
Hybrid Dealiased Convolutions

by

Noel Murasko

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Applied Mathematics

Department of Mathematical and Statistical Sciences
University of Alberta

© Noel Murasko, 2023

Abstract

Efficient algorithms for computing linear convolutions based on the fast Fourier
transform are developed. A hybrid approach is described that combines the conven-
tional practice of explicit dealiasing (explicitly padding the input data with zeros)
and implicit dealiasing (mathematically accounting for these zero values). The
new approach generalizes implicit dealiasing to arbitrary padding ratios and in-
cludes explicit dealiasing as a special case. Unlike existing implementations of
implicit dealiasing, hybrid dealiasing tailors its subtransform sizes to the convo-
lution geometry. Hybrid dealiasing also extends implicit dealiasing to efficiently
compute convolutions with real-valued inputs. Multidimensional convolutions are
implemented with hybrid dealiasing by decomposing them into lower-dimensional
convolutions. Convolutions of complex-valued, Hermitian symmetric, and real-
valued inputs of equal length are illustrated with pseudocode and implemented in
the open-source FFTW++ library. Hybrid dealiasing is shown to match or outper-
form explicit dealiasing in one dimension and greatly outperform explicit dealiasing
in two and three dimensions.

ii

Dedicated to Margaret King.

iii

Acknowledgements

I would like to thank my supervisor Dr. John C. Bowman for his endless patience

and support, both in this project and in my graduate studies as a whole. Without his

guidance and collaboration, this project would not have been possible and I would

not be the person I am today. I would like to thank Dr. Clement W. Bowman for the

financial assistance provided by the Clement W. Bowman Mathematical Turbulence

Scholarship.

Robert Joseph George has been an ongoing collaborator on the unequal case;

almost everything I have to say about the matter is the result of our discussions.

I would also like to thank Emily Korfanty for managing to read my early drafts.

As always, her comments have been invaluable.

iv

Table of Contents

1 Introduction 1

1.A Convolutions and dealiasing . 2

1.B Limitations of implicit dealiasing 6

1.B.1 Arbitrary input sizes . 8

1.B.2 Arbitrary padding requirements 9

1.B.3 Real valued inputs . 10

1.B.4 Unequal input sizes . 10

1.C Generalizing implicit dealiasing 11

1.C.1 General dealiased convolutions 12

2 Complex convolutions in one dimension 14

2.A Implicitly dealiased convolutions 14

2.B Hybrid dealiasing . 15

2.C Convolutions one residue at a time 17

2.D Summary of Chapter 2 . 18

3 Centered and Hermitian symmetric convolutions in one dimension 21

3.A Centered convolutions . 21

3.B Hermitian convolutions . 23

v

3.C Summary of Chapter 3 . 25

4 Real convolutions in one dimension 26

4.A Real convolutions via conjugate symmetries 27

4.B Summary of chapter 4 . 31

5 Multidimensional convolutions 35

6 Numerical implementation 38

6.A Inner loop optimization . 38

6.A.1 Inner loop for complex arrays 38

6.A.2 Inner loop for centered and Hermitian arrays 39

6.A.3 Inner loop for real arrays 41

6.B Conjugate symmetry optimization 47

6.C Overwrite optimization . 49

6.D Loop optimizations . 50

7 Numerical results 51

7.A Complex convolution benchmarks 52

7.A.1 One-dimensional complex convolutions 53

7.A.2 Two-dimensional complex convolutions 55

7.A.3 Three-dimensional complex convolutions 55

7.B Hermitian convolution benchmarks 56

7.B.1 One-dimensional Hermitian convolutions 57

7.B.2 Two-dimensional Hermitian convolutions 58

7.B.3 Three-dimensional Hermitian convolutions 58

7.C Real convolution benchmarks . 59

7.C.1 One-dimensional real convolutions 60

vi

7.C.2 Two-dimensional real convolutions 60

7.D Summary of Chapter 7 . 62

8 Conclusion and future work 64

8.A Real convolutions via complex packing 64

8.B Convolutions of unequal sizes . 67

8.C Concluding remarks . 69

References 70

A Complex packing multiplication 73

vii

List of Figures

1.1 Normalized times for in-place 1D complex convolutions of two

inputs of length L on 1 thread. Here, explicit dealiasing uses the

common technique of zero-padding up to the next power of two. . . 5

1.2 A grey-scale image (originally 1024×1024 pixels) transformed with

the Sobel operator. Any pixel intensity greater than 255 is set to 255. 8

2.1 An illustration of hybrid padding for a one-dimensional array withL =

6 and M = 11. Choosing m = 4, we have p = 2 and q = 3. We

explicitly pad our data of length L to length pm = 8, and then

implicitly pad our data to length qm = 12. 16

2.2 Accumulation of residue contributions to a convolution. 17

5.1 Recursive computation of an n-dimensional convolution. 36

5.2 The reuse of memory to compute the contribution of a single x

residue to a 2D binary convolution with two inputs and one output:

a 1D padded y FFT is applied to columns of F rx and Grx to produce

the two stacked yellow columns that are fed to the multiplication

operator, producing one stacked column to be inverse y transformed

into a single column (like the red one shown on the left). The upper

column is then reused for processing subsequent columns. 36

viii

7.1 In-place 1D complex convolutions of length L with A = 2 and B =

1 on 1 thread. 53

7.2 In-place 1D complex convolutions of length L with A = 2 and B =

1 on 8 threads. 53

7.3 Normalized L2 error for in-place 1D complex convolutions of size

L for different m values. Here D = 1 and the FFTs are in place. . . 54

7.4 In-place 2D complex convolutions of sizeL×LwithA = 2 andB =

1 on 1 thread. 55

7.5 In-place 2D complex convolutions of sizeL×LwithA = 2 andB =

1 on 8 threads. 55

7.6 In-place 3D complex convolutions of size L × L × L with A = 2

and B = 1 on 1 thread. 56

7.7 In-place 3D complex convolutions of size L × L × L with A = 2

and B = 1 on 8 threads. 56

7.8 In-place 3D complex convolutions of incremental sizes L× L× L

with A = 2 and B = 1 on 1 thread. As is conventional, the explicit

dealiasing algorithm pads past 2L, up to the next power of two (in

this case 256). 57

7.9 In-place 1D Hermitian convolutions of lengthLwithA = 2 andB =

1 on 1 thread. 58

7.10 In-place 1D Hermitian convolutions of lengthLwithA = 2 andB =

1 on 8 threads. 58

7.11 In-place 2D Hermitian convolutions of size L × L with A = 2

and B = 1 on 1 thread. 59

7.12 In-place 2D Hermitian convolutions of size L × L with A = 2

and B = 1 on 8 threads. 59

ix

7.13 In-place 3D Hermitian convolutions of size L× L× L with A = 2

and B = 1 on 1 thread. 60

7.14 In-place 3D Hermitian convolutions of size L× L× L with A = 2

and B = 1 on 8 threads. 60

7.15 In-place 1D real convolutions of length L with A = 2 and B = 1

on 1 thread. 61

7.16 In-place 2D real convolutions of size L× L with A = 2 and B = 1

on 1 thread. 61

x

Chapter 1

Introduction

Convolutions are one of the most ubiquitous operations in mathematics, and so it

should come as no surprise that discrete convolutions are found virtually everywhere

in the computational sciences. There are two main types of discrete convolution:

linear and circular. Linear convolutions are found in many applications such as the

pseudospectral simulation of partial differential equations, signal processing, and

machine learning. Efficiently computing linear convolutions is the main goal of this

work.

Direct computation of the discrete convolution of arrays with length n re-

quires O(n2) operations. In practice, this is far too slow for large arrays. We

can obtain a much faster algorithm by making use of the discrete Fourier transform

(DFT), which can be computed using O(n log n) operations.

Gauss discovered the first (known) fast algorithm for computing the DFT

[Gau66]. This algorithm could be used on arrays of any composite integer length.

Unfortunately, it went unpublished during Gauss’s lifetime and wasn’t widely rec-

ognized; while several fast algorithms were discovered for special cases, over a

century passed before Gauss’s algorithm was independently rediscovered [HJB85]

1

by J. Cooley and J. Tukey [CT65]. The importance of their work should not be

understated; it is rightfully regarded as one of the most important algorithms of the

last century. We refer to any algorithm which computes the DFT with O(n log n)

operations as a fast Fourier transform (FFT).

We can use FFTs to compute fast convolutions by utilizing the convolution

theorem. Informally, the convolution theorem states that the DFT of the convolution

of two arrays is the product of their DFTs. Thus we can compute convolutions

using O(n log n) operations: we take the FFT of the inputs, multiply the results,

and then compute the inverse FFT.

The caveat with using the DFT and the convolution theorem is that it results

in a circular convolution. And so if we want a linear convolution, our results will

contain errors, which are called aliasing errors. Dealiasing refers to any method

which uses the convolution theorem to compute linear convolutions without such

aliasing errors.

1.A Convolutions and dealiasing

We begin by providing rigorous definitions for the terms mentioned above. In

this work, a one-dimensional array (or simply an array) refers to a finite-length

sequence of complex numbers. A d-dimensional array is an ordered tuple of d

one-dimensional arrays.

For our purposes, the linear and circular convolution are defined as binary

operations on arrays:

Definition 1.1. Given two arrays f = {fj}Lf−1
j=0 and g = {gj}Lg−1

j=0 , the linear

2

convolution of f and g is the array defined by

(f ∗ g)k .
=

Lf−1∑︂

j=0

fjgk−j, k ∈ {0, . . . , Lf + Lg − 1},

where it is understood that gk−j = 0 when k − j < 0 or k − j ≥ Lg (we use .
= to

denote definitions).

Definition 1.2. Given two arrays f = {fj}L−1j=0 and g = {gj}L−1j=0 , their circular

convolution is the array defined by

(f ⊛ g)j
.
=

L−1∑︂

j=0

fjg(k−j)modL, k ∈ {0, . . . , L− 1}.

While these definitions are for one-dimensional arrays, there is a natural exten-

sion to higher dimensions. Iff andg ared-dimensional arrays of sizesL1 × · · · × Ld

and L̃1 × · · · × L̃d respectively, their linear convolution is the d-dimensional array

defined by

(f ∗ g)k1,...,kd
.
=

L1∑︂

j1=0

. . .

Ld∑︂

jd=0

fj1,...,jdgk1−j1,...,kd−jd ,

ki ∈ {0, . . . , Li + L̃i − 1}, i ∈ {1, . . . , d}.

Thus, in multiple dimensions, the linear convolution amounts to a one-dimensional

linear convolution over each dimension. The multidimensional circular convolution

is defined similarly. We can therefore focus our attention on the one-dimensional

case.

The circular convolution is deeply related to the discrete Fourier transform

(DFT). Let ζN
.
= e2πi/N denote the Nth primitive root of unity. Recall that the DFT

3

of an array f = {fj}L−1j=0 is defined by:1

Fk = DFT[f]k
.
=

L−1∑︂

j=0

ζkjL fj, k ∈ {0, . . . , L− 1}.

Similarly, the inverse discrete Fourier transform is given by

fj = DFT−1[F]j
.
=

1

L

L−1∑︂

k=0

ζ−jkL Fk, j ∈ {0, . . . , L− 1}.

The relationship between the circular convolution and the DFT is exemplified by the

convolution theorem:

Theorem 1.3 (Discrete Convolution Theorem). Let f and g be arrays of the same

length. Then we have:

DFT(f ⊛ g) = DFT(f)⊙DFT(g),

where ⊙ denotes Hadamard (element-wise) multiplication.

Proof. Let L ∈ N be the length of f and g. We compute:

DFT[f ⊛ g]k =
L−1∑︂

j=0

ζjkL (f ⊛ g)j =
L−1∑︂

j=0

ζjkL

L−1∑︂

ℓ=0

fℓg(j−ℓ)modL

=
L−1∑︂

ℓ=0

fℓ

L−1∑︂

j=0

ζjkL g(j−ℓ)modL =
L−1∑︂

ℓ=0

fℓ

L−ℓ−1∑︂

j=−ℓ
ζ
(j+ℓ)k
L gjmodL

=
L−1∑︂

ℓ=0

ζℓkL fℓ

L−ℓ−1∑︂

j=−ℓ
ζjkL gjmodL =

L−1∑︂

ℓ=0

ζℓkL fℓ

L−1∑︂

j=0

ζjkL gj,

= DFT[f]k DFT[g]k.

1In this work, we use lowercase letters to denote input arrays and uppercase letters to denote the
corresponding DFT.

4

Note that in contrast to the linear convolution, the circular convolution and the

DFT assume their inputs are periodic. Given an array {fj}L−1j=0 , both operations

take fj+nL
.
= fj for all n ∈ Z, j ∈ {0, . . . , L− 1}. For all n ̸= 0, we say that fj+nL

are aliases of fj .

The standard method of dealiasing is to pad the input arrays explicitly with zeros

before computing the DFT, removing the effect of periodicity. We refer to this

practice as explicit dealiasing. For practical sizes, explicit dealiasing is much faster

than direct computation, as shown2 in figure 1.1.

1.0

2.0

3.0

4.0

5.0

ti
m
e/
(L

lo
g
2
L
)
(n
s)

10 20 30 40 50 60 70 80 90 100 110 120
L

direct

explicit

Figure 1.1: Normalized times for in-place 1D complex convolutions of two inputs
of length L on 1 thread. Here, explicit dealiasing uses the common technique of
zero-padding up to the next power of two.

While explicit dealiasing successfully avoids aliasing errors, it requires reading

and multiplying values that are known a priori to be zero. For a dealiased convolution

of two one-dimensional arrays of the same length, approximately 1/2 of the inputs

must be zero. While this is already inefficient, in higher dimensions the situation is

2The details of how we collected the timing data for the plots in this work can be found in
chapter 7.

5

much worse: a d dimensional convolution of two arrays of the same size requires

approximately (2d − 1)/2d of the inputs to be zero. Not only does this result in

wasted computation, but it also requires substantially more memory to store the

input arrays.

Implicit dealiasing [BR11; RB18] provides an alternative to explicit dealiasing.

Here, padded/unpadded FFTs are formulated to take account of the known zero

values implicitly, avoiding the need for explicit zero padding. In many important

cases, implicit dealiasing is more efficient than explicit dealiasing, with the most

significant gains found in multidimensional convolutions.

1.B Limitations of implicit dealiasing

Even though implicit dealiasing can outperform explicit dealiasing, it has several

limitations. To understand these limitations, it is useful to consider two illustrative

examples:

• A key application of dealiased convolutions are pseudospectral simulations of

partial differential equations [PO71; GO77]. To illustrate how pseudospec-

tral simulations work, consider the three-dimensional incompressible Navier–

Stokes equation

du

dt
+ u ·∇u+∇P = ν∆u+ F ,

∇ · u = 0.

Here, u is the spacial velocity, P is the pressure, ν is the kinematic viscosity,

and F is an external force. We assume periodic boundary conditions.

6

In a pseudospectral simulation, the equation is evolved in Fourier space (ap-

proximating the Fourier transform using the DFT). The advantage of this is

that a spatial derivative can be computed via multiplication by a wave number.

However, the nonlinear advection term, u ·∇u, becomes a linear convolution

in Fourier space, which requires dealiasing.3

• In digital signal processing, convolutions are used to apply filters to data in

order to analyze it. For example, consider the Sobel operator which is used for

edge detection in image processing [Dud73; Sob14]. We have two operators:

Sx
.
=

⎛
⎜⎜⎜⎜⎝

1 0 −1

2 0 −2

1 0 −1

⎞
⎟⎟⎟⎟⎠

, Sy
.
=

⎛
⎜⎜⎜⎜⎝

1 2 1

0 0 0

−1 −2 −1

⎞
⎟⎟⎟⎟⎠

.

By convolving each of these with an image A, we obtain approximations of

the gradient in the x and y directions, respectively:

Gx
.
= Sx ∗ A, Gy

.
= Sy ∗ A,

with magnitude

G
.
=

√︁
Gx ⊙Gx +Gy ⊙Gy.

The magnitude of the gradient is greatest where there are large changes in

image intensity, i.e. at an edge. Thus, the image G resembles the image A

with its edges emphasized. This is illustrated in figure 1.2.

3In the history of applying pseudospectral methods to turbulence, whether or not dealiasing
matters has been controversial, although now it is generally agreed that it does. Such a discussion is
outside the scope of this work, so we refer the interested reader to §3.10 of Canuto et al. [Can+06]
for a brief overview of the topic.

7

Figure 1.2: A grey-scale image (originally 1024 × 1024 pixels) transformed with
the Sobel operator. Any pixel intensity greater than 255 is set to 255.

Related to image processing are convolutional neural networks (CNNs) [Lec+98].

Such networks operate much the same way, convolving a small kernel with an

input to extract information, except now the elements of the kernel are learned

parameters. Often such convolutions are computed directly (which is efficient

for small problems), but the use of FFTs to accelerate CNNs is of increasing

interest [MHL14; HR16; LY19; Chi+20].

Implicit dealiasing was developed specifically to improve the efficiency of pseu-

dospectral simulations, and so the specific needs of that application dictated much

of its design. Other applications, such as signal processing, may benefit from the

techniques of implicit dealiasing, but cannot in its current state. We identify four

key limitations of implicit dealiasing:

1.B.1 Arbitrary input sizes

The efficiency of implicit dealiasing is highly dependent on the length of the inputs.

The most efficient FFTs, that we are aware of, are for products of powers of small

8

prime radices such as 2, 3, 5, and 7 [FJ05]. For example, computing the convolution

of two one-dimensional complex arrays of lengthL using implicit dealiasing requires

computing FFTs of length L. If L is an inefficient length, the resulting convolution

will be slow. This issue was not addressed by implicit dealiasing, because in

pseudospectral simulations one can choose the size of the inputs. However this is

not possible in all applications; for example, images can come in any size.

1.B.2 Arbitrary padding requirements

For complex (uncentered) inputs, implicit dealiasing is formulated to use 1/2

padding4 to dealias binary convolutions, as defined in definition 1.1. For cen-

tered or Hermitian symmetric inputs, implicit dealiasing is formulated to use 2/3

padding. The 2/3 padding ratio is used in pseudospectral simulations; only the

center indices are retained, so these are the only indices that need to be dealiased

[Ors71]. Thus, implicit dealiasing does not allow for arbitrary padding,5 greatly

limiting its generality.

This issue with arbitrary padding also affects pseudospectral simulations. For

example, computing the cascade direction of nth-order Casimir invariants of two-

dimensional turbulence, such as
∑︁

j ω
n(xj), where ω is the scalar vorticity, requires

a padding ratio of 2/(n+ 1) (where n ≥ 2) [Bow13].

4This fraction is the ratio of input data to padded data.
5It should be noted that formulas for padded/unpadded FFTs with arbitrary padding ratios are

briefly considered by Bowman and Roberts [BR11] in the complex uncentered case; however,
algorithms for efficiently computing these FFTs were not developed. That being said, these equations
are fundamental to the algorithms presented in this work.

9

1.B.3 Real valued inputs

Hermitian symmetric arrays are arrays {fj}L−1j=0 with the symmetry fL−j = fj for

all j ∈ {0, . . . , L − 1}. An important property of the DFT is that an array is

Hermitian symmetric if and only if it is the DFT of a real array.6 This is exploited

by complex-to-real and real-to-complex FFTs, which efficiently compute the DFTs

of Hermitian symmetric and real-valued arrays respectively.

Explicit dealiasing can use these efficient complex-to-real/real-to-complex FFTs

to compute both Hermitian symmetric and real convolutions. Implicit dealiasing

can efficiently compute Hermitian symmetric convolutions, also by using complex-

to-real/real-to-complex FFTs and by taking the symmetries of the data into account.

However, implicit dealiasing does not have any such methods for efficiently comput-

ing real-valued convolutions. Any application which uses real-valued data (such as

signal/image processing) cannot take advantage of techniques of implicit dealiasing.

1.B.4 Unequal input sizes

Finally, implicit dealiasing assumes that the inputs are the same size. While this is

true for pseudospectral simulations, in many applications this is not the case. For

example, in signal processing one typically convolves input data with a relatively

small kernel.

Note that if one of the arrays is very small compared to the other, aliases are not

the main problem as the possible wrap-around is limited. Thus, one might think

that the techniques of implicit dealiasing are of limited use. However, the circular

convolution requires the inputs to be the same size, and so explicit methods require

6For this reason, Hermitian symmetric arrays are common in applications. For example, the
arrays used in pseudospectral simulations of the Navier–Stokes equation are Hermitian symmetric
because they are Fourier transforms of the real velocity field.

10

that the smaller array is zero-padded to at least the same size as the larger array.

This can easily lead to an absurd amount of zero-padding on the smaller array.7

1.C Generalizing implicit dealiasing

Both explicit and implicit dealiasing transform the inputs in such a way that the

resulting circular convolution is equivalent to the desired linear convolution. While

explicit dealiasing does this by modifying the inputs, implicit dealiasing modifies

the transforms.

In this work, we generalize implicit dealiasing with a technique that we call

hybrid dealiasing. Hybrid dealiasing allows for a combination of explicit and

implicit zero padding, modifying both the inputs and the transforms. In hybrid

dealiasing, explicit dealiasing and implicit dealiasing are now special cases.

In chapters 2 and 3, we develop hybrid dealiasing for complex, centered, and

Hermitian symmetric inputs, which are the cases considered by implicit dealiasing.

For problems particularly well suited to either explicit dealiasing or implicit dealias-

ing, hybrid dealiasing matches or exceeds the performance of each. For problems

not well suited to existing dealiasing methods (where input arrays have inefficient

sizes), hybrid dealiasing exceeds the performance of explicit and implicit dealiasing.

Hybrid dealiasing is also designed to allow arbitrary padding requirements. This

solves the problems described in sections 1.B.1 and 1.B.2.

In chapter 4, we go beyond implicit dealiasing by developing hybrid dealiasing for

real-valued arrays. We do this by exploiting conjugate symmetries in the transformed

data, providing a solution to the problem in section 1.B.3.

7Things are a bit more complicated than this, as there exist techniques such as overlap-add and
overlap-save to greatly improve the efficiency of such convolutions.

11

In chapter 5, we discuss the implementation of these ideas for higher dimensional

arrays. Following implicit dealiasing, we compute multidimensional convolutions

by decomposing them into lower dimensional convolutions, resulting in further

improvements over conventional methods. Chapter 6 describes several numerical

optimizations used in our implementation of hybrid padding in the open-source

library FFTW++ [BRM23]. Numerical results comparing hybrid dealiasing with the

other dealiasing techniques are shown in chapter 7.

We conclude in chapter 8 and discuss future work for hybrid dealiasing; in partic-

ular, we discuss the problem of inputs with unequal size described in section 1.B.4,

as well as a possible alternative method for computing the convolution of real inputs.

1.C.1 General dealiased convolutions

To conclude this introduction, we point out the generality of the algorithms presented

in this work. Let X denote the space of finite arrays equipped with addition8 and

linear convolution. It is easy to show that this map forms a commutative ring.9

The motivation of this work is to compute linear convolutions as defined by

definition 1.1; indeed this is likely the most valuable use of hybrid dealiasing. How-

ever, our algorithms are capable of computing much more than linear convolutions.

In each algorithm, we compute a padded FFT of the inputs, and then transform

the results using an arbitrary multiplication routine. The only assumption on this

routine is that it performs operations element-wise. We then compute the inverse

unpadded FFT of the resulting arrays.

8To add two arrays of different lengths, we treat them as infinite sequences with finite support.
9This ring is often identified with the ring of polynomials with complex coefficients: if {fj}L−1

j=0
is an array, we can identify it with a polynomial of degree L− 1 via the ring isomorphism:

{fj}L−1
j=0 ↦→ f0 + f1x+ f2x

2 + . . .+ fL−1x
L−1.

12

Thus, all of the algorithms presented in this work can be used to compute general

convolutions defined as follows:

Definition 1.4. Let A,B ∈ N. A function C : XA ↦→ XB is a general convolution

if there exists M ∈ N and an element-wise functionM : XA ↦→ XB which satisfies

DFT[C(f 1, . . . ,fA)] =M(DFT[f 1], . . . ,DFT[fA]),

where f 1, . . . ,fA have been zero-padded to length M .

It should be noted that the only reason we include this definition is for com-

pleteness. The only practical examples of general convolutions that the author is

presently aware of take the form of multivariate polynomials in X . For example

if u,v,w ∈ X , then u ∗u− v ∗ v and v ∗ v −w ∗w are general convolutions.10

10These convolutions were used by C. Basdevant for the pseudospectral simulation of 3D incom-
pressible turbulence, and reduce the necessary FFTs (each time step) from 9 to 8 [Bas83].

13

Chapter 2

Complex convolutions in one

dimension

In this chapter, we review the algorithm for computing convolutions of complex

arrays using implicit dealiasing [BR11; RB18]. We then introduce hybrid dealiasing

for complex arrays, which combines explicit and implicit dealiasing.

2.A Implicitly dealiased convolutions

Suppose that, for some convolution, we have input data {aj}L−1j=0 that needs to be

padded with zeros to length M . We construct a buffer f .
= {fj}M−1j=0 where fj = aj

for j < L and fj = 0 for j ≥ L. The DFT of f can be written as

Fk =
M−1∑︂

j=0

ζkjM fj =
L−1∑︂

j=0

ζkjM fj, k ∈ {0, . . . ,M − 1},

where ζN
.
= exp (2πi/N) is the N th primitive root of unity.

For now, assume that L and M share a common factor m, so that L = pm and

14

M = qm, where m, p, q ∈ N, with q ≥ p. We can now reindex j and k as

j = tm+ s, t ∈ {0, . . . , p− 1}, s ∈ {0, . . . ,m− 1},

k = qℓ+ r, ℓ ∈ {0, . . . ,m− 1}, r ∈ {0, . . . , q − 1}.

This allows us to decompose the DFT via the Cooley–Tukey algorithm [CT65].

Following Bowman and Roberts [BR11]:

Fqℓ+r =
m−1∑︂

s=0

p−1∑︂

t=0

ζ(qℓ+r)(tm+s)
qm ftm+s =

m−1∑︂

s=0

ζℓsmζrsqm

p−1∑︂

t=0

ζrtq ftm+s. (2.1)

Computing the DFT of f then amounts to preprocessing f for each value of r,

and computing q DFTs of size m; no explicit zero padding is needed. The inverse

transform is similar [BR11]:

ftm+s =
1

qm

q−1∑︂

r=0

ζ−trq ζ−srqm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+r. (2.2)

This transform requires q DFTs of size m, followed by post-processing. We now

demonstrate how these equations can be implemented to generalize implicit dealias-

ing to a wider class of convolutions.

2.B Hybrid dealiasing

An issue with the above formulation is the assumption that L and M must share a

common factor m. Furthermore, even if L and M do share a common factor, the

resulting convolution might be inefficient (as mentioned in section 1.B.1).

Our solution to this problem relies on the observation thatM is the minimum size

15

required to dealias a convolution: padding beyond M is fine (and perhaps desired if

it increases efficiency). Given some m ∈ N, we define

p
.
=

⌈︃
L

m

⌉︃
, q

.
=

⌈︃
M

m

⌉︃
. (2.3)

These are the smallest positive integers such that pm ≥ L and qm ≥ M . To take

the forward transform, we explicitly pad f with zeros to size pm and then use (2.1)

to compute the padded transform of size qm. To take the inverse transform, we use

(2.2), ignoring the last pm − L elements. We refer to this combination of explicit

and implicit padding, illustrated in figure 2.1, as hybrid padding. If out-of-place

FFTs are used, any explicit zero padding only needs to be written to the buffer once.

m

L

pm

M

qm

Figure 2.1: An illustration of hybrid padding for a one-dimensional array withL = 6
andM = 11. Choosingm = 4, we have p = 2 and q = 3. We explicitly pad our data
of length L to length pm = 8, and then implicitly pad our data to length qm = 12.

An advantage of hybrid padding is the ability to choose any m value, as the

choice of m is independent of the size of the input array. For the remainder of this

work, we exclusively refer to padding from size pm to qm, keeping in mind that we

might have to use hybrid padding to achieve this.

16

2.C Convolutions one residue at a time

For each r ∈ {0, . . . q− 1}, we define the residue contribution F r
.
= {Fqℓ+r}m−1ℓ=0 ,

with corresponding residue,r. A key optimization that allows us to save memory is

that we can compute contributions to the convolution one residue at a time. To find

the inverse for that residue contribution, we define hr via

hr,tm+s
.
= ζ−trq ζ−srqm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+r.

Accumulating over r = 0, . . . , q − 1, we obtain the inverse:

ftm+s =
1

qm

q−1∑︂

r=0

hr,tm+s.

This formulation can be advantageous for large problems as it allows reuse of the

memory needed to store F r, illustrated for a binary convolution in figure 2.2.

f

g

q−1∑

r=0

hr

F r

Gr

mult

FFT

FFT−1

FFT

Figure 2.2: Accumulation of residue contributions to a convolution.

Of course, any number of residues can be computed at a time. When using the

conjugate symmetry optimization (described in section 6.B), it is natural to compute

two residues at a time, namely r and −rmod q. The r = 0 and r = q/2 (if q is

even) residues must be treated with care. If two residues are being computed at a

17

time, it is convenient to store the r = 0 and r = q/2 residues together.

Pseudocode for an in-place convolution1 is given in algorithm 1. Pseudocode

for the forward and backward transforms is shown in algorithms 3 and 4 for p = 1

and algorithms 5 and 6 for p = 2. For p > 2, it is more efficient to replace

the summations in eqs. (2.1) and (2.2) by an inner DFT, which is discussed in

section 6.A.1. For simplicity, the pseudocode illustrates only the case where one

residue is computed at a time.

2.D Summary of Chapter 2

In this chapter, we introduced a new dealiasing algorithm called hybrid dealiasing

and have shown how to apply it to complex one-dimensional arrays. In hybrid

dealiasing, we consider inputs of length L that need to be zero padded to at least

length M . For a given value of m, we explicitly zero pad from length L to length pm

and then use implicit dealiasing to zero pad to length qm. This requires q FFTs

of length m. The values of p and q are chosen to be the smallest integers such

that L ≤ pm and M ≤ qm.

By allowing for any value of L and M , we solve the first limitation of implicit

dealiasing (described in section 1.B). Furthermore, because we can choose any value

of m, we can ensure that we use efficient FFTs, solving the second limitation of

implicit dealiasing.

1What we are computing is the output of the convolution, truncated to L values. To obtain the
full output of a convolution, one cannot compute it in-place as the output array is larger than any of
the inputs (see definition 1.1).

18

Algorithm 1 convolve is a one-
dimensional standard convolution. There
are A inputs (each of length L, to be
padded to at least length M) and B out-
puts. The convolution uses the multipli-
cation operator mult.
Input: {fa}A−1

a=0 , L, M , m, A, B
p← ⌈L/m⌉
if p = 1 then

n← ⌈M/m⌉
q ← n
Forward←forward1
Backward←backward1

else if p = 2 then
n← ⌈M/m⌉
q ← n
Forward←forward2
Backward←backward2

else
n← ⌈M/m⌉
q ← np
Forward←forwardInner
Backward←backwardInner

for b = 0, . . . , B − 1 do
hb ← {0}L−1

j=0

for r = 0, . . . , n− 1 do
for a = 0, . . . , A− 1 do

F a ← Forward(fa, L,m, q, r)

{F b}B−1
b=0 ← mult({F a}A−1

a=0)
for b = 0, . . . , B − 1 do

hb ← hb + Backward(F b, L,m, q, r)
for b = 0, . . . , B − 1 do

f b ← hb/(qm)

return {f b}B−1
b=0

Algorithm 2 convolveX is a one-
dimensional centered or Hermitian con-
volution. There are A inputs (each of
length L, to be padded to at least length
M) and B outputs. The convolution
uses the multiplication operator mult. In
the centered version, X denotes C. In
the Hermitian version, X denotes H and
only ⌈L/2⌉ inputs are provided (corre-
sponding to the non-negative indices).
Input: {fa}A−1

a=0 , L, M , m, A, B
p← 2⌈L/(2m)⌉
if p = 2 then

Forward← forward2X

Backward← backward2X

else
Forward← forwardInnerX

Backward← backwardInnerX

n← ⌈2M/(pm)⌉
q ← np/2
for b = 0, . . . , B − 1 do

hb ← {0}L−1
j=0

for r = 0, . . . , n− 1 do
for a = 0, . . . , A− 1 do

F a ← Forward(fa, L,m, q, r)

{F b}B−1
b=0 ← mult({F a}A−1

a=0)
for b = 0, . . . , B − 1 do

hb ← hb + Backward(F b, L,m, q, r)
for b = 0, . . . , B − 1 do

f b ← hb/(qm)

return {f b}B−1
b=0

Algorithm 3 forward1 is the complex
forward transform for residue r when
p = 1.
Input: {fj}L−1

j=0 , L,m, q, r
for s = 0, . . . , L− 1 do

Ws ← ζrsqmfs
for s = L, . . . ,m− 1 do

Ws ← 0
{Vℓ}m−1

ℓ=0 ← fft({Ws}m−1
s=0)

return {Vk}m−1
k=0

Algorithm 4 backward1 is the complex
backward transform for residue r when
p = 1.
Input: {Fk}m−1

k=0 , L,m, q, r

{Ws}m−1
s=0 ← ifft({Fℓ}m−1

ℓ=0)
for s = 0, . . . , L− 1 do

Ws ← ζ−rs
qm Ws

return {Wj}L−1
j=0

19

Algorithm 5 forward2 is the complex
forward transform for residue r when
p = 2.
Input: {fj}L−1

j=0 , L,m, q, r
for s = 0, . . . , L−m− 1 do

Ws ← ζrsqmfs + ζ
r(m+s)
qm fm+s

for s = L−m, . . . ,m− 1 do
Ws ← ζrsqmfs

{Vℓ}m−1
ℓ=0 ← fft({Ws}m−1

s=0)

return {Vk}m−1
k=0

Algorithm 6 backward2 is the complex
backward transform for residue r when
p = 2.
Input: {Fk}m−1

k=0 , L,m, q, r

{Ws}m−1
s=0 ← ifft({Fℓ}m−1

ℓ=0)
for s = 0, . . . ,m− 1 do

Vs ← ζ−sr
qm Ws

for s = m, . . . , L− 1 do
Vs ← ζ

−(s−m)r
qm Ws−m

return {Vj}L−1
j=0

20

Chapter 3

Centered and Hermitian symmetric

convolutions in one dimension

In this chapter, we build on chapter 2 and develop the ideas of hybrid dealiasing

for centered arrays. These centered transforms are then used to construct hybrid

dealiased convolutions for Hermitian symmetric data.

3.A Centered convolutions

In certain applications, it is convenient to center the data within the input array.

While it is possible to multiply the output of the uncentered transform derived

in chapter 2 by a primitive root of unity to obtain a centered transform, this is

inefficient in practice. To handle the centered case, we build the shift directly into

the transforms. Let p,m ∈ N, with p even, and let f = {fj}pm/2−1
j=−pm/2 be a centered

array (obtained by symmetrically padding an array of length L to length pm, if

21

needed). Implicit padding to length qm can be accomplished with the transform

Fk =

pm/2−1∑︂

j=−pm/2

ζkjqmfj, k ∈ {0, . . . , qm− 1}. (3.1)

Separating this sum and shifting the indices, we obtain

Fk =

pm/2−1∑︂

j=0

ζkjqmfj +
−1∑︂

j=−pm/2

ζkjqmfj =

pm/2−1∑︂

j=0

ζkjqmfj + ζ−kp/2q

pm/2−1∑︂

j=0

ζkjqmfj−pm/2.

Just as in chapter 2, we reindex our sum (using the fact that p is even):

j = tm+ s, t ∈
{︂
0, . . . ,

p

2
− 1

}︂
, s ∈ {0, . . . ,m− 1},

k = qℓ+ r, ℓ ∈ {0, . . . ,m− 1}, r ∈ {0, . . . , q − 1}.

Then (3.1) can be computed with q DFTs of size m:

Fqℓ+r =
m−1∑︂

s=0

ζℓsmwr,s, (3.2)

where

wr,s
.
= ζrsqm

⎛
⎝

p/2−1∑︂

t=0

ζrtq
[︁
ftm+s + ζ−rp2q ftm+s−pm/2

]︁
⎞
⎠ . (3.3)

Because the transformed data is not centered, the inverse transform is identical

to (2.2); one must only be careful to store the output values of the inverse transform

in the correct locations.

Pseudocode for a centered convolution is given in algorithm 2. Pseudocode

for the centered case when p = 2 is given in algorithms 7 and 8. For p > 2, see

section 6.A.2.

22

Algorithm 7 forward2C is the centered
complex forward transform for residue r
when p = 2.
Input: {fj}L−1

j=0 , L,m, q, r

H ← ⌊L/2⌋
for s = 0, . . . ,m−H − 1 do

Ws ← ζrsqmfH+s

for s = m−H, . . . , L−H − 1 do
Ws ← ζ

r(s−m)
qm fH+s−m + ζrsqmfH+s

for s = L−H, . . . ,m− 1 do
Ws ← ζ

r(s−m)
qm fH+s−m

{Vs}m−1
s=0 ← fft({Ws}m−1

s=0)

return {Vk}m−1
k=0

Algorithm 8backward2C is the centered
complex backward transform for residue
r when p = 2.
Input: {Fk}2m−1

k=0 , L,m, q, r
H ← ⌊L/2⌋
{Ws}2m−1

s=m ← ifft({Fs}2m−1
s=m)

for s = m−H, . . . ,m− 1 do
VH+s−m ← ζ

−r(s−m)
qm Ws

for s = 0, . . . , L−H − 1 do
VH+s ← ζ−rs

qm Ws

return {Vj}L−1
j=0

3.B Hermitian convolutions

An array g = {fj}L−1j=0 is Hermitian symmetric if gj = gL−j (where the bar de-

notes complex conjugation) for all j ∈ {0, . . . , L − 1}. Note that this symmetry

implies g0 ∈ R, which is the so-called DC mode1. Likewise, if L is even, Hermitian

symmetry implies that gL/2 ∈ R, which is the so-called Nyquist mode.

With Hermitian symmetric data, one only has to store approximately half of the

input values, as the rest of the data can be computed (by taking the conjugate) when

needed. An array is Hermitian symmetric if and only if its DFT is real valued.

Because of this, Hermitian symmetric data occurs naturally in many applications,

including pseudospectral methods for partial differential equations.

Consider a centered array f = {fj}pm/2−1
j=−pm/2+1 with Hermitian symmetry:

fj = f−j, j ∈ {−pm

2
+ 1, . . . ,

pm

2
− 1}.

One can use the centered transforms from section 3.A to develop Hermitian trans-

1In signal processing, DC is an initialism for direct current.

23

forms. The forward transform is given by (3.2), where

wr,s
.
= ζrsqm

⎛
⎝

p/2−1∑︂

t=0

ζrtq
[︁
ftm+s + ζ−rp2q fpm/2−tm−s

]︁
⎞
⎠ . (3.4)

Note that we only require fj for j = 0, . . . , pm/2. Furthermore, we have the Her-

mitian symmetry wr,s = wr,−s (which holds since the DFT of {wr,s}m−1s=0 produces

real-valued output) so we only need to compute wr,s for s = 0, . . . , ⌊m/2⌋+ 1, and

we can use a complex-to-real DFT to compute each residue.

The inverse transform is once again given by (2.1). Here, the key difference

is that because the input is real, the output is Hermitian symmetric, so that real-

to-complex DFTs can be used. Pseudocode for a Hermitian convolution is given

in algorithm 2. Pseudocode for the Hermitian transforms when p = 2 is given in

algorithms 9 and 10. For p > 2, see section 6.A.2.

Algorithm 9 forward2H is the Hermi-
tian forward transform for residue r when
p = 2.
Input: {fj}H̃j=0 , L,m, q, r

H̃ ← ⌈L/2⌉
e = ⌊m/2⌋+ 1
for s = 0, . . . ,m− H̃ do

Ws ← ζrsqmfs

for s = m− H̃ + 1, . . . , e− 1 do
Ws ← ζrsqmfs + ζ

r(s−m)
qm fm−s

{Vℓ}m−1
ℓ=0 ← crfft({Ws}e−1

s=0)

return {Vk}2m−1
k=0

Algorithm 10 backward2H is the Her-
mitian backward transform for residue r
when p = 2.
Input: {Fk}2m−1

k=0 , L,m, q, r

H̃ ← ⌈L/2⌉
e← ⌊m/2⌋+ 1

{Ws}e−1
s=0 ← rcfft({Fs}m−1

s=0)
for s = 0, . . . ,m− e do

G̃s ← ζ−rs
qm Ws

for s = m− H̃ + 1, . . . ,m− e do
Ṽ m−s ← ζ

−r(m−s)
qm Ws

if m is even then
Ṽ e−1 ← ζ−r

2q We−1

return {Vj}H̃j=0

24

3.C Summary of Chapter 3

In this chapter, we generalized the ideas of hybrid dealiasing to one-dimensional

centered arrays. These algorithms build the centering into the transforms and do

not require multiplication by a complex factor to achieve the shift. Just as in the

uncentered case, our transforms require q FFTs of length m.

We then used these centered algorithms to develop hybrid dealiasing for Her-

mitian symmetric inputs. In this case, the q FFTs can each be computed using

complex-to-real/real-to-complex FFTs.

25

Chapter 4

Real convolutions in one dimension

In this chapter, we go beyond the original scope of implicit dealiasing by developing

hybrid dealiasing for real-valued inputs. One might suppose that the real case will

be analogous to the Hermitian symmetric case, but there is a key difference between

the two. In all cases up to this point, each problem reduces to computing FFTs of

size m. The efficiency of the Hermitian symmetric algorithm is reliant on the fact

that we can use complex-to-real and real-to-complex FFTs.

Unfortunately, the real case is not as simple: even though the inputs to the

convolution are real, the inputs to the FFTs are generally complex due to the prepro-

cessing. Thus we cannot rely on real-to-complex/ complex-to-real FFTs to compute

the residue contributions efficiently.1

1There is a simple argument as to why we can use complex-to-real/real-to-complex FFTs in the
Hermitian symmetric case, but not the real case:

If f = {fj}qm−1
j=0 is a Hermitian symmetric array, then F = {Fk}qm−1

k=0 is a real array. For
any r ∈ {0, . . . , q − 1}, the residue contribution {Fqℓ+r}m−1

ℓ=0 is also real, which means it must be
the DFT of a Hermitian symmetric array.

But if f = {fj}qm−1
j=0 is a real array, then F = {Fk}qm−1

k=0 is a Hermitian symmetric array. Then
one can see that for any r ∈ {1, . . . , q − 1}, the residue contribution {Fqℓ+r}m−1

ℓ=0 is not, in general,
Hermitian symmetric (when ℓ = 0, the DC mode Fr need not be real). Thus, it cannot be the DFT
of a real array.

26

4.A Real convolutions via conjugate symmetries

Instead of depending on real-to-complex/ complex-to-real FFTs, we compute convo-

lutions of real inputs by directly exploiting conjugate symmetries in the transformed

data. Recall that the forward transform (2.1) is given by

Fqℓ+r =
m−1∑︂

s=0

ζℓsmζrsqm

p−1∑︂

t=0

ζrtq ftm+s,

with inverse (2.2) given by

ftm+s =
1

qm

q−1∑︂

r=0

ζ−trq ζ−srqm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+r.

For each residue r ∈ {0, . . . , q−1}, define the two-dimensional arrayhr of sizem×p

via

hr,s,t
.
= ζ−trq ζ−srqm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+r, (4.1)

so that we can write

qmftm+s =

q−1∑︂

r=0

hr,s,t.

Now note that by Hermitian symmetry, the complex conjugate of Fqℓ+r satisfies

Fqℓ+r = Fqm−(qℓ+r) = Fq(m−ℓ)−r,

and so we have

hr,s,t = ζtrq ζsrqm

m−1∑︂

ℓ=0

ζsℓmFqℓ+r = ζtrq ζsrqm

m−1∑︂

ℓ=0

ζsℓmFq(m−ℓ)−r

= ζ−t(q−r)q ζ−s(q−r)qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+q−r = hq−r,s,t.

(4.2)

27

For convenience, let hq/2 ≡ 0 if q is odd. Using (4.2), we can write

qmftm+s =

q−1∑︂

r=0

hr,s,t = h0,s,t +

⌈q/2⌉−1∑︂

r=1

(hr,s,t + hq−r,s,t) + hq/2,s,t

= h0,s,t + 2

⌈q/2⌉−1∑︂

r=1

Rehr,s,t + hq/2,s,t.

Thus for r ∈ {1, . . . , ⌈q/2⌉ − 1}, we can use complex FFTs to compute hr as

we essentially get hq−r for free. Therefore, it only remains to consider the cases

when r = 0 and r = q/2.

Residue r = 0:

If r = 0, then forward transform is given by

Fqℓ =
m−1∑︂

s=0

ζℓsm

p−1∑︂

t=0

ftm+s.

This is just the DFT of a real array and so a real-to-complex FFT can be used.

Similarly, (4.1) becomes

h0,s,t
.
=

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ,

which can be computed using a complex-to-real FFT.

Residue r =
q

2
:

This case is only relevant when q is even. The forward transform is given by

Fqℓ+q/2 =
m−1∑︂

s=0

ζℓsmζs2m

p−1∑︂

t=0

(−1)tftm+s, (4.3)

28

and (4.1) is given by

hq/2,s,t
.
= (−1)tζ−s2m

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+q/2. (4.4)

Note that we cannot use real-to-complex/complex-to-real FFTs as the preprocessed

inputs are complex. The key insight is that even though this residue contribution is

not strictly Hermitian symmetric, a Hermitian symmetry can still be exploited.

By the Hermitian symmetry of F we have

Fqℓ+q/2 = Fqm−(qℓ+q/2) = Fq(m−1−ℓ)+q/2. (4.5)

Thus, the q/2 residue contribution is closed under conjugation, and we only need to

compute approximately half of the values of
{︁
Fqℓ+q/2

}︁m−1
ℓ=0

in order to computehq/2.

We require that m be even. If we let e .
= m/2, we can reindex s and ℓ as follows:

s = ae+ b, a ∈ {0, 1}, b ∈ {0, . . . , e− 1},

ℓ = 2c+ d, c ∈ {0, . . . , e− 1}, d ∈ {0, 1}.

Now following the Cooley–Tukey algorithm, (4.3) becomes

Fq(2c+d)+q/2 =
e−1∑︂

b=0

1∑︂

a=0

ζ
(2c+d)(ae+b)
2e ζae+b

2m

p−1∑︂

t=0

(−1)tftm+ae+b,

=
e−1∑︂

b=0

ζcbe ζ
(2d+1)b
2m

p−1∑︂

t=0

(−1)t
(︁
ftm+b + i(−1)dftm+e+b

)︁
.

Thus, the full forward transform can be computed using two DFTs of size e, corre-

sponding to d = 0 and d = 1; however, we only need to compute this array for a

29

single value of d. Choosing2 d = 0, we have

Fq(2c)+q/2 =
e−1∑︂

b=0

ζcbe ζb2m

p−1∑︂

t=0

(−1)t (ftm+b + iftm+e+b) , (4.6)

which can be computed using a complex FFT of size e.

Writing (4.4) in terms of our new indices gives us:

hq/2,ae+b,t = (−1)tζ−(ae+b)
2m

1∑︂

d=0

e−1∑︂

c=0

ζ
−(ae+b)(2c+d)
2e Fq(2c+d)+q/2

= (−1)ti−aζ−b2m

[︄
e−1∑︂

c=0

ζ−bce Fq(2c)+q/2 + (−1)aζ−bm

e−1∑︂

c=0

ζ−bce Fq(2c+1)+q/2

]︄
.

Next, define the arrays wd = {wd,b}e−1b=0 via

wd,b
.
= ζ−b2m

e−1∑︂

c=0

ζ−bce Fq(2c+d)+q/2. (4.7)

Note that wd can be computed using an inverse DFT of size e. Equation (4.7) allows

us to write hq/2 as

hq/2,ae+b,t = (−1)ti−a
[︁
w0,b + (−1)aζ−bm w1,b

]︁
. (4.8)

Using eqs. (4.5) and (4.7)

w0,b = ζ−b2m

e−1∑︂

c=0

ζ−bce Fq(2c)+q/2 = ζb2m

e−1∑︂

c=0

ζbce Fq(2c)+q/2 = ζb2m

e−1∑︂

c=0

ζbce Fq(2e−1−2c)+q/2

= ζb2m

e−1∑︂

c=0

ζ−b(c+1)
e Fq(2c+1)+q/2 = ζ−3b2m

e−1∑︂

c=0

ζ−bce Fq(2c+1)+q/2 = ζ−bm w1,b.

2This choice is arbitrary. We could obtain the same results using d = 1.

30

So we can compute w1,b from w0,b, and (4.8) becomes

hq/2,ae+b,t = (−1)ti−a [w0,b + (−1)aw0,b] ,

so that

hq/2,b,t = (−1)t2Rew0,b, hq/2,e+b,t = (−1)t2 Imw0,b. (4.9)

To summarize our computation of hq/2, we first compute half of the residue

contributions with a complex FFT of size e using (4.6). If we were computing a

convolution, we would then apply our multiplication routine. Then we compute w0

using (3.3) and an inverse complex FFT of size e, and obtain hq/2 using (4.9).

Pseudocode for a real convolution3 is given by algorithm 11. Pseudocode for

the forward and backward transforms are given by algorithms 12 and 13 (for p = 1),

and algorithms 14 and 15 (for p = 2).

4.B Summary of chapter 4

In this chapter, we extended hybrid dealiasing to handle real-valued data; this

provides a solution to the third limitation of implicit dealiasing described in sec-

tion 1.B. Unlike the Hermitian case in section 3.B, we cannot rely on real-to-

complex/complex-to-real FFTs for each residue r ∈ {0, . . . , q − 1}. Instead, the

algorithm does the following:

• When r = 0, we can use real-to-complex/complex-to-real FFTs of length m.

• When r = q/2 (which only happens when q is even), we require that m be

even, and can use complex FFTs of length m/2.

3Note that each residue contribution is not the same size in this algorithm, which the multiplication
routine must account for.

31

• When r ∈ {1, . . . , ⌈q/2⌉ − 1}, we use complex FFTs of length m, simultane-

ously yielding the contributions for residues r and q − r.

Algorithm 11 convolveR is a one-dimensional real convolution. There are A
inputs (each of length L, to be padded to at least length M) and B outputs. The
convolution uses the multiplication operator mult.
Input: {fa}A−1

a=0 , L, M , m, A, B
p← ⌈L/m⌉
if p = 1 then

n← ⌈M/m⌉
q ← n
Forward←forward1R
Backward←backward1R

else if p = 2 then
n← ⌈M/m⌉
q ← n
Forward←forward2R
Backward←backward2R

else
n← ⌈M/(pm)⌉
if n is even then

Assert: p is even
q ← pn
Forward←forwardInnerR
Backward←backwardInnerR

if q is even then
Assert: m is even

for b = 0, . . . , B − 1 do
hb ← {0}L−1

j=0

for r = 0, . . . , ⌈(n+ 1)/2⌉ − 1 do
for a = 0, . . . , A− 1 do

F a ← Forward(fa, L,m, q, r)

{F b}B−1
b=0 ← mult({F a}A−1

a=0)
for b = 0, . . . , B − 1 do

hb ← hb + Backward(F b, L,m, q, r)
for b = 0, . . . , B − 1 do

f b ← hb/(qm)

return {f b}B−1
b=0

32

Algorithm 12 forward1R is the real for-
ward transform for residue r when p = 1.
Input: {fj}L−1

j=0 , L,m, q, r

h← ⌊m/2⌋
if r < q/2 then

for s = 0, . . . , L− 1 do
Ws ← ζrsqmfs

for s = L, . . . ,m− 1 do
Ws ← 0

if r = 0 then
{Vℓ}h+1

ℓ=0 ← rcfft({Ws}m−1
s=0)

return {Vk}h+1
k=0

else
{Vℓ}m−1

ℓ=0 ← fft({Ws}m−1
s=0)

return {Vk}m−1
k=0

else if r = q/2 then
B1 ← max(0, L− h)
B2 ← min(h, L)
for b = 0, . . . , B1 − 1 do

Wb ← ζb2m (fb + ifh+1+b)
for b = B1, . . . , B2 − 1 do

Wb ← ζb2mfb
for b = L, . . . , h− 1 do

Wb ← 0
{Vc}h−1

c=0 ← fft({Wb}h−1
b=0)

return {Vk}h−1
k=0

Algorithm 13 backward1R is the real
backward transform for residue r when
p = 1.
Input: {Fk}2m−1

k=0 , L,m, q, r
h← ⌊m/2⌋
if r = 0 then
{Ws}m−1

s=0 ← crfft({Fℓ}h+1
ℓ=0)

else if r < ⌈q/2⌉ then
{Ws}m−1

s=0 ← ifft({Fℓ}m−1
ℓ=0)

for s = 0, . . . , L− 1 do
Ws ← 2Re

{︁
ζ−rs
qm Ws

}︁

else
{Wb}h−1

b=0 ← ifft({Fc}h−1
c=0)

B1 ← max(0, L− h)
B2 ← min(h, L)
for b = 0, . . . , B1 − 1 do

Wh+b ← 2 Im
{︁
ζ−b
2mWb

}︁

Wb ← 2Re
{︁
ζ−b
2mWb

}︁

for b = B1, . . . , B2 − 1 do
Wb ← 2Re

{︁
ζ−b
2mWb

}︁

return {Ws}L−1
s=0

33

Algorithm 14 forward2R is the real for-
ward transform for residue r when p = 2.
Input: {fj}L−1

j=0 , L,m, q, r

h← ⌊m/2⌋
if r < q/2 then

for s = 0, . . . , L−m− 1 do
Ws ← ζrsqmfs + ζ

r(s+m)
qm fs+m

for s = L−m, . . . ,m− 1 do
Ws ← ζrsqmfs

if r = 0 then
{Vℓ}h+1

ℓ=0 ← rcfft({Ws}m−1
s=0)

return {Vk}hk=0 + 1
else
{Vℓ}m−1

ℓ=0 ← fft({Ws}m−1
s=0)

return {Vk}m−1
k=0

else if r = q/2 then
B1 = max(0, L−m− h)
B2 = min(h, L−m)
for b = 0, . . . , B1 − 1 do

Ws ← ζb2m [fb − fb+m+
i(fh+b − fh+m+b)]

for b = B1, . . . , B2 − 1 do
Ws ← ζb2m (fb − fb+m + ifh+b)

for b = B2, . . . , h− 1 do
Ws ← ζb2m (fb + ifh+b)

{Vc}h−1
c=0 ← fft({Ws}h−1

s=0)

return {Vk}h−1
k=0

Algorithm 15 backward2R is the real
backward transform for residue r when
p = 2.
Input: {Fk}2m−1

k=0 , L,m, q, r
h← ⌊m/2⌋
if r = 0 then
{Ws}m−1

s=0 ← crfft({Fℓ}h+1
ℓ=0)

for s = m, . . . , L− 1 do
Ws ←Ws−m

else if r < ⌈q/2⌉ then
{Ws}m−1

s=0 ← ifft({Fℓ}m−1
ℓ=0)

for s = 0, . . . ,m− 1 do
Ws ← 2Re

{︁
ζ−rs
qm Ws

}︁

for s = m, . . . , L− 1 do
Ws ← 2Re

{︂
ζ
−r(s−m)
qm Ws−m

}︂

else if r = q/2 then
{Ws}h−1

s=0 ← ifft({Fℓ}h−1
ℓ=0)

B1 = max(0, L−m− h)
B2 = min(h, L−m)
for b = 0, . . . , B1 − 1 do

Wm+h+b ← −2 Im
{︁
ζ−b
2mWb

}︁

Wm+b ← −2Re
{︁
ζ−b
2mWb

}︁

Wh+b ← 2 Im
{︁
ζ−b
2mWb

}︁

Wb ← 2Re
{︁
ζ−b
2mWb

}︁

for b = B1, . . . , B2 − 1 do
Wm+b ← −2Re

{︁
ζ−b
2mWb

}︁

Wh+b ← 2 Im
{︁
ζ−b
2mWb

}︁

Wb ← 2Re
{︁
ζ−b
2mWb

}︁

for b = B2, . . . , h− 1 do
Wh+b ← 2 Im

{︁
ζ−b
2mWb

}︁

Wb ← 2Re
{︁
ζ−b
2mWb

}︁

return {Ws}L−1
s=0

34

Chapter 5

Multidimensional convolutions

An n-dimensional convolution is conventionally computed by performing an FFT of

sizeN1×. . .×Nn, applying the specified multiplication operator on the transformed

data, and then performing an inverse FFT back to the original space. However, as de-

scribed in [BR11] and [RB18], a better alternative is to decompose then-dimensional

convolution recursively into
∏︁n

i=2Ni FFTs in the first dimension, followed by N1

convolutions of dimension n − 1, and finally
∏︁n

i=2 Ni inverse FFTs in the first

dimension. This is illustrated in figure 5.1. At the innermost level, a recursive

multidimensional convolution thus reduces to a one-dimensional convolution.

The most important advantage of decomposing a multidimensional convolu-

tion is that one can reuse the work buffer for each subconvolution, reducing the

total memory footprint. These storage savings are attainable regardless of whether

explicit or implicit dealiasing is used for the underlying padded FFTs.

For example, the memory management for a single-threaded 2D padded com-

plex convolution for A = 2 and B = 1 is shown in figure 5.2. For each

rx ∈ {0, 1, . . . , qx − 1}, the residue contribution to the padded x FFT of the in-

put buffers is stored in the square boxes. A padded FFT of each input is then

35

FFT1 FFT2 . . . FFTn mult FFT−1
n

. . . FFT−1
2 FFT−1

1

n dimensional FFT n dimensional FFT−1

n− 1 dimensional convolution

Figure 5.1: Recursive computation of an n-dimensional convolution.

performed in the y direction, column-by-column, using a one-dimensional work

buffer, to produce a single column of the Fourier-transformed image, depicted in

yellow. The Fourier transformed columns of two inputs F and G are then multi-

plied pointwise and stored back into the F column. At this point, the inverse y

transform can then be performed, with the truncated result stored in the lower half

of the column, next to the previously processed data shown in red. This process is

repeated on the remaining columns, shifting and reusing the work buffers. Once all

the columns have been processed, an inverse transform in the x direction produces

the final rx contribution to the convolution.

Frx Grx

Figure 5.2: The reuse of memory to compute the contribution of a single x residue
to a 2D binary convolution with two inputs and one output: a 1D padded y FFT is
applied to columns of F rx and Grx to produce the two stacked yellow columns that
are fed to the multiplication operator, producing one stacked column to be inverse y
transformed into a single column (like the red one shown on the left). The upper
column is then reused for processing subsequent columns.

The reuse of subconvolution work memory allows the convolution to be com-

36

puted using less total memory: for a d-dimensional p/q padded convolution, the

work memory requirement is (A + B)pmLd−1 complex words, where p = ⌈L/m⌉

(not counting the storage requirements for the input data). In contrast, explicit

padding requires a typically much larger buffer of size E .
= C(q/p)dLd, where C =

max(A,B). For example, computing a d-dimensional dealiased convolution im-

plicitly for A = 2 and B = 1 with padding ratio p/q = 1/2 and m = L ≫ 1

asymptotically requires a storage of 3E/2d+1. In particular, in one dimension, the

general formulation of implicit padding requires 3/4 of the work memory required

by explicit padding. For a 2/3 padding ratio, implicit padding requires (2/3)d−1E.

In addition to having reduced memory requirements, a dealiased multidimensional

convolution decomposed in this way is significantly faster than a conventional im-

plementation due to better data locality, optimal FFT sizes, and the elimination of

transforms of data known a priori to be zero.

For Hermitian-symmetric data, we assume that the origin is in the center of the

unsymmetrized domain (only about half of which is retained). The outer convo-

lutions are centered, while the innermost convolution is Hermitian. The input is

assumed to be Hermitian symmetric on the hyperplane orthogonal to the innermost

direction.

The FFTs in multithreaded convolutions can be parallelized by dividing the
∏︁n

i=2 Ni

one-dimensional FFTs between the T threads. Similarly, the N1 subconvolutions

can be parallelized over T ≤ N1 threads using T work buffers [RB18].

37

Chapter 6

Numerical implementation

In this chapter, we describe several optimizations that significantly improve the

performance of the underlying one-dimensional padded/unpadded FFTs.

6.A Inner loop optimization

While the algorithms presented so far allow FFTs of any size m ∈ N, there is an

issue of efficiency when m is much smaller than the input arrays. As m decreases,

p and q increase, which increases the amount of preprocessing that our algorithms

require. The inner loop optimization is a modification that allows one to compute

the preprocessing and post-processing using FFTs of size p.

6.A.1 Inner loop for complex arrays

Consider the complex case described in chapter 2. One may note that the prepro-

cessing done in (2.1) is itself a padded FFT from size p to size q. Similarly, the

post-processing in (2.2) is an unpadded FFT from size q to size p. Thus, if p and q

share a common factor, one can use these equations recursively.

38

We redefine q in (2.3) as the smallest positive multiple of p such that qm ≥M :

n
.
=

⌈︃
M

pm

⌉︃
, q

.
= np.

To compute the preprocessing in (2.1), we let r = un+ v, where u = 0, . . . , p− 1,

and v = 0, . . . , n− 1. Then the forward transform becomes

Fqℓ+un+v =
m−1∑︂

s=0

ζℓsmζ(un+v)s
qm

p−1∑︂

t=0

ζutp
(︁
ζvtq ftm+s

)︁
, (6.1)

so the sum over t can be computed using n DFTs of size p. Similarly, the post-

processing in (2.2),

ftm+s =
1

qm

n−1∑︂

v=0

ζ−tvnp

p−1∑︂

u=0

ζ−tup ζ−s(un+v)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+un+v, (6.2)

requires the sum of n DFTs of size p. In this optimization we consider each v to be

a residue; the full transform then has n residue contributions of size pm. Note that

the sum over v is not a DFT as the input depends on both v and t. Pseudocode for

the inner loop is given in algorithms 16 and 17.

6.A.2 Inner loop for centered and Hermitian arrays

Just as we did in the standard case, we can apply the same recursive techniques to

the centered case described in section 3.A.

The summation in (3.3) is itself a padded DFT from size p/2 to size q. Therefore,

if q shares a factor with p/2, we can use the transforms in section 6.A.1 to preform

the preprocessing.

In our implementation, we consider two cases. If p = 2, we directly sum the

39

Algorithm 16 forwardInner is the
complex forward transform for residue v
when p > 2.
Input: {fj}L−1

j=0 , L,m, q, v

p← ⌈L/m⌉
for t = 0, . . . , p− 2 do

for s = 0, . . . ,m− 1 do
Wtm+s ← ζvtq ftm+s

t0 ← p− 1
for s = 0, . . . , L− t0m− 1 do

Wt0m+s ← ζvt0q ft0m+s

for s = L− t0m, . . . ,m− 1 do
Wt0m+s ← 0

for s = 0, . . . ,m− 1 do
{Wum+s}p−1

u=0 ← fft({Wtm+s}p−1
t=0)

for u = 0, . . . , p− 1 do
for s = 0, . . . ,m− 1 do

Wum+s ← ζ
(un+v)s
qm Wum+s

{Fum+ℓ}m−1
ℓ=0 ← fft({Wum+s}m−1

s=0)

return {Fk}pm−1
k=0

Algorithm 17 backwardInner is the
complex backward transform for residue
v when p > 2.
Input: {Fk}pm−1

k=0 , L,m, q, v
p← ⌈L/m⌉
for u = 0, . . . , p− 1 do
{Wum+s}m−1

s=0 ← ifft({Fum+ℓ}m−1
ℓ=0)

for u = 0, . . . , p− 1 do
for s = 0, . . . ,m− 1 do

Wum+s ← ζ
−s(un+v)
qm Wum+s

for s = 0, . . . ,m− 1 do
{Wtm+s}p−1

t=0 ← ifft({Wum+s}p−1
u=0)

for t = 0, . . . , p− 2 do
for s = 0, . . . ,m− 1 do

Vtm+s ← ζ−tv
q Wtm+s

t0 ← p− 1
for s = 0, . . . , L−mt0 − 1 do

Vt0m+s ← ζ−t0v
q Wt0m+s

return {Vj}L−1
j=0

two terms in wr,s. If p > 2 (with p assumed to be even), we define

n
.
=

⌈︃
2M

pm

⌉︃
, q

.
= n

p

2
.

Then, letting r = un + v, where u = 0, . . . , p/2 − 1, and v = 0, . . . , n − 1, we

compute

wun+v,s = ζ(un+v)s
qm

p/2−1∑︂

t=0

ζutp/2
[︁
ζvtq

(︁
ftm+s + ζ−vn ftm+s−pm/2

)︁]︁
.

For each value of v, each of these sums is a DFT of length p/2. Then, using (3.2),

we compute

Fqℓ+un+v =
m−1∑︂

s=0

ζℓsmwun+v,s. (6.3)

The inverse transform is the same as (6.2). Pseudocode for the centered case is

40

given in algorithms 18 and 19.

Algorithm 18 forwardInnerC is the
centered complex forward transform for
residue v when p > 2. Here δt is the Kro-
necker δt,0.
Input: {fj}L−1

j=0 , L,m, q, v

H ← ⌊L/2⌋
p2 ← ⌈L/(2m)⌉
m0 ← p2m−H
m1 ← L−H − (p2 − 1)m
for s = 0, . . . ,m0 − 1 do

Ws ← fH+s

for t = 0, . . . , p2 − 1 do
m2 ← (m1 −m)δt−(p2−1) +m
for s = m0δt, . . . ,m2 − 1 do

Wtm+s ← ζ
v(t−p2)
q f(t−p2)m+H+s+
ζvtq ftm+H+s

for s = m1, . . . ,m− 1 do
W(p2−1)m+s ← ζ−v

q f−m+H+s

for s = 0, . . . ,m− 1 do
{Wum+s}p2−1

u=0 ← fft({Wtm+s}p2−1
t=0)

for u = 0, . . . , p2 − 1 do
for s = 1, . . . ,m− 1 do

Wum+s ← ζ
(un+v)s
qm Wum+s

{Vum+ℓ}m−1
ℓ=0 ← fft({Wum+s}m−1

s=0)

return {Vk}p2m−1
k=0

Algorithm 19 backwardInnerC is the
centered complex backward transform
for residue v when p > 2. Here δt is the
Kronecker δt,0.
Input: {Fk}pm/2−1

k=0 , L,m, q, v
H ← ⌊L/2⌋
p2 ← ⌈L/(2m)⌉
m0 ← p2m−H
m1 ← L−H − (p2 − 1)m
for u = 0, . . . , p2 − 1 do
{Wum+s}m−1

s=0 ← ifft({Fum+ℓ}m−1
ℓ=0)

for s = 1, . . . ,m− 1 do
Wum+s ← ζ

−(un+v)s
qm Wum+s

for s = 0, . . . ,m− 1 do
{Wtm+s}p2−1

t=0 ← ifft({Wum+s}p2−1
u=0)

for s = 0, . . . ,m0 − 1 do
VH+s ←Ws

for t = 0, . . . , p2 − 1 do
m2 ← (m1 −m)δt−(p2−1) +m
for s = m0δt, . . . ,m2 − 1 do

V(t−p2)m+H+s ← ζ
−v(t−p2)
q Wtm+s

Vtm+H+s ← ζ−vt
q Wtm+s

for s = m1, . . . ,m− 1 do
V−m+H+s ← ζvqW(p2−1)m+s

return {Vj}L−1
j=0

These equations also apply to the Hermitian case (section 3.B), using fj = f−j

whenever j < 0; however, unlike the outer FFTs of length m, the preprocessing

and postprocessing stages use complex FFTs. Pseudocode for the centered case

is given in algorithms 18 and 19. Pseudocode for the Hermitian case is given in

algorithms 20 and 21.

6.A.3 Inner loop for real arrays

The inner loop can also be developed for the real case described in chapter 4. The

parameters for the real inner loop are defined in the same way as the complex

41

Algorithm 20 forwardInnerH is the
Hermitian forward transform for residue
v when p > 2. Here δt is the Kronecker
δt,0.
Input: {fj}H̃j=0 , L,m, q, v

H̃ ← ⌈L/2⌉
e← ⌊m/2⌋+ 1
p2 ← ⌈L/(2m)⌉
n← q/p2

m0 ← min
(︂
p2m− H̃ + 1, e

)︂

for s = 0, . . . ,m0 − 1 do
Ws ← fs

for t = 0, . . . , p2 − 1 do
for s = m0δt, . . . , e− 1 do

Wte+s ← ζ
v(t−p2)
q f(p2−t)m−s+
ζvtq ftm+s

for s = 0, . . . , e− 1 do
{Wue+s}p2−1

u=0 ← fft({Wte+s}p2−1
t=0)

for u = 0, . . . , p2 − 1 do
for s = 1, . . . , e− 1 do

Wue+s ← ζ
(un+v)s
qm Wue+s

{Vum+ℓ}m−1
ℓ=0 ← crfft({Wue+s}e−1

s=0)

return {Vk}p2m−1
k=0

Algorithm 21 backwardInnerH is the
Hermitian backward transform for residue
v when p > 2. Here δt is the Kronecker
δt,0.
Input: {Fk}pm/2−1

k=0 , L,m, q, v

H̃ ← ⌈L/2⌉
e← ⌊m/2⌋+ 1
p2 ← ⌈L/(2m)⌉
n← q/p2

m0 ← min
(︂
p2m− H̃ + 1, e

)︂

for u = 0, . . . , p2 − 1 do
{Wue+s}e−1

s=0 ← rcfft({Fum+ℓ}m−1
ℓ=0)

for s = 1, . . . , e− 1 do
Wue+s ← ζ

−(un+v)s
qm Wue+s

for s = 0, . . . , e− 1 do
{Wte+s}p2−1

t=0 ← ifft({Wue+s}p2−1
u=0)

for s = 1, . . . ,m0 − 1 do
Vs ←Ws

for t = 0, . . . , p2 − 1 do
Vtm ← ζ−vt

q Wte

for s = (m0 − 1)δt + 1, . . . ,m− e do
Vtm+s ← ζ−vt

q Wte+s

V(p2−t)m−s ← ζ
−v(p2−t)
q Wte+s

if m is even then
for t = 0, . . . , p2 do

Vtm+e−1 ← ζ−vt
q We(t+1)−1

return {Vj}H̃j=0

42

inner loop (section 6.A.1), and the forward and backward transforms are given by

equations eqs. (6.1) and (6.2).

For each v ∈ {0, . . . , n−1}, we define the two-dimensional arrayhv of sizem×p

via

hv,s,t
.
= ζ−tvq

p−1∑︂

u=0

ζ−tup ζ−s(un+v)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+un+v, (6.4)

so that we can write

qmftm+s =
n−1∑︂

v=0

hv,s,t.

Just as in chapter 4, we have the Hermitian symmetry

hv,s,t = hn−v,s,t,

which gives us

qmftm+s = h0,s,t + 2

⌈n/2⌉−1∑︂

v=1

Re{hv,s,t}+ hn/2,s,t,

where we take hn/2 ≡ 0 if n is odd.

Thus, if v ∈ {1, . . . ⌈n/2⌉ − 1}, we get the contributions of hv and hn−v

simultaneously. Therefore, we can essentially use the algorithm for the complex

inner loop of section 6.A.1 for these residues. There are two other residues to

consider.

Residue v = 0:

In this case, the forward transform (6.1) reduces to

Fqℓ+un =
m−1∑︂

s=0

ζℓsmζunsqm

p−1∑︂

t=0

ζutp ftm+s. (6.5)

43

and (6.4) becomes

h0,s,t
.
=

p−1∑︂

u=0

ζ−tup ζ−sunqm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+un. (6.6)

Note that DFTs of size p in (6.6) can be computed using real-to-complex/complex-

to-real FFTs. So if we compute the contribution for u ∈ {1, . . . , ⌈p/2⌉ − 1}, we

can obtain the contribution from p− u via its complex conjugate.1 Thus, we don’t

sacrifice efficiency by using complex FFTs of size m for these values of u.

It remains to handle the cases u = 0 and 2u = p. For convenience, let f̃ be the

output of the DFT of size p in (6.5), with elements

f̃um+s =

p−1∑︂

t=0

ζutp ftm+s.

Note that f̃ is Hermitian symmetric in u, for each s ∈ {0, . . . ,m− 1}.

First, consider the case when u = 0. By Hermitian symmetry, f̃ s ∈ R for

each s ∈ {0, . . . ,m − 1} (as these are the DC modes). The forward transform

becomes

Fqℓ =
m−1∑︂

s=0

ζℓsm f̃ s,

which can be computed using a real-to-complex FFT. Similarly, the inverse can be

computed using a complex-to-real FFT.2

1We don’t need to compute these conjugates explicitly, as everything is handled by the real-to-
complex/complex-to-real FFTs of size p.

2Using real-to-complex/complex-to-real FFTs for this case actually has some disadvantages. One
such disadvantage (pertaining to multidimensional convolutions) is that, in practice, computing
many in-place real-to-complex/complex-to-real FFTs is often less efficient than computing the same
number of in-place complex FFTs of the same size. We also don’t save any memory by using real-
to-complex/complex-to-real FFTs for this part of the residue, as we need this memory when v > 0.
In contrast, the algorithms described in chapter 4 can save memory (specifically the important case
when q = 2) when using real-to-complex/complex-to-real FFTs for residue 0. Another issue is
that the residue contribution will have a gap in memory, as real-to-complex FFTs utilize Hermitian
symmetry and only half of the modes will be computed. This must be accounted for when applying

44

Now consider the case when u = p/2. Recall that q = np, so r = un = pn/2 =

q/2. Furthermore, f̃pm/2+s ∈ R for all 0 ≤ s < m (as these are the Nyquist modes).

Thus we see that this is same as the r = q/2 case of section 4.A, and we can

handle it in the same way: we require that m be even and compute this contribution

using complex FFTs of size m/2.

Residue v = n/2:

Note that this case is only relevant when n is even. The forward transform is now

Fqℓ+un+n/2 =
m−1∑︂

s=0

ζℓsmζ(un+n/2)s
qm

p−1∑︂

t=0

ζutp ζt2pftm+s, (6.7)

and (6.4) becomes

hn/2,s,t
.
= ζ−t2p

p−1∑︂

u=0

ζ−tup ζ−s(un+n/2)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+un+n/2. (6.8)

Consider just the DFT of size p in (6.7)

p−1∑︂

t=0

ζutp ζt2pftm+s. (6.9)

Note that because f is real, (6.9) is of the exact same form as the DFT in (4.3). Thus,

if we require p to be even, then we can use the algorithm for r = q/2 in section 4.A

to compute (6.9) using complex FFTs of size p/2.

the multiplication routine. Of course, there is less multiplication to perform if one uses real-to-
complex/complex-to-real FFTs, but the inner loop is typically only useful for relatively small values
of m (so the savings are minimal). For these reasons, our implementation of the real inner loop in
FFTW++ [BRM23] uses a complex FFT to compute this part of the residue. This is also what is done
in the pseudocode for the real inner loop, which is given in algorithms 22 and 23.

45

Let φ .
= p/2, and reindex t and u as follows:

t = αφ+ β, α ∈ {0, 1}, β ∈ {0, . . . , φ− 1},

u = 2γ + δ, γ ∈ {0, . . . , φ− 1}, δ ∈ {0, 1}.

Writing (6.9) in terms of the new indices gives us

p−1∑︂

t=0

ζutp ζt2pftm+s =

φ−1∑︂

β=0

ζγβφ ζ
β(2δ+1)
2p

[︁
fβm+s + (−1)δif(φ+β)m+s

]︁
.

If we set δ = 0, the forward transform becomes

Fqℓ+2γn+n/2 =
m−1∑︂

s=0

ζℓsmζ(2γn+n/2)s
qm

φ−1∑︂

β=0

ζγβφ ζβ2p
[︁
fβm+s + if(φ+β)m+s

]︁
. (6.10)

Next, we write (6.8) in terms of the new indices

hn/2,s,αφ+β = i−αζ−β2p

[︄
φ−1∑︂

γ=0

ζ−βγφ ζ−s(2γn+n/2)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+2γn+n/2+

(−1)αζ−βp

φ−1∑︂

γ=0

ζ−βγφ ζ−s((2γ+1)n+n/2)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+(2γ+1)n+n/2

]︄
. (6.11)

Similarly to (4.7), we define

wδ,s,β
.
= ζ−β2p

φ−1∑︂

c=0

ζ−βγφ ζ−s((2γ+δ)n+n/2)
qm

m−1∑︂

ℓ=0

ζ−sℓm Fqℓ+(2γ+δ)n+n/2,

so that (6.11) becomes

hn/2,s,β = 2Re (w0,β,s) , hn/2,s,φ+β = 2 Im (w0,β,s) .

46

This algorithm allows us to compute the v = n/2 residue using only p/2 DFTs of

size m (instead of p DFTs of size m). Therefore, we can use complex FFTs of size m

in (6.10) without sacrificing efficiency.

Pseudocode for the real inner loop is given in algorithms 22 and 23.

6.B Conjugate symmetry optimization

In the complex and Hermitian symmetric cases, we can exploit conjugate symmetries

in the primitive roots.3 This has been used in previous implementations of implicit

dealiasing [BR11] for centered convolutions, as discussed in section 3.A. Here we

extend the technique to more general situations, including p > 2.

First, we consider the standard case (chapter 2). We use the inner-loop formula-

tion from section 6.A.1 for generality. Assuming that v /∈ {0, n/2}, define

As,t,v
.
= ζvtq Re ftm+s, Bs,t,v

.
= iζvtq Im ftm+s.

Then we have

Fqℓ+un+v =
m−1∑︂

s=0

ζℓsmζ(un+v)s
qm

[︄
p−1∑︂

t=0

ζutp (As,t,v +Bs,t,v)

]︄
,

Fqℓ+un−v =
m−1∑︂

s=0

ζℓsmζ(un−v)sqm

[︄
p−1∑︂

t=0

ζutp
(︁
As,t,v −Bs,t,v

)︁
]︄
.

This allows us to compute Fqℓ+un+v and Fqℓ+un−v together efficiently.

A similar optimization in the centered and Hermitian cases (described in sec-

3This optimization does not apply to the real case, as using conjugate symmetries is already
central to those algorithms.

47

Algorithm 22 forwardInnerR is the
real forward transform for residue v when
p > 2.
Input: {fj}L−1

j=0 , L,m, q, v

φ← ⌈p/2⌉
h← ⌊m/2⌋
if v < n/2 then

for t = 0, . . . , p− 2 do
for s = 0, . . . ,m− 1 do

Wtm+s ← ζvtq ftm+s

for s = 0, . . . , L− (p− 1)m− 1 do
Wtm+s ← ζ

v(p−1)
q ftm+s

for s = L− (p− 1)m, . . . ,m− 1 do
Wtm+s ← 0

if v = 0 then
for s = 0, . . . ,m− 1 do
{Wum+s}⌊p/2⌋u=0 ← rcfft({Wtm+s}p−1

t=0)
for u = 0, . . . , φ− 1 do

for s = 0, . . . ,m− 1 do
Wum+s ← ζuns

qm Wum+s

{Vum+ℓ}m−1
ℓ=0 ← fft({Wum+s}m−1

s=0)
if p even then

for b = 0, . . . , h− 1 do
Wφm+b ← ζb2mWφm+b+

iζb2mWφm+h+b

{Vφm+c}h−1
c=0 ← fft(

{︁
Wφm+b

}︁h−1

b=0
)

return {Vk}φm+h−1
k=0

else
return {Vk}φm−1

k=0
else

for s = 0, . . . ,m− 1 do
{Wum+s}p−1

u=0 ← fft({Wtm+s}p−1
t=0)

for u = 0, . . . , p− 1 do
for s = 0, . . . ,m− 1 do

Wum+s ← ζ
(un+v)s
qm Wum+s

{Vum+ℓ}m−1
ℓ=0 ← fft({Wum+s}m−1

s=0)

return {Vk}pm−1
k=0

else if v = n/2 then
for β = 0, . . . , φ− 2 do

for s = 0, . . . ,m− 1 do
Wβm+s ← ζβ2p(Wβm+s + iW(φ+β)m+s)

for s = 0, . . . , L− (p− 1)m− 1 do
W(φ−1)m+s ← ζφ−1

2p W(φ−1)m+s+

iζφ−1
2p W(φ−1+β)m+s

for s = L− (p− 1)m, . . . ,m− 1 do
W(φ−1)m+s ← ζφ−1

2p W(φ−1)m+s

for s = 0, . . . ,m− 1 do
{Wγm+s}φ−1

γ=0 ← fft(
{︁
Wβm+s

}︁φ−1

β=0
)

for γ = 0 . . . , φ− 1 do
for s = 0 . . . ,m− 1 do

Wγm+s ← ζ
(2γn+n/2)s
qm Wγm+s{︁

Vγm+ℓ

}︁m−1

ℓ=0
← fft({Wγm+s}m−1

s=0)

return {Vk}φm−1
k=0

Algorithm 23 backwardInnerR is the
real backward transform for residue v
when p > 2.
Input: {Fk}pm−1

k=0 , L,m, q, v
φ← ⌈p/2⌉
h← ⌊m/2⌋
if v = 0 then

for u = 0, . . . , φ− 1 do
{Wum+s}m−1

s=0 ← ifft({Vum+ℓ}m−1
ℓ=0)

for s = 0, . . . ,m− 1 do
Wum+s ← ζ−uns

qm Wum+s

if p even then{︁
Wφm+b

}︁h−1

b=0
← ifft({Vφm+c}h−1

c=0)
for b = 0 . . . , h− 1 do

Wφm+h+b ← 2 Im
{︂
ζ−b
2mWφm+b

}︂
Wφm+b ← 2Re

{︂
ζ−b
2mWφm+b

}︂
for s = 0, . . . ,m− 1 do
{Wtm+s}p−1

t=0 ← crfft({Wum+s}⌊p/2⌋u=0)
else if v < n/2 then

for u = 0, . . . , p− 1 do
{Wum+s}m−1

s=0 ← ifft({Vum+ℓ}m−1
ℓ=0)

for s = 0, . . . ,m− 1 do
Wum+s ← ζ

−s(un+v)
qm Wum+s

for s = 0, . . . ,m− 1 do
{Wtm+s}p−1

t=0 ← ifft({Wum+s}p−1
u=0)

for t = 0, . . . , p− 2 do
for s = 0, . . . ,m− 1 do

Wtm+s ← 2Re
{︂
ζ−tv
q Wtm+s

}︂
for s = 0, . . . , L− (p− 1)m− 1 do

W(p−1)m+s ← 2Re
{︂
ζ
−(p−1)v
q W(p−1)m+s

}︂
else if v = n/2 then

for γ = 0 . . . , φ− 1 do
{Wγm+s}m−1

s=0 ← ifft(
{︁
Vγm+ℓ

}︁m−1

ℓ=0
)

for s = 0 . . . ,m− 1 do
Wγm+s ← ζ

−s(2γn+n/2)
qm Wγm+s

for s = 0, . . . ,m− 1 do{︁
Wβm+s

}︁φ−1

β=0
← ifft({Wγm+s}φ−1

γ=0)

for β = 0, . . . , φ− 2 do
for s = 0, . . . ,m− 1 do

W(φ+β)m+s ← 2 Im
{︂
ζ−β
2p Wβm+s

}︂
Wβm+s ← 2Re

{︂
ζ−β
2p Wβm+s

}︂
for s = 0, . . . , L− (p− 1)m− 1 do

W(p−1)m+s ← 2 Im
{︂
ζ
−(φ−1)
2p W(φ−1)m+s

}︂
W(φ−1)m+s ← 2Re

{︂
ζ
−(φ−1)
2p W(φ−1)m+s

}︂
for s = L− (p− 1)m, . . . ,m− 1 do

W(φ−1)m+s ← 2Re
{︂
ζ
−(φ−1)
2p W(φ−1)m+s

}︂
return {Wj}L−1

j=0

48

tions 3.A and 3.B) is obtained with

As,t,v
.
= ζvtq

(︁
Re ftm+s + ζ−vn Re ftm+s−pm/2

)︁
,

Bs,t,v
.
= iζvtq

(︁
Im ftm+s + ζ−vn Im ftm+s−pm/2

)︁
,

which allows us to compute (6.3) using

wun+v,s = ζ(un+v)s
qm

⎡
⎣

p/2−1∑︂

t=0

ζutp/2 (As,t,v +Bs,t,v)

⎤
⎦ ,

wun−v,s = ζ(un−v)sqm

⎡
⎣

p/2−1∑︂

t=0

ζutp/2
(︁
As,t,v −Bs,t,v

)︁
⎤
⎦ .

6.C Overwrite optimization

For certain padded FFTs, where all residues are computed at once, the input array

is large enough to hold all but one of the residue contributions. We have designed

specialized algorithms for such cases, with one residue contribution written to the

output buffer and the others stored in the input buffer.

The overwrite optimization is particularly advantageous in the standard case

(chapter 2) when M ≤ 2L and m = L, so that p = 1 and q = 2. In this case, the

input buffer already contains the preprocessed data for r = 0 and the preprocessed

data ζsqmfs for r = 1 is written to the output buffer. The input and output buffers

are then individually Fourier transformed to obtain the required residues. The

backwards transform does the reverse operation: it first performs inverse Fourier

transforms on the input and output buffers, then adds products of the output buffer

and roots of unity to the input buffer.

49

To use the overwrite optimization for computing a one-dimensional convolution,

the number of inputs A must be at least as large as the number of outputs B.

Under this same restriction, the overwrite optimization can be implemented for each

dimension of a multidimensional convolution.

6.D Loop optimizations

If the overwrite optimization is not applicable, other data flow improvements may be

possible. Suppose that we compute a block of D residues at a time as described in

section 2.C. Normally, the contribution to the inverse padded Fourier transform from

the block containing residue 0 is stored in an accumulation buffer; the contributions

from the remaining residues are then added to this buffer by iterating over the other

residue blocks. If there are no other residue blocks, a separate accumulation buffer

is not needed; one can accumulate the residues entirely within the input buffer.

Another optimization is possible when A > B and there are exactly two residue

blocks, which we label 0 and r. In this case, we compute all A forward-padded FFT

contributions to residue block 0 in an output buffer F and apply the multiplication

operator, freeing up the storage inF associated withA−B inputs. We then transform

the contributions to residue block r, A−B inputs at a time, each time writing A−B

inverse-transformed contributions from residue block 0 to the input buffer. Once

all A contributions to residue block r have been forward transformed, we apply the

multiplication operator and accumulate the contributions from the inverse transform

in the input buffer.

50

Chapter 7

Numerical results

This work presents several algorithms for computing padded/unpadded FFTs. Which

algorithm is optimal for a given problem depends on the number of inputs A and

outputs B, the multiplication operator mult, the input data length L, the padded

length M , the number of copies C of the transform to be computed simultaneously,

and the stride S between successive data elements of each copy. For simplicity, we

only consider the efficiently packed case, where the distance in memory between the

first element of each copy is one. Vectorized and parallelized C++ versions of these

algorithms have been implemented in the open-source library FFTW++ [BRM23].

We determine the fastest algorithm for a given problem empirically, scanning

over the underlying FFT size m, the number D of residues to be computed at a time

(as described in section 2.C), and whether or not to use in-place or out-of-place

FFTs. These parameters then determine the values of p and q to use in our padded

FFT algorithms.

Our optimizer measures the time required to compute a one-dimensional in-

place dealiased convolution for a particular set of parameters, using the given

multiplication routine. As described in chapter 5, multidimensional convolutions

51

are decomposed into a sequence of padded FFTs, a one-dimensional convolution,

and then a sequence of inverse padded FFTs. We assume that the padded/unpadded

FFT pairs can be optimized independently in each dimension. This is accomplished

by performing one-dimensional convolutions using each padded FFT pair, without

calling the multiplication routine. In practice, this decoupling works well and leads

to efficient optimization of multidimensional convolutions. If the outermost pair

FFT1 and FFT−11 in figure 5.1 are to be multithreaded over T threads, optimization

of the remaining FFTs should be performed over T concurrent copies, to simulate

the execution environment.

Timings were done using the chrono::nanoseconds clock from the C++

standard library. For each size, we recorded the time to compute an unnormalized

convolution1 of two inputs. This was repeated for at least 5 seconds and until we

had at least 20 samples. We plot the median times from each of these tests.

We benchmarked our algorithms with a liquid-cooled Intel i9-12900K proces-

sor (5.2GHz, 8 performance cores) on an ASUS ROG Strix Z690-F motherboard

with 128GB of DDR5 memory (5GHz), using version 12.2.1 of the GCC compiler

with the optimizations -Ofast -fomit-frame-pointer -fstrict-aliasing

-ffast-math. The underlying FFTs were computed with version 3.3.10 of the

adaptive FFTW [FJ; FJ05] library under the Fedora 37 operating system. Multi-

threading was implemented with the OpenMP library.

7.A Complex convolution benchmarks

First, we benchmark the median execution times for the complex convolution algo-

rithms described in chapter 2. We do so in one, two, and three dimensions, each over

1By unnormalized convolution, we mean that we do not normalize the inverse FFTs.

52

one thread and eight threads. These algorithms are compared to implicit dealiasing

[RB18] and explicit dealiasing. In one dimension, we compare to both in-place (IP)

and out-of-place (OP) FFTs with explicit dealiasing. For multidimensional con-

volutions, only in-place FFTs are used for the explicit routines. The convolutions

use 1/2 padding, which is the necessary padding required to fully dealias a binary

convolution.

7.A.1 One-dimensional complex convolutions

In figure 7.1 we plot the normalized times for one-dimensional in-place convolutions

of L complex words over one thread. We see that hybrid dealiasing is much faster

than both explicit and implicit dealiasing for large sizes and is generally competitive

with optimized out-of-place explicit algorithms (to which it reduces) for small sizes.

In figure 7.2 we plot the normalized times for the same one-dimensional convolutions

parallelized over 8 threads. In these plots, only power-of-two sizes are benchmarked

since these are optimal FFT sizes.

1.0

2.0

3.0

ti
m
e/
(L

lo
g
2
L
)
(n
s)

102 104 106 108

L

explicit (IP)

explicit (OP)

implicit

hybrid

Figure 7.1: In-place 1D complex convo-
lutions of lengthLwithA = 2 andB = 1
on 1 thread.

0.5

1.0

1.5

ti
m
e/
(L

lo
g
2
L
)
(n
s)

102 104 106 108

L

explicit (IP)

explicit (OP)

implicit

hybrid

Figure 7.2: In-place 1D complex convo-
lutions of lengthLwithA = 2 andB = 1
on 8 threads.

53

In order to evaluate the normalized L2 error for our algorithms, we define

input arrays fj = αeij and gj = βeij with α =
√
3 + i

√
7 and β =

√
5 + i

√
11

for j = 0, . . . , L − 1, following Bowman and Roberts [BR11]. Then in figure 7.3,

we display the error in the convolution of {fk}L−1k=0 and {gk}L−1k=0 computed using

hybrid dealiasing relative to the exact solution
∑︁j

p=0 fpgj−p = αβ(j + 1)eij .

Figure 7.3: Normalized L2 error for in-place 1D complex convolutions of size L for
different m values. Here D = 1 and the FFTs are in place.

54

7.A.2 Two-dimensional complex convolutions

In figures 7.4 and 7.5 we plot the normalized times for two-dimensional complex

convolutions of size L × L. On a single thread, these benchmarks show that at

all sizes, hybrid dealiasing is faster than implicit dealiasing and much faster than

explicit dealiasing. On 8 threads, hybrid dealiasing outperforms both methods

except at L = 64. In both cases, an x stride of L+ 2 was used.

2.0

3.0

4.0

ti
m
e/
(2
L
2
lo
g
2
L
)
(n
s)

102 103 104

L

explicit

implicit

hybrid

Figure 7.4: In-place 2D complex con-
volutions of size L × L with A = 2
and B = 1 on 1 thread.

1.0

2.0

ti
m
e/
(2
L
2
lo
g
2
L
)
(n
s)

102 103 104

L

explicit

implicit

hybrid

Figure 7.5: In-place 2D complex con-
volutions of size L × L with A = 2
and B = 1 on 8 threads.

7.A.3 Three-dimensional complex convolutions

Figures 7.6 and 7.7 show the normalized times for three-dimensional complex

convolutions. In the single-threaded case, we used the y stride Sy = L+ 2 and the

x stride SyL + 2; in the multithreaded-threaded case, we used the y stride Sy = L

and the x stride SyL+ 4. Again, we observe that hybrid dealiasing outperforms the

other two methods.

In figure 7.8, we emphasize that, unlike explicit and implicit dealiasing, hybrid

55

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

ti
m
e/
(3
L
3
lo
g
2
L
)
(n
s)

102 103

L

explicit

implicit

hybrid

Figure 7.6: In-place 3D complex convo-
lutions of size L × L × L with A = 2
and B = 1 on 1 thread.

0.5

1.0

1.5

2.0

ti
m
e/
(3
L
3
lo
g
2
L
)
(n
s)

102 103

L

explicit

implicit

hybrid

Figure 7.7: In-place 3D complex convo-
lutions of size L × L × L with A = 2
and B = 1 on 8 threads.

dealiasing performs exceptionally well over a range of arbitrary sizes.

7.B Hermitian convolution benchmarks

Next, we benchmark the median execution times for the Hermitian convolution

algorithms (described in chapter 3). We do so in one, two, and three dimensions,

and over one and eight threads. We perform the same comparisons that we did in the

complex benchmarks (section 7.A). For one-dimensional Hermitian convolutions, L

refers to the theoretical length of the input array, as we only store ⌊L/2⌋+1 complex

words in memory.

We also note that when decomposing multidimensional Hermitian convolutions

(as in chapter 5), the outer FFTs are all complex and centered; only the inner

one-dimensional convolutions are Hermitian.

These convolutions use 2/3 padding (as is done in pseudospectral simulations).

In the interest of making each routine as fast as possible, we use different input sizes

56

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

ti
m
e/
(3
L
3
lo
g
2
L
)
(n
s)

70 80 90 100 110 120
L

explicit

implicit

hybrid

Figure 7.8: In-place 3D complex convolutions of incremental sizes L × L × L
with A = 2 and B = 1 on 1 thread. As is conventional, the explicit dealiasing
algorithm pads past 2L, up to the next power of two (in this case 256).

for the explicit and implicit routines and compare hybrid dealiasing to both. For the

implicit dealiasing algorithms the optimal sizes are one less than a power of two.

In our implementation of hybrid dealiasing, we normally adjust these sizes to exact

powers of two to allow us to use the overwrite optimization. For explicit dealiasing,

the optimal values of L are 2
⌊︁
2n+2
3

⌋︁
− 1 for positive integers n.

7.B.1 One-dimensional Hermitian convolutions

In figures 7.9 and 7.10 we plot the normalized times for one-dimensional Hermitian

convolutions over one thread and eight threads, respectively. We observe that hybrid

dealiasing outperforms implicit dealiasing at optimal implicit sizes, and performs

about as well as explicit dealiasing at optimal explicit sizes.

57

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ti
m
e/
(L

lo
g
2
L
)
(n
s)

102 104 106 108

L

explicit (IP)

explicit (OP)

implicit

hybrid

Figure 7.9: In-place 1D Hermitian con-
volutions of length L with A = 2
and B = 1 on 1 thread.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ti
m
e/
(L

lo
g
2
L
)
(n
s)

102 104 106 108

L

explicit (IP)

explicit (OP)

implicit

hybrid

Figure 7.10: In-place 1D Hermitian con-
volutions of length L with A = 2
and B = 1 on 8 threads.

7.B.2 Two-dimensional Hermitian convolutions

In figures 7.11 and 7.12, we see that hybrid dealiasing outperforms both implicit

and explicit dealiasing for all sizes. In both cases we used an x stride of
⌈︁
L
2

⌉︁
+ 2.

To illustrate the sometimes counter-intuitive optimal parameters, in the single-

threaded case with L = 2048, the optimizer chose the parameters m = 16, p = 128,

q = 192, and D = 1 in the x direction and performed the transform in-place

(using the inner loop optimization), whereas in the y direction, out-of-place explicit

dealiasing (m = 3072 and p = q = D = 1) was optimal.

7.B.3 Three-dimensional Hermitian convolutions

In figure 7.13 we observe that for three-dimensional Hermitian convolutions on a

single thread, hybrid dealiasing performs better than implicit dealiasing and much

better than explicit dealiasing, except at L = 21. As seen in figure 7.14, when

run on 8 threads, hybrid dealiasing is much faster than the other methods for all

58

0.5

1.0

1.5

ti
m
e/
(2
L
2
lo
g
2
L
)
(n
s)

102 103 104

L

explicit

implicit

hybrid

Figure 7.11: In-place 2D Hermitian con-
volutions of size L × L with A = 2
and B = 1 on 1 thread.

0.1

0.2

0.3

0.4

0.5

0.6

ti
m
e/
(2
L
2
lo
g
2
L
)
(n
s)

102 103 104

L

explicit

implicit

hybrid

Figure 7.12: In-place 2D Hermitian con-
volutions of size L × L with A = 2
and B = 1 on 8 threads.

sizes. In the single-threaded case, we used the y stride Sy =
⌈︁
L
2

⌉︁
+ 2 and the x

stride SyL+2; in the multithreaded-threaded case, we used the y stride Sy = L and

the x stride SyL+ 4.

7.C Real convolution benchmarks

Finally, we benchmark the median execution times for the real convolution algo-

rithms (described in chapter 4) in one and two dimensions, each over one thread.2

We perform the explicit dealiasing comparisons that we did in the complex bench-

marks (section 7.A).3 Just like the complex benchmarks, the real convolutions also

use 1/2 padding.

Note that when decomposing multidimensional real convolutions (as in

chapter 5), the outermost padded/unpadded FFTs are real, and all inner FFTs and

2Multithreading is available for real convolutions in FFTW++ , but their efficiency is still lacking
and is currently under development.

3We cannot compare to implicit dealiasing, as it was not developed for real-valued inputs.

59

1.0

1.5
ti
m
e/
(3
L
3
lo
g
2
L
)
(n
s)

102 103

L

explicit

implicit

hybrid

Figure 7.13: In-place 3D Hermitian con-
volutions of size L× L× L with A = 2
and B = 1 on 1 thread.

0.2

0.3

0.4

0.5

0.6

ti
m
e/
(3
L
3
lo
g
2
L
)
(n
s)

102 103

L

explicit

implicit

hybrid

Figure 7.14: In-place 3D Hermitian con-
volutions of size L× L× L with A = 2
and B = 1 on 8 threads.

inner one-dimensional convolutions are complex (and use the algorithms from chap-

ter 2).

7.C.1 One-dimensional real convolutions

In figure 7.15 shows the normalized times for one-dimensional real convolutions

over one thread. We see that hybrid dealiasing is competitive or comparable to

explicit dealiasing, with some efficiency concerns at very large sizes. While these

results may seem underwhelming, the algorithms used in these benchmarks form

the basis of the 2D convolutions in the next section.

7.C.2 Two-dimensional real convolutions

In figure 7.16, we plot the normalized times for two-dimensional real convolutions.

We see that hybrid dealiasing outperforms explicit dealiasing for all sizes.

We should also note a unique behavior regarding the real convolutions. In

60

0.5

1.0

1.5
ti
m
e/
(L

lo
g
2
L
)
(n
s)

102 103 104 105 106 107 108

L

explicit (IP)

explicit (OP)

hybrid

Figure 7.15: In-place 1D real convolutions of length L with A = 2 and B = 1 on 1
thread.

1.0

2.0

3.0

4.0

5.0

ti
m
e/
(2
L
2
lo
g
2
L
)
(n
s)

102 103 104

L

explicit

hybrid

Figure 7.16: In-place 2D real convolutions of size L×L with A = 2 and B = 1 on
1 thread.

61

the complex and Hermitian cases, the high performance of multidimensional con-

volutions can be largely attributed to the memory savings obtained by using the

decomposition described in chapter 5. While using implicit zero-padding is still op-

timal, one can use this decomposition with explicitly zero-padding, and still perform

much better than the traditional explicit dealiasing methods. This is not true for

the real convolutions; computing several in-place real-to-complex/complex-to-real

FFTs at once is inefficient (compared to computing several complex FFTs). Because

our real algorithms don’t solely on real-to-complex/complex-to-real FFTs, they are

much more efficient for computing the outer FFTs.4

7.D Summary of Chapter 7

In this chapter, we have benchmarked hybrid dealiasing and compared it to both

explicit and implicit dealiasing. In one dimension, we saw that hybrid dealiasing

either outperformed or was comparable to both explicit and implicit dealiasing.

In two and three dimensions, hybrid dealiasing consistently outperformed implicit

dealiasing and greatly outperformed explicit dealiasing.

The improved performance in two and three dimensions can largely be attributed

to the memory-saving decomposition described in chapter 5. In the real case

specifically, hybrid dealiasing’s improved performance over explicit dealiasing is

also due to the fact that the FFTs are not all real-to-complex/complex-to-real.

Most of the comparisons in this chapter were done using arrays with sizes optimal

for explicit and implicit dealiasing. However, hybrid dealiasing is designed to be

efficient for any input size. This was exemplified in figure 7.8, which shows that

4We don’t have the same behavior with the Hermitian convolutions because in that case, the outer
FFTs are all complex.

62

the performance of hybrid dealiasing is much less susceptible to the input size than

both explicit and implicit dealiasing.

63

Chapter 8

Conclusion and future work

In section 1.B, we listed four problems with implicit dealiasing [BR11; RB18]. This

list can be summarized as follows:

1. Implicit dealiasing is not efficient for inputs of all sizes.

2. Implicit dealiasing does not allow for arbitrary padding requirements.

3. Implicit dealiasing cannot efficiently convolve real-valued inputs.

4. Implicit dealiasing cannot convolve arrays of unequal sizes.

In this work, we have provided solutions to problems (1), (2), and (3). In the

following section, we discuss an alternative approach to problem (3). In the section

after that, we discuss some of the issues with problem (4) and outline a potential

solution.

8.A Real convolutions via complex packing

In chapter 4, we developed a hybrid dealiasing algorithm which computed compute

convolutions with real-valued inputs. This algorithm makes direct use of conjugate

64

symmetries in the transformed data; however, there is another way we could have

approached this problem.

Complex packing is a technique for computing the DFT of real data using

complex FFTs [Pre+07]. Let N ∈ N be even1 and let Ñ .
= N/2. Let {fj}N−1j=0 be a

real array and define f̃ =
{︂
f̃ j

}︂Ñ−1

j=0
via

f̃ j = f2j + if2j+1. (8.1)

That is, the even and odd indices of f are the real and imaginary parts of f̃ . After

taking the DFT F̃ , one can use symmetries to recover the F . To unpack F̃ in

Fourier space, we have

Fk =
1

2

(︂
F̃ k + F̃ Ñ−k

)︂
− i

2

(︂
F̃ k − F̃ Ñ−k

)︂
ζ−k
2Ñ

, k ∈ {0, . . . , Ñ}, (8.2)

which has inverse2

F̃ k =
1

2

(︁
Fk + FÑ−k

)︁
− i

2

(︁
Fk − FÑ−k

)︁
ζkN , k ∈ {0, . . . , Ñ − 1}. (8.3)

Thus, one can compute real convolutions using only complex DFTs, and the dealias-

ing can be done using the transforms described in chapter 2.

Even though one can use complex FFTs (which are, in practice, more effi-

cient compared to real-to-complex/complex-to-real FFTs), packing and unpacking

in Fourier space is costly. Indeed, it has been shown that packing algorithms for

computing the DFT of real inputs “take several N more additions than a specialized

algorithm for real input data” [Sor+87]. However, it is important to remember that

1These methods can also be used when N is odd. We only make this assumption for simplicity.
2Details of these calculations can be found in Press et al. [Pre+07].

65

we are not trying to compute the DFT; we are interested in convolutions. Thus, a

possible solution to this problem is to build unpacking and packing into the multi-

plication operator.

For example, suppose we want to compute the binary convolution of two real

arrays f and g. We pack them to obtain f̃ and g̃ and compute F̃ and G̃. We

then need to compute F and G using (8.2), compute the element wise Hadamard

product H .
= F ⊙G, and then compute H̃ using (8.3). However, one can show

(see appendix A for details) that H̃ can be obtained directly from F̃ and G̃:

H̃ = F̃ ⊡ G̃,

where

(F̃ ⊡ G̃)k
.
= F̃ kG̃k−

1

4

(︂
F̃ k − F̃ (Ñ−k)mod Ñ

)︂(︂
G̃k − G̃(Ñ−k)mod Ñ

)︂(︂
1 + ζ−k

Ñ

)︂
,

k ∈ {0, . . . , Ñ − 1}.

Initially, it might seem that we can use our complex convolution algorithms exactly

as they are, and simply change the multiplication operator. Unfortunately, things are

not so simple: note that ⊡ is not an element-wise operator3 so convolutions cannot

be computed one residue at a time (as described in section 2.C). This is could be a

major performance issue, especially for multidimensional convolutions.

Despite the potential issues, it may still be desirable to investigate the use of

complex packing further. Real-to-complex FFTs are complicated, and one can find

examples in which they are less efficient than the corresponding complex FFTs.

We also saw in section 7.C.1 that the real convolution algorithm of chapter 4 has

3Such convolutions are also not general convolutions in the sense of definition 1.4.

66

issues with efficiency at large sizes. It might be better to compute some of these

convolutions with a complex packing algorithm.

8.B Convolutions of unequal sizes

The only limitation of implicit dealiasing that we have not treated is the problem of

unequal-sized input arrays. Such convolutions are used in applications like signal

processing and machine learning, so solving this problem is a high priority.

There are a few issues that must be addressed in order to generalize our approach

to this unequal-sized inputs. When the arrays are of different sizes, it is likely

inefficient to use FFTs of the same size for each. But regardless of their relative

sizes, each of the inputs must be padded (implicitly or explicitly) to the same size.

Thus our standard formulation in terms of m, p, and q (described in figure 2.1) must

be modified.

We outline a possible solution to this problem in the case of two one-dimensional

inputs, f and g, of length Lf and Lg respectively. Suppose that we need to pad to a

length M . Let m,Λ ∈ N, and consider mf
.
= m and mg

.
= Λm. Then define

pf
.
=

⌈︃
Lf

m

⌉︃
, pg

.
=

⌈︃
Lg

Λm

⌉︃
, qg

.
=

⌈︃
M

Λm

⌉︃
, qf

.
=

qgΛm

m
= Λqg,

so that qfmf = qgmg. The idea then is to use the algorithms presented in this work,

using mf , pf , and qf for f and mg, pg, and qg for g.

However, this leads to another issue: if qg ̸= qf , then there are different numbers

of residues in each computation. This is not a problem if all residues are computed

at once, but it is a problem if one wants to compute one residue at a time (as in

section 2.C).

67

To solve this, we note that every residue of g (which is of size mg = Λm),

corresponds to Λ residues of f (each of size mf = m). Let rg ∈ [0, qg − 1]

and ℓg ∈ [0,mg − 1]. Define

ℓf
.
=

⌊︃
ℓg
Λ

⌋︃
, λ

.
= ℓg mod Λ, rf

.
= qgλ+ rg,

so that

qgℓg + rg = qg (Λℓf + λ) + rg = Λqgℓf + λqg + rg = qfℓf + rf .

In other words, if we compute the residue contribution
{︁
Gqgℓg+rg

}︁mg−1
ℓg=0

, then we

only need to compute
{︁
Fqf ℓf+rf

}︁mf−1
ℓf=0

for rf ∈
{︁
qgλ+ rg

}︁Λ−1
λ=0

in order to perform

the multiplication.

While this provides a sketch of a possible solution to the problem, there is still

much more work to be done. The algorithm needs to generalize to n input arrays

and incorporate our numerical optimizations, specifically the inner loop (described

in section 6.A).

There are also other algorithms for computing convolutions of unequal-sized

arrays that we must now consider. In particular, the overwrite-add and overwrite-

save algorithms are used for computing convolutions in which one array is much

larger than the other. Informally, both of these algorithms convolve small sections

of the larger array with the smaller array. The results of these small convolutions are

then combined using linearity to compute the full convolution.4 Hybrid dealiasing

will likely need to incorporate these algorithms in order to be competitive for such

applications

4The details of overwrite-add and overwrite-save can be found in most standard references on
digital signal processing, such as Oppenheim, Schafer, and Buck [OSB99].

68

8.C Concluding remarks

Although implicit dealiasing offers great improvements to the efficiency of com-

puting linear convolutions, its applications are limited. To remedy this, we have

introduced hybrid dealiasing, which also avoids the need to explicitly pad the input

data with zeros; however, unlike implicit dealiasing, hybrid dealiasing allows for

explicit zero-padding when it is in the interest of performance.

In developing hybrid dealiasing, we observe that if a convolution is all that is

needed, one can often achieve better performance by localizing the computations;

one can compute the contribution to the convolution one residue at a time. Further-

more, multidimensional convolutions can be done more efficiently by decomposing

them into an outer FFT, a lower-dimensional convolution, and an inverse FFT. For

complex and Hermitian convolutions, the possibility of reusing work memory in

this recursive formulation is responsible for most of the dramatic performance gains

that are observed in two and three dimensions.

In this work hybrid dealiasing was also been developed to compute convolutions

of real-valued inputs. This was not handled by implicit dealiasing, and it serves as

an important step to increasing the number of applications that might benefit from

these techniques.

There are still limitations of hybrid dealiasing, the foremost being its inability

to compute convolutions of arrays with unequal sizes. Furthermore, future appli-

cations may have requirements that are not considered in this work. However, in

contrast to implicit dealiasing, hybrid dealiasing serves as a more general frame-

work for computing convolutions. It is therefore much more readily modified for

new applications.

69

References

[Bas83] C Basdevant. “Technical improvements for direct numerical simulation

of homogeneous three-dimensional turbulence”. In: Journal of Compu-

tational Physics 50.2 (1983), pp. 209–214.

[Bow13] John C. Bowman. “Casimir Cascades in Two-Dimensional Turbulence”.

In: J. Fluid Mech 729 (2013), pp. 364–376.

[BR11] John C. Bowman and Malcolm Roberts. “Efficient Dealiased Convolu-

tions without Padding”. In: SIAM J. Sci. Comput. 33.1 (2011), pp. 386–

406.

[BRM23] John C. Bowman, Malcolm Roberts, and Noel Murasko. FFTW++: A

fast Fourier transform C++ header class for the FFTW3 library. http:

//fftwpp.sourceforge.net. 2023.

[Can+06] C. Canuto et al. Spectral Methods: Fundamentals in Single Domains.

Springer, 2006.

[Chi+20] Kamran Chitsaz et al. Acceleration of Convolutional Neural Network

Using FFT-Based Split Convolutions. 2020. arXiv:2003.12621[cs.CV].

[CT65] James W. Cooley and John W. Tukey. “An Algorithm for the Machine

Calculation of Complex Fourier Series”. In: Mathematics of Computa-

tion 19.90 (Apr. 1965), pp. 297–301.

70

http://fftwpp.sourceforge.net
http://fftwpp.sourceforge.net
https://arxiv.org/abs/2003.12621

[Dud73] Richard O. Duda. Pattern classification and scene analysis. A Wiley-

interscience publication. Wiley, 1973.

[FJ] Matteo Frigo and Steven G. Johnson. FFTW. http://www.fftw.org.

[FJ05] Matteo Frigo and Steven G. Johnson. “The design and implementation

of FFTW3”. In: Proceedings of the IEEE 93.2 (2005), pp. 216–231.

[Gau66] Carl Friedrich Gauss. “Nachlass: Theoria Interpolationis Methodo Nova

Tractata”. In: Carl Friedrich Gauss Werke. Vol. 3. Göttingen: Königliche

Gesellschaft der Wissenschaften, 1866, pp. 265–327.

[GO77] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spec-

tral Methods: Theory and Applications. CBMS-NSF Regional Confer-

ence Series in Applied Mathematics. Society for Industrial and Applied

Mathematics, 1977.

[HJB85] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. “Gauss

and the history of the fast Fourier transform”. In: Archive for History of

Exact Sciences 34.3 (Sept. 1985), pp. 265–277.

[HR16] Tyler Highlander and Andres Rodriguez. Very Efficient Training of Con-

volutional Neural Networks using Fast Fourier Transform and Overlap-

and-Add. 2016. arXiv: 1601.06815 [cs.NE].

[Lec+98] Y. Lecun et al. “Gradient-based learning applied to document recogni-

tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[LY19] Jinhua Lin and Yu Yao. “A Fast Algorithm for Convolutional Neural

Networks Using Tile-based Fast Fourier Transforms”. In: Neural Pro-

cessing Letters 50.2 (2019), pp. 1951–1967.

71

http://www.fftw.org
https://arxiv.org/abs/1601.06815

[MHL14] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast Training of

Convolutional Networks through FFTs. 2014. arXiv:1312.5851[cs.CV].

[Ors71] Steven A. Orszag. “On the Elimination of Aliasing in Finite Difference

Schemes by Filtering High-Wavenumber Components”. In: Journal of

the Atmospheric Sciences (1971), p. 1074.

[OSB99] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-

time signal processing. Prentice Hall, 1999.

[PO71] G. S. Patterson Jr. and Steven A. Orszag. “Spectral calculations of

isotropic turbulence: Efficient removal of aliasing interactions”. In:

Physics of Fluids 14 (1971), p. 2538.

[Pre+07] William H. Press et al. Numerical recipes : the art of scientific comput-

ing. Third. Cambridge University Press, 2007.

[RB18] Malcolm Roberts and John C. Bowman. “Multithreaded implicitly

dealiased convolutions”. In: J. Comput. Phys. 356 (2018), pp. 98–114.

[Sob14] Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presen-

tation at Stanford A.I. Project 1968 (Feb. 2014).

[Sor+87] Henrik V. Sorensen et al. “Real-valued fast Fourier transform algo-

rithms”. In: IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing 35.6 (1987), pp. 849–863.

72

https://arxiv.org/abs/1312.5851

Appendix A

Complex packing multiplication

Let f and g be real arrays of length N = 2Ñ and let f̃ and g̃ be their corresponding

complex packings (defined in (8.1)). We would like to compute H
.
= F ⊙G in

terms of F̃ and G̃. In other words, we would like an operator ⊡ satisfying

H̃ = F̃ ⊡ G̃

We take F̃ and G̃ to be periodic in Ñ .1 Unpacking in Fourier space with (8.2) gives

us

(F ⊙G)k =
1

4

[︂(︂
F̃ k + F̃ Ñ−k

)︂
− i

(︂
F̃ k − F̃ Ñ−k

)︂
ζk
2Ñ

]︂ [︂(︂
G̃k + G̃Ñ−k

)︂
− i

(︂
G̃k − G̃Ñ−k

)︂
ζk
2Ñ

]︂

=
1

4

[︂
F̃ kG̃k + F̃ Ñ−kG̃k + F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k − 2i

(︂
F̃ kG̃k − F̃ Ñ−kG̃Ñ−k

)︂
ζk
2Ñ
−

(︂
F̃ kG̃k − F̃ Ñ−kG̃k − F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k

)︂
ζk
Ñ

]︂
.

1We do this so that we do not have the indicesmod Ñ . In practice, this is only used to identify F̃ Ñ

with F̃ 0 and G̃Ñ with G̃0.

73

Now for k = 0, . . . , Ñ , define

Ak
.
= F̃ kG̃k + F̃ Ñ−kG̃k + F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k,

Bk
.
= F̃ kG̃k − F̃ Ñ−kG̃Ñ−k,

Ck
.
= F̃ kG̃k − F̃ Ñ−kG̃k − F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k.

So we have

(F ⊙G)k =
1

4

(︁
Ak − 2iBkζ

k
2Ñ
− Ckζ

k
Ñ

)︁
. (A.1)

Note that we have the following symmetries:

Ak = AÑ−k, Bk = −BÑ−k, Ck = CÑ−k,

as well as ζ±Ñ
2Ñ

= ζ±12 = −1. Using these symmetries we compute

(F ⊙G)Ñ−k =
1

4

(︁
Ak + 2iBkζ

k
2Ñ
− Ckζ

k
Ñ

)︁
(A.2)

By (A.1) and (A.2), we have

(F ⊙G)k + (F ⊙G)Ñ−k =
1

2

(︁
Ak − Ckζ

k
Ñ

)︁
, (A.3)

and

(F ⊙G)k − (F ⊙G)Ñ−k = −iBkζ
k
2Ñ

. (A.4)

Repacking using (8.3) along with (A.3) and (A.4), gives us

(F̃ ⊡ G̃)k =
1

2

(︂
(F ⊙G)k + (F ⊙G)Ñ−k

)︂
+

i

2

(︂
(F ⊙G)k − (F ⊙G)Ñ−k

)︂
ζ−k
2Ñ

=
1

4

(︁
Ak − Ckζ

k
Ñ

)︁
+

1

2

(︁
Bkζ

k
2Ñ

)︁
ζ−k
2Ñ

=
1

4
Ak −

1

4
Ckζ

k
Ñ
+

1

2
Bk.

74

Substituting the definitions of Ak, Bk and Ck back into this expression and simpli-

fying gives

(F̃ ⊡ G̃)k =
1

4

(︂
F̃ kG̃k + F̃ Ñ−kG̃k + F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k

)︂
−

1

4

(︂
F̃ kG̃k − F̃ Ñ−kG̃k − F̃ kG̃Ñ−k + F̃ Ñ−kG̃Ñ−k

)︂
ζ−k
Ñ

+
1

2

(︂
F̃ kG̃k − F̃ Ñ−kG̃Ñ−k

)︂

= F̃ kG̃k −
1

4

(︂
F̃ k − F̃ Ñ−k

)︂(︂
G̃k − G̃Ñ−k

)︂(︂
1 + ζ−k

Ñ

)︂
,

which is the desired result. Thus, one can use complex packing to compute real

convolutions without unpacking and packing in Fourier space.

75

	Introduction
	Convolutions and dealiasing
	Limitations of implicit dealiasing
	Arbitrary input sizes
	Arbitrary padding requirements
	Real valued inputs
	Unequal input sizes

	Generalizing implicit dealiasing
	General dealiased convolutions

	Complex convolutions in one dimension
	Implicitly dealiased convolutions
	Hybrid dealiasing
	Convolutions one residue at a time
	Summary of Chapter 2

	Centered and Hermitian symmetric convolutions in one dimension
	Centered convolutions
	Hermitian convolutions
	Summary of Chapter 3

	Real convolutions in one dimension
	Real convolutions via conjugate symmetries
	Summary of chapter 4

	Multidimensional convolutions
	Numerical implementation
	Inner loop optimization
	Inner loop for complex arrays
	Inner loop for centered and Hermitian arrays
	Inner loop for real arrays

	Conjugate symmetry optimization
	Overwrite optimization
	Loop optimizations

	Numerical results
	Complex convolution benchmarks
	One-dimensional complex convolutions
	Two-dimensional complex convolutions
	Three-dimensional complex convolutions

	Hermitian convolution benchmarks
	One-dimensional Hermitian convolutions
	Two-dimensional Hermitian convolutions
	Three-dimensional Hermitian convolutions

	Real convolution benchmarks
	One-dimensional real convolutions
	Two-dimensional real convolutions

	Summary of Chapter 7

	Conclusion and future work
	Real convolutions via complex packing
	Convolutions of unequal sizes
	Concluding remarks

	References
	Complex packing multiplication

