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Abstract

In this thesis we describe the second component of the crystal base
of an irreducible module of highest weight NAq of U, (s{(n)), where
N € N and Ag is 2 fundamental weight, as a set of N-tuples of Young
Tableaux. This description differs from that given by Jimbo, Misra,
Miwa and Okado, and it is related to certain Demazure modules. We
use this description to obtain an explicit set of inequalities defining
the cone whose lattice points give the image of one of the Kashiwara

embeddings.
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Introduction

Crystal bases, which are used as tools to study the representation theory of the
quantized universal enveloping algebra U,(g) of a symmetrizable Kac-Moody Lie
algebra g, were introduced by Kashiwara in 1990, and since then have been the
subject of extensive study. They can be thought of as “bases” of U,(g)-modules at
“q=0", and can be “lifted” to bases, called global bases, of these molules.

Let (L(A), B(A)) denote the crystal base of V() (the irreducible ¢/, (g)-module
of highest weight A\), w an element of the Weyl group and u,,\ an extremal vector of
weight wA of V' (A). Littelmann [Lit95] conjectured the existence of a subset B, (A)

of B(A) such that

Z’{:(g)uwz\ N L()‘) .
UF(g)uwr N gL(A) 2. @

bEBw(A)
and proved this for g of types A,, Bn, Cn, Dn, Es and Gs.
In [Kas93], Kashiwara proved this conjecture in general by showing the existence
of a subset B, () of B(A) such that
L{;—(g)uwl\ = Z Q(Q)G,\(b),

bEBw(N)

1
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where {G\(b) : b € B())} is the (lower) global base of V(\), and hence obtained the
character formula
chUf(@uwr) = Y e
bEBw(A)

It is therefore of importance to describe the subset B,,{\) as explicitly as possible.

If (L(oc0), B(oo)) denotes the crystal base of Z{7(g) and Ty = {¢,} the one point
crystal defined in 1.7, then it is known that there exists a full embedding of crystals
Ta : B(A) — B(o0) @ T (see 1.3).

Kashiwara [Kas93] showed that for a sequence ¢ = (... ,1,,7;) of elements of I -
the index set of the simple roots - satisfying certain conditions (see 2.1(7)), the set

of sequences of “coloured” integers
Z? :={...a1a0 : ai is an 1y — coloured integer, and ax =0 if £ >> 0}

can be endowed with a crystal structure (see 1.17) such that the weight of ...a;a0
is equal to — 3,5 akoy, and such that the crystal B(oo) is (isomorphic to) the con-
nected component of Z%° containing ...00 (we identify B(oco) with this component).
If w=r;...r; is a reduced expression of an element of the Weyl group of g, then

Bu(A) & B,(co0) ® Ty, where
Bw(OO) = {...alao S B(OO) tar =0 if k> l}.

In [NZ97], B(co) was shown to be the set of lattice points of a cone whose
defining inequalities can be generated by applying certain operators to a given set
of inequalities. The inequalities defining this cone were obtained for g of rank 2

in [Kas93], and for the finite dimensional Lie algebras in [Cli98] and [Lit98] (for
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INTRODUCTION 3

a particular sequence ¢). In this thesis, we obtain an explicit formulation of these

(1)

n_1 (also for a particular ¢).

inequalities (see Theorem 4.9) for g of type A
In Theorem 2.3, we show that if g is affine (or of finite type) and ¢ is appropriately

chosen,
B(oo) = {...a1a0¢: €€ B(co,g’) and ...a1a00 € B(c0)}

where g’ is a Lie algebra of lower rank than that of g.
Since the B(oo)’s for the finite dimensional Lie algebras were described in [C1i98]
and [Lit98], this Theorem reduces the problem of describing B(oo) for affine g to

that of describing its subset
{...a1a00 : ...a;a00 € B(o0)}.

Since Taa, (B(NA;)) = {...a1a00 ® tna, © ...a1a00 € B(oo) and ag < N} (see
Lemma 2.5), in order to describe B(oo), we would like to have an explicit description
of B(NA;) and an explicit description of how the map Tya,; acts on it.

In [JMMO91], B(NAo) was explicitly described for g of type Afll_)l as N—tuples
of coloured Young diagrams such that an i-coloured box in an element Y of B(/NAg)
contributes —a; to the weight of Y and hence contributes to an :—coloured integer
in the image of T4, -

Let:=(...,0,1,...,n—-1,0,1,... ,n—1,0,), where ¢/ is appropriately chosen

(see 2.1(7)) so that

B(NAo) 2 {...a1a00 @ tya, }.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION 4

If we superimpose an element ¥ € B(Ag) on the following pattern:

(n—-1) 2(n —1)
(n=-1)+1 2(rn—-1)+1
(n=1)+2 2(n—-1)+2
(n-1)+3 2(n—-1)+3

e WO

then Y =% ...a1200 ® ts,- Where a; is the number of £’s in the pattern which are

enclosed by Y. (See Corollary 3.35).

For example, let n=2. Then, if the number in a box of ¥ € B(Ag) denotes the

colour of that box,

2]0]

Y = — ...0010212110 @ ta,,

—| b &
N Of -

since, when we superimpose Y on the pattern above, we obtain

0 2 4 6| 8
1 3{(]5 7 9
2 4|16 8 10
3 5 7 9 11

It can be shown (see Corollary 3.34) that if w is asubword of . . . 717071 ... Tho1T0,
then the elements of B, (Ag) are those elements of B(Ag) such that, when placed on
the pattern, only enclose numbers less than or equal to the length of w.

For N > 1, however, thee map 7y,, is not easily computed from the description
of B(NAg) given in [JMMO91).

In 3.9 and 3.10, following the ideas in [JMMO91], we show that Yy, the set of
N-tuples of coloured Young diagrams, can be endowed with a crystal structure for
every total order of the set {1,... , N} x Nx (—N) such that if the order is as defined

in 3.11, the crystal structure on Yy coincides with that defined in [JMMO91].
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INTRODUCTION 5

If the order is as defined in 3.14, we prove in Theorem 3.31 that the connected
component of Yy containing the N-tuple of empty Young diagrams is equal to the
set By defined in 3.16.

In Theorem 3.23, we show that the map
®:By —>Z> QT
defined by
(Yi,...,YN) = ...a1600 ® tya,,

where a = Z;\;x (the number of &£’s in the pattern which are enclosed by Yj;), is a -
full embedding of crystals.

In Theorem 3.33, we prove that By is isomorphic to B(NAp), hence obtaining
a description of B(NAo) as N-tuples of Young diagrams, which is different from
that given in [JMMO91]. If we identify By with B(NAg), then & = 7na, (see
Corollary 3.35.

One can show (see Corollary 3.34) that if w is a subword of ...7p_yror; ... Th_1T0,
then the elements of B, (/NAo) are those elements (Yi,...,Y~) € By which are N-
tuples of Young diagrams which when placed on the pattern, only enclose numbers
less than or equal to the length of w.

In Chapter 4, we use our description of B(NAg) as By and the fact that with
this description 7na, = ® to explicitly find the inequalities defining the image of
Tna, (Theorem 4.7). This, together with our results from Chapter 2 and a result
in [Cli98] and [Lit98] (see Appendix A), gives us an explicit description of B(o0)
(Theorem 4.9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

Preliminaries

In this chapter we set up the notation and state the definitions and known
results which will be needed in the following chapters. Most of the definitions and
results stated here are due to Kashiwara and can be found in [Kas91], [Kas93],

and [Kas94].

1.1. Let g be a symmetrizable Kac-Moody Lie algebra over Q, § its Cartan
subalgebra, {h; : ¢ € I} the set of simple coroots, {a; : ¢ € [} the set of simple
roots, P a lattice in h~ such that a; € Pforall:i € I, PL = {A € P : (h;,A) > 0},
and P = {h € h : (h, P) C Z}. The quantized universal enveloping algebra of g,
Uy(g), is a Hopf algebra over the field of rational functions of an indeterminate ¢
generated by the set {e;, fi,q(h) : ¢ € [ and h € P~} subject to some relations (see
for example 1.1.14-1.1.18 in [Kas91].) This algebra contains a module L over the

ring R of rational functions with no poles at 1 such that

(i) Q(q) ®r L ~U,(g) and
(ii) L/(¢—1)L ~U(g) = the usual universal enveloping algebra of g.
A U,(g)—module M is said to belong to the category O;y: if

(i) M =@, cp M where M = {u € M : q(h)u = ¢*Nu Vh € P},
(ii) dim(M)) < oo for all A € P,
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1. PRELIMINARIES 7

(iii) for each ¢ € I, M is the union of finite dimensional ¢, (g;)-modules where g;
is the subalgebra of g generated by e;, fi, g(h:) and g(—h;), and

(iv) M =@, crro_ My, where F is a finite subset of P and Q. = ~ 3, No;.
The category Oin: is semisimple with irreducible objects {V(A) : A € P.}. V(A) is
generated by a highest weight vector denoted by uy and if ¢ (g) := the subalgebra
of U,(g) generated by {f; : i € I}, then there exists a surjective U, (g)-molule
homomorphism 7y : ¢ (g) — V/(A) such that 1 — u). V/(A) contains an R—~module,
which we denote by (V(A))r such that

() Qa)®r (V(M)r =~ V(}) and

(it) (V(A)r/(g — 1)(V(A))r ~ Verma module of highest weight A.

1.2. If M is a Q(q) vector space, a basis of M at q = 0 is defined to be an
ordered pair (L, B) where

(i) L is a free A—module such that M ~ Q(q) ®4 L and
(ii) B is a basis of the Q vector space L/qL.

Here A is the ring of rational functions with no poles at 0.

1.3. If M €O andzel,

M = @ @ f‘-(")(ker(e,-) N M),

AEP  0<n<(hi,\)

where [n]; := %"T:—ZZ;, [n)i! = Jli_,[k]i, and f:-(") 1= [—ii—,, and ¢; is as defined
in [Kas91].

For ¢ € I, the operators é; and f, are defined as follows: for u € ker(e;) N M
and 0 < n < (h, A), fi(fMu) = ) and &(fMu) = F77Y. (Here f7V :=0.)

A pair (L, B) is called a (lower) crystal base of M if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. PRELIMINARIES 8

(i) (L, B) is a basis of M at ¢ =0,
(ii) &(L) C L and f:(L) C L for all i € I, and hence we can define &; and f; on
B,
(iii) &(B) € BU {0} and fi(B) € BU{0},
(iv) L = @,ep Lr and B = [J,cp Bx where Ly := LNM) and B, := BN(L\/qL\),
and

(v) for by and b, € B, b, = fi(by) if and only if &(b;) = b,.

Let A € P, and define L(\) to be the A—module generated by {f;, ... fyu :
iy...00€ I}andlet B(A) := {fi ... fqux+qL()) : 4y ...4 € T}\{0}. (We will also
denote uy + qL(\) by uy). In [Kas91], Kashiwara shows that (L(A), B(A)) is the

unique crystal base of V().

1.4. Let &; and f; be the operators on U; (g) defined in [Kas91].
A pair (L, B) is called a crystal base of ¢/ (g) if

(i) (L, B) is a basis of U, (g) at ¢ =0,
(i) &(L) C L and f;(L) C L for all i € I, and hence we can define & and f; on
B,
(iii) &(B) € BU {0} and fi(B) C B,
(iv) L = @,cp Lr and B = J,ep Br where Ly := LNM, and By := BN(Lx/qLy),
and

(v) for by and b, € B, by = fi(bz) if and only if &;(b;) = bs.

Let L(oo) be the A—module generated by {f;,...f,1 : i1...%; € I} and let
B(c0) == {fi, .- ful + qL(A) : 4y ...% € I'}. (We will denote 1 + gL(A) by ue and

B(o0) by B(o0,g) if we need to emphasize with which algebra we are dealing). In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. PRELIMINARIES 9

[Kas91], Kashiwara shows that (L(o0), B(c0)) is the unique crystal base of ¢, (g),

and that

(1) Ta(L(o0)) = L(A),

(2) a1 B(oo)\ker(®\) — B(A) is a bijection,
where Ta(u + L(o0)) := ma(u) + ¢L(A),

(3) fiomy=m\o0 f; forall i € I, and

(4) if b € B(oco)with 75(b) # 0, then &(7x(b)) = 7x(&:(b)) for all 5 € I.

1.5. Define the antiautomorphism * : U (g) — U,(g) by, for ¢ € [ and
h € P, e = e;, ff = fi and (¢(h))” = q(—h). It is shown in [Kas91] and [Kas93]
that (L(o0))" = L(o0) and (B(o0))* = B(o0), respectively.

1.6. A crystal is defined to be a set B together with maps wt : B — P,
€ wi: B = Z U {—oc},and &, f; : B— BU{0} for i € I, satisfying for b € B

and z € [:

(i) @i(b) = €:(b) + (hi, wi(b)),
(ii) if &(b) # 0, €i(&(b)) = €i(b) — 1, @i(&:i(b)) = wi(b) + 1 and wit(&(d)) =
wt(b) + ay,
(iii) if fi(8) # 0, &(fi(8)) = €il®) + 1, @i(fi(8)) = :i(b) — 1 and wi(fi(b)) =
wt(b) — oy,
(iv) for b; and by € B, by = fi(by) iff &;(by) = by,
(v) if ;(b) = —oo, then &;(b) = f;(b) = 0.
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1. PRELIMINARIES 10

(Note that ¢;(:(b)) = @i(b) + 1 and @;(fi(b)) = wi(b) — 1 are redundant in the
definition as they follow from (i) and the rest of (ii) and (iii)).

The crystal graph of B is a graph whose set of vertices is B and whose edges
are defined by: if b; and b, € B with f,—(bl) = b, for some 7 € I, there is a directed
t—coloured (or :—labeled) edge from b; to b;. i.e. b; 4 b,.

We will deal with the following examples of crystals in the coming chapters.

1.7. Examples. For A € P,, and b € B(}), if we define wt(b) = p if
b € B(\),,ei(b) := max{n : &*b) # 0}, and wi(b) := max{n : f*(b) # 0}, then
B(A) is a crystal.
For b € B(o0), define wit(b) := p if b € B(o0),, €:(b) := max{n : €*(b) # 0}, and
w:(b) := €:(b) + (hi, wt(b)), then B(co) is a crystal.
For i € I, define B; := {b;(n) : n € Z}, wt(bi(n)) := nay,
—n ifj =71,

€j(bi(n)) := {_oo if 7 € I\{i},
@;(bi(n)) := {_oo if j € I\ {1},

bi(n+1) ifj=1,

&;(bi(n)) := {0 if 7 € I\{i},

(n—1) ifj=i,

. b;
Fibi(n)) = {0 it j € N\{i),

Then B; is a crystal.
For A € P, define T := {ta}, wt(t\) = A, €i(tr) = @i(tr) = —oo, and &(ty) =

fi(tx) = 0 for i € I. Then T} is a crystal.
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1. PRELIMINARIES 11

1.8. If B, and B, are two crystals, a morphism from B; to B, is a map
VU : By U {0} — B> U {0} such that ¥(0) =0 and for b € B, such that ¥(b) € B,,

and i € I, the following are satisfied:
wi( (b)) = wt(b), :(¥(b)) = <i(b), and (¥ (b)) = p:(b),
if U(&;(b)) € By, W(&(b)) = &(T(b)),
if U(fi(b)) € Bz, W(Ji(b)) = fi(T(b))-

1.9. If B, and B; are two crystals, the tensor product of B; and B, is defined
by
B1® B, :={b; ®b, : b; € By and b; € B2}, wi(b; ® b2) = wit(by) + wt(b2),for i € I,
ei(b ® by) = max{ei(b1), €i(b2) — (hi,wt(b1))}, @i(b1 ® b2) = max{wi(b2),wi(b1) +

( hi,wt(b2)>}=
N _ JE(by) @by if i(b1) > €i(b2)
(%) Ehi@h) = {bl ®@éi(bs) if wilby) < €i(ba)
z _ f,-(bl) ® by if @i(b1) > €i(by)
(6) fi(b1 ®@ b)) = {bl ® ﬁ(bz) if ;(b1) < €i(b2)

1.10. The category whose objects are crystals and morphisms are as defined

above is shown in [Kas93] to be a tensor category.

1.11. If (L;, B;) is a crystal basis of M;, where for z = 1,2, M; € O, then
(Li&® L2, Bi1® B,), and (L1 ® L, B1® B;) are crystal bases of My ® M, and M;Q M,

respectively.

1.12. Let ¥ : B, U {0} = B, U {0} be a morphism of crystals. ¥ is called an

embedding if ¥ is injective. In this case B, is called a subcrystal of B,. ¥ is
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1. PRELIMINARIES 12

called an isomorphism if there exists a crystal morphism ® : B, U {0} — B, U {0}
such that ®o¥ = idg, (o} and ¥o® = idp,u(0}- (id := the identity map.) U is called
strict if ¥|p, commutes with all &s and fls, for 7 € I. And if ¥ is an embedding,
¥ is called full if ¥|g, commutes with all é&s, for z € 1.

Note: the composition and the tensor product of two full (strict) embeddings of
crystals is again a full (resp. strict) embedding. Also, ¥ is an isomorphism if and
only if ¥ is injective and surjective, and ¥|p, commutes with all &;’s and fi’s for

1€ I.

1.18. For A € Py, define the map 7\ : B(A) — B(oco) @ T\ as follows:
if b € B(oo) is such that 7x(b) € B(X) (see 1.4(2)), ma(7a(b)) = b @ ti. Using
1.4 (2) - (4), this map can be shown to be a full embedding of crystals. The image

of this map is
{b R\ € B(OO) QT : e;(b‘) < (h{, /\)Vi = [}

(see Proposition 8.2 in [Kas94]. G. Cliff pointed out that a proof of this result can
be found in Proposition 2.8 of [Nak99]. )

We will need the following lemmas.

1.14. Lemma. Let ¥ : B; U {0} — B2 U {0} be a full embedding of crystals,
then fori€ I and b € By, fi(b) =0 iff f:(¥(b)) & ImT\{0}.

Proof. If f;(¥(b)) = ¥(¥'), for some b’ € By, then
U(b) = &;(T (b)) since ¥(&') #0

= ¥ (&;(b')) since ¥ is a full embedding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. PRELIMINARIES 13

So b = &;(¥') since ¥ is injective. Hence &' = f;(b) # 0.
If fi(b) # 0,¥(fi(b)) # O since ¥ is an embedding. Since ¥ is a morphism,
J(T(8) = T(fi(b)) € ImT\{0}.

1.15. Lemma. (Lemma 1.3.6 in [Kas93]). For1 < k < m, let C;. be a crystal
and by € Cy. For: € I, define ag := ei(bk)—215u<k(h;,wt(b,,)). Then if ar. > a, for

l1<v<kandar>a, fork<v<m,
€1 ®-. Qbn) =b61®...@&(br)® ... Q bn,
and if ar,. > a, forl <v <k and ar > a, fork <v <m,
J(b®..Qbn) =b1®...® filbe) D ... ® b

(For a proof, see Proposition 2.1.1 in [KIN94]).

1.16. For each positive integer 7, let C; be a crystal, and define Cy 1= {ceo },
Wt (Coo) 1= 0, €i(Coo) := 0 and é;(ceo) =0 for all i € I.

Define the set
Ci=Co®--QC20C,
={co® - ®c2®c,: forall €Nyy, ¢; €Cy; forallie I,wt(c;) =0
and €;(c;) < 0 for all but finitely many j‘s; and £;(¢;) = 0 for

infinitely many j‘s.}
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1. PRELIMINARIES 14

For j € J = {1,2,...,00}, 7 € [ and ¢ = Cco @ --- @ c; € C, define
aji(c) == €i(cj) = 2015 j{hi, wt(c1))- Note: for j >> 0, a;i(c) < 0.

We now define a crystal structure on C.

For ¢ = co ® - ®c2®ci and ¢ € [, define wt(c) = > . ;wt(cs),

ei(c) = maxjes{aji(c)}, wi(c) = ei(c) + (hi, wt (c)),
€i(C)  =Coo® - ®&(ck) ®---®c if ari(c) > a,i(c) forall v > k
and ax;i(c) > a,i(c) forall 1 < v <k,
and
file) == ® -+ ® filck) ® -+ - @ ¢y if ari(c) > ayic) forall v > k
and ar:(c) > a,i(c) forall 1 < v <k.
Note 1: We don’t need to define fi(c.o) since aeoi(c) = 0 and for some j >> 0,

aj,-(c) S 0.

1.17. Lemma. C with wt, &;, ;, &, and fi, fori € I, as defined above is a
crystal.
Proof. Let c = coo ®---®c; € C and suppose &(c) = co® - @&:i(ck) D+ - ®cy # 0.
Then wt (&:(c)) = wt(¢) + o, and

aj,-(c) -2 ifj <k
a,—;(é;(c)) = aj,-(c) -1 lf] =k
aj;(c) ifg>k.

Since aj:(c) < awi(c) if 7 > k,

ei(&:(c)) := max{a;i(&(c))} = awi(c) — 1 =ei(c) — 1.
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Also, since ari(&:(c)) = ari(c)—1 > aji(&(c)) for all 7 > k, and ari(éi(c)) > aji(éi(c))
for all y < &,
fi(éi(c)) =C® - ® fiéi(ck) ® ---®c = csince é(cx) # 0.

Now suppose that fi(c) = oo ® -+ ® filex) ® --- @ ¢1 # 0. Then wt(fi(c)) =
wt (¢) — a; and

aj,-(c)-i-?. if]<k
aj,-(f,-(c)) = a_,-,-(c) +1 if 7=k
aJ-,-(c) if] > k.

Since aji(c) < ari(c) if 7 <k,
i fi(e)) = r?eajx{aj,-(ﬁ(c))} = ari(c) + 1 = €i(c) + 1.

Also, since axi(fi(c)) = ari(c) + 1 > aji(fi(e)) if § < k and aw:(fi(c)) > a;i(fi(c)) if

j>k,
E:(fi(c)) = oo ® -+ ® &ifi(ck) ® -+ ® c1 = c since fi(ex) # 0.

1.6(i) follows from the definition, and 1.6(v) is true since ¢;(C) C Z.

Note 2: If we define
C':=---@CQ C;
={--®c®c: forall jENy, ¢;€Cj; forallz € [,wt(c;) =0
and €;(c;) < 0 for all but finitely many j‘s; and €;i(c;) =0 for

infinitely many j‘s}
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then we can define wt, ¢;, ¢; and f; the same way we defined it for C since a;; <0
for all 7 >> 0, but the definition of &; only makes sense for those ¢ € C’ such
that €;(c) > 0 otherwise there would not exist a maximal element j, € J such that
aji = €i(c) = 0. This is why we need the element c,. And although C’ is not a
crystal, for ¢ € C’, fi(Coo ®¢) = oo ® fi(c) and if £;(c) > 0, &(coo ® €) = coo @ &i(c).

Note 3: For any positive integer 7, Copo ® --- ® Cj41 is a crystal and

C2(Ce® - QCi1)R(C; ®---0Ch).
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CHAPTER 2

Kashiwara’s map and its image

If w=r;...7r; is a reduced expression of an element w of the Weyl group of g,
and if u,, is the extremal vector of weight w) of V(\), then in [Kas93] Kashiwara
shows the existence of a subset B, (A) of B(A) such that

ch(UF (g)uwr) = Z evt(®)
beBw(\)
and the existence of a wunique subset B,(oo) of B(oo) satisfying
By(A) = 7"a(Buw(00))\{0}, for all A € Py.

He also shows the existence of a strict embedding of crystals
U,: B(oo) = {tw}®---® B;, ® By,

for a sequencet = (... ,72,17;) of elements of [ satisfying 2.1(7) such that ¥,(B, (o)) =
U, (B(00)) N {tac @ ... Q bi,(—az) ® b;,(—ay) : a; =0 for all j > [}

If g is affine (or of finite type), 7 € I, and g, is the finite dimensional Lie algebra
whose Dynkin diagram is the Dynkin diagram of g with the i** node removed, and
if ¢ and ¢/ are appropriately chosen (see 2.3), then we show that ¥,(B(c0,g)) can be
described by ¥, (B(oc,g;)) and the images of (¥, ® idya,) © Tva, (see 2.3).

We also show how in the simply-laced case, the images of ¥, and ¥,: are related

if ¢ and ¢’ are two sequences of elements of 1.

17
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2. KASHIWARA'’S MAP AND ITS IMAGE 18

2.1. For i € I, the map ¥; : B(o0) «> B(c0) ® B; is defined (see [Kas93],
Thm. 2.2.1) as follows: for b € B(co), we have that b € B(oo) (see 1.53). Let
m be such that é"(b~) # 0 and €"*'(b") = 0. Now let by € B(co) be such that
€r(b*) = b;, then W;(b) := by ® f™b;(0). In [Kas93], this map is shown to be a
strict embedding of crystals.

For 7,,... ,7; € I, define
U o= (\11 ® id3;1_1®...®,3£1) o---0 (¥ ®idg, ) o i,
If e = (... ,22,21) is a sequence of elements of [ satisfying
(7) for each i € I, {j : {; = i} is infinite

(or if g is finite dimensional and wg = r;, - - - 7;, is a reduced expression of the longest
word wg of the Weyl group of g, we may take ¢ = (71, 22,.. . , %) (see [J0s95], 6.1.15)),

then for each b € B(o0), there exists a j such that
Ui iniy (b) E {tie} ® Bi, @ --- @ By,

Using this, one obtains the Kashiwara embedding (see [Kas93])
U, : B(o) = {tw}®---® B;, ® B;,.-

Here {0} ® - @ Bi, ® By, = {teo ® - - @ b;,(—a2) @ b;, (—a,) : a; =0 for s >> 0}
is the crystal defined in 1.16. (Note that {ue} ® --- @ B;, ® B;, is isomorphic to a
subset of l%nB(oo) ® B, ®---®B;.)

From the definition of the crystal structure on {ve }®- - -® B;, ® B;,, Lemma 1.15,
and the fact that for all 7, U;...iyi, are strict embeddings of crystals it follows that

¥, is a strict embedding of crystals.
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2. KASHIWARA'S MAP AND ITS IMAGE 19

We will denote {ueo} ® - @ B, ® B;; and --- Q@ B;, @ B, = {- - ® bi,(—a2) ®
bi (—a1) : as =0 for s >> 0} by {ue} ® B, and B, respectively. Note that we did
not define a crystal structure on B, although j:; and &; act on {us} @ B, as they
would if {u.} @ B, were the tensor product of two crystals (see Note 2 at the end
of 1.16).

In what follows, we write (...,a2,a;) (YUos ® (--..a2,a;)) for the element
Qb (—a2) ® b (—a1) € B, (resp. e @ -~ Q by, (—az) @ b, (—a1) € {ux} @ B.)
if the sequence (... ,7,7;) is understood. Also we denote by 0 both the elements

(....0,0) and (0,... ,0).

2.2. Lemma. Let ¢ = (... ,i2,1,) be a sequence of elements of I satisfying
2.1(7) and S C {teo®(. .. ,a2,a1) € {tco}®B, " ar >0 for all k}. Then S =Im¥,
if and only if

(2) Yo ®(...,0,0) € S;
(b) forallj €I, f; S C S; and
(c) forall jeI,&SCSuU{0}.

Proof. Suppose S = ImV¥,. Then

(2) Yoo @ (-..,0,0) =¥, (ue) €S,

(b) and (c) are true since ¥ is a strict embedding of crystals.

Now suppose (a) - (c) are true. Then

Im¥, = {O.(fe, - fe,%eo): k1,... . ks € I}

{(Foo  fe(eo ® (... ,0,0)) : Ky, ..., ks € T}

c S by (a) and (b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. KASHIWARA’S MAP AND ITS IMAGE 20

To show that § C Im¥,, we use induction on the height of the weight of an
element of S. Let s € S. If wt(s) =0, then s = u,o @0 € Im¥,. If wt(s) #0,
§ = Uoo ® (... ,0,ar,...,a;) for some ay,... ,ar € N, ar # 0. Then @;, (uw) = 0
and €;,(s) > ax > 0.

Hence &;, s = %o ® €; (... ,0,ax,... ,a1) € S by (c). By induction, é;, s € ImT,.

So s = f; &,s € ImVU,.

2.3. Let g be affine (or of finite type) and I be as in Chapter 1. Let : € I and
g’ be the Lie algebra whose Dynkin diagram is the Dynkin diagram of g with the 7**
node removed. Let ¢/ = (ji,... ,J2,71) be a sequence of elements of I'\{z} such that
the image of the map ¥,s : B(oo,¢’) — B(oo,g’)® B;, ® --- ® Bj, is inside {uxo} ® _
B;, ®---® Bj, (see 2.1(7)). Let 2y,%2,... € [ be such that, ¢t = (... ,72,%1,J1,--- ,J1)
is as in 2.1(7) and let . = (... ,42,%1). Then we have ¥, : B(c0,d) < {¢w} ® B..

(We can assume #; = ¢.) We will also denote ¥, by ¥, .

Theorem.If¢, ! and " are as above, then
Im(¥,) = {ue®bQY : b € B, b’ € By, uee®b®0 € Im(¥,) and v, @b € Im(T,)}
Proof. Let S be the set on the right of the above equality. We show that (a), (b)
and (c) of Lemma 2.2 are satisfied.

Clearly ue, ® 0 € S. So (a) is true.

Let b € B, and & € B, be such that u.,®bRQ0 € Im(¥,) and e, ®b" € Im(¥,).
So ue @bR0b € S. We need to show that f](uoo RLERY) € S.

fi(tieo @b Y) =U°°®f}(b~® v), see Notes 1 and 2 in 1.16
_ { Uoo ® f;(B) @b if ;(b) > &;()
Uoo @O ® fi(V) if () < €;(b").
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(See Note 2 in 1.17 for the definitions of fj(b® &), f;(b), and ¢;(b).)
If ©;(b) > €;(b’), then ¢;(b) > €;(0) since

) =—c0 =¢;(0) ifj=1i
(8) &;(b) {20 =¢;(0) ifjr'#i

Hence uoo® f;(6)®0 = ueo® f;(b®0) = f;(200@bR0) € Im(T,) and f;(ueDbRY) € S.
If 0;j(b) < ;(b') and j # i, then ue ® fi(¥) = fi(uc ® ¥') € Im(¥). Hence
filue @@ V) € S and (b) is true.
We now show that é;(u. ® b® &) € SU {0}.

&i(tce ®B) @Y if (0 ® b) > &5(b)

(e ®0B6) = { Ueo @ D® &(b) if 0j(uce @ b) < £5(F)

(See Note 3 at the end of 1.17).

If oi(uce ® b) > €j(b'), by (8) above ;(us @ b) > £;(0). So &;(uc @ b @ 0)
(Ei(ue®@b)) ®0. If 0 > (), E;(uce®b®b) =0 and if 0 < £;(b), &;(uc @ORY)

il

Uso ® (b)) @ Y and ue ® €;(5) ® 0 = &;(uee ® b ® 0) € ImV, (since &;(Im¥,) C
Im¥, U {0}). So &;(ue ®b® b)) € SU {0}.

If 0;(ueo®b) < €;(b'), j # i (since otherwise £;(b') = —o0). Since &;(u,RbR0) €
Im¥,U{0}, and since ue, ®b6®&;(0) & Im¥,U{0}, &;(te®@b®0) = (&;(uco®b)) 0.
So ¢j(uc @ b) > €;(0) = 0. Thus since 0 < (U ® b) < £j(V), U ® &;(V) =
€i(Ueo ®Y) € ImU,i. S0 €j(UuUce ® D@ Y) € S and (c) is true. Hence S = ImV,.

2.4. Note that for certain sequences ¢”’s the image of the Kashiwara embedding
is “ known” for the finite dimensional Lie algebras (see [Cli98] and [Lit98]) or

Appendix A for g of type A,); hence for affine g , we will “know” the image of
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¥, if we can describe the elements of the set {ue @ 6 Q0 € {uw} @ B @ By :
Uoo ® bR 0 € ImV¥, }.

2.5. Lemma. For NN, i €1, and ¢ asin (7) of 2.1,

{tee ®a®0:a € By, oo ® a®0 € Im¥,}
={Ue®a®0:u ®a®0® tna, € Im((¥, @ idna, 0 Twa,) for some N € N}
Where idna; denotes the identity function on Ty,

Proof. Immya, = {b® tna, € B(c0) ® T, - £;(6") < (hj, NA;) = N&;; for all j €
I}. (See 1.13). For b € B(c0), €;(b*) < N§;; if and only if ¥,(b) = e ® (... , k)0,
for & < N. It follows that Im((¥, ® idna;) 0 TNA:) = {Ueo @ (... ,E) @0 @ tna, 1 kb <
N and ueo @ (... ., k) ®0 € ImV¥,}.

2.6. Lemma. Let i, j € [ be such that (o;, hj) = —1, and let C; and C, be
crystals. Define the map 8 := B : C19Bi®B; @ B;:®C2 - C1 B;® B:® B;®C;

by B(X ® bi(—a) @ bj(—b) ®bi(—c)®Y) =
X ® bj(—min(c,b—a)) @ bi(—(a + ¢)) ® bj(—max(a,b—¢)) QY
for X €C,, Y €C, and a,b,c € Z.
Then Bo fi = frop.

Proof. Let a¢,b,c€ Z. Then

(9) min(c,b — a) + max(a,b — ¢)

_ Je+(b—c) ifc<b—a
T Jb—-a)+a ifc>b—a

= b,
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2. KASHIWARA’S MAP AND ITS IMAGE 23

. ) _ i (b-—C,(l“l‘C“’C) ife<b—a
min(max(a,b— c),a + ¢ — min(c,b —a)) = mm{(a,a-!-c—(b—a)) fc>b—a
= a, and
—(b— if b—
ot o+ o masend= ) = mac( (0712707 {2207

= C.

Hence G:j; 0 B;;; is the identity map.

Let & € I. We first show that ¢i(b;(—a) ®b;(—b) ® b:(—c)) = wi(bj(—min(c,b—
a)) ® bi(—(a + ¢)) ® bj(— max (a,b — c))) and wt (b;(—a) ® b;(—b) @ bi(—c)) =
wt (bj(— min(c,b—a)) @ bi(—(a +¢)) ® bj(— max (a,b—c))). It will then follow that
ex(bi(—a) ®b;(—b) ®b:(—c)) = ex(b;(— min (¢, b—a)) @bi(—(a+¢)) ®b;(— max (a,b—
c)))-
wt (bi(—a) ® b;(—=b) @ by(—c)) = —aa; — baj — ca; = —baj — (a + ¢)oy

= —min(c,b — a)a; — (a + ¢)a; — max(a,b — c)a; (by (9))
= wt (b;(— min(c, b — a)) ® bi(—(a + ¢)) ® b;(— max(a,b — c)))-

To show that o(b:(—a) ® b;(—b) ® bi(—c)) = @i (b;j(— min (¢, b — a)) ® b:(—(a +
¢)) ® bj(—max (a,b— c))), we consider three cases.

If k # 7 and k # j, o(b;j(— min(c,b—a) ® b(—(a+c)) ® b;(— max(a,b—c)))) =
—00 = g(bi(—a) ® b;(—b) ® bi(—c))-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. KASHIWARA'S MAP AND ITS IMAGE 24
£k =3,
or(bi(—a) ® bj(—b) @ bi(—c))
= max(pk(bi(—a)) + (wt (b;(—b) ® bi(—c)), hr), vr(b;(—b) ® bi(—c)))
= or(bj(—b) ®@bi(—c)),  since pr(bi(—a)) = —o0
= max(pk(bj(—b)) + (wt (bi(—c)), k), wr(bi(—c)))
= —b— (cajh), since pi(bi(—c)) = —oo
= —b+e,
and
@r(bj(—min(c,b — a)) ® bi(—(a + ¢)) @ bj(— max (a,b— c)))
= max(¢pk(b;(~ min(c, b — a)) + (wt (bi(—(a + ¢)) @ bj(— max(a, b — ¢)))), hs),
or(bi(—(a + ¢)) ® b;(— max(a,b— c))))
= max(—min(c,b - a) + (—(a + c)a; — (max(a, b — c))a;, ht),
max(—oco, —max(a, b — c)))
= max(—min(c,b — a) + a + ¢ — 2max(a, b — ¢), — max(a, b — c))

= max(a + ¢ — b — max(a, b — ¢), — max(a,b— c)), (by (9))

_ Jat+c—b—max(a,b—c) ifa+c—-56>0
~ | —max(a,b—¢) fa+c—-5b<0

= ¢—b
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Finally, if £ = ¢,
wr(bi(—a) ® b;(—b) ® bi(—c)) = wr(vjij 0 Yiji(bi(—a) ® bj(—b) ® bi(—c)))
= k(7 (bj(— min(c, b — a)) ® bi(—(a + ¢)) ® bj(— max(a,b — c))))
= k(bj(— min(c,b—a)) ® bi(—(a + ¢)) ® bj(— max(a, b —c))),

by the previous case applied to v;;;. (Here v := «;;; is defined by ~;;:(bi(—a) ®
b;(—b) @ bi(—c)) := bj(—min(c,b —a)) ®bi(—(a+¢)) ® b;(— max (a,b—c)), and 7ji;

is its inverse.)

Now &r((bi(—a) ® b;(—b) ® bi(—¢)) ®Y)
= max(ex(bi(—a) ® b;(—b) ® bi(—c)),ex(Y) — (wt (b:(—a) ® b;(—b) ® bi(—¢)), ht))
= max(ex(v(bi(—a) ® bj(—b) @ bi(—c))),ex(Y) —
(wt (v(bi(—a) @ b;(—b) @ bi(—c))), he))
= &k(7(bi(—a) @ bj(—b) ® bi(—c)) ®Y).
So

fi(X @ bi(—a) ® bj(—b) ® bi(—c) ® Y)

fe(X) ® bi(—a) @b;(—b) @ bi(—c) QY
) if pr(X) > er((bi(—a) @ b;(—B) ® bi(—¢)) ®Y)
X ® fi((bi(—a) @ b;(—b) @ bi(—¢)) ®Y)
if or(X) < er((bi(—a) ® b;(—b) ® bi(—¢)) ®Y)
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Fie(X ® 7(bi(—a) @ bj(—b) ® bi(—c)) ®Y)
Fie(X) @ v(bi(—a) @ b;(—b) ® bi(—c)) Y
) if 0r(X) > ex((bi(—a) ® bj(—b) ® bi(—c)) @ Y)
X @ fe(v(bi(—a) @ bj(—b) @ bi(—¢)) ®Y)
if or(X) < er((bi(—a) ® bj(—b) @ bi(—c))QY)
Fi(bi(—a) @ bj(—b) ® bi(—c) ®Y)
Je(bi(—~a) @ bj(—b) ® bi(—¢)) QY
_ if 0r(bi(—a) @ b;(—b) @ bi(—c)) > £x(Y)
(bi(—a) ® b;(—b) ® bi(—c)) @ fi(Y)
if pr(bi(—a) ® bj(—b) @ bi(—c)) < ex(Y)
Fi(v(bi(—a) ® b;(—b) ® bi(—c)) ®Y)
fe(7(b:(—a) ® bj(—b) ® bi(—¢))) ®Y )
_ if pr(bi(—a) ® bj(—b) ® bi(—c)) > (YY)

Y(bi(—a) ® bj(—b) ® bi(~c)) ® fu(Y) ,
if pi(bi(—a) @ bj(—b) @ bi(—c)) < ex(Y)

If k # i and k # j,
Ji(bi(—a) ® b;(—b) @ bi(—c)) = fe(v(b:i(—a) © b;(—b) @ bi(—¢))) = 0.

If k = j, fe(bi(—a)®b;(—b)@bi(—c)) = b:(—a) @b;(—(b+1)) ®@bi(—¢), 7(fu(b:i(—a)®
bj(—b) ® bi(—¢))) = (bj(—min(c,b + 1 — a)), bi(—(a + ¢)), b;(— max(a,b + 1 —¢))),

and
Fr(v(b:(—a) ® bj(—b) @ b:(—c)))

= fulbj(—min(c,b—a)) ® bi(—(a + ¢)) ® b;(— max (a,b—¢)))
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( b;(—min(c,b—a) —1) @ b;(—(a +¢)) ® bj(— max(a,b—c))
if —min(¢,b— a) > max(a,b—c) —(a+c)
b;j(— min(c,b — a)) @ b;(—(a + ¢)) ® bj(— max(a,b —c) — 1)

L if —min(¢,b— a) < max(a,b—c)— (a+ c)

( bj(—min(c,b —a) — 1) @ bi(—(a + ¢)) ® bj(— max(a,b — c))
ifb<a+c
bj(—min(c,b — a)) ® bi(—(a + ¢)) ® bj(— max(a,b—c) — 1)

L fb>a+c

( bj(—(b—a+1))®bi(—(a+c)) ®bj(—a)
ifb<a+c

bj(—¢) @ bi(—(a +¢)) ®bj(—(b—c+1))

q ifb>a+c

= 7 fi(bi(—a) ® b;(—b) ® bi(—c)).

So Bfi(X ®b:;(—a)®bj(—b)Rbi(—c)QY) = fi B(X @bi(—a)@bi(—b)Rb;(—c)RY).

If £ =1, using Bji; o Biji = id and the previous case, we get our result.
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2. KASHIWARA’S MAP AND ITS IMAGE 28

2.7. Corollary. Let ¢,7,71,---,J1,%1,%2,--. € I. If (g, hj) = -1,
L = ("’ ’ileisj7i7jla"' ’jl) and ['I = ("' 3i17j’i7j7j17"' 7j1); then
Im¥,={us @ X ® bj(—min(c,b —a)) ® b;(—(a +¢c)) ® bj(—max(a,b—¢c)) @Y :

X e€B. i)Y €EB;®---®B;,, and
Ueo @ X ® bi(—a) @ bj(—b) @ bi(—c) @ Y € ImV,}
Proof. With 8 as in Lemma 2.6,
Im¥, = {fi, - fe.(Uoo ®0) : ky,... ks € I}
= {fi - frBte®0): ky,... ks € T}
= {Bfr - fe(uw ®0) : kuyo.. ks € 1}

= F(ImY,).
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CHAPTER 3

B(NA) and sequences of Young Tableaux for A,

In [MM90], Misra and Miwa give a description of B(Ag), for a fundamental
weight Ag of U (s:[(n)), as a subset of Young Tableaux. Using this description, we can
then view B(NAg), for N € N, as a subset of N-tuples of Young Tableaux by using
the fact that B(NAg) is the connected component of B(Ag)®...® B(Ag) (N-factors)
containing up, ®...Qua,. A different description of B(/NAg) as a subset of N-tuples
of Young Tableaux is given in [JMMO91], where the action of €; and fi,foriel,
is determined by a given total order on {1,... , N} x N x (—N) (see 3.11). In this
chapter, we will show that for an arbitrary total order on {1,... ,N} x N x (=N),
we can define a crystal structure on Yy, the set of N-tuples of Young Tableaux,

which

(i) coincides with that defined in [JMMO91] if the order is as defined in 3.11,
(ii) coincides with that of }; @ ... ® V1 (here we identify Yy with Y1 @ ...Q 1)
if the order is as defined in 3.12, and
(iii) gives us a new description of B(INAg) as a subset of My if the order is as

defined in 3.14.

With this third description, the image of an element of B(NAp) under the map
(¥, ®idna,) © TNa, is easily computed if ¢ and ¢/ are as in 3.17 and we use this in
Chapter 4 to describe the image of (¥, ® idnxa,) 0 TNae- Also if w = r;, ... 7;, where

¢t = (...,%2,%1) is as in 3.17, then the elements of B,,(NAp) are those elements of

29
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3. B(NAo) AND SEQUENCES OF YOUNG TABLEAUX FOR A, 30

B(N Ao) which are N-tuples of subtableaux of a single Young Tableau which we call
S(-1).

3.1. In this and the next chapter, g = s':[(n), and the notation is as in section
2.1 of [JMMO91]. Hence [ = {0,... ,n—1} and Ag € P is such that (Ag, k;) = do:

forallz € I.

3.2. Definition. A Young diagram (or tableauw) Y is a sequence {yr}i>o

such that

(i) Yk € Z:
(ii) yx < Yr41 for all k, and
(iii) yx = 0 for all k >> 0.

(In [JMMO91], Y is called an extended Young diagram of charge 0.)

The empty Young diagram will be denoted by ¢. i.e. ¢ = (0,0,...).

We colour the (z,y)-plane as follows: the “box” {(z,y): kK €Z, k—1<z <
k, ¥ <y <K'+ 1} is coloured 7 where : € {0,... ,n — 1} and k + k¥’ = i mod n.
Then the diagram Y = {yx}i>c is represented in the coloured (z,y)-plane by the
coloured region defined by {(z,y): £k <z <k+1, 0> y > y; for some k € N}.

For N € N, define
Yy ={Y=(Y,...,Yxy): for 1 <r <N, Y, is 2 Young diagram }.

(In [IMMO91], {Y = (Y1,... , YN) € Yn: Y1 D ... D Yy} is denoted by Y(NAo) .)
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3.2.1. Example. Let n =3, N =2, and

Y =((—4,-2,-1,0,0,...),(-2,—1,-1,0,0,...)).

12]
0 0]1][2]
T2

Y :

(o] Noal HAV] Ken]

3.3. Let Y =(Yi,...,Yn) €Vvand Y. = {yrctiso for L < r < N. If yr #
Yr(k+1) forsomer € {1,2,... ,N} and k£ € N, Y is said to have a concave (convex)
corner at site (r,k + 1,yrk41)) ((r, 5 + 1, yrx), resp.). Also for r € {1,2,..., N},
Y is said to have a concave corner at site (r,0,y-0). A corner at site (r,k,y) is

called an z—coloured corner if : € [ with : = k£ + y mod n.

3.3.1. Example. Y is asin 3.2.1, Y has 0-coloured concave corners at sites
(1,3,0), (2,3,0), and (2,1,—1), O-coloured convex corners at sites (1,2,—2) and
(1,1, —4), I-coloured concave corners at sites (1,2, —1) and (2,0, —2), no l-coloured
convex corners, 2-coloured concave corners at sites (1,1,—2) and (1,0,—4), and

2-coloured convex corners at sites (1,3, —1), (2,3,—1) and (2,1, —2).

3.4. Leto = (01,...,0m) wherem € Nand for 1 <! <m, o; € {0,1}. Define

J(o) as follows: let J = {1,... ,m}.

(i) If there exists r < s such that (o,,05) = (0,1) and ' € J for r < 7’ < s,
replace J by J\{r, s} and repeat this step;

(ii) otherwise let J(o) = J.

Let J(o) = {j1,-.-,J¢} with 51 < --- < j,. Define oy = (6j,-.-,03)
(=(1---10---0)). Let ¢o(0) € J(o)U{m+1} be the largest element of J(o)U{m+1}
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such that o; =1 for all [ € J(o) with [ < ¢y(c), and let ¢,(0) € J(o) U {0} be the
smallest element of J(c) U {0} such that o; =0 for all [ € J(o) with { > t;(o).

Now define

f(a) — (011 025--., Uto(U)—l: 110t0(0)+11 .. ’Jm) if tO(a) # m + 11
0 if to(c) = m + 1

é(O’) — (0.17 02;.--, Utl(d)—l’ 07 O’t[(d)-i-ls se sy Um) if tl(a) # 07
o i £1(c) = 0

3.4.1. Example. Let ¢ = (1,1,0,0,1,1,0,0,1). Then J(o) = {1,2,7},
oi0y = (1,1,0), to(o) = 7, ti(o) = 2, f(¢) = (1,1,0,0,1,1,1,0,1), and
&(o) = (1,0,0,0,1,1,0,0, 1).

3.5. Lemma. Let o = (01,...,0m) where m € N and for 1 <t < m,

o = 1
o: € {0,1}. For 1 <t < m, define w, := 1—1 Z;::O. Then

(i) os0) = (1,... ,1) (possibly empty) if and only if 377 ,w; >0 for all1 <t <
m. (Note: in this case Y ;. w;j = # of 1’s in 0y(,)), and

(ii) o5y = (0,...,0) (possibly empty) if and only if Z;'=1 w; <0 foralll <t <

m
=1

m. (Note: in this case — w; =# of 0’s in ay(,)).

Proof. We use induction on m.

Ifm=0,0=(),0s0) =()and Z?___ij = 0. Assume m > 0.

(i) Then o4y =(1,...,1)

< (020 om)) = (1;-+.,1) and {0’1 =1lor {0'1 =0 and ij > 0}}

7=2
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= ijZOforalngtSmand {alzlor {0'1=0a.nd ij>0}}
J=t 7=2

= ijZOforalllgtSm, and

=t

(ii) GJ(e) = (0,...,0)

m—1
<= T ((e1,mroma)) = (0,-..,0) and {am =0 or {o’m =1 and ij < 0}}
j=1

t m—1
@ijSOforaHlStSm—l and{am=00r{0'm=la.nd ij <0}}

i=1 =1

t
@Zw,-SOfora.lllgtSm,

Jj=1
a
3.6. Lemma. Let ¢ = (01,...,0m) where m € N and for1 < t < m,
1 ) =
o € {0,1}. Forl <t < m, define w; := ! Z.‘]ftdt é Define 3, := 0 and
_ iy Oy =

D= Z;'=1 wj, for1 <t <m. Then

(i) Zto(a)—l > >, forall0 <t <to(oc) —1 and Zto(a)—l > >, for all to(o) <
t <m, and

(i) X4 o) > 2 forall0 <t < ti(o) =1 and 32, ;) = 2, for all ti(0) <t <m.
Proof.

(1) UJ((alv"'?”to(a)—l)) = (1, ey l) and O-J((a'ro(a)+1'---v0'm)) = (0, PN ,O) So by
Lemma 3.5, Z;"__(f)_le >0foralll<t<t(c)—1,and E;'=to(a)+1 w; <0

for all to(0) +1 <t < m. Hence for 0 <t < to(0) — 1, Dy (o)mr — 2ot =
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Z?’:(Z)—;le > 0 and for to(0) <t < m, 20, — D (o)1 = Z;’:to(a) wj =
> imto(@)r1 @i + (1) <0.

(ii) OF(O1rm ey (o) =1) = (1,...,1) and OI(Geyayrrmmsom) = (0,...,0). So by
Lemma 3.5, 2;-;(‘:)—1 wj>0foralll <t <t(o)—1, and Z;:tl(a)-{-l w;j <0
for all ¢;(c) +1 < ¢t < m. Hence for all ¢;(c) <t < m, Zt—Ztl(o’) =
Z;=t1(0’)+1 wj<0andforall0 <t <t(0) =1, > 5y~ 2 = Z;;(Z)_I wj =
Y s+ 1> 0.

a

3.6.1. Example. Let o be as in 3.4.1. Then } (=0, >, =1, >, = 2,
Y=L >,=0>s=1,Y=2,5.=1, =0, >4 =1; hence by the

above lemma, to(c) =7 and ¢,(c) = 2.

3.7. Fori€land¥Y = (¥,...,Yn) € Ynv with Y7 = {yre}iso, for 1 <r < N,
let Y(2) = (Y{,...,Yy), wherefor 1 <r < N, Y! = {y/; }x>0, and for £ >0,

v ) Yrk +1 if Yrk < Yr(k+1) and Yrk + k+1=imodn
Yrk otherwise '

i.e. Y(z) is obtained from Y by removing all of its i-coloured convex corners.

3.8. Let > be a total order on {1,...,N} x N x (—N) (see 3.11, 3.12, and
3.14 for examples). For i € I, we now define operators &, f; : Ynv — Vv U {0}
which, if > is as in 3.11, coincide with the &; and f,- acting on Y(NAg) C Vv given
in [JMMOB91].

Let Y = (Y1,...,Yy) € Yy with Y. = {yretiso for L <7 < N.

Suppose Y (z) has m concave i-coloured corners and let their sites be (r1, k1,3, &, )

> (T2, k2, Y o,) > - > (Tmykm, Y, )- Define oi(Y) or simply o(Y) =(o1,... ,0m),
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where for 1 <[ <m,

0 if Y has a concave corner at site (ri, kr, y; 1)
p—
! 1 if Y has a convex corner at site (1, k1 + 1,yrx,) = (r, k1 + 1,4/, — 1)-
(Here o(Y) = () if m = 0). Then Y is uniquely determined by Y(¢) and o(Y) and

we write Y = (Y(7),0(Y)). Define

z o J (Y@, f(o(Y))  if f(o(Y)) #0
)= {0 if f(o(Y)) =0

and
5(Y) = {(Y(i),é(a(Y») if &(o(Y)) #£0
0 if é(e(Y)) =0
So if fi(Y) # 0 (resp. &(Y) # 0), then fi{Y) (resp. &(Y)) is obtained from Y
by adding (resp. removing) an i-coloured box. (See examples in 3.11.1, 3.12.1, and

3.14.1.)

3.9. Define maps wt : Yy — P,fort €I, ¢; : Yv = Z and ¢; : Yv = Z
as follows: for Y € Yy asin 3.7, wt (Y) = NAy — E}:& w;a;, where w; = #{p €
Z : forsomer € {l,...,N}andk € N, y. < p < 0Oandp+k = jmodn}.
i.e. w; = # of j-coloured boxes in Y, &;(Y) = max{p € N : é&(Y) # 0}, and
oY) = &(Y) + (s, wt (Y)).

3.10. Proposition. Yy with wt, €;, &, f: fori € I as defined in 3.8 and 3.9
ts a crystal.

Proof. Let Y € Y. If &(Y) # 0, then wt (&(Y)) = wt (Y) + e, and if fi(Y) #0,
then wt (f;(Y)) = wt (Y) — o;. (See comment at the end of 3.8.)

Then (i)-(v) in 1.6 follow from the definitions.
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Note: max{p € N : f2(Y) # 0} = # of 0’s in J(o(Y)) = # of I’s in J(o(Y))
+ < by, wt (Y) >= ei(Y)+ < hi, wt (Y) >= ©:(Y). (The second equality can be

shown by induction on the height of the weight of Y.)

3.11. Example. [JMMO91]. For ¥ € N, define the total order > on
{1,..., N} x N x (—N) as follows:
(r.k,y) > (' K,y) ff k+y>k+vy
or k4+y=Kk+y andr <7’
or k+y=kK+y,r=r', and &k > k.
(Note: we do not need to order (r,k,y)and (r',k,y) f bk +y = K +y',r =
r’, and k£ > k).
Then, for 2 € I, the operators €&;|yva,) and _f,—ly(NAo) defined in 3.8 coincide with

those defined in [JMMO91].

3.11.1. Example. (n =3, N =2).

0/1/2]0] e
Let Y = 2101 ) - and > beasin 3.11.
1{210 =]
2
LE2E (eTI]2] .
Then Y(0) = 2101, = and the sites of the 0 — coloured
112 =

corners of Y (0) are: (1,3,0) > (2,3,0) > (1,2,-2) > (2,1,—-1) > (1,0,-3). So
oo(Y) = (1,0,1,0,0),

) 0{1[2]0] 5
fo(Y) = 2101 , ()) é ﬂ , and
112(0 =

RN
&Y) = | 210717, 31'2‘ .
11270
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3.12. Example. (Tensor product) For N € N, define the total order > on
{1,... , N} x N x (—N) as follows:

(ryk,y) > (', K,y') iff r<r
or r=r7r"and k> k'

(Note: we do not need to order (r,k,y) and (v, k',y") if r = v’ and k = &').
Note that if NV = 1,7 € I and Y € ), the ordering of the sites of the i-concave

corners of Y given in 3.11 and in this section is the same.

Proposition. The map defined by

Iwu{0}: - Ve ---@u{o}
(Yi,....¥N): = Y1Q@---QYy
and 0: — O

is an tsomorphism of crystals.
(Here the crystal structure of Yy and ), is as defined in 3.8 and 3.9 with > as
defined at the beginning of this section; and the crystal structure on V1 @ --- @ W

is as defined in 1.9.)

Proof. Let Y = (Yi,... ,Yy) € V. Then wt (Y) = wt (Y1 ®---® Yn). To show that
this map preserves ¢;, ¢;, and that it commutes with f, and é;, we use induction on

N. If N =1, we are done. So assume N > 1. Let ¢ € I. Then
€i(Yi,...,Yn) =# of I’sin J(a(Y1))
+ max{0, # of I’s in J(o(Y2,...,Yn)) — # of O’s in J(o(¥1))}
= &:(V1) + max{0,&:((Y2,... , Yn)) — vi(V1)}
(see note at the end of 3.10)

= ma.X{E,'(Yi),E,'((ifz, ceo s YN))— < hi,wt (Y)) >}
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= max{e;(¥1),&:(Y2® - -- @ Yn)— < ks, wt (¥]) >},

=1 ®---QYy).

‘Pi(Yl"" 7YN) =55(K7"' 7YN)+<hi7"Vt(K1"' ’YN’) >

by induction

=V ®@ - QYn)+ < h;, wt (Y1 ®---QYn) >

=1 ®---®Yn).

((fi(Y1),Ya,...,Yn) if# of 0s in J(o(Y1)) >
# of I’'sin J(o(Ya,...

FYi,... Yu) = (Y1, fi(Ya,...,Yn)) if# of O’s in J(o(Y1)) <

0 otherwise

(fi(Y1),Ya,... ., Yn)  if (Y1) > €Y, ..., Yn)
= (Y, fi(Yay .-, Ya))  if i(Y1) < &i(Ya,.-. , Yn) and oi(Ya,
0 otherwise

filV)®Y:---QVYy if (Y1) > ei(Ya,. ..

~ Y :'Y PR Y ‘fiY<{Y,
fhie - ayy) =4 1 8fi(ke-oYy) ife)s el

0 otherwise

So by induction, f;(Yi,...,Yn)— fi(Y1 ® - @ Yu).
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(é:(Y1),Y2,-..,Yy) ifei(Y1) >eiYz,...,¥n) and &i(Yy) >0
GV V) = (Y1, &Y, ..., Vi) if 0i(VD) < &i(Ya,- oo, Ya)
0 otherwise

(Y1) @ Ya---® Y if ¢i(¥3) > ei(Ya, ... , Yv) and (Y1) > 0

E1®---0Yn)=qY1Q&(Y20---®@Ywn) ifwi(Y1) < ei(Yz,...,Yn)
0 otherwise

So by induction, &;(Y1,... ,¥Yn) = &(Y1 ®--- Q@ Yn).

O

3.12.1. Example. Let Y be as in 3.11.1 and > be as in 3.12. Then the sites
of the 0O-coloured corners of Y(0) are: (1,3,0) > (1,2,—2) > (1,0,-3) > (2,3,0) >

(2,1, —1). So 0o(Y) = (1,1,0,0,0),

0]1]2]0]
= 21011 ol]1]2
fO(Y): 120 i‘ 1 I ,a.nd
0
0J1]2]0] 5
é(Y) = 2101 , 9) 12 ]
112 =]

3.13. So B(NAg) can be described as a subset of Yy (see [JMMO91],
Prop. 3.12) with the crystal structure given by the ordering > in 3.11, and it can
also be viewed as the connected component of B(Ag)®--- Q@ B(Ag) STV ®--- QW =~
Yn (Yn with the crystal structure given by > in 3.12) containing the highest

weight vector of weight NAg. In 3.14 below we will define a third order > on
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{1,..., N} xNx(—N) which we will show will give us a third description of B(/VAg)

as a subset of Vn.

3.13.1. Example. Let n = 3. If > is as in 3.11, then

6. 05 @ 95 (. ¢) 4 (5. ¢)

. fl0o]1] . ([0]1 PR
LT . ¢) B {2100, ¢) B [[2]0]. [0]] -
I ] I

and

6. 9) B3 ([0, 93 (@, 25 @Y. 024 @1, 010
—’>(FOIII2J,I011D—?>(IOI1F217|0I112J)-

3.13.2. Example. Let n = 3. If > is as in 3.12, then

(4, )5 ([@. 9) 5 %,qﬁ)i& gll,qs)
_ ([o]T] IR - (B
LT . ¢ B 200, ¢ B | ¢
T T n

and

@950 5@, 04 @M. 0
4 @I, 1) 4 @1z, o0 4 (HFH. o).

[SV]
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o) o2 o4 ef o0 o2 o4 o6
ol o3 @5 o]l 3 &5

o2 o4 o6 o2 o4 @6

e3 o5 , o3 o5

o4 o6 ol @6

'Y5) o5

o6 o6

FIGURE 1. (n =3, N =2). The number beside the dot representing
(r,k,y) € {1,... ,N} xNx (=N)is (n — 1)k — y.

3.13.3. Example. Let n = 3. If > is as in 3.14 below, then

)

(6, &) B (0], ¢) & f’,¢>i& 0 1',¢>
01
570], ¢
1

(6, &) B (@, ¢) 2 @, ) L (1. [0)
4 10, 1) & oI11Z]. [011) B (O[11Z]. [01[2)-

et

I

, & |, and

I
Te
[
<
Lo

Olr—a oo

3.14. For N € N, define the total order on {1,... , N} x N x (—N) as follows:
(rkyy) > (7K, y) it (n—1)(k—K)—(y—y) >0
or (m—-1)k—-K)—(y—y)=0andr<r
or (n—1)(k—-kK)—(y—9y)=0,r=r"and k> K.
(See Fig. 1)
For the rest of this Chapter, Yy will denote the crystal defined in 3.10 with this

order.
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3.14.1. Example. Let Y be as in 3.11.1 and > be as in 3.14. Then the sites
of the 0-coloured corners of Y(0) are: (1,3,0) > (1,2,-2) > (2,3,0) > (1,0,-3) >
(2: 1, _1) So UO(Y) = (17 1,0, an)a

3 0[1]2]0]
fo(Y) = 2101 , 2 1]2]0] , and
1{210 =
0]1]2]0]| 5
oY)=| 2011, 211“]
12 —

3.15. Leti e [and j € N. Wesay that (r, k, —j+(n—1)k) lies on the j*®-stair

forany r € {1,... ,N} and 0 < k < | -Z;] (see Fig.1 - the dots labelled 7 lie on the

jt* stair), and we say say that (r,k,7 —jn + (n — 1)k) lies on the j*® i—stair for any

re{l,...,N}and 0 < k£ < I_’n__I‘J, (see Fig.1l - the dots labelled by 3 lie on the
1%t 0—stair and those labelled by 5 lie on the 2"¢ 1—stair.)

Let Y € Yy and 7 € I. Then o(Y) = (..., A1, A) where for j > 0, A; is the
part of o('Y) coming from the concave i-coloured corners of Y (i) which have sites
lying on the j** i—stair. (Note: \g is empty if ¢ # 0; and for some [, \; is empty for
all 7 > 1.)

For y € —N, define

—-|(n = 1),0,0,...)

S@)=(@Wy+n—-1)y+2(n—-1),... .y +|
and

§(y) = (y+(n_2)ay+(n_2)’y+2(n_2)7y+2(n-2)7
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Y_|(n—2),y+|

n—2 n

Lyl —-](n—2),0,0,...).

3.16. Let By={Y = (Yi,...,Yn) € Un : Y; = {yjk}kzo, 1 <7< N and

Y satisfies (i), (ii) and (iii) below }.

Dy+(n—1)2yjks+y S yjr forallk >0and forall L <7< N -1
(i) Y1 2--- DYy (ie. Yy S yrprr forallk €Nand 1 <r < N);
(iii) foreach r,s € {1,..., N} withr < s and k£ € N, there exists an a(r, s, k,Y) €
N>x (we write a(r, s, k) for a(r,s,k,Y) if Y is understood) such that
(a) for £ < b < a(r,s, k), Yy + (n — 1)(b — k) < ya; i.e. the subtableaux
of Y, formed from its £** to a(r, s, k)** columns is contained in S(yq&) -
(see 3.15).
(b) for b > 1, yrk + (n — 1)(a(r,s,k) — &) + (n — 2)b = Ys(a(rsk)+26); 1-€-
the subtableaux of Y, formed from its (a(r, s, k) + 1)* to last columns

contains S(y-« + (n — 1)(a(r, s, k) — k)).

We will show that By is isomorphic to B(NAg).

3.16.1. Example.

0[1]2[0] . 012 .
PN B b 11 S i A BN EX 0 B o o pu I LA BN 2L
11210 2 r[2[0] &

0[1[2]0]
012
9 2 2
oy QUIRNEE ey oy py [ IR R EATIEN Ry U BY R
2 T[2]0 12 2
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Then Y, € B,, but 3.16 (i), (ii), and (iii) are not satisfied by Y., Y3, and Yy,

respectively.

3.17. Let ¢ = (Jm,..- ,J2,J1) be a sequence of elements of I\{0} such that

Tim - -Tj 1s a reduced expression of the longest word of the Weyl group of sl(n).

Jm

Define
By := B;, ® --- @ Bj,. We will denote by 0 the element b;_(0) ® --- ® b;,(0)
of Bu. Let c=(... ,1,...,n—1,0,1,... ,n—1,0)and B, =--- @ Bo® B, ® --- ®
B,1®Bi@B1®---Q Bn1 @ Bo.

Define the map @ : By U {0} — {tuw} @ B, ® By @ Tna, U {0} as follows:

For Y = (Y,...,Yn) € By with Y. = {yrk}r30, 1 <7 < IV,
BD(Y) = U @ -+ @ bo(~a2,) @ - @ bpo1(—ans1) @ bo(—apn) @ b1(—an_1) @ ---

- @ bno1(—a1) ® bo(—ao) ® 0 ® tna,
where for s € N,

S

as :=as(Y) :=#{(r,k): 0 <k < | land yp < —s+k(n— 1)}

n—1

= # of boxes in Y whose upper left hand corner
lies on the s** stair

(and ®(0) = 0).
To show that ® is a crystal morphism we first show how the action of &; and f;
on Y can be described by the a,’s, s € N (see 3.21 ). We first need the following

Lemmas.
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3.17.1. Example. Let n = 3. Then

1
0

3 ¢ =uoo®(---7070:27271:1)®6®t21\0

o
o|—||o

o([0]1]2], [0]1]2]) =te®(...,0,0,2,0,2,0,2) @0 @ tan,

d

[

el [ 3] K]
(e}

, @) =ue®(...,0,0,1,2,1,2) @0 ® tan,

9 —
L2] > =t @(...,0,0,1,0,2,1,2) @0 ® taa,

°(

2 (0 ®@0@ 0@ tang) = oo ®(---,0,0,2,0,2,0,2) @0 ® taa,

I[\DO

P fafoluw®@T@0®tan,) = uew®(---,0,0,2,2,1,1) @0 @ tan,

So if > is as in 3.11 or 3.12, @ is not a crystal morphism. (See Examples 3.13.1,

3.13.2 and 3.13.3.)

3.18. Lemma. Lett € [ and Y € By. Ifo(Y) = (..., A1, Ao) where for 7 >
0, \; is the part of 0(Y) coming from the j** i—stair, then \; = (1,...,1,0,...,0)
(possibly empty).
Proof. For 7 > 0, let A\j = (Aj1,...,A;n), where for 1 < r < N, Ajr = part of };
coming from the j** {—stair of ¥;. By 3.16 (i), A\;r = (1,...,1,0,...,0) (possibly
empty). We now show that if for some r € {1,..., N}, A;. has a zero, then for all

s>r, Ajs =(0,...,0) (possibly empty). This will prove the Lemma.
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Suppose that for some s > r, Aj; has a one. Let (¢,y,:) be the site of the concave
1—coloured corner corresponding to a zero in Aj., and (¢’ + 1,ys) the site of the
convex ¢— coloured corner corresponding to a one in Aj;. By 3.16 (i) and (ii), ¢t < ¢
and by 3.16 (iii(a)), since yser = yre + (n — 1)(#' —t) = L < yre +(n — 1)(#' — t), we

have ¢’ > a(r,s,t). Let b = t' — a(r,s,t). Then
Ys(r+1) < Ys(aei—a(rst)) by 3.16 (i), since t’ + 1 < 2t' — a(r, s, t)
= Ys(a(r,s,t)+2b)
< yre+(n—=1)a(r,s,t) —t)+ (n —2)b by 3.16 (iii(b))
= (Ye+(n — 1)’ —t) — 1)+(n — 1)(a(r,s,t) —t")+1 — (n — 2)(a(r, s, t) — )
=y + a(r,s,t) —¢t' +1
< Yser-

This is a contradiction since Y was assumed to have a convex corner at site (¢/, ys),
SO Ystr < Yst'+1-

]

3.18.1. Example. Let ¢ = 0 and Y;, Yy, Y3, and Y4 be as in 3.16.1. If
Y =Y, Y2, Y3, or Yy, and )\; is the part of o(Y) coming from the 27¢ 0-stair,

then A, = (1,1,0),(0,1,0),(0,0,1) or (1,0,1), respectively.

3.19. Lemma. Letz € I, Y € By and (YY) = (A,..., A1, A0) where for
0<7<, ] is defined as in 3.15. For j >0, let 1; =# of I’sin X;, 1_; :=0, and
0; = # of 0’s in A;; and for k > —1, define Ay := Zl 1; = 0j41 (Note: 04y :=0).

1=k
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Then for t € [—1,1],

fi(Y) = { (¥, Q- SO da)) 2> L

< A > Ar forallk >t and A, > Ax forall —1 <k <,

and fort € [0, + 1]

&(Y) :{ (()Y(i),(/\l,... LE(Ae),y ... 5 A0)) :ﬁifii

<= A > A forall k>t and Ay > Ag for all 0 < k<t
Proof. By Lemma 3.18, for 0 < 7 < [, A\; = (1,...,1,0,...,0) (possibly empty).

Applying Lemma 3.6 to o(Y), we see that t;(c(Y)) (as well as to(o(Y)) — 1) corre-

sponds to the rightmost 1 appearing in one of the A; ’s. So by this Lemma,

f(U(Y))z{ é/\la-'- 3f(’\t)1"' 7’\0) ig:z:i’

<> A; > Aipforallk >tand A, > A forall —1 <k <t,

and

Moo 8(Ne),e. .y h) ifE<l+1,
0

#(e(¥)) = { s

— A > Apforallk>tand A, > A forall0 <k <2

So we have our result.
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(k+1,~(s+n—1) + (k+1)(n— 1)
(k, —s + k(n — 1))—

(k,—(s+1)+k(n—-1))

(a) (6) (c) (d) (e) (f)

FIGURE 2. If Y € B, intersected with figure (a) above equals fig-
ure (a), (b), (c), (d), (e), or (f), this part of Y contributes a
0,-1,0,0,1, or 0, resp. to as — @541 — Asyn—1 + Asgn-

3.19.1. Example. Let n =3, N =2 and
0]

1]2]

N O =
(=] Mol B AV

0
2

w
I
o —{o|o

If © = 0, then o(Y) = (A2, A1, A0) where Ag = (), Ay = (1,0), and X\, = (1,1,0);
and A_1=1, A0=1, A1=2, A2=2, A3=O,

0[1]2]0]
. 2101 0112
fo(Y) = 15710 ,Qoland
0]
/[071]2]0]
. 2101 012
&(Y) = 3 ’2"
\ [0] —

3.20. Lemma. Let the notation be as in Lemma 3.19 and as, s € Nasin 3.17.

Forse N, leti € I and j € N be such that s = —i + jn. Then
Qs — Qs41 — Qsgn—1 T+ Qs4n = ]-j - 0j+1-

(See Figure 2.)
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Proof.
Qs — syl — Qsgn—1 + Asin
= #{(rnk):0<k< l‘n—-i—l—J and yr < —s + k(n — 1)}
~#{(r, k)10 <k <[ 250 and gk < (s +1) + k(n — 1)}
—#{(rk):0<k < LS—LJ and ys < —(s+n — 1) + k(n — 1)}

+#{(r, k) : 0<L<[ _Iand Yk < —(s+n)+k(n—-1)}

= #{(nk):0<k<|——7]and g = —s ~ L+ k(n ~ 1)}

+#{(r, k) : O<A<[_ _la.ndyrk<—s—-7+k(n—1)}

—#{(rk): 0< k< [~

Jandyrk< —(s+1)—14k(n—-1)}

—#{(r,k) k=2 e Ny < -1}

—#{(rk):0<k< Lii”—_J and yop = —(s +n — 1) — 1 + k(n — 1)}
~#{(r k) 0 <k < [T and g S —(s 4+ n = 1) —2 4+ k(n — 1)}
F#{(r k) 0 < k< [T20 ] and g < —(s 4 n) — L+ k(n — 1)}
(k) k= TTT €N, yu < —1)
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= #{(K) 0k < |l ym = —s — 1+ k(n — 1) and gk < yrira}

S
| and Yok = Yrkp1 = —s — 1 + k(n — 1)}

+#{(r,k): 0 <k < |

n—1

1
S+1€Na.ndyrkﬁ—1}

—#{(r,k) : k =

n —

—#{(r,k):0<k < L%T:—lj,yrk = —(s +n) + k(n — 1),

and Yr(k—1) < Yrk OT k= 0}

—#{(T‘,k) :1 < k < LnST]_J + 13yr(k-—1) =Yrk = _(S + Tl) + k(n - 1)}

s+n

N, g < —1
Tl—le s Yrk = }

+#{(r k) : k=

= #{(nk):0<k< I_;z__s:‘IJ’yrk =—s—1+k(n—1)and yrx < Yrk+1}

S

+#{(r,k): 0 <k < | | and Yrk = Yrky1 = —s — L + k(n — 1)}

n—1

—#{(r k) 0 <K< [TEES = (s ) + (- 1),

and yrr—1 < yrk or kK =0}
S
-#{(7', k) 01 S k S Lm_l + 11 Yr(k=1) = Yrk = —S — 1 + (k - 1)(” - l)}

s+n
T € N, y& < —1 and yrs1) =0}

—#{(’l",k) k=
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s
= #{(rk):0<k< [mJ, Yk = —s — 1+ k(n—1) and yri < Yrk+1}

+n

s
n—1

—#{(r,k): 0Kk < | |y yre = —(s+n) + k(n - 1)

and Yrx—1 < Yrk or k =0}

= 1; =041 (Recall s = —¢ + jn.)

3.21. Proposition. Leti € I, Y € By and o(Y) = (A,-.. , A1, Ao) where for
0 <3<, Aj is defined as in 3.15. For 7 € N, let a; be as in 3.17. Define a; := 0
if0>j > —n. Then fort € [0,!],

ft(Y) = (Y(’L), (’\17 R 7f()\t)7 ... a)‘o))
if and only if

l
E Gitjn — Qeipjntl — Qeitjntn—1 + Qeitjnin =
j:t
{
E Q_itjn — Q—itjntl — Q—itjntn—1 T C—itjntn for all k>t
j=k

and

i
E Q_itjn — G—itjn+l — Q—itjntn—1 T Qeitjnin >
Jj=t

l

E Q—itjn = Qeitjntl — Citjntn-1 + Goitjnin for all 0 < k < 2,
i=k
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and fort € [0, + 1],

&(Y) = (Y(E), (Myeee s FAD, ... X)) ift<i+1
1 0 ift=10+1
if and only if
i

E Citjn — Q—itjn+l — Q—itjnin—1 + Aitjngn >
=t

l

E Q_itjn — Q—itjntl — Qeitjntn—1 T A—itjntn forall k>t
=k

and

{

E A_itjn ~— Qitjn+1 — A—itjntn—1 + @ _itingn >
Jj=t

l

E A itjn — G_itjntl — Qeitjntn—1 + Q—itjntn for all 0 < k<t
J=k

Proof.

L — 00 = g — a4y — Qn_1 +a, if1=0 (by Lemma 3.20)
°T T T -0, ifz#0 (see Note in 3.15)

g —a; —An_1 +a, 1f2=0
=< An_j — Qp_i—1 iftr#0andi#1

Qp—1 — Gn_3 — Qg ifz=1

= Qi — Q_jy] — Qi (n—-1) T C—itn-

So by Lemma 3.20 and 3.19, we have our result.
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3.22. Lemma. Let : € [, B, and B, be as in 3.17, and (... ,az,a;,a0) € B,.
Ifi=0let j €N and if 1 #0 let j € N>y, then define

dj := G iqjn — Gipjnt1 — C_itjnin—1 + G—itinin,

—ag — Qp—2 + Qn_1 Zfl = 1,

y {—a_,-+(n_1) Vaisn ifi#landi#0
=

Aw =0, and fork € N, Ag =3 ., d;. Then

Ei(Uoo ® -+ - ® bo(—a0) @0 ® tva,)

_ é{(uoo)®"'=0
Uoo @ -+ ® Ei(bi(—ar)) ® - -+ ® bo(—a0) @ 0 ® twa,

A =0 > Ag foral k>0
A > Ag forallk >t and Ay > Ax for all 0 < k< ¢,

and

fi(ttoo @ -+~ ® bo(—a0) @D @ tna,)
_ J(te) @+ ® filbi(=a.)) @ - @ bo(~a0) @V ® tiva,
Uoo @ - -+ @ bo(—a0) ® f:(0) @ tva,

A > Ag forall k>t and Ay > Ag forall 0 <k <t
Ao 2 Ay forallk >1 (Note: in this case 1 # Q)

Proof. For £ > 1 (or for £ > 0 if 7 = 0),

Ak = digkn — E Qiflngl — E G itinn—1 + E 2a_it(1+1)n
1>k >k >k

= gi(bi(—a—iyin)) + Z(hi, @_itlnt1 Xi—1mod(n))
1>k
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+ lek(hh Q—itintn—1 Qi1 mod(n)) if n # 2
0 ifn=2

+ ) (hi,a_ipgiiyn )

1>k

= i(bi(—airkn)) — O (hi, Wt(b_jmod(m)(—a;)))-

j>—i+kn
In the last equality we used that for [ € I, wt(bi(—a)) = —acy and that (h;,a;) =0
ifl#7—1,i0ori+1.
Similarly, we can show that Aq = &;(0) — 2 isolhis Wt(b_j mod(n)(—a;)))-
Therefore, since A = 0 = €:(Uo), €i(Ena,) = —o0 and g;(bi(—a)) = —oo if
[ # i, then this Lemma follows from the definition of {ue} ® B, ® By ® T, In
1.16.

3.23. Theorem. The map ® : By U {0} — {ue} ® B. @ B @ Tna, U {0}
defined in 3.17 is a full embedding of crystals. Furthermore, if Y € By, ®(Y) =
U D -+ D bo(—ao) ®6®t1\r1\0 and i € I,

fi(®(Y)) = e @ -+ @ filbi(~ar)) @ --- @0 @ tna, <= fi(Y) #0,

and in this case ®(fi(Y)) = fi(®(Y)).

Proof. Let Y € By. We first show that ® and é;, for z € I, commute. Let

O(Y) = oo @ -+ Q@ bo(—ao) ® 0 ® tna,- Then by Prop. 3.21 and Lemma 3.22, if

(At,--- ,Ao) is as in Prop. 3.21,
&(3(Y)) = { "
' Uo @ - R bi(—ar +1) @ -+ @ bo(—ao) ® 0 ® tna,
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. _Jo
= &(Y) = {(Y(i), (Aseee 1 €(Ae)s -0 5 o))

SO ‘Di(éi(Y)) = é,(‘I’(Y))
Now assume that f;(®(Y)) = teo @ --- @ fi(bi(—a:)) @ - - @ bo(—a0) ® 0 ® tna,-
Then again by Prop. 3.21 and Lemma 3.22, if (A;,..., o) is as in Prop. 3.21,

fi(@(Y) =t ® - @ bi(—a: —1) @ --- @ bo(—a0) ® 0 @ tan
= fil(Y) = (Y(E),(Mye-n s fi(Ae)s-- - 5 X))
— fi(Y) #0.

So @(fi(Y)) = fi(®(Y)).

We now show that & is injective. Let Y; and Y, € By such that ®(Y;) =
B(Y2) = U @ -+ Q@ bo(—a0) ® 0 @ tna,. If wt(®(Y1)) = NAo, then &(Y,) =
Uoo @ -+~ @ bo(0) ® 0 ® tna,- So Yy =Yy = (6,6,...,¢). If wt(®(Y1)) # NAo,
there exists an a; > 0 such that ®(Y;) = ueo @ --®b;(—ar)®- - -@0V@¢na,- Choose
the biggest such k. Then

(- @ bj(—ar) @ -+~ ® V@ twna,) 2 &j(bj(—ax)) = ax > 0 = ¢;(uoo)-
So €;(®(Y1)) #0, (recall that &;(tna,) = —o0) and

D(&;(Y1)) = &;(2(Y1)) = &;(2(Y2)) = 9(&(Y2)) # 0.

So since wt (&;(Y1)) = wt (Y,)+a;, by induction we have that &;(Y,) = &;(Y,) # 0.
Hence Y; = Y,.
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Now let Y € B,,. Then wt (Y) = wt (®(Y)) by definition (see 3.9, 3.17 and 1.7).
Let z € I. Then

ei(Y) := max{p € N: é(Y) # 0} (by definition)
= max{p € N: el(®(Y)) # 0}(since & commutes with ® and ® is injective)
= &{(®(Y)) (see 1.16)

From (i) in 1.6, :(Y) = @:(2(Y)).

3.24. We will now show that the image of ® equals the image of (¥, »Qidya, )0
TN, (see 2.5). To do this we first show that By = {fi, --- fin(¢s ... ,0) # 0 :

Uyeee yim € [}

3.25. Lemma. Let T = {fi,-- fi(d,...,¢) # 0 : iy,...,im € [} and
S C{(Y1,...,Yn): Y: are Young diagrams such that Y; C Yy, for1 <i< N —1}.
If

(a) (¢,-...0) €S,

(b) fi($) € SU{0}, and

(c) &(S) € Su {0},
then S =T.
Proof. Assume that (a), (b), and (c) are true. Then by (a) and (b), T C S. To
show that S C T, we use induction on the height of the weight of an element of S.
Let Y = (Yi,...,Yy) € S. If wt(Y) =0, then (Y3,...,Yn) = (6,0,...,9) € T.
If wt(Y) #0, let Y1 = (y10,--- ,¥11,0,0,...) with y;; # 0. Then Y has a convex
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corner at site ({+ 1, y;;) of some colour, say . Then ¢;(Y) = (1,...). So &(Y) #0.
By (c), &(Y) € S. By induction, &(Y) € T, and 0 # Y = fi(&(Y)) € T.

3.26. Lemma. Let Y = (Y4,...,Yn) € By with Y; = {yjx}k>0- Let r,s €
{1,2,...,N} withr < s. Iffork,t € N we have yrp+(n—1)(t —k)+(n—2) < Yst+2),
then yrr + (n — 1){t + 1 — k) < ys(es1)-

Proof. We need to show that a := a(r,s,%k,Y) > ¢+ 1.

If not,

Ys(t+2) < Ys(t+24+t—a) = Ys(at2b): where b=t —a+1 =1,

IA

yrk +(n —1)(a — k) + (n — 2)b
= yu+(n-1)0t—-k)+(n—2)+(n—1)(a—1)
+(n—2)(b—1)

< Ysie2) T @ =t < Ys(e42)s a contradiction.

3.27. Definition. Form Z 1, let Sm = {Y = (Yl, ey YN) : Y} = {yjk}kzo, 1 S
J < N and Y satisfies 3.16(3), (i), (ii)(a) and (iii) (V') below. }
(iit) (') For 1 < b<m, y + (n — 1)(a(r,s, k) — k) + (n — 2)b > ys(at28)-

3.28. Lemma. Let Y = (Y1,...,Yn) € Sm (or By) with Y; = {yjr}>0- Let
r,s € {l,... ,N} withr < s. Ifforsomek € Nandt > k-1, y+(n—1)(t—k) < ys
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and yrr+(n—1)(t —k+2) > Yses2) then yor+(n—1)(E—k+1) +(n—2)b > ys(e+1425)
for1<b<m (orb>1iY €B,)
Proof. If t =k — 1,thent < k < a(r,s, k) and if ¢ > k, the first inequality above
implies ¢ < a(r, s, k). Also the second inequality above implies a(r,s, k) < ¢ + 1.

If a(r,s,k) =t + 1, we are done.

Ifa(r,s,k) =t,yre +(n — 1)t — k) + (n —2)b > ys(e426), 1 < b <m,
and yrx +(n— 1)+ 1 —k)+ (n — 2)b > ys(es2s) +(m — 1) = Yoqe41425y by 3.16(3).

a

3.29. Lemma. By = S;.

Proof. Since §; D --- 2 Smy1--- and By = Np>1Sm, it suffices to show

2 Sm
that Sy € Sp for all m > 2. Let Y = (Yi,...,Yn) € Sm—y with Y; = {ysk}r>0,
1<j<N.Letr,se{l,...,N} withr < s, and &k € N. Set a := a(r,s, k).
Suppose there exists an integer ¢ € {k + 1,...,1 + a} such that y,. < Y+

(n—1)(c—k—1). Choose the smallest such c. Then yr(c—1) 2 Yy +(n—1)(c—k—2).

Yoy + (R = 1)@= (c=1)) € yret(n—1)(a—(c—1))
< Yt (n—1)(c—k—1)+(n—1)(a—(c—1))

= UYrk + (n - 1)((1 - k) S Ysas and

Yoy + (n = 1)@= (€= 1) +2) = yoep) +(n—1)(a—c+3)

> Yy t+(n—1)(c—k—-2)+(n—-1)(a—c+3)
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> Yrk + (n - 1)(a - k) + (Tl - 2) 2 Ys(a+2)
So by Lemma 3.28, for 1 <b<m—1,

(10) Yre-nn t(n —1)(a—(c—1) + 1) + (n — 2)b > Ys(at1420)-

Yre+(n—=1)(a+1—-¢) < yu+(n—1)c—k—-1)+(n—-1)a+1—c)

= Y+ (n—1)a—k) < yYsa < Ysar1, and

yret(n—1)(a+3—-¢c) 2 yre-n+(m—1)(a+3~c)

= Yre-n+n—1)a—(c=1)+1)+(n—-2)+1
2> Ys(asa) +1 (by 10)
> Ys(a+3)-

So by Lemma 3.28,

Yret(n—1)(@a—c+2)+(n—=2)(m — 1) > Ysas242(m-1)) = Ys(a+2m)-
Hence
Yy +(n—1)(a—k)+ (n—-2)m > y..— (n=1)(c—k—1) + (n—1)(a—k) + (n—2)m
= Yyet(n—-1)(a—c+1)+(rn—2)m

= Yet(n—1)a—c+2)+(n—-2)(m—-2) -1

A%

Ys(a+2m) — 1
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Soyre+(n—1)(a — k) + (n — 2)m > yyay2m) and Y € S
Now assume that forallc € {k+1,...;a+ 1}, yre Sy + (n — 1)(c—k—1).
In particular, Yr(a+1) > Y + (n - 1)(a - k)? and Yr(a+1) + (Tl - 1)

> Yrk + (n - 1)(“ - k) + (n — 2) > Ys(a+2)- So Yr(a+1) T+ (n - 2)5 > Ys(a+1+2b)

foralll <b<m—1. Hence
Yra+2) T (0 — 1) 2 Yrasr) + (7 = 1) > Yreg1) + (7 = 2) 2 Ys(at3)-
S0 Yr(atz) + (N — 2)b > Ys(ayar2s) for all 1 < b < m — 1. Therefore
be (= 1)(a—E)+ (0 —2)m > yyuray + (= 2)(m — 1)

2 Yra+2) + (0 —2)(m — 1)

v

Ys(e+2m):

and Y € Sn.

3.30. Lemma. LetY = (Y;,...,Yn) € By, i € [ and o(Y) = (A,... , )
where for 0 <7 < I, A;j = (Aj1,--.,A5n8) and for1 < r < N, A ts the part of o(Y)
coming from the j** i—stair of Y.. If there exists anr > 1 and a j > 1 such that ),
contains a zero, then for all1 < s <r, Aj_ys = (0,...,0) (possibly empty). (Hence
if A(j—1)s is not empty, Aj_y = (0,...,0) or A\j = (1,...,1) (possibly empty).
Proof. Suppose that A(j_1); contains a 1 for some 1 < s < r. Let (r,&,y.«) be the
site of the concave corner of Y, correspouding to a zero in Aj. and (s,h + 1,ys)

be the site of the convex corner of Y, corresponding to a 1 in A¢j_1)s. Then y,x =

ysn +(n — 1)(k —h) — (n —1)-
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By 3.16(i) and (ii), for 1 < A’ < A, yrn 2> Ysu = Ysur => Ysu — (n — 1)(h — h’), and
hence £k > h > 0.
Since yop + (n — 1)(k — h — 1) = Y& > Yr(x-1), K — 1 > a(s,r, h).

Let a :=a(s,r, h).
Uk < Yr(2k—a—2) (by 3.16(i), since k > a + 2)

= Yr(at2b)s whereb=k—(a+1)>1

< yat+(m—1)(a—h)+(n—2)b (by 3.16(iii)(b))

= yau+t(n—1)k—h—-1)+Mm—=-1)a—k+1)+(n—2)b
= yso+(n—1)(k—h—-1)—b

< ysw+(n—=1)(k—h—1) =y

This is a contradiction.

3.31. Theorem. Let T = {fi, ... fi, (..., 8) # 0 :4y,...,im € I}. Then
T = By.

Proof. By Lemma 3.25, it suffices to show (a), (b), and (c) of that lemma.

() (¢,...,¢) € By since for r,s € {1,2,... ,N} with r < s and & € N, we can
choose a(r, s, k) = k and (i),(ii), and (iii) of 3.16 are satisfied.

(b) Let Y = (Y1,...,Yn) € By, Y; = {yjrtisoforl < j < N, andi €
I. Suppose fi(Y) # 0. Then there exists an s € {1,..., N} such that fi(Y) =

(1, .. ,f;(Ys),. .., Yn) and a k € N such that Y, has a concave ¢-coloured corner
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at site (s, &, ysx) and f,(Y;) has a convex i-coloured corner at site (s,k + 1, ysk — 1).
Note that k& = 0 or ys«_1) < ysk- Then there exists a j such that the concave corner
at site (s, &, ys) is on the 3% 7 - stair of Y, and the first 0 in A; = (1,...,1,0,...,0)
(A; as defined in 3.15) corresponds to this corner.

We now show (i) of 3.16 is satisfied by f;(Y).

If ysk + (n — 1) = Ys(k11), there would be a concave corner in Y; at site (s, k +
1, Ys(k+1)) and this corner would contribute a 0 to A; appearing before the 0 cor-
responding to the concave corner at site (s,k,ys:). This is a contradiction. So
Ysk + (n — 1) # Yse+1) and (i) in 3.16 imply that yo — 1 + (n — 1) > ys(r+1)- Also if
k>0, ys — 1 > yyk_1)- So (i) of 3.16 is satisfied by f:(Y).

To show that (ii) of 3.16 is satisfied by f;(Y), we need to show that if s >
1, fi(Ys) C Yooi- If Yiom1)e = Ysk, then either & = 0 or yes—1)ee1) < Ys(ho1) < Ysk =
U(s—1)x- Hence Y,;_; would have a concave i-coloured corner at site (s — 1,k,y.) =
(s —1,k,y(—1)x) and this corner would contribute a 0 to ); appearing before the 0
corresponding to the concave corner at site (s, k,ysx). This is a contradiction. So
Y(s—1)k 7 Ysk and (ii) of 3.16 imply ysx — 1 > y(s—1)x- Thus f,(Ys) CY,_;.

We now show (iii) of 3.16 is satisfied by fi(Y).

Let r € {1,...,N} be such that r > s, and let a := a(s,r,k,Y). Then by (iii)

of 3.16,
(11) ysk + (n —1)(b — k) < yrp for all £ < b < a and
(12) ysk +(n —1)(a — k) + (n — 2)b > yr(a42p) forall b >1
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So we have for all b6 > 1,

(13)
Yk —1l+(n—1lj)a+1—-k)+(n—-2b=ya +(n—1)a—k)+(n—2)(b+1)

2 Yr(a+2(6+1)) by (11)
2 yr(a+1+26)7 by (i) of 3.16

If (yo —1) +(n —1)(a + 1 — k) = Yr(at1), this together with (11) and (13) imply
a(s,r, k, f,(Y)) = a + 1. Otherwise,

(14) (ysk = 1) +(n = 1)(a + 1~ k) > Yr(at1),
since
ysks —l+(n—1)(e+1—-k)=ys+(n—1)(a—k)+ (n —2)
2 Yr(a+2)s by (11)
2 Yr(at1)-

If Yr(ag2) = ysk + (n —1)(a — k) + (n — 2), using (14) we get that yr(at+2) > Yr(a+1)-
So Y. would have an i**-coloured concave corner at site (r,a + 2,Y,(at2)) Which
would contribute a 0 to A¢j41)- (see the definition in Lemma 3.30). By 3.18, Aj41 =
(1,...,L,0,...,0), and by Lemma 3.30, there are no 1’s in ¢(Y) between the 0’s
corresponding to the concave corners of Y at sites (r,a + 2, yr(at2)) and (s, k,Ysk)-
This is a contradiction. Hence, using (12), we get that y,(o42) < (st —1)+(n—1)(a—
k) + (n —2). This, together with (11) and Lemma 3.29, imply a(s,r, k, f:(¥)) := a.
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Now let r € {1,... , N} be such that r < s, £’ € N and a := a(r, s, k’). Then by

3.16 (iii),
Yrir +(n — 1)(b — k") < yg for all &' < b < a and
Yrir +(n — (e — k) +(n —2)b > Ys(at2s) for all b > 1.

Soifk>aor k<K, a(r,s, ¥, f,(Y)) = a. So assume k' < k < a. We suppose that
Yrkr + (n — 1)(k — k') = ys and obtain a contradiction. If &/ > 0, then
Y-y +(—1)(E=2—(K=1))+(n=-2) =y + (n=1)(k—K)—1

Sy +(n—1)(k—Fk)—1<ys

So by Lemma 3.26,

Yrr—1) + (n = 1)(k = F') = yrwr—r) + (n = 1)(k — 1 — (K’ — 1))
S ys(k—l) < Ysk = Yrkt + (TZ - 1)(117 — k,)-

So either &' = 0 or y,(x’—1) < Yrs. In either case, there is a concave ¢—coloured
corner in Y; at site (r, k", y-+/), and this corner contributes a 0 to A; which appears
to the left of the 0 corresponding to (s, k, ysx) in A;. This is a contradiction; therefore
Yrir + (n = 1)(k — k') < yor — 1 and a(r, s, k', fi(Y)) = a. So 3.16 (iii) is satisfied by
fi(Y) and therefore f;(Y) € By.

(c) Let Y = (Y1,...,¥~n) € By, Y; = {yjshisoforl < 7 < N, andi €
I. Suppose €;(Y) # 0. Then there exists an s € {1,..., N} such that &(Y) =
(Y1,.-. ,8&(Ys),--. ,Yn) and a k € N such that Y; has a convex z-coloured corner at
site (s,k + 1,ysk) and €;(Y;) has a concave i-coloured corner at site (s, k,ysr + 1).

Note that ys4+1) > ysk. Then there exists a 7 such that the convex corner at site
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(s, k+1,ysk) is on the (+1)* 7 - stair of ¥}, and thelast 1 in A\; = (1,...,1,0,...,0)
(Aj as defined in 3.15) corresponds to this corner.

3.16 (i) is satisfied by &(Y) since yst + 1 < ysr4r1) and if & > 0,y +1 <
Ystk—-1) + (n — 1), otherwise yox = yYsk—1) + (n — 1) and there would be a convex
corner in Y; at site (s, k, ys@—1)) contributing a 1 to A; appearing to the right of the
1 corresponding to the convex corner at site (s,k + 1, ysk)-

To show 3.16 (ii) is satisfied by é;(Y), we need to show that if s < NV, &(Y;) 2
Yori- If Yok = y(s+1)k, then yeriyks1) = Ystr+1) > Ysk = Y(s+1)&- So there is a convex
corner at site ((s+1), k41, y(s+1)k)on the (7+1)* i—stair which contributes a 1 to A;
appearing to the right of the 1 from the convex corner of Y; at site (s,k+1, ysx). This
is not possible, so by 3.16 (ii) and yst # Y(st1)k> Ysk +1 < Ys+1yx and €(Y5) 2 Yop.

We now show 3.16 (iii) is satisfied by &;(Y).

Let r € {1,..., N} be such that r > s. Let a := a(s,m,k,Y). Then for K <b <
a,Ysk +(n—1)(b—k) < yrpandfor b > 1, ys +(n—1)(a — k) + (n — 2)b > Y (at20)-
Iffork <b< a, ysc + (n — 1)(b — k) < yrp, a(s, 7, k,&:(Y)) = a. So assume there
exists a k < by < a such that ys + (n — 1)(bo — k) = yrb,- Choose the smallest
such bg. Then ygo + 1+ (n —1)(6 — k) < ypp forall £ < b < by — 1 and ya + 1+
(n—=1)(bo —1 — k) + (7 — 2) = Yrbo = Yr(bo+1), Otherwise yr4y < Yr(so+1), and there
would be a convex corner on the j** i—stair of Y; at site (r, bo+1, yrs, ) corresponding
to a 1 appearing to the right of the 1 from the corner at site (s,k + 1,yst). So by
Lemma 3.29, yox +14+(n —1)(bo—1—k) +(n —2)b > y,(s5—1+26) for all b > 1. Hence
a(s,r,k,e(Y)) :=bo— 1.

Now let r € {1,... ,/N} be such that r < s, ¥ € N and a := a(r,s,k',Y). Then

(15) Yrir +(n —1)(b—k) < yqufork’ <b<aand
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(16) Yoo +(n—1)(a = K') + (n —2)b > ysa42p) for b > 1.

So if k < a, a(r,s,k',é;(Y)) = a. So assume k > a. If kK # a + 2, by Lemma 3.29,
a(r,s,k’,é(Y)) =a. Solet k =a+2. Ifypwr + (n — 1)(a — &) + (n —2) > yu,

a(r,s,k’,&(Y)) = a (use Lemma 3.29). So assume y,r+(n—1)(a—k')+(n—2) = Y.
Yriteany + (@— (F + 1)) =1) < yow + (1) + (e — K — 1)(n — 1) (by 3.16(7))
= Yri + (a - k')(n - ].)

< Ysa by (15).

v (e +2— (K +1))(n—1) = yrwsy +(a+1-F)(n—1)
> yr+(@a—K)Yn—-1)+(n—-2)
= Ysk

= Ys(at2)-

By Lemma 3.28, yr(r41) + (n — L)(a + 1 — (K + 1)) + (n — 2) > Ystat3) = Ys(k+1) >
Yok = Yo + (0 = 1)(a — ) + (n — 2).

SO Yr(k'+1) > Yrks, and there is a convex corner in Y, at site (r, &' + 1,y) =
(ryk" + 1,ysk + (n — 1)(a — k') + (n — 2)) which contributes a 1 in A¢j_j). By
Lemma 3.30, there are no zeroes in o(Y) between the 1’s from the convex corners
at sites (s,k +1,ys) and (r, k' + 1, yr). This is a contradiction. Hence 3.16 (iii) is
satisfied by &;(Y) and &;(Y) € Bx.
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3.32. Theorem. Ift and ! areasin 3.17, then Im ® = Im (¥, ,,®@idna, ) 0T A, -

Proof. Recall (see 2.5) that
Im (¥, ®idya,) ©TvAe = {Uo @ (... ,a)®@ 0@ tna, :a < N and
Uoo @ (- ,8) @V t N = fir "+ fir (oo ®VOV® ta,)
for some iy,... ,im € I}.

By Theorem 3.31, the definition of ®, and the fact that ® is a morphism of
crystals, Im® C Im (¥, . ® idya,) © Tva,-

Now let b € Im (¥, ® idya,) © Twa,- If Wt(b) = NAg, b = e @0 @0 ®
tnn, = D((®,..-,0))- So assume wt (b) # NAg. Then there exists ¢ € [ such
that 0 # &b € Im (¥, ® idna,) © Twva,- By induction, there exists &' € By such
that ®(8) = &b. Since fi(&b) = b = U @ -+ ® 0 @ tna,, by Theorem 3.23,
b= f(®()) = &(f:V') € Im .

3.33. Theorem. By ~ B(NAg) as crystals.
Proof. Let 7 := (¥, ® idya,) © Tva, : B(VAg) = {uw} ® Bowv @ Tna,, and
~ =T Yme 0 ® : B~y — B(NAo). (Note: Theorem 3.32 says that Im7 = Im®.)
Then ~ is 1-1 and onto and it preserves ¢;, ¢;, and wt. To show that v is an
isomorphism of crystals, it suffices to show that 4 commutes with é&; and f, for all
¢ € I. Since Ty, is a full embedding of crystals and ¢, »®idna, is a strict embedding
of crystals, T commutes with all &’s, 7 € I. By Theorem 3.23, & commutes with all

&’s,1€l. Henceforalli € I, 0y =07 lo® =710é&0d =7"1oPoé; =v0é.
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Now we show that v commutes with ﬁ for z € I. Let b € By. We consider two

cases.

If f:(b) # 0,
() = F(1&(fb)  since fi(b) # 0
= fiey(fi(b)),
= (fdb)),  since v(fi(b)) # 0.

Now suppose that f;(b) = 0. Since ® is a full embedding (see Theorem 3.23),
by Lemma 1.14, f;®(b) ¢ Im®\{0}. By Theorem 3.32, In® = Im7, hence
Fi(r (77 @(b)))) = fi®(b) &€ Im 7. Since 7 is a full embedding, again by Lemma 1.14,
fir71®(b) = 0. Hence fi(v(b)) = 0 = 7i(b).

3.34. Corollary. Ifw=r;...7; is a subword of ...Tp_1ToT1...Tn1T0, then
Bu(NAo) ~{Y =(Y1,...,YN) €EBN: Y, CS(=1), for1<r< N}

See 3.15 for the definition of S(—I).

Proof. Let ¢ and ¢’ be as in 3.17, 7 and v be as in Theorem 3.33, w’' :=7rj_,...7;

and b € B(oco) such that Ty, {b) # 0.
TNag(D) € Bu(NAg) <= ¥, (b) =uew®...a1a00 and b € B,,(c0)
(see Proposition 3.3.1 in [Kas93])

< U, (b) = U @ ...a1000 and b* € B,-1(c0)
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(see Proposition 3.2.5 in [Kas93])
<= U, (b)) = oo @ ...a1a00 and b* € By)-1(c0)
(see Proposition 3.2.5 in [Kas93])
< U, /(b)) =t ®...01000 and apr =0 if &k > [
> T(FNa (D)) = U @ ... a1a00 @ tna, and ar, =0 if k > [
< (7 M ((Fnae(P)) = o ® ...a1600 @ tvp, and ap =0 if k > {
<= v ((Fnao(8))) = (Y3, ... , Yn) € By such that ¥, C S(=I),

forl<r<N

3.35. Corollary. Let v be as in Theorem 3.33. Then

-1 .
®o v = (‘I,L,L' ® 1d1VAo) O TNAg-
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CHAPTER 4

A set of inequalities describing B(NAj) and B(o0).

In [NZ97] and [Nak99], the authors prove that for a sequence ¢ of elements of
I satisfying certain conditions, the images of ¥, and ¥, ® id) o 7\, for A € Py, can
be described by a set of inequalities generated by applying certain operators to a

given set of inequalities.

In this Chapter, we use our results from Chapter 3 to explicitly find the inequal-
ities defining the image of ¥, ® idya, © Taa, for a particular sequence ¢ (see Theo-
rem 4.7). This together with our results from Chapter 2 and a result from [Cli98] (or

[Lit98]) (see Appendix A), gives us a description of the image of ¥, for a particular

¢t (see Theorem 4.8).

70
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4.1. For N € N, let
Sv:={{ai}izo: forall/eNag €N, for{>>0a; =0,

and {a;} satisfies (17) — (20) below}

(17) ao S ZV:
(18) ar(n—1)+i < Gkn—1)4i-1 if K € Nand : € I\{0,n — 1},

1 . .
(19) ak(n_1)+i S jak(n__l)_l + a(k—l)(n—l)-{-i if & € NZI and € I\{n — 1},

(20) @i(n-1)+i < Gr(n-1)-1 + Zr:(a(k—s)(n—l)+ 0=ty T k=) (140 i)
s=1
+ (k — T)a(k—r—l)(n—1)+2;=o p—(k—r— 1)a(k—r}(n—1)+z:;=o i
if k€ N>y, r€Nsuchthat 1 <r <k-1, 7=10,21,...,5 €N,
ot+tii<(n—2),andz;+ijp<(n—1)forl1 <j<r-—1.
Let ¢, ¢/, B,, and B, be as in 3.17 and define

By := {teo @ {ai}i30 ® 0 @ tva, € {tco} @ B. @ By @ Tiva, : {ai}iz0 € Sn}-

We will show that ®(By) = By where By and ¢ are as defined in 3.16 and 3.17.

4.2. Lemma. Let By be as in 4.1, then for all j € I, é;(By) C By U {0}.

Proof. Let @ = {ai}i30 € Snv, b = o @ {ai}1>0 ® 0 ® tna,, and j € I. Assume
€;(b) # 0. Then &;(b) = ue ® &;({ai}i>0 ® 0) ® tna, (see Note 2 at the end of 1.17

for the definition of é;({ai}i>0 ® 0) and recall that €;(tna,) = —00).
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(353

If 7 =0, &({ai}izo ® 0) = é;j({ai}i>0) ® 0 since £0(0) = —o0.

If1 <j7 < n-—2,by 41(18) ¢; < aj_yandifj = n — 1 by 4.1(19),
a;j < a;_; + ao. In either case, &;j({ai}i>0 ® 0) = (é;({ar}1>0)) ® 0.

Let [ € N be such that &;((... ,a;,... ,a1,a0)) = (... ;a1 — 1,... ,a1,a0)- Then
for all t € N,

t
(21) Z("al-i-ns + QAl4+14ns + A4 (n—1)4ns — a1+n+ns) <0

s=0

(See Note 2 at the end of 1.17 and the definition in 1.16.)

In particular
(22) ar > aiy1 + Qi4(n-1) — Qlgn

We now show that @ := (... ,a1 — 1,...,a;,a0) € Sv i.e. aqy—1 € Nand &
satisfies 4.1(17)-(20). Let £ € N and 7 € I\{n — 1} be such that [ =i+ k(n — 1).

To show that a; — 1 € N, we consider two cases.

Ifi#n—2,

(23) ai — 1 2> a1 + Gri(n—1) — Gign by (22)
= Q141 T Q(k+1)(n-1)+i — Q(k+1)(n—1)+i+1
> apy1 by 4.1(18) since z # n — 2
> 0.

Ifi=n-—2,

(24) a;— 12 aip(n-1) + Q141 — Qgn by (22)
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= Q(k+1)(n—1)+i T Ck(n—1)+i+1 — C(k+1)(n—1)+i+1

= Q(k+1)(n—1)+(n—2) T C(k+1)(n—1) — A(k+2)(n—1)

1
kE+2

2 A(k+1)(n—1)+(n—2) ~ a(k+2)(n—1)-1 by 4.1(19)

_k+1
T k+2

A(k+1)(n—1)+(n—2)

> 0.

So in either case q; — 1 € N.

To show that 4.1(18) is satisfied by a’ all we need is to show that if 7 # n — 2,
@41 = Ggn-1)+i+1 < ar — L. This was done above (see (23)).

We now show that 4.1(19) is satisfied by a’. Again we consider two cases.

If i # n — 2, we need to show that aj;(n_1) < m_l—la(k.,.l)(n_l)_l + (a; —1).

Cip(n-1) < Qyn —aip1 + (ar — 1) by (22)

= Q(kt1)(n—1)+i+1 — Ck(n-1)+i+1 T+ (a1 — 1)

1 . .
< PR C RV + (a; — 1)  since a satisfies 4.1(19).

If : = n —2, we need to show that ajy(n-1) < (ﬁ—{— 1)(a; — 1) which was done above

(see (24)), and that if 0 S ] S n—3, a(k+1)(n_1)+j S Eﬁ(ak(n_l)ﬂn_g)—1)+ak(n_1)+]-.
Ar(n—1)+(n-2) — l=a—12a41+ At (n—-1) — Q+n by(22)
= A(k+1)(n—1) T Q(k+1)(n—1)+(n~2) — C(k+2)(n—1)

> (k + ag+1yn-n+i — (£ + L)arn-1)+;

by 4.1 (20) with & replaced by £+ 2, t =10 =0, 7y =, and r = 1.
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To show that a’ satisfies 4.1(20) we first show that if z = n — 2, r € N such that
1<r <k, ig=17, i1,---,5 EN, ig+it; <(n—2), and i+ 1541 < (n—1) for 1 <
s <r —1, then
(25)

-
akt1)(n-1)+¢ S(Cr(n—1)+(n—2) — 1)+ Z(a(k+1—5)(n—l)+2};é i; — C(k+1-s)(n-1)+T ;0 i,)

s=1

+ (k +1 = r)ag-r)n-1+S50 i, = (F = T)akt1-r)(n-1)+ 550 &5
Let i5:=0, 7{:=7¢, andfor 1 <s<r, 2{ , :=1,. Then k+2 € N5,, 1 <r+1<
E+1, ip4+i=¢ <(n—2)and for 1 <s<r, if+14,,; <(n—1). Thus since a

satisfies 4.1(20),

(26)
r<1
A(k+2)(n—1) S Q(k+1)(n~1)+(n—2) T Z(a(k+2—s)(n-1)+):;;; i T Q(k+2—s)(n—1)+ 70 ij)
s=1

+ (k+2 = (r+1)appa(rit)-1)(n-1)+575 1
—(k+2—-(r+1)— l)a(k+2—(r+1))(n—1)+25i3 G
So we have

(ak(n—1)+(n-2) -1+ Z(a(k+1-s)(n—1)+2;;g i T Ak+1-s)(n-1)+ 5o iz)

s=1
+ (k+ 1 = 7)ak-r)n-1)+T70 i, — (K = T)(kt1-r)(n-1)+ 70 i;
Z A(k+1)(n—1) T A(k+1)(n—1)+(n=2) = G(k+2)(n—1)
r
+ Z(a(k+1—s)(n-l)+2;;§ i a(k‘*'l—s)("—l)'*‘z:;:o ij)

s=1

+ (AH1=T)ak—r)(n-1)+ Tjg iy — (F—T) @t 1-r) (- 1)+ 55, 4, DY (22)
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= Qk+1)(n—1)+i — A(k+2)(n—1) T C(k+1)(n—1)+(n—2)

r+l1
+ Z(a(k+z-s)(n-1)+zj;;; i# T A(k2-s)(n—1)+ 3] ij)
s=1

9 _
+(k+2—-(r+ 1))a(k+2_(,—+1)-1)(u—1)+z;:; it

—(k+2—-(r+1) - l)a(k+2—(r+1))(n—1)+zr+l i

7=0 "3
2 Q(k+1)(n—1)+i'- by (26)

And hence inequality (25) is satisfied.

Secondly, we need to show that if for some k' € Ny, 1 <r < K —1, 2 =
i,%1,... ,ir € Nsuch that ig+7; < (n—2)and 7;+ ;41 < (n—1)for 1 <7< r—1,
there exists an sgsuch that 1 < sqg <r, 75, > 1 and { = k(n—1)+i = (k' —s0)(n—1)

+ 303" i, then
(27)  ap-v)+ir < Qprn—1)-1
+ ((a(k'—so)(n—1)+z;°=;‘ &G 1) - C(k'—s0)(n—1)+3324 i)

+ Z (a(k'—s)(n-l)-s-z;;g i; Ak =s)(n—1)+T ;=0 t})
1<s<r
s # so

+ (K —r)ag—r-)m-n+r, 5 — (B =7 = Daw-rm-1+T5, -

We consider three cases:

CASE A. First assume that sq > 1 and that there exists ¢ € N such that 2 <
so — 2t (< sg) and

n—1 ifsg—2t>2

i(so—2t)=2 F L(so—2t)—1 + 1 < : 5
(so—2t)—2 (so—2t)-1 {n_Q if s — 2t = 2.
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Let ¢; be the smallest such ¢. Below we will need that
(28) 159—2¢ > 1 forall 0 < ¢ < ¢;.

We prove this by induction on ¢. If t = 0, is;, > 1 was assumed. So assume that
t > 0. Then 25,_3¢:—1) > 1 and since Z5,_z(:—1) + Zso—2(¢—1)-1 < 7 — 1, we have that
Tso—2(t—1)—1 < 1 — 2. 50 %4 p(t—1)—2 + Isg—2(t—1)—1 = . — 2 implies ¢5,—2: > 1. And we
have (28).

We will also need that

sg—2t—1
(29) (K —(so—2t))(n—1)+ > idj=Il+tnforall0 <t <t

7=0
Again we prove this by induction on ¢. If £ = 0, we are done since [ = (k' — s¢)(n — 1)
+ Z;"zzl 2j. So assume that ¢ > 0. Then we have that

sg—2t—1

(K —=(so—=20))(n—1)+ > i

j=0
so—2(t—1)—1

= (K =(so=20t =1 =1 +2n =1+ > 4= (o2t +iso-2et1)
=14+ (t—-1)n+2(n —1) — (Z59—2(t~1)—2 + z'so_Q(:_::;_l), by induction
={+(t—-1)n+2(n—1)—(n —2), by the minimality of ¢,
=+ tn.

So we have (29).

Now for 0 < 7 <, define

;—1 fj=s—2tand 0<t < ¢
i;=S14;+1 ifj=s50—2t—1land 0<¢t< ¢

i; otherwise.
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~]
-1

Then #; € Nforall 0 < j < r (see (28)), 75+ <n—2and i+, <n-—1for
n—1 lf30—9t1>_.

1<57<r—-1. ! 3 .
< j <r—1. Note that 27 _,, o+ 2,3 < {n L9 ifsy—2, =2

We have
sg
(30) Z (a(kl-s)(n—1)+>:j:3 i T Ak'=s)(n=1)+T 0 i§)
s=sq—2¢;—1
= Zc:)(a(k'—(so-2t))(’1-1)+2§-90—2t) i (k'—*(so-zt))("-l)'*‘z::?.;z‘ i
t=
+ Y (’0-2‘)—2 . _ _ ao—2t -1 . )
@k (sg—2t— D) (n-1)+T ;2 i L k'~ (so—2t=1))(n +3072 i;+1

t
= Z((al+tn+1 - al+(t+1)n)
t=0

+(_a(k'-(so-2:))(n—1)+2’°‘2" T @ (sg—2e-1)) (n1)+ 5407202 ,))

1=0
1
< Z((al+tn - a1+(n-—1)+tn)
t=0

H( 0 (so-20) 1)+ 55257 5, T S = (so—2-1) (-5, )
t

‘Z( Ak —(s0-20)(n-1)+725% 7 iy T Ak~(s0—20))(n—1)+ ;257 i

T (s —26-1)) (n= 1)+ 0822 1, T A ko (50 —26-1)) (= 1)+ 515 ;)

S0

= Z (a(k'—s)(n—l)-!- ’:;x,_a(k'—S)(n—l)-!-Z,’-:oiJ)

s=sg—2t;—1
In the last inequality, we used (21).
By 4.1(20), we have the first inequality below and by (30), we have the last inequality

below. Hence,

Qs (n—1)+i SAki(n-1)-1 T Z(a(k'—s)(n—1)+ Thit T Ak —s)(n=1)+ o0 i;)

s=1
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+ (k' — r)a(kz_r_l)(n_1)+z;=o i;. + (k' —_Tr — l)a(kl_,.)(n_l)_i_z;':o ‘}

sq—2t; -2

=@kt D (Qpmgmonrrizts ~ Wi )

s=1

S0
+ Z (a(k'-s)(n—1)+z;;3i;—“(k'—s)(n—1)+25=of3)

s=sg—2t;—1
+ Z (a(k'—s)(n-1)+2;;; ij T Ak ~s)(n—1)+T 0 t})
s=sg+1
+ (k' — T‘)a(k'—r—l)(n—1)+}:'=o i+ (" —7r— 1)a(k'—r)(n—1)+2§=o i
r
<@k(n-1)-1 + Z(a(k'-s)(n~1)+z;;; i; T UK =s)(n—1)+T 50 ij)
s=1

+ (K = r)aw —r-nm-1+T5, i, + (F =1 = Da@—r-1+554

and (27) is satisfied.
CASE B. Now assume that so > 1 and that for all ¢ € N such that 2 < s¢—2¢ (< so),

2sq—2¢)— L(sg—2t)—1 — .
(s0—-2t)=2 (s0=2t)=1 n—3 ifsqg—2t=2.

Let t; be the largest t such that 2 < so — 2¢. So so — 2t; = 2 or 3.
SUBCASE 1. s —2t; =3

As before (see proofs of (28) and (29)), it can be shown that

(31) isp—2¢ > 1 forall 0 <t <t; +1 and that
sg—2t—1
(32) (K —(so—2t))(n—1)+ > ij=I+tnforall0<t<¢ +1.
Jj=0
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Now for 0 < 5 < r, define
;-1 ifj=s—2tand 0 <t <t; +1

=01+ 1 ifj=sg—2t—1land 0<t <t +1

; otherwise.
(Note: 45 =i0+1=12'+1, 27 =4, —1,...). Then ¢; € Nfor all 0 < 5 < r (see (31)),

i6+i'1<n—2andi;+i;—+1<n—1for1§j§r—l,

We have,
(33)
Ak (n—1)+i' — QR (n—1)+i'+1 T Z(a(k'_s)(n_1)+25:3 g T AW =s) -1+ 1))
s=1
t 41
‘z;( (k=(s0=20)) (= 1)+ i, 41 T Fk—(s0—2)) (n—1)+ 257,
t=
F (s —2tm 1) (1) 4+ T2, T E— (021 (-T2 i)
t1+1
= Z((az+m+1 — Qry(t+1)n)
t=0

H 20 (n-1)+ 522575, T Sp—o—2em 1) (- D40+ S0, )

1=0
t1+1
< Z((al—i—tn - al+(n—1)+t'n.)
t=0

+(= Ak~ (30 -26))(n-1)+ 52257 i; T F(hr—(s9—~2t-1))(n— )+io+38 207202 ]))

t1+1
= Z;(“w—(so —20))(n-1)+ 53077 i, T Ak —(s0—20)) (n-1)+ 3257 4,
t=
T k(02— 1)) (=)o + S22 iy T Ak (50— 20— 1)) (a— 1)+ T 402 )

- Z(a(k'—s)(n—1)+2;:é iy T k=) (= 1)+ T jag iy J(Note:s Lt =ti+ L, sp —2t—1=0)

In the last inequality, we used (21).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. A SET OF INEQUALITIES DESCRIBING B(NAg) AND B(cc). 80

By 4.1(20), we have

Gt (n—1)+i'+1 SAks(n-1)—1 T Z(a(u_s)(n_1)+ oty T AR —s)(n—1)+ ;0 '3)

1=0 ]
s=1

+ (K —r)aw—r-in-n+xro 4 + (K =7 = Da@—r)n-1)+T], 4

1=0%;

Hence by this inequality and (33),
Apr(n-1)+i S Qr(n—1)—1 T Ci/(n—1)4i — Ck'(n—1)+i'+1

+ Z(a(kl—s)(n-1)+2 =bit = A(k—s)(n—1)+ T ¥))

1=0";
s=1

+ (K = r)a-r-nm-0+5, 4 + (K = = 1)a@-rjn-1+L;

=0 i;
< Akt (n—1)—1 + Z a(k’—s)(n—l)+2’_0 i a(k'—s)(n—1)+2;=o iJ)
s=1

+ (k' —r)aw_r—i)m-1)+57_y i, T (K" = r = ag —r)n-0)+55_0 i,

and (27) is satisfied.
SUBCASE 2. 50 —2t; = 2

As before (see proofs of (28) and (29)), it can be shown that

(34) iso—Zt 2 1 for all 0 S t S tl,
sg—2t—1
(35) (k' —(s0 —2t))(n— 1)+ Z tj=l+tnforall0 <t <t
Jj=0
(36) and that K'(n — 1) =+ (¢, + 1)n + 1.
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Now for 0 < 7 < r+1, define

(0 ifj=0

7 ifj=1

=011 —1 ifj—-1=s—2tand 0 <t < ¢
tj1+1 if7—-1=s—2t—1and 0<t< ¢ty
(-1 otherwise.

Then ¢} € Nforall0 < j <r (see (34)), 15+ =i’ <n—2, ¢{+15, =¢'+5,+1 <n—1
and ;i +1;,, <n—-1lfor2<j5 <
We have,

(37) Z(aw'—sxn—um’_o fer — U=+ im0 Ty,

s=1

= Z(a(k'—(30—2t))(n—1)+Z(’°—2’) Yo T (s’»’-(So—2t))(n-l)1-Z;°_§2t J
t=0
T4 (s—2t—1 Nn—-1)+38072972 5, T Hk—(so—2t~1))(n—-1)+ ;257" i,-H)

ty
= Z((al+m+1 — QU (t+1)n)

t=0

(=8 (so—20)) (-1 4539052 & T o (sg—26— 1) (n—1)+3429,7792 J))

=0
ty
< Z((a1+tn — Qiy(n-1 )+tn)
t=0
+(— @k —(s0-2)) (n—1)+5 1257 4, T O (sp2t- 1)) (n—-1)+38,729 72 ,))

+ Qri(t+1)n T QU +1)n+1 — Qb +1)nd(n—1) T Cl+(£,+2)n

=;(“(k'—(so— NE-1)+252057 7, T k- (s0—20))(n—1) + 257 i

T O (so-2t-1)) (=1 + 585221, T U (s0—26-1))(n- 1)+ TG )
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+ Arr(n-1)-1 — Qk/(n-1) — G(k'+1)(n—-1)—1 T C(K'+1)(n—1)

= Z(a(k'-s)(n-1)+2;;g i; = Ak =s)(n-1)+T ;5 i5)

s=1

+ Qrr(n-1)-1 = Qk'(n—1) — Gk’ +1)(n—-1)-1 T C(k'+1)(n—1)

In the last inequality we used (21) and in the second to last equality we used (36).
By 4.1(20), we have _

A(kr41)(n-1) S Qi) (n—1)—-1 T Ckr(n—1) — Ck!(n—1)+i"
r+1

+ D (Aprrosnonyrsist i~ Gk H1—o)(n-1)+E;

1=01%; j=0 J)
5=2

+ (K +1) = (r + D)y —(ran-nm-n+5t o

_0]

(K +1) = +1) = D —pe)m-nsrtie

Hence by this inequality and (37),
Apr(n—1)+if < Qpr(n—1)~1 — Qk'(n=1)=1 T Qkr(n—1) T Q141)(n=1)—1 — C(k'+1)(n—1)

+ Z a(u—s)(n—1)+2;_ i A (kr—s)(n—1)+50E) ¢ ')

=14
s=1

+ Z a(k’-s)(n—1)+2’_ou—a(k'—s)("-IHZi:ofJ)
s=so+1

+ (K =) —r -1+, + (K =7 = Daw-ryn-1+50 5

< @p/(n-1)-1 + Z(G(Lr-s)(n—1)+z’_o ij T Ak =s)(n—1)+1 ;- i)

s=1

+ (kl - T)a(k'—r—1)(n—1)+z;=o i+ (k' - T — 1)Cl(k'—r)(n—1)~1—z:;___0 i

and (27) is satisfied.
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CASE C. Now assume that so =1, then 7/ +1 =1+ 1 < ig+7; <n — 2. Hence by

(22) and 4.1(20),
Qi (n—1)+4 < (a(k’—l)(n—1)+i’ - 1) — Q(k'—1)(n—1)+i'+1 T Ck!(n—1)+i'+1

< (a—1)m-1)+i* — 1) + arr(no1)=1 ~ Qk'—1)(n—1)+i'+1,
+ Z(a(kl-s)(n-1)+2;;; i, — Ak =sHn-1)+T ] fz)
§s=2

(k' = r)ag—r—1)n-1)+57pi, — (K =7 — Daw —r)(n-1)+T], 4

and (27) is satisfied.

Finally to finish the proof that o’ satisfies 4.1(20), we need to show that if
E €Ny 1<r <k -1, ig=7,11,...,i, € Nsuchthat ig +7; < (n —2) and i; +
ipr<(n—1)for1<j<r—1l,and [=k(n—1)+i=(K—-r—-1)(n—1)+2 "4}
then

(38)

A (n-1)+i < Qkr(n—1)—1 + Z(a(k'-s)(n-n-;- 2ty T AR =s)(n-1)+ 50 iJ)

1=0 t
s=1

+ (K = r)(a@-r-1)n-1+T)me i, — 1) = (K =7 — L)ag-r)n-1+T5 i+

We consider five cases:

CASE A.i. =n — 2. Note: r > 1 since 79 + ¢; < n — 2. Then by 4.1(20),
r—1
Ak (n—1)+i* < Qk/(n—-1)~1 T Z(a(k'-s)(n~1)+2;;§ ij T Ak =s)(n—1)+350 i)

s=1

+ (K —(r— 1))a(k'-r)(n-1)+2;;g i (k' — T)a(k'_(r-1))(n-1)+2;;g i

r—1

= Qp/(n-1)-1 + Z(a(k’—s)(n—l)-i-Z;;; i; — Ak —s)(n—-1)+T 0 iJ)

s=1
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T e —r)(n-1)+ 5528

7=0

+ (K = 1)@k —r—1)(n=1) 4 o iy+1 ~ G —r)(n=1)+ o0 iy +1)

r—1

< apn-1)-1 + D (Qu—symony+ ki, T Ok (- 1)+ T i)
s=1

T A —ry(n-1)+ 5528

+ (K" = r)((ar—r—1)n-1)+57 g i; — 1) — @k —r)(n-1)+]0 i, )2 DY (22)

= Qp(n-1)-1 T Z(a(k’—s)(n—l)—i-z:;;; i; T K =-s)(n-1)+T ;0 i;)
s=1

+ (K = r) (@@ —r-1)n-1+T]00 s — 1) = (F =7 = Daw—r)a-1+£7,

and (38) is satisfied.
CaSE B.r =1 and ¢, = n—3. Note that ip =7 =0and [ = (K'—2)(n—1)+(n —3).
By 4.1(20),

a1y (n-1) S Qkr+1)(n=1)—1 F Qk'(n—1) — Qk/(n—1) F A(k'=1)(n—1) — C(k'—1)(n~1)+i1+1
+ (k' - 1)a(k’—2)(n—1)+i1+1 - (k/ - 2)a(k'—1)(n—1)+i1+1'
So we have
A (n—1) LA (n-1)=1 T Ck'—1)(n—-1) + g1 = 2a14n + Cgnt1 + Qit2n—1 — Gl42n
+ (K" = 2)(at+1 — ai4n)
<api(n-1)-1 + Q—1)(n-1) + (@1 — 1) — Qi4(n-1)

+ (k’ - 2)((&[ - 1) - a(+(n_1)), by (21) and (22)
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=CQp'(n-1)~1 T C(k'—1)(n—1) — G(k'~1)(n~1)+(n—3)
+ (K = 1)(ar — 1) = (K — 2)aw-1)(n-1)+(n-3)

and (38) is satisfied.

For the rest of the proof, we assume that

n—2 ifr>1
39 i\
(39) o< {n—3 ifr=1

n—2 ifr>1

n—3 ifr=1

Case C. 1, 41,1 < { . By 4.1(20),

r—1

A (n-1)+ir < Qki(n—1)-1 T Z(a(k'—s)(n—w 120i T AR = (n-D+E o i)

s=1

T —ry(n-1)+ 572k i, T G -r)(n—1)+T o 1

H(E =) —r—1)(n-133 Tleo iy+1 — (K =7 = 1)@k —r)(n—1)+ Ty i, +1

< akl(n_,l)_l + Z(a(kl_s)(n_l)+zs—l i — a(k'—s)(n—1)+2;=o i))

1=0
s=1

(& = 1) (@@ —r )-8 5 — 1) — (K =7 = D)a@—ryn-1)+5]04 BY (22)

and (38) is satisfied.

So for the rest of the proof, we will assume that

n—2 ifr>1
40 ey =
(40) tr i1 {n—3 ifr=1.

CAsE D. Assume (39), (40) and that there exists ¢ € N such that 2 < (r+1) -2t (<
(r+1)) and

n—1 if(r+1)—2t>2
2 2

T((rt1)—2t)—2 F L((r+1)}—20)— 1< ]
((r+1)=2t)-2 T 2((r+1)—2t)—1 T+ {n_2 i (r1) — 2t =
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Let ¢; be the smallest such . Below we will need that
(41) i(r+1)—2t Z ]. for a.ll 1 S t g t]_.

Note that (39) and (40) imply that z(-41)—2 = 2,—1 > 1. The rest of the proof is
similar to the proof of (28).

We will also need that
(r+1)—2t—1
(42) (K —=((r+1)=2t))(n—1)+ > dj=Il+tnforall0<t <t
=0

The proof of this is identical to the proof of (29) with so replaced by r + 1.
Now for 0 < j < 7, define
;—1 fj=(r+1)—2¢tand 1<t <t

ii=q4+1 ifj=(r+1)—2t—1land0<t <t

2 otherwise.

Then 7; € Nforall 0 < 7 <r (see (41)), ig+ ¢y <nm—2and ¢+, <n—1 for
n—1 if(r+1)—2t >2

1 <7 <r—1 Note that i ;) s, _p +(p1)-2e,-1 < {n —2 if(r+1) =2, =2

We have

(43) Z (a(k,_s)(n_l)_*_ s—1 & a(kl_s)(n 1)"‘2’—0 i_;)

j=07%j
s=(r+1)—2¢; -1
+(E = r)ag -r—1ym-+5, i + (K =7 = Da@-r)n-1)+5_o 1
Z(“w ~(r+)=2) (=) EEFN T2 T () -2 (- ) ST T,
T (1) -26-1)) (0= D4+T =202 7 Qg (r41)—2e-1))(n—1)+ D (THD "2 ',+1)
T —r)(n-1)+ 520 i; T AR =) (=) + Lo is+1

(K = r)ag—r1)m-n)+5_g iy+1 T (K — 7 = 1)ag—r)n-1)+57_, i;+1
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3

= E (al+tn+l - al+(t+1)n) — Qlyn + Qi
t=1

1=0

+ 2 (O ()2 ety I, F ()2t D) (a0 )
t=1

T o)1)+t s, T (k" —r — 1)(ar41 — @14n)

ty

< Z(al-i-tn - al+(n—1)+tn) — Qgn—1 + (a1 — 1)

t=1

+ Z(_“(k'—((r+1)-2t))(n—1)+z§'_’a"‘2‘ o T A () —2t— ) (- 0202 )
t=1

Ty -4z, T (K" —r—=1)((ar — 1) — ary(n-1y)

Z (a(u-s)(n-1)+z=:; i; T Ak =s)(n-1)+T ;0 fJ)
s=(r+1)—2¢; -1

i

= (K =r)(a@-r-n@m-10+5, 5 — 1) + (' = r — Daw—r)m-1+57,,

In the last inequality, we used (21).
By 4.1(20), we have the first inequality below and by (43), we have the last inequality

below. Hence,

Ap'(n—1)4+1 <ak’(n—1) 1+ Z(a(k’—s)(n—l)-}-z:’ L _a(k’—s)(n—l)+2"_o _'1)

=0 J
s=1

+ (l" - r)a(k'—r—l)(n—1)+z;—0 iy L+ ('l" -Tr—= l)a([\,’—r)(n-—lH-Zr_o .IJ

(r+1)—2¢; -2
=Qp(n—1)—1 T+ Z (a(k'—s)(n-—l)+ Zei T AR =) -1+ L, iJ)

s=1
r

+ Y (A ey Sist i — Ok —s)(ne1) o £

3=0 5
s=(r+1)-2¢, -1
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+ (K = r)ag—r-nn-n+si, 4 + (K —r = Daw—ryn-n+z5_, #

j=0"y

Sak’(n—l)—l + Z(a(k’—s)(n—1)+ ;;3 iy a(k'—»s)(n—l)+2;=o i,)

s=1

+ (K =)@ —rt)n-1)+57 5, — 1) + (K =1 = D)aw—ry(n-1)+57_, 4,

and (38) is satisfied.
CAsE E. Now assume (39), (40) and that for all ¢ € N such that 2 < (r+1) —2¢ (<
(r+1)),

. . n—2 if(r+1)—2t>2

Y(r+1)=20)-2 T H(r+1)-20)-1 = {n -3 if(r+1)—2t=2
Let ¢; be the largest ¢ such that 2 < (r +1) — 2t. So (r +1) — 2¢t; =2 or 3.
SUBCASE 1. (r+1) —2t; =3

As before (see proofs of (41) and (29)), it can be shown that

(44) t(r41)-2¢ = L forall 1 <t <¢) 4+ 1 and that

(r41)—2t—1

45) (K —((r+1)—=2t)(n—1)+ > dj=l+tnforalll<t<t +1
7=0
Now for 0 < 7 < r, define

!
1. =

{ij_l ifj=(r+1)—2and 1 <t <t +1
J

i;+1 ifj=(+1)—2—1land0<t<t +1
(Note: 45 =i0+1 =141, 1y =4, —1,...). Then ¢; € Nfor all 0 < 7 < r (see (44)),
ig+iy<n—2and i+, <n—-1lforl1<j<r—1

We have,

(46)

A/ (n—1)+i' — Qk!(n—-1)+i'+1 T Z(a(k'-s)(n—1)+2;;g it T Ak =s)(n—1)+L =0 "3)

s=1
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+ + (k - T —= ]-)a(L'—r)(n—l)+2r i

_01

(K = Pty
t1+1

= ;(“(k'—((r+1)—2t))(n—1)+z§‘_'a‘”'2"“ G+ T AR -20) (- )+ ST T
FC o ()2 1) (a1 o+ I TI2 ¢ T B (1) —2e— 1)) (1) 4 LD =2 5, 1)
T o)1)+ Tt i T AR (=T i+l T LR —r 1) (= )+ T i, +1

F(E =7 = 1)@k —r 1) (= 1)+ 57 541 — G —r) (= 1)+ g i5+1)

ti+1

= E (a14tnt1 — Qlp(t41)n) — Clgn + Qig1
t=1

ti+1
+ Z( a(k’ ((7‘+1) 2:))(.’1 1)+Z(f+l)—2t . + a(k/_((r+1)_2t_1))(n_l)_*_l-o_*_z‘('(:l:;l-1)—2:)-—2 i_;)

+a(k'—r)(n-1)+z;;; i + (K —r— 1)(ai+1 — @i4n)

t1+1
S Z(al-i-tn - al+(n—1)+tn) — Ql4n~1 + (al — 1)
t=1
t1+1
+ ;(_a(k'—((r+1)—-2t))(n—1)+Z§'_461)—2c .+ a(k’—((r+1)-2¢_1))(n_1)+,-0+2§(=r1+1)-2:)-—2 :‘j)

te -+l T (' —r = 1)((a1 — 1) = @14n-1)

= Z(a(kl—s)(n-1)+z;:g i; T Ak =s)(n—1)+ =0 i)

s=1

+(K = )@@ —r-1yn-1)+57, 5, — 1) + (K =7 = Daw _rm-n+s7_, 5,

In the last inequality, we used (21). By 4.1(20), we have

At (n-1)+i'+1 SApr(n—1)-1 T+ Z(a(k'_s)(n-m- 2sail T AR —s)(n—1)+ 5, ig)

s=1

+ (K = r)agw—r-1)n-0+57, 4 + (K =7 — Daw—r)(n-1)+70 7
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Hence by this inequality and (46),
Cr(n—1)+i" S Qkr(n—1)—1 F Q' (n1)4i' — Cki(n—1)+i'+1
+ Z(a(k'-s)(n—1)+2;;; # 7 Gk =s)(n—1)+2 5, f§)

s=1

+ (K = r)aw—r-nm-1+s, 4 + (K =1 = Da@-r)m-1)+5;

=0 i‘;
< aprgn-1)-1 + Z(a(k'—s)(n—l)+ 2ai; T QR =s)(n=1)+35 20 i)
s=1

+ (K = r)(ew—r-n-1+55,5 — 1) + (K =1 = Daw-nm-1+5_, 4,

and (38) is satisfied.
SUBCASE 2. (r+1) —2t; =2

As before (see proofs of (41) and (29)), it can be shown that

(47) i(r+1)—2t Z 1 fOI‘ all 1 S t S tl,
(r+1)—-2¢t—1
(48) K —((r+1)=2))(n—1)+ >  ij=l+tnforall0<t<t
7=0
(49) and that k'(n —1) =+ (¢ + 1)n + 1.

Now for 0 < 7 < r + 1, define

0 if7=0

' if;j=1

tjai—1 ifj—1=(r+1)—2tand 1<t <t
tjiaa+1l ifj—1=(r+1)—2t—1and 0 <t <4

[N

Then ¢; € Nforall0 < j < r (see (47)), ig+i] =1 <n—=2, i+, =i+i1+1l <n—

and 7; +1;,, <n—1lfor2<j<r.
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We have,

(50) D (a(ms)(no1)+ Dm0 ~ Gprma)mo1)+ 1l 2y,

s=1
+ (K = e —r-1yn-1+ 5 i1 — (K — 7 = L)@@ —r)(n-1)+ 57, i, +1
Z(a(k' ((r+1)=20)(n-1)+TFD=20-1 ) T G ((ri1)—20))(n-D)+ZTHD 2,
T (1) =20-1)) (nm D+ Fn =292 7 Qi ((r+1)—2t—1)) (n—1)+ ¢ THD 72! ',+1)

Fa (ke —r) 1)+ i, T U =)D+ g 1 T AR —r=1)(n=1)+ g i, +1

HE =1 = 1) (@) (=14 g (541 — G —r)(nm 1)+ g iy +1)

_Z( Gk ((r+1)=-20)) (n—1)+ T THD 72 +a(k'-((r+1)—2t—1))(n—1)+2§‘;3‘"'2"‘2f,)

ta -+t T Z(al+tn+l — Qup(e41)n) — Glen T Gig1
t=1

+(k — 1 — 1)(ars1 — aisn)
<Z( Qirr— ((r1)=20))(n=1)+ TEN 724 +a(k' —((r+1)=2t=1))(n—1)+ T FV 720 =2 ‘,)

Ta(k'—r)(n—l)-i-zr_o i + Z(al+tn - al+(n—1)+tn) — Ql4n—1 + (al - 1)
t=1
Fa1+(t+1)n — At +1)n+1 — C+(ti+1)n+(n—1) T AU+(t+2)n

+(k"—r—=1)((ai = 1) — azgn-1) by (21) and (22).

In the last inequality we used (21) and in the last equality we used (49).
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By 4.1(20), we have

A1) (n-1) < Qkrg1)(n—1)—1 T Ck/(n—1) — Ck!(n—1)+i’

r+1
+ Z(a(k’-f-l-s)(n—l)-f- sait T AR HL=s)(n-1)+ ], ',)
s=2

(4 1) = (r + D)aesn—trr-nim-n+S55 5

3=0 "3

+ (K +1) = (r +1) = ey —re1)m-n+57t

=0 1j
Hence by this inequality and (50),
A (n—1)+i S Ck/(n—1)-1 — Gk'(n—1)—1 T Qkr(n—1) T C(k'+1)(n—-1)—1 — C(k'+1)(n—1)
+ Z(a(k'—s)("—l)i:_ T Ak—s)(n-1)+ 5 i3)

s=1

+ (K = r)ag-—r-1n-1+Tg i1 — (K =7 = D@ —r)(n-1)+ 55, i, +1

> l=o

< Gp/(n-1)-1 + Z(“(L'—s)(n—1)+2’_o i — AE=s)(n—-1)+ ;=0 i)

s=1

+ (K = r)(a@-r-1)(n=1)+=7mi, — 1) + (K =7 = Daw—rn-1+5], 4,

and (38) is satisfied.

4.3. Corollary. By C &(By)

Proof. (The proof is similar to that of Lemma 2.2).

Let a = {a;}s>0 € Sn. We use induction on 2320 as toshow that b =u, ®a®
0@ tna, € ®(Bn). If Zszo as = 0, since a; € N for all s, then a;, = 0 for all s, so
b=2((¢,...,9)) € ®(Bn). If 3 50as #0,let a = (... ,0,a;,... ,a0) with a; # 0
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then as in the second part of the proof of Lemma 2.2, there exists a k£ € I such that
€x(b) = (U0 ® a®0) @ tnr, = Uoo ®E(a®0) Qtya, #0. éx(a®0) =é(a)®0
(see the beginning of the proof of Lemma 4.2). By Lemma 4.2, é&(b) € By. By
induction, &:(b) € ®(By). So b = fi(éx(b)) € B(By).

4.4. Lemma. Letk € N>, r € Nsuchthatl <r < k-1, ko=k, ky,... .k €
N, i =do,...,ir € I\N{n — 1} such that for 1 < s <7, (keu; —1)(n — 1) +4,_; <
ks(n — 1) +1,, and c € Ny, such thatc < k —r.

If Y = {y:}+>0 € By and for s > 0, a; is defined as in 3.17, then

Z(a(k,_l-l)(n—l)ﬁ,_l — Gk, (n=1)+4is ) FCO(Kr—1)(n=1)4ir — (€ — 1)@k (no1)4i,

s=1

>H{t:t=k—1 and yr—, < —i}.

Proof. Note l: Forall 1 <s<r, ksyy —1 <k,.
Note 2: Foralll1 <s<r,(k—1)—s<ks_1—1. (Proof: fs=1,k—2< k—1.

Assume s > l;then (A —1)—s=(k—1)—(s—-1)—1<ksp —1—-1<ks;—1)

Z (a(k,_.l-—l)(n—l)-i-i,_l - ak,(n—1)+i,)
s=1
+ca(e—1)(n—1)+i, — (¢ = 1)@k, (n—1)+i,
= > (#{t:0<t < (kemr —1) and ye < (t— (kemy — 1)) (n — 1) — 451}

s=1

—#{t:0<t<ksand y: < (t — ks)(n —1) —i,})
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+ea(,—1)n-1)+i, — (¢ — 1) @k (n—1)+i,

= i(#{t:o_{tglc——l—sandyt<(t—(ks_1—1))(n—1)—is—1}
——#{t:OStSk—-l—s and ¥ < (t —ks)(n — 1) —is})
+#{t:0<t<k—1-randy < (t— (ko —1))(n — 1) — i,y }
—#{t:0<t<k—-l—-randy <(t—k)n—-1)—i}
LStk m s < £ < (ba — 1) andye < (¢ = (ks — D)(n = 1) = is}

s=1

—#{t:k—s<t<k, and y. <(t—ks)(n—1)—1i})

+eak,—1)(n-1)+ir — (€ — 1) @k (ne1)+ir

#{t:0<t<k—-1l—-randy <(t— (k-1 —1))(n—1) —i_}

v

—#{t:0<t<k—l-—randy <(t—k)(n—1)—1i}
+#{t:t=k—1and y: < —1}
+§(#{t:k—s—l§t§ks—landyt<(t—(ks‘1))(n—1)—is}
=1
—#{t:k—s<t<k,and y. < (t —k:)(n — 1) —i,})
—#{t:k—r<t<koandy<(t—-k)n-1)—i}
te#{t:0<t <k —landy < (t—(k —1))(n—1) =4}

(=) #{t:0<t <k andye < (t— k) (n—1) — i}

(Here we have used the fact that (ks—y — 1)(n — 1) + 451 < ks(n — 1) + 45.)
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= #{t:t=k—1andy < —i}
+§(#{t=k—sstﬁksandyt-1<(t—-ks)(n—1)—is}
=1
—#{t:k—s<t<k andy <(t —ki)(n —1) —15})
feft{t:0<t<k —landy <(t—(k —1))(n —1) —i,}
—c#{t:1 <t<kandy <(t—k)(n—1)—1¢}
—c#{t:t=0and yo < (t — k.)(n — 1) —i,}
+#{t:0<t<k—1l—randy < (¢t — (ko1 — 1))(n — 1) —4,_1}
> #{t:t=k—1and y < —17}
te(#{t:1<t<k andyy < (t —k)(n—1) —i,}
—#{t: 1<t <k andy < (t—k)(n—1) —i})
—c#{t:t=0and yo < (t —k)(n—1) — i}
+#{t:0<t<k—1-randy < (t— (ko1 —1))(n = 1) —ir_y}
(by 3.16(i))
> #{t:t=k—1 and y. < —i}
—c#{t:t=0and yo < (t — k. )(n — 1) — i}

+#{t:0<t<k—1l-randy <@ — (ko1 —1))(n—1)—i._1}

(by 3.16(i) )
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> #{t:t=k—1and yry < —1},
since by 3.16(i), if yo < —k.(n — 1) — 7., then for all t € N,
ye < tn—1)+yo
< (t—=k)n—-1)—1,
< (t— (k1 —1)(n—1)—12._;y by assumption.
Hence, in this case

#{t:0<t<k—-1l—randyi<(t— (b1 —))n—-1)—i1}=k—-72>c

4.5. Lemma. If Y € B, and for s > 0, as is as defined in 3.17, then
{as}szo € 5.

Proof. Let Y = {yx}z>0. For k € Nand ¢ € I\{n — 1},
agn-1)4i = #{s:0<s<kand y; < (s —k)(n — 1) —i}.

(1) a0 < 1.

(2) ForkeNand 0<:i<n-3,

Arn-1)t+i+1 = #{s:0<s<kandy,<(s—k)(n—1)—i—1}

Il

#{s:0<s<kandys; <(s—k)(n—1)—1}
—#{s:0<s<kandy; =(s—k)(n—1) —i—1}

< Qr(n-1)+i-
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(3) For k € N3y and ¢ € I\{n — 1},

I

Qr(n—1)+:

#{s:0<s<kandys, <(s—k)(n—1)—i}

= #{s:1<s<kandy, <(s—k)(n—1)—1d}

+#{3;3=Oa.nd y0<_k(n_1)_i}

= #{s:0<s<k—-1land ys41 <(s—(k—1))(n —1)—1i}

+#{s:s=0and yo < —k(n —1) —i}

< au-1)n-n4i + F{s:s=0and yo < —k(n — 1) — i}, by 3.16(i)

< Q-1)(n-1)+i + % Fk(n—1)~1,

since if yg < —k(n — 1) — 1, by 3.16(i),

Ys <s(n—1)4+yo < (s—k)(n—1)—i forallseN;

Hence apn_1)-1 =

< (s—k)(n—-1)+1.

Q(k-1)(n—1)+(n+2)
#{s:0<s<k—-landy,<(s—(k—=1))(n—1)—(n—2)}
#{s:0<s<k—-landy,<(s—k)(n—1)+1}

k.

(4) ForkeNy;, 1 <r<k—-1,io=t€ \{n—1}, 721,...,i- €N,

apn-1)+i = FH#{s:0<s<kandy,<(s—k)(n—-1)—1}
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= #{s:0<s<(k-1)and y, <(s —k)(n —1) — 1}
+#{s:s=kand yr < —1}

< Qk-1)(n-1)+(n-2) + #{s : s = k and yr < —i}
since —(n—2)> —(n—1)—1

< agn—t)-1 +#{s:s=k—1and yp_y < —i} by 3.16(i)

< Gga-1)-1 t+ z (a(k-s)(n—1)+2;;g i 7 Qk=s)(n-1)+3 ], iz)

s=1

+(k = 1)ak—r1) -1+ o iy
—(k =7 = 1)agg—r)n-1+Tjoy iy

by Lemma 4.4.

4.6. Corollary. ®(By) C By for N € N.

Proof. f Y = (Yi,...,Yn) € By, then for 1 < 7 < N, Y; € By, and for s € N,
as(Y) = Z;V:I as(Y;). By Lemma 4.5, for 1 < 7 < N, {as(Yj)}s>0 € Si1. Hence
{a;(Y)}s>o € Sn. The Corollary now follows from the definition of ¢ and the

definition of By .

4.7. Theorem. ®(By) = By for N € N. Hence if . and ! are as in 3.17,
then (¥, ® idnag) © TNa.(B(INAo)) = By for N € N.

Proof. (Corollaries 4.3 and 4.6 and Theorem 3.32.) o
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4.8. Theorem. Let ¢« = (...,0,1,...,n — 1,0,1,...,n — 1,0) and
=(n-1,...,2,1,n—1,...,2,... ,n—1,n—2,n—1). Then the image of ¥, is

the set of all elements of the form
Uoo @ -+ - @ bp_1(—a;) ® bo(—aop)
®(bn-1(—a1(n-1)) @ - - . ® ba(—a12) ® bi(—a1)) ® (brn-1(—a2(n-1)) ® - .. @ bz(—a2))
® ... ® (ba—t(—a(n-2)(n-1)) ® bu-2(—a(n-2)(n-2)) ® bn-1(—A(n-1)(n-1))

such that
0 < akn—1) S @k(n-2) £ ... Sapk forl <k <n-—1,
Ci(n-1)+i < Gk(n—1)+i—1 f K € N and © € I\{0,n — 1},

1 ) .
Ak(n-1)+i S Th(n-1)—1 + Gk—1)(n—1)+i U K € N3; and i € [\{n — 1},

Ap(n—1)+i < Qk(n-1)-1 + Z(a(k—s)(n—1)+ iy T Ak=s)(n—1)+E o0 i)
s=1
+ (k- r)a(k—r—l)("—1)+2;=o i —(k—r— 1)a(k—r)(n—1)+2;=o i
ifk €N>p, re Nsuch that 1 <r < k-1, i =1do,41,...,5 €N,

ot <(n—-2), andij+ijpi <(n—1) for1 <j<r—-1

Proof. (Theorem 2.3, Lemma 2.5, Theorem 4.7 and Corollary A.4).

4.9. Here we show that every inequality in 4.1(18) is needed to define Sy (for
N >1).
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Let £ € Nand ¢ € I\{0,n — 1}. For s € N define

—i—1 f0<s<k
Ys 1= .

0 otherwise
Then Y := {ys}s>0 € By. For t € N, let a; := a,(Y") be as defined in 3.17. Then

1 ft=kn-1)+7for0<k'<kand0<j53<:
a; = .
¢ 0 otherwise

By Lemma 4.5, {a:}t>0 € S1 C S, i-e. {a:}i>0 satisfies 4.1(17)-(20).

— ift=kn-1  — 1
For t € N, define a; := a—1 if (n )+ . Note that since
a; otherwise
@p(n-1)4i-1 = 1, a; € N for all t € N. We will show that {a}}:>0 satisfies all of

the inequalities in 4.1(18)-(20) except for

(51) Un-1)+i < Th(not)+izt-

The only inequality in 4.1(18) in which a;c(n_l)ﬁ._l appears in the right hand side
is (51), so all of the other inequalities are satisfied by {a}}:>0. Since aj(, ;),; =1
and a;c(n—l)-’;—i—l = 0, 51 is not satisfied.

Since aEk+1)(n—1)+i—'1 = 0, then

1
aEk+1)(n—1)+i-1 < kT 1azk+l)(n—1)—l + a;c(n—l)—*-i—l'

This is the only inequality in 4.1(19) in which a;c(n—1)+i—l appears in the right hand

side; hence all of the inequalities in 4.1(19) are satisfied by {a}}:>0-
Now let &' € N>, 1 <r <k —1 and i9,21,... ,2r € Nwith 0+ 7; <n -2 and
so—1 -

ij+ij <n—1if1 <j<r—1. Suppose k(n—1)+i—1 = (K —so)(n—1)+3 327" i;

for some 1 < sg < r 4 1. Then
sg—1

kn—1)+i = (K —so)(n—1)+ Y i +1
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< (K =so)(n—1)+(so—1)(n—1)+d0+1
= (K=1)(n—-1)+ig+1

< (K -1)(n—1)+(n-2)

< K(n-1)

Hence a}c,(n__l)ﬁo = Qp'(n—1)+i, = 0-
If Sg = 1, a(k'—l)(n—l)-{-io = 1, and if 2 S So S r + 1, a(k'—so)("l—l)-l-z::g__;l i, —

a(k'—so+1)(n—1)+2j‘i;‘i,- =1—-0=1. Also,forall1 <s <, =k —s)(n=1)+ ¥ 2o i, T

a(k/_(s+1))(n_1)+zj=o i 2 0. So in either case,

Z:=1(a(kl_s)(n_1)+ por S T Ak —s)(n—1)+2] 0 i,) + (K — T')a(k'—r-l)(n—l)+2,'=o i

—(k -1 — l)a(kf_r)(n—1)+2_f=o i
_ r—1
= Q(k'—1)(n—1)+io T Zs=1(_a(k'—s)(n-1)+25=0 i T OG-+ T 2

+(E = )@@ -r-1)(n-1)+ 7o i, — Ck—r)(n=1)+ 57y i;)

Hence

-
7 _ ’ I !
Qrn1)tip = 0 < Qprnoy)—1 + Z(a(k’—s)(n—1)+ par S A (k' =s)(n—1)+T 30 i
s=1
X !
+ (K = r)ag e+,

. (]» —_7r - l)a(k/_r)(n—l)'l-z;.:o 37

and {a}}i>o satisfies 4.1(20).
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4.10. Here we show that every inequality in 4.1(19) is needed to define Sy

(N >1). Let k€ Ny; and 7 € [\{n — 1}. For s € N, define

—(k-1)(n—-1)—2—-1 ifs=0
ys=<(s—k)(n—-1)—1—1 f1<s<k
0 otherwise.

Then Y := {ys}s30 € Bi. If a; = a,(Y), t €N, is as defined in 3.17, then

t|+1 if0<t<(k—1)(n—1)+i

n—1

ar =< =] f(k—1)(n—-1)+i<t<kn—1)+i

0 otherwise.

By Lemma 4.5, {a:}e>0 € S1, i.e. {a:}:>0 satisfies 4.1(17) - (20). For ¢ € N, define

a,_{at—l ift=(k—1)(n—1)+i
=

a; otherwise.

Note that a; € N for all ¢, since a@x—1)n-1)+i = k = 1.

We will show that {a}}:>o satisfies all of the inequalities in 4.1(18) - (20) except

for
9 14 ]' 14 7
(52) U(n-1)4i = % Fk(n-1)~1 t Q1) (n-1)+i-
If 2 75 n — 2, then a;:(n—l)—l = Q(k-1)}(n—-1)+(n=-2) = E—1. If i = n-— 2, then

a;:(n—l)—l = aEk—l)(n—1)+(n~2)

and al(k-l)(n-l)—i-i =k — 1. So in either case, 52 is not satisfied.

= Qk-1)(n—1)4(n—2) — 1L = k — 1. Also, aj(,_1),; = k

Now if j € I\{n—1},i =n—2and j #1, then a3, _,); = k and afy_y_1)4; =

k. Hence aj(,_1y4; < TAk(n-1)-1 + azk_l)(n_l)ﬂ.. So the only inequality in 4.1(19)

which is not satisfied by {a;}:>0 is (52).

Now if 1 < n — 3, aEk—l)(n—1)+i+1 =k —1 and aik—l)(n—1)+i =k — 1. So all of the

inequalities in 4.1(18) are satisfied by {a}}:>o.
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Now let ¥’ € N>,, 1 <r <k —1 and 2,%1,...,%r € N with 20 +7; <n —2 and

it <(n—1)if 1 <j<r—1. We want to show that

’ ’
(53h;:’(n—1)+i < a;c'(n-—l)-l + Z(a(k’—s)(n—l)-f-Z’_l i a(lc’-s)('rl—l)-i—2;=1 i_,)

s=1 =04
+(k" — r)azk’—r—l)(n-—l)+z:;=o i T (kl -Tr = l)azk'—r)(n—l)-{-z;:o i-

We consider three cases.

Case 1 (k—1)(n—1)+:=K(n-1)—-1.
Then &' = k and 7 = n — 2. Hence a;c(n_l)+{o = Qg(n—1)+ic = k and a;c,(n_l)_l =

k —1. By Lemma 4.4,

r 7 ’
Zs:[(a(kl_s)(n—l)-{-z;;é i a(k"s)(n-l)‘*{:;:o iJ)

o ’
i, K = =)y,

+(k" — r)a’zk’—r—l)(n—-l)-i-z:;
= Z:=1(a(k'-s)(n—1)+z:;;g i; Ak =s)(n—1)+T 50 r})
+(K' = r)ag—r—nyn-1+T7_ i — (K —7r = 1)a@—r)(n-1)+0 iy
>#{t:t=k—1and yx—y < —2} = 1.
Hence (53) is satisfied.

CASE2 (k—1)(n—1)4+i= (K —-1)(n — 1)+ 1.
Then k = k" and io = i. S0 @ur(n—1)4i, = k and afu(,_;y_, = k— 1. So to get (53),

we need to show that

- ! 4
(54) Z ( k—s)(n—-1)+TI¢ i) _a(k—S)("-l)‘*’E;:x"J‘)
s=1
+ (k- r)azk—r-l)(n—l)-i-z:;:o T (k—r— l)azk—r—l)(n—l)i-Z;:o i

> 1.
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Let Y’ be the tableau obtained from Y by removing the last two boxes of the first
two columns of Y. So Y’ = {y.},>0, where

—(k—=1)(n—-1)—1 ifs=0orl
YYo= (s—k}(n—-1))—i—-1 if2<s<k
0 otherwise.

Then Y’ € B; and if a} := a,(Y’) for t € N is as defined in 3.17,

|t +1 if0<t<(k—1)(n—1)+3

S n‘j fk—-—1)(n-1+:i<t<k(n-—1)+z
‘ k-1 ift=4k(n—1)+1
0 otherwise.

Note that if 0 < ¢t < k(n — 1) +1¢, af = a}, and that forall1 <s < r,

s—1
(k—s)n—1)+Y i;<k(n—1)+i.
7=0
Hence by Lemma 4.4,
4
Z(a,(k—s)(n—l)+25;g T Gk=s) -1+, iJ)
s=1

+ (k_r)azk-n-l)(n—l)+2;=o i~ (k—r— 1)aik-1)<n—1)+z;=o i
> #{t:t=k—-1and y,_, < —:i}
> 1.

Hence (54) and (53) are satisfied.

CAsE3 (k—1)(n—1)4+t= (K —s0)(n—1)+ Z;‘_’__Bl tj for some 2 < s <+ 1.

IfOSSSSQ—?.,

so—1

k(n—1)+i = (K —so+1)(n—1)+ i

=0
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= (k’—s)(n—1)+iij—(so—s—l)(n—1)+iij

< (k’—s)(n—l)-i—in

=0

< (k'—-s)(n - 1) +iij'

7=0

Thus

0= Crr(n—1)+i0 — Ck'(n-1)-1 = a(k"’s)(“"'1)'*'25';é i

= Q_s)n-1)e5?_yi, forall 1 <s <so—2.

So we need to show that

! !
(55) Z (a(kr_s)(n_1)+g;;;;, = A (= 1)+ T img i)

s=sg—1

+ (k' — 'I‘)al(kl_,-_1)(n—-1)+2;=0 i

»‘I !
- (K'=r— l)a(k'—r)(“_l)+z:;=° 4

A%

0.

SUBCASE A Suppose sg < 7.
Let £” € N and i” € I\{n — 1} be such that (¥’ — (so —1))(n — 1) + Zj?__f i; =
k(n—1)+1i—i4-1 =k"(n—1)+7". (Note: K" >k —sg+12k'—7+12>2)

If iso—l S 'i, then li.'” = k‘, =1 iso—'la and Yo = Y = ——1< —”.

If iso—-l > 7:, then k" = k — 1, " = (n - 1) + 1 — isa—la and Yt = Yk-1
—~(n—1)—i—1< —i"

So in either case, #{t:t = k" and ypr—; < —1"} = 1.
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By Lemma 4.4,

r

Z (a(k'-s)(n-1)+2;;g.',- - a(k’—s)(n—1)+Z§=ofj)

s=sg—1

+ (k’ — r)a(kl_r_l)(n—l)+z;=o i

— (K = = Dag 1455

Y

and (55) and (53) are satisfied.

SUBCASE B Suppose s =7 + 1.

Since (k —1)(n—-1)+i<k(n—1)4+:i—1i < k(n—1)+71,

) Iy _JE—=1 ifi >
Hr=r)m-)+5254; = Chln=Di—ie = if i <.

Then

’ i ’ ’
Uporyn-rirrrzt; T F =) royois, s — Ak -r (04T )

 JE-1+ (K =) k—1—k) ifi >
T kE+ (=) (k—-1—k) ifi, <1

 fk-1—(—r) ifi>i
T \k—(K—=r7) if i, <i

> 0,

since (k' —r)(n — 1) + Z;=o i; = k(n — 1) 4+ ¢ implies ¥ — r < k and if 7, > ¢,
k' —r < k. So (55) and (53) are satisfied.
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Appendix A

In [Cli98] and [Lit98], the authors prove that if g is of type A,—; and ¢ =
(n—1,...,2,1,n—-1,...,2,...n—1,n —2,n — 1), the image of U, is the set of all
elements of the form
(56)

Uoo®@(bn-1(—a1(n-1))®. . .® ba(—a12)® b:1(—11))B(br-1(—C2(n-1)) D . . . @ ba(—a22))
®...Q(baci{—a(n-2)(n-1)) @ ba_2(—a(n-2)(n-2))) @ bn_1(—C(n-1)(n-1))
such that

(57) 0 < agn-1) < @gn-2) <. Sapefor 1 <k<n-—1

In this appendix, we use our results from Chapter 2 to give an alternative proof

of this result.

A.l. Letg=sl,, n>2and [ ={1,2,... ,n—1}. In [KN94], it is shown that

the crystal graph of B(A;) is given by ~ 2, ... "~} [a] and that
if we view B(NA,;) as a subset of B(A;) ® --- @ B(A;) (N — times), then

B(NAy) ={[a1]® - ®[an]:for L<j< N, e;€Nandn2>a; > ... 2ay 2 1}

108
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A.2. Lemma. Define the map ® : B(NA;) = B(oo) @ B, @ Tna, by, for

nza >...2ax 21,

P([a]® @[N] = oo @ buoi(—cno1) ® ... @ bi(—c1) B0 @ twa,

where for 1 < k < n—1, ¢ := #{t : ax > k}, and 0 is as defined in the last
paragraph of 2.1.
Then & = (\I‘L X idNAl) O TNA; -

N

Proof. Let b = [a]|®---® € B(NA;). Then wt(b) = >°i_; wt(fa;]) =
Z?:l(Al - Zlgk@, ar = NA; — E;\;1 E15k<a, ap = NA; — 22;11 croy. Hence

(¥, ®idnra, ) 0 Tava, (b) = ®(b), since ®(b) is the only element of {uc} @ Bro1 ®--- ®
B; ® {0} ® Tva, whose weight is equal to the weight of b.

A.3. Lemma. Im® = {1 @ bni(—Ca1) @ -.- @ b1(—c1) @0 @ ta, :

for1<j<n-—-1,c;eENand N>c; > ... > cay >0}

Proof. Let S be the set in the right hand side of the above equality. Let n > a; >
...>ayx > 1. If T is the Tableau with a; boxes in the first column, a, boxes in the

second column, ..., and ey boxes in the N** column, then for 1 < j <n —1,
¢j :=#{t:a, > j} = # of columns in T which have > j boxes
= # of boxes in the (7 + 1)* row of T.

Hence N > c;>c¢;>...2cp1 20, and Im® C S.
Nowlet N > ¢y > ¢y > ... > ¢y > 0.If T is the Tableau with IV boxes in the 1°¢

row, ¢, boxes in the 2™ row, ... , and c,_; boxes in the n** row, and iffor 1 < ¢ < N,
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a; :=# of boxes in the ¢** column of T, then n > a; > ... > axy > 1 and for

1<j<n-1,
c; = # of boxes in the (7 + 1) row of T
= # of columns in T which have > j boxes = #{t : a; > j}.

Hence @([a1|®- - -®[an]) = Ueo®bn_1(—cn-1)®...®b1(—c1)®0QtNa, 2and § C Imd.

a

A.4. Corollary.[Cli98] ImV, is the set of all elements of the form in (56) which
satisfy (57).

Proof. (Induction, Theorem 2.3, Lemma 2.5, Lemma A.3 and Lemma A.2.)
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By, 70
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oi(Y), 34

U'J(a), 31

(lower) crystal base, 7

crystal base, 8

full embedding, 12

strict morphism, 12
subcrystal, 11

i—coloured corner , 31
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crystal, 9
crystal graph, 10
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