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Abstract

A problem of risk control and dividend optimization for a financial corporation is 

considered in this thesis. More specifically we investigate the case of excess-of-loss 

reinsurance for an insurance company. Under this scheme the insurance company diverts 

part of its premium stream to another company in exchange of an obligation to pick up that 

amount of each claim which exceeds a certain level a. This reduces the risks but it also 

reduces the potential profits. The objective of the corporation is to maximize the expected 

total discounted dividend distribution prior to the bankruptcy time. We consider the cases 

when there is debt liability for the company and when there is no debt liability. In both 

cases, we solve the problems explicitly and construct value function together with optimal 

policy.
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1
Introduction

Actuarial mathematics originated toward the end of the 17th century, when E. Hailey’s 

famous mortality table permitted the mathematical treatment and calculation of annuity 

values for the first time. However rigorous models for insurance in actuarial sciences were 

born only in 1903, when Filip Lundberg defended his Ph.D thesis and showed the collective 

risk model for insurance claim data. At this time, mathematical finance was already 

established through the Ph.D thesis of Bachelier in 1900. However, the two areas began to 

fall apart during the first half of the last century. When the actuarial sciences persevered 

developing by the works of Cramer, Essher and many others, mathematical finance stepped 

slowly. Fortunately, mathematical finance had a marvelous progress through the works of 

Paul Samuelson, Robert Merton, Black and Scholes, ..., etcetera, during the second half of 

the last century.

The classical approach to the assessment of the value of the company is to consider the 

total dividend pay-outs. Recently there have been an upsurge in optimizing dividend in 

the context of optimization of the corporate policies (see Asmussen and Taksar 1997, 

Jeanblanc-Pique and Shiryaev 1995). These models were extended to more complicated 

models in order to incorporate both control of profit/risk related activities and the dividend

1
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pay-outs. This is important when one is modeling a large insurance portfolio of a firm. 

Usually besides the distribution of the part of the reserve as dividends, the management 

of the insurance company faces a problem of how much risk to avoid. This phenomena is 

called reinsurance.

1.1 Reinsurance

Reinsurance means controlling revenues by diverting part of the premium to another 

insurance company, thus reducing its own risk as well as profit. In other words, reinsurance 

is the one o f the major risk-management tools that permits insurance companies to be 

protected. Some of the reasons to employ reinsurance are summarized in the following.

• Against adverse fluctuations.

• The appearance of excessively large claims, or an unusually large number of claims: 

The most dangerous risk comes from the large claims and also a large number of 

claims can lead to a disastrous situation.

• Reinsurance can be considered to increase the capacity of the company by offering 

more services to its clients.

In general, one of the most common reasons why an insurance companies would employ 

reinsurance is to diminish the impact of large claims. There also exists a variety of 

reinsurance forms. One most commonly used type of reinsurance is proportional (or 

quota-share) reinsurance where a certain proportion of the total portfolio is reinsured. 

Proportional reinsurance means that it is possible for the cedent to divert a proportion 1 — a 

of all premiums to another company with the obligation from the latter to pay 1 — a fraction 

of each claim, where a denotes the fraction of the claim covered by the cedent. It was 

introduced by Buhlmann (1970), Gerber (1979) and Sundt (1993). The type of reinsurance 

considered in this thesis is the most common example of a nonproportional reinsurance, 

well known in industry as excess-of-loss reinsurance. In this type of reinsurance the 

reinsurer takes on a share of each loss in excess of a previously agreed threshold, or 

attachment point (retention level a, where a is the dollar amount in excess of which the
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reinsurer picks up the full claim for excess-of-loss reinsurance), however only up to a 

maximum amount (which can be infinite-meaning an unlimited cover). The motivation 

for our focus on the excess-of-loss reinsurance is that not only it is more profitable than 

the proportional reinsurance for an insurance company, but also the actual assessment of a 

given excess coverage is similar to the valuation of an option spread on a common stock.

The first model for the reserve (risk) process of an insurance company is called the Cramer- 

Lundberg model and is described by

where x  is the initial capital, p is the premium rate, Ui is the size of the ith claim. Random 

variables Ui are independently identically distributed and are independent of the Poisson 

process N t with finite first and second moments. This model shows the case of the reserve 

or risk process of the insurance company that takes the full risk. If a risk Ui is too dangerous 

(for instance if Ui has an infinite third moment i.e E ( Uf )  =  oo), the insurer may want to 

transfer part of the risk Ui to another insurer. This risk transfer from a first insurer that 

transfers (part of) his risk is called a cedent. Often the reinsurance company does the same,

i.e. it passes part of its own risk to a third company, and so on. By passing on parts of risks, 

large risks are split into number of smaller portions taken up by different risk carriers. This 

procedure of risk exchange makes large claims less dangerous to the individual insurers, 

while the total risk remains the same. Therefore, when the insurance company considers 

reinsurance, say that the company assumes risks with sizes U-a\  (=  f (Ui ,  a)) where a is 

the retention level, and diverts Ui -  Uja> to another insurance company. Therefore, the 

reserve process of the cedent takes the following form

Nt
x \a'n) = x + p ^ h -  Y ,u \a\  ( 1.2 )

i=1

where =  (1 +  r j )E(u\a)), rj denotes the safety loading. Generally, reinsurance can 

be classified into two main groups. The first group is called proportional reinsurance. In

1.2 Cramer-Lunderberg models

( i . i )
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this case, the cedent assumes aUi (here 0 <  a < 1 ) as risk for a claim with size Ui, and its 

reserve process follows

The second main group of reinsurance is called the non-proportional reinsurance. Here in 

my thesis, i will focus on an important example of this type of reinsurance, called excess- 

of-loss reinsurance. For this example of reinsurance, the cedent assumes a t \Ui  for a claim 

with size Ui, where a is the retention level (a > 0 ).

1.3 Diffusion models

One of the main reasons why diffusion models are needed to model the business activities 

of an insurance company, lies in the fact that when we have big portfolios, the model define 

in (1.2) is not suitable, and a limiting of it is more adequate. In the probability theory 

literature, it is proved that as r) goes to zero, converges to B M , a 2(a))

in the space of D[0, oo) (the space of right continuous functions with left limits endowed 

with the Skorohod topology). The resulting limit process is a Brownian motion (a particular 

example of diffusion process). We refer the reader to Iglehart (1969), Grandell (1977), 

(1978), (1990), Emanuel et al. (1975), Harrison (1977), Asmussen (1984), Schmidli 

(1992), (1993) and Mpller (1994) for more examples of diffusion approximations in risk 

theory. Furthermore, during the recent decade, there has been an upsurge in applying 

diffusion models to insurance mathematics and in particular in (re)-insurance modeling 

setting. Historically, Iglehart (1969) attempted to treat the insurance surplus as a diffusion 

process and the diffusion model was brought in by Whittle (1983) and Dayananda 

(1970), see also Harrison,J.M (1977), Asmussen,S. and Taksar,M.(1997), B.Hojgaard and 

M.Taksar (1998a, 1998b), and the references therein. In these models the liquid assets 

processes of the corporation are driven by a Brownian motion with constant drift and 

diffusion coefficients.

i—1
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1.4 The role of stochastic control

In this subsection, we will present two main arguments in order to justify the usefulness of 

stochastic control in insurance and/or in finance.

The first argument is a historical one and it is incorporated in the speech of K. Borch to the 

Royal Statistical Society of London in 1967. K. Borch pointed out the value of the control 

theory for actuarial science:’T//c theory' o f  control processes seems to he ’’tailor-made” 

for the problems which actuaries have struggled to form ulate for more than a century. It 

may he interesting and useful to meditate a little how the theory would have developed, if  

actuaries and engineers had realized that they were studying the same problems and jo ined  

forces over 50 years ago. A little reflection should teach us that a ’’highly specialized” 

problem may, when given the proper mathematical formulation, be identical to a series o f 

other, seemingly unrelated problems.”

The second argument is explaining how naturally the stochastic control intervenes in our 

analysis. This needs brief description of our model. This model applies to a financial 

corporation whose liquid assets are modeled by a Brownian motion with constant drift and 

diffusion coefficients. The drift is the profit per unit time, while the diffusion term is the 

risk that the company faces. The larger the diffusion coefficient the greater the business 

risk the company takes on. If the company wants to decrease the risk from its business 

activities, it also faces a decrease in its potential profit. This sets a scene for an optimal 

stochastic control where the controls affect not only the drift but also the diffusion part of 

the dynamic of the system.

1.5 Summary of the thesis

In this thesis we study a model of a financial corporation, such as a large insurance 

company, in which both taxes and fixed costs are present. The mathematical setup results in 

a mixed classical-impulse stochastic control problem, in which one maximizes the expected 

total discounted dividend distribution prior to the bankruptcy time. This thesis is organized 

as follows. In the second chapter, we will provide the economy as well as its rigorous 

mathematical formulation, and we will state the objective. In other word, we will set the
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optimal control problem that we tackle in the remaining part of this thesis. In chapter 3, we 

transform the stochastic control problem into a quasi-variational inequality (QVI hereafter) 

and provide some properties of the value function. In Chapter 4 and 5, the constructions 

of the smooth solution to the QVI together with the constructions of the optimal policy in 

the case with no debt liability rate and with debt liability rate are presented, respectively. 

Some numerical examples to chapter 4 and 5 are illustrated in Chapter 6 .
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2
The mathematical and economical model

This chapter describes the economical model that we undertake in this thesis in the first 

stage. Then we state rigorously the mathematical formulation of the model as well as some 

of the mathematical/ statistical tools necessary for the definition and the analysis of the 

model.

2.1 The economy

Our economical model consists of a firm which has control of the dividend payment stream, 

the timing at which these payments are made, and its risk as well as potential profit by 

choosing different business activities among those available to it. Our model is one of 

the extension of the classical Miller-Modigliani theory of firm valuation to the situation 

of controllable business activities in a stochastic environment. The value of the firm is 

associated with the expected present value of the net dividend distributions (under the 

optimal policy). More precisely our model applies to a large corporation, such as an 

insurance company, whose liquid assets in the absence of control fluctuate as a Brownian 

motion with a constant positive drift and a constant diffusion coefficient. The diffusion 

coefficient can be interpreted as risk exposure, while the drift represents potential profit.

7
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The firm is bankrupt at the first time, r ,  at which the cash reserve falls to zero ( r  may be 

infinite), and the firm’s objective is to maximize the expected total discounted dividends 

from the beginning to the bankruptcy time r ,  given an initial reserve x. If we denote this 

maximum by v(x) ,  we want to calculate v(x)  as explicit as we can, as a function of the 

exogenous parameters of the model.

To rigorously formalize the economy, we start with a filtered probability space

and all jT-negligible sets belong to F 0. Suppose that on this filtered space, we can define a 

Brownian motion W  =  ( Wt)t>o> the unique source of randomness that drives our economic 

model. Here below, we recall the definition of the Brownian motion.

Definition 2.1 The process W  =  (W t)o<t<s is called an ( F t )t>o-Brownian Motion, (also 

called a Wiener process), i f W  satisfies the following,

1. 11 't is Tf-measurable, fo r  all t  > 0,

2. For all 0 < s < t, W t — W s is independent o f  F s and it follows a normal distribution 

with mean zero and standard deviation \ / t  — s.

3. For almost all w E Cl,

is a continuous map.

The claims for the insurance company have a random size that is described mathematically 

by nonnegative independently identically distributed random variables (f7j)j>o with the 

cumulative distribution function, F  satisfying

2.2 The mathematical formulation

(H, F , ( F t )t>0, P)  such that

Poo ■= U Ft)  C F ,  F  := a ( n  F t+£) = F t , t > 0,
t > 0 t +  £ > 0

t -> W t (w)
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Let a be a nonnegative number that represents the retention level. That is a level, up to 

which our company assume the risk and any risk beyond that level is assumed by another 

company called the reinsurer. In return this reinsurer takes a part of the premiums. In other 

words, for any claim with size Ui, our company assumes the risk of size

U := m in(a, U f ,  a > 0.

Now consider the following functions of the retention level a >  0

p(a) : = E ( u t ]) =  [ a F(x)dx ,
Jo

a 2(a) :=  E ( { u \ a)f )  =  [  2x F( x ) d x ,
Jo

(2 . 1)

where F( x )  = P(Ui  > x)  =  1 — F(x ) ,  for all x  > 0.

Definition 2.2 1. Any non-negative random variable t  : fl —> [0, oo), T-measurable is

called a random time.

2. Let t  be a random time. Then r  is called a stopping time (ora Markovian time) i f  fo r  

any t > 0,

( r  < t )  E Ft-

These notations allow us to describe the dynamic of the reserve process of our company as 

follows.

n t  n t

X t : = x +  /  {p(a(s))  -  6)ds + /  a(a ( s ) )dWs -  t  > 0. (2.2)
J o  J o  n =i

Dehne the upper bound of the support of F  by

N  :=  inf{a: >  0 : F( x )  = 0}. (2.3)

Then, both functions p(-) and a 2(-) are increasing on [0,7V], while on [TV, oo] they are 

constants equal to — p ( N )  and cr^ =  a 2( N ) respectively.

Here, X t is the cash reserve of the insurance company at time t , while x  is the initial reserve. 

5 represents the debt liability rate, which is a constant payment of the firm’s debt, such as
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the bond liability, mortgage, or loan amortization. The profit rate, p, is the difference 

between the premium rate that the insurance company receives and the expected payments 

on claims per unit of time. The volatility rate (cr) is always greater than zero. The risk 

process, a =  (a3)s>0, is a predictable process such that

as(w ) > 0 ,  Vs >  0, \/w E Q.

rn is the time of the n th intervention, and £n is the amount of the n th dividend payment. 

Note that r 0 =  0, £0 =  0, and

T  =  {r0 =  0 < 7i < r 2 < r 3 < ... < rn < ...} (2.4)

is an increasing sequence of stopping times; £ =  (&)*>! is a sequence of nonnegative 

random variables such that each £„ is T Tn -measurable for all n  >  1. Let

7T := (a, T, 0  =  (as; n ,  r2, ..., r „ , ...; £1? f 2, •••, •••) (2.5)

denotes the control for this model.

Definition 2.3 A triple

7T . (ft, T ,£ )  (®S1 T2, ..., Tn, ..., £i, £2, •••) 1̂7.7 •••)

is called an admissible control or an admissible policy i f  as : a  x [0, oo) i-> [0,1] is an

{ T t}t>o-adapted process, Tit i  =  1, 2 , ... is a stopping time with respect to {J-t}t>o-, 0 <  

T\ < t 2 < r 3 < ... <  Tn < ...a.s., and the random variable i  =  1, 2 , ... is J -Ti measurable 

with 0 < & <  X(rj —). The class o f all admissible controls is denoted by A(x) .

Then the time of bankruptcy of the company can be defined as

(2.6)

if 0 <  t < t  

if t > t .
(2.7)

r  :=  :=  inf{t >  0 : X{ t )  = X n{t) =  0}.

And for Vt > r , we assume that X*( t )  =  X ( t )  =  0. This leads to put

=  \ X +  Jo “  5\d s  +  fo ° { a { s ) ) d W s -  h r n<t}in
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Consider the following function

9{v) ■
—K  +  krj, r j>  0, 
0 , rj =  0 .

(2 .8)

Here K  > 0 represents the cost for each dividend payout, and 1 — k denotes the tax rate 

that the shareholders pay (0 < k < 1). Therefore, for any amount of dividend, 77, paid by 

the company, the shareholder will receive g(rj) only.

The objective is to maximize the value of the firm. This value coincides with the expected 

total discounted dividends received by the shareholders at the optimal policy. Hence, our 

main concern focus on solving the following stochastic control problem.

Problem 2.1 L Find TT* =  , £*) an admissible policy that maximizes the index

function i.e.

J(x;  7T*) =  sup J(x ,  7r)
7TEA(x)

(2.9)

where X is a positive number that represents the discount factor.

2. Compute the value function v defined by

(2 . 10)

v(x)  := sup J ( x , it).
nCA(x)

Proposition 2.2.1 For any admissible 7r 6 A( x ) .  Let X  =  X 77, then we have

(2 . 11)

E  e - x^ X tAT < xeFxt +  |Moo -  S\ t e-Xt, (2 . 12)

where T  is any stopping time.

Proof. If we put
OO

2 = 1

then Y  is an increasing process (since ^  >  0), and

( 2 .1 3 )
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Consider (T„)„>i a sequence of stopping time such that J0iATn o(as)d\Vs is 

martingale. Then, due to Y  > 0, we have

rtf\T„ rt/\T„
XtATn < X +  /  [/x(as) -  5}ds +  / a(as) d Ws.

Jo Jo

Therefore, by taking the expectation, we obtain

E ( X tATnAT) <  a; +  l^oo — 5\E(t  A Tn A T) .

Letting n  goes to infinite, and using Fatou’s lemma, we get

E( Xt AT)  £  X +  l/ioo — 8\t.

Finally, the following inequalities follow

E ( e~x{tAT)X tAT) < e - xtE ( X tAT)

< x e ~ xt +  te~x t \n00 — <5|.

This completes the proof of the Proposition.

12 
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The quasi-variational inequalities

In this chapter, we will illustrate the first main step for solving Problem 2.1. This step 

focus on transforming the stochastic control problem (Problem 2.1) into quasi-variational 

inequalities, or Hamilton-Jacobi-Bellman equations when the optimal return function is 

smooth enough. This step is mainly based on the argument of the dynamic principle. Due 

to the incorporation of costs in our financial model, the resulting Problem 2.1 lies within the 

family of stochastic impulse control problems. This sort of control problems was already 

addressed in the literature, in some sense, due to its importance in Engineering. We can 

cite among the existing literature, the paper of Tang and Yong (1993). Therefore, we will 

present the Bellman’s dynamic principle and the quasi-variational inequalities related to 

Problem 2.1 without proof and refer the readers to this paper. Furthermore, we will state 

and prove the growth property for the value function v(x).

Theorem 3.0.1 Bellman’s Dynamic Principle

The value function v satisfies the follow ing optimality principle: fo r  all x  > 0, and fo r  all 

stopping time T,

v(x)  =  sup E  e XTI [T<T, }v { X x^ ( T ) )  +  / {T<r-}e At,#(&)
ttCA(x )

( 3 .1 )
n < T

13
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Next, we define the following operator for any function f  and any x  > 0,

M(j)(x) :=  sup 4>{x - r j )  + g(r]) , (3.2)
0<ij<x  L

where g is given by (2.8). This operator is also called the impulse obstacles. As a result of 

Theorem (3.0.1), we state

Theorem 3.0.2 The value function v has the following properties:

1. For any x >  0,

v(x)  > Mv ( x ) ,  (3.3)

2. I f  fo r  x  > 0, (3.3) holds with strict inequality, then

v(x)  =  sup E[e~XTv ( X f ) I { T<r,r}].
neA (x )

Theorem 3.0.3 Suppose that the value function v is smooth. Then it satisfies the following  

Hamilton-Jacobi-Bellman equation:

m ax ^ M v ( x )  — v(x) ,  m ax Cav(x)^j =  0,

where M v ( x )  is defined in (3.2), and

Cav(x)  := —^ - v " ( x )  +  (p(a) — S)v' (x) — Xv(x),  a > 0. (3.4)

The proofs of these Theorems follow similar arguments as in Tang and Yong (1993).

Theorem 3.0.4 The value function v is continuous and satisfies

v(x)  < ^  -|- pX) x  > 0. (3.5)
A

Proof. The proof of the continuity of the value function v follows the same arguments as 

in Tang and Yong (1993) (Theorem 3.1). Now, we will prove the growth condition (3.5). 

Consider an admissible control 7r £ A(x) .  Then, recall that

g( f i )  < k b ,

A YTi = YTi -  YTt_ =  e* >  0,

A X Ti =  X Tt -  X Ti_ =  -  A Yt . < 0.
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Then, due to the above (in)equalities, we write

OO
J(x;  7r) =  E x ^   ̂e

i= 1 
oo

<  k E x e~Ar,(A FTt)/{Tt<T,} 
i = 1

(3.6)

k E T e~XsdY*

Thanks to (2.13), we derive

E t e~XsdY< =  £

=  £

e~Xs(n{as) ~ S ) d s +  I e~Xsa ( as) d W s -  I e - XsdX,

pT17
e~Xs ( n ( as) -  <5 -  AXt)  ds +  /  e" AV ( a s)dkFs -  e~ArX r

Since X r =  0, X  > 0, we deduce that

E x

Combining (3.6) and (3.7), we get

e~XsdY* < l//o\  + x .
A

(3.7)

J(x;  7r) <  k -----1- -f kx,
A

and (3.5) follows immediately.

+  x  .
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The case of no debt liability

0 =  m ax ( max
a > 0

This chapter focuses on the case when there is no debt liability rate (i.e. <5=0). Therefore, 

from Chapter 3, we deduce the Hamilton-Jacobi-Bellman equation (hereafter HJB) whose 

solution is a candidate for the control Problem 2.1 as follows.

^cr2(a)V"{x)  +  f i (a)V' (x)  — XV(x)  , M V (x) — V (x)^j , (4.1)

where the operator M  is defined in (3.2), and

V(0)  = 0 . (4.2)

Our primarily concern here is to construct a smooth solution to (4. l)-(4.2). To this end, we 

consider the following threshold

x D :=  inf {a: >  0 : M V  (x) =  V( x ) } .  (4.3)

Then for all x  < x D, M V ( x )  ^  V(x) ,  and the equation (4.1) becomes

0 =  m ax ( - a 2(a)V"(x)  +  f i (a)V' (x)  — XV(x)  ) . (4.4)
a>0 V 2 J

Thus, now we will concentrate on finding a smooth solution to (4.4).

The maximizer a{x)  of (4.4) satisfies

a(a)a l(a)V"(x)  + n ' (a)V' (x)  — 0. (4.5)
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Thanks to

fJo

•a

/Jo

a

2x F ( x ) d x  and fi(a) F(x)dx ,

we have

cr'(a)cr(a) =  a F ( a ) and /u'(a) = F ( a )

and therefore (4.5) can be written as

aF(a)V" (x )  +  F(a) V ' ( x )  =  0. (4.6)

It is obvious that the description of the final solution to (4.6) requires to distinguish cases 

depending on whether the function F  vanishes on [0, oo) or not. This is equivalent to 

whether the upper bound of the claim’s sizes, N  defined in (2.3), is finite or not respectively.

4.1 The case of unbounded claim’s size.

This Subsection deals with the case of N  =  oo. In this case, we have F(a)  > 0, for every 

a < +oo. Therefore the solution to (4.6), denoted by a ( x ), is given by

V ”(x) ±  0 , 
V"{x)  =  0.

(4.7)

On the set { x  : x  < x D, a(x) < oo}, (4.4) becomes

0 =  - a 2 (a(x) )V" ( x ) +  /j ,(a(x))V'  (x) — XV (x). (4.8)

According to (4.7), we have V"(x)  =  — and by substituting this into (4.8), we get

\ ° 2H X)) +  V(a (x ))v '(x ) ~  x v (x ) 0 .

This can be written as

(4.9)

where
a > 0 , 
a =  0 .

(4.10)
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Notice that h0 is a continuous, differentiable, and strictly increasing function on (0,oo). 

Indeed,
/ 0-2 (°0 h0{a) :=  > 0 , a > 0 .

Hence h 0 1 exists and

1 : [0, / i0 ( o o ) )  [0, o o ) ,

where h 0(o o )  =  fJ,(oo) = E ( U ) < + o o .  Then (4.9) implies,

a(x)  =  1 j  , 0 < x  < x D. (4.11)

Since h o(0) = 0 and H(0) =  0, then a(0) =  ^ ^ (O ) =  0 and a(x)  is a differentiable 

function. Therefore, by differentiating h0(a(x) )V' (x)  =  XV(x) ,  we get

h'Q(a(x))a'  ( x )V'  (x) +  h0(a(x) )V" (x) =  XV'(x) .

Again, by substituting V"(x)  =  into this equation, we derive

h'0(a(x))a ( x )V' ( x )  + h0(a(x ) )— ------ =  XV'(x) .

This leads to
u1 ( ( \\  if \ h0(a(x))h0{a(x))a (x) = -----  f A,

a{x)

or equivalently
, 2a(x)h0(a(x)) + 2Xa2(x)

a (x) =      > 0 .
a 2(a(x))

Thus, a(x)  is an increasing function and satisfies

a 2(a(x))a' (x)
= 1 .

2 a(x )h0(a(x))  +  2Xa2(x)

By integrating both sides in the equation above, we get

f x a 2(a(t))a'(t)
/  — m —/ / u  , o/ \ dt  — x,  x  > 0 .J0 2a( t )h0(a(t))  +  2Xa2(t )

By changing the variable (i.e. using s = a(t)),  we get

g0( a ( x ) ) : = x ,  x > 0 ,  (4.12)

where
/ \ f a (j2(s )

9 o(a):= ds , a > 0. (4.13)
Jo 2sho{s)  +  2As
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Lemma 4.1.1 The function a(x) defined by (4.7) satisfies

a ( l ) f 9 o ‘ W ,  0 <  * < * « , ,
{ oo, Xoo <  X  <  X D ,

where

Xoo :=  g0{oo) < +oo. (4.15)

Proof. The proof of the lemma is reduced to show that gQl exists and gfioo)  <  +oo. g0 

is a continuously differentiable and strictly increasing function on (0, oo). Therefore, g f 1 

exists.
f ° °  a 2 (s )

!'“(00) =  / 0 2sho(s) + 2Xs*ds
-1 _2

J o 2sho(s)  +  2As2 J 1 2sh(j(s) +  2As2

In one hand, it is easy to prove that

a 2(s) F{  0 )
lim — -——------ —  =  = ------------  < Too,
s—> o 2sho(s)  +  2As -^(0) T  2A

and then
a 2(.)

l0 2sh0(s) T  2As2 

On the other hand, we have

ds  < +oo.

a 2( s ) a 2(oc)  f ° °  1
Ji  2sho(s) T  2 A s 2 — 2A J 1 s2

<t 2(co)
“  2A <  + ° ° '

Thus, po(°°) <  T o o .  Then for 0 <  x  < x =  g0(o o ) ,  the equation (4.12) implies 

a(x) = gg1(x).  Since a(x)  is continuous and increasing, then equation (4.12) allows us to 

conclude that a(x) =  o o ,  for x  > x ^ .  This completes the proof o f the lemma. ■

Next, on (0, x ^ )  we have
- V " { x )  1

V'(x) g , \ Xy  
By integrating both sides of this equation, we get

r x°° v " ( t ) , r -  - d t
/ dt — / — 7—- , 0 <  x  < x cJx V'(t) Jx g0 \ t y
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which is equivalent to

P 'Eqo
A lV  A -  In V ' ( t ) = I

% (t)

r x°° —dt
lnV r'(tc00) — In V' (x)  =  / _1 0 <  x  <  x c

This implies
dt

V' (x)  =  ^'(xoo) exp /  _ , 0 < x < x c
\ J x  9 o w  /

Corollary 4.1.1 Using the above notation, we have

R '(0+)  =  oo.

Proof. Recall that
r x°° dt 

L  g ^ i t )

For any 0 < x  <  x ^ ,  we have g$ l {x) > 0, and

dt _  r°° a 2(s)
J x  g0 \ t ) J g- i (x) 2s2h 0(s)  +  2As3

a 2(oo) 1 ct2 ( o o )

“  V w 7  s =  4A( ^ ( * ) ) 2 <  + 0 ° ‘

C '(0+ ) =  R '(x 00)exp  J

Then due to

Urn ° y \ , 2 = - rm  > 0 .
s—> o 2s/io(s) +  2As F (0) +  2A

we have for x > 0 (very close to zero),

dt F ( 0) f x dt
w  1 — = +oo.

'o 9o X(0 2 \  + F ( 0 ) J o  ^

Therefore,

R '(0+ ) =  +oo.

As a result, using V(0) =  0, and integrating (4.16), we get

f x (  f x<x dt \
V{x )  = V ' { x ao) \  exp /  — —-  ) dy ,  0 <  x  < x c

Jo \Jy g0 \t)J
Due to (4.14), the equation (4.4) for x ^  < x  < x D becomes

0 =  ^<t2 ooV " ( x ) +  h ooV ' ( x ) - \ V ( x ).
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Therefore the value function takes the following form:

V(x) = +  C2er~{x- x~ \  x ^ f x K  xD, (4. 19)

where
=  - f e p  ±  y/<£, +  ^   ̂ (4 20 |

cr?OO

Lemma 4.1.2 For x > xd,  we have

V ( x )  =  M V ( x )  = V(x )  +  k(x  — x) — K,  (4.21)

where x  < x d  is a root o f

V' (x)  =  k. (4.22)

Proof. First of all, we assume the following

M V ( x )  = V(x) ,  x  > x D. (4.23)

Recall that M V ( x )  =  sup ( V( x  -  f )  +  hr) -  K) .  Then we can claim that for any x  >  0,
0 < 7 J < X

there exists 0 <  rj(x) < x,  such that

M V ( x )  = V ( x  — rj(x)) +  krj(x) — K  = V(x ) .  (4.24)

To prove this claim, we proceed as follows. For all n  >  1, there exists 0 < r\n < x,  such

that

lim [V(x — rjn) + ki]n — K] = M V ( x ) .
n —rOO

Since the sequence (?7„)n>i is bounded, then there exists a subsequence of it, (rj^n))n>o, 

that converges to a number r](x) satisfying 0 <  rj(x) <  x  and

M V (x ) =  lim ( v ( x  — rj^n)) +  kr]v in) -  K )
71-400 V /

=  V { x  — rj(x)) +  krj(x) — K  — V(x) .

Then rj{x) can not be zero due to V ( x )  > V(x )  — K.  Furthermore, rj{x) satisfies

V' {x  -  r](x)) = k.  (4.25)
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Then by differentiating (4.24) and using the above equation, we deduce that

V' (x)  — k, x  >  x d - (4.26)

Next consider

x  :=  inf{x >  0 : V' (x)  = k}.  (4.27)

Thus, it is obvious that

Xd > x d ~  v {x d ) >  x -

Now, we will prove that V' (x)  -  k vanishes at most one time on (0, x D)-

Denote f ( x )  =  V'{x)  — k on (0 ,£ d ), and suppose that there exist x\  and x 2 such that

x  < x 1 < x 2 < x D, and

f ( x  i) =  f ( x 2) =  f ( x D) =  0 .

Then, there exist X\ < x,\ <  x 2 < x 2 < xd  such that

f \ x  i) =  f ' ( x 2) = 0 .

This leads to the existence of x 1 < x < x 2 such that

f " ( x )  =  0 .

On the other hand,

/ »  =  v " ' ( x )  =  {  r ( l “ ) ( < ^ )2 + exp U * ~  ^ % )  > °-
[ C i r \ e r+(x +  C 2r z_er- {'x Xo°) >  0,

This is a contradiction. Hence, we cannot have another point on (0, x D) at which /  vanishes 

other than x.  As a consequence we see that solution to V' (x )  =  k  exists and is unique on 

(0, x d ), and is given by that x D — v ( x d)  =  x.  Then, due to

V  (x d ) = V ( x )  +  k ( x D — x) — K,

and (4.26), we get

V( x )  =  V( x )  +  k ( x  — x) — K,  \ l x > x D. (4.28)

if 0 <  x  < Xqo, 

if Xqo < x < xd ■
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To achieve the proof of this lemma, we need to prove the assumption (4.23). In fact,

suppose that there exists xy >  %d such that V(xy)  ^  M V (ar), and consider

x  =  inf{x >  x D, V( x )  7̂  M V ( x ) } ,

x  =  sup{x >  x y , V ( x )  /  M V ( x ) } .

Then on the set (x, x),  V( x )  takes the form of

V( x )  = a i er+ ^ - ^  + a 2er~(x~ - \  x < x < x .

Due to V' (x)  =  k, V " ( x —) =  0 (since on (xD, x ) , V ( x )  = M V ( x )  that leads to 

V' ( x )  = k), and V  is twice continuously differentiable on (xDl oo), we get

—r ^ k  r+k
a i =  — t----------- r ) 012

r+(r+ — r_ ) r - { r+ ~~ r - )

This leads to conclude that V"  >  0 on ( x , x )  in one hand. On the other hand, V' (x )  = 

k =  V' (x)  implies that V"  vanishes on (x , x ) .  This is a contradiction. Therefore, the 

assumption (4.23) holds. This completes the proof of the lemma. ■

By combining (4.17), (4.19) and (4.21) together, we write

f C  f 0x exp ( j j 00 dy, 0 < x  < Xoo,

v (x ) = \  CyeT+̂ x- x^  + C 2er- {-x~x°»\ Xoo< x < x D,
[ V ( x )  + k ( x  — x) — K,  x  > x d -

where C , C i , C 2 , x  and x d  are parameters to be calculated. The smooth fit of V 1 and V "  at 

the point x ^  implies

V ' (Xoo~)  = V ' ( Xoo) ^ C  = C ir+ +  c 2r_ ,

V " ( Xoo- )  = V" { Xco) => 0 =  Cyr2+ + c 2r 2_.

By solving these two equations, we get

- C r _
C ir +

r + — r_ ’

r_L — r_
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Therefore,

0 <  x  < Xqo,

1

c /r « P(r -5 % K
( ~ !  (  Lz p r + ( x ~ xoo) _L  ----- pT— { x ~ ^oo)  ̂ r p  x  <T Tn (4.29)
°  ^ r+(r+- r - ) e ^ r_ ( r+ - r_ )e J ’ X°° -  A ^  Aj)’
F(T ) +  k(x  — x) — K,  x  > x d -

V ( x )  =

The points x  and xd are roots of

For x  > Xoo,

 rr* nr* <y> iri
H ' M  = + — —  = 0 .r + — r_  r + — r_

tf '(x )  =  r ~ r+ er+(x~a:°°) +  r+rZ er-(x-x~)  >  0 ,
r + — r_ r + — r_

H"(x)  = ~ r+V~ cr+(x- x°o) _|_ T+r -  cr-(x-xx )' 
r+ — r_  r + — r_

- r + r _
(r4_er+^ _x“ -) — r _ er-(x~x°°)  ̂ >  o.

F '(x )  =  k. (4.30)

To solve this equation, we write

V' (x)  = { t: H ( x ) ’ X t XLh (4.31)1 fb y X  X  J~) ^

where

H[x)  := /  “ p ( / r  ; i% )  • o < 1 <
I ~ r- ^r+(a;— 3?oo) , r + Qr - ( x - x oo) x  >  X
L r+—r_ r_j-—r_ ’ — 00 ‘

For 0 <  x  < Xoo, we have

1 (  r ° °  dt \  n
H { x ) = - ^ w r p { l  9f w ) <0■

^ w = ( - ^ ) ' a w + ( - ^ ) f w ’
= ( - - L - \  H ( x ) +  ( — 2 _ )  H ( x )  > 0.

V 5o { x ) J  \  9o (x ) /
For x — Xrn,

r+ —

Thus, it is easy to see that H  is a continuously differentiable convex function, and the 

unique root of

H' (x )  =  0
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is x =  Xoo with H ( x 00) =  1. Then H  is strictly decreasing on (0, and strictly increasing 

on [xoo, oo). Next, put

H  :=  H  |(o,Xoo] 3-tid H  . H  jfx^.oo) •

Then the two functions i f -1  and H  1 exist and both are defined on [1, oo). Notice that the 

equation (4.30) is equivalent to

H ( x )  =  4

Then the existence of x c  and satisfying C H ( x c ) = C H ( x p )  =  k is guaranteed by the 

condition that ~  should belong to the range of H  and H,  which is equivalent to ^  > 1. 

Hence for 0 <  C  < k,  we derive

x c  =  j t ' ( T ) .

Clearly, x c  is an increasing function of C,  while x% is a decreasing function of C.  

Therefore, to completely describe V,  we need to calculate the only remaining parameter, 

C.  To this end, we use the smooth fit of V  at the point x n ,  that is the following equation.

V { x D) = V( x )  + k ( x D - x ) - K .  (4.33)

Thanks to (4.31), this is equivalent to

1(C) = K,

where

1(C) := /  ° ( k  -  CH ( x ) )d x ,  0 < C  < k.
JxC

1(C)  is a continuous and decreasing function of C  because both the integrand and the 

interval are continuous and decreasing with respect to C.  As C  approaches to 0 , 1(C)  is 

maximized and becomes an infinite number.

Obviously, if C  — k then x c  =  x% = x ^ .  This corresponds to the case when K  — 0.

Since lim x c  = H ~ 1(oo) =  0 and lim x% =  H  1(oo) =  oo, we get
C-> 0 c^o

poo

lim 1(C) = /  kdx  =  oo.
Jo
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Therefore, there exists C  such that 0 <  C  < k and

~  r xD ~

1(C) = ( k -  C H ( x ) ) d x  =  K,  (4.34)
Jxs

where K  > 0.

Therefore, this analysis leads to state the following.

Theorem 4.1.1 The function

{ C  Jo eXP (fy°°  ^ % j) dV’ 0 <  £ <  Xoo,

V ( X ) = 1  C  ( r+(; l l r_ f r+iX~Xa0) +  r-(rr+- r - ) e,'~(a!~!l!” )) > Xoo < X < XD, (4-35)
[ V( x )  +  k(x  — x) — K,  x  > x d ,

with C  = C , f  = Td = H ~ 1 ( j )  , x D = x% =  f T 1 ( j ) ,

is a smooth solution (continuously differentiable on (0 , oo) and twice differentiable on 

(0,££>) U ( x q , x oo) to (4.1)-(4.2), satisfying a (3.5) type growth condition.

proof. In the following subsection, We will explain how this theorem can be seen as a 

particular case of Theorem 4.2.1. Therefore, the proof of the current theorem will follow 

immediately from that of Theorem 4.2.1. ■

4.2 The case of bounded claim’s size.

In this subsection, we consider the case where N ,  defined in (2.3), is finite. Therefore, the

maximizer aN (x) of (4.4), which is the root of (4.6), is given by a version of Lemma 4.1.1

as follows.

Lem m a 4.2.1 The function a ^ ( x )  is given by

n _  /  9 f \ x ) ,  0 <  x  < x N ,
“ k ( i )  -  JV, x > x N , (4",6)

where go is defined in (4.13) and x n  is given by

p N

l0 2As2 +  2 sho(s)
f N  °'2(s)x N : = g 0( N ) =  ’ , t y ds.  (4.37)
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Similarly as in Subsection 4.1, we will start describing the function V  solution to (47 

(4.2) that we will denote in this subsection by VN (to show the dependence in N).  

Thanks to (4.36) and (4.7), we write

_  i

v 'n ( x )

By integrating both sides of this equation, we get

, 0 <  x < x N ,

XN VZ(t)  , f XN - dt
dt = I _1 , 0 <  x < x N ,

Jx Jx 9o (t)

which is equivalent to

r*N _ cit
In V h ( x N ) -  I nV^ ( x )  =  /  0 < x < x N .

9o {t)' X

Thus, due to V/v(0) =  0, we obtain

r  (  r XN dt \
VN (x) -  V'n ( x n ) /  exp /  . ) dy,  0 <  x < x N. (4.38)

JO \ J y  90 i t ) J

On the set [xN , x D), (4.4) is equivalent to

0 -  ^ a 2( N ) V ”{x) +  y ( N ) V ^ x )  -  XVN (x),  (4.39)

whose solution takes the following form

VN {x) = C ier^ x- x^  +  C2er- {X~XN\  x N < x <  x D, (4.40)

where r± are given in (4.20). Next, due to Lemma 4.1.2, we have

VN (x) =  VN (x)  +  k(x  — x) — K,  x  > x D. (4.41)

Then, according to the equations (4.38), (4.40) and (4.41), we conclude that

(  C fo exP ( f pXN ^ % )  dV> 0 < x  < x N}
v n { x )  =  < c l er+ ^ - XN) +  C 2er- {-x ~XN\  x N < x  < x D , ( 4 A 2 >

[ VN (x) +  k(x  — x) — K,  x  > x D,

where C  =  V ^ ( x N ) and C x and C2, will be determined in term of C using the smooth fit

of the functions VJj and VJ) at the point x N . In fact, we have

Vn (x n ~)  = VN (xpf) =r- C  =  C \r+ +  C 2r_,

VZ(xN~) = V"(xK) => C — ^ / —- =  C \rl  +  C2r i  => ™  +  C 2r t .  <4'43)
9o {xN ) N
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By solving the above two obtained equations, we get

-(7 (1  +  A+_)
C i r + 

C2r

+ N ( r + — r_) 
C ( l  + JV r+) 
N ( r + — r_ )

Thus,

V'N ( x ) =  < ( 7  i - ( 1 + ^ - )  c r + ( x - a ) v )  l + i V r +  c r ~ ( x - x N ]
1 N( r + — r _ )  JV(r_)-—r _ )

or equivalently

($
*,

VN (X)

0 < £ <  Xjv, 

XN < X < XD , 

x > Xd ,

(4.44)

C H n (x ), x < x D, 
k , a; >  x d -

Here

H n {x ) : =
exp Ziv dt

*  >

0 <  x <  xjy,
- ( l + j V r _ )  r + f i - g j y )  I ( 1 + A f r + ) r - { x - x N ) r  y  r  
N ( r + - r - ) C ^  iV( r+ - r _ ) C ’ X — X A r ‘

(4.45)

(4.46)

We know that H'N {xN ) =  — -A <  0, which means that i7)v keeps decreasing from 0 to 

Next, for a: >  a:at, we have

H > (x ) = -~r +(1 + N r - ) cr+(*-xN) +  r - ( l  + Nr+)  (X_XN)
N N ( r + — r_ ) N ( r + — r_ )

and

lim H'N ( x ) =
+oo, if 1 +  N r _  < 0, 
— oo, if 1 +  N r _  > 0.

(4.47)

Notice that if 1 + N r _ then there is no solution for H'N (x) =  0.

Since H'n ( x n )  =  — < 0 and lim H'N (x) =  +oo for

A > (
a ix

'2 N 2 N ' ’

then H'n (x)  =  0 has a unique root a; which is given by

1 . r r _ ( l  +  N r +)

(4.48)

x  :=  x N + In
r  — r _ . r + ( l  +  N r - ) -

> x N . (4 .4 9 )

Then, H N is strictly decreasing on (0, x] and strictly increasing on [x, oo). Put

H n  :=  H tv|(o,x]j H n  . H n  | [ x , o o
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Recall that

H n (oo) =  oo =  H n (0), H n (x ) = m i n H N (x),  H N (xN ) =  1.
s>0

Therefore, it is clear that H Nl and H ^  exist and both are defined on [HN (x),  oo), and

x  ~  H n  \ ■> x d H N ( q  ) • (4.50)

These two levels exist if and only if £  belongs to the range of both H N and H N , which is 

equivalent to the condition

^ > H n ( x ) .  (4.51)

Then for any 0 <  C  < y- x c  and x ^  exist and we can define

r xD
I N (C)  :=  /  °  (k — C H N (x))dx.

The function I n ( C )  is continuous and decreasing (xc  is an increasing function of C,  and 

x% is a decreasing function of C).  As C  approaches to 0, I n ( C )  is maximized and takes 

an infinite number. Obviously, if C  = , then X  — X  j-) — x.  This corresponds to the

case when K  =  0. Since lim x c = H^f1(oo) =  0 and lim x% =  H  (oo) =  oo, we get

lim I n (C) =  / kdx  =  oo.J o

Therefore, there exists C ( N )  such that 0 <  C(JV) <  ^  and

I,v(C ) = K ,  (4.52)

where K  > 0. Finally, the possible smooth candidate for the HJB equation (4. l)-(4.2) in 

this subsection is given by

[ c  fo exp (X T  r h y )  dy ■ o < x  < x K ,

A w  =  |  c  ( A T T y - 1* - ^ 1 +  j A E f c i 6" 1' - " 1)  • z« ^ x <

y VN (x) +  k(x  — x) -  K ,  x  > x D,

with C =  C(N) , x  = i e<N> = ( ^ )  ,x D = xdDtN) = H Nl

( 4 .5 3 )
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3 0

Notice that this case of bounded claim ’s sizes cover the previous case of iV =  oo. Indeed, 

for N  defined in (2.3), we have 0 <  N  <  oo, and by adapting the notations of this current 

section, we can prove that

• x N defined in (4.37) converges to x ^  defined in (4.15), as N  becomes infinite. Also 

notice that x  defined in (4.49) converges to /coincides with x <*, when N  becomes 

infinite. Indeed, from the expression (4.49), we can easily prove that the positive 

quantity x — x N goes to zero as N  becomes infinite.

• C ( N )  in (4.52) converges to /coincides with C  defined in (4.34) as N  becomes 

infinite.

•  The function VN (x) defined in (4.53) converges to /coincides with V( x )  defined in 

(4.35), where N  becomes infinite.

•  The condition (4.48) becomes redundant when N  is finite.

Now we are in stage to state the first main result of this chapter.

T heorem  4.2.1 Suppose that the condition (4.48) holds. Then the function Vn  defined 

in (4.53), is continuously differentiable on (0, oo), twice continuously differentiable on 

(0, x d ) U (x d , oo), and is a smooth solution to the HJB equation (4.1) - (4.2). 

Furthermore, Vn  satisfies the growth condition in the following sense.

V n ( x )  < VN (x) + kx,  Vx >  0. (4.54)

Proof. It is clear that the function VN , defined in (4.53), is continuously differentiable on 

(0, oo) and twice continuously differentiable on (0, x D) U (xD, oo) by construction. Next, 

notice that for 0 <  x  < x, Vfi(x)  >  k, since Vfi is decreasing on (0, x)  (x > x N > x),  

and Vfi(x) = k. Then for any 0 < x  < x,  the function p e  (0, x] —>■ VN (x -  rf) +  kp -  K  

is decreasing (since k -  Vf i(x -  p) < 0). Therefore for all 0 <  x  < x,

M V n {x ) =  sup [VN (x — p) + kp — K]
0<r/<x

=  lim[VAr(x — p) +  kp — K]
jj^O

= VN (x) -  K  < VN (x).
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we deduce the following

• sup (Vn (x — 7]) + kr] — K )  = V]\(x) +  k{x — x)  — K,  x  > x.
X  —  X < 7 ] < X

•  sup (VN (x — rf) +  kr) — K )  =  VN (x) + k(x  — x) — K.
0 < 7 } < X  —  X

Thus, for all X > X,

M V n (x ) =  sup (VN (x — rf) +  kr] — K )
0 < r i < x

=  Vn {x ) +  k(x  — x)  — K,  Vx > x.

In particular for x > x d ,

M V n (x ) = Vn (x ) +  k (x  — x) — K  =  VN (x).

For x  < x  < x d , we have

M V n {x ) =  VN {x) +  k (x  -  x) -  K

=  VN (x) +  k ( x D — x) — K  — k ( x D — x)

= VN (xD) -  k ( x D -  x) < VN {x).

The last inequality comes from the fact that V^(x )  < k for x < x < x D, and by integration 

over [x, x d ), the inequality under consideration follows. Therefore, we get

•  For 0 < x < x d , M V n (x ) <  VN (x).

•  For a; > x D , M V n (x ) = V n ( x ) .

Furthermore, by construction, VN is a solution to (4.8) on (0, x N), and solution to (4.39) on

( xN , x D). Therefore, V  is a solution to (4.4) on ( 0 , x D), and V(0) =  0. Next, notice that

for all a > 0 , and for all x > x D,

CaVN (x) = ^ K ( x )  +  0u ( a )  -  S)V^(x)  -  XVN (x)

= k(n(a) — S) — XVn (x )

< k(n(a)  -  S) -  XVN (xD).
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3 2

(Since Vfi > 0, then Vn  is increasing. Therefore, VN (x) > VN (xD).) Notice that for any 

x  < x D, CaVN ( x ) =  0. Then,

0 =  CaVN{xD- )  = ^~y ^ V n (x d - )  +  (fj,{a) -  5)k -  XVN (xD)

> (p(a)  — 5)k — XVn (x d )-

Since and Vat are continuous, the last inequality follows from the fact that Vf i (xD~)  > 

0. To prove this, we recall that there exists x  < x D such that

and VH, is increasing on (0 ,x D). Therefore, V ^ ( x D — ) > 0. In conclusion, for all a > 0, 

and for all a; >  x&, we drive

Next in the following subsection, we will describe the optimal policies and prove that the

4.3 Optimal Policies

To state the main result of this subsection, we recall that the feedback function aN ( x ) is 

given by (4.36), and the function Vn  is described by (4.53).

T heorem  4.3.1 Suppose that C  is a root o f  (4.52) and x(C)  and x d (C)  are given by (4.50). 

Let a(x)  be given by (4.36). Then the following control

V f ( x )  =  0,

CaVN (x ) <  0.

This completes the proof of the theorem.

function Vn  defined in (4.53) coincides with the the value function v defined in (2.11).

* . £* r* £*
' n 5 ? SI ? S2 5 • ** 5 Sn? ** •

defined by

u*t = a N ( Xf ) ,  t >  0,

t * : = M { t > 0  : X*( t )  = x D(C)}

£ : = x d ( C ) - x (C), (4.57)

(4.55)

(4.56)
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(4.58)

(4.59)

x ;  =  * ; +

and fo r  every’ n >  2:

r* := inf{£ >  r„_! : A'e(f) =  xD{C)},

C  ~  M C )  -  S(C),

where X * is the solution to the stochastic differential equation
pt 00

l i(aN ( X: ) )  -  5 ds + /  a(aN{ X ; ) ) d W , - ( x D( C ) - x ( C ) ) J ^ I {T. <t}
J J 0 n=l

(4.60)

is optimal and the function Vn , defined by (4.53), coincides with the value function. That 

is,

Vn (x ) = v (x) =  J (x ; 7T*), Vx > 0. (4.61)

Proof. For any admissible policy tc e  A( x ) ,  we can write

e-x^ V N(XtAT) < e-xtVN(x) + ke- x^ X tAr.

Combining this inequality together with (2.12), we conclude that E  e“ Â Ar)VN ( X tAT) 

goes to zero when t becomes infinite. Next, applying Ito formula to e_A(fAr)VN ( X tAT), we 

derive

/
t f \ T  -I

[ - a ( a s) V f ( X s) +  (p ( a s) -  5)Vf i (Xs_) -  XVN ( X S)

p t A r  p t A r

+ / e~Xsa(as) V ^ X s)dWs -  / e- XsVfi(Xs_)dYs 
Jo Jo

+ e~Xs\ v N ( X s) - V N ( X s_ ) - V f i ( X s„ ) ( A X s)
0 < s < t A r

*t A r o t A r

-~VN { x ) +  /  e - XsCa{s)VN ( X s) d s +  /  e - Xsa ( as) % { X s) d W s
I o

J ]  e~As VN ( X S) -  VN ( X S_)+  > e
0 < s < t A r

»t A r

0 < s < £ A r

(4.62)

Since f Q T a ( as) V f ( X s) dWs is a local martingale, then its expected value does not exceed 

zero, and we deduce that

E e~x^ V N ( X tAT)] < V n (x ) + e [ e “ A* (vN(Xs) -  VN ( X Ŝ
0 < s < H t

(4.63)
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Remark that 

£  <
-As VN( X S) -  Fiv(Xs_)j =  X > ~ Ar' \Vn ( X Ti) -  VN ( X Tt_ ) < 1 A t }  •

0 < s < J A t  8 =  1

Also, notice that A X Ti = — A YT. < 0, and due to Theorem 4.2.1, Vn  satisfies 

VN (y) > VN (y -  vj) +  kr] -  K ,  Vy >  0 , VO >  r/ <  y.

Then by taking y  =  X T._ and 0 < 17 — — A X Ti =  X Ti_ — X Ti <  y, we get

V5v(XTj_) > VN { X n ) +  fc(A FrJ  -  K,

or equivalently

VN ( X Ti) - V N ( X T̂ ) < ~ g ( A ) .

Therefore, we conclude that

E < VN (x) -  E \ Y ^ e - Xng m {Ti<tAT}
8 = 1

Thanks to (4.54) and (2.12), the right-hand side term in the above inequality converges to 

zero when t  goes to infinite. Then, due to Fatou’s lemma, we get

0 < VN (x) — J(x;  7r).

Hence, we obtain

V( x )  <  VN (x).

In order to complete the proof of the theorem, it’s enough to prove that

V n ( x )  =  J ( X ]  7T*).

Next, using similar arguments as in (4.62), we derive for any stopping time T,

p r *  A T

e ^ A ^ T)vN (x*rtAT) = V N ( x ) +  /  e~XsCa^ x ^ V N ( X : ) ds

(4.64)

“ T *  AT

e - ^ a ( a N {X*s ) ) V ^ { X ; ) d W
J o
OO

(4.65)

+  -  v „ ( X ' TI_)
8 =  0

{ Ti <T* AT} •
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Due to the construction of X * , n*, and thanks to the previous analysis, we claim that

CaN{x,)VN (X*)  =  0

A X *, =  —( x D -  x) ,  X ** =  x ,  X*, _  — x D
i i i

v N ( x ; ._ )  -  v N ( x ; . )  = k ( x D - x ) - k  = g ( g )  

o <  x *  < x D, x*T. = o.

Consider (T„)„ a sequence of stopping times such that JQJ r"Ate - Av ( a w ( x ; ) ) t ^ ( x ; ) d f y s 

is a true martingale whose expectation vanishes. Then by putting T  — Tn in (4.65), and 

taking expectation , we derive

OO

4 e~>(r‘AT" ) C W v , r j )  =  -  « ( E e" Ar‘9 ( f f ) r {,;<r-A3i.}).
i=l

The right-hand side term in the above equality converges to zero when n goes to infinity, 

and then (4.64) follows. This completes the proof of the theorem. ■
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Effect of nonzero debt liability rate

This chapter is concerned with the impact of non-zero debt liability rate (i.e. 8 > 0) on the 

optimal policies and the value function. First, we will start constructing a candidate for the 

value function. Hence, here, we will consider

0 =  m ax (m a x  [- a 2(a)V"(x)  +  Qu{a) -  8)V' (x)  -  XV  (x)} , M V { x )  -  V ( x ) ) , (5.1)
V a>0 L2 j )

where M V ( x )  is defined in (3.2) and

E (0) =  0. (5.2)

Then for all x  < x d , where x D is defined in (4.3), we have

M V ( x )  ±  V(x ) ,

and the equation (5.1) becomes

0 =  m ax ( -cr2(a)V"(x)  +  ( ^{cl) — 8)V' (x)  — XV(x)  ] . (5.3)
a>0 \ 2 J

Thus, now we will concentrate on finding a smooth solution to the resulting equation (5.3). 

The maximizer ag(x) of (5.3) is a root of (4.5) which is equivalent to (4.6). Similarly as in 

Chapter 4, in order to completely solve (4.6), we need to distinguish whether N  is finite or 

not.

36
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5.1 The case of unbounded claim’s size.

In this case, N  =  oo, and for any a < + 0 0 , F(a) > 0. Therefore, the solution to (4.5) in 

this subsection is denoted by ag(x) and is given by the expression (4.7).

On the set {x  : x < x D, a(x) < 0 0 }, (5.3) can be written as follows.

0 =  ^ a 2(as(x))V"(x)  +  (n(as{x)) -  5)V '(x)  -  XV(x) .  (5.4)

By substituting (4.7) into (5.4), we get

7}°'2(as(x )) t - t " )  +  ( K as(x)) ~  S)V' (x)  -  XV(x )  =  0,
2 V as(x ) )

or equivalently
, , , , ,  XV (x)
hs(as (x))  =  y , ^ x y  (5-5)

where
1 \ f ■- -- +  /i(a) -  5, for a > 0

>(a) 2“ *______ nhs(a ) : = ■ ( ? “ ’ f n (5-6)( —0, for a = 0 .

Notice hs converges pointwise to ho, defined in (4.10), when S goes to zero. Furthermore, 

hs is a continuously differentiable function, and strictly increasing on (0 ,0 0 ). Indeed,

. < j 2 ( a )
:=  2q2 > 0 ,  a > 0.

Hence h j 1 exists and is defined by

K 1 '■ /i (°°) -<*)->• [0, 0 0 ),

and hg(0 0 ) =  /i(oo) — 5 < + 0 0 . Thus,

as(x) = h j 1 i 0 < x < x D. (5.7)

Since hg(0) =  — S <  0, then aa(0) =  h j 1^ )  >  0- Furthermore, due to (5.7), ag(x) is a 

continuously differentiable function. Hence, by differentiating hs(as(x ))V ' (x )  =  XV(x) ,  

we derive

tis (a5(x))d&(x)V '  (x) +  hs (as (x) )V"  (x) = XV'(x) .

Again, by substituting (4.7) into this equation, we derive

h's (as (x))a'5(x )V ' (x )  +  hs(as(x)) = \ V \ x ) .
as (x)
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This leads to

or equivalently,

Thus, as(x)  satisfies

t / w > / \ h$(as(x))hsM x ) ) a s {x) =  +  A,
™S /

2as(x )hs (as(x))  +  2Xaj(x)
as ix ) = --------------2f i w------------a 2(as{x))

a 2(as{x))a's (x)
=  1,2as(x)hs(as (x)) T  2A a2(x) 

and due to (5.7) and the increase of h ^ 1, we deduce that as(x) > as(0) =  h j 1(0) >  0. 

This leads to deduce that 2a$(x)h$(as(x))  T 2Xa^(x) > 0, and hence as(x), x  > 0 is an 

increasing function. By integrating both sides in the above equation, we get

f x a 2(as(t))a's (t)
/  7;— 7 \ i  1— 7 T \ ---------9 /  \ =  X 1 0 < x  <  XD-J o 2ad(t)hs(as (t)) + 2Xaj(t)

By changing the variables (precisely using s =  as(t)),  we get

gs(as {x)) =  x, 0 <  x  < x D, (5.8)

where

9s(a) a ^  ^ 1(°)> (5-9)Jhj'io) Zshsis)  T  2As

and then we state the following.

L em m a 5.1.1 The function a$(x) defined in (4.7) takes the following form,  

where

^oo(^) :=  9s{oo) <  T o o . (5.1 1)

Proof. The proof of the lemma is reduced to show that g5 l exists and gs(oo) <  Too. gs is 

a continuously differentiable and strictly increasing function on (0 , oo).

Therefore, g f 1 exists, and

a 2(s)ds f ° °  ds
J h j ho) 2shs(s) + 2Xs2 2X s2 2A/r5 1(0)

2
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Then for 0 <  x  < x ^ S )  =  g$(oo), the equation (5.8) implies a$(x) =  g ^ i x ) .  Again, 

equation (5.8) allows us to conclude that a§(x) =  oo, for all x > x 00(5). This completes 

the proof o f the lemma. ■

Now, we will focus on describing the function V.  Due to the above lemma and (4.7), we 

write

I _  0 < x < x oo(<5).
V'(x)  gs (x)

Then by integrating both sides, we get

^oo(i) _ d t

As a result, due to V(0) =  0 and integration of both sides, we obtain

ln l/ '(a :0O(5)) -  In V'(x )  =  /  __x , 0 <  x < x ^ S ) .

/
'x°o(S) ^

1 d y ' ® ~  x  < x oc($)- (5.12)

Again, due to the previous lemma, we have as(x) =  oo for £oo(<5) <  x < x D. Thus (5.3) 

becomes

0 =  +  (A*oo -  S)V'(x)  -  X V (x). (5.13)

The solution to this equation is given by

V (x )  = C ier+ m x~x^ S)) +  C 2er- m x - x°°{s)), x ^ )  < x < x D , (5.14)

where
r ± {8) := ~ ^ ° e - 8 ) ± V ( V o o - 8 ) 2 + 2 \ ^ ' (5 j5)

criOO

Again, similarly as in Chapter 4, we can prove that for x > x D,

M V ( x )  = V{x),

and the solution to (5.3) is given by (4.21).

Next, we can state a complete description of V'  as follows.

f C e x P { / r ° W ^ % } ’ 0 <  x <  ^ ( 5 ) ,
y ' ( x )  =  S c ir+er+ ^ - x^  +  C2r - e r-(x~x°°W\ x 00{8) < x  < x D

I k, x  > x D.
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where C  — y '( x 00(h)), and C1 and C2 will be calculated in term of C  using the smooth fit 

of functions V'  and V"  at the point x ^ S ) .

V '{Xoo(S) - )  =  F'(*oo(<5)) C  =  c ir+ +  C 2r _ : 

=  V ' i x M )  => 0 =  C i r 2+ +  C2r l .  

By solving these two equations, we get

c i r ,

C2r„ =

- C r
r + — r„ 

C r + 
r + — r_

Then, we derive

C e x P  ( LXoo(S) ^ % )  ’ 0  <  x  <  £ « , ( $ ) ,

c  +  _ l ± _ er-(*-x=o(«))^ 5 Xoo( §) < x < x D,V'{x)

k, x > x d .

There also exists x  < x D such that

V'{x)  = k,

and

or equivalently

V ( x d ) = V ( x ) + k {x D — x) — K }

"%D

Now we rewrite (5.16) as follows.

where

e x P  ( l

V'(x )

Xoo(S) dt

(k — V ' ( x ) )d x  =  K .

C H S{X), x < x Dl
k, x > x d .

0 <  X < Xoo(h),
H A x )  = { ~"r  \ Jx a r W .

~ r -  e r + ( x - x 00(5)) _|_____ r+_g r _  ( x - x ^  (S))  ̂ x  >  X o o ( 5 )

For x  < x O0(S), we have

t j i / \ i  ( r - (5) ^  ,
H s(x ) = ---- —  exP I I  -IT7TV I < 0,

9s \x ) 9s (t)

(5.16)

(5-17)

(5.18)

(5.19)

(5.20)

(5.21)
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Hg(x)  +  -  _x —- H s(x) >  0.

For x = Xoo(5), 

For x > Xoo (8),

9 s 1(x ) J  ” 0V~' V 9&1{x)

—r _ r + r +r
r+ — r_  r + — r _

m (x )  =  r ~r+-er+(x- x°°W) +  r+r~ er-(*-Xc°(t)) > 0)
r + — r_  r + — r_

2 * 2
H "(x )  =  ~ r+r~ (f+jx-x^jS)) 7+r -  ^-(x-Xoojg))

5 r + — r_  r + — r_
—r +r_

(r er+(x~a:° ° ^  — r-_er_^ _Xo0̂ ^ )  >  0. 
r + — r_

Thus, it is easy to see that Hg is a continuously differentiable convex function and the 

unique root of

H’gx)  = 0

is x  =  x oc(8) with Hg(xoc(8)) =  1. Then Hg is strictly decreasing on [0,Xoo(5)j and 

increasing on [xoo(^), oo).

Let

Hg Hg |[0,a:oo(<5)] ar>d Hg Hg ] [xoo((5),oo) •

Then H g 1 exists and H g 1 : [ 1 ,^ ( 0 ) ]  —>• [0 , 2)00(5 )], and also H s 1 exists and H g 1 : 

[1, 0 0 ) —>• [xoo(5), 0 0 ). Remark that

Hg(0) <  + 0 0 , (5.22)

and this is one of the properties of this case of 8 >  0. In fact,

, ^  f X°°{S) dt f ° °  V2(s)
ln (Hs (0)) =  / =  /  -9 2h ( \ M o \  z ds

Jo 9g (t) Jas1̂ )  2s M s ) +  2As
(72(oo) f°°  1 _  o~2(oo)

2A J as{0)=hji {0) s3 4A(/r5 1(0))2 <  + ° ° ‘

Due to (5.17) - (5.20), x c  and x% satisfies x c  < x 00(8) < x%, and are two roots of

H s(x) =  A
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For these two cash reserve levels to exist, ^  is required to belong to the range of Hs  and 

Hs,  which we will describe. Hs is strictly convex (since H's'(x) > 0, for Vx >  0). We 

know that H's(x) < 0, for a; < Xoo(<5), H's (Xoo(5)) =  0, and H's(x) > 0, for a; > Xoo(<5)- 

Then

m in H s(x )  = H s(x00(S)) = 1, H s{o o )  =  oo .
x>0

If -g <C 1 =  H s(Xoo(5)) <  H s(x), \ / x  >  0 (or equivalently CHs(x) > k ), then neither x c  

nor exist. This leads to one of the necessary conditions for the existence of x c  and x^  

given by
k
c - 1'

Suppose that £  > H s(0) (or equivalently k > C H S(0)), x c  does not exist. Thus, for x c  

and x ^  to exist, we need

§  < 0)'

As a result, we get

1 <  |  <  H s(0). (5.23)

Therefore, when (5.23) holds, x c  and x% exist and are given by

Clearly, x c  is an increasing function of C,  while x £  is a decreasing function of C. 

Consider the following function

Is(C) := r ° ( k  C H s(x))dx,  <  C < k.
J x c  - n s ( U )

Is(C)  is a continuous and decreasing function of C  because both the integrand and the 

interval are continuous and decreasing with respect to C.  The only parameter, in the 

expression of V'  given in (5.16), to be calculated is C.  This will be done using the equation 

(5.18), or equivalently

h ( C )  = K ,  (5.24)

where K  > 0. Obviously, if C  =  k then x c  = x% =  x ^ S ) .  This corresponds to the case 

when K  =  0.
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I f  C  =  then we define

0)) / H x ( x ) \

(5 25)

Then, we can write

m ax Is(C) = I s ( y J - f ^ x )  =  k K max{8). (5.26)
- —7 < C < k  V-T/aI U ) /

H S ( 0 ) -

Therefore (5.24) admits a solution if and only if

Then, under the condition (5.27), there exists C  such that < C  <  k, and

v cl D

K  < k K max(8). (5.27)

W ( o )

IS(C) = I (k -  C H s(x))dx = K .  (5.28)
Jx5

This analysis proves the following.

P roposition  5.1.1 Suppose that N  — oo, and consider the previous notations. Then the 

following assertions hold.

1. I f  K  > K max(8), then the equation (5.1)-(5.2) has no smooth solution.

2. I f  K  <  K max(5), then there exists a range fo r  tax rates, 1 — k, precisely, k should
K

K m a 4 S ) , 1 , f o r  which the equations (5.I)-(5.2) admit a smooth solutionbelong to 

given by

f C  f 0x exp dy, 0 < x <  Xoo(5),

^ ( X ) = <  C  ( >  X ° °  ( 8 ) < X < X D ,

V (x )  +  k (x  — x) — K ,  x  > x d ,
(5.29)

where x = H f 1 j  , x D =  H s 1 ^  j  , and C  = C  is a root o f  (5.24).

In particular, when K  =  K max(8), the equations (5.1)-(5.2) admit a smooth solution if  

there are no taxes on the dividend pay-outs.

R em ark 5.1.1 7. These scenarios (assertions I and 2 o f  this proposition) illustrate one

o f  the impacts o f  a non-zero debt liability rate on the model.
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2. The second assertion of  the above proposition explains the interplay between the 

costs (K )  and the taxes (1 — k) as well as with other exogenous parameters o f  the 

model, mainly ji. a  and F.

5.2 The case of bounded claim’s size.

This subsection is an extension of Subsection (4.2) to the case where 5 (the debt liability 

rate) is positive. Therefore, it can be seen as a result of combining Subsection 4.1 and 

Subsection 5.1.

L em m a 5.2.1 a (x ) takes the following form  

where

x n (S) ■= gs{N).

Then, using this lemma, we derive

- V £ ( x )  1
V v M  S j 'M  

Integration of both sides leads to

, 0 <  x  < x n (5).

"Xn{5) vf(t)dt_ [Xn{5) -dt
J x  V n ( 1 )  J x

As a result, we get

f x  (  f X N ( S )  d t  \

VN (x) = Vj f(xN (S)) exp / _ dy,  0 <  x  < x N (5). (5.31)
J o \ J y  9s \t) /

Again the lemma above implies that (5.3) is equivalent to

0 =  l / m v ' i O )  +  M N )  -  SM ,(x )  -  \ v N(x).

The solution of this equation is

VN (x) =  +  C 2er- ^ X~XN^ \  x n (5) < x < x D, (5.32)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 5

where r ± ( N )  =  r± are given by (5.15). Notice that lemma 4.1 .2 will apply in this context, 

and

VN (x) =  VN (x) 4- k(x  — x ) ~ K .  (5.33)

Hence, the piecewise constructed VN takes the following form

f  C lo e x P  ( f J N(S) ^ % )  dV' 0  <  a: <

v n ( x ) =  < c 1er+̂ x~XN^  + C 2er~{x~XN{5)), x N (S) < x < x D, (5 -34)
[ VN (x) +  k (x  — x) — K , x > x D,

where C, C\  and C2 will be determined. Using the smooth fit of the functions V 1 and V"

at the point x N (5), we derive

V'N (x n {8)~)  =  V'n {x n (5)) ^ C  = C \r  + +  U2r_ ,

Vn (x n ($) — ) =  Vn (x n ($)) =4 C =  C ir + +  C2r 2_ 4 - = C xr \  +  C 2r 2_.

(5.35)

These leads to
- C ( l  + N r _ )

C xr+ =

C2r -  =

N { r + — r_ ) 
C(1 + N r +)
N ( r + — r_ ) ’ 

and we can write

C e x p  > 0 <  x < x n (S),

Vn (x ) = j  C  + Jv1(̂ I J er' lx~xMS)))  ■ x " ( 5) < x < x d ,
k, x  > x D.

(5.36)

This also can be given by

where

V„(x)  =  { £ * '< * > ' I  I  1 1 ’ (5.37,

H s (x)  ■= I CXP »T % ) ' °  -  X < XNiS)’ (5 38,
1 4h;-” H er+(x~x" W) + N ( t ? - ? ! ) e r - {x~ XN{s))’ x > x n (S) .

We know that H's (x n (S)) = — < 0, which means Hs keeps decreasing from Oto x N (5).

Let x > x N (S), then

=  - r + ( S ) { l  + N r 4 8 ) )  (S)(X_XN(S)) r - ( 5 ) ( l  + N r +(8)) (s)(x_Xk(s))
s{ } N ( r +(S) — r_(5)) N(r+(5) -  r^{8))
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Thus,
+ 0 0 , if 1 +  N r_(5 )  < 0,

lim H U x ) =  < ' -r 1 ar / e\ A’ (5.39)s 00 dV '  \  - 0 0 ,  if 1 + N r_ (5 )  > 0.

Notice that

•  1 +  N r - ( 5 )  <  0 if and only if

•  If 1 +  N r - ( S )  > 0, then H's(x) <  0, for all x  > 0, and H's(x) — 0 has no solution.

Then H's (x) — 0 admits a solution if (5.40) holds. In this the solution is unique, denoted

by x(S, N )  > xiv(S), and given by

1(1. N)  := x H(S) +  r M  1  r _ ( / )  i n f c j j j g  +  % + < * » ] >  M S ) -  ( 5 - 4 1 .

Then, H$ is strictly decreasing for [0, x] and strictly increasing for [x, 0 0 ) .

Let

Hg Hfi | [0,5;]) Hfi Hg\^xtoo) ■

Remark that

H s( 0 0 )  =  0 0 ,  H,5(0 ) < + 0 0 ,  Hg(x) = m m H s(x), H s (x N (8)) =  1 .
x> 0

Then, H s l and H  s 1 exist with H g 1 : [Hg(x) ,Hs(  0)] —> [0, x] and H s 1 : [H$(x), 0 0 )  —>■ 

[x, 0 0 ) .  The only remaining undescribed parameters of Vn  are x c , x £  and C. Recall that 

x c  and x ^  satisfy x c  < x < x% and are roots of

H s(x) =  A  (5.42)

This equation allows us to determine x c  and x£ in term o f C.  Therefore, x °  and x£  exist

A 
cif and only if ~  belongs to the range of H s and H, 5 . As in the previously subsection, this is

equivalent to

m  - c s  m -  ( 5 M )
This condition on C  is a kind of combination of (4.51) and (5.23). Then under the condition 

(5.43), we calculate

x c  _  r j - l  (  ^ \  (  k
* Hs d = H s (5‘44)
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Now, we will focus on calculating C  >  0. To this end, we use the equation

o x c

1(C)  :=  /  D(k -  CHg(x) )dx = K .  (5.45)

Due to (5.44), x c  is an increasing function of C,  while x% is a decreasing function of C.  

Thus, 1(C)  is a continuous and decreasing function of C  because both the integrand and 

the interval are continuous and decreasing with respect to C.  Obviously, when C = 

we get x c  =  x% =  x. This corresponds to the case when K  =  0.

When C  = jqjqyj, we obtain

rH^(H5(o)) / H x ( x ) \
K ^ ( S , N ) : =  „ max t / ( C )  =  I h _  W  (5.46)

H S ( £)  J O  \  /

Then the equation (5.1)-(5.2) admits a solution if and only if

K  < k K max(5 ,N ).  (5.47)

Thus, there exists C ( N )  such that <  C ( N )  < and root of

1(C) = K ,  (5.48)

where K  < k K max(S, N) .

Therefore, we completely describe the candidate for the solution to (5.1) as follows.

{  C  f o  eX P  ^ f i f ) d y )  ’ 0 < X < X N ( S ) ,

Vn A * )  ■= < c  ( Nr^ L ; ]y +{x- XN{s)) +  Nr^ r-r)er- (x~XN(S))) > **(<*) < x < x d ,
, Vn,s(x) +  k (x  — x) — K ,  x > x Dl

(5.49)

with C  =  C ( N ) , x  — x C N) = H f 1 ) , x D = x Cd {n) = H ~ l .

Now we are in stage to state the main result of this chapter.

Theorem  5.2.1 The function defined in (5.49), is continuously differentiable on 

(0, oo), twice continuously differentiable on (0, x D) \ j ( x D, oo), and is a smooth solution to 

the HJB equation (5.1) - (5.2).

Proof. The proof of this theorem is similar to the proof of the Theorem 4.2.1. ■
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T heorem  5.3.1 Suppose thatC is a root o f  (5.48) and x (C)  and x D( C ) are given by (5.44). 

Let a(x)  be given by (5.30). Then the control

*  /  *  ' T - '*  *  .  £ *  t *  C *  \

'K \U> i >  i S ) I T  > ^1  ) T i  ’ ” • ’ n  ’ •“  J M  ’ ^ 2  5 •’ "> Sn> • "  J

defined by

u t ■

Ti

— aN {Xf ) ,  t > 0,

=  inf{f >  0 : X *(t) =  ££>((7)}, 

= x D( C ) - x { C ) ,

(5.50)

(5.51)

(5.52)

and for every n > 2:

t * :=  inf{f >  : X*( t )  = x D(C)},

£ : =  x D( C ) - x ( C ) ,

where X*  is the solution to the stochastic differential equation

(5.53)

(5.54)

p( aN ( X: ) )  -  5 ds +  / a(aN{X's ))dWs - ( x D( C ) - x { C ) ) Y , h r i < t }
J J o  n = 1

(5.55)

is optimal and the function Vn ,s> defined in (5.49), coincides with the value function. That 

is,

VN>s(x) = J(x]  7r*) =  J ( x ; u * , T * , C ) -  (5.56)

Proof. The proof of this theorem can be obtained by mimicking the proof of the Theorem

4.3.1. ■
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6
Numerical Examples

Here are some numerical examples for the functions V' ( x)  and V ^ (x )  when 5 =  0 and 

when 8 >  0.

XO

0.6

0.4

  CH(x) when C=k=0.5
• CH(x) when C=0.3941 

 k=0.5
0.2

1 1.50 0.5 2 2.5 3 3.5 4

Figure 6.1: The relationship between x  and C  * H( x) .  This is the example for the case 
of N  =  oo, 5 =  0. In this case, we have F( x )  =  1 — F( x )  =  e~x, where F  is the claim 
size distribution, / i^  =  1, a 2̂  =  2, A =  1, x ^  — 0.7811, K  =  0.05, C  =  0.3941, xP =  
0.2129, x% =  1.6011.
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5 0

0.6

0.4

-  CH(x) when C=0.53459 
• CH(x) when C=0.4087 
—  k=0.5

0.2

3 .52 .50 .5

Figure 6.2: The relationship between x  and C  * H(x) .  This is the example for the case
  f x N,

of  N  < oo,S =  0. In this case, we have F( x )  =  1 -  F( x )  =  0 <  x <  IV

where F  is the claim size distribution. N  =  2, n N =  1, a 2N =  | ,  A =  1, x =  0.7475, K  = 

0.05, C  =  0.4087, xP =  0.2232, x% = 1.4865.

0.9

0 .7

I  0 .6

0 .5

0.4

—  CH(x) when C=k=0.5
  CH(x) when C=0.4625

• CH(x) when C=0.4386
-  k=0.5

0.3

0.2
0.2 0.6

x

Figure 6.3: The relationship between x  and C  * H( x) .  This is the example for the case 
of iV =  oo, 6 > 0. In this case, we have F( x )  =  1 — F( x )  =  e~x, where F  is the claim 
size distribution. (i00 =  l ,c r^  =  2, A =  1,6 =  \ , x O0 — 0.4792, K max =  0.0213, C  =  

0.4386, x d = 0, x% =  1.0292. When K  =  0.01, C  =  0.4625, x d =  0.1023, x% = 0.8942.
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Figure 6.4:

of N  < oo.

where F  is 

0.47088, K,  
0.4939, x c

Figure 6.5:
N  =  oo, 8 :

0 .9

0 .7

I  0 .6

0 .5

0 .4

-  -  CH{x) when C=0.53999
  CH(x) when C=0.4939

• CH(x) when C=0.4518
-  k=0.5

0 .3

0.2
0.4 0.60.2

x

The relationship between x  and C  * H( x) .  This is the example for the case
0, x > N,

,8 > 0. In this case, we have F( x )  =  1 — F( x )  =

the claim size distribution. N  =  2, f iN — 1 , a 2N =  | ,A  =  1,5 =  =
nax =  0.0276, C  =  0.4518, xf '  =  0, x% = 1.009. When K  =  0.01, C  = 
= 0.1354, x% = 0.839.

The relationship between delta and XD (N=inlty)

Delta

The relationship between 8 and x D(8). This is the example for the case of 
> 0,^00 =  1,<4, =  2, A =  1.
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T h e  re la t io n s h ip  b e tw e e n  d e lta  an d  xD  (N = 2)

0.1 0 .2

Figure 6.6: The relationship between 8 and x D(S). This is the example for the case of 
N  =  2, b > 0, h n  =  1, A =  1.

The relationship between delta and Kmax (N—infty)

Figure 6.7: The relationship between 5 and K max(8). K max(8) is the maximum cost 
permitted. This is the example for the case of N  =  oo, 8 >  0, =  1, cr^ =  2, A =  1.
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0.5  

0 .45  

0 .4  

0 .3 5  

0 .3  

E 0-25 

0.2 

0 .1 5  

0.1 

0 .0 5  

0
0 0.1 0 .2  0 .3  0 .4  0 .5  0 .6

Delta

Figure 6.8: The relationship between 8 and K max(5). This is the example for the case of 
N  = 2,8 > 0 , / iN = l ,a% =  f ,A  =  1.

The relationship between delta and xin (N=infty)
° . 8 r  

0 .7  - 

0 .6  - 

0 .5  -  

■§ 0 .4  - 

0 .3  f  

0 .2  -

0 . 1  -

|
0L

0 0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9
Delta

Figure 6.9: The relationship between 8 and x oc(8). This is the example for the case of
N  =  oo, 8 > 0, /loo =  1, =  2, A =  1.
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5 4

0.5 

0 .4 5  

0.4  

0 .3 5  

0.3  

1  0 .25  

0.2 

0 .1 5  

0.1 

0 .0 5  

0
0 0.1 0 .2  0 .3  0 .4  0 .5  0 .6

Delta

Figure 6.10: The relationship between 8  and x n ( 8 ) .  This is the example for the case of 
N  = 2 , 5 > 0 , n N = l,crjf = ^ , \  = l.

60 

50 

40 

30 

20 

10 

0
0 0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9

x

T h e  re la t io n s h ip  b e tw e e n  d e lta  a n d  xN  (N =2)

Figure 6.11: Graph for a*0(x), _2{x), a*0A(x), a,Q6(x), a*08(x) with N  =  oo .8 > 0,/ioo =

=  2 - A =  L
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/ / 7/ 7 / /  7
/  7

/ //
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/  ■ '

/  /7
"  /  ' / -

/  V
K 7// /

/  / -

/  /
/̂ /

/ i0̂  1 1-------------------------
0 0 .5  1 1.5

x

Figure 6 .12: Graph for a ^ z ) ,  1(x), gsq 3(x), a*06(x) with N  =  2 ,5  >  0 ,^ N =  =
, A =  1.
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