
Maintaining Database Consistency in the Presence of Schema Evolution�

An Evolutionary Approach based on Versions of Schema

Ling Liu

University of Alberta

Department of Computing Science

��� GSB� Edmonton� Canada T�G �H�

Email� lingliu�cs�ualberta�ca

Abstract

With rapid advances in computer network technology and the increasing interest in global information

sharing� grows the need for facilities that can e�ectively maintain the database consistency and program

compatibility as the schema evolves� In this paper� we present a general framework based on versions

of schema for supporting seamless schema evolution in large�scale object�oriented software systems� We

argue that the e�ectiveness of using the schema version model to materialize schema evolution relies not

only on the management of version derivation of schema� but also on the ability to maintain consistency

of the database instances with the new schema versions� and the �exibility of sharing instance access

scopes among versions of schema� Semantics of schema versioning is studied with the objective to

facilitate instance adaptation and program compatibility in the presence of schema updates� A number

of options for sharing of instance access scopes among versions of a schema is developed� Applications

may derive versions of schema upon requests for schema updates� and de�ne the instance access scope for

each new version of schema by either creating their own instance access scope or inheriting the instance

access scope of its ancestor schema versions in terms of a selection of options� The signi�cance of our

approach is

� the abilities for maintaining database consistency� in the presence of schema modi�cation� without

irreversibly changing the objects that exist before the schema modi�cation� and

� the facilities that allow multi�users and applications to create and manipulate di�erent collections

of objects under di�erent versions of schema�

As a consequence� many organizational investments of the existing customer set� such as application

design and development� can remain operational in the presence of schema changes�

Index Terms� Change management� data models� database consistency� engineering and design databases�

program compatibility� schema evolution� schema versioning� software maintenance� version control�

�

� Introduction

Seamless schema evolution and schema versioning are highly desirable functionalities in a multi�user de�

sign environment� A design schema often can be quite complex and large in size� requires multi�authoring�

and evolves frequently� The representative applications include �nancial trading systems� global decision

support systems �such as risk assessment in banking and insurance�� value�added telecommunication ser�

vices� hospital and federal health�care information systems� and work�ow management systems� In these

advanced applications� it is critical to preserve the history of evolution of objects in the presence of schema

evolution� and be able to automate the conformance of database instances to the new versions of a schema�

such that the users may update a schema and maintain the database consistency without irreversibly

changing the objects that exist before the schema modi�cation� As a consequence� the amount of e�ort

required for reprogramming of existing application programs� due to schema changes� can either be avoided

or be substantially reduced� The impact of schema changes made by one user or a single application� over

the entire system and the existing customer set� can be limited to the minimum� Furthermore� users

may derive versions of schema upon requests for schema evolution� and create and manipulate di�erent

collections of objects under di�erent versions of schema�

Unfortunately� existing research and development in the area of schema evolution has so far mostly focused

on the enhancement of schema evolution functionality in database management systems with no explicit

support for versions of schema �cf� 	
� �� �� �� ����� However� if a schema cannot be versioned� objects that

existed before a schema change� in general� will be irreversibly changed due to schema modi�cation� For

example� if an attribute of a class is dropped� the values of this attribute in the existing object instances

of the class become no longer visible to the applications� even when the system uses the �ltering or object

versioning approach to prevent the values of the deleted attribute from getting lost� The primary reason

is because� after the schema change and the instance adaptation� values of the deleted attribute become

no longer visible to the existing applications under the updated schema� even though they might still be

accessible to the system software�

Furthermore� there has been surprisingly little attention given to the role of the schema versioning in man�

aging schema evolution� and the potential feasibility of maintaining the database consistency with the new

version of a schema without irreversibly changing the objects that exist before the schema modi�cation�

An exception is found in Orion 	��� which presents a comprehensive study on the semantics and implemen�

tation of versions of schema� However� Orion�s proposal addresses the modeling and the implementation

issue of schema versioning more at the schema level� An important issue� which left open� is how the model

of schema versioning may enhance the functionality of schema evolution� and� in particular� may facilitate

the conformance of database instances to the new schema version after schema updates� Moreover� from

our experience with a multi�user design environment� it is highly desirable to provide the users with a

multi�level �exibility in sharing instance access scopes among the versions of schema� The two�level access

scope sharing �i�e�� share everything or nothing� proposed in Orion is too limited� To highlight this point�

suppose a version of a schema� say SV�� is given� First of all� the creator of SV� should have authority to

�

decide whether the instance access scope of SV� can be shared �i�e�� sharable� by its descendant schema

versions� Secondly� for any child version� say SV�� of SV�� the creator of SV� should be able to determine

the extent to which SV� needs to inherit the instance access scope of its parent schema version SV�� rather

than being forced to share everything or nothing� Several possibilities exist� For instance� SV� may inherit

only the snapshot of the access scope of SV� at the time of schema version derivation� This means that

all the subsequent database updates �insertion� deletion� modi�cation� under SV� are transparent to SV��

Alternatively� SV� may want to inherit the instance access scope of SV� as well as the subsequent object

modi�cations and deletions under SV�� It also means that only the subsequent insertions to the database

of SV� are transparent to SV��

In this paper� we present a general framework� called DB�EVOLVE� for schema evolution and instance

adaptation based on versions of schema� Semantics of schema versioning is studied with the objectives to

facilitate schema evolution and instance propagation due to schema updates� A selection of options for

sharing of instance access scope among versions of schema is developed� o�ering various levels of �exibility

for schema designers� application developers� and end�users to manipulate and maintain available database

resources in the presence of schema evolution� As a result� users may derive versions of schema upon a

request for schema update� and de�ne the instance access scope for each new version of schema by either

creating their own instance scope or inheriting the instance access scope of its parent version�s� in terms

of the multiple inheritance options� Based on our general framework� we also develop a collection of rules

for triggering the default or user�de�ned transformation methods� which conform the objects of a schema

version to the newly derived schema version� In short� the e�ectiveness of using the model of schema

versions to support schema evolution relies not only on the management of version derivation of a schema

but also on the ability to maintain the database consistency with the new schema version after schema

updates� and the �exibility of sharing instance access scopes among versions of schema�

The rest of the paper proceeds as follows� In Section �� we give a brief presentation of our reference object

model and basic concepts for schema evolution� In Section �� we present a general framework for versions of

schema and a selection of options for sharing of instance access scope among versions of schema� Section

de�nes a high�level user interface which allows users to work with the proposed framework for realization of

schema evolution and for maintaining database consistency as required� due to schema changes� We outline

our implementation considerations in Section �� including the data structure for objects� the algorithms for

accessing objects under di�erent versions of schema� and the storage representation of classes and schema

versions� We compare our work with the related research in Section �� and conclude in Section � with a

summary and some future lines of research�

�

� Basic Concepts

��� The Reference Object Model

We assume a fairly standard basic object�oriented data model� Objects are either of primitive types

�such as Integer� Real� String� or of constructed types� The constructive types are built through recursive

application of type constructors like tuple� set� list to the primitive types� Each object is described by a

unique identity� the structure description and the set of methods� We use properties to refer to instance

variables �attributes� and methods of objects�

Objects are grouped into classes based on a set of common properties� and are only accessible through their

property functions de�ned in classes� The term class serves a dual purpose� It imposes a type description

which consists of a �nite set of property functions as a common interface and meanwhile denotes the set

of objects which conform to its type� Thus� each class C is described by a unique class name� a type

description and a set membership� Two kinds of relationships are explicitly distinguished between classes�

inheritance �or is�a� relationships and object reference �called construction� relationships�

A class C� has a is�a relationship with a class C� if and only if all properties of objects of C� are also

properties of objects of C�� We call the class C� subclass and C� superclass� and refer to the property

sharing as inheritance� The set of is�a relationships in a schema forms the is�a class hierarchy� No cycle

is allowed in the is�a hierarchy� When a class inherits properties from more than one superclass� we

call this feature multiple inheritance� Name con�icts between a class and its superclasses and among the

superclasses of a given class are resolved by giving the precedence to the de�nition within the class over

that in its superclasses� and by using superclass ordering �details see the next subsection�� In addition� a

class may override an instance variable or method by de�ning one locally with the same name�

When a class C� is a domain of a reference property of C�� we say that the two classes have a construction

relationship and refer to C� as a component class and C� as a composite class for presentation convenience�

We call the set of object construction relationships the construction hierarchy� Loops and self�loops are

allowed in the class construction hierarchy�

��� Basic Schema Evolution Invariants

We below list �ve DB�EVOLVE basic schema evolution invariants� They are to some extent similar to

thosed used in Orion 	�� and OTGen 	���

�� Unique Name Invariant Each class must have a unique name� Each instance variable and method�

de�ned or inherited by a class� must have a unique name�

�� Subclass and Superclass Invariant The subclass�superclass relationship forms a is�a class lattice�

with the system�de�ned class OBJECT as the root�

�� Typed Instance Variable Invariant The type of each instance variable must have a corresponding

class in the class lattice�

�� Inheritance Invariant A class inherits all properties �instance variables and methods� from its

superclasses� unless it rede�ne a property with the same name� When more than one superclass de�nes the

same name property� the class should only inherit the one de�ned by the superclass that appears earliest

in the superclass list of the class�

�� Type Compatibility Invariant When a class Ci de�nes an instance variable with the same name

as an instance variable it would otherwise inherit from one of its superclasses Cj� the type of Ci�s instance

variable must be a subclass of the type of Cj �s instance variable�

Numerous extensions can be made to this basic model of schema evolution invariants without compromising

the capabilities of DB�EVOLVE� For example� one possible extension is the addition of component class

invariants to provide �part�of� semantics�

��� Schema Evolution Primitives and E�ect of Schema Changes

Schema evolution may require changes to a single class or a relationship between two classes� In an object�

oriented model with inheritance� changes to a single class may a�ect all subclasses of the changed class�

The schema evolution primitives supported by the DB�EVOLVE include

� Adding a property �instance variable and method��

� Deleting a property �instance variable and method��

� Renaming a property �instance variable and method��

� Modifying the domain type of an instance variable or the signature of a method�

� Adding a class to the superclass list of a given class�

� Removing a class from the superclass list of a given class�

� adding a class�

� Deleting a class�

� Renaming a class�

Whenever a schema change is requested� the database administrator �DBA� initiates the change by up�

dating the class de�nition using DB�EVOLVE� If the change violates any schema evolution invariants�

for example� any name con�icts arise during the inheritance recomputation� or the class lattice becomes

disconnected� or some type incompatibility is incurred� the DB�EVOLVE will provide the DBA with a

�

warning and an option for committing or aborting the change request� Of course� temporary violations of

the schema invariants are allowed� However� all invariants must hold when the database is transformed

into a new state�

��� Transformation Methods

There are mainly two ways to associate with object transformations when schema changes occur� One is

to de�ne and associate transformations with each schema evolution operation� The other way is to de�ne

transformations for each modi�ed class� The DB�EVOLVE adopts the second alternative�

To illustrate the transformation methods and their associations to a class� consider the following schema�

Class Person Class Address

pname� Person �� String� street�� Integer�

birthday� Person �� Integer� street�name� String�

home�address� Person �� Address� zipcode� String�

end Person end Address

Suppose now a user want to modify the above schema by adding the details of address information into

the home�address of Person objects� instead of via reference to object of class Address� The user may

simply de�ne the expected schema and the intended transformation method as follows�

Class Person

pname� Person �� String�

age� Person �� Integer�

home�address� Person �� tuple�street�no� Integer�

street�name� String�

zipcode� String�

associate class Person with cf��old� new��

new	Person	pname
� old	Person	pname�

new	Person	age
� �year�today��year�old	Person	birthday���

new	Person	home�address	street�no
� old	Address	street��

new	Person	home�address	street�name
� old	Address	street�name�

new	Person	home�address	zipcode
� old	Address	zipcode�

end Person

In DB�EVOLVE� both system�supplied default transformations and user�de�ned transformations are sup�

ported� The former is used mostly for converting instance objects among primitive types �such as String�

Real� Integer� etc��� The latter is used when the extra information is required for speci�cation of correct

transformation or the complex transformations are involved �cf� 	�� ����

�

� The General Framework for Versions of Schema

��� Basic Terminology

We distinguish two types of versions of schema� the released schema versions which can only be deleted

but not updatable� and the transient schema versions which can be updated at any time� In order to allow

multiple users and applications to work concurrently under di�erent versions of schema� it is important

to support check�ins and check�outs of schema versions in an object�oriented database environment� If an

application wants to extend or modify an existing schema version� it should �rst check the schema version

out of the library of the released schema versions by either demoting the schema version into a transient

one and then modifying it� or by deriving a schema version from it� Once the application generates a new

schema version� it should check the transient schema version into the public library as a newly released

schema version�

For any two schema versions SV� and SV�� if SV� is derived directly from SV�� we call SV� a child schema

version and SV� a parent schema version� Similarly� we call all the versions �say SVi� which are derived

directly or indirectly from a schema version SVk the descendant schema versions of SVk� and SVk is called

the ancestor schema version of SVi� The set of version derivation relationships forms a schema version

derivation hierarchy�

Important to note is that� any new schema version may be derived by application of a sequence of schema

update primitives� Therefore� it should follow both the schema evolution invariants presented in Section

��� and the number of invariants for versions of schema� The �rst schema version invariant below de�nes

the baseline for schema version derivation�

�� Schema Version Derivation Invariant Any number of new schema versions may be derived at any

time from an existing schema version� A new schema version should be derived from a released schema

version and is initially a transient schema version�

In reality� we may allow a new schema version to be derived from a transient version� However� once a new

version is derived from it� this transient schema version should be automatically promoted and checked

into the library of the released schema versions�

In addition� for a schema version SVi� we refer to the set of instance objects that are created under SVi

the direct instance access scope of SVi� denoted by DIAS�SVi�� and refer to the set of objects that

are accessible under SVi as the instance access scope of SVi� denoted by IAS�SVi�� Obviously� we have

DIAS�SVi��IAS�SVi�� The access scope of SVi is actually the set of objects which are either created under

SVi or inherited from the instance access scope of the ancestor schema versions of SVi� Therefore� for any

schema version SVi� all objects in the instance access scope of SVi are visible to SVi� It means that they

can be read or updated under SVi� Nothing else is visible to SVi� For example� if SVi is the parent schema

version of SVj� and SVj is the parent version of SVk� SVj inherits the access scope of SVi� and SVk inherits

�

the access scope of SVj� then the access scope of SVk is the set of objects created under SVi� SVj� and

SVk �see Figure ��� We have IAS�SVk� � IAS�SVi� �DIAS�SVj� �DIAS�SVk� for � i � j � k� The

di�erence of IAS�SVk��DIAS�SVk� represents the inherited instance access scope of SVk�

SV i

SV jSV j-1

SV k SV k+1

... ...

Instance Access Scope

IAS(SVi)

IAS(SV i)

IAS(SVj)

DIAS(SVj)

IAS(SVk)

DIAS(SVk)

DIAS(SVj)

IAS(SVi)

...

Figure �� Schema version derivation hierarchy and the concept of instance access scope�

�� Schema Version Deletion Invariant Once a schema version is derived� it may only be deleted when

it has no child schema version� regardless of whether it is a released or transient schema version� When a

schema version is deleted� its direct instance access scope is also deleted� But nothing will be deleted from

its inherited instance access scope�

In short� the schema version deletion invariant assures that a schema version may only �own� the objects

created under it�

Interesting to observe is that� in practice� a creator of a schema version �say SVi� may want to grant the

other users to derive their own schema versions from SVi� and meanwhile allow the descendant schema

versions of SVi to see only some collections of objects of SVi� rather than the complete instance access

scope of SVi� To support this requirement� our schema version model allows the creator of a schema version

SVi to have the authority to declare whether the direct access scope of SVi is sharable by its descendant

schema versions� and which classes in the direct instance access scope of SVi are sharable �or non�sharable�

by its descendant schema versions� Hence� we further divide the direct instance access scope of a schema

version into two disjoint subscopes� non�sharable and sharable�

��� Inheritance of Instance Access Scope among Versions of a Schema

In a multi�user design environment which supports versions of schema� there are mainly two ways to allow

a child schema version �say SVj� to share �inherit� the instance access scope of its parent schema version

�

�say SVi�� We may either make a physical copy of the instance objects of SVi into the direct instance

access scope of SVj� or allow automatic inheritance of the instance access scope of SVi into SVj� We take

the latter choice as a basic premise of our model for versions of schema� The reason is simply because� in

the case of using schema versioning to support evolution of schema� the set of objects in the instance access

scope of the parent schema version� which need to be visible to the derived schema version� is relatively

large� Thus� using the instance access scope inheritance will help to avoid unnecessary copying of those

objects of SVi which are visible to SVj �

Moreover� it is desirable to provide a schema version with multi�levels of �exibility for inheritance of the

�sharable� instance access scope from its parent schema versions� such that the schema designers or end�

users may de�ne their inheritance options at will� rather than being forced to inherit either everything

or nothing as proposed in Orion 	��� More speci�cally� for any child schema version of SVi �say SVj��

besides the two choices of non�inherited and all�inherited� the creator of SVj may need to de�ne more

elaborated semantics for inheritance of the instance access scope of SVi into SVj� For example� the creator

of SVj may want to inherit only the snapshot of the access scope of SVi but not the subsequent database

updates under SVi� We call this option snapshort�shared� Alternatively� the creator of SVj may want

to share only the access scope of SVi and the subsequent object deletions and modi�cations� which means

that all the subsequent object insertions under SVi are not visible to SVj � With these requirements

in mind� we propose six basic inheritance options and one default option to allow the user to specify

their particular inheritance semantics at will� These basic options include non�inherited� all�inherited�

snapshot�shared� insertion�shared� deletion�shared� and modi�cation�shared� Semantics of these

inheritance options will be presented in the next subsection�

The default option is motivated by the observation that� in certain circumstance� it may be desirable to

block the updatability to the database under a schema version SVi� once a new schema version SVj is

derived and inherits the object instances from SVi� especially when the creator of the two schema versions

are the same user or from the same user group� As a result� the creator of SVj may guarantee that the

objects inherited from SVi are viewed consistently under SVj as long as they are not updated under SVj�

More importantly� it will help to restrict the e�ects of the subsequent database updates under SVi� on the

instance access scope of SVj� and of the SVj�s descendant versions� To support for this requirement� we

provide the creator of SVj with an opportunity to disallow further database updates under SVi� after a new

schema version is derived and inherits the object instances from SVi� We de�ne this option as the default

rule for the instance access scope inheritance� Certainly� in a system where complex access authorization

scheme is applied� a consulation with the authorization model should be carried out before this default

option becomes valid�

�� Instance Access Scope Inheritance Invariant When a schema version SVj is derived from a

schema version SVi� by default� SVj inherits the instance access scope of SVi� and blocks the direct access

scope of SVi to be non�updatable under SVi� However� the user may optionally use the six basic inheritance

options �non�inherited� all�inherited� snapshot�shared� insertion�shared� deletion�shared� and modi�cation�

shared� to override the default option at any time�

�

With the default inheritance option� to carry out any update to objects of SVi after SVj has been derived

from it� the creator of SVi will have to derive a new schema version SVk from SVi� which has no di�erence

from SVi� and then update the objects under SVk� This shows from another perspective that it is indeed

desirable to allow applications or end�users to optionally de�ne the intended semantics for inheritance of

instance access scope�

In addition� a user may� on the one hand� de�ne his�her intended inheritance rule by means of any

combination of the given basic options� and� on the other hands� be able to dynamically change the

inheritance option at will after the initial derivation of a schema version�

��� Semantics of Basic Inheritance Options

In contrast to the Orion�s two levels of the access scope sharing mechanism� we argue for the need of

multi�level sharing mechanisms to automate inheritance of the instance access scope of a parent schema

version into the derived schema versions� The following six basic inheritance options have been developed

as the baselines to address this issue�

Let SV� be a given schema version� SV� be a derived schema version from SV�� and IAS�SV�� denote the

instance access scope of SV�� Obviously� we may assume that IAS�SV�� is not empty� because otherwise�

it is more reasonable to demote SV� to a transient schema version and update it directly� rather than

deriving a new schema version SV��

� Option �� non�inherited

With this inheritance option� nothing from the access scope of SV� is visible under the derived schema

version SV�� We have IAS�SV�� � DIAS�SV�� and IAS�SV��� IAS�SV�� � ��

� Option �� all�inherited

SV� inherits the instance access scope of SV�� including all the subsequent database updates �inser�

tion� deletions and modi�cation� under SV�� We have IAS�SV�� � IAS�SV���

� Option �� snapshot�shared

SV� only inherits the snapshot of the instance access scope of SV� at the time of schema version

derivation� All the subsequent database updates �e�g�� insertion� deletion� modi�cation� under its

parent schema version SV� are transparent to SV�� We have DIAS�SV�� �� IAS�SV���

IAS�SV�� � IAS�SV�� �� �� and IAS�SV�� �� IAS�SV���

� Option
� insertion�shared

SV� inherits the instance access scope of SV� at the time of schema update as well as the subsequent

insertions to the database of SV�� which means that by only using this option� all the subsequent

deletions and modi�cations to the database under SV� are transparent to SV��

�

� Option �� deletion�shared

SV� inherits the access scope of SV� at the time of schema update and the subsequent deletions to

the database of SV�� But with only this option� all the insertions and modi�cations to the database

of SV� are transparent to SV��

� Option �� modi�cation�shared

SV� inherits the access scope of SV� at the time of schema update and only the subsequent modi��

cations to the database of SV� are visible under SV�� Moreover� using this option alone means that

all the subsequent insertions and deletions to the database under SVi are transparent to SV��

Obviously� these inheritance options listed above are not mutually exclusive� For example� the op�

tion snapshot�shared is implied by all the other options except the non�inherited one� The option

all�inherited can be equivalently be expressed by a combination of the options snapshot�shared�

deletion�shared� and modification�shared� We describe the semantic relevance of these inheritance

options in terms of their logical implications in Figure ��

non-inherited

all-inherited

snapshot
-shared

insertion
-shared

deletion
-shared

modification
-shared

default
option

non-inherited all-inherited snapshot
-shared

deletion
-shared

insertion
-shared

modification
-shared

default
option

Y

Y Y Y Y

Y

Y

Y Y

Y

Y Y

Y

Y

 (logical
implication)

Figure �� Logical implications among the inheritance options�

Besides� users may also use any meaningful combination of the given six options to de�ne their need for

the instance access scope inheritance� For example� assume the schema version SV� is derived from SV�

through a schema modi�cation� If we want to de�ne the access scope of SV� by inheriting the instance

access scope of SV� and allowing only the subsequent deletions and modi�cations to be visible under SV��

we may associate the schema version SV� with the options deletion�shared� and modi�cation�shared�

Questions remain to be addressed includes� for example� whether objects created under a schema version

SVj or inherited from its parent schema version SVi can be updated under SVj� what it means to update

objects under SVj � and how to manage the conversion of sharable object instances of SVi to conform to

��

SVj when they are inherited by SVj � The following invariant addresses the �rst two questions� We will

address the rest of the questions as well as the issues related to the implementation consideration of our

general framework in Section �� including the issues such as how an inherited object is accessed under a

derived schema version� and what implementation strategy the system may use to implement the update

of an inherited object under a derived schema version�

�� Instance Access Scope Update Invariant All objects in the instance access scope of SVj should

be able to be updated or deleted under SVj� However� any update or deletion of the inherited objects under

SVj is only visible to SVj and to those descendent schema versions of SVj which inherited the instance

access scope from SVj�

This schema version invariant assures that any object in the access scope of a schema version SVi may be

updated under SVi� However� when objects of SVi are deleted or modi�ed under a derived schema version

�say SVj� of SVi� or a new object is inserted into SVi� the e�ects of such database updates �insertion�

deletion� or modi�cation� can only be made visible to SVj and to the descendant schema versions of SVj�

Furthermore� when viewed from any of the ancestor schema versions of SVj� it looks as if the updates had

never been taken place� Put di�erently� in the case that an inherited object is deleted under SVj� this

object will no longer be visible under SVj and any descendant schema version of SVj� which inherited the

instance access scope of SVj� However� this object will continue to be accessible under the creator schema

version SVi and any of the ancestor schema versions of SVj which inherit the object directly or indirectly

from SVi� Similarly� when an object inherited from SVi is modi�ed under SVj� the resulting object is

persistent under SVj� even after this object later is deleted under its creator schema version� Furthermore�

this modi�ed object is visible only to SVj and to the descendant schema versions of SVj which inherit the

instance access scope of SVj�

In short� every schema version generated by using DB�EVOLVE should satisfy both the schema evolution

invariants and the schema versioning invariants�

��� Examples

Let us take a sample schema SV� given in Figure � as an example to illustrate the instance access scope

inheritance invariant and the instance access scope update invariant�

Under the initial schema version SV�� three object instances e�� e�� e� are created and they belong to the

same class C� which has three properties p�� p�� and p�� The schema version SV� is derived from SV�� by

adding a new class C� and a new property p� to the existing class C�� with the option snapshot�shared�

According to the semantics of Option � �snapshot�shared�� all objects and their properties that are visible

to SV� are now visible to SV�� along with the new property p� in class C�� The initial instance set of class

C� is empty� and the default value of p� is set to nil until the two instances of C� and the values of p� are

inserted �see Figure ��� Further� a new schema SV� is derived from SV�� by deleting a property p� from

the class C� in SV�� with the inheritance option insertion�shared� All objects that are visible to SV�

��

SV 1

class C 1

p1 ...
p2 ...
p3 ...

SV 2

class C 1

p1 ...
p2 ...

p3 ...
p4: C2

class C 2

q1 ...
q2 ...

SV 3

class C 1

p1 ...

p3 ...
p4: C2

class C 2

q1 ...
q2 ...

p1 p2 p3

e1

e2

e3

p1 p2 p3 p4

e1

e2

e3

d1

d2

nil

q1 q2

p1 p3 p4

e1

e2

e3

d1

d2

q1 q2

nil

option 4: insertion-sharedoption 2: snapshot-shared

Figure �� Illustration of the instance access scope inheritance invariant�

before the derivation of SV� are now visible to SV�� without the deleted property p� �see Figure ��� So are

the subsequent insertions to the database under SV�� But the subsequent deletions and modi�cations to

the database under SV��

Now assume a number of database updates will take place in the following sequence�

T�� insert new object e� under SV��

T�� modify an existing object e� under SV��

T� insert a new object e� under SV��

T�� delete an existing object e� under SV�	

In terms of the instance access scope update invariant� after the execution of transaction T�� SV� becomes

the creator schema version of e�� The insertion of e� under SV� is visible to SV�� because SV� is derived

from SV� with insertion�shared� However� the insertion of e� under SV� will not be noticed �or visible�

to SV�� the parent schema version of SV� �see Figure
��

The successful completion of T� under SV� updates the inherited object e� by replacing the nil value

�see Figure �� by a pointer to the object d� of class C� �Figure
�� This update has no e�ect on any of

the ancestor schema versions of SV�� which means that e� remains unchanged under SV�� Since SV� is

derived from SV� with the inheritance option insertion�shared only� the modi�cation of e� under SV� is

transparent to SV��

Now consider T� and T
� by T�� a new object e� is inserted to SV�� and by T
 an existing object e� is

��

p1 p2 p3

e1

e3

e5

d1

d2

q1 q2

p1 p3 p4

e1

e3

e2 nil

d1

d2

p1 p2 p3 p4

e1

e2

e3

q1 q2

e4 nil nile4

SV 1 SV 2 SV 3

insertion-shared snapshot-shared

Figure
� Illustration of the instance access scope update invariant�

deleted from SV�� Since SV� is derived from SV� with the inheritance option snapshot�shared only� the

insertion of e� to SV� has no e�ect on the instance access scope of SV�� which means that the new object

e� inserted under SV� is not visible to SV�� Similarly� the deletion of object e� under SV� is transparent

to SV�� Therefore� after the successful execution of T
� e� no longer exists in the instance access scope of

SV� but it is still visible to SV� and SV� �see Figure
�� We call SV� the terminator schema version of e��

Interesting to note is that� if the inheritance options associated with SV� and with SV� are di�erent� the

e�ect of execution of the given sequence of database updates may possibly be di�erent too� For example�

if we assume that SV� is derived from SV� with the option all�inherited� and SV� is derived from SV�

with the options insertion�shared � modification�shared as shown in Figure �� then the executions

of T� and T� result the same� However� the executions of T� and T
 will have di�erent e�ect on SV� and

SV� �comparing Figure
 with Figure ��� As a consequence� the database state in the example of Figure
�

after the completion of T�� T�� T� and T
� is changed �see Figure ��� because although the insertion of e�

and the update of the property p� of object e�� from nil to pointing to d�� under SV�� are visible to SV��

the deletion of e� under SV� will only have the e�ect on SV� but not on SV�� Besides� the insertion of e�

under SV� is also visible to both SV� and SV��

��� Possible Con�icts in Inheritance Options

There are two types of possible con�icts in the inheritance lattice for the instance access scope sharing

among schema versions�

� Con�ict with respect to the database updatability

Con�icts may occur between the di�erent schema versions �say SVj and SVk� that are derived from

the same schema version �say SVi�� with respect to the updatability of the access scope of SVi� We

�

If the inheritance options associated with SV2 and with SV3 are different, for example, all-inherited
is now associated with SV2 and deletion-shared + modification-shared with SV3, then the execution of
transation T1, T2, T3, T4 will have different effect on the instance access scopes of SV1, SV2 and SV3.

p1 p2 p3

e1

e3

e5

p1 p3 p4

e1

e3

e2

p1 p2 p3 p4

e1

e5

e3

d1

d2

q1 q2

e4 nil nile4

d1

d2

q1 q2

SV 1 SV 2 SV 3

insertion-shared
+ modification-shared all-inherited

nile5nil

Figure �� Illustration of the instance access scope update invariant �cont��

call such a con�ict update con�ict� For example� a schema version SVj may have been derived from

SVi with the option insertion�shared� and a new schema version SVk may now be derived by using

the default inheritance option� which means to inherit the snapshot of SVi and meanwhile make SVi

non�updatable� Now we have SVi updatable in terms of the inheritance option associated with one of

its child schema versions SVj� but non�updatable by the inheritance option of the other child schema

version SVk� Con�ict occurs� As this kind of con�ict may only occur between the default inheritance

setting and one of the basic inheritance options �excluding Option � and Option ��� we resolve such

kind of con�ict by allowing the use of the explicit inheritance option to override the default one�

� Con�icts implied in the schema version derivation lattice

When we allow a new schema version SVk to be derived from more than one existing schema versions

�say from SVi with insertion�shared and from SVj with deletion�shared�� if SVi and SVj have

a common ancestor schema version SVh� and from which they inherits the instance access scope of

SVh by insertion�shared and all�inherited respectively �see Figure ��a��� then the inheritance

con�ict can be incurred between the inheritance option of SVk associated with SVi and the one

associated with SVj � whenever there is a subsequent database update under SVh� For example� if

a new object e�� needs to be inserted to the database of SVh� in terms of the inheritance option

insertion�shared associated with SVi� and the insertion�shared with SVk in connection with

SVi� e�� is visible to both SVi and SVk� Now consider the other schema derivation path to SVk from

SVh via SVj � according to the all�inherited option associated with SVj from SVh� the new object

e�� is accessible under SVj� However� it is not visible under SVk� because SVk is derived� and has

��

...

SV h

SV i SV j

SV k

SV 0

all-inherited

deletion-shared

insertion-shared

insertion-shared
+ insertion-shared

...

SV h

SV i SV j

SV k

SV 0

all-inherited

deletion-shared

insertion-shared

insertion-shared

(a) Inheritance Conflict
(b) resolution of conflict

Figure �� Con�icts in the instance access scope inheritance options�

inherited objects� from SVj by using the inheritance option deletion�shared� Con�ict occurs� We

resolve such kind of inheritance con�icts by using the ordering of the parent schema versions of SVk

in the schema version derivation of SVk� For instance� if SVi is derived before SVj� then we use the

inheritance option of SVk related to SVi to override the one related to derivation of SVk from SVj�

by the logical combination of the two speci�ed options associated with SVk �see Figure ��b���

� User Interface

In this section� we de�ne a set of interface commands which users may use to work with our DB�EVOLVE�

In principle� the common steps for a system to implement the derivation of a new schema version SVj from

an existing schema version SVi is to �rst get a copy of SVi� and then make the updates on the copy by

using a set of schema evolution primitives� These steps usually should be transparent to the users�

The �rst user command we introduce here is to derive a new schema version from an existing one� by

�i�specifying the preferred options for inheritance of the instance access scope� �ii�by using include or

exclude clause to de�ne which classes of the existing schema version are sharable �or non�sharable� to the

derived schema version� and �iii�by presenting what the resulting schema version should look like�

derive�schema�version
sch�version�name�

from
list�of�parent�sch�versions�

�by
list�of�options���

include
list�of�classes��

�exclude
list�of�classes���

apply
list�of�sch�evolution�primitives��

�with�transformation�method
list�of�user�defined�transformations���

��

�non�sharable
list�of�class�or�property names���

end�derivation	

Note that the by clause for inheritance selection is optional� By default� it means that the derived schema

version will inherit the snapshot of the access scope from its parent schema version� and meanwhile block

the updatability of the object base under its parent schema version�

Recall the example presented in Figure �� the schema version SV� was derived from schema version SV�

by simply adding a new class C� with two properties q� and q�� and modifying the class C� with a new

property p�� To specify this example with our user interface language� the user may simply describe this

application by using the schema version derivation command as follows�

derive�schema�version SV�

from SV�

by all�inherited�

include all�

apply

add�class C�

q� 			�

q� 			�

add�property�to C�

p�� C��

with�transformation�method

associate�with�class C�

cf��C�� SV�� SV���

SV�	C�	p�
� SV�	C�	p��

SV�	C�	p�
� SV�	C�	p��

SV�	C�	p
� SV�	C�	p�

SV�	C�	p�
� nil�

end�derivation	

We also provide a number of user commands for additional services� For example� the command

delete�schema�version
sch�version�name�

is used to delete an existing schema version� Note that� by the schema�version deletion invariant� the

schema version to be deleted should have no child schema version� User may also use the command

promote�schema�version
sch�version�name�	

��

to promote the status of a schema version to the released mode� if the given schema version is a transient

one� Otherwise� no action is taken� This command returns a truth value �true or false��

When an application wants to change the working schema version to a particular one or to update a

particular schema version rather than the current one� the following command can be used�

set�current�schema�version
sch�version�name�	

This command returns the current schema version identi�er�

� Implementation Issues

��� Data Structures for Objects and Object Manipulation

To support object manipulation in the presence of versions of schema� we need to associate with every

object three additional system�de�ned properties�

� a system�de�ned instance variable� indicating the creator schema version of the object�

� a list of terminator schema versions under which the object was deleted�

� a data structure� describing a set of copies of the object� each of which is created under a speci�c

schema version� We call it instance�copy�list� Conceptually� it is very similar to the concept of

generic instance of a versioned object introduced in Orion 	�� for describing the set of version instances

of the object� In the sequel� we sometimes also use generic instance to refer to the instance�copy�list

of the object�

Figure � presents the sample data structure for each instance object� Note that an object� when �rst

created� exist without a generic instance� In the other words� the instance�copy�list is empty� However�

every object will carry the identi�er of its creator schema version once it has been created� A generic

instance and each of the copies of the object� which the generic instance describes� all share� and are

�identi�ed� by� the same identi�er of the object in order not to invalidate the existing references to the

object� Copies of the object in its generic instance are distinguished from each other in terms of their creator

schema version numbers� Whenever the structure of an object is extended �information�augmented�� a new

copy of the object will be created and added into the instance�copy�list of the object� However� when the

structure of the object is information�reduced� no new copy of the object will be created� The visibility

�accessibility� of an object may vary under di�erent versions of a schema�

For example� consider the application in Figure
� class C� in SV� is augmented in SV�� Thus� for each

object of C� in the access scope of SV�� a copy is created and added into the instance�copy�list of the

��

Figure �� The data structure for instance objects

object �see e�� e� in Figure ��� However� the schema version SV� is derived from SV� by deleting p� from

C�� Thus� SV� is information�reduced in comparison with SV�� We may consider SV� as a view schema

of SV�� No copy of the object is created� Any access request to the objects under SV� will be processed

simply as a view query� The data structure for object e�� e�� e� and q� can be represented as shown in

Figure ��

Obviously� the DB�EVOLVE schema version model is more general comparing with the schema version

model of Orion 	�� where either everything or nothing is shared� Recall the schema version derivation given

in Figure
� by using DB�EVOLVE� only if the schema version SV� is derived from SV� with the inheritance

option deletion�shared �or modification�shared�� a delete �or modify� of an object under its creator

schema version SV� will physically delete �or modify� the object� However� if SV� is derived from SV� with

inheritance option such as snapshot�shared� insertion�shared� or modification�shared� then� even

when an object is deleted under its creator schema version SV� �e�g�� deleting e� under SV� in Figure
��

the object will still physically exist in the database� A copy of e� will remain accessible under SV� and the

corresponding descendant schema versions of SV��

Figure �� An example data structure for instance objects based on the schema versions in Figure
�

To support modi�cation of an inherited object under a schema version SVi� the system will create a new

copy of the object under SVi� To support delete of an object under SVi� if SVi is not the creator schema

version of the object� then the object is an inherited one under SVi� and the system will simply add SVi

into the terminator list of the object� However� when SVi is the creator schema version of the object� the

system will check the list of child schema versions of SVi� If all child schema versions are derived from SVi

with the deletion�shared option� then delete of the object under SVi will physically delete the object�

��

Otherwise� SVi will simply be added into the list of terminators of the object� Of course� update of an

object under a schema version SVi is validated only if SVi is not frozen by the derivation of any of its

descendant schema versions �i�e�� if the default inheritance option is not valid��

��� Algorithms for Object Manipulation

Based on the DB�EVOLVE data structure for instance objects and the concept of generic instance� we

below outline the algorithms for object fetch� insert� delete� and modi�cation� Readers may skip this

section without loss of continuity�

In design of the algorithms� we use four system�supplied boolean functions� ���AncestorSV�of�sv�� sv���

which returns true if and only if the �rst argument sv� is an ancestor schema version whose access scope

is inherited by the the schema version speci�ed in the second argument sv�� Otherwise� it returns false�

���update�blocked�sv�� which returns true when the argument sv speci�es a schema version whose

direct instance access scope is non�updatable under sv� ���deletion�shared��sv�� sv��� which returns

true when all the schema versions along the derivation path from sv� to sv� are derived with deletion�

shared inheritance option� �
�modification�shared��sv�� sv��� which returns true when all the schema

versions along the derivation path from sv� to sv� are derived with modi�cation�shared inheritance option�

For presentation convenience� we de�ne AncestorSV�of��sv�� sv�� � AncestorSV�of�sv�� sv�� 	OR	

sv� � sv��

The algorithm for fetching an object identi�ed by obj�id under sv is designed in three steps�

� First� we locate the object in terms of obj�id�

� Then we check if the object is the generic instance� If yes� we search for the closest creator schema

version of sv in the instance�copy�list of this object� If there exists one �say o	creatorSV� and this

object have never been terminated by any schema version in the derivation path from o	creatorSV

to sv� the algorithm ends by returning the object found�

� If no generic instance exists for the object to be fetched �say f�object�� and the creator schema

version of f�object is sv or the ancestor schema version of sv� then the algorithm returns the

object�

Algorithm SV�Obj�Fetch�obj�id� sv�

f�object �� locate�object�obj�id��

if �f�object�instance�copy�list �� nil�

	
 f�object is a generic instance
	

do

g �� f�object�

f�object �� Find�closest�creator�copy�g�instance�copy�list� sv�

�

if �f�object � nil� �OR�

No�copy�visible�g�list�of�terminators� sv� f�object�creatorSV�

	
 no copy is visible under sv
	

error�

end�do�

else

if �AncestorSV�of
�f�object�creatorSV� sv� � false�

	
 the only existing copy is not visible
	

error�

return f�object�

end SV�Obj�Fetch�

The following are the two subroutines that have been used in the algorithm for object fetching� They will

also be used in the algorithm for object deletion object update�

Find�closest�creator�copy�o�copy�list� sv�

	
 this is a routine for finding the closest creatorSV copy to sv
	

for each cp in o�copy�list

if AncestorSV�of
�cp�creatorSV� sv�

�AND� �cp�instance�copy�list � nil�

	
 a closest creatorSV copy is found
	

return cp�sv�� 	
 return the sv view of the object copy cp
	

endfor�

return nil� 	
 no available copy is found
	

end Find�closest�creator�copy�

No�copy�visible�list�of�terminators� sv� sv��

	
 routine for checking if there is a copy visible under sv
	

if �sv �� sv��

for each t�sv in list�of�terminators

if AncestorSV�of�t�sv� sv� �AND� AncestorSV�of�sv�� t�sv�

�AND� deletion�shared
�t�sv� sv�

return true� 	
 no copy is visible under sv
	

endfor�

else

if �sv is in list�of�terminators�

return true� 	
 the only existing copy is terminated under sv
	

else

return false� 	
 there exists a copy visible to sv
	

end No�copy�visible�

According to the algorithm SV�Obj�Fetch�� for object fetching� SV�Obj�Fetch�e�� SV�� returns the copy

of e� with SV� as the creator �see Figure
 and Figure ��� However� Fetching object e� or e� from SV� both

��

return error� because e� is terminated by SV�� and e� can never visible to SV� since it is created initially

by SV�� a descendant schema version of SV�� Also SV�Obj�Fetch�e�� SV�� returns error� because SV� is

derived with snapshot�shared option before e� is inserted under SV��

Below� we provide the algorithm for inserting a new object into the access scope of a given schema version

sv� An object can only be inserted into a schema version sv� if its direct instance scope is updatable under

sv� Once an object is inserted� the system automatically generates an object identi�er for it� A successful

execution of the algorithm SV�Obj�Insert�� returns an object identi�er for each inserted object�

Algorithm SV�Obj�Insert�i�object� sv�

if update�blocked�sv�

error�

i�object�creatorSV �� sv�

obj�id �� assign�oid�i�object��

return obj�id�

end SV�Obj�Insert�

Similarly� the algorithms for deleting and modifying objects under a given schema version sv are described

below� An object can only be deleted or modi�ed under sv� if the updatability of sv is not blocked by any

descendant schema versions of sv�

Algorithm SV�Obj�Delete�obj�id� sv�

if update�blocked�sv� error�

d�obj �� locate�object�obj�id��

if �d�obj�instance�copy�list �� nil�

do 	

 d�obj is a generic instance

	

g �� d�obj�

d�obj �� find�closest�creator�copy�g�instance�copy�list� sv�

if �d�obj � nil� �OR�

no�copy�visible�g�list�of�terminators� sv� d�obj�creatorSV�

error� 	
 no copy is visible under sv
	

else 	

 the object copy to be deleted is found

	

if �d�obj�creator � sv�

do 	

 delete by its creator

	

if �there exists no such sv� that AncestorSV�of�sv�sv��

�AND� not �deletion�shared
�sv� sv��

do

remove d�obj from d�obj�instance�copy�list�

if �no copy exists in d�obj�instance�copy�list�

d�obj�instance�copy�list �� nil�

end�do�

else add sv to d�obj�terminators�list�

end�do�

else 	

 delete by non�creator

	

��

add sv to d�obj�terminators�list�

end�do�

else 	

 there is no generic instance of d�obj

	

if �d�obj�creator � sv�

do

if �there exists no such sv� that AncestorSV�of�sv�sv��

�AND� not �deletion�shared
�sv� sv��

remove d�obj�

else

add sv to d�obj�terminators�list�

end�do�

else if �ancestorSV�of�d�obj�creatorSV� sv�

add sv to d�obj�terminators�list�

else 	
 the only existing copy of d�obj is not visible under sv
	

error�

end SV�Obj�Delete�

Algorithm SV�Obj�Modify�obj�id� new�obj� sv�

if update�blocked�sv� error�

m�obj �� locate�object�obj�id��

if �m�obj�instance�copy�list �� nil�

do 	

 m�obj is a generic instance

	

g �� m�obj�

m�obj �� find�closest�creator�copy�g�instance�copy�list� sv�

if �m�obj � nil� �OR�

no�copy�visible�g�list�of�terminators� sv� m�obj�creatorSV�

error� 	
 no copy is visible under sv
	

else 	

 the object copy to be modified is found

	

if �m�obj�creator � sv�

	

 modified by its creator schema version

	

do

if �there exists no such sv� that AncestorSV�of�sv�sv��

�AND� not �modification�shared
�sv� sv��

m�obj�data �� new�obj�data�

	
 using new�obj data to replace m�obj data
	

end�do�

else do 	

 modified by non�creator schema version

	

new�obj�creator �� sv�

add new�obj to m�obj�instance�copy�list�

end�do�

end�do�

else 	

 there is no generic instance

	

if �m�obj�creator � sv�

	

 modified by its creator schema version

	

��

do

if �there exists no such sv� that AncestorSV�of�sv�sv��

�AND� not �modification�shared
�sv� sv��

m�obj�data �� new�obj�data�

else

if �ancestorSV�of�m�obj�creatorSV� sv�

do new�obj�creator �� sv�

create generic instance for m�obj by

adding new�obj to m�obj�instance�copy�list�

end�do�

else error�

end SV�Obj�Modify�

We have so far discussed the storage representation for instance objects and the algorithms for object

manipulation� These algorithms are also used to retrieve and update of class objects� In what follows� we

will present the storage structure for representing versions of schema� class objects� and the schema version

derivation hierarchy respectively�

��� Storage Representation for Versions of Schema

In DB�EVOLVE� we represent a schema as a set of meta�class objects� The typical meta�classes are Class�

InstanceVariables� and Methods� They are actually analogous to system catalogues in conventional

database management systems �see Figure ��� For each user�de�ned class� the meta�class Class contains an

instance object describing the class name� list of superclasses� list of subclasses� as well as instance variables

and methods� The property superclasses and subclasses describe sets of superclasses and subclasses

respectively� The property instance�variables �or methods� presents the set of all instance variables �or

methods� de�ned for� or inherited into� the class� and has the meta�class InstanceVariables �or Methods�

as ite domain class�type� For every instance variable �or method� de�ned for or inherited into each class�

the meta�class InstanceVariables has a corresponding instance object� which is described by properties

such as class name� creator schema version� domain type� inherited�from indicating the superclasses from

which it is inherited� and plus the list of terminator schema versions� pointer to the next instance variable

�or method�� and a list of copies �see Figure ���

When a schema is quite complex� and large in size� one full copy of the schema can require signi�cant

storage space� Besides� if the new schema version has a large number of components that are in common

with the previous schema version� maintaining the duplicate parts of the schema can become rather costly

too� Our objective� therefore� is not to maintain a physically separate copy of the entire schema for each

version of the schema� Instead� when a change to the schema occurs� we continue to maintain instances

of the meta�classes Class� InstanceVariables� Methods as non�versioned objects� but use the generic

instance structure to support the updates to a class object under di�erent schema versions� The reason

�

Figure �� The storage representation for versions of schema�

is simply because of the fact that all changes to a schema are either to the de�nition of a class or to the

relationships between classes� and that in object�oriented data models� relationships between classes are

encoded in the class objects� Therefore� when the de�nition of a class is changed by adding or deleting

a superclass�subclass link� or when a non�leaf class is deleted from the is�a class lattice� a copy of the

class object will be created for each of the classes involved or a�ected in such update� However� we need

no change to the basic representation of the schema� Similarly� when the de�nition of a class is changed

by updating instance variables �or methods�� we need no change to the original de�nition of the instance

variables �or methods�� but create a copy for each of the instance variables �or methods� updated�

We illustrate our storage representation using the example in Figure �� where the class lattice is con�

structed and modi�ed under �ve schema versions SVi �i � �� �� ���� ��� The schema version derivation

hierarchy is shown in Figure ��a�� SV� has only one class C� which has three properties p�� p�� p�� SV�

is derived from SV� by adding a new class C� as a subclass of C� and modifying the domain type of p��

Similarly� SV� is derived from SV� by modifying classes C�� C�� SV� is derived from SV� by modifying

classes C�� C� and adding a new class C� as a subclass of C�� Finally� SV� is derived from SV� and SV� by

deleting class C� and modifying class C�� �see Figure ��b���

Consider the evolution history of class C�� First� C� is created under SV� with three properties� Then� C�

is evolved along two directions� ���C� is changed under SV�� by modifying the domain type of p�� When

C� is modi�ed in SV�� we continue to maintain the class object C� in the meta�class Class� and create

a copy in the generic instance of C� �see Figure ��c��� ���C� is modi�ed under SV� by deleting p� and

adding p�� This makes p� inaccessible under SV�� Further� C� in SV� is updated under SV�� and C� in

SV� is modi�ed under SV�� Thus� the generic instance of C� includes copies of C�� each of which is visible

in one of these schema versions �see Figure ��c���

Similarly� when the property p�� created under SV�� is modi�ed in SV� by changing the domain type of

Integer to String� we simply create a copy in the generic instance of p�� Figure ��c� shows the evolution

history of the properties p�� p�� p�� p� and p��

Interesting to note is that� when a schema version is derived� a user can choose not to inherit any instance

objects from their parent �ancestor� schema versions� However� at meta data level� meta�class objects are

always inherited by the new schema version at the time of schema evolution�

��

Figure �� An example for the storage representation of versions of schema�

��� Storage Representation for the Schema Version Derivation Hierarchy

In DB�EVOLVE� we take a simple and re�ective way to represent the schema version derivation hierarchy�

which is to create a system�de�ned meta�class Schema for schema versions� For each given schema� this

meta�class has only one instance object� Each schema version is included as a version instance in the

generic instance of this versioned object� Thus� the schema version derivation hierarchy can be maintained

in the generic instance of this versioned object�

� Related Research

Schema evolution is a commonly required facility in most persistent object�oriented systems� Generally

speaking� a schema describes the interface between a set of application programs and the persistent reposi�

��

tory of objects� When a schema changes� so does the interface� which possibly incurs incompatible elements

on both sides� Therefore� in an environment where the database schema is expected to evolve� in order to

account for additional speci�cations imposed by new applications� the users face two alternatives� ���to up�

date his�her current application programs and migrate the exist data resources to match the new schema�

or ���to adopt an automatic transformation mechanism which achieves the compatibility of data instances

between versions of the schema� Obviously� if the schema evolves frequently� the �rst alternative will be

very expensive and impractical� and one would prefer the second�

In the existing literature� class modi�cation 	
� �� ���� class versioning 	�� ��� and schema versioning

	�� �� are the most common approaches that have been considered to support schema evolution in several

available database management systems� However� implementation of these approaches has limitations

either in the supported schema evolution operations or in the mechanisms for instance adaptation and

program compatibility� For example� the class modi�cation in GemStone 	�� only provides mechanisms

for maintaining the consistency invariants of the schema after a class modi�cation� No consideration is

given on the issue of instance adaptation to maintain the database consistency and the issue of program

compatibility to allow existing application programs remain operational� The schema evolution approach

proposed in ENCORE 	�� restricts the breath of class evolution in order to implement emulation via

user�de�ned exception handling routines� Several schema changes cannot be adequately supported under

this scheme� because of the di�culty� if not an impossibility� to de�ne the exception handling routines� The

basic model of schema evolution invariants 	�� �� is �rst proposed in Orion and has been used widely in many

operational database systems� The Orion�s approach to versions of schema 	�� presents a comprehensive

study on the semantics and implementation of schema versions� However� Orion�s proposal addresses the

modeling and the implementation issue of schema versioning mainly at the schema level� No discussion

was given on how the model of schema versioning may enhance the functionality of schema evolution� and�

in particular� may facilitate the conformance of database instances to the new schema version after schema

updates� Although OTGen 	�� presents a set of facilities for automatic transformation of instance objects

from a class to its updated version� it can only provide partial compatibility of data between a class and

its updated version�

� Concluding Remarks

The DB�EVOLVE development is mainly motivated by the critical requirements for managing schema

evolution in an evolving multidatabase computing environment� because� in such an environment� both

local and global schemas are expected to evolve� thus� the ability to minimizing the impact of schema

changes on the existing database organization and the compatibility of existing application programs

becomes critical in supporting up�to�date global information gathering� while preserving the autonomy of

local databases�

In this paper we have presented a general framework based on versions of schema� called DB�EVOLVE�

��

for maintaining database consistency in the presence of schema updates� It provides users with powerful

facilities for obtaining seamless schema evolution through the support of di�erent levels of object sharing

among versions of schema� The salient features of our approach are the following� First� we demonstrate

that the e�ectiveness of using the schema version model to materialize schema evolution relies not only on

the management of version derivation of schema� but also on the ability to maintain the consistency between

database instances and the new schema versions� as well as the �exibility to share instance access scopes

among versions of schema� Second� in our general framework for versions of schema� semantics of schema

versioning has been studied with the objectives to facilitate schema evolution and instance propagation

due to schema updates� A selection of options for sharing instance access scope among versions of schema

is developed� They o�er various levels of �exibility for schema designers� application developers� and end�

users to manipulate and maintain available database resources in the progress of schema evolution� Thirdly�

using our approach� users may derive versions of schema upon a request for schema update� and de�ne the

instance access scope for each new version of schema� either by creating their own instance scope or by

inheriting the instance access scope of its parent version�s� in terms of multiple inheritance options� Most

importantly� our approach allows to preserve the history of evolution of objects in the progress of schema

evolution� and is able to automate the conformance of database instances to the new version of schema� As

a result� users may update the schema and maintain the database consistency without having to irreversibly

change the objects that existed before a schema modi�cation� With our approach� the amount of e�ort and

cost required for database reorganization� and for reprogramming of existing application programs� due

to schema changes� can either be avoided or substantially reduced� The impact of schema changes� made

by one user or in a single application� over the entire system and the existing customer set can also be

minimized� Further� users may derive versions of schema upon requests for schema evolution� and create

and manipulate di�erent collections of objects under di�erent versions of schema�

Much work appears promising along with this line of research� For instance� theoretically� we are inves�

tigating the possible development of a formal and re�ective model for versions of schema and of objects�

We are currently also working on developing a collection of rules for triggering the default or user�de�ned

transformation methods to conform the objects of a schema version to the newly derived schema version�

On the practical side� we are currently implementing the basic model for versions of schema and the set

of inheritance options for sharing instance access scopes among versions of a schema using O� database

management system� We also plan to build a prototype of the DB�EVOLVE on top of the ObjectStore�

Acknowledgement

The work reported here was initiated when I was working at University of Frankfurt� I am indebted to

Roberto Zicari for the discussion and the encouragement and to Sevn E� Lautemann for his comments on

an earlier version of this paper�

��

References

	�� Objectstore User Guide� Chapter �� Object Design Inc�� �����

	�� J� Banerjee� H��T� Chou� J� F� Garza� W� Kim� D� Woelk� and N� Ballou� Data model issues for

object�oriented applications� ACM Transactions on O�ce Information Systems� ������ � ��� January�

�����

	�� J� Banerjee� W� Kim� H� Kim� and H� Korth� Semantics and implementation of schema evolution

in object�oriented data bases� San Francisco� California� In Proceedings of ACM	SIGMOD Annual

Conference on Management of Data� May �����

	
� E� Bertino� A view mechnism for object�oriented databases� In International Conference on Extending

Data Base Technology� Vienna� Austria� �����

	�� S� M� Calmen� Schema evoluton and integration� Journal of Distributed and Parallel Databases� �����

���
�

	�� W� Kim and H��T� Chou� Versions of Schema for Object�oriented Databases� In International Con�

ference on Very Large Data Bases� pages �
������ �����

	�� B� S� Lerner and A� N� Habermann� Beyond schema evolution to database reorganization� Object�

Oriented Programming Systems� Languages and Applications Conference� in Special Issue of SIG�

PLAN Notices� ������������ October ����

	�� S� Monk and I� Sommerville� Schema evoluton in oodbs using class versionning� ACM SIGMOD

RECORD on Management of Data� ������ �����

	�� D� J� Penney and J� Stein� Class modi�cation in the GemStone object�oriented DBMS� In Object�

Oriented Programming Systems� Languages and Applications Conference� in Special Issue of SIG�

PLAN Notices� pages �������� Orlando� Florida� ����� ACM Press�

	�� A� Skarra and S� Zdonik� Type evolution in an object�oriented data base� In B� Shriver and P� Wegner�

editors� Research Directions in Object�Oriented Programming� pages ����
��� The MIT Press� �����

	��� R� Zicari� A framework of schema updates in an object�oriented database system� In Building an

object�oriented database system
 The story of O� �F�Bancilhon� C� Delobel� P� Kanellakis� editors��

Morgan Kaufmann� �the extended version of �Zic���� �����

��

