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ABSTRACT

This thesis deals with four problems in the theory of round-
robin tournaments. Most of the results can be formulated in terms of

various kinds of mappings between the nodes or edges of two tournaments.

In Chapter 1, we define a binary operation on tournaments

called composition. We develop various algebraic properties of this

operation, and use these results to determine when the composition of

two tournaments is commutative.

Let ¢ denote a one~to-one correspondence between the edges
of two irreducible tournaments R and S . 1In Chapter 2, we obtain
conditions on ¢ under which R and S are either isomorphic or can

be made so by reversing the orientation of every edge of R or of S .

In Chapter 3, we determine the automorphism group of what we
call the guadratic residue tournament. We use this result to determine

when certain permutations of a finite field F are automorphisms of

F , when |F| = 3 (mod 4) .

We define a k~irreducible tournament in Chapter 4, and we

prove that every node in such a tournament is contained in at least k

distinct cycles of each length h , where 3 <h <n .
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CHAPTER 1

The Composition of Two Tournaments

§1. Introduction

A (round—robin) tournament T 4ig a4 nonempty set of nodes
=Leurnament Inodes

1,2,-+-+,n such that each Pailr of distinet nodes i and J d4is joined

—_ —_—

by exactly one of the oriented edges i or 3i .
£cges

J and write 1 » J ;5 more generally,

—
If i 4s in T s

then we say that i dominates

We frequently use the same symbol to
elf;

nament B we write A->B .,
denote the set of nodes of a tournament and the tournament its

expressions such as Ac<cB, AuRB or A n B , where A and B are

tournaments, should be interpreted with this convention in mind. For

2 general reference on tournaments, see’ [17].

denote the number of nodes in the tournament ¥ .

We let |[Xx|

are isomoERhic if and only if there exists
i+>3%4 in A

Two tournaments A and B

a one~to-one mapping ¢ between their nodes such that

if and only if o) > ¢(J) in B ; we then write A =B . In this

will denote the transitive tournament whose n
—=5ltlive

chapter, the symbol Tn
nodes can be labelled so that i+3 41if and only if 1 > 3 for

1<3 < i <mn.



If the tourmaments R and S have r and s nodes, respec-

tively, then the composition of R with S 1s the tournament ReS

with rs nodes (4,k) , where 1 < i <r and 1 < k < s , such that
(1,k) > (§J,£) dif and only if i - j 4in R or 1 =3 and k - £ in
S . In other words, Re°S is obtained by replacing each node i of R
by a copy Si of S and letting Si -> Sj in ReS if and only if
i+ 3 4n R .

The composition of two tournaments is aggociative but it is not
commutgtive in general. For example, if R and S denote, respectively,

transitive tournament T3 and the tournament with 3 nodes .,j,k where
1+3 ,3 >k and k > 1 , then ReS contains a node which dominates
seven other nodes but SoR does not. Our main object here is to
characterize those pairs of tournaments R and S for which RoS = SeR .
We first develop various algebraic properties of the composition opera-—
tions and another operation introduced in the next section. Lovasz [16],

Hemminger [12], Sabidussi [23], Imrich [14] and others have investigated

algebraic properties of similar operations on other classes of graphs.

§2, Sums of Tournaments

If A and B are two subtournaments such that A - B then
their sum is the tournament A + B determined by the nodes of A and

B . A tournament is reducible or irreducible according as it can or can-—

not be expressed as the sum of two smaller tournaments. A sequence of
— e —
edges in a tournament of the type ab , bc , --- , pPpq determines a path

P(a,q) from a to q . We assume that the nodes a,b,+--,q are all



different., If the edge E: is in the tournament, then the edges in
P(a,q) and the edge E:h determine a cycle. The length of a path or
cycle is the number of edges it contains. We regard a single node as

a path of length zero or a cycle of length 1. A tournament is strongly
connected if for every ordered pair of nodes p and q there exists a

path from p to q . It is not difficult to prove (see [22]) that a

tournament is irreducible if and only if it is strongly connected.

Observe that the trivial tournament with one node is both irreducible

and transitive.
Lemma 2.1. A+ (B+C) = (A+B) + C .
Lemma 2.2. (A+B)oC = (AoC) + (BeC) .

Lemma 2.3. Any tournament R has a unique representation of the type

R=A+B+ +«++« + K , where the nonvacuous tournaments A,B,*++,K are

all irreducible.
The first two results are obvious; the third follows from

repeated applications of the definition of irreducibility and from the

definition of isomorphic. Note that composition is not left distributive
with respect to addition.

Lemma 2.4. Suppose that A + B = C + D ;
a) if |A|l = |c|] , then A=C and B =D , and

b) if |A| < |C|] , then C=A+E and B = E + D for some tournament

E .

This follows immediately upon applying Lemma 2.3 to the tourna-

ment R = A+ B=C+ D .



Lemma 2.5. If A+ B =B+ A, then A = Tkoc and B = Tzoc for

some tournaments Tk’TL , and C where Tk and TZ are transitive.

Proof. If |A| = |B] , then k= £ =1 and C=A =B . If

|A| <|B] = m then by Lemma 2.4 (b), B=A+ E =E + A for some
tournament E . It follows from the induction hypothesis that

A= Tioc and E = TjOC for transitive tournaments Ti and Tj and
some tournament C . But then B = Tioc + Tjoc = (T1+Tj)oc = Ti+j°C

and the lemma follows by induction.

Lemma 2.6. If |A] > 1 , then AoB is irreducible if and only if

A 1is irreducible.

Proof. It is obvious that AoB is strongly connected if and only if
A 1is when |A| > 1 . The result now follows from the fact that

irreducibility is equivalent to strong connectedness in a tournament.

Lemma 2.7. If (a) A+ X =Y+ B and
M) X +A+X=Y+B+Y, then X =Y = TjoC and
A =B = TkoC for some tournaments Tj’ k and C where Tj and Tk

are transitive.

Proof. Since |X+A| = |[Y+B| we have X =Y and A = B upon apply-
ing Lemma 2.4 to (X+A) + X = (Y+B) + Y first and then to X+A = Y+B .

The required result now follows from (a) and Lemma 2.5.

The following result will play an important role in the proof

of one of our main theorems in §5.



Lemma 2.8. If (a) A+ X =Y+ B and
(b) X + [Go(A+X)] = [He(¥Y+B)] + Y , then X =Y = Tjoc
A =B = TkoC and G = H = T£ for some tournaments Tj’Tk’T£ and C

where Tj’Tk and TL are transitive.

Proof. Since |X| + |c| - |a#x| = |¥Y| + |H| - |A+X] , by (a) and (b),
it must be that |X| = |¥] , |¢] = |#] , anda |A] = |B] . 1If
|| = ] = 1 , the result follows from Lemma 2.7 so we suppose that

le] = |8] > 1 .

Since |X| < [He(Y+B)| , equation (b) and Lemma 2.4 imply
that X+W = Ho(Y+B) for some tournament W ; that is, Ho(Y+B) is
reducible. Therefore, H itself is reducible, by Lemma 2.6, and we
may write H = U+V where U is irreducible. Consequently,
X+W = (UHV) o (Y+B) = [Uo(Y+B)] + [Ve(¥+B)] by Lemma 2.2. Again, since
|X] < |Uo(¥+B) | , it must be that X+S = Uo(¥+B) for some tournament S .
But Uo(Y+B) can be reducible only if U = T, , by Lemma 2.6, since U
is irreducible. Therefore, H = T, + V and we aiso find, in a similar

1

way, that G = Z+T1 for some tournament Z . Hence,

X + [Zo(A4X)]) + A + X = X + [Go(AHX)]

= [Ho(¥Y+B)] + Y = Y + B + [Vo(Y+B)] + Y .

Since |X| = |¥Y| , it follows from the preceding equation
and Lenme 2.4 that X =Y and B + [Vo(¥Y+B)] = [Zo(A+X)] + A . Now
1 < |v] = |z| < |6] = |H] so we may assume, as our induction hypothesis,
that X = Y = T,oC , A =B = Tkoc > and V = Z = TL for some tourna-

3
ments Tj’Tk!TL and C , where Tj’Tk and TL are transitive. But



then G = Z + T, = TZ”I = Tl + V=H , and the result now follows by

induction.

§3. Preliminary Results

If RoS = Woz > then there exigts a one—to—one dominance-—

Preserving mapping o of the nodes of RoS onto the nodes of WoZ .

In this section we derive Some results on the nature of the image

a(So) in WeZ of any particular copy So of S d1in Res > and of

the preimage a_l(zc} in ReS of any particular ecopy Z_  of Z in

WeZ .,

Lemma 3.1. Let So and Z° denote any pParticular copies of S and

Z in ReS and WeoZ where ReS = WeZ . TIFf So = AuX for disjoint

tournaments A and X , and Zo = X'UB' for disjoint tournaments

X' and B' , where alX) = X' and a(AInB' = ¢ > then either A > X

and X' > B' or X -+ A and B' » X'

Proof. If some node P € A dominates some but not all of the nodes

¢ must have the same Property with respect to o(X) .

of X , then «{p)

But the only nodes in WoZ that possibly have this Property are in

Z, and a(p) ¢ Z, - Therefore, either P>X or X-»>p. Similarly,

if q € B' , then either qQ >X' or X' >gq.

If the conclusion of the lemma does not hold, then there

must exist nodes p € A and 4 ¢ B' such that (1) p - X and q > X'

or (ii) X > p and X' -» qQ . If case (1) holds, then a(p) - Zo

and r - So where r = a-l(q) 5 in particular r - P and a(p) » a(r) = q .

But this contradicts the definition of « » and case (ii) is also impossible



by symmetry. This completes the proof of the lemma.

Lemma 3.2. Suppose that RoeS = WeZ . Then

a) for any copy So » there exist at most two copies Zi such that

a(So) nz; #+ ¢, a(So)_ﬁ z, and zi_g a(So) s and
b) for any copy Zo » there exist at most two copies Si such that

als;) n 2, % ¢, a(Sy) £z, and 2 £ a(Sy) .

Proof. If there are at least three copies Zi with the properties
described in (a) , 1let Xi = So n a-l(zi) . If we apply Lemma 3.1

to each of the Xi's in turn we find that some two of them must

dominate each other. This is impossible. Conclusion (b) follows by

symmetry.

Lemma 3. 3. If ReS = WoZ where ISI_: IZI » then éxactly one of the

following alternatives holds for each copy So .
a) There exists a copy Zo such that a(So)_E Zo » Or

b) there exist two copiles Z1 and 22 and tournaments Y,X,U =and V
such that So =Y+ X , Z1 =U + oY) , 22 = a(X) +V s and

Zl > Z2 -

Proof. For any copy Zi such that a(So) nz, # ¢ either a(So)~5 Zi
or a(S)) £ 2, and 2z, £ a(S)) , since |s_| =< |%Z4] - The result now

follows from Lemmas 3.2 (a) and 3.1.

Lemma 3.4. If RoS = WoZ where |[S| < |Z| , then exactly one of the

following alternatives holds for each copy Z° -



a) There exist copies Sl,SZ,---,St such that Zo = a(Sluszu---uSt) s

or

b) there cxist copies Sl,Sz,"',St and subtournaments X and Y

of Sl and St such that

Zo = a(XuSzu---uSt_luY) = a(X) + a(Szu---uSt_l) + a(Y) , or

c) there exist copies Sl,---,S and a subtournament X of S1 such

t
that
Zo = a(Xuszu-oouSt) = a(X) + a(Szu---USt) ’ or
d) there exist copies Sl,---,St and a subtournament Y of St such
that

Z, = a(Sjur-+uS,_,UY) = a(Sju-+uS,_;) + al¥) .

Proof. For any copy S; such that a(Si) nz, ¥ ¢ 5 either

a(Si).E Zo or a(Si)-£ Zo and Zo_i a.(Si ) . The result now follows

from Lemmas 3.2.(b) and 3.1.

Notice that for any set {Sili € I} of copies of S in

RoS , there exists a subtournament CI of R such that U Si = CI°S H
1eX

this follows from the definition of ReoS .

§4. Chains

If ReS = WoZ , then we shall say that the copy Zo of 2

in WoZ is of type (00) , (11) , (10) or (01) according as alter-

native (a), (b), (c), or (d) holds in Lemma 3.4.



Suppose some copy, say 2 is of type (01) ; then there

l bl
exists some copy S1 (changing our notation from before) such that
== = A == v —_—
S1 Y1 + Xl and Z1 V1 + Y1 where a(Yl) Yl , for some subtour
naments Yl’xl’vl and Yl' (this follows from Lemmas 3.4 (d) and 3.1) .

But then, by Lemmas 3.3 and 3.1, there must exist a copy 22 such that

- ' = | B
22 Xl + V2 where a(Xl) X1 s furthermore Z1 > 22 . Now Z2

is either of type (10) or type (11) . 1If it is of type (11) then

we can repeat this argument and find copies 82 and 23 such that

= = J v = '
82 = Y2 + X2 s 22 = Xl + U1 + Y2 and Z3 X2 + V2 s where

a(Yz) = Y2' and a(xz) = X2' s furthermore z, ~ Z3 . If 23 is of
type (11) , we can repeat the argument again. Eventually the process
will terminate when we reach some copy Zm of type (10) . The copies

Zl,Zz,-o-,Zm form what we shall call an open chain in WoZ and we

shall call s e+ ,S

m—-1

1>°
with which we started had been of type (11) then we could have

the corresponding copies in RoS . If the copy
Z
applied this construction in bhoth directions. This would also have led
to an open chain unless the construction in both directions eventually
led to the same copy. In this latter case (which cannot occur, as we

shall show presently) we would say that the copies of 2Z involved form

a closed chain. Thus all the copies of Z of type (11) , (01) , and

(10) can be partitioned in a natural way into a collection of disjoint
chains. If s = |S| and z = |2} , let =z = qs + r , where 0 <r<s ;

as usual (a,b) denotes the greatest common divisor of a and b .

Lemma 4.1. Suppose that ReS = WvZ , where |[|S| < |Z|] . Tf the distinct
copies Z_ ,°+°~,2 form a chain in WoZ them m = —>— and
P 1’ s“n > (s,r) n

Z_.UuseeyZ = T oZ .
1 m m
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Let Si = Yi + Xi denote the corresponding copies in ReS H
we use the same notation as before so that

Proof.

- 0
Zl Vl + Yl >

Z, = X! + U, + Yi for {4 = 2,3,-++ m-1 , and Zm = X;_l + Vﬁ where

i i-1 i
a(xi) Xi and a(Yi) Y1 for each 1 .
Suppose z; »~ zj where 1 < 1 < } <m-1 . Then Yi -> Y5
-1 -1
[ T \J \ d
since Yi_s Zi and Yj-S Zj . But then a« (Yi) > a (Yj) or
Yi -> Yj . Therefore Si - Sj and, in particalar, Yi -> Xj . Conse—
quently, Yi - X& and this implies that Zi -+ ZJ+1 « Since we know

already that z, - zi+l for 1 <1i <m-1 it follows by induction

that each copy in a chain dominates all succeeding copies in the chain.

Hence, closed chains do not exist (otherwise we would have the impossi-

ble situation that Zl -> Zm and Zm -> Z1 ) and each open chain can

be expressed as Tmoz for a transitive tournament Tm - It remains

to determine the value of m .

If x;, = ,Xil - 'Xi[ and yy - ,Yi' - [Yi’ then Xty =s

for 1 <4 <m-1. Copies Zl and 2m of the chain are of types (01)

and (10) while the intermediate copies are of type (11) ; hence

Yy, = r and x; + Yi41 = T (mod s) for 1l <i<m2 . This implies that

y; = ir (mod s) for 1 21 <m1l1 and that m , the number of the copy

of type (10) where the chain terminates, is the first positive integer

such that mr = 0 (mod s) . Therefore m = ?§§;T and the lemma is
t

proved.
Lemma 4.2. Suppose that ReS = WeZ where |[s] < 1Z] and that the

copies 211’...’zlm and 221"."22m form two chains. If le -> 221 >

then z1i - 223 for 1 <i1i,j <m.
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Proof. When ¢t = 1,2 let Sti = Yti + xti denote the corresponding
= . - ) '
copies in RoS so that ztl th + Ytl > zti xt,i—l + Uti + Yti

j— = \ . = '
for 2 <i < m~1, ana Z xt,m—l + vtm s furthermore, a(Xti) Xy

= v
and a(Yti) Yti for each t and 1 .

Suppose Z11 -> sz for some fixed values of i and j

\ v
where 1 < i,§ <m . Then, Yli - Y2j so Yli -> Y2j - Since all the

edges between S1i and SZj go the same way, this implies that

1 ] 1 ] v
Yli -> ij and xli - YZJ « But then Yli -> ij and X11 -> Y2j .
This implies that Z1i -> 22,j+1 and 21,1+1 -> ZZJ - Since we may assume
that 211 -> 221 it now follows by induction that Z1i - sz .

§5. Main Results

Theorem 1. Suppose that RoS = WoZ and that =z = qs + r where

z=|zZ] , s = Isl , q > 1 and 0O <r<s.
a) If |S| = |Zz] > them R =W and S = 2z :

b) if r =0 > then Z = QoS for some tournament Q ; and

) if r > 0 , then R=Vo’1‘z ,s='rsoc,w=Vo'rS and
(s, c (s,D)
zZ = Tz e C for some tournaments V and C s Where ¢ = lc| .
c
Proof. If r =0 , there are no copies of Z in WeZ of type (01)

or (10) ; thus there are no chains in WeZ , in view of Lemma 4.1.

Therefore, every copy of Z is of type (00) . Conclusion (b) now

follows from the remark after Lemma 3.4.
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Conclusion (a) follows from (b) since if ISl = |z] = IQes|

it must be that IQl = 1 , or that 2z = SO'J.‘1 = § . Furthermore, the

mappin o between RoS and WoZ takes copies of S onto copies of
g P

Z when S = 2z ; consequently o defines an isomorphism between R

and W .

If r > 0 , there are no copies of type (00) in WeZz .

Hence, all the copies of Z in WeZ can be partitioned into disjoint

open chains of length m = ?;g;y by Lemmas 3.4 and 4.1. Tt now
>

follows from Lemmas4.1 and 4.2 (and the definition of composition)

that W = V°1‘m for some tournament v .

Let 21 and Zm denote the first and last copies in some

= Y denote

chain in WeZ and let Sl - Y1 + Xl and Sm—l m-1 + xm-l

the corresponding copies in RoS . It follows from the remark after

Lemma 3.4 and the definitions of copies of type (01) and (10) that

= o A = ’
Zl (HoS) + Y1 and Zm xm—l + (GoS) for some tournaments H and

= ] = %! =
G where a(Yl) = Yl and a(xm_l) xm_l . But S1 S = Sm_1 and

+ X =Y. + X and
m

Z, = Z = Zm s 80 Y -1 1 1

1 m-1

Xm_l + [Go (Ym_1+xm_1)] = [Ho (Y1+X1)]+ Yl .

S = Tkoc + TjoC = Tk+j°c and

2 = Tjoc + [Tg°(Tk+j°c)] - Tz(k*j)+j°c s for some tournaments Tk’Tj’rL
c = [C|] , then it

Appealing to Lemma 2.8, we conclude that

and C where Tk,T > and :C are transitive. If

must be, since 8 = |S| and 2z = 1Z] , that S'= Ts/coc and Z = Tz/coC .

We know that each chain in We¢Z is of the form rmoz . The
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inverse image in Re¢S of each such chain is a union of copies of S ,
by the definition of a chain, and hence is of the form DS for some

tournament D (see the remark after Lemma 3.4). Therefore,
DOTS/COC = DoS = Tmoz = TmoTz/coc = Tmz/s°Ts/c°C

so, by conclusion (a), it must be that D = Tmz/s = Tz/(s,r)

All edges between any two distinct chains in Wo¢Z go the
same way. Therefore, all edges between the inverse images in ReoS of
any two such chains must go the same way. It follows from this and
the result in the preceding paragraph that R = QoTz/(s,r) for some

tournament Q . Finally, since

coc = RoS = WoZ = VoT oC .

QT,/(s,r)°Ts/ s/(s,0)°Tz/c

it must be that Q = V by conclusion (a) . This completes the proof

of the theorem.

Corollary 1.1. If AoX = BoX , them A =B .

Corollary 1.2. If XoA = XoB , them A = B .

These cancellation laws follow directly from part (a) of

Theorem 1 (another proof of these laws has been given by Reid [21]) .

We say that a non—-trivial tournament R is prime if there do
not exist non—trivial tournaments A and B such that R = AoB . Thus,
the transitive tournament T is prime if and only if the integer n is

prime. Every tournament can be expressed as the ordered composition of
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prime tournaments but the decomposition need not be unique since, for
example, T6 = T2°T3 = T3°T2 . The following results show, however,
that if consecutive transitive factors are grouped together, then the

decomposition is essentially unique.

Lemma 5.1. Suppose that RoS = WeZ and that =z = qs + r where
z=12] , s= |8l , q>1 and O <r < s . Furthermore, suppose

that each of the non-trivial tournaments S and Z is either transi-

tive or prime.
a) If |s|] =|z] , then R=W and S = 2Z 3

b) if r =0 and |S] < |Z] , them R = Wqu s S = Ts and
Z = quTs = Tz H

c) if r > 6 , them R = V°Tz/(s,r) » S=T_ , W= V°Ts/(s,r) and

Z = Tz for some tournament V .

This follows directly from Theorem 1 and the fact that if

XoY is transitive then X and Y must both be transitive.

Theorem 2. Suppose that Sloszo-..osm = zlozzo--oozn where each of

the factors Si and Zj is a non—-trivial transitive or prime tourna-

ment. If no two consecutive factors S1 and S1+1 or Zj and zj+1

are both tramsitive, then m = n and S k6 = Zi for 1 <i <n .

i

Proof. If Sm +* Zn then we may suppose, by Lemma 5.1, that Sm and
Z are both transitive and that UoeT = S, oeeeo0S for some tourna-
n v 1 m—-1

ment U and some integer v , where v > 1 . But then Sm—l must be



transitive also, by Lemma 5.1, and this contradicts the fact that

S and S cannot both be transitive. Therefore S = Z and
m m—-1 m n

the result now follows by induction.

Lemma 5.2. If TaODOT = TaoDoT then either D

b B’

is transitive or a = a and b = g .

Proof. If D is not transitive, then D = TPODlo---oDLOTq where
P,a,€ > 1 , the non—-trivial tournaments Dl’.."DL are either transi-—
tive or prime, no two consecutive tournaments Di and Di+l are both

transitive, and neither D1 nor DC is transitive. Therefore,

TaoTponlo..ooDZOquTb = TGOTPODIO...ODKOquTB -

It follows from Theorem 2 that TaOTp = TuoTp and, hence, that a = a

similarly b = B8 and the lemma is proved.

1

Let H? = HoH and H® = Ho(H™ 1) for n = 3,4,--- .

Theorem 3. If ZoS = SoZ for non—trivial tournaments S and Z ,

u v

then S and 2Z are both transitive or S = H and Z = H for some

tournament H .

Proof. Suppose that =z =qs + r wurre s = |S| < z = |Z] and
O <r<s . If s =2z then S =2 by Theorem 1(a). If s < z and
r =0 then Z = CeS for some non-trivial tournament C ; hence

CeS = SeC by Corollary 1.1 and the result for this case now follows

by induction on m = max (|S|,[Z]) .

e



If
S = Ts/c
1 (c)s
Since s # z ,

then

Z are transitive.

86.

oC = Vo'rs/(s’r)

therefore,

z and

Tz/coccvors/(s,r) =
it follows from Lemma 5.2 that

r >0

- 16 -

s, then

for some tournaments

ZoS =

C and V must both be transitive and,

Almost All Tournaments are Prime

We say that a tournament is composite if it is not prime.

Z = VoT

z/(s,x) = Tz/c°C and

V and C by Theorem

SeZ = TS/COCOVOTZ/(S,r) .

CeV is transitive. But

consequently, both S and

This completes the proof of the theorem.

Our

object in this section is to show that the ratio of the number of noniso-

morphic composite tournaments with n mnodes to the number of nonisomorphic

tournaments with n 'nodes tends to zero as

n tends to infinity. We also

obtain a recursion formula for the number of non-transitive composite tourna-

ments with n nodes, using the following notation (the independent variable

refers to the number of nodes in the class of tournaments involved):

£f(n)
c(n)

*
c (n)

p(n)
q(n)

g(n)

Let

the number of
the number of

the number of

tournaments,
the number of

the number of

tournaments,

nonisomorphic
nonisomorphic

nonisomorphic

nonisomorphic

nonisomcrphic

and

tournaments,
composite tournaments,

nontransitive composite

prime tournaments,

nontransitive prime

the number of nonisomorphic tournaments whose decompo-—

sition does not end in a transitive factor (we define

g(1l) =1 ).

d be a divisor of n ;

the number of ways of forming a

composite tournament with n nodes whose last prime factor with d

nodes is not transitive is equal tc q(d)f(%) -

Consequently, the number
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of composite tournaments whose decomposition does not end in a transi-
tive factor is given by Z q(d)f(%) . The number of tournaments

din
d#1,n

whose decomposition does end in a transitive factor is equal to
f(n)-g(n) ; one of these is the transitive tournament with n nodes.
Therefore, the number of non-transitive composite tournaments with n

nodes is given by

&em) = dz q(d)f(%) + f(n) - gn) - 1 .
In
d#1l,n

Since we may express any non—transitive tournament T in the form T=AoB

where B 1is transitive and A = AloAzo.-.oAk where Ak is not transi-

tive, it follows that f(n) = Z gG% = Z g(d) . Then if u denotes
dln dln

the Mobius function, we have

g = J w(DEE = £@) +u@ + T uw(@E ,

din din
d#1,n
so that
T = J a@E@ - ] u@E@ - u@ -1

din din
d#]'sn dil,n

= 7 [a@@ - uw(@] £ - u@ -1 .
din
d#1l,n

The number c¢(n) of composite tournaments with n nodes, for 1 <n < 12 ,

is given in Table 1 (the first eight values of f£f(n) where given by Davis;
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see Moon [17; p. 87]) .

Now certainly c(n) < % PADECP ; also £ < £(12D
din
d#1,n
where d is not equal to 1 or n , and clearly p(d) < £(d) .

Therefore,
e < J' @ < J' p@EURD

L' E@EUSD < T s(IEBDEURD
2 2 2

A

n £(ZDEASZD

A

where the sums are over all divisors of n other than 1 and n .

Hence,

c@ P EUZD £UZD
f(n) = £(n) d

n
and it follows from Stirling's formula and the fact that f£(n) ~ 2(2)
n!

(see Moon [17, p. 88]) that the right hand side of the above inequality

2
is less than a constant times va 2% /4 ¢ _ all sufficiently large

n ; this tends to zero as n tends to infinity.

§7. The Group of the Composition of Two Tournaments.

If T is any tournament, then an automorphism of T is an

isomorphism from T onto itself. The set of automorphisms of T forms

a group, called the (automorphism) group of T , denoted by G(T) .



N

Wm\IO\LhJ.\w

11
12
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£(n) c(n)
1 (¢]
1 1
2 o
4 1
12 o
56 3
456 0
6,880 7
191,536 4
9,733,056 23
903,753,248 0
154,108,311,168 122

TABLE 1
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More will be said concerning the group of a tournament in
Chapter 3; our purpose in this section is to determine the group
G(AoB) of the composition of two tournaments A and B , given G(A)
and G(B) . Sabidussi [24] and Hemminger [13] have considered the

analogous problem for ordinary graphs.

Let R and G denote two permutation groups acting on -

sets M and N respectively, and let =r = |R| , g = |G| , m= M|
and n = |N| . The composition (or wreath product) of G by R is

the group RoG of order rgm and degree mn consisting of all permu—

tations «a of
MxXN = {(x,y) | x e M , y ¢ N}
of the form
alx,y) = (£ , b _()) ,

where f i1is any element of R and hx s for each x , is any element
of G . If the elements of MxN are arranged in a matrix so that the
rows and columns correspond to the elements of M and N respectively,
then RoG is the group of permutations obtained by permuting the objects
in each row according to some element of G (not necessarily the same
element for every row) and then permuting the rows themselves according

to some element of R .

We obtain the following theorem, due to Alspach, Goldberg

and Moon [ 1], as a simple consequence of the results in §5.
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Theorem 4. G(A°B) = G(A) o G(B) .

Proof. It is not difficult to see that G(A) o G(B) is a subgroup
of G(A°B) . The authors observed that, to show the groups are
identical, it suffices to prove that if a permutation o of G(A°B)
takes any node of a copy Bi of B to a node of a copy Bj of B ,
then o takes every node of Bi into Bj -

But this is immediate in view of Theorem 1l, since there are
no chains in AoB . Hence every copy of B is of type (00) . This
means that every automorphism a takes copies of B onto copies of

B , and this completes the proof of Theorem 4.
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CHAPTER 2

Isomorphisms of Tournaments

§1. Introduction

Two graphs G and G' are isomorphic 1f there exists a
one—to-one mapping ¢ between their nodes such that nodes x and
y of G are joined by an edge if and only 1if ¢(x) and ¢(y) are
joined by an edge in G* . If G and G' are related by a certain
mapping between their edges, one may ask for conditions under which
G and G'  are isomorphic. H. Whitney [26] proved that if G and
G' are 3-vertex connected and circuit isomorphic, then G and G'
are isomorphic (for a simplified proof of this result, see Ore [18;
P- 245]1). More recently, Halin and Jung [11] have generalized Whitmey's
result and extended it to infinite graphs. Our object in this chapter

is to obtain a theorem of this type for tournaments.

§2. Preliminary Results

Two tournaments Tn and Tn are anti-isomorphic if they can

be made isomorphic by reversing the orientation of every edge of one of
them. Let ¢ denote a bijection between the edges of two tournaments

T, and T; - We say that T,k and T; are h—cycle isomorphic (with

respect to ¢ ) if any set of h edges in one tournament form a cycle
if and only if the corresponding edges in the other tournament form a

cycle (but not necessarily in the same order). In §3, we will prove the
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following result.

Theorem. If two irreducible tournaments Tn and T; are 3-cycle

and 4~cycle isomorphic with respect to ¢ s then they are either isomorphic
or amti-isomorphic.
In what follows, we will denote an edge of unspecified orien-

tation joining nodes i and 3j by i3 . A nontrivial subtournament

M of Tn has property P(¢) if ¢ dinduces an isomorphism or an

anti-isomorphism between M and some subtournament N of T; s that is,
if there exists a bijection Oy between the nodes of M and N such

that
(1) ¢(ij) = aM(i)aM(j) for all 1i,j ¢ M , and either
(11) i->3 <= % (1) >ay(3) for all 1i,j e M, or
(dii) i > j <=> o (3) > (1) for all 1,3 e M .

An edge is good or bad for M with respect to ¢ and @y according
as (i) does or does not hold for that edge; M almost has property
P(¢) if (4i) or (4iii) holds for Ay and if M contains exactly one
bad edge with respect to ¢ and aM . For convenience, if o is any

bijection from the nodes of M onto the nodes of N » we will say that

¢ and a are compatible on an edge i13j if (i) = a(i)ali) .

Lemma 2.1. Let ap and ag denote bijections of the nodes of subtour—
naments R and S of Tn onto the nodes of subtournaments U and V

of T; s respectively. Suppose that ¢ 1is incompatible with ap and
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and g on at most one edge of R and S > respectively. If at most

one of these exceptional edges is in RnS and anSl_i 3 then ap

and &g are identical omn RnS . Suppose, in addition, that ap

defines an isomorphism or anti-isomorphism between R and U ., and

a, either defines an isomorphism or anti-isomorphism between S and V

S

or would if the orientation of some edge as(r)as(s) where rs e RnS

were reversed. If a 1is defined by a(x) = aR(x) if xeR and
al(x) = as(x) if xeS , then a is a bijection of the nodes of RuS

onto the nodes of UuV and either
i+ j <==> a(d) > a(j) for all 1, e R and all i,j € S or

i-> 3 <==> a(j) > a(i) for all 1, €e R and all i, e s .

Proof. It follows from the hypotheses that there exists at least one

node c¢ in RnS such that no edge in RnS which is incident with ¢

is bad for either R or S . Let ca and cb be two distinct such

edges. Then

¢(ca) = aR(c)aR(a) = as(c)as(a) R and

¢(cb) = aR(C)aR(b) = as(c)as(b) .

If aR(c) # as(c) s then it must be that aR(c) = as(a) and aR(c) =
as(b) s but then as(a) = as(b) s a contradiction since a¥b . Therefore,
aR(c) = as(c) and it follows that aR(a) - as(a) and aR(b) = as(b) .

Hence ap = ag on RNnS .
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If oa(y) = a(z) for some y ¢ R-S and z € S-R , then for
some node w in RnS 4t must be that ¢ is compatible with op and
on yw and zw , respectively; but then

g

P(yw) = a(yd)aw) = a(z)a(w) = ¢(zw) ,

a contradiction. Hence a 1is the required bijection, and the remainder
of the conclusion follows from the definition of isomorphism and anti-

isomcrphism. This completes the proof of the lemma.

Lemma 2.2. If Th+1 is irreducible and ht+l > 4 , then there exist
two irreducible subtournaments of T > both with h nodes, having

h+1

h~1 mnodes in common.

Proof. Since Th+1 is irreducible, it contains an h-cycle [17, p. 6]
which determines an irreducible subtournament Hl with h nodes. The
node of Th+1 not contained in Hl is itself contained in an h-—-cycle
f{17; p. 6] and hence in an irreducible subtournament HZ of Th+l

with h mnodes and with h-~1 nodes in common with Hl . This proves the

lemma.

—
Lemma 2.3. Let pq belong to the irreducible tournament Th+1 and
—
suppose that pq is not contained in any irreducible subtournament of
The
a; (where 1 <1i <h+l and p = a; ,q= ah+1) in such a way that

with at most h mnodes. Then the nodes of Th+1 may be labelled

for 1 <i < j < htl except that a1 >3 -
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Proof. Since Th+1 is irreducible (or strongly connected, see
Chapter 1, §2) there must exist a path in Th+1 from q to p .
This path, together with ;3' determines a cycle and hence an irreduc—
ible subtournament of Th+1 . It follows from the hypotheses that this
subtournament must contain h+l nodes - in other words, ';E is
contained in a spanning cycle of Th+1 . The result is now a direct
consequence of che previously noted fact that an £-cycle in Th+l

determines an irreducible subtournament of with £ nodes.

Th+1

Let T and T; be irreducible. If h > 4 and if all
nontrivial irreducible subtournaments of Tn and T; with at most h
nodes have preoperties P(¢) and P(¢-1) , respectively, then we say

that Tn and T; are h—equivalent with respect to ¢ . The following

lemmas are central to the proof of one of our main results in §3.

Lemma 2.4. Let Tn and T; be irreducible and h-equivalent with
respect to ¢ , where h > 4 , and let T be an irreducible subtournament
of Tn with h+l nodes. If T does not have property P(¢) then it
almost has property P(¢) and is a tournament of the type described in

—
Lemma 2.3 with pq as its bad edge.

Proof. Tt follows from Lemma 2.2 that 7 ccatains distinct nodes p
and q and irreducible subtournaments A and B , both with h necdes,
such that pe A ,p¢B ,ae B, q £ A; we may suppose that p > q .
The subtournaments A and B have property P(¢) and since |anB| > 3
we may apply Lemma 2.1 to A and B to conclude that ¢ induces a

bijection o from the nodes of T onto the nodes of a subtournament
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T' of T' which is compatible with ¢ on alledges of T with the
n ™p

—
possible exception of PqQ . Morecver, q defines an isomorphism or

an anti-isomorphism between T and T' or would if the orientation

of the edge a(p)a(q) were reversed.

—_—
If pq is contained in an irreducible subtournament Q of

T with at most h nodes, then Q has Property P(¢) and it follows

from Lemma 2.1 (with R=Q and s =T ) that ¢ and q are compat-—

—_
ible on pq and hence T has pProperty P(¢) .

—_
If pq 4is not contained in any irreducible subtournament of

T with at most h nodes, then T is a tournament of the type described

in Lemma 2.3, and so is T' (or it would be if the orientation of the

edge a(p)a(q) were reversed). But the orientation of a(p)alq) must

be consistent with the orientation of the other edges of T' with respect

to T since otherwise a(p)a(q) would be contained in a 3-cycle in T

whose image under ¢_1 is not a 3-cyele in T . It follows that « is

an isomorphism or an anti-isomorphism from T to T' and this suffices

to complete the proof of Lemma 2.4.

Lemma 2.5. Let Tn and T; be irreducible and h-equivalent with

respect to ¢ , where h >4 , and let T be an irreducible subtournament

—_\
of Th with h+l1 nodes that almost has Property P(¢) with PqQ as its

L=
bad edge. Then Pq 1s not contained in any irreducible subtournament of

Tn with at most h nodes.

Proof. We will prove the contrapositive of this sStatement by consider—

—
ing various possibilities for Pqd . Notice that it follows from Lemma
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2.4 that T dis a tournament of the type described in Lemma 2.3, so

—
that pq is not contained in any irreducible subtournament of T

with at most h nodes.

Case 1: Suppose ';; is contained in an irreducible subtourmament S
of Tn with at most h nodes which contains at least one other node
of T . Since S has property P(¢) by hypothesis and T almost has
property P(¢) , and since |SnT| > 3 we may apply Lemma 2.1 to S

and T to conclude that the bijections induced by ¢ on S and on T

—
must be identical on SnT; this contradicts the fact that pq was bad

for T .
—
Case 2: Suppose that pq 1is contained in an irreducible subtournament

S of '1‘n with at most h—-1 nodes which contains no other nodes of T .
Since bh+l > 5 , there exists at least one node r of T such that
P>r and r - q . The tournament R with at most h nodes obtained
from S by adjoining the node r 1is irreducible; thus, we may apply the

—
argument in Case 1 to R to again contradict the fact that pq was bad

for T .
—
Case 3: Suppose that pq 1s contained in an irreducible subtournament

S of Tn with h nodes which contains no other nodes of T . The
irreducible tournament R with h+1l nodes obtained from S by adjoining
anode r of T such that p » r and r - q has or almost has property
P(¢) by Lemma 2.4. We show that -5? is a good edge for R . To see
this, observe that ';? is contained in an irreducible subtournament of

—
T , namely the tournament U defined by pr and the path in T from r
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to p (note that U does not contain any other nodes of R ). Thus

—
we m apply Case 2 to the edge r and the tournaments R and U
ay apply =4 P

—N\ '
(since 'U'.i h~1 ) to conclude that Pr 1is a good edge for R , and

—_
we find, in a gimilar way, that rq 4is a good edge for R . The tour—

—
nament S has property P(¢) and since Pq is a good edge for s ,

—
it follows upon applying Lemma 2.1 to S and R that pq is good

for R . Hence, every edge in TnR is good for R and we may apply
Lemma 2.1 to T and R to obtain, as before, a contradiction to the

—_—
fact that pq was bad for T . This exhausts the possibilities for

—_
Pq and completes the proof of Lemma 2.5.

Lemma 2.6. Let Tn and T; be irreducible and h-equivalent with

respect to ¢ , where h >4 , and let T be an irreducible subtourna-

—_
ment of Tn with h+l nodes that almost has property P(¢) with pq

—_—
as its bad edge. If P4 1is contained in another irreducible subtourna-

ment U of Tn with h+l nodes, then

—
i) U almost has property P(¢) with pq as its bad edge;

(ii) if oy and a, are the bijections induced by ¢ on U

and T then the bijection « defined by
(x) for X e U
al(x) = ‘o
GT(X) for x e T
is compatible with ¢ on all edges of U and T except Pq ;
(iii) either i » j <==> (i) - a(j) for all i,j € U and

for all i,j e T, or i - J <==> a(j) > a(i) Ffor all 1,3 ¢ U and

for all 4i,j e T .



Proof. As before, it follows from Lemma 2.4 that T is a tournament

of the type described in Lemma 2.3.

Case 1: U contains at least one other node of T . It must be that

U has or almost has property P(¢) , by Lemma 2.4. But 1if there were

—
no bad edges for U which belonged to T , then by Lemma 2.1, pq

would be a good edge for T and this is a contradiction. Therefore,

—
U almost has property P(¢) ; since all edges of UnT except pq

belong to irreducible subtournaments of T with at most h nodes, it

—
follows from Lemma 2.5 that these edges are good for U and so pq is

the bad edge for U . TIf we apply Lemma 2.1 to U and T » the result

follows.
—,
Case 2: U does not contain any other nodes of T . Since rq is

bad for T , it follows from Lemmas 2.5 and 2.3 that U 1is a tournament

of the type described in Lemma 2.3 and by Lemma 2.4 it follows that U

has or almost has property P(¢) . If we label the nodes of T and U

by a; and bi > respectively, as in Lemma 2.3, consider the subtourna—

ment Q of Tn defined by q = G4y = bh+l s & bh > 31 and bh_1
which is clearly irreducibie and has three nodes in common with U and

with T . Moreover, Q has property P(¢) except, possibly, when

h = 4 in which case it almost has property P(¢) and its bad edge does

not belong to QnT or QnU since the edges in these subtournaments of

Q belong to 3-cycles. If aQ denotes the node-bijection induced by ¢

on Q , then it follows from Lemma 2.1 that aQ is identical with e
on QnT and with %y on QnU . Therefore, aU(q) = aQ(q) = aT(q)

and we find, in a similar way, that aU(p) = aT(p) . Hence, it must be
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U(p)aU(q) # ¢(Pq) . This implies that U almost

that aQ(p)aQ(q) =

-\
has property P(¢) with Pq as its bad edge. This suffices to

complete the proof of the lemma.

§3. Main Results

Theorem 3.1. If Tn and Té are irreducible and h-equivalent with
——=0rem 5.1

respect to ¢ , where h > 4 |, then there exists a bijection Y from

the edges of Tn onto the edges of T; such that Tn and T; are

L/ furthermore, ¢ and vy

>

(h+1)-equivalent with respect to agree on

all edges contained in irreducible subtournaments with at most h nodes.

Proof, Lemmas 2.5 and 2.6 imply that the edges of Tn may be parti-

tioned into sgets A
are contained in irreducible subtournamentsg with at most
B is the set of bad edges for irreducible

h+1 nodes

that have Property P(¢) ,
nodes that almost have Property P(¢) ,
ubtourna-

Subtournaments with h+1

is the set of edges which are not contained in any irreducible g

ment of Tn with at most h+1 nodes. The edges of T; may be similarly

partitioned into corresponding sets A' s B' and c° > respectively; it

follows from the definition of A and A' that ¢(A) = A"

¥ from the edges of Tn onto the

then 1let p(ij) = o(1j) . If

is the node-bijection

We now define a bijection
edges of T; as follows. If i € A ,
PqQ € B , then let Y(pq) = aM(p)aM(q) where o M

induced by ¢ on any irreducible subtournament M
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that in view of Lemma 2.6 applied to Tn and to T; > the same bijec—
M 1is chosen which

tion is obtainedindependently of which subtournament
¥ on edges of ¢

C and C' . Thar

according

has PqQ as its bad edge. Finally, define

to some bijection which must certainly exist between

are now (h+l)—equivalent with respect to ¥ now follows

T and T'
n n
and (h+l)-equivalence >

from Lemmas 2.4 and 2.6 and the definitions of h-
and suffices to complete the proof of the theorem.
We now use Theorem 3.1 to prove our main result by induction.

If two irreducibile tournaments Tn and Té are 3-cycle

Theorem 3.2.
—==Sorem 5.2
¢ s> then they are either

and 4-cycle isomorphic with respect to
isomorphic or anti-isomorphic.

are 4-equivalent with respect

Proof. We first show that Tn and T'
to ¢ . Notice that it follows from the definition of ¢ that any

irreducible subtournament of Tn with three nodes has Property P(¢) .
€ under ¢ and let the ordered

Let e' denote the image of the edge

m—tuple (a,b,---,k) mean that the edges a,b,*++,k  form an m—-cycle

where a ig followed by b ,
T be an irreducible subtournament o

b is followed by ¢ »***s and k is

£ Tn with four

followed by a . Let
(1,2,3,4) and two 3-cycles (3,4,5) and

nodes; it consists of a 4-cycle
(2,3,6).

(3,4,5) implies (3',4",5') or (57,4",3") » and

Since the edges
(2',3%,6") implies

By hypothesis,
(2',3',6') or (6',3',2') .
> 1t must be that

(2,3,6) implies
{1%,27,3" 473 form a 4-cycile in T;



(3',4",5") and (6',3',2') implies (5',4',3') . It follows that
(2',3',6') dimplies (2',3',4',1') and (6",3",2') implies
4',3',2',1') .

Suppose the nodes of the 4-cycle in T are labelled consecu—

tively by a,b,c,d where a is the initial node of edge 1 , and

suppose the nodes of the corresponding 4—cycle in T; are similarly
labelled by a',b',c',d' where a' is the initial node of edge 1' .

If (2',3',6') , then the mapping a which takes a,b,c,d into

a',b',c',d"' , respectively, is an isomorphism induced by ¢ ; if 6',3',2"),

then the mapping o which takes a,b,c,d into b',a',d',c' , respectively,

is an anti-isomorphism induced by $ - It follows that in either case,

T has property P(¢) .

If n > 4 , then it follows by induction from Theorem 3.1 that

Tn and T; are n—equivalent with respect to some edge-bijection Yy .

The theorem now follows upon observing that if Tn is irreducible, then

Tn has property P(y) .

Theorem 3.2 does not necessarily hold if Tn and T; are not

irreducible. For example, let Tl and '1‘4 denote irreducible tournaments

= . ==
with one and four nodes, and let T6 Tl + Tl + T4 and T6 Tl + T4 + Tl.

One can define an edge-bijection ¢ from T6 to Té such that T6 and

T! are 3-cycle and 4—cycle isomorphic with respect to ¢ , but they are

6
neither isomorphic nor anti-isomorphic.

In addition, Theorem 3.2 may not hold if Tn and T; are not

For example, let T denote the trivial tournament

4—-cycle isomorphic. 1
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with one node, let T2 denote the reducible tournament with two nodes,

and let T4 denote the reducible tournament with four nodes consisting

of one node which dominates each node of a 3~cycle. If we let T7 and

T; be the irreducible tournaments obtained by letting Tl -> T2 -> T4 > Tl

and '1'1 - '1‘4 > TZ -> Tl » respectively, then one can define a 3-cycle
isomorphism between these two tournaments (induced by an isomorphism
between the copies of ’1‘1 > T2 and T4 ) but they are neither 4-cycle

isomorphic, nor isomorphic, nor anti-isomorphic.



CHAPTER 3

The Group of the Quadratic Residue Tournament

§1. Introduction

The (automorphism) group G(Tn) of a tournament T,6A was
defined in Chapter 1, §7. In this chapter, we consider the group of
a class of regular tournaments, that is, tournaments T2m+1 in which
every node dominates exactly m other nodes. The groups of certain
other specific graphs and tournaments have been considered, for example,
in [ 1], [ 2], and [10]. References on the groups of graphs in general

and tournaments in particular may be found in [18] and [17].

It is known [17] that there exist tournaments whose group is
abstractly isomorphic to a given group H 1if and only if H has odd
order; thus all tournament groups are solvable, by the Feit-Thompson

Theorem [ 9 ].

Consider the Galois field GF(q) , where q = pn = 3 (mod 4) ,
that is, where n 1s odd and p = 3 (mod 4) . Since -1 is a (quadra-
tic) nonresidue in the field GF(p) and n is odd, it follows that -1
is a nonresidue in GF(q) [ 5; p. 45, §62]. This implies that if a-b

is a residue in GF(q) then b-a 1is a nonresidue in GF(q) .

If we now label q = pn nodes with the elements of the Galois

field GF(q) and let a, > ay if and only if aj - a; 1s a square in



GF(q) , then the preceding observation guarantees that the resulting
configuration will be a tournament when ¢q = 3 (mod 4). It is clear

that the tournament thus defined is regular; we call it the (quadratic)

residue tournament Rq . Our main object in this chapter is to deter-

mine the group G(Rq) of the residue tournament Rq -

§2. Preliminary Results

Finding G(Rq) is equivalent to finding all permutations ¢

of the elements of GF(q) such that a; - aj

if and only if ¢(ai) - ¢(aj) is a square in GF(q) . In what follows

is a square in GF(q)

we shall use the terminology and notation of Wielamndt [27].

Let a be the power of a prime, say a = pk . Let T(mn,a)
be the group of all permutations of GF(an) of the form x - bx’ s
where b 1is a nonzero element of GF(an) and o 1is an automorphism
of GF(an) over GF(a) . Let GL(n,a) denote, as usual, the general
linear group of all non-singular n>*n matrices with entries in GF(a) .

In a recent paper [19], D.S. Passman has proved the following result.

Theorem 1. Let a = pk s where p 1is a prime, and suppose that G is
be}

a solvable subgroup of GL(n,a) such that am-l IGl] for some divisor
a-1

m#¥n of n . Then either G < T(n,a) or else @n,a) = (2,3) , (2,5) ,

2,7 , (2,11) , (2,23) , (2,47) , (4,3) or (6,2) .

Let S(n,p) denote the group of all permutations of the elements

of GF(pn) of the form x - sx° + b s where s 1is a nonzero square of
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GF(pn) » 0 1s an automorphism of GF(pn) » and b 1is arbitrary in

GF(p™ .
§3. Main Result
Theorem 2.- If q = p™ = 3 (mod 4) s then G(Rq) = S(n,p) .

Proof. It is clear that S(n,p) j_G(Rq) . The nontrivial squares
and non-squares of GF(pn) are the nodes dominated by O and domina-
ting O , respectively. Consequently, So(n,p) > the subgroup of
S(n,p) fixing O , must permute the squares among themselves and the
non—-squares among themselves. Since SOCn,p) is tramnsitive on the
S%l squéres and on the S%l non—-squares, it follows that G(Rq) is
3/2 transitive; hence it is either primitive or Frobenius [27; p. 25].
When n > 1 , the automorphism group of GF(pn) is nontrivial (fixing

GF(p) ) , so that G(Rq) is not Frobenius. When n =1 , G(Rq) is

also primitive because it is transitive of prime degree.

To show that G(Rq)_ﬁ S(n,p) we first consider the case
n=1. Then S(l,p) is the group of (g) permutations of the form
x > sx + b , since GF(p) admits only the identity automorphism. For

any o ¥ 8 in GF(p) , it is well—known [27; p. 5] that

G(R ) |BGa(R.q)

= ] . .
le®)l = fo | | - loggmpl .

But IGaB, = 1 for a solvable transitive group G of prime degree,

by a result of Galois [27; p. 29]. Consequently,
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I i R &4
lecR)pl < p > 1=406)

so G(Rq) = S(1,p) ; this case may also be treated as a direct conse-
quence of a classical theorem of Burnside (see, for example, Passman

[20; p. 531) which used the theory of group characters.

Suppose now that n > 1 . Let A be a minimal normal sub-—
group of the primitive, solvable group G = G(Rq) . Then A 1is an
elementary abelian p~group of order 1:»n [27; p. 28]. Since G is
primitive, Go is maximal. Every normal subgroup of a primitive group
is transitive, so A 1s not contained in Go s hence G = A Go . It
is not difficult to show that A 1is its own centralizer C(CA) in G
since A is regular and abelian. Consequently, Go zF(% and this
is isomorphic to a subgroup of Aut A , the automorphism group of A
[25; p. 50] (Pixon [ 61, [ 7], [ 8] used these observations to treat
other problems). Since Aut A is isomorphic to GL(n,p) [25; p. 125],
we may regard Go as being a solvable subgroup of GL(n,p) .

n
Now let m # n be any divisor of n . Clearly -Pm;l is an
p -1

integer, since it is the index of the multiplicative group of GF(pm)

in the multiplicative group of GF(pn) . Since So(n,p) =< Go we have

n
=1
IGOI =t | So(n,p)l =t n*LZ

n
for some odd integer t , and it follows easily that %-]; divides |G°| .
p -1



Therefore, the hypotheses of Theorem 1 are satisfied (when k=1)

>

and since n 1is odd we may conclude that G, < T(n,p) -

Now G # T(n,p) because T(n,p) is transitive on the
nonzero elements of GF(pn) . Since So(n,p) is of index 2 in T(,p) »

it follows that G_ = So(n,p) . Hence
n s | "
le] = |a] - |G°| =p" - n - 2_3_ = n(g ) = |S@,p|

and since S(n,p) < G we have that G = G(Rq) = S(n,p) - This completes

the proof of Theorem 2.

§4. An Application

Theorem 3. Let F be a finite field, where |F| = pn 3 (mod 4) ,
and let ¢ be a permutation of F which fixes the elements of the prime
field K of F ;3 a necessary and sufficient condition that ¢ be an
automorphism of F is that $Ca) - ¢(b) 1is a square in F if and only

if a-b is a square in F .

Proof. If ¢ is an automorphism of F then the condition is clearly

necessarye.

Theorem 2 says that the set of permutatiomns of F satisfying
the condition forms the group G = S(n,p) - But the only elements of G

which fix K are of the form x - x° , where o belongs to Aut F ,

since all others move either 0 or 1 . This completes the proof of

Theorem 3.



It can be shown that Theorem 2 is actually a special case
of a result due to W.M. Kantor (to appear) which is stated without

proof in the recent book by Dembowski [ 4; p. 98].



CHAPTER 4

Cycles in k—Irreducible Tournaments

§1. Introduction

A tournament Tn is k-irreducible if k is the largest

integer such that for eévery partition of the nodes of T into two

nonempty subsets A and B there are at least k edges that go

from nodes of A to nodes of B and vice versa; a tournament Tn is

irreducible if n =1 or i1f it i8 k-irreducible for some positive

integer k (cf. Chapter 1,52). If a tournament Tn is not irreduc-

ible, or reducible (see Lemma 2.3, Chapter 1), then it has a unique

expression of the type Tn = A+B+++-+J where the nonempty components

A,B,**+,J are ail irreducible; we call A and J the top and bottom

components of Tn .

An £-path (or L-cycle) is a path (or cycle) of length £ .

A spanning path or cycle of T

An extension of a result due to Camion [ 3] states that if 3 <2 <n ,

i1s one that involves every node of T

then each node of any irreducible tournament Tn I8 contained in at

least one £-~cycle (see [17; p. 61). oOur object in this chapter is to

prove the following stronger result.
Theorem 1. Let p denote any node of any k-irreducible tournament

Tn 5 1f 3 < £ <n , then P 1is contained in at least k £~cycles.



In what follows we assume that the node p and the k-

irreducible tournament Tn are fixed. We may suppose that k > 2 ;

since each node of Tn must dominate and be dominated by at least
k other nodes, it follows that 2k+1 <n or k_ﬁ-P--;-l - Before proving

the theorem, we make some observations about paths and the structure of

the k-irreducible tournament Tn s

§2, Three Lemmas

The following result is obvious.

Lemma 2.1. Let P denote an £-path from node u to node v . If

node w is not contained in P and u-»> w and w-> v , then w can

be inserted in the path to form an +1) - path from u to v s in

particular, w can be inserted immediately hefore the first node of

P it dominates.

Lemma 2.2. If u and v are any nodes of the top and bottom compon-

ents of a reducible tournament W, and 1 < £ < t-1 , then there exists

an £-path in Wt that starts with u and ends with v ; furthermore,

if 2 < £ < t-1 this rath may be assumed to contain any given node

belonging to any intermediate component of Wi .

This may be proved by applying the following observations to

the components of Wt H If a tournament Z'1 is irreducible and

0 < 2_5 h~1 , then it contains a spanning cycle and, hence, each node

is the first node, and the last node, of at least one £-path in Zh 3
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and, if R - S , then any c—path of R may be followed by any d-path

of S to form a (ctd+l) - path of R+S .

Lemma 2. 3. Let G denote any minimal subtournament of the k—-irreduci-
ble tournament Tn whose removal leaves a reducible tournament W of
the form W = Q+R+S where Q and S are irreducible and R may be
empty; then each node of G is dominated by at least one node of S

and dominates at least one node of Q , and there are at least k edges

from nodes of G to nodes of Q and at least k edges from nodes of S

to nodes of G .

The conclusions in this lemma follow from the fact that G is
minimal and Tn is k-irreducible. We shall show that we may suppose

such a subtournament G exists before we apply this lemma.

We now proceed to the proof of the theorem; we have to use

different arguments when £ lies in different intervals.

§3. Proof when £=3

Let B and L denote the set of nodesa that dominate p and
are dominated by p , respectively. Since Tn is k—i;geducible, B
and L are non—empty and there are at least k edges ';t that go
from a node u of L to a node v of B . The theorem now follows

—
when 4£=3 since each such edge uv determines a different 3—-cycle

{p,u,v,p} containing P -



§4. Proof when £=4

If w is any node that dominates P , let B,L,M, and N

denote the set of nodes that dominate both w and P >, are dominated

by both w and P >, dominate w and are dominated by P , and are

dominated by w and dominate P , respectively. If L = ¢ , then

M must contain at least k nodes and N must contain at least k-1

nodes, since P and w must each dominate at least Lk nodes. In this

k(k-1) > k different 4-—cycles of the type
We may suppose,

case there are at least

{p,u,w,v,p} containing p , where u e M and veN.

therefore, that L ## ¢ .

There are at least Kk edges of the type 'E? where u ¢ L
and v ¢ BUMUN . If v € BuM , then the 4—cycle {p,u,v,w,p} contains
P. If ve N and v dominates some other node y of N > then the

y but

contains p ; if there is mno such node

4~cycle ip,u,v,y,p}

u 1is dominated by some other node z of Lr, then the 4-cycle

ip,z,u,v,p} contains P . Thus, there are at least k different 4—
—
cycles containing p eXcept, possibly, when there exists an edge uv

from L to N such that u dominates the remaining nodes of L and

v 1is dominated by the remaining nodes of N s there is at most one

—
such edge uv so in this case the Preceding construction pProvides at

least k-1 4-cycles containing p .

>P} is a new 4—cycle containing p .
k

If z ¢ M , then {p,z,w,v
M = ¢ ; this implies that L has at least

Thus we may suppose that

nodes since p dominates at least k nodes. If there exists an edge
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then {p,u,z,y,p} is a new

—
Z¥u, z e s and y ¢ B
u is the only node

Zy where
Thus we may suppose that
This implies,

k edges of the type zy

4-cycle containing p .
since T is k-
n

of L that dominatesg any nodes of B .

that there must be at least

irreducible,
In this case, however, there

where 2z % o » Z2€L ,and y ¢ N .

k  4-cycles of the type 4{p,u,z,y,p} containing p .

are at least

This completes the proof of the theorem whepn L=4 .

55. Proof when 5 < p < n—-k+1

Let ¢ denote any (£-2) - cycle containing p s such g

that are not in ¢ .

—_
If L # ¢ >, there exigt at least k edges of the type uv
For each such node v there exists at

el and v € BuM .
If we insert the nodes u

9 of C sguch that v » q .
C we obtain ap L~cycle containing P

A similar argu-—
L=B=¢

where
least one node

and v immediately before
clearly yield different £~cycles.

> 80 we may now assume that

-
>

q d1in

-
different edges uv
ment may be applied to B if B % ¢
and M # ¢ .
tive nodes r

u->gs ., Thus u can be inserted

and g



between r and s in C to form an (£-1) - cycle C1 containing

P - Any other node v of M can now be inserted between some pair

of comsecutive nodes of Cl to form an £-cycle C2 containing p .

Different cycles C2 are formed when different pairs of nodes of M

are inserted in C . Thus, there are at least

n—(£-2) k+1
>k

v

2 2
different £-cycles containing p when 5 :_Z.E_n-k+l . (This argument

can be applied for somewhat larger values of £ as well.)

§6. Proof when n-k+2 < £ < n-1

Let T£ denote any subtournament of Tn with £ nodes that

contains the node p . If Tl is irreducible, then it contains an

£L-cycle containing p , by Camion's theorem. Thus, if each such subtour-—

nament T£ is irreducible, then P 1is contained in at least

n-1

£r1) > n-1 > k 4£-cycles in T, -

We may suppose, therefore, that there exists a minimal subtour-

nament G of 'I‘n
subtournament W containing p . Then W

W= QiR+S where Q and S are irreducible and R may be empty.

There are at least k edges ;=~ in Tn that go from a node
of G to a node q of Q , and for each such node x there exists at
least one node s of S such that s »> x H this follows from Lemma
2.3. We shall show that for each such pPair of nodes q and s , there

exists an (£€-2) - path P in W that starts with q , contains the

can be expressed in the form

> with g < n-£ nodes, whose removal leaves a reducible

X
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node p , and ends with s .

If p €« R , then the existence of P follows immediately

from Lemma 2.2 gsince W has n—g nodes and 2 < £-2 < n-g~1 . If

P e Q, let P1 denote any spanning path of Q that starts with q .

We observe that if Q has m nodes then m < £-2 since otherwise the

node s would be dominated by at least £-2 > (n~k+2)-2 = n—-k nodes

and this is impossible since Tn is k-irreducible. Let P2 denote
any (£-m~-2) - path of R+S that ends with s ; the existence of P,
follows from Lemma 2.2 since R+S has n—-g-m nodes and 1 < £-m—2
<ng-m-1. If P = P, + P, , then P is an (£-2) ~ path in W with

the required properties and we can also find such a path when p ¢ S

by a similar argument.

This suffices to complete the proof when n-k+2 < £ < n-1
since {x} + P + {x} 1is an £-cycle containing P and it is clear that

-
different edges xq yield different £~cycles.

§7. Proof when {£=n

Since Tn is k-irreducible, there exists a partition of the

nodes of Tn into two subsets A and B such that precisely k

edges go from nodes of A to nodes of B . At least one of these sub-—

sets has more than k nodes; if the nodes in this subset that are

incident with the k edges that go from A to B are removed, then the

subtournament determined by the remaining nodes is reducible. It follows,



therefore, that there exists a smallest subtournament G , with at most

k nodes, whose removal leaves a reducible tournament W .

(m)

Let G = G(m) + G(m_]') + e + G(Z) + G(l) where G and

D

are irreducible and the intermediate components may be empty (in
fact G itself may be irreducible), and let W =Q + R + S where Q
and S are irreducible and R may be empty. It follows from Lemma
2.3 that 'l.'n contains at least k edges of the type 2; where

x € G and y € Q .

@ Gm)  ¢or which

For xeG we may certainly find a node h ¢ G

there exists a path P(h,x) in G spanning all nodes of
c™® 4 g1 4 ... gD

and anode g e€ S such that g - h . In what follows let P(y,g)

denote a spanning path of W augmented by inserting as many nodes as
(i-1) )

possible of G + e + G . Hence there exists a cycle in 'I‘n
of the form
_ —_—
Co = xy + P(y,g) + gh + P(h,x) .

The following lemma is a direct consequence of Lemmas 2.1 and

2.3.

Lemma 7.1. If w e G(j) cannot be inserted in P(y,g) , then there
exist two consecutive nodes r and s of P(y,g) such that w domin-

ates all nodes of P(y,g) from y to r inclusive, and is dominated



by all nodes of P(y,g) from $ to g inclusive.

If w e G(j) s where 1<3j < i-1 » then w dominates

Lemma 7.2.
=cma /.2
at least two nodes of W .

Proof. Since Gcm) # ¢ and ’G’.S k , it must be that w dominates

5 the result now follows

at most k-2 other nodes of G if J < i-1 ;

i >1 and 1let A denote the set of nodes of

Lemma 7.3. Let
c-1 . L., which camnot be inserted in P(y;8) ;5 1f p denotes

the successor of y in P(y,g) , then A>y , A>p ang g > A .

In what follows, let P(s,z) denote & spanning path of the

set A defined in Lemma 7.3.
of G(i—l)

Construction 1: Either 1 =1 of P(y,g) contains a node

(this includes the Possibility that ¢ itself is

and it is obvious

If 41 =31

irreducible) then Co is a spanning cycle of Tn

that distinct edges ;;' yield distinct spanning cycles. We may there-

fore suppose 1in what follows that X € Gci) for 1 > 1 .

If 4 > 1 ang P(y,g) contains a node of Gci—l) > then it

follows from Lemma 7.3 that the nodes of A may be inserted between x

C of T
n

to yield the following spanning cycle 1



—_ N N
C1 = P(y,g) + gh + P(h,x) + xs + P(s,z) + zy .

Beginning with a cycle C1 of this type, we may identify
X by noting that 1 will be the smallest index for which there
exists a path P in C, spanning e™ 4 il @) | ana x wil
be the terminal node of P . Continuing along C1 from P , we may
identify y as the terminal node of the first edge encountered which
—

goes from G to Q . It is clear that different choices of edges xy ,

where x € G > yield different spanning cycles in this way.

We henceforth suppose that P(y,g) does not contain any node
of G(i—l) » and we let p and q denote the successor of y and the

predecessor of g , respectively, in the path P(y,g) .

Construction 2: P(th,x) - q .

Since ]GI_: k and G 1s reducible, it must be that
IG(m)I < k-1 ;3 furthermore, it follows from the irreducibility of G(m)
that there are at most k~3 nodes of G which dominate h (or zero
if k=2 ) . Thus, since Tn is k—-irreducible, there must exist a node
t ¥y,g in W such that t >h . But h -+~ q , SO we may appeal to
Lemma 2.1 to conclude that h may be inserted in P(y,g) between p
and q . Hence, (by Lemma 2.1 again) the successor of h in P(h,x)
can be inserted between h and q , and it follows that all the nodes

of P(h,x) can be inserted between p and q in the same order as they

appeared in P(h,x) originally. Denoting this augmented path by P*(y,g)
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we then have a spanning cycle of Tn of the type

—
Cp = P*(y.g) + g5 + Pls,2) + Zp .

We may identify G(i—l) as the component of G of highest

index no node of which belongs to a sub-path of C, from Q to s .

Thus, since C2 maintains the order of the nodes of P(h,x) , we may

identify x as the last node of G(i) encountered in a traversal of

the maximal sub—-path of C2 from Q to s (v will be the initial

—_
node of this sub-path). Again, distinct choices of edges Xy yield

distinct spanning cycles.

Construction 3: There exists a node w e P(h,x) such that qQ->w.

Let w be the first node of P(h,x) which is dominated by

9 5 let P(w,x) be the sub-path of P(h,x) from w to x , and let

P(p,q) be the sub-path of P(y,g) from P to q . Consider the
following cycle in Tn H

- —_ — —_ .

¥y + yg2 + gs + P(s,z) + zp + P(p,a) + qw + P(w,x) .

Appealing to Lemma 2.1 and the definition of w > We may conclude that

those nodes, if any, of P(h,x) that Precede w can all be inserted

into the path P(p,q) to yield a spanning cycle 03 for Tn - There

are at most two disjoint sub-paths of C3 which start in Q and end

in S and are maximal such that they do not re—enter Q after they

enter S , of which ve is one.



It follows from the irreducibility of Q and S that the other

path (if it exists) must contain more than one edge. Thus ¥y may be
identified as the initial node of the above-mentioned path of length

one from Q to S » and x may be identified as the predecessor of v

—N NG
in C3 - Since xy ¢ C3 it is clear that different edges xy yield

different spanning cycles.

To complete the proof, it will suffice to show that starting

from an arbitrary spanning cycle of one of these types, it is possible

to determine the construction which yielded it.

Let C be a spanning cycle obtained by one of the above
methods. If C contains two disjoint paths which go from a node of Q

to a node of S (whose intermediate nodes may belong to G ) , then C

was clearly obtained by Construction 3. If this is not the case, then

consider the unique maximal sub-path P in C which starts in Q and

ends in S . IXIf P contains only one edge, then since IW[.l 3 it

must be that C was obtained by Construction 3; hence we may suppose

that P has more than one edge. If P contains a node of G(m) » then

C was obtained by Construction 23 if not, then C was obtained by Construc—

tion 1 (and it is very easy to distinguish between the possibilities for

Construction 1). This completes the proof of the theorem.
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