119ln(ρ'-ρ'c) + 1.4671 0.7761

FDx50 = -0.084ln(ρ'-ρ'c) + 1.2126 0.9995

FDx100 = -0.136ln(ρ'-ρ'c) + 1.472 0.9822

FDx150 = -0.139ln(ρ'-ρ'c) + 1.5435 0.9945

FDx200 = -0.146ln(ρ'-ρ'c) + 1.6103 0.9941

FDx250 = -0.131ln(ρ'-ρ'c) + 1.5765 0.9973  

 

 

 

 

 

Table  7.8 Relationship between the fractal dimension of scanning lines in the Y-direction 

(FDx) for different numbers of fractures in the domain and (ρ'-ρ'c) along with the 

regression coefficient (R
2
). The first equation is for all fracture densities (number of 

fractures).    

Equation R2

FDy = -0.114ln(ρ'-ρ'c) + 1.4468 0.7876

FDy50 = -0.099ln(ρ'-ρ'c) + 1.2411 0.9961

FDy100 = -0.139ln(ρ'-ρ'c) + 1.4817 0.995

FDy150 = -0.128ln(ρ'-ρ'c) + 1.5084 0.9912

FDy200 = -0.142ln(ρ'-ρ'c) + 1.5952 0.9918

FDy250 = -0.122ln(ρ'-ρ'c) + 1.5307 0.9956  

 

 

 

 

Finally, to obtain the effective fracture network permeability values using 

Eq. 7, the equivalent permeability of all cases was plotted against (ρ'-ρ'c) 

and the corresponding relationship in the form of an equation was presented 

in Figure  7.12. 
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Figure  7.12 Equivalent fracture network permeability of all cases vs. the difference 

between dimensionless density and dimensionless percolation threshold (ρ'-ρ'c). 

 

 

 

Also, by manipulation of the Eq. 3, the following equation can be derived 

to determine the shortest (or minimum) fracture length required for a given 

specific number of fractures and domain size to be percolating:  

 

                               ( ) ( )( )frc NLsqrtl 2/..'
2

min πρ=                                    (8) 

 

where minl  is the shortest or minimum fracture length required to be 

percolating, 2L  is the area of domain and frN  is the number of fractures in 

the domain. These minimum fracture lengths were calculated for a different 

number of fractures but the same domain size and are given in Figure  7.13. 
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Figure  7.13 Minimum required fracture length to be percolating versus number of 

fractures. 

 

 

 

 

As obvious from Figure  7.13, the lower the number of fractures in the 

domain, the longer the required fracture length. It is also essential to 

mention that this minimum required fracture length depends on both the 

number of fractures and also the size of the domain or system. This 

observation and Eq. 8 has practical importance to determine the shortest 

length of fracture to have a percolating (or conductive) fracture network 

system for a given fracture density (number of fractures).  

 

 

7.6 Validation of results 

To validate the methodology introduced and the equations, a set of new 

fracture patterns with different random realizations were considered. Their 

properties (fractal dimension of intersection points, fractal dimension of 
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fracture line, connectivity index and also fractal dimension of scanning 

lines in the X- and Y-directions) were calculated and the equivalent fracture 

network permeability values for each pattern were computed using FRACA 

software. The results are presented in Table  7.9. 

 

 

Table  7.9 Fractal dimension of different features of the fracture networks used for 

validation.  

20 100 1.573 1.503 1.527 1.730 1.505 27.346

20 200 1.875 1.396 1.520 2.700 1.664 132.320

40 100 1.835 1.289 1.275 6.180 1.654 150.122

40 200 1.950 1.304 1.288 13.530 1.766 413.981

60 100 1.917 1.020 1.017 16.570 1.715 298.754

60 200 1.969 1.028 1.020 31.730 1.814 552.036

80 100 1.953 1.017 1.004 25.550 1.764 367.481

80 200 1.972 0.975 0.977 57.605 1.844 858.655

FD of intersection 

points

Permeability  

mD
Length

Number of 

Fractures

Connectivity 

Index

FD of fracture 

lines

FD of scanning 

line in X-direction

FD of scanning 

line in Y-direction

 
 

 

 

Then, using the first equation of each table presented in Table  7.4 through 

Table  7.8, (ρ'-ρ'c) of each fracture pattern was calculated. Here, we 

assumed that there is no information available on the number of the 

fractures in each case (pattern) and as a result the first equation of each 

table, which represents an average values of all fracture patterns, were used 

to estimate (ρ'-ρ'c). Once again, if the number of fractures in the domain is 

known, one can use the related equation for that specific number of 

fractures (as shown by indices) instead of using the general equation (the 

first equation in each table). In this case, the error of the estimated (ρ'-ρ'c) 

would be much lower. Next, these values were plugged into the equation 

given in Figure  7.12 and the equivalent permeability of each pattern was 

computed. The results are presented in Table  7.10 for five different fracture 

network properties. In this table, the value of (ρ'-ρ'c) obtained using the 
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connectivity index in the first row was negative; thus, the permeability 

calculation was omitted. 

 

 

Table  7.10 Calculated (ρ'-ρ'c) values using different equations presented  in Tables 7.4 

through 7.8 and their corresponding equivalent fracture network  permeability using the 

equation given in Figure 7.15.  

Length

Number of 

Fractures

(ρ'-ρ'c) 

using FDi K

(ρ'-ρ'c) 

using FDl K

(ρ'-ρ'c) 

using CI K

(ρ'-ρ'c) 

using FDx K

(ρ'-ρ'c) 

using FDy K

20 100 0.011 11.239 0.197 41.895 -0.442 - 0.739 76.914 0.497 64.072

20 200 8.968 242.622 4.074 168.743 0.943 86.050 1.819 116.430 0.525 65.734

40 100 3.686 161.154 3.338 153.959 5.912 200.292 4.485 176.383 4.499 176.626

40 200 47.576 522.925 28.341 412.008 16.408 320.384 3.939 166.146 4.034 167.974

60 100 22.677 371.834 10.760 263.846 20.749 356.932 42.723 497.662 43.400 501.278

60 200 72.350 634.189 71.112 629.174 42.397 495.911 40.083 483.266 42.329 495.547

80 100 50.069 535.360 27.061 403.341 33.572 445.410 43.825 503.532 48.834 529.245

80 200 76.079 649.030 123.890 812.309 79.345 661.706 62.458 592.700 61.598 588.932

 

 

 

A comparison of the predicted and actual (FRACA values) EFNPs is given 

in Figure  7.14. Although the general equation for (ρ'-ρ'c) was used for each 

case (given as the first equation in Table  7.4 through Table  7.8), the 

correlation between the predicted and actual values of EFNPs is very 

strong. It is interesting to note that the best correlation was obtained when 

the fractal dimensions of fracture lines were used to estimate the (ρ'-ρ'c) 

values for any fracture length and density values. Corresponding regression 

coefficients for each case are given in Table  7.11. To improve the accuracy 

of estimation one may choose an average value of EFNPs estimated using 

these five (or fewer) network properties. If one has to choose only one 

property, the fractal dimension of fracture lines obtained through the box 

counting method would yield the most accurate estimation. The correlation 

between these two EFNP values is reasonably good, indicating that the 

approach presented can be used for practical purposes. 
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Figure  7.14 Predicted equivalent fracture network permeability vs. the actual permeability 

obtained using FRACA software.  

 

 

 

 

 

Table  7.11Correlation coefficients for the comparison of actual and predicted EFNP’s 

(Figure 7.14) obtained through five different fractal-statistical properties. 

(ρ'-ρ'c) obtained using R
2
 

FD of intersection points 0.81 

FD of fracture lines 0.98 

Connectivity index 0.9 

FD of X-direction scanning lines 0.61 

FD of Y-direction scanning lines 0.59 
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7.7 Conclusions and remarks 

(1) The relationships between different fracture network properties, i.e., 

fractal and percolation properties, and their equivalent fracture 

network permeability were investigated and analyzed. It was found 

that a nonlinear-direct relationship exists between the fractal 

dimension of fracture intersection points and fracture lines (using 

the box counting technique) and the dimensionless density. In these 

cases, at close to percolation threshold, patterns with different 

number of the fractures have different fractal dimension of 

intersection points and fracture lines; however, at higher 

dimensionless density, all curves relating to different numbers of 

fractures diverge into a single value, which is the maximum fractal 

dimension of two in each case. This is attributed to an increase in 

the number of the fractures and also the fracture length in the 

domain, which eventually causes an increase in both fractal 

dimension and dimensionless density. 

 

(2) The connectivity index shows a direct relation against (ρ'-ρ'c) 

because both are mostly being controlled by the number of the 

fractures, the fracture length and the domain size.  

 

(3) It was also shown that there is a non-linear inverse relationship 

between the fractal dimension of scanning lines in the X- and Y-

directions and (ρ'-ρ'c). While (ρ'-ρ'c) continuously increases with an 

increase in fracture length for a given number of fractures, the 

fractal dimension of scanning lines in the X- and Y-directions 

decreases starting at the percolation threshold.   
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(4) Correlations between equivalent fracture network permeability and 

(ρ'-ρ'c) for different number of fractures (fracture density) were 

developed. It was found that for the finite size fracture patterns, the 

permeability exponent (µ) varies between 0.344 and 0.526. This 

variation could be explained with regard to the size of each fracture 

pattern through the finite size effect on percolation properties.  

 

(5) The relationship between the number of fractures in the domain and 

the minimum size of the fracture length was presented to have a 

percolating system for 2-D randomly distributed fractures. A 

correlation was introduced, for a given fracture domain, to quickly 

estimate the possibility of connectivity (percolation). 

 

(6) A methodology and correlations were presented to estimate the 

equivalent fracture network permeability (EFNP) of 2-D fracture 

networks using fractal properties of 2-D fracture networks and 

percolation properties, i.e., percolation density and threshold. The 

validation exercise confirmed that the technique can be used to 

estimate the EFNP practically. The fractal dimension of fracture 

lines (obtained using the box counting technique) yielded a more 

accurate estimation compared to the fractal dimension of 

intersection points, connectivity index, and fractal dimension of 

scanning lines in X- and Y-directions used to calculate the (ρ'-ρ'c) 

values and the EFNP from it.  

 
 

 

 



 

                                   211 

 

 

8 Contributions and recommendations  
 

 

 

 

 

As this is a paper-based thesis, conclusions were provided at the end of 

each chapter.  Here, the major contributions out of this dissertation and also 

recommendations for future works were presented. 

 

8.1 Major contributions to the literature and industry 

The major contributions of this dissertation to the literature and industry are 

listed below: 

8.1.1 Specific contributions to the literature 

• In general, the fracture network properties (mainly fracture density 

and length) dominate over the single fracture conductivity for the 

permeability of fracture networks. Even, if the density and length 

are low, this observation is satisfied as long as single fracture 

conductivity is not very high. The conductivity of individual 

fractures starts becoming the dominating term over the network 

properties as the density and length values decrease, reaching a 

certain -low- range and when the conductivity is high enough. The 

limiting ranges of the values of these properties were defined in 

chapter 2. The common practice in the industry is to use single 

fracture conductivity in the estimation of effective fracture network 

permeability (EFNP), based on the density values obtained from 
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core or image logs. Our observations showed that one should be 

careful about this as fracture network properties dominate the EFNP 

over single fracture conductivity in many circumstances, as they are 

the parameters which have a direct impact on obtaining a 

percolating network. 

 

• Relationships between the fractal-statistical properties of networks 

and EFNP were quantitatively determined. It was shown that strong 

relationships exist between the EFNP values and five fractal-

statistical parameters (among a total of 10 parameters) representing 

different fracture network features including the fractal dimension 

of intersection points, the fractal dimension fracture lines and the 

fractal dimension of X-and Y- directions scanning lines, as well as a 

statistical parameter, i.e., connectivity index.  

 

• It was also shown that there are strong relationships between the 

fractal-statistical parameters and the percolation properties of 

fracture networks. Then, using these relationships, and also a 

relationship between the percolation properties and the EFNP which 

was shown as a power law term, a few correlations for predicting 

EFNP were proposed. In fact, fractal and percolation properties 

were combined to reduce any possible error in the estimation of 

EFNP due to lack of data, especially on the connectivity of the 

network. Using the fractal properties of fracture networks and their 

presented relationships with the percolation properties, the 

percolation properties of the system were calculated and from the 

latter, the EFNP was estimated. Also, a criterion was presented to 

determine the minimal fracture length for a given number of 
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fractures (fracture density) and domain size to have a percolating 

(or permeable) fracture network. 

 

• An artificial neural network (ANN) with the back-propagation 

algorithm was presented which takes five fractal-statistical inputs 

and then gives (predicts) the EFNP as the output. It was found that a 

supervised back propagation network with five inputs and one 

hidden layer consisting of five neurons and a sigmoid transfer 

function would be able to capture the highly complex and nonlinear 

relationships among the fractal and statistical properties of fracture 

networks (five of them was observed to be the most critical ones out 

of twelve). 

 

8.1.2 General Contributions to the industry 

• The conditions to obtain EFNP for practical applications based on 

the available data (1-D well, 2-D outcrop, and 3-D welltest) were 

presented. It was shown that honoring all three types of data results 

in the best estimate of the actual EFNP. The accuracy of using only 

1-D well data and 3-D well test data was surprisingly comparable to 

the situation where five 2-D fractal-statistical parameters from 

outcrop studies and the permeability obtained from a single well 

pressure transient (3-D) data are used. Hence, 1-D single well data 

could be useful when it is used along with the permeability obtained 

from a single well pressure transient test. However, for better 

accuracy, this can be supported by additional fractal-statistical 

measurements on 2-D patterns obtained from outcrop studies. 

Fracture network characteristics (or types) that require the 
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incorporation of 2-D data were identified. Once the practitioners 

have a certain degree of information on fracture network 

characteristics, based on the observations summarized above, they 

can develop an optimal data collection strategy to minimize the data 

cost for mapping fracture networks accurately.  

 

• A simple methodology was proposed to quickly analyze whether or 

not the fracture system of interest is capable of having permeability 

(being above the percolation threshold based on number of 

fractures, domain size and fracture length).  

 

• It is believed that the new methodology and results presented in this 

dissertation will be useful for practitioners in the static model 

development of naturally fractured reservoirs and will shed light on 

further studies on modeling, as well as understanding the 

transmissibility characteristics of fracture networks.  

 
 

8.2 Recommendations for future work 

This research work was done on 2-D fracture networks which could be 

extended to 3-D models. This, however, requires further algorithm 

development to utilize 2-D fractal characteristics for 3-D systems and/or 

the development of fractal measurement techniques for 3-D systems in 

different planes (not only in the X-Y plane but also, in the X-Z and Y-Z 

planes). This work will provide a guideline for this type of research. In this 

research, it was assumed that all fractures are vertically oriented by 

intersecting the top and bottom of each layer; taking the fracture dips in the 

network into account is also recommended. 
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