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Abstract
This thesis investigates the hypcthesis that specific brain states can be identified from
spatial patterns on EEG topographic maps. Preliminary work showed that topographic
maps of rms EEG data are representative of the actual potental distribution on the scalp and
that errors in maps are not significantly affected by the method of interpolation used in their
construction. Spatial patterns on the maps were subsequently investigated using spectral
analysis. With simulated EEG data, results indicated that maximum entropy (ME) power
spectrum estimates (PSEs) are consistently superior to Bartlett and Blackman-Tukey PSEs
in terms of error in peak-position and the minimum separation in frequency required to
identify two sinusoids. The ME PS analysis of sinusoids in white noise showed that
acceptable PSEs could be obtained if the SNR was >0 dB. PS analysis of actual EEG data
demonstrated that the energy of spatial waves was generally larger in EC (eyes closed) data
than in EO (eyes open) data. The mean energy of sagittal waves ( wavelength 18.67 cm)
was significantly larger (p <0.01) in EC data than in EO dara. The mean wvalue of the
entropy was significantly larger (p <0.01) for EO PSEs than for EC PSEs indicating
greater uniformity in EO PSEs. Discriminant analysis was used to classify features from
EC and EO PSEs. The classification rule correctly identified 91% of PSEs in training data
and 96% of PSEs in test data indicating that a stable classification rule was obtained.
Analysis of normalized PSEs features (total power in PSE a constant) indicated that EC
maps primarily contained .vaves along the sagittal line while EOQ maps contained waves in
all directions. The discriminant analysis of normalized PSEs correctly classified 86% of
PSEs in training data and 92% of PSEs in test data. This work demonstrates that spatial
patterns on EEG topographic map can be used to identify specific brain states. It suggests
that changes in cerebral organization associated with the EC and EO states are manifested in

spaual patterns on EEG topographic maps.
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Chapter 1

The Electroencephalogram

1.0 Introduction

The human brain is one of the most complex systems known to man. The
funcuoning brain normally develops low-amplitude electrical signals that are measurable on
the scalp. A record of these signals is called the electroencephalogram (EEG) and the study
of these signals has developed into the neurophysiological speciality known as
electroencephalography.

The analysis of the EEG is of grea: importance in the study of both information
processing in the brain and brain pathology. Attempts have been made to correlate EEG
patterns to various mental tasks such as solving arithmetic problems (Vogel er al., 1968).
auditory and visual discrimination (Walter er al., 1967), reading and writing (Gevins ez al.,
1979), meditation (Doyle er al., 1974), etc. To date however, no clear understanding of the
relationship between the EEG and these higher brain functions has developed. in the study
of brain pathology, on the other hand, significant progress has been made. The EEG is
now used 1o follow various brain disorders such as epilepsy (Gibbs er al., 1935), vascular
disease (Remond. 1972a), mental retardation (Remond, 1972b), brain damage and stroke
(Kooi, 1971). It is used in locating brain tumors (Walter, 1936), for determining brain
death (Harvard Committee on Brain Death, 1968), for determining the depth of anaesthesia
in surgery (Ciark and Rosner, 1973) and in psychiatry to study behavioral disorders
(Gibbs and Gibbs, 1964).

The EEG is traditionally presented as a set of traces of voltage versus time on a strip
chart. As a result, its analysis has primarily focused on temporal patterns in these traces.
For example, correlations between power in the alpha band (8 to 13 Hz) and subjects in a
relaxed, resting-state have been established (Berger, 1929). Drugs such as halothane have

been shewn to induce almost purely sinusoidal oscillations (Nunez, 1981) and the EEG of



epileptic patients in seizure has been described as a series of spike or spike-dome waves
(Gibbs er al., 1935).

Recent interest in the neurophysiological community has focused on the spatial
distribution of the EEG. It is believed that if an accurate and precise representation of the
potential distribution on the scalp is available, a clearer assessment of correlations both
between regions of the scalp and also between anatomy and electrical activity is possible.
The potential distribution on the scalp may be represented by a topographic map
constructed by projecting a number of scalp potentials onto a flat plane and then
interpolating between the projected potentials.

Topographic mapping has provided a new tool for the analysis of the EEG,
however, its utility is still controversial (Duffy, 1986). While topographic mapping of the
EEG provides a qualitative picture of the gross spatial distribution of scalp potentials, there
are a number of practical limitations to its use. For example, topographic maps are
inherently an inefficient means of communicating data since only a few points in a
topographic map are actual recorded data, the remainder of the map beiny produced through
interpolation. Another limitation with topographic mapping is that quantitative information
about the spatial distribution is not directly available. It is difficult to make anything other
than a superficial comparison of recorded data when using topographic maps. Finally, itis
necessary to observe hundreds, perhaps thousands, of topographic maps and it is difficult
to recognize patterns in this number of images.

A more fundamental description of the potential distribution may be obtained
through a spatial spectral analysis of the topographic maps where spatial signals on the map
are decomposed into sinusoidal waves. Spectral analysis of spatially distributed data is
carried out in a number of disciplines, such as for example geophysics and radio astronomy
where spectral analysis is used to describe, characterize and summarize data.

The spatial spectral analysis of the EEG has several advantages. (1) Itis a means of

describing the spatial distribution in terms of spatial waves on the scalp. (2) It provides a



method for characterization and representation of the distribution in terms of a smail
number of waves. (3) Quantitative parameters such as spatial frequency and energy density
are provided. (4) The effect of an active reference electrode is confined to only one spatial
frequency and the remainder of the spectrum is independent of the reference.

This thesis 1s a quantitative examination of the potential distribution on the scalp.
The analysis 1s based on topographic maps. The relationship between the actual potential
distnibution and topographic maps is first investigated. It is shown that maps can be
considered as representative of the aciwual potential distribution. It is proposed that spatial
spectral estimation provides a useful tool for the identification of patterns in topographic
maps that are unique to. or indicative of the brain state of srtiects. Various methods of
spectral analysis (periodogram, Blackman-Tukey, autoregressive, maximum entropy.
moving average, autoregressive-moving average) are therefore studied. The maximum
entropy (ME) method is shown to be most appropriate for the spectral analysis of
topographic maps. To further investigate this approach, spectral estimates of the
topographic maps from a population of normal volunteers are analyzed. Various analyses
are performed with features from the spectral estimates to determine if staristrically
significant variations between brain states are observed.

A summary of the biological basis of the EEG is first presented. Some preliminarics
to spatial processing of brain potenrials are then discussed followed by a review of recent

advances in EEG analysis througth: the use of topographic maps.

I.1 The Biological Basis of the EEG

The human brain is primarily composed of a large number of nerve cells (called
neurons). Two features that distinguish neurons from other cclls in the body are: (1) their
extraordinary physical shape, and (2) their capability to transmit and receive electrical
signals through fluctuations in membrane potential (Alberis ez al., p. 1015, 1983). Figure

1.1 presents a schematic diagram of a neuron. Three major parts of the neuron are

)



distinguishable: the cell body, the dendnitic branches and the axon. The cell body is the
metabolic center of the neuron and contains the cell nucleus. The dendritic branches are
typically extensions from the cell body which facilitate the reception of signals from other
nerve cells through intercellular junctions called synapses. The largest process extending
from the cell body is the axon which conducts signals away from the cell body to other
nerve cells. The axon commonly divides at its distal end and makes thousands of synaptic
connections with the cell bodies and dendrites of other nerve cells.

The resting neuron normally maintains a constant potential across its membrane.
However neurons are rarely at rest and the membrane potential over the cell body and
dendrites is altered continuously by synaptic signals of other nerve cells (called pre-
synaptic neurons). A pre-synaptic neuron can depolarize or hyperpolarize the membrane of
a post-synaptic neuron momentarily. Depolarizations to a threshold level causes an
impulse, called an action potential, to propagate down the axon which in turn alters the
potential of other synaptically connected neurons.

The human brain may be anatomically divided into a number of structures such as
the cerebrum. the cerebellum. the brainstem etc. The cerebrum, the largest of these
structures, forms the top-most portion of the brain. The cerebrum in turn is divided into
two major regions. The cuter 3 tn 5 millimeters of the cerebrum, called the cerebral cortex
or the grev matter, is composed of mostly dendritic branches and nerve cell bodies. The
majority of the neurons (70%) in the cerebral cortex are pyramidal cells, . 'vd because
of their peculiar cell body shape (Katznelson, 1981, p. 403). The pyramidal « = - are
organized into parallel configurations of vertical col..mnar units in which the electrical
activit; s highly correlated. Below the grey matter is the second major region of th:
cerebrum, the white matter. The pyramidal cells of the grey matter usually project axons
into the white matter. The axons extend through the white matter to functionally associated

regions of the grey matter.



dendrites

cell body

axon

Figure 1.1 A schematic diagram of a typical nerve cell. The dendrites, body and axon of the
nerve cell are indicated.
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The post-synaptic potential that is developed over the cell body of the pyramidal cell
may be approximated by a dipole. As these cells are arranged in a parallel configuration, the
potential distribution over regions of electrically correlated pyramidal cells can be modelled
as a dipole sheet. It is currently postulated (Gevins and Schafer, 1980; Gloor, 1985) that
the electric signals (EEG) that are observed on the scalp may be atiributed to the clecincal

activity of these correlated pyramidal cells.

1.2 Preliminaries to Spatial Processing of the EEG
Three major issues must be addressed before considering spatial processing of the

EEG. They are: (1) spatial sampling, (2) interpolation and (3) recording reference. Each

of these issues is now discussed briefly.

(1) Spatial sampling

In the analysis of the spatial distribution of the EEG it is assumed that a smooth and
continuous function of the spatial coordinates on the scalp may be used to describe the
surface potential. This interpolating function is adequately described by a discrete number
of recorded potentials it the spatial variation of the function is within certain well defined
limits. These limits define the highest spatial frequency that may be present in the
interpolation function (Dudgeon and Mersereau, 1984). Thus the recording clectrode
density introduces an upper limit on the spatial frequency that can be detected. There 1s
some controversy about the density of the sampling elecitodes required in order to analyze
the spatial distribution of the EEG. It has been suggested (Gevins, 1984) that for the
human head, the point spread function of a generator on the surface o' .he cerebral cortex is
about 2.5 cm? so that more than 250 sample sites (electrodes) are required to cover an
average-sized head (radius 10 cm). The question remains whether EEG sources are in fact
point sources or more extensive dipole sheets. Far fewer recording electrodes (16 to 32) are
used in most topographic mapping systems that are aiailable today. However the issue of

adequate sampling is presently not resolved and is investigated further in this work.



(2) Interpolation

Some form of interpolation must be used if a continuous distribution of the surface
potential is to be retrieved from samples recorded by an electrode montage on the scalp.
This issue is fundamentally linked to the issue of electrode sampling density. If the
electrode density is adequate, then in theory at least, the surface is completely recoverable
by use of the ideal interpolating function. However, in practice, the application of this
method on a finite extent data grid is not satisfactory. Other interpolation methods that are
often used are not affected as much by boundary conditions. Examples of such methods
are: bilinear (Naitoh and Walter, 1969), triangular (Duffy, 1982), bicubic-spline (Paranjape
and Koles, 1986) and natural splines (Perrin ez al., 1986).

(3) Recording reference

The variation of potential at any test point on the scalp is by definition relative to
some reference point and the actual potential that is recorded depends equally on the
electrical activity at the reference and at the test point. It is commonly assumed that the
reference point is far away from all electrical sources so that the potential recorded is
indicative of only the sources near the test point. However, because of limitations imposed
by the instrumentation, in a recording of the EEG the reference point must be taken on the
body. It has been shown that it is not possible to find an inactive reference point on the
body since proof of inactivity requires the existence of yet another inactive site (Nunez,
1981, p. 23; Lehmann, 1987, p. 313). This problem can be emphasized further by
considering N electrodes attached to the body. For each electrode, N-1 different voltages
can be measured. Therefore Nx(N-1) different voltage-polarity combinations may be
recorded at any one moment in time.

The potentials that are recorded in the EEG include the activity of the reference
point. Most often the reference point is taken on the ears or nose although these locations
have been criticized because they are over holes in the skull and hence regions where

electric current flow will tend to be focused (Nunez, 1981, p. 24).
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Presently EEG data is recorded using either a bipolar or unipolar electrode format.
In the bipolar format, electrodes are paired and the potential differences between various
locations on the scalp are recorded. Since neither electrode is assumed to be a retference,
this approach circumvents the difficulty of finding an inactive reference site on the body.

In the unipolar format a single electrode is used as the common reference for all
other recording electrodes and therefore all recorded potentals have a contribution from zhe
same reference. A simple procedure can be used to remove the effect of this reference if it is
assumed that the total charge on the scalp is always zero. It has been suggested that the
average value of the potentials recorded on the scalp at one instant in time be used as an
estimate of the potential at the reference point (Lehmann, 1987). If this spatial average is
subtracted from the recorded potentials, a reference independent measure of the potential

distribution is made. This approach is adopted in this thesis.

1.3 Topographical Analysis of the EEG

Topographic displays of the potential distribution on the scalp were first attempted
by Walter and Shipton in 1951. However. it was not until 1971 when Lehmann mapped
the distribution of alpha activity that real interest in EEG topography developed. In 1978
Duffy produced the first commercially available topographic mapping system called the
BEAM (for Brain Electrical Activity Mapping) system. Recent advances in topographic
mapping systems have been primarily related to hardware, with increased flexibility in the
types of maps that can be constructed and the storage of large volumes of EEG data.

Topographic mapping is now available in many EEG laboratories and analysis
using these systems has been directed towards study of both brain function and brain
pathology. The functional state of the brain determines how information received by the
brain is processed. The functiconal state is constrained by several gross factors such as
maturation, wakefulness, disease, etc. (Koukkou et al., 1980; Katadou et al., 1981),

however, within these constraints the functional state is always changing and readjusting



over short intervals. These short-term fluctuations, called micro-states, are thought to be
observable in topographic maps (Lehmann er al., 1987). Lehmann er al., through an
assessment of maps on the basis of location of maxima and minima (1971), 'hilliness’
(1980), global field power (1986), and global dissimilarity criterion (1987) have attempted
to identify these micro-states.

Lehmann er al. (1987) have also described the general characteristics of EEG
topographic maps for subjects in a resting state. Maps generally contain a single area of
maximal value and a single area of minimal value. The potential distribution between the
extremna usually appears as lines of isopotentials. Characteristically, maps tend to be stable
in one distribution for a short period (about 10 msec) and then make jump-like changes to a
different configuration.

In a recent set of review papers Nuwar (1988a, b) showed that quantitative EEG
analysis based on frequency analysis and topographic mapping of scalp potentials is useful
in the detection and identification of various brain disorders. Patients with cerebrovascular
disease have, for example, been observed to have abnormality in over 80% of cases in
topographic analysis after being read as normal in routine visual assessments of EEG truces
(Jonkman et al., 1985).

Topographic methods have been used to describe the phenomenology of 'spike
activity' in the assessment of epilepsy. For example, the bi-frontal spike wave phenomenon
of generalized epilepsy has a negative spike component that begins and is most prominent
over the anterior regions of the head (Harris and Bickford, 1968; Takahashi er al. 1985).
The succeeding slow wave, in contrast, may begin in either the frontal or posterior scalp
regions (Lehmann, 1972; Rodin and Acheta, 1986). Wong er al., (1986) studied Rolandic
spikes in children with benign Rolandic epilepsy. Significant differences were observed in
topographic distributions of spike activity in subjects classified as having either typica! or
atypical clinical features suggesting that the spread in electrical activity can also be used to

differentiate between groups.
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The electrical activity associated with mass lesion and brain tumor is observable
from topographic maps (Nuwar, 1988b). The scalp field gradients on the maps from focal
spikes can be helpful in differentiating between superficial and deep sources (Matsua and
Gastin, 1986). Slow waves have been used for localization of deep, white-matter tumors
(Pier et al., 1986).

While topugraphic mapping cleariy has a use in the clinical setting, results are not
always consistent. Clear-cut diagnosis based on topographic mapping alone are not

possible at present and further work is required in order to fully determine the benefits and

the limitations of this methodologs.



Chapter 2
Topographic Mapping of the Electroencephalogram

2.0 introduction

This chapter discusses various methods for constructing EEG topographic maps. In
order to construct EEG topographic maps, electric potentials measured on the scalp must
first be projected onto a flat plane and then interpolaied to form a continuous surface.

In this chapter the Mercator method of projection is discussed first. Three common
methods of interpolation that may be used to construct topographic maps are then reviewed.
Finally, a pilot study is presented in which the relationship between topographic maps and

the actual distribution of potential is assessed when using various types of EEG data.

2.1 The Projection of Electric Potentials from the Scalp

Topographic maps are constructed from electric potentials projected onto a tlat
surface. Regardless of the method of projection that is employed, it is impossible to
construct these topographic maps and maintain all of the geometrical relatonships that exist
on the scalp (such as: duplication of angles, areas, distances, and directions). This
difficulty is similar to that faced by cartographers when projecting from the earth onto a flat
map.

In cartography, a projection is defined as an orderly system of transforming parallel
and meridian lines, into which a spherical surface can naturally be divided, onto a map.
Projections are usually classified as cylindrical, conical or azimuthal according to their
derivation as geometrical projections from a sphere onto a cylinder, a cone or a plane
respectively (Raisz, 1948).

The Mercator method of projection is classified as a cylindrical projection. It has a
number of attributes that make it useful wher: projecting potentials from the scalp onto a flat

topographic map. The Mercator projection is conformal, this means that the relationship



between length on the map and length on the scalp is the same in all directions at each point
on the map. This results in the important property that directions on the spherical surface
are maintained after tr. asformation onto a Mercator map.

In Mercator mapping, parallels are projected as horizontal lines and meridians as
vertical lines. The meridians are placed on the Mercator map so that their spacing is true 10
scale at the equator of the sphere. The parallels are then spaced so that the scale on the
meridians and on the parallels is the same at each point. The parallels on a sphere however,
are shorter near the poles than near the equator, that is, their length is proportional to the
cosine of the angle (¢) between the parallel and the equator (where ¢=0° at the equator and
0=%90° at the poles). Because all the parallels are shown with 2qual length on a Mercator
map, the scale of the parallels is increased by 1/cos(d). In order to maintain this scale on the
meridians, the scale of the meridians is also increased by 1/cos(¢). This results in the space
between parallels increasing on the Mercator map as ¢ approaches 90°.

A difficulty with Mercator mapping is that as ¢ approaches £90° the size of objects
becomes large. It is in fact not possible to include a object located on either pole in a
Mercator map.

The Mercator method of projection was adopted in this thesis over other methods of
projection because it has the very useful property of preserving orientation over the
transformation. This means that the shape of the distribution of electrical activity is
preserved after ransformation (for example a square region on a sphere will remain in the
form of a square on a Mercator map). In addition, because EEG activity is sometimes
characterized by orientation (for example left-right asymmetry) it is useful to maintain
angles through :he transformation. The difficulty of distortion of size that occurs in the
regions near the poles is avoided by not projecting to the topographic map from these
regions.

When using the Mercator method of projection to transform potentials from the

scalp onto a flat plane it is assumed that the geometrical shape of the scalp can be



approximated by a hemisphere. In addition, it is convenient if the potentials on the scalp are
recorded at points that fall on a set of meridian and parallel lines. In the EEG electrode
montage that was used for the work of this chapter (International 10-20 System) this was
approximately true. By assigning pole locations to the nasion (forehead) and the inion
(back of the head), electrode locations fall upon 5 meridian lines at parallels (¢) of 72°, 36°,
0°, -36°, -72° with an average electrode placement error of 2.08% and a maximum electrode
placement error of 9.38%.

The electrode locations of the 10-20 system are presented in figure 2.1 in an
azimuthal projection. The azimuthal projection does not preserve scale or direction but it is
helpful in visualizing the position of the electrodes on the scalp because landmarks such as

the nose and ears can be included.

2.2 Interpolation Methods

After projecting measured potentials onto a flat plane, topographic maps of the EEG
are constructed. There are a number of interpolation techniques that may be used to
construct the topographic maps. Three methods of interpolation are discussed in this
section: triangular, bilinear, and bicubic-spline respectively.

The triangular method of interpolation is the most commonly used in topographic
mapping (Dutfy, 1978). The topographic map is partitioned into triangular regions with
recording electrodes at the corners of each triangular region. The potential within each
region is th.cn interpolated as a linear combination of the potential at the corner electrodes
scaled by th distance to each electrode. The potential, V, at any off-electrode site is

determined by the equation for a plane.
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Figure 2.1 Stylized diagram of the International 10-20 Electrode System. The head is
projected as a circle onto a plane with the nose anc ars indicated. Electrode sites are
indicated by small rings on meridian and parallel lin
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(2.2:1)
V(x, y) = a(x-xj) + b(y-yj) + ¢

where
X, y are orthogonal spatal variables on the map,
1, j are used to identify a triangular region on the map,
Xi, yj identify the origin of the triangular region i, j,
V is the potential at (x, y) on the map.

The coefficients a, b, ¢ are determined by solving a system of equations using the
values of x, y and V at the 3 comer electrode sites.

A triangularly interpolated topographic map is continuous but is not srnooth. In the
view of many researchers however: "there is little evidence from classic EEG to suggest
that electrodes more distant than the nearest 3 known points have additional influence upon
intermediate locations.” (Duffy, 1978).

In contrast, the bilinear method of interpolation is applied over a set of rectangular
regions on the topographic map. The potential inside the rectangular region is estimated as
the linear combination of the potential at the four corners of the region. The potential
V(x, y) is defined as:

o

= m-1 n-1
Vx.y) =2, o %) (9o

m, n=
where
aj j m n are coefficients determined by continuity conditions,
1, j are used to identify a rectangular region on the map,
Xj, yj identify the ongin of the rectangular region i, j.
For each rectangular region (i, j) there are 4 coefficients (am, n) which must be
determined. They are determined by solving the system of equations formed by applying

equation (2.2:2) at each of four corner electrode sites of the rectangular region.



The bicubic-spline method of interpolation, the last method of interpolation 10 be
presented in this chapter, has not been extensively used in topographic maprring. ft s
applied over a set of rectangular regions of the topographic map. The potential V(x, y) in

these rectangular regions is determined with a set of bicubic interpolating polynomials. The

form of each polynomial is:

(2.2:3)
4

V(x,y) 2 ii

m, n-=

(x-xi)m1 (y-yj)"-l

ijmn

There are 16 coefficients (am, n) that must be determined for each rectangular region
(i, j). By application of the following continuity conditions at the 4 corners of each
rectangular region these coefficients are determined: continuity of — (1) magnitude, (2)
first partial derivative in x and y, (3) second partial derivative in x and y, and (4) cross
partial derivative in both x and y. In addition, determination of the bicubic-spline surface
requires assumptions to be made about the surface at the boundaries. For exampie, it may
be assumed that the slope of the surface in the direction perpendicular to the boundary is
zero everywhere and that the cross partial derivatives are zero at the corners. This 1s called
the clamped boundary condition or the clamped spline and is used in this chapter. A
detailed description of spline methods of interpolation can be found in Spath (1974).

An interpolated surface formed by a set cubic polynomials has curvature, unlike the
surfaces formed by the other methods of interpolation. It has been postulated that the
curvature of the potential distribution on the scalp is proportional to the flow of radial
current from the brain (Nunez, p. 196, 1981). Thus, estimates of radial current flow from
the brain can be made from topographic maps constructed with the bicubic-spline method
(Koles er al., 1989).

Three-dimensional wireframe views of the potential distribution using the
triangular, bilinear and bicubic-spline methods of interpolation are presented in figures 2.2,

2.3, 2.4 respectively. Actual EEG data was used for these figures. The wireframe view is

1ty



useful for visualizing characteristics of the interpolation techniques. The triangularly
interpolated surface is formed with a set of intersecting triangular planes that are easy 1o
identify in the figure. The bilinearly interpolated surface is somewhat smoother than the
triangularly interpolated surface. The bicubic-spline surface is very smooth and it is not
possible to visually identify the rectangular regions over which the interpolating polynomial
are calculated. Unlike topographic maps produced with the miangular and bilinear methods,
the bicubic-spline topographic maps are not restricted to have maxima and minima at the
recording electrcde sites. In addition, bicubic-spline topographic maps are more realistic
because they do not contain sharp edges or boundaries which could not exist in the actual

distribution of potential on the scalp.
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Figure 2.2 Three dimensional wireframe view of a topographic maps of actual EEG data
constructed with the triangular method of interpolation. Directions on the scalp are indicated
under the map. The potental is indicated in pvolts on the vertical axis.
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Figure 2.3 Three dimensional wireframe view of a topographic maps of actual EEG data
constructed with the bilinear method of interpolation. Directions on the scalp are indicated
under the map. The potential is indicated in pvolts on the vertical axis.
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Figure 2.4 Three dimensional wireframe view of a topographic maps of actual EEG data
constructed with the bicubic-spline method of interpolation. Directions on the scalp are
indicated under the map. The potential is indicated in pvolts on the vertical axis.



2.3 A Pilot Study

A simple pilot study was carried out to test the validity of the hypothesis:
topographic maps of the EEG are accurate and precise representations of the potential
distribution over the scalp. If the hypothesis is correct then the EEG is an adequately-
sampled, spatially-distributed signal and the spatial power spectrum of topographic maps of
the EEEG can be used as the basis of a classification paradigm for EEG analysis.

In order to fully test this hypothesis the actual potential distribudon over the scalp
would have to be known at all points and a comparison between the actual and the predicted
potentials from an interpolated topographic map would have to be made. The actual
potential everywhere on the scalp cannot normally be determined, therefore, to test the
hypothesis the following procedure was adopted. The EEG was recorded using a modified
International 10-20 Electrode System and a number of test-electrodes. The measured
potentials were projected onto a plane using the Mercator method. Topographic maps were
then constructed without using the potentials recorded at the test-electrode sites. A
comparison of the potentials measured with the test-electrodes was made with the potentials
predicted from the topographic maps. Using this procedure, the relationship between

topographic maps and the actual distribution of potential on the scalp was described.

2.3.1 Methods

EEG data was recorded from 4 normal volunteers at the University of Alberta
Hospitals' EEG laboratory. Each of the subjects (normal males, age 23 to 50) was asked to
adopt a relaxed, resting mental-state and to stay awake and alert. They were to remain with
their eyves closed. This normally induces an EEG with a strong alpha rhythm (frequency
content between 8 Hz and 13 Hz). The EEG was recorded for a 2-minute interval from
each volunteer and portions of this data were analyzed.

EEG data was recorded using two Grass model 16 EEG amplifiers connected in

parallel to two pen chart recorders and to a digital data acquisition system (Koles, 1983).



The data acquisition system digitizes and stores signals at a rate of 120 samples/second
with 12 bits/sample. Analog filters were set on the Grass model 16 amplifiers at 0.5 Hz and
30 Hz to limir aliasing in the digitized signal. Potentials on the scalp were recorded relative
to the left ear, howeve~, before processing they were wansformed to be relative to an
average-spatial reference (Nunez, p. 193, 1981).

Potentials on the scalp were recorded with the modified International 10-20
Electrode System. This system, presented in figure 2.5, is made up of the standard 19
electrodes sites of the 10-20 system augmented with 6 extra electrodes to form an
approximately regular 5x5 grid over the scalp. Mercator topographic maps were generated
using this grid. Up to eight test-electrodes were also used to record EEG signals. An
example of the test-electrode sites is also shown in figure 2.5.

Four types of EEG data were analyzed: broad-band instantaneous EEG, alpha-band
instantaneous EEG, root-mean-square (rms) EEG and alpha-band rms EEG. Topographic
maps of these types of data were considered because maps of instantaneous EEG are
similar to those commonly used in the analysis of evoked potentials and topographic maps
of rms EEG are often used in the analysis of the background EEG (Nuwar, 1988). The
alpha-band data was generated by passing the recorded signal through a digital filter
designed to pass 8 Hz to 13 Hz. This was done in an effort to reduce the complexity of the
maps and thereby presumably reduce the level of error. One hundred and twenty maps of
the instantaneous EEG were calculated from each second of recorded data and a 2-second
record was considered from each subject. The rms EEG was calculated over 0.5-second
epochs, a period that is commonly used in topographical analysis of the background EEG

(Duffy, 1986), and a 25-second record of EEG data from each subject was analyzed.
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Figure 2.5 Stylized diagram of the modified ::iternational 10-20 Electrode Systemn. The
head is projected as a circle onto a plane with the nose and the ears indicated. Electrode
sites of the modified International 10-20 Electrode System are indicated by small rings on
meridian and parallel lines which form an approximately regular 5x5 grid over the scalp.
The locations of the test-electrode are shown with small black rectangles.
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A set of parameters was used to characterize the relationship between the measured
poteniiuls (from the test-electrodes) and the predicted potentials (from the topographic
rmaps). The error signal, the difference between the measured and the predicted signals,
was first caiculated. The mean error (ME) was the first parameter used. It is the average
difference between the measured and the predicted signals. It was defined as:

2.3:1)

m.-p.
LN

N
ME = :
Z N

where
mj is the measured potential,
pi is the predicted potential from the topographic map,
N is the number of values in a record (240 for instantaneous EEG,
50 for rms EEG).
A value of zero for the mean error indicate« that the average value of the predicted
signal is equal to the average value of the measured signal.
The root-mean-square (rms) value of the error signal was the second parameter
used. It was defined as:

(2.3:2)

€

2
2 i (mi‘Pi)
rms_ = —
i=1 N

where
rmse is the rms error signal.
Equal predicted and measured signals results in a value zero for the rmse.
A regression line between the predicted and the measured potentials was calculated.
The slope of the regression line was the third parameter used. A value of 1 for the slope
indicates that a change in the mean value of the measured signal corresponds to an equal

change in the mean value of the predicted signal.



The fourth parameter used wus the coefficient of determination (r2) which is
commonly provided in regression analysis. The coefficient of determination may be
interpreted as an indicator of statistical variation of a population about the regression line. A
value of 1 indicates that the interpolated values fail exactly on the regression line while a
value ot O indicates that tiie regression line can not be used to describe the relationship
between the predicted and measured signals. The coefficient of correlation (r) is the square
root of the coefficient of determination and is commonly used to assess the linearity of the
relationship between two time series.

The final parameter used to compare the measured and the predicted signals was the
%2 goodness-of-fit statistic. It is defined as (Hoel, p. 228, 1971):

(2.3:2)

., Y (mep)?
¥~ = z R df = N-1
i=1 m,

The x2 statistic is a criterion for determining the confidence with which both the
measured and the predicted signals can be considered as samples from the same
distribution. The 2 statistic was not used in the analysis of the instantaneous EEG data

because of possible 0 values for m;.

2.3.2 Results

Before discussing the results of this study, typical examples of measured, predicted
and error signals are presented in figures 2.6, - , 2.9. These figures are representative of a
I-second record of instantaneous EEG data.

In figure 2.6 the measured signal and the predicted signals for a test-electrode site
located over the left-occipital region of the scalp are presented as time series. The predicted
signals were produced using triangular, bilinear and bicubic-spline interpolations. The three

interpolated signals appear to be similar.
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The data used in figure 2.6 may be presented as a set of points on a graph of
predicted potential versus measured potential. The set of points will form a line if there is a
linear relationship between these variables. Such a graph is presented in figure 2.7 for
bilinearly interpolated duta. The regression line between the two variables is also presented.
The slope of the line will be 1 if the measured potentials are equal to the predicted
potentials. The slope of the regression line is 0.987 indicating that, in this example, the
predicted signal slightly under-estimated the magnitude of the measured signal. The r2
value of the regression line is 0.968 indicating that 96.8% of the variance in the predicted
signal can be explained by the regression line.

The error signal of the bilinear interpolation is shown in figure 2.8 as a time series.
The error signal in this example has a mean value of -0.124 uV and a rms value of
6.52 uV. These values can be compared to the mean and rms values of the measured
signal, -1.02 uV and 25.5 pV respectively. The mean values of both the error signal and
the measured signal are small relative to signals routinely recorded in the EEG. The rms
value of the error signal is about 25% of the rms value of the measured signal. In figure 2.9

the error signal is plotted against the measured signal. There appears to be little correlation

between the error signal and the measured signal.
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Figure 2.6 Time series of the instantaneous potential from the left-occipital region of the
scalp: (a) shows measured potential, (b) shows interpolated potential using bilinear (L),

triangular (T), and bicubic spline (S) methods. These graphs represent a 1-second EEG
record.
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Figure 2.8 Time series of measured and error potentials from topographic maps constructed
using bilinear interpolation. The bilinear interpolated signal is presented in figure 2.6. The
time series represents a 1 second record of EEG data.
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2.3.2.1 Analysis of Instantaneous EEG Data

A summarv of the results from a comparison between the measured and the
predicted potentials at the test-electrode sites for instantaneous EEG data is shown in table
2.1. This table was derived from topographic maps constructad using triangular, bilinear
and bicubic-spline interpolations. Values for the parameters discussed in section 2.3.1 are
presented in this table.

The EEG data used for table 2.1 was recorded from 4 normal volunteers. There
were six test-electrodes applied to subject 1 and eight test-electrodes were applied to
subjects 2, 3 and 4. The numbers in the table are the average values over all the test-
electrodes applied to each subject. It was assumed that these average values were
representative of the entire topographic map rather than specific regions.

It should be noted that the signals recorded from the test-electrodes sites were not
completely homogeneous: larger amplitude signals were measured at peripheral locations
than in more central locations. It has previouslv been observed that the error sign:l in
topographic mapping can have a spatial dependence (Koles and Paranjape, 198¥). In this
data there appeared to be relatively farger error in the interpolations of low amplitude
signalis.

The tirst set of parameters in table 2.1 is the mean error (ME) for both broad-band
and alpha-band EEG. The mean error is always <1 uV, irrzspective of the method of
interpolation that was used. The mean error can be considered as small relative to the
magnitude of the signals that are routinely recorded in the EEG.

The rms error (rms,) is also presented in table 2.1. It can be compared to the rms
value of the measured signal. The rms error is relatively large, it is in the order of 50% of
the rms value of the measured signal for broad-band EEG, and in the order of 37% of the
rms value of the measured signal for alpha-band EEG.

Table 2.1 also indicates that the slope of the regression line (slope) for alpha-band

EEG is greater than the slope for broad-band EEG for all subjects and with all methods of



interpolation. The average slope for alpha-band EEG is 0.8841 (SD=0.095) while for broad-
band EEG it is 0.784 (SD=0.132). The slope of the regression line between the predicted
and the measured signals is <1 for all but one subject. The average value and the standard
deviation of the slope indicate that during positive excursions of the measured signal there
tend to be negative errors in the predicted signal and during negative excursions of the
measured signal there tend to be positive errors in the predicted signal. These errors are
distributed about zero and their average value is small (ie. small mean error). The r2 value
of the regression with alpha-band EEG is always closer to 1 than that found with broad-
band EEG, indicating that the regression line explains more of the variance for alpha-buand
EEG than for broad-band EEG.

The method of interpolation has only a small effect on the relationship between the
topographic map and the actual distribution of potential. The slope of the regression line in
the bicubic-spline topographic maps is closer to 1 than that for either the triangular or the
bilinear methods of interpolation. The slope i on average 0.120 (SD=0.038) greater than
the slope of the regression line for the tiangular or bilinear methods of interpolation. Cn
the other hand, the r2 value of the bilinear interpolations is generally closer to 1 than with
the other methods of interpolation. However, there are only small differences between the
r2 values of the three methods. Lastly, the rms error signal of the bilinear method appears

be the smallest followed by that for the triangular znd then the bicubic-spline methods.

2.3.2.2 Analysis of rms EEG Data

In table 2.2 results of the analysis of topographic maps of rms EEG data are
presented. The triangular, bilinear and bicubic-spline methnds of interpolation are again
used. The format of table 2.2 is similar to that used in table 2.1, however, a row indicating
the probability that the predicted signal and the mecsured signal are from the same

distribution, as determined with: the x2 goodness- >f-fit test, is also provided in this table.
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The mean error in the topographic maps of the broad-band rms EEG is larger than
that found with alpha-band rms EEG. The mean error is still small (<2uV) however,
relative to EEG signals routinely recorded from the scalp. The ratio of the mean error to the
mean value of the measured signal is a good indicator of the level of the consistent error in
the interpolation. For both the broad-band and the alpha-band EEG data this ratio is <0.05.

It was observed in the previous section that errors are consistently larger with
broad-band EEG than with alpha-band EEG. This is not seen in the results presented in
table 2.2, results for both broad-band and alpha-band rms EEG maps were quite similar.
The rms error was on average 18% of the rms value of the measured signal for broad-band
EEG and 22% for alpha-band EEG. This indicates a large improvement in accuracy in
topographic maps of rms EEG data over maps of the instantaneous EEG data.

The slope of the regression line was closer to 1 for broad-band EEG than for alpha-
band EEG (in 3 of 4 subjects). These differences of the slope for rms EEG data were
smaller than those found for instantaneous EEG data. The r2 value of the regression line is
similar for broad-band EEG and alpha-band EEG maps.

The %2 goodness-of-fit statistic indicates the probability that the measured and the
predicted signals are from the same distribution. Topographic maps of alpha-band EEG
consistently have a value of >0.80 while topographic maps of broad-band EEG have a
larger range of values. For example, in the case of subject 2 the value is 0.999 while in the
case of subject 1 it is 0.526.

The results presented in table 2.2 indicate that for rms EEG data the characteristics
of topographic maps of alpha-band and broad-band EEG are generally quite similar. The
mean error, rms error, slope and r2 value of the broad-band EEG are marginally closer to
their expected values that for alpha-band EEG, however, the %2 goodness-of-fit test shows
that the probability that the measured signals and the predicted signals are from the same

population is highest for alpha-band EEG data.
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2.3.4 Conclusions

This pilot study was designed to assess the relationship between topographic maps
and the spatial distribution of various types of EEG data. It is concluded that topographic
maps of the EEG are in fact representative of the distribution of electric potential on the
scalp. The mean value of the error signal for the maps was small for all data indicating that
the topographic maps have a low bias. However, the rms value of the error signal was
large for broad-band instantaneous EEG data indicating low precision. By restricting the
temporal frequency content of the EEG to the alpha-band, about a 20% decrease in the
percentage of rms error was obtained. By further restricting temporal frequency and
considering rms EEG data (calculated over 0.5 sec epochs) the rms error became about
20% of the measured signal. The difference in the rms error between broad-band and
alpha-band rms EEG topographic maps was small. It is concluded therefore, that
topographic maps of rms EEG data can be considered representative of the rms potential
distribution on the scalp.

The regression of the measured and predicted potentials indicated that a close to
linear relationship exists for all EEG data. The slope of the regression was generally close
1o unity and the coefficient of determination (r2 value) was generally greater than 0.7.

The method of interpolation did not significantly affect the quality of the
topographic map. No one method of interpolation was consistently better in terms of the
parameters that were studied. Interpolations based on the bilinear method appeared to have
the smallest rms error and the bicubic-spline interpolations appeared to have a slope nearest
to 1 for the regression between predicted signals and measured signals.

It is concluded that error in topographic maps is related to the sample density
(which was not varied in this study) and the temporal frequency content of EEG data. Itis
further concluded that alpha-band rms EEG data can be considered as an adequately-

sampled, spatially distributed signal on which further spatial an:ilysis may be performed.



Chapter 3

Power Spectrum Estimation

3.0 Introduction

When a glass prism is placed in the path of a beam of sunlight it causes the
disassociation of the light into its constituent components. This empirical discovery, made
by Sir Isaac Newton, was the first reported instance of spectral analysis. Robert Wilhelm
Bunsen repeated this experiment and carried it much further when he studied the light
emitted from a burning oil rag. Bunsen was able to identify specific lines in the spectrum of
the emitted light. He suggested that these spectral lines were characteristic of particular
chemical elements. Furtner he proposed spectral lines as a new method of identification and
classification of elements (Robinson, 1982).

One of the most basic features of all scientific inquiry is to identify, classify and
define natural phenomena. In order to facilitate this, there has been a significant attempt to
define natural phenomena in terms of analytic functions. Jean Baptist Joseph de Fourier
made a major contribution to this effort in 1807. In an address to the French Academy he
suggested that any arbitrary graph or signal could be defined completely by the
superposition of an irfinite number of sine and cosine functions. Thus he suggested a
unique method to define a signal in terms of an orthogonal set of basis functions. Fourier's

method still forms a corner stone of modern spectral analysis (Robinson, 1982).

3.1 Time Series

A discrete time series (xp = X, X2, . . ., XN), is a set of measurements of a process
at imes At, 2At, . . . NAt. Such a set of measurements may be generated in practice by
uniformly sampling a continuous-time signal x(t) at the rate of 1/At samples per second.

A time series is said to be deterministic if the future values of the series can be

exactly described by some mathematicai function. On the other hand, the time series is said



to be random if the future values of the series can only be described in terms of a
probability distribution function. A stochastic process is a random phenomenon that
evolves in time according to some probabilistic laws and a random time series represents
one particular realization of the process. A stochastic process is said to be strictly stationary
if its properties are unaffected by a change in the ime origin. An important consequence of

strict stationarity is that the entire probability structure of the process depends only on time

differences.

3.2 The Autocorrelation Function

Consider the time series xp, which is one particular realization of a discrete
stochastic process. The mean of this process is defined as:
(3.2:1)
Hx(n) = E[xp]
where
E denotes the expectation operator.

The autocorrelation function (ACF) of the process is defined in terms of lag, m, and

time origin, n, as:
(3.2:2)
Rxx(m,n) = E[Xn+m Xn*]
where
* denotes the complex conjugate operation.

The autocovariance function (ACV) of the process, for lag m and time origin n, is

defined as:
(3.2:3)
Cxx(m,n) = E[ (Xp+m-Hx(n+m)) (xn*-x*(m) |
In the case of a signal with zero mean the ACF and the ACV are equal. The ACF

and the ACV represent » time-domain description of the second order statistics of a



stochastic process, and they can be useful in representing and characterizing the process. A
stochastic process is said to be wide sense stationarity (WSS) if its mean and its ACF, and
thus its ACV as well, are independent of the time origin. An ACF of a WSS process
exhibits conjugate symmetry, that is:
(3.2:4)
Rxx(-m) = Rxx*(m)

3.3 Power Spectrum Estimation

The general problem of spectral estimation is that of determining the spectral content
of a stochastic process based on a finite set of observations from that process. The power
spectrum (PS), which is denoted by P(f), ¢” a stochastic process Xp is defined as
(Oppenheim and Schafer, p. 534, 1975):

(3.3:1)

P(f) = 2, R_(m) exp(-j 2 f m) -

m=-co

| —
IA
-t
IA

| —

In the characterization of a stochastic process, use of the PS is often preferred to the
ACF because a spectral representation may reveal such useful information as obscure
periodicities or close spectral peaks.

The PS, as defined in equation (3.3:1), is the weighted sum of an infinite number
of ACF values, thus the task of determining the true PS based on a finite number of ACF
values is impossible. In most situations in which the PS of an actual process is to be
determined the amount of data available is limited. This may be due to physical constraints
such as a limited data holding capacity, or other more fundamental reasons, such as a finite
duration of the process of interest. Thus, in many practical situations one must do PS

analysis based on only a subset of the ACF which is estimated from the limited data set.



3.3.1 Classical Methods

Until 1967, most of the procedures used for estimating the power spectrum of a
stochastic process were based on the classical work by Blackman and Tukey. In these
procedures, the available time series is first used to estimate the ACF for a limited number
of lags, and then the ACF is multiplied by a window function that goes to zero beyond the
largest available lag. Next, the Fourier transform of this product is determined to obtain an
estimate of the power spectrum.

An alternate procedure for estimating the power spectrum is based on the so-called
periodogram, which is defined as the squared magnitude of the Fourier transform of the
available time series. This approach has become rather popular with the introduction of the
Fast Fourier Transform (FFT) algorithm for performing discrete Fourier transforms. The
procedure results in a significant reduction in the number of computations and in the
amount of storage required for long data records. The periodogram can be shown to be
equivalent to the Blackman-Tukey approach if the ACF is estimated from data assumed to
be zero outside the measurement interval (Oppenheim and Schater, 1975).

Spectral density estimators based on the Blackman-Tukey approach and the
periodogram are said to be linear (Haykin, p. 6, 1983). A major shortcoming of these
linear estimators however, is that misleading or false conclusions may sometimes be drawn
by using them. This is a result of the fact that they all involve the use of window functions
which are independent of the properties of the stochastic process being analyzed. The
windowing problem may be particularly acute if the available time series is limited in length
so that the window on the process makes it impossible to resolve the frequency

components of interest.

Two commonly used estimators of the ACF (Oppenheim and Schafer, 1975, p.

539-540) for N values of the real time series xp are:
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(3.3:2)
1 N-Im!-1
R,,"(m) = = Z‘ox“ X, 0<m<N-1
R _"(m) = m > N-1
Rxx' (-m) = Rxx”(m)
(3.3:3)
1 N-Iml-1
R '(m) = —— X 0<m<N-1
XX N_ n=0 n m-+n
R, '(m)= 0 m > N-1

Rxx'(-m) = Rxx‘(m)

It is useful to compare these estimators by calculating their expected values. They
are (Jenkins and Watts, p. 175, 1968):

(3.3:4)

E [ Rxx"(m) ] = (N-m)/N) Rxx(m)

(3.3:5)

E [ Rxx'(m) ] = Rxx(m) Imi < (N-1).

Ryx"(m) is a biased estimator of the ACF. Its expected value is the ACF multiplied
by a triangular window. In the limit of infinite data however, the expected value of Rxx"(m)
is the ACF. Thus Ryx"(m) is described as an asymptotically unbiased estimator of the
ACF. Ryx'(m), on the other hand, is an unbiased estimator of the ACF.

The PSE based on Rxx'"(m) is called the periodogram (PG) PSE. That is:

(3.3:6)
(N-1)
PG PSE(f) = 2, R__"(m) exp(-j 2n m f)

m= -(N-l?x
The PG PSE is, however, much easier to calculate from the data directly

(Oppenheim and Schafer, 1975, p. 542) as:



(3.3:7)

1 N-1
PG PSE(D) =| 7| X x_ exp(-j2nfn)

n=0

It is interesting to determine the bias and variance of the PG PSE. The bias of an
estimator is defined as the true value of the parameter minus its expected value. The
variance of an estimator is a measure of the variability of the estimator about its expected
value. Generally speaking, an estimator is satisfactory and is said to be consistent if, as the

data available for the estimate increases, the bias and the variance of the estimator decreases

(Oppenheim and Schafer, p. 543, 1975).

The expected value of the PG PSE is:

(3.3:8)
(LWaY N-m
E [ PG PSE(D)] = 2, [—N——] R_(m) exp(-j 27 f m)
m = -(N-1)
(3.3:9)
0.5

E [ PG PSE(D)] = | W(f- &) PE&) d&
-0.5

where

P(E) is the actual spectrum of the process,

€ is the variable of integration,

W 1 Sin(ntN)-l
B(D N sin(xwf) J

o]
p4

In the limit as N tends to infinity Wp becomes a Dirac delta function and the
expected value of the PG PSE becomes the true PS. Thus, the PG PSE is described as an
asymptotically unbiased estimator.

It is not straight-forward to determine the variance of the PG PSE for most signals.

However, if the time series to be analyzed is obtained from a Gaussian, white noise



process the variance of the PG PSE can be shown to be (Oppenheim and Schafer, p. 544,
1975):
(3.3:10)

2
Var [ PG PSE(] = P(f)’ [l+ [—9] }

where
C is sin(nfN)/sin(xf).

In the limit as N goes to infinity, the second term in equation (3.3:10) approaches
zero and the variance of the PG PSE tends to the true PS squared. Thus, the PG PSE is
described as an inconsistent estimate of the PS.

The PG method can be modified to reduce its variance by averaging a number of
independent PG PSEs together. This approach is attributed to Bartlett (Oppenheim and
Schafer, 1975, p. 548). A long data record of length N, is divided into smaller segments of
length L. The PG PSE is calculated for each segment and the PSEs thus obtained are
averaged (called BA PSE here).

The variance of the BA PSE is:

(3.3:11)

. o1 [ 2 C
Var [ BA PSE] = N]:P(f) 1+[f}

|-

In the limit as N goes to infinity the variance of the BA PSE goes to zero. Thus the
BA PSE is consistent.

It is important o note that in dividing the data into segments of length L (L<N), the
bias of the BA PSE increases over that of the PG PSE of the entire data set. This can be
observed by replacing N with L (L<N) in equation (3.3:8). It is not possible to resolve fine

detail in the BA PSE because the function Wy smears these components together if they are



separated by less than 1/L. The spectral estimator is thus said to have a resolution of 1/L
cycles/sample. For maximum resolution in the BA PSE, L should be chosen as large as
possible (clearly to the limit of L=N which is the PG PSE). However, for a maximum
reduction in the variance one must choose L as small as possible, so that N/L in equation
(3.3:11) is large. Thus, the goals of low bias and low variance are in conflict and cannot be
met simultaneously. Bias must be sacrificed for variance or vice versa.

The PSE based on the ACF estimate, Rxx'(m), is called the Blackman-Tukey (B-T)
PSE. That is:

(3.3:12)
(N-1)
B-T PSE(f) = 2, R_ (m) exp(-j 2n m f)
m = -(N-1)

The expected value of the B-T PSE is:

(3.3:13)
(N-1)
E[B-T PSE®] =2, E[R_'(m)] exp (j2mfm)
m=-(N-1)
(3.3:14)
0.5

E [ B-T PSE(D] = | Wy (f- &) P&) d§
-0.5

where

€ is the variable of integration,

W 2 | sin(2nfN)
prid) = N | sin(2xf)

In the limit that N goes to infinity, the expected value of this estimator is the true
PS, thus the B-T PSE is an asymptotically unbiased estimate.

As with the PG PSE, the variance of the B-T PSE does not decrease as N increases
and the method is described as inconsistent. To obtain a consistent PSE some modification

must be made to the B-T PSE. There are a number of techniques to reduce the variance of
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the B-T PSE. One such technique is to consider only part of the ACF estimate. This can be
achieved by multiplying Rxx'(m) by a rectangular window of length L where L<<2N-1.
This has the effect of convolving the B-T PSE with the FT of the rectangular window
function of length L. The resulting PSE is smoother and has a reduced variance. It is called
B-T* PSE here. The variance of the B-T+* PSE can be shown 1o be (Oppenheim and
Schafer, 1975, p. 551):

(3.3:.5)

-+ 2L 2
V"I[ B-T PSE] =—N—P(f)

In the limit as N tends o infinity the variance of the B-T+ PSE goes 10 zero.

A second technique for consistent PS analysis is to average independent B-T PSEs
together. This is equivalent to averaging independent ACF estimates and is similar to the
Bartlett approach. PSEs based on the averaged ACF will be referred tc here as the BT
PSEs.

Both teckniques for converting B-T PSEs into consistent PSEs require that a
smaller extent ACF be used than that which can be estimated from the data. Therefore, as
with the BA PSE, these techniques for producing consistent PSEs involve trading off bias
for lower variance.

The principie conclusion wl..ch results from the study of classical methods is that
the vanance of the estimator can be reduced if an inc- ~ase in the bias is accepted. but both
types of errors can not be reduced simultaneously. If the bias is too severe or if the variance
1s too large for a given application, then other methods of PS analysis have to be
considered. If, however, the resolution is adequate and the variance 1s at an acceptable

level, the ciassical methods provide satisfactory PSEs.



3.4 Modern Methods of Power Spectrum Estimation

The classical methods of PS analysis involve the application of the Fourier
transform to windowed data or windowed ACF estimates and therefore their use requires
the implicit assumption that the unobserved data or ACF values are zero. This is normally
an unrealistic assumption and results in smearing of spectral components of the PS. Ofien
there is more information available about the process from which the data samples are taken
and it is possible to make more reasonable assumptions about the data or the ACF.
Through the use of prior knowledge or assumptions, a model of the process generating the
data may be selected. If the model is a good approximation of the generating process it is
possible to obtain a high resolution spectral estimate as well as a parametric description of
the process.

Modern parametric methods of time series analysis are divided into 3 large groups.
autoregressive (AR), moving average (MA), and autoregressive-moving average (ARMA).
These methods of analvsis generate predictive models of stochastic processes. In this
section each of these models is described followed by a discussion of some methods for
estimating the parameters of these models.

The AR approach to time series analysis is the most popular of the three modeling
methods. A model is developed which predicts iuture terms of a time series as the linear
combination of previous terms in the time series and a noise term. It is expressed
mathematically as (Ulrych and Ooe, 1983):

(3.4:1)

where

xq is an estimate of the nth value of the time series,

Xp-k are the last k known terms of the time series,

16



ng is the nth value of a Gaussian, white noise series,
ak is the k¥ coefficient of the model of order P.
The MA model of a stochastic process, on the other hand, predicts future terms of a
time series as the sum of a set of values from a Gaussian, white noise process. The model

form is (Ulrych and Ooe, 1983):
(3.4:2)

X, = i b, .y

k=1
where
qp is the nt value of a Gaussian, white noise series,
by is the kW coefficient of the model of order Q.
The ARMA approach uses both the AR and the MA models together. The
mathematical expression for this model is (Ulrvch and Ooe, 1983):
(3.4:3)

P
xn = =1 bj qn-j B kz—lak xn-k

Wold pointed out, in 1938, that all stationary time series can be decomposed into
deterministic and non-deterministic components. He suggested that a time series from a real
valued. stationary stochastic process can be decomposed as:

(3.4:4)

Yn=Uptvp
where
Yp is the time series,
u, is the deterministic component and is completely predictable,
vy, 1s the non-deterministic component.
In addition, the non-deterministic component, vy, has a MA representation such

that:



(3.4:5)
E[qp] =0
and
E[qnAm) = 6¢%0nm
where
42 is the variance of the noise process,
8,m is the krorecker delta function.

Bass ' on this approach it would appear that the best method of characterizing a ume
series is the ARMA model, with the AR model representing the deterministic part of the
signal and the MA model representing the stochastic part of the signal (Ulrych and Ooe
1983). The ARMA mode! is considered a parsimonious representation of an unknown
random process.

Parameter estimation for MA models of order Q is now discussed. Recall that the
form of the model is:

(3.4:2)

xn = i Dkqn-k

k=1

The difference between the actual value of the time series, xp,, and the estimated
value, x,', is defined as the error signal, . It can be expressed as:
(3.4:6)
= Xn” i b, 4,k
k=1
The variance of e, is:
(3.4:7)

Var{e | =E [ei] =E[(x,- q: b))

where



bold type indicate zclor

tor cxample
ln fl k ]n—k

Using the method of least squares minirnization the gradient of the variance is set to
zero:
(3.4:8)
VIElen?}] = -2E(xn-qnTb] qnT = 0

and,

(3.4:9)
E{x,q,1-E[qyTbq,}=0
Elx,q,]=0gb.

Therefore,

(3.4:10)
= Elxa,l=b
Sq

However, the problem is that E[xn qn] is not known so equation (3.4:10) cannot be
used to determine b. The information which is available is of the correlation function of Xn-
It can be shown from equation (3.4:2) that the MA ACF is:

(3.4:11)

2 i b, b for Iml <
% k % il oriml<Q
Elx x  J]= k=iml

n n+m
0 for Im! > Q

An ACF can be estimated from the recorded data in a number of ways (see section
3.2). By taking the z transform of this estimated ACF a polynomial in z is determined. The

roots of the ACF polynomial appear in reciprocal, conjugate pairs (see section 3.7) and



they can be determined by the use of, for example, the iterative Newton-Raphson method.
The zeros of the ACF polynomial which lie inside the unit circle can then be used to define
B(z) the z transform of the vector b however, this approach assumes that the coefficients of
b are of minimum phase form.

The iterative solution to the problem of MA parameter estimation is, in general.
inconvenient and if prior information is available that b is minimum phase, a much simpler
approach can be adopted (Ulrych and Ooe, 1983). This approach is now presented.

The z transform of equation (3.4:2) is:

(3.4:12)

X(z) = B(z) Q(2)
where
X(z) is the z transform of the recorded time series,
B(z) is the z transtorm of the MA coefficient series,
Q(z) is the z ransform of a white noise series.
Defining B(z)! as the inverse of B(z):
(3.4:13)
X(z) B(z)''=Q ().
Call B(z)"1= G(2)
X(z) G(z) = Q(z).
Now retransforming:

(3.4:14)

i
X - g q
0 n-k €k n

Setting ay = -gg, k=1, 2, ...
Xn=(Qp + a1 Xp.] ¥ a2 Xp2+. ...
This is the AR model of a time series and it was presented in equation (3.4:1). A

major advantage of AR modeling is that the time series can have a deterministic component.
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Often, purely AR models can be used to describe time series rather than the more complex
ARMA or MA models. This can be done because all MA models can be represented as AR
models and vice versa (Ulrych and Ooe, 1983). There are, however, some practical
limitations to this due to model size. For example. a deterministic infinite extent time series
requires an infinite MA model, and an exact representation of a finite MA model requires an
infinite AR model.

In sections 3.5-3.7 two different approaches to the determination of the coefficients
of AR models are presented. In section 3.5 parameter estimation by the least squares
method is presented and in section 3.6 the maximum entropy (ME) method is discussed.
The parallel between the least squares and the ME approach is presented in section 3.7 by

showing that the model generated by these methods are identical for one dimensional

signals.

3.5 AR Parameter Estimation - The Wiener Filter and the Prediction-
error Filter

In this section parameter estimation for AR models of discrete one dimensional
signals is presented through an analysis of the Wiener filtering problem. The prediction-
error filter, a special case of the Wiener filter is presented and it is shown that the power

spectrum (PS) of the input signal to the prediction filter may be determined from filter

coetficients.

3.5.1 Wiener Filtering
Consider a linear digital filter defined by the impulse response hg (k=1, ... , M).

Suppose that a wide sense stationary time series xp of length N is applied to the input of

this filter. The time series yp, represents the output of the filter, so that:



‘h
(]

(3.5:1)

yn = kz—‘l hk Xn-k+l

The desired output of the filter is defined to be dn and the difference between the
desired output and the actual output is defined as the error signal, eq=dp- y,. The Wiener
filter has coefficients which make the variance of e, a minimum. The variance of the error
signal, E [ley/2], is equal to the average power of the error signal, Pe.

(3.5:2)

Pc=E[len?]=E[enen*

Pe =E [ (dn-yn) (dn™* - ¥yn™) |
pe=E[dndn*J'E[dnYn*]‘E[Yndn*]'*'E[}’n)'n*]

However,
M
Yn= kz—l By Xk

Thus.

(3.5:3)
1) E[dndn*] +

M

2) _Z hk* E[ dn xn-k+1 1o+
k=1

M
3) -2 h E[x ., d* +
k=1

M M
L 4) +§ hk Z—‘l’ hj* E [ xn~k+l xn-j+l *]

The terms (indicted numerically above) in this expression can be interpreted as

either the autocorrelation or the cross correlation of the signals dp and xp. Each term in

equation (3.5:3) is further evaluated:

1) E [dy, dy*] = Ryq(0)



where

R4(0) is the autocorrelation of the signal d, at lag zero.

2)
M M
B Z hk* E[d'n xn-l'c+l *] =T 2 hk* Rdx(k-l)
k=1 k=1
where

Rgx(k-1) is the cross correlation of dy, and xp, at lag (k-1).

The equation is written in vector notaton (bold type) as:
fv1
> h N H
Ty Eldox o Fl=-hT R,

k=1

where

T
h =hl,h2,h3...hM

RTgx = Rax(0). Rdx(1), Rax(2), . . ., Rax(M-1),

The superscript T is used to indicate the transpose operator and superscript H is
used for the Hermitian operator. The Hermitian operator indicates transposition and
cenjugation of a vector.

3)

M
H
) lg:l hk E [ xn-lv;+1 dn*] = Rdx h

The above equation follows by proceeding in a fashion similar to that for term 2.

4)
M

M M
. H
2 hk 2 hj* E[xn—k+1 xn-j+1*] B kz hk Z hj* Rxx(']-k) =h Rxx h
] =1

k=1 j=1 j=1

<

The Ryx matrix is a square symmetric matrix defined by:

N
e



R =R (0 R (1) R (-2 . . . R (I-M
R (D R(0 R (D . . . R QM
Rxx('z) Rxx(_l ) Rxx( 0 )

R, (1-M) . . . R_(0)

Therefore, equation (3.5:3) can be written as
(3.5:4)
Pe = Rgd(0) - hH Rgx - RaxH h + hH Ryx h
The power of the error signal is minimized to determine the Wiener filter
coefficients, hi. The partial derivative of Pe with respect to hy is therefore set equal to zero.
Since the hg's can be complex, two sets of equations must be solved simultaneously.
However, these equations reduce to (Haykin and Kesler, 1983):
(3.5:5)
0 = - RgxH + hH Ry as Rxx = RxxH
Rxx b = Rgx

Writing this out in non-vector form

M
Z h, R“(m-k) =R (m) for m=0,1,2...M-1
k=1

This equation is called the Wiener-Hopf equation and can be used to determine the
Wiener filter coefficients, hx. Thus,
(3.5:6)
h = Ryx'! Rax
To find the minimum power of the error signal substitute for Rgyx in (3.5:4) from
(3.5:5).
(3.5:7)
Pe = Rg(0)-hH Ry, - Rg,Hh +hHR  h
Pe = R4(0) - RgyH h



'h
'h

3.5.2 The Prediction-error Filter

The prediction-error filter follows from the analysis of a Wiener filter designed to
predict future values of the time series xp (also called the Wiener prediction filter). The
desired output of the Wiener prediction filter, dp, is future values of the input signal, so that
d,= Xp41- Substituting into the Wiener-Hopf equation for d;; with x,1:

(3.5:8)
M

hk Rxx(m—k) = Rxx(m) form=0,1,2...M-1
k=1

The RHS of the Wiener-Hopf equation is now the autocorrelation of x,. This
equation indicates that the value of the ACF at lag m is equal to the sum of the previous M

lag terms multiplied by the Wiener filter coefficients. The error in the output of this filter

continues to be defined by ep and it is written as:

(3.5:9)
€n =dp - ¥n
M
en = xn B th xn~k
k=1
M
en = 2 ak xn-k
k=0
where

ap=l,a=-hy,fork=1,2,... M
Equation (3.5:9) defines the prediction-error filter because its output, ep, will be the

error in the output of the Wiener prediction filter (whose coefficients are defined in equation

(3.5:8)). Thus e is predicted from the input signal, xp, using the ay coefficients. To find
the power of the error signal substitute x4+ for dp, in equation (3.5:7).

Pc = Rdd(o) - Rdxﬂ h thus,



P.=Rxx(0)- R ,Hh but,

Rxx*(k) = Rxx('k) SO,
M
Pc = Rxx(o) - ;1 hk Rxx(-k)
(3.5:10)

a
0

P= K R (-l

M
k=

This equation defines the power of the error signal in the Wiener predicuion filter or
the power of the output of the prediction-error filter.

Combining equations (3.5:8) and (3.5:10) into a single equation results in:

(3.5:11)

N
<

M
Rxx(m) * Z -hk Rxx(m-k) = Pc m
k=1
0

3
]

.
Z

For m = 0 this is a restatement of equation (3.5:10) and for m>0 it is a restatement
of equation (3.5:8) because the second term on the LHS equals the negative of the first
term. This equation can be written in terms of the prediction filter coefficients.

(3.5:12)
M P, m=0
R k) =
;Z’oak oK) 0 m >0

The prediction-error filter can be written in a form similar to an AR model. Recall

(3.5:9)

M
€n= z 4 Xk
k=0
M

en = Xn - zhk Xnk

k=1



M
xn = kE—:l hk xn-k +en

If the error signal, ¢p, i considered to be a white noise signal and the order of the
filter, M, equal to the order of an AR model then this equation describes an AR model (see
equation 3.4:1) for the signal xp.

The power spectrum of the input signal to the prediction-error filter can be
determined from the filter coefficients. In order to show this, consider first the output of the
prediction -filter which may be written as a polynomial in z:

Pe(z) = E(2) E(1/2%)* .

Now since E(z) = A(z) X(2).

(3.5:13)

Pe(z) = A(z) A(1/2%)* X(z) X(1/z*)* .

Now since the output signal is white, when Pe(z) is evaluated on the unit circle it
has a constant value which can be specfied as 2. Thus,

o2= A(z) A(1/z%)* X(z) X(1/z%)* .

Note, however, that X(z) X(1/z*)* is the z wransform of the power of the input
signal Px(z). Now solving for Px(z),

(3.5:14)

2
O

| Az) I

—_ o
Pi® = A Aadmar

Replace z with exp(-j 27 f k),

(3.5:15)

2
(&)

Px(f) = v .
I +2akexp (-j 2mfk) P
k=1

Thus a method of determining the power spectrum of the signal x is developed

from the coefficients of the prediction-error filter.



3.6 Maximum Entropy Spectrum Estimation

In 1967, John Burg introduced his fundamental work entitled "Maximum Entropy
Spectral Estimation” at the 37th Meeting of the Society of Exploration Geophysicists. This
work started what has been described as a revolution in the field of spectral analysis
(Robinson, 1982). Burg recognized that a windowed autocorrelation function (ACF) does
not uniquely define a power spectrum (PS) and that there is in fact an infinite set of power
spectra consistent with a winaowed ACF. Therefore, additional information is required to
choose the correct (or one particular) spectrum from the infinite set. Since no further
information is provided, the PS that should be chosen is the one that corresponds to the
most random time ser. .s which is consistent with the available ACF. This approach makes
a minimum number of assumptions about the recorded data and therefore is in accordance
with the principle of maximizing entropy. Maximum entropy (ME) spectral analysis
involves finding the spectrum of the most unpredictable time-series whose autocorrelation
coefficients are in agreement with the known set of values, determined from the recorded
data (Robinson. 1982).

A simple example of the application of the ME principle to a problem of population
estimation is presented in Appendix A. In this example it is shown that when no
information is available ths intuitive and correct solution to a problem requires making no
assumption. The ME solution of ihe problem is in agreement with the intuitive solution.

A derivation of the method of ME PS analysis is now presented. This section
follows a number of imporiant references, Burg (1967), Ulrych and Bishop (1978), Lim
and Malik (1981), Robinson (1982), Jaynes (1957, 1958, 1978, 1982), Malik er al.
(1982), Haykin and Kesler (1983), Ulrych and Ooe (1983), Dudgeon and Mersereau
(1984). The approach presented in this section is iterative and although it is presented with

one dimensional signals it is applicable to multi-dimensional signal analysis (shown in

section 3.8).



h
c

The explanation of the ME method starts with a restatement of the equation defining
the power spectrum:

(3.6:1)

P(f) = z Rxx(m) exp(-j 2rx f m) -

m =-oo

IA
o)
N

B2
1| —

where
P(f) is the PS of the process x(n),
Rxx{m) is the ACF of the process x(n).
In most applications it is not possible to obtain an exact or complete ACF and an
estimate of the ACF is normally used. Irrespective of the accuracy of the esumated ACF, it
is only possible to estimate values of Rxyx(m) in the finite region, Iml < N-1, if the darta, xp,
is available in the finite inte~val O < n < N-1. When using classical methods of PS analysis.
the ACF is assumed to be zero outside the region !ml < N-1i, as discussed in section 3.3.
On the other hand, in the ME method it is assumed that the segment of the ACF that 1s
estimated from the data is exact but incomplete and through the application of the ME
principle additional terms of the ACF are determined.
The ME PSE is defined as:
(3.6:2)
MEPSE(f) = D R _A(m) exp(-j mf) + 2, R

m! <(N- 1) ‘m' >{N-1)

(m) exp(-j mf)

xx_uk

where
Ryxx*(m) are ACF values estimated from the daia,
Ry uk(m) are ACF values estimated by application of the ME principle.
The resolution of the ME PSE is increased over classical PSEs because the extent of
the ACF is increased and the arbitrary assumption that the data is zero outside the
measurement interval is removed.

The entropy, H. of a PSE is defined as:



(1}

(3.6:3)
0.5

H= j In(PSE(f)) df
0.5

This definition for entropy is extensively used in PS analysis (Lim and Malik
(1981), Robinson (1982), Haykin and Kesler (1983)), however, it is properly called the
entropy rate. It has been shown that there are many different functions that may be
described as entropy functions (Narayana and Nityananda, 1983) and maximizing any of
these functions will produce similar results (See Appendix B for a short summary of this
concept). The particular choice of the entropy function made here is for ease ot
computation. The results obtained by using this entropy function are similar 1o those
obtained from the more conventional form for er-sopy (H=-Xpln(p)).

The ME PSE is determined ty maximizing H with respect to the unknown
coefficients of ACF (Rxx_uk(m)). Therefore the partial derivatives of H with respect to the
unknown coefficients of the ACF are calculated and set equai to zero.

(3.6:4)

JdH
JR

xx_uk

=0

where
Rxx_uk are the unknown coefficients of the ACF.
The ACF coefficients which are not defined by the data, are determined by solving
equations (3.6:4) and (3.6:2) simultaneously.
Substituting for H in equation (3.6:4)
(32.6:3)

0.5 K
__a__[ | In( PSED) df | = 0
oR | -0s |
xX_uk

-



then,
.5

v _ 9 [In (PSE(f)ﬂ:I
f df =0
-0.5

|
L xx_uk

and then using the chain rule,

05 -~ 1 ) Ar
PSE(f)
J L PSE(f) oR _ * ]]df =0
-0.5 xXX_u 3

From equation (3.6:2) for a particular Ryx_uk(my),
JPSE(f)
oR

xx__uk

= exp(-j 2x f m).

Substituting this into equation (3.6:5)

(3.6:6)
0.5 1
e 12 _
” ME PSE(T) e"p”‘“fm)] df =0
0.5

This equation can be interpreted as the Fourier transform of (1/(ME PSE)).
(1/(ME PSE)) is called the inverse ME PSE (Robinson,
applicable for the terms Rxx_uk(m) which are not defined by the signal xp and thus it
applies only in the region iml > N-1.
The PSE of any process is by definition positive and therc “~re the inverse PSE is
also positive. If it is assumed that the inverse PSE is bounded, it too can be viewed as a
well-behaved PSE. It has an ACF associated with it which is called the inverse ACF and is
denoted by ¥(n).

The Fourer transform of ¥(n) is of course (1/(ME PSE)).

3.6:7)

1

2 ¥ expl | )= MEPSE(D

n=-.-x

1982). Equation (3.6:6) is

61
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This equation now looks very similar to equation (3.6:6), except that (3.6:7) is a
forward Fourier transform of ¥(n) and (3.6:6) is a forward Fourier transtorm of
(1/(ME PSE)).

Replace n with -n in equation (3.6:7).

(3.6:8)

> » . 1
2 ¥(-n) exp( ] 2 f n) =—M—E—§§a—5

n= oo

If ¥(n) comes from a real process, then ¥(n) is real and even and ¥(-n) = ¥(n). The
order of the summation in equation (3.6:8) can be reversed. Thus, this equation becomes u
backward transform.

(3.6:9)
1

¥(n; j = ——————
Z (n)exp( j2r fn) ME PSE(D

n= -oo

Changing the direction of the transform in equation (3.6:9),

(3.6:10)
0.5

1
—_—— 10 - = LW
j ME pany CXPL) ST In) df = ¥(n)
05

It is thus shue iaat equations (3.6:6) and (3.6:10) are equivalent and it is clear that
¥(n) = 0 for Inl>(N-1).
The ME PSE must be consistent with both equation (3.6:2) and equation (3.6:7).
These equations can be written in a concise form:
(3.6:11)
PSE(f) = FT(Rxx (m))
(3.6:12)
PSE(f) = 1/FT(¥(n))

The constraints on these equations are:



For (3.6:11) Ry x(m) = Ryx"(m) for imi < (N-1)
For (3.6:12} ¥(n) =0 for Inl > (N-1)
They may be writien as a single equation:
(3.6:13)
FT (Rxx (m)) = I/FT(¥(n))
An iterative algorithm for ME PS analysis has been deveioped by Lim and Malik
(1981) which is based on equation (3.6:13). In figure 3.1 a simplified version of this
algorithm is presented in the form of a flowchart. By appropriate selection of the initial
estimates and gradual correction of Rxx(m) and ¥(n), this algorithm has been shown to
always converge.
Start
U
Ininal estimate of ¥(n)
U
—  Rux(m)=FT-1 ((1/ FT(¥(n))))
i
Stop if Ryx(m) is satisfactory = ME PSE(f) = FT(Rxx(m))
4
Correct Ryx(m) for Iml < (N-1)
4
¥(n) = FT-1 ((1/ FT(Rxx(m))))
4

— Correct ¥(n) for Inl > (N-1)

Figure 3.1 An iterative algorithm for ME PS analysis (Lim and Malik, 1981).



The algorithm can be applied to multidimensional PS analysis. A com; "=te

description of this algorithm fcr =wo-dimensional signal analysis is presented in section
3.8.

3.7 Equivalence of the Prediction-error and Maximum Entropy Power
Spectrum Estimates

In this section it is shown that the PSE from the prediction-error filter is identical in
form to the ME PSE for one dimensional signals. It generallv tollows work presented by
Haykin and Kesler (1983). It has been shown in section 3.6 that the ME PSE has an

inverse ACF, ¥, which is of finite extent. This is expressed mathematically as:

(3.7:1)
1 (E)
——————= 2 ¥(n) exp(-j 2n f n,
ME PSE(f) ,-"®.1) ) xped )

Recalling the Wiener-Khintchine theorem, that the PS and the ACF are Fourier

transform pairs, the ACF is equal to,
(3.7:2)
0.5

1
R _(m)=— P(f) exp(j 2w f m) df

2
ZTC 05

Substitating into equation (3.7:2) for P(f) with ME PSE(f),
(3.7:3)

1 )
Rn(m) =— o exp(j 2n f m) df

¥(n) exp(-j 2w f n)
n={N-1)

Set,

z=exp(j 2n ) dz=j2mexp(j2rf)df

04



Jj2rexp( 2nt f) j2rtz
Therefore,
(3.7:4)
1 z" dz
Rxx(m) = 2¢ N-1 e
: - z
jan .
¥(n)z
n=-(N-1)
and,
1 zm-l
R, (m)=- 2@ 3 dz
j4n -n
¥(n)z
n=-(N-1)

This is a contour integral and it is carried out over the unit circle in the z plane in a

counter-clockwise direcdon. It can be shown that ¥ can be wrnitien as:

(3.7:5)
N1
¥(2) = 2 ¥(n) 27 = G,,(2) G, (1/z%) *
n=(N-1)
where

M
GM(Z) = Zgn Z-n
=0 M
ST Y
n=)

This implies that the polynomial ¥(z) can be factored into two polynomials G(z) and
G(1/z*)*, that have poles and zeros in reciprocal locations. This can be shown by doing a
change of variable in ¥(z) and replacing z by (1/z*). The poles and zeros of ¥(1/z*) should
be at reciprocal and conjugate locations to the poles and zeros of ¥(z). However, their

locations do not change in this way. Consider:



(§13]

(3.7:6)

N-1) 1 TN
= S 2] s

n={N-1) n={N-1)

Substituting for n with -n,
{N-1)

¥(1/2*) = Z ¥(-n) ()"
n=(N-1)

But ¥(r:)*-=¥(-n) for any autocorrelation function and making the summaton in

ascending order:
N-1)
Yoo 2¥(n)* (z*)"
=N-1)

Grouping the conjugated terms together.

(3.7:7)
Favy 1 .
¥(1/z*) = {z ¥(n)z" } = [¥(2)]
n=MN-1)

From this equation it is observed that the poles and zeros of the function ¥(1/z*) are
at conjugate but not necessarily in reciprocal locations to the poles and zeros of the function
¥(z). This can only happen if the roots of ¥(z) occur in pairs wiirch are related by being
reciprocal. Thus ¥(z)=¥(1/z*%)*.

Therefore ¥(z) can be written as the product of two functions, G(z) whose poles
and zeros are inside the unit circle, and G(1/z%)* whose poles and zeros are outside the unit
circle and are reciprocals of the poles and zeros of G(z).

Recall:

(3.7:4)

1 y4
R, (m)= j 4n2§> — dz
2 ¥(n)z"
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Substituting with ¥(z) = G(z) G(1/z*)*,

m 1
R = — dz
(m) ; 4l é G(z) G(1/z%)*
Now multiply on both sides by G(z) to get,
m i
Z g R, (mk) = ﬁ G@) G(l/z*)* G(z) dz
Which can be written as,
(3.7:8)
M i Zm-l
R k)= dz
kz:;o gk .\x(m ) J 4' éG( 1/2*)*

Now G(2) is defined as a polynomial with zeros inside the unit circle. G(1/z%)* is
defined as a polynomial with zeros outside the unit circle. Thus the RHS of the above
equation is analytic on and inside the unit circ's for m>1. For m=0 there is a single pole at
z=0). Now using the Cauchy's Residue theorem, the contour integral is zero for m>0 and is
the residue for m=0. Therefore evaluating the RHS for m=0 at z=0.

(3.7:9)
1

M

) *
&R, g =| 2 8D
k=0 0 m21

Now this equadon is similar to the equation

(3.5:1 )
. Pc m=0
2 R, (m-k) =

This equation defines the prediction-error filter and is an autoregressive model for
the signal x,. Thus, the ME equations are only scalar multiples of the prediction-error filter

equations if,



(3.7:10)
: %
gk_ o go* Pc <
Recalling that ag = 1,
1

, 2
808" =g =
2n P
[

The similarity of these two sets of equations for determining the autocorrelation of
xn implies that the PSE of the prediction-error filter and the ME method are the same for
one dimensional signals. In two or more dimensions, however, some differences exist
between these methods. This is due to the non-uniqueness of the prediction-error approach
in multidimensional signal analysis. The analysis of multidimensional signals by the ME

approach is discussed further in section 3.8.

3.8 A Description of the Lim and Malik Algorithm for Two
dimensional Maximum Entropy Power Spectrum Estimation

The problem of power spectrum (PS) estimation of two dimensional signals arises
in many fields such as, seismic signal processing (Woods, 1976), image processing
(Andrews and Hunt, 1978), radar (McDonough, 1983) and sonar (Baggeroer, 1978). This
problem has received considerable attention and a variety of techniques have been
developed.

The technique for ME PS analysis for one dimensional signals has been shown to
be equivalent to AR modeling by the least squares method. The least squares solution is
theoretically tractable and computationally attractive however, it does not extend in a
straight-forward manner to the analysis of two dimensional signals. Presently there are no
methods that can provide an exact solution to the problem of multidimensional ME PS
analysis. As suggested in section 3.6, however, the iterative method (figure 3.1) proposed

by Lim and Malik (1981) can be used in spectral analysis of multi-dimensional signals.

ON



In the absence of a closed form for the ME solution. it is important to know the
conditions under which the ME solution exists and is unique. In this regard, Woods (1976)
has shown that given an ACF in the region w, which is part of some positive definite
(Fourier transform is positive for all frequencies) correlation function, a solution for the
ME PSE exists and is unique.

The iterative method is now discussed further. The outline of the method that was
presented in section 3.6 cannot be used directly to obtain ME PSE without some
modification due to the problem of zero-crossings in the power spectrum. Specifically, the
algorithm requires two inversions of the spectral estimates in each iteration, and thus the
algorithm cannot continue if the PSE has a zero crossing at any stage of the iteration.
Unforwunately, zero crossings can occur in two different ways in each iteration. One is the
correction of the ACF and the other is the truncation of the inverse ACF. To see this, let
Ry™ represent the mth estimate of the ACF and ¥m represent the mth estimate of the inverse
ACF. Suppose that the following conditions hold:

(3.8:1)

FT(Ry™) >0 for all frequencies
FT¥m) >0 for all frequencies

and
1

qf —
¥ = FT FTRD) | ¥

where
I for known region of ACF

0 fcr all other regions

Similarly, let ¥m+1 and Rym+1 represent ¥ and Ry after the m+1th iteration. In the

iterative algorithm of figure 3.1 ¥m+! and Ry™+1 are obtained from ¥m by:

o



(3.8:2)

1
, g
R'(m) = FT [F’I’(’ém(n)) }

m+1

Ry {(m) =R'(m) + (Rx(m) - R'(m)) w(m)

1
v — -1 m+
¥'(n) =FT [FT(RV'I(m)) :\

and
g ¥'(n) for known region
¥ (n) =

0 otherwise

From these equations it is clear that R' is positive definite since ¥™M is assumied to be
positive definite but Rym+! may not be positive definite due to the window, w.
Furthermore, even if Ry™*! were positive definite so that ¥' is positive definite, ¥™+! may
not be positive definite, again due to w.

To ensure that the resulting Ry™+!1 ana ym+! are positive definite so that the
iterations can be continued, some modification are made. Specifically, Ry™*! is obtained
by linearly interpolating between R’ and the known values of the ACF, and ¥™+1 i
obtained from linearly interpolating between ¥' and ¥™. In the modified algorithm, ¥m+i
and Ry™+! are obtained by:

(3.8:3)

R (m) = Rm) + (1 - a,,_ )R (m) - R(m)) w(m)

and

m+1

¥ my=B__ ¥ () +(1-B__)¥(n)wn)

m+1 m+1i

These equations reduce to those in figure 3.1 when a;m=0 and Bm+1=0. Any other
choice of ap, represents a non-ideal correction of R' with the known values of the ACF,

and larger values of a, corresponding to more non-ideal corrections. With the appropriate



choice of am, however, the resulting Ry"“" can be guaranteed positive defiiite. This can
be seen by noting that since ¥™ and therefore R’ are assumed to be positive definite, then
by considering am sufficiently close to 1, Ry™+! can be made arbitrarily close to R'.
Similarly for ¥™M, with any other choice for B, other than B,=0, a non-ideal correction to
¥ is made, but it can be shown that with the proper choice of B, ¥m+1 can be guaranteed
positive definite. Therefore, by choosing am and B, in the ranges 0<ap,<1, 0<Bm<1, the
spectral zero crossing problem can be avoided so that the iteraticss can be continued.

A flowchart of the Lim and Malik algorithm is presented here for two-dimensionai

signals and a list of symbols used in the flowchart is presented in table 3.1.

-

1



3.1

A list of the symbels used i figure 3.2,

correction factors

convergence factor

acceptable mean square eiror

mth mean square error

window function which when applied to Ry, produces the known
pOrtiOrl of Rxx

true ACF

estimate of ACF frorin current ¥Mm
mth estimate of the :utocorrelation function after correcting R’
estimate of inverse nute.orrelation function from current Rym

mth estimate of inverss 2utocortelation functioan after correcting ¥
Current estimate of power spectrum

=FT(Ry™) or
= L/FTG) .
Current estimate of inverss power spectrum

=1/Pn,
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Figure 3.2 Flowchart of the Lim and Malik algorithm for maximum entropy spectral

estimation.
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SECTION 4H

Figure 3.2 Flowchart of the Lim and Malik algorithm for maximum entropy spectral

estimation. (continued)
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SECTION 7}
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FT(¥ (nn))>0 ?
NO
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min
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Figure 3.2 Flowchart of the Lim and Malik algorithm for maximum entropy spectral
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SECTION 9) \L/

Incrcase size of ¥(n.lr12)

by padding

FT(¥(n;ny))>0 ? _\'L__{_m

YES
O
E>E ? : I ———
0 { LAR(‘L;RPSL1
YES

1
FT (¥ (n;n,))

P(f1f2)=FT(R' (n n,)=

Figure 3.2 Flowchart of the Lim and Malik algorithm for maximum entropy spectral
estimaution. (continiued)
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In this flowchart modifications for zero-crossings are included, as is a test for
determining if the algorithm has converged. The algorithm. which has been divided into
nine sections, is now discussed.

(Section 1) In this section of the algorithm, various parameters are initialized. The
parameters are set o:

ag=0, By=0, Eg =104, ¥0(0.0) = 1/Rxx(0,0), k =0.5

The inverse ACF, ¥9, is non-zero only at (0,0" so that its FT, Q,, is a constant. Pn
1s theretore also a constuant and is positive and the ACF, R’, then is non-zero only at ({).0).
The first estimates ot ¥ 'nd R’ are positive definite and all subsequent estimates are made
such that they reiaain positive definite.

(Secuon 2) In this section of the algorithm, the ACF, R/, is estimated from the
inverse ACF. ¥, The equation which relates these two functions is:

R' = FT-}( 1/FT(¥m) )

(Section 3) In this section of the algorithm, the important decision of when the
algorithm has converged is raade so that iterations can be stopped. It is considered that the

algorithm has converged when the following condition is satisfied.

Zz[ Rx(nlnz) - R'(nlnz):i?.

ﬂ) nz
= <
Em-rl 2 - EO
>3 Rmny]
l"l1 nz
Clearly, if Em+1=0 and R’ is computed fro— ~~  sing an infinite extent Fourier
transforia then the resulting solution corresponds : ME PSE. However, due to the

finite extent of R' and finite precision &-ithmetic usc .t is not possible to reduce the error
exactly to zero and a larger value must be used for Eg. When the current error level, E;n4
gets below Eq) execution of the algorithm goes to section 9.

If Em+1 is not below the acceptable level, then a test is performed to determine if

Em+1 is below the previous error level, Ep,. In most cases Eq+ 1<Em and execution goes to



section 4. If Em+1>Em, 254+ 1S increased to (l1+ap)/2 and k i1s decreased to k/2. This
reduces the rate of convergence of the algorithm. Section 4 is then exzcuted.

(Section 4) In this section of the algorithm, the currection factor, ap ., 1
determined. There are two conflicting criteria that must be considered when choosing the
correction factor. The first is to choose as small a factor as possible, so that R’ converges
quickly to Rxx. The second is to use a large correction factor (which is less than one), so
that the corrected estimate of the ACF, RM+1, remains positive definite.

If FT(R' w) > FT(Rxx W) then the correction factor is not changed. If FT(R' w) <
FT(Rxx W) then the algorithm is converging too rapidly and the value for ap+) must be
changed. The method of selecting the correction factor requires consideraiion of how the
corrected ACF estimate. Rym”, is calculated from the current estimate, R'. This is done in
section 5.

(Section 3) In this section of the algorithm, Ry™+1 is calculated as a linear
combination of R' and R« in the region defined by w and is R’ outside the region defined
by w. The correction to Ry™+1 is described by:

r + - .
R(nln:) for n,n, notin w

v ! amH(R'(nlnz)) -+ (l—amﬂ) (Rxx(nan)) for n,n, inside of w

This equation can be rewritten as:

RyM+1 =R -R'w + Ryx (I-apm,p) W+ Riap W
R,m+! =R + (-R'+ R ap,p) W+ Rux(l-amy)w
Rym*'1 =R'-R' (1 -ap,,1)w+Rxx(l-ape) W

Ry™*1 =R +(1-2am,1) (Rxx- R w

Now, am+1 is determined as follows:

For Ry”f“*l 1o be positive definite, FT(Ry™+!) > 0.

-4

.



FT(RV) + (l'am+l) W( (Rxx - R')W) > O

|FT (R) > (1-ap4q) | FT ( (Ryx - R w) |
|FT (R) 1/ I FT ( (Rxx - ROW) I > (1-ap,1)
-1+ 1FT (R)I/IFT ( (Ryx - R )W) I > -2,

a1 > 1 - { IFT(R)I/1FT ((Rex - R)w) | }

This equation defines the smallest value of ay,; thnt can be used for Ry™+! 10
remain positive defirite. In the algorithm of Lim and Malik, a4 is defined as:

dm+el =1 -{min ! FT(R) I/ Imin{ FT { (Rxx-R')w) )1}

The smallest value of FT(R') ~nd the smallest negative value of FT(R,«-R") are
used in calculating am,:i. These - il in general, occur for different (ny, n2).
However, the use of tlicse terms «. ... insure that the a1 is larger than that defined
previousiy and is a safe value for ap, ;. This choice is, however, at the expense of rapid
convergence.

Returning to the calculation of the ap, ., it is defined in the algorithm by:
min ( FT (R'(nn,)) ]
ey = Max L0, (- K Tin OFT ((R (n)n,) - Ri(nyny) win a )i D]

The k term is described as an additional convergence factor and is, in fact,
empirical. It makes ap,,; even larger than the minimum value defined previously. It also
results in a decrease in the speed of convergence.

(Section 6) In this section of the algorithm, the inverse ACF, ¥, is estimated. This
section is similar to section 2 but R' and ¥' are interchanged and ¥' is determined as:

¥ = FT-1(1/FT(Rym+1) )



(Section 7) In this section. the correction factor for ¥m+1 B .. is calculated. As
in section 4 one must study how ¥mM+1 is calculated before one cun see how By is
calculated. This is done in section 8.

(Section 8) In this section ¥m+1 is

¥l B )+ (U-B_ ¥ w

determined using:

If Bpet = O then ¥M+1 js ¥M multiplied by a window function. This satisfies the
constraint that the inverse ACF is a spatially limited function (see equation (3.6:12)). Bni+i
is made non-zero only if ¥' is not positive definite. If Bm+1 is set equal to 1, then the
previous estitaate, ¥™M, is used as ¥™+*1 and execution of the algorithm is set back one
iteration. ifowever, the ap, term is now smaller and a new inverse ACF is calculated.

As with the determination of am+] the determination o

i -nds on the

associated ACEF, in this case ¥M+1_ Recall that:

) w

ymrls ¥ )+ ¥ (1B

m+1
In order that ¥M+! be positive acrinite.

B IFT(¥)i>Q0-p ) IFT ¥ wl

FT¥M o OB

TFT (¥ w) | o
m--1

FFT ( ‘{W} !

TET (¥ w1 Pma > B
n
_I__FI‘_____(¥’ )| + B > 1
TFT (¥ w) | m+1

[ FT (¥ w) !

Bm-&—l> N
IET (¥ w) |+ IFT (¥ 1

This defines the smallest By+1 that can be used in the prediction or correction of

ym+1 However in the algorithm the following is used:

S



_[1+ -k l-l‘ﬁ.i
ﬁm‘] _L ( ) ( 5 J ] B
where
B is the B+ that was defined above.

Thus the B, which is actually used in the algorithm is larger than that required
and the rate of convergence is slowed. From the new estimate of ¥m+1 3 new R' can be
estimated and the algorithm can be continued in this cyclic fashion.

The algorithm is executed through these eight sections until the error, Em+1
decreases to below an acceptable level Eg at which point execution jumps to section 9.

(Section 9) This section is executed when the current error, Em+1, 1s smaller than
the acceptable error, Eg. The current inverse ACF, ¥, is padded so that its dimensions are
doubled and its FT is calculated. This is used as a test for positive definiteness. The FT of
the padded ¥ has a higher density of samples in the frequency domain than the unpadded
function and zero crossings in between the frequency samples of the unpadded function
may be detected by this procedure. If no zero crossings are found, the PSE associated with
the inverse ACF is considered to be the maximum entropy power spectrum. If however
zero crossings are found, the extent of the PSE used is not adequate and the algorithm must
be executed again with a larger extent PSE.

This is a detailed description of the Lim and Malik algorithm. However, to really
appreciate its mechanics one must be intimately familiar with the maximum entropy method
as well as Fourier transform theory.

Lim and Malik (1981) state that they have empirically observed that the ACF, R,
zventually converges to Rxx if Ry is part of a true ACF. However, when estimating ACFs
from data, one is never sure that the estimate Ryx is part of a true ACF. Thus, if the
execurion does not result in convergznce of R' to Ry then it may be concluded that the Ryx

provided was not part of a valid ACF.



3.9 Statistical Properties

Since the ME spectral estimator is non-linear, it is in general not possible to obtain
an analytic expression for its statistical properties. This is one of the major shortcomings of
the non-linear techniques of PS analysis. However, the asymptotic properties of the ME
have been determined (Ulrych and Bishop, 1975) and can be compaied to those of the
classical estimators. 't has been shown that the ME spectral estimator is asymptotically
normal and unbiased (Haykin and Kesler, 1983). In other words, when both the number of
samples, N, and the order of the filter, M, are sufficiently large, then:

(3.9:1)

E[ME PSE] = Prne

Var [ME PSE] = (v/2)P21e
where
PTre 1s the actual PS of the process,
E is the expectation operator,
v=N/M.
These asymptotic expressions are of the same form as expressions for the mean and

variance of the BA spectral estimate (discussed in section 3.3) and they are valid if the

spectral estimate is reasonably smooth.

3.10 Conclusions

This chapter discusses both classical and modern methods of spectral estimation.
The short-comings of the classical methods are that the variance of these estimators can
only be reduced if increased bias is accepted and that the classical methods require
unjustifiable assumptions to be made about the data not in evidence. The moder. methods
of spectral analysis on the other hand, 2ssume a model for the recorded data and avoid

assumptions about data that is unavailable. Of the mcdern methods considered, the ME



method appears to be most suitable to the analysis of EEG topographic maps. The ME
approach is shown to be equivalent to AR modelling for one-dimensional signals and it
extends logically from one to two dimensions. The bias and variance of the ME PS
estimator is shown to be asymptotically equivalent to that of the classical spectral

estimators.

x
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Chapter 4
Bartlett, Blackman-Tukey and Maximum Entropy Power

Spectrum Estimates of Simulated Data

4.0 Introduction

The theoretical bases of the Bartlett (BA), Blackman-Tukey (BT) and maximum
entropy (ME) methods of power spectrum estimation have been discussed in Chapter 3.
These methods are now applied to simulated data of known power spectra (PS). The power
spectrum estimates (PSEs) thus obtained are compared with the true PS to determine the

applicability of these methods to actual EEG data.

4.1 Methods

The simulated data used in these tests was made up of a deterministic sinusoidal
process and Gaussian white-noise. The sinusoidal process was defined in terms of spatial
frequency components, fjand f, indicating frequencies in the lateral and sagittal directions
respectively. Frequencies were normalized to the sampling rate so that a sinusoidal signal
of wavelength equal to the distance between sample points had a frequency of unity.

| The simulated data, x(n1, n2), was defined by,

4.1:1)

x(ng, ny) =

.MZ

a sin{ 2m fli n, +21 f2i n, + ¢i Y+ b N(nl, n,)
i=1

where
aj is the amplitude of the ith sinusoid,
b is the amplitude of the noise process,
nj, ny are orthogonal spatial variables,

¢j is the phase angle of the ith sinusoid,



N is a Gaussian white-noise process of zero mean and unit variance,
M is the number of sinusoids in the data set.

PSEs of real, 2-dimensional sigr :Is (such as x(nj, n2)) are radially symmetric
about the origin. The PSE of an infinite-extent sinusoidal wave, for example, contains two
impulse functions located at a distance of 2r/wavelength from the origin and oriented at the
angle of the wave (ie. tan-1(f3/f]) from the horizontal).

L.t most practical situations the amount of data available for PS estimation is limited
by physical constraints. This can be modelled by an infinite-extent signal multiplied by a
finite window function. PSEs from a limited amount of data are naturally affected by the
window function. In the case of a sinusoidal signal, the imnulse functions in the PSE are
convolved with the point spread function associated with the window producing peaks of
finite width. In the results presented in this chapter the data size was limited to 5x5 which
represents an acceptable number of samples from a topographic map.

PSEs are also affected by the noise level in the data. The noise level was defined
here by the signal-to-noise ratio (SNR):

(4.1:2)
M

a.
SNR = 20 log Z; i

b

As the SNR decreases the background level of the PSE increases and peaks in the
PSE become more difficult to identify. Malik er al., (1982) have studied the properties of
two dimensional ME PSEs. They observed that an increase in th.  oise level also results in
an increase in the width of the peaks in the ME PSE.

A standard technique for reducing variance in PS estimation is 10 average over a
number of independent data sets (Oppenheim and Schafer, 1975 p. 548). This reduces the
effect of noise and thus refines or smooths the PSE. Each PSE of simulated data in these

tests was averaged over 15 independent data sets each with fixed SNR.



The array size of the PSEs in these simulations was 64x64. A common array size
for all PSEs was used to facilitate comparison of the results. This 64x64 size was adopted
because PS estimation requires the calculation of the DFT. This is most efficiently done via
the FFT algorithm which requires the dimensions of the PSEs to be an integer power of 2.
The PSEs presented here are therefore quantized at intervals of (1/64, 1/64), ie. (0.0156,
0.0156).

As discussed in Chapter 3, the BA PSE is calculated directly from the data while the
BT and ME PSEs are calculated from an ACF that is first estimated from the data. The size
of the ACF estimate used for these tests was 7x7. The ACF was estimated using:

(4.1:3)

| Nyl Nyl
1 )
ACF(m] m2) = N N x(n1 nz) x(n-m

m
1 2 2 n=m; ny=m,

p Nymy)

where

mi, mp are orthogonal spatial variables in the correlation domain.
‘tv.. ME PSE was calculated using the Lim and Malik algorithm which was
presented in Chapter 3. The ME PSE was determined after 30 iterations of the algorithm as

there was litile change in the PSE during the final iterations of the algorithm.

4.2 Results

4.2.1 BA, BT and ME PSEs

In figure 4.1 greylevel plots of PSEs obtained using the BA BT, and ME methods

are presented. They were produced from a simulated sinuwe ¢ signal of frequency
(0.15, -0.15) with no noise component. These plots show tha b+ -ad of the frequency
domain, that is, the horizontal axis indicates frequencies in the .. direction from -0.5 to

+0.5 and the vertical axis indicates frequencies in the sagir:: :hiection fro— -0.5 to +0.5.



The origin of the PSE is in ihe center of the plot. The highest point in the PSE is
normalized to O dB anflis indicaled by white The region between O dB and -3 dB is black
and the region below -3 dB is grey. It is observed that the -3 dB contour around each peak
is approximately circular for the BA and BT PSEs. The 0 dB 1o -3 dB region for the ME
PSE is so small that quantization in the frequency domain distorts its shape. Figures 4.2,

4.3, 4.4 are 3-dimensional wireframe views of the PSE<. This :ype of view provides in

overall picture of the PSEs.
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Figure 4.1 Greylevel view of the BA, BT and ME PSEs. Zero dB is indicated by white,
<) dB to0 -3 db is indicated by black and <-3 dB is indicated by grey.
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Figure 4.2 Three-dimensional wireframe view of a BA PSE for sinusoidal signal
(0.15, -0.15) on a 5x5 data grid with no noise.
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Figure 4.3 Three-dimensional wireframe view of a BT PSE for sinusoidal signal
(0.15, -0.15) on a 7x7 ACF and no noise.
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Figure 4.4 Three-dimensional wireframe view of a ME PSE for sinusoidal signal
(0.15, -0.13) on a 7x7 ACF and no noise.



4.2.2 Effects of Frequency

The effect of the frequency of the simulated signals on peaks in the PSE was
considered. PSEs were analyzed in terms of peak-position, defined as the location of the
highest point in the PSE, and peak-width, defined as the radius of a circle of area equal to
the -3 dB contour around a O dB peak in the PSE.

The results of BA, BT and ME PS analysis are summarized in table 4.1. The table
is divided into four sections. In the first section the results of PS analysis of a constant
value data set are presented. The second and third sections deal with signals in purely the
lateral and sagiutal direciions respectively. The fourth section presents results for signals
with equal components in both the lateral and sagittal directions. The simulated data used
for this table was free of noise.

From table 4.1 it is observed that the peak- widths are consistently largest in BA
PSEs, followed by those in BT PSEs and they are smallest in ME PSFEs. The errors in
peak-position are generally small (near quantization level). However, a pattuin of error in
peak-position is observable from table 4.1. The largest error in peak-position occurs for
sinusoidal signals with frequencies close te the origin or the folding frequency (sampling
frequency divided by two) of the PSE. For example, the BA and BT PSEs of the
sinusoidal signal (0.075, 0.0) have a peak-position of (0.0, 0.0) The error in peak-position
is due to the large peak-width associated with these methods of PS estimation. The
constructive interference of the 'mirror' peaks (at (0.075, 0.0), (-0.075, 0.0)) in these
PSEs produced the large, 'false’ peak at the origin. Similar effects are observed in the BA
PSE for the sinusoid (0.425, 0.0) in which the peak-position in the estimate is (0.5. 0.0).

Figure 4.5 summarizes the results in table 4.1. It shows an outline of the base band
of a PSE and indicates the regions in which the interference between 'mirror’ peaks causes
errors in peak-position. The size of the special regions in figure 4.5 may be estimated from

table 4.1. The size appears te be related to the method of PS estimation used and is
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OCrient.

Constant
value

Lateral

Sagittal

Lateral &
Sagittal

True Freq.
(Lat, Sag)

(0.000.0.000)

(0.075,0.000)

(0.175.0.000)

(0.425.,0.020)

(0.000,0.075)

(0.006.,0.175)

(0.000,0.425)

(0.075.6.075)

(0.175, 0 175>

(0.425.,0.425)

Table
Results of PS analysis of sinusoidal signals using the
BA, BT. and ME methods.

Method
(BA/ BT/ ME)

BA
Bi
ME

BA
B1
ME

Ba&
BT
ME

BA
BT
ME

BA
BT
ME

BA
BT
ME

BA
BT
ME

BA
BT
ME

BA
BT
ME

BA
BT
ME

Peak-position

(Lat, Sag)

(0.000,0.000)
(0.000,0.000)
(0.000,0.000)

(3.000,0.000
(0.000,0.000)
(06.078.,0.000)

(0.172.0.000)
(0.172,0.000)
(0.172,0.000)

(0.500,0.500)
(0.500,0.000)
(0.422.0.000)

(0.900,0.000)
(6.000.0.000)
(0.000,0.078)

(0.000,0.17:
(0.000,0.172,
(0.000,0.172)

(0.000.,0.500)
(0.000,0.500)
(0.000,0.422)

(0.063.0.063)
(0.663.0.063)
(0.078,0.078)

(0.172.0.172)
(0.172.0.172)
(0.172.0.172)

(0.422,0.422)
(0.422.,0.422)
(0.422.0.422)

Peak-width

0.065
0.062
0.009

0.083
0.073
0.018

0.091
0.083
0.009

(3373
0.08

0.015

0.033
0.677
0.C138

0.088
0.082
U005

0.083
0.073
0.018

0.089
0.086
0.009

0.095
0.089
0.009

0.097
0.089
0.009

()'
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Figure 4.5 Base band of the 2-dimensional PSE with the special regions (E)
where larger error in peak-position occur indicated.



approximately equal to the peak width. Average values of the peak-widths from table 4.1

are: 0.086 for BA PSEs, 0.078 for BT PSEs, and 0.012 of the ME PSEs.

4.2.3 Identification of Two Sinusoids

To determine how well the frequencies of two different sinusoidal signals can be
predicted from the PSEs a set of simulations was performed. The special regions of the
frequency domain (figure 4.5) where errors occur in the PSE were not considered. The
three methods of PS estimation (BA, BT, ME) were again used. The sinusoids in the

.imulated datu sets had frequency components of equal magnitude in the lateral and sagiuai
directions. As the true position of the peak was known, identification of the peaks was
based on visual detection.

Table 4.2 presents a summary of results of this analysis. The first column of table
4.2 indicates the true frequencies of the sinusoidal signals in the simulated data. The next
column indicates the method of PS estimation used and the third column presents the
frequencies at the positions of the peaks in the PSEs. In order to further emphasize the
distinctness of the peaks in the PSE an additional criterion was used. The column labelled
'3 dB distinct' indicates that the trough between the two peaks in the PSE was at least 3 dB
down from the lower of the two peaks.

The results presented in table 4.2 begin with sinusoids widely separated in
frequency and the separation in frequency is gradually decreased through the table. When
the two sinusoids are widely separated in frequency two distinct peaks appear clearly in the
PSE. As the frequency separation decreases the two peaks in the PSE begin to interfere
with each other. Below a minimum separation of the frequencies the peaks in the +SE
merge and produce a single 'false' peak.

Table 4.2 shows that the PSE of the BA method has '3 dB distinct' peaks for
sinusoids separated in frequency by 0.20. The PSE of the ME method has '3 dB distinct’

peaks for sinusoids sepurav:d n irequency by 0.125. It is interesting to note that this

()\
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Table 4.2
The results of PS analysis of two sinusoidal processes on a uniform grid using
thc BA. BT and ME incthods (frequency scparation 0.200 - 0.075)

True Freq. Method Pecak-position 3 dB Distinct
(L.at, Sag) { BA/ BT/ ME) (Lat, Sag) (T/F)
(0.100,0.100) BA (0.094,0.094) T
(0.300,0.300) (0.297,0.297)
BT (0.094.0.094) T
(0.297.0.297)
ME (0.094.0.054) T
(0.297,0.297)
(0.100,0.100) BA (0.109,0.109) F
(0.275.0.275) (0.281.0.281)
BT (0.109.0.109) T
(0.281,0.281)
ME (0.094.,0.094) T
(0.281,0.281)
(0.100,0.i 00 BA (0.109,0.109) F
(0.250.0.250) (0.234.0.234)
BT (0.109,0.109) T
(0.234,0.234)
ME (0.094.,0.094) T
(0.234.,0.234)
(0.100,0.100) BA (0.109.0.109) F
(0.225.0.225) (0.234.0.234)
BT (0.109,0.109) T
(0.234,0.234)
ME (0.094,0.994) T
(0.234.0.234)
(0.100,0.100) BA (0.156,0.156) F
(0.200,0.200) (single peak)
BT (0.141,0.141) F
(single peak)
ME (0.084.0.094) F
(0.219,0.219)
(0.100.0.100) BA (0.156,0.156) F
(0.175,0.175) (single pecak)
BT (0.141,0.141) F
(single peak)
ME (0.156.0.156) F

(single peak)
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separation for the BA method is approximately twice the peak-width (for the BA method)
while for the ME method it is much larger than twice the peak-width (for the ME method).
This is attributed to the property of superposition which applies to the BA method but not
the ME method.

The results presented in table 4.2 are in general agreement with the results of Malik
et al. (1982). They have found that the ME method can be used to resolve sinusoids
separated in frequency by 0.3 while the BA method can be used to resolve sinusoids
separated in frequency by 0.6. The SNR for this result was +6 dB anJd 'exact’ ACF values
were used.

Malik er al. (1982) have observed that the PSE of the ME method provides the
greatest improvement in terms of peak-position and peak-width over the BA PSE for small
ACFs (4x4 10 12x12) estimated from data. Table 4.1 aad 4.2 confirm that the ME PSE best

represents the true PS of the three methods studied.

4.2.4 ME PSEs of Data with Noise

A PS analysis of simulated data with various levels of noise using the ME method
was performed next. Variations in peak-position and peak-volume in the ME PSE were
studied. The peak-position and peak-volume were used for the estimation of the frequency
and the power of sinusoidal signals in the data set.

Fifty ME PSEs were calculated for a sinusoidal process (0.15, -0.15) at SNRs of
10 dB, 0 dB, and -10 dB. The position and the volume of the peaks in each of the fifty
PSEs was recorded. The statistics of these variables are presented in table 4.3. The first
column in table 4.3 indicates the variable considered, the second its mean value and the
third its standard deviation (SD). The peak-position was defined as the frequency at the
highest point in the PSE. The power of the sinusoidal signal was taken as the amplitude of

the PSE at the peak-position. The average value of the PSE was also determined.



The results in table 4.3 indicate that at 10 dB and 0 dB SNRs the average position
of the peak was close to the true frequency of the sinusoids. At -10 dB SNR there was a
large error in average peak-position.

The estimates of the power of the sinusoidal signal from the PSE were also affected
by the SNR. In the PSE as the noise level increased: the average peak-voiume decreased,
the standard deviation of the peak-volume increased and the ratio of average to standard
deviation of peak-volume increased. This indicates that peaks become increasingly difficult
to identify as the noise level increases.

The decrease in the mean peak-volume may be due to a change in the shape of the
peak as reported by Malik er al., (1982). An increase in the peak-width would produce a
corresponding decrease in its amplitude. A high degree of variability in peak-position and
peak-volume may be an indicator that the noise level is too high and spurious peaks exist in
the PSE.

These results indicate that at 10 dB and 0 dB SNR the ME PSE can be used 10
identify sinusoidal waves on the 5x5 data grid. At a SNR of -10 dB the location of the
peak in the ME PSE becomes random and the volume of the PSE at the peak become

comparable to that of the background.
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Table 4.3
Statistics of the peak position and volume in ME PSE for a sinusoid

(0.15,-0.15) in noise.

SNR 10 dB

n=50

Estimated peak location
Error in peak location
Average peak volume
Background volume

SNR O0dB

n=50

Estimated peak location
Error in peak location
Average peak volume

Background volume
SNR -10dB
n=50

Estimated peak location
izrror in peak location
Average peak volume
Background volume

Mean

(0.154,-0.151)
(0.004, 0.001)
381.2
8.66

‘\

(0.149, -0.151)
(0.001, 0.001)
309.8

8.281

(.065, -0.246)
(0.085, 0.096)
207.1
28.45

Standard Deviaiion

(0.005, 0.008)

90.64
1.766

(0.009, 0.012)

(0.226, 0.139)

104.4
7.357
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4.3 Conclusions

From this analysis it is concluded that the ME metnod has higher resolution than
other methods (BA and BT) of PS estimaton. The ME method should therefore be used in
spectral analysis of the spatial distribution of EEG data. This assumes, however, that the

EEG can be described in terms of spatial waves, which wre separated in frequency by at

least 0.125 and that the SNR of the data is =0 dB.



Chapter 5
Spatial Specirai Analysis ef the EEG

5.0 Introduction

This chapter examines the hypothesis: spatial PSEs of EEG topographic maps are
correlated to the functional state of the brain. If the hypothesis can be supported by
experimental data, it will indicate that the spatial waves on topographic maps are affected by
brain function.

In order to test the hypothesis, topographic maps were constructed using EEG data
from nermal volunteers in two states, resting with eyes closed (EC) and resting with eves
open (EQ). PSEs were obtained by applying the ME method to the topographic maps.
Systematic variations between EC PSEs and EO PSEs were investigated using various
statistical analyses. Systematic variations between PSEs normalized so that the total power

in the topographic maps was a constant were also investigated.

5.1 Methods

5.1.1 Recording Conditions

The EEG data was recorded using the 31 Electrode System (deveioped -+ 1w Dept.
of Applied Sciences in Medicine) under similar cor ditions to those described in Chapter 2.
T. :lectrode system (figure 3.1) provides a higher electrode density than the Internarional
10-20 System. In addition, the electrodes are attached to a cap which is placed over the
subject's scalp. This allows a relatively consistent positioning ot the electrodes over a
number of test subjects. The electrodes form a 5x7 grid on the scalp with the corner
electrodes omitted. The electrode positions are defined in terms of meridian and parallel

lines by assuming that the scalp forms a hemisphere with the nasion and inion at pole

locations, a convention adopted in Chapter 2. The positions of the elecrodes were
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Figure 5.1 The 31 Electrode system orthonormally projected onto a plane.
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determined for this study by placing the electrode cap over a styvrofoam wig-head and
marking the electrode sites, a practice commonly used in EEG laboratories (including U of
A Hospital) to train electroenecphalographers in electrode placement. The positions of the

electrodes are presented in table 5.1 in terms of meridian and parallel lines.

Table 5.1 Electrode Positions of the 31 Electrode System

in Meridians and Parallels.
MERIDIANS (degrees)

* +38.0° 0.0° -38.0° *

+68.6° +40.3° 0.0° -10.3°  -68.6°

+79.7° +39.0° 00° -39.0° -79.7°

+80.7° +40.4° 0.0° -404¢  -80.7°

+76.2° +34.8° 00° -34.8°  -76.2°

+71.3° +39.3° 0.0° -39.3>  -71.3°

* +50.6° 0.0° -50.6° *
PARALLELS (degrees)
* +68.6° +73.1° +68.6° *

+47.2° +46.1° +55.5° +46.1° +47.2°
+25.1° +21.1° +194° +21.1° +25.1°
0.0 0.0 0.0 0.0 0.0
-29.3° -280°  -20.0° -28.0° .29.3°
49.5° 49.8° -55.5 498 495°

* -70.9¢  -75.0° -709° *
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EEG data was recorded and stored with a digitizer/datalogger (Koles. 1983). EEG
signals were sampled at a rate of 120 per second, digitized with 12 bits per sample and
stored on 8.5 inch floppy diskettes. The digitized signals were later transferred to and
processed with a VAX 11/750 computer and a Amdhal 5870 in the Dept. of Applied
Sciences in Medicine.

The volunteer subjects (18 males, 15 females) were first recorded in the EC state
followed by the EO state. The EC state required subjects to be at rest with eyes closed.
They were to remain awake and alert, yet completely relaxed during the recording session.
The EC state was also used for the results presented in Chapter 2. The EO state required the
subjects to be relaxed with eyes open. The subjects were required to remain still with eyes
fixed o= a single point and were asked to avoid blinking. It was presumed that subjects
with their eyes closed were more relaxed then with their eyes open. Thus, the EC and EOQ
states were distinguished by the brain processing visual stimuli as well as by the level of
relaxation of the subjects. EEG data was recorded for a period of abour 2 minutes in the EC

state and 1 minute in the EO state from each subject.

5.1.2 Signal Processing and Topographic Mapping

EEG data is often corrupted by elecwrical signals generated by muscle movement
and by external electrical noise-sources. The recorded data was therefore reviewed by
trained clinical personnel and two 7.5-second segments of artifact-free data were selected
from each record. All subsequent analyses were based on these 7.5-second segments of
artifact-free data.

It was shown in Chapter 2 that, in the alpha band (8 to 13 Hz), topographic maps
constructed from rms EEG data are representative of the actual distribution of potential on
the scalp. In this study therefore, the data was first filtered into the alpha band and then
converted to rms form. The rms EEG was calculated over 0.5-second epochs so that zach

7.5-second segment of artifact-free data was converted into 15 rms EEG values.
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The rms EEG was projected from the scalp onto a flat plane using the Mercator
method (also discussed in Chapter 2). This projection, based on a hemispherical scalp of
radius 100/2w cm, resulted in maps with dimensions of 44.8 cm bty 57.9 cm (between £80°
meridians and £70° parallels). The Mercator projection of the 31 Electrode System is
presented in figure 5.2.

Topographic maps of the projected potentials were constructed using triangular
interpolation (also presented in Chapter 2) which is most suitable to Mercator projections of
the 31 Electrode System. Each topographic map, constructed from a set of rms EEG

values, represented the distribution of rms scalp potential over a .5-second epoch.
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5.1.3 Maximum Entropy Spectral Estimation
In this seciion, the application of the ME method of PS estimution 1o topographic
maps of EEG data is reviewed. ME PSEs were calculated using the Lim and Malik (L&M)
algorithm (L&M algorithm is discussed in Chapter 3). Use of this algorithm requires
knowledge of a portion of the autncorrelation function (ACF). The ACF was estimated

from the topographic maps using:

(5.1:1
N;-1 Nyl
1 1
ACF(m1 my) = N m Nom Z Z X(n, ny) x(n - nym,)
} 1 “ « nyEMy pEm,
where

x(ny, np) is the voltage at (n1, n2) on the topographic map,
(n1, n2) are orthogonal integer variables in the spatial domain.
(my, mp) are orthogonal integer variables in the correlation domain.

In order to use equaticn (5.1:1) the potential distribution, x, must be unitormly
sampied. The topographic maps were therefore resampled with a uniform pattern. The
resampled sites were close to the actual electrode sites and formed a regular 5x5 grid. The
distance between resampled sites on the map was 8.63 cm in the nj direction und 7.23 ¢cm
in the n2 direction, and the maps were resampled in the region between £62° meridians and
+46° parallels. The Mercator projection of the resampled sites as well as the actual electrode
sites are presented in figure 5.3.

An ACF estimate was produced for each topographic map after removal of its
average value. Fifteen ACF estimates were generated for each artifact-free segment of EEG
data. A mean ACF estimate was then calculated and assumed to represent the entire

segment. ME PSEs were calculated using these mean ACF estimates and the L&M

algorithm.
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The stopping criterion for the number of iterations in the L&M algorithm is based
on the normalized ACF error (defined in Chapter 3). A typical example of the profile of the
normalized ACF error as a function of the number of iterations for actual EEG data is
shown in figure 5.4. The rate of change (ie. the slope) of the error curve as a tunction of
iteration number is an indicator of the change in the PSE between iterations. The slope of
the error curve is initially very large, indicating rapid change with iterations, however. the
slope decreases quickly and is close to zero by about 15 iterations. As an example, in figure
5.4 the slope is initially about -8000, at the 5! iteration it is -38, at the 10 iteration it is
-0.243 and at the 15 iteration it is -0.0042. This suggests that there is little change in the
PSE between the 141 and the 15t iteration. A substantial reduction in the slope occurred
consistently for all subjects before 15 iterations indicating that this was sufficient for a final
estimate of the ME PS. Therefore, in this study the ME PSEs were estimated after 15

iterations of the L&M algorithm.
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Figure 5.4 The normalized ACF error in successive iterations of the L&M algorithm for

actual EEG data. The figure (a) shows values from 1 to 15 iterations while the figure (b)
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5.1.4 Data Reduction

In order to meaningfully compare the PSEs a form of data reduction was used. The
PSEs were reduced into a set of feature vectors (FVs) with each FV consisting of 11
features computed from the first and second quadrants of the PSE.

The background of the PSE was removed before computation of the features. Any
value in the PSE below 10% of the maximum value in "he PSE was set to zero. This
threshold, which is at the -10 dB level, was selected after observing that all PSEs had at
least a 15 dB dynamic range.

The first 10 features (referred to as the A features) were computed by dividing the
first and the second quadrants of the PSE into 10 regions or spatial frequency bands
(shown in figure 5.5). The volumes under the PSE surface in tiiese regions were used as
the features. In this way, the PSE was appre-inately represented by 10 waves of various
orientations and wavelengths corresponding 1o the midpoint of each region. The A features
are presented as equivalent waves in table 5.2.

The final feature was the entropy of the PSE. It can be viewed as a generalized
measure of uniformity. The entropy, defined as El=-(Zfn-In(fp)), where
fn = PSE(n)/ZPSE(n), is at a minimum if the PSE contains a single impulse and 1t i1s at a
maximum when the PSE is uniform. That is, for a single impulse in the PSE, E1=0 and for
a completely uniform PSE, f5=1/N so that El=-In(1/N). For this particular study
N=(64x64)=4096, and thus the range of values v the entropy was 0 10 8.318.

Some further processing was done w: ‘eatures that were calculated from the
PSEs. In order to analyze only variation between the EC and the EO states, first the average
value of the feature was determined over both states for each subject. This subject average
was then subtracted from the average value of the feature for each subject in each state.

This processing resulted in the features indicating change in the PSE from its mean value

that was dependent only on the state.
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Table 5.2 Waves Equivalent to Features

Feature Wavelength Orientation
(cm) (degree from sagittal.)

Al 14.29 +40

A2 16.67 +26

A3 18.67 0

A4 16.67 -26

AS 14.29 -40

A6 20.75 +68

A7 31.65 +56

A8 55.87 0

A9 31.65 -56

Al0 20.75 -68

5.1.5 Methods of Data Analysis

Three approaches were used to investigate the characteristics of the data:
(1) comparison of the feature means, (2) correlation analyses and (3) discriminant
analyses. The mean value of the features were compared between the EC and the EO states
with a paired t-test. This test was used to determine if significant differences existed in the
mean values of the features between the two states. The correlation analysis, on the other
hand, showed the interaction between features. It is useful for identification of features that

are highly related. Finally in the discriminant analysis a linear function was determined that

maximally separated EC data from EO data.

5.1.5.1 Overview of Discriminant Analysis

Discriminant analysis is a statistical technique concerned with separating a set of
multivariate observations into previously defined groups. The most commonly used form
of this analysis is that due to Fisher (1936) which provides a linear function of the
observations based on maximizing the between group sum of squares relative to the within
group sum of squares. The resulting funcuon can be used for classifying unknown
observations. In practice a common procedure is to construct the discriminant function

from samples of known composition, referred to as a training set. In order to evaluate the



performance of the obtained function. this is often followed by a validation step in which
the discriminant function is applied to a new sample of observations whose group
membership is known. The proportion of observations correctly classified is then used as a
criterion for evaluating the performance of the functdon.

There is some danger that a discriminant function can become tailored too closely to
the maining data if too many variables are allowed to enter the function. The nurnber of
variabies can be reduced by using a stepwise discriminant analysis. This procedure
constructs a linear discriminant function by selecting, according to certain criteria, a subset
of the original variables which provides the best possible discrimination. Variables are
usually selected 1n order of importance, for their ability to discriminate between groups.
These variables are chosen by applying, at each step, statistical tests for inclusion or

deletion of variables. In this study stepwise discriminant analysis was used.

5.1.6 Summary

In this study 66 records of EEG data were analvzed. 32 from the FC state and 33
from the EO state. From each record two 7.5-second segments of artifact-free data were
identified by trained clinical personnel. These artifact-free segments were processed by
filtering into the alpha band and then a time series of rms values over 0.5-second epochs
was determined. The rms EEG was projected using the Mercator method onto a flat plane
and topographic maps were constructed using triangular interpolation. The maps were then
resampled at regular intervals on a 5x5 grid. Estimates of the autocorrelation function were
made from the resampled maps and then averaged to produce a mean ACF estimate. The
mean ACF estimate was taken to represent the artifact-free segment of EEG data. The L&M
algorithm was used with the mean ACF estimates to produce ME PSEs. The ME PSEs
were reduced into a set of feature vectors, with each feature indicating changes in the

volume of the PSE in various regions about the subject mean for each functional state.



Paired i-tests, correlation analyses and discriminant analyses were used to study

characteristcs of features from EC PSEs and EO PSEs.

5.2 Results

5.2.1 PSEs of Topographic Maps

Examples of topographic maps used in this study are presented in figure 5.6. They
were produced from a subject in the EO state and are representative of maps from a artifact-
free segment of EEG data. In maps 1 and 2 there appear to be larger values in the front-left
and back-right regions. These spatial variations may be considered as a wave on thess
topographic maps. In addition, the maps have larger values in the back thav in the front.
This too may be described as a wave on the maps.

Figure 5.7 and 5.8 presents the PSE corresponding to the artifact-free segment of
EEG data from which figure 5.6 was derived. Figure 5.7 is a wireframe view and 5.8 is a
grevlevel view. Recall that a «inusiodal wave is represented in the PSE as a pair of peaks
oriented in the direction of the wave and situated symmetrically about the origin. There are
4 peaks observed in the PSEs in figures 5.7 and 5.8, one pair that corresponds to the front-

left to back-right variation and the other pair that corresponds to the front to back variation

in the topographic maps.
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Figure 5.6 Mercator topographic maps of rms EEG data from a subject in the EO state. The
maps are the 15t 618, und 11th of a set of 15 obtained from the subject. Dark areas

represent higher values of potential.
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Figure 5.7 Wireframe view of PSE of topographic maps presented in figure 5.6 The origin
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Figure 5.8 Greylevel plot of PSE of topographic maps presented in figure 5.6. The origin
of the PSE is in the center of the figure. The greylevels used are: O to -3 dB, white; -3 db to

-10 dB, black; and <-10 dB, grey.
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5.2.2 Comparison of Feature Means

The mean and standard deviation of the 11 features from the PSEs are presented in
iable 5.3. The mean values of six of the A features are positive for the EC state and
negative for the EO state. This indicates that the energy of waves in EC topographic maps
was generally higher than that found in EO topographic maps. In other words, the EC
topographic maps simply contained more powerful signals than did EO topographic maps.

The features means were compared with a paired t-test since correlations were
observed between EC and EO FVs. The null hypothesis of equal group means was rejected
(p<0.01) for features A3 and E1. This indicates that the means of these features differ
significantly between EC and EO states.

The mean and standard deviation of the features from the normalized PSEs are
presented in table 5.4. The mean values of the A features are negative in the EC state for all
regions except A3 and A8. These two regions identify waves oriented purely in the sagittal
direction. This suggests that the EC state is characterized by a large portion of the activity in
the map oriented in the sagittal direction while the EO topographic map is more diverse with
activity oriented in all directions.

The feature means from the normalized PSEs were also compared with the paired
t-test. For this data set the null hypothesis of equal group means was rejected (p< 0.01) for
A3. A4, A7, A9, A10 and E1. Thus, the distribution of power in the normalized PSE
appears to be dependant on the subject's state. These results show that statistically
significant differences exist between the normalized EC PSEs and EO PSEs.

The E1 feature was found to be significantly different in the paired t-test for both
PSEs and normalized PSEs. The E1 feature represents the entropy and is a measure of
uniformity. A highly uniform PSE indicates that all waves are present in equal magnitude in
the corresponding topographic map. Such a map appears complex with little or no spatial

correlation. The E1 feature had a larger mean value for EO PSEs than for EC PSEs



120

therefore the EO state is characterized by topograpnic maps more complex than those for

the EC state.

Table 5.3 Mean & Standard Deviations of Features and
paired t-test for PSEs (n=66, df=32)

Variable Cognitive _Stiate t-value Sig >.99
BC
Mecan SD Mean SD
Al et no
A2 0214 1331 -.0214 1331 4961 no
A3 6.275 8.643 -6.275 8.643 4.540 yes
Ad -.0648 2460 0648 2460 1.972 n o
e no
A6 0.718 3373 -0.718 .3373 1.701 no
A7 0414 6137 -.0414 6137 0805 no
A8 4762 1.280 -.4762 1.280 1.136 no
A9 -.0820 5670 0820 .5670 0441 no
AlQ 0315 3012 -.0315 3012 0375 no
El -.9847 2.015 9847 2.015 2.381 ves

Table 5.4 Mean & Standard Deviations of Features and
paired t-test for Normalized PSEs (n=66, df=32)

Variable Cognitive State 1-value Sig >.99
BC
Mean SD Mean SD
Al e e el Ll L no
A2 -.8645 4.515 8¢.x35 4.515 1.795 no
A3 23.57 36.85 -25.57 36.85 2.656 yes
A4 -2.217 4.678 2.217 4.678 3.234 yes
A5  ----- el LoLo Lol no
A6 -1.011 9.451 1.011 9.451 1998 no
AT -11.13 20.199 11.13 20.20 3.234 yes
A8 1.297 15.16 -1.297 15.16 1.176 no
A9 -5.279 11.997 5.279 11.99 2.268 yes
Al10 -5.077 11.07 5.077 11.07 3.216 ycs
El -.9847 2.015 9847 2.015 2.381 ycs



5.2.3 Correlation Analysis

Tabie 5.5 presents the correlation of the features from the PSEs. The relatonships
between the features can be identified from this table. These relationships are best
visualized by considering the features as waves of various wavelengths and orientations
(equivalent waves are presented in table 5.2).

Two basic patterns are observed from this table, correlations tend to exist between
waves that are oriented in almost perpendicular directions and correlations tend to exist
between waves that are oriented in almost parallel directions. Examples of this are A2, AY
and A 10 which are highly correlated (> 0.7). A2 is oriented at +26° from the sagittal line,
and A9 and A10 are oriented at -56° and -68° from the sagittal line respectively. A2 is
almost perpendicular to both A9 and A10, and A9 and A10 are almost parallel o each
other. Other examples are A4 and A6 which are perpendicular and mildly correlated (0.4 1o
0.6), and A3 and A8 which are parallel and mildly correlated. Other features in this table
follow this pattern also.

Table 5.6 presents the correlations of the features from normalized PSEs. The most
striking characteristic observed from this table is that A3 is mildly correlated with A6, A7,
A8, A9 and A10. Thus, in normalized topographic maps the sagittal wave associated with

A3 occurs with waves in virtually all orientations and wavelengths.



Table 5.5
Al A2 AJ A4
Al
A2 1.0
A3 -.06 1.0
A4 012 -.12 1.0
A3
A6 .279 -.24 -.43
AT .088 -.04 .009
A8 -.07 .596 -.13
A9 .803  -.10 .195
Al0 .754 -.50 071
E1l 372 -.42 .039
No wvalues printed for Al
Table
Al A2 A5 A4
Al
A2 1.0
A3 .250 1.0
A4d .286  -.09 1.0
AS
A6 -.05 -.35 .250
A7 -.15 -.58 -.09
AR -.42 -.59 -.05
A9 .056 -.48 .228
AlQ .164 -.41 .223
El .054 -.45 .361

No values printed for Al

5.6 Correlations

Correlations of PSE Features

AS A6 AT A8 A9 Al0 El
1.0
-.13 1.0
-.24 .449 1.0
.318 .102 -.02 1.0
.291 124 -.26 .742 1.0
.600  .258 -.167 .511 .600 1.0

and A5 as they arc consiants.

of Normalized PSE Features

AS A6 AT A8 A9 Al0 El
1.0
-.11 1.0
-.09 .255 1.0
422 -.09 .036 1.0
045 -.17 .142 468 1.0
553 -.22 .114 451 .630 1.0

and AS as they are constants.



5.2.4 Discriminant Analysis

A total of 66 FVs, each containing 9 non-zero features, were used in these
analyses. FVs were randomly divided into a training set (about 60%) containing 43 FVs
(23 EC FVs and 20 EO FVs) and a test set (about 40%) containing 23 FVs (10 EC FVs and
13 EO FVs). A stepwise discriminant analysis of the training set was performed with the
maximum number of variables in the discriminant function restricted to four. The obtained

discriminant function was then applied to the test set and the percentage of correct

classifications tabulated.

5.2.4.1 Discriminant Analysis of PSEs

The stepwise discriminant analysis of the training set FVs formed a discriminant
function containing A3, A6, A10, and E1. For this set, 87% of the EC FVs were correctly
classified and 95% of the EO FVs were correctly classified. When the discriminant function
obtained from the training set was applied to thic test set, 100% of the EC FVs were
correctly identified and 92% of the EO FVs were correctly identified. It appears from the
high classification rates that discriminant analysis based on ME PSEs provides a useful
method for predicting the EC and EO state of subjects. The percentage of FVs correctly
classified was about the same in the training set as in the test set indicating that the
classification rule is stable when applied to new observations. These results are presented
in table 5.7.

The features in this analysis may be visualized as equivalent waves. A3 represents a
wave of wavelength 18.67 cm and an orientation along the sagittal direction. A6 and A10
represent waves of wavelength 20.75 cm with symmetric orientations of 68° from the
sagittal direction. In order to obtain an intuitive understanding for these waves, they are
presented on topographic maps in figure 5.9. The topographic map spans about 2 cycles of
the A3 wave and slightly less cycles of the A6 and A10 waves. The mean values of these

features were larger in the EC state than in the EO state (shown in table 5.3). Therefore,

[
Y
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these waves tend to have large amplitudes in the EC topographic maps than in the EO
topographic maps.

E1, which is a measure of the uniformity of the PSE, was also selected in the
discriminant analysis. It has a smaller mean value for the EC state than the EO state. As
previously suggested, this indicates that topographic maps of EO data have less spatial
correlation than do topographic maps from EC data.

Table 5.8 gives the standardized coefficients of the discriminant function. The
magnitude of these coefficients indicates the relative importance of the features in the
discriminant function. The largest coefficient, -0.853, corresponding to E1, indicates that
entropy (ie. the uniformity of the PSE) is the most important indicator when distinguishing
between EC and EO PSEs. This is followed by, 0.810, the coefficient for A3, which
indicates that activity along the sagittal direction, is next most important for discrimination.
The third and fourth coefficients are 0.775 and 0.632, for A6 and A10 respectively, both of
which indicate activity primarily in the lateral direction.

The correlations among the features used in the discriminant function may be
observed from table 5.5. The table shows that all variables selected are mildly correlated
(0.4 to 0.6) with each other, except A6 which is weakly correlated (< 0.3) with both A3
and A10.



Table 5.7 Classification Results for
Sets for PSEs

Training Data Set

Training

and Test Data

Predicted Group Membership
Actual Group EC EQ
BC 20 3
87.0% 13.0%
EO 1 19
5.0% 95.0%
Percent of cases correctly classified: 91.0%
Test Data Sci
Predicted Group Membership
Actual Group EC EO
BC 10 0
100% 0.0%
EO 1 12
7.7% 92.3%
Percent of cases correctly classified: 96.2%
Table 5.8 Standardized Discriminant Function

Feature
A3
A6

Al0
E1l

Coefficients for PSEs

Cocfficient
.810
774
632

-.853

*h



126

& S 22
i A
LTSRS
Front 'l',;;.'f{(é,’:l )
Left
A6 Right

G S -—’.‘
e ® 0’;0"0"$‘;“" A\ Back
ISR

(S SICSCSIS OSBAENEAID e S
SR EREISEIIIITIN

S tectastacios
Front  oTmSRScsos >

%%
‘.‘“
Left
Right A
Al10 ST Back

0
AR SSTR  R

T R
NN s A A N e T

R e S AR A S 24 AR

AR gane= T2 ZeaN
AR~ S

\>5 S

Front

Figure 5.9 Topographic maps of equivalent waves for the A3, A6 and A 10 features. These
features have large mean values in the EC state than in the EO state.



5.2.4.2 Discriminant Analysis of Normalized PSEs

The four variables selected in the stepwise discriminant analysis of features trom
normalized PSEs were A4, A7, A8, A10. For the training set, 83% of EC FVs were
correctly classified and 90% of the EO FVs were correctly classified. On application of the
discriminant function to the test set, 100% of the EC FVs were correctly classified and 83%
of the EO FVs were correctly classified. Although there was some change in the level of
correct classification between training and test sets, it appears that a reasonably consistent
classification of normalized PSEs was achieved and a useful classification rule was again
developed. These results are presented in table 5.9.

The equivalent waves for the features selected in the discriminant function are: A4
(16.67 cm, -26°), A7 (31.65 cm, +56°), A8 (55.87 cm, 0°) and A10 (20.57 cm, -68°). In
figure 5.10 the A7, A10, A8 and A4 features are presented as waves on topographic maps.
The mean values of A7, A10, and A4 are negative in table 5.4 for the EC state which
indicates that these features have a relatively lower value in the EC state than in the EO
state. The mean value of the A8 feature, which defines a sagittal wave, is positive in the EC
state which indicates that this feature has a relatively larger value when compared to that
found in the EO state.

The coefficients of the standardized discriminant function are given in table 5.10.
The order of the coefficient from largest to smallest is: A7, A10, A4, A8. A7 and A10 are

the most important to the discrimination as their coefficients are almost 50% larger than the

coefficients for A4 and ASB.



Table

5.9 Classification Results for Training and Test
Sets
for Normalized PSEs
Training Data Set
No. of Predicted Group Membership
Actual Group Cases EC EO
B 23 19 4
82.6% 17.4%
EC 20 2 18
10.0% 90.0%
Percent of cases classified correctly @ 86.3%
Test Data Set
No. of Predicted Group Membership
Actual Group Cases EC @)
BC 10 10 0
1009 0.0%
EO 13 2 11
1557 85.06%
Percent of cases classificd correctly @ 92.3%
Tawle 5.10 Standardized Discriminant Function
Coefficients for Normalized PSEs
Fecature Cocfficicent
A4 418
AT .766
A8 -.443
A10 .608

Data
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Figure 5.10 Topographic maps of equiv. .cnt waves for A7, A10, A4, and A8 features. The
A7, A10 and A4 features have larger mean values in normalized EO PSEs and the A%
feature has a larger mean value in the normalized EC PSEs.



5.3 Discussion and Conclusions

The paired t-test of features from EC PSEs and EO PSEs showed significant
differences in the mean values of A3 and EX. A3 had a larger mean value in the EC state
than in the EO state indicating that the associated sagittal wave was larger in EC
topographic maps. E1 had a larger mean value in the EO state than in the EC state indicating
that EO PSEs are more uniform than EC PSEs and therefore EO topographic maps have
less spatial correlations than do EC topographic maps. These resuits imply that the mean
values of certain features can be useful in determining if data is from either EC or EO state.
These results support the basic hypothesis examined in this chapter, that spatial PSEs of
EEG data are correlated to the functional state of the brain.

A discriminant analysis of FV's was performed in order to determine if EC and EO
states could be distinguished for individual cases based on PSEs. The linear discriminant
function developed in this analysis transforms multivariate FVs into a univariate space such
that there 1s a minimum overlap between the observation from the two states. The unknown
state associated with an individual FV may be predicted from the position in the univariate
space to which the FV is wansformed by application of the discriminant function.

The discriminant function developed in the discriminant analysis correctly classified
about 91% of the FVs in the training set and about 96% of the FVs in the test set. Because
the percentage of FVs correctly identified is high, it is concluded that the discriminant
tfunction provides a meaningful classification. The classification rule is also useful for
classifying records from unknown data since a high percentage of FVs were correctly
cClassified in both the training and the test sets.

An examination of the discriminant function coefficients indicates the relative
importance of variables used in the classification. The discriminant function developed in
this analysis contained the variables A3, A6, A10, and E1. The coefficient associated with
A3 was larger than those associated with A6 and A10. The orientations of the waves

associated with these variables suggests the possibility of change in cerebral organization in
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response to the EC and EO states. The dominance of the A3 wave in relation to A6 and A10
waves suggests a cortical response primarily to visual information in occipital regions with
a sagittal wave, followed by an interpretation of spatial information which is retlected in
lateral waves. Further research is needed however, to determine fully the spatial wave
content of the EEG during tasks which are primarily spatial in nature.

In order 1o investigate differences in topographic maps fram the EC and EO states
that are not related to the total power in the maps an analysis of normalized PSEs was
performed. Each PSE was normalized so that the volume under its surface was a constant
value. Paired t-tests and a discriminant analysis of features trom the normalized PSEs was
performed.

The paired t-test showed significant differences in the mean values of A3, Ad, A7,
A9, A10 and E1 implying that certain characteristics of normalized EEG topographic maps
are related to the functional state of the brain.

The application of the stepwise discriminant analysis to the training set of FVs from
normalized PSEs produced a discriminant function that correctly classified about 86% of
the FV and in the test set about 92% of the FVs. Thus 3 stable and useful classification rule
was again developed.

The variables selected in the discriminant analysis were A4, A7, A8, and A10. The
coefficients for A7 and A10 were about 50% larger than those for A4 and A8 implying that
these features are most important to the discrimination between EC and EO PSEs.

This work has shown that EC and EO states may be differentiated based on features
from PSEs. Thus, there are characteristics of the PSEs that are unique to the EC and EO

states and a description of these characteristics is made through the features that are selected

in these analyses.



Chapter 6

Discussion and Conclusions

6.1 Discussion

This vhesis 1s concerned with the analysis of electric potentials from the brain in
terms of EEG topographic maps. Two basic questions are addressed: (1) is the actual
distribution of potential on the scalp accurately and precisely represented by EEG
topographic maps, and if the potential distribution can be represented by maps then. (2) is
the distribution of scalp potential when decomposed into spatial waves on topographic
maps useful in the classification and characterization of functional brain states.

In order 1o investigate the first question, the basic methodology used was to
construct topographic maps without considering the potential at certain test-electrode sites
and then to compare the measured potentials with the predicted potentials at the test sites.
The electrode sites were specified by the International 10-20 System and topographic maps
of instantaneous scalp potentials (called instantaneous EEG) and rms scalp potentials (rms
values of EEG over 0.5 sec epochs, called rms EEG) were considered, the former being
used primarily in the analysis of event-related potentials and the later being used in the
analysis of background EEG. The analysis involved determining: (1) the error signal, the
difference between measured and predicted potentials, and (2) the regression line between
measured and predicted potentials.

Topographic maps of broad-band (0.5 to 30 Hz), instantaneous scalp potentials
showed that the mean value of the error was small indicating that the maps had a low bias.
The rms value of the error, however, was large in the maps.

Topographic maps constructed with instantaneous EEG data filtered into the alpha
band showed about a 20% decrease in the percentage of rms error over that obtained for
broad-band EEG maps. This result suggests that the distribution of electric potential on the

scalp 1s affected by the temporal frequency content of the EEG. It further suggests that the
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sampling density required to represent the spatial distribution of the scalp potential depends
heavily on the temporal frequency content of the EEG and that a higher sampling density
than that currently used is required in order to achieve the precision in broad-band EEG
maps that is obtained in alpha-band EEG maps. The regression analysis of instantaneous
EEG data supports these findings with larger r2 values for the alpha-band maps than the
broad-bznd maps. Other work (Koles and Paranjape, 1988) has given similar results:
topographic maps of high frequency (13 to 30 Hz) EEG data were shown to have less
precision than maps of low frequency EEG data (<13 Hz). Nuwar (1988a) supports these
findings in a review of quantitative EEG methods and topographic mapping in which he
states, "Preliminary investigations of spatial features have suggested that high temporal
frequency bands (beta and alpha) have high rates of spatial phase change whereas low-
frequency bands (eg. delta) have low rates of spatizi phase change.”.

Tepographic maps of the rms value of the EEG calculated over 0.5 sec epochs
showed that the rms value of the error was much smaller than that observed tor
instantaneous EEG maps. Thus, it appeared that maps as estimates of the rms potential
distribution on the scalp were accurate and reasonably precise. The difference in accuracy
and precision between broad-band and alpha-band rms EEG maps was small. However,
the regression analysis of rms EEG data showed greater variability in slope and r? value for
broad-band maps than for alpha-band maps. The alpha-band rms EEG maps were further
investigated because the X2 goodness-of-fit test indicated a high probability that samples
from alpha-band maps were from the same population as samples from the actual potential
distribution.

As all methods of interpolation performed similarly in this study, it might appear
that little is to be gained by the use of more computationally expensive methods of
interpolation such as bicubic-splines. A lack of sensitivity to interpolation method supports
Duffy's (1978) observation that electrodes more distant than the nearest three known points

have minimal influence on intermediate potentials. Bicubic-spline interpolations, however,



do have a distinct advantage over other interpolations in that they provide an estimate of the
radial current density. The radial current density on the scalp has been shown to be
proportional to the curvature of the potential distribution (Nunez, 1981). Thus, by applying
the Laplacian operator analytically to the functional form of the bicubic-spline surface an
estimate of the radial current can be obtained (Koles er al., 1989). The triangularly and
bilinearly interpolated surfaces, on the other hand, lack the necessary curvature to allow
estimations of the radial current density.

The second question examined in this work was: is the distribution of scalp
potential, wircn decomposed into spatial waves on topographic maps, useful in the
classification and characterization of the functional state of the brain. Various methods of
spectral analysis were therefore investigated. J. G. Ables (1972) when writing about the
spectral analysis stated: "The results of any transformation on experimental data shall
incorporate and be consistent with all relevant data and shall be maximally non-commiital
with regard to unavailable data.” . The mazimum entropy (ME) method of pOWEr specirum
(PS) analysis may be viewed as an attempt to select the frequency domain representation of
the data that ‘s in closest possible accord with Ables’ principle. The maximum entropy
approach theoretically provides the best spectral estimate given the available information.

This result was experimentally confirmed through an analysis of power spectrum
estimates (PSEs) of simulated EEG data. Using the Bartlett (BA), Blackman-Tukey (BT)
and maximum entropy (ME) methods, PSEs of various sinusoidal spatial waves on a finite
(5x5) grid were calculated. The ME method consistently produced better PSEs than the BA
and BT methods, when compared in terms of the frequency range and the minimum
separation in frequency required to distinguish two sinusoidal waves.

The ME method of PS analysis was then applied to data which contained sinusoidal
waves and white noise. It showed that acceptable PSEs could be obtained if the signal-to-
noise ratio (SNR) of the data was =0 dB. The conclusion from experimental and theoretical

considerations are that ME PSEs can be used to characterize topographic maps of rms EEG



if data is obtained on a regular grid and if it can be modelled as sinusoidal waves in low-
amplitude white noise.

A experimental investigation was carried out to determine it rms EEG topographic
maps contained systematic variations that were correlated to the functional state of the
brain. EEG data was recorded from subjects resting with eyes closed (EC) and also from
subjects resting with eyes open and fixed onto a single point (EO). Topographic maps
produced from this data were used to calculated PSEs with the ME method. The ME PSEs
were reduced to a set of feature vectors with each feature representing the change in the
PSE from its mean value. Various statistical analyses were then carried out using the
obtained features.

T-tests were applied to feature means and indicated that certain features were
significantly different in the EC and the EO states. For example, the mean value of the A3
teature, relating to the power of spatial waves alnng the sagittal line, was signiticantly
larger (p <0.01) in the EC state than in the EO state. In general, it was observed that EC
topographic maps contained signals of greater energy than did EO topographic maps.

The mean value of the entropy feature, E1, was significantly larger (p <0.01) in the
EO PSEs than in the EC PSEs. This indicated that EO PSEs were more uniform than EC
PSEs. It further indicated that EO topographic maps were more complex than EC
topographic maps. This is consistent with the expectation that when processing visual
stimuli various regions of the brain become electrically more active than when the brain is
purely in a resting state. The potential distributions associated with the active state are more
complex than those associated with the resting state.

A discriminant analysis was performed with the features from the PSEs to
determine if EC and EO states could be distinguished for individual cases. The discriminant
function was calcu ..ed using 60% of the features from the PSEs and then applied to the
remaining 40% to test the stability of the discrimination. The discriminant function, which

contained only 4 features, predicted correctly over 96% of the subject’s states in the test
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set. The features used in the discriminant function were A3, A6, A10 and E1. The A3
feature identified spatial waves at an orientation along the sagittal line with a wavelength of
18.67 cm on the topographic maps. The A6 and A 10 features identified a wave oriented
primarily along the lateral (left-right) line with a wavelength of 20.75 cm. The mean value
of these features was greater in the EC state than in the EO state indicating that the waves
have a larger amplitude in the EC topographic map. The E1 feature, the entropy of the PSE,
was smaller in the EC PSEs than in the EO PSEs.

To determine if the results thus far obtained were due primarily to differences in the
total energy in the maps a further analysis of normalized PSEs was performed. Through the
normalization process the total power of spatial waves in the maps for each state was made
a constant.

The t-test of feature means from the normalized PSEs indicated that certain features
were significantly different between the two states. The features that identify waves in the
sagittal direction had larger mean values in the EC state than in the EO state. The EQ
topographic map on the other hand, contair:d waves oriented in all directions.

A discriminant analysis of the features from the normalized PSEs showed that in
over 92% of cases the state of the subject could be correctly identified in the test set. The
features used in the discriminant function were A4, A7, A8 and A10. These features
identified waves of various orientations in the topographic maps. A8, which identified a
wave in the sagittal direction, was larger in the EC normalized PSEs while the remaining
features (A4, A7, A10) which were oriented in other directions were larger in the EO
normalized PSEs.

The analysis of features from normalized PSEs shows that not only is the difference
in the EC and EO topographic maps characterized by change in the total energy of spatial
waves in topographic maps, but also by a change in the spatial frequency content of the

maps.
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As the analysis of EEG topographic maps is still in its infancy, there are only a few
methods to which spatial spectral analysis can be compared. The technique of classification
by space constants of topographic maps containing spikes has been used by Matsuo and
Gaskin (1986). The space constant is the spatial analogue of the more familiar time constant
and indicates distance on the map for the amplitude of a spike talls off to 37% (1/e) of its
maximum recorded value (Nuwar, 1988a). Matsuo and Gaskin have used measurements of
the space constant to differentiate between superficial and deep spike-generating sources. A
spectral analysis for differentiating between these sources would be based on the spatial
frequency content in the maps. High spatial frequencies would correspond to rapid
amplitude changes in the maps and would suggest superficial sources while lower spaiial
frequencies would suggest deeper sources.

A statistical method for analysis of topographic maps, made popular by Dufty er.
al., (1981), is probability significance mapping. In this method, topographic maps of
z scores are formed which represent an individual's deviation away from the mean of a
reference set. When z scores are greater than 2-3 a subject's EEG is considered out of the
normal range of values. A modification on this approach, carried out to compare two
populations, is to use a t-test to identify the regions on maps that differ significantly from
one population to the other. This approach is similar to that used in this thesis where t-tests
were used to compare regions of spatial PSEs. In this thesis the power of spatial waves on

the maps was compared rather than simply map amplitudes.

6.2 Further Investigations

This work raises a number of interesting questions that should be investigated
further. These questions focus on two areas of EEG research: (1) the physical
characteristics of the space-time distribution of scalp potentials, and (2) the relationship

between the spatial distribution of scalp potentials and brain function.



The controversy about the density of the sampling electrodes required to adequately
sumple the spatial distribution of potential on the scalp is not fully resolved by this work. A
simple approach to this problem might be as follows. Apply a dense rectangular electrode
array to a small region of the scalp and record scalp potentials. If the inter-electrode
distance in the recording array is sufficiently small, the 2-dimensional Fourier transform of
the recorded data will have relatively low amplitude components at the folding frequency.
The inter-electrode distance should then be increased slightly and the 2-dimensional Fourier
transform calculated again. If the basic shape of the Fourier transform is not changed, it
would indicate that the scalp potential has been adequately sampled in the region of the
electrode array.

The approach described above raises the further question of whether the spatial
frequency characteristics of the scalp potentials are spatially invariant. This can be
determined simply by moving the electrode array to various regions of the scalp and
repeating the above procedure.

The results of Chapter 2 indicate that there is a relationship between the spatial and
the temporal frequencies of the EEG. It was shown that the precision of topographic maps
increased when the temporal frequency of the EEG was restricted to a narrow temporal
frequency band. A further investigation of this spatio-temporal relationship is warranted.
The methods described in Chapter 2 could be adopted for this investigation. The temporal
frequency of the EEG could be restricted to a narrow band and the zccuracy and the
precision of interpolated maps could be determined. Through an analysis of a series of
maps constructed from EEG data filtered into a number of narrow temporal frequency
bands, the spatio-temporal relationship could be more completely described.

Another approach to determining the spatio-temporal relationship of the EEG would
involve 3-dimensional (space-time) Fourier analysis. The 3-dimensional Fourier transform
of EEG data varying in both space and time would indicate the existence of standing spatial

waves and travelling spatial waves on the scalp. By observing the effect of temporal
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filtering on the coefficients of spatial waves a correlation between these domains could be

demonstrated.

This thesis indicates that there is a relationship between the distribution of scalp
potential and the functional state of the brain. This result implies that the distribution of
scalp potential may be useful in the analysis of brain function and pathology. It would be
very interesting to determine whether brain states other than EC and EO could be
distinguished by spatial patterns. For example, specific patterns may be associated with
subjects listening to music or solving mental arithmetic problems. Similarly, in the study ¢+’
brain pathology, recurring phenomena such as migraine may be characterized by particular
spatial patterns. Various drugs, such as halothane (Nunez, 1981), have been shown to

induce marked changes in the temporal pattern of the EEG; similar effects may occur in the

spatial patterns.

6.3 Some Observations on Topographic Mapping

Many researchers are interested in determining correlations between topographic
maps and brain function and pathology. As indicated in Chapter 1, these efforts have had
only limited success. There may be a number of contributing factors.

(1) Sufficient attention must be given to the projection of scalp potentials to the tlat
map. In this thesis the Mercator method of projection was used. This is a simple method of
projection but has the advantage of being conformal so that angles and directions are
preserved through the projection. Recently work has begun in which spherical harmonic
functions are used in interpolations. More consistent results may be expected with this
approach because it better approximates the true geometry of the head.

(2) The level of error in the maps must be known. In Chapter 2 it was shown that
all electric potentials on the scalp are not mapped with equal error. It was shown that the

error was dependent on the electrode density and on the temporal frequency content of the
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signi Is to be mapped. In this thesis rms alpha-band EEG data was used after analysis of
error levels.

(3) A systematic approach to classification of spatial patterns is required. I this
thesis, the approach adopted was to summarize maps in terms of sinusoidal spatial waves.
These waves are easy to visualize and can be defined precisely with a small number of
parameters.

(4) Since the brain responds to a wide variety of stimuli, the analysis should be

highly focused so that variation due only to appropriate factors are considered.

6.4 Conclusions and Limitations
The following conclusions from this work are observed.

(1) Broad-band instantaneous EEG topographic maps as estimates of the actual
potental distribution have a low bias but have a large variance.

(2) Alpha-band instantaneous EEG topographic maps have a low bias and have a
smaller variance than broad-band EEG maps.

(3) Rms EEG topographic maps have low bias and low variance.

(4) There is a relationship between the temporal frequency and the spatial frequency of
the EEG. By restricting ine temporal frequency to a narrow band the spatial
frequency is also restricted.

(5 The method of interpolation does not significantly affect the error in EEG
topographic maps.

(6) The ME method of PS analysis consistently produces better PSEs than the BA or
the BT methods in terms of frequency range and minimum separation in frequency
required for identification of two sinusoidal waves.

(7) In simulatioi. that model analysis of EEG topographic maps, ME PS analysis can

be used to characterize sinusoidal waves in white noise if the SNR =0 dB.



(8)

(9)

(10)

Rms EEG topographic maps have significant changes that are correlated to the

functional state of the brain.

From the study of spatial ME PSEs of EEG topographic maps from normal

volunteers in EC and EO states the following is observed.

(a) EC topographic maps contain spatial waves of greater energy than do EO
topographic maps.

(b) The entropy of EO PSE is greater than that of EC PSEs indicating EO
topographic maps are more complex than EC topographic maps.

(c) EC topographic maps contain a greater proportion of waves oriented in the
sagittal direction than do EO topographic maps.

(d) A discriminant function can correctly classify the state associated with about
96% of the observations from PSEs in test data.

(e) A discriminant function can correctly classify the state associated with about
92% of the observatiors from normalized PSEs in test data.

The methodology of topographical analysis of EEG data is verified and further

analysis of topograpnic maps with spatial PS analysis is warranted.

The following limitations of this work arc observed.

There is a loss of information associated with the representation of the continuous
distribution ~f potential on the scalp by a discrete sequence.

There is a loss of information associated with representing data by PSEs.

The model of a limited number of spatial sinusoidal waves in low-amplitude, white
noise must be appropriate in order that the results of spatial PS analysis to be

meaningful in the characterization of the potential distribution on the scalp.
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APPENDIX A"
The Blue Eyed Left Handed Kangaroo Problem

To give some idea of how the ME method can be used in general, a simple problem
of probability estimation is considered. The soluton to the problem is intuitive and can be
easily guessed. This problem was originally proposed by Gull and Skilling (1984)
although a complete solution was not provided.

Consider that a visitor to the Australian subcontinent is told the following
information about the marsupial wildlife.

(1) 1/3 of all kangaroos are blue eyed.

(2) 1/3 of all kangaroos are left handed.

Then, he is asked the question: What is the probability that a kangaroo drawn at
random from the population is both blue eved and left handed? The visitor, after thinking a
minute, would likely answer there 1s a 1/9 probability that the kangaroo is both blue eyed
and left handed.

This answer 1s somehow intuitively appealing but in fact it is making a rather large
statement about the wildlife of Australia. That is, that blue eyes and left handedness are not
related in anyway. Having blue eyes for instance neither increases nor decreases the
probability that a kangaroo is left handed. This answer is based on the principle that if no
relationship is stated explicitly between variables then it is best to assume that no
relationship exists between them. This is exactly the ME principle.

In order to apply the ME method to this problem it must be restated in a more

mathematical form. The probability distribution function (PDF) can be presented i1n a

tabular form.
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Biue Eyes
T -
1 2
Left P P
Handed
r | p3 p4

p1 is the probability that the kangaroo drawn at random is both blued eyed and left
handed. The sum of all the probabilities is one.
(A.1)
P1+p2+p3+ps = 1
The other information about the marsupial wild life can be written in terms of:
(A.2)
pi1+p2=1/3
P1+p3 =1/3
The entropy of the PDF is defined in the conventional form:
(A.3)
H=-2piIn (p))
The object is 1o determine p;. The entropy of the PDF is maximized by using the
method of Lagrange multipliers.

(A.4)
4

1 1
H=- Z P; In(p) +Aq(p +p,+p;+P, -1) +A,(p,+P,- 3) +k2(p1+p3-—§)

i=1
and set

oH/d(py) =0
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A system o: equations is formed.

(A.5)

JdH/Ip1=0=-1In(p1)-1 + A+ Ay + A2
JH/0pr=0 = - In(p2) -1 + Ag + Aq
dH/dp3=0 =-1n(p3) -1 + Ag+ A2
JH/dps=0 = -In(pg) -1 + Ay

There are now seven equations and seven unknowns.

(A.6)

(a)
(b)
(c)
(d)
(e)
(f)
(g)

pa =exp(-1 + Ap)

p3 =exp(-1 + Ag + A2) = pg exp(Ay)

p2 =exp(-1 + g+ A}) = psexp(Ay)

p1 =exp(-1 + Ag+ A1+ A2) = pgexp{Ai+ A2)
P1+p2+p3+ps=1

p1+p2=1/3

p1+p3=1/3

From (A.6.f) and (A.6.g), and from (A.6.b) and (A.6.c),

(A7)

p1 +p2=1/3=p1+ p3 = p3=p2

P2 = p4 exp(A1) = p3 = p4 exp (A2) = A2 =4y

Now using only p3 and A} in (A.6.e):

p1+2p2+pa=1

and (A.6.c) and (A.6.d) becorne:

p2 = p4 exp(Aq) => pa = p2 exp(-Ay)
P1 = pa exp(2A)) => p1 = p2exp(Ay)
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Now substituting for p; into (A.6.g):
p1+p2=1/3
p2exp (A1) + p2 =p2 (exp (A} + 1) = 1/3
= (exp(A)) + 1) = 1/(3p2)
= exp(Ay) = -1 + 1/(3p2) =(-3p2 + 1) / (3p2)
= exp(-A1) = (3p2) / (-3p2 + 1)
Substituting into (A.7) for p and p4,
(A.8)
P1+2p2 +ps=1
p2 exp(A1) + 2p2 + p2 exp(-Ay) = 1
p2 exp(-A1) (exp(ry) + 1)2 =1
Substituting from above for (exp(Aq) + 1).
p2 exp (-A1) (1/(3p2))? =1
(exp (-A)) Op2) = 1

Substituting from above for exp(-Ay).

(3p2) / ((-3p2 + 1) (9p2)) = 1/(-9p2 +3) = 1

-9p2 +3 =1
p2=2/9
therefore

(A.9)
p1=1/9 p2=2/9 p3=2/9 ps=4/9
The significant result is;
p1=1/9=0.1111
The ME solution of this problem is coincidental with the intuitive solution. The ME

PDF is a smooth and maximally flat while remaining within the constraints of the problem.



APPENDIX 'B'
Forms of The Entropy Function

There is some question as to the validity of the various forms of entropy of a signal.
This appendix outlines the approach to this problem presented by Narayan and Nityananda
(1984). This issue is best dealt with by not assigning any meaning to the entropy function.
In this section as the entropy function is presented simply as f, thus the detailed form of the
enwropy function is hidden. H. the total entropy of the signal B(x) is then define as:

(B.1)

H=J f(B(x)) dx

Let us assume that B(x)q is a recorded signal and is band limited. B(x)q is to be the
basis of an estimate of the true signal B(x). Because B(x)g is band limited the fine details in
B(x), can not be seen in B(x)y. The FT of B(x)g is assumed to be identical to that of B(x)
until some frequency f,, which is less than the highest frequency in B(x) and is zero tor
frequencies greater than fy. Another way to state this is, the band limited nature of B(x),
means that there is an abrupt discontinuity in the FT of B(x)q and this discontinuity results
in ringing and the overshadowing of low amplitude details of B(x) in B(x)o-

B(x) can be estimated from B(x)g using the maximum entropy (ME) principle. The
ME estimate of B(x) is called B(x)e. Frequency coefficients which are greater than f, are
found in B(x)e. The basic procedure to maximize the entropy of B(x)¢, He, is to find
OHe/0pme k and set it equal to zero (where He is the entropy of the B(x)e and pme k are
the unknown Fourier coefficients of B(x)e). The coefficients pme k can then be

determined.

This is done as follows:



(B.2)

B(x),= Z P, exp (21 j m)

mek

B(x)e= Z P, €Xp (2t jm) + Z P, €Xp (21 jm)

mek mek

H_= jf (B(x),) dx

H_ = ,[f[ 2 P, €Xp(2m]j m) + 2 P, exp(2m ] m)] dx

mek mek

Note that ppmek are the known frequency coefficients of B(x),.
To find the pme k terms:

(B.3)

il
o

O | e| Zrmexpenim + T p, expenim| g,
ap mek mek
mek

(B.4)
J f (B(x)c) exp(2t jm) dx =0 for mek

This equation implies that the function f'(B(x)e) is a band limited function. This is
because equation (B.4) can be interpreted as the FT of f'(B(x)e), and it is equal to zero for
me k.

The band limited function f(B(x)e) is called G(x). f can then be viewed as a
mapping between B(x)e and G(x) as shown in figure B.1. If this mapping is linear then
B(x)e will be band limited as is G(x). However, if this mapping is non-linear then B(x)e is
not band limited.

The graph of f' versus Be shown in figure B.1 is such that high ripples in G(x) are

attenuated in Be while broad troughs in G(x) are transformed into sharp peaks. To follow

'

[§%]



the mapping in detail, consider first the lower-right-hand graph. This graph shows the

relationship between B(x)a and x. For a particular x, say x* there | a value of B(x)e. called
B(x*)e. From this B(x*)e a value of G(x*) can be determine by moving up to the
function and then across to the upper-left-hand graph, of the G(x) functicn.

When using the ME method to estimate B(x)e these graphs are foiiowed in the
opposite direction. The function G(x) is generated by the application of constraints and
maximizing the entropy function. Then by moving in the opposite direction to that just

shown, the new function B(x)e can be estimated. In other words, in an application of the

ME method, a band limited G(x) plot is first produced and then the B(x)e function 1s
produced. The wransformation from G(x) (band limited) to B(x)e (non-band limited), is
non-linear, and results in high frequency variations in B(x)e.

Now, the critical point in this set of graphs is, it is suggested by Narayan and
Nityananda (1984), the transformation using the non-linear profile of f(B(x)e) versus
B(x)e- Any function with a similar profile, they maintain, can be considered an entropy
function. Thus any function f, whose derivative f', has the form of the function shown in
the upper-right-hand graph can be used to produce a high frequency content B(x)e from
B(x)o. For example, any of the functions -pln(p), In(p), p-1/2, p-2 can serve as the entropy

function. Narayan and Nityananda (1984) suggest the choice of the entropy function be

based on the applicaton.
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Figure B.1 Non-linear mapping between B(x)e and G(x).



