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ABSTRACT

Automated theorem proving has been claimed to have a wide variety of uses, from pro-
gram verification and generation, to robotic planni= systems, and as an expianation of
various cognitive abilities. But for many of these applications, it would be beneficial if
the user could inspect the background proof that gave rise to the course of action or the
ancwer. But. if the user is not a logician, it is not helpful for the system to merely display
the proof. Rather it should be put in & form understandable by the user: and an obvious
solution would be a natural language "back end" which could explain the proof in ordi-
nary language. The goal is to produce an explanation facility for the natural deduction
theorem prover THINKER. This program should be able to generate a wide variety of

explanations for any individual proof.

The program EXPLAIN was written to produce the explanations from the proofs
generated by THINKER. There are four distinct dimensions along which they can be
varied. (i) The method used to produce the explanation: top-down, bottom-up, or a mix-
ture of the two. (ii) The level of the explanation: ranging from complete to a high-level
overview. (iii) The amount of explanation done for the lines in the proof: explaining just
the inference rules. inference rules plus the connectives, or complete explanation. @iv)
When the explanation is done: either statically (after the fact) or dynamically (during the

proof generation process).
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1. Introduction and Natural Deduction

1.1 Uses for Automated Theorem Proving

Automated theorem proving has classically been viewed as having a wide range of
applications: from program verification and generation, through validating the design of
circuits. It has also been used for designing superior logic circuits and in question/answer
systems. Other applications include robotic planning systems. the answering of open
quesiions in mathematics and in logic, and man-machine cooperative systems. Finally
the investigation of human cognition and natural lenguage understanding systems are
also done using automated theorem proving.

One of the first uses of automated theorem proving was tor programs that verity the
correctness of computer programs [Boyer84a, Boyer84b, Good82]. The automatic
theorem prover would mechanically prove that a given program satisties some
specification, or produces the same output as some other program, or can be executed
within certain time and space bounds. To do this, there must be a formal program seman-
tics given for the programming language. and an automated program verifier reduces the
question of whether the program has a particular property to the question of whether cer-
tain formulas are theorems which respect the formal semantics. Along these same lines,
one might wish to present a formal statement of an algorithm and have an automated
theorem prover generate explicit code in some programming language; that is, develop an
avtomatic programmer [Bibel79]. Or even more ambitiously, one might wish to only
specify the relations that are to hold between the input and output variables, and to have

an automated theorem prover try to generate a proof of (Vx(Px—(3y)Qxy) where x ranges
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over input variables to the prcgzram and P is the predicate that the input is expected to
satisfy, y ranges over output variables and Q specifies the relation between each input
variable and its associated output variable after execution of the desired program. Given
enough other axioms so that this formula is provable, the proof of the formula can be
converted into a program by rather well-understood mechanisms. This is program gen-
eration.

A method similar to that used in the verification of programs can be used to validate
the design of circuits [Hunt86]. We are given an already-designed circuit and the
specifications that it supposedly satisfies, and the goal is to prove the design actually does
meet these specifications. This type of validation can be thought of as language transla-
tion from the language representing how the circuit is built to one that represents the
correct output of tie circuit. Automated theorem proving may also be used to design
superior logic circuits { Wojciechowski83]. In this work the automatic reasoner will be
given the specifications for a circuit and asked to design one that satisfies all the
specifications. An automated reasoning program ITP [Lusk82a, Lusk82b] has also been
used to verify the software and hardware fault-tolerant properties of a system designed to

monitor a nuclear reactor [Chisholm85].

Another group of uses to which automated theorem proving is put contains
question/answer systems. Not only can theorem provers provide answers to yes/no ques-
tions to a database, but long ago it was shown how to use theorem proving techniques to
extract answers from a declarative database. And a slight generalization of the method
can be used to answer "how" questions that require the specification of a sequence of
actions to perform a task. This suggested how to use automated reasoning to automati-
cally specify a "plan”, and this [STRIPS/ABSTRIPS] robotic planning methodology is

seen to apply widely to all types of mechanical generation of a sequence of actions that



will accomplish a goal which wus stated at a high level of generality. The theorem
prover begins with the initial state of the world and proves by the use of actions that the
final goal state can be achieved. where performing an action will change the state of the
world. The plan would then be the sequence of rules, or actions, in the proof used to

move from one state of the world to the next.

Finally there are the more "cognitive science” applications of automated theorem
proving. One such application area is in mathematics and formal logic. Sseveral previ-
ously open questions in mathematics have been answered with the assistance of
automated reasoning [Winker79, Winker81]. Some previous open questions were
answered by the program supplying a proof, some by it generating a finite model. and
others by the program generating a counterexample. These methods were used in solving
open questions in the tfield of ternary boolean algebra [Wos82]. A ternary boolean alge-

bra is a nonempty set satisfying the following five axioms:

) f(f(v,w.x),y.f(v.w.x)) = f(v,w.f(x.y.2))
2)  f(yxx)=x

3 fxygy)=x

4)  f(x.xy)=x

5  f(gly)yx) =x

where the function, f, acts as a so-called "product” and the function, g, acts as a so-called
"inverse". The open question is to determine which (if any) of these five axioms is
independent of the remaining set of four. Axioms 4 and 5 have been kncwn to be depen-
dent. Dependencies can be established by the standard use of a theorem prover, that
being finding a proof. To determine independence the theorem prover was used in a

different way. It was asked to form models that satisfied various sets of four of the



axioms but failed to satisfy the fifth. These three models (one not satisfying axiom 1.2
and 3) were very small, each consisting of but three elements. By this method of generat-
ing models and counterexamples it was found that each of the three axioms were
independent.

An automated theorem prover can also be used in the field of formal logic to answer
open questions [Wos84b]. The idea is that a person will guide the computer, making
overall strategic suggestions and allow the program to organize and prove lower level
portions of the proofs. The automated reasoner will act as a collegue and be asked to
help with the formulation, testing, proof, and refutation of conjectures. In the realm of
language understanding (by humans), it has been claimed that people engage in (subcons-
cious) theorem proving to draw inferences from "what is said" to "what is meant"; that
they must be able to draw these inferences (again subconsciously) on a wide variety of
topics to be able to know (for example) what events occur before which other events in a
taje that is narrated to them. They also draw a wide variety of inferences based on "world
knowledge" together with what is said to be able just to minimally understand what the
speaker intends. Therefore. any computer natural language understanding system must
be able to invoke a theorem prover in order merely to attain minimal competence. Furth-
ermore. since rational reasoning has long been seen as what sets people apart from other
animals. investigations into computerized theorem proving has been sometimes thought

to be relevant to understanding humin psychology.

1.2 Explanations of Proofs in Applications
The previously-mentioned uses of automated theorem proving would be a great
boon if they were successfully completed; however they are currently only marginally

acceptable. Even if a scientific breakthrough in the field were to happen, it is surely the



case that the general population (or indeed. even the scientific community) would
justifiably be wary of any such claim, and would demand some ability to investigate
whether any particular use was correct. We are all familiar with such challenges as
"Would you trust a never-tested train routing program if it were automatically veritied?”
or "Do you believe this nuclear power plant to be safe on the basis of an automated
reasoner’s proof that its circuitry has the predicate ‘fail-sate” truly applied to it?" And we
all recall the reaction of the computer science community to the claim that the space
lasers of the Strategic Defense Initiative would be guided by a program too large to be

comprehended by a person but that could be automatically verified.

But we needn’t go to such extremes to find cases where we would like the option of
having humans be able to inspect and understand the proofs generated by an automated
theorem prover. In the setting of a mathematician interacting with an automated theorem
prover, it is certain that when an automated reasoner has produced a proof to an open
question an explanation of the proof would be desired to aid in its understanding. Even
when the program has not come up with a proof examination of the work done by the
system could be an aid in developing new conjectures. In the area of program gerieration,
if a theorem prover alleges that its program is able to perform some task, it would be the
height of folly not to inspect the background proof. One certainly wants to be able to
know how a question/answer system arrived at its answer, especially in those cases where
the system used a lot of theorem proving power to generate it. And if we are truly
interested in people’s cognitive abilities, we are not merely interested in the assertion that
a theorem prover might make to the effect that a certain formula is a theorem, but rather
we are interested in how ine formula was proved to be a theorem and whether this

corresponds to how people do similar proofs.



When a natural language understanding program is employed to represent the
"underlying meaning" of a story or an text, we certainly would like to have the ability to
inspect for ourselves whether we think the system has hit on the correct understanding of
the text as we know it. An example of this would be for a system that takes natural
language as input and then uses this to perform some actions. It would be helpful to
examine the proof which did the interpretation of the input to see if there was any misin-
terpretation and thus avoid any incorrect actions. Finally, in a robotic planning system
we would like to inspect the plan before it is executed to check for any unseen side-
effects or in flaws in the reasoning. A extreme example could be a system in a space ship
that would react to any emergency such as a fire. The system could reason that a fire can
not exist without oxygen and thus it will open the hatch and release the air from the ship.
The flaw is, of course, that the humans on the ship will perish without the air. This type
of extreme flaw in reasoning could occur and thus the examination of a system’s plan

before its cxecution would be advantageous.

What is the best way for us to inspect the robotic plan (or any other application of
automated theorem provers)? This would depend on the particular area under investiga-
tion and the expertise of the inspector. But for the types of exarnples menticned above
we would like to be able to examine the background proof that was generated by the
automated theorem prover. We would like to be able to see whether it really does prove
the hidden sublemma, or if the robotic plan holds undesirable side-effects, and we might

be curious to how the system provided the answer to our query.

For many of the uses of automated theorem proving, the simple inspection of the
generated background proof is insufficient to the understanding. A printout of the proof
may be useful to some logician or to the creator of the system; but what is desired is that

the immediate user of the system be able to intuitively understand the reasoning or logic



behind the answer. And given that these users are unlikely to be formal logicians with a
computer background, a detailed formal proot would be of little use. Rather, we would
like something which could capture the reasoning involved in the application but that
presents the information to the user at his/her own level of understanding and in a tami-
liar language. The most plausible candidate for a representation of the proot (which is
being used by the system) would be one presented in natural language. This would obvi-
ate the need for any special understanding of the problem by the user. Of course, the user
must still be able to follow the presentation of the proof; but we presume that some

things would be much more striking when presented in natural language.

It thecefore seems that the ability to present a proof that was generated by an
automated theorem prover in a natural language representation would be useful. Or at
least, having this ability would alleviate many of the qualms that people have in trusting
automated theorem proof generation. We call this ability of a computational system to
"explain itse'f" or to "justify itself" by the use of a natural language representation of the

internal proof generated and used, a natural language back end.

The explanation of the proof could used in one of two ways. First, the natural
language presentation could be used as the only representation given to the user. In this
way the explanation must be very clear and have no ambiguities that would make it
difficult to understand. Secondly, the proof can also be given to the user and the natural
language explanation would act as a guide to aid him/her in understanding the proof. The
explanation need not be as exacting with this type of presentation, since the explanation

could refer to the proof and be a guide to its understanding.



1.3 Natural Deduction Theorem Proving

Although resolution-based inference is perhaps the industry standard in automated
theorem proving, there have always been systems that employed a different format. Even
in the late 50's and early 60’s there were different systems: The Logic Theorist produced
proofs using an axiomatic method, and the output of the program would be considered
legitimate axiomatic proofs; Wang's systems employed a Gentzen-sequent proof stra-
tegy; Beth's systems employed his semantic tableaux method; and Prawitz’s systems

seem to use a natural deduction format.

There are many differences between a natural deduction style of logic and a resolu-
tion style. One obvious difference is that natural deduction does not convert formulas to
any normal form (e.g.. negated-conclusion clause form) but instead works with them in
their original, "natural form" [Murray82]. This is not such an important difference, since
resolution-like strategies can and have been developed which also do resolution on
"natural form" formulas. (And in any case. sequent proof strategies and semantic
tableaux methods both operate on "natural form" formulas). More important is the
method of developing a proof in natural deduction systems. The fundamental idea is that
for each type of ("natural”) connective there are two ways to operate with a formula that
has it as a main connective: if such a formula is already in the proof one "breaks it down"
to get the component parts of the formula, and if it is not in the proof but (for whatever

reason) we desire it to be in the proof there is a method for introducing the formula.

In any of the various natura! deduction systems, some of the above-mentioned ways
to operate with a formula amount to saying: "if formulas ®;, ®,,.... are already in the
proof, then we are entitled to add formula ¥ to the proof”. Such operations are called
rules of inference. More strikingly, and the feature that many think of as defining naturai

deduction. is the other way of operating with formulas, subproof generation. This is to
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put the main portion of the proof on "temporary hold" while attempting to show that
some other formula is provable (provable based on what has already gone on in the proot
so far). When one starts such a subproof one is allowed to make a temporary assumption
(the particular assumption being determined by what formula one is trying to prove), and
to use this assumption together with earlier parts of the proot to try to prove the
subproof’s goal formula. When this subproof call succeeds, then the formula which was
to be proved becomes a part of the outside, main proof; but the portion of the proof which
justified our claim that the subgoal is provable is no longer available to the main proof.
(The reason for this is that this portion depends on the assumption that was made, and
that assumption is no longer valid.) Since the main conclusion to be proved is itself con-

sidered a subproblem, the problem is solved when the main subgoal is proved.

The method discussed later (and the examples presented) concerns restating natural
deduction proofs as a natural language argument. Therefore we need to give enough
information about the natural deduction system employed so that one can follow the
natural language explanations. The underlying logic system used here is that of Kalish,
Montague & Mar [1980], which has been implemented as a program called THINKER
[Pelletier 1982,1987]. In a natural deduction system the - are many rules of inference;
the retention of the "natural form" requires that there rc s to be rules describing what
can be done with each different type of formula. Writing a natural deduction automated
theorem proving system is largely a matter of organizing the application of all these rules
so as to efficiently generate proofs. The rules of inference of Kalish, Montague & Mar
(as modified for THINKER) are the following. Each rule (except for REFL) has some
preconditions in terms of formulas that must already be in the proof and must be
antecedent (a technical term explained below). These preconditions are stated to the left

of the ‘==>'. When these preconditions are met, the formula to the right of the ‘==>'
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may be introduced into the proof (along with an annotation -- a justification in terms of
Rule of Inference employed and the location [line numbers in the proof] of the precondi-
tions). Some rules take more than one form, as indicated here; the name of the Rule is

given in the table, and its abbreviation (which is found in the pruofs) is indicated in bold.

RULE

d=>o

b => ]

—_—d =>

(P& W)=> O

(P& Y)=> V¥
(PO => WV
((D—)‘P).ﬂ\*‘ => -«
OY¥ => (P& V)
(OVW)~D => ¥
(PVP) -V => O
(O-W)(P-D) => (Do)
(deW) => (O-Y)
(DoY) => (Y-Hd)
¢ => (Odv¥)

O => (Yvd)
—~(Vayd => (Jo)—d
()b => (Va)-P
(Vo) => -~(3a)d
{Ho)=d => ~(Va)d
Va)yp =>¢'

Fayp => ¢

¢ => So)P
do.o=p => dP
d)a.ﬂd)B => ﬁa=B
=> =0

NAME

R (Repetition)

DN (Double Negation)
DN

g (Simplification)

MP (Modus Ponens)

MT (Modus Tollens)

ADJ (Adjunction)

MTP (Modus Tollendo Ponens)
MTP

CB (Conditionals to Biconditional)
Bg (Biconditional to Conditional)
B

ADD (Addition)

ADD

QN (Quantifier Negation)

QN

QN

QN

UI (Universal Instantiation)

EI (Existential Instantiation)

EG (Existential Generalization)
LL (Leibniz's Law)

NEGID (NEGated Identity)
REFL (Reflexivity of Identity)

In the rules UL EI and EG, @' is the result of replacing all free occurrences of o in
& (that is, the ones that are bound by the quantifier phrase in (Va)® or (3a)d) with some
term (constant or variable) in such a way that if it is a variable it does not become bound
by any other quantifier in ®'. Furthermore, in the case of EI, the new term must be a vari-

able. and this variable must be entirely new to the proof as thus far constructed. In the
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rules LL and NEGID, the relationship between da and ®f is that some free occurrences
of a in da can be replaced by B and these occurrences of B will be free in ®B. The fact
that the rule REFL has no preconditions means that a self-identity statement can be intro-

duced anywhere in the proof.

An argument in general has premises and a conclusion. In the Kalish. Montague &
Mar system, premises can be entered into a proof at any time (with the annotation
PREM). What makes natural deduction systems distinctive is the idea of subproofs --
"smaller” or "simpler” subproblems which, if proved, can be "put together"” to constitute a
proof of the main problem. Obviously, a major factor in natural deduction theorem prov-
ing (whether automated or not) is the timely selection of appropriate subproofs to be
attempted. In the Kalish, Montague & Mar system, one indicates that one is about to
attempt a subproof of a formula & by writing "show ®". (This is called "setting a
(sub)goal”. and the line in the proof which records this is called a show-line). Since the
main conclusion to be proved. C, is itself considered a subproblem, the first line of a
proof will be "show C". One is allowed to write "show ®" for any & at any further stage
of the proof. Intuitively, one is always "working on” the most recently set subgoal --
although one can of course set a further sub-subgoal (and then "work on" that newly set
sub-subgoal). The formula following the "show" on one of these lines that indicates a
subproof is not really part of the proof proper (until it has been proved). The technical
term for this is that it is not antecedent, and the effect of being not antecedent is that this

formula is unavailable for use in the Rules of Inference.

Setting a subgoal allows one to make an assumption. The form of the assumption
depends on the form of the formula whose proof is being attempted, and these assump-
tions can only be made on the line immediately following a show line. (They are anno-

tated ASSUME). There are three types of assumptions allowed:



show (P->Y) show - show @
$d ASSUME & ASSUME - ASSUME

The final concept required here is that of (subjproof completion —the conditions under
which a (sub)goal can be considered to have been proved. The following is a summary
of all the ways to complete a subproof. We suppose that the last portion of the proof so

far constructed has the form:

show P
X,
Xn
Then we can change this part to ("complete the subproof”/"box and cancel”):
*show &
I X,
[ o
| X,
if (a) There are no "uncancelled shows" amongst X,..X,. and (b) one of the following
situations hold: (»,) & occurs "unboxed" amongst X,.X,. (b2) both © and —© occur
"unboxed" amongst X,.X, for some formula @, (b;) ® has the form (¥,—'¥2) and ¥,
occurs "unboxed" amongst X,..X,, or (bs) ® has the form (Va)da, Pa occurs "unboxed

amongst X,..X,. and « is not free in any line antecedent to this show line.

When this happens, the lines X,..X, are said to be boxed (indicated by the vertical
scope line) and are thus no longer antecedent (in the technical sense), while the "show" is
said to be cuncelled (indicated by the *-sign) and the formula & is not antecedent (in the
technical sense). The boxed lines X,..X, constitute a proof of <P, but having been used in
establishing this goal. they are no longer valid to use (i.e., no longer antecedent in the

technical sense) -- the reason being that they may have "depended on" an assumption
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made during that subproof and this assumption is no longer in force now that the goal has
been proved. Two things should be noted. First. when a subgoal is proved, al/l lines
after the shew line are boxed -- even if the "reason tor cancelling” is not the last line of
the proof as thus far constructed. (This is required for soundness). Secondly. although it
is common and expected that the method of the proof completion will "match” the type
of assumption made -- eg.. assuming the antecedent of a conditional should allow one o
cancel because one generated the consequent of the conditional -- this is not required.
The Kalish, Montague. Mar system is sound even if we allow any "way to start a sub-

proof" to be ended with any "way to complete a subproot™.

A proof of @ from a set of premises I' is a sequence of lines of formulas and scope
lines constructed in accordance with the above, in which @ occurs unboxed and in which
there are no uncancelled show lines. The following are four example proofs to show what

proofs look like in the Kalish, Montague, Mar system:

*Show (VX )(FX —=Gx)—=(Vy)Fy—(V:)G:)
(VxXFx—-Gx) ASSUME

*show (Vy )Fy —(V:)G:

I (VVv)Fy ASSUME

| *show (V:)G:

I | Fz5G: 2,Ul

I | F: 4,Ul

Il | G: 6,7MP

O~ O\ BN »—

*show (P v —=——P)

| *show —P

I I P ASSUME
[ I (Pv—=—iP) 4,ADD

| ———P 3,.DN

O~ NN P W —
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1 *show (P-Q}—(-~Q——-P) I *show (Faaa & a=b)—Fbab
2 1 (P-Q) ASSUME 2 | Faaa&a=b ASSUME
3 | *show {(=Q—--P) 3 | Faaa 2.5

4 |1 -Q ASSUME 4 | a=b 2S5

S 11 =P 24MT 5 | Fbab 2,3LL

The current version of THINKER makes some minor changes to the preceding Kalish,
Montague, Mar explanation. These alterations are mentioned so as to be able to display
the output of THINKER below. The main change is in the representation of subproof
completion, where now there is an annotation-justification printed on the "show" line.

For example, where we might before have seen

n.  *show P-Q n. *show P

n+l. | P ASSUME [
I m !l Q

m | Q p. I —Q

n. *show (Vx)Fx

I
I
[
m. | Fx
we now will see, respectively

n. *show P->Q n+l,mlmpIlnt n. *showP mpContra
n+l. I P ASSUME P

o ml Q
m | Q pp I —Q

n. *show (Vx)Fx mUG
|
| .
| .
m. | Fx
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The annotation "(n+1).m Implnt” indicates that line n was cancelled by "implication
introduction” using lines (n+1) and m. The annotations “Contra” and "UG" indicate that
the show line was cancelled by having found a contradiction on the stated lines or by
universal generalization (which presumes that X was not tree in any line antecedent to
line n). Another feature of this style is that the "reason for being able to cancel” is no
longer required to be within the subproof developed beneath the show line, so long as it

could have been. For example, the following is allowed
k. Q

n. ""s.sllmw P  k.m Contra
L

m | =Q

(so long as line k is antecedent). In Kalish, Montague, Mar one can cancel a universally
quantified show line, "show (Va)ba", if one can derive exuct!v the formula on the show
line, but without the quantifier phrase: that is. if one can derive ®a. There is a restriction
that the variable of quantification, ¢, must not be free in any lines antecedent to the show
line. This restriction is to ensure that the variable is "really arbitrary” and therefore that
having generated ®a really means that "® is true of an arbitrary thing" so that we are
entitled to consider (va)®a proved. In THINKER, a special list of "arbitrary variables” is
kept. and a universally quantified goal is proved if the unquantified formula can be gen-

erated with one of these special variables replacing occurrences of variables bound by the

quantifier. Thus
show (Vx }(Fx =(Gy&tx))

can be cancelled if
Fro—={(Gy&Hr)
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is generated, where ry is not free in antecedent lines of the proof before the setting of the

this goal.

[V, 9 SLFVY SRt

Faaa & a=b
Faaa

a=b

Fbab

*show (W {Fx =G )= (Vv )Fy =(V:)G:)

|

2 | (VadFa-oGr)

3 | *show (V¥ )Fy—(V:I)G:

4 | | (Uy)Fy

5 1 | *show(v:)G:

6 | | | *showGrgy

7 0 1 | | Fry=Gro

8 | l I | Fr()

1 *show (P A\ —\—\—vp) 6 ADD

3 | ‘*show —P 2.5 Contra

4 | + P ASSUME

6 | ———P 3 DN

1 *show (P>Q)—(=Q—>—-P) 2,3 Implnt
210 (P-Q) ASSUME
31  *show (-Q——P) 4,5 Implnt
41 1 =Q ASSUME
st I =P 24 MT

*show (Faaa & a=b)—Fbab 2,5 Implnt

ASSUME

The proofs given earlier in this section would be done this way in THINKER:

2,3 Impint
ASSUME
4,5 Implnt
ASSUME
6 UG

7.8 MP
2UI

4 Ul

Natural deduction is used for automated theorem provers because it is closely

related to the way that humans would do theorem proving themselves. The reason

behind this is that natural deduction uses many different inference rules as would a

human and thus is easier to explain and understand. On the other hand, a resolution

based theorem prover uses only one inference rule to produce its proofs. The one infer-

ence rule approach is difticult to explain since it does not correspond to the way a human
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would attempt to prove a statement. Theretore, we will deal only with natural deduction

proofs.

1.4 Multiple Explanations for Proofs

Natural deduction proofs generated by «. automated theorem prover can ditter
significantly. For example, a proof could be a straight line type of proot where each step
follows the proceeding step and few subproofs are required. On the other hand, the proot
could be a nested type of proof in which there are several subproofs that need to be
proved. There are many other ways in which they can vary. When explaining the proots
generated, the fact that the proofs are not all the same should be taken into account and

the ability to generat: different explanations should be an available option.

When a human is producing a natural deduction proof there are three methods that
they can employ. The first would be to start with the known true formulas and then use
an inference rule to create more of these true formulas. This method would continue in a
effort to produce the main goai. This is called forward reasoning. Secondly, the human
may begin with the main goal and split it into several subgoals to prove while making
relevant assumptions. The splitting of the subgoals continues until a subgoal can no
longer be split or it is found to be a premise or follows from the premises and assump-
tions. The main goal is proved when all its subgoals are proved. This reasoning is called
backward. A combination of these two types is used sometimes proving subgoals top-
down and others bottom-up and then combining their proofs into one. Since a human
produces proofs in these ways an automated reasoner should be able to explain its proofs
as such to give the user the explanation in fashion of proving theorems that they are fami-

liar with.
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If applications were developed for a single user the explanation facility could be
tailor fit to that specific user. This is generally not the case. Applications are produced to
be used by many different people. The users may have many levels of understanding
when it comes to the proofs generated by the system. This could range from those who
are logicians and do not need any natural language explanation facility to naive users
who would like the proof completely translated into English. The explanation tacility
should be able to accommodate the needs of many users and thus be able to produce

many different explanations for a single generated proof.

Another way that multiple explanations would be beneficial is that one user may
desire several different explanations of a single proof to aid in his/her understanding.
One explanation may not be enough to alleviate all the misinterpretations that a user
might have. If a section of the proof is hard for the user to understand it may be of some
help if they could look at a few different explanations of the same part of the proof.
Where as if only one explanation is produced and it does not help the user understand the

proof no further help can be given.
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2. Background of Explaining Natural Deduction Proofs

2.1 Introduction

There are several papers that have dealt with generating natural language explana-
tions from natural deduction proofs. This chapter describes four of the papers in the

field.

2.2 Chester’s Paper

[Chester76] was one of the first papers to discuss the explanation of natural deduc-
tion proofs in natural language. The paper discusses the program EXPOUND that pro-
duces a translation of a formal proof into English. There are four stages to the generation
of the English explanation. The first step is to create a graph that represents the inferen-
tial relationships between the lines in the proof. In the next two stages this graph is used
to make an outline of the final text. The second step is to group the lines into paragraphs.
The paragraphs are then put into a linear order and introductory paragraphs are inserted
to explain how the paragraphs are related. Finally, EXPOUND generates the English text
by explaining how each line is obtained from the previous lines in the output. The output
of the program is the statement of the theorem and the translation of the proof into
English. An example proof from [Chester76] is given below. The inference rules used
by EXPOUND are the same as those for THINKER with a few exceptions: PR is similar
to ASSUME and PREM, CD corresponds to IMP INT, and the rule CQ is called QN by
THINKER. The one rule that is not present in THINKER is TF which is truth-functional

inference, in other words, infer Y from X,.X,.... because (X,&X,&...)—Y is a tautology.



L1
L2
L3
L4
L5
L6
L7
L¥
L9
L10
L1l
L12
LI13
L14
.15
L16
L17
L18
L19

Vo (Fx&Gx )= (Fx& —Gx)
Y (Fx =Gy )vVx(Fx—Hy)
Vx((Fxd&tlx)-Gx)

Av(Fx& —-Gx)

Fe& —Ge)

Vi (Fx—-Gx)

Fr oGe

Ge& ~Ge

Va(Fx -»Gx )Gk —Ge)
Vx(Fx—=ix)

Fc —He

(Fe&le)-Ge

Ge& —Ge

Vax(Fx =Hx)=(Ge& —Ge)
Ge& —Ge

A (Fx& =Gx ){Gek ~Ge)
VX {((Fx&Gx)—Hx)
Iv(Fx&Gr& —Hx)

VY ((Fx&Hx )>Gx ) (Fx& Gr& —Hx)
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(PR)

(PR)

(PR)

(PR)

(ET'L4)

(PR)

(UI'L6)
(TELSL7)
(CD L6 L8)
(PR)

(UI'L10)
(UTL3)
(TFLSLI11LI2)
(CDL10L13)
(TFL2L9L14)
(CD L4 L15)
(TFL1L16)
(CQLID

(CD L3 L18)

The first step taken by Chester’s program EXPOUND to generate the translations of

the formal proofs into English is the creation of a graph representing how the lines of the

proof relate to each other. This graph is created from a partial order of the lines in the

proof. This partial order is defined by four conditions. These conditions describe the

basic facts about how the lines in the proof are usuallv presented. The first condition is

that the reasons for a line are given before the conclusion is drawn from them. The

second asserts that when a proof is started from some assumption x and a subproof can

not be completed without using a successor to x (line y such that x>y, where *>’ is the

partial order on lines in the proof and x>y means line x comes before line y) then the

entire subproof is nested in in the original proof. The third condition used to generate the

graph states that when a constant is introduced by existential instantiation then this line



Figure 1. First graph of the example proof.




must proceed all other lines that reference it. The final condition is simply rhat the partial
ordering has the wansitive property. (x>y and y>z we can say x>z) The partial ordering is
represented internally by a graph and this is what is used in the next two steps. The

graph used to represent the example is seen in figure 1.

The second step in the generation process is to combine the nodes of the graph into
sequences of lines that outline the paragraphs that will appear in the output. After this
process the paragraphs may not be in a linear order so EXPOUND will list the nodes in a
compatible order with the partial order. At this point the program may insert some intro-
ductory paragraph nodes to the graph. These are used to clarify the relationships between
the other nodes. The total proof and each subproof are examined individually to deter-
mine where these types of nodes are needed. The introductory paragraphs include a con-
clusion and a list of lemmas that must be shown to prove the conclusion. The final graph
showing the lines of the example grouped into paragraphs is in figure 2. In this case
EXPOUND inserts an introductory paragraph node consisting of conclusien L15 and
lemmas L9 and L14 right after node w, making the final order w, introductory paragraph,
X.y.and z.

Once the cutline of the final text to be produced is done the translation into English
sentences is attempted. The lines in a paragraph are generated to explain how the lines in
the proof are related. Each line of the proof that is to be in the paragraph is examined and
a sentence is generated depending on the inference rule and the previous sentences in the
discourse. Not every line in the paragraph may have a corresponding sentence, some
lines that are easily deduced by the reader may be left out. The sentences themselves are
generated by using some specific lexical information which is passed to EXPOUND.
This information is about the predicates that appear in the proof. The lexical information

includes the number of arguments, prepositions for the arguments, and several phrases



Figure 2. Final graph showing lines grouped into paragraphs.

| 3V
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that the predicate can be translated to. Using the information, phrases for atomic formu-
las, predicates and their arguments, and quantified formulas are generated. These types
of phrases are combined using connective phrases that correspond to the connectives

found within the formulas of the proof. The lexical information given to EXPOUND was

as follows.

Predicate Property Value
F arguments X
+active form is a worker
-active form is not a worker
gender M

syntactic type  noun

G arguments X
+active form signed the contract
-active form did not sign the coniract
syntactic type  clause

H arguments X
+active form is in the union
-active form is not in the union

syntactic type  phrase

Universe  arguments X
+active form  is a person
gender M

syntactic type  noun

The final output from the program EXPOUND for the example includes the state-

ment of the theorem and the explanation of the proof. The output is shown below.
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THEOREM. Suppose that if every worker who signed the contract is in the union
then some worker did not sign the contract. Suppose moreover that either every worker
signed the contract, or every worker is in the union. Then if every worker in the union
signed the contract then some worker who signed the contract is not in the union.

PROOF. Suppose thai every worker in the union signed the contract. Suppose
moreover that some worker did not sign the contract. Let w denote such u worker who

did not sign the contract.

We want to show that a contradiction follows. This we shall do by considering the

Sollowing 2 cases.

Suppose that every worker signed the contruct. Now a contradiction follows, since
by assumption w is a worker and he did not sign the contract, and if he is a worker then
he signed the contract. Thus if every worker signed the contract then a contradiction fol-

lows.

Suppose that every worker is in the union. But a contradiction follows, as by
assumption w is a worker and he did not sign the contract, and if he is a worker then he
is in the union, and if he is a worker and he is in the union then he signed the contract.

Thus if every worker is in the union then a contradiction follows.

Because by hypothesis either every worker signed the contract, or every worker is in
the union, and we have shown that if every worker signed the contract then a contradic-
tion follows, and if every worker is in the union then a contradiction follows, a contradic-
tion follows. Thus if some worker did not sign the contract then a contradiction follows.
This and the fact that by hypothesis if every worker who signed the contract is in the
union then some worker did not sign the contract imply that not every worker who signed

the contract is in the union. In other words some worker who signed the contract is not
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in the union. Thersfore if every worker is in the union signed the contract then some

worker who signed the contract is not in the union.

Most of the effort in [Chester76} was in the ordering of the lines for presentation in
an English language fashion. In general the explanation of the proof is presented as for-
ward chaining. In other words the premises and assumptions are handled first and then
the lines that can be derived from them are explained, leading to the final goal. The
introductory paragraphs give a hint of a top-down type explanation by describing what is
to be explained and how it is to be done before the explanation of the subgoals takes
place. This effort in explanation of natural deduction proofs creates only one explanation
type for any one proof. The only variation for a single proof would be in the random
selection of phrases with which to explain certain inference rules. All Chester’s explana-
tions are the same with a backward reasoning explanation for the introductory paragraphs

and a forward explanation of the main body of the proof.

2.3 McDonald’s Paper

Another method for generating natural language explanations of natural deduction
theorem proving is in [McDonald85]. This work is about generating natural language
from several different message formats, natural deduction proofs being one of these for-
mats. Most of the work done is to the piece of the system that is called the linguistic
component. This component contains two parts which McDonald calls transducers. The
first transducer takes the message passed to it for translation into English and produces a
surface structure level linguistic representation of the utterance to be produced. This
structure is the "working" data structure that will be used in creating the output. The

second transducer takes this structure and translates it into the English text.
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The generation of language is thought of as a decision making process. The set of
possible consistent decisions are determined by the language’s grammar. Theretore, the
linguistic component is where the decisions take place and are acted on. The first trans-
ducer is the decision maker. Decisions are made on how to realize the individual ele-
ments of the message, through the selection of particular surtace structure phrases. The
second transducer has the job of executing the decisions that were made in the tirst. They
are executed by interpreting the surface structure that the first transducer developed as a

program of linguistic actions that are to be performed to generate the desired discouse.

To make the system work for a specific type of message, such as natural deduction
proofs, two things must be customized. The first is the dictionary. The dictionary holds
the information about how to interpret the message element by element, to determine its
linguistic correspondences and relevant substructure. The second part which must be
made specific to the application are the interface functions. These functions have two
purposes. First, to link elements of a message to the dictionary entries. And secondly. to

answer some linguistic questions such as "person and number” for the message elements.

Natural deduction proofs are used as one type of message that can be fed into this
system. With this, lines of the proof are passed in sequence to the program. The English
text that was selected for earlier lines provides a discourse context to narrow the choices
that can be made for the current line. Things such as subsequent references to constants,
variables used as generic references, and predicates and formulas used as description are
dependent on previous lines for their realization. A large part of the English text is
devoted to the explanation, guided by the inference rules, of how each line is related to
the earlier ones. The program processes a proof by realizing its formulas and subformu-
las as the lines are read in. This realization is not mechanical; a context sensitive deci-

sion is made as to how (or whether) the major connective or inference rule is to be
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translated. It also decides which (if any) of the subelements of the formula are to be used
in this realization. Certain lines of the proof may be omitted if it is felt that the step
could be made automatically by the audience.

This system has many pleasant features in the explanation of natural deduction
proofs. Quantifiers can be translated into determiners of their variables to give phrases
like "some barber” or "everyone” rather than producing phrases such as "for every" or
"there exists a person such that". The system can use functional labels such as "an
assumption” or "a contradiction” and use these phrases as references to complete formu-
las. For some connectives the realization will differ depending on the context. For
example, the connective « can be realized simply as “if and only if" in a formal context
but when seen as a restriction on a variable it can be expressed as a relative clause
"everyone who" or "all and only those men who---". The program uses phrases like
“leads to" for linking lines to une another when the current line was deduced from the
previous. The system also has a special monitoring routine it invokes to help identify
and avoid possible ambiguities that may be introduced into the discourse. A way to
avoid the ambiguities is with the use of parentheses to forgo any misinterpretation of the
intended scope. An example proof and the output produced is given below.

linel: premise

Ix (harber(x) & Vy(shaves(x,y) <> —shaves(y.y)))

line2: existential instantiation (1)

barber(g) & Vy(shaves(g,y) «> —shaves(y,y))
line3: tautology (2}

Yy shaves(g.y) € —shaves(y.y)
lined: universal instantiation (3)

shaves(g,g) & —shaves(g.g)
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line5: tautology (4)
shaves(g.g) & —shaves(g.g)
line6: conditionalization (5.1)
3dx (barber(x) & Vy(shaves(x.,y) & -—shaves(y.y)) D (shaves(g.g) &
—shaves(g.g))
line7: reductio-ad-absurdium (6)
—3x (barber(x) & Vy(shaves(x.y) &> —shaves(y.y)))

Assume that there is some barber who shaves evervone who doesn’t shave himself
(and no one else). Call him Giuseppe. Now, anvone who doesn't shave himself
would be shaved by Giuseppe. This would include Giuseppe himself. That is, he
would shave himself, if and only if he did not shave himself, which is a contradic-
tion. This means that the assumption leads to a contradiction. Therefore, it is fulse,
there is no such barber.

This system generates some easily understandable explanations of some natural
deduction proofs. it goes to great length to be able to generate extremely natural sound-
ing explanations. The program produces the lines of the explanation in a generally for-
ward fashion. The simple lines such as assumptions and premises are explained first and
then the explanation build on these towards explaining the final goal last. The system
produces only one explanation for each proof that it is given. No variation can be made

to the order in which the lines of the proof are presented.

2.4 Felty and Hager’s Paper

Another paper that dealt with generating explanations of natural deduction proofs is
[Felty88]. This paper deals with taking a natural deduction theorem prover which is
expanded to handle proofs in modal logic and generating explanations of these types of
proofs. The explanation facility is simple yet flexible to de able to generate different

kinds of explanations 1o meet the needs of different users. The explanations can take on
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numerous forms depending on taste, background, and the type of information to be con-
veyed.
The system uses a Gentzen proof style sequent system. A sample proof of a state-

ment about a reflexive relation R and a predicate P is given below.

Rta.a)—- R(aa) P}~ P(a) forwardchan

Raa)Rwa)dP(a)—>Pla) a-L
R(aa)Vy(R(a¥)DP(¥) > Pa) -
Yw R(w w)Vy(R@y)DP(¥) > P(a) imp-r
VYw R(wm ) Vv(R@y)2PONDPa) ai-r
Vuw Rwaw) 2 VX [VY(R(xV)DPOND PO ip-r
SVn R(ww)D Vi [Vy(R(xy)=P(v)DP(x)]

The proofs that are used in this system are represented by a recursive term structure.

The proof term for the example above is:

imp_r(all_r(imp_r(all_l(all_l(forwardchain(axiom(R(a,a)).axiom(P(a))))))))

The explanations are generated by mapping from these terms to text strings. The form
and content of the explanation depend on the information extracted from the correspond-
ing proof term and the way in which that information is mapped to strings of text.
Different explanations are generated by different kinds of mappings. Each inference rule
has a corresponding function that takes the explanation of the premises and puts them
together, with the addition of more text, to construct the explanation. To explain a line in
the proof the function takes the text that explains the lines that it depends on and adds
some more text to generate an explanation for the current line. In these explanations only
the inference rules are explained the formulas are not lexicalized. In other words, the for-

mulas are left as symbols and are not expanded into natural language. The explanation
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Assume Vw R(w.w). Assume Vy(R@ay)odP(v)). Letw =a in Vw R(ww). Lety =a in

Vy(Ria.y) 2 P(y). By modus ponens we have P(a). Since a was arbitrary we have

Yx[Vy(R(x.»)DP()) 2 Pv)].

This explanation facility is produced with a particular domain, modal logic, in mind.
If proofs are specific to a particular domain. the explanations should be presented in
terms of concepts that have meaning within that domain. For example, when explaining
proofs about inheritance the explanation should use terms that relate to inheritance rather
than the basic logic operations. The explanations of the modal logic proofs are to be in
terms of the modal logic domain. To add modal explanations to the system, text genera-
tion functions will be added whose contribution to the explanations depend on the mean-
ing of the corresponding modal operators. This contribution will also vary as to how

much detail is desired and the context.

The explanations of the modal logic proofs can be produced 2t several levels of
detail. One level of explanation for modal proofs would be for those users who are fami-
liar with the rules of modal logic. The details about how possible worlds are related
would be left out of the explanation since this would add unnecessary clutter. The reader
is already familiar with these concepts. This would lead to a skeletal explanation of the
modal logic proof. A more detailed version of explanation would have to be given for
those who do not understand the inference rules and axioms of modal logic. To explain
the first-order translation of the proof would be too general. An algorithm should be
developed that explains the proof at a "deeper” level, specialized to possible world
semantics. With this type of explanation the text generating functions for all the infer-
ence rules must be changed slightly to accommodate information about situations. These

expanded explanations give two additional types of information. First, there is more



detail about the chain of inference. And secondly, the information of the possible world

ormamentations is used to give an explicit reference to how the situations are related.

This work recognizes that it may be necessary to generate more than one type of
explanation for a single proof. These different levels are generated by changing the map-
pings from proof structures to text strings. This may require the changing of the func-
tions that do the explanation. The explanations themselves are mainly goal-directed.
This means that the main goal is stated and the lines it is dependent on are explained
afterwards. The inference rules are the only thing that are lexicalized in these explana-
tions. The formulas within the lines of the proof are left as they were generating an
explanation that is simple to follow if the reader is able to understand the formulas. On
the other hand if the user does not even understand the formulas then this type of expla-

nation would not be of much use.

2.5 Huang’s Work

Some more work that deals with the generation of natural language explanations of
natural deduction proofs is [Huang89a, Huang89b. Huang90]. These works deals with
the transformation of the "logical level” proof to the "conceptual level” proof, that is
easier to explain. The inference rules in the logical level of proof are in general very
small. The goal is to use inference steps the size that human mathematicians usually

prefer. For example, suppose we have the concept of "subset” encoded as follows:

UgF &Vy el —xefF
Now everyone who has a standard mathematical training will find it natural to deduce
acF given UcF and aeU as facts. Even if they are not familiar with set theory they will
reason at this level of abstraction. To deduce the same inference in a Gentzen-style proof

would require eight lines. The point is that the conciseness found at the conceptual level
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is not really based on the person’s competence in the particular area, and the tediousness
at the logical level is not caused by the machine’s inability to find elegant proots. Rather,

the reasoning is simply taking place at different levels of abstraction.

If one concentrates on a special area of mathematics, compound rules similar o the
rule above can be distinguished. Indeed. they usually correspond to one application of
either an axiom or a theorem. A simple but powerful method was developed to derive
domain-specific compound inference rules trom axioms and theorems. These new rules
are then incrementally added to the calculus as new theorems or intermediate results or

lemmas are proved.

The next problem, after the derivation of the domain-specific compound rules, is
how to shorten the original Gentzen proof. This is done in a brute force method where, in
a bottom-up direction, each proof line is checked to see if there is an applicable com-
pound rule. If a rule is applicable, the inference rule is changed on that line and the
pointers to the reason lines are changed as needed. After these tests are complete the

proof is searched again and any line not used in the new proof is deleted.

Once the Gentzen proof that was input has been raised to a conceptual level proof,
the system proceeds to translate them into so-called message sequences. To do this the
proof must first be organized into an ordered proof tree. The tree has the conclusion of
the proof at the root and the leaf nodes contain assumptions and premises. The tree is
ordered first using the parent-children relation that is based on the inference rules. Order-
ing of the children is dependant on both structural and pragmatic constraints. The simple
logical constraint used for ordering is that the reasons must appear before conclusions.
This is easily satisfied by using a post-order traversal of the proof tree to produce a total

order of the message segments.
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The second type of constraint that must be satisfied for the ordering of the message
segments is a structural constraint. Some inference rules that require more than one rea-
son impose an inherited order on their reasons. In other words the reasons are almost
always derived in a particular order, although there is nothing logical forbidding doing it
another way round. This order is closely related to the forward chaining proof develop-
ment style that is employed in this system.

The final constraint used for the order of the proof tree is a focus mechanism. There
are two types of foci that can be used, global and immediate. Global focus refers to the
fact that we usually center our attention on a particular object throughout a set of con-
secutive utterances. This is especially relevant in a proof where properties about an
object are usually grouped together in a set of consecutive proof lines before the proof
turns to properties of another object. Immediate focus is the way attention shifts or
remains the same over two consecutive sentences. The focus mechanism will be tried
when more than one choice concerning ordering remains after the application of all other

text structuring rules.

These three constraints are integrated to provide a total order. First, an initial proof
tree is built from the proof already raised to the conceptual level. The logical constraint
is guaranteed to be satisfied and therefore starting from the root node and proceeding in a
pre-order manner an attempt is made to enforce an order on the children of every node.
At each node the structural constraint rules will be tried. Beside this enforcement of
order, some particular nodes of some subproofs are "marked", indicating that these proof
lines should appear at the beginning of the corresponding subproof. Because the system
works downward from the root this marking frequently provides an initial focus within
which to continue. These markings will be used at nodes where no existing structural

rules are applicable. For example, suppose there is a node N with children N\ Ny, ... . N;
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and within a subtree of N a node n was marked by the previcus process. This node n
establishes the "initial" focus and the system would like to proceed in this focus space
before turning to another. Therefore the child node picked to appear tirst will be the nod=
with the smallest focus space which includes everything in the focus space of node n. If
none of the children can satisfy this condition another node is found in their subtrees and
the child tree that contains this node will be chosen to come first in the ordering. Once

all the constraints are satisfied the proof ree will be totally ordered.

A simple post-order traversal of the proof tree is used to produce a linearized mes-
sage sequence that is passed to the tactical component and realized in natural language.
During the traversal, decisions about "what to say” must be made at each node, or in

other words, for each proof step. The message unit for each proof step is of the format:
<<inference-rule, reasons, proof-line>>

While the proof line will usually be handed over unchanged there are alternative refer-

ence choices both for the inference rule and the reasons. The three reference choices for

the inference rules are:

1. The explicit form: this is the case where the inference rule used is indicated explicitly,

such as "by definition of unit element" for domain-specific rules and similar translations

for Gentzen structural rules.

2. The omit form: words such as "thus", or "therefore” will be used.

3. The implicit form: the middle ground between explicit and omit. Nothing is said

directly as to the inference rule, an implicit hint to the inference rule is given in the trans-

lation of the reasons (or the proof line itself). Another way is to use a hint word such as

"similarly” if the same rule had been used in the: previous line.
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Similarly, three reference choices are found for reasons:
1. The explicit form: for example, reasons proved "far before” will be repeated explicitly.
2. The omir form: reasons can be omitted it they have just been proved or mentioned in
other proof steps.

3. The implicit form: this is similar to the implicit form used for inference rules, the rea-

sons can be "hinted" implicitly. The translation of the inference rule can be used to hint at
the reasons used.

What finally appears at the position "inference rule" in the message format will be
one of the following:
1. A name of one of the structural Gentzen rules.

2. A name of a definition or theorem of the current theory level.

3. "omit", for all other cases.

To discover which reference choice will be made for the reasons, structures called
proof units must be used. In general every proof structure is a recursive structure of basic
components that have been called proof units. Proof units are subtrees that a human
mathematician will accept as a subproof. The proof units are assigned a specific type as
defined below:

1. The ..crive proof unit is the smallest proof unit containing the current node. There is
exactly one active proof unit at a time.

1. The controlling proof unit is the smallest proof unit containing the active unit. There
is exactly one controlling proof unit at a time, except when the active proof unit is an out-
most proof unit.

3. Precontrol proof units are proof units containing the controlling proof unit.
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4. Closed proof units are proof units lying before the active proof unit in the ordered
proof tree, i.e. nodes in any closed proof unit are those that have been processed when the

traverse procedure has reached the current node.

Using these definitions of proof unit types, the reasons can be assigned a contextual
status that in turn is used to determine the reference choice tor the reasons. The assign-
ment of the contextual status is done as follows:

1. Reasons in the active proof unit are structurally close.

2. Reasons in the controlling proof unit but not inside any closed units are structurally
close.

3. Reasons that are root nodes of immediate subordinate closed proof units are structur-
ally close. Other reasons in a closed proof units are structurally far.

4. Reasons in a precontrol proof unit are far.

The structural distance and the physical distance, defined as the textual distance between
the last mention of the reason and the current sentence where the reason is used, are used

to determine the reference choice for the reasons as explained below:

1. If a reason is structurally close and near in distance, it will be omited.

2. If a reason is structurally close but far in distance, first try to find an implicit form, if
this is not possible, use an explicit form.

3. If a reason is structurally far but near in distance, first try to find an implicit form. If
this is not possible, omit it.

4. An explicit form will be used if a reason is both structurally far and far in distance.

The reference choice rules for reason and the reference choice rules for the inference
rules are combined to construct an algerithm to produce a message sequence from the

ordered tree. The tree is traversed in a pre-order manner applying the two sets of rules at
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each non-duplication node. Once all nodes have a completed mc,sage unit the system
will traverse the ordered proof tree in a post-order fashion to produce the message
sequence.

These papers [Huang89a, Huang89b, Huang90] do not describe the actual transla-
tion from the message sequence into a natural language explanation. Only one explana-
tion can be produced for any given proof. The explanation itself will be generally a for-
ward chaining method since the message sequence was produced by a post-order traver-

sul of the ordered proof tree.
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3. How to Generate Many Explanations

3.1 Explaining Proofs: Dynamics, Formulas, Levels, and Methods

There are four fundamental dimensions along which natural language explanations
of natural deduction proofs might vary. These dimensions seem to be independent. and
the different varieties of one dimension can pretty freely co-occur with any variety from

any of the other dimensions.

The first dimension is a measure of how much one is to explain the strategy behind
the construction of the proof vs. a simple recounting of the proof as it stands. That is,
this dimension has a dynamic account of the proof construction at one end and a static
account of the generated proof at the other. This dimension is particularly salient in
natural deduction systems, especially when it comes to the setting of subgoals. At the
dynamic side of the explanation we would expect the natural language explanation to say
such things as "At this stage of the proof we set the subgoal on line 6 because we notice
that line 4 has a certain property and if we could prove line 6 then we could do something
to lines 4 and 6. Furthermore it looks like we can prove line 6 because of blah-blah..." At
the static side of this dimension we would see explanations such as "At line 6 a particular
subgoal was set and it was proved by blah-blah. Once line 6 was proved it was used with
line 4 to do something."”

The thrust of the program EXPLAIN is to the static side of this dimension. The task
that was set was to examine the proof generated by THINKER, and to give an explana-
tion of it. The natural language generator had no private information about THINKER's

internal proof development strategies, and iherefore was not in a position to try to give
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the dynamic type of explanation. To add this ability, the program would have to be able
to read the heuristic THINKER used at a particular point from the final proof: and then it
would need to have some insight into THINKER author’s mind to see why a certain
heuristic was thought to be useful at the particular point in the proof that it was
employed.

The second dimension along which explanations can vary concerns the amount of
explanation that is done for an individual line of the proof. There are three different ways
that the formulas can be presented here. First, they can appear as they did in the proof
with no change, that is, as uninterpreted formulas. Secondly, since the connedtives in the
formulas represent well-known English phrases such as: ‘if--then’, ‘and’, ‘or’, *for
every’. We can use this fact to state the various formulas as asserting these kinds of rela-
tionships amongst (uninterpreted) simple predicates. Finally, since many applications
attribute a particular meaning to the abstract predicate symbols used in the proof, we
could use this information to expand the predicatess into English phrases so as to yield a
full English language explanation of the proof.

At one end of this dimension the formulas used in the explanation are left in the
same form as in the proof. For each line the inference rule would be explained using the
formulas needed. This would result in the explanation of a single line such as: "We have
shown the biconditional, (P (r;.r ye—P (r /1)) , and one side (P (r,.r})) is true SO we can get
the other side (=P (r,.-))." The explanation explains how the formulas led us to conclude
the current line. The formulas themselves are not expanded at all and this explanation
would be of little help to someone who did not comprehend them in this format, although
it may help some logicians.

The connectives in the formulas represent concepts that are easily translated into

English phrases. The midpoint of this current dimension is to have the connectives
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translated into English phrases and used to assert relationships amongst (untranslated)
predicate symbols. Therefore at this level the inference rules are explained by using
phrases that represent the formulas that they act on. An example of this type of explana-
tion of a line is as follows: "Since the biconditional, (P(ri.r)) follows if and only if
(P (r,.ry) is not true)). was shown, and one side is true (P (r,.r1)), we can conclude the other
side ((P(r,.ry) is false)).” This is basically the same explanation for the inference rule, but
the formulas on which that rule is applied are now represented by predicate symbols and

connecting phrases.

A further step along this dimension towards a complete English explanation of lines
in the proof must involve the lexicalization of the predicate symbols. In most applica-
tions the abstract predicate and constant symbols are intended to represent some real
world relation or item. These mappings can be used to further expand the explanation.
The inference rule, the connectives, and also the predicates within the formulas will all be

expanded, leading to full English sentences. Using the previous example we can let the

predicate symbol "P" represent the concept "x shaves y" and the constant "r," stand for a
person named Fred. This would lead us to the explanation of the line to be: "Since the
biconditional, Fred shaves himself if and only if Fred doesn’t shave himself. was shown,
and one side is true (Fred is shaved by himself), we can conclude the other side (Fred
doesn’t shave himself)." This sort of explanation is at one end of the dimension where the
complete explanation is in English and there are no further things in the proof line which
can be explained.

A proof can be thought of as a tree structure with the nodes of the tree representing
lines of the proof. The root of the tree is the main goal to be proved, its children are the
formulas that are used to prove this. Each node may have one, two, or no children

depending on the number of formulas that the inference rule uses to derive the line. The
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leaf nodes of the tree are those lines that are true without the need to combine other lines
to prove it. (These are lines such as assumptions and premises.) Since some lines are used
in the proof of several other lines, nodes in this explanation tree may have more than one
parent.

The third dimension that can change in the explanation of natural deduction proofs
is the level of the explanation. At one end of this dimension every line in the proof is
explained. But, it is possible to imagine explanations where not every detail is given. In
most proofs there are only a few major subgoals that need to be solved to justify or
explain the top level goal. A very high level of explanation would just refer to them, and
would not further describe how they were derived. With this type of explanation, the
proof of certain of the subgoals would not be explained. They would be just stated as
being provable and then used to explain the higher level goals. A natural place for this
"cut-off" in explanation to occur would be to set a depth of embedding of subgoals after
which they would not be explained. This "cut-off” could also eliminate some lines from
the explanation that are above the cut-off depth, if it should turn out that they were only
used in the proof of one of these subgoals. The subgoals at the cut-off depth will now
become pseudo leaf nodes in the explanation tree. They will be treated as leaf nodes
since their descendants will not be explained. The explanation can proceed normally but
treat these nodes as leaves and call a function to explain them as "provable in further
steps". Since the level at which cut-off can take place can vary there are several different

explanations that can be generated, even while keeping all other dimensions constant.

As we have just discussed the cut-off mechanism allows for explanations where
some subproofs are not explained. Sometimes one might wish to go back and examine
the proof of just this subgoal and not the complete proof. Such an explanation would be

done starting at the subgoal rather than at the first line in the proof. The explanation can
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begin at any show line because each subproof is independent trom the main proof and

can be explained in isolation.

The fourth dimension vwhere explanations of natural deduction proof can vary has to
do with the method used to produce the explanation. The different methods of explana-
tion come from how the explanation tree is traversed to generate the explanation. The
traversal can be done either top-down or bottom-up. A third possibility is to mix the two

and explain separate parts of the proof using the different schemes.

The first method of explanation is called top-down. This method corresponds to a
pre-order traversal of the proof tree. At each node of the tree this style of explanation
does several things. First, the current line's formula is stated as being what is to be
proved. Secondly, the subgoals that are needed to justify this line are stated. After that,
these subgoals are explained by recursive.ly calling the top-down explanation tunction.
The recursion is completed when an assumption or a premise is explained, since they
have no more children in the explanation tree. Once the explanations of the subgoals has
returned, the function may have a concluding sentence to tell how they are combined to
derive the main goal. This step may be omitted for lines with no subgoals or those who

are adequately explained in the first step.

The second method that can be used is called bottom-up, which is a pust-order
traversal of the proof tree. This approach begins the explanation by traversing down to
the leaf nodes of the proof tree. At this point, those leaf-node lines are explained. This is
simple since they are either assumptions or premises. An interior node of the tree is
explained only when all its descendants are completely explained. The discourse contin-
ues, progressively expanding on those lines that have already been explained. The last
node, or line, to be explained is the main goal of the proof. As can be seen, this type of

explanation builds up from the simple to explair lines to thc more complex.
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The final variation on these methods of explanation of natural deduction proofs is a
combination of the previous two; this is called a mixed type of explanation. The mixed
explanation can begin either with top-down or bottom-up. Then several switching points
can be set where the explanation will change from top-down to bottom-up or vice versa.
These switching points correspond to a depth in the proof. All the subgoals at the same
depth will be explained using the same strategy. (Either all bottom-up or all top-down.)
This mixed technique can lead to many different types of explanations by varying the

number of switches in method, and varying the levels at which these switches take place.

The following sections describe the four dimensions and how they were imple-

mented. A more formal statement of the algorithm is given in chapter 5.

3.2 Explanations of the Formulas

3.2.1 Explanation of the Inference Rules

The formulas within each line of the natural deduction proof can be explained in
several different ways. The first is not to explain or expand on the formulas, but rather
just to use symbols in the explanation of the line in the proof. At this level of abstraction,
the only thing that will be explained is the inference rule used to derive the line; and this
means to explain how the inference rule was used to get the line in question. Hence, such
an explanation only mentions what other formulas or lines are used. The proof found in

figure 3 will be used as an example throughout the section of explanations of the formu-

las.

This level of explanation is called the inference rule level, and is quite simple.

When 2 line is to be explained, a function that corresponds to the inference rule in the
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INPUT:
Premise: (Vxo)(BIRD (xo)=FEATHERS (xq))
Goal: ((BIRD (ag)&CHIRPS (a())—=FEATHERS (ap)

OUTPUT:

*show ((BIRD (az)&CHIRPS (ao))—»FEATHERS (ay)) 23IMPINT

—

2 | (BIRD (ap)&CHIRPS (ag)) ASSUME

3 | *show FEATHERS(a,) 4,8, CONTRA

4 | | ~FEATHERS (a,) ASSUME

5 | | BIRD(ay) 2.5

6 | | (YxoXBIRD (x()—FEATHERS (x,)) PREM

7 | | (BIRD(ao)—>FEATHERS (ay)) 6.Ul

8 | | FEATHERS aq) 7.5.MP

real usersystem
0.03 0.03 0.00 1sec.)

lines discarded: 1
300.00 lines/second (user time)
Figure 3: Example proof 1

line is called to do the explanation. In the example proof, line 1 would be explained by a
function dedicated to explaining the introduction of implication. This function does
several things to produce an explanation. First, it constructs the explanations for the for-
mulas that will be wused. In line 1 the formulas required are:
((BIRD (ao)&CHIRPS (a4))—~FEATHERS (a()), (BIRD (ag)&CHIRPS (ay)), and FEATHERS (a,). This
would be the formula on the current line and the formulas from those lines that ‘were used

to derive it. At this point these formulas are not expanded, and thus the symbols are used
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instead of an explanation. After this a random choice from several phrases to explain this
particular inference rule is made. An example explanation for line 1 would be: "Since we
assumed (BIRD (ao)&CHIRPS (ao)) and then FEATHERS (ao) followed from that assumption
then the conditional ((BIRD (ao)&CHIRPS (an))»FEATHERS (a,)) can be derived.” The formu-
las obtained previously are used to make these explanation phrases specific to the particu-
lar line. If the formulas were explaine” in sentences immediately previous to the current

explanation, reference can be made to the .. and the formula need not be restated.

There are some differences between the explanation functions for top-down and
those for bottom-up. The functions for top-down may have two places to choose a expla-
nation phrase. First, there is a phrase selected to explain what must be proved to derive
the current line., and then the recursive calls to explain the subgoals. After this, a second
phrase may be used to tell how the subgoals are combined to form the current line. With
the bottom-up method, only a single explanation phrase needs ta be chosen, since the
subgoals must have been explained before this line. Most often. the subgoals were
explained immediately before and so the reference back to these sentences can be made
instead of restating the formulas. There are also a few functions that can be used to
explain an inference rule the same way whether using the top-down or bottom-up
method. These correspond to inference rules like ASSUME and PREM that do not
depend on any other lines for their proof. One other special function used by both is to
explain that the line is provable in further steps. This function is used when cut-off is
taking place in the explanation.

There are several inference rules whose explanation is usually not included in the
complete explanation. The reason for this is that these rules can be easily inferred by the
reader and are therefore not necessary to the explanation. One such inference rule is

changing a biconditional to a conditional: another rule is conjunction simplification.
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These are such simple rules that their use is obvious and need not be explained. It
desirc © hese line may be included in the explanation of the prootf, but they are usually
left out.

When explaining an inference rule there are several stylistic varients that can be
chosen from. For example, when explaining the inference rule IMP INT there are five
phrases which can be chosen, these are given below. In these phrases 7', and 7', are the
explanations of the formulas used by the inference rule and 7; is the formula that is being
explained.

I We assumed 7', and then proved that 7 followed from that assumption therefore we

get Ts.

(3]

T, followed by assuming 7, and so we have proved 7.

We now have T, because we assumed 7, and then derived that 7' followed from that

(85

assumption.

4  We proved that T, followed from assuming it is true that T,, so, we can combiine
this by a conditional to get T3.

5  Since we assumed T, and then T followed from that assumption then the condi-

tional T, can be derived.

The choices for the other inference rules are similar in nature.

3.2.2 Explanation of the Connectives

The first level of explanation of a natural deduction proof was to simply explain the
inference rules used. The formulas that occurred in the lines of the proof were left as
they ‘ere in the proof. But the connectives that are found in the formulas can be easily

translated into English phrases. Most connectives have an obvious translation such as
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‘and’, ‘or’, ‘if-then’, ‘for all’, etc. These phrases can be used to expand on the explana-
tion of the inference rules by further explaining the formulas that the rules work with. In
this type of explanation the connectives are translated to English phrases and the predi-
cates and constants used in the formulas are left as they were (as uninterpreted symbols).

This is called explanation to the level of the connectives.

When a line in the proof is to be explained, the correct function (corresponding to
the inference rule) is called. Then a call is made to explain the formulas that are to be
used in the explanation of this line. When just the inference rules were explained this last
type of call returned the formula in its uninterpreted form. But now that the connectives
are to be explained, some further computation must be done to return the formula as a
partially interpreted phrase. Each formula has a main connective; this connective can
split the formula into one or two subformulas depending on the type of connective. For
example, the main connective for the formula in line 1 is —, implication, and the two
subformulas are (BIRD (an)& CHIRPS (a,)) and FEATHERS (ao). To start the explanation of the
formula, a function to explain the main connective is called. This function then recur-
sively calls for the explanation of the subformulas. The recursion ends when a subfor-
mula has no main connective. In other words we have recursed down to a simple predi-
cate. When the explanation of the subformulas has returned a phrase, a random choice is
made from a set of explanatory phrases for this connective. Using the example above,
the first subformula could be returned as the phrase "BIRD (ao) and CHIRPS (ao)" and the
second subformula will be retuned as it was since it had no other connective. The
subformula's explanation is used with the connective phrase to explain the complete for-
mula. The implication explanation function can then return the phrase "(BIRD(ao) and
CHIRPS (ao)) implies (FEATHERS (ao))". This complete explanation is now sent back to be

used in the function that explains the inference rule where the phrase representing the
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formula will be used instead of the formula itself.

There is one main problem with making the formula phrase easily understandable,
which has to do with understanding the scope of the English connecting phrases. In large
and complicated formulas there may be many connectives. The subformulas that they
connect, their scope of reference, is made clear by the use of brackets in the uninterpreted
formulas. When the formula is translated into an English phrase the brackets are usually
removed. This causes a problem in determining what a certain connective phrase con-
tains in its scope. To help reduce these ambiguities, some of the brackets have been rein-
serted into the explanation. This makes clear what each connective phrase is joining
together.

The table below gives some of the stylistic varients for the various connectives. 7',

and T, are the left and right sub-formulas respectively.

Stylistic Varients for Main Connectives

Connective Stylistic Varients
= it is false that T, T, is false T, is not true:
- if T, then T» T, follows f.-m 7, T, implies T
& both T, and T Tyand 1,
v either T, or T, T,or7T,
« we get T, if and only if we have T, T, follows from T, and vice versa
Vx, for every constant x, we get T, for each constant x,, T,

dx, for at least one constant x;, 7> T, is true for at least one constant
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3.2.3 Explanation of the Predicates

Much of the time in a natural deduction proof the abstract predicate symbols that are
used represent some relation in the real world, especially in computational applications.
This information can be used as another refinement of the previous types of explanation.
The inference rules and the connectives in the formulas can be explained as previously
described; but now the predicates and constants that are used in the formulas can aiso be
expanded into English phrases to make the explanation even more readable. This would
lead to an explanation that is completely in natural language and has none of the symbols

that were in the original proof. This is called explanation to the level of the predicates.

To give this type of explanation some additional information is needed. This is
found in a "lexical information file" for the specific proof that is to be explained. This
file includes information on the predicate and constant symbols that occur in the proof.
For each predicate there are several pieces of lexical information. First, we state the
number of arguments and prepositions for each. Secondly, we give several phrases for
the predicate, such as the positive active, negative active, positive passive, and negative
passive phrases. (Not all of these types of phrases need be given for each predicate.) A
plural form of these phrases may also be given. Each constant that appears in the proof
also is correlated with some information. The external form is given, for example, that aq
represents tweety: further we state whether this is a singular or plural constant, and we
give some pronouns that can be used for the constant. (A list is kept of all the constants
in a single proof.) Some more general information is also included. Some phrases are
given to represent universal quantification, eg. “everyone’, ‘all birds’ etc. Similar phrases
are also used for existential quantification.

After all the lexical information is read in, the explanation may begin as it did

before. When a formula is to be explained there is some in depth computation that must
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take place to generate an English language phrase. There is a separate explanation func-
tion for each type of connective that can appear in a formula. This is a ditferent set of
functions than that of the connective explanation due to some special considerations
made for the predicates being explained. The most important of these tunctions is the
one to explain a formula that has no main connective. At this point. the tormula will be a
simple predicate. Other important connective explanation functions in the predicate level
of explanation are those for universal quantification, existential quantitication, negation,
and double implication.

The key to predicate explanation is the function that translates a specific instance of
a predicate into a natural language phrase. The first thing that is done is to find the struc-
ture that holds all the information for the particular predicate in question. To find this
predicate a search is done of the linked list containing the predicate information. This
process also binds the arguments in the predicate to their current values. This is done
through a pointer from the argument structure to the correct constant in the constant list.
Secondly, the function splits into different explanation pieces depending on the number
of arguments that the predicate has. In the one argument case the function first checks to
see if the negative form must be used. A flag is used here that may be set by the function
to explain the connective for negation (Explained later). For example, while explaining
the formula in line 1 the predicate instance BIRD (ao) has one argument and the positive
form is to be used. The next choice is to decide whether to use the singular or plural
form. The plural form will be used if the argument is a plural constant or if it is a vari-
able that was universally instantiated. A check is also made to see whether the argument
phrase can be substituted by a pronoun by keeping track of the last constant that was
stated. The final phrase is generated by attaching the external forms for the arguments

with the phrase for the predicate. In the example the final phrase produced is "tweety is a
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bird". With a predicate that has two arguments another check is made before the creation
of the final phrase. This is to see if both arguments are the same, for example P (7).
With this type of predicate the second argument can be replaced with a phrase such as
“itself” or "himself". The generation of the phrase continues as before by choosing nega-
tive or positive form, passive or active versions of the phrase, plural or singular, and also

whether either of the arguments can be replaced by a pronoun.

The formula explanation functions for universal and existential quantification con-
nectives are very similar. We read from the lexical information file a set of constants and
their translation to be used in the explanation. The universal and existential quantifiers
give a variable a phrase for a particular formula. The function creates an entry for the
variable in the constant iist, since it will be used as a constant after it has a phrase associ-
ated with it. First the function, either universal or existential, will choose from a set of
phrases that were read in earlier. For example, ‘all birds’ or ‘everyone’ for universal and
‘some bird" or ‘someone’ for the existential quantification. The chosen phrase will be the
translation for the particular variable in this formula. Tais phrase will be in the entry for
this variable in the constant list. In other words, the universal and existential
quantification functions binds a phrase to the variable in question. Using the formula in
line 6 when the universal instantiation connective is processed an entry in the constant
list is produced for the variable xo and the phrase "every animal” is associated with it.
The last thing for these functions to do is to call the explanation routine with the right
subformula as its argument.

The second connective explanation function for which there is a significant
difference when we add predicate explanation is the function for negation. When the
connectives were the only thing to be explained the function would just produce explana-

tions such as "X is false” or "X is not true" where X is the subformula that is negated.



When the predicates are also explained this must be changed when the subformula is one
without a connective, in other words a simple predicate as in the formula ot line 4. The
negative phrases for the predicates were given in the lexical information file, and thus the
negation function need not generate them itself but rather it can merely call the predicate
explanation function with the subformula and a flag to indicate that the negative torm
should be used. Therefore the explanation for ~FEATHERS (ay) is "tweety does not have
feathers" rather than "tweety has feathers is false”. When the subformula that is negated

is more complex the same type of explanation as before is done.

Another function that differs from simple connective explanation when the predi-
cates are included is that for the biconditional or double implication. When double
implication, works with variables it acts as a constraint as to what the variable may be.
This can lead to more complex sentences than just using "if and only if" type phrases. If
the subformulas are predicates or negation of predicates. and the object of the first predi-
cate matches the subject of the second, this situation can be exploited. The connective
can be seen as a restriction on a variable and thus can be expressed as a relative clause

such as "everyone who" or "all and only those men who".

The explanation of the formula in line 1 of figure 3 to the level of the predicates

could be " Tweety is a bird and it chirps implies that it has feathers".

3.3 Levels of Explanation

The implementation of the cut-off mechanism in EXPLAIN is straight forward. A
level at which the cut-off is to be performed at is set at the start of the explanation. If
there is to be no cut-off this level is set to a depth deeper than any lines in the proof.
When a line is to be explained it is first checked as to whether it is a subgoal or not, since

a cut-off only occurs at subgoals and not at simple lines in the proof. Lines at the cut-off
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depth that are not subgoals are explained since the lines on which it depends must be
antecedent and thus no deeper in depth than the current line. Those simple line that are
deeper than the cut-off won't be explained since they are used to prove a subgoal that
must be at the cut-off level or deeper. Some lines that are above the cut-off may also be
eliminated from the explanation because they are used exclusively to prove a cut-off
subgoal. If the current line is a subgoal its level is compared to the cut-off depth. If the
level of the line is equal to the cut-off depth then a function is called to state that the line
is provable by some further steps that will not be explained. The line is then marked as
explained and the explanation continues normally. This cut-off method is implemented
the same in both the top-down and bottom-up methods and so will also work in combina-
tion with a mixed explanation as well as the two simple methods.

The facility to begin an explanation at any show line in the proof is also easy to
implement. The explanation functions are recursive and so the only argument that is
passed to them is the line number to explain. To start the explanation at a different point
the initial line number passed to the function will be the line number of a subgoal rather

than 1 which is the line number of the main goal.

3.4 Methods for Explanation

3.4.1 Bottom-up Method

One way to explain a natural deduction proof is to traverse the proof tree in a
bottom-up manner. In EXPLAIN there is a straight forward way to achieve this. When a
line is to be explained first it is checked to see if it has any subgoals; if so they are
explained by a recursive call. After they are explained, or if there are no subgoals, we

choose the correct explanation function as determined by the inference rule for the
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current line. This is the function which then does the explanation of this individual line.
It might not always be a good idea to use the strict bottom-up explanation method all the
time, foi there are certain cases where we would like to deviate from this to make the

explanation easier to understand.

In the first place, the so-called proof tree is not a true tree: there are some nodes that
may appear in the tree at more than one place. This means that the tree should be seen as
a more general graph. Once a node has been explained it would not be desirable to do the
complete explanation of the same node again even if it appears once again in the tree.
So, we keep track of which lines, or nodes. have been explained so far. Using this, if a
line is reached that has already been explained we can eliminate the presentation of
another complete explanation. Instead the line can be simply stated again and reference

made back to the previous explanation. For example, "We proved X previously.".

In the second place, entries in the proof tree are not in the same order that the lines
of the proof were constructed. This can lead to some problems when explaining the
proof by using the order given by the tree. The biggest problem is with the instantiation
of variables. A constant can be introduced into the proof in two ways, in addition to
being in a premise. First, it could come about by instantiation of an existential quantifier,
and second by the instantiation of a universal quantifier. The rule justifying use of a
existential quantifier to introduce a constant is much more restrictive than the rule justify-
ing the use of a universal quantifier, in that the constant must be entirely new to the
proof, whereas when a universal quantifier is used any variable new or old may be intro-
duced. It is here that a problem may occur, at least in some variants of giving an expla-
nation. For, it is required (both in the proof and in any adequate recounting of the proof
in English) that when a constant is first introduced by existential instantiation and then

later referred to in a universal instantiation, that the existential introduction be described
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first. But a bottom-up explanation of the proof may not preserve this order that it was
performed in during the proof. Therefore whenever a universal instantiation takes place,
we check to see whether a constant is introduced by an existential quantifier earlier in the
proof, but not the explanation. If this is so, we insert a side explanation so the existential
introduction of the constant comes first in the explanation, as it should logically. An

example of this problem and its solution is found in section 3.43.

3.4.2 Top-down Method
The second method for ¢xpliis.  a natural d~duction proof is called top-down.
This method docs the explanation by dotg a pre-order traversal of the proof tree. This

means that when a node is reached it is explained and then its children are explained.

The algorithm used to do the top-down explanation is very similar to what is done
for the bottom-up method. When a line is to be explained the first thing done is to decide
which explanation function must be called for this particular line. There is a separate
function for each inference rule that could be associated with a line. Within the called
function the current line is explained and then there is a recursive call to the explanation
routine to explain the subgoals (if there are any). After this is done, a sentence may be
added to describe how the subgoals are combined to produce the current line. As in the
bottom-up method . it is not possible to follow this algorithm strictly. As before lines
that have already been explained are kept track of so that there is no unnecessary re-
explanation of lines. And again as before, the top-down method of explanation can also
lead to the same problem concerning existential and universal instantiation. The top-

down strategy deals with this problem in the same manner as did the bottom-up strategy.
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INPUT:
Goul : ﬁ(B\l)(B (\1)& (V\l)(P (_\‘1.\' | Yeor—P (.\'l.l' |)))

OUTPUT:

1 *show =3 UB (& (VO HP (v )e—Plo o) 7.9, CONTRA

2| By BONE (V)P (v )eo—P (v 1)) ASSUME

30| (BU D& VNP (X )eo—P (1)) 2.El

4| (VP x)o—P () 3.5

5 | (P(ryr)eo=P(rr)) 4,Ul

6 I (=P (rr)=P(ryr)) 5.BC

7 | *show P(r,.ry) 6.8.MP

8 || =Py ASSUME

9 | =P(ryry) 5.7.EQ

real usersystem
0.04 0.04 0.00 (sec.)

lines discarded: 2
275.00 lines/second (user tiine)

Figure 4: Example proof 2

3.4.3 Sample Proof and the Order of Explanation

If we look at figure 4 the order in which the lines are explained using the bottom-up
method would be 23456879 1. The main goal, line 1, is explained last, while simple
lines such as the assumption in line 2 are explained earlier in the proof. This proof

requires no deviations from the normal bottom-up explanation procedure.
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Using the same example, a pure top-down explanation would yield a order of 1 7 6
54 3289. This method produces one of the problems mentioned earlier. At line 3 the
constant r, is introduced by existential instantiation. In line 5 the same constant is
presented by universal instantiation. The proof is correct since line 5 follows line 3 but
the top-down explanation does not preserve this order. The explanation may appear
wrong since it is not valid to introduce a constant by existential instantiation that already
appears in the proof. Therefore, a side explanation must be produced to insure the order
of these two lines is not violated. The resulting explanation order would nowbe 17632
5489. The main goal is explained first rather than leaving it to the end as is done with a

pure bottom-up explanation.

3.4.4 Mixed Method

There are advantages and disadvantages to both of top-down and bottom-up
methods of explanation. To get the best of both, a third method of explanation might be
tried, where some parts of the proof are explained top-down and others bottom-up. This
method will be called a mixed method explanation. Changing from one type of explana-
tion to another is done by using the depth of the embedded subgoals in the proof. A
switch in explanation is only done with subgoals. Lines that are not subgoals will not
change the method of explanation regardless of their depth. Methods used can be
switched many times throughout the explanation of a proof. For example, an explanation
could start top-down and then at depth two change to bottom-up and then at depth four
revert to top-down and so on. In such an example, all subgoals at the top level would be
explained top-down; subgoals at depth two and three would be explained using the
bottom-up method; and any subgoals at a depth of four or greater woulr be explained by

using the top-down method.
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EXPLAIN uses a simple way to implement this switching back and forth between
the two methods of explanation. There are a series of marks set to indicate at which level
to switch the explanation method. There may be several depths at which a switch is to
take place. When a line is to be explained it is first checked as to whether it is a subgoal
or a simple line of the proof. If the current line is a subgoal then it is possible that the
method of explanation could change. The depth of the current line is checked against the
current switching level, and if they match a switch of the explanation method is to be
done. Thereafter, the current switching level is changed to the next depth at which a
switch is to be made. If there are to be no more switches the current switching level is set
to some level out of range with the proof. Next, the other method (either top-down or
bottom-up) is called recursively with the line that caused the switch as the goal. When
the explanation of this line returns the current switching level is reset 1o uts previous

value. The explanation of the proof will then proceed normally.
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4. Examples

4.1 Examples of Proof Explanations

Many systems which produce explanations for natural deduction proofs concentrate
on small proofs, of the kind which can be explained to even naive users. Bui. in most
cases the user of such a system would not be completely naive. when it comes to logic.
and would be able to understand these proofs without an explanation. The proofs which
need to be explained are those which ure large and complicated. The explanations pro-
duced here are not meant to be understandable by the ordinary person with no knowledge
of logic what so ever. The purpose is to not force the users of the system to be a logician.
rather those with some understanding of logic (like a computer programmer) can now
comprehend the proofs without having to consult a logician for the explanation. For long
proofs the uninitiated (logically) would have a hard time following even the best worded
explanations. The user must have some desire and some logical ability to be able to fol-
low the explanation generated. In most cases the logical proof can also be produced and
the explanation can be used to guide the reader through the proof.

At the end of each explanation the time for the explanation to be produced is
printed.

The first set of examples all deal with the following proof generated by THINKER.
The #irst example is of a top-down explanation. The second demonstrates the bottom-up
method. Thirdly, an example is given to show an explanation to the level of the connec-
tives. Anc finally a complete English language proof is presented (predicate level of

explanation). The output of the EXPLAIN facility is reproduced here exactly as it was



produced by the program, and has not been edited in any way.

6l



===testbl===

INPUT:
Goal: —(3v)B ()& (VX UP (yx )ea—P (xpa))

OUTPUT:

| *show —(3v (B (& (Va WP (¥ YL (v )
2 I O3y HB ()& AV HP (v eP ()

3 Brp& (Va (P r X)L xx))

4 VO NP (rx e )

5 (P(ryoryjeo=P(rrh)

|
s
6 | (=P (ry =P i)
7| *show Piryay)
B =Pl
9 | =P ryry)
real user system
0.03 0.02 0.01 (sec.)

lines discarded: 2
550.00 lines/second (user time)

7.9.CONTRA
ASSUME
2.El

3.5

4,Ul

5.BC

6.8.MP
ASSUME
5.7.EQ



THE EXPLANATION IN BOTTOM-UP FASHION

The goal of the proof is to prove —(3yB(yP& (Vi P (1P . We
assume (3y MB (v & (Va )P (v Deo—P i) To get (B (r D& (VP (e (va ) we
substitute the new constant r, for v, in (3y;UB (v D& (Va P (v v =P (v, We set the
variable x, to ecual ry in (Va )P (ria)eo—=Px). ASSUME =P (rpr) CaP ) P ()
was proven earlier. And using the last two formulas, we can get P since the
antecedent of the conditional is true. We previously proved (P (ryr)e>—P i 0. Using
the last two formulas, since vne side is true and the equality is true we can derive the con-
sequent of —P(r.r). We have generated a contradiction (P(ryr)) and (=P (0 and

therefore we can conclude that —(3v }B (y )& (Y )P (¥ v )P ()

real user system

0.02 0.01 0.01 (sec.)
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THE EXPLANATION IN TOP-DOWN FASHION

To prove that —(3y N8 (x1)& (Vx )P (¥ )P (v} 1S true we want 1o generate a
contradiction. We can get P (ry.ry) if we can prove both =P (r..r). and (=P (r =P o)
To show  (Bir)& (Y (P(rix;)e—P(x;x)) is true we have to prove
(Fv, B (v & (VP (vy.xeo—P () and then we can instantiate the variable v, with the
new  constant . Assume (3B (v)& (VX (P (v peo—Pa).  To  get
(P (r 01 )P (r1r)) We must prove that (V)P (ry. et (0.x) is true and then substi-
tute r, for x;. As we saw earlier (B(r)& (Yx (P (rix)e—=P(x.x1)) is tue. Assume
~P(r,ry). We can now get P(ryr) because we assumed —P(r,s)). and proved
(—~P (r 0 )—P(r,.r) and so we can get the conclusion of the conditional statement. In
order te prove the statement —P (r.r)) we will show that (P(r,r)e—P(ryr))) and P(rioy)
are both true. We previously proved (P(rys )P (ri)). P(riry) was proven earlier.
Because the biconditional, (P(r . )e—P (r1.01)), was proven and one side is true (P (rp.ry))
the other side (—F ¢-,r,)) must also be true. Since we have generated a contradiction

(P (i) and (=P (r;.ry)) we can conclude —(3y 1 )XB (v )& (VX HP (v )P (xp).

real user system

0.02 0.01 0.01 (sec.)



EXPLANATION AT THE LEVEL OF THE CONNECTIVES

The goal of the proof is to prove (there is no constant v, that gives us (both #¢v,) and
(for every coitstant x,, we get (7 (v,.x;) follows from (2 (xv,.vp) is false) and vice versa))).
Now, let’s suppose (there is a constant v, that gives us (8 (v,) and (for each constant ;. (it
we have P(y;.x;) we get (P (x ) is not true) and vice versa)))). We replace v, by a new
constant r; in (both B(r)) and (for any constant x ;. (we get, P (r. ). it and only if we have,
(P(xixy) is false)))). We get (if we have P(ri.r)) we get (P(r\.ry) is false) and vice versa)
by substituting r, for ; in the statement (for any constant x,. (we get, P (ry.ay). it and only
if we have, (P(x,.x;) is not true))). Now. let’s suppose (P o) is false). As we saw ear-
lier (if (P (r,.ry) is false), then P (r,.r))) is true. And using the last two formualas, since both
the antecedent and the conditional are true we can derive the consequent of P (). Ear-
lier in the proof we proved (P(r,s ) follows from (£ (r;.ry) is not true) and vice versa).
From the previous two, we can get (P(r,.r)) is not true) since one side of the equality is
true. We have generated a contradiction (P (ryr;)) and ((P:» ) is not true)) and therefore
we can conclude that (there is no constant y; that gives us (both 8(y,) and (for any con-

stant x,. (we get, P(v,.x,), if and only if we have, (P (x,.x)) is false))))).

real user system

0.03 0.01 0.02 (sec.)
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EXPLANATION AT THE LEVEL OF THE PREDICATES

The main goal is to prove it is false that somebody is a barber and he shaves all and
only thnse people who don't shave themselves. Now. let’s suppose someonc .s a barber
and he shaves all and only those people who don’t shave themselves. Let’s select some-
body arbitrarily and call him Fred. Fred is a barber and he shaves all and only those peo-
ple who don't shave themselves would follow from the fact that somebody does this and
Fred is arbitrary. We can get that Fred shaves himself if and only if Fred doesn’t shave
himself by particularizing the earlier claim that Fred shaves all and only those people
who don - shave themselves. Now, let’s suppose Fred doe<n't shave himself. It was
proved before that Fred is shaved by himself follows from Fred doesn’t shave himself.
And from these two we derive that Fred shaves himselr because the antecedent being true
implies that the consequent is also true. We proved earlier in the proof that Fred shaves
himse'f if and only if Fred doesn't shave himself. It follows from these two since one
side is true and the equality is true we can derive the consequent of Fred doesn’t shave
himself. We have generated a contradiction (Fred is shaved by himself) and (Fred
doesn't shave himself) and therefore we can conclude that it is not true that somebody is

a barber and he shaves all and only those people who don’t shave themselves.

real user system

0.23 .03 0.02 (sec.)
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The next two examples show first a connective level explanation and second a

predicate level explanation.



===test7 ===
INPUT:

Premise: (Vxo)(BIRD (xo)—FEATHERS (xq))
Goal: (BIRD (au)&CHIRPS (ag))—FEATHERS (a))

OUTPUT:

1 *show ((BIRD (ay)&CHIRPS (u0))—>FEATHERS (ao))
2 | (BIRD (an)&CHIRPS (aq))

3 | *show FEATHERS(ag)

4 | | ~FEATHERS (ag)

5 | | BIRD(aq)

6 | | (VaxoMBIRD (xo)3FEATHERS (x0))

7 | | (BIRD (an)FEATHERS (a))

] | | FEATHERS (ay)

real user system
0.02 0.02 0.00 (sec.)

lines discarded: 1
450.00 lines/second (user time)
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2,3, IMP INT
ASSUME
4,8.CONTRA
ASSUME

2.5

PREM

6,Ul

7.5.MP



6u

THE EXPLANATION IN TOP-DOWN FASAION
TO THE LEVEL OF THE CONNECTIVES

To prove (if (both BIRD (ay) and CHIRPS (aw)). then FEATHERS ) we shall assume
(BIRD (ao) and CHIRPS(ay)) and then try to prove that FEATHERS (ay) follows from this
assumption. To prove FEATHERS (ay) is true we will assume that it is false and then gen-
erate a contradiction from this assumption. To prove FEATHERS () we want to prove that
it can be derived from BIRD (aw). and (if BIRD (). then FEATHERS (aw) both being true.
We want to get (if BIRD (ao). then FEATHERS (u4)). To do this we prove (for all constants
represented by v, (BIRD (xo) implies FEATHERS (xy))) and then substitute «, tor 1,. The
statement (for each constant v, (if we have, BIRD (xq), then, FEATHERS (xy) follows)) is
known to be true. We assume (BIRD (up) and CHIRPS (ap)). Since we proved BIRD (a,), and
(if BIRD (aq). then FEATHERS (a,)) we can get FEATHERS (u,) because the first part of the
conditional is true therefore the second part is also true. Our assumption (FEATHERS (uy)
is not true) is false since we have a contradiction ((FEATHERS(ay) is false)) and
(FEATHERS (a)) . therefore we get FEATHERS (ay). So (if (both BIRD (ay) and CHIRPS (au)),
then FEATHERS (aq)) is true because we assumed (BIRD(uy) and CHIRPS (ag)) and then

showed that FEATHERS (ao) followed from that assumption.

real user system

0.02 0.02 0.00 (sec.)
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THE EXPLANATION IN TOP-DOWN FASHION
TO THE LEVEL OF THE PREDICATES

To prove tweety is a bird and it chirps implies that it has feathers we shall assume it
is a bird and it chirps and then try to prove that it has feathers follows from this assump-
tion. We will prove tweety has feathers by generating a contradiction using the assump-
tion that tweety has feathers is false. To prove tweety has feathers we want to prove that
it can be derived from tweety is a bird, and if we have that it is a bird, then, it has feathers
follows both being true. To get that tweety is a bird implies that it has feathers. we must
prove it is true that every animal is a bird implies that they have feathers and then use
tweety to mane it more specific. We are told it is true that if every animal is a bird, then
it follows that they have feathers. Suppose tweety is a bir¢ and it chirps. Since we
proved tweety is a bird, »nd if we have that it is a bird, then. it has feathers follows «
can get tweety has feathers because the first part of the conditional is true therefore the
second part is also true. We have a contradiction (tweety does not have feathers) and
(tweety has feathers) and so we must repeal our assumption tweety does not have feathers
and thus tweety has feathers is true. So tweety is a bird and it chirps implies that it has
feathers is true because we assumed it is a bird and it chirps and then showed that it has

feathers followed from that assumption.

real user system

(0.25 0.00 0.03 (sec.)
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The next two examples deal with the mixed type of explanation. The first is set so
that the subgoals at levels 0 (the main subgoal) and 1 are explained top-down and those at
level 2 or deeper are explained bottom-up. In the second example the methods are

reversed.



===testS===
INPUT:

Premise. (¢q—r)
Premuse: (r ={lgé&p))
Premise: (p—3(gr))
Goal: (peq)

OUTPUT:

1 *show (pey)

2 | *show (¢ —p)
ol lag

4| | *show p
s

6 [ ] (g—=r)
T

8 | | | (r—=(qg&p)
9 ||| (gdp)

10 i1 te

1 | *show (p—q)
12 | | p

13 | | *show ¢

EI

15 || pogvr))
o 0| g

7 b

18 | || (r—(gdp))
19 ||| (g&p)

0 ||}y

real user
0.03 0.02

lines discarded: 0

11,2,CB
34,IMPINT
ASSUME
5,10,CONTRA
ASSUME
PREM

6,3, MP

PREM

8,7,MP

9.5

12,13.IMP INT
ASSUME

14,20,CONTRA

ASSUME
PREM
15,12,MP
16,14 MTP
PREM
18,17,MP
19.S

system
0.01 (sec.)

1000.00  lines/second (user time)



MIXED EXPLANATION BEGINNING IN TOP-DOWN FASHION

In order to prove (p &3¢) we have to show both (p —¢) and (¢ —p). We want to prove
(» -»q). To do this we shall assume p and then show that ¢ can then be derived.

Now, let’s suppose —g. (r—(yg&p)) is a fact. It is known that (p (g vr) is true. We
assume p. Following the above formula and the last premise, since both the antecedent
and the conditional are true we can derive the consequent of (gvr). We assumed —y eir-
lier in the proof. From these two one part of & true disjunction is false which means the
other part must be true and we get r. We stated that (r —(gdp)) was a premise carlier.
Using the last two formulas, we can get (¢&p) since the antecedent of the conditional is
true. We have both true (¢) and false (—¢) of the same formula, which is a contradiction.
Therefore, we must repeal our assumption —¢ and we have proven .

We can now conclude (p—q) since ¢ was derived after assuming, p. Vo prove
(g —»p) we shall assume ¢ and then try to prove that p follows from this assumption.

Suppose —p. Itis a fact thai :ra(g&p 3 is true. (g—r)is a premise. Now. let's sup-
pose ¢. Following the above formula and the last premise, since both the antecedent and
the conditional are true we can derive the consequent of r. (r—(g&p)), was previously
given as a premise. From the previous two. we can get (¢&p) since ihe antecedent of the
conditional is trie. We get p because our original assumption —p lec us to a ¢ontradic-
tion (—p) and (p).

So (g—p) is true because we assumed ¢ and then showed tiiai p followed from that

assumption. We now have (p«<»q) because we can combine the two formulas (p —¢) and

(g-p).
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1.02

user

0.00

system

0.02

(sec.)

-



MIXED EXPLANATION BEGINNING IN BOTTOM-UP FASHION

We want to prove (p«q). We a.suine p.

To pr = ¢ is true we will assume that it is false and then generate a contradiction
from this assumption. .. caa get (¢dp) if ve can prove both r. and ¢ - »g&pn. We
know (»—fg&p)isapr: in order to get r we must first show that (¢ vr) and - are
true. VW'c want to get (yvr to do this we have to prove the two tormulas p. and
(p—tgvr)). The stvement (p-gvr)) is known to be true. Earlier in the proof we
assumed p. It is possiuie to conclude (¢ vr) because we sssumed p . and proved (p -sgvrn
thecefore the second part of the conditional car. be deduced  -¢ Is assumed. We can
deduce r brcause the disjuncuon (gvr) is true and we alse have -y, =0 the ether side must
be true. We can new get (¢&p) because we proved both r, and - —(gdp ) and so we can
get the conclusion of the conditional sratemeat. Our ascumption -y is talse since we

have a contradiction (—¢) and (¢ ) . therefore we get ¢.

We assumed p and then proved that ¢ followed from that assumption there fore we
get (p —¢ ). Now, let’s suppose ¢.

We will prove p by generating a contradicticn using :he assumption that p is talse,
To prove (¢u&p) we want to prove that it can be derived tfrem r, and (- —(g&p ) both being
true. W know (r —(¢&p)) is a premise. We want to get r to do this we have 0 prove the
two formulas ¢, and (g —r). (¢g—r) is a fact. We assumed ¢ earlier in the proof. Itis pos-
sible to conclude » because we assumed ¢, and proved (¢ —r) therefore the second part of
the conditional can be deduced. Since we proved r. and (r =(g&p)) we can get (¢&p)
because the first part of the conditional is true therefore the second part i» also true. We
have a contradiction (—p) and (p) and so we must repeal our assumption —p and thus p is

true.
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We proved that p foliowed fromn assuming it is true that ¢, so, we ¢an combine this
by a conditional to get (g —p). (p—q) was proven earlier. And from tlie previous two,

since the each side implies the other they are equal and can be written as (p «sq).

real user system

0.04 0.01 0.03 (sec.)
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The next three examples are different explanations of the proof displayed on the
next page. The first displays mixing of explanation methods by having all subgoals at
level 3 or greater explaned top-down and those above botre;c-up. The next mixed exam-
ple shows how the -olunation can switch several times. 7 e top level goal is explained
top-down. those «t 'evel 1 and 2 are done bettom-up and all subgoals at 'evel 3 or more
are explained top-down. Lastly, a high level example is given where subgoals at level 3

are not ccmpletely explained.



=== \l()?. ===

INPUT:
Goal . (P s Vsl —g —=p )

OuUTPU

!
2
3
R
3

|
|
|
I
I
|
k|
()l
|
|
|
|
|
|

reai
Qs

T:

“show  ((p —sy Ve (—y == )

*show  ((=g —>—p )-8 4))
| (=g =)

| *show (p—y)

[l »

| | *show ¢

LI -y

I e,

fhow ((p )=~y ——p))
| 2 —=q)

| *show (—~§ —=—p)

| | —4

P *show —p
L1l
1149

user system
0.03 0.00

lines discarded: 0

500.00

lines/second (user ime)

9.2.CB
IAIMPINT
ASSUME
5.6.IMP INT
ASSUME
5.8.CONTRA
ASSUME
3.7.MP
10,11.IMP INT
ASSUME
12.13.IMP INT
ASSUME
12,15.CONTRA
ASSUME
10,14 MP

(sec.)
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MiIXED EXPLANATION BEGINNING IN BOTTOM-UP FASHION

({p 2¢ ) (g —»—p)) is what is to be proved. Assume (p —¢). We will also assume
-

To prove that —p is true we want+ generate a contradiction. We assumed ¢ ear-
lier. We can get ¢ if we can prove both p. and (p—q). We assumed p ) carlier.
Assume p. We can now get ¢ because we assumed both p. and (p —»¢) and so we can get
the conclusion of the conditional statement. Since we have gencrated a comtradicton
(—¢) and (¢ ) we can conclude —p.

—-p followed by assuming —y¢ and so we have proven (—¢ —»-p). We now have
({p = Y->(-~q —>—p 1) because wo assumed (p —¢) and then derived that -y »-yp) followed
from that assumption. We assume (~y ——-p). We will also assume p.

We will prove ¢ by generating a contradiction using the assumption that ¢ is false.
We want to get —p to do this we ha: . prove the two iormulas —¢. and (- -»—p). We
assumed (—¢ ——p) earlier in the procf. —¢ is assume:’. it is possible to conclude —p
because we assumed that —, and (—¢ ——p ) are true therefore the second part of the con-
ditional can be deduced. We have a contradiction (p) and {—p ) and so we must repeal our
assumption —g and thus g is tue.

We assumed p and then proved that ¢4 followed trom that assumption therefore we
get (p —q). We proved that (p -y ) followed from assuming it is true that (~g —-yp ). S0, we
can combine this by a conditional to get (—g——p)o(iogn. We proved
((p =q)—(—q »—p)) earlier in the proof. And using the last two formulas. we get

((p =¢ )(—~g ——p)) by joining them with a biconditional, or equality.



&

real user system

0.02 0.01 0.01 (sec.)



A MIXED EXPLANATICON BEGINNING IN TOP-DOWN FASHION

To prove ((p ¢ )es(—g »—p)) we must show that cach implication (p —¢)-a-g >-yp))
and ((—g ——p )->(p —¢)) are true.

We assume (p—oqg). We can also assume —y .

To prove that —p is true we want to generate a contradiction. We assumed - car-
lier. To prove ¢ we want to prove that it can be derived from p, and (p —5¢) both being
true. We assumed (p —q) earlier in the proot. Now. iet’s suppose p. Since we assumed

, and (p —¢) we can get ¢ because the fivsi part of the conditional is true therefore the
second part is also true. Since we have generated a contradiction (~¢) and (¢) we can
conclude —p.

Since we assumed —y and then —p followed from that assumption then the condi-
tional (—¢g ——p) can be derived. Wu arocd that (—g —»—p) followed from assuming it is
true that (p -y ). s0. we can combine thi, . = conditional to get ((p =¢)—(—g —=-p ).

Now. let's suppose (—g »—p). We can also assume p.

We will prove ¢ by generating a contradiction using the assumption that ¢ is false.
We want to get —p to do this we have to prove the two formulas —y, and (—¢ »—p). We
assumed (—g——p) earlier in the proof. Assue —g. It is possible to conclude —p
because we assumed that —g, and (—g ——p) are true therefore the second part of the con-
ditional can be deduced. We have a contradiction (p) and () and so we must repeal our
assumption —¢ and thus g is irue.

We now have (p —q) because we assumed p and then derived that ¢ followed from
that assumption. Since we assumed (-~¢——p) and then (p—¢) followed from that

assumption then the conditional ((—g ——p )—(p —¢)) can be derived.
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We Know ((p =g ) =(—g =—p ) and (=g =—p)=(p —¢q)) SO We can combine them to get

((p ¢ Ve (- ——p ).

real user system

0.03 0.01 0.02 (sec.)



TE.  EXPLANATION IN BOTTOM-UP FASHION CUYT ¢*FF AT LEVEL 3

 w Y (—g ——p ) 18 what is 1o be proved. Assume (p-sq). —g can be assumed as
well. We can prove —p in some other steps. —p followed by assuming — and so we
have piiiven (—g —»—p). We assumed (p —»¢) and then proved that (—¢ —-p) tollowed from
that assumption therefore we get ((p —=¢ )=~y — —p)). We assume (—g —--—-p). We wili also
assume p. We will leave out the details of proving that ¢ is true. Since we assumed p
and the - ¢ followed frem that assumption then the conditional ¢ —¢) can be derived. We
assumed (—~q »—p) and then proved that (p —¢) followed tfrom that assumption therefore
WE EL ((—g —o—p )o(p =g ). As we saw earlier ((p 5y¢)—(—g —5-p)) is true. And from these
two since the each side implies the other they are equal and can be written as

({(p =q ) (=g ——p)).

real user system

0.01 0.01 0.00 (sec.)
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The final sct of examples all deal with a rather long proof. This is where a high
level explanation may be more useful. The first example makes the “cut-off” at level 4 in
top-down fashion and the second does the explanation up to level 5 bottom-up. The next
two examples show how just a subgoal can be explained by starting the explanation of

the pra f at lines 30 and 39 respectively.



===test4 | ===

INPUT:
Premise:
Premise:
Premise :
Premise:
Premise:

(AN (xp)oH (xo))
(Ava (W (x o) &H (xo))—=B (vo))

(Ao HAY (P (vt ) &B (¥0)) =B (vp))
(Ayo P (yaxo) >N (vo))

(Aol Eva)(W (y ) &P (voXn))

Goal: (Axo)(AYolP (o )=V (yo))—>B (o))

OUTPUT:

I *show (Vxa)(Vyo)(P (yoxa) =N (¥o))—=8 (1))
3| *show ((Y¥P (Yo.r )N (o)) =B (1))
3| | (V¥ (o )N (¥0)

4 | | *show B(r))

s ||| -8ty

6 l l | (Vxo)N (xo)=4 (xy)

7 || ING)-SH D)

R | ]| (Fx oW (xa)&H (xo))—B (xo))
9 ||| (WE)&H (@ )-B(r)

10 | || (FxolV¥e)(P (¥ota)&B (¥o))—B (xa))
11 I || (Vyad(P (vor1)&B (¥o))—B (r 1)
12 | || (FxoX3yoXW (yo)&P (¥nxo))
13 | 1] GroXW(ro)&P (Yori))

14 || ] P )-NED)

15 | || (Piryr)&B(ri)—B(r1)

16 L =(Wrp&H(r))

17 || (WrD&P (rar)

18 | | | ~(Prir)&B(r1))

19 | | ] Wera

20 I l ' P(rary)

20 ||| (IN(r)—>H(r)

2 ||| (W(r)&H (ra))=B (r2))

23 | || (Plrar)-N(r2)

24 P ]| (P(rar)&B(ra))—B(ry))

25 bl N2

26 Pl =P (rar)&B(r2))

7 ||| H(ry)

8. || | *show (W(r))&H(r))

29 | ||| *show W(ry)

30 | ]| || *show (P(rir)&B(ry)
3t | ]| ] ] *show (P(rar)&B(ra)
2 [ |11 *sow B(ra)

33 |||||||I—wB(rz)

34 | | | l I I I |~x(‘rV(I‘2)&H(I‘2\)
s LT | (Wea&H ()

36 | ||| *show H(ry)

RN I I I R R 7 T (9

2.UG
34IMPINT
ASSUME
16,28, CONTRA
ASSUME
PREM

6,Ul

PREM

8.Ul

PRE

10,Ul

PREM

12Ul

3,Ul

11,Ul

9.5,MT

13,El

15.5,MT

17.S

17.5

6.Ul

8.Ul

3.Ul

11,U1

23,20,MP
24,5MT

21,25 MP
36.29,ADJ
18,30,CONTRA
26,31,CONTRA
32,20,ADJ
34,35,CONTRA
ASSUME
22,33 MT
27,19,AD]
18,39,CONTRA
ASSUME



w o] N

39 | I | | | *show (P{ryr\)&B(ry)
40 | T 1] *show Plriary)

41 VL) | *show (P(rar)&B(r2)
42 [ 11 *show Bra)

R I O R N AR - 1)
L W&t ()
45 FrErr ) | (W(ra)&t(ra))
46 |10 N

real user system

0.29 0.26 0.03 (sec.)

lines discarded: 33
3N3.85 lines/second {u er time)

7.37.MT
38,46.CONTRA
26,41,CONTRA
42,20,ADJ
44,45,CONTRA
ASSUME
22,43MT
27.19,ADJ
14,40,MP
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THE EXPLANATION IN TOP-DOWN FASHION CUT OFF AT LEVEL 4

To show that (Va)((Vyo)d(P (voxa)=N (va))=B () is true we first must prove
(V¥ ol P (vo.r )N (vo))—=8 (r1)) and then since r, 1s an arbitrarily chosen constant it can be
replaced with a variable. We want to prove ((Vyo)(P (vos1)=N (vo)—=B (r). To do this we
shall assume (Vyo)(P (yor1)-N (vo)) and then show that 8 () can then be derived. To prove
B(ry) is true we will assume that it is false and then generate a contradiction trem this
assumption. We can get (W(r,)&/ (r)) by proving both /() and W () then form a con-
junction of the two. It is pos<ihi= to prove that #/(r)) is true. We will leave out the details
of proving that W(r)) is true v-'& proved (W(r\)&f (r))) because 1 (ry) and W) were
shown 10 be true. Our :sumption —8(r;) is false since we have a contradiction
(~(W(r)&H (r))) and (W(r))&H(r) , therefore we get B(r)). We can now conclude
(V¥ (P (vor )N (vp))=B (r) since B(ry) was  derived after assuming,
(Iyal(P (vor )=N (o). We now have (Va (Vi) P (yvaxa) =N (vo)) o8 (vp)) since we can

replace the arbitrz-ily chosen constant ry in «(Vya)(P (vo. 1)—=N (vo))—B (r1)) by a variable.

real user system

0.02 0.01 0.01 (sec.)
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THE EXPLANATION IN BOTTOM-UP FASHION CUT OFF AT LEVEL §

The main goal is to prove (Vaod((Vyo)(P (¥otao)oN (vo))=B(xo)).  Suppose
(YY)P (vor1)=N(ve)). We Know (Vao)((W (xo)&H (xo)—B (x0)) 1S & premise. We let xo=r, in
(VX)W (xo)&H (x0))oB (xo)). —B(ry) is assumed. It follows from these two the consequent
is false so we antecedent must be false so we get —~(W(r)&H (). The statement
(VXN ¥a)(P (Yox0)&B (¥ o) —B (xp)) is known to be true, We get
(V¥o)(P (Yo )&B (vo))—B(ry)) by substituting r, for x in the statement
(Vxo)XVya)((P (FoxXo)&B (o)) =B (xo)). We get ((P(ry.r)&B (r1))>B (r))) by substituting r, for vy
in the statement (Vyo)((P (yor1)&B (vo))—8(r))). Following the above formula and the last
assumption, we get —(P(r,.r)&B(r})) since it can’t be true because we know the conse-
quent is false. We can prove (P(r,.r)&B(r,)) in some other steps. We have both true
((P(ryr1)&B(r1))) and false (—(P (r).r)&B (r1))) of the same formula, which is a contradic-
tion. Therefore, we must repeal our assumption —#(r,) and we have proven H(r\). We
can prove (P(ri.r)&B(r)) in some other steps. We have generated a contradiction
(~(P (r1.r)&B(r))) and ((P(r,r1)&B(r1)) and therefore we can conclude that Wry). H(ry)
was proved before. And it follows from these two we get (W (r\)&H (r1)) by joining them
with a conjunction. We have derived a contradiction (—~(W (r)&H (r;))) and (W (r))&!1 (r1)))
and so our assumption —B(r;) must be wrong and we get B(r,) as a result. We now have
((Yyo)(P (yor 1)=N (y0))—B (r1)) because we assumed (Vyo)(P (yor1)—N(yo)) and then derived
that B(r,) followed from that assumption. And following this, we can generalize to

(VX0 (Vyo)(P (Yo.X0)—=N (y0))—B (xo)) since r, was an arbitrary constant.

real user system

0.04 0.02 0.02 (sec.)
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THE EXPLANATION IN BOTTOM-UP FASHION
OF THE SUBPROOF BEGINNING AT LINE 30

We want to prove (P (r,s)&B(ry)). The statement (Vo) (V¥ ol(P (¥oX0)&B (» o)) 2B (x0))
is known to be true. We set the variable i1 to equal r in
(V2 o) VY o)(P (yox 0)&B (¥a)) 2B (x0)). (Vxa)3yol W (¥o)&P (¥ouxeh ‘e a fact. By replacing xo by
ri i (V) 3y o)W (vo)&P (yo.xo)) We get (Fyo)(W (vo)&P (yory)). We get (W(r:)&P(r2r1)) by
replacing yo by a new constant ry in Eya(W (&P (o). We substitute r. for yq in
(Vya)((P (yosr D&B (y0))—B (r))). Suppose —B(ry). Using the last/two formulas, since the
consequent of a conditional is false the antecedent could not be true and we have
(P (ra.r)&B(r2)). We know (Vo) (W (xo)&H (x0))—8 (xo)) is a premise. We set the variable
o 10 equal r, in (Vxo)(W (xo)&H (x0)) 2B (va). We assume —B(r2). From the previous two,
we get —(W(r))&H (r) since it can’t be true because we know the consequent is false.
The statement (Vxo)(N (xo)—H (xo)) is known to be true. We set the variable x, to equal r,
in (Vxo)(N (xo)=H (xa)). We assume (Vyo)(P (yo.r )N (yo)). We get (P (ras )N (r2)) by sub-
stituting r, for y, in the statement (Vyo)(P (vo.r )N (¥o)). P(rary) Was proved befdte. From
the previous two, we derive that N(r,) because the antecedent being true implies that the
consequent is also true. (N(ry)->H (r2)) was proven earlier. From the previous two, since
both the antecedent and the conditional are true we can derive the consequent of H (r3).
As we saw earlier W(r,) is true. It follows from these two since they are both true or
assumed to be true we join them and get the statement (W (r))&H (r2)). We have both true
(W (r2)&H (r2))) and false (~(W(r))&H () of the same formula, which is a contradiction.
Therefore, we must repeal our assumption —8(r2) and we have proven B(r;). As we saw
earlier P(r~r,) is true. And from the previous two, we can combine them into one for-
mula to get (P(r2r))&B(r2)). We have generated a contradiction (—~(P(r2,1)&B(r2))) and

((P (r2r)&B (r9))) and therefore we can conclude that (P (r,r1)&B(ry)).
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THE EXPLANATION IN TOP-DOWN FASHION
OF 2 HE SUBPROOF BEGINNING AT LINE 39

To prove that (P(r\r)&B(ry)) is true we want to generate a contradiction. We can
get -N(r) if we can prove that both (N(r,)»H(r,)) and —H(r,) are true. To prove that
(N(r )= (r)) is truc we have to show (Vxo)(N (xo)—H (xo)) and then let xo=r,. It is known
that (VxoMN (xo)—H (x)) is true. Now, let's suppose —H(r;). We can now get -N(r))
because the conditional (N(r,)—H (r))) was proved and we know —H(r,) therefore the
antecedent couldn't be true. To prove N(r;) we want to prove that it can be derived from
P(riri3. and (P (ri.r)=N(r))) both being true. To get (P (ry.ri)-N(ry)) W€ must prove that
(Yva)(P (vour)=N (o) is true and then substitute r, for yo. We can also assume
(Vyo)(P (yor )N (vo)). To prove that P(r\.r)) is true we want to generate a contradiction.
To get the statement ~(P (r2.r1)&B (r2)) we must first show both ((P (r2.r)&B (r2))—B (ry)) and
—~B(r,). To show (W(r:)&P (r2r))) is true we have to prove (3vo)(W (yo)&P (¥or1) and then
we can instantiate the variable y, with the new coustant r.. We want to get
(3volW (yo)&P (vor ). To do this we prove (Vxo)(@yolW (Vo) &P (Yo-¥o)) and then substitute r,
for xo. We Know (Vxo}3vo)lW (¥o)&P (¥oxo)) is a premise. To get ((P(rar)&B (r2))—B(r)
we must prove that (Vyo)(P (vor1)&B (¥o)—B (r1)) is true and then substitute r, for yo. To
prove  that  (Vyol(P(yor)&B(ro))2B(r))) is  true  we have to show
(VX (V¥o)(P (yoxa)&B (¥o))—B(xo))  and  then let  xo=ry. The statement
(VX NV ¥)(P (o-X )& B (¥0)) =B (o)) is known to be true. —B(r1) is assumed. We can now
conclude —(P(r.r)&B(r2)) because —B(r,) is assumed and ((P(r,s1)&B (r1))—B(ry)) was
shown. so. the antecedent of the conditional could not be tue. We can get
(Pir2r)&B (r2)) by proving both 8 () and P(r,.r)) then form a conjunction of the two. We
want to prove B(r2). Tc do this we will generate a contradiction when we assume it is

faise. To get (W(r:)&H(r3)) we show H(ra) and W () are true and then combine then in a
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conjunction. To prove #(r;) we want to prove that it can be derived from ~(ry), and
(N(ry)>H(r2)) both being true. To et (N(r))-H(r:) we must prove that
(Vxo)(N (xq)>H (xo)) is true and then substitute 1 for xo. (VaalV (xo)—H (xo)). Was previously
given as a premise. To prove N(r:) we want to prove that it can be derived from P (r,.r ),
and (P (r,.r))—>N (r2)) both being true. We want to get (P (r2.r )N (). To do this we prove
(Vyol(P (vor )=V (vo)) and then substitute r» for vo. We assumed (VyolP (vor )N (vo)) car-
lier. We previously proved (W(r2)&P(r:r)). Since we proved P(rary). and
(P(ra01)=N(r2)) We can get N(r») because the first part of the conditional is true therefore
the second part is also true. Since we proved N(ra), and (N (r2)—H (r2)) we can get H(ry)
because the first part of the conditional is true therefore the second part is also true. We
proved (W (r))&P (r1.r))) earlier in the proof. We now get (W (r2)&/ (r2)) because we proved
H(ry) and W (r-) were both truc. We now have B (r,) because when we assumed that it was
false we got a coniradiction (—(W(r))&H (r2))) and (W(r)&H (r2). (W(r)&P (rary)) was
proved before. We proved (P(r.r1)&B(rs)) because B(rz) and P(r.r,) were shown to be
true. Since we have generated a contradiction (—(P (rs.r)&B(r2))) and ((P (rar)&B (r2))) we
can conclude P(r,o)). Since we proved P(ry.ry), and (P(r,r1)—=N(ry)) We can get N(ry)
because the first part of the conditional is true therefore the second part is also true.
Since we have generated a contradiction (—wW¢r;)) and (N(r;)) we can conclude

(P(ryr)&B(r))).

real user system
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5. Future Developments and Conclusions

5.1 Areas for Future Work

There are several things that could be done as future work with respect to this thesis.
The types of continuing work falls into two distinct areas. The first being experimenta-
tion with the types of explanations that EXPLAIN can produce The second area of

future research is in the further development of the program itself.

THINKER can prove -a wide variety of proofs, most of which have specific attri-
butes that distinguish one type of proof from another. It would be beneficial to be éble to
examine many different proofs along with several of their explanations to try to find
explanation types that it well with proof types. This type of cognitive testing can also be
used to determine what is a good explanation and why is it better for a particular proof or
subproof. For example, the bottom-up method seems to explain short straight line proofs
(those with little depth) well. Where as top-down produces more understandable expla-
nations for deeply embedded proofs. It may also become apparent that certain inference
rules are explained best in a certain way. For example, it seems natural to explain Modus
Ponens in a bottom-up fashion, rather than in a top-down manner. (A top-down manner
would be like saying "We wich to prove ¢, so let’s look for a formula p and try to prove
(p =) if we succeed, then do MP". A bottom-up explanation would be closer to how
people reason: "We have p and also (p »q), so we infer ¢ by MP".) Are there other infer-
ence rules that are best explained top-down or are there combinations of rules which
should be explained one way or the other? If a match between explanation types and

proofs can be made EXPLAIN could be improved to take advantage of this and produce
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the better explanations automatically.

The further development of the program is the process of making EXPLAIN gen-
erate different types of explanations. The most obvious area for this expansion would he
in dimension one that was explained earlier. The focus of the current work is on the
static explanation of the proof as it stands. The opposite end of this dimension would be
the dynamic recounting of the proof generation process. This would explain the strategy
behind the construction of the proof with relevant information on the setting of subgoals
and so forth. One way to produce this type of explanation would be to huve THINKER
generate a trace of the functions that it entered to produce the proof. This would give
some information about what decisions were made to generate the proof without having
to produce the explanation while the proof is actually being generated. This information

could be used to generate the dynamic type of explanation after the proof was done.

The theorem prover THINKER has been expanded to be able to handle modal logic
proofs as well as simple proofs. The explanation program EXPLAIN could also be
expanded in this area to provide explanations for these types of proofs. This would entail
creating text generating functions for the specific inference rules that deal with modal
logic.

The type of explanations that are generated for any particular proof are guided
solely by the user. An improvement to the system would be to have some type of user
modeling. This way the system could anticipate the needs of the user and produce the
explanations that would fit them best. Possible models could range from a novice in
logic who would need complete predicate explanations, to an expert who may require just
the inference rules and a high level type explanation. User modeling would relieve the

user of having to find the correct type of explanation by themselves.
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One final use of the system would be to explain what a given, individual formulas
really says. For example. we might wish to explain what certain "axioms of rationality”
|Alchourron8S] really say (and not merely how their authors interpret them). Since
EXPLAIN can already explain a formula when the explanation is done to the level of the
predicates or the connectives, this feature of the entire system can be put to use to explain

formulas in isolation. This would be a simple extension where EXPLAIN is used

without a proof being done.

5.2 Conclusions

The explanation facility EXPLAIN was written as an extension of the THINKER
theorein prover that was implemented in "C" and runs on a SUN SPARC station. The
time taken for the explanation of a proof to be produced is relatively short, as seen by the
times at the end of the explanations in chapter 4. A statement of the algorithm employed

to produce the explanations that appear in chapter 4 follows:

Main Explanation Function

i Set parameters (from command line)

3%

If predicate explanation READ lexical file
3 Remove unused lines from the linked list of th= proof
4 If bottom-up explanation call pick_rule_BU with starting line number

5 If top-down explanation call pick_rule_TD with starting line number
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pick_rule_BU

If the current line is the first line state it as the main goal

If current line's level is the current switching level call pick_rule. TD with
current line and set the current switching leve! to the next level where switch-

ing is to take place

If current line’s level is the cut-off level explain it as provable
If justification 1 exists call pick_rule_BU with justification |
If justification 2 exists call pick_rule_BU with justification 2
Call line to explain current line’s inference rule.

Set current line as explained at time X

pick_rule_TD

If current line’s level is the current switching level call pick_rule_BU with
current line and set the currer: switching level to the next level where swiich-

ing is to take place
If current line’s level is the cut-off level explain it as provable
Call line to explain current line's inference rule.

Sel current line as explained at time X

BU inference rule functions
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Produce the linking phrase (depending on when the justifications were
explained)
Produce the explanations of the formulas to be used

Pick an explanation phrase for the inference rule

TD inference rule functions

If the line has been explained previously restate the line and return
Produce the explanations of the formulas to be used

State the current line as the goal

State the subgoal to be proved

Call pick_rule_TD with the justification lines

(optional) Explain how the justifications are combined to get the goal

Formuila Explanation

If to the level of the inference rules return as is

If to the level of the connectives

Call function to explain the main connective (if it exists)
Explain the lert subformula (if it exists)

Explain the right subformula (if it exists)

Pick a connective phrase to combine left and right explanations
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34

35

3.6

1.1

1.2

1.3

2.1

22

23

08

If no main connective return the predicate as is

If to the level of the predicates

Call function to explain the main connective (if it exists)
If Universal or Existential quantitier

Make an entry in the constant list for the variable with a suitable phrase such as

"everybody" or "someone”

Explain the right subformula

Explain the left subformula (if it exists)

Explain the right subformula (if it exists)

Pick a connective phrase to combine left and right explanations

If no connective call predicate explanation

Predicate explanaticn

If one argument

Should the negative phrase be used? (set by — connective explanation)
Can a pronoun be used?

Is the phrase to be plural or singular?

If 2 arguments

Get the object phrase

Get the subject phrase

Check if self referral (i.e.; Fred shaved himself)
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24 Positive or negative?

2.5 Any pronouns?

2.6 Singular or plural?

2.7 Active or passive? (randomly chosen)
5.3 Portability

The current implementation is .not adaptable to any other automated theorem
provers since EXPLAIN begins with the final internal form left by THINKER. To adapt
this system to another theorem prover some preprocessing would have to be done to get
the information in the correct form. To produce the explanations EXPLAIN has indivi-
dual functions for the specific inference rules found in THINKER. To adapt EXPLAIN
to other systems the inference rule explanation functions would have to be rewritten to
match those appearing in that system, and to find some substitutes in that system that are

equivalent to all the information that THINKER puts into a single line of a proof.
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