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We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic
metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of
fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field
of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed
to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-
polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our
predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-
zero and epsilon-near-pole responses as expected from Kirchoff’s laws. Our work should aid both theorists
and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for

applications in thermal photonics.

I. INTRODUCTION

The foundations of analyzing thermal and vacuum fluc-
tuations of the electromagnetic field inside matter were
laid in the seminal work of S.M.Rytovl. This later
gave rise to a unified approach of understanding fluctu-
ational forces? (Lifshitz theory of Casimir forces), near
field thermal emission and radiative heat transfers 2%,
(Polder-Van-Hove theory”). Recent developments in na-
noengineering and detection have led to experimental
regimes?+ Y where these effects can play a dominant role.
Simultaneously, theoretical work has shed light on the
fact that the classical scattering matrix along with the
temperatures of objects of various geometries can com-
pletely characterize these fluctuations in both equilib-
rium and non-equilibrium situations3H43,

Metamaterials are artificial media designed to achieve
exotic electromagnetic responses that are beyond those
available in conventional materials®*™#8, A large body of
work has emerged in the last decade which in principle
engineers the classical scattering matrix to achieve effects
such as negative refraction*”48 enhanced chirality*? 21,
invisibility?2®4 and subwavelength imaging®?®%. Re-
cently, it was shown that a specific class of metamate-
rials, known as hyperbolic media®®%4(indefinite media)
has the potential for thermal engineering. Such media
support unique modes which can be thermally excited
and detected in the near-field due to the super-Planckian
nature of their thermal emission spectrum®¢366,

In this paper, we adopt the techniques of fluctuational
electrodynamics to provide a first-principle account of
the thermal emission characteristics of hyperbolic media.
We show that the conventional approach of utilizing the
second kind of fluctuation dissipation theorem™ 6768 g
equivalent to the scattering matrix method3HS%6068 for
calculating the metamaterial energy density. We specifi-
cally provide the derivations of the fluctuational effects in
both effective medium theory and practical thin film mul-
tilayer metamaterial designs®™“?, While the characteris-
tics can in principle be obtained from formulas related to
the reflection coefficients, it does not shed light on various

aspects of equilibrium or non-equilibrium fluctuations in
the context of metamaterials. Our aim is to provide an
insightful look at prevailing approaches adopted to the
case of hyperbolic media.

We also consider the case of a practical phonon-
polaritonic metamaterial®® and show the stark con-
trast in the far-field and near-field thermal emission
characteristics”. This should help experimentalists de-
sign experiments starting from analyzing the far-field
characteristics, retrieving effective medium characteris-
tics and then look for our predicted near-field effects. We
show that the far-field characteristics are dominated by
the epsilon-near-zero and epsilon-near-pole responses as
expected from Kirchoff’s laws™. This is true independent
of material choice and can occur for both nanowire and
multilayer hyperbolic media™. We comment here that
for practical applications high temperature plasmonics
and metamaterials would be needed!.

We also study the limitations of effective medium the-
ory (EMT) but focus on cases where there is good agree-
ment between practical structures and EMT=T0972 We
emphasize that it is known in the metamaterials commu-
nity that the unit cell of a metamaterial can show charac-
teristics similar to the bulk medium®”. In the context of
thin film hyperbolic media, this was experimentally elu-
cidated in Ref. [73] and theoretically explained in detail in
Ref. 571

In this paper we also describe another effect connected
to hyperbolic super-Planckian thermal emission®. We an-
alyze the spatial coherence®™ 77 of the near-field thermal
emission and relate it to the metamaterial modes. We
show that there is a subtle interplay in near-field spatial
coherence due to competition between surface waves and
hyperbolic modes. We expect our work to aid experi-
mentalists in isolating thermal effects related to meta-
materials and also form the theoretical foundation for
developing the macroscopic quantum electrodynamics™®
of hyperbolic media.



II. FLUCTUATION DISSIPATION
THEOREM

In global thermal equilibrium, the first kind of fluctu-
ation dissipation theorem™8(FDT) directly specifies the
correlation function of electric fields. It is expressed by

<E(T17 )®E (7‘27 )>:
%G(w,T)Ima(m,rg,w)(S(w—o./). (1)

Here ¢ is the dyadic Green’s function®®(DGF),
O(w,T) = hw/(e"/kT _ 1) is the mean energy of a
thermal oscillator.

Eq. has two main applications. Firstly, it can be
used to derive the electromagnetic stress tensor at a cer-
tain point. Secondly, it directly gives the cross-spectral
density tensor™ ™ which characterizes the spatial coher-
ence of a thermal radiative source. The second kind of
FDTI68 that specifies the correlation function of ther-
mally generated random currents is
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We assume the permittivity € is a diagonal matrix; €”
denotes the imaginary part.

The first kind of FDT can only be used in global ther-
mal equilibrium. In non-equilibrium situation, we should
first employ Maxwell equations to obtain the electromag-
netic fields generated by random currents through the

DGF,
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and then calculate the electromagnetic stress tensor or
the cross-spectral density tensor.

The dyadic Green’s function (DGF) satisfies an impor-
tant identity®el,
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This identity ensures that at global thermal equilibrium
the first kind and the second kind of FDT lead to identical

results.

III. THERMAL EMISSION FROM HALF
SPACE UNTAXTAL MEDIA

In this section, we consider an uniaxial medium located
in the lower space (¢ < 0) at temperature T while the

upper space vacuum part is at zero temperature. The
relative permittivity of the uniaxial medium is a diag-
onal matrix, € = diag[e|;€|;€1]. Note that hyperbolic
metamaterials are a special kind of uniaxial medium sat-
isfying €€, < 0. As mentioned before, we should employ
the second kind of FDT because this is a non-equilibrium
problem.

To solve DGF in planar structures, it is convenient

to work in the wavevector space. DGF in vacuum® is
(z>2")

dk dky sz (r, . —7")
Gt =g || 555

{AO 20 zkzo(z z)+ ~0 AO 1kzo(z z )} (6)

Here we define l;q_ = (kjl,k‘y,kao) /ko ib the normalized
wave-vector of upward waves (z > 2’) in free space,

ki = (ks ky), = \/k2+ k2 = ,/k? — k2, and
r; = (x,y). s+fk+><zf(k km,())/kplstheumt
direction vector of s-polarized waves, P 1= 39 1 X k+ =
(—kgkz0, —kyk-0, k;p)/kok‘ is the unit direction vector of
p-polarized waves. Correspondingly and for later use,
k. = (ky, ky, —k.0)/ko is the normalized wave-vector

of downward waves (when z < 2/), 8% =

(ky, —ky,0)/k, same with 8% , and p® = §° x k_ =
(kxkzo,kykzo,ki)/kok;p

The DGF relating thermally generated random cur-
rents inside the medium in the lower space to the fields
in upper space vacuum is
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Here, kZS:Q/EHk(QJ*kg, kzp:\/q‘kz k2 §+—S+,
and pt = (—kyk.p, —kyk.p, p€\|/€L)/k0 /€] Which are
the unit direction vectors of s- and p- polarlzed waves in-
side the unaxial medium, respectively. Note the trans-
mission coefficients incident from the vacuum side should
be in terms of the electric fields,
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To calculate the magnetic fields, we should evaluate

<
V X Go1, which can be easily done in the wavevector
space. The curl operator will work on the first vector of
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The free space energy density is defined by
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where the prefactor 2 accounts for the negative frequency
counterpart. Following the formalism in Ref. [77, we de-
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One can then find
u(w, z) =
Inserting the expressions of g. and g, we have
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The integration on z’' can be easily done. Further by
taking the imaginary part of the dispersion relation
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for s- and p-polarized waves, this result can be simplified
as
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Here Upp ‘;’—;@(w,T) is the energy density of
blackbody.r® and rP are the standard reflection coeffi-
cients given by
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The propagating wave part 1 — |r|? in Eq. is the
far field emissivity, equivalent to Kirchhoff’s law. Corre-
spondingly, the evanescent wave part can be interpreted
as Kirchhoff’s law in the near field and 2Im(r) is the
near field emissivity 180482 which is widely used in
heat transfer problems. 2Im(r) is also proportional to
the near field local density of states (LDOS) proposed in
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Ref. 18 and is related to the tunneling and subsequent
absorption of energy carried by evanescent waves. Re-
cently extensive theoretical and experimental works have
demonstrated the ability of HMMs to enhance the near
field LDOS>™22%83 Thus we expect the use of HMMs in
thermal and energy management.

A. Energy in matter and fields

We can use the above definitions to compare the energy
density in the near-field of the hyperbolic media to any
other control sample. A pertinent question is about how
much energy density is in matter degrees of freedom as
opposed to the fields. This is difficult to answer inside
the medium but can be done unambiguously in the near-
field.

In the high-k approximation, where the wavevector
parallel to the interface k, is sufficiently large, the near-
field energy density is governed by the tunneling param-
eter which we define as the imaginary part of the p-
polarized reflection coefficient. Thus studying the behav-
ior of this tunneling parameter sheds light on the near-
field energy density. In the low loss limit, the reflection
for p-polarized waves incident on an interface between
vacuum and HMM can be expressed by®:84
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While for an isotropic medium, the high-k approximation



gives
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The most striking difference between the above equations
is that for a conventional isotropic medium the near-field
energy density is completely dominated by the imaginary
part of the dielectric constant. These fluctuations disap-
pear in the low loss limit and can be attributed to matter
degrees of freedom. This is because the imaginary part
of the dielectric constant which governs field fluctuations
also characterizes the irreversible conversion of electro-
magnetic energy into thermal energy of matter degrees
of freedom. On the other hand, the hyperbolic medium
shows near-field fluctuations arising from high-k modes
completely indpendent of material losses and the energy
resides in the field.

Let us analyze what would happen at mid-infrared
frequencies where phonon polaritonic materials can give
rise to this low loss high-k limit for hyperbolic media.
We clearly see from Eq. that the near field emis-
sivity would be very small when the frequency is away
from the surface phonon polariton resonance (SPhPR)
frequency where Re(e) = —1. However, for HMMs made
of phonon polaritonic materials and dielectrics, the near
field emissivity (Eq. can be comparably large in broad
frequency region, though in this approximation its mag-
nitude cannot exceed one. Note here we do not account
for surface wave resonances which can change the picture
considerably especially if one wants to optimize near-field
heat transfer®®. Our aim is to focus on the bulk modes
only.

IV. THERMAL EMISSION FROM
MULTILAYERED STRUCTURES

In this section we will consider multilayered structures.
In the field of metamaterials, multilayered structures are
widely used to achieve effective uniaxial media. The aim
here is to go beyond effective medium theory and calcu-
late the exact thermal emission from multilayered struc-
tures using the second kind of FDT. We assume that
the medium in all layers is isotropic and non-magneto-
optical for simplicity. To find DGF's relating the random
currents in each layer to the vacuum region, we will fol-
low the method in Ref. [80. Firstly assuming the current
source is in the vacuum region, we can calculate the fields
induced by the source in all the layers by transfer matrix
method which matches the boundary conditions at all

the interfaces. Thus the DGFs with source in the vac-
uum region are ready to be employed. Next we use the
reciprocal property of the DGF to achieve DGF when the
sources are in the lower space.

DGF in the vacuum region (z < 2’) is
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DGF in the intermediate slabs are
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DGF in the last layer is
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Note in the last layer we only have the downward waves,

namely, the transmission.
The boundary conditions give®!
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for p-polarized waves. Following the same steps as in the
uniaxial case, the final expression is
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where N is the total number of layers in the structure.
To simplify the above result, we first note that the
integral
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which is valid for all layers.
tion, we have

2
. 7 . ’
Alelkzm + Ble_lk”Z =

Zl—1

(28)

From the boundary condi-
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Thus we find
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in our convention, zy = 0. The final result is
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This is the contribution from s-polarized waves. For
p-polarized waves, the corresponding identity is
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Then the contribution from p-polarized waves can be
evaluated in the similar way. The final expression for
thermal emission from a half space multilayered structure
will be given by Eq. The reflection coefficients should
be that of the whole structure.

+
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If we are interested in a slab inside vacuum rather than
a half space structure, we can eliminate the contribution
from the last layer vacuum part. To do so, in Eq. ,
for the last layer Axyy1 = 0 and Byyi = t°, the right
hand side is therefore Re(k.o)|t*|?, which vanishes for
evanescent waves. Subtracting this term from Eq.
gives the thermal emission from a multilayered slab inside
vacuum,
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The above expression can be also obtained by replacing

1 —|r|? in Eq. With 1 — |r|? — |t|?, which is consistent
with Kirchoff’s law.
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V. SCATTERING MATRIX METHOD AND
SPATIAL COHERENCE

We now describe another approach to evaluating the
near-field energy density near metamaterials using the
scattering matrix approach. However, first we will dis-
cuss a few important points related to the concept of
the thermal environment. We note that when the lower
space is vacuum, the reflection coefficients are zero. As a
result of Eq. , the contribution from the evanescent
waves part is zero while that from the propagating waves
is nonzero. However, this is not very intuitive from FDT.
The reason is that losses of vacuum i.e. € of vacuum is
zero and from the second kind of FDT, the correlation
function of random currents of vacuum should be zero,
suggesting a zero field correlation. It turns out that for
an unbounded vacuum region, we should add an infinites-
imal imaginary part to €, integrate over the region and
then take the limit of the imaginary part to be zero in the
final expression®3®, This is needed to preserve causal-
ity requirements. In the derivation of Eq. , we have
integrated the source region 2z’ from —oo to 0. However,
for a vacuum gap with any finite width, the final fields
correlation originating from the gap can be shown to be
zerd®, For this reason, fluctuations in vacuum can be
interpreted to come from infinity.



It is then natural to think about the thermal emis-
sion from the upper space vacuum region as well. If the
vacuum region is also at temperature T, the system is
at global thermal equilibrium. Therefore we can employ
the first kind of FDT to calculate the thermal energy
density. This approach is used in Ref. [86] to define the
local density of states. Here we directly cite the final
result,
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Note again that the contribution from evanescent
waves equals that of Eq. , implying no evanescent
waves contribution from the upper space vacuum region.
However, in non-equilibrium, to determine electromag-
netic fields induced by every random current inside the
medium using second kind of FDT is quite laborious. We
note from the second kind of FDT that the currents are
not spatially correlated, which suggests that the thermal
emission from different spatial regions can be calculated
separately. In thermal equilibrium, we can calculate the
thermal energy density by the first kind of FDT. Thus
if we can calculate the thermal emission from the upper
space vacuum part at temperature T, thermal emission
only from the lower space can be achieved by excluding
the vacuum part from the total thermal energy density.

The electric field generated by the upper half vacuum
space can be written ass

2
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as and a, are the field amplitude for s and p-polarized

waves, respectively. The operator a = (as,ap)T satisfies

the correlation function3?,
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The coefficient C' can be read directly from FDT and
the free space DGF,
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which vanishes for evanescent waves. These fluctuations
from the upper vacuum region shines on the interface and

get reflected. The total fields due to fluctuations in the
vacuum part are
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The magnetic fields can be calculated using Eq. and

Maxwell equations. Then one can find the energy density
due to the fluctuations in the upper space vacuum,
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Subtracting Eq. from Eq. (34), we recover the ex-
pression by the second kind of FDT.
From the definition of the cross-spectral density tensor
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one can find the spatial coherence due to fluctuations in
the upper space vacuum,
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where 71 = (0,0, 2), 72 = (d, 0, 2) and fOQTr dfetkpdcost —
2nJy(kpd) is used; Jo(k,d) is the zeroth order Bessel func-
tion of the first kind. Further, from Eq. , the first kind
of FDT, we have
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Then the contribution from the lower space structure is
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Only p-polarized waves contributes to W,, since s-
polarized waves do not have E, components.

Once again, if the structure is a multilayered slab in
vacuum, the contribution from the lower vacuum space
can be evaluated using the scattering matrix method in
a similar way to the upper vacuum space. The fields due



to the vacuum fluctuations in the lower space transmit
through the planar structure,

Ei(w, ki, z) = (tPas(w, k)5 + tPay(w, ki )p )er=0=.
(45)
It is clear that the contributing energy density will be
proportional to the [t|?, so that we recover the result of
Eq. . Note that due to the reciprocal property, the
transmission coefficients from two sides of the structure
should be identical.

Generally speaking, considering a single object in ther-
mal equilibrium, the energy density can be determined
by the first kind of FDT, which is simply a single scat-
tering event. To find the contribution from the object
only, we can exclude the contribution from the environ-
ment, which can be also expressed by the scattering ma-
trix of the object. If there are several objects at different
temperatures, we can first decide the thermal emission
from one specific object in the absence of other objects
and then build the scattering part from other objects, in
which procedure the temperatures of the other objects
and the environment are assumed to be zero. Note this
is the basic idea of M.Kardar and co-authors in sequent
works323387 - Beyond the multilayered structures con-
sidered here, the authors also give the scattering matrix
of various geometries including sphere and cylinder. For

more complicated objects, numerical methods are also
well developed 42/43:88:89)

VI. RESULTS AND DISCUSSIONS

There are multiple approaches to achieving hyperbolic
dispersion®™8.  Two of the prominent geometries con-
sists of 1D or 2D periodic metal-dielectric structures. We
consider here a multilayer combination of silicon dioxide
(SiO2) and silicon carbide (SiC) which has a metallic re-
sponse in the Reststrahlen band due to phonon polaritons
(Re(e) < 0 between wro = 149.5 x 102 Hz and wro =
182.7 x 10'2 Hz, the transverse and longitudinal optical
phonon resonance frequencies). The permittivity of SiC
is given by €, = €x (Wi —w? — iw)/(Why — w? —iw),
where w is the frequency of operation, w., = 6.7 and
v = 0.9 x 10'2 Hz. We note that this realization formed
the testbed for the first complete characterization of the
modes of hyperbolic media due to their low loss as com-
pared to plasmonic media”. The modes of this HMM can
be excited at relatively lower temperatures (400-500K)
when the peak of black body emission lies within the
Reststrahlen band of SiC. To understand the thermal
properties of phonon-polaritonic hyperbolic metamate-
rials we need to focus only on the Reststrahlen band of
SiC where it is metallic. The multilayer structure (see
schematic in Fig. [[[a)) shows a host of different electro-
magnetic responses as predicted by effective medium the-
ory € = e ftea(l—f) and €1 = epea/(caf+em(1—1)),
here f is the fill fraction of the metallic medium®.

We classify the effective uniaxial mediumB258 ysing the

51 Type Il HMM
>
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FIG. 1. (a) Schematic of the multilayered structure and the
coordinates. The spatial coherence are calculated between

r1 = (0,0, 2) and ro = (d,0, 2). (b) Effective permittivities of
a Si02-SiC multilayered structure, where the fill fraction of
SiC is 0.4. Only real part of the permittivity is plotted. The
insets from left to right, denote the iso-frequency dispersion
of dielectric, type II HMM and type I HMM.
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FIG. 2. Normalized far field thermal emission of a 3um

Si02-SiC multilayered structure, with fill fraction of SiC is
0.4.
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FIG. 3. Wavevector resolved thermal emission (normalized
to blackbody emission into the upper space) from a SiOs-
SiC multilayered structure calculated by (a) transfer matrix
method and (b) EMT at z=200nm. The thermal emission
is normalized to the black body emission to the upper half-
space and in log scale. The structure consists of 40 layers
of SiO2/SiC , 30nm/20nm achieving a net thickness of 1pm.
The presence of high-k modes are clearly evident in both
the EMT calculation and the multilayer practical realization
which takes into account all non-idealities due to dispersion,
losses, finite unit cell size and finite sample size. The bright
curves denote the enhanced thermal emission due to high-k
modes in the HMM. In the practical multilayered structure,
the high-k modes come from the coupled short range surface
phonon polaritons at the silicon carbide and silicon dioxide
interfaces.

isofrequency surface of extraordinary waves which follow
k2/e) + (k2 + k2)/er = w?/c* and the media are hyper-
boloidal only when €je; < 0. We can effectively achieve
a type I hyperbolic metamaterial with only one nega-
tive component in the dielectric tensor (¢ > 0, €1 < 0),
type II hyperbolic metamaterial with two negative com-
ponents (eH < 0, e, > 0), effective anisotropic dielectric
(e > 0, ex > 0) or effective anisotropic metal (¢ < 0,
€, <0). In Fig. b), we plot the effective permittivities
of a Si05-SiC multilayered structure with the fill fraction
0.4 and label the two hyperbolic regions. As the purpose
of this work is to examine how extraordinary waves in
HMMs impact thermal emission properties, we only con-
sider p-polarized waves in our numerical simulations.

A. Far field thermal emission

We first characterize the thermal emission of a HMM
slab in the far field. This is extremely important for
experiments currently being pursued in multiple groups.
We clearly observe two peaks in Fig. [2in agreement with
the previous work on epsilon-near-zero and epsilon-near-
pole resonances for thermal emission™. The right one
occurs when €, is close to zero. From the displacement
field boundary condition, egFg, = €; F1,, when e; — 0,
the fields inside HMM FE7,; should be very large. Thus
large absorption is expected at this epsilon near zero re-
gion. The epsilon-near-pole resonance results in narrow-
band thermal emission due to the increase in the imagi-
nary part of the dielectric constant in this ENP spectral
region. The most critical aspect is the direction of the
dielectric tensor components which show ENZ or ENPZL,
An ENZ in the component parallel to the interface or an
ENP perpendicular to the interface does not show such
effects.

B. Near field thermal emission

Here we analyze the near-field thermal emission from
multilayer hyperbolic media®. We first focus on how ther-
mal emission will depend on the thickness of the slabs.
In Fig. |3| we plot the wavevector resolved thermal emis-
sion from a structure consists of 40 layers of SiO5/SiC ,
30nm/20nm achieving a net thickness of 1ym. We clearly
see multiple discrete high-k modes in both the type I
and type II hyperbolic region. Note the thickness 1um
is about one tenth of the operating wavelength, so these
high-k modes will not occur in conventional isotropic di-
electrics. The excellent agreement between the EMT pre-
diction and the practical multilayered structure is seen,
which validates the use of EMT in our structure. Fur-
ther, we increase the thickness of the slab to 3pum and
30um while keeping the same unit cell. The waveguide
modes will be denser as expected. At the thickness of
30um, the high-k modes are almost continuous and re-
sult in two bright bands in Fig. [4[(b). This is close to the
bulk metamaterial limit.

We show the thermal emission spectrum in Fig. [f(a) for
various thicknesses of the metamaterial. The two main
peaks are due to the high-k modes in the hyperbolic re-
gion. In Fig. b), we plot the wavevector resolved ther-
mal emission at a specific frequency w = 1.6 x 10*Hz
within the type II hyperbolic region where the struc-
ture supports both surface mode and high-k modes. The
sharp peaks at the left are due to the surface mode while
the high-k modes emerge at larger k,. In the high-k
modes region, the curve for 30um slab is almost flat in-
dicative of a continuum of high-k modes. In contrast,
the curves of 1ym and 3pm slabs clearly show the ex-
istence of discrete high-k waveguide modes featured by
crests and troughs.
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FIG. 4. Wavevector resolved thermal emission (normalized

to blackbody emission into the upper space) from (a) a 3pum
thickness HMM slab and (b) a 30um thickness HMM slab.
The fill fraction of SiC is 0.4, same as the 1yum HMM slab.
The two hyperbolic regions where the thermal emission is en-
hanced are evident. The modes supported by 3um thickness
slab are denser than that of 1um slab and the modes sup-
ported by the 30um slab are almost continuous.

C. Spatial coherence of hyperbolic
metamaterial slab

Surface waves can lead to large spatial coherence
length in the near field™®. To see this, we first show
in Fig. [6] the wavevector resolved thermal emission from
a 30um thick SiC slab. The bright curve gives the dis-
persion of surface phonon polariton (SPhP) between the
vacuum and SiC interface. Note we will not see the split-
ting of the vacuum-SiC interface SPhP mode into long
range and short range modes since 30pm is in the or-
der of several operating wavelengths. In the time do-
main, the temporal coherence is best for monochromatic
waves. Thus for the spatial coherence, one can imag-
ine it will be favorable if a single wavevector dominates
the fields among all the wavevectors. This is indeed the
case for surface waves. In Fig. a), we plot the spa-
tial coherence of the SiC slab at w = 1.6 x 10*Hz and
w = 1.79 x 10Hz. At the frequency w = 1.6 x 10'*Hz,
the SPhP mode wavevector k, is about 1.1kg. Large
spatial coherence length is seen at both 0.2pum and 1pm
from the interface. However, near the surface phonon po-
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FIG. 5. (a) Normalized thermal emission from slabs with

various thicknesses. The dashed black line is calculated using
transfer matrix method while the solid lines are calculated
using EMT parameters, where 'DM’ in the legend means the
top layer of SiOz(Dielectric)-SiC(Metal) multilayers is SiOs.
Despite the clear difference of the density of modes supported
by the slabs shown in Fig. [3| and the thermal emission
spectrum are interestingly in good agreement. The two main
peaks where the thermal emission are largely enhanced are
due to the high-k states in the two hyperbolic regions. (b)
Wavevector resolved thermal emission at w = 1.6 x 10**Hz.
The sharp peaks on the left (k,/ko < 2) are the surface modes.
When k,/ko > 3, the curve for 30um slab is almost flat with
no oscillations, while that of 1pym and 3um slabs show the
discrete modes denoted by crests and troughs.

lariton resonance (SPhPR) frequency w = 1.79 x 101*Hz
where egjc = —1, the mode dispersion curve is almost a
horizontal line, which means that multiple modes with
different wavevectors can be thermally excited. Thus a
poor spatial coherence is expected. In Fig. a), the spa-
tial coherence is poor at at both 0.2um and lpym from
the interface. This feature could be used to determine
the resonance frequency.

Hyperbolic metamaterials can support multiple high-
k modes. Therefore the spatial coherence length should
not be long in the hyperbolic region. This is true for type
I HMM. In Fig.[f{(b), we plot W, at w = 1.79 x 10**Hz,
where the multilayered structure effectively behaves in
the type I hyperbolic region. The spatial coherence
lengths are only a fraction of the operating wavelength
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FIG. 6. Thermal emission by a 30um SiC slab. The red
bright curve represents the dispersion of the SPhP mode be-
tween the vacuum and SiC interface since the slab is very
thick.

at both 0.2um and 1pm from the interface.

But the situation for type II hyperbolic region is inter-
estingly different. For a HMM slab in the type II hyper-
bolic region (¢ < 0, €1 > 0), the slab can support a sur-
face wave mode as well as multiple high-k modes. Thus
we have two sets of modes that can result in a unique
interplay of spatial coherence effects. Furthermore, these
modes are separated in wavevector space because of the
lower bound of the high-k states in type II hyperbolic
region®?. High-k modes are confined to the surface bet-
ter than suface waves and these high-k waves will domi-
nate at a shorter distance from the interface. We choose
w = 1.6 x 10"*Hz within the type II hyperbolic region
to confirm this point. At distance 0.2um, the spatial co-
herence is very poor. However, at a larger distance 1pum,
the fluctuating fields have large spatial coherence length.
This is because at this distance, the contribution from
surface wave mode dominates the electric fields while the
high-k states rarely contribute to the fields. This dis-
tance dependence behavior can have applications such as
obtaining the modes distribution at a given frequency.

D. Thermal Topological Transitions

Until now, we have fixed the fill fraction to be 0.4.
It is useful to examine the structure’s behavior at vari-
ous fill fractions. In Fig. (a), we plot the optical phase
diagram®®°? of this metamaterial which shows the isofre-
quency surfaces achieved at different frequencies and fill
fractions of SiC. The phase diagram is classified as effec-
tive dielectric, effective metal, type I and type II HMM
as introduced before>™28,

Figure. b) shows the thermal energy density (normal-
ized to black body radiation into the upper half space)
evaluated using Rytov’s fluctuational electrodynamics for
an effective medium slab at a distance of z=200nm from
the metamaterial. It is seen that the regions of hyper-
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FIG. 7. spatial coherence of (a) a 30um SiC slab and

(b) a 30um HMM slab at 0.2um and lpm from the sur-
face with w = 1.6 x 10'*Hz and w = 1.79 x 10"Hz. (a)
At w = 1.6 x 10'*Hz, the SiC slab supports a single degen-
erate SPhP mode. As a result, SiC slab has large spatial
coherence at both 0.2um and 1ym. At w = 1.79 x 10'*Hz,
the SPhP resonance frequency where Reesic = —1, this fre-
quency corresponds to a bright horizontal line in the SPhP
dispersion curve shown in Fig. [f] This means at this fre-
quency, multi-modes with different wavevectors can be ther-
mally excited. Thus the spatial coherence is poor both at
0.2um and 1um. (b)At w = 1.6 x 10"*Hz, the HMM slab
supports high-k states besides the SPhP mode. At 0.2um,
the high-k states contribute a lot to the fluctuating electric
fields, and consequently the spatial coherence is poor. But
when the distance becomes larger at 1um, the high-k states
will not reach that far because of their large wavevector k,.
Thus the electric fields will be dominated by the surface mode
which has smaller k,. The spatial coherence length is large
due to this dominant surface mode. At w = 1.79 x 10'*Hz,
the HMM slab can only supports multiple high-k states, and
unlike the type II HMM region, there is no lower bound for
the high-k wavevectors. Thus the spatial coherence is poor
both at 0.2pum and 1um.

bolic behavior exhibit super-Planckian thermal emission
in agreement with our previous analytical approxima-
tion, but here we will go beyond effective medium the-
ory and consider practical structures. The role of the
surface waves is very important and can lead to signifi-
cant deviations when the unit cell size is not significantly
subwavelength 646972
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(a) Optical phase diagram of SiC-SiO2 multilayered structure predicted by EMT. Red region denotes effective

dielectric, blue region means effective metal, yellow region stands for type I hyperbolic metamaterial, green region is type II
hyperbolic metamaterial. Thermal emission at z=200nm (log scale plot normalized to the black body radiation into the upper
half-space) by the multilayered structure depending on the operating frequency and the fill fraction calculated by (b) EMT,
(c) SiO2-SiC multilayer (with first layer SiOz), (d) SiC-SiO2 multilayer (with first layer SiC). In the effective metal region,
the dark red line is due to surface phonon polariton resonance. Both type I and type II region have a clear thermal emission
enhancement due to bulk high-k modes in agreement with the optical phase diagram.

The macroscopic homogenization utilized to define a
bulk electromagnetic response is valid when the wave-
length of operation exceeds the unit cell size (A > a).
However, even at such wavelengths if one considers inci-
dent evanescent waves on the metamaterial the unit cell
microstructure causes significant deviations from EMT.
This is an important issue to be considered for quan-
tum and thermal applications where the near-field prop-
erties essentially arise from evanescent wave engineering
(high-k modes)™8.  For the multilayer HMM, at dis-
tances below the unit cell size, the thermal emission is
dominated by evanescent waves with lateral wavevectors
k, > 1/a. Since this is above the unit-cell cut off of
the metamaterial, the high-k modes do not contribute
to thermal emission at such distances. It is therefore
necessary to consider thermal emission from a practical
multi-layer structure taking into account the layer thick-
nesses. This is shown in Fig. [§[c) and Fig. [§[d). The unit
cell size is 200nm, and we consider a semi-infinite mul-
tilayer medium using the formalism outlined in Ref.
An excellent agreement is seen of the optical phases of
the multilayer structure with the EMT calculation.
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VII. CONCLUSION

This work shows that extension of equilibrium and
non-equilibrium fluctuational electrodynamics to the
case of metamaterials can lead to novel phenomena and
applications in thermal photonics. We presented a uni-
fied picture of far-field and near-field spectra for ex-
perimentalists and also introduced the near-field spa-
tial coherence properties of hyperbolic media. We have
analyzed in detail thermal topological transtions and
super-Planckian thermal emission in practical phonon-
polaritonic hyperbolic metamaterials. We paid particu-
lar attention not only to the effective medium approxi-
mation but discussed all non-idealities limiting the super-
planckian thermal emission from HMMs. We have pro-
vided practical designs to experimentally measure and
isolate our predicted effect. Our work should lead to a
class of thermal engineering applications of metamateri-
als.
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