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Abstract

Empirical mode decomposition (EMD) is a powerful signal analysis technique
to analyze non-stationary signal systems, like seismic data. Through the sifting
process, EMD splits the non-stationary features of the input signal into individual
decomposition modes, which are called intrinsic mode functions (IMFs). Each IMF
has a symmetric, narrow-band waveform, which ensures that their instantaneous
frequency of them is smooth and positive. However some negative features en-
cumber its direct application namely mode mixing and splitting, aliasing and end-
point artifacts. Two variants, ensemble EMD (EEMD) and complete ensemble EMD
(CEEMD) have been recently introduced to overcome some of the negative features
associated with EMD. Furthermore, two EMD-like methods are also introduced:
first one is the synchrosqueezing transform (SST), which decomposes the input sig-
nal into SST modes, and these modes manifest similar features to IMFs; another
one is the 2D extension of EMD, bidimensional empirical mode decomposition

(BEMD), which can aid image analysis.

This thesis focuses on testing the suitability of EMD methods for seismic pro-
cessing and interpretation, and we present 4 new techniques. The first method is
CEEMD combined with instantaneous spectra for seismic spectral decomposition.
After CEEMD, the instantaneous frequency spectra manifests visibly higher time-

frequency resolution than short time Fourier and wavelet transforms on both syn-
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thetic and field data examples. The second method is EEMD thresholding. It is
effective for suppressing random noise in each trace, which is highly attractive for
microseismic processing. Furthermore, the proposed EEMD thresholding can be
extended into the f-x domain as f-x EEMD thresholding, which aims to reduce dip-
ping coherent and random noise. The third application is SST for seismic signal
time-frequency analysis. It shows comparable results to CEEMD combined with
instantaneous spectra; therefore it is highly suitable for high resolution seismic in-
terpretation. The last proposed method is BEMD thresholding, which aims to reduce
random noise of 2D seismic images.

Utilizing the particular features of IMFs or SST modes, the presented meth-
ods manifest excellent performance on seismic spectral decomposition and seismic
denoising. The synthetic and real data examples illustrate that EMD methods are

highly promising for seismic processing and interpretation.
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“Science is a wonderful thing if one does not have to earn one’s living at it.”

Albert Einstein
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Chapter 1

Introduction’

1.1 Background

1.1.1 Time frequency analysis

Accurate and precise analysis of non-stationary spectral variations is a long standing
problem aiming at revealing signal characteristics such as any underlying periodic-
ities. The discrete Fourier transform (DFT), with its fast implementation the Fast
Fourier Transform (FFT) (Cooley and Tukey, 1965; Cooley, 1969), and variants have
been well studied (e.g., Hinich and Clay, 1968; Brigham, 1998). They provide an ef-
ficient way to estimate the frequency content of a discrete and finite time series. The
main application of the DFT to time-varying spectra is the spectrogram, also called
Short-Time Fourier Transform (STFT). Likewise, wavelet transforms and variants
are now well-established and many review articles exist (e.g., Kumar and Foufoula-
Georgiou, 1997; Mallat, 2008). Furthermore, S transform (Stockwell et al., 1996),
halfway between the STFT and wavelet transform, also shows its effectiveness in
estimating of frequency variation (Odebeatu et al., 2006; Stockwell, 2007).

All these methods are bound by the Heisenberg/Gabor uncertainty principle (Ga-
bor, 1946) with a trade-off between time and frequency resolutions (Reine et al.,

2009). Also, signal windowing leads to smearing, which correspond to the widen-

The chapter is based in part of paper ”Spectral estimation - What’s new? What’s next?”. Jean
Baptiste Tary, Roberto Henry Herrera, Jiajun Han and Mirko van der Baan, submitted, Reviews of
Geophysics.



ing of the main lobe around its central frequency, and side-lobe leakage (Hall, 2006).
Lately, various new transforms have been developed to circumvent these issues
such as matching pursuit (MP) (Mallat and Zhang, 1993), basis pursuit (BP) (Chen
et al., 2001), Empirical Mode Decomposition (EMD) coupled with the Hilbert-
Huang Spectrum (Huang et al., 1998) and the synchrosqueezing transform (SST)
(Daubechies et al., 2011).

All these methods can be considered as non-parametric, meaning that they do
not assume any particular stationary structure prior to time-frequency (T-F) decom-
position of the signal. On the other hand, parametric methods drew a lot of attention
in the 80s/90s as they are not assuming zero-valued or periodic data outside the
data window and hence are less restricted by smearing and leakage. Autoregres-
sive (AR) and autoregressive moving-average (ARMA) models for example provide
correct and accurate spectral estimation if the assumed model is appropriate for the
investigated time series (Makhoul, 1975; Ulrych and Bishop, 1975; Kay and Marple,
1981).

In seismic processing and interpretation, time-frequency analysis, and corre-
sponding spectral decomposition plays a significant role. It requires one of the above
transformations of each individual 1D seismic trace into a 2D time-frequency rep-
resentation, which describes how the frequency content varies with time. Spectral
decomposition has emerged in last 15 years as an enlightening seismic attribute,
producing very informative maps of thin beds, especially in clastic successions with
sharp impedance contrasts (Partyka et al., 1999). These maps are typically inter-
preted qualitatively, using geomorphologic pattern-recognition, or semi-quantitatively,
to infer relative thickness variation. Due to its effectiveness, spectral decomposition
has been successfully applied in hydrocarbon detection (Castagna et al., 2003), seis-
mic attenuation estimation (Reine et al., 2009), reservoir characterization (Li and

Zheng, 2008) and so on.

Many methods exist to achieve the spectral decomposition and each has different
resolution capabilities in time and frequency. As spectral decomposition provides
interpreters with the details of reservoir thickness variation and geological discon-

tinuities, high resolution techniques are helpful for more accurately locating these



spectral anomalies, by decreasing spectral smearing, thus facilitating the further seis-

mic interpretation.

1.1.2 Seismic noise attenuation

Noise suppression is a crucial step in both seismic and microseismic processing
since noise compromises our ability to depict the Earth interior. For seismic pro-
cessing, the common methods for suppressing random noise are CMP stacking, fre-
quency bandpass filter, spatial prediction filtering methods and matrix rank reduction
techniques (Chen, 2013). Well-known techniques, like f-x deconvolution (Canales,
1984) and f-x projection filtering (Soubaras, 1994) are examples of spatial predic-
tion filtering methods. The coherent energy, like reflections, can be predicted using
model-based approaches, and the residual are an estimate of random noise. Lately
developed techniques, like f-x singular spectrum analysis (SSA) (Sacchi, 2009) and
its variants (Oropeza and Sacchi, 2010, 2011) are examples for matrix rank reduc-
tion techniques. These methods are all effective for random noise attenuation, and
widely accepted in the oil and gas industry. Due to the diversity of coherent noise
in seismic data, there are different types of methods for coherent noise reduction.
For example, the strong energy of ground roll can be effectively reduced by a f-
k filter, as ground roll presents low frequency and velocity features; multiples can
be separated by Radon transform from seismic reflections as they exhibit parabolic
moveout after NMO; and steeply dipping coherent noise can be suppressed by a dip
filter and f-x empirical mode decomposition (Bekara and Van der Baan, 2009). All
these coherent noise reduction methods try to represent the seismic data in a partic-
ular domain, where the signal and coherent noise are more easily distinguished from
each other. For microseismic processing, although there is only individual trace,
strong electronic and random noise may bring down the quality of data severely.
The traditional methods are frequency bandpass filter for suppressing the random

noise, and notch process for wiping off the electronic noise.



1.2 Empirical mode decomposition

EMD, developed by Huang et al. (1998) is a powerful signal analysis technique to
model non-stationary and nonlinear signal systems. As a fully data-driven technique,
there is no predefined decomposition basis. EMD captures the non-stationary feature
of the input signal in the decomposition modes, which are called intrinsic mode
functions (IMFs). A time-frequency representation is obtained by combining EMD
with the Hilbert transform to compute instantaneous frequencies (Taner et al., 1979;
Magrin-Chagnolleau and Baraniuk, 1999). This is sometimes called the Hilbert-
Huang spectrum (Huang et al., 1998).

EMD adaptively decomposes a multi-component signal x(¢) into a number K of

IMFs

K
x(1) =Y IMF+R. (1.1)
k=1

where R is the final residual, which is a non-zero-mean slowly varying function
with only few extrema. The EMD algorithm is listed below (Huang et al., 1998;
Magrin-Chagnolleau and Baraniuk, 1999):
(1). Initialize: ro = x(¢), i = 1.
(2). Extract the i — th IMF:
(a). Initialize: ho(t) =ri(t), j=1
(b). Extract the local minima and maxima of /;_; (¢)
(c). Form the upper and lower envelopes of /;_i(t) by interpolating be-
tween the successive local maxima and minima using a cubic spline.
(d). Calculate the mean/average m_;(t) of the upper and lower envelopes
(@) hj(t) = hj1(t) -mj1(r)
(f). if stopping criterion is satisfied then set /() as the i —th IMF, else go
to step (b) with j = j+1
3). ri(t) = ri_1 () - imfi(t).
(4). if ri(r) still has at least 2 extrema then go to (2) with i =i+ 1, else the
decomposition is finished and r;(¢) is the final residual R.

Each IMF is obtained through the sifting process, which is referred from step (a)



to (f). After decomposition, the number of extrema and the number of zero crossings
of each IMF are equal or differ at most by one; furthermore, at any point, the mean
value of the envelope defined by the local maxima and the envelope defined by the
local minima is zero. These conditions are necessary to ensure that each IMF has a
localised frequency content by preventing frequency spreading (Huang et al., 1998).
Moreover, EMD has several interesting properties that makes it an attractive tool for
signal analysis. It results in complete signal decomposition, i.e., the original signal
is reconstructed by summing all IMFs. No loss of information occurs. The EMD is
a quasi-orthogonal decomposition in that the cross-correlation coefficients between
the different IMFs are always close to zero. This minimizes energy leakage between

the IMFs (Bekara and Van der Baan, 2009).

There are two variants to improve some drawbacks associated with EMD, namely
ensemble EMD (EEMD) and complete ensemble EMD (CEEMD). We discuss them
in next section, and their implementation is introduced in chapter 2. Based on the

EMD/IMFs features, there are also two extensions developed.

The first extension is bidimensional empirical mode decomposition (BEMD),
which is 2D extension of EMD for the image analysis (Linderhed, 2002; Nunes
et al., 2003). Its theory is totally same as EMD: through the sifting process, the de-
composition modes are called bidimensional intrinsic mode functions (BIMFs). The
only different step between two methods is the upper and lower envelopes are cre-
ated by 2D interpolation methods for BEMD, otherwise using 1D interpolation for
EMD. As the fundamental theories of two methods are same, BEMD shares several
similar promising features with EMD. BEMD also keeps the complete decomposi-
tion feature, no loss of information is incurred by summing all BIMFs. The mean
envelope of each BIMF is guaranteed to be zero or nearly zero, and the BIMFs are
locally orthogonal. The only difference between BIMFs and IMFs is the number
of local extrema and the number of zero crossings. For IMFs, the number of local
extrema and the number of zero crossings must be equal or differ by at most one.
However, due to the properties of an image, it is impossible to satisfy this property

for BIMFs (Bhuiyan et al., 2008).

Another extension is SST, which is originally proposed as an EMD-like method



(Daubechies et al., 2011). This is because SST can also decompose the input signal
into SST modes, which show the similar features with IMFs. Moreover, SST has
a strong mathematical foundation, and it is essentially a frequency reassignment
technique based on wavelet transform. Due to the similarity between SST and EMD,
there are several papers to compare these two techniques (Mandic et al., 2013; Auger
etal., 2013; Herrera et al., 2014). In chapter 3, we elaborately introduce SST theory

and extend it for seismic time-frequency analysis.

1.2.1 Time-frequency analysis by EMD methods

The trait of EMD on time-frequency analysis is fundamentally different from all
the previous techniques. From the fundamental ideas, STFT, wavelet transform, S
transform and even the reassignment technique, like SST, are all the same, as they
drop the comparison with a template performed by an inner product of signal and
basis functions. On the other hand, AR methods reduce a time series to a small set
of parameters, and estimate the future values by a set of past ones. EMD, as the
name implies, is an empirical decomposition in that no a priori decomposition basis
is chosen such as sines and cosines for the Fourier transform or a mother wavelet
for the Wavelet transform. Moreover, there is no estimation function/assumption
assisted with it. Through the sifting process, EMD aims at solving the predicaments
of instantaneous frequency.

From the birth in geophysics of instantaneous frequency (Taner et al., 1979),
scholars have begun to doubt its physical meaning. The instantaneous frequency
holds the promise of the highest possible time resolution since it produces a fre-
quency at each time sample, but at the expense of a very limited frequency reso-
lution due to the Heisenberg/Gabor uncertainty principle (Gabor, 1946). For the
mono-component signal, instantaneous frequency manifests its superiorities, high
accuracy and resolution. However, the contradictory of its physical meaning shows
up when apply for multi-component signal. Saha (1987) points out it approximates
the average Fourier spectral frequency weighted by the amplitude spectrum. In seis-
mic interpretation, direct calculation can lead to instantaneous frequencies, which

fluctuate rapidly with spatial and temporal location. For obtaining the smoother in-



stantaneous frequency, taper and averaging techniques are necessary (Fomel, 2007).
Moreover, the instantaneous frequency is sensitive to the noise in seismic data. All
these disadvantages make it is gradually replaced by spectral decomposition tech-

niques in the 1990s (Chakraborty and Okaya, 1995; Partyka et al., 1999).

Huang et al. (2009) summarize the applicability conditions for instantaneous fre-
quency, namely, the time series must be mono-component and narrow-band. Through
the sifting process, each IMF is guarantee to be a symmetric, smooth and narrow-
band waveform, thus the IMFs are much closer to applicability conditions of instan-

taneous frequency than the original time series.

Even though EMD offers several promising properties, some features encumber
its direct applications namely mode mixing and splitting, aliasing and end-point
artifacts (Mandic et al., 2013). EMD is also relatively inefficient for flat signals due
to the extrema interpolation step, and for signals with frequency components that

are not well-separated.

Two variants were recently introduced to overcome some of the negative fea-
tures associated with EMD, namely EEMD and CEEMD. EEMD, briefly speaking,
is EMD combined with noise stabilization. Using the injection of controlled zero
mean Gaussian white noise, EEMD effectively reduces mode mixing problem (Wu
and Huang, 2009a; Tong et al., 2012; Mandic et al., 2013). Adding white Gaussian
noise helps perturbing the signal and enables the EMD algorithm to visit all possible
solutions in the finite neighborhood of the final answer, and it also takes advantage
of the zero mean of the noise to cancel aliasing (Wu and Huang, 2009a). However,
EEMD leaves two problems: first, different noise realizations may end up with dif-
ferent numbers of IMFs, which could mix up the IMFs after each decomposition in
the frequency domain; second, EEMD does not maintain the complete decomposi-
tion feature of EMD (Torres et al., 2011a; Han and Van der baan, 2013). In other
words, contrary to EMD, the sum of the IMFs obtained via EEMD does not nec-
essarily reconstruct the original signal. The reconstruction error of EEMD is often

acceptable when the injected noise is of small amplitude.

The robust improvement of EEMD is CEEMD, proposed by Torres et al. (2011a),
which obtains again the final IMFs sequentially, contrary to EEMD. Briefly speak-



ing, CEEMD equals EEMD but applies averaging on IMF 1 first before continuing
to next one. It solves not only the mode mixing problem, but also leads to com-
plete signal reconstruction. We combine CEEMD with instantaneous spectra for
seismic time-frequency analysis, which is presented in chapter 2. The new method
manifests visibly higher time-frequency resolution than short-time time Fourier and
wavelet transforms; therefore it is attractive for high resolution seismic spectral de-
composition (Han and Van der Baan, 2013).

SST is a derivation of the wavelet transform empowered by a reassignment step.
It concentrates the frequency content around the instantaneous frequencies in the
wavelet domain. SST assumes that the signal is a superposition of nonstationary
monochromatic wavelets and can be efficiently decomposed by the CWT, followed
by the computation of the instantaneous frequencies plus a reassignment step to
concentrate the energy around the ridges. Due to the reassignment procedure, SST
shows high time-frequency resolution feature, and it is robust to the noise (Thakur
et al., 2013). Han et al. (2013) and Herrera et al. (2014) extend its explanation with

applications to seismic signals.

1.2.2 Noise attenuation by EMD methods

After explored the filter band structure of EMD on white Gaussian noise (Flandrin
et al., 2004a), scholars began to pay more attention to noise reduction from EMD
view. These applications mainly focus on random noise attenuation and first emerge
in signal processing area. The initial attempt is partial reconstructions with the se-
lected IMFs to suppress random noise for the input noisy signal (Flandrin et al.,
2004). Through comparing the theoretical IMFs energy distribution on white Gaus-
sian noise and true IMFs energy distribution of noisy signal, Flandrin et al. (2004)
select the IMFs, which contain mainly signal information for reconstruction and
throw out the other IMFs. This approach resembles a properly set bandpass filter,
but the selected IMFs still may be noise contaminated. Since EMD can be treated as
a wavelet-like transform (Wu and Huang, 2004; Flandrin et al., 2004a), Boudraa and
Cexus (2006) combine wavelet denoising techniques with EMD. They improve the

previous denoising scheme by using adaptive thresholding for each IMF. This ap-



proach is based on the IMFs energy distribution on random noise (Huang and Shen,
2005), and shows better results than wavelet denoising. Kopsinis and McLaughlin
(2009) further improve this idea. Inspired by translation invariant wavelet thresh-
olding, they propose an iterative EMD denoising method to enhance Boudraa and
Cexus (2006)’s results, furthermore, they also propose IMF interval thresholding
instead of original thresholding (hard and soft thresholding) methods to fit IMFs
features. Recently, Chang and Liu (2010) remove the random noise in ECG signal
by combining EEMD with Wiener filter, and a hybrid method based higher order

statistics has also been proposed (Tsolis and Xenos, 2011).

In geophysical data processing, geophysicists have never forgotten the power-
ful denoising capabilities of EMD. Battista et al. (2007) remove cable strum noise in
seismic data by exploiting EMD. Battista et al. (2009) utilize EMD for dewowing the
GPR datasets. The hybrid methods, which combine EMD with wavelet transform
(Chen et al., 2012) and curvelet transform (Dong et al., 2013), are developed to re-
duce random noise in seismic data. These applications are all trace based techniques,
and the denoising strategies are only from the purely signal processing view. How-
ever, the geophysical datasets are charactered by the lateral coherence, like seismic
and GPR data. Bekara and Van der Baan (2009) first extend EMD into f-x domain,
as the t-x domain linear or quasilinear events manifest as a superposition of harmon-
ics in the f-x domain. They eliminate the first EMD component in the f-x domain
to attenuate random and coherent seismic noise, and this technique is termed as f-x
EMD. Based on this strategy, Chen and Ma (2014) and Chen et al. (2014) improve
f-x EMD by combining AR model and f-x SSA.

In this thesis, we propose two novel denoising techniques. The first one is EEMD
thresholding based on EMD. It is trace based method for suppressing random noise
in microseismic data, and it can be also applied into f-x domain for removing both
random and coherent noise in seismic data. This work is presented in chapter 4.
Another one is BEMD thresholding based on BEMD, which is presented in chapter
6. BEMD thresholding is effective for reducing random noise in seismic vertical

profile and seismic time slice.



1.3 Motivation and contribution

EMD has developed more than 15 years (Huang et al., 1998), and recently, its two
variants, EEMD, CEEMD and its 2D extension, BEMD have proposed. Although
EMD methods have shown the powerful and potential capabilities in signal process-
ing and a few geophysical areas, many geophysicists still tend to avoid EMD, this
is mainly because these methods are lack connection to a signal model. The moti-
vations of this thesis are: first, to show the suitability of EMD based methods for
seismic processing and interpretation; second, we hope this thesis will draw the at-
tention of mathematicians to EMD, from mathematical view to prove the technique.

The contributions of this thesis are the following:

e We present CEEMD combined with instantaneous frequency for seismic spec-

tral decomposition.

e We introduce the SST, an EMD-like transform for seismic time-frequency

analysis.

e We propose a trace based denoising method, EEMD thresholding, to reduce
random noise in microseismic data. We also extend it into f-x domain for

suppressing random and coherent noise in seismic data.

e We develop BEEMD to alleviate interpolation artifacts caused by the type of

chosen interpolant for BEMD.

e We calculate the energy distribution of each BIMF on white Gaussian noise.
Based on this energy distribution, we propose the BEMD thresholding method

for suppressing random noise for 2D seismic images.

1.4 Thesis overview

Chapter 2 describes the EMD methods for seismic spectral decomposition. CEEMD
is a robust extension of EMD. It solves not only the mode mixing problem, but also
leads to complete signal reconstructions. After CEEMD, instantaneous spectra man-

ifests higher time-frequency resolution than the traditional methods, like short time
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Fourier and wavelet transforms. The synthetic and field data examples clarify the
effectiveness of the proposed method.

Chapter 3 introduces the SST for seismic spectral decomposition. SST is orig-
inally proposed as an EMD-like method, and it has a strong mathematical foun-
dation based on frequency reassignment of wavelet transform. SST and CEEMD
give comparable results in different applications. SST is therefore attractive for high
resolution time-frequency analysis of seismic data.

Chapter 4 proposes a novel trace-based denoising technique, EEMD threshold-
ing. The method is fully data-driven, and effective for suppressing random noise
in different signal to noise ratio (SNR) cases in each trace. Considering the lateral
coherence of seismic data, we extend the proposed method to the f-x domain as f-x
EEMD thresholding, which aims to reduce dipping coherent and random noise. The
synthetic, microseismic and seismic examples illustrate the good performance of our
proposed methods.

Chapter 5 develops BEEMD, which alleviates many interpolation artifacts caused
by the type of chosen interpolant for BEMD. Thereby facilitating any interpretation
without the need to adapt the interpolant each time to the image.

Chapter 6 is about a novel 2D image denoising technique. From Monte Carlo
simulations, we find that BEMD behaves like a constant-Q, wavelet-like, filter bank
structure for white Gaussian noise. Based on the energy distribution of BIMFs, a
BEMD thresholding method is proposed. The method is fully data-driven, and effec-
tive for suppressing random noise in seismic data. The seismic examples illustrate
the good performance of the proposed method.

Chapter 7 gives the discussion and conclusions of the thesis. Moreover, future

work is discussed.
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Chapter 2

Empirical mode decomposition for

seismic time-frequency analysis'

Summary

Time frequency analysis plays a significant role in seismic data processing and inter-
pretation. Complete ensemble empirical mode decomposition (CEEMD) is a robust
extension of empirical mode decomposition (EMD), and it decomposes a seismic
signal into a sum of oscillatory components, with guaranteed positive and smoothly
varying instantaneous frequencies. Analysis on synthetic and real data demonstrates
that this method promises higher spectral resolution than the short-time Fourier
transform or wavelet transform. Application on field data thus offers the potential of

highlighting subtle geologic structures that might otherwise escape unnoticed.

2.1 Introduction

The most common tool for spectral analysis is the Fourier transform; however, if
applied to the entire trace, it provides no information about local frequency vari-
ations. Such knowledge of how the frequency content of a signal varies in time

can be significant. Local time-frequency analysis is commonly used in both seismic

'A version of this chapter has been published. Jiajun Han and Mirko van der Baan, Geophysics,
2013, 78,2, 09-019.
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processing and interpretation, and there is therefore a rich history and diversity in

developed decomposition methodologies.

Taner et al. (1979) propose the instantaneous frequency attribute which is use-
ful in correlation and appears to indicate hydrocarbon accumulations. The wavelet
transform developed by Morlet et al. (1982) manifests more flexibility and supe-
riority in geophysical applications (Chakraborty and Okaya, 1995). Partyka et al.
(1999) first demonstrate the value of spectral decomposition in 3D seismic data in-
terpretation using tapered short time Fourier transforms. Barnes (2000) improves
the interpretability of instantaneous attributes by using a weighted average win-
dow. Castagna et al. (2003) demonstrate the suitability of the instantaneous spec-
trum for hydrocarbon detection. Liu and Marfurt (2007) also utilize the instanta-
neous spectrum for detecting geological structures. Odebeatu et al. (2006) apply
the S-transform to reflection data and relate the gas saturation to a clear spectral
signature. Li and Zheng (2008) employ the Wigner-Ville distribution for carbonate
reservoir characterization. Reine et al. (2009) find transforms with varying time win-
dows (e.g., wavelet transform and S-transform) allow for more robust estimation of
seismic attenuation. Most recently, local attributes derived from an inversion-based
time-frequency analysis have also been used in seismic interpretation (Liu et al.,

2011).

Time frequency decomposition maps a 1D signal of time into a 2D image of fre-
quency and time, which describes how the frequency content varies with time. The
widely used short time Fourier transform calculates the fast discrete Fourier trans-
form in each time window to compute the spectrogram. The window length deter-
mines the tradeoff between time and frequency resolution as the decomposition basis
of sine and cosine waves can only provide a fixed spectral resolution (Mallat, 2008).
To overcome the limitations of the short time Fourier transform, wavelet based meth-
ods have been applied for seismic time frequency analysis. Chakraborty and Okaya
(1995) compare the wavelet transform with Fourier based methods for performing
time frequency analysis on seismic data, and show the superiority of the wavelet
transform in terms of spectral resolution. Likewise, the S-transform is proposed by

Stockwell et al. (1996). It can be interpreted as a hybrid of the wavelet transform
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and short time Fourier transform. Short time Fourier, wavelet and S-transforms have
all been successfully applied to seismic time-frequency analysis; yet they are all in-
herently limited in terms of time-frequency resolution by their intrinsic choice of de-
composition basis. The computation of instantaneous frequencies seems to offer the
highest possible time-frequency resolution as an individual frequency is obtained at
each time sample. Unfortunately, negative frequencies, which hold uncertain phys-
ical interpretation, are not uncommon (Barnes, 2007; Fomel, 2007). In this chapter
we explore the possibilities of using the Empirical Mode Decomposition (Huang
et al., 1998) in combination with instantaneous frequencies, since this is guaranteed

to produce positive values only.

The empirical mode decomposition (EMD) method developed by Huang et al.
(1998) is a powerful signal analysis technique for non-stationary and nonlinear sys-
tems. EMD decomposes a seismic signal into a sum of intrinsic oscillatory compo-
nents, called Intrinsic Mode Functions (IMFs). Each IMF has different frequency
components, potentially highlighting different geologic and stratigraphic informa-
tion. Furthermore, high-resolution time-frequency analysis is possible by combin-
ing EMD with the instantaneous frequency. The resulting time-frequency resolu-
tion promises to be significantly higher than that obtained using traditional time-

frequency analysis tools, such as short time Fourier and wavelet transforms.

The empirical mode decomposition methods have progressed from EMD to en-
semble empirical mode decomposition (EEMD) (Wu and Huang, 2009a), and re-
cently a complete ensemble empirical mode decomposition (CEEMD) has been pro-
posed by Torres et al. (2011a). Even though EMD methods offer many promising
features for analyzing and processing geophysical data, there have been few appli-
cations in geophysics. Magrin-Chagnolleau and Baraniuk (1999) and Han and Van
der Baan (2011) use EMD to obtain robust seismic attributes. Battista et al. (2007)
exploit EMD to remove cable strum noise in seismic data. Bekara and Van der Baan
(2009) eliminate the first EMD component in the f-x domain to attenuate random and
coherent seismic noise. Huang and Milkereit (2009) utilize the EEMD to analyze

the time frequency distribution of well logs.

The objective of this chapter is to show the suitability of EMD-based methods for
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seismic time frequency analysis. First, we describe and illustrate the various EMD
procedures. Next, using a synthetic example, we show the combination of CEEMD
with instantaneous frequencies promises higher time frequency resolution than ei-
ther the short time Fourier or wavelet transforms. Finally, we apply the technique on

field data to highlight various geologic structures.

2.2 Theory

2.2.1 Empirical Mode Decomposition

EMD decomposes a data series into a finite set of signals, called intrinsic mode
functions (IMFs). The IMFs represent the different oscillations embedded in the
data. They satisfy two conditions: (1) in the whole data set, the number of extrema
and the number of zero crossings must either equal or differ at most by one; and
(2) at any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero. These conditions are necessary
to ensure that each IMF has a localised frequency content by preventing frequency
spreading due to asymmetric waveforms (Huang et al., 1998).

EMD is a fully data-driven separation of a signal into fast and slow oscillation
components. The IMFs are computed recursively, starting with the most oscillatory
one. The decomposition method uses the envelopes defined by the local maxima
and the local minima of the data series. Once the maxima of the original signal are
identified, cubic splines are used to interpolate all the local maxima and construct the
upper envelope. The same procedure is used for local minima to obtain the lower
envelope. Next, one calculates the average of the upper and lower envelopes and
subtracts it from the initial signal. This interpolation process is continued on the
remainder. This sifting process terminates when the mean envelope is reasonably
zero everywhere, and the resultant signal is designated as the first IMF. The first
IMF is subtracted from the data and the difference is treated as a new signal on which
the same sifting procedure is applied to obtain the next IMF. The decomposition is

stopped when the last IMF has a small amplitude or becomes monotonic (Huang
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et al., 1998; Bekara and Van der Baan, 2009; Han and Van der Baan, 2011). The
sifting procedure ensures the first IMFs contain the detailed components of the input
signal; the last one solely describes the signal trend.

Some properties that render EMD interesting for seismic signal analysis are (1)
the decomposition is complete in the sense that summing all IMFs reconstructs the
original input signal and no loss of information is incurred; (2) IMFs are quasi-
orthogonal such that the crosscorrelation coefficients between the different IMFs are
always close to zero; (3) the IMFs have partially overlapping frequency contents
differentiating the decomposition from simple bandpass filters; (4) no predefined
decomposition basis is defined in contrast with Fourier, wavelet and S-transforms
(Huang et al., 1998; Flandrin et al., 2004a; Bekara and Van der Baan, 2009).

Unfortunately as desirable as the last two properties can be they may also consti-
tute a major obstacle restricting the performance of EMD due to intermittency and
mode mixing (Huang, 1999; Huang et al., 2003). Mode mixing is defined as a single
IMF either consisting of signals of widely disparate scales or a signal of a simi-
lar scale residing in different IMF components (Huang and Wu, 2008). Deering and
Kaiser (2005) try to use signal masking to solve the mode mixing problem. However
the masking function is complicated to estimate in real world applications. In the
next section we therefore introduce the recently proposed ensemble and complete

ensemble EMD variants designed to prevent mode mixing.

2.2.2 Ensemble Empirical Mode Decomposition

Based on the filter bank structure of EMD (Flandrin et al., 2004a), Wu and Huang
(2009a) propose the ensemble EMD (EEMD) to overcome mode mixing. EEMD is
a noise-assisted analysis method. It injects noise into the decomposition algorithm
to stabilize its performance.

The implementation procedure for EEMD is simple (Wu and Huang, 2009a):

(1). Add a fixed percentage of Gaussian white noise onto the target signal,

(2). Decompose the resulting signal into IMFs,

(3). Repeat steps (1) and (2) several times, using different noise realizations;

(4). Obtain the ensemble averages of the corresponding individual IMFs as the
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final result.

The added Gaussian white noise series are zero mean with a constant flat fre-
quency spectrum. Their contribution thus cancels out and does not introduce signal
components not already present in the original data. The ensemble averaged IMFs
maintain therefore their natural dyadic properties and effectively reduce the chance
of mode mixing. More explanation can be found in Appendix B.

Although EEMD can improve EMD performance, it does leave another ques-
tion: is it a complete decomposition? Does the sum of all resulting IMFs reconstruct
the original signal exactly? Unfortunately by design each individual noise-injected
EMD application can produce a different number of IMFs. Summing the ensemble-
averaged IMFs does not perfectly recreate the original signal, although the recon-
struction error decreases with increasing number of employed noise realizations at

the expense of increasing computation times.

2.2.3 Complete Ensemble Empirical Mode Decomposition

Complete ensemble empirical mode decomposition (CEEMD) is also a noise-assisted
method. The procedure of CEEMD can be described as follows (Torres et al.,
2011a):

First, add a fixed percentage of Gaussian white noise onto the target signal, and
obtain the first EMD component of the data with noise. Repeat the decomposition /
times using different noise realizations and compute the ensemble average to define

it as the first IM F; of the target signal. Thus,

1 1
IMF, ZYZEl[x—I—éwi], 2.1
i=1

where IMF] is the first EMD component of the target signal x , w; is zero-mean
Gaussian white noise with unit variance, & is a fixed coefficient, and it is defined
as amount of input Gaussian white noise, which is relative to the standard deviation
of the input signal. E; produces the i-th IMF component and [ is the number of
realizations.

Then calculate the first signal residue ry,
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r :x—IMFl. (22)

Next decompose realizations r; + §E [wi], i=1,2,...,I, until they reach their first

IMF conditions and define the ensemble average as the second IMF;:

1 1
IMF, = 7 ZEI [1”1 —|—§E1 [W,'H. (2.3)

i=1
For k = 2,3,...,K calculate the k-th residue: r, = r_; — IMF}, then extract the
first IMF component of r + EEg[wi], i=1,2,...,] and compute again their ensemble

average to obtain /M F(; ;1) of the target signal:

NIH

1
IMFyi 1y ==Y Eilrc+EEwi]]. (2.4)
i=1

The sifting process is continued until the last residue does not have more than

two extrema, producing,

1
R=x-Y IMF, (2.5)
i=1

where R is the final residual, and K is the total number of IMFs. Therefore the

target signal can then be expressed as:

K
x= ) IMF +R. (2.6)
k=1

Equation (2.6) makes CEEMD a complete decomposition method (Torres et al.,
2011a). Compared with both EMD and EEMD, CEEMD not only solves the mode
mixing predicament, but also provides an exact reconstruction of the original signal.

Therefore, it is more suitable than EMD or EEMD to analyze seismic signals.

2.2.4 Instantaneous frequency

The local symmetry property of the IMFs ensures that instantaneous frequencies
are always positive, thereby rendering EMD or its variants interesting for time-

frequency analysis (Huang et al., 1998). Seismic instantaneous attributes (Taner
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et al., 1979) are derived from the seismic trace x(¢) and its Hilbert transform y(z) by

computing its analytic signal, given by,

z(t) =x(t) +iy(t) = A(t)exp[iB(t)]. (2.7)

where A(t) and 6 () denote the instantaneous amplitude and instantaneous phase,
respectively. Instantaneous amplitude is the trace envelope, also called reflection

strength, defined as,

At) = 1/ 22(t) +y2(1). 2.8)

Instantaneous frequency I/F (¢) is defined as the first derivative of instantaneous

phase. Thus,

1F (1) = 2400 2.9)

S 2w odt
In order to prevent ambiguities due to phase unwrapping in equation (2.9), the
instantaneous frequency can be calculated instead from
L x(n)y"t) —1)y(r)

IF(1) =5 e AEETAE (2.10)

where prime denotes derivative with respect to time.

We use equations (2.8) and (2.10) to compute instantaneous amplitudes and fre-
quencies for each IMF. Appendix A shows how to create 2D instantaneous spectra
from 1D instantaneous attributes. Contrary to classical application of instantaneous
attributes to the original signal, this procedure produces a multitude of instantaneous
frequencies at each time sample, namely one for each IMF, allowing for a more in-
depth signal analysis.

We also compute the peak frequency of the various IMFs and other decompo-
sition methods to create a single attribute. It is defined as the frequency where the
maximum energy in each time sample occurs. Peak frequency extraction is a useful
kind of spectral decomposition technique which it has been widely applied in signal

processing research (Marfurt and Kirlin, 2001; Boashash and Mesbah, 2004).
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This attribute has the advantage that it produces a single image convenient for
interpretation purposes. Further analysis using the individual frequency slices re-
mains always feasible. In a similar fashion, Marfurt and Kirlin (2001) introduce
a mean-frequency attribute as a way to summarize the information contained in a

spectral decomposition.

2.3 Examples

2.3.1 Synthetic data: EMD, EEMD and CEEMD

In this section, we first compare the various EMD-based methods using synthetic
signals to demonstrate the advantages of CEEMD. Then, we show that instantaneous
spectral analysis after CEEMD has higher time-frequency resolution than traditional
tools, like the short time Fourier and wavelet transforms.

The signal in Figure 2.1 is comprised of an initial 20Hz cosine wave, superposed
100Hz Morlet atom at 0.3s, two 30Hz Ricker wavelets at 1.07s and 1.1s, and three
different frequency components between 1.3s and 1.7s of respectively 7, 30 and
40Hz. Noted that the 7 Hz frequency components are not continuous, comprise less
than one-period portions, appearing at 1.37s, 1.51s and 1.65s.

EMD decomposes the synthetic data into 7 IMFs (Figure 2.2). The IMFs in
Figure 2.2 show mode mixing deficiencies. IMF1 does not solely extract the high
frequency Morlet atom, but is polluted with low frequency components. Likewise
IMF2 and IMF3 mix low and high-frequency components from a variety of signal
components. This makes it difficult to recognize the individual contributions of each
component to various IMFs, thereby complicating signal analysis.

Figure 2.3 contains the EEMD output with 10% added Gaussian white noise and
100 realizations. The mode mixing problem is reduced to a large extent; for instance,
the 100Hz Morlet atom is completely retrieved in IMF1. IMF 2 mainly contains the
40Hz signal, which is the second highest frequency component. Some slight mode
mixing still occurs in IMF3 and IMF4, but at a significantly reduced level compared

with the EMD output.
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Figure 2.1: Synthetic example: background 20Hz cosine wave, superposed 100Hz
Morlet atom at 0.3s, two 30Hz Ricker wavelets at 1.07s and 1.1s, and there are three
different frequency components between 1.3s and 1.7s.

The CEEMD result also using 10% Gaussian white noise and 100 realizations is
shown in Figure 2.4. The resulting IMF1 is similar to the one obtained by EEMD,
retrieving the 100Hz Morlet atom completely. The resulting IMF2 and IMF3 contain
mostly the 40Hz signal at 1.6s as well as some other higher frequency components,
and IMF4 reflects the two 30Hz Ricker wavelets around 1.1s, 30Hz frequency com-
ponent at 1.4s and the remainder of the 40Hz signal at 1.6s. The background 20Hz
cosine wave is mainly reflected in IMFS. CEEMD is least affected by mode mixing
of all EMD variants.

Figure 2.5 displays the reconstruction error for both EEMD and CEEMD results.
EEMD does not perfectly reproduce the original signal with a reconstruction error
of about 0.5% of the total energy; the CEEMD one is close to machine precision and

thus negligible.
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Figure 2.2: EMD output displaying mode mixing. IMF1 extracts both the high
frequency Morlet atom and some low frequency components. IMF2 and IMF3 also
mix different signal components.
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EEMD output
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Figure 2.3: EEMD output with 10% added Gaussian white noise and 100 realiza-
tions. Although some mode mixing still occurs in IMF3 and IMF4, the mode mixing
problem is reduced to a large extent compared with the EMD output (Figure 2.2).
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Figure 2.4: CEEMD output with 10% added Gaussian white noise and 100 realiza-
tions. The output is least affected by mode mixing of all EMD variants (compare
with Figures 2.2 and 2.3).
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Figure 2.5: Reconstruction error for both EEMD and CEEMD results. EEMD can
lead to non-negligible reconstruction error, whereas it is close to machine precision

for CEEMD.
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2.3.2 Synthetic data: Instantaneous frequency

After the CEEMD decomposition, each IMF is locally symmetric, such that the
instantaneous frequency of each IMF is smoothly varying and guaranteed to be pos-
itive. We compute the instantaneous frequency of each IMF using equation 2.10 and
associated instantaneous amplitude with equation 2.8. It is possible to smooth the re-
sulting time-frequency image by means of a convolution with a 2D Gaussian filter of
pre-specified width. This is useful for both display purposes and initial comparison
with other time-frequency transforms. Next, we compare the resulting instantaneous
spectrum, with the Short time Fourier and wavelet transforms for the same synthetic
trace shown in Figure 2.1.

All three methods can discriminate the various frequency components between
1.2s and 2s, namely the 7, 30 and 40Hz signals, with acceptable temporal and spec-
tral resolution. None of these three methods can identify the individual portions of
the three 7 Hz frequency components, but solely their joint presence. The short-
time Fourier transform with a 170ms time window (Figure 2.6) does not distinguish
between the two Ricker wavelets clearly at 1.07s and 1.1s due to its fixed time-
frequency resolution and their close spacing of 30ms. Wavelet analysis (Figure 2.7)
fares better; however, the spectral resolution for the 100Hz Morlet wavelet at 0.3s is
poor.

Figure 2.8 displays the instantaneous spectrum after CEEMD. The 100Hz Morlet
wavelet, both 30Hz Ricker wavelets and three different frequency components are
recovered with the highest time-frequency resolution. A small Gaussian weighted
filter with width of 6 x 6 time and frequency samples is applied to the instantaneous
spectrum for display purposes.

After calculating the instantaneous frequency, we can control the time-frequency
resolution by varying the size of Gaussian weighted filter. Figure 2.9 shows the
resulting instantaneous spectrum using a 30 x 30 Gaussian weighted filter, creating
a result more comparable to the short-time Fourier and wavelet transforms (Figure
2.6 and 2.7).

This synthetic example shows the potentially significantly higher time-frequency

resolution of CEEMD combined with instantaneous frequencies over that obtainable
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with the short time Fourier and wavelet transforms.
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Figure 2.6: Amplitude spectrum from a short-time Fourier transform with a 170ms
time window. It cannot distinguish between the two Ricker wavelets at 1.07s and
1.1s due to its fixed time-frequency resolution.
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Wavelet transform
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Figure 2.7: Amplitude spectrum after a wavelet transform analysis. It shows a bet-
ter compromise between time and frequency resolution than the short-time Fourier
transform as it distinguishes both Ricker wavelets at 1.1s. Yet, the frequency reso-
lution for the 100Hz Morlet wavelet at 0.3s is poor.
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Instantaneous frequency combined with CEEMD
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Figure 2.8: Instantaneous amplitude spectrum after CEEMD. It has the highest time-
frequency resolution and identifies all individual components. A 6 x 6 Gaussian
weighted filter is applied for display purposes.
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Instantaneous frequency combined with CEEMD
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Figure 2.9: Instantaneous amplitude spectrum after CEEMD and a 30 x 30 Gaussian
weighted filter. This smoothens the CEEMD result, making it more comparable to
Figures 2.6 and 2.7.
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2.3.3 Real data

Next we apply the various time-frequency analysis tools on a seismic dataset from
a sedimentary basin in Canada. There are Cretaceous meandering channels at 0.42s
between CMPs 75-105 and CMPs 160-180, respectively. An erosional surface is
located between CMPs 35-50 around 0.4s. The data also contain evidence of migra-
tion artifacts (smiles) at the left edge between 0.1s and 0.6s. Note that Van der Baan
et al. (2010) have used cumulative energy and local phase attributes to interpret the
same data.

First, we take the trace for CMP 81 (Figure 2.11) as an example to show the time-
frequency distributions corresponding to the various transforms. The results for the
short time Fourier transform with a 50ms time window and the wavelet transform
are shown in Figures 2.12 and 2.13, respectively. Both tools show that there are
essentially two frequency bands, a lower one between 10-50 Hz persistent at all
times, and an upper one that diminishes over time (90 Hz at 0.1s, 70 Hz at 0.5s
and 50 Hz at 1s). The reduction in the high-frequency band is most likely due to
attenuation of the seismic wavelet.

Instantaneous spectral analysis combined with CEEMD with 10% added Gaus-
sian white noise using 50 realizations (Figure 2.14) provides a much sparser image.
It reflects a similar time frequency distribution as the two traditional tools with both
the persistent lower frequency band as well as the diminishing upper band visible.
The sparser image is helpful for more accurately locating these spectral anomalies,
thus facilitating further interpretation.

Next, we pick the peak frequency at each time sample and overlay it onto the
original seismic data. Figure 2.15 shows the peak frequency after short time Fourier
transform. This image shows smooth and continuous features, including alternately
high and low frequency bands between 0.2 and 0.8s due to variations in reflector
spacing, and a general decrease in high frequencies, which is associated with atten-
uation of the seismic wavelet.

Figure 2.15 delineates several interesting features in this dataset. First, the peak
frequency attribute highlights the Cretaceous meandering channels at 0.42s, which

are characterized by lower frequency content due to their increased thickness. Sec-
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Figure 2.10: Seismic dataset from a sedimentary basin in Canada. The erosional
surface and channels are highlighted by arrows. The horizontal axis spans 5.5km.
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Figure 2.11: Individual trace of CMP 81 in Figure 2.10. The channel is at 0.42s.

ond, it indicates the weakening of the closely spaced reflections (thin layers) around
0.8s. High peak frequencies are clearly visible between CMPs 0-75, followed by
predominantly low frequencies due to the thick homogeneous layer underneath. A
comparison with the original section (Figure 2.10) shows indeed a reduction in the
number of closely spaced reflections from the left to the right around 0.8s, although
the migration artifacts visible at the left edge may also influence the high-frequency

I’CgiOl’l to some extent.

As first sight the CEEMD-based peak frequencies seem to be noisier (Figure
2.16). However, the image contains more fine detail compared with the short-time
Fourier result (Figure 2.15). Both images delineate the Cretaceous meandering chan-
nels around 0.42s. Also the thin-layer reflection at 0.80s is more clearly followed
without the abrupt transition to a low-frequency layer at CMP 75 due to the influ-
ence of the underlying thick opaque layer. This is a direct result of the higher time
resolution of CEEMD combined with computation of instantaneous frequencies. On

the other hand, initial inspection of the smoother results for the short-time Fourier
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Figure 2.12: Amplitude spectrum for the short time Fourier transform with a 50ms
time window for CMP 81. The strong 35 Hz anomaly at 0.42s is due to the channel.
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Figure 2.13: Wavelet amplitude spectrum for CMP 81. Vertical stripes at higher
frequencies are due to an increased time resolution but poorer frequency resolution.
High-frequency content is diminishing over time.
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Figure 2.14: Instantaneous amplitude spectrum after CEEMD on CMP 81, display-
ing the highest time-frequency resolution. Similar features are visible as in Figures
2.12 and 2.13 including the channel at 0.42 s and the diminishing high-frequency
content over time.
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Overlay data
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Figure 2.15: Peak frequency attribute after short time Fourier transform. The image
highlights variations in reflector spacing, both laterally (channels) and vertically, as
well as the gradually decreasing frequency content with depth due to attenuation.
The colorbar represents the frequency bands in Hertz (Hz).
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Overlay data
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Figure 2.16: Peak frequency attribute from the instantaneous spectrum and CEEMD.
A higher time-frequency resolution leads to more spatial and temporal variations but
also a sharper delineation of the channels and individual reflection sequences. The
colorbar represents the frequency bands in Hertz (Hz).
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Figure 2.17: Constant-frequency slices. a) 30 Hz CEEMD-based method, b) 30
Hz short time Fourier transform, ¢) 50 Hz CEEMD-based method, d) 50 Hz short
time Fourier transform. The instantaneous spectrum combined with CEEMD shows
higher time-frequency resolution than the short time Fourier transform.

transform facilitates interpretation of the CEEMD results. Note that the colorbar in

Figures 2.15 and 2.16 represent the frequency bands in Hertz (Hz).

Next, we extract the 30 Hz and 50 Hz frequency slices after CEEMD and short
time Fourier transforms (Figure 2.17) to illustrate the higher time-frequency res-
olution of the CEEMD-based results. The instantaneous spectrum shows much
sparser outputs and resolves the spectral characteristics of the various reflections
more clearly than the short time Fourier results. This also explains why the Fourier-
based peak frequency attribute is more continuous than the CEEMD-based result in

Figures 2.15 and 2.16.

Finally, we perform a spectral decomposition of a 3D seismic data volume using
both approaches. Figure 2.18 shows a time slice at 420ms displaying both the chan-
nel feature, as well as a subtle fault. CEEMD employs again 10% added Gaussian
white noise and 50 realizations. A window length of 150ms (75 points) is used for

the short time Fourier transform, producing a frequency step of 7 Hz in the spectral
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decomposition.

Figures 2.19a and 2.19¢ show respectively the 10Hz and 30Hz spectral slices
for the instantaneous spectrum after CEEMD at 420ms. Both the channel and fault
are visible, especially at 30Hz. Both spectral slices show similar features; yet there
are also clear differences, in particular in the amplitudes of the channel, indicating
little spectral leakage across these two frequencies. These amplitude differences are
helpful in interpreting thickness variations.

The 10 and 30Hz spectral slices produced by Fourier analysis also show the fault
and channel features (Figures 2.19b and 2.19d). However, there are significantly less
amplitude variations across both slices as unique frequencies are spaced 7Hz apart
due to the short window length and the spectral leakage inherent to the Fourier trans-
form. This renders interpretation of thickness variations in the channel much more
challenging as thinning or thickening by a factor two may still produce the same
amplitudes across several spectral slices centered on the expected peak frequency.
We could have opted for a longer Fourier analysis window, thereby reducing the
frequency step in the amplitude spectra. On the other hand, this increases the risk
of neighboring reflections negatively biasing the decomposition results. No local
analysis window is defined for the CEEMD method thus circumventing this trade

off.

2.4 Discussion

Instantaneous frequency can be used to detect and map meandering channels and
to determine their thickness (Liu and Marfurt, 2006) as it maps at what frequency
maximum constructive interference occurs between the top and bottom channel re-
flection. However, direct calculation can lead to instantaneous frequencies, which
fluctuate rapidly with spatial and temporal location (Barnes, 2007; Han and Van der
Baan, 2011).

Saha (1987) discusses the relationship between instantaneous frequency and
Fourier frequency, and points out that the instantaneous frequency measured at an

envelope peak approximates the average Fourier spectral frequency weighted by the
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Figure 2.18: Time slice extracted at 420ms. The channel feature is clearly visible as
is a subtle fault to its left.
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Figure 2.19: Spectral decomposition results: Power spectrum displayed on a loga-
rithmic scale. a) 10Hz - CEEMD; b) 10Hz - Fourier; ¢) 30Hz - CEEMD; d) 30Hz
- Fourier. Both methods show the fault and channel but amplitude variations for
the Fourier-based results are much more similar for both spectral slices due limited

frequency resolution because of the employed short analysis window and increased
spectral leakage.
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amplitude spectrum. Huang et al. (2009) summarize the applicability conditions
for instantaneous frequency: namely, the time series must be mono-component and
narrow band. Analysis of instantaneous frequencies has been gradually replaced
by spectral decomposition techniques in the 1990s due to their increased flexibility

(Chakraborty and Okaya, 1995; Partyka et al., 1999).

CEEMD successfully overcomes the mode-mixing problem, thus facilitating the
analysis of individual IMFs. The subsequent computation of the instantaneous fre-
quency then leads to relatively smoothly varying and positive instantaneous frequen-
cies suitable for time-frequency analysis. In addition, both the synthetic and real data
examples show this produces a potentially higher time-frequency resolution than the
short time Fourier and wavelet transforms. Window length, overlap and mother
wavelet parameters restrict the resolution of short time Fourier and wavelet trans-
forms, and predefined decomposition bases render these two methods less suitable

for analyzing non-stationary systems.

The computational cost of CEEMD is proportional to the number of realizations.
We use 50 realizations in the real data application to balance computational cost ver-
sus satisfactory decomposition results. Broadly speaking we found in our tests that
the computational cost of a wavelet transform and CEEMD using 50 realizations
are respectively twice and 18 times that of a short time Fourier transform. A single
EMD decomposition can thus be faster that a single short time Fourier transform re-
sult. Obviously these computation times strongly depend on the implementation and
actual parameter settings, yet application of EMD and variants are not prohibitively

expensive.

The actual time-frequency resolution of any EMD variant in combination with
computation of the instantaneous frequency is to the best of our knowledge still
unknown. The uncertainty principle states that it is impossible to achieve simultane-
ously high time and frequency resolution, as their product is always greater than or
equal to a constant. In the short time Fourier transform, the window length causes the
tradeoff between time and frequency resolution. Large time windows achieve good
frequency resolution at the cost of high time resolution, and vice versa. Conversely

wavelet and S-transforms display an inherent trade-off between time and frequency

43



resolution via their variable-size analysis windows (Rioul and Vetterli, 1991; Kumar

and Foufoula-Georgiou, 1997).

The instantaneous frequency calculates a frequency value at every time sample,
producing the highest possible time resolution but with necessarily very poor fre-
quency resolution. This provides an alternative insight into why negative frequency
values are not uncommon. However, instantaneous frequency is not meaningless
as the instantaneous frequency measured at an envelope peak approximates the
weighted average Fourier spectral frequency, and shows superior results on mono-

component and narrow band signals (Saha, 1987; Huang et al., 2009).

Flandrin et al. (2004a) show that EMD acts as a constant-Q bandpass filter for
white-noise time series, and the constant-Q bandpass filter means the number of oc-
taves is constant in each bandpass filter. In other words, white noise is divided into
IMF components each comprising approximately a single octave. Results by Torres
et al. (2011a) imply that CEEMD maintains this property. Given the uncertainty
principle, we postulate therefore that the inherent frequency resolution of each indi-
vidual IMF is one octave with a time resolution inversely proportional to the center
frequency of this octave. The obtained IMFs have thus an increasing frequency res-
olution at the expense of a decreasing time resolution with increasing IMF number.
In other words, the first IMF has thus the highest time resolution and the lowest fre-
quency resolution. The opposite is true for the last IMF. Furthermore this implies
that temporal fluctuations in the instantaneous frequencies are limited to approxi-
mately the reciprocal of the center frequency of the corresponding octave, or to put
it differently, all computed instantaneous frequencies are guaranteed to be relatively

smooth within their various scale lengths.

The preceding discussion assumes a white-noise signal. For arbitrary signals the
performance of CEEMD in combination with instantaneous attributes may retrieve
even more accurate and precise time-frequency decompositions if the original trace
is comprised of individual mono-component and narrowband signals as the sifting

algorithm is designed to extract individual IMFs with precisely such characteristics.

Finally, the main advantages of CEEMD combined with instantaneous frequen-

cies are the implementary simplicity and controllable time-frequency resolution.
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There are only two parameters in CEEMD, namely the percentage of Gaussian white
noise and the number of noise-realizations.

Neither seems to have a critical influence on final decompositions. Furthermore
we can control the time-frequency resolution by the size of the Gaussian weighted
filter. Smaller sizes show higher temporal-spectral resolution, and vice versa. It
is therefore possible to compute first a decomposition result similar to those of the
short-time Fourier and wavelet transforms which can then be reduced for further
and more precise analysis, thus allowing for seismic interpretation with control-
lable time-frequency resolution. The real data example verifies that instantaneous
spectrum after CEEMD have higher time-frequency resolution than traditional de-
compositions. However, the associated peak-frequency attribute may therefore vary
more rapidly both spatially and temporally, rendering the interpretation more chal-
lenging. Our recommendation is to analyze the principal frequency variations by
short time Fourier transform or severely smoothed CEEMD-based instantaneous fre-
quencies first, followed by identification of the subtle changes in geology using the

unsmoothed instantaneous spectrum.

2.5 Conclusion

CEEMD is a robust extension of EMD methods. It solves not only the mode mixing
problem, but also leads to complete signal reconstructions. After CEEMD, instan-
taneous frequency spectrum manifest visibly higher time-frequency resolution than
short time Fourier and wavelet transforms on both synthetic and field data exam-
ples. These characteristics render the technique highly promising for both seismic

processing and interpretation.
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Chapter 3

Applications of the synchrosqueezing
transform in seismic time-frequency

analysis!

Summary

Time-frequency representation of seismic signals provides a source of informa-
tion that is usually hidden in the Fourier spectrogram. The short-time Fourier and
Wavelet transforms are the principal approaches to simultaneously decompose a sig-
nal into its time and frequency components. Known limitations, such as trade-offs
between time and frequency resolution, may be overcome by alternative techniques
that extract instantaneous modal components. The Empirical Mode Decomposition
aims to decompose a signal into components that are well separated in the time-
frequency plane allowing the reconstruction of these components. On the other
hand, a recently proposed method called "Synchrosqueezing transform” (SST) is
an extension of the Wavelet transform incorporating elements of empirical mode
decomposition and frequency reassignment techniques. This new tool produces a

well-defined time-frequency representation allowing the identification of instanta-

A version of this chapter has been published. Roberto H. Herrera, Jiajun Han and Mirko van
der Baan, Geophysics, 2014, 79, 3, V55-V64. My contributions are creating the synthetic data,
computing the empirical mode decomposition results, creating the routines for time slice attribute for
fix frequency and commenting on the paper.
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neous frequencies in seismic signals to highlight individual components. We intro-
duce the SST with applications for seismic signals and produced promising results

on synthetic and field data examples.

3.1 Introduction

This chapter is a follow up study of the Empirical Mode Decomposition (EMD)
method described by Han and Van der Baan (2013). The Empirical Mode Decom-
position method is an effective way to decompose a seismic signal into its individual
components, called ”Intrinsic Mode Functions” (IMFs). Each IMF represents a har-
monic signal localized in time, with slowly varying amplitudes and frequencies,
potentially highlighting different geologic and stratigraphic information.

EMD methods have evolved from EMD to ensemble EMD (Wu and Huang,
2009b) and recently to complete ensemble EMD (CEEMD) (Torres et al., 2011b).
These extensions aim to solve the mode mixing problem (Huang et al., 1999, 2003)
while keeping the complete reconstruction capability. Han and Van der Baan (2013)
investigate the difference between these EMD methods, and discuss the suitability
of EMD for seismic interpretation. They conclude that CEEMD not only solves
the mode mixing problem but also provides an exact reconstruction of the original
signal. In terms of spectral resolution the EMD-based alternatives outperform the
short-time Fourier transform (STFT) and the Wavelet transform (WT) methods. Yet,
likewise other methods, the top-performing method CEEMD, still has limitations
when the components are not well separated in the time-frequency plane.

We extend our studies of time-frequency analysis with a recently proposed trans-
form called Synchrosqueezing (SST) (Daubechies et al., 2011). SST is a wavelet-
based time-frequency representation that resembles the EMD method. Unlike EMD,
it has a firm theoretical foundation (Wu et al., 2011; Thakur et al., 2013). SST is also
an adaptive and invertible transform that improves the readability of a wavelet-based
time-frequency map using frequency reassignment (Auger and Flandrin, 1995), by
condensing the spectrum along the frequency axis (Li and Liang, 2012b). This trans-

form was originally proposed in the field of audio processing (Daubechies et al.,
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2011) and has been successfully applied to paleoclimate time series (Thakur et al.,
2013) and to vibration monitoring (Li and Liang, 2012a,b). The SST is still limited
by Gabor’s uncertainty principle (Hall, 2006), but it approximates the lower limit
better, thus improving resolution.

In this chapter, we show the suitability of SST in seismic time-frequency repre-
sentation. We contrast and compare SST with CEEMD and the continuous wavelet
transform (CWT). Our selection of CEEMD as a reference method for comparison
is based on its very low reconstruction errors (Torres et al., 2011b) and the fact that
it was successfully applied to seismic signal analysis (Han and Van der Baan, 2013),
where the instantaneous frequencies are estimated as a posterior step. The CWT is
also taken as a reference since SST comprises a combination of this method with
frequency reassignment.

In the following section we describe the theory behind EMD and the synchrosqueez-
ing transform. Next, we test the SST on a synthetic example and compare its
time-frequency representation and signal reconstruction features with the CWT and
CEEMD methods. Finally, we apply SST on field data showing its potential to high-

light stratigraphic structures with high precision.

Theory

3.1.1 A brief recap of EMD and siblings

EMD is a fully data-driven method to split a signal into its individual components,
called Intrinsic Mode Functions (IMFs) (Huang et al., 1998). Recursive empirical
operations (sifting process, see Huang et al. (1998)) separates the signal into high
and low oscillatory components. The sum of all the individual components repro-
duces the original signal. However, some mode mixing appears in the classic EMD
method, caused by signal intermittency (Huang et al., 1998), that can produce diffi-
culties in interpreting the resulting time-frequency distribution. This fact triggered
the development of the ensemble EMD (EEMD) (Wu and Huang, 2009b), which is

based on a noise injection technique. Noise is added prior to decomposition, and
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ensemble averages are computed for resulting IMFs. This aids in better separation
of independent modes but does not guarantee perfect reconstruction.

Despite the improvement in mode separation using the noise-assisted technique,
reconstruction from individual components is important and Torres et al. (2011b)
proposed an elegant solution. In the CEEMD, an appropriate noise signal is added
at each stage of the decomposition producing a unique signal residual for computing
the next IMF (Torres et al., 201 1b; Han and Van der Baan, 2013). Computation of the
instantaneous frequencies for each IMF then produces the desired time-frequency

representation (Han and Van der Baan, 2013).

3.1.2 The Synchrosqueezing transform

The SST was originally introduced in the context of audio signal analysis and is
shown to be an alternative to Empirical Mode Decomposition (EMD) (Daubechies
and Maes, 1996; Daubechies et al., 2011). SST aims to decompose a signal s(z)
into constituent components with time-varying harmonic behavior. These signals
are assumed to be the addition of individual time-varying harmonic components

yielding

M=

s(1) = ) Ax(t) cos(6(1)) +n (), 3.1

k

1

where Ay (t) is the instantaneous amplitude, 7(¢) represents the additive noise, K
stands for the maximum number of components in one signal, and 6;(¢) is the in-
stantaneous phase of the k,, component. This instantaneous frequency f(¢) of the

k;;, component is estimated from the instantaneous phase as:

1 d
filt) = %Eek(t)- (3.2)

In seismic signals the number K of harmonics or components in the signal is
infinite. They can appear at different time slots, with different amplitudes Ay(7),
instantaneous frequencies fi(¢) and they may be separated by their instantaneous
bandwidths Af ().

The spectral bandwidth defines the spreading around the central frequency, which
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in our case is the instantaneous frequency; see Barnes (1993) for a completed disen-
tangling of concepts. This magnitude is a constraint for traditional time frequency
representation methods. The STFT and the CWT tend to smear the energy of the su-
perimposed instantaneous frequencies around their center frequencies (Daubechies
and Maes, 1996). The smearing equals the standard deviation around the central
frequency, which is the spectral bandwidth (Barnes, 1993).

SST is able to decompose signals into constituent components with time-varying
oscillatory characteristics (Thakur et al., 2013). Thus, by using SST we can recover

the amplitude A, (¢) and the instantaneous frequency fi(z) for each component.

3.1.3 From CWT to SST

The CWT of a signal s(¢) is (Daubechies, 1992):

Wy(a,b) = % / s(z)y/*<%)dt, (33)
where y* is the complex conjugate of the mother wavelet and b is the time shift
applied to the mother wavelet, which is also scaled by a. The CWT is the crosscor-
relation of the signal s(7) with several wavelets that are scaled and translated versions
of the original mother wavelet. The symbols Ws(a, b) are the coefficients represent-
ing a concentrated time-frequency picture, which is used to extract the instantaneous
frequencies (Daubechies et al., 2011).

Daubechies et al. (2011) observe that there is a limit to reduce the smearing effect
in the time-frequency representation using the CWT. Equation 4.3 can be rewritten
using Plancherel’s theorem, energy in time domain equals energy in the frequency

domain, i.e. Parseval’s theorem in the Fourier domain:

Wi(ab) = 3o [ 2= S(8) W (a2) % dt, 34

where i = \/—1, & is the angular frequency, and (&) is the Fourier transform of
y(1). The scale factor a modifies the frequency of the wavelet §* (aé ), by stretching
and squeezing it. Also, the time shift b is represented by its Fourier pair ¢ The

convolution in equation 3.3 becomes multiplication in the frequency domain in equa-
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tion 3.4. Considering the simple case of a single harmonic signal s(¢) = Acos(t)
with Fourier pair §(§) = mA[8(§ — @) + (& + ®)], equation 3.4 can then be trans-

formed into:

Wiasb) =5 [ T (50— ) + 86+ )] #(af) ¥ de,

= 2%/5 ¥ (am) eP®. (3.5)

In the frequency plane, if the wavelet §* (&) is concentrated around its central
frequency & = @y, then Ws(a,b) will be concentrated around the horizontal line
a = ay/ o (the ratio central frequency of the wavelet to the central frequency of the
signal). However, what we actually get is that Wy(a,b) often spreads out along the
scale axis leading to a blurred projection in time-scale representation. This smearing
mainly occurs in the scale dimension a, for constant time offset » (Li and Liang,
2012a). Daubechies and Maes (1996) show that if smearing along the time axis
can be neglected, then the instantaneous frequency @s(a,b) can be computed as the
derivative of the WT at any point (a,b) with respect to b, for all W(a,b) # 0:

—i oW;(a,b)

Olab) = s b (36)

The final step in the new time-frequency representation is to map the information
from the time-scale plane to the time-frequency plane. Every point (b,a) is con-
verted to (b, @s(a,b)), and this operation is called synchrosqueezing (Daubechies
et al.,, 2011). Because a and b are discrete values we can have a scaling step
Aay = a1 — ay, for any a; where Ws(a,b) is computed. Likewise, when mapping
from the time-scale plane to the time-frequency plane (b,a) — (b, wins(a,b)), the
SST Ts(w,b), is determined only at the centers @; of the frequency range [, —

Aw/2,0;,+Aw/2], with Aw = & — @y _1:

Heb)=r- Y Waba ¥ A @)

ag:|w(ag,b)—w|<Aw/2

The above equation shows that the new time-frequency representation of the
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signal T;( @y, D) is synchrosqueezed along the frequency (or scale) axis only (Li and
Liang, 2012a). The synchrosqueezing transform reallocates the coefficients of the
CWT to get a concentrated image over the time-frequency plane, from which the
instantaneous frequencies are then extracted (Wu et al., 2011).

Following Thakur et al. (2013), the discretized version of Ty(wy,b) in equation
(3.7) is represented by T5(wy, t,,), where t,, is the discrete time t,, = t +mAt with At
the sampling rate and m = 0, ...,n — 1; n is total number of samples in the discrete
signal §,,. More special considerations are described in Thakur et al. (2013). The
reconstruction of the individual components s; from the discrete synchrosqueezed
transform T; is then the inverse CWT over a small frequency band /eLy(t,,) around

the k;, component:

s(tm) = 2C, ' Re ( Y ~§<letm)> : (3.8)

leLy(tm)
where Cy is a constant dependent on the selected wavelet. As we take the real part
NRe of the discrete SST in that band, we recover the real component s. In this chapter
we follow Thakur et al. (2013) where the reconstruction is done by a standard least-
squares ridge extraction method; different approaches are explored by Meignen et al.

(2012).

3.1.4 Parameter selection

The wavelet choice is a key issue in synchrosqueezing-based methods (Meignen
et al., 2012). In SST we first construct the time-frequency map through a CWT, thus
we need a mother wavelet that satisfies the admissibility condition (i.e. finite energy,
zero mean and bandlimited). At the same time the wavelet must be a good match
for the target signal (Mallat, 2008). By definition the wavelet coefficients are the
correlation coefficients between the target signal and dilated and translated versions
of a given basic pattern (Daubechies, 1992). In our implementation we use a Morlet
wavelet with central frequency and bandwidth estimated from the seismic signal.
The other parameter of interest is the wavelet threshold 7. It effectively decides

the lowest usable magnitude in the CWT (Thakur et al., 2013). It is a noise-based
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hard thresholding that Thakur et al. (2013) set to 103 for the ideal noiseless case
in double precision machines. In real cases, when the noise level is unknown, it
is common practice to use the finest scale of the wavelet decomposition (Donoho,
1995) as the noise variance G%. This threshold works in real signals as a noise-

level adaptive estimator (Herrera et al., 2006) and is defined as the median absolute

deviation (MAD) of the first octave (Donoho, 1995; Thakur et al., 2013):

on = median(|Ws(ai.,,,b) — median(Wy(ay.p,,b))|)/0.6745, (3.9)

where Wy(ay.,,,b) is finest scale wavelet coefficients and 0.6745 is a normalizing
factor being the MAD of a Gaussian distribution. The threshold is then weighted by

the signal length n to be asymptotically optimal with value y = y/2logn - oy.

3.2 Examples

3.2.1 Synthetic data

In this section, we test the SST with a challenging synthetic signal (Figure 3.1). This
is the same synthetic example used by Han and Van der Baan (2013). The signal is
comprised of an initial 20 Hz cosine wave, with a 100 Hz Morlet atom at 0.3 s, two
30 Hz zero-phase Ricker wavelets at 1.07 s and 1.1 s, and three different frequency
components between 1.3 s and 1.7 s of, respectively, 7, 30 and 40 Hz. Note the 7 Hz
frequency component is split into three parts less than a full period each, appearing
at 1.37 s, 1.51 sand 1.65 s.

Figure 3.2 shows the CWT, CEEMD and SST time-frequency representations.
For comparison purposes we include the CWT result, because the SST is an exten-
sion of the CWT. The STFT is known to have suboptimal performance, as is shown
in Figure 6 in Han and Van der Baan (2013). In Han and Van der Baan (2013), a 2D
Gaussian smoothing filter (6 x 6 samples) was applied to the CEEMD output to im-
prove visualization. In our example, we plot the actual outputs from each method,
because the objective is to show the sharpness of the reconstructed instantaneous

frequencies.
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CWT uses a Morlet mother wavelet and a total of 320 scales (32 voices per
octave) to provide the time-frequency map shown in Figure 3.2(a). Note that this
is the same result as in Figure 7 of Han and Van der Baan (2013) with a different
color scale. Here, we have added a graphical interpretation to illustrate how the
synchrosqueezed representation is derived from the CWT. The dashed white line in
the vicinity of 20 Hz in Figure 3.2(a) is the ridge obtained from the instantaneous
frequency in the wavelet domain from equation 3.6. The next step involves the reas-
signment of the CWT values to the position indicated by the instantaneous frequency
wy in equation 3.7. This mapping process indicated by vertical arrows moves each
point (b,a) to the location (b, wiys (a,b)) producing a new time frequency represen-
tation that is shown in Figure 3.2(c). CEEMD (Figure 3.2(c)) uses 10 % of injected
Gaussian white noise and 100 realizations. The result obtained by the SST (Figure
3.2(c)) uses, likewise, the CWT from which it was generated, a Morlet wavelet, and

32 voices per octave.
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Figure 3.1: synthetic example: background 20 Hz cosine wave, superposed 100 Hz
Morlet atom at 0.3 s, two 30 Hz Ricker wavelets at 1.07 s and 1.1 s, and there are
three different frequency components between 1.3 s and 1.7 s. Same as Figure 1 in
Han and Van der Baan (2013).
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CEEMD and SST delineate the individual components equally well, especially,
the instantaneous frequencies for the harmonic signals are well resolved. Yet, CEEMD
collapses the short 100 Hz Morlet wavelet at 0.3 s more. The 7, 30 and 40 Hz fre-
quency components occurring between 1.3 s and 1.7 s are resolved by both methods,
but there is little indication that the 7 Hz component is not continuous. SST and
CEEMD show only minor differences, but both display significantly less frequency

smearing than the CWT representation.

Unlike the CWT, SST and CEEMD allow for the extraction of the individual
components. Here we compare the performance of both methods in extracting and
reconstructing the modes in a signal. To evaluate numerically the reconstruction
error, for both decompositions, we use the difference between the original signal
and the sum of the modes (Torres et al., 2011b). A more general metric based on the

mean square error (MSE) is used to score reconstruction with a single value as:

1 N—1 5
MSE = ;0 |s(t) —8(t)|%, (3.10)

where N is the number of samples, s(¢) is the original signal and §(z) is the recon-

structed signal from the sum of all modes.

Figure 3.3 shows the Intrinsic Mode Functions (IMFs) extracted with the CEEMD.
The CEEMD decomposition is able to unmix each individual component giving an
easily interpretable decomposition. On the other hand, the SST method (Figure 3.4)

shows some degree of mode mixing of the components.

For the CEEMD method, the first IMF shows the 100 Hz Morlet atom, which
is also identified by SST IMFI, but SST also recovers parts of the 30 Hz Ricker
wavelets. IMF2 of both methods are the residuals of the high frequency components.
IMF3 of the CEEMD represents the higher oscillations in the upper band of the
Ricker wavelets, whereas IMF3 of the SST shows directly the 30 Hz Ricker wavelets
plus the 30 and 40 Hz component. For IMF4, the SST method performs equally well
as the CEEMD does, but includes the 20 Hz component between the two 30 Hz.
IMFS of the CEEMD shows the 20 Hz component with some mixtures of the 30 Hz

Ricker wavelets, whereas the SST shows a better representation of the 20 Hz with
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Figure 3.2: Time-frequency representation of the synthetic trace. (a) CWT, display-
ing smearing along the frequency axis for the harmonic signals. (b) CEEMD output
with 10 % added Gaussian white noise and 100 realizations. The instantaneous
frequencies corresponding to individual components are well delineated. (c) SST
output, with similar results for the harmonics as CEEMD.
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Figure 3.3: Decomposition of the original signal, shown in Figure 3.1, into its in-
trinsic modes by CEEMD. The decomposition gives 13 individual modes with little
mode mixing.
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Figure 3.4: Decomposition of the original signal, shown in Figure 3.1, into its intrin-
sic modes by SST. We use the same 13 levels to compare to CEEMD output. While
the decomposition is able to isolate the individual components, still some degree of
mode mixing is appreciable in the SST components.
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the 7 Hz mode. IMF6 is only informative for CEEMD with an isolated 7 Hz mode.
The remainder are small-valued elements. These low-amplitude components in the
CEEMD method are low-amplitude frequency bands, derived during the sift- ing
process. IMFs are derived from the highest oscillating components to the lower
frequency ones. Like the Fourier transform, some IMFs will have higher amplitudes
than other components depending on the signal characteristics. This is visible in
Figure 3.3, where the second IMF has not only a different frequency content from

IMF 1 and 3, but also a different maximum amplitude.
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Figure 3.5: Reconstructed signals and reconstruction errors. Top left shows the
CEEMD estimate (blue) over the original signal (red); there is no appreciable dif-
ference between these two signals. The reconstruction error is approximately zero,
limited by the machine precision in the order of 107! (top right). Bottom row: SST
produces a reasonable reconstruction especially for the stationary parts with an MSE
value of 0.0013.

The reconstructed signals by both methods are shown in Figure 3.5. CEEMD
(top dotted gray) does a perfect reconstruction subjected only to machine preci-
sion with an overall MSE value of 5x10733 and a negligible reconstruction error

as is shown in the bottom plot. The SST method provides a good estimation (top
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continuous line) but some areas are not reconstructed accurately, especially in the
amplitudes, as is shown in the bottom plot (continuous line). The MSE for the SST
is 0.0013, which is in the range of what is considered a good performance for a

reconstruction method (Meignen et al., 2012).

3.2.2 Application to real seismic signals
Single trace

In this section we apply the SST to a real dataset and compare to the CWT and
CEEMD methods. This is a data set from a sedimentary basin in Canada (Figure
3.6), also analyzed by Han and Van der Baan (2013) and Van der Baan et al. (2010).
It contains a Cretaceous meandering channel at 0.42 s between common mid points
(CMPs) 75-105 and a second channel between CMPs 160-180 of this migrated 2D
cross-section. An erosional surface is located between CMPs 35-50 around 0.4 s.
The data also contain evidence of migration artifacts (smiles) at the left edge be-
tween 0.1 s and 0.6 s. There are bands of alternating high-frequency areas with
tightly spaced reflections and low-frequency regions, which are mostly composed
of blank intervals without much reflected energy (Van der Baan et al., 2010). This
makes this data set interesting for testing time-frequency decomposition algorithms.
It has been shown that both channel intersections exhibit significantly lower fre-
quency content due to their increased thickness (Van der Baan et al., 2010), causing
constructive interference in the low-frequency components (Partyka et al., 1999).

We take the seismic trace at CMP 81, which is plotted in Figure 3.7, and apply
CWT, CEEMD and SST as is shown in Figure 3.8. CWT and SST is based on a
Morlet wavelet with 32 voices per octave. CEEMD employs 10 % of added Gaussian
white noise and 50 realizations.

All time-frequency representations display some similar features including the
bright channel at 0.42s and a decrease in frequency content with time, most likely
due to attenuation (Figure 3.8). SST and CEEMD show more features than the
CWT, due the higher time-frequency resolution of both methods. SST and CEEMD

representations generally agree for the frequencies above 50 Hz but connect strong
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Figure 3.6: Seismic dataset from a sedimentary basin in Canada. The erosional
surface and channel sections are highlighted by arrows. Same data as in Figure 10
of Han and Van der Baan (2013).
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Figure 3.7: Individual trace at CMP 81 in Figure 3.6. It crosses the channel at 0.42 s.

spectral peaks differently for the lower frequencies. This demonstrates the value in

examining a single time series using various time-frequency analysis methods.

Vertical cross-section

Next we apply the three methods to all traces and compute the frequency where
the cumulative spectral energy is at 80 % (C80) of the total energy (Van der Baan
et al., 2010). Our motivation to use this cumulative energy criterion comes from the
fact that frequency-dependent thning effects are often analyzed using spectral de-
composition to detect variations in turbidite layer or meandering channels (Partyka
et al., 1999; Van der Baan et al., 2010). Low-frequency values in C80 indicate con-
centrations of energy near the lower portion of the total bandwidth, whereas high-
frequency values imply a broader spectrum. In some cases, lower values will thus
indicate areas of larger attenuation of the propagating wavelet. In other situations, it
can reveal shifts in the position of a single notch in the locally observed wavelet, for

instance, due to a thickening or thinning of reflector spacing (Van der Baan et al.,
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Figure 3.8: CMP 81. Time-frequency representation from (a) CWT, (b) CEEMD
and (c) SST. All show a decrease in frequency content over time; yet the CEEMD
and SST results are least smeared.
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2010).

This frequency attribute is overlayed onto the original seismic data shown in
Figure 3.6. Figure 3.9 shows the CWT, CEEMD and SST results. The colorbar
represents the frequency bands in Hertz (Hz). This frequency representation from
three methods shows high and low frequency bands between 0.2 and 0.8 s due to
variations in reflector spacing, and a general decrease in high frequencies, which is
associated with attenuation of the seismic wavelet.

The CWT C80 representation, shown in Figure 3.9a, brings out a broader picture
of the spectral content of this spatial location; the mayor features are indicated.
The CEEMD result emphasizes the most interesting features in the dataset. Traces
on the Cretaceous meandering channels at 0.42 s, have lower frequency content
than the neighboring traces. This low-frequency variation is due to the increased
thickness in the channels. The SST result exhibits an even cleaner representation
(Figure 3.9¢). The thin layers around 0.8 s are equally well identified by all methods,
but less speckle like patterns are observed below this reflector in the CEEMD and
SST images. The strong uniform reflector at 0.9 s is better represented by the SST

method.

Horizontal slice

In our last test, we run the three algorithms on the entire seismic cube, composed
by 225 inlines, 217 crosslines with a regular spacing of 25 m. Each trace is 450
samples long with a sampling frequency of 500 Hz. Figure 3.10 shows the time
slice at 420 ms of the seismic cube. Beside the channel feature, which is clearly
shown throughout the image, there is a subtle fault. We compare the results of
CWT, CEEMD and SST centered at this time slice analyzing different frequency
slices. CWT and SST use a Morlet wavelet with 32 levels per octave, and CEEMD
injects 10 % of Gaussian white noise using 50 realizations.

Figure 3.11 shows the resulting constant frequency slices for CWT (a), CEEMD
(b) and SST (c) at, respectively 20, 40 and 60 Hz (top to bottom). The channel
and fault are more sharply represented by CEEMD and SST than in the CWT maps.

CEEMD and SST have similar performance, however only SST seems to show that
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Figure 3.9: Characteristic frequencies for vertical cross-section. C80 attribute for
(a) CWT, (b) CEEMD, and (c) SST. CEEMD and SST show a sparser representation
than the CWT. SST has even less speckle noise and the strong reflector at 0.9 s is
better represented. The colorbar represents the frequency bands in Hertz (Hz).
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Figure 3.10: Time slice at 420 ms. The channel feature and fault are clearly visible.

the 60 Hz spectrum is fading.

The fault appears at the 40 Hz and 60 Hz time slices of all three methods. The
CWT shows the main features on all three frequency slices; yet their amplitude vari-
ations are less clear, which makes the thickness calculation of the channel challeng-
ing during the further interpretation. Compared with CWT, the amplitude variation
of CEEMD and SST along the channel is better defined, which is helpful to cal-
culate subtle thickness variations. The amplitude variations between closely spaced
frequencies are better resolved in the CEEMD and SST result due to significantly re-
duced frequency smearing and smaller spectral leakage than for the CWT and STFT
methods (Han et al., 2013). In addition, the CWT depicts a rather homogeneous area
in the zone to the right of the channel in all frequency slices, whereas the CEEMD
and SST results show more variable magnitudes with areas of localized amplitude

strengthening and weakening plus several linear features.
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Figure 3.11: Constant-frequency slices. Left column shows from top to bottom the
CWT outputs for 20 Hz, 40 Hz and 60 Hz, respectively. The center column is the
corresponding instantaneous spectrum estimated by CEEMD. The SST output is
shown in the right column.

3.3 Discussion

SST can be used to accurately map time domain signals into their time-frequency
representation. It has a well grounded mathematical foundation which facilitates
theoretical analysis. Like the alternative methods it is reversible, thereby allowing

for signal reconstruction, possibly after removal of specific components.

CEEMD performs exceptionally well overcoming mode-mixing problems. The
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reconstruction error is around machine precision (Torres et al., 2011b). The compu-
tation of the instantaneous frequency from the isolated modes leads to a well defined
time-frequency representation. SST shares many of the advantages of CEEMD in
practice, with an acceptable reconstruction error. Thus, both methods are suitable
to decompose a seismic trace into individual components with the advantage of fre-
quency localization. It may also aid in noise-attenuation problems in which the
signal and noise correspond to different components, likewise, a recently pro- posed
technique based on regularized nonstationary autoregression (Fomel, 2013). As in
this chapter, Fomel (2013) also suggests seismic data compression and seismic data
regularization as possible applications for seismic data decomposition into spectral
components. Both approaches aim to decompose seismic data into a sum of oscil-
latory signals with smoothly varying frequencies and smoothly varying amplitudes
(Fomel, 2013; Thakur et al., 2013), which is the principle of the decomposition using
the CWT (Daubechies et al., 2011).

CEEMD using 50 noise realizations is approximately 13 times slower than SST
using our parameter settings; SST has approximately the same cost as a wavelet
transform; yet neither method is prohibitively expensive. We found that using a
classical Morlet wavelet and 32 levels for the SST method we get a good balance
between speed and resolution in the frequency representation. The improvement of
SST is clear compared with the CWT. The reassignment technique plays a important
role in the results, by reallocating the wavelet energy to the corresponding time

position.

CEEMD and SST are more appropriate than STFT and CWT when better time-
frequency localization is needed. On the other hand, STFT and CWT remain very
useful analysis methods, even if they may be subject to more spectral leakage than
the CEEMD and SST methods, because they do not collapse spectra to narrow fre-
quency bands. For instance, many attenuation methods are based on spectral ratios
between two signals (Reine et al., 2009, 2012). Spectral ratios are difficult to com-
pute if only individual frequency lines exist. On the other hand, it may be possible
to use the frequency shift method (Quan and Harris, 1997) to estimate seismic atten-

uation using the CEEMD and SST methods. SST, due the reassignment step, will
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concentrate the energy a small spectral band. Thus, it will be more appropriate when
better time-frequency localization is needed (such as stratigraphic mapping to detect
channel structures, identification of resonance frequencies).

From our study we find that SST and CEEMD perform equally well for the
seismic time-frequency representation, with the advantage of speed and a stronger
mathematical foundation for the SST. A further difference is that in the SST method,
one can specify the frequency range of interest prior to decomposition via the CWT
scale parametrization. This can speed up computations in many situations, whereas
in CEEMD components are always estimated sequentially starting with the highest-

frequency ones.

3.4 Conclusions

The SST has a strong mathematical foundation based on frequency reassignment of
wavelet transform decompositions. In simple applications SST and CEEMD give
comparable results, although in more complex situations, SST can yield more fa-
vorable results since it has the ability to adapt the mother wavelet to the data under
consideration. On the other hand, the advantage of CEEMD and variants is precisely
the fact that no decomposition basis needs to be specified, eliminating the possible
requirement to test for performance enhancements by changing the decomposition
basis.

SST produces an acceptable reconstruction error, which improves as we extend
the level of decomposition. This frequency-based decomposition method can re-
construct individual components from selected frequency bands. SST is therefore

attractive for high-resolution time-frequency analysis of seismic signals.
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Chapter 4

Seismic Denoising via Ensemble

Empirical Mode Decomposition'

Summary

Random and coherent noise exist in microseismic and seismic data, and suppressing
noise is a crucial step in seismic processing. In this chapter, we propose a novel seis-
mic denoising method, based on a data-driven technique, ensemble empirical mode
decomposition (EEMD). This technique is first proposed as a trace-based method
and valid for random noise suppression. We compare it with bandpass filter and ba-
sis pursuit methods. Furthermore, we extend the proposed method into frequency-
offset (f-x) domain, as f-x EEMD thresholding, to enhance the lateral coherence of
the seismic data, we compare it with classic f-x deconvolution and f-x EMD. The
synthetic and field data examples illustrate the better performance of our proposed
technique. It is not only a potential technique for microseismic denoising, but also

effective for suppressing random and coherence noise in seismic data.

'A version of this chapter has been submitted. Jiajun Han and Mirko van der Baan, Geophysics,
2014, under review.
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4.1 Introduction

The denoising via EMD started from examining the properties of IMFs resulting
from white Gaussian noise (Flandrin et al., 2004a). The first attempt is detrend-
ing and denoising ECG signals by partial reconstructions with the selected IMFs
(Flandrin et al., 2004). However, this approach has the disadvantage that even if the
appropriate IMFs are selected, they still may be noise contaminated. Boudraa and
Cexus (2006) improve the denoising scheme by using adaptive thresholding and a
Savitzky-Golay filter for each IMF, respectively. Inspired by translation invariant
wavelet thresholding, Kopsinis and McLaughlin (2009) propose an iterative EMD
denoising method to enhance the original method. Recently, hybrid EMD denois-
ing methods, based on higher order statistics and curvelet transform have also been

proposed (Tsolis and Xenos, 2011; Dong et al., 2013).

In seismic processing, the f-x domain plays a significant role because linear or
quasilinear events in the time-offset (t-x) domain manifest themselves as a super-
position of harmonics in the f-x domain. Canales (1984) first proposed prediction
error filtering, based on an autoregressive (AR) model in the f-x domain to attenuate
random noise, which is widely known as f-x deconvolution. However, the AR model
assumes that the error is an innovation sequence rather than additive noise. Soubaras
(1994) introduced the f-x projection filtering to circumvent this problem by utilizing
the autoregressive-moving average (ARMA) model instead of the AR model. Sacchi
and Kuehl (2001) further discuss the ARMA formulation in the f-x domain, and dis-
cover the ARMA coefficients can be computed by solving an eigenvalue problem.
Integration of EMD into the f-x domain is first investigated by Bekara and Van der
Baan (2009). They find that eliminating the first IMF component in each frequency
slice corresponds to an auto-adaptive wavenumber filter. This process reduces the
random and steeply dipping coherent noise in the seismic data. Instead of directly
deleting the first IMF in the f-x domain, Chen and Ma (2014) apply the AR model

on the first IMF to enhance the original f-x EMD performance.

In this chapter, we first propose a novel method for suppressing random noise

based on ensemble empirical mode decomposition (EEMD) principle. Next, we test
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the proposed EEMD thresholding on both low and high signal to noise ratio (SNR)
synthetic and microseismic examples. Finally, we extend the proposed method into

the f-x domain to suppress random and coherence noise in seismic data.

4.2 Theory

4.2.1 EEMD thresholding

The first attempt at using EMD as a denoising tool emerged from the need to know
whether a specific IMF contains useful information or primarily noise. Thus, Flan-
drin et al. (2004a) and Wu and Huang (2004) nearly simultaneously investigate the
EMD feature for Gaussian noise, and they conclude that EMD acts essentially as a
dyadic filter bank resembling those involved in wavelet decomposition. Therefore,
the energy of each IMF from white Gaussian noise follows an exponential relation-

ship, and Kopsinis and McLaughlin (2009) refine this relationship as

E} = (E?/0.719) x 2.017%, 4.1)

where E,f is the energy of the kK —th IMF, and the parameters 0.719 and 2.01 are
empirically calculated from numerical tests. As the IMFs resemble the wavelet de-
composition component, the energy of the first IMF E 12 can be estimated using a

robust estimator based on the component’s median (Donoho and Johnstone, 1994):

E} = (median(|IMF1(i)|)/0.6755)%, i=1,2...n. (4.2)

where 7 is the length of the input signal. Then we can set the adaptive threshold 7j

in each IMF for suppressing the random noise as

Ty = 0 X/ (2xIn(n)) x Ex, 4.3)

where ¢ is the main parameter to be set. Combination of Equations 4.2 and 4.3
is a universal threshold for removing the white Gaussian noise in the wavelet domain

(Donoho and Johnstone, 1994; Donoho, 1995).
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Followed by the above procedures, the reconstructed signal § is expressed as

M—m2 M
§= Y TUMF]+ Y IMF,. (4.4)
k=ml k=m2+1

thresholding is only applied between the m1 —th and (M —m2) —th IMFs, where
IMFy, is the k —th IMF, and M is the total number of IMFs of the input signal. If m2 is
set to 0, we apply the thresholding from the m1 — ¢th IMF to the last IMF. The imple-
mented threshold method is IMF interval thresholding (Kopsinis and McLaughlin,

2009), which is presented in the next section.

Due to the mode mixing of EMD, direct application of the above procedure may
not achieve the best effect. Kopsinis and McLaughlin (2009) try to alter the input
signal by circle-shifting its IMF1 component, and adding the circle-shifted IMF1
back to create a different noisy version of the signal. This works IMF1 only contains
noise when the input signal’s SNR is low, and the circle-shifting does not change the
embedded useful signal information. Averaging of the denoised outputs of different
triggered signals can enhance the final result. However, when the input signal’s SNR

is high, directly altering IMF1 of the input signal would adversely affect results.

Considering the different SNR cases, we employ the EEMD principle to improve

the EMD denoising performance. The procedure of EEMD denoising is as below:

(1). Create white Gaussian noise.

(2). Calculate IMF1 of the white Gaussian noise and add it onto the target/input
signal using a predefined SNR.

(3). Decompose the resulting signal into IMFs.

(4). Apply the EMD denoising principle to the resulting IMFs.

(5). Repeat steps (1), (2), (3) and (4) several times with different noise realizations.
(6). Compute the ensemble denoising average as the final output.

Although not adding the whole white Gaussian noise sequence onto the target
signal does not exactly respect the EEMD principle, it shows better results in our
synthetic and real data examples rather than a denoising procedure exactly based
on EEMD. Due to the dyadic filter feature of EMD, IMF1 of white Gaussian noise

corresponds to the high frequency noise. It helps relieve the mode mixing of EMD
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to some extent, and only affects the high frequency information of the input signal,

which can be compensated by a bandpass filter after the proposed EEMD denoising.
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Figure 4.1: The difference between IMF interval thresholding and direct threshold-
ing. (a). An IMF from a microseismic event. (b). IMF interval thresholding result.
(c). Direct thresholding result.

4.2.2 IMF interval thresholding

In the EMD theory, each IMF is a fundamental element of the input signal. The local
extrema and zero crossings are the basic elements for each IMF due to its symmet-
ric feature. Kopsinis and McLaughlin (2008a) proposed IMF interval thresholding
which preserves the smooth feature of each IMF. The idea of IMF interval thresh-
olding is maintaining the whole interval between two zero crossings in each IMF, if
the absolute value of local extrema in this interval is larger than the threshold. Take

hard thresholding as an example, the expression of direct hard thresholding is

ﬁ(t) _ h(t),|h(t)]| >T @5)
0,/h()| <T,
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Figure 4.2: Enlarged part of red box in Figure 4.1. (a). An IMF from a microseismic
event. (b). IMF interval thresholding result. (c). Direct thresholding result. The
IMF interval thresholding keeps the smooth features of the IMF, whereas the direct
thresholding creates needless discontinuities.

where /(¢) is the input signal, T is the universal threshold, and /(¢) is the thresholded

signal. The interval hard thresholding is expressed as

h(z;),|h(rj)| > T
h(zj) = (4.6)

0, |h(rj)| <T,
h(z;) indicates the sample interval between adjacent zeros crossings of the input
signal, and h(r;) is the local extrema corresponding to this interval. /(z;) is the

thresholded output. Due to the conditions of each IMF, it guarantees that there is

one and only one local extrema A(r;) in the interval of h(z;).

Figure 4.1 illustrates the difference between interval and direct hard threshold-
ing. Figure 4.1(a) is an IMF from a microseismic event. The enlarged part of red box
is shown in Figure 4.2. Direct thresholding (Figures 4.1(c) and 4.2(c)) creates need-

less discontinuities, therefore can have adverse consequences for the continuity of
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the reconstructed signal. Luckily, these discontinuities can be effectively reduced by
IMF interval thresholding (Figures 4.1(b) and 4.2(b)). The new thresholding method
retains the smooth features of each IMF.

The above example is for hard interval thresholding; soft interval thresholding
is also based on the same idea. For more detail information about soft interval

thresholding, please refer to the paper of Kopsinis and McLaughlin (2008b).

4.2.3 F-x domain EEMD thresholding

For seismic data, one option is applying the proposed EEMD thresholding to each
trace for suppressing the random noise. The disadvantage of this approach is not
considering the lateral coherence of the seismic reflections. A sophisticated ap-
proach is applying the EEMD thresholding in the f-x domain. To process a whole
seismic section, f-x EEMD thresholding is implemented in a similar way to f-x EMD
(Bekara and Van der Baan, 2009) and f-x deconvolution using the following scheme:
(1). Select a time window and transform the data to the f-x domain.

(2). For every frequency, separate real and imaginary parts in the offset sequence.
(3). Apply EEMD thresholding on real and imaginary parts, respectively.

(4). Combine to create the filtered complex signal.

(5). Transform data back to the t-x domain.

(6). Repeat for the next time window.

Bekara and Van der Baan (2009) first propose the f-x EMD filter, and they find
the IMF1 contains the largest wave-number components in a constant frequency
slice in the f-x domain. Therefore, signal-to-noise enhancement can be achieved by
subtracting IMF1 from the data. In the f-x EEMD thresholding implementation, the
parameters m1 and m2 control the threshold range of the IMF order, and parame-
ter o is related to the noise level. The f-x EMD filter is a special case of the f-x
EEMD thresholding with parameters as ¢ = 0, m1 =2 and m2 = 0. Unlike the f-x
deconvolution, which uses a fixed filter length for all frequencies, EMD adaptively
matches its decomposition to the smoothness of the data. Directly eliminating IMF1
of a signal means removing its most oscillatory element, and the residual receives a

smoother feature. However, only subtracting IMF1 in each constant frequency slice
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seems to be not enough or too harsh for some seismic data (Chen and Ma, 2014);

f-x EEMD thresholding thus improves its performance.

4.3 Example

4.3.1 Synthetic example

Figure 4.3(a) shows synthetic data also used in Han et al. (2013), which is com-
prised of several events with 30 and 40Hz Ricker wavelets. Figure 4.3(b) contains
the noise contaminated version with SNR equal 1 in each trace. This is a low SNR
case to test our proposed method. As the proposed method is a single trace tech-
nique, we first compare with an appropriately set bandpass filter (Figure 4.3(c)). As
the random noise pollutes the whole frequency domain, a bandpass filter is not an ef-
fective method here. Our proposed method with ¢ =0.35, m1 =3 and m2 = 0 (Figure
4.3(e)) suppresses most of the random noise and better enhances the events, hence
dramatically improves the SNR of the test data. Note that the same bandpass filter
as Figure 4.3(c) is applied after the proposed denoising method. Another technique
we compare here is the basis pursuit approach (Chen et al., 2001), which has been
shown as an effective tool for suppressing random noise in seismic and microseis-
mic processing (Han et al., 2013; Vera Rodriguez et al., 2012). Basis pursuit with
regularization parameter 0.1 (Figure 4.3(g)) eliminates most of the random noise,
but results in a slight signal loss in the difference section (Figure 4.3(h)). Bandpass
filter and EEMD denoising methods do not lead to any information loss (Figures 4.3
(d) and (f)).

Next, we select the trace at offset 245m as an example to analyze elaborately
the impacts of different denoising methods. Shown from (a) to (e) in Figure 4.4
are respectively noise free data (Figure 4.3(a)), noisy version (Figure 4.3(b)), band-
pass filter (Figure 4.3(c)), our proposed method (Figure 4.3(e)) and basis pursuit
approach (Figure 4.3(g)). As the SNR of each trace equals 1, the random noise af-
fects the waveforms severely. Compared with bandpass filter, the EEMD denoising

and basis pursuit techniques effectively eliminate the random noise, and protect the
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useful waveform to the maximum extent. Figures 4.5 to 4.7 illustrate the principle
of the EEMD thresholding. The solid line (Figure 4.5) is the theoretical IMF energy
of white Gaussian noise based on equation (4.1), and the dashed line represents the
IMF energy of the noisy trace (Figure 4.4 (c)). The slope of first two IMFs energy
matches the theoretical line most, which indicates they are similar to the noise char-
acteristic most. On the other hand, the other IMFs contain less noise since their
energy distribution deviates from the theoretical line. Figure 4.6 shows the 9 IMFs
of the test trace using EEMD. The first two IMFs contain the highest frequency in-
formation, and least signal information can be found. This agrees with Figure 4.4.
The parameters m1 = 3 and m2 = 0 indicate that the thresholding is only applied from
IMF3 to the last IMF, and sets the reconstructed IMF1 and IMF2 to zero. Figure 4.7
shows the 9 thresholded IMFs. IMF interval thresholding makes the reconstructed
IMFs keep the smooth features, meanwhile get rid most of the noise. Note that we
apply soft thresholding in this synthetic example.

A high SNR case of Figure 4.3(a) is shown in Figure 4.8. In this test, the SNR for
each trace is 2.5 (Figure 4.8(b)). The results from bandpass filter, EEMD threshold-
ing with 0 = 0.3, m1 =2 and m2 = 0, and basis pursuit with regularization parameter
0.05 are shown in the same sequence as Figure 4.3. All three methods improve the
input noisy data (Figure 4.8(b)). Like the low SNR case, the EEMD thresholding
(Figure 4.8(e)) and basis pursuit (Figure 4.8(g)) approaches show clearer outputs
than the bandpass filter ((Figure 4.8(c))), as they reduce random noise from the
whole frequency band. From the difference sections, there is no obvious informa-
tion lost for the proposed EEMD thresholding (Figure 4.8(f)) and bandpass filter
(Figure 4.8 (d)). The traces at offset 245m from noise free data, noisy data, band-
pass filter, EEMD thresholding and basis pursuit outputs, are shown in Figure 4.9
(a) to (e). Compared with another two methods, EEMD thresholding (Figure 4.9(d))

shows the most proximal result to the noise free one (Figure 4.9(a)).
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Figure 4.3: EEMD thresholding on low SNR case. (a). Noise free data from Han
et al. (2013). (b). Noisy version with SRN = 1. (c). Bandpass filter output. (d).
Difference of bandpass filter. (). Proposed EEMD denoising output. (f). Difference
of the proposed method. (g). Basis pursuit output. (h). Difference of basis pursuit.
Compared with bandpass filter, the proposed and basis pursuit methods eliminate
more random noise, therefore dramatically improve the quality of the original data.

80



11 T T

0.9{b) -

0.8f

0.2

0.1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time (s)
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Figure 4.6: IMFs of noisy trace at offset 245m. IMF1 and IMF2 contain the highest
frequency information, which are out of frequency band of interesting.
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Figure 4.8: EEMD thresholding on high SNR case. (a). Noise free data. (b). Noisy
version with SRN = 2.5. (c). Bandpass filter output. (d). Difference of bandpass fil-
ter. (e). Proposed EEMD denoising output. (f). Difference of the proposed method.
(g). Basis pursuit output. (h). Difference of basis pursuit. Our proposed and ba-
sis pursuit methods suppress more random noise than bandpass filter. There is no
information loss in the difference sections of bandpass filter and proposed method.
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4.3.2 Microseismic example

In this section, we show two microseismic cases to verify the proposed technique.
Figure 4.10 (a) is one of 66 microseismic events from a hydraulic fracturing treat-
ment in Canada. Unlike the synthetic examples, the quality of these microseismic
events is much better. The traditional denoising method for microseismic data is
bandpass filtering. However, due to the diversity of microseismic data, a fixed fre-
quency range may remove some useful signal. Figure 4.10(b) shows the result of a
fixed bandpass filter. Note that this bandpass filter works well for most of the micro-
seismic events in these data, but it removes some of the low frequency components
around 0.56s. Furthermore, there is still some noise before the P-wave arrives.

The proposed EEMD thresholding with ¢ = 0.6, m1 = 2 and m2 = 1, and ba-
sis pursuit with regularization parameter 0.005 outputs are shown in Figures 4.9(c)
and 4.9(d). Like bandpass filter, they both suppress most of the random noise. Fur-
thermore, these two techniques preserve well the waveform information as they can
distinguish the noise and useful information in their own domain. The denoising
performance is also confirmed in their spectra (Figure 4.11). All three methods re-
move all the higher frequency noise. The proposed method (Figure 4.11(c)) and
basis pursuit (Figure 4.11(d)) preserve the low frequency information better than the
bandpass filter (Figure 4.11(b)). Only EEMD thresholding keeps the components
around 300Hz, which probably contains some signal information.

A challenging microseismic test (Castellanos and van der Baan, 2013) is shown
in Figure 4.12, which comes from Saskatchewan in Canada. The raw data (Figure
4.12(a)) quality is bad, as it does not only contain random noise, but also strong
electronic noise. High energy 30 Hz, 60Hz and 120 Hz noise components exist in
its spectrum (Figure 4.13(a)). Directly applying the EEMD thresholding and basis
pursuit to the raw data would fail, as they are only valid for suppressing random
noise. A pre-processing step must be accomplished before the further processing.
Figure 4.12(b) is the output after a bandpass filter and notch process of 30 Hz and
60 Hz. The 120 Hz energy is not notched down as it is not visible in the other
microseismic events of this experiment.

Even though the pre-processing improves the quality of the raw data, Figure
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4.12(b) still suffers from severe random noise. EEMD thresholding (Figure 4.12(c))
with 0 =0.25, m1 = 1 and m2 = 1 reduces more random noise than the basis pursuit
(Figure 4.12(d)), and it more effectively (Figure 4.12(c)) drops down the 120 Hz
energy than basis pursuit (Figure 4.12(d)). Note that the regularization parameter is
35 for basis pursuit implementation. On the other hand, both techniques dramati-
cally improve the SNR of the microseismic event, and this is also confirmed in the
enlarged part from 0.2s to 0.8s (Figure 4.14). The denoising (Figures 4.14(c) and
(d)) makes the first arrival pick much easier than on the original microseismic event
or after pre-processing. The arrows indicate the first arrival pick at 0.498s, which is
difficult to detect in Figure 4.14 (a) and (b). Denoising of microseismic events can
facilitate picking of the first arrival times and their polarities, which is a crucial step

in microseismic processing.

4.3.3 Seismic example

In this section, we verify the performance of f-x EEMD thresholding. Figure 4.15 is
a stacked section from Alaska (Geological-Survey, 1981). Although the events be-
come continuous after stacking, random, coherent and background scattered noise
still exist, thereby reducing the SNR of the seismic data. Implement EEMD thresh-
olding in the f-x domain, mainly because linear or quasilinear events in the t-x do-
main manifest as a superposition of harmonics in the f-x domain. Therefore, we
compare the result with the classic f-x deconvolution and f-x EMD (Bekara and Van
der Baan, 2009).

All three methods are implemented between 0 Hz to 60% of the Nyquist fre-
quency, and frequency beyond 60% of the Nyquist frequency are damped to zero.
F-x EMD only eliminates the IMF1 component in each frequency slice, which makes
it a parameter free technique; f-x deconvolution uses the length of AR operator as
20, pre-whitening as 0.1; f-x EEMD denoising employs ¢ = 0.3, m1 =3 and m2 = 0.
The outputs of three methods are shown in Figure 4.16. All the techniques enhance
the quality of the input data by making the events clearer, especially in the deep
part. From the difference sections (Figure 4.17), neither method loss the reflection

information. F-x deconvolution (Figure 4.17(b)) and f-x EEMD denoising (Figure
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Figure 4.10: High SNR microseismic event example. (a). Raw microseismic event.
(b). Bandpass filter output. (c). EEMD thresholding output. (d). Basis pursuit
output. Bandpass filter removes some of the low frequency components around
0.56s. The proposed method and basis pursuit preserve the waveform better.

4.17(c)) seem to eliminate more random noise than f-x EMD (Figure 4.17(a)). The
advantage of our proposed method and f-x EMD over f-x deconvolution is that, ex-
cept the random noise, they can eliminate the linear dipping energy as well. Note
that all figures are shown on the same amplitude scale.

Figure 4.18 is the enlarged part of the original data from time 2s - 3.6s and CMP

number 1000 - 3500. It clearly shows that the Alaska data does not only contain

&9



(a) Original microseismic signal spectrum
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Figure 4.11: The spectrum of Figure 4.10. (a). Spectrum of the original micro-
seismic event. (b). Spectrum after bandpass filter. (c). Spectrum after the proposed
method. (d). Spectrum after basis pursuit. Due to the diversity of microseismic data,
a fixed frequency range may remove some useful signal. EEMD thresholding and
basis pursuit preserve the low frequency information better than the bandpass filter.
Furthermore, EEMD thresholding maintains the components around 300 Hz.
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(a) Original microseismic signal
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Figure 4.12: Low SNR microseismic event example. (a). Raw microseismic event.
(b). Output after pre-processing. (c). EEMD thresholding output on (b). (d). Basis
pursuit output on (b). The raw microseismic event contains the random noise and
electronic noise. The output after pre-processing gets rid of most of the electronic
noise. EEMD thresholding and basis pursuit suppress most of the random noise.
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Figure 4.13: The spectrum of Figure 4.12. (a). Spectrum of the raw microseismic
event. (b). Spectrum after pre-processing. (c). Spectrum after the proposed method
on (b). (d). Spectrum after basis pursuit on (b). There are 30 Hz, 60 Hz and 120
Hz electronic noise in raw microseismic event. The pre-processing reduces the elec-
tronic noise at 30 Hz and 60 Hz. EEMD thresholding and basis pursuit eliminate
most of the random noise. The proposed method drops down the 120 Hz energy
more effectively than the basis pursuit approach.
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(a) Original microseismic signal
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Figure 4.14: Enlarged part of Figure 4.12. (a). Original raw microseismic event.
(b). Output after pre-processing. (c). EEMD thresholding output on (b). (d). Basis
pursuit output on (b). The arrows in (¢) and (d) mark the first arrival time, which are
hard to pick on the raw microseismic event (a) or after pre-processing (b).
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random but also coherent noise, like high energy linear dipping events. The same
enlarged parts of three denoising outputs are shown in Figure 4.19. F-x EEMD
thresholding (Figure 4.19(c)) obtains the most satisfactory output, and the events
become much clearer. There are still some random and coherent noise in the results
of f-x EMD (Figure 4.19(a)) and f-x deconvolution (Figure 4.19(b)) in varying de-
grees. F-x EMD, which eliminates only IMF1 component in each frequency, does
not seem to have great impact in the data. The proposed method with parameters
ml =3, m2 =0 and ¢ = 0.3 means deleting the first two IMFs, and also applying
the IMF interval thresholding from IMF3 to the last IMF. This explains why the
difference section of the f-x EMD (Figure 4.20(a)) contains only a portion of noise
compared with the one of the proposed method (Figure 4.20(c)). On the other side,
since f-x deconvolution is only valid for random noise suppression, no dipping noise

is shown in its difference profile (Figure 4.20(b)).

4.4 Discussion

EMD is a fully data-driven technique, and no a priori decomposition basis is cho-
sen such as sines and cosines for the Fourier transform or a mother wavelet for the
Wavelet transform. The EMD denoising foundation, equation 4.1, is an average re-
sult on Monte Carlo simulation of EMD on white Gaussian noise. Kopsinis and
McLaughlin (2009) discuss it and further improve the EMD denoising scheme. The
proposed method utilizes the EEMD principle, aim to stabilize the EMD denois-
ing performance; first, the added noise solves the mode mixing to some extent,and
second, equation 4.1 is an average result of 5000 times simulation (Flandrin et al.,
2004a), therefore more time decomposition of EMD makes the IMFs energy distri-
bution closer to the theoretical distribution.

As a comparison, basis pursuit obtains similar satisfactory results in the synthetic
and microseismic examples. However it is strongly dependent on the pre-defined
wavelet dictionary. We employ the Ricker wavelets as the pre-defined dictionary in
both examples (Vera Rodriguez et al., 2012; Bonar and Sacchi, 2013). The excellent

manifestation in the synthetic example is because the pre-defined dictionary matches
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Figure 4.15: Alaska data. There are random and coherent noise in the data.
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Figure 4.16: (a). Result of f-x EMD. (b). Result of f-x deconvolution. (c). Result of
the f-x EEMD thresholding. All three techniques enhance the quality of the original
data, especially in the deep part.
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Figure 4.17: (a). Difference section of f-x EMD. (b). Difference section of f-x
deconvolution. (c¢). Difference section of the f-x EEMD thresholding. No reflections

are lost in these methods. F-x deconvolution and f-x EEMD thresholding eliminate
more noise than f-x EMD.
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Figure 4.18: Enlarged section of the original data.
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Figure 4.19: (a). Result of f-x EMD. (b). Result of f-x deconvolution. (c). Result of
the proposed method. The proposed method obtains the most satisfactory output as
the events become clearer than the f-x EMD and f-x deconvolution.
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Figure 4.20: a). Difference section of f-x EMD. (b). Difference section of f-x
deconvolution. (c). Difference section of the proposed method. F-x EMD suppresses
partial random and coherence noise. F-x deconvolution reduces most random noise
without any dipping events. The proposed method eliminates the random noise as
well as the coherence noise, like the dipping noise.
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the synthetic data exactly, so it only needs a small wavelet dictionary to process. In
the microseismic example, basis pursuit requires a large Ricker wavelet dictionary
to match the test events, therefore it is about 15 to 20 times slower than the EEMD

thresholding.

Kopsinis and McLaughlin (2008b, 2009) first investigate the iterative EMD de-
noising, and discover that the averaging on different noisy versions by altering the
IMF1 of input signal can increase the SNR of the final output. Although this ap-
proach improves the original EMD denoising, it has an assumption that there is only
noise in IMF1 of the input signal (low SNR case). Based on this investigation, they
further proposed the ’clear iterative EMD denoising technique’ to handle the high
SNR case. Our proposed EEMD denoising method is effective for both high and
low SNR cases. We create the different noisy version of the target signal by adding
the IMF1 of white noise. Based on the dyadic filter structure of EMD, the IMF1
of white Gaussian noise matches along with the information from half Nyquist to
Nyquist frequency, and the added noise can be easily smoothed over by the final

bandpass filter.

The f-x EEMD thresholding manifests its effectiveness in the Alaska data. It
combines the advantages of f-x deconvolution and f-x EMD. The predominance of
the AR model in the f-x domain is acceptable because of its excellent noise reduction
and time efficient characteristics. However, its theory needs regular trace spacing,
and the results of f-x deconvolution can enhance any coherent noise as well, like
multiples and dipping energy. Trying EMD as an alternative operator in the f-x do-
main, Bekara and Van der Baan (2009) elaborately discuss the advantages of f-x
EMD in different kinds of datasets over f-x deconvolution. They conclude that f-x
EMD acts as an auto-adaptive wavenumber filter to remove the random and steeply
dipping coherence noise. The theory of proposed f-x EEMD thresholding is sim-
ilar as f-x EMD. Furthermore it improves the performance of f-x EMD by more
parameter controls. The parameter ¢ is related to the noise level in the seismic data.
Random noise pollutes the whole t-x domain as well as the f-x domain, therefore
thresholding on each IMF in each constant frequency slice is more effective for sup-

pressing random noise than only deleting IMF1. The parameters m1 and m2, they
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give a flexible control for the dip filter range. The Alaska data illustrates the dip-
ping coherent noise is not totally limited in the IMF1 of each frequency in the f-x
domain. The proposed f-x EEMD thresholding is more powerful in reducing the

dipping coherent noise.

4.5 Conclusion

EEMD thresholding is a useful tool for suppressing random noise in the signals
of different SNR cases, as it has capability to distinguishes the signal information
and noise in each IMF. Apply the proposed method in the f-x domain, f-x EEMD
thresholding acts as a sophisticated wave-number filter, which removes both random
and dipping coherent noise in seismic data. f-x EEMD thresholding is an improved
version of f-x EMD filter, therefore it invokes no piecewise-stationarity assumption,
and it is less sensitive to irregular spatial sampling than f-x deconvolution. With
more parameters control, f-x EEMD thresholding enhances the flexibilities of f-x
EMD filter. The synthetic, microseismic and seismic examples illustrate the good

performance of our proposed methods.
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Chapter 5

Interpolation artifacts and
bidimensional ensemble empirical

mode decomposition'

Summary

Scatter point interpolation plays a significant role in bidimensional empirical mode
decomposition (BEMD). The type of interpolant has a large influence on the final
decomposition results and should ideally be adapted to the target image. Fortunately,
interpolation artifacts can be reduced by bidimensional ensemble empirical mode

decomposition (BEEMD).

5.1 Introduction

As a 2D extension of EMD, Linderhed (2002, 2005) and Nunes et al. (2003, 2005)
proposed the Bidimensional Empirical Mode Decomposition (BEMD) algorithm,
which decomposes images into Bidimensional Intrinsic Mode Functions (BIMFs).
Initial BIMFs contain the higher spatial and frequency information; the later BIMFs

and the residual are mainly composed of slow oscillations which illustrate the major

'A part version of this chapter has been published. Jiajun Han and Mirko van der Baan,
CSEG2014
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trend of the original image. Like IMFs, BIMFs are potentially helpful for signal
analysis. It has for instance been used for rainfall analysis, image enhancement
and geologic feature extraction (Sinclair and Pegram, 2005; Qin et al., 2008; Huang
etal., 2010).

Obligatory choices in any BEMD implementation surround decisions on how
to detect local extrema, how to interpolate scattered data points, and what stopping
criteria to use. These decisions will impact the kind of BIMFs that are ultimately
extracted. Nunes and Delechelle (2009) discuss extrema point detection based on
neighboring window comparison and various morphological operations. For the
scattered data interpolation, thin-plate spline radial basis function (TPS-RBF), cubic
spline, B-spline and Delaunay triangulation methods are usually used in BEMD ap-
plications (Huang et al., 2010; Nunes and Delechelle, 2009; Damerval et al., 2005).
Instead of scatter point interpolation, finite-element method and order-statistics filter
are employed to estimate the upper and lower envelopes for computational consider
(Xu et al., 2006; Bhuiyan et al., 2008). Stopping criteria control the number of
iterations thus balancing performance versus computation time.

Like EMD, mode mixing may restrict application of BEMD. Overshoot and un-
dershoot may occur as well depending on the type of chosen interpolant, leading to
blurred and unrepresentive BIMFs.

In this chapter, we first illustrate the advantage of BEMD over EMD on 2D
images. And then we compare Delaunay triangulation, cubic and TPS-RBF in-
terpolation methods to illustrate how they may impact analysis results. Next, we
apply BEMD using these interpolants onto seismic data to demonstrate potential
pitfalls. Finally, we propose bidimensional enemble empirical mode decomposition
(BEEMD) and illustrate how it can improve image analysis by reducing interpola-

tion artifacts.

5.2 Bidimensional empirical mode decomposition

BEMD decomposes an image into its Bidimensional Intrinsic Mode Functions (BIMFs)

based on local spatial and spectral scales. As an extension of EMD, the definition of
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BEMD is based on the paper of Huang et al. (1998), and the sifting process can be
described as below (Linderhed, 2002; Nunes and Delechelle, 2009) :

(1). Find all the local maxima and all the local minima of the image.

(2). Create upper and lower envelopes by proper interpolation of the local max-
ima and minima of the image.

(3). For each point, take the mean envelope of the upper and the lower envelopes.

(4). Subtract the mean envelope from the input image.

(5). Check the residual between the original image and the mean image; deter-
mine whether it meets the stopping criteria; If not, repeat the process from step (1)
with the residual as the new input image. If yes, define the residual as a BIMF and
subtract it from the input image.

(6). Find next BIMF by starting over from step (1) with the residue between the
image and former BIMF as input signal.

Through the sifting procedure above, the mean envelope of each BIMF is guaran-
teed to be zero or nearly zero, and the BIMFs are locally orthogonal, two properties
which are shared with 1D IMFs. The only difference is the number of local extrema
and the number of zero crossings; for EMD, the number of local extrema and the
number of zero crossings must be equal or differ by at most one, however, due to the
properties of an image, it is impossible to satisfy this property for BEMD (Bhuiyan
et al., 2008).

Unlike EMD, there is no standard interpolation for BEMD. The users select the
interpolation for their own purpose. The first attempt is utilizing TPS-RBF as in-
terpolation, since its smooth feature. However, due to its computation consuming
predicament, other interpolants have been employed (Xu et al., 2006; Bhuiyan et al.,
2008). Except TPS-RBF, I also test Delaunay triangulation interpolation (Sapidis
and Perucchio, 1991) and cubic interpolation for BEMD in this chapter.

Each BIMF contains different frequency and spatial component, thus highlight-
ing different information in the input images. However, the first attempt for de-
composing 2D image is applying 1D EMD in particular directions. In next section,
we elaborately discuss the advantage of BEMD over 1D EMD for decomposing 2D

images.
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5.3 Why BEMD?

In geophysics area, Magrin-Chagnolleau and Baraniuk (1999) and Vasudevan and
F.A. (2000) first attempt to decompose the 2D seismic profiles by 1D EMD in ver-
tical direction. With the relatively satisfactory results, they conclude that the new
time-frequency attributes after EMD are the potential tools for seismic attribute anal-
ysis. These successful applications of 1D EMD in 2D images are because seismic
profiles are characterized by a higher lateral continuity and less vertical continuity.
Therefore, the decomposition to these 2D images does not need to take care of every

directions.

For a normal 2D image, which usually has both vertical and horizonal correla-
tions, only one direction decomposition by 1D EMD may not extract useful informa-
tion. We take the famous Lena image (Figure 5.1 left) as an example. Our approach
for 1D EMD is applying it only in the vertical direction: set the same number of
IMFs for each trace and gather them as the whole IMFs for the original image. The
output IMFs (Figures 5.1 to 5.3) has blurred areas, and the edge information is not
exacted well as expection by the first two IMFs. Moreover, IMF 3 does not tend
to be continuous and smooth, especially in the hat part over head. This is mainly
because the extrema in each trace does not equal to the extrema of the whole image,
and the following sifting process is effected. Liu and Peng (2005) expound this is-
sue in a deeper level, and they find that decomposing images in a single direction by
1D EMD could lose correlations in other directions. Due to the inefficiency of 1D
decomposition of Lena image, the first four IMFs do not capture much information

as the residual (5.3 right) still resembles the original image.

Next, we apply BEMD, using TPS-RBF as interpolant, on the same Lena im-
age. Since BEMD shares the similar features with EMD, we expect that the former
BIMFs contain the higher oscillatory information, which are corresponding the edge
information in the original image. Figures 5.4 (left) shows again the Lena image.
Figures 5.4 (right) to 5.6 show the first 4 BIMFs and the final residual. Different
BIMFs contain different frequencies and local spatial information: BIMF 1 repre-

sents the highest oscillation component, which can highlight edges in the images;
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BIMF 2 and BIMF 3 can also assist to detect edge information because they con-
tain higher spatial and frequency content; the later BIMFs and residual are mainly
composed of slow oscillations which illustrate the major trend of the original image.

From the comparison, BEMD preserves the correlations of both directions (ver-
tical and horizontal) much better than 1D EMD for the Lena image. This makes
BEMD is a more suitable signal tool for 2D images. As each BIMF contains the
special frequencies and spatial information, Sinclair and Pegram (2005), Qin et al.
(2008) and Huang et al. (2010) have already applied BEMD for rainfall analysis,
image enhancement and geologic feature extraction. Although BEMD is a powerful
image tool, its application in geophysics is rare. The serious problem is scatter point

interpolation, the type of chosen interpolant can greatly affect the extracted BIMFs.

Original Lena IMF1

50 50

100 100
150 150
200 200
250 250
300 300
350 350
400 400

450 | 450

500 500

100 200 300 400 500 100 200 300 400 500

Figure 5.1: Lena image and associated IMF1 after 1D EMD applied in vertical di-
rection. IMF1 tends to by fuzzy, and cannot highlight the boundary information
effectively.
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Figure 5.2: IMF2 and IMF3 after 1D EMD applied in vertical direction. More edges

are visible.

5.4 Scatter point interpolation and BEEMD

Point interpolation plays a significant role in any BEMD implementation, and the

ideal produced envelopes should go through each data point and enwrap the whole

IMF4

Residual

Figure 5.3: IMF4 and residual after 1D EMD applied in vertical direction. IMF4
shows boundaries clearly, but the residual (original image minus IMFs one to four)
retains still much of the original information.
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Original Lena BIMF 1
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Figure 5.4: Lena image and BIMF1. BIMF1 highlights edges in the original data.

image. Different interpolation methods are suited for different images. For smooth
images, the aim of interpolation is to find a stable, continuous and smooth envelope.
On the other hand, for images which have many discontinuities, the interpolation
should avoid overshoot and undershoot problems, whereas smooth interpolation can

not.

BIMF 2 BIMF 3
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Figure 5.5: BIMF2 and BIMF3. Both contain higher oscillation information to de-
tect boundaries.
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Residual
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Figure 5.6: BIMF4 and residual. They reflect the main trend of the input image.

To obtain the upper and lower envelopes, we test three interpolation methods:
Delaunay triangulation interpolation (Sapidis and Perucchio, 1991), cubic interpo-
lation and thin-plate spline radial basis function (TPS-RBF) (Bhuiyan et al., 2009).

Figure 5.7(a) is a synthetic image with smooth features. The blue dots are local
maxima and red dots are local minima. Figures 5.7(b)-5.7(d) are envelopes obtained
using all three interpolants. The envelopes obtained by Delaunay triangulation inter-
polation manifest sharp and discontinuous features; the ones obtained by cubic in-
terpolation tend to be smoother; from comparison, the envelopes of TPS-RBF show
the smoothest results, as the second derivative is guaranteed to be continuous. In
this case, TPS-RBF preserves the features contained in the smooth test image best.

Another synthetic image with discontinuous features is shown in Figure 5.8(a).
In this case, cubic interpolation (Figure 5.8(c)) and TPS-RBF (Figure 5.8(d)) exhibit
overshoot and undershoot artifacts; however, Delaunay triangulation (Figure 5.8(b))

produces the most satisfactory image.

5.4.1 Application of BEMD on seismic data

Figure 5.9 shows an image of seismic data representing two geologic subsurface

features, namely a buried channel and a fault. Both features are identified by ar-
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Figure 5.7: Smooth test image. (a). Test image. Blue dots are local maxima and
red dots are local minima. (b). Delaunay triangulation creates discontinuous slopes
between each triangle part; (c). Cubic spline produces the smoother envelopes; (d).

TPS-RBF yields the smoothest envelopes.
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Figure 5.8: Test image with discontinuities. (a) Test image. Blue dots are local max-
ima and red dots are local minima. (b). Delaunay triangulation produces envelopes
without overshoot; (c). cubic spline creates smoother envelopes with only some
overshoot; (d). TPS-RBF produces the smoothest envelopes with severe overshoot.

112



rows. The image contains both smooth and sharply delineated features, making this

a relevant test for identifying the effect of the interpolant on the resulting BIMFs.

Figures 5.10(a) to 5.10(c) display the first BIMF component of BEMD using 3
different interpolation methods. The outputs from Delaunay triangulation (Figure
5.10(a)) and cubic interpolation (Figure 5.10(b)) are similar. They both highlight
the channel and fault features clearly. The one from TPS-RBF (Figure 5.10(c)) fares
less well. Overshoot and undershoot make the boundaries of the channel fuzzy, and
there is no clear identification of the fault. The fault is not visible on the later BIMFs

either.

In the next subsection we demonstrate how noise-injection using bidimensional
ensemble EMD can alleviate interpolation artifacts, thereby facilitating any interpre-

tation without the need to adapt the interpolant each time to the image.
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Figure 5.9: Seismic test image with smooth and discontinuous features. The channel
and subtle fault are identified by arrows.
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5.4.2 Bidimensional ensemble empirical mode decomposition

Based on the dyadic filter bank of EMD (Flandrin et al., 2004b), Wu and Huang
(2009a) propose the ensemble empirical mode decomposition (EEMD), which en-
hances the application of EMD. Following their idea, we propose the bidimensional

ensemble empirical mode decomposition (BEEMD).

BEEMD is a noise-assisted analysis method. It injects noise into the decom-
position algorithm to stabilize its performance. The implementation procedure for

BEEMD is simple:
(1). Add a fixed percentage of Gaussian white noise onto the image,
(2). Decompose the resulting signal into BIMFs,
(3). Repeat steps (1) and (2) several times, using different noise realizations;

(4). Obtain the ensemble averages of the corresponding individual BIMFs as the

final result.

The added Gaussian white noise series are zero mean with a constant flat spectral
and spatial spectrum. Their contribution thus cancels out and does not introduce any
image components not already present in the original image, which is helpful to

avoid mode mixing.

5.4.3 Application BEEMD on seismic data

We apply BEEMD algorithm onto Figure 5.9 with all three interpolants using 50
noise realizations with 10% added noise. This time, all BIMF1 (Figure 5.10(d) to
Figure 5.10(f)) show similar results, always identifying both the fault and channel
features. Both Delaunay triangulation and cubic interpolation produce similar re-
sults to a single BEMD; yet the TPS-RBF outcome has been greatly improved by
eliminating most interpolation artifacts due to overshoot and undershoot (compare

with Figure 5.10(c)).
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Figure 5.10: (a) to (c) are BIMF1 after BEMD results using Delaunay triangulation,
cubic interpolation and TPS-RBF, respectively. The outputs from Delaunay trian-
gulation and cubic interpolation highlight the channel and fault features. Overshoot
and undershoot artifacts spread out the channel boundaries in TPS-RBF method. (d)
to (f) are BIMF1 after BEEMD with 20 realizations using Delaunay triangulation,
cubic interpolation, and TPS-RBF respectively. All three interpolants now produce
similar results.

5.5 Conclusion

BEMD can aid in image analysis; yet the type of chosen interpolant can greatly

affect the extracted BIMFs. Non-smooth interpolants such as Delaunay triangu-
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lation are best for images with many sharply delineated features and discontinu-
ities. Very smooth interpolants such as TPS-RBF are superior if inherent features
exhibit smooth gradients as well or if instantaneous frequencies are also desired.
Cubic splines seem to cover a convenient middle road, rendering them suitable as
all-purpose interpolants.

Ideally however the interpolant is adapted to each image, making automated
interpretations more challenging. On the other hand noise-injection using bidimen-
sional ensemble empirical mode decomposition (BEEMD) can alleviate many inter-
polation artifacts, thereby facilitating any interpretation without the need to adapt

the interpolant each time to the image.
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Chapter 6

Bidimensional empirical mode

decomposition thresholding

6.1 Introduction

EMD acts essentially as a dyadic filter bank for white Gaussian noise (Flandrin
et al., 2004a), and the energy distribution of each IMF is based on equation 4.1. As
its 2D extension, how does BEMD act on white Gaussian noise? To the best of my
knowledge, the only research on the characteristics of BEMD on Gaussian noise
is from Delechelle et al. (2005). Their work selects thin-plate spline radial basis
function (TPS-RBF) as interpolant for BEMD, and find a approximate relationship
between the average number of extrema for each BIMF versus the BIMF order.

In this chapter, we first employ Monte Carlo simulations to find the BEMD char-
acteristic on white Gaussian noise. After finding the energy distribution of each
BIMEF, we propose the BEMD thresholding method, following the idea of EMD
thresholding in chapter 4, to attenuate random noise in seismic data. The field data

examples demonstrate the good performance of the proposed method.

6.2 BEMD analysis of white Gaussian noise

For the Monte Carlo simulations, we set the size of white Gaussian noise to 100 x

100, and 50 independent white Gaussian noise have been generated for stabilizing
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the final result. For EMD, the IMF energy distributions vary mainly depending on
the number of sifting iterations for each extracted IMF (Kopsinis and McLaughlin,
2008a). This is equally applicable to the BEMD case. Figure 6.1 shows how BIMF
energy distribution varies with the number of sifting iteration. The simulation uti-
lizes the cubic interpolant for BEMD implementation, and the y axis of Figure 6.1
is scaling to logarithm 2 of energy. With the number of sifting iteration increas-
ing, the energy distribution of every two adjacent sifting iteration become closer.
This indicates the extracted BIMFs tend towards stability after the certain number
of sifting iteration. We select the sifting iteration as 10 to extract each BIMF for
the following tests; this selection is considered to balance the BEMD performance

versus computation time.
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Figure 6.1: BIMF energy distributions of white Gaussian noise. The distributions
vary depending on the number of sifting iterations for extracting each BIMF.

Figure 6.2 (a) to (e) show the 2D frequency spectrum for BIMF1 to BIMF6
on white Gaussian noise, note that this is the averaged result over 50 realizations

and all subfigures are shown in the same amplitude scale. As evidenced in Figure
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Figure 6.2: 2D frequency spectrum of each BIMF. (a). BIMF1. (b). BIMF2. (c).
BIMEF3. (d). BIMF4. (e). BIMFS. (f). BIMF6.
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6.2, BEMD can be interpreted as the 2D frequency output of some equivalent filter.
Indeed, while the filter associated with BIMF1 is essentially highpass filter, although
it contains a non-negligible information of lower frequency, the higher order BIMFs
are characterized by a set of overlapping filters. This filter bank structure which is
reminiscent of what is observed in 2D wavelet decomposition in similar situations.

Flandrin et al. (2004a) find that EMD acts as a constant-Q bandpass filters, and
the value of Q approximates 2 through examining the zero-crossings of each IMF.
As zero-crossings is hard to define in 2D image, we calculate the energy distribu-
tion of each BIMF to investigate the BEMD characteristics. The dot line shown in
Figure 6.3 is the BIMFs energy distribution using cubic interpolant for BEMD im-
plementation. As there is no standard interpolants for BEMD, we also calculate the
cases of TPS-RBF (solid line) and Delaunay triangulation (dash line). These energy
distributions have slight differences, but have one identify feature: the energy distri-
butions tend to be linear from the second to the last BIMF, except BIMF1. This result
exactly matches the EMD case (Flandrin et al., 2004a; Kopsinis and McLaughlin,
2009), therefore we can calculate the BIMFs energy distribution on white Gaussian
noise based on equation 4.1, which is the equation of IMFs energy distribution in
1D EMD case.

If cubic interpolant is chosen for BEMD implementation,

E}=E?x1.16x2.65 % k=2,3..6. 6.1)

If TPS-RBF is chosen

E} =E?x133x256 % k=2,3..6. (6.2)

If Delaunay triangulation is chosen

E}=E?x133x3.27 % k=23..6. (6.3)

where E,f is the energy of the k — th BIMF. From the above equations, the energy
distributions of each BIMF are similar as the EMD case, no matter what interpolant

is chosen. Therefore, BEMD manifests like a constant-Q, wavelet-like, filter bank
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Figure 6.3: BIMF energy distributions of white Gaussian noise. Each BIMF is ex-
tracted with 10 sifting iterations. The solid line represents the TPS-RBF for BEMD
implementation, dot line is for cubic interpolant, and dash line stands for Delaunay
triangulation.

for a 2D image, and the Q value varies with the different interpolants.

6.3 BEMD thresholding

After obtaining the energy distribution of each BIMF, we propose the BEMD thresh-
olding method following the idea of chapter 4. As the BIMFs resemble a wavelet-
like filter bank for a 2D image, the first BIMF energy E 12 of the input image S can be

estimated using the same robust estimator as equation 4.2:

E} = (median(|BIMF1(i)|)/0.6755)*, i=1,2...n. (6.4)

where 7 is the total number of the input image samples. Then we can set the adaptive

threshold 7; in each BIMF for suppressing the random noise as
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Ty = 0 X/ (2xIn(n)) x Ex, (6.5)

where ¢ is the main parameter to be set. Equations 6.4 and 6.5 are exactly the
same as equations 4.2 and 4.3, and the combination of them is a universal threshold
for removing the white Gaussian noise in the wavelet domain (Donoho and John-
stone, 1994; Donoho, 1995).

Following the EMD threshold procedure, the reconstructed image S is expressed
as

m2

S= Y T[BIMF(]+ residual. (6.6)
k=ml

The thresholding is only applied between m1 —th to m2 —th BIMFs, and has no
impact on residual. In EMD thresholding (Chapter 4), the decomposition continues
until the last IMF or residual only contains at most two extreme. However, this
"complete decomposition’ is impracticable for BEMD due to the properties of an
image and computation time. In BEMD implementation, we always set the max
number of BIMFs to generate before the decomposition; therefore, the residual does
not behave like a BIMF and does not follow the equations 6.1 to 6.3.

In the following example section, we select the cubic interpolant for implement-
ing the BEMD thresholding, since it is most time efficient method among all three

interpolants.

6.4 Example

6.4.1 Seismic vertical slice

The first example is a stacked seismic profile from Alaska (Geological-Survey, 1981)
(Figure 6.4). Although the events become continuous after stacking, random, coher-
ent and background scattered noise still exist, thereby reducing the quality of the
seismic data. We set the parameter m2 as 7, which means that BEMD decomposes
the image into 7 BIMFs with a residual. We set the threshold parameter ¢ as 0.2,

and plot the original and thresholded BIMFs in Figures 6.5 and 6.6. The original
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Figure 6.4: Input seismic data from Alaska. The random noise brings down the
quality of the data.
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Figure 6.5: (a). BIMF1. (b). Thresholded BIMF1. (c). BIMF2. (d). Thresholded
BIMF2. (e). BIMF3. (f). Thresholded BIMF3. (g). BIMF4. (h). Thresholded
BIMF4. The thresholding suppresses most of the random noise from BIMF1 to
BIMF4.
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Figure 6.6: (a). BIMFS. (b). Thresholded BIMFS5. (c). BIMF6. (d). Thresholded
BIMF6. (e). BIMF7. (f). Thresholded BIMF7. (g). Residual. (h). Residual. The
thresholding enhances the events energy from BIMF5 to BIMF 7, and has no impact
on the residual.
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Figure 6.7: The BIMF energy distribution of Figure 6.3 and the theoretical BIMF
energy distribution of white Gaussian noise based on equation 6.1.

BIMFI1 (Figure 6.5 (a)) contains nearly all the noise. Except a few reflections on
the top section, BIMF2 (Figure 6.5 (¢)) is nearly all random noise too. Based on the
energy distribution of each BIMF, BEMD has capability to distinguish the reflection
information and random noise. The thresholding makes the output BIMFs (Figures
6.5 (b),(d),(f),(g) and Figures 6.6 (b), (d) and (f)) get rid of most random noise, and
leave the strong reflections. As the residual does not follow the energy distribution
of equation 6.1, thresholding has no impact on the residual (Figures 6.6 (g) and (h)).

The theoretical (solid line) and true BIMF energy (dash line) distributions are
shown in Figure 6.7. Except the first BIMF energy, the energy of other BIMFs
are all above the theoretical line. Therefore, we set m1 as 2, which means remove
BIMF]1 and the thresholding is applied from BIMF2 to the last BIMF. The BEMD
thresholding output is shown in Figure 6.8(c).

Since the proposed method is 2D image denoising technique, we compare its re-

sult with two classic methods, local median filter (Bednar, 1983) and local SVD filter
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Figure 6.8: (a). Result of local median filter. (b). Result of local SVD filter. (c).
Result of BEMD thresholding with m1 =2, m2 =7 and o = 0.1. All three method
upgrades the quality of data. BEMD thresholding and local SVD filter have better
performance than local median filter.
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Figure 6.9: (a). The difference profile of local median filter. (b). The difference
profile of local SVD filter. (c). The difference profile of BEMD thresholding. Local
median filter reduces less random noise compared with the other two methods. Local
SVD filter is effective for suppressing both random and coherent noise. BEMD
thresholding is only valid for suppressing random noise.
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(Bekara and van der Baan, 2007). The local window settings for both method are 50
and 10 for numbers of time sample and trace sample. The filter length is [5,7] for lo-
cal median filter, and 1 eigenimage is used in the reconstruction for local SVD filter.
All three methods upgrade the quality of the original data. Compared with the other
two methods, local median filter (Figure 6.8(a)) manifests less well, as less random
noise is presented in its difference profile (Figure 6.9(a)). Local SVD filter (Figure
6.8(b)) shows its powerful denoising capabilities in this data; the energy of reflec-
tions get boost and make the reflections become much clearer. From the difference
profile (Figure 6.9(b)), not only random noise, the dipping coherent noise is elimi-
nated by local SVD filter as well. The manifestation of local SVD filter is similar
with the proposed f-x EEMD thresholding in chapter 4, both methods are effective
for suppressing the random and coherent noise. BEMD thresholding presents better
performance, and more random noise reduced than local median filter. However,
since the theory of proposed method is only valid for random noise suppression,
there are no coherent noise in the difference profile of BEMD thresholding (Figure

6.9(0)).

6.4.2 Seismic time slice

The second example is a seismic time slice from a sedimentary basin in Canada
with the artificial random noise. Due to the influence of random noise, Figure 6.10
seems to be fuzzy. The channel and fault structures are not clear, and we mark
them by the arrows. The outputs of local median filter, local SVD filter and BEMD
thresholding are shown in Figure 6.11 with the same amplitude scale. The window
settings for two local filters are [10,10], and the filter length is [3,3] for local median
filter, and 2 eigenimage is used in the reconstruction for local SVD filter. This
time, local median filter (Figure 6.11(a)) shows a better performance than local SVD
filter (Figure 6.11(b)). This is because local SVD filter is effective for boosting the
coherence energy, and there is no obvious coherence energy, like reflections, in this
example. The output of BEMD thresholding with m1 =1, m2 =7 and ¢ = 0.2 is
shown in Figure 6.11(c). The proposed method effectively reduces the random noise,

and the output shows smoother features compared with the other two techniques.
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Figure 6.10: Time slice from a sedimentary basin in Canada. The time slice tends to
be fuzzy due to the random noise. The channel and fault structures are marked by
the arrows.

Furthermore, the channel and fault structures can be identified distinctly. No useful
geologic information are lost in the difference profiles of all three methods (Figure

6.12).

6.5 Discussion

As the 2D extension of EMD, BEMD is fully data driven technique, and no pre-
defined decomposition basis feature renders it suitable for image analysis. From
equations 6.1 to 6.3, BEMD can be interpreted as a constant-Q, wavelet-like, filter
bank for a 2D image. This feature is also shared with EMD (Flandrin et al., 2004a;
Wu and Huang, 2004). Based on the energy distribution of each BIMF for white
Gaussian noise, BEMD is capable of distinguishing the signal and noise in its own

domain (BIMFs). Therefore, BEMD thresholding is essentially suppressing random
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Figure 6.11: (a). Result of local median filter. (b). Result of local SVD filter.
(c). Result of BEMD thresholding with m1 =1, m2 =7 and ¢ = 0.2. The BEMD
thresholding output is much smoother compared the other two methods, and the
geologic structures can be identified distinctly.
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Figure 6.12: (a). Difference of local median filter. (b). Difference of local SVD fil-
ter. (c). Difference of BEMD thresholding. Most of the random noise is suppressed
without any useful geologic information in all three methods.
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noise in different frequencies and spatial scales of the input images.

Another possible application in seismic processing is applying the proposed
method in frequency-x-y offset (f-x-y) domain, which follows the idea of f-x EEMD
thresholding. The results should be valid for suppressing both random and coherent
noise in 3D seismic data. Due to limited time and lack of a suitable 3D seismic
dataset, we do not test f-x-y BEMD thresholding in this chapter.

Although the field examples demonstrate the good performance of the BEMD
thresholding method, there are two possible improvements to enhance the results.
First one is BEEMD thresholding. BEMD is suffered with mode mixing, and fol-
lowing the idea of EEMD thresholding in chapter 4, we could propose BEEMD
thresholding for stabilizing the final denoising results. However, the computation
time is the main problem preventing this idea. Even we use cubic interpolant for the
proposed method, the computation time of BEMD thresholding is about 3.5 times
slower than local SVD filter, and 1.5 times slower than local median filter for Alaska
data. For the second example (Figure 6.9), all three methods take nearly equal com-
putation time, as the size of the second example (217%225) is much smaller than
Alaska data (1800%400). Second improvement is a new 2D thresholding method
suitable for BIMFs. IMF interval thresholding (chapter 4) maintains the whole in-
terval between two zero crossings in each IMF, if the absolute value of local extrema
in this interval is larger than the threshold. The idea of IMF interval thresholding
agrees with the features of each IMF, therefore it enhances the denoising capability
of EEMD thresholding. In 2D case, how to keep the amplitude between two zero

crossings and in which directions are need the further considerations.

6.6 Conclusion

BEMD behaves a constant-Q, wavelet-like, filter bank on the white Gaussian noise.
Based on the energy distribution of each BIMF, BEMD thresholding is effective for
suppressing random noise in 2D image. The seismic examples illustrate the good

performance of our proposed method.
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Chapter 7

Discussion and Conclusion!

7.1 Discussion

EMD is a fully data-driven technique, and the main parameters for EMD are the
stopping criteria for the sifting process and extrme interpolation scheme (Han and
Van der Baan, 2013; Mandic et al., 2013). Empirically, scholars set the default
stopping criteria to perform EMD (Huang et al., 1998; Huang, 1999; Nunes and
Delechelle, 2009; Wang et al., 2010). There are another two parameters for EEMD
and CEEMD, namely the percentage of white Gaussian noise and the number of
noise realizations, and neither seems to have a critical influence of the final decom-
position. For the different examples presented in chapter 2, EEMD and CEEMD
employed with the same parameters show similar time-frequency representations
(EEMD results are not shown). On the other hand, the EEMD implementation tends
to extract smoother IMFs with increasing IMF numbers due to a decrease in Gaus-
sian noise fluctuations, which is not the case in the CEEMD implementation. From
our tests, CEEMD is more computationally intensive than EEMD which contradicts

Torres et al. (2011a) conclusions.

Since CEEMD is a complete version of EEMD, the readers may ask a question,

”why not propose the CEEMD thresholding instead of EEMD thresholding?”” The

The chapter is based in part on the paper “Spectral estimation - What’s new? What’s next?”.
Jean Baptiste Tary, Roberto Henry Herrera, Jiajun Han and Mirko van der Baan, submitted, Reviews
of Geophysics.
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answer is the EMD denoising foundation is based on equation 4.1, which needs the
decomposition of the input signal by the full EMD scheme. In this case, CEEMD
does not obey this feature, which simply means the IMFs energy after CEEMD may

not follow equation 4.1.

Shared with EMD, the stopping criteria are the main parameters for BEMD. As a
reassignment approach on wavelet transform, mother wavelet and the number of oc-
taves and voices are the main parameters for SST. The reassignment method applied
on instantaneous frequencies for the SST improves the time-frequency representa-
tion of the wavelet transform, and judging from various applications, SST shows its
robustness properties to noisy or non-uniformly sampled data (Thakur et al., 2013;
Auger et al., 2013). EMD and its variants offer high-resolution time-frequency rep-
resentation for signals characterized by good SNR, like noise free synthetic data and
post-stack seismic data (chapter 2). On the downside, the EMD algorithm seems
very sensitive to the low SNR case as no criteria to separate noise and signal are
defined in this kind of algorithm. Instantaneous frequencies computed from EMD
IMFs have an inconsistent aspect in the presence of high-amplitude broadband noise

(Bowman and Lees, 2013) and for close spectral lines (Mandic et al., 2013).
There are several possible improvements associated with the presented methods.

For EMD and its variants, combining with other alternative transform(s) to cal-
culate frequency distribution may be a avaiable way. EMD or its variants aims to
decompose the input signal into a sum of subsignals based on its dyadic filter struc-
ture, even if the input signal contains noise. However, instantaneous frequency is
prone and sensitive to noise, direct calculation in noisy situations may reduce the
performance. Furthermore, some natural signals, like volcano signals, with broad-
band spectra are not well represented by instantaneous frequency.

For SST, an automatic, data-driven selection of the main parameters for the CWT
(mother wavelet, central frequency and bandwidth) (Mesa, 2005) could remove the
usual trial-and-error procedure.

For all the presented techniques, the objects of them are huge seismic data, there-
fore modern computational tools and programming languages should help mitigate

the time consuming problem.
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7.2 Conclusion

EMD methods offers potentially viable tools for seismic processing and interpre-
tation, and this thesis focuses on testing their suitability for seismic time-frequency
analysis and attenuation noise. EMD offers a distinct way for revealing time-frequency
distribution of input signals compared with the previous developed techniques, as
there are no template, window and taper usages during its implementation, and no
estimation assumptions exist. As an EMD variant, CEEMD decomposes the seismic
signals into a sum of narrow band subsignals, and its performance in combination
with instantaneous frequency retrieves higher time-frequency resolution. This fea-
ture is also true for SST, which is an EMD-like method empowered by reassignment
approach on wavelet transform. Furthermore, EMD and BEMD both effectively dis-
tinguish the signal and random noise in each IMF and BIMF; based on these charac-
teristics, the proposed EEMD thresholding and BEMD thresholding are useful tools
for denoising seismic data. The applications on synthetic and real data illustrate the

EMD methods are highly promising for seismic processing and interpretation.
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Appendix A

From 1D Instantaneous Attributes to 2D Instantaneous Spectra

In this appendix, I show how to create the 2D instantaneous spectra after calcu-
lating the instantaneous attributes of each IMF.

Assume we have obtained imf;(r) after EMD on the input signal s(¢), and their
instantaneous amplitude A;(¢) (equation (2.8)) and corresponding instantaneous fre-
quencies [F;(t) (equation (2.10)) are calculated, where index i = 1,2,...k. As the
signal s(¢) equals the summation of every imf;(t), its instantaneous spectra S(z, f) is
the summation of all the individual instantaneous spectra IMF;(t, f) of each imf;(t).

This relationship is expressed as equation (A-1)

k k
s(t) =Y imfi(t) < S(t,f) = Y IMF(1, f), (A—1)
i=1 j

i=1
The instantaneous spectrum IMF;(z, f) is calculated from its instantaneous ampli-

tude A;(¢) and corresponding instantaneous frequency IF;(t) as,

IMFi(1, f) = Ai(t) 6 (f — IFi(1))- (A-2)

where ¢ is the Dirac delta function.

Next I show an example. Figure A-1(a) shows the instantaneous amplitude of
one synthetic IMF, and its corresponding instantaneous frequency is shown in Figure
A-1(b). Figure A-2 is the instantaneous spectrum created by the information in

Figure A-1 utilizing equation (A-2).
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Figure A-1: (a). The instantaneous amplitude of one synthetic IMF. (b). The instan-
taneous freqeuncy of one synthetic IMF.
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Figure A-2: The 2D spectrum created from Figure A-1.
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Appendix B

Explanation on white noise injection for relieving mode mixing

Mode mixing means that different frequency components mix together in one
IMF, or one frequency component is represented in different IMFs but at different
times (see Figure 2.2). In this situation, the instantaneous frequency of IMFs fluctu-
ates rapidly.

Noise injection is effective for relieving mode mixing. Take CEEMD as an ex-
ample, CEEMD utilizes bandpassed versions of white noise in each stage when
extracting different IMFs. Flandrin et al. (2004a) demonstrated that white Gaussian
noise is divided into IMFs, each characterized by a different octave in the frequency
domain. During the CEEMD decomposition, equations (2.3) and (2.4), different
noise IMFs Ej[w;| are added to the residual ry, thereby adding bandpass filtered
noise of a specific frequency content to the residual. This promotes extraction of
IMFs with a more restricted frequency range, thus preventing mode mixing.

The added white Gaussian noise series helps to perturb the signal and enable the
EMD to visit multiple solutions in the finite neighborhood of the true answer. As the
added noise series are zero mean, their contribution thus cancels out and does not
introduce signal components not already present in the original data. The ensemble

averaging also introduces smooth features of each IMF.
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