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Abstract

Metamaterials are artificial media designed to achieve exotic electromagnetic

responses that are not available in conventional materials. Engineering the

black body thermal emission using metamaterials promises to impact a va-

riety of applications involving thermophotovoltaics, energy management and

coherent thermal sources. Metamaterials with hyperbolic dispersion exhibit

a broadband singularity in the bulk photonic density of states, which can be

thermally excited and utilized in various thermal applications.

In this report, we give a detailed account of equilibrium and non-equilibrium

fluctuational electrodynamics of hyperbolic metamaterials. We show the uni-

fying aspects of two different approaches; one utilizes the second kind of fluc-

tuation dissipation theorem and the other makes use of the scattering method.

We show the existence of broadband thermal emission and heat transfer be-

yond the black body limit in the near field. This arises due to the thermal

excitation of unique bulk metamaterial modes, which do not occur in conven-

tional media. We analyze the near-field of hyperbolic metamaterials at finite

temperatures and show that the lack of spatial coherence can be attributed to

the multi-modal nature of super-Planckian thermal emission. We also adopt

the analysis to phonon-polaritonic super-lattice metamaterials and describe

the regimes suitable for experimental verification of our predicted effects. The

results also reveal that far-field thermal emission spectra are dominated by

epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff’s
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laws. Our work should aid both theorists and experimentalists to study com-

plex media and engineer equilibrium and non-equilibrium fluctuations for ap-

plications in thermal photonics.

In the second part, we describe our discovery of a singular resonance with

infinite quality factor which occurs between moving plates. Conventional res-

onators fold the path of light by reflections leading to a phase balance and thus

constructive addition of propagating waves. However, amplitude decrease of

these waves due to incomplete reflection or material absorption leads to a finite

quality factor of all resonances. Here we report on our result that evanescent

waves can lead to both a phase and amplitude balance causing an ideal and

Fabry-Perot resonance condition in spite of material absorption and non-ideal

boundary discontinuities. The counterintuitive resonance occurs if and only

if the Fabry-Perot plates are in relative motion to each other separated by a

critical distance. We show that this singular resonance can be thermally ex-

cited between moving plates separated by a small gap causing a large number

of photons to be exchanged between them. Furthermore, we also show that

this resonance fundamentally dominates all non-equilibrium interactions (mo-

mentum and heat transfer) between the moving bodies. Our result is valid in

the relativistic limit considering polarization mixing and also reveals the im-

portant role of the singular resonance on the fluctuational drag force between

moving bodies in the T→0 limit (quantum friction).
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Lü and Gewen Guo and my younger sister Qi Guo for all your encouragement

and support. I might be somewhat selfish to pursue graduate study abroad,

but you always stand by my decision. I will not let you down.

vi



Contents

1 Introduction 1

2 Thermal emission and heat transfer 7

2.1 Fluctuation dissipation theorem . . . . . . . . . . . . . . . . . . 7

2.2 Thermal emission from half space uniaxial media . . . . . . . . 8

2.2.1 Energy in matter and fields . . . . . . . . . . . . . . . . 11

2.3 Thermal emission from multilayered structures . . . . . . . . . . 12

2.4 Scattering matrix method and spatial coherence . . . . . . . . . 15

2.5 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Far field thermal emission . . . . . . . . . . . . . . . . . 22

2.6.2 Near field thermal emission . . . . . . . . . . . . . . . . 23

2.6.3 Spatial coherence of hyperbolic metamaterial slab . . . . 25

2.6.4 Thermal topological transitions . . . . . . . . . . . . . . 29

2.6.5 Near field heat transfer . . . . . . . . . . . . . . . . . . . 30

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Singular evanescent wave resonance 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Fabry-Perot resonance . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Perfect phase and amplitude balance . . . . . . . . . . . . . . . 35

3.4 Excitation of the perfect resonance . . . . . . . . . . . . . . . . 38

3.5 Giant dispersive force between the plates in relative motion . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conclusion 45

vii



A Supplementary information for singular evanescent wave res-

onance 47

A.1 Derivation of Poynting vector . . . . . . . . . . . . . . . . . . . 47

A.2 On the reality of fields . . . . . . . . . . . . . . . . . . . . . . . 48

A.3 The scattering matrix of a moving plate with polarization mixing 48

A.4 Approximation of the reflection coefficients . . . . . . . . . . . . 52

A.5 Full theory for photon exchange . . . . . . . . . . . . . . . . . . 52

A.6 Singular Resonance: Polarization mixing and relativistic effects . 55

A.7 Non-equilibrium vacuum friction . . . . . . . . . . . . . . . . . . 56

A.8 The scaling law of non-equilibrium vacuum friction . . . . . . . 57

A.9 The non-equilibrium vacuum friction varying with velocity . . . 59

Bibliography 63

viii



List of Figures

1.1 k-space topology of HMMs . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematic of thermal emission from HMMs . . . . . . . . . . . . 3

1.3 Practical realization of HMMs . . . . . . . . . . . . . . . . . . . 4

2.1 Schematic of the multilayered structure and effective permittiv-

ities of a SiO2-SiC multilayered structure . . . . . . . . . . . . . 21

2.2 Far field thermal emission (normalized to blackbody emission)

of a 3µm SiO2-SiC multilayered structure, where fill fraction of

SiC is 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Wavevector resolved thermal emission from a SiO2-SiC multi-

layered structure calculated by (a) transfer matrix method and

(b) EMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Wavevector resolved thermal emission from (a) a 3µm thickness

HMM slab and (b) a 30µm thickness HMM slab . . . . . . . . . 24

2.5 Thermal emission from slabs with various thicknesses and wavevec-

tor resolved thermal emission at ω = 1.6× 1014Hz . . . . . . . 25

2.6 Thermal emission from a 30µm SiC slab . . . . . . . . . . . . . 26

2.7 Spatial coherence of (a) a 30µm SiC slab and (b) a 30µm HMM

slab at 0.2µm and 1µm from the surface with ω = 1.6× 1014Hz

and ω = 1.79× 1014Hz. . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Thermal topological transition of SiC-SiO2 multilayered structure 28

ix



2.9 Near field heat transfer between HMMs . . . . . . . . . . . . . . 30

3.1 Schematic of two plates in relative motion . . . . . . . . . . . . 34

3.2 Properties of reflection coefficients for (a) Propagating waves

and (b) Evanescent waves . . . . . . . . . . . . . . . . . . . . . 36

3.3 Contribution to exchanged photon number resolved by frequency

and lateral wavevector kx (normalized to free space wavevector)

at (a) d = 2d0 and (b) d → d+0 . . . . . . . . . . . . . . . . . . . 41

3.4 Non-equilibrium vacuum friction on the FP plates at different

distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1 Three dimensional version of Fig. 3.3 in the main text . . . . . . 57

A.2 Contribution to exchanged photon number (in log scale) re-

solved by frequency and lateral wavevector kx (normalized to

free space wavevector) at (a) V = 0.5V0 and (b) V → V −
0 . . . . 60

A.3 Non-equilibrium vacuum friction on the FP plates at different

velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



List of Abbreviations

Abbreviation Extended Form

HMM Hyperbolic Metamaterial

FDT Fluctuation Dissipation Theorem

DGF Dyadic Green’s Function

EMT Effective Medium Theory

TMM Transfer Matrix Method

ENZ Epsilon-Near-Zero

ENP Epsilon-Near-Pole

LDOS Local Density of States

SPP Surface Plasmon Polariton

SPhP Surface Phonon Polariton

SWR Surface Wave Resonance

FP Fabry-Perot

Re Real Component of Expression

Im Imaginary Component of Expression

Tr Trace of matrix

xi



Chapter 1

Introduction

The foundations of analyzing thermal and vacuum fluctuations of the electro-

magnetic field inside matter were laid in the seminal work of S. M. Rytov [1].

Every point in space is associated with electromagnetic fluctuations (currents),

which obey specified second order correlations, through the framework of fluc-

tuation dissipation theorem (FDT) [1,2]. The magnitude of these fluctuations

depends on the temperature and the macroscopic conductivity of the media.

Conventionally, the FDT that specifies correlation of the random currents is

called the second kind of FDT [1, 3]. In global thermal equilibrium, FDT can

also specify the correlation of electromagnetic fields directly, which is called

the first kind of FDT [1, 3]. Provided the information of the sources, Dyadic

Green’s function (DGF) [4,5], which is the electromagnetic propagator relating

point sources to electromagnetic fields, can completely specify the electromag-

netic fields. Theoretically, combining FDT and DGF, we are able to calculate

the energy density, Poynting vector, spatial coherence of the electromagnetic

fields for any physical structure, if the optical constants and temperatures are

known.

Rytov’s work gave rise to a unified approach of understanding fluctua-

tional forces [6] (Lifshitz theory of Casimir forces), near field thermal emis-

sion and radiative heat transfer [7–30]. (Polder-Van-Hove theory [7]). Re-

cent developments in nanoengineering and detection have led to experimental

regimes [28–34] where these effects can play a dominant role. Simultaneously,

theoretical work has shed light on the fact that the classical scattering matrix

along with the temperatures of objects of various geometries can completely
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Figure 1.1: (a) The isofrequency contour for an isotropic dielectric is a sphere.
For extraordinary waves in an extremely anisotropic uniaxial medium, the
isofrequency contour becomes a hyperboloid which supports waves with un-
bounded wavevectors, in stark contrast to an isotropic medium. (b) A type I
HMM has one component of the dielectric tensor negative (ϵxx = ϵyy > 0 and
ϵzz < 0) and supports low-k and high-k waves. (c) A type II HMM has two
components of the dielectric tensor negative (ϵxx = ϵyy < 0 and ϵzz > 0) and
only supports high-k waves.

characterize these fluctuations in both equilibrium and non-equilibrium situa-

tions [35–47].

Metamaterials (artificial photonic media) are emerging as a novel con-

cept to engineer the scattering matrix and achieve exotic electromagnetic re-

sponses which are beyond those available in conventional materials [48–50]. A

large body of work has emerged in the last decade which in principle engi-

neers the classical scattering matrix to achieve effects such as negative refrac-

tion [51,52], enhanced chirality [51–55], invisibility [56–58] and subwavelength

imaging [56–60]. Recently, it was shown that a specific class of metamaterials,

known as hyperbolic metamaterials [60–66](indefinite media) has the poten-

tial for thermal engineering. Such media support unique modes which can be

thermally excited and detected in the near-field due to the super-Planckian

nature of their thermal emission spectrum [12,67–71].

Hyperbolic metamaterials (HMMs) can be considered as uniaxial meta-

crystals with an extremely anisotropic dielectric tensor [62],
↔
ϵ= diag[ϵxx, ϵyy, ϵzz]

such that ϵxx = ϵyy and ϵxxϵzz < 0. The properties of HMMs are best un-

derstood by studying the isofrequency surface of extraordinary waves in this

2
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Figure 1.2: Propagating waves with large wavevector inside HMMs could tun-
nel out to become evanescent waves in the near field, leading to broadband
super-Planckian thermal emission.

medium
k2
x + k2

y

ϵzz
+

k2
zp

ϵxx
=

ω2

c2
(1.1)

The above equation represents a hyperboloid when ϵxxϵzz < 0 which is an

open surface in stark contrast to the closed spherical dispersion in an isotropic

medium (Fig. 1.1). The immediate physical consequence of this dispersion

relation is the existence of propagating waves with large wavevectors known as

high-k waves which are evanescent in conventional media. Furthermore, the

density of states, which is proportional to the volume between two adjacent

iso-frequency contours, can be infinite inside HMMs in the ideal case (when no

optical losses are considered). The singularity in the bulk photonic density of

states [72] is directly related to the removal of the upper cutoff of wavevectors

on the iso-frequency surface. For thermal applications, we show that the high

wavevector states tunnel out from HMMs and contribute to the thermal energy

transport (Fig. 1.2). Since these wavevectors are much larger than the free

space wavevector, this enhancement of thermal energy can only occur in the

near field. Besides, the extreme anisotropic dielectric tensor doesn’t rely on

resonant effects and can be achieved over a broad frequency region. Using

this idea, the near field emissivity of hyperbolic metamaterials can be largely

enhanced over broad frequency regions [12], in contrast to mechanisms based

on resonant effects (for example, surface waves), where enhancement occurs

only in a narrow band [11].

We now introduce nomenclature to classify the two types of hyperbolic

3



Figure 1.3: (a) Multilayer realization of hyperbolic metamaterials consisting
of alternating subwavelength layers of metal and dielectric (b) metal nanorod
array in a dielectric host matrix.

metamaterials based on the number of components of the dielectric tensor

which are negative [61]. Note that if all three components are negative, we have

an effective metal and propagating waves are not allowed in such a medium.

Type I: If there is only one component negative i.e. ϵzz < 0 in the tensor, then

we term such metamaterials as type I HMM. They have low loss because of

their predominantly dielectric nature but are difficult to achieve in practice.

Type II: If there are two components in the dielectric tensor which are negative

i.e. ϵxx = ϵyy < 0, we term them as type II HMMs. They have higher loss and

high impedance mismatch with vacuum due to their predominantly metallic

nature.

There are two prominent methods to engineer practical hyperbolic media.

The first consists of alternating layers of metal and dielectric with the layer

thicknesses far below the size of the wavelength. The second approach consists

of metal nanorods in a dielectric host such as porous anodic alumina (AAO).

Figure 1.3 is a schematic illustration of these two approaches. Both these

approaches achieve the desired extremely anisotropic response according to

Maxwell-Garnett effective medium theory [73–77]. It is important to note

that effective medium theory predicts the desired response in a broad spectral

bandwidth because of its non-resonant nature. This is crucial since absorption

in resonant metamaterials are a major detriment to practical applications.

In chapter 2, we adopt the techniques of fluctuational electrodynamics to

provide a first-principle account of the thermal emission characteristics of hy-

perbolic metamaterials. We show that the conventional approach of utilizing

the second kind of fluctuation dissipation theorem [1,3,78] is equivalent to the

scattering matrix method [3,35,43,78] for calculating the metamaterial energy
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density. We specifically provide the derivations of the fluctuational effects in

both effective medium theory and practical thin film multilayer metamaterial

designs [61, 79]. While the characteristics can in principle be obtained from

formulas related to the reflection coefficients, it does not shed light on various

aspects of equilibrium or non-equilibrium fluctuations in the context of meta-

materials. Our aim is to provide an insightful look at prevailing approaches

adopted to the case of hyperbolic metamaterials.

We also consider the case of a practical phonon-polaritonic metamate-

rial [12,80] and show the stark contrast in the far-field and near-field thermal

emission characteristics [11]. This should help experimentalists design experi-

ments starting from analyzing the far-field characteristics, retrieving effective

medium characteristics and then look for our predicted near-field effects. We

show that the far-field characteristics are dominated by the epsilon-near-zero

and epsilon-near-pole responses as expected from Kirchoff’s laws [81]. This

is true independent of material choice and can occur for both nanowire and

multilayer hyperbolic metamaterials [81]. We comment here that for prac-

tical applications high temperature plasmonics and metamaterials would be

needed [81].

We also study the limitations of effective medium theory (EMT) but focus

on cases where there is good agreement between practical structures and EMT

[61, 79, 82]. We emphasize that it is known in the metamaterials community

that the unit cell of a metamaterial can show characteristics similar to the

bulk medium [61]. In the context of thin film hyperbolic metamaterials, this

was experimentally elucidated in Ref. [83] and theoretically explained in detail

in Ref. [61].

In this work we also describe another effect connected to hyperbolic super-

Planckian thermal emission [12]. We analyze the spatial coherence [13,84–87]

of the near-field thermal emission and relate it to the metamaterial modes.

We show that there is a subtle interplay in near-field spatial coherence due to

competition between surface waves and hyperbolic modes. We expect our work

to aid experimentalists in isolating thermal effects related to metamaterials and

also form the theoretical foundation for developing the macroscopic quantum

electrodynamics [88] of HMMs.

In chapter 3, we present our work on momentum transfer between two

moving plates, intrigued by the controversial quantum friction problem–if there

exist lateral Casimir forces exist between two plates moving parallel to each

5



other at constant speed at zero temperature [21, 38, 89–102]. We interpret

the lateral force as momentum transfer through photon exchange between the

moving plates [38]. We argue that the stark difference of zero temperature

Bose-Einstein occupation number at positive and negative frequency should

be responsible for the existence of quantum friction.

More importantly, we report our discovery on a fundamentally new Fabry-

Perot resonance of evanescent waves bouncing between two relatively moving

mirrors. Unlike any other conventional resonance, the quality factor of this

resonance can be infinite in spite of material absorption and dispersion. This

singular resonance leads to infinitely many photons exchanged between two rel-

atively moving mirrors even at zero temperature. We further demonstrate that

fluctuational electrodynamic forces between the mirrors can be infinitely large

due to the singular Fabry-Perot resonance of evanescent waves, challenging the

conventional viewpoint that phenomena dealing with vacuum fluctuations are

too weak to be detected. The singular resonance should be detectable in nano-

electro-mechanical systems and can shed light on interaction between moving

bodies at the nanoscale.
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Chapter 2

Thermal emission and heat

transfer

2.1 Fluctuation dissipation theorem

In global thermal equilibrium, the first kind of fluctuation dissipation theorem

[1, 3](FDT) directly specifies the correlation function of electric fields. It is

expressed by
E⃗(r1, ω)⊗ E⃗∗(r2, ω

′)

=

µ0ω

π
Θ(ω, T ) Im

↔
G(r1, r2, ω)δ(ω − ω′). (2.1)

Here
↔
G is the dyadic Green’s function [4,5](DGF), Θ(ω, T ) = h̄ω/(eh̄ω/kBT −1)

is the mean energy of a thermal oscillator.

Eq. (2.1) has two main applications. Firstly, it can be used to derive the

electromagnetic stress tensor at a certain point. Secondly, it directly gives the

cross-spectral density tensor [84,87] which characterizes the spatial coherence

of a thermal radiative source. The second kind of FDT [1,3] that specifies the

correlation function of thermally generated random currents is
j⃗(r1, ω)⊗ j⃗∗(r2, ω

′)

=

ωϵ0
π

ϵ′′(ω)Θ(ω, T )δ(r1 − r2)δ(ω − ω′). (2.2)

We assume the permittivity ϵ is a diagonal matrix; ϵ′′ denotes the imaginary

part.

The first kind of FDT can only be used in global thermal equilibrium. In

non-equilibrium situation, we should first employ Maxwell equations to obtain

7



the electromagnetic fields generated by random currents through the DGF,

E⃗(r) = iωµ0


↔
G(r, r′)⃗j(r′)dr′, (2.3)

H⃗(r) =


∇×

↔
G(r, r′)⃗j(r′)dr′, (2.4)

and then calculate the electromagnetic stress tensor or the cross-spectral den-

sity tensor.

The dyadic Green’s function (DGF) satisfies an important identity [3,103],

Im
↔
G(r1, r2, ω) =

ω2

c2


V

↔
G(r1, r

′, ω)ϵ′′(r′, ω)
↔
G

†
(r2, r

′, ω)d3r′. (2.5)

This identity ensures that at global thermal equilibrium the first kind and the

second kind of FDT lead to identical results.

2.2 Thermal emission from half space uniaxial

media

In this section, we consider an uniaxial medium located in the lower space

(z < 0) at temperature T while the upper space vacuum part is at zero temper-

ature. The relative permittivity of the uniaxial medium is a diagonal matrix,

ϵ = diag[ϵ∥; ϵ∥; ϵ⊥]. Note that hyperbolic metamaterials are a special kind of

uniaxial medium satisfying ϵ∥ϵ⊥ < 0. As mentioned before, we should employ

the second kind of FDT because this is a non-equilibrium problem.

To solve DGF in planar structures, it is convenient to work in the wavevec-

tor space. DGF in vacuum [5] is (z > z′)

↔
G(r, r′, ω) =

i

8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

{ŝ0+ŝ0+eikz0(z−z′) + p̂0+p̂
0
+e

ikz0(z−z′)} (2.6)

Here we define k̂+ = (kx, ky, kz0)/k0 is the normalized wave-vector of upward

waves (z > z′) in free space, k − 0 = ω/c, k⊥ = (kx, ky), kρ =


k2
x + k2

y,

kz0 =

k2
0 − k2

ρ, and r⊥ = (x, y). ŝ0+ = k̂+ × ẑ = (ky,−kx, 0)/kρ is the unit

direction vector of s-polarized waves, p̂0+ = ŝ0+×k̂+ = (−kxkz0,−kykz0, k
2
ρ)/k0kρ

is the unit direction vector of p-polarized waves. Correspondingly and for

8



later use, k̂− = (kx, ky,−kz0)/k0 is the normalized wave-vector of downward

waves (when z < z′), ŝ0− = k̂− × ẑ = (ky,−kx, 0)/kρ same with ŝ0+ , and

p̂0− = ŝ0− × k̂− = (kxkz0, kykz0, k
2
ρ)/k0kρ.

The DGF relating thermally generated random currents inside the medium

in the lower space to the fields in upper space vacuum is

↔
G01(r, r

′) =
i

8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

{tsŝ0+ŝ1+eikz0z−ikzsz′ + tpp̂0+p̂
1
+e

ikz0z−ikzpz′}. (2.7)

Here, kzs =


ϵ∥k2
0 − k2

ρ, kzp =

ϵ∥k2

0 −
ϵ∥
ϵ⊥
k2
ρ, ŝ

1
+ = ŝ0+ = (ky,−kx, 0)/kρ, and

p̂1+ = (−kxkzp,−kykzp, k
2
ρϵ∥/ϵ⊥)/k0kρ

√
ϵ∥ which are the unit direction vectors

of s- and p-polarized waves inside the unaxial medium, respectively. Note the

transmission coefficients incident from the vacuum side should be in terms of

the electric fields,

ts =
2kz0

kz0 + kzs
, tp =

2kz0
√
ϵ∥

ϵ∥kz0 + kzp
. (2.8)

To calculate the magnetic fields, we should evaluate ∇×
↔
G01, which can be

easily done in the wavevector space. The curl operator will work on the first

vector of
↔
G01,

∇×
↔
G01(r, r

′) =
k0
8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

{tsp̂0+ŝ1+eikz0z−ikzsz′ − tpŝ0+p̂
1
+e

ikz0z−ikzpz′}. (2.9)

The free space energy density is defined by

u(ω, r) = 2


1

2
ϵ0Tr


E⃗(ω, r)⊗ E⃗∗(ω, r)


+
1

2
µ0Tr


H⃗(ω, r)⊗ H⃗∗(ω, r)


, (2.10)

where the prefactor 2 accounts for the negative frequency counterpart. Fol-
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lowing the formalism in Ref. [87], we define

ge(k⊥, z, z
′, ω) = − 1

2kz0


tsŝ0+ŝ

1
+e

ikz0z−ikzsz′ + tpp̂0+p̂
1
+e

ikz0z−ikzpz′

, (2.11)

gh(k⊥, z, z
′, ω) =

1

2kz0


tsp̂0+ŝ

1
+e

ikz0z−ikzsz′ − tpŝ0+p̂
1
+e

ikz0z−ikzpz′

. (2.12)

One can then find

u(ω, z) =
ω3

πc4
Θ(ω, T )

 0

−∞
dz′
 +∞

−∞

d2k⊥

4π2


Tr

geϵ

′′g†e

+ Tr


ghϵ

′′g†h


(2.13)

Inserting the expressions of ge and gh, we have

u(ω, z) =
ω3

8π2c4
Θ(ω, T )e−2 Im(kz0)z

 0

−∞
dz′
 +∞

0

kρdkρ
1

|kz0|2


1 +

k2
ρ + |k2

z0|
k2
0



ϵ′′∥|ts|2e2 Im(kzs)z′ +


ϵ′′⊥|ϵ∥/ϵ⊥|2k2

ρ + ϵ′′∥|k2
zp|

k2
0|ϵ2∥|


|tp|2e2 Im(kzp)z′


.

(2.14)

The integration at z′ can be easily done. Further by taking the imaginary part

of the dispersion relation

k2
ρ

ϵ∥
+

k2
zs

ϵ∥
=

ω2

c2
,

k2
ρ

ϵ⊥
+

k2
zp

ϵ∥
=

ω2

c2
(2.15)

for s- and p-polarized waves, this result can be simplified as

u(ω, z) =
UBB(ω, T )

2

 k0

0

kρdkρ
k0 |kz0|

(1− |rs|2) + (1− |rp|2)
2

+

 ∞

k0

k3
ρdkρ

k3
0 |kz0|

e−2 Im(kz0)z(Im(rs) + Im(rp))


. (2.16)

Here UBB = ω2

π2c3
Θ(ω, T ) is the energy density of blackbody. rs and rp are the

standard reflection coefficients given by

rs =
kz0 − kzs
kz0 + kzs

, rp =
ϵ∥kz0 − kzp
ϵ∥kz0 + kzp

. (2.17)

The propagating wave part 1 − |r|2 in Eq. (2.16) is the far field emissivity,

equivalent to Kirchhoff’s law. Correspondingly, the evanescent wave part can

be interpreted as Kirchhoff’s law in the near field and 2 Im(r) is the near

10



field emissivity [17,22,68,104], which is widely used in heat transfer problems.

2 Im(r) is also proportional to the near field local density of states (LDOS)

proposed in Ref. [22] and is related to the tunneling and subsequent absorption

of energy carried by evanescent waves. Recently extensive theoretical and

experimental works have demonstrated the ability of HMMs to enhance the

near field LDOS [61,63,105]. Thus we expect the use of HMMs in thermal and

energy management.

2.2.1 Energy in matter and fields

We can use the above definitions to compare the energy density in the near-

field of the hyperbolic metamaterials to any other control sample. A pertinent

question is about how much energy density is in matter degrees of freedom as

opposed to the fields. This is difficult to answer inside the medium but can be

done unambiguously in the near-field.

In the high-k approximation, where the wavevector parallel to the interface

kρ is sufficiently large, the near-field energy density is governed by the tunneling

parameter which we define as the imaginary part of the p-polarized reflection

coefficient. Thus studying the behavior of this tunneling parameter sheds

light on the near-field energy density. In the low loss limit, the reflection for

p-polarized waves incident on an interface between vacuum and HMM can be

expressed by [12,106]

Im(rHMM
p ) ≈

2


|ϵ∥ϵ⊥|
1 + |ϵ∥ϵ⊥|

. (2.18)

While for an isotropic medium, the high-k approximation gives

Im(risop ) ≈ 2ϵ′′

|1 + ϵ|2
. (2.19)

The most striking difference between the above equations is that for a conven-

tional isotropic medium the near-field energy density is completely dominated

by the imaginary part of the dielectric constant. These fluctuations disappear

in the low loss limit and can be attributed to matter degrees of freedom. This

is because the imaginary part of the dielectric constant which governs field

fluctuations also characterizes the irreversible conversion of electromagnetic

energy into thermal energy of matter degrees of freedom. On the other hand,

the hyperbolic medium shows near-field fluctuations arising from high-k modes

completely independent of material losses and the energy resides in the field.

11



Let us analyze what would happen at mid-infrared frequencies where phonon

polaritonic materials can give rise to this low loss high-k limit for hyperbolic

metamaterials. We clearly see from Eq. (2.19) that the near field emissivity

would be very small when the frequency is away from the surface phonon po-

lariton resonance (SPhPR) frequency where Re(ϵ) = −1. However, for HMMs

made of phonon polaritonic materials and dielectrics, the near field emissivity

(Eq. 2.18) can be comparably large in broad frequency region, though in this

approximation its magnitude cannot exceed one. Note here we do not account

for surface wave resonances which can change the picture considerably espe-

cially if one wants to optimize near-field heat transfer [106]. Our aim is to

focus on the bulk modes only.

2.3 Thermal emission from multilayered struc-

tures

In this section we will consider multilayered structures. In the field of meta-

materials, multilayered structures are widely used to achieve effective uniaxial

media. The aim here is to go beyond effective medium theory and calculate the

exact thermal emission from multilayered structures using the second kind of

FDT. We assume that the medium in all layers is isotropic and non-magneto-

optical for simplicity. To find DGFs relating the random currents in each layer

to the vacuum region, we will follow the method in Ref. [5]. Firstly assuming

the current source is in the vacuum region, we can calculate the fields induced

by the source in all the layers by transfer matrix method which matches the

boundary conditions at all the interfaces. Thus the DGFs with source in the

vacuum region are ready to be employed. Next we use the reciprocal property

of the DGF to achieve DGF when the sources are in the lower space.

DGF in the vacuum region (z < z′) is

↔
G00(r, r

′) =
i

8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

ŝ0−e
−ikz0z + rsŝ0+e

ikz0z

ŝ0−e

ikz0z′

+ (p̂0−e
−ikz0z + rpp̂0+e

ikz0z)p̂0−e
ikz0z′


(2.20)
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DGF in the intermediate slabs are

↔
Gl0(r, r

′) =
i

8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

Blŝ
l
−e

−ikzlz + Alŝ
l
+e

ikzlz

ŝ0−e

ikz0z′

+ (Dlp̂
l
−e

−ikzlz + Clp̂
l
+e

ikzlz)p̂0−e
ikz0z′


(2.21)

DGF in the last layer is

↔
G(N+1)0(r, r

′) =
i

8π2


dkxdky
kz0

eik⊥·(r⊥−r′
⊥)

tsŝ
t
−e

−ikztz ŝ0−e
ikz0z′ + tpp̂

t
−e

−ikztzp̂0−e
ikz0z′


(2.22)

Note in the last layer we only have the downward waves, namely, the trans-

mission.

The boundary conditions give [5]

Ale
ikzlzl +Ble

−ikzlzl =

Al+1e
ikz(l+1)zl +Bl+1e

−ikz(l+1)zl (2.23)

kzl(Ale
ikzlzl −Ble

−ikzlzl) =

kz(l+1)(Al+1e
ikz(l+1)zl −Bl+1e

−ikz(l+1)zl) (2.24)

for s-polarized waves, and

√
ϵl(Cle

ikzlzl +Dle
−ikzlzl) =

√
ϵl+1(Cl+1e

ikz(l+1)zl +Dl+1e
−ikz(l+1)zl) (2.25)

kzl√
ϵl
(Cle

ikzlzl −Dle
−ikzlzl) =

kz(l+1)√
ϵl+1

(Cl+1e
ikz(l+1)zl −Dl+1e

−ikz(l+1)zl) (2.26)

for p-polarized waves. Following the same steps as in the uniaxial case, the

final expression is
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u(ω,z) =
ω3

8π2c4
Θ(ω, T )e−2 Im(kz0)z

N+1
l=1

 zl−1

zl

dz′
 +∞

0

kρdkρ

1

|kz0|2


1 +

k2
ρ + |k2

z0|
k2
0


ϵ′′l

Ale
ikzlz

′
+Ble

−ikzlz
′
2

+

kzl(Cle
ikzlz

′ −Dle
−ikzlz

′
)

k0
√
ϵl

2 + kρ(Cle
ikzlz

′
+Dle

−ikzlz
′
)

k0
√
ϵl

2

, (2.27)

where N is the total number of layers in the structure.

To simplify the above result, we first note that the integral zl−1

zl

dz′k2
0ϵ

′′
l

Ale
ikzlz

′
+Ble

−ikzlz
′
2 =

Re

kzl(−Ale

ikzlz +Ble
−ikzlz)(Ale

ikzlz +Ble
−ikzlz)∗

 zl−1

zl

= Ql(zl−1)−Ql(zl), (2.28)

which is valid for all layers. From the boundary condition, we have

Ql(zl) = Ql+1(zl) (2.29)

Thus we find

N+1
l=1

 zl−1

zl

dz′k2
0ϵ

′′
l

Ale
ikzlz

′
+Ble

−ikzlz
′
2 = Q0(z0)−QN+1(zN+1). (2.30)

For the last term, zN+1 = −∞, so QN+1(zN+1) = 0, and in our convention,

z0 = 0. The final result is

Re [kz0(1− rs)(1 + rs)∗] =


(1− |rs|2)|kz0|, kρ < k0

2 Im(rs)|kz0|, kρ > k0
. (2.31)

This is the contribution from s-polarized waves. For p-polarized waves, the
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corresponding identity is

 zl−1

zl

dz′k2
0ϵ

′′
l

kzl(Cle
ikzlz

′ −Dle
−ikzlz

′
)

k0
√
ϵl

2 +

kρ(Cle
ikzlz

′
+Dle

−ikzlz
′
)

k0
√
ϵl

2


= Re


kzl√
ϵl
(Cle

ikzlz −Dle
−ikzlz) (

√
ϵl(Cle

ikzlz +Dle
−ikzlz))∗

 zl−1

zl
(2.32)

Then the contribution from p-polarized waves can be evaluated in the similar

way. The final expression for thermal emission from a half space multilayered

structure will be given by Eq. (2.16). The reflection coefficients should be that

of the whole structure.

If we are interested in a slab inside vacuum rather than a half space struc-

ture, we can eliminate the contribution from the last layer vacuum part. To

do so, in Eq. (2.28), for the last layer AN+1 = 0 and BN+1 = ts, the right hand

side is therefore Re(kz0)|ts|2, which vanishes for evanescent waves. Subtracting

this term from Eq. (2.16) gives the thermal emission from a multilayered slab

inside vacuum,

u(ω, z) =
UBB(ω, T )

2 k0

0

kρdkρ
k0 |kz0|

(1− |rs|2 − |ts|2) + (1− |rp|2 − |tp|2)
2

+

 ∞

k0

k3
ρdkρ

k3
0 |kz0|

e−2 Im(kz0)z(Im(rs) + Im(rp))


. (2.33)

The above expression can be also obtained by replacing 1− |r|2 in Eq. (2.16)

with 1− |r|2 − |t|2, which is consistent with Kirchoff’s law.

2.4 Scattering matrix method and spatial co-

herence

We now describe another approach to evaluating the near-field energy den-

sity near metamaterials using the scattering matrix approach. However, first

we will discuss a few important points related to the concept of the thermal

environment. We note that when the lower space is vacuum, the reflection coef-

ficients are zero. As a result of Eq. (2.16), the contribution from the evanescent

waves part is zero while that from the propagating waves is nonzero. However,
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this is not very intuitive from FDT. The reason is that losses of vacuum i.e. ϵ′′

of vacuum is zero and from the second kind of FDT, the correlation function

of random currents of vacuum should be zero, suggesting a zero field correla-

tion. It turns out that for an unbounded vacuum region, we should add an

infinitesimal imaginary part to ϵ0, integrate over the region and then take the

limit of the imaginary part to be zero in the final expression [37,107]. This is

needed to preserve causality requirements. In the derivation of Eq. (2.16), we

have integrated the source region z′ from −∞ to 0. However, for a vacuum

gap with any finite width, the final fields correlation originating from the gap

can be shown to be zero [3]. For this reason, fluctuations in vacuum can be

interpreted to come from infinity.

It is then natural to think about the thermal emission from the upper

space vacuum region as well. If the vacuum region is also at temperature T,

the system is at global thermal equilibrium. Therefore we can employ the first

kind of FDT to calculate the thermal energy density. This approach is used in

Ref. [108] to define the local density of states. Here we directly cite the final

result,

ueq(z, ω, T ) =
UBB(ω, T )

2 k0

0

kρdkρ
k0 |kz0|

(2 +
k2
ρ

k2
0

[Re(rse2ikz0z) + Re(rpe2ikz0z)])

+

 ∞

k0

k3
ρdkρ

k3
0 |kz0|

e−2 Im(kz0)z(Im(rs) + Im(rp))


(2.34)

Note again that the contribution from evanescent waves equals that of Eq. (2.16),

implying no evanescent waves contribution from the upper space vacuum re-

gion. However, in non-equilibrium, to determine electromagnetic fields induced

by every random current inside the medium using second kind of FDT is quite

laborious. We note from the second kind of FDT that the currents are not

spatially correlated, which suggests that the thermal emission from different

spatial regions can be calculated separately. In thermal equilibrium, we can

calculate the thermal energy density by the first kind of FDT. Thus if we

can calculate the thermal emission from the upper space vacuum part at tem-

perature T, thermal emission only from the lower space can be achieved by

excluding the vacuum part from the total thermal energy density.

The electric field generated by the upper half vacuum space can be written
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as [43]

E⃗f (ω, r) =


d2k⊥

4π2
E⃗f (ω,k⊥, z)e

ik⊥·r⊥ (2.35)

where

E⃗f (ω,k⊥, z) = (as(ω,k⊥)ŝ
0
− + ap(ω,k⊥)p̂

0
−)e

−ikz0z. (2.36)

as and ap are the field amplitude for s and p-polarized waves, respectively. The

operator a = (as, ap)
T satisfies the correlation function [43],


a(ω,k⊥)⊗ a†(ω′,k′

⊥)

= 4π2C(ω,k⊥)δ(ω − ω′)δ2(k⊥ − k′

⊥). (2.37)

The coefficient C can be read directly from FDT and the free space DGF,

C(ω, k⊥) =
µ0ω

4π
Θ(ω, T ) Re (

1

kz0
), (2.38)

which vanishes for evanescent waves. These fluctuations from the upper vac-

uum region shines on the interface and get reflected. The total fields due to

fluctuations in the vacuum part are

E⃗0(z,ω,k⊥) = (as(ω,k⊥)s
0
− + ap(ω,k⊥)p

0
−)e

−ikz0z

+ (rsas(ω,k⊥)s
0
+ + rpap(ω,k⊥)p

0
+)e

ikz0z. (2.39)

The magnetic fields can be calculated using Eq. (2.39) and Maxwell equations.

Then one can find the energy density due to the fluctuations in the upper

space vacuum,

u0(z, ω, T ) =
UBB(ω, T )

2

 k0

0

kρdkρ
k0|kz0|


1+

|rs|2 + |rp|2

2
+

k2
ρ

k2
0

[Re(rse2ikz0d) + Re(rpe2ikz0d)]


(2.40)

Subtracting Eq. (2.40) from Eq. (2.34), we recover the expression by the second

kind of FDT.

From the definition of the cross-spectral density tensor

W (r1, r2, ω)δ(ω − ω′) =

E⃗(r1, ω)⊗ E⃗∗(r2, ω

′)

, (2.41)

one can find the spatial coherence due to fluctuations in the upper space vac-
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uum,

W 0
zz(r1, r2, ω) =

UBB(ω, T )

4ϵ0

 k0

0

k3
ρdkρ

k3
0|kz0|

J0(kρd)1 + |rp|2

2
+ Re(rpe2ikz0d)


(2.42)

where r1 = (0, 0, z), r2 = (d, 0, z) and
 2π

0
dθeikρd cos θ = 2πJ0(kρd) is used;

J0(kρd) is the zeroth order Bessel function of the first kind. Further, from

Eq. (2.1), the first kind of FDT, we have

W eq
zz (r1, r2, ω) =

UBB(ω, T )

4ϵ0

 k0

0

k3
ρdkρ

k3
0|kz0|

J0(kρd)

1 + Re(rpe2ikz0d)


+

 ∞

k0

k3
ρdkρ

k3
0|kz0|

J0(kρd) Im(rp)e−2 Im(kz0)z


(2.43)

Then the contribution from the lower space structure is

Wzz(r1, r2, ω) =
UBB(ω, T )

4ϵ0

 k0

0

k3
ρdkρ

k3
0|kz0|

J0(kρd)
1− |rp|2

2

+

 ∞

k0

k3
ρdkρ

k3
0|kz0|

J0(kρd) Im(rp)e−2 Im(kz0)z


(2.44)

Only p-polarized waves contributes to Wzz since s-polarized waves do not have

Ez components.

Once again, if the structure is a multilayered slab in vacuum, the contribu-

tion from the lower vacuum space can be evaluated using the scattering matrix

method in a similar way to the upper vacuum space. The fields due to the

vacuum fluctuations in the lower space transmit through the planar structure,

E⃗t(ω,k⊥, z) = (tsas(ω,k⊥)ŝ
0
− + tpap(ω,k⊥)p̂

0
−)e

ikz0z. (2.45)

It is clear that the contributing energy density will be proportional to the |t|2,
so that we recover the result of Eq. (2.33). Note that due to the reciprocal

property, the transmission coefficients from two sides of the structure should

be identical.

Generally speaking, considering a single object in thermal equilibrium, the

energy density can be determined by the first kind of FDT, which is simply a

single scattering event. To find the contribution from the object only, we can

exclude the contribution from the environment, which can be also expressed
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by the scattering matrix of the object. If there are several objects at different

temperatures, we can first decide the thermal emission from one specific object

in the absence of other objects and then build the scattering part from other

objects, in which procedure the temperatures of the other objects and the en-

vironment are assumed to be zero. Note this is the basic idea of M. Kardar and

co-authors in sequent works [36, 37, 109]. Beyond the multilayered structures

considered here, the authors also give the scattering matrix of various geome-

tries including sphere and cylinder. For more complicated objects, numerical

methods are also well developed [46,47,110,111].

2.5 Heat transfer

The heat transfer between two plates separated by a vacuum gap at different

temperatures can be found through computing the Poynting vector inside the

gap. One can first find the fields on the interface of each plate assuming the

other plate is absent, which structure is just the half space problem we have

discussed. Then the fields on the interface of each plate can be seen as the

boundary condition of the fields inside the gap. Next we can simply employ the

plane wave expansion to compute the fields inside the gap and finally obtain

the Poynting vector [20,21].

We consider two homogeneous half-space mediums (labeled by 1 and 2)

separated by a vacuum gap with width d. One medium is at local equilibrium

with T1 and the other with T2. Within the framework of Rytov’s fluctuational

electrodynamics, Polder and Van Hove [7] first derived the general expressions

of the heat flux between the two media

H(d, T1, T2) =

 ∞

0

dω

2π
h̄ω(n(ω, T1)− n(ω, T2))

=

j=s,p

 k0

0

d2k∥
4π2

(1−
r01j 2)(1− r02j 2)1− r01j r02j e2ikzd

2
+

 ∞

k0

d2k∥
4π2

e−2 Im(kz)z
4 Im(r01j ) Im(r02j )1− r01j r02j e2ikzd

2

. (2.46)

Here, Θ(ω, T ) = h̄ωn(ω, T ) is the mean energy of a harmonic oscillator,

n(ω, T ) = 1

(exp (h̄ω/kBT ) − 1) is the Bose-Einstein occupation number,

k0 = ω/c is the free space wave-vector, k∥ = (kx, ky), kρ =


k2
x + k2

y, kz =
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
k2
0 − k2

∥, j = s, p accounts for the s and p polarizations, r0ij are the Fresnel re-

flection coefficients between vacuum (labeled by 0) and the medium (i = 1, 2)

for s and p waves. The contribution of propagating waves (k∥ < k0) and

evanescent waves (k∥ > k0) are naturally separated in this expression. The

propagating wave term is Kirchhoff’s law taking the multiple reflections into

account. Here 2 Im(r0ij ) in the evanescent waves term can be interpreted as

the generalization of emissivity to the near field [17, 104]. We note 2 Im(r0ij )

are also proportional to the near field local density of states (LDOS) proposed

by Pendry [22] and is related to the tunneling and subsequent absorption of

energy carried by evanescent waves. Recent work has shown that the heat

flux between two planar structures just depends on the scattering matrix, re-

gardless of the inner structure of the half space medium [43]. We utilize this

approach for planar multilayer HMMs. The broadband enhancement in the

near field LDOS of HMMs can be utilized to engineer the heat transfer at

the nanoscale [72, 105]. We will use both the approximate effective medium

theory and the exact Bloch theorem to calculate the reflection coefficients and

compare the heat transfer properties of HMMs.

To clearly understand the physical meaning of the above expression for

heat transfer [38], we define that η is the absorptivity/emissivity of a plate,

since emissivity should equal absorptivity from Kirchhoff’s law,

η =


1− |r|2 , PWs

2 Im(r), EWs
. (2.47)

Here ‘PWs’ denotes propagating waves and ‘EWs’ denotes evanescent waves.

The number of photon emitted by plate 1 is N1 = n1(ω, T1)η1. The emitted

waves propagate within the gap with a factor eikzd. At the second plate they

get partially absorbed and partially reflected. Thus the number of photon

emitted by plate 1 and then directly absorbed by plate 2 is

N1st
1→2 = n1(ω, T1)|eikzd|2η1η2. (2.48)

Likewise, the number of photon emitted by plate 2 and then directly absorbed

by plate 1 is

N1st
2→1 = n2(ω, T2)|eikzd|2η2η1. (2.49)

Therefore the number of photons exchanged directly from plate 1 to plate 2 is
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Figure 2.1: (a) Schematic of the multilayered structure and the coordinates.
The spatial coherence are calculated between r1 = (0, 0, z) and r2 = (d, 0, z).
(b) Effective permittivities of a SiO2-SiC multilayered structure, where the
fill fraction of SiC is 0.4. Only real part of the permittivity is plotted. The
insets from left to right, denote the iso-frequency dispersion of dielectric, type
II HMM and type I HMM.

N1st
1→2 −N1st

2→1 = (n1(ω, T1)− n2(ω, T2))|eikzd|2η1η2. (2.50)

Next we incorporate the factor 1/(1− r1r2e
2ikzd) which accounts for the multi-

reflection between the two plates, and get the total number exchanged between

the two plates,

N = N1→2 −N2→1 = (n1(ω, T1)− n2(ω, T2))
|eikzd|2

|1− r1r2e2ikzd|2
η1η2. (2.51)

Lastly, h̄ωN is just the energy exchanged (heat transfer) between the two

plates. Thus we reproduce the main expression for heat transfer, which is

usually derived by starting from FDT, within the simple photon exchange

picture.

2.6 Results and discussions

There are multiple approaches to achieving hyperbolic dispersion [61,62]. Two

of the prominent geometries consists of 1D or 2D periodic metal-dielectric

structures. We consider here a multilayer combination of silicon dioxide (SiO2)

and silicon carbide (SiC) which has a metallic response in the Reststrahlen
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band due to phonon polaritons (Re(ϵ) < 0 between ωTO = 149.5 × 1012 Hz

and ωLO = 182.7 × 1012 Hz, the transverse and longitudinal optical phonon

resonance frequencies). The permittivity of SiC is given by ϵm = ϵ∞(ω2
LO−ω2−

iγω)/(ω2
TO−ω2− iγω), where ω is the frequency of operation, ω∞ = 6.7×1012

Hz and γ = 0.9×1012 Hz. We note that this realization formed the testbed for

the first complete characterization of the modes of hyperbolic metamaterials

due to their low loss as compared to plasmonic media [80]. The modes of this

HMM can be excited at relatively lower temperatures (400-500K) when the

peak of black body emission lies within the Reststrahlen band of SiC.

To understand the thermal properties of phonon-polaritonic hyperbolic

metamaterials we need to focus only on the Reststrahlen band of SiC where

it is metallic. The multilayer structure (see schematic in Fig. 2.1(a)) shows a

host of different electromagnetic responses as predicted by effective medium

theory ϵ∥ = ϵmf + ϵd(1− f) and ϵ⊥ = ϵmϵd/(ϵdf + ϵm(1− f)), here f is the fill

fraction of the metallic medium [61].

We classify the effective uniaxial medium [61, 62] using the isofrequency

surface of extraordinary waves which follow k2
z/ϵ∥ + (k2

x + k2
y)/ϵ⊥ = ω2/c2 and

the media are hyperboloidal only when ϵ∥ϵ⊥ < 0 . We can effectively achieve

a type I hyperbolic metamaterial with only one negative component in the

dielectric tensor (ϵ∥ > 0, ϵ⊥ < 0), type II hyperbolic metamaterial with two

negative components (ϵ∥ < 0, ϵ⊥ > 0), effective anisotropic dielectric (ϵ∥ > 0,

ϵ⊥ > 0) or effective anisotropic metal (ϵ∥ < 0, ϵ⊥ < 0). In Fig. 2.1(b), we plot

the effective permittivities of a SiO2-SiC multilayered structure with the fill

fraction 0.4 and label the two hyperbolic regions. As the purpose of this work

is to examine how extraordinary waves in HMMs impact thermal emission

properties, we only consider p-polarized waves in our numerical simulations.

2.6.1 Far field thermal emission

We first characterize the thermal emission of a HMM slab in the far field.

This is extremely important for experiments currently being pursued in mul-

tiple groups. We clearly observe two peaks in Fig. 2.2 in agreement with the

previous work on epsilon-near-zero and epsilon-near-pole resonances for ther-

mal emission [81]. The right one occurs when ϵ⊥ is close to zero. From the

displacement field boundary condition, ϵ0E0⊥ = ϵ⊥E1⊥, when ϵ⊥ → 0, the

fields inside HMM E1⊥ should be very large. Thus large absorption is ex-
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Figure 2.2: Far field thermal emission (normalized to blackbody emission) of
a 3µm SiO2-SiC multilayered structure, where fill fraction of SiC is 0.4.

pected at this epsilon-near-zero (ENZ) region. The epsilon-near-pole (ENP)

resonance results in narrowband thermal emission due to the increase in the

imaginary part of the dielectric constant in this ENP spectral region. The

most critical aspect is the direction of the dielectric tensor components which

show ENZ or ENP [81]. An ENZ in the component parallel to the interface or

an ENP perpendicular to the interface does not show such effects.

2.6.2 Near field thermal emission

Here we analyze the near-field thermal emission from multilayer hyperbolic

metamaterials [12]. We first focus on how thermal emission will depend on

the thickness of the slabs. In Fig. 2.3, we plot the wavevector resolved ther-

mal emission from a structure consists of 40 layers of SiO2/SiC , 30nm/20nm

achieving a net thickness of 1µm. We clearly see multiple discrete high-k modes

in both the type I and type II hyperbolic region. Note the thickness 1µm is

about one tenth of the operating wavelength, so these high-k modes will not

occur in conventional isotropic dielectrics. The excellent agreement between

the EMT prediction and the practical multilayered structure is seen, which

validates the use of EMT in our structure. Further, we increase the thickness

of the slab to 3µm and 30µm while keeping the same unit cell. The waveguide

modes will be denser as expected. At the thickness of 30µm, the high-k modes

are almost continuous and result in two bright bands in Fig. 2.4(b). This is

close to the bulk metamaterial limit.

We show the thermal emission spectrum in Fig. 2.5(a) for various thick-
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(a) (b)

Figure 2.3: Wavevector resolved thermal emission (normalized to blackbody
emission into the upper space) from a SiO2-SiC multilayered structure calcu-
lated by (a) transfer matrix method and (b) EMT at z=200nm. The thermal
emission is normalized to the black body emission to the upper half-space and
in log scale. The structure consists of 40 layers of SiO2/SiC , 30nm/20nm
achieving a net thickness of 1µm. The presence of high-k modes are clearly
evident in both the EMT calculation and the multilayer practical realization
which takes into account all non-idealities due to dispersion, losses, finite unit
cell size and finite sample size. The bright curves denote the enhanced ther-
mal emission due to high-k modes in the HMM. In the practical multilayered
structure, the high-k modes come from the coupled short range surface phonon
polaritons at the silicon carbide and silicon dioxide interfaces.

(a) (b)

Figure 2.4: Wavevector resolved thermal emission (normalized to blackbody
emission into the upper space) from (a) a 3µm thickness HMM slab and (b)
a 30µm thickness HMM slab. The fill fraction of SiC is 0.4, same as the
1µm HMM slab. The two hyperbolic regions where the thermal emission is
enhanced are evident. The modes supported by 3µm thickness slab are denser
than that of 1µm slab and the modes supported by the 30µm slab are almost
continuous.
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Figure 2.5: (a) Thermal emission (normalized to blackbody emission) from
slabs with various thicknesses. The dashed black line is calculated using trans-
fer matrix method while the solid lines are calculated using EMT parameters,
where ’DM’ in the legend means the top layer of SiO2(Dielectric)-SiC(Metal)
multilayers is SiO2. Despite the clear difference of the density of modes sup-
ported by the slabs shown in Fig. 2.3 and 2.4, the thermal emission spectrum
are interestingly in good agreement. The two main peaks where the thermal
emission are largely enhanced are due to the high-k states in the two hyperbolic
regions. (b) Wavevector resolved thermal emission at ω = 1.6 × 1014Hz. The
sharp peaks on the left (kρ/k0 < 2) are the surface modes. When kρ/k0 > 3,
the curve for 30µm slab is almost flat with no oscillations, while that of 1µm
and 3µm slabs show the discrete modes denoted by crests and troughs.

nesses of the metamaterial. The two main peaks are due to the high-k modes in

the hyperbolic region. In Fig. 2.5(b), we plot the wavevector resolved thermal

emission at a specific frequency ω = 1.6×1014Hz within the type II hyperbolic

region where the structure supports both surface mode and high-k modes. The

sharp peaks at the left are due to the surface mode while the high-k modes

emerge at larger kρ. In the high-k modes region, the curve for 30µm slab is

almost flat indicative of a continuum of high-k modes. In contrast, the curves

of 1µm and 3µm slabs clearly show the existence of discrete high-k waveguide

modes featured by crests and troughs.

2.6.3 Spatial coherence of hyperbolic metamaterial slab

Surface waves can lead to large spatial coherence length in the near field [84].

To see this, we first show in Fig. 2.6 the wavevector resolved thermal emission

from a 30µm thick SiC slab. The bright curve gives the dispersion of surface

phonon polariton (SPhP) between the vacuum and SiC interface. Note we will

not see the splitting of the vacuum-SiC interface SPhP mode into long range

and short range modes since 30µm is in the order of several operating wave-

lengths. In the time domain, the temporal coherence is best for monochromatic
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Figure 2.6: Thermal emission from a 30µm SiC slab. The red bright curve
represents the dispersion of the SPhP mode between the vacuum and SiC
interface since the slab is very thick.
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Figure 2.7: Spatial coherence of (a) a 30µm SiC slab and (b) a 30µm
HMM slab at 0.2µm and 1µm from the surface with ω = 1.6 × 1014Hz and
ω = 1.79 × 1014Hz. (a) At ω = 1.6 × 1014Hz, the SiC slab supports a single
degenerate SPhP mode. As a result, SiC slab has large spatial coherence at
both 0.2µm and 1µm. At ω = 1.79 × 1014Hz, the SPhP resonance frequency
where Re ϵSiC = −1, this frequency corresponds to a bright horizontal line in
the SPhP dispersion curve shown in Fig. 2.6. This means at this frequency,
multi-modes with different wavevectors can be thermally excited. Thus the
spatial coherence is poor both at 0.2µm and 1µm. (b)At ω = 1.6×1014Hz, the
HMM slab supports high-k states besides the SPhP mode. At 0.2µm, the high-
k states contribute a lot to the fluctuating electric fields, and consequently the
spatial coherence is poor. But when the distance becomes larger at 1µm, the
high-k states will not reach that far because of their large wavevector kρ. Thus
the electric fields will be dominated by the surface mode which has smaller kρ.
The spatial coherence length is large due to this dominant surface mode. At
ω = 1.79 × 1014Hz, the HMM slab can only supports multiple high-k states,
and unlike the type II HMM region, there is no lower bound for the high-k
wavevectors. Thus the spatial coherence is poor both at 0.2µm and 1µm.
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waves. Thus for the spatial coherence, one can imagine it will be favorable if

a single wavevector dominates the fields among all the wavevectors. This is

indeed the case for surface waves. In Fig. 2.7(a), we plot the spatial coherence

of the SiC slab at ω = 1.6 × 1014Hz and ω = 1.79 × 1014Hz. At the fre-

quency ω = 1.6× 1014Hz, the SPhP mode wavevector kρ is about 1.1k0. Large

spatial coherence length is seen at both 0.2µm and 1µm from the interface.

However, near the surface phonon polariton resonance (SPhPR) frequency

ω = 1.79 × 1014Hz where ϵSiC = −1, the mode dispersion curve is almost

a horizontal line, which means that multiple modes with different wavevec-

tors can be thermally excited. Thus a poor spatial coherence is expected. In

Fig. 2.7(a), the spatial coherence is poor at at both 0.2µm and 1µm from the

interface. This feature could be used to determine the resonance frequency.

Hyperbolic metamaterials can support multiple high-k modes. Therefore

the spatial coherence length should not be long in the hyperbolic region. This

is true for type I HMM. In Fig. 2.7(b), we plotWzz at ω = 1.79×1014Hz, where

the multilayered structure effectively behaves in the type I hyperbolic region.

The spatial coherence lengths are only a fraction of the operating wavelength

at both 0.2µm and 1µm from the interface.

But the situation for type II hyperbolic region is interestingly different.

For a HMM slab in the type II hyperbolic region (ϵ∥ < 0, ϵ⊥ > 0), the slab

can support a surface wave mode as well as multiple high-k modes. Thus

we have two sets of modes that can result in a unique interplay of spatial

coherence effects. Furthermore, these modes are separated in wavevector space

because of the lower bound of the high-k states in type II hyperbolic region

[61]. High-k modes are confined to the surface better than suface waves and

these high-k waves will dominate at a shorter distance from the interface.

We choose ω = 1.6 × 1014Hz within the type II hyperbolic region to confirm

this point. At distance 0.2µm, the spatial coherence is very poor. However,

at a larger distance 1µm, the fluctuating fields have large spatial coherence

length. This is because at this distance, the contribution from surface wave

mode dominates the electric fields while the high-k states rarely contribute to

the fields. This distance dependence behavior can have applications such as

obtaining the modes distribution at a given frequency.
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(a) (b)

(c) (d)

Figure 2.8: (a) Optical phase diagram of SiC-SiO2 multilayered structure
predicted by EMT. Cyan region denotes effective dielectric, blue region means
effective metal, red region stands for type I hyperbolic metamaterial, yellow
region is type II hyperbolic metamaterial. Thermal emission at z=200nm (log
scale plot normalized to the black body radiation into the upper half-space)
by the multilayered structure depending on the operating frequency and the
fill fraction calculated by (b) EMT, (c) SiO2-SiC multilayer (with first layer
SiO2), (d) SiC-SiO2 multilayer (with first layer SiC). In the effective metal
region, the dark red line is due to surface phonon polariton resonance. Both
type I and type II region have a clear thermal emission enhancement due to
bulk high-k modes in agreement with the optical phase diagram.
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2.6.4 Thermal topological transitions

Until now, we have fixed the fill fraction to be 0.4. It is useful to examine the

structure’s behavior at various fill fractions. In Fig. 2.8(a), we plot the opti-

cal phase diagram [12, 61] of this metamaterial which shows the isofrequency

surfaces achieved at different frequencies and fill fractions of SiC. The phase

diagram is classified as effective dielectric, effective metal, type I and type II

HMM as introduced before [61, 62].

Figure. 2.8(b) shows the thermal energy density (normalized to black body

radiation into the upper half space) evaluated using Rytov’s fluctuational elec-

trodynamics for an effective medium slab at a distance of z=200nm from the

metamaterial. It is seen that the regions of hyperbolic behavior exhibit super-

Planckian thermal emission in agreement with our previous analytical approx-

imation, but here we will go beyond effective medium theory and consider

practical structures. The role of the surface waves is very important and can

lead to significant deviations when the unit cell size is not significantly sub-

wavelength [68,79,82].

The macroscopic homogenization utilized to define a bulk electromagnetic

response is valid when the wavelength of operation exceeds the unit cell size

(λ ≫ a). However, even at such wavelengths if one considers incident evanes-

cent waves on the metamaterial the unit cell microstructure causes significant

deviations from EMT. This is an important issue to be considered for quan-

tum and thermal applications where the near-field properties essentially arise

from evanescent wave engineering (high-k modes) [61, 62]. For the multilayer

HMM, at distances below the unit cell size, the thermal emission is dominated

by evanescent waves with lateral wavevectors kρ ≫ 1/a. Since this is above

the unit-cell cut off of the metamaterial, the high-k modes do not contribute

to thermal emission at such distances. It is therefore necessary to consider

thermal emission from a practical multi-layer structure taking into account

the layer thicknesses. This is shown in Fig. 2.8(c) and Fig. 2.8(d). The unit

cell size is 200nm, and we consider a semi-infinite multilayer medium using the

formalism outlined in Ref. [79]. An excellent agreement is seen of the optical

phases of the multilayer structure with the EMT calculation.
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Figure 2.9: (a) Heat transfer spectrum (normalized to heat transfer between
blackbodies) calculated with EMT, SiC-SiO2 (MD) multilayer, SiO2-SiC (DM)
multilayer. The fill fraction of SiC layer is 0.4 and the unit cell size is 50nm.
The gap is 200nm. Here we consider two semi-infinite slabs. One slab is at
500K and the other at 0K. There are two distinct peaks. The left and right
one correspond to type II and type I hyperbolic regions, respectively. The
higher peaks in the MD curve are due to the surface phonon polaritons of the
topmost metallic layers. (b) Wavevector resolved heat transfer of SiC-SiO2

(MD) multilayer normalized to blackbody limit, the three red bright regions
clearly show the origin of the three peaks in (a) and the high-k states in
hyperbolic regions.

2.6.5 Near field heat transfer

Now we utilize Eq. (2.46) in the heat transfer section to examine heat transfer

between two plates composed of identical HMMs. Fig. 2.9(a) shows the heat

transfer spectrum normalized to blackbody between two HMMs separated by

a vacuum gap of 200nm. It is seen that only in regions of hyperbolic behavior

we see super-Planckian thermal energy transfer in agreement with our previ-

ous analytical approximation of thermal topological transitions in near-field

energy density. We note that the surface states at the interface of the top-

most layer and vacuum plays a significant role in energy transfer when the

top layer is metallic (Fig. 2.9(a)). This is similar to case of near-field imaging

where surface plasmon polaritons at both the object plane and image plane

contribute significantly to resolution enhancement; a phenomenon not cap-

tured in EMT descriptions. In Fig. 2.9(b), we show the wavevector resolved

heat transfer for a multilayer metamaterial which clearly elucidates the role of

high-k metamaterial states in the heat transfer.
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2.7 Conclusion

This work shows that extension of equilibrium and non-equilibrium fluctua-

tional electrodynamics to the case of metamaterials can lead to novel phenom-

ena and applications in thermal photonics. We presented a unified picture

of far-field and near-field spectra for experimentalists and also introduced the

near-field spatial coherence properties of hyperbolic metamaterials. We have

analyzed in detail thermal topological transitions and super-Planckian thermal

emission and heat transfer in practical phonon-polaritonic hyperbolic metama-

terials. We paid particular attention not only to the effective medium approx-

imation but discussed all non-idealities limiting the super-Planckian thermal

emission from HMMs. We have provided practical designs to experimentally

measure and isolate our predicted effect. Our work should lead to a class of

thermal engineering applications of metamaterials.
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Chapter 3

Singular evanescent wave

resonance

3.1 Introduction

In the previous chapter, we have examined the photon transfer and the energy

associated with them between two plates at different temperatures. Another

property photons possess is momentum. However, for two stationary plates,

due to the symmetry of the structure, a photon with frequency and momentum

(ω, k⃗) will be emitted/absorbed at identical probability with photon (ω,−k⃗),

and thus no net momentum transfer can occur. But if we consider an asym-

metric setup where one plate, say plate 2, is moving at a constant velocity V

parallel to its interface (along x direction), photons with opposite momentums

will be scattered at different rate due to the Doppler shift caused by the rel-

ative motion. The frequency and wavevector perceived by the moving plate

are Doppler shifted and thus different from those perceived by the stationary

plate. Photons with positive momentum, propagating along the moving direc-

tion, will be shifted to lower frequencies, while those with negative momentum,

propagating against the moving direction, will be shifted to higher frequencies.

This asymmetry leads to differences in the Bose-Einstein occupation number

and the scattering matrix for (ω, k⃗) and (ω,−k⃗) photons, thereby causing a net

momentum transfer between the moving plates even at the same temperature.

Actually the momentum transfer between moving plates is an example of the

research field on ‘dynamical Casimir forces’ that focuses on fluctuational forces

between moving objects [112–114], and can be solved by combining Lifshitz’s
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theory [6] and electrodynamics in moving media [96]. But here we will stick to

the simple photon exchange picture (see Eq. 2.47-2.51), and directly give the

final result for the force which has clear physical interpretation. The lateral

force between the moving plates is the product of photon exchanged and the

momentum of each photon (h̄kx),

F (d, T1, T2) =

 ∞

0

dω

2π
h̄kx(n(ω, T1)− n(ω′, T2))

=

j=s,p

 k0

0

d2k∥
4π2

(1−
r01j 2)(1− r02j,mov

2)1− r01j r02j,move
2ikzd

2
+

 ∞

k0

d2k∥
4π2

e−2 Im(kz)z
4 Im(r01j ) Im(r02j,mov)1− r01j r02j,move

2ikzd
2

. (3.1)

Here, r02j,mov denotes the reflection from the moving plate 2. The frequency

shift from ω to ω′ = ω − kxV in n(ω′, T2) is necessary and important because

the occupation number should be counted in the plate’s rest frame.

Interestingly, we find that the denominator
1− r01j r02j,move

2ikzd
 in the above

expression can be exact zero for the moving plates, which can never occur in

the stationary case. This vanishing multi-reflection factor means a singular

Fabry-Perot resonance with infinite quality factor, while any conventional res-

onance in passive, stationary system should have finite quality fact because of

causality. The singular resonance leads to divergent dissipative force between

the moving plates. We next start from the conventional Fabry-Perot resonance

and demonstrate how the moving system can support a singular resonance and

why the force diverges step by step.

3.2 Fabry-Perot resonance

The canonical example of a resonator is the Fabry-Perot (FP) system consisting

of two reflecting plates separated by a vacuum gap [5, 115]. Light bouncing

between them serves as a textbook introduction to the concept of a resonance

and is the basis of practical devices from the laser to the interferometer [5,

115]. A simple argument suffices to understand this resonance. The reflection

coefficient of propagating waves with frequency ω from the first mirror (r1(ω))

times that of the second mirror (r2(ω)) along with the propagation phase

accumulated over a round trip (e2ikzd) should reconstruct the wave, capturing
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Figure 3.1: Singular Fabry-Perot (FP) resonance of evanescent waves can be
achieved by setting the FP plates in relative motion. Plate 1 is stationary
while plate 2 is moving at a constant velocity V along the x direction. The
reflection coefficients and the distance for the moving case can lead to a perfect
balance of both phase and amplitude which cannot occur for stationary plates.

it inside, leading to a resonant build-up of intensity. Here, d is the vacuum

gap between the mirrors and kz is the propagation constant perpendicular to

the mirrors. We arrive at the Fabry-Perot resonance condition

r1(ω)r2(ω)e
2ikzd = 1, (3.2)

which also follows from a plane wave multiple scattering approach.

It is well known that this above equation cannot be fulfilled by any passive

media. Note that the reflection coefficients are complex signifying the change

in phase and amplitude of the propagating wave at the mirrors. A closer look

reveals that an optimum choice of the gap can possibly lead to a net phase

balance (arg(r1(ω)r2(ω)e
2ikzd) = 2nπ) for a resonance, but material absorption

and non-ideal reflections necessarily require |r1(ω)r2(ω)| < 1 (Fig. 3.2(a)).

A gain medium is needed to compensate for this loss in amplitude as in a

laser. The arguments presented above can be generalized to arbitrary passive

structures showing that the bound resonances are signified by the poles of

the scattering matrix which always lie in the lower half (Im(ωres) < 0) of

the complex frequency plane [116]. This condition ensures that all resonances

decay in time leading to a finite quality factor.

In this work, we show that the conventional Fabry-Perot condition has fun-

damental differences in the case of moving media. We explain that evanescent
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waves bouncing between moving plates can lead to a resonance with perfect

amplitude and phase balance. We consider cases in which such a resonance,

which necessarily requires negative frequency modes, can be excited in a prac-

tical scenario. Finally, we show that non-equilibrium processes (momentum

and heat transfer) would be dominated by this resonance making our predicted

effect viable for experimental verification. We emphasize at the outset that

our result is valid taking into account polarization mixing that occur in pho-

tonic interactions between moving bodies and we predict unique scaling laws

in frictional force arising due to the predicted resonance which have not been

elucidated till date.

3.3 Perfect phase and amplitude balance

The case for evanescent waves in a Fabry-Perot configuration is interestingly

different. They do not have phase propagation and the amplitude of such waves

exponentially decays within the vacuum gap. However, those evanescent waves

which couple to the surface modes of the mirror can have a reflection coefficient

with amplitude greater than unity (Fig. 3.2(b)). Such waves can thus have

|r1(ω)r2(ω)| > 1 to compensate the evanescent decay within the gap as well

as non-ideal mirror reflections. The important condition of phase balance

however always remains unfulfilled. This is because the mirrors necessarily

impart a phase change to the evanescent waves which cannot be compensated

while propagating. We also note that the mirrors can never balance or cancel

the phase imparted to the evanescent wave by each other irrespective of their

dielectric properties. This can be discerned by relating the phase of reflection

to the energy which always tunnels into a passive medium. The energy of

incident evanescent waves on any medium is given by the normal component

of the Poynting vector (see Appendix A)

Sz =
1

2
Re(E ×H∗)z =

|kz|
2ωµ0

2 Im(r). (3.3)

For passive media, the energy tunneling into the medium is positive (Sz > 0,

Im(r) > 0) implying that the complex reflection coefficient of evanescent waves

lies in the upper half of the complex plane and 0 < arg(r(ω)) < π. Thus the

product of the reflection coefficients at the two mirrors can never be purely real

(0 < arg(r1(ω)r2(ω)) < 2π) for evanescent waves as required for the resonance
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Figure 3.2: Complex reflection coefficients in passive media for positive (red)
and negative frequencies (blue) (a) For propagating waves, the magnitude of
the reflection coefficient should be smaller than one but there is no restriction
on the phase. (b) For evanescent waves incident on a medium, the direction
of energy tunneling is fixed (Sz ∝ Im(r) > 0) implying that r should be in
the upper complex space (both red phasors in the figure lie in the upper half
of the complex plane). The magnitude |r| can be larger than one especially
at surface wave resonances. We also illustrate the reflection coefficients for
negative frequency propagating and evanescent waves which are complex con-
jugates of their positive frequency counterpart (blue phasors). Note that for
evanescent waves, r(ω)r(−ω) can be a real number larger than one leading to
the possibility of a singular resonance condition (Eq. 3.2).

in Eq. (3.2). Therefore we suggest an additional condition

r2(ω) = r∗1(ω) (3.4)

which fulfills the phase balance condition for evanescent waves at the mir-

rors. This leads to the Fabry-Perot resonance condition for evanescent waves

r1(ω)r
∗
1(ω)e

−2 Im kzd = 1. We emphasize that phase balance occurs since the

phase arg(r1(ω)r
∗
1(ω)e

−2 Im kzd) = 0. Simultaneously amplitude balance arises

since the L.H.S of Eq. (3.2) |r1(ω)r∗1(ω)e−2 Im kzd| = |r1(ω)|2e−2 Im kzd can ac-

tually be unity when the exponential decay (e−2 Im kzd) is compensated by the

enhancement (|r(ω)| > 1) due to evanescent coupling with surface waves.

The complex conjugation of the reflection coefficient (r∗(ω)) for evanes-

cent wave Fabry-Perot resonances can be obtained by considering the neg-

ative frequency counterpart (r(−ω)) since the reality of fields [116] requires

r(−ω) = r∗(ω). Thus the problem of achieving such a resonance reduces to

transforming the reflection from the second mirror into the negative frequency

reflection coefficient of the first mirror r2(ω) = r1(−ω). This can be achieved
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by setting two plates made of the same material in relative motion but with a

fixed gap between them (Fig. 3.1)).

We now analyze the resonant modes within this gap. Consider an incident

plane wave in vacuum given by ei(k⃗·r⃗−ωt) on a moving interface. We consider the

lateral wavevector (kx, ky) along the non-relativistic moving direction (V/c ≪
1 and ky = 0) and provide the generalized approach in Appendix A. The

frequency of the wave in the frame co-moving at a constant velocity V along

the x axis is Doppler shifted to ω′ = ω−kxV [5]. This shifted frequency appears

negative (ω′ = ω − kxV < 0) to the second plate for waves with kx > ω/V .

Such waves have large wavevectors lying beyond the light line (kx ≫ ω/c) and

are necessarily evanescent in the gap.

We conclude that an evanescent wave with frequency ω incident on the

stationary plate 1 will appear Doppler shifted to −ω for the moving plate 2

when −ω = ω − kxV . We call this the phase balance wavevector,

kPB
x = 2

ω

V
(3.5)

Evanescent waves with this special wavevector will bounce off the stationary

first mirror with reflection coefficient r1(ω) but reflect off the second identical

but moving mirror with coefficient rmov
2 (ω) = r1(−ω) = r∗1(ω) (see Appendix

A).

We emphasize now the fundamental difference between the stationary plate

[117] and moving plate cases. Using the near-field quasi-static approximation,

the stationary plates would lead to the well-known condition found in text-

books,

r2pe
−4ωd/V = 1 (3.6)

where rp is the reflection coefficient of p-polarized waves. As explained pre-

viously, the complex nature of the reflection coefficient implies this condition

cannot be fulfilled irrespective of distance or material properties. This result

has been utilized extensively in laser physics and also extended to the case of

Casimir force [117]. Our aim here is to show that subtle balance of phase and

amplitude are completely missed by the above equation. The moving plate

case gives rise to a counterintuitive singular resonance condition

|rp|2 e−4ωd/V = 1 (3.7)
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The subtle role of the negative frequency mode is revealed in the phase cancel-

lation on reflection which cannot occur for stationary plates. We note now that

there is a critical distance which can lead to a singular resonance condition

dAB =
V

2ω
ln |rp(ω)| , (3.8)

The central result in our work is the combination of Equations (3.5), (3.7) and

(3.8) and the invalidity of (3.6) for the moving case even though it is widely

used. Note we require |rp| > 1 which can occur if the plate supports surface

waves. The phase balance (PB) (Eq. (3.5)) and amplitude balance (AB) con-

dition (Eq. (3.7)) together can achieve the singular Fabry-Perot condition for

evanescent waves bouncing between moving media.

We emphasize that this condition holds true in the relativistic case as well

leading to a singular resonant condition in spite of the presence of material

dispersion and absorption. A detailed proof of this result taking into account

polarization mixing is given in the Appendix A. We note that a complete nu-

merical calculation taking into account polarization mixing produces all the

scaling laws mentioned in the subsequent sections. Furthermore, the relativis-

tic phase balance wavevector kPB
x = (1 + 1/γ)ω/V also makes the relativistic

multi-reflection which includes polarization mixing to be completely real. We

show in Appendix A information that one can always find a distance that

makes this real multi-reflection factor exactly zero.

3.4 Excitation of the perfect resonance

Coupling energy from the far-field into near-field to excite the singular reso-

nant mode becomes increasingly inefficient as the spectral width of the mode

decreases. However, we show that evanescent wave Fabry-Perot modes with

vanishing spectral width can be thermally excited between moving bodies with-

out the need for any external optical excitation. Near-field plates at different

temperatures exchange thermal energy through excitation of allowed evanes-

cent gap modes [17, 29]. However, even if we consider the temperature T

of the identical plates to be the same, the Bose-Einstein distribution [2] of

thermally excited modes n(ω, T ) = 1/(eh̄ω/kBT − 1) within the moving plate

will be Doppler shifted from the stationary plate. This drives an interesting

photon exchange between the plates through the singular resonance. The oc-
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cupation of modes in the moving plate, which have to be evaluated in the

co-moving frame, will be negative specifically for those modes which have neg-

ative Doppler shifted frequencies, since the Bose-Einstein distribution gives

n(ω′, T2) = −1− n(−ω′, T2) for ω
′ < 0 [118]. We emphasize that this negative

occupation is indicative of an excitation akin to population inversion made

possible by the energy of motion.

The photon exchange between the plates is also governed by the emissivity

or absorptivity of the plates in the near-field [17, 22, 38, 104]. The near-field

emissivity of a plate is proportional to the evanescent wave Poynting vector

(Sz ∝ Im(r(ω))). There is a stark contrast between the Poynting vector direc-

tions for positive frequencies and negative frequencies (evanescent waves with

kx > ω/V ). Since r(−ω) = r∗(ω), we see that the Poynting vector of tunneling

negative frequency waves Sz ∝ Im(r)is opposite to that of positive frequency

waves. Therefore the emissivity of the moving plate is negative while that of

the stationary plate is positive for negative frequency modes. We thus note

that as opposed to the conventional case of light tunneling into a medium,

the negative frequency evanescent modes supported by a moving medium can

tunnel out of it (Fig. 3.1). These photons will subsequently be absorbed by

the stationary plate. The net photon emission rates for the two plates are pos-

itive and given by N1 = 2 Im(r1(ω))n (ω, T1) and N2 = 2 Im(rmov
2 (ω))n (ω′, T2)

respectively. By generalizing Kirchoff’s law to the near-field, we see that the

near-field absorptivity of the plates is also given by 2 Im[r(ω)]. Thus the

number of photons emitted by the stationary plate and then absorbed by the

moving plate is N1→2 = N12 Im [rmov
2 (ω)], which is negative due to the nega-

tive absorptivity of the moving plate. This negative absorptivity implies the

moving plate, which is in an excited state, is losing photons instead of ab-

sorbing them. It is the excitations from the stationary plate which cause the

stimulated emission of photons from the moving plate. Similarly, the number

of photons emitted by the moving plate and then absorbed by the stationary

plate is N2→1 = N22 Im [r1(ω)] which is positive as expected.

The evanescent photons exchanged between the plates N = N2→1 −N1→2

is [38]

N(ω, kx) =
2 Im [r1(ω)]

eikzd2 2 Im [rmov
2 (ω)] (n(ω′, T2)− n(ω, T1))

|1− r1(ω)rmov
2 (ω)e2ikzd|2

, (3.9)

where r1(ω) and rmov
2 (ω) are the reflection coefficients for the stationary and
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moving plates respectively evaluated for a wave incident with frequency ω in

the lab frame. We have rmov
2 (ω) = r1(ω

′) and the factor
eikzd2 accounts for the

decay of the photon propagating between the two plates while the denominator1− r1(ω)r
mov
2 (ω)e2ikzd

2 is for the multi-reflection between the plates. Firstly,

we note that at zero temperature, if ω′ < 0 < ω, we have n(ω′, 0) = −1 and

n(ω, 0) = 0, so the difference n(ω′)−n(ω, 0) is nonzero; thus photon exchange

occurs even at zero temperature, which causes quantum friction. Secondly,

even though the multi-reflection factors are routinely encountered in the case of

parallel plates, once they are set in motion we predict a critical difference. For

frequencies at which the plates support surface waves, the singular Fabry-Perot

resonance of evanescent waves can lead to the divergence of this multi-reflection

factor for the phase balance wavevector (kPB
x = 2ω/V ) and amplitude balance

distance (dAB = (V/2ω) ln |rp(ω)|). The role of evanescent waves and surface

waves in the mediation of energy transfer as well as Casimir forces are well

known [29, 117]. However, the presence of surface waves does not in any way

imply the delicate phase and amplitude balance condition described above.

To analyze the nature of the excited evanescent wave resonance in a prac-

tical scenario, we consider two identical metallic plates moving relative to

each other at non-relativistic speeds. The moving velocity is bounded by

the phonon velocity of the medium [89], typically in the order of 104m/s,

thus β = V/c ≪ 1 . The plates are separated by a small gap to allow for

interaction through large wavevector evanescent waves, necessary to achieve

Doppler shifted negative frequencies in the co-moving frame. Since phase bal-

ance wavevector kPB
x (2k0/β) is much larger than k0, the reflection coefficient

for p-polarized waves can be approximated by rp(ω) = (ϵ(ω) − 1)/(ϵ(ω) + 1).

When Re(ϵ(ω)) = −1, there occurs a pole of the reflection coefficient corre-

sponding to the surface wave resonance (SWR). The amplitude enhancement

of an evanescent wave has a maximum at this SWR ωSWR, leading to the

critical distance d0 = V/(2ωSWR) ln |rp(ωSWR)|. At the SWR frequency, the

magnitude of reflection coefficient |rp| is bounded by the loss of the material.

Realistic estimates for |rp| is in the order of 10 and if the plate velocity is

104m/s, the operating frequency ωSWR should be in the order of 1012Hz to

give a critical distance in the order of 10 nm. Thus we need materials with

low plasma frequency in the THz region to observe the singular Fabry-Perot

resonance of evanescent waves. Here we consider a Drude metal with frequency

dependent permittivity given by ϵ(ω) = 1−ω2
p/(ω

2 + iΓω) with ωp = 3×1012Hz
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Figure 3.3: Contribution to exchanged photon number resolved by frequency
and lateral wavevector kx (normalized to free space wavevector) at (a) d = 2d0
and (b) d → d+0 (d = (1 + 10−6)d0). In both (a) and (b), we see two bright
curves, both of which are due to surface wave resonances. In (a), at a distance
away from d0, the singular resonance condition is far from being satisfied.
However, the bright curves remain due to the SWR at the two interfaces. In
(b), the red bright point is due to the singular resonance that arises since
the amplitude balance condition is satisfied when d → d+0 and phase balance
condition is satisfied at kx = 2/β. This leads to giant photon exchange between
moving plates at the singular resonance. The insets give the zoom in plots near
the intersection of the two SWRs. See also Fig. A.7.

and Γ = 0.01ωp. The temperatures are chosen to be T1=320K and T2=300K.

The SWR frequency for this material is 2.12 × 1012Hz and at the velocity of

104m/s, the critical distance d0 that satisfies the singular resonance condition

is close to 10nm.

In Fig. 3.3, we plot the spectrum of photons exchanged according to their

frequency and wavevector in the lab frame. For a distance d1 which is away

from the singular Fabry-Perot Resonance condition, we see two distinct bright

regions in ω − k space through which photons are exchanged between the

two plates. The horizontal region corresponds to the SWR frequency of the

stationary plate where all wavevectors are excited like in a conventional surface

wave resonance [103]. The curved region corresponds to the Doppler shifted

SWR frequency of the moving plate. We emphasize that previous work on

quantum friction [21, 38, 89–102] has been limited to these modes and the

corresponding scaling laws.

Our result shows that as the plates are moved closer to the singular FP

resonance condition (d → d+0 ), a fundamentally new mechanism of photon

exchange emerges. This is evident from Fig. 3.3(b) where photons with the
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Figure 3.4: Non-equilibrium vacuum friction on the FP plates (a) resolved by
the wavevector kx at d = d+0 and d = 2d0. A major contribution to the force
arises from modes at the perfect phase balance wavevector. Note, at 2d0, the
amplitude of friction is significantly smaller. (b) The distance dependence of
friction at distances near d0. The x axis is in (d/d0 − 1) and log scale. We
clearly see a linear increasing behavior as d approaches d0. This is consistent
with the theoretical scaling law which predicts a logarithmic divergence of the
non-equilibrium vacuum friction in the ideal limit.

phase balance wavevector completely dominate the interaction. Note that this

occurs when the frequencies in the co-moving frame and lab frame are equal

and opposite, the condition for phase balance. Indeed, the multiple scattering

term 1−r1r2e
2ikzd in Eq. (3.9), vanishes giving rise to an infinitely large number

of photons exchanged.

3.5 Giant dispersive force between the plates

in relative motion

We assert that the singular evanescent wave resonance fundamentally dom-

inates all non-equilibrium processes between the plates. We focus here on

the observable force on the plates in a direction opposite to the motion, which

arises due to momentum carried by the photons exchanged between the plates.

This dispersive force, i.e., the momentum transfer between the two plates[11],

is the product of the total number of photons exchanged (Eq. 3.9) and the

momentum of a single photon h̄kx giving fx(ω, kx) = h̄kxN(ω, kx) where the

net force F =

fx(ω, kx)dkx.

In Fig. 3.4(a), we plot the spectrum of this non-equilibrium vacuum fric-

tion force resolved according to the wavevector for various distances of the
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plates. The largest contribution to the force is due to the singular Fabry-Perot

resonance of evanescent waves. This can be interpreted as a perfect coupling

of positive and negative frequencies in the near-field.

When the distance d approaches the critical distance d0, we predict the

non-equilibrium friction F to be

F ∼ ln


d0

d− d0


(3.10)

This result holds true for the quantum friction (T→0) case as well. We plot

the friction vs. distance in Fig. 3.4(b) to verify the theoretical predictions. We

clearly see that the friction increases as ln [d0/(d− d0)] when d approaches d0.

In fact, it is interesting to note that this singular resonance causes the frictional

force to actually diverge under the macroscopic electrodynamic assumption [1]

used routinely. This is fundamentally different from previous works [21,38,89–

102] that have calculated forces and scaling laws. The reason for the difference

is that previous works did not consider the effect of the unique resonance and

critical distance.

In Fig. 3.4(b), the magnitudes of friction evaluated around the resonance

at d1 = 2d0 and d2 = (1 + 10−6)d0 are 4.58 × 10−5N/m2 and 10.7 N/m2,

respectively. We do not assume ideal mirrors [119] and losses or dispersion

are not an impediment to the singular resonance. Our estimates are based

on assumptions of a local Drude model which will be modified for electro-

magnetic interactions with large wavevectors [120, 121]. However, the only

fundamental requirement is the enhancement in the reflection of coefficient of

evanescent waves which is known to occur even in the presence of non-locality

(eg: graphene plasmons [122,123]). This giant enhancement in non-equilibrium

momentum and heat transfer due to the resonance predicted in this work can

be ascertained either with THz surface waves in degenerately doped semicon-

ductors [73], phonon-polaritonic polar dielectrics [124], low frequency plasmons

or graphene [125]. The role of the giant photon flux caused by the resonance

on assumptions of macroscopic and local fluctuational electrodynamics will be

analyzed in future work. Our results can be extended to the case of energy

transfer as well where we expect a giant exchange in energy between the plates

due to the singular resonance condition.
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3.6 Conclusion

In essence, the singular resonance occurs when the pole of a scattering matrix

is pulled up to the real axis due to the relative motion of the plates [126].

We note that this is precluded by the requirement of an infinite energy supply

for maintaining relative motion near this resonance condition. We emphasize

that the singular resonance we introduced can be adopted to plates at any

temperatures including the low temperature limit of quantum friction. Our

result is fundamentally related to classical electromagnetic scattering theory

and is unrelated to the debate on quantum friction (T→0 case). Furthermore,

there is a consensus in the literature about the non-equilibrium vacuum friction

case which we have chosen to elucidate [118,127].

In summary, we have introduced a singular resonance supported by moving

media caused by the perfect coupling of positive and negative frequencies in the

near-field. Experiments with light induced potentials [128] or nanomechanical

[129] systems can manifest such resonances leading to a deeper understanding

of negative frequency modes [130,131].
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Chapter 4

Conclusion

We have fully developed fluctuational electrodynamics in multi-layered struc-

tures at equilibrium or non-equilibrium. Both first principle second kind of

fluctuation dissipation theorem and the scattering matrix formalism are em-

ployed and confirmed to be equivalent. With dyadic Green’s function in multi-

layered structures, we are able to calculate the energy density, Poynting vec-

tor, spatial coherence of the electromagnetic fields in such structures. We have

limited ourselves to multi-layered structures which have simple analytic dyadic

Green’s functions. For complex geometries where no such analytic DGFs are

available, one should use numerical methods such as finite element method,

finite-difference time-domain and boundary element method [46, 47, 110, 111],

which will be studied in future work.

We have applied the theory to examine thermal properties of practical hy-

perbolic metamaterials composed of multilayer phonon-polaritonic materials.

The high wavevector states in hyperbolic metamaterials lead to near field ther-

mal emission and heat transfer that exceed the black body limit in a broad

bandwidth. Furthermore, the high wavevector states have a large impact on

the spatial coherence of the thermal fields. We have utilized both effective

medium theory and transfer matrix method to compute the scattering matrix

of the multi-layered structures and shown the regions where effective medium

theory is valid. Our results could be verified in experiments and potentially

applied in energy harvesting industry, especially in enhancing the efficiency of

solar cells.

We have also introduced a singular Fabry-Perot resonance of evanescent

waves bouncing between two plates at relative motion. The resonance arises

due to the coupling of positive and negative frequency evanescent waves and
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leads to a spontaneous exchange of a large number of photons between the

moving bodies. The non-contact frictional force mediated by a nanoscale vac-

uum gap can diverge due to the existence of this singular evanescent wave

Fabry-Perot resonance. Thus essentially an infinite force is required to keep

the plate at the constant velocity, complying with causality.

We have shown the singular resonance leads to divergent dispersive force

between the two plates in spite of loss of the material, polarization mixing

as well as relativistic effects. However, non-local effects occur due to the

large wavevector and the close spacing between the plates [132]. Moreover, as

the energy exchange between the two plates goes up, the large field intensity

will cause nonlinear effects. In the theory part, we have essentially assumed

the validity of linear scattering process. The fluctuational electrodynamics

theory in Ref. [96] is based on linear response theory [133]. The nonlinear

response of the media will certainly play an important role near the singular

resonance. Thus we argue that non-locality and nonlinear effects might curtail

the singularity, especially due to breakdown of linear response theory near

the singular resonance. The role of non-locality and nonlinear effects will be

examined in future work.
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Appendix A

Supplementary information for

singular evanescent wave

resonance

A.1 Derivation of Poynting vector

A p-polarized incident plane wave,Hi = ŷei(kxx+kyy+kzz−ωt), shines on the inter-

face in x-y plane between vacuum and a plate. Here kx and ky are real, kz =
(ω/c)2 − k2

x − k2
y, kz is real for propagating waves (PWs) while imaginary

for evanescent waves (EWs). Assuming that the reflection coefficient is r, the

reflected wave will be Hr = ŷrei(kxx+kyy−kzz−ωt). The electric fields lying along

the interface are Eix = x̂ kz
ωµ0

ei(kxx+kyy+kzz−ωt), Erx = x̂−kzr
ωµ0

ei(kxx+kyy+kzz−ωt).

Thus the Poynting vector [5] along the normal direction is

Sz =
1

2
Re(E ×H∗)z =


I |kz |

ω
(1− |r|2),PWs

I |kz |
ω
2 Im(r),EWs

, (A.1)

where I is a constant proportional to the intensity of the incident waves. Then

the energy absorbed by the plate is proportional to 1−|r|2 for PWs and 2 Im(r)

for EWs. For a stationary passive medium, Sz must be positive so 1−|r|2 > 0

for PWs and Im(r) > 0 for EWs. It is worthwhile noting that 1 − |r|2 is the

far field emissivity related to the absorption of propagating waves and 2 Im(r)

can be physically interpreted as the near field emissivity [22, 38, 104] in the

photon emission process. The above result has been utilized throughout the
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manuscript to understand the tunneling of evanescent waves emanating from

the moving mirror.

A.2 On the reality of fields

The key condition for the Fabry-Perot resonance of evanescent waves is ob-

tained by the complex conjugation of the reflection coefficients. In the main

text we have argued that this can be achieved using the negative frequency

counterpart of the reflection coefficient. This result relies on the condition for

the reality of the fields [116]. In Fourier space, the electric fields are expressed

as

E(r, t) =


u(ω, kx, ky, z)e

i(kxx+kyy−ωt)dkxdkydω. (A.2)

In view of the reality of E(r, t),

u(ω, kx, ky, z) = u∗(−ω,−kx,−ky, z). (A.3)

This is valid for both the incident waves and the reflected waves. For reflections

from a stationary plate with the in plane wavevectors (kx, ky) conserved,

r(ω, kx, ky) = r∗(−ω,−kx,−ky). (A.4)

In this work, we assume the reflection coefficients are written for isotropic

media so that

r(ω, kx, ky) = r(ω,−kx,−ky). (A.5)

Thus for reflection from a stationary plate, we have

r(ω, kx, ky) = r∗(−ω, kx, ky). (A.6)

A.3 The scattering matrix of a moving plate

with polarization mixing

In the main text, for simplicity, we have assumed non-relativistic velocities

and no mixing of polarizations. However, here we generalize our approach and

show that the central result related to the singular resonance of evanescent

waves persists even in the relativistic limit.
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We start from the Lorentz transformation [5],


E ′

cB′


= γ

 ↔
α

−1 ↔
β

−
↔
β

↔
α

−1

 E

cB


, (A.7)

where

↔
α

−1
=

 1/γ 0 0

0 1 0

0 0 1

 ,
↔
β=

 0 0 0

0 0 −β

0 β 0

 , (A.8)

with β = V/c, γ = 1


1− β2.

The electric fields are transformed by

E ′ = γ(
↔
α

−1
E+

↔
β cB). (A.9)

For plane waves with phase ei(kxx+kyy+kzz−ωt),

cB =
c

ω
k⃗ × E =

c

ω

 0 −kz ky

kz 0 −kx

−ky kx 0

E =
c

ω

↔
k E. (A.10)

For the frequency and wavevector, the Lorentz transformation gives [5],

k
′

x = γ(kx − βk0), (A.11)

ω′ = γ(ω − kxV ), (A.12)

while ky and kz remain unchanged. Note that under non-relativistic limit, we

have k
′
x = kx and ω′ = ω − kxV which are used in the main text.

We first transform the incident field to the co-moving frame,

E ′ = γ(
↔
α

−1
+
c

ω

↔
β

↔
k )E. (A.13)

The reflected fields in the co-moving frame are

E
′

r = (r
′

sŝ
′

−ŝ
′

+ + r
′

pp̂
′

−p̂
′

+)E
′. (A.14)

Here ŝ
′
+ = ŝ

′
− = (k

′
y,−k

′
x, 0)/k

′
ρ are the unit vectors of upward and downward s-
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polarized waves, p̂
′
+ = (−k

′
xk

′
z,−k

′
yk

′
z, (k

′
ρ)

2)/(k
′
0k

′
ρ), p̂

′
− = (k

′
xk

′
z, k

′
yk

′
z, (k

′
ρ)

2)/(k
′
0k

′
ρ),

are the unit vectors of forward and downward p-polarized waves, respectively,

where k
′
0 = ω/c, k

′
ρ =


(k′

x)
2 + (k′

y)
2. r

′
s and r

′
p are the standard Fresnel

reflection coefficient of s- and p-polarized waves in the co-moving frame, re-

spectively.

Next we transform the reflected field to the lab frame,

Er = γ(
↔
α

−1
+

c

ω′

↔
β
′↔
k
′
)E

′

r. (A.15)

Here

↔
β
′
=

 0 0 0

0 0 β

0 −β 0

 = −
↔
β,

↔
k
′
=

c

ω′

 0 −k
′
z k

′
y

k
′
z 0 −k

′
x

−k
′
y k

′
x 0

 . (A.16)

Thus Er = RE where the reflection operator is given by

R = γ(
↔
α

−1
+

c

ω′

↔
β
′↔
k
′
)(r

′

sŝ
′

−ŝ
′

+ + r
′

pp̂
′

−p̂
′

+)γ(
↔
α

−1
+
c

ω

↔
β

↔
k ). (A.17)

For an alternative derivation of this reflection operator, see Ref. [98].

Now the reflection operator is written in a 3 by 3 matrix. The 2 by 2

reflection matrix is defined by

rλµ = ê−λRê+µ , (A.18)

where rλµ are the reflection coefficients for an incident wave with polarizationµto

be reflected as a wave with polarization λ. ê±s = (ky,−kx, 0)/kρ, ê±p =

(∓kxkz,∓kykz, k
2
ρ)/k0kρ (k0 = ω/c, kρ =


k2
x + k2

y) are the unit vector of

s- and p-polarized waves in the vacuum, respectively. As before, the plus sign

in the superscript of ê denotes forward waves (incident waves) and the minus

sign for downward waves (reflected waves). After some lengthy but straight-

forward calculations, the scattering matrix of the moving plate rλµ is found to

be

rλµ =


rss rsp

rps rpp


= B


r
′
s

r
′
p


A. (A.19)

Here the matrix elements A11 = A22 = γk
′
0(k

2
ρ−βk0kx)


k0k

′
ρkρ, A12 = −A21 =

γk
′
0(−βkykz)


k0k

′
ρkρ, B11 = B22 = γk0(k

2
ρ − βk0kx)


k0k

′
ρkρ, B12 = −B21 =
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γk0(−βkykz)

k0k

′
ρkρ. The reflection coefficients are

rss = r
′

sγ
2(k2

ρ − βk0kx)
2

(k

′

ρkρ)
2 − r

′

pγ
2(βkykz)

2

(k

′

ρkρ)
2, (A.20)

rsp = −(r
′

s + r
′

p)γ
2(k2

ρ − βk0kx)βkykz


(k

′

ρkρ)
2, (A.21)

rps = (r
′

s + r
′

p)γ
2(k2

ρ − βk0kx)βkykz


(k

′

ρkρ)
2 = −rsp, (A.22)

rpp = r
′

pγ
2(k2

ρ − βk0kx)
2

(k

′

ρkρ)
2 − r

′

sγ
2(βkykz)

2

(k

′

ρkρ)
2. (A.23)

Generally speaking, the reflected waves of p-polarized waves will have s-polarized

waves component, and vice versa. This is called polarization mixing. Note po-

larization mixing will not be a significant effect at non-relativistic velocity due

to the factor β in both rsp and rps.

However, for ky = 0, we have

rss(ω, kx) = r
′

s(ω
′, k

′

x), (A.24)

rpp(ω, kx) = r
′

p(ω
′, k

′

x), (A.25)

and

rsp = rps = 0. (A.26)

This means, when ky = 0, polarization mixing disappears regardless of the

velocity. The reflection from a moving plate can be expressed as the standard

Fresnel reflection from a stationary plate with a Doppler shifted frequency

and wavevector. In the main text, we only consider the p-polarized waves

with ky = 0, thus rp(ω, kx) = r
′
p(ω

′, k
′
x). The polarization of the wave does not

change on reflection.

At the relativistic phase balance wavevector (set ω′ = −ω in Eq. (A.12))

kx = (1 +
1

γ
)
ω

V
, (A.27)

we have

ω′ = −ω, k
′

x = kx. (A.28)
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Thus rp(ω, kx) = r
′
p(−ω, kx). Here r

′
p is reflection from a stationary plate in the

co-moving frame, so rp(ω, kx) = (r
′
p(ω, kx))

∗, which is the complex conjugate

of the reflection coefficient from the stationary plate in the lab frame. In this

sense, we achieve r2 = r∗1 at the phase balance wavevector.

The expression for the Poynting vector is also valid for a moving plate since

it only depends on the reflection coefficients. At the lab frame, we only consider

positive frequency, namely ω > 0. When the Doppler shifted frequency ω′ < 0,

Im(r) will be negative, resulting in a negative Poynting vector. Thus essentially

we extract energy out from the moving plate.

A.4 Approximation of the reflection coefficients

The moving velocity is bounded by the phonon velocity of the medium, typi-

cally in the order of 104m/s, thus β is very small in the order of 10−4. As kx is

very large to achieve negative frequency (kx > k0/β), the reflection coefficients

can be evaluated by the high-k approximation. For a stationary plate with a

very large kx,

rs =
ϵ− 1

4(kρ/k0)2
, (A.29)

and

rp =
ϵ− 1

ϵ+ 1
. (A.30)

The reflection coefficient for s-polarized waves is negligibly small, while |rp| has
a resonance at Re(ϵ) = −1 , which is the surface wave resonance condition.

To compensate the propagating decay of evanescent waves inside the vac-

uum gap, |rp| should be larger than 1, thus implying Re(ϵ) < 0. This means

the structure needs to work in the frequency spectrum where the materials are

metallic.

A.5 Full theory for photon exchange

In the main text, we have argued that the spontaneously occurring photon

exchange between the plates diverges due to the existence of the singular res-

onance condition. Here for completeness, we provide the complete relativistic

theory of the photon exchange and relate it to the frictional force to emphasize

how the phase balance and amplitude balance condition enters in the analysis.
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In the main text, we have assumed that ky = 0 to avoid polarization

mixing of waves. Thus we can deal with p- and s-polarized waves separately.

The scattering matrix, i.e., the reflection matrix, will be diagonal and can be

handled as scalars. However, if ky ̸= 0, the scattering matrix rλµ of the moving

plate will have non-diagonal terms, i.e., polarization mixing terms. Therefore

we need the full theory with polarization mixing and relativistic velocity taken

into account to describe the photon exchange picture.

The spontaneous emission rate from a moving plate at constant velocity

is [35, 37,38,134]

Tr(1− SS†)n(ω′, T ) (A.31)

for propagating waves and

Tr(i(S† − S))n(ω′, T ) (A.32)

for evanescent waves. Here, S = rλµ is the classical scattering matrix evaluated

in the lab frame, ω′ is the frequency in the moving plate’s rest frame, n(ω′, T )

is the Bose-Einstein occupation number [2] in the co-moving frame, ‘†’ denotes
Hermitian conjugate, ‘Tr’ means taking the trace. (1−SS†) and i(S†−S) can

be also seen as the absorption rate of the incident waves by the plates.

Assuming U is the spontaneous emission (absorption) amplitude of the

plate [38]. For propagating waves, UU † = 1 − SS†; for evanescent waves,

UU † = i(S† − S). The amplitude of photon emitted by plate 1 and then

absorbed by the plate 2 is U2e
ikzdU1, where eikzd accounts for the propagat-

ing with the vacuum gap. Taking the multi-reflection into account [4], the

amplitude is

U2(1 + e2ikzdS1S2 + (e2ikzdS1S2)
2 + · · · )eikzdU1 = U2

eikzd

1− S1S2e2ikzd
U1. (A.33)

With the Bose-Einstein occupation number n1(ω, T1) of plate 1, the photon

transfer rate from plate 1 to plate 2 is [35,37,38]

N1→2 = Tr


(U2

eikzd

1− S1S2e2ikzd
U1)(U2

eikzd

1− S1S2e2ikzd
U1)

†

n1(ω, T1). (A.34)

Similarly, the photon transfer rate from plate 2 to plate 1 is

N2→1 = Tr


(U1

eikzd

1− S2S1e2ikzd
U2)(U1

eikzd

1− S2S1e2ikzd
U2)

†

n2(ω

′, T2). (A.35)
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It can be shown that

Tr


(U2

eikzd

1− S1S2e2ikzd
U1)(U2

eikzd

1− S1S2e2ikzd
U1)

†


=Tr


(U1

eikzd

1− S2S1e2ikzd
U2)(U1

eikzd

1− S2S1e2ikzd
U2)

†

. (A.36)

The net photon exchanged rate should be N = N2→1 −N1→2. One then finds

that

N = Tr

(1− S†

1S1)D(1− S2S
†
2)D

†

(n2(ω

′, T2)− n1(ω, T )) (A.37)

for propagating waves, and

N = Tr

(S1 − S†

1)D(S†
2 − S2)D

†

(n2(ω

′, T2)− n1(ω, T )) (A.38)

for evanescent waves, where D = eikzd/(1− S2S1e
2ikzd).

With the help of the scattering matrix and after some algebra, one can

derive the expression for number of photon exchanged,

N(ω, kx, ky) = (n(ω, T1)− n(ω′, T2))


1

|∆|2
e−2 Im(kz)d

((k2
ρ − βk0kx)

2 + β2k2
zk

2
y)

(k2

ρ − βk0kx)(1− |r1p|2)(1− |r′

2p|2)|Dss|2

+ β2k2
zk

2
y(1− |r1p|2)(1− |r′

2s|2)|Dsp|2 + (p → s)


, PWs

N(ω, kx, ky) = (n(ω, T1)− n(ω′, T2))


4

|∆|2
e−2 Im(kz)d

((k2
ρ − βk0kx)

2 + β2k2
zk

2
y)

(k2

ρ − βk0kx)
2 Im(r1p) Im(r

′

2p)|Dss|2

− β2k2
zk

2
y Im(r1p) Im(r

′

2s) |Dsp|2 + (p → s)


, EWs (A.39)

Here kρ =

k2
x + k2

y, β = V/c, γ = 1/


1− β2, k0 = ω/c, k
′
x = γ(kx − βk0),

ω′ = γ(ω−kxV ), kz =

k2
0 − k2

ρ, Dss = 1− e2ikzdr1sr
′
2s, Dpp = 1− e2ikzdr1pr

′
2p,

Dsp = 1 + e2ikzdr1sr
′
2p, Dps = 1 + e2ikzdr1pr

′
2s, ∆ = (k2

ρ − βk0kx)
2DssDpp +

β2k2
zk

2
yDspDps. The symbol p ↔ s denotes the terms that can be gained by

permuting the indexes p and s of preceding terms. r1(s,p) are the reflection

coefficients from the stationary plate, r
′

2(s,p) are the reflection coefficients in

the co-moving frame. ∆ is the denominator of the matrix (1 − S2S1e
2ikzd)−1.
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In the case T1 = T2 = 0K, under which condition n(ω, T ) vanishes for positive

frequencies and equals −1 for negative frequencies. In the lab frame, we only

consider positive frequency photons, so essentially no photon emitted from

plate 1. However, for the moving plate 2, the photon emission can be nonzero

for negative Doppler shifted waves ω′ < 0, under which condition only photons

with kx > ω/V can be transferred.

The dominant term in the multi-reflection factor ∆ = (k2
ρ−βk0kx)

2DssDpp+

β2k2
zk

2
yDspDps is the term related to (p) polarized reflection coefficients Dpp =

1 − e2ikzdr1pr
′
2p. From the photon exchange term for the case with polariza-

tion mixing, we define the normalized ∆N rather than ∆ in Eq. (A.39) as the

multi-reflection factor,

∆N =
(k2

ρ − βk0kx)
2DssDpp + β2k2

zk
2
yDspDps

(k2
ρ − βk0kx)2 + β2k2

zk
2
y

. (A.40)

In the region which supports the singular resonance β < 10−4, since kx > k0/β,

one has β2k2
zk

2
y ≪ (k2

ρ − βk0kx)
2 and Dss ≈ 1. Thus ∆N is well approximated

by Dpp. At the phase balance wavevector kPB
x = 2ω/V , Dpp(k

PB
x ) = 1 −

|rp(ω)|2 e−4ωd/V , we can adjust the distance d to make it zero as long as |rp| >
1. It is clear that Dpp has a local minimum at (ωSWR, k

PB
x , ky = 0) due to

the surface wave resonance (SWR) of |rp(ω)|. That Dpp equals zero at this

minimum leads to

d0 =
V

2ωSWR

ln |rp(ωSWR)| . (A.41)

Note that we achieve an upper bound on the critical distance.

A.6 Singular Resonance: Polarization mixing

and relativistic effects

In the main text, we have assumed a non-relativistic Lorentz transform and

no polarization mixing. We then find the conventional multi-reflection factor

1−r1r2e
2ikzd is real at the phase balance wavevector, which can lead to singular

resonance at the critical distance. Here we show that the singular resonance

can exist in spite of relativistic effects and polarization mixing.

At the relativistic phase balance wavevector, kx = (1 + 1/γ)ω/V , ω′ =

−ω, k
′
x = kx (Eq. (A.27) and (A.28)). The frequency is opposite and the

wavevector is unchanged, consistent with the invariance of the four dimensional
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momentum vector. Due to the reality of fields, the reflection coefficients in the

co-moving frame at frequency −ω are the complex conjugates of corresponding

reflection coefficients in the lab frame at frequency ω, r
′

2(s,p) = r∗1(s,p). We now

note the critical fact that at this specific phase balance wavevector Im(Dss) =

Im(Dpp) = Im(DspDps) = 0. Dss, Dpp are real and Dsp = D∗
ps, so that the

multi-reflection factor (∆) which includes polarization mixing and relativistic

effects is real valued at the relativistic phase balance vector. We emphasize

that this situation is exactly equivalent to the simple multi-reflection factor we

considered in the earlier discussion. Furthermore, in the presence of surface

waves there will always exist a critical distance when this multi-reflection factor

∆ = 0. The main contribution in this work is this delicate phase balance and

amplitude balance condition that has not been pointed out before.

A.7 Non-equilibrium vacuum friction

The dispersive force, i.e., the momentum transfer between the two plates [38],

is the product of the total number of exchanged photons and the momentum

of a single photon h̄kx(h̄ is the Planck constant divided by 2π)

fx(ω, kx, ky) = h̄kxN(ω, kx, ky). (A.42)

We also note that the energy transfer between the two plates is the product of

the total number of photons exchanged and the energy of a single photonh̄ω.

The net dispersive force can be achieved by integrating all possible partial

waves ω, kxand ky [38] in the above Eq. (A.42). Note that the frequency ω

should be positive. The friction can be calculated by

Fx =

 ∞

0

dω

2π

 ∞

−∞

dkx
2π

 ∞

−∞

dky
2π

h̄kxN(ω, kx, ky). (A.43)

Note that Nhas different expressions for propagating and evanescent waves

(see Eq. (A.39)). We can then recover the results in Ref. [96] which has a

detailed calculation based on the stress tensor.

In the main text, we use the general theory here to generate the figures.

At a fixed velocity 104m/s, the critical distance is found to be 10.04nm by

Eq. (A.41). In Fig. 3.3 of the main text, ky in Eq. (A.39) is integrated from

−∞ to ∞. Here we show the 3D plots of Fig. 3.3 to illustrate the peak due to
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Figure A.1: (a) and (b) are the three dimensional version of Fig. 3.3(a) and
(b) in the main text, respectively. The large peak in (b) due to the singular
resonance is evident. Even though the resonance condition occurs at a single
isolated point in reciprocal space, it leads to divergences in physical observ-
ables.

singular resonance more clearly.

In Fig. 3.3 of the main text, we have not integrated all the possible (ω, kx, ky)

region in Eq. (A.43), but a small neighborhood around the singularity (ωSWR,

kPB
x , ky = 0), ω from (1−0.05)ωSWR to (1+0.05)ωSWR, kx from (1−0.05)kPB

x

to (1 + 0.05)kPB
x , and ky from −0.05kPB

x to +0.05kPB
x . In Fig. 3.4(b), the

magnitudes of friction at d1 = 2d0 and d2 = (1+10−6)d0 are 4.58× 10−5N/m2

and 10.7N/m2, respectively.

A.8 The scaling law of non-equilibrium vac-

uum friction

We have shown that at the phase balance wavevector, the denominator ∆N of

the integral Eq. (A.43) can be exactly zero. Thus we have a three dimensional

improper integral. We emphasize that this resonance condition leads to a

divergence in vacuum friction. Here, we rigorously prove the existence of this

divergence and find the scaling law governing the vacuum friction near the

resonance condition. The analytical scaling law is in excellent agreement with

the numerical calculations.

At a given velocity V , we first fix kx to be the phase balance wavevector

so that ∆ is real. At any distanced, we can find the minimum of ∆N as a

function of ω and ky at (ω0, k0
y). We define d0 as the critical distance so that

the minimum at d0 is zero. The minimum generally occurs at ky = 0 and
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ωSWR, but our derivation below does not depend on this statement of the

location of the minimum. At the critical distance d0, we have a singular point

(ω0, kPB
x , k0

y) in three dimensional spaces (ω, kx, ky) where the denominator ∆N

is exact zero.

First we analyze the behavior of the denominator at this singular point.

At the phase balance wavevector, ∆N is real valued as a function of ω and ky.

As the function reaches the minimum, the first order derivatives of ω and ky

are zero. However, the first order derivative of kx is not zero but a complex

number since ∆ is generally complex when kx departs from kPB
x . Therefore

∆N can be approximated by a1ω
2 + a2k

2
y + a3kx around the minimum. Here

ω should be understood by ω − ω0, the difference to the singularity, so are ky

and kx. a1 and a2 are positive numbers, a3 = a4 + ia5 is a complex number,

the possible cross term ωky is not important here since we are looking for

an upper bound of ∆N . The denominator |∆N |2 will be approximated by

(a1ω
2 + a2k

2
y + a4kx)

2 + (a5kx)
2. In a neighborhood of the minimum, we have

1

2
((a1ω

2+a2k
2
y+a4kx)

2+(a5kx)
2) < |∆N |2 < 2((a1ω

2+a2k
2
y+a4kx)

2+(a5kx)
2)

(A.44)

The sign of a4 here should be dealt with carefully. Firstly we consider the

branch of kx where a4kx is positive. If a4 > 0, we choose the branch kx > 0; if

a4 < 0 we choose the branch kx < 0. Then we have


a1ω

2 + a2k
2
y

2
+(a4kx)

2 ≤ (a1ω
2+a2k

2
y+a4kx)

2 ≤ 2

a1ω

2 + a2k
2
y

2
+2(a4kx)

2

(A.45)

For the asymptotic behavior, the constants ai are not important. It is clear

that there exists positive constants q and p so that,

q

(ω2 + k2

y)
2 + k2

x


< |∆N |2 < p


(ω2 + k2

y)
2 + k2

x


. (A.46)

In the integral 
dωdkxdky

1

(ω2 + k2
y)

2 + k2
x

, (A.47)

we first take ω = r cos θ, ky = r sin θ, so that the integral transforms to
dr2dkx

1

(r2)2 + k2
x

=


drdkx

1

r2 + k2
x

. (A.48)
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Further by taking r = ρ cos θ, kx = ρ sin θ, the integral will be
dρ

1

ρ
(A.49)

which diverges. Note that in the branch a4kx < 0, the upper bound of |∆N |2

in Eq. (A.46) still satisfies; therefore the integral diverges in this branch also.

The scaling law can be seen just by an additional d − d0 term a6d (a6 is

positive) in the first order Taylor expansion of ∆N . In a neighborhood of the

minimum,

|∆N |2 ∼ (a1ω
2 + a2k

2
y + a4kx + a6d)

2 + (a5kx)
2 . (A.50)

Following the same integration procedure, the integral will be δ

0

dρ
1

ρ+ d2
, (A.51)

where δ is a constant that Eq. (A.50) holds in the δ-neighborhood. This

integral gives

ln
1

d
+ constant. (A.52)

Thus the scaling law will be

F (d) ∝ ln(
d0

d− d0
), (A.53)

where we have replaced d by d − d0 and normalize it to d0. It diverges very

slowly as d approaches d0.

A.9 The non-equilibrium vacuum friction vary-

ing with velocity

The phase balance condition for the resonance is achieved by the coupling of

positive and negative frequencies whereas the amplitude balance condition is

adjusted by tuning the distance between the mirrors while keeping the velocity

of the moving mirror fixed. In this section we show that changing the velocity

while keeping the distance constant also leads to the excitation of the reso-

nance. We also derive the scaling law with respect to the velocity at a given
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Figure A.2: Contribution to exchanged photon number (in log scale) resolved
by frequency and lateral wavevector kx (normalized to free space wavevector)
at (a) V = 0.5V0 and (b) V → V −

0 . In both (a) and (b), we see two bright
curves, both of which are due to surface wave resonances. The horizontal
one comes from SWR at the interface of the stationary plate and vacuum
while the other one is due to SWR at the interface of the moving plate and
vacuum. These two bright curves join at the phase balance wavevector when
the Doppler shifted SWR frequency in the co-moving frame is opposite to the
SWR frequency in the lab frame. In (a), at a velocity much smaller than
V0, the singular resonance condition is far from being satisfied. However, the
bright curves remain due to the SWR at the two interfaces. In (b), the red
bright point is due to the singular resonance that arises since the amplitude
balance condition is satisfied when V → V −

0 and kx = 2/β. This leads to
giant photon exchange between moving plates at the phase and amplitude
balance condition. The insets give the zoom in plots near the intersection of
the two SWRs. We emphasize the dramatic increase in the photon exchange
due to the singular FP resonance of evanescent waves. (c) and (d) are the
three dimensional version of (a) and (b), respectively. The large peak in (d)
due to the singular resonance is evident.
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distance using a similar approach.

To prove the divergence of friction and scaling law, we first fix the wavevec-

tor kx to be the phase balance wavevector k
PB
x . The only difference is that kPB

x

is a function of the velocity, so that it is also a variable compared to the given

velocity case where kPB
x (normalized to free space wavevector) is a constant.

However, this fact will not affect the second step, finding the velocity where

the minimum of the multi-reflection factor ∆N is exactly zero.

At all practical velocities, ∆N at the phase balance wavevector is well

approximated by Dpp(k
PB
x ) = 1 − |rp(ω)|2 e−4ωd/V with kPB

x = 2ω/V . The

minimum of Dpp(k
PB
x ) occurs at ky = 0 and ωSWR where |rp(ω)| has a reso-

nance. That the minimum of Dpp(k
PB
x ) equals zero gives the critical velocity

V0,

V0 = d
2ωSWR

ln |rp(ωSWR)|
. (A.54)

Note that this equation is essentially the same to Eq. (A.41). These two

equations suggest that d/V should be a constant at the singular resonance.

Certainly, the velocity given by Eq. (A.54) should be practical.

The scaling law of friction to the velocity approaching the critical velocity

will be

F (V ) ∝ ln(
V0

V0 − V
). (A.55)

which can be easily read from the derivation of Eq. (A.53). One can just

replace d (d− d0) in Eq. (A.53) by V (V0 − V ).

Here we present the results when the vacuum gap is fixed at 10nm, and com-

pare the photon exchange and vacuum friction at different velocities. At this

distance, the critical velocity V0 where the multi-reflection factor ∆N reaches

zero is about 0.996 × 104m/s. Due to the same mathematical structure and

similar parameters, the results here look close to that of fixed velocity case.

In Fig. A.2, we plot the spectrum of photons exchanged according to their

frequency and wavevector in the lab frame. For a velocity V1 which is away

from the singular Fabry-Perot resonance condition of evanescent waves, we

see two distinct bright regions in ω − k space through which photons are

spontaneously exchanged between the two plates. The horizontal region corre-

sponds to the surface wave resonance frequency of the stationary plate where

all wavevectors are excited like in a conventional SWR. The curved region cor-

responds to the SWR frequency of the moving plate however the frequency is

Doppler shifted and the region is curved instead of a straight line.
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Figure A.3: Non-equilibrium vacuum friction on the FP plates (a) resolved
by the wavevector kx at V = V −

0 and V = 0.5V0. A major contribution to the
force arises from modes at the perfect phase balance wavevector. However,
at 0.5V0, the amplitude of friction is significantly smaller. (b) The distance
dependence of friction at distances near V0. The x axis is in (1 − V/V0) and
log scale. We clearly see a linear increasing behavior as V approaches V0.
This is consistent with the theoretical scaling law which predicts a logarithmic
divergence of the frictional force in the ideal limit.

In Fig. A.3(a), we plot the spectrum of the frictional force resolved accord-

ing to the wavevector for various distances of the plates. The largest contri-

bution to the force is due to the Fabry-Perot resonance of evanescent waves.

When the velocity V approaches the critical distance V0, the frictionF scales

as ln [V0/(V0 − V )]. We plot the friction vs. velocity in Fig. A.3(b) to ver-

ify the theoretical predictions. The x axis is (1 − V/V0) and in log scale.

We clearly see the friction increases linearly as a function of ln [V0/(V0 − V )]

when V approaches V0, consistent with the theoretical scaling law which pre-

dicts a divergence. Fig. A.3(b), the magnitudes of friction at V1 = 2V0 and

V2 = (1− 10−6)V0 are 3.70× 10−4N/m2 and 10.8N/m2, respectively.
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field radiative heat transfer enhancement via surface phonon polaritons

coupling in thin films. Applied Physics Letters, 93(4):043109, July 2008.

[28] Lu Hu, Arvind Narayanaswamy, Xiaoyuan Chen, and Gang Chen.

Near-field thermal radiation between two closely spaced glass plates

exceeding planck’s blackbody radiation law. Applied Physics Letters,

92(13):133106–133106–3, April 2008.

[29] Sheng Shen, Arvind Narayanaswamy, and Gang Chen. Surface phonon

polaritons mediated energy transfer between nanoscale gaps. Nano Lett.,

9(8):2909–2913, August 2009.

[30] Xianliang Liu, Talmage Tyler, Tatiana Starr, Anthony F. Starr,

Nan Marie Jokerst, and Willie J. Padilla. Taming the blackbody with

infrared metamaterials as selective thermal emitters. Phys. Rev. Lett.,

107(4):045901, July 2011.

[31] Biswajeet Guha, Clayton Otey, Carl B. Poitras, Shanhui Fan, and Michal

Lipson. Near-field radiative cooling of nanostructures. Nano Lett.,

12(9):4546–4550, September 2012.

65



[32] Yannick De Wilde, Florian Formanek, Rémi Carminati, Boris Gralak,
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Steven G. Johnson. Modeling near-field radiative heat transfer from

sharp objects using a general three-dimensional numerical scattering

technique. Phys. Rev. B, 85(16):165104, April 2012.

[111] Clayton R. Otey, Linxiao Zhu, Sunil Sandhu, and Shanhui Fan. Fluc-

tuational electrodynamics calculations of near-field heat transfer in non-

planar geometries: A brief overview. Journal of Quantitative Spec-

troscopy and Radiative Transfer, 132:3–11, January 2014.

[112] Gerald T. Moore. Quantum theory of the electromagnetic field in a

variable-length one-dimensional cavity. Journal of Mathematical Physics,

11(9):2679–2691, September 1970.

[113] V. V. Dodonov. Current status of the dynamical casimir effect. Phys.

Scr., 82(3):038105, September 2010.

[114] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johans-

son, T. Duty, F. Nori, and P. Delsing. Observation of the dynamical

casimir effect in a superconducting circuit. Nature, 479(7373):376–379,

November 2011.

[115] M Wolf and E Born. Principles of optics: electromagnetic theory of

propagation, interference and diffraction of light. Cambridge University

Press, 1980.

[116] LD Landau, EM Lifshitz, and LP Pitaevskii. Electrodynamics of contin-

uous media. Pergamon Press, Oxford, 1984.

73



[117] F. Intravaia and A. Lambrecht. Surface plasmon modes and the casimir

energy. Phys. Rev. Lett., 94(11):110404, March 2005.

[118] A. I. Volokitin and B. N. J. Persson. Comment on ’no quantum friction

between uniformly moving plates’. New J. Phys., 13(6):068001, June

2011.

[119] Mehran Kardar and Ramin Golestanian. The “friction” of vacuum, and

other fluctuation-induced forces. Rev. Mod. Phys., 71(4):1233–1245, July

1999.

[120] Jeffrey M. McMahon, Stephen K. Gray, and George C. Schatz. Nonlocal

optical response of metal nanostructures with arbitrary shape. Phys.

Rev. Lett., 103(9):097403, August 2009.

[121] Søren Raza, Giuseppe Toscano, Antti-Pekka Jauho, Martijn Wubs, and

N. Asger Mortensen. Unusual resonances in nanoplasmonic structures

due to nonlocal response. Phys. Rev. B, 84(12):121412, September 2011.

[122] Frank H. L. Koppens, Darrick E. Chang, and F. Javier Garćıa de Abajo.
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