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ABSTRACT

We examine the use of Hellinger distance method to obtain robust statistics
in a variety of problems in statistical inference. Minimum Hellinger distance
(MHD) estimators are proposed and investigated for the two-component mix-
ture model, a two-sample semiparametric model, and semiparametric models of
general form. We demonstrate that the proposed MHD estimators have excel-
lent robustness and efficiency properties for semiparametric models.

In Chapter 2, we consider the problem of estimating the mixture propor-
tion in the two-component mixture model. We propose a MHD estimator of
the mixture proportion which is strongly consistent, asymptotically normally
distributed, and asymptotically efficient at a special case. Furthermore, the
proposed MHD estimator is robust, a property that is not generally shared by
the classical estimators such as the maximum likelihood estimator (MLE). Using
a Monte Carlo study, the proposed estimator is shown to have good robustness

properties with respect to a single outlier. A real data set is also analyzed to

estimate the proportion of male halibut.
In Chapter 3, we consider a two-sample semiparametric model, which in-

cludes the two-sample location-scale model as a special case. We construct a



MHD estimator of regression parameters and examine the asymptotic properties
of the proposed estimator. We show good robustness properties of the proposed
estimator through a simulation study. A real data set is analyzed to investigate
the relationship between age and coronary disease status.

In Chapter 4, we consider the semiparametric models of general form. We
construct MHD and minimum profile Hellinger distance (MPHD) estimators
of the parametric component. We investigate asymptotic properties of the
proposed estimators such as consistency, asymptotic normality, efficiency and
adaptivity. We show the robustness and good small sample properties of the
proposed estimators using Monte Carlo studies. This chapter demonstrates
that both MHD and MPHD estimators in semiparametric models are generally

efficient and robust.
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CHAPTER ONE: INTRODUCTION

1.1 Background of This Research

Statistical inference is based on statistical models for data. During most of the
history of the subject, these have been parametric: the mechanism generat-
ing the data could be identified by specifying a few real parameters. However,
during the last thirty years nonparametric and semiparametric models have
flourished. The main reason has of course been the rise of computing power
permitting of such models to large data sets showing the inadequacy of para-
metric models. The deficiency in interpretability of nonparametric models was
filled by the development of semiparametric models. The main focus of re-
search in this area has been the construction of such models and corresponding
statistical procedures in response to particular types of data arising in vari-
ous disciplines, primarily in biostatistics and econometrics. The well-known
semiparametric models include the Cox proportional hazard model in survival
analysis, econometric index models, regression models and errors-in-variables
models, among many others. In this thesis, I mainly focus on semiparametric
models.

Many authors have considered efficient and adaptive estimation in semipara-
metric models for the past twenty years; see, for example, Bickel (1982), Schick
(1986) and Forrester et al. (2003) for most references. However, the robustness
in semiparametric models has been paid little attention. The efficiency when
the model has been appropriately chosen and the robustness when it has not are
two fundamental ideas in parametric estimation. It was long thought that there
was an inherent contradiction between the aims of achieving robustness and
efficiency; i.e., a robust estimator could not be efficient and vice versa. Some of
the practical deficiencies of maximum likelihood estimators (MLESs) are the lack
of resistance to outliers and the general non-robustness with respect to model
misspecification. The need for robust statistics in statistical inference has been
widely recognized now. Many different approaches for finding robust statistics
for parametric models have been proposed, see Huber (1980) and Maronna et
al. (2007) for summaries of most important methods. Such methods have had
varying degree of success in dealing with “bad” data, but they may suffer from
a loss of efficiency if the postulated model distribution is the true one. This
is, however, not the case with minimum Hellinger distance (MHD) estimators.
Lindsay (1994) has shown that MLE and MHD estimators are members of a



larger class of efficient estimators with various second-order efficiency proper-
ties. MHD estimators have been shown to have excellent robustness properties
in parametric models such as the resistance to outliers and robustness with re-
spect to model misspecification, see Beran (1977) and Donoho and Liu (1988).
[In fact, Donoho and Liu (1988) have shown a much stronger result that all min-
imum distance estimators are automatically robust with respect to the stability
of the quantity being estimated.] Efficiency combined with excellent robustness
properties make MHD estimators appealing in practice. Furthermore, Hellinger
distance has the special attraction that it is dimensionless. For a comparison
between MHD estimators with the MLEs and the balance between robustness
and efficiency of estimators see the articles of Lindsay (1994) and Karlis and
Xekalaki (1998, 2001). The literature on MHD estimation has been dominated
by MHD estimation in fully parametric models. There appears to be very
little research has been done on application of the MHD methodology to semi-
parametric models. In this thesis, I extend the use of MHD approach to the
semiparametric models to obtain robust efficient estimators.

1.2 MHD Estimation

Consider the situation where we observe a sequence of independent and identi-
cally distributed (i.i.d.) random variables (r.v.) Xi,Xs,..., X, from a distri-
bution with density function f. If f belongs to a specified parametric family
F = {fo : 0 € © C RP} then 0 may be estimated using well-known likelihood
procedures. However, assuming f belongs strictly to the family F ignores the
possibility of departures from the parametric model. In practice, data contami-
nation, lack of information, and other factors beyond our control can make the
parametric model incorrect for the data at hand. Instead, we assume that f is
either in F or close to a member of F, and use a minimum distance estimation
procedure. We use the minimum Hellinger distance approach as our estimation
procedure, in which the estimate is chosen to minimize the Hellinger distance
between the parametric model and a nonprametric density estimator of f. In
other words, the MHD estimator of 8 is defined as the value of the parame-
ter that minimizes the Hellinger distance between a density estimator and the
parametric density. If we use 9 to denote the MHD estimator, then 8 is defined
by a 1/2 1/2
H_arg%gg”fQ _fn “a

where || - || denotes the Ly-norm and f,, is a nonparametric density estimator of
f based on the observations X, X, ..., X,.

It is interesting to note that this estlmator 9 is related heuristically to the
MLE of 4. For n sufficiently large, the MLE should be close to the true pa-
rameter value 6 and the density estimator f, should be close to fy. Finding
the MLE amounts to maximizing [ log fi(z)dF,(z) over t € ©, where F, is the
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empirical distribution function of the data. Arguing formally, we expect that
this procedure is nearly the same as maximizing over ¢ near # the quantity

1/2(

[ e[ 5] @ = 2 [ swos [+ (S 1)
/fn ZZ ;—1 &%(ftzzg””; —1)2] dz
IR 1) "

~—

&2

Thus, it is not unreasonable to expect that the MHD estimator 9 is asymptoti-
cally efficient under fg. On the other hand, simple calculation shows that

152 = £ < [ 150 - fa@lds < 287 - 270,

so the topology induced on the space of probability measures by the Hellinger
metric is the same as that induced by the L;-norm. It is known that the L-
norm induces a robust topology. Thus, the MHD estimator could be expected
to be robust as well. In fact, various asymptotic and robustness properties of
f have been studied under some regularity conditions in Beran (1977), Stather
(1981) and Tamura and Boos (1986), among others.

Now assume that f belongs to a class of general semiparametric models of
the form

{fe,n 0o C Rpﬂ] € H}, (1‘1)

where © is a compact subset of R? and H is an arbitrary set, typically of infinite
dimension. The problem is to estimate the parameter § assuming that n as a
nuisance parameter. If H is finite dimensional, then (1.1) is a fully parametric

model. Tf we still use 8 to denote the MHD estimator, then

—~

_pl)2
0= arg{orélgllf Ll (1.2)

For semiparametric models, i.e., H is infinite dimensional, we can define a MHD
estimator 6,, of 8 in a natural way as
1/2
0 = argminl £y — £/l
where 7, is a suitable estimator of 7.
The literature on MHD estimation has been dominated by MHD estimation
in fully parametric models. Beran (1977) has shown that the MHD estimator

8 defined in (1.2) has excellent robustness and efficiency. Tamura and Boos
(1986) extended the work of Beran (1977) to a multivariate setting, while the

3



corresponding MHD estimation for count data can be found in Simpson (1987).
Yang (1991) and Ying (1992) investigated MHD estimation for censored data.
Sriram and Vidyashankar (2000) and Woo and Sriram (2006, 2007) have studied
MHD estimates for branching processes and the mixture complexity in a finite
mixture model, respectively. However, there seems to be relatively very few
attempts to apply the MHD approach to semiparametric models. The Hellinger
deviance test was introduced in Karlis and Xekalaki (1998) for testing a semi-
parametric Poisson mixture. The only notable work reported in the literature
on MHD estimation in semiparametric models appears to be that of the work
by Lu et al. (2003). The preceding authors have investigated a MHD estima-
tor for finite mixtures of Poisson regression models with the distribution of the
covariate variable unknown.

1.3 Summary of Results

In Chapter 2, we consider the problem of estimating the mixture proportion in
the two-component mixture model 6 F + (1 —6)G, where F and G are two differ-
ent distribution functions. Specifically, suppose we observe three independent
samples

i.id.
X1y, Xng R F

iid.
Yi,..., Y, NG

i.i.d.

20y Zny ~OF +(1-0)G

with density functions f, g and hy = 6f + (1 — 6)g, respectively. Here 6 is
called the mixture proportion, where 6 € [0, 1]. The problem is to estimate the
mixture parameter 6, treating f and g as nuisance parameters. We propose to
estimate 6 using the MHD approach. Let n = ng 4+ n; + ny. We define a MHD
estimator 6,, of 8 as follows:

6, = arg min ||(tf + (1 — )§)/2 = B/,
te[0,1]

where f, g and 1 are kernel-type density estimators of f, g and hg, respectively,
based on the samples X;’s, Y;’s and Z;’s, respectively. In other words, we
minimize the Hellinger distance between a totally nonparametric kernel density
estimator and a parameterized convolution of estimated component densities.
In Theorem 2.1 we show the existence and the continuity of 8,, as a func-
tional. Theorem 2.2 shows that €, is consistent, while the asymptotic distri-
bution of 6, is established in Theorem 2.4 which is a consequence of Theorem
2.3. To see the performance of 6, in Section 2.3 we obtain a MLE of 6 with the
asymptotic distribution established in Theorem 2.5. The proposed MHD esti-
mator is compared with the MLE and asymptotic efficiency properties of 8,, are
examined in Section 2.4. This is done by constructing a Cramér-Rao type lower



bound in Theorem 2.6 for nonparametric estimators of the mixture proportion.
The full efficiency is achieved by the MHD estimator 8, at a special case as
shown in Corollary 2.1, which is a simple consequence of Theorems 2.4 and 2.6.
The robustness properties of our proposed MHD estimator 8,, are studied using
a Monte Carlo study in Section 2.5. Theoretical results on the robustness of
MHD estimator seem difficult in the present context. We study four different
mixtures of normal distributions in the simulation. The a-influence functions
(IFs) demonstrate that the MHD estimator is very robust in the presence of
outliers, a property that is not generally possessed by the classical estimators
such as the MLEs. When compared with two MLEs constructed in Section 2.5,
our proposed MHD estimator 6,, shows good efficiency properties. In Section
2.6, a real data set is analyzed to estimate the proportion of male halibut.

In Chapter 3, we consider a two-sample semiparametric model, where the
log ratio of the two underlying density functions is of a regression model, i.e.,
he(z) = g(z)expla + r(z)B] with § = (a, ). This setup includes the two-
sample location-scale model as a special case. This model is also closely related
to the logistic regression model. We construct a MHD estimator of regression
parameters in a quite nature way and examine the asymptotic properties of the
proposed estimator. The existence and continuity of the proposed MHD esti-
mator are shown in Theorem 3.1. Theorem 3.2 shows that the proposed MHD
estimator is consistent for both finite and infinite support cases of g. Due to
the fact that techniques developed in Chapter 2 could be used to derive the
asymptotic distribution of the proposed MHD estimator for the finite support
case, we concentrate on developing the asymptotic distribution of the proposed
MHD estimator for the infinite support case of g. Theorem 3.4 establishes the
asymptotic normality of the proposed MHD estimator, which is a consequence
of Theorem 3.3. Similar techniques as in Stather (1981) are used to prove the
theorems. However, we extend his results developed for parametric models to
semiparametric models. For the case that g has infinite support, we need to
prove several technical results to control the effect of the tails. These require
some conditions on the underlying densities g and hg, which are satisfied by a
variety of families, such as the location-scale families as shown in Sections 3.2
and 3.3. To see the performance of the proposed MHD estimator, in Section 3.4
we compare the proposed MHD estimator with the semiparametric likelihood
estimator developed in Zhang (2000), assuming that g and hg are normal distri-
butions N(0,1) and N(u,1), respectively. We observe that the proposed MHD
estimator has comparative asymptotic variance when compared with the semi-
parametric likelihood estimator, especially when p is close to zero; see Remark
3.9. To see the small sample properties, a Monte Carlo simulation is conducted.
While the estimated bias and MSE of the proposed MHD estimator of « are
higher than those of the semiparametric likelihood estimator of a, our proposed
MHD estimator of 8 performs uniformly better than the semiparametric like-
lihood estimator of 3 in the sense of having smaller estimated bias and MSE.

5



Note that 8 plays a more important role than « in most applications. To inves-
tigate the robustness, the a-IFs are calculated for a single outlying observation.
The a-IFs of the proposed MHD estimators are bounded while those of the
semiparametric likelihood estimator seem to increases dramatically in absolute
value when the outlying observation moves to the left from -1. This shows that
our proposed MHD estimator has good robustness properties. A real data set
is also analyzed in Section 3.5 to investigate the relationship between age and
coronary disease status.

In Chapter 4, we consider the semiparametric models of general form: {fy,, :
6 € © C RP,n € H}, where © is a compact subset of R and H is an arbitrary
set of infinite dimension. The problem is to estimate the parameter 6 assum-
ing that n as a nuisance parameter. Theorem 4.1 generalizes similar result of
Beran (1977) on the efficiency of MHD estimator of a fully parametric model.
For semiparametric models, a MHD estimator is constructed using a plug-in
rule. This estimator is shown to be adaptive under certain assumptions, see
Theorem 4.2. An efficient (in the semiparametric sense) MHD estimator is also
investigated in Section 4.3. This estimator was studied by Huang (1982), who
has left the consistency of the estimator an open problem. The consistency
is established in Theorem 4.3, solving the preceding problem. We construct a
minimum profile Hellinger distance (MPHD) estimator in Section 4.4 and it is
shown to be efficient under certain conditions, see Theorems 4.5 and 4.6 and
Remark 4.10. It is also shown in Section 4.5 that the proposed MHD esti-
mator of Theorem 4.2 is still asymptotically normally distributed even though
the underlying density function is not strictly from the semiparametric model
described above. In some sense, this shows the robustness of the MHD esti-
mator proposed in Section 4.2. A special form of contamination is considered
and it also shows that the MHD estimator proposed in Section 4.2 is robust.
A Monte Carlo study is designed to demonstrate the efficiency and robustness
of the MHD estimator proposed in Section 4.2. In the simulation study, we
consider the mixture of two normal distributions and the mixture proportion is
considered as the parameter of interest. For comparison purposes, two MLEs
of the mixture proportion are also constructed. When compared with the two
MLEs, the proposed MHD estimator is observed to be more robust. In fact,
the a-IF of the MHD estimator, with respect to a single outlying observation,
is almost a constant valued around zero, while those of the two MLEs have big
jumps when the outlying observation is further away from zero. This means
that the MHD estimator is not much affected by a single outlying observation,
while the MLEs are affected by the outlying observation. We also show that
the breakdown point for the MHD estimator is about 0.5 (the best possible
value), while that for one of the MLEs is around 0.25. In other words, MHD
estimator shows more robust behavior than the MLEs analyzed. Furthermore,
the MHD estimator has competitive efficiency when compared with the MLEs
in the sense of having smaller estimated bias and MSE, under the true model

6



(without contamination). Under the contaminated model, the MHD estimator
performs generally better than the MLEs. When the contamination rate is high,
the MHD estimator has much smaller estimated bias and MSE than the MLEs.
As an example, a symmetric location model is investigated in Section 4.7 and
adaptive MHD and MPHD estimators are constructed for this model.

In summary, we show that the MHD approach in parametric model can be
extended successfully to semiparametric models, either for particular models or
for a general model. The proposed MHD estimators in semiparametric models
have been shown to have good efficiency and robustness properties. The suc-
cess of this approach in the problems considered of this thesis could encourage
its further development in many other problems. We consider the following
problems, among others, to be worthy candidates for future study: theoretical
development of the robustness, application to semiparametric regression models,
robust hypothesis testing, and classification.



CHAPTER TWO: MHD ESTIMATION IN THE
TWO-COMPONENT MIXTURE MODEL

2.1 Introduction

Let F' and G be two probability distributions and 6 be a positive real number
between 0 and 1. Then §F + (1 — )G defines a two-component mixture distri-
bution with mixture weights 6 and (1 — #). When component distributions F'
and G are known to have some specific forms, then 6F + (1 — 0)G is called a
parametric mizture. On the other hand, if F and G are completely unspecified
but are different distributions then 0F + (1 — 0)G is known as a nonparametric
mixture. A great deal of work has been done in parametric mixture models; see,
e.g., Titterington et al. (1985), Lindsay (1995), Chen (1995, 1998), McLachlan
and Peel (2000), and Scott (2001), among others for examples, applications and
theory. The estimation problem of the mixture parameter § in a nonparamet-
ric mixture model, however, is faced with the lack of identifiability of §. One
way of overcoming this difficulty is to take training samples from each compo-
nent distribution as in Hall (1981). More specifically, suppose we observe three
independent samples

Xiyeoy Xny ©F

Yi,....Y, %a (2.1)

Ziy... Zny S OF + (1-6)G,
then the problem is to estimate the mixture parameter 6, treating F' and G as
nuisance parameters. For model (2.1), Hall (1981, 1983) described minimum dis-
tance estimators based on empirical distribution functions, Titterington (1983)
considered minimum distance estimators based on density estimators, and Hall
and Titterington (1984) constructed a sequence of multinomial approximations
and related MLE estimators of 6 by grouping data for a similar model to (2.1).
Qin (1999) developed a confidence interval for 8 using an empirical likelihood
ratio based statistic assuming the log-likelihood ratio of densities of F' and G
is linear in observations. Hosmer (1973) used the model (2.1) to estimate the
proportions of male and female fish in a population of halibut from some univari-
ate data provided by International Halibut Commission in Seattle, Washington.
More applications can be found in the papers of the specific issue of Communi-



cations in Statistics on Remote Sensing (1976).

Robust methods such as M-estimation are not easily adapted for nonpara-
metric mixtures (Cutler and Cordero-Brafia, 1996). Minimum distance estima-
tion is an alternative approach that produces robust estimators. The model (2.1)
has not been fully investigated using the preceding approach. In this chapter,
we propose to estimate the mixture parameter 6 using the MHD approach. The
Hellinger distance has the special attraction that it is dimensionless. Further-
more, MHD estimators have been shown to have excellent robustness properties
such as resistance to outliers and robustness with respect to model misspecifica-
tion (Beran, 1977 and Donoho and Liu, 1988). Many robust estimators achieve
robustness at some cost in first-order efliciency. This is, however, not the case
with MHD estimators. Lindsay (1994) has shown that MLE and MHD estima-
tors are members of a larger class of efficient estimators with various robustness
and second-order efficiency properties.

The setup of Beran (1977) assumes that the observed random variables are
i.i.d. with some unknown density g which is close in the Hellinger metric to
a member of some specified parametric class {fy : 6 € [0,1]}. The model at
(2.1) is not parametric, however. Thus, the results in this chapter exhibit an
extension of Beran’s (1977) MHD technique to a semiparametric model. Fur-
thermore, the combined data set of (2.1), X1,..., Xpny, Y1,y Yoy, 21, - - s Zny,
is a collection of independent observations, but not necessarily identically dis-
tributed. This feature also adds a degree of complexity to the development of
asymptotic theoretical results of the proposed MHD estimator of 6.

There have been very few attempts to estimate the parameters in a mix-
ture problem with the MHD method or similar minimum distance approaches.
The only work on MHD estimation for mixtures appears to be that of Wood-
ward et al. (1995), Cordero-Brafia (1994), Cutler and Cordero-Braiia (1996)
and Lu et al. (2003). However, their results are for the case that F' and G
are fully parametric models. More specifically, Woodward et al. (1995) have
concentrated on estimating the mixture proportions (my,...,mx_1) in a fully

k
parametric model of the form E)lm- f(z|¢;), whereas Cordero-Brafia (1994) and

Cutler and Cordero-Braifia (1996) have assumed that all the mixture parame-
ters (my, ..., Mk_1,P1,--.,¢Pr) are of interest, extending the work of Woodward
et al. (1995), where f(:|¢1),--., f(-|¢x) are density functions on the real line
and ¢; € @ CR* i=1,...,k Luetal (2003) have examined MHD estimation
for finite mixtures of Poisson regression models. The present work thus shows
a further extension of above papers to the case where the distributions /' and
G in model (2.1) are completely unknown.

MHD estimation has been applied in many other settings. For example,
Tamura and Boos (1986) extended the work of Beran (1977) to a multivariate
setting, while the corresponding MHD estimation for count data can be found
in Simpson (1987). Yang (1991) and Ying (1992) investigated MHD estimation



for censored data. Sriram and Vidyashankar (2000) and Woo and Sriram (2006,
2007) have studied MHD estimators for branching processes and the mixture
complexity in a finite mixture model, respectively.

In Section 2.2, our proposed MHD estimator of # is given. Our approach
is very natural. We minimize the Hellinger distance between a totally non-
parametric adaptive kernel density estimator and a parameterized convolution
of estimated component densities. We study asymptotic theoretical properties
such as strong consistency and asymptotic normality of the proposed estimator.
In Section 2.3, we obtain a MLE of # using the approach of Hall and Tittering-
ton (1984). Asymptotic efficiency properties of the proposed MHD estimator
are examined in Section 2.4. This is done by constructing a Cramér-Rao type
lower bound for nonparametric estimators of the mixture proportion. In Section
2.5, robustness properties of the proposed MHD estimator are studied using a
Monte Carlo study. It is observed that the MHD estimator is very robust in the
presence of outliers. Examples and concluding remarks are given in Sections 2.6
and 2.7, respectively. All the proofs are deferred to Section 2.8.

2.2 MHD Estimator of Mixture Proportion

In this section, we assume the setup of model (2.1). In order to employ the
MHD technique of Beran (1977), we first define a parametric family of densities

ho(z) = 0f(z) + (1 - 0)g(x) (2:2)

where f and g denote two different densities of F' and G, respectively; i.e., we
suppose that [|f(z) — g(z)|dz > 0. Next we define following adaptive kernel
density estimators (see, e.g., Scott, 1992) of f and g, respectively, based on data
Xi,..., Xpo and Y7, ..., Y, of (2.1):

-~ 1 0 T — Xz
f(.f[;) - nOSnObn

0 =1

)s (2.3)

- 1 - ~Y;
g(a:) = _—”—ZKI(.’; b J)’

nlSnl bn1 j=1

(2.4)

where Ky and K are two smooth density functions, bandwidths b,, and b,
are positive constants such that b,, — 0 as n; — oo, ¢ = 0,1, and Sy, =
Sno (X1, ..oy Xno) and S, = Sy, (Y,...,Y,,) are robust scale statistics (these
statistics generally estimate the scale parameters of respective distributions).
In a realistic situation, the bandwidths usually take the form b,, = n;” with
0 <r<1fori=0,1. Estimators (2.3) and (2.4) are similar to the ones used
in Beran (1977) for density estimation. For any ¢ € [0, 1] define
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h(z) = tf(z) + (1 - H)g(z). (25)
Note that 77,9 is a parametric density function with the only unknown parameter
being §. Furthermore, 6 is identifiable from (2.5) since 6; # 0y implies hy, #

he, (Titterington et al. (1985, Section 3.1)). Next we define a kernel density
estimator based on the Z;’s as follows:

ha) = —— ZKQ(g;bi"), (2.6)

No Snz bnz i—

where again K is a smooth density function, bandwidth b, is a positive con-
stant such that b,, — 0 as ny — o0, and S,, = Sy,(Z1,...,Zy,) is a robust
scale statistic.

Let H be the set of all densities w.r.t. Lebesgue measure on the real line.
Following Beran (1977), we first define a MHD functional T : H — [0, 1] such
that

To(@) = arg min, || be/* = 62| (2.7)
where || - || denotes the Ly-norm. When h; is known, the MHD estimator of

To(@p) is defined as T0(¢) where ¢ is a nonparametric density estimator of ¢.
Since h; is unknown in our model (2.1), we propose to replace h; with ht, the
parameterized convolution of estimated component densities defined by (2.5).

Then a MHD estimator of Tp(¢) is defined as functional T(d)) at ¢, where

T(g) = arg min | R/ — gl (2.8)
telo

Since the parameter space [0, 1] is compact, f((;) is attained. However, T(¢)
may be multiple valued and so we shall use the notation f(c};) to indicate any
one of the possible values chosen arbitrarily (cf., Beran, 1977). In our situation,
¢ = hg and 9’5 =h. Therefore, our proposed MHD estimator of 6 is defined as

0, = T(h), (2.9)

where A is given by (2.6) and where n = ng + n; + ngy is the total sample size.
That is, 9 is the minimizer of the Hellinger distance between 6 f +(1—6)g and
% with f and 9§ defined by (2.3) and (2.4), respectively. We are interested in
both the asymptotic and local properties of 6,. So we let n — oo and at the
same time suppose that n;/n — p; for some positive constants p; as n — 00,
i=0,1,2.

We now discuss asymptotic properties of the proposed MHD estimator.
First, we give some results on the existence, consistency and asymptotic unique-
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ness of the MHD estimator of . The next theorem, which gives conditions for
the existence of 8,, and the continuity of the functionals is analogous to Theorem
1 of Beran (1977).

Theorem 2.1. Suppose that Ty and T are defined by (2.7) and (2.8), respec-
tively. Then,
(i) For every ¢ € H, there exists T(¢) € [0,1] satisfying (2.8).
(i) If To(op) is unique, then f((bn) — To(@) for any sequences {¢p, tnenw and
{he}new such that || o: — M2 || 0 and Sl[lp] | hi/% — hy/? |— 0 as n — oo.
tef0,1

(i1i) To(hy) = t uniquely for any t € [0, 1], where hy(z) = tf(z)+ (1 —1t)g(x).

Remark 2.1. Beran (1977) gave conditions for the Hellinger consistency of
the density estimator. Devroye and Wagner (1979) have proved the L; conver-
gence of such estimators under weaker conditions. In view of the equivalence of
the Hellinger and L; topologies (see, Devroye and Gydrfi, 1985), the Hellinger

consistency of ¢, is equivalent to [ |¢, — ¢|dz L 0asn — oo

With further assumptions on the bandwidths and kernels in (2.3), (2.4) and
(2.6), consistency of the MHD estimator 6,, of § follows from the continuity of
the functionals in the Hellinger topology. This result is given next. We first list
the assumptions made in the theorems of this section:

C1. The kernels Ky, K; and K, in (2.3), (2.4) and (2.6), respectively, are
absolutely continuous on their compact support, and the first derivatives K (()1),
K fl) and Kél) are bounded.

C2. f and g are uniformly continuous on their support.

C3. The positive constants by, by, , b, in (2.3), (2.4) and (2.6), respectively,
satisfy b,, — 0 and nl/zb — o0 asn; — 00,1 =0,1,2.

C4. S.—»Sl,asn,—>oo 1=0,1,2.

C5. The sequences of densities {h}nem and {%t}nelN converge to hg and ht,
respectively, in the sense that || B2 =~y ||— 0 and SUDyefo,1 | A2 —n}? |-

as n — oo, where 0 € (0,1) and hy = tf + (1 —t)g with f and g converging to
f and g uniformly.

C6. f and g have the same compact support, say W, on which hi(z) > 0
for any ¢t € [0,1]; and f, g, f g and 1 are piecewise continuous.

C7. Ky, K7 and K, are s%lmmetrlc about zero and have compact support,
and the second derivatives K;~, K, ) and K, (2) exist and are bounded.

C8. Sp = %hé/ ® has compact support W on which it is continuous, where
hg is given by (2.2).

C9. f,g > 0 on W and the second derivatives f® and ¢? exist and are
bounded.

C10. b,, — 0, nil/zbni — 0o and n;/zbii — Qasn; — o0,i=0,1,2.

12



C11. There exist positive finite constants Sy, S; and S depending on f and
g such that n;/Q(Sni —S;))=0p(l)asn —00,i=0,1,2.

Theorem 2.2. Suppose that n;/n — p; for some positive constants p; as n —
00, i = 0,1,2. Further suppose that assumptions C1 to Cj hold with hy, h and
O, given by (2.5), (2.6) and (2.9) respectively. Then C5 holds and it follows

that&n—iﬁ as n — oo.

Remark 2. 2 If Sy, satisfies a stronger condition that S,, — S; as n — oo,

w.p.1, and E exp( — 'ynibfh,) < oo for any v > 0 and 7 = 0,1,2, then the
’I’I/Z—
convergence in probability result given in Theorem 2.2 above can be changed

to almost surely. For example, if one takes b,, = [lo—iﬁ]l/ 2 for some 0 < € < 1,

then Y exp ( — "ynib%) < 0o for any v > 0 and C3 is also satisfied.

n;=1

We now state results on the asymptotic distribution of the proposed MHD
estimator 6,. The next theorem gives an expression for the difference 6,, — 6,
which is fundamental for further developments of theory.

Theorem 2.3. Suppose that densities hy defined in (2.5) and % in ( 2.6) satisfy
assumptions C5 and C6. Define functional T ({h¢}iep,1), ) = arg tn%(i)rh I htl/ 2
€lo,

¢'/% || and suppose that the functional T is continuous at ({hs}iejo.), ho) in the
sense of Theorem 2.1 (ii). Then, it follows that

6,—0 = T({ﬁt}te[Ol]yA) 2({ht}te01],he)

9) 1/2 5 1-1
[/ 0f+ 1—~0)g)3/2h/d} Hnpx

{
{/ 6 + ( 1— ))1/2(h1/2 hg'*)dz

/ g( ) (f f)hl/Qd

gf 3/2

_/ 21+ 9) f 9)+9(g
0f +(1-6)9)*?

/(f £)*dz + B, /(ﬁ—g)zdw},

where {an}, {Bn} and {7} are bounded sequences of real numbers and ~y, — 0
as n — oo.

(2.10)

g)hl/ dx

Under further conditions on the parametric family kg at (2.2) and the kernels,

the next theorem shows that 6, = f(?z,) is asymptotically normally distributed
about 8 = Ty(hg).
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Theorem 2.4. Suppose that nll n — p; for some positive constants p; as n —
00, 1 = 0,1,2. Suppose that hy, h and 0, given by (2.5), (2.6) and (2.9),
respectively, satisfy assumptions C7 to C11. Then the asymptotic distribution
of n'/%(6,, — ) is N(0,0?), where o2 is defined by

dlog hg(Z1)\ 2 6? dloghy(X1), (1 —6)? dlog hy(Y7)

{Var[————ae ]} {%Var[ 50 a}—l—h(pl) Var] 5 ]
1 og he(Z1

+EVar[——————89 ]}

Remark 2.3. The regularity conditions assumed in Theorems 2.1 to 2.4 above
are typical in MHD estimation context; see, e.g., Beran (1977) and Cordero-
Brafa (1994). From Theorem 2.2 we observe that the proposed MHD estirlpator
of 6 is consistent without the compact support requirement on the densities f
and g. However, this assumption is critical for the asymptotic normality re-
sults established in Theorem 2.4. Therefore, in order to prove the asymptotic
normality for the infinite support case of f and g, we must employ a different
technique. Note that the asymptotic normality of an estimator is related to the
differentiability of the functional Ty defined at (2.7). One way to achieve such
a goal is to concentrate on the Hadamard (or compact) differentiability of the
functional To; see Fernholz (1983). It is known that Hadamard differentiability
will yield the asymptotic normality. Hadamard differentiability is weaker than
Fréchet differentiability that we rarely have for functionals. Fernholz (1983)
has built up the Hadamard differentiability of three important estimators, M-,
L- and R-estimators, and hence has obtained their asymptotic normality. The
norm chosen on the domain of the functional is a crucial factor for the dif-
ferentiability, and moreover, it is desirable to have a topology which suggests
“robustness” according to Hampel (1971). The weak topology, uniform topol-
ogy and the topology induced by the Hellinger metric are all “robust”. Fernholz
(1983) adopted the uniform topology, which is stronger than the weak topology
but weaker than the topology induced by the Hellinger metric. Thus, what we
may need to do is to set up the Hadamard differentiability under the Hellinger
norm. Another way to obtain the asymptotic normality for the infinite sup-
port case is to consider the technique used in Stather (1981). We apply similar
technique in Chapter 3 for a two-sample semiparametric model.

2.3 MLE of Mixture Proportion

In this section, we construct a MLE of the mixture proportion 8 of the model
(2.1). We follow the approach of Hall and Titterington (1984), where they
have obtained a MLE for Hosmer’s (1973) model M2. Our model (2.1) with
the assumptions made in this chapter is similar to the model M1 described in
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Hosmer (1973), and there is no formal development of MLEs available for the
mixture parameter § under model M1 in the literature. In Hosmer (1973), three
models were investigated. The case when there are data only from the mixed
distribution is referred to as the M0 model. The data from the M0 model is
called mixed data. A sample where the component of origin of each observa-
tion is known with certainty is called known data. Two types of known data
are possible according to whether or not the known data contains information
about the mixture proportion. A sample which contains both mixed and known
data and where the known data contains no information about the mixture
proportion is called the M1 model. An M2 model refers to the case where the
sample contains both mixed and known data, and information about the mix-
ture proportion is contained in the relative number of observations from the two
components in the known data. In model (2.1), we do not assume any infor-
mation contained in the known data. It is appropriate and safe to use model
(2.1) for the following three cases: (1) the relative number of observations from
the two components contains no information about the mixture proportion; (2)
we are not sure whether or not it contains any information and (3) we do not
know in which way it contains the information. In this sense, model (2.1) is
more robust than the model considered in Hall and Titterington (1984).

As in Hall and Titterington (1984), we first partition the support of hy into
L regions Ri, Ry, ..., Ry so that each observation may be assigned uniquely to
a single region. Define

Qo = f(z)dz,
Ry

ay = / g(ﬂ'))dm,
R,

Qg = / ho(z)dz = Oag + (1 — O)ay,
R

where f, g and hy denote densities of F', G and §F + (1 — 0)G of model (2.1).

L

Note that > ay =1, i = 0,1. Let n; denote the number out of the n; which
=1

come from region R;, ¢ = 0,1,2. The likelihood from the data sets is then

proportional to
L

[T (o)™ (@a)™ 4 (Oarey + (1 — B)auys)™. (2.11)
=1
Let 0,1, denote the MLE which maximizes (2.11). Unlike in Hall and Tittering-
ton (1984), an explicit solution which maximizes the likelihood function (2.11)
is not easily available. Instead, we obtain a MLE from its implicit form. Tak-
ing the derivatives of the log likelihood and equating them to zero yields the
following estimating system :
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Nor  NoL NoubnL NarOnL

— — — — — — —=0,1l=1,...,L-1
an  Oor  Onr@o+ (1 —0np)ay  Onpdor + (1 — 6,r)0iL

(2.12)
nu ML na(l = ur) . nar(1 — bnr) —0.1=1 I—1
ay o OnpGo + (1 —0np)0y  Onrdor + (1 — 6nr)0ar ’ T

2.13

L ~ ~
7121(0401 - 0411)

— — =0
OnrOor + (1 — Op)0y

=1
with constraints .
Yag=1 i=0,1
=1
ag >0, 1=0,1,1=1,..., L

The consistency and asymptotic normality of 6,,;, obtained via equations (2.12)-
(2.15) are established in the next theorem.

(2.15)

Theorem 2.5. Suppose that 8 # 0,1 and that n;/n — p; asn — o0, 1 =0,1,2.
There exist consistent MLEs of 6. Furthermore, if po/pn = 0/(1 — 0) and
vn(ni/n—p;) — 0, i =0,1,2, then the consistent MLE 0,1, is asymptotically
normally distributed with mean 6 and variance Ar, where

1 (1-0) (1-0)* (1-6)?
Ap=-—-—c[—2AO p 2 T AWML T AO] 2.16
L= REL 4, pi P2 } (2.16)
L A0) _ 9 Loy V2 A0 _ N Sag )2 (2)
with A% = Za_gf%l — (Za—;fam) , AW = nglall — (Za—mau) and A® =
i=1 i=1 i=1 i=1
L
Do — 1

=1

Remark 2.4. As stated above, we assume that the known data (learning
samples) may not contain information about A since our model is similar to
model M1 of Hosmer (1973). In Theorem 2.5 it is shown that the MLE 6,
is asymptotically normal when the learning samples contain some information
about 6, i.e., when py/p; = 0/(1 — ) holds. For the case that po/p: # 6/(1 —0)
the method used to prove Theorem 2.5 does not seem to work very well and it
needs further study. On the other hand, the MHD estimator 6,, defined in (2.9)
is asymptotically normal whether py/p; = 6/(1 — ) holds or not, see Theorem
2.4 above.

Remark 2.5. The MLE obtained using the likelihood function (2.11) is a
function of L, the number of regions. In other words, we have a sequence of
MLEs depending on L. In fact, the likelihood (2.11) is not the true likelihood
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of the original data set given in (2.1). If sup {og,ou} — 0as L — oo,
1€{1,2,...,.L}

then for large L, (2.11) is a good approximation to the true likelihood of data

in (2.1). As L increases, the number of unknown parameters ay’s (i = 0,1)

in (2.11) increases, which in turn makes the maximization process of (2.11)

tedious.

2.4 Asymptotic Efficiency of MHD Estimator

In this section, we discuss asymptotic efficiency properties of the proposed MHD
estimator given in Section 2.2. In particular, we ask the question, “Are the MHD
and MLE estimators optimal in some sense?” Asymptotic efficiencies of MHD
estimators and MLEs are well-known in parametric models (Beran, 1977 and
Lindsay, 1994). However, such properties in nonparametric or semiparamet-
ric settings have been less studied. Hall and Titterington (1984) have derived
a Cramér-Rao type lower bound for nonparametric estimators of the mixture
proportions and thereby characterize asymptotically optimal procedures for the
case of sampling model M2 of Hosmer (1973). Furthermore, they have con-
structed a sequence of maximum likelihood estimators that attain the above
mentioned lower bound and are therefore asymptotically optimal in this sense.
Following the ideas of Hall and Titterington (1984), we also obtain a Cramér-
Rao type lower bound for nonparametric estimators of the mixture proportion
#. Then we show that the proposed MHD estimator attains this lower bound
under certain regularity conditions, showing an asymptotically optimal property
of the proposed MHD estimator.

Theorem 2.6. Let 6, denote a nonparametric estimator of @ such that n'/%(6, —
8) — N(0,V (8, f,9,he)) and nVar(0, — 0) — V (8, f,g,he) as n — oo, where
f, g and hy denote the densities of distributions F', G and 0F + (1 — 0)G,
respectively, of (2.1). Suppose that n;/n —p; — 0, 1 = 0,1,2, and po/p1 =
0/(1—0). If V(O, fu,gn, hn) — V(0, f, 9, hs) whenever f, — f, g — g and
hyn — hg in the class of uniformly piecewise continuous densities, then

V(G, fvga he) 2 A(97 faga h’9)
for any f # g and 6 € (0,1), where

1 r(1-6)* (1—6)* (1 — 6)?
— Ao + A7+ A 2.17
A%[ Po 0 P1 ! P2 2] ( )

A(ea f)gy h/9) =

r,ith Ao= [ %fda:—(f L fdz)?, Ay = %gdm—(f Lgdz)? and Ay = [ Ldz—
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Corollary 2.1. Assume that conditions of Theorem 2.4 hold. Then the asymp-
totic variance of the MHD estimator 6, of (2.9) is equal to A0, f, g, hg), where
A, f,9,he) is given in (2.17). In this sense, 6, is asymptotically efficient.

Remark 2.6. Theorem 2.5 only gives the asymptotic distribution when po/p1 =
6/(1 — ). For other cases, the method adopted in Section 2.3 does not work
well and one may need to seek different ways to find a lower bound of the
asymptotic variance. Therefore, for the case po/p1 # 8/(1—6), the full efficiency
of the MHD estimator 6, of (2.9) is unknown and it needs further research.
Nevertheless, we have shown in Theorem 2.4 that 6, is n!/?-consistent, i.e.
n/2(0, —0) = Op(1), which demonstrates that @, has good efficiency properties
whether po/p1 = /(1 — 6) holds or not. One can also see this behavior from
the numerical studies in Section 2.5.

2.5 Robustness and Simulation Studies

It is difficult to establish any theoretical results on the robustness of our MHD
estimator because of the inherent complexity of this problem. Thus to study
robustness properties of our estimator we relied on Monte Carlo methods. We
considered a mixture of two normal distributions in this numerical study. Specif-
ically, we studied the following four mixture models:

Model I: kg = 0.25N(0,1)+0.75N(3.60, 1),

Model II: hy = 0.25N(0,1)+ 0.75N(2.32, 1),

Model III: hy = 0.5N(0,1)+ 0.5N(3.76, 1),
1)

A (2.18)
Model IV: hy = 0.5N(0,1) + 0.5N(2.56,1).

That is, we set the distributions F' and G of (2.1) as N(0,1) and N(u, 1), re-
spectively, where ¢ # 0 depends on the Model. Note that Models I and III
have an overlap of 0.03, whereas Models II and IV have an overlap of 0.1.
Here the overlap is defined as the probability of misclassification using the rule:
classify an observation z as being from population F if z < z, and from pop-
ulation G if x > x., where z, is the unique point between 0 and g such that
0f(zc) = (1 — 6)g(z;). We examined the resistance of our MHD estimator de-
fined at (2.9) to a single outlying observation. For this purpose, the a-IF given
in Beran (1977) is a suitable measure of the change in the estimator. It has been
observed, however, that analytical evaluation of the o-IF is almost impossible
in the mixture context (Karlis and Xekalaki, 1998). For this reason, adapted
versions of the a-IF have been employed by many authors in the mixture con-
text; see, e.g., Lu et al. (2003). In this study, we have used the adapted a-IF
defined in the preceding paper.

First, we considered the case that po/p1 = /(1 —8). For Models I and II, we
chose sample sizes ng = 50, n, = 150 and ny = 300, and for Models III and IV,
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ng = ny; = 100 and ny = 300 were chosen. Note that the outlying observation
could come from any one of the three distributions. That is, for example, for
Model I, the outlier may be from distributions N(0,1), or N(3.60,1) or from
the mixture distribution 0.25N(0,1) +0.75N(3.60, 1). Thus, after drawing data
sets of the specified sizes, 147 alternate versions of the data were created by
replacing the last observation in the first data set, the last observation in the
second data set, or the last observation in the third data set by an integer from
—24 to 24. Here we have chosen a moderate sample size of n = 500 in our
study, and we have done 1000 replications and averaged the results over the
1000 replications. The contamination rate is then 1/500 and the three a-IFs
are given by

W (=, X)o7, (V)ity, (Z0)i21) — W (X2, (V)i (Z0)i2)

Thole) = 1/500 )

15y () = Wi (@ YOI (Z)i2:) — W ()i, (512, (Z)7)
R 1/500 )

[Fy(a) — W (X)), V)i, (=, Zi)?ii;éo—oW((Xi)?il, (Y™, (Z072,) |

where W could be any functional (estimator of 8) based on three data sets from
f, g and hy, respectively. In our case, W is given by functional f(/ﬂ) defined
in (2.9) (which is also based on three data sets from f, g and hy, respectively).
We used the compact-supported Epanechnikov kernel function

K(z) = 2 (1—2%) Ioiy(@),
for all three kernels Ky, K7 and K in (2.3), (2.4) and (2.6), respectively. The
positive constants by, by, and by, in (2.3), (2.4) and (2.6), respectively, were
taken to be b,, = ng Y 3 by, =m0, and by, = n; /3 This selection satisfies
the bandwidth assumptions in the theorems of Section 2.2. For scale statistics
Sngs Sny and Sy, in (2.3), (2.4) and (2.6), respectively, we used the following

robust scale estimator proposed by Rousseeuw and Croux (1993),
Sp = 1.1926 med; (med;(|X; — X;1)).

The choices of kernel function, bandwidth and scale estimator satisfy conditions
C1, C3 and C4. Thus C5 is satisfied by Theorem 2.2. For the average of the
1000 replications, the a-IFs under the four models are graphically displayed in
Figure 2.1. From Figure 2.1, we can see that as the outlier approaches +oo,
the o-IF appears to converge to a constant, i.e., wlirglo IF(z) = wﬂmml Fi(z),

i = 0,1,2. In fact, the a-IFs outside the interval [—3, 7] seem to be constant,
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while they take varying values inside the interval [—3,7]. Specifically, IF} has
a higher value inside the interval [—3, 7] than outside the interval, whereas I F}
has a lower value inside the interval [—3, 7] than outside the interval.

Next, we considered the case that po/p1 # 0/(1 — 6). We have used the
same four models as above but with ng/n; # /(1 — ). We observed that
the resulting a-IFs were similar to those in the case that no/n; = 6/(1 — 6)
considered above. Two typical examples are given in Figure 2.2, in which figure
(a) is under Model I with sample sizes ng = ny = 100 and n, = 300, and figure
(b) is under Model IV with sample sizes ny = 50, n; = 150 and ny, = 300.
Robustness of the MHD estimator is evident from Figures 2.1 and 2.2 by the
fact that the a-IFs are bounded.

We also compared our MHD estimator with two MLEs. For the reasons
stated in Remark 2.5, the MLE constructed in Section 2.3 was not used in
our comparison. Instead, we examined two ML estimators based on following
likelihood functions combined with the data (Z1,..., Z,,):

n2

=[1l65(Z:) + (1 - 6)9(Z)]

i=1

and
n2

=172y + - 0)5(2)],

i=1

where fand g are the kernel density estimators of f and g defined by (2.3) and
(2.4), respectively, with f and g as in model (2.2). In other words, the likelihood
L is constructed assuming that density functions f and g are completely known,
whereas L is obtained by replacing f and g by their estimators. Thus, L and L
are rather naturally constructed for simulation purposes. We define

é\MLE = argmax[ (2.19)
0€l0,1]
and _ B
OviLe = arg max.L (2.20)
0€l0,1]

as the MLEs of 6 based on L and Z, respectively. In our simulation, the data
were again generated from the models defined in (2.18). For each model, 500
samples with ng = n; = 30 and n, = 100 were obtained from the corresponding
distributions. For instance, for Model I, samples of size ng = 30 and n; =
30 were obtained from the distributions N(0,1) and N(3.60,1), respectively,
while a sample of size ng = 100 was obtained from the mixture distribution
0.25N(0,1)+0.75N(3.60,1). In each of the distributional situations considered,
we obtained estimates of the bias and mean squared error (MSE) as follows:
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Fig. 2.1: The o-influence function of MHD estimator 6, with respect to single outlier
under Model I-'IV and pg/p1 = 6/(1 —0), with e - [Fy, o - [F} and — - I F5.
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(a) Model I: ng = ny = 100 and ny = 300 (b) Model IV: np = 50, ny = 150 and ng =
300

Fig. 2.2: The a-influence function of MHD estimator #,, with respect to single outlier
under Model I and IV and pg/p1 # 6/(1 — 6), with e - [Fy, o - IF} and — -
IF.

_ 1 Y
Bias = — ) (i — u)
8 =1
and
N,
MSE = —3 (@i — p)?
NS — :ul /J’ b

where N, is the number of replications (N, = 500 in our case) and 7i; denotes
an estimate of y for the ith replication. Here p = 6 and i denotes either the
proposed MHD estimator 4, GMLE or fyie. Kernel estimators f and g are the
same as those employed in the robustness study above. Simulation results are
summarized in Table 2.1.

Tab. 2.1: Estimates of the biases and MSEs of 4, @\MLE and 5MLE.

Model Bias(d,) MSE(6,) Bias(@yrg) MSE(Ouie) Bias(Oure) MSE(6uir)

I -0.0021 0.0033 -0.0023 0.0021 -0.0098 0.0028
It 0.0071 0.0061 -0.0028 0.0029 -0.0853 0.0119
II1 -0.0006 0.0039 -0.0018 0.0029 -0.0295 0.0052
v 0.0031 0.0060 -0.0024 0.0036 -0.1399 0.0281
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We found that the MHD estimator 6,, performed better than the MLE Oy g
for models II, IIT and IV, and both were comparable for model I. On the other
hand, the MLE g, which is based on assuming f and g are known, showed
the best performance among the three estimators considered for all four models.
However, this behavior can be expected here since y.g employs more informa-
tion (i.e., knowing f and g, or in other words ny = oo and n; = co) than either
OMLE or 6,. Note that HMLE is not available in practice and the sole purpose of
analyzing it here is to examine the amount of loss in performance when f and g
are unknown. The bias and MSE of 6, were less affected by the preceding fact
compared to those of HMLE Note that HMLE uses only the mixture sample of size
ng = 100, whereas 6, and GMLE are based on all three samples of sizes ng = 30,
n1 = 30 and ny = 100. (Data from f and g are not required for Oy g since it is
based on the fact that f and g are known.) Thus, one might argue that a direct
comparison between 6, and 5MLE may not be fair. In Figure 2.3, we have also
given the normal probability plots of the proposed MHD estimator 6,, based on
the 500 replications for all the four models. Figure 2.3 demonstrates that the
sampling distribution of 6,, closely approximates a normal curve for each model,
no matter pg/p1 = /(1 — 6) holds or not.
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a3

0.0

Normal Quantiles Normal Quantiles

(a) Model I and II (b) Model III and IV

Fig. 2.3: Normal probability plots of MHD estimator 6,, for sample sizes ng = n; = 30
and ng = 100, with e - Model T and IIT and o - Model IT and IV.
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2.6 Examples

In this section, we applied the proposed MHD estimator constructed in Section
2.2 to a real data set used in Hosmer (1973). The International Halibut Com-
mission in Seattle, Washington wanted to estimate the proportions of male or
female halibut. They provided the lengths of 74 eleven year old male halibut
and 134 eleven year old female halibut caught on one of their research cruises.
A summary of the data is given in Table 2.2.

Tab. 2.2: Frequency distribution of the lengths in centimeters of 11 year old male and
female halibut caught on Western Trip I, April 1957.

Sex 75 80 83 90 95 100 105 110 115 120 125 130 135
Males 2 7 8 6 7 1 10 9 9 3 2 0 0
Females 0 1 0 0 4 2 7 18 22 29 28 13 10

The sample proportion of males in this example is 74/208 =~ 0.3558. To illus-
trate computation of the MHD estimator, we randomly selected 14 male lengths
and 26 female lengths from 74 and 134, respectively, so that the remaining male
proportion was about the same as 0.3558 (60/168). These samples formed the
first, second and the mixture samples, respectively. That is, ng = 14, n; = 26
and ng = 168. This idea of selection of samples is similar to model M1 sampling
mechanism described in Section 2.3. Based on above sample sizes, we carried
out a simulation with 10 and 100 replications and averaged the results. The
resulting MHD estimates were 0.2755 and 0.3144, respectively, for the male pro-
portion. The average squared errors from the sample proportion 0.3558 were
0.0112 and 0.0125, respectively. Based on one replication, Hosmer (1973) ob-
tained a MLE of male proportion of 0.465 with a squared error of 0.012 from
the sample proportion. Thus, our results are similar to those in Hosmer (1973).
However, our estimator is constructed without the normality assumption on the
densities f and g, whereas Hosmer (1973) assumed the two component distri-
butions were normal. The kernels Ky, K;, Ky, bandwidths and robust scale
estimators of (2.3), (2.4) and (2.6), respectively, were chosen the same way as
in Section 2.5 in the above simulation.

Another example is given in Anderson (1979). Anderson (1979) generated
samples (X7,...,X,,) = (1.15,0.25,2.31,2.44,3.28,3.34) from the N(2,1) dis-
tribution with ng = 6, (¥7,...,Y},,) = (0.74,—0.50,1.08, 1.34, —0.74, 0.15) from
the N(0,1) distribution with n; = 6, and (Z3,...,Z,,) = (-0.23,0.71,0.92,
—0.53, —0.68,1.04,0.61, —0.88, —0.61, 0.59, 2.96, 2.59) from the mixture 6N (2, 1)
+(1 — )N(0, 1) distribution with ny = 12 and 6 = 0.25. Using the assumption
that the log ratio of the two component density functions is linear (this is the
case here), Anderson (1979) obtained a MLE of # as 0.19. Later Zhang (2002)
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proposed an EM algorithm based argument on the same log linear model to
calculate a MLE, and he gave his estimate of 6 to be 0.1890. Using the same
data set, we obtained the MHD estimate of 6 defined in Section 2.2. Our es-
timate of @ came to be 0.2045. Note that our estimate is much closer to the
actual value of § than both Anderson (1979) and Zhang (2002) estimates, even
though we made no assumptions about the relationship of the two component
distributions while they made an extra assumption that the log ratio of the two
component densities is linear.

2.7 Concluding Remarks

In this chapter, we have considered the problem of estimating the mixture pro-
portion in a general two-population mixture, when samples of sizes ny and n;
are available from the two individual populations while a sample of size ng is
available from the mixture population. There have been very few attempts
in the literature to estimate the parameters in a mixture problem under the
preceding setup using the minimum distance approaches or by the method of
maximum likelihood. Here we have constructed a MHD estimator of the mix-
ture proportion. The proposed MHD estimator has been shown to have good
efficiency and robustness properties. By constructing a sequence of multino-
mial approximations, we have also obtained a sequence of asymptotically nor-
mal MLE estimator of the mixture proportion. Furthermore, we have derived
a Cramér-Rao type lower bound for nonparametric estimators of the mixture
proportion and thereby characterized asymptotically efficient estimators.

The results in this chapter could be extended to the more general nonpara-

k
metric mixture model studied in Hall and Titterington (1984) of the form > _p; f;,

i=1

k

where 0 < p; <1 and Y p; = 1. We believe that results similar to those in this
i=1

chapter can be established for the semiparametric model proposed in Anderson

(1979) as well. He assumed that the log ratio of the densities f and g is linear of
the form log (9(z)/f(z)) = Bo + Sz, or equivalently g(z) = f(z) exp(Bo+ Bi).
The three data sets in (2.1) then would come from the distributions f(x),
f(z) exp(Bo + P1z) and {0+ (1 — ) exp(B + P1z)} f(z), respectively; and MHD
estimators of 8, 8y and (; may be developed along arguments similar to those
given in Section 2.2 above. A more general two-sample semiparametric model
than the one considered in Anderson (1979) is investigated in Chapter 3.

2.8 Proofs

Proof of Theorem 2.1.
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The method of proof is similar to that of Theorem 2.1 of Beran (1977). For
completeness, we give the proof below.

(i) Let dy(t) =|| By*(z) — ¢%/%(z) ||. For any sequence {ty, : ty — t,tx,t €
[0,1]},

| ()~ 2(0)| = | / il @) — g @)Pds — [[(@) - o (@)de |
(1l (@) = h"*(2))g" (2)dz |
1/2 >

< 2 n hf*(2) =B (2) | -

Since [ hy(z)ds = fhtk z)dz =1, f[ht ) = by (@) Yz = [[hy(x) — by, (z)]de.
Thus, || hl/z( ) = h*(@) |P< [ | hu(@) = hu (@) | do = 2 [[hu(z) — b, (2))*da.
Also, [hy(z) — htk( )]+ S he(z) and, for every z, hy(z) is continuous in . Thus,
by the Dominated Convergence Theorem, || Etlk/ 2(x) — B*(z) || — 0 as k — oo.
So, dn(ty) — dn(t) as k — o0, l.e., d, is continuous on [0, 1] and achieves a
minimum over ¢ € [0, 1]. Similarly, d(t) =|| hy/*(z) — ¢"/*(z) || is continuous on
[0,1].

(ii) Suppose || ¢/* — /2 |— 0 and SUP;eio. | RY2 — B? || 0 as n — oco.
Put dn(t) =|| /% (z)~ ¢ *(z) || and d(t) =|| hY*(z)—¢*2(z) ||. By Minkowski’s
inequality,

| dn(t) -

Q.

()|
{/[ W2(5) — g2 () — hY2(z )+¢1/2($)]2dx}

< {2 / [/ (2) = by (@)] "das + 2 / [6%(@) — ¢/*(@)] "da}

Consequently, sup | d,(t)—d(t) |< {2 sup fh1/2 — W (2))2da +2 [[on V(g
t€[0,1]

tefo,1

—¢Y?(x)]%dz}/?, and the r.h.s. of the precedmg expression goes to zero as
n — oo by assumptions. Therefore, we have, as n — o0, dp(6y) — d(6p)
and dy,(0,) — d(6,) — 0, with 6y = Ty(¢) and 6, = T(¢n). If 6, — 6, then
there exists a subsequence {0} C {6,} such that 6,, — € # 6, implying
¢ € [0,1] and d(6,,) — d(#’) by continuity of d. From above results, we have
A (0rm) — dm(Bo) — d(6') — d(6o). By the definition of 8,,, dm(0m) — dn(bo) < 0.
Hence, d(6') — d(6y) < 0. But by the definition of 6, and the uniqueness of it,
d(6’) > d(6y). This is a contradiction. Therefore, 6,, — 6.

(iii) For fixed f and g, t; # to implies Ay, 5 hy,. So {h¢}tepo,1) is identifiable.
Immediately, we have To(h;) = t uniquely. O

1/2

AN

1/2

Proof of Theorem 2.2.
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1/2 T2 1/2 ”

If we can prove that asn — oo, || AY/2— |5 0and sup | A

t€(0,1]
0, then by Theorem 2.1, 6, — 6 = T'(h) — To(he) L 0asn — co. It is easy to
show that sup|f(z) — f(z)| 5 0, sup|g(z) — g(z)| = 0, sup|h(z) — he(z)| > 0
and sup sup|hy(z) — hu(z)] £ 0, see below. From an argument similar to the
tef0,1] =
proof of Theorem 2.1 (i), we have || /ﬁl/Q( ) — by (z) |12< [ | ho(z (z) |
dz = 2 [[he(z) — h(z)]*dz and [he(z) — h(z)]* < f( ) + g(z). Then by the

Dominated Convergence Theorem, it follows that || 22 —hy/? |5 0 as n — 00

On the other hand, sup|7tt(x)~ht(x)| < sup|f(m)—f(m)|+sup|g( )—g(z)| 5 0.
Since sup f[hl/2 h%ﬂ(w)]?dﬂv < SUP I Et(w) — h(z) | dz < [|f(z) —
tefo,1 t€0,1

( |d$+f|g ( )ldiE it follows that sup || h1/2 1/2 ”
tef0,1]

Finally we prove that sup|f(:c) — f(x)] % 0 as n — oco. Define

—~

EF(@) = (nsSon) ™ [ Kol5—52)d )

and By, (z) = nl/*[Dp,(z) — F(z)], where Dy, denote the empirical c.d.f. of
(X1, Xo,..., Xpn,). We have sup|B,,(x)] = Op(1) (see Kiefer and Wolfowitz

(1958)) and then

supla) = BF@)| < 52 (bnySun) " sup | Buo(@)] - [ 1K (@)l 0. (221)

Suppose K, has compact support [ao, bo], then

sup|Ef(x) — f(z)] = sup Ko(t) f(z — bpySnet)dt — f(z)]
x x a%O
Slﬂlﬂpl Ko(t)dtf(x - bnosnoé.'no) - f(-’lf)l,

" with &, € [ao, bo]
< sup sup |f(z — bnySnet) — f(z)]

z te[ao,bo]
P
— 0.

Il

(2.22)
From (2.21) and (2.22), one has sup|f(z) — f(z)| L 0. Similarly, sup|g(z) —

9(@)| 5 0, sup[h(z) — ho(z)| © 0, and sup sup|h(z) — hu(z)| < sup|f(z) —

telo,1] =
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1(@)| + suplg(z) — g(z)] 0. o

Proof of Theorem 2.3.

Since T' is continuous at ({A¢}sco,1), ho) in the sense of Theorem 2.1 (ii) and
|| h/2 — hi% || 0 and SUD,eo,1 | h'* — hl’? |- 0 as n — oo, we obtain that
T({Tlt}te[o,l], ) — T({ht}te 0,1]> h@) as n — oo. That is, 8, — 6 as n — oo.
Thus, for large n, 6, € (0,1) since 6 € (0,1). Denote S; = 7L751/2. We claim that
for any t € (0,1) '

Stra(x) = Si(x) + aSi(z) + apa(z), (2.23)

Sira(®) = Si(z) + aSi(z) + avy(z), (2.24)

where Sy(z) = as{;—gm) and Gy(z) = 2 gzz(x) are in Lo, and pe(z) and v,(x) tend
to zero in Ly as a — 0. The proof of this statement is shown at the end of this
proof. Since 6, € (0,1) minimizes the Hellinger distance between h; and h, or

in other words 6,, maximizes [ B (2)hM2(z)dz, (2.23) yields that

limo™ / o2 (2) — B (@) R (o) de

_ 3h; (@"1/2
= /Th (z)dz,

71/2 2y~ o~ . .
and so we have 0 = [ %#hl/ ?(z)dz. Since f — f and § — ¢ uniformly, by
a Taylor expansion one obtains

771/2 N
_ /8h (.’E)hl/g( )dm—&—lin(l) ,ua(m)hl/Z(m)dm

0 1 f—g &(f-g9)+g B
Yoo, = Oy + 10 03577 Y T 1 g <)

sA+6)f-9)+g .
[enf+(1_ BYRE x(G—9)
B (fr — g) + Ongs

_ 72 2.25
?Ef’fre )((13199"))9(}15/2 ) )(J:r (1f) 6,) o
1 —Un T n)9r ~ 2

e T, o

447 [%JZ« +T(1 — Hn)gr]"’% x (f— 1)@ - 9),

where f,(z) = r(2)f(z) + [1 - r(2)]f(), 9r(x) = r(z)g(z) + [ — r(e)}§(x) and
r(z) € [0,1]. Since f.(z) — f(z) and g.(z) — g(z) uniformly as n — oo and
hy > C for all t € [0,1] and some C' > 0, we have
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D)+ 6,0, -~ R R
I/ 2[9nfr 5 +>gf]o/2 (- 1y Rlds < [(F - pde,

)3 +0n )(fr o)+ (L=0)gr - hoim -
| / n.fr ( Hn)gr]5/2 (g g) h*/“dz |S To /(g g) d:[;,
10 (1+86,) r)"‘(@n—%)gr N R o
| / [anr — 0,)g, 572 (f =)@ —9) Bz |

< 7'3/(];* f)2dx+7-4/(§~g)2dm

for some positive constants 7; (i = 1,2,3,4). Then from (2.25) and above three
inequalities we have

711/2

L(f-9)+9 s .
) /[eanf L~ 0n)g]'/2 h1/2dx+/ Gt (L gygpre U — D

_1+0)(f 9 +g .
/[‘)nf-}-(l— 6.)9 ]3/2( g) h'*dx

(f = f)dz + Bn / (G — g)%dz,

where |an| < 75 and |G| < 75 for some positive constant 75 > 0. Again since
he > C > 0 for all ¢ € [0,1] and f and g are continuous on compact set W,

_ Hf-g)tg 21+ (f—g)tg
(2.23) holds for S; = ——LW a7 S, = ————thi(l Tk and S; = 2———tf+(1 a7z O
W. Applying (2.23) to preceding expressions, we obtain

= f-g 8 f-g9)+9 = ~
"o {/[9f+(1— 0)9)'/> WP+ [0f + (1= 0)g]?/? (F = ) n'%dz

sA+0)(f—9) +y

[9ff+( ’ — 0)g]*/?

-9 T1/2
~(0n—9>{/2[9f+(1_ e

+/ [0f +(1— 9);5/2 (f £) hM%dg

_/i(3+9)(f—g) +9(f—9)

[6f + (1 —6)g]°/? (@~ 9) Emdm}
+(0,, — 0){ /un};mdm —I—/yn(f— f)/ﬁl/de-i—/wn@——g)ﬁl/Qdm}
+{an [(F=17ds+u [@- 9o}

G- g) BV 2d:n}
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—_ (Al + Az —_ Ag) - (Gn - 9)(B1 + B2 —_ Bg) + (On - 0)(01 + Cg —|" 03)
+(D1+D2)’ say,

where p,(z), vp(z) and w,(z) tend to zero in Ly as n — oco. Then it follows
that 0, — 0 = [(By + By — Bs) — (C1 + Co + Cs)] 71 (A + Ay — A3 + Dy + Dy).
It is easy to show that C; — 0 (i = 1,2,3), B; — 0 (i = 2,3) and that
e ggf o - (A% = By dz| < C[f(BY? — hY*)2dz]'/? — 0. Hence the
result.

Finally we prove (2.23) and (2.24) hold for S; = h 12 . By a Taylor expansion,
f—§+_g[f—§_ f—@‘]
2St 2 St+ra St

Stra =05+

with r = r(z) € [0, 1]. Note that

F3_7-9) /{ mwa _Aﬂ%&jm»wx

St+ra

o U,
t+ra
el
< o |./ t—|—ra —§(m))2 v
+| I/ - ({)‘3 — dx
4 (1—1) 1 — t — ra)(f(m) —g(z))?
1 -~ ~

< el JMY*u—wazt—mN 17la) ~ 9w)lds

e Rl (= e ey

— 0 _
as a — 0. Similarly one can prove that S, € Ly and (2.24) holds. O

Proof of Theorem 2.4.
Since the proof of Theorem 2.2 gives that sup|f(x) — f(@)| 5 0, sup|g(z) —
g(@)| Lo, h/2 = 1/2 |5 0and sup || AY/?— 1/2 |15 0, (2.10) holds w.p.1 for
¢

3

some versions by Skorokhod’s representation theorem. So it suffices to give the
asymptotic distribution of n'/2 [ ¢ (z) [h1/2( )—hy (= )]da:—l—n1/2 f0'2 [Flz)—
F@)02(z)dz—n'/? [ o3(x)[G(x) — 9(2)]A/(@)de +n'ay [[f(2) - f(z )]2d33+
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- 8 (f—9)+
n'’2g, [[g(z) — g(z))*dz, where oy = (0f+({_9)g)1 5, Og = W‘%ﬁ and o3 =

1
%ﬁ%ﬁ. Denote H,, the empirical c.d.f. of (Z),2,,...,2,,) and H the

c.d.f. of hg. Using the algebraic identity
b—a (b—a)?

1/2 _ 172 _
b a7 = 502 201 2(51/2 + gi/2)2’ 620, a>0,
we have
~ h(z) —h
nl/? /Ul(x)[h1/2($) _ hé/Q(:E)]d-T = n1/2/ Ul(x)_@_)_l_ﬁﬂdm + R,
w 2hy'“(z)
where, for § = mingew ho(z) > 0,
_ 2
IRn| < /'0_ x) 73 hO(m)) dr
2hy(x )
< 592fn)? / 0@ fA(z) - Bh(a)*do (2:20)

[ loi(a |[Eh z) — ho(z)de }
= 5_3/2(W1n+W2n), say,

where Eh(z) is defined by

Th(z) = (b, Sn,)~" / Ko (5= YV aH(y).

n2 Snz

By denoting B,,(x) = ny/ *[H,,(z) — H(z)], we have

hz) = Bh(z) = ng (b, Sny)" / Ko(E=YNiB,, (1) = Tin(x) + Ton(2),

’n2

(2.27)
where
Tyn(z) = " (0rsS2) / Ko )dBua(v)
na
and
b"28"2 - T — T —

Tale) = —ma [ [ 4 RO O )

by Sy

= n2—1/2/ ’ Zt_ /an(m~tz){2K§1)(z)+zK§2)(z)]dzdt.
by S2

By direct calculation,
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1 & x — Z 1 T—y 2
E[T? = E|—— °) — —
e A e [ Kal=hintw)
1 T — Z1
bTLzSZ )]

/Kg(z)hg(:t: — b, S22)dz

and

By Sna
supTon(z) = sup g 1/2/ t=2dt - O,(1) - O(1)
b

i n2 52 2.28
2 (S S020,(1) (2:28)

= Op((n2br,)™)
since n/*(Sn, — S2) = Op(1). By CLT, Tin(x) = Op((nahn,)~"/%). Then by
(2.27), h(z) — Eh(z) = O,((nabn,)~V?) and thus Wi, = ni/?0,((nabn,)™1) =
Op(nz*l/zb;zl) £ 0 by (2.26) and nl/?b,, — oo. Further since

Sgplm(w) —ho(z)] = sup] / K (t)[ho(z — bnySn,t) — ho(z)]dt]
< 2712 52 suplhéz)(x)I/xQKg(x)da:

nz2ng

(2.29)

1/ 2b2 — 0 and /n(n;/n — p;) — 0, we have Wy, 2 0 as well. Consequently,

R, £ 0asn— oo Using a similar argument as for R, KR 0, it can be shown
that ng'® [ (f(z)—f(2))?dz = 0 and n;’? [(§(x)~g(x))%dz = 0. So it suffices to
give the asymptotic distribution of n*/2 [ oy ( )h(x) h"(x dz+n'/? [ oa(z Wf(x)—

F(@)|hY?(z)dx — n2 [ og(z)[G(z) — g(z)]h/*(z )dw Slnce for large n,
[ #@)(F@) - FNR@) — b @lde = of [ @) - hil*(@)]da)
and

[ osl@)ata) - s@N @) ~ by )do = of [ o(@)F(s) ~ by (@)lda),

we only need to find the asymptotic distribution of n!/? [ o} (:E)M;hl—%&()ﬂdx-i—
X

nV2 [ oy(2)[flz) — f(@)]hy*(@)dz — n'/? [ og(z)[G(z) — g(z )]hl/z( )dz. Let
A(z) = o1(x)/[2h}/*(x)]. Then by (2.27)
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1/2 E( ) h’ ( ) 1/2 1/2
nl/ / al(g;)T/?(“’de = / A@)Tin(z)dz + 1Y / A@)Ton ()da

+nlf? / A@)[Eh(z) — ho(z)]dz

(2.30)
Also from (2.28), (2. 29) and assumption Cl() in the theorem, we have

5% [ A(@)Ton(x)dz 5 0 and ny/? [ A(z)[Eh(z) — he(x))de L, 0. The first term
in (2 30) can be expressed as

1/2 . 1 x—y
nl / A(@)Tin(z)dz = / Ale)— / Ky _bm 2B (y)ds

- / bn:sz/ A) a5, dadBro(y)
— //A(y-l—bnzSzZ)Kz( )dzd By, (y).

Thus straightforward calculations give

W [ A@Tin(a)ds - [ A@)aB,@)
_—% / Ka(2) [ 1A +b0,522) = A)Bu )
< B{[ KO [ (Al + buu522) — AW} d2)
= [ BB A+ tnuo2) - 4B )
- / K2(2)Var[A(Z) + by, Se2) — A(Zy)|dz
< / K(z / (2 + bryS22) — () *ho(a)dardz,

which goes to zero asn — oo. Therefore, na/> J A@)Tp(2z)dz— [ A(y)dBn, (v) il
0 as ny — 0o, and the asymptotic distribution of ny* [ ol(m)ﬁ(m);Th("()m)dx is the

same as that of [ ”f}fg)dB (y) = /n [n2z2§11/(zz(’z) il 2:11/(2”” ) (z)dz]. Ap-

plying a similar argument to ng’> [ oo(z)[f(z) — f(a:)]hl/Q(x)dm and nl/ J os(x)-
[9(z) — g(x)]hl/ *(x)dz, it is enough to find the asymptotic distribution of
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A o i

/ (x)hg*(2) £( )d:v] - [——i 3(K)hé/2(x)—/ag(m)h;/2( )g( )dm]}
{[ Zm(x hy/*(X) _—203 B2 (v;) iizzll/(%)]
-/ 2;:}2 (> ha(a)i + o ) i~ / ag(mh;/?(x)g(x)d;] ;)

By Liapounov’s theorem, (2.31) is asymptotically normally distributed with
mean zero and asymptotic variance

~Varloa (X (0)] + --Var [V ()] + - Var[ 252

(X)), (1-0) (Yh) ( fh;ﬂ%)
__argxl 1- 2a7”9Y1 . CLT921
Py [h"a(‘fmitxéjiplez(lv 0[)’219(1/1)];; e ol

= U Ve[ S ar [

1 dlog he(Z1)

+—Var 5200,

This completes the proof. O

Proof of Theorem 2.5.

By simple calculations, for large n, the estimating equations (2.12)-(2.15)
are equivalent to the following equations:

A(l - anL)2&%l + Bl(]- - HnL)all + Cl = 07 [ = 17 LRI L7 (232)
IV x [(nortrat )= (nzt—"5—) (1=6ar)n] 1=1,..., L
aOl—enL nﬁ——ﬁ— 0l Tt 2 1= 6., nL)C1 |, t = L,..., Ly
(2.33)

and

L

Zau =1, (2.34)
where A = —(ne + 47) (52 — 2 enL) By = (nu +n20) (5% — t7) — (o +

nu)(nz—l-l—_é;;) and C) = ny;(ng+ny+ng). Note that ny/n; — oy and ny/n —
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p; as n — oo. If we let n — 0o and plug these limits into equations (2.32)-(2.34),
then we observe that {ag, a1y, 8} is a solution. This means that there exists a
consistent sequence of roots to the likelihood equation. For notational conve-

nience, we use (Qo1, - - - , Qor, Q11, - - - , Q1L, Unr) to denote the consistent sequence,
. -~ o~ —~~ -~ 9 P
ie., (Qo1,...,quL, Q11 .-, 01L,001) = (ao1,...,00L,Q11,...,04L1,6). One can

easily see that the consistent solution to (2.32) is

1 Bl—'r\/BIQ~—4ACl
X 54 ,Il=1,...,L.

1-0,1

ay = -

By substituting above equation into (2.34), we have that

L L
S BI—4AC; = 24(6p—1)— 3B (2.35)
=1 =1

Note that (2.35) has 6,;, as the only unknown parameter, so we can use (2.35)
to investigate the asymptotic properties of the MLE 6,,. Applying Taylor
L

expansion to the left hand side (Lh.s.) of (2.35), we have > /B? —4AC| =
i=1

L L

Z[ - B+ 2ACl/Bl + 2A2Cl2/Bl3 + OP(AQ/TI,)], and then 0, — 1 = ZC[/B[ +

=1 =1

L
A>"C?/B} + 0,(A/n). Applying Taylor expansion again, we obtain
=1

Onr — 1
L
_ _Z ny(no + nu + na)
(nor + nu)(nz + 1%5)

n, n
(ny + n2l)(_0 -

_XL: nu(no + ny + na) )
0 1-6

(not + ny)2(ng + 1%5)?

=1

L
nu(no + nuy + noy) ny
Onr, — 0
+(Ont ) x {;(noz +n11)(n2 T 1_7115)2 (1 _ 9)2

_*_i nll(n01+nll+n2l) (n tn )(no " nl )}
=1 (TL()[ + n11)2(’)’l2 + 1”_ ) t 2 62

L
n o 1 [nu(noz +ny+ nzl)P
9)(7 1 )Z[(nm + ny)(ng + a)]?’
(260 — 1)n0n1 2n? ngna n17M9
+(9"L‘9){ 2(1—62 (1 1) 2 (1—9)2]
g ny

nd  n(l —9))'

+(’I’Lz +

L
Z[[nu nor + nu + nzt)] + 0y(6nr, — 0) + 0

=1 (n()l +TL1[ 77,2 + )]
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Since y/n(n;/n — p;) — 0, i = 0,1, 2, further calculations then show that

nyu(no + nu + ng)
0, —0 = 1—0-—
nl Z (noy + n1)(na + 1_9)
L
_(@ M ) ny )_2anl(nm + nu + na)nony
6 1-6 1-0" & (ot + ny)3
L
ny(no + N1y + nag) ny
Onr, — 0
+( L ) X {;(NOZ +n1l)(n2 + %)2 (1 _ 9)2
L
ny(no + ny + ng) ng ny
+[(20 —Dnona 20 nmong  mamg 1
6%2(1 — 9)? (1-0)3 62 (1—6)?
i [ (no + nu + nop)]? }
n —~[(no + nu)(n2 + 12%5)P
1
+0p( nl, — ) + Op( m)
_ i 8)nogna — Onyngy
’I’Lg + l 1 T + ’I’Lll
p2 P2(1 - o, }
0. —
+{p0 thaty 0 Z«Qam + (1 —O)ay (Onz, = 6)
+0p(n 1/2) + 0p(Onr — 9)7
equivalently,

L
_ (aor — Oéll)2

L
O)nging — Onyngy —1/2
= + op(n + 0,(0,r — 9),
n2+ l - no + Mg p( ) p( nL )
or
\/H(enL - ‘9)
L
_ (o — ay -1 Ny
- (9(1 )Zeaol + 1 - 9)0[”) X \/_(an —+ 9] n—z. o 0) + Op(l)
1—0 ,Ea? L n
— 0l - no; 21
| Ltsnoh gy ) 4
0 (;O@z ) vn lz:;noz +nuy N (L)
(2.36)
since mo; /Mg LN agr, Mg/ i ay; and ngy/ne L Oag+ (1 —0ay, Il =1,..., L.
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We only need to find the asymptotic distribution of v/n {znoz-HLU % - 0}.
Observe that

L

a4 No; 90401 _7?,2_1_
Znoﬂr”u ng Z(n0,+nu Za2 azz)+7" (2.37)

=1 =1 Qat =1

L
where r = Z(Fm%—wﬁﬂ %";%L)(m — ay). Since v/n n( — ay) is asymptotically

normal and /n(n;/n — p;) — 0, we have /n(—2%—
normal. Furthermore,

Jide : .
noi+niy #;f) is asymptotically

r=0,(n"1) = 0,(n"1?).. (2.38)
We can write the first term on the r.h.s. of (2.37) as

L
Noi By
> - — o
o7 Mo tnuy o oy
L L noitnay 2
_ Znoz — (o + ny)fao /o n Z Ny ( no+ny az1)
- ) +ny
no + 14 ng + 1Ny POt oy
=1 =1 no+n1 (2 39)
No No + Ny
- E — fag) (———— — ax)
Of2l ’I’LO + 1 o -+ n1

L
6
_ Zn noz-l—’flu) ao/ o —I—op(n“m),

ng +n
ey o+ Ny

with the last equality follows from the fact that v/n (——91— 9040;) and /1 (” oty

np+ni no+ni

—ay) are asymptotically normal. From (2.37), (2.38) and (2.39), we obtain

L

Z_n(’—l N _ g

= "ot +ny ng

L L

Nol — (nog + nu)QOéOl/Oém Oy o -1/2

= + = — Qig1) + 0p(Nn

; ng + Ny ; Qg (n2 2l) p( )

L
Otu oy Qo , myy
g no +ny Ol) Z 85 (no + Ny ( ) ”)

=1

Oa Ny ~1/2
+ZZ:; Qg (ng o) + 0p(n”%),

and thus by the CLT, /n (Z—“O—l - 22 _ §) is asymptotically normal with

noitny N2

mean zero and variance glven by
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92(1 — 0)2 i X1 [Cxm

o1 (1m — Qom) +

Po o= Xalom
62(1 - 9)2 = o1 Com, 92 = ot Com
@ 5m_04m + — 6% (Sm—a{
P1 l;ﬂmazm u(® ) pz%; Q21 Qo (% o)
6%(1 — 6) [L as N z]
= —=Qn — —qQ, _|_
. ;aél o (; )
6%(1 — 6)2 [iaﬁz (zL:aoz )2] + 6 [ZL:% 1]
—Qq — —q — - 11,
1 =1 a3, g = % ! p2 Y
(2.40)
where 05, denotes the Kronecker delta. Thus, by (2.36) and (2.40), \/n(6,1 —6)
is asymptotically normal with mean 0 and variance Ay, defined in (2.16). O

Proof of Theorem 2.6.
Suppose for some f # g and 6 € (0,1), § = A0, f,g,he) —V (0, f, g, hg) > 0.

In view of the continuity of both V' and A, we can choose step function densities
f, g and My = 6f +(1—6)g such that A(9 .9, Mg)—V (0, f, 3, M) > 6/2. De-
compose the real line R into regions { R;} in such a way that f, § and M assume,
respectively, a constant value on R; for each I. When (f,§, Mp) is the true se-
quence of densities and 6,,;, denotes the MLE of §, by Theorem 2.5, n'/2(6,;, —6)
is asymptotically normal with mean zero and variance A(0, f, g, Mj). Since 6,1,

is the MLE, A(4, f,§, My) < lim nVar(H 0) = V{0, f,§, My). This contra-

dicts A8, f, 3, My) — V (8, f, g, My) > 6/2 and so our assumption at the very
beginning of the proof is incorrect and theorem must be true. O

Proof of Corollary 2.1.

Note that Ag = Var[,f;(x)gl))] = 02Var[—a—l9gh"—(xl)] A = Var[h (Yl)] =(1-
0)2Var[gbg39——"(i)] and Ay = Var[%] =(1- 0)2Var[Mgl—)] and therefore

the asymptotic variance o2 derived in Theorem 2.4 of the proposed MHD esti-
mator 8, of (2.9) achieves the lower bound of (2.17) when po/p; = 0/(1-6). O

Proof of Remark 2.2.
As a result of Theorem 2.1.3 in Rao (1983), sup |f( )—f(z)| — 0, sup |g(x)—
xz

g(z)| — 0, sup |/f2(x) — hg(z)| — 0, and sx[lp]sup |7L (z) — hy(z)] < Suplf(g;) _
z t€lo,1] =z z
f(z)| +sup|g(x) — g(x)] — 0 w.p.1 as n — oo.

By Devroye and Gyorfi (1995), [ |F(z)— f(z)|dz — 0 w.p.1. Since Il [fl/z(x)
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— ()] dSU < flf (z)|dz, we have || /2 — f/2 |— 0 w.p.1. Similarly,

we have || g*/% — g*/? |]—> 0 and || h1/2 hy! ||—+ 0 Wp 1, and furthermore
p | R |2 sup [ [ufe) = hu(e)lda] ™ < [[17(@) = f(@)ldo +
teo, 1] te[0,1

[ 19(z |dw} ? 50 W.p.l. By Theorem 2.1, 6, — 6y = f(h)—To(Mgo) —0
w.p. 1 O
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CHAPTER THREE: MHD ESTIMATION IN A TWO-SAMPLE
SEMIPARAMETRIC MODEL

3.1 Introduction

Semiparametric models have continued to receive increasing attention over the
years from both practical and theoretical point of views due in large part to
the fact that semiparametric models arise frequently in many areas, primar-
ily in biostatistics and econometrics. The well-known semiparametric models
include the Cox proportional hazard model in survival analysis, econometric
index models, regression models and errors-in-variables models, among many
others. More examples and theory on semiparametric models can be found in
the monographs of Bickel et al. (1993), Van der Vaart (1998) and in the review
articles of Bickel and Kwon (2001) and Forrester et al. (2003).

In this chapter, we consider the following two-sample semiparametric model:
Let X1,...,X, bearandom sample from a population with distribution function
G and density function g. Independently of the X;’s, let 71, ..., Z,, be another
random sample from a population with distribution function H and density
function h. The two unknown density functions g and h are linked by an
“exponential tilt” exp[a + r(z)B]. Thus, we have

Xl: »Xn 1'1\51 g(.%‘)
Lid. (3.1)
2y, Zm ' g(z) expla+r(z)f],
where r(z) = (r1(z), ...,7p(x)) is a 1xp vector of functions of z, B = (By, ..., 0,)"

is a p X 1 parameter vector, and « is a normalizing parameter that makes
g(z) expla + r(z)p] integrate to 1. In most applications r(z) = z or r(z) =
(z,2?). We are concerned with estimation of parameters « and (3.

For r(z) = x, model (3.1) encompasses many common distributions, includ-
ing two exponential distributions with different means and two normal distri-
butions with common variance but different means. Furthermore, model (3.1)
with 7(z) = z or r(z) = (z, z%) has wide applications in the logistic discriminant
analysis (Anderson, 1972, 1979) and in case-control studies (Prentice and Pyke,
1979; Breslow and Day, 1980). Suppose Y is a binary response variable and X
is the associated covariate, then the (prospective) logistic regression model is of
the form

40



PY = 1jX = z) = —Plo" +20]

1 + explo* + 2]
where o and 3 are parameters and the marginal distribution of X is not speci-
fied. In case-control studies, data are collected retrospectively in the sense that
for samples of subjects having Y = 1 (‘case’) and having Y = 0 (‘control’), the
value z of X is observed. More specifically, suppose X1,...,X,, is a random
sample from F'(z|Y = 0) and, independently of the X;’s, suppose Z1,...,Zn,
is a random sample from F(z|lY =1). fa=PY =1)=1—-P(Y =0) and
f(z|Y =1) is the conditional density of X given Y =i, ¢ = 0, 1, then it follows
from (3.2) and Bayes rule that model (3.1) is satisfied with g(z) = f(z|Y = 0),
h(z) = f(z]Y =1), a = a* +log[(1 — ) /7] and r(z) = z.

Model (3.1) with r(z) = (z,z?%) also coincides with exponential family of
densities considered in Efron and Tibshirani (1996) in the case of two-sample
problems. Moreover, model (3.1) can also be viewed as a biased sampling model
with weight function exp[a + r(x)3] depending on the unknown parameters a
and S.

Vardi (1982, 1985), Gill et al. (1988) and Qin (1993) discussed estimating
distribution functions in biased sampling models with known weight functions.
Gilbert et al. (1998) have employed model (3.1) with r(z) = (z, z?) to analyze
HIV vaccine trial data for assessing differential vaccine protection against human
immunodeficiency virus types. Qin and Zhang (1997) considered a goodness-of-
fit test for logistic regression model (3.2) based on case-control data by employ-
ing the maximum semiparametric likelihood estimator of G to test the validity
of model (3.1) with r(z) = x. Zhang (2000) estimated quantiles of G under
model (3.1). In this chapter, however, we are interested in the problem of esti-
mating the parameters o and @ when g(z) is unknown. Note that since the form
of g(z) is not specified, statistical inference based on model (3.1) with unknown
g would be more robust than those based on a full parametric model in which
the form of g(z) is known. Note that the test of equality of G and H can be
regarded as a special case of model (3.1) with & = 8 = 0. The results of this
chapter will help to solve this kind of problem.

In this chapter, we propose MHD estimation for the two-sample semipara-
metric model (3.1). This chapter is organized as follows. In Section 3.2, we
investigate MHD estimators of the parameters 6 = (o, §) and study their ex-
istence and strong consistency. In Section 3.3, we derive the asymptotic dis-
tribution of the proposed estimators. Section 3.4 contains a simulation study
where efficiency and robustness properties of the proposed MHD estimator are
studied using a Monte Carlo study. A real data set is analyzed in Section 3.5.
The detailed proof of asymptotic normality of the estimators (Theorem 3.4) is
deferred to Section 3.6.

(3.2)
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3.2 MHD Estimators of Regression Parameters

Define ¢ = (o, #7)7, where o and 3 are as in (3.1). Then the model (3.1) can
be written as
Lid. (3.3)
Zl)'”?Zm ~ ho(ilz'),
where hg(z) = g(x) exp[(1, r(z))0], r(z) = (ri(z),...,rp(x)) is a 1 X p vector of
continuous functions of z on R, B = (B1,...,5,)" is a p x 1 parameter vector
and «a is a normalizing parameter that makes hg(x) integrate to 1. We assume
here and in what follows that # € © and © is a compact subset of RP*?.

We first define following kernel density estimators of g and hg, respectively,
based on data Xi,...,X, and Z1,..., Z,, of (3.3):

1 - .’L'—'X,

gn(z) = b, 2 Ko b ), (3.4)
B () = %Zm(“’;zj), (3.5)

where Ky and K; are symmetric density functions, bandwidths b, and b, are
positive constants such that b, — 0 as n — oo and b, — 0 as m — co. We
can also use adaptive kernel density estimators, which use S,b, instead of b,
with S,, being a robust scale statistic. Here we use non-adaptive kernel density
estimators (3.4) and (3.5) for simplicity. The results can be easily extended for
adaptive kernel density estimators with some additional conditions on S,,.

Let H be the set of all densities w.r.t. Lebesgue measure on the real line.
For ¢ € H, the MHD functional Ty(¢) is defined as

Ty(¢) = T({ho}aco, §) = axgmin || hf/” — 672 . (36)

If the family {hg}gco is identifiable, then the functional Tp is Fisher consistent,
i.e., To(hg) = @ for any 6 € ©. Since h,, defined by (3.5) is an estimator of hy,
the MHD estimator of 8 will be Ty(h,,). However, this estimator is not available
in reality since g and hence hy in (3.6) are unknown. Naturally, one can use
the estimator g, of g and then apply the plug-in rule to construct a parametric
model, i.e., one can replace hg with

ho(z) = expl(1, 7(x)) Olgn(z). (3.7)

Note that /i;g is a parametric density function with the unknown parameter being
0. Let N = n + m be the total sample size here and in what follows. Now our
proposed MHD estimator of € is defined as
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On = T(hn) = T({ho}oco, hm) = argmin | hg* — 1> [, (38)

where Ay, and hg are given by (3.5) and (3.7), respectively. That is, 6y is the
minimizer of the Hellinger distance between the parametric density he and non-
parametric density estimator h,,. This approach is in line with Beran’s (1977)
original mechanism of obtaining MHD estimators. Thus, we would expect Oy
to have good robustness and asymptotic efficiency properties. Since f(hm) may
be multiple valued, we shall use the notation f(hm) to indicate any one of the
possible values chosen arbitrarily. We are interested in both the asymptotic
properties and the local properties of 8. So we let n — 0o and m — oo as
N — .

Note that in (3.8) we are not minimizing the Hellinger distance over a subset
of © including those #’s which make ho densities, i.e., over {eo: [ hg Ydz =
1}. The reason being that even for § € © such that ho is not a density, it could
make hy a density. The true parameter value § may not make Tzo a density, but
it is not reasonable to exclude € as an estimate Oy of itself defined by (3.8).
Nevertheless, the definition of 8 is equivalent to a minimization over a smaller
parameter space, as shown in the following Lemma 3.1.

Lemma 3.1. (i) Suppose that for any 0 = (o, BT)T € © there exists § =
(o, BT)T € © such that [expla’ + r(z)Blg(z)dr = 1. Let Oy = {# € © :
[ exp[(1,r(z))0lg(z)dx < 1}. Then for any ¢ € H,
= ' 1/2 _ 1/2 |- : 12 1/2
To(9) = argmin || hg"™ — ¢/ ||= argmin || ~y"™ — /% || .

(i) Suppose that for any 6 = (o, BT)T € © there exists § = (o, 7)T € ©
such that [ expla’ + r(z)Blgn(z)dz = 1. Let ©, = {§ € O : fexp[ ,r(x))0]
gn(z)dz < 1}. Then for any ¢ € H,

T(d) = i || RY2 _ 412 ||— N RY/2 . 1/2
T(¢) = argmin || hy'" — ¢/ ||= arg min || hy™ — ¢/ ],
where hg is defined by (3.7).
Proof. (i) For 0 € ©, let ¢ = [ ho(z)dx = [ exp|a + r(z)B]g(xz)dz and suppose

that ¢ > 1. Obvmu@ly Jexpl(a — log ¢) + r(z)Blg(z)dr = 1, and thus #; =
(a —loge, BT)T € ©¢. Note that

/( 1/2( ) — ¢'/2(z ))2d:v—/( 1/2( ) — 6"z ))
= [ (h(a) ~ () ~ 2[1*(z) ~ (@) 62

43



l

(c—1) — 2 \/E—l/hl/z (z)¢'?(z)

(c—1)—2(/e—1)
(ve-17,

ie, [(h(2) = '7(@))da > [ (hy*(z) — ¢"*(x)ds.
(ii) Proof is similar to that of (i). O

v

Remark 3.1. If [exp[(1,7(z))0]g(z)dz < oo for any 6 € © and the parameter

space © is of the form © = R x ©, with R and ©, denote the parameter spaces

for a and (3, then the condition in Lemma 3.1 () holds. Furthermore, if g,

is defined by (3.4) with kernel K, compactly supported, then the condition in

Lemma 3.1 (ii) also holds. Moreover, if C < sup [ exp[r(z)Blg(z)dr < oo
B,

(or C < sup [exp[r(z)Bgn(x)dz < oo) for some constant C > 0, then the
BeB,

condition in Lemma 3.1 (i) (or (ii)) holds with © = [-M, M] x ©, for some
finite positive value M.

We now discuss asymptotic properties of the proposed MHD estimator 8y.
First, we give some results on the functional T'(-,-) related to the existence,
consistency and asymptotic uniqueness of the MHD estimator of §. The next
condition and lemma will be used to prove above properties.

(D1) There exists an e-neighborhood B(6, €) of 6 such that h;—hyg is bounded
by an integrable function for any ¢ € B(0, ).

Lemma 3.2. If (D1) holds for 0 € ©, then d(t) =| h/* — ¢'/2 || is continuous
at point t = 0 for any ¢ € H.

Proof. Suppose 6, — 0 as k — oco. From Minkowski’s inequality,

[4(0) = d6) | < [ 14" =07 1 < [ [ | ha(o) = hola) | da] . (39)

By assumption (D1), | hg, — hg | is bounded by an integrable function, and
therefore by the Dominated Convergence Theorem we have [ | hg, () — ho(z) |
dx — 0 as k — oo, i.e., d(;) — d(f) as k — oo and d(t) is continuous at point
t=246. ]

Remark 3.2. Condition (D1) holds for many families including normal distri-
butions. Suppose that g(z) and h(z) denotes density functions of the normal
distribution N(0,1) and N(u,1), respectively. It is easy to see that h(z) =
he(z) = exp|(1,r(x))0]g(x), where r(z) = z and 0 = (o, B) = (—E;,u). Obvi-
ously condition (D1) holds for this example.
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Theorem 3.1. Suppose that Ty and T are defined by (3.6) and (5.8), respec-
tively, and (D1) holds for all 0 € ©. Then we have following results.

(i) For every ¢ € H, there exists f(qﬁ) € © satisfying (3.8) with ho and Jn
defined by (3.7) and (3.4), respectively, and the kernel Ky in (3.4) compactly
supported. For every ¢ € H, there exists To(¢) € © satisfying (3.6).

(ii) Suppose that n — oo and m — o0 as N — oo and 0y = To(p) is
unique. Then Oy = T(qﬁm) — 0y as N — oo for any density sequences {¢dm tmen
and {ho}nenoco such that || ¢m° — ¢/2 |— 0 and sup | 7g/® — By |— 0 as
N — .

(iit) If {he}gco is identifiable, then Ty(hg,) = By uniquely for any 6 € O.

Proof. (i) Let dy(t) =| h/* — ¢1/2 ||. Suppose sequence {t;} C © such that
ty — t as k — o0. Since O is compact, t € ©. Similar to (3.9), we have

| da(ti) = da(t) 1< | / | exp[(1,r(@))t] — exp[(1, 7(x))4] | gn(w) da]"".

Since g, is compactly supported, we have by the Dominated Convergence The-
orem that d,(tx) — dn(t) as k — oo, i.e., d,(t) is continuous and achieves a
minimum over ¢ € ©.

Let d(t) =|| hi/*—~¢"/2 ||. By Lemma 3.2, d(t) is continuous in ¢ and therefore
achieves a minimum over ¢ € ©. R

(ii) Suppose || ¢wi” — ¢Y/2 ||— 0 and sup | Ry = hy/* |- 0 as N — oo. Put

dn(8) =|| hy*(x) — ¢’ (z) || and d(9) —n h1/2< ) — ¢'/%(z) ||. By Minkowski’s
inequality,

[ d(6) ~ d(9) |
{ [05°6) - 02@) - 1 (@) + ¢ () da}

< {2/[h1/2 1/2( 2dx+2/[¢1/2 ¢1/2(w)]2da;}1/2,

IA

and consequently sup | dy(8) — d(8) |— 0 as N — co. Therefore, as N — oo,
06
dn(6o) — d(6o) and dn(Oy) — d(6n) — 0. If Oy —» 6o, then there exists a

subsequence {fy,} C {fn} such that Oy, — 6 # 6,. Since © is compact,
6 € ©. Lemma 3.2 yields that d(8y,) — d(8'). From above results we obtain
dn, (On;) — dn,(60) — d(9") — d(6g). By the definition of O,, dn,(0n,) —dn,(60) <
0. Hence, d(#') — d(fo) < 0. But by the definition and uniqueness of 6y,
d(6") > d(6p). This is a contradiction. Therefore, Oy — 6.

(iii) Since {hg}eco is identifiable, we now have Ty(hg,) = 6y uniquely for any
0y € O. il
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Remark 3.3. If (1, r(x)) are linearly independent, then {hg}sco is identifiable.
To see this clearly, note that for hg, = hg,, we have (1,7(x))(6; — 02) = 0, and
then 6; = 6, when (1,r(z)) are linearly independent. Therefore, {hg}gco is
identifiable for any continuous density function g.

With further assumptions on bandwidths and kernels in (3.4) and (3.5), the
consistency of the MHD estimator of 8 follows from the continuity of functional
T in the Hellinger topology. This result is given next. First, we state conditions
(D2), (D3) and (D4):

(D2) g and K in (3.3) and (3.4), respectively, have compact supports.

(D3) Sup sup(1,r(z))0 < +o0.

c T

(D4) ¢ in (3.3) has infinite support, Ky in (3.4) is a bounded symmetric
density with support [—ag, ag], 0 < ap < 00, and there exists a sequence {a,}
of positive numbers such that as n — oo, o, — 00 and

?‘ég/f{lxlmn}he(w)dx — 0, (3.10)
by Sup / I{|m|>an}ha(w)lzggowb%)—tﬂdw — 0, (3.11)
n~ty, ! glelg/I{|x|5an}h0(x)|tsllslgo-g—(:;—2%%b—"—)dx — 0, (3.12)
bn sup / f{lxls%}ho(az)#silégo [g(mf(—wrdw — 0, (3.13)

where ¢(®) denotes the k-th derivative of g and I, denotes the indicator function
of a set A.

Lemma 3.3. If (D4) holds, then as n — oo,

sup / expl(L, r(2))6][g?(z) — ¢/*(z)Pdz 5 0.
(2]

oc

Proof. By continuity of the function in § and the compactness of O, there exists
0,, € © which maximizes [ exp|(1,7(z))] (0¥ (%) — gY%(z)]?dz. By (3.10), (3.11)

and a Taylor expansion, one has

B | [ Hisoa (1, 7(2))0lon(x)d]

- / / f{iml>an}eXp[(l’r(I))e%Ko(y;z

T

)9(y)dy dz
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= /I{tx|>an}exp[( T /Ko g(x + tby)dt dz
1
= / Ijal>an} exp[(1,7(2))0] / Ko(t) [9(z) + gV (a )tbn+§g<2>(§)tzbg]dt da
< / Lje>anyhe(7)dz
L 9P (x + tbn)|
+_b721/1x nhxsu—.___l_
2 (e ol )|t|s£)0 g(x)
< sup / I{jz|>anyho(z)dz

6co
1 |9 (z + tb)]
+-b2 sup/] of>ant o (T sup—————-—-——n—dx/tzK t)dt
2" geo ) U ol )|t|§a0 9(z) o)

dx / t2Ko(t)dt

— (.

Thus, as n — 00, [ Ifjz>an} €xp[(1, 7(2))6] g, (z)dx £ 0 and

[ Ty ol r@)0) (020) ~ g2(0)

2/I{|x|>an} exp[(l,r(x))G]gn(a;)dx+2/I{|x|>an}h9(m)dw (3.14)

<
£ o

On the other hand,

[ Ttaony 5013, (@) 016k (0) — 94(0))
<[ Totzon 50101, 7(2)61g72) (9n(0) — 9(0))
< 2| [ Hpigan l(1,7@)015 7 (5) (00(6) — Fon()) '

+ [ Tacany o0l(1, ()8l (@) (Bane) — 9(0)) e
= 2(A1n+A2n), say.

By (3.12) as n — oo
Bl = | Lo 521 )0l5™ E(on(5) ~ Eon(o ))2de
< [ s ol @015 @) [ Pt
= n_lbgl/l{lﬂgan} exp[(l,r(m))ﬁ] Kit)g(z + tb,)g *(z)dt dz

—ao
tby, a0

< ol sup/IﬂxISan}hg(x) sup gle + )dm/ Ki(t)dt
0eo —ao

|t|<ao gz

— 0,
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ie., A, L 0asn— oo. By a Taylor expansion and (3.13),

|Azn| = /I{IzISan}eXD[(l r(z))0lg~" / Ko(t)(g(z + tbn)—
g(w))dt]2dm
< it [ Heison el r@)flg™ @)
[Sup 9P (z + tby)| / K tZKO(t)dt] o
1, s g (z + tby,) 2 oo 9 2
< an 32g/[{|m|§%}h9(x)|tsllégo [T] dx (/_aot Ko(t)dt)
— 0.

Therefore [ Ijjs<any expl(1, r(x))0] (g5 () — gl/Q(a:))2d:B % 0 as n — oco. This
combined with (3.14) gives [ exp[(1,7(x))d][gs*(z) — ¢/%(x)]2dx > 0 for any
6 € ©. By the continuity of the function in 6 and the compactness of ©, hence
the result. O

Remark 3.4. Condition (D3) is satisfied when g and hy are two normal density
functions with different standard deviations. Assume that g(z) and h(z) denote
density functions of N(0,1) and N(u, o), respectively, where o < 1. It is easy
to see that h(z) = hg(z) = exp|[(1, r(z))0]g(z), where ri(z) = z, ro(z) = 2% and
0 = (6p,01,02) = (—2—22 — log o, 0“2,% — 20_2) If the parameter space © is such
that its projection onto the third argument is to the left of zero, then obviously
condition (D3) holds.

Remark 3.5. Condition (D4) holds for many families and one such example is
stated in Remark 3.2, i.e., g and h are two normal density functions with the
same standard deviation. Without loss of generality, we suppose the compact
parameter space © = [a, @] x [§, ] for some finite numbers &, a, § and §. Then
it is easy to show that (3.10)-(3.13) hold for some a,, the log function of n, and
any bandwidth b, such that b, — 0 and nb, — 00 as n — oo.

Theorem 3.2. Letn — oo and m — 0o as N — o0o. Suppose that (1, r(x)) are
linearly independent, (D1) holds for any 6 € ©, and bandwidths b, and b, in
(8.4) and (3.5), respectively, satisfy by, by, — 0 and nb,, mb,, — 00 as N — co.
Further, suppose that either (D2), (D8) or (D4) holds. Then H Ri% hl/2 1= L

712 1/2 |

and sup It hg |——> 0 as N — oo. Furthermore, Oy 2 6 as N — oo,

where 9N is defined by (3.8) with gn, hm and he given by (3.4), (3.5) and (3.7)
respectively.

Proof. Remark 3.3 yields that {hg}eco is identifiable. So if we can prove that
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H h11‘r{2 1/2 | 7172 1/2 |

|—+0andsup||h |5 0 as N — oo, then Oy 5 6 as

N — oo by Theorem 3. 1

It is known that g, il g and A, il hg as N — oo (see Rao, 1983). Since
[ ho(z)dz = [ hp(z)dz = 1, f[hg hm(z)]Tdz = [[ho(z) — hin(z)]"dz and
| hi? = By |2< f | ho(z) — hun(z ) | dz = 2 [[ho(z) — hm(z)]*dz. Since
[ho(x) — hm(a:)]Jr < hg(x), by the Dominated Convergence Theorem, it follows
that || hel® — hl/2 ||£> 0 as m — oo.

Note that f[hl/2 — by} (2)2dz = [ exp[(1, 7(2))0][gn*(z) — ¢V/2(x)]?dz <
[ exp[(1,7(z))0]|gn(z ) — g(z)|dz. If (D2) holds, then g, — g will have a com-
pact support, on which exp[(1,7(z))d] is bounded. Therefore, [ [/ﬁ;/ *(z) —
h;/z(x)]‘?dw < C1 [ lgn(z) — g(z)|dz = 2C; [[g(z) — gn(z)]Tdz for some posi-
tive number C. Since gn EiR g, by the Dominated Convergence Theorem we
have sup I hl/z 1/2 15 0. If (D3) holds, then exp|(1,7(x))6] is bounded and

sumlarly sup I hl/ 2 h;/ 2 ”5) 0. If (D4) holds, then Lemma 3.3 gives that

sup | h1/2 h;” 15 . O
3.3 Asymptotic Normality of MHD Estimator

In this section, we develop the asymptotic distribution of the proposed MHD
estimator 6. We first state following conditions (D5) and (D6):

(D5) There exists B(6, €), an e-neighborhood of 8 for some € > 0, such that
fors=1,2and ¢,5,k=0,1,...,p,

1
sup  sup exp[ (1, r(z))t]|rs(z)r;(z)re(z)| < oo,
tc©ONB(6e) =
where ro(z) = 1.
(D6) There exists B(0,¢€), an e-neighborhood of 8 for some € > 0, such that
for s=1,2,4,j,k=0,1,...,p, ro(z) =1, and n — o0

/ ri(z)r;(z)|* exp[(1, 7(z))8]ho(z)dz < 00, (3.15)

/|ri(x)rj(a:)rk(x)|s sup exp[(1,7(z))t] sup g(z + tb,) dz = O(1), (3.16)
te®OnB(0,¢) [t]|<ao

/ |ri(z)r;(z)]? exp[2(1, r(x))6] |ts|25 g(z +tb,) dxz = O(1). (3.17)

49



Under condition (D2), (D5) or (D6), we derive an expression for the bias
term Oy — 0, which is presented in the next theorem. We denote I(#) =
J (1, r(@)T(1,7(z))he¢(z)dz and assume that I(f) is finite and nonsingular.

Theorem 3.3. Suppose that § € int(0), Ky in (8.4) has compact support, and
assumptions in Theorem 3.2 hold. Further suppose that either (D2), (D5) or
(D6) holds. Then, it follows that

=0 = [170)+1w] 2 [ {exply (L r@)lol (@hif2(o)

(3.18)
~ expl(L,7(@))0lga(w) } (1, () da

where Oy is defined by (3.8) and uy is a (p+ 1) x (p+ 1) matriz with elements
tending to zero in probability as N — oo.

Remark 3.6. An example in which condition (D5) holds is stated in Remark
3.4. In this example § = (6o, 01, 62) with 6 < 0. Therefore, one can easily prove
that condition (D5) is satisfied. It is also obvious that I(#) is finite in this case.

Remark 3.7. Condition (D6) is satisfied for the example stated in Remark 3.2,
i.e., two normal density functions with the same standard deviation.

Proof of Theorem 3.3. From Theorem 3.2 we have that 6y il fas N — oo
Since ¢ = 6y € © minimizes the Hellinger distance between h,t and h,,, Oy
maximizes [ hl/ > )h}nQ( Ydz — —ht( )dz. Also since K, has compact support,

we have 0 = [ t[h1/2 z)hil(x) — 15:(2)]li=ay da, ie.,

[ el r@onlgl @@, r(e) s

(3.19)
—/exp[(l,r(m))HN]gn(m)(l,r(x))Tda: = 0.

We will prove in the following that under condition (D2), (D5) or (D6), (3.19)
will reduce to

[ { bl @ r@elahifw) - expl(1, (2))Blon(z) } (1, r(2) o

5 [ o) (0,7 (0, + en] O —0) = 0,

(3.20)
where ¢y is a (p+1) X (p+1) matrix with elements tending to zero in probability
as N — 00, i.e., (3.18) holds.

(i) Suppose that (D2) or (D5) holds. Then for any ¢t € © N B(6,¢€),
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|/ri z)ri(x)ri(z) exp[(1, r(z))t) g, (z)dz] < C’/gn(:c)dx =C

| [ r@r@nte) essly (1, @) gk @)l (a)dal
< c(/ (@ )dx)l/z(/hm(x)da:)l/2 —C

with some positive value C. Therefore, by a Taylor expansion of 8y at 6, one
obtains with ; = t6 + (1 — ¢)0y for some 0 < t < 1,

[ exply (L r(@)omIo @) 1, () o
— [ @) { exply (1 @61 + 5 exply (L)AL (@) Ox — )

o expl (1, ()0 0 — )7 (L r (@) (1, () (B — ) ol (@)hif* @)
= [ el r@)ela @h @), re) ds

+5 [ exp[; r(@)0lgl/ @)1, 7 (@) (1, (@) (6 — 6)
+CLN(¢9N - 0),

(3.21)
[ exol(1 (a0 1on(z)(1, (@) o
— [ {expl(1,r(@)61 + expl(t, @)L, r(a))0x —6)
3 expl(L, ()00 — 0)7 (1, (@) (1,7(2)) O — 0) hn(a) (L, 7(a)) "
[ expl(1,7(@))flga(=) (1, 7(2))da

+/6Xp[(1, r(2))6lgn(z) (L, 7(2))" (1, 7(2))dz (6w — 0) + bn(9n — 6),

(3.22)
where ay and by are (p+1) X (p+ 1) matrixes with elements tending to zero in
probability as N — oo by the fact that 5 — 6. From (3.19), (3.21) and (3.22),
we obtain

0 = [ { el (1, @)Olg (@M (a) - expl(L, r()Blgn(a) }(1,7(2)) T do
+{% /exp[— (1,7(2))0) g2 *(x)hy ?(x) (1, (z))" (1, 7(z))dz
~ [ expl(1,7(2)6lon @)1, 7(2))" (1, 7(@))do O — 0

+[aN — bN](BN 9)
(3.23)
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Since either (D2) or (D5) holds,

| / expl (L @) g 2(@h2(e) ~ g (@) (@) } (L (@) (1, r(a) |
of | G >|h1/2< > W+ [ 1)) - o ()l
< o{[ [0 - 1)) + [ [ (0470 - )] )

with the r.h.s. of the preceding inequality goes to zero in probability using the
results in Theorem 3.2. Thus,

(A

[ exply (1, @)l @) (1)) (1, () £

(3.24)
/hg(w)(l,r(x))T(l,r(cv))dx.
Similarly
| / expl(L, 7(2))0] (g ) — 9(2)) (1, r(@))7 (L, r(c))da]
< c / (62@) ~ 9*(a 1/2( )+ 9(@)lds
< C’[/ 1/2( 1/2 zdx] /2[/(971/2(:16)+gl/2(x))2dw]l/2
< 20| [(@"@) - g2(z))2dz] """
£ 0 [/ ]

?

le.,

[ el r@)lan@ 1, @) 1 r@)is 5 [ ho(w)(4r@) (e

(3.25)
As a result, (3.23) reduces to (3.20).
(ii) Suppose (D6) holds. Then by (3.16),

B| [ n@ry@n@)]_sw ol i) gu(o)ds
tcONB(6,¢)

= [In@rane)] o expl(1 ()] Blon(w)lde
= /|r z)rij(z)re(z)| sup exp[(1,r(z))t] /ao Ko(t)g(z + tb,)dt dx
teONB(0,¢) —ap
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< /|ri(x)rj(x)rk(x)|te@ilg€0 , exp((1, r(z))t] |tS|1<15 g(z + tby,) dz
= O(1). (3.26)

Therefore, [ |ri(z)rj(z)ri(z)] sup exp[(1,7(x)0] gn(z)dz = Op(1) and thus
teONB(0,¢)
(3.22) holds. Similarly,

/ Ry (@] swp  expl(1,r(@)] @)l (x)da]’

t€ONB(6,c)
< / @@l s el r@) g / i ()]
- / ri(@)rs@)re@)P sup  expl(L, 7(2))f] Elga(a)lda

te©ONB(,e)

< /|ri(:r)rj(x)rk(:c)|2 sup exp|(1,r(z))t] sup g(z + tb,) dx
te®ONB(0,e) [tI<ao

and hence (3.21) holds. As a result (3.23) holds. By (3.15), (3.16) and a similar

argument as in (3.26),

| [ rioms(a) explb 1 (@) {6l @) - il (o) e
< [In@rn >|exp[;<1,r<x>>e]g”2< >|h1/2< )~ hf*(z)ldo
+ [ @ >|exp[1< 1, (@) @)lgk (o) - ¢*(o)ld
< [ [ @n@P el rom@is] | [ (@ - 1))
+[ [ In@n@F expl(s, r@)olha@)ae] [ [ (o42) 920 as]
= 0n([ [ (1) - @) ?ds]?) + O] [ (f*(2) - 9*(w))"da] )

and thus (3.24) holds. By (3.15), (3.17) and using a similar argument as in
(3.26),

|/n )ri(@) exp[(1,7(x))6] (gn(z) — )da:|2
< [ [ @) el ) (o 1/2<> 6"2(2)) (g/() + gV*(x))|da]”
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< [In@r@) P essl20 1)) (@) + (@) dix
[ @@ - g2 (@)s
< 2 [ Inte)r (@) expl2(t,r(@)blgna) +
[ In@rs (@) expl(L, r@)elho(a)ds] x [ (64(a) - g(a) s
= o( [ @) - g @)Pd)
5 o,
i.e. (3.25) holds. As a result, (3.23) reduces to (3.20). O

We now state the asymptotic distribution of the proposed MHD estimator
Oy of 6. Following conditions are made in the next theorem:

Let {an} be a sequence of positive numbers such that ay — 00 as N — oo,
and

(C0) g has infinite support (—o0, 00).
(C1) The second derivatives of g and hy exist.
(C2) n/N — p € (0,1) as N — o0, and the bandwidths b, and b,, in (3.4)
and (3.5), respectively, converge to zero at the same rate as N — oo.

(C3) Ko and K; in (3.4) and (3.5), respectively, are bounded symmetric
densities with supports [—ao, ao] and [—a1,a1], 0 < ag, a1 < oo.

(C4) Both I(6) and J(8) are finite, where I(8) = [(1,7(x))"(1,r(z))he(z)dz
and J(0) = [(1,7(z))" (1, r(z)) exp[(1, r(zx))0]he(z)d.

(C5) The second derivative of ¢ exists and satisfies for ¢ = 0,1,...,p,

(2)
bﬁ/afw(a:)hg(m) sup M—_Ftb"ndx =0(1) as N — oo,
lt|<ao 9(z)
where en(z) = (1,7(2)) Ijzj>ayy = (eno(@); en(@), ..., enp(2))” and g® de-

notes the k-th derivative of g.
(C5’) The second derivative of g exists and satisfies

2
Nl/zbi/ ISN(x)[ha(x)]tslgp |g—(—;@—:—)Ln)|dx =o(1) as N — oo.

(C6)
N P(|Zi| > any — aibyp) = 0  as N — oo,

N - P(lXi] > ay —aghb,) = 0 as N — oo.
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(C7) With én(2) = (1,7(2))T Ijz<ant = (Ono(®), dn1(2), - . ., Snp(2))7,

th,y,
N2 /|(5 z)|ho(z) su @—(—:—U;_—)dxe() as N — oo,
[t|<a1 hj(z)

WPz + thy) 12
N1/2b4/5 )|k 0 " Ve — 0 as N — oo,
on(e)lholz )Itl<a1[ ho(z) )

l/zb" /|5N )|hg(z) sup (x_l_tb)d —0 as N — oo,
|t|<a0 ( )

(2) th
N2 / O (@)lho() sup [ EE 1200 o s N o oo

t|<ao 9(z)
(C8)

der —0 as N — oo,

WP (z + thy,))|
N1/2p2 / ) he(z) su lhg m
m | N(x)l o(w)|tlsg1 hg(.’E)

@)(z +tb
N1/2b2/|5 Vho(z) sup Lo EI 0o as N oo

t<ao  9(T)
(C9)
ho(x + tbm)
sup sup —————= = 0(1) as N — oo,
jel<anl<as  Po(T) w
sup sup 9@+ tha) _ O(1) as N — oo.

jel<anli<ao  9(%)
(C10) r(x) is differentiable and satisfies for : = 0,1,...,p,

bfn/I{|w|§aN}h9( ) sup (r; W(z + tby, ))Qd:r: —0 as N — oo,

|t|<a1

[57%( y) exp[(1,7(y))0]
Jy

b /I{|m|<a1v}g Slup Iy—m+tbn] dr —0 as N — oo.
<ao
(C11)

J\/'"l/zbr_n1 / |0n ()| cxp[%(l,r(x))@]dx — 0 as N — oo,

N2 / 10w (z)] expl= (1, 7(z))6ldz — 0 as N — oo,

2
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Theorem 3.4. Suppose that Oy defined by (3.8) satisfies (3.18). Further sup-
pose that conditions (C0)-(C10) and (C5’) hold. Then the asymptotic distribu-
tion of NY/2(y — 0) is N(0,X), where ¥ is defined by

1 -1
— pz:l}l (9) (3.27)

-1 1
with
Yo = /(l,r(m))T(l,r(x)) exp[(1, r(z))dhe(x)dx
(3.28)
- / (1, 7(2))  ho(z)ds / (1, 7(2))ho(2)da

and

5, = / (1, (@) (1, (@) ho (2)dz — / (1, 7(2)) ho()d / (1, 7(2))ho () dz.
(3.29)

Proof. The sketch of the proof is as follows. Note that

expl (1, (@) Blgl/ @M ) (1, ()T — expl(1, () 6ln (@) (1, ()"
= (1,7(@)" expl (1, () lgk/ () (@) — By (o)
(1, (@) expl(1, ()06 (@) 98/ (w) ~ 6/*(a)].

We can prove that, as N — oo,
NY2 [ (1, r(z Texpl 0 gl/2 g%z hl/2 — B (2)dz 5 0
9 [/}
and
N (1, r@) expl(1,(@)ollgk ) — 9o 5 0.
As a result we only need to give the asymptotic distribution of

N2 [ (@) @ He) — b (@)l

and
N2 / (1,7(2))T expl(L, 7(2))6]g(x)[0/2(x) — g2(x))dz.

For details see Section 3.6. O
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Remark 3.8. Consider the example stated in Remark 3.2. It is easy to see
that conditions (C0), (C1) and (C4) hold. We can easily choose bandwidths b,
and b, and kernels K, and K; satisfing conditions (C2) and (C3). Since for
k=0,1,2,

&)
/ |z|Fhe(z) sup lg(x——i_tbn)—ldm =0(1) asn — o0,
|t|<ao g(.T)

conditions (C5) and (C5’) hold if Nb% = O(1) as N — oo. Note that as N — oo,
N/ exp[—2?/2)dr < N/ z exp[—2%/2]dr = N exp[—a3/2].
an aN

Thus, if Nexp[—a% /2] — 0 as N — oo, then condition (C6) holds. Since for
i=0,1andj=1,2

(2)
/lm|h9 sup|h (z + tbm) ijd =0(1) as N — o0

[t<a1 (

and

. (2 thy) i
/13:|’h9(x) sup lﬂ——}_———l|1dm =0(1) as N — oo,
It|<ag g($)

(C8) and the second and fourth expressions in (C7) hold if Nb2 — 0 as N — oc.
If byay — 0 and N7V/2b-1a% — 0 as N — oo, then for i = 0,1 and N — oo

aN . h
N~2p 1 / |z|*hg(z) sup —j—(—;g_a—t)bﬂ)dx
—an

[t|<a1

aN . 2
= N_l/Qb;Ll/ |z|* sup exp[—ex—i—eu—fz—]dx

—QN IC'Salbm

< 2explasbnlul] - N2 / 2] explasbmalds
0
2
< = explasbulull - N2, 2y (explasban] ~ 1)
— O(N—I/Qb 1 ’L+1)
— 0,

and therefore the first expression in (C7) holds. Similarly, for ¢ = 0,1 and
N — oo, one has

an .
N—l/ZbT—;l/ |$|Zh9($) sup g(x + tbn)d{l)

—an [t|<ao 92(111)

N . NZ 62
N_l/Qb;I/ || exp|pux — =] sup exp[—ex — —]dz

—ay 2 || <aobn 2
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. anN
< N"l/zbgla}\,/ exp[(p + aoby)x]dz
0

0

+ N7V 100, / exp|(1 — aoby,)x)dzx
. _aN

N2 ok (4 aobn) " ((exp|(p + aobn)an] — 1)
+N"V26 ol (1 — agbn) (1 — exp[— (1 — agbn)an])

_ ) O(N"Yib alyexpllulan]) if p#0,
O(N~Y2p 1ol if p=0.

Therefore, if N™'/2b~'ay exp[|p|an] — 0 as N — oo, then the third expression

in (C7) holds. If b,anx = O(1) as N — oo, then (C9) holds. It is easy to check
that (C10) is satisfied. Note that as N — oo,

[ (G0 2

—QN

and

O(a%) if 4 =0.

—aN

/aN || eXp[l(l r(z))0)dz = { O(an expllulan/2])  if p#0,
5L

So if N7'b 204 exp[|plan] — 0 and N a2 exp[lpu|an] — 0 as N — oo, then
(C11) hold. In summary, if we choose

by =0(NT"), 1/4<r<1/2
and
ay =0((log N)?), 1/2<g¢<]1,
then conditions (C0)-(C10) and (C5’) are satisfied. Also by Remarks 3.2, 3.5
and 3.7, (3.18) holds. As a result, (3.27) holds by Theorem 3.4.

Remark 3.9. Again consider the example investigated in Remark 3.8. Simple

calculation yields that the asymptotic variance for our proposed estimator 0y
of 0 is ‘

v L[ wtexpluf] — pPexplp®] +explpf] -1 —p® expl’]
- 3 2 2 2 2
P , p? exp[p?] p? exp[p?] + oxpp?]
L w —p
+1—p{—u 1

Zhang (2000) estimated 6 = (o, 3) by using semiparametric likelihood under
model (3.1). He derived the asymptotic variance, say 3, of his proposed estima-
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tor of 9. It is hard to give an explicit expression for the asymptotic variance &
in this example. So, here we compare asymptotic variances in the simplest case
when g = 0. If u = 0 then the asymptotic variance of our proposed estimator

0]\[ is
p(1-p)

which is exactly the same as that of ¥.. More detailed comparison of ¥ with ¥
are shown in Section 3.4.

3.4 Simulation Studies

In this section, we report the results of simulation studies. We use Monte Carlo
methods to demonstrate that the proposed MHD estimator 6y defined in (3.8)
has good robustness and efficiency properties.

In this simulation study, we considered the example stated in Remark 3.2.
We assumed g(z) and h(z) as density functions of the normal distributions
N(0,1) and N(u,1), respectively. Thus h(x) = he(x) = exp|(1,r(z))0]g(z),
where r(z) = z and 6 = (a,f) = (—”2—2,u). For different 1 and p values,
Table 3.1 compares ¥ defined in (3.27) with the asymptotic variance matrix
¥ of the maximum semiparametric likelihood estimator § = (o, B) of Zhang
(2000). From Table 3.1, we can see that smaller u values give smaller values for
the variance of estimator 6y = (@, B) The correlations are all negative since
a = —'%2. When p = 0, the asymptotic variance of 0y is exactly the same as

that of § as shown in Remark 3.9. When p = 0.1, the asymptotic variance of 0
is almost the same as that of # for all different p values. But for large p values,
On has much larger asymptotic variance compared with those of 8. In fact, we
can expect this behavior from the expression of asymptotic variance derived in
Remark 3.9. However, we have shown below in our simulation that fy could
have smaller bias and mean squared error (MSE) than those of 6, and at the
same time 6y is much more robust to outliers than 9.

Our aim of this simulation is to compare the performance of our proposed
estimator Oy defined at (3.8) with that of Zhang’s maximum semiparametric
likelihood estimator § = (a, E), by examining their biases, MSEs and a-IFs. In
our simulations, we let u = 0.5 be fixed and therefore 8 = («, 3) = (—0.125, 0.5).
For each pair (n,m), we generated ten independent sets of combined random
samples of size N = n + m = 60 from the /N(0,1) and N(u, 1) distributions.
Here the pair (n, m) takes varying values (10, 50), (20, 40), (30, 30), (40, 20) and
(50, 10). For each pair (n,m) considered, we obtained estimates of the bias and
MSE as follows:

1 &
Bias = FZ(‘% -)
8 =1
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and
1 NS
8 =1

where N; is the number of replications (/V; = 10 in our case) and 7; denotes an
estimate of 7y for the ith rephcatlon Here v = « or 3, and 7 denotes either the
proposed MHD estimators @ and ﬁ in (3.8), or the maximum semiparametric
likelihood estimators & and ﬂ of Zhang (2000). The bandwidths b, and b, in
(3.4) and (3.5), respectively, were taken to be h, = n~%*5 and h,, = m~%5. We
used Epanechnikov kernel function given by

K(z) = ii (1-2?) Iiy(a), (3.30)

for both Ky and K;. According to the discussion in Remark 3.8, our choice of
kernel functions and bandwidths satisfy conditions (C0)-(C10) and (C5’), and
therefore Theorem 3.4 holds. The simulation results are summarized in Table
3.2. From Table 3.2, we can see that for each pair (n, m) considered, & is better
than @ considering the estimated bias and MSE. However, the MHD estimator
ﬁ is uniformly better than ﬂ in the sense of having smaller estimated bias and
MSE. Note that (3 is the coeflicient of r(z) = = while « is only a normalizing
parameter that makes g(x) exp[a + r(z)f] integrate to one. We believe that 3
plays a more important role than « in most applications. For instance, in the
Cox model, the value exp[] can be interpreted as the ratio of the hazards of
two individuals whose covariates are Z = 1 and Z = 0, respectively, but who
are identical otherwise.

Tab. 3.2: Estimates of the biases and MSEs of §y = (@, 3) and 8 = (&, 3) defined
in (3.8) and Zhang (2000), respectively, when g and h are the densities of
N(0,1) and N(0.5,1), respectively.

(n,m) Bias(@) MSE(@) Bias(8) MSE(3) Bias(@) MSE(@) Bias() MSE(8)

(10,50)  -0.77 0.63 0.41 0.21 -0.41 0.19 0.58 0.37
(20,40)  -0.67 0.52 0.58 0.83 -0.51 0.35 0.86 1.39
(30,30)  -0.65 0.50 0.51 0.38 -0.42 0.21 0.56 0.40
(40,20)  -0.67 0.53 0.47 0.37 -0.42 0.22 0.68 0.55
(50,10) -0.74 0.58 0.39 0.25 -0.48 0.26 0.59 0.42

For the ten simulated replications, we examined at the same time the resis-
tance of our MHD estimator 6y to a single outlying observation, and compared
it with that of 6. For this purpose, the a-IF given in Beran (1977) is a suitable
measure of the change in the estimator. Here we have used the adapted version
of the a-IF employed by Lu et al. (2003), among many others. Note that the
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outlying observation could come from either density g(x) or density h(z). Here
we only considered the case that the outlying observation comes from h(z) and
similar result applies to the other case. After drawing two data sets of the spec-
ified sizes n and m, we replaced the last observation from density h(z) by an
integer from -9 to 11. The contamination rate is then 1/60 and the o-IFs are
calculated by averaging the following value over ten replications

W ((Xo)y, (2, Z)5") — W (X)), (Z)Py)

[F(z) = 1/60 !

where W could be any functional (estimator of §) based on data sets from g(z)
and h(x), respectively. In our case W is either Oy or 0. For the average of the
ten replications, the a-IFs for different pairs (n,m) are displayed in Figure 3.1,
which shows that 6y is more robust than 8 in the sense of resistance to a single
outlying observation.

We can see from Figure 3.1 that as the outlier increases in its absolute value,
the a-IFs of Ay (solid and dashed lines) appear to converge to constants. In
fact, the absolute values of the a-1Fs of 8 reach their peaks when outlying ob-
servation is around —1 and then slide down to the 0 baseline on both directions
with a constant outside the interval [—4,4]. For 6, however, when the outlying
observation moves to the left from —1 , its a-IF increases dramatically in abso-
lute value. When the outlier is bigger than —1, 0y and @ are competitive. The
behavior of the a-IF of 8 could be expected from the fact that the semipara-

m
metric likelihood is proportional in some sense to the quantity }1%'
Without an outlying observation, E should be a value around 8 = 0.5. When
exp[&—i—ﬁx]~
~ n+m expla+Gz]
tremely small value and therefore § is not much affected. If z is a negative value

with |z| large enough, then ﬂ@?—xL— will be extremely small and hence the
n-+m exp[d+Pz]

the outlying observation x is a positive large value, is not an ex-

maximizing process will tend to assign 3 a negative value with a large absolute
value. Therefore, when z is negative with |z| large enough, the a-IF will be
negative with large absolute values as shown in Figure 3.1.

3.5 An Example

Hosmer and Lemeshow (1989) analyzed the relationship between age and coro-
nary disease status. Table 1.1 in Hosmer and Lemeshow (1989) lists age in
years (AGE), and presence or absence of evidence of significant coronary heart
disease (CHD) for 100 subjects selected to participate in a study. The ourcome
variable is CHD, which is coded with a value of 0 to indicate CHD is absent, or
1 to indicate that it is present in the individual. A summary of the data is also
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Fig. 3.1: The a-influence functions for & (solid), B (dashed), & (dotted) and §~(d0t—
dashed) with respect to single outlier, where 8y = (@, 8) and 0 = (&, §8) are
defined in (3.8) and Zhang (2000), respectively.
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given below in Table 3.3.

Tab. 3.3: Age and coronary heart disease status (CHD) of 100 subjects.

AGE CHD | AGE CHD | AGE CHD | AGE CHD | AGE CHD
20 0 34 0 41 0 43 1 57 0
23 0 34 0 42 0 43 1 57 1
24 0 34 1 42 0 49 0 57 1
25 0 34 0 42 0 49 0 57 1
25 1 34 0 42 1 49 1 57 1
26 0 35 0 43 0 50 0 58 0
26 0 35 0 43 0 50 1 58 1
28 0 36 0 43 1 ol 0 58 1
28 0 36 1 44 0 52 0 59 1
29 0 36 0 44 0 52 1 59 1
30 0 37 0 44 1 53 1 60 0
30 0 37 1 44 1 53 1 60 1
30 0 37 0 45 0 54 1 61 1
30 0 38 0 45 1 55 0 62 1
30 0 38 0 46 0 55 1 62 1
30 1 39 0 46 1 55 1 63 1
32 0 39 1 47 0 56 1 64 0
32 0 40 0 47 0 56 1 64 1
33 0 40 1 47 1 56 1 65 1
33 0 41 0 48 0 57 0 69 1

They analyzed the relationship between AGE and CHD based on those 100
subjects by employing the logistic regression model (3.2). Let X denote the age
and Y = 1 or 0 represent the presence or absence of coronary heart disease.
Then the sample data (X;,Y;), ¢ = 1,...,100, can be thought of as being
drawn independently and identically from the joint distribution of (X,Y"). The
proposed MHD estimate can be applied to this data set with n = 57 and
m = 43. We again take the bandwidths h, = n~%/% and h,, = m~%/® and use
Epanechnikov kernel function defined in (3.30) for the two kernels Ky and K,
in (3.4) and (3.5), respectively. By fitting model (3.1), we obtained estimates
On = (a, B) = (—4.64,0.09). When compared with Zhang’s (2000) estimates,
(a, B) = (—5.03,0.11), our estimates seem more conservative; in other words,
our estimates are smaller in absolute values than Zhang’s (2000) estimates.

3.6 Proof of Asymptotic Normality

To prove Theorem 3.4, we first state a series of lemmas that are employed in
the proof.
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Lemma 3.4. Suppose that (C3)-(C6) hold. Then as N — oo,

N2 [ enfa) exply (Lr@)lg M@ 50, (331
N2 [ en(o)exply 1, (@) @i @z Lo (332)

Proof. By Cauchy-Schwarz Inequality,

N - B[ [ enla) explz (1,r(@)lol(@)hif)da]”

< VB[ [ Suo) expl(1,r(@)0lgn(2)ds] - B [ It ()]
= N-A;-Ay say.

Note that by a Taylor expansion and using assumptions (C4) and (C5)

B = [ [ o) el @)oo )g)dy do

_ / (@) expl(L, r(@)] [ Ko(t)g(x + tha)dt do

= /gfw(x) exp[(1, r(x))6) /_ao Ko(t) (g(a:) + g(l)(x)tbn+
% gD (€)t%2)dt dx
< /rf(w)hg(x)dm

1 19D (z + thy)] a0
+2 bfl/s he(z) su —————dx/ t2Ko(t)dt
5 4 [ hota) sop TE Bl as [ 2
= 0(1),

i.e., Ay is bounded. On the other hand,

|Aq| = //I{|m|>aN}g“K1 ™ D Vho(y)dy da
- / / Tjaisan) K1 (t)ho(@ + thy)dt do

= Ky () ho(2)dz dt (3.33)

—a1 |z—tbm|>an
ai

< Ko (t)dt he(2)dz
—a1 lz|l>an—a1bm
= P(|Zl| >aN—albm)

By assumption (C6) we have that
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N-E / eni(e) explg (1, r(2)) gl (2)hif* (@)da]” — 0,

i.e., (3.31) holds.
By Cauchy-Schwarz Inequality and using a similar argument as in (3.33),

N 5] [[em@) explz (1 r(@)ony)gl wyis]
< N- / 7) expl(1, () ¥)ho(2)da - E| / af>an)gn(® )d]

= / 2(x) exp[(1, r(x))0]ho(z)dx - //I{lx|>aw}b K() ) (y)dy dz
< N-/ri (z) exp[(1, r(z))0he(z)dx - P(|X1| > an — agb, ),
and by assumptions (C4) and (C6) we have that (3.32) holds. O

Lemma 3.5. Suppose that (C0)-(C3) and (C7) hold. Then as N — oo,

N2 / (@) | (R (&) — hY())2dz 5 0, (3.34)
N2 / 16 (@) expl(1, ()] (2%(z) — ¢"(2))*dz 5 . (3.35)
Proof. Note that
N2 / lon (2)| (R*(z) — hy/*(x)) da
< V2 [ 15y(@)lh5 o) (o) — holo ))2dx
< N1/2 / 16w () |yt () — Ehp(z)) do

+N12 / 60 @) 113" ) (B () = ho(a)) e
= 2(Ain + Agn), say.

By conditions (C0), (C2), (C3) and (C7) as N — oo,
E|Awy| = N1/2/|5N o)k (2)E ( (@) — Ehpn(z)) de

< N [ lan(o)ing’ / 2 holy)dy da
_ NY2peipod / O (2 / K2()ho(x + thy)hy \(z)dt de

ai
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tb
< Nl/zm“lb%1/|5N(a:)|sup a:+ / K(¢)

|t|<a1
— 0,

ie., Aiy 5 0as N — oo. By a Taylor expansion and using conditions (C1)

and (C7),

a 2
|Aon| = N1/2/|5 (z)|hy* (z) Kl(t)(hg(x-f-tbm)—ho(ib))dt] dx
a1 o ,
< N1/2b4 /|(5N )hy ()[sup|h§2)(x+tbm)‘/ t2K1(t)dt] dx
4 lt|<a,1(2) —a1
1 hy (x + thy) 2 o 2
< N1/2b4/(5 )|h = / 2K (t)dt
< 2 o (@)lho() sup [F=res= e (2 Ka(t)dr)
— 0.
Hence (3.34) holds. Proof of (3.35) is similar to that of (3.34). |

Lemma 3.6. Suppose that (C0)-(C7) hold. Then the asymptotic distribution
of

N (1@ exply (1, r(@)lgl @) (@) ~ P @)da (336)
is the same as that of

N2 / S (@)hy* () (R (z) — by (z)) da.

Proof. From Lemma 3.4,
1
N2 / ex () expl (1,7(2))01g%/(x) (hif*(x) — hy/*(z))dz 5 o,
and as a result the asymptotic distribution of (3.36) is the same as that of

N [ bya) exply (1, (@)l 2(0) (B2 (0) — 13/ (0)) d

By Cauchy-Schwarz Inequality
{72 [ ) expli (1, 7 (@) (01 () — 62(2) (W2 () — By *(a))dr
< N2 [ |5ni(e)| expl(1,r())0] (9 *(2) — g"/(x)) "do

<N [ i@ () — 1)),
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which is op(1) by Lemma 3.5. Hence the result. O
Remark 3.10. In fact, the asymptotic distribution of (3.36) is the same as
that of

N2 [ (@) B @) (f0) - 1)) do.
The reason being that as N — oo,

N2 / en (@)Y (@) (B2 () — hY2(z))dw 5> 0

under conditions (C3), (C4) and (C6). The proof is similar to that of Lemma
3.4 and therefore be omitted.

Remark 3.11. Instead of condition (C7), if hy and g have bounded second
derivatives and conditions (C9) and (C11) hold, then Lemma 3.6 still holds.
Since

{3 [ sy(w) expl (1,m(@))A) (61 (2) ~ 972(2) (Wf2(a) — (@) o}
< N [ o) explz (1, m(a))6) (61/*() — 93(2) e

x N/2 / |(5N,-(ac)[exp[%(l,r(m))&](h:f(m) — hy/*(2)) da,

similar arguments as in the proof of Lemmas 3.5 and 3.6 give above conclusion.

Lemma 3.7. Suppose that (C4) and (C6) hold. Then as N — oo,

N1/2/ len(z)|ho(x)dz — 0,

1 m
N1/2 . EZgN(Z

NY2. —ZeN ) exp(1,7(X;))0] 2 0.

Proof. By Cauchy-Schwarz Inequality,

A2 / exi@lho(@)de < [N / Lssaxyho(@)dz] /%] / r2(2)ha(c)dz]
= [NP(21| > aw)]*[ | r¥(@)he(z)dz]"
— 0.

68



As a result,

1 1
E|NV?. EZ“:N(Z")‘ < E[N'Y2. EZEN(Z‘)”
=1 i=1
N1/2/|5N($)|h0($)d$
— 0,
E|NY2. “ZEN ) exp[(1, 7(X:))0]|

< E[N1/2-—Z|5N )l exp[(1,7(X;))6]]

_ N2 / e ()l o () dz
- 0,

and hence the results. O

Lemma 3.8. Suppose that (C0)-(C4) and (C8)-(C10) hold. Then as N — oo,

N1/2/5N N1/2 1 Z(SN
N1/2/5N )exp[(1, 7(2))0)gn(z)dx — NY/2= Z‘SN ) exp[(1,7(X:))6] S 0.

Proof. We give only the proof for the second convergence, and the proof for the
first convergence is similar. For ¢ =0,1,...,p, let

Dyi = N2 / Swi() expl(1, 7(z))0]gn () dz— N””Zém Xi) expl(1, 7(X:))0].

=1

Then by (C8)

[EDxi| = N7 / Swi(w) expl(1, 7(z) 01 Elgn (2)]dz — / i () ho(z)da]

= N1/2|/5N z) exp[(1,7(z))0) Ko(t) (g9(z + tby) — g(z))dt du|

@, a0
< N2 / 163i(2)| o () 51 Lq—wdx / 12K o(t)dt
[t|<a0 g(.’E) —ao
— 0.
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Note that

VaT[DNi]
< B[ [ o) exol(t r)l- Ko )ds (X0 expl(1, (K1)
N e .

— ZB| [ Ko(t) (65i(X1 + tha) exp(L, (X1 + b))

-J —ag

—5Ni(X1)exp[(l,r(Xl))9]>dt]2
B| /_ Ko(t)ri(Xy + tby) exp[(1, 7(X1 + tby))6) (I{|X1+tbn|SO¢N}

ag

—f{|x1|SaN})dt + Ko(t)f{|X1|SaN}(7"i(X1 +tbn) exp|(1, (X1 +1b4))6]

—r3(Xy) exp{(L, 7(X,)e] )]
{E[ Ko(t)ri(X1 + tha) exp[(1, 7(X1 + tby))6] (1{,X1+t,,nlsaN}

—ag

—f{|x1|SaN})dt]2 + E[/_ZO Ko(t)f{|x1|SaN}(n(X1 + thy)-

expl(1, 7(X; + thy))0] — rs(X2) exp[(l,r(Xl))GDdtr}
= %(BNH-CM), say.

—ag

2N
n

IA

By Cauchy-Schwarz Inequality,

ag

BNi S FE Ko(t)rf(Xl + tbn) exp[2(1, 'I'(Xl + tbn))g] (I{|X1+tbn[SaN}

. . ~xuicany) dt
= / Ko(t) [/ i 77 (y + th) exp(2(1, 7(y + tb,))6]g(y)dy
0 —apn—t B
+ iy + tb,) exp[2(1, 7 (y + tbn))ﬁ]g(y)dy] dt

an—tby

+ Ko(t)[ /_ _aN_tnr?(y+tbn)exp[2(1,r(y+tbn))9]9(y)dy

—aon N

+ / v 2y + tha) exp(2(1, 7(y + tbn))ﬁ]g(y)dy] dt.

N
(3.37)
Note that 72(x) exp[(1,7(x))0]he(z) is bounded by (C4) and therefore by (C9)

/0 " Ko(t) / Ty 4 1) expl2(1, 7y + t5,))6lg(w)dy

an—th

- /0“0 Ko(?) /_ o n?‘? (y) exp[2(1, 7(y))0]g(y — tbn)dy dt

anN
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.’L' —aN+tbn
< sup sup 1L T on) +tb / Ko(t) / r2(y) exp[(1,7(y))01he(v)dy dt

|z‘|§aN|t|<ao
= O(bn / tKO( )dt)
— 0, °

as N — oo, and other three terms on the r.h.s. of (3.37) go to zero using similar
arguments. Thus By; — 0 as N — oo. For Cy;, by Cauchy-Schwarz inequality
and (C10) we have

Ci < E| /_ Koft) iy (13X + ) exp{(1, (X + 5,))6]
_Ti(Xl)exp[(lar(Xl))9]>2dt]
- /_ Kolt) / Iot<any (7i(@ + tha) expl(L, (@ + t00))0)
—ri(x) exp[(1, 7‘(96))6’])29(373)da: dt

ori(y) exp[(1,r 7} 2 o
< b, / Ijal<any9(@) Sup[ W I(;[( ) ]|y=x+tbn} da / t*Ko(t)dt
[t|<ag Y —ag

— 0.

Thus Var[Dy;] — 0 as N — oo This yields that E[D%,] = Var[Dy) +
(E[Dni])*> — 0, and therefore Dy; L 0as N - oo O

Corollary 3.1. Suppose that (C0)-(C10) hold. Then the asymptotic distribu-
tion of (3.86) is N(0 T p)El) with X1 defined by (3.29).

Proof. In view of Lemma 3.6, we only need to give the asymptotic distribution
of

NV2 [ 6N(x)h;/2(a§)( Y2 (z) — hé/z(a:))dx. Applying the following algebraic ex-
pression, with b > 0, a > 0,

b—a (bl/g—a1/2)2

/2 1/2 _ _
b —al? = T (3.38)

we have that as N — oo,

N2 / oy x)hl/z(x)(hl/‘z( ) — hY%(2)) do
= N1/2/5N — ho(x))dz + N1/2/5 ) (%(z) — hy*(z)) dw

= N1/2/5 — hg(z))dz + op(1) (by Lemma 3.5)
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=1
) |
+—2—N1/2[/6N(x)hm $~———Z5N ] +op(1)

= -;—Nl/2[_nl;i5N(Z,-) - /5N(x)hg(:c)d:1:] +o0p(1) (by Lemma 3.8)
_ % Nl/z[%Z(l,r(Zi))T - / (1,7(z))Tho(x)dz] + op(1) (by Lemma 3.7).

i=1

Obviously the asymptotic distribution of m*/2[13°(1,r(Z;))" — [(1,7(z))T
i=1

he(z)dz] is N(0,%,;). Hence the result. O

Lemma 3.9. Suppose that (C0)-(C7) and (C5’) hold. Then the asymptotic
distribution of

NY? / (1,7(2))" expl(1, r(2))0)gn*(2) (95 *(2) — 9"/*(w)) da (3.39)

s the same as that of

N2 / On(2) expl(1,r(2))0g" () (9:/*(2) — g"*(2)) dz.

Proof. Note that by Cauchy-Schwarz Inequality, a Taylor expansion, (C5’) and
Lemma 3.7,

BINY? [ exi(a) exl(1,7()flga ()

< N1/2/|€N ) expl(1,r(z / Ko(t)g(x + tb,)dt dx
< N [lewto) expl(t,r@)e) [ Ko®)(o(o) + @)t
g
+= t2b2 sup |99 (z + thy)|) dt dz
2 It|<ao
< N2 / lewi(z) o (2)de
1 9P (z +tb)| [
+—N1/2b721/ eni(z)|hg(z) sup ————— 2Ky (t)dt
9 | N( )l 9( )ItISao g(ac) g 0()
— 0.

Thus N2 [ en(z) exp[(1, 7(z))6]gn(z)dx £ 0. Combined with the result in
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Lemma 3.4, we therefore have

N [ ena) expl(1,(@)0lgk (@) (61(z) — (@) de 50,

and so the asymptotic distribution of (3.39) is the same as that of

N2 / 5(z) expl(1, 7(2))0lg () (9/2(x) — /2(x))dz > 0.
The result now follows from Lemma 3.5. 1

Corollary 3.2. Suppose that (C0)-(C10) and (C5°) hold. Then the asymptotic
distribution of (3.39) is N (0, 1;50) with ¥o defined by (3.28).

Proof. Similar to that of Corollary 3.1.

Again in view of Lemma 3.9, we only need to give the asymptotic distribu-
tion of N2 [ éx(z) exp((1,7(z))0]g"?(z )(g,l/2( ) — g"/*(z))dz. Applying the
algebraic expression (3.38) we have that as N — oo,

N1/2/5N(:1:) exp|(1,7(x))0)g"%(x) (g,ll/Q(x) — gl/Q(x))dx
1
= GV [ (@) expl(1, 1)) a(o)  9(a)) o
1
43N [ (@) expl(L (@) (64 2(0) — 9*(2)) "da

Ly / 5 (x) exp|(1, r(z ))9](gn(a:)—g(x))dx—|—op(1) (by Lemma 3.5)
= ;Nl/z{ 251\, ) exp[(1, (X /5N Yho(z

raiad / () expl(1, 7())0ga()d — -ﬁgémxnexp[u,r(xi))e]}
+0P(1)
_ Nm{ Z‘”V Y expl(1, r(X:))0] — / S (x)ho(z)dz } + 0p(1)
(by Lemma 3.8)
- %Nl/?{%;u,rm)f“ expl(1,r(X)6) ~ [ (1,7(@) ho(w)de } + op(1)
- (by Lemma 3.7).

Obviously the asymptotic distribution of n'/2[1 Z(l, (X)) exp[(1, 7(X;))0]—
i=1

[(1,7(x)) he(x)dz] is N(0,%,). Hence the result. O
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Proof of Theorem 8.4. Note that by Lemmas 3.6 and 3.9

N2 [ {explL 0, ()0l (02 (0) — expl(L, (@) Olga(o) } (0, (o)) i
- N1/2/(1,T(w))TeXP[%(LT(x))H]gi/Q( )(lnf(@) = g/ (@) d

N [, @) expl(1, ()0l ) (01 () — o)) da
= N2 [ on(2)hy () (hu (z) — hy*(z)) dz
N2 [ Gi(a)expl(1,(0))0)g2(a) (61) — 9"7(e)) o + 0p(1)

and the first two terms on the r.h.s. of the preceding expression are independent.
By Corollaries 3.1 and 3.2 and Slutsky’s theorem, the result follows. O
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CHAPTER FOUR: MHD ESTIMATION IN
SEMIPARAMETRIC MODELS OF GENERAL FORM

4.1 Introduction

Consider the situation where we observe a sequence of i.i.d. random variables
X1,Xo, ..., X, with continuous density function f. Assume that f belongs to
a class of general semiparametric models of the form

{fo :0 € © CRF,n €M}, (4.1)

where O is a compact subset of R? and H is an arbitrary set of infinite dimension.
The problem is to estimate the parameter 6 assuming that n as a nuisance
parameter. The support of density functions may be finite or infinite in the
Euclidean space, unless otherwise specified.

Numerous examples fall into the class (4.1), well-known examples include
semiparametric mixture models (Van der Vaart, 1996), errors-in-variables mod-
els (Bickel and Ritov, 1987 and Murphy and Van der Vaart, 1996), regression
models (Van der Vaart, 1998) and Cox model for survival analysis (Cox, 1972).
More examples and theory can be found in the monographs of Pfzangel (1990),
Bickel et al. (1993) and Van der Vaart (1998) and in the articles of Murphy
and Van der Vaart (2000), Bickel and Kwon (2001), and Forrester et al. (2003)
and in the references therein. The two-component mixture model and the two-
sample model considered in Chapters 2 and 3, respectively, are two special cases
of general semiparametric models (4.1).

If n is known, then 6 can be easily estimated using the maximum likeli-
hood approach. If n is unknown, then replacing n by an appropriate estimator
the maximum likelihood approach still may be implemented; see, e.g., Van der
Vaart (1998, Section 25.8). These estimators are usually asymptotically effi-
cient, but may perform poorly if the parametric assumption is slightly violated.
Applications of MHD estimators in the two semiparametric models considered
in Chapters 2 and 3 suggest that MHD estimators have good efficiency and
robustness properties in semiparametric models. In this chapter, we investigate
the efficiency and robustness of MHD estimators in semiparametric models (4.1)
of general form.

In a parametric class of density functions of the form
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{fo:60 €0 CR}, (4.2)

a MHD estimator of 8 is defined as a functional Tp(9) = T({fi}ico,9) at fn
(Beran, 1977) such that

To(fa) = T({fi}ico, f2) = argmin|l £, = £3/°], (4.3)

where f, is a nonparametric density estimator of f based on the observations
X1,Xo,...,X,. Various asymptotic and robustness properties of To(f,) have
been studied under some regularity conditions in Beran (1977), Stather (1981)
and Tamura and Boos (1986), among others. MHD estimators in semiparamet-
ric models have not been yet obtained in the literature.

In this chapter, we extend the Hellinger distance approach to general semi-
parametric models (4.1). Roughly speaking, a MHD estimator of # in semipara-
metric models (4.1) can be defined as

0n = Tul(fa) = T({ frm Jecor fa) = axgmunll i) — £%1, (44)

where 7, is a suitable estimator of 1. Alternatively, one could also construct an
estimator of 6 as

Ty(fn) = T({ fonticonen; fa) = afgteréfigH"ftl,l/z2 - fé/2||,

which we will call a minimum profile Hellinger distance (MPHD) estimator.
Both types of these estimators will be investigated in this chapter. The main
question is whether or not the proposed estimators retained any of the desir-
able properties of MHD in fully parametric models. In particular, we wish to
examine the following important questions. Are the proposed estimators consis-
tent and asymptotically normal? Do they possess similar efficiency properties
as in the parametric case? Are the proposed estimators still robust? What
about other properties such as adaptivity? How does the presence of nuisance
parameter affect the overall process of construction and efficiency? Clearly, it
is of theoretical and practical interest to investigate above issues. The main
purpose of this chapter is to attempt to answer these questions systematically.
This chapter is organized as follows. Sections 4.2 and 4.3 discuss the efficiency
of the MHD estimator (4.4) in parametric and semiparametric senses, respec-
tively. Minimum profile Hellinger distance (MPHD) estimator is constructed
in Section 4.4. Section 4.5 studies robustness properties of the estimator (4.4).
Simulation studies, examples and concluding remarks are given in Sections 4.6,
4.7 and 4.8, respectively.
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4.2 Efficiency in the Parametric Sense

In this section, we first give a general result on the asymptotic efficiency of
MHD estimators in the parametric family (4.2). Beran (1977) has shown that
the MHD estimator defined by (4.3) is efficient and robust, at least for con-
tinuous distributions with compact support. Stather (1981) extended Beran’s
results to the case of discrete distributions and continuous distributions with
infinite support. Brown and Hwang (1993) examined a MHD estimator using
a histogram type estimator for f,. Tamura and Boos (1986) considered MHD
estimators for multivariate location and scale models. In the next theorem we
obtain the efficiency of the MHD estimator defined by (4.3) in a more general
sense; i.e., without assuming any specific form of f,,. Let sy = fel /2 and suppose
for 6 € O, there exist a p x 1 vector $¢(z) with components in L, and a p X p
matrix §p(z) with components in L such that for every p x 1 real vector e of
unit Euclidean length and for every scalar « in a neighborhood of zero,

891ac(T) = 89(x) + aeT$g(x) + aeluy(z) (4.5)

S0+ae(T) = 30(x) + a8p(x)e + avy(x)e, (4.6)

where uq () is pXx 1, vo(x) is px p, and the components of u, and v, tend to zero
in Ly as a — 0. The family {fy : 6 € O} is called identifiable if 6; # 6, implies
fo, # fo, on a set of positive Lebesgue measure. For notational simplicity, we

P
write (a1, ...,ap)| = D lail.
i=1

Theorem 4.1. Suppose that the family {f; : t € ©} is identifiable with ©
being a compact subset of RP. Further suppose that Xi,..., X, s fo(x) with

6 € int(0), t — s = f;/z is continuous in L, (4.5) and (4.6) hold for every
0 € int(©), and Iy = 4 [ $¢(x)$7 (x)dz is nonsingular. If a sequence of density
functions {f.} satisfies, as n — oo, that

[ (5@ - so@)) s L0,

n1/2[/§z(_x)fn($)dx _ lzn:éa(Xi)] £,0,

so(x) n< sp(X;)
e [ L5 @) foe)) de
[ S (@) = fo@) w0,

then the MHD estimator defined in (4.3) is asymptotically efficient; i.e.,

nM(To(f) — 0) == N(0,I;1).
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Proof. Similar to the proof of Theorem 4 of Beran (1977). 1

Remark 4.1. Suppose f, is the kernel density estimator given by f,(z) =
e EK (552 ) where {b, } being a sequence of bandwidths such that lim n'/2p,

= n—00

= 00 and lim n'/2b2 = 0, K being a symmetric smooth density with compact
n—oe

support, and s, = sp(X1, Xo, ..., Xy) being a robust scale estimator such that

n!/?(s, —s) = Op(1) for some positive constant s depending on fy. If the under-
lying model fy has compact support and satisfies certain smoothness properties,
then Theorem 4.1 holds. This can be seen from Theorem 4 of Beran (1977).

The asymptotic variance of Ty( f,) attains the Fisher information Iy in para-
metric models (4.2), and therefore Ty(f,,) is an efficient estimator. For semipara-
metric models (4.1), the lower bound of the asymptotic variance I, ! is attained
only when a sequence of very good estimators 7, of 7 is available. This result
is given next, and it is an extension over previous results given for parametric

models. Let us denote Ip(n) = [ (2&fen) (alogf“) fon dz.

Theorem 4.2. Suppose that

i) Xy,-.., i fon € {fen :t € ©,h € H} with § € int(©), where © is a
compact subset of RP and H is an infinite dimensional set.

(i) For everyn € H, the family {fi, : t € O} is identifiable, t — s; = ftl,{f is
continuous in Lq, and (4.5) and (4.6) hold for s, and for everyt € int(©).

(iii) {falnew s a sequence of estimators of fo, based on (Xi,...,X,) such
that for some r > 1/2,

[ 1220) = o)t = Op(a7), @)

n/? / ‘Sg i ) = fon(x)) dz = 0p(1), (4.8)

/2 / (2)dz — lég%%) — op(1). (4.9)

(iv) {nm} is a sequence of estimators of 1) such that with s, = f;12 ands, = 23,
sup / (3u(x) — 84(x))%dz = Op(n™), (4.10)

78



/ (81, () — &, (2))*dz = op(n~1""), (4.11)
/?tn ()84, (2)dz = op(n~1/?) (4.12)

for any sequence of random variables {t,} such that t, = 6 + Op(n~"7?).

Then the MHD estimator defined by (4.4) satisfies

L1y 123 _
On =0 =I5 () > 2 (Xy) +op(n™/%). (4.13)
j=1 "

Consequently,
n72(9, — 6) < N(0, I;(n)).

Proof. Note that 8, is a minimizer of the function d,, and 6 is the unique mini-
mizer of the function d, where

du(t) = || fi02 — f12)) and d(t) = ||£2)* - £,2%, tee.

ta’ln t777 9#] ?

Observe that

t "']n 0777

da(t —2—2/ 1/2 fY2(x)dz and d*(t)=2— 2/ 1/2 1m(av)daz:.

Since ftl’,/f is continuous in ¢ in L, by assumption (ii), d, and d are continuous
and 6, is well defined. By Minkowski inequality

dn(t) = ()] < Wfue = Fal? = Lo + Lol 1 < Whuie = £’ N+ 1522 = £330

tyn 9,77 t,nn 2] om
Thus, by (4.7) and (4.10), we obtain
A, = sup |dn(t) — d(t)| = Op(n~"?). (4.14)
tcO

We have from (4.5) that

d*(t) = llse — soll* = %(t — )" Io(n)(t ~ ) + o[t — 0]1°)

and therefore d(t) > c|t — 6| for some positive constant ¢ and for all ¢ close to
f. The preceding result and the continuity of d show that

#(s) > cs, 0<s<d, (4.15)
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for some § > 0, where ¢ is given by ¢(s) = eil?f0|> d(t), s > 0. Next we can
te0,|i—0|>s

show that the events {|60,—6| > s} and {A, < ¢(s)/2} are disjoint for 0 < s < 4.
Indeed on their intersection we can conclude that d,(6) < d(0)+¢(s)/2 = ¢(s)/2
and d,(0,) > d(0n) — ¢(s)/2 > ¢(s) — &(s)/2 = ¢(s)/2, and therefore d,(0) <
d,(6,), which yields a contradiction to the definition of 6,,. Thus by (4.15) we
have for all € > 0,

P(|6, — 0] > en™™?) < P(A, > ¢(en™"/?)/2) < P(A, > cen™7%/2).
This and (4.14) establish that
0, = 6+ Op(n™"/?). (4.16)

As a consequence of (4.5), (4.7) and (4.16) we obtain

122 = £ < NE2 = £ 220+ 1502 = 372
= Op(n™""%) 4+ Op(||6, — 8] (4.17)
=Op(n_’"/2).

It follows from (11 ) that [ $.f, 1/ *(z)dz = 0 for all t € int(©) and that the
map ¢ — [s £ z)dz is dlfferentiable at each ¢t € int(@) with derivative

[ 5(x) fa"*(z) dz. Since 6,, maximizes this map, we see that J So, () (z) fal*(z)dz =
0 on the event that 6, is an interior point of ©. This event has probability
tending to one since 6, is a consistent estimator of § € int(©) as shown in

4.16). On this event we also have [ $g_7, 1/2 (2)dz = 0 and thus
n 9»,;,,’!]

—/éen(w)fﬁ/z(w) dw=/[SAon(w)—éan(w)]fi/z(w) dw=/ (@) fo! (@) da-+ R,

where
Ry = / (30, (&) — 0, (2)] [f22(x) — £172 ()] da.

It follows from (4.11), (4.17) and Cauchy—Schwarz inequality that

Rl < (186, = 86, - 1fa/? = fal o)l = 0p(n™0"/2)0p (n™"/?) = 0p(n~'/2).
n

The preceding result and (4.12) yield that

/ 50 () fY2()dz = op(n="?). (4.18)

Note that
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[ s @@
- / 00 (2) (f3/4(%) — s9(2))d — / 40,(2) (50, (@) — so(a))de (19

= Il — Iz, say.

Then from (4.5), (4.6), (4.7) and (4.16) we obtain

L = / o(2) (f2(z) — so(a))d + / (30, (2) — 80(@)) (fY2(2) — s6(c))do
s0(2) £/ *(@)da + O(||3, — 30l - 1£1/* = s]l)

)

)

o
:/30(
[l

) fY%(z)dz + Op(n™")

So(z f1/2 (z) dx-l—oP(n‘l/z)

(4.20)
b= [ $0(o)(o0,5) — sol)ds+ [ (60,(5) = 80(@)) 50, &) = su(o)iz
= [0 (0n ~ 6) + 0p(16 — 6] + Op(16 — 8]
= 1To(n)(6n —0) + 0 (16, — 6
(4.21)

Equations (4.18)-(4.21) give
60 — 0 = 415 (n) / 50(2) f2(2)d + / 50(2) £2(2)d + op(n=12) (4.22)

with a, £ 0asn— . Applying the algebraic identity
b1/2 _ (ll/2 — (b _ a)/(2a1/2) _ (b _ a)2/[201/2(b1/2 + a1/2)2]

for b > 0 and a > 0, we have by assumption (iii) that

1/2/ ( )fl/Z( ) — nl/Z/SH(x)[f;N(x)—Sg(m)]d.’E

— pl/2 $0() — 2(xVldz
= 2 [ 2w - i@l + B,

_ $o() N (4.23)
-t [ 2sy(a) (0 F o

1
— nl/2. 72 Se(Xi)+0p(1)+Rn
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with |R,| < n'/2 [ ’;s"(a))l () — s2(z)]2dz 5 0. By the CLT, the asymptotic

distribution of n'/2(1 Z—ﬂ( X;)) is N(0,3Ig(n)). Therefore, (4.22) and (4.23)

give the desired result (4 13) This also shows that the asymptotic distribution
of n/%(6,, — 6) is N(0, 1, (n)). O

Remark 4.2. When kernel density estimators f,, and 7, are used to estimate fy
and 7, respectively, Theorem 4.2 holds for semiparametric models fy , of certain
form. The symmetric location model is one such particular family and it is
shown that conditions of Theorem 4.2 are satisfied for the preceding family, see
Section 4.7.

Corollary 4.1. Suppose that the conditions (i) and (ii) in Theorem 4.2 hold,
{fa}new is a sequence of estimators of fo, based on (Xi,...,X,) such that
f (fl/z( ) — fl/z( ))zdaz = Op(n™1), and {n,} is a sequence of estimators of

n such that supf t11/75 f1/2( ))?dz = Op(n~t). Then the MHD estimator

defined by (4.4) is n2-consistent; i.e., n'/2(6, — 6) = Op(1).

Remark 4.3. The conditions stated in Theorem 4.2 are typical assumptions
made in this context (see, e.g., Beran, 1977) and are easily satisfied by many
families, except the conditions (4.11) and (4.12) in assumption (iv). The condi-
tion (4.12) is analogous to but stronger than condition (2.3) in Schick (1986) if
r < 1. If it is known that 8, is an n!/?-consistent estimator of 4, then (4.12) can
be weakened to hold only for sequences {t,} such that n'/%(t, — 6) = Op(1).
For the mixture model 8 f(x)+ (1—6)g(z), in Chapter 2 we constructed a MHD
estimator 6, and proved that n/2(, — 6) is asymptotically normal. But to
weaken the condition (4.12) further, a general result about the boundedness of
n*/%(6,, — 6) for the MHD estimator 6,, may be needed.

Remark 4.4. The condition (4.11) in some sense requires the rate of conver-
gence of 1, to 1 to be of order op(n=(1="/2), This could be satisfied by certain
nonparametric estimators. The above convergence requirement of 7,, for ex-
ample, is fulfilled by most kernel density estimators of # in the mixture model
0f(z)+(1—0)g(x) considered in Chapter 2 with n = (f, g). In fact, in Chapter
2 we have shown that [(8,(z) — &, (z))%dz = Op(n~/?) (see (2.24) and the
argument given just below (2.29)). But (4.12) was not satisfied by the MHD
estimator 8, constructed in Chapter 2. However, if we change the setup of the
model somewhat (in other words, we regard the data from the mixture as the
whole sample, and the estimators of the two components are based on other re-
sources with sample sizes converge to infinity faster than that of the size of the
sample from the mixture) then faster convergence rate of the estimators of the
two components can be obtained and the lower bound I,(n) can be achieved;
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see Theorem 2.4 in Chapter 2. However, the unknown feature of 7 will usually
bring an extra variance to the estimator. In fact, one cannot expect in most
cases that the lower bound of the asymptotic variance for semiparametric mod-
els (4.1) to be the same as that for the parametric models (4.2): the former is
always larger than the latter.

Remark 4.5. The property that one can estimate  as well asymptotically not
knowing 7 as knowing 7 is so called adaptivity. A sequence of estimators {6,}
is adaptive if and only if, under fg, ,,

028, — 6,) < N(0, I (n))

whenever n'/2(6, — 8) = Op(1). The preceding expression is equivalent to
2 (8, — 0 — ——ZIO Mlon(X;)) = op(1),

where ly,, = log fp, and s, = %lg,,,. This follows from Theorem 6.3 of Fabian
and Hannan (1982) and Theorem 6.1 of Bickel (1982) and the note thereafter.

Remark 4.6. Given any n'/?-consistent estimator, Bickel (1982) used sample
splitting techniques to give a general procedure for constructing adaptive esti-
mators in semiparametric models (4.1). Schick (1987) gave sufficient conditions
for the construction of efficient estimators without sample splitting, which are
stronger and more cumbersome to verify than the necessary and sufficient con-
ditions for the existence of efficient estimators which suffice for the construction
based on sample splitting. Forrester et al. (2003) used a conditioning argu-
ment to weaken those conditions of Schick (1987) and showed that the resulting
weaker conditions reduce to minimal conditions for the construction with sam-
ple splitting in a large class of semiparametric models and for properly chosen
estimators of the score function. Theorem 4.2 in fact gives sufficient conditions
for the estimator 6,, of @ defined in (4.4) to be adaptive. If the MHD estimator
has been proved to be n'/?-consistent (as the cases in Chapters 2 and 3), we can
use one of the procedures given above to construct adaptive estimators based
on the MHD estimator.

4.3 Efficiency in the Semiparametric Sense

The requirement of adaptivity is much stronger than efficiency. Also it is more
reasonable to use the efficiency in the semiparametric sense, instead of the usual
parametric sense. Next we construct non-adaptive but efficient estimators in
the semiparametric sense (for the definition see (4.30) below).

83



In order to investigate the efficiency for semiparametric models (4.1), we
first need to introduce a lower bound of the asymptotic variance under these
models. For simplicity, suppose the parameter space is a compact interval © =
[a,b] C RP. The results could be easily extended to a more general space.

Recall that the root-density fel,{f is said to be Hellinger-differentiable at
(0,m) € ©xH if there exists pg € Ly and a bounded linear operator A : Ly — Ly
such that

15572 = Fal% = [00(0n — 0) + A(ms/* — n2)]]|
10, — 0] + ||ma’® — 172

— 0 asn — 00 (4.24)

for all sequences {6, } C © and {n,} C H such that 6, — 6 and ||7s/*—5/2|| — 0
as n — oo. If n is known, then pg is typically just the usual parametric score
function ly,, for 6 times —;— f;j,z. The operator A can be regarded as yielding a
“score for 1. Here we use the Hellinger perturbations to define the differen-
tiability. The rationale for choosing Hellinger differentiability here because it
is consistent with previous sections and it nicely ties in with local asymptotic
normality (LAN). Define classes

B = {B€L:n2(n/> —n"?) — B >0 as n— oo (4.25)
for some sequence {n,} C H}, ’

A = {a€Ly:a=hpg+ A3 for some h € R, 8 € B}, (4.26)

and make the following assumption:

ASSUMPTION S. The set B defined in (4.25) is a subspace of Ly and {A3 :
B € B} is closed.

It is known that finding the “information” for estimation of 8 in the presence
of nuisance parameters requires orthogonal projection of the score for the pa-
rameter of interest onto the space of nuisance parameter scores {AgS : 8 € B},
thereby yielding the “effective” component of py orthogonal to the nuisance
parameter scores. Under ASSUMPTION S, there exists a 8* € B minimizing
lloe — AB, Le., )

A" = argminlps — AB|. (4.27)

Here (* represents a “least favorable” or worst possible direction of approach
to i for the problem of estimating 6. Let

S*(z,0,n) = pe(x) — AB*(z) (4.28)

and
I, = 4|5*(-,9, 77)”2' (4.29)
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Assume that I, # 0. Obviously, I, < I, (defined just above Theorem 4.2), and
S* L AB for any B € B, where a L denotes [ a(z)B(z)dz = 0. Under some
regularity conditions, Begun et al. (1983) proved that I;! is the achievable
lower bound of the asymptotic variance. Informally, an estimator 6,, of 6 is said
to be asymptotically efficient in the semiparametric sense if

n’2(9, — 6) < N(0,I71). (4.30)

This definition can be made precise in the sense of a convolution and local

asymptotic minimax (LAM) theorem, as is explained in Begun et al. (1983).

We now construct an estimator of # based on the Hellinger distance, which

achieves the semiparametric efficiency bound in the sense of (4.30).

When 7 is known, the maximum likelihood method can usually be reduced
to solving the score equation 3 lg(X;) = 0. A natural generalization of esti-
i=1

mating the parameter ¢ in semiparametric models (4.1) is to solve 6 from the
n o~

efficient score equations Y ls,(X;) = 0, where lg,, is the efficient score function
i=1

for & under the semiparametric sense, i.e., the projection of [y, onto the orthog-

onal complement of {A8 : § € B}. We can substitute an estimator 7, for the

unknown nuisance parameter 7, which results in solving the equation for 6 from

N o~
the equation ) lp,.(X;) = 0. Van der Vaart (1998) proved that such an esti-
i=1

mator of 8 is asymptotically efficient under certain assumptions. Intuitively, we
could make the definition of MHD estimator accommodates to semiparametric

models similarly. From (4.4) we have that 6, = arg max Il f;,{7 i (z) ;/Z(m)dx, or

equivalently (in most situations) 6, solves [ pg(z)|y=n. fal(z)dz = 0, where pg
is given by (4.24). We now propose a MHD estimator of é as the solution of

/ S* (2, £, m) £/ () dz = O, (4.31)

where S* is given by (4.28). Suppose the solution exists and we denote it as
@\n. A similar estimator was investigated by Huang (1982) in a different context.
He proved that his estimator is efficient under certain conditions including the
consistency of the estimator. Schick (1986) pointed out that proving consistency
of the estimator may pose difficult mathematical problems and therefore limit
the use of Huang’s estimator. Next we prove the consistency of the estimator
0, under some reasonable conditions.

Lemma 4.1. For py, A, B € B and o. € A defined in (4.24), (4.25) and (4.26),

we have paLfgl,f,z, Aﬁlfol,{f and aJ_f;,ﬁlz.
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1/2 1/2 1/2
Proof. Since Mo =foy —AU —n*/2)]

ik L 72 — 0 and the definition of g imply that
-

W2t/ = 2] = 8], we have nM2(f2 — £112) — /2 A2 — 2] > 0.
Further,

In2(f,72 — £,7%) — AB|

< YRR < FRY — A — gz 4 | Al I - p2) - B
— O,

and thus n 1/2 — £7212 = 0(1) and ||n}/2fM? — AB|| - {ln1/2f1/2 — 0. This
0’77 0’7771
gives

1/2¢ £1/2 /2y 2
17" form = Fory ) = AB
_ ||n1/2f1/2 Aﬂ||2—|—||n1/2 1/2”2 Mm <f(%)2;f1/2 > 4opl/2 <f1/2 AB >

gn>
= 2 < fyil, foll = o2 > a2 < f302, AB > +o(1)

= 0.
Hence,

1/2<f1/2 1/2 f1/2 >+<f01{72’ A,8>

1/2
= gme e R < i ap s

— 0

and thus AL fel {72 Similarly, one can prove that pyL fel’{f by the definition of
pg. Furthermore, a = (hpy + AB) L fl/2 C

Theorem 4.3. Suppose that (t, 7]1/2) s S*(-, t,m) is continuous in Ly at (t,n*/?)
for any t € int(V), ||fa/> - 1/2|| L0 and |ni* =02 5 0 as n — co. Further
suppose that equation [ S*(z,t, n)fl/z( Ydz = 0 has unique solution in t. Then
the MHD estimator defined in (4.31) satisfies b, 56 asn — 0.

1/2 1/2 1/2

Proof. First suppose that || fa n'/?|| — 0 w.p.1,
as n — oo. Lemma 4.1 gives [ S*(z, 0, n)fl/z( Jdz = 0; i.e., t = 6 is the unique

solution to the equation [ S*(z,t,7) fel,,7 (z)dz = 0. Note that 8 and 8, satisfy

o | — 0 w.p.1 and |[nn

0 = / [5(@, B, 1)1/ (@) = S (2,6,1) ) (@)
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_ / [S*(@, By 1) — 5 (@, 60, 1)) £/ (@) do
+ [ 8@ B [11@) ~ f371@))do (4:32)
- / (S"(, 60,m) — 5*(z,6,m)] £y («)de

In view of the compactness of ©, the continuity of (t,n'/?) s S*(-,t,7m) in Ly
implies that ||S*(-,0n, 1) — S* (-, O, m)|| — 0 as n — oo and that sup||S*(-, ¢, n)|
tcO

is bounded. As a result, as n — oo,

| / (S(2, B, 10) — S° (2, By, )] f/2 ()|
15 B e) — S*C ) - £

—~

15* G, B 1) = S*C, Ons )| - (1272 = £5220 + 1£52211)
0

LIAIA

and

| / S (2,60, m)[f2/%(2) = f,02(@)]dz| < NS B m) | [£Y2 = 3220 — 0.

Thus (4.32) gives
/ [S*(2, 80, m) — S*(z, 0, )] f57 (z)dz — 0. (4.33)

Suppose 0 - 6§ asn — oo. By the compactness of O, there exists a subsequence
{0,,} C {8,} such that 8,, — 6 + 6 for some §' € © as m — co. Then (4.33)

gives that [[S*(z,6',n)— ;5'*(:16,0,77)]]”9,,7 (z)dz =0, ie., [ S*(z,0 ,n)fl/z( Ydx =
0 and thus ¢ = ' is a solution to [ S*(z,t,7) f;ﬁ(:v)d:v = 0. This contradicts
to the uniqueness of the solution, and thus 6,, — 6 as n — oo. Therefore, the
solution to [ S*(z,t,h)f*(z)dz = 0 as a functional of (f,h) is continuous at
(fo,m) in the Hellinger metric. As a result, 8, > 0asn — oo for any sequences
{f.} and {n,} such that || fr/>— 1/2|| Loand |2 —n?| B 0asn > 00. O

We now summarize all the conditions needed for the efficiency of the MHD
estimator 6, defined by (4.31) as follows:

S1. fon(z) has compact support, twice absolutely continuous and the second
derivative fe(,2n) (z) is bounded. Further, felf is Hellinger-differentiable as defined
n (4.24).

S2. (t,n'/?) — S*(-,t,n) is continuous in Ly at (¢,7'/?) for any t € int(©);
equation [ S*(z,t, n)fl/z( )dz = 0 has a unique solution in t; S*(-,6,n) is

87



Hellinger-differentiable at (,7) and [ 2.5 (z, 0, 1) f 1/ 2( )dz is finite and nonzero.
S3. |Ifa”* = fy | 5 0and nl/? [ o (x)(fﬁﬂ( )— fl/z( ))dz = N(0, %lo]|?)
asnﬁooforallaeLgandf fen()dx=0.

S4. [Ina® = n2| & 0, and S*(-,¢,7,) is well-defined for large n and all
t € 0.

Theorem 4.4. Under conditions §1-54, any solution 6,, of (4.81) is an asymp-
totically efficient estimator of 0; i.e., (4.80) holds for 6,,.

Proof. Similar to the proof of Theorem 5.2.1 of Huang (1982). O

Remark 4.7. This remark is parallel to Remark 4.6, and we consider the case
that we only have a n'/?-consistency of the estimator 6, of § defined in (4.4).
In this case, we can use one of the procedures mentioned in Remark 4.6 to
construct asymptotically efficient estimators in the sense of (4.30). The only

difference from the construction of an adaptive estimator is now we are using
S* defined in (4.28) instead of py.

Remark 4.8. Consider the estimator 6, defined by (4.4). Suppose that 7,

is a consistent estimator of 1 in the Hellinger metric, and fl/ % is Hellinger-
differentiable for each t € © with A = A, in (4.24) satisfying sup||At|| < M for
te©®

some M > 0. Then the condition (4.10) in Theorem 4.2 could be reduced to
I/ = n'/?||* = Op(n™").

Suppose $; is Hellinger-differentiable for each ¢ € B(f,¢) with some € > 0 and

B(0,¢) is an e-neighborhood of 6, then there exists a bounded linear operator
B, : Ly — L4 such that

I3 — 4 — Bi(m/> — n'/2)|

— 0 asn— o0.
(]|

The condition (4.11) is now equivalent to, for any t, = 6 + Op(n~"/2),

op(n= 2 = |15, — 4|l = |IBu(md” = )| + o> — n'/2]))
— \|Be.(m/* = 02| + op(n~"72),

and since r > 1/2, equivalently
1Bt (/% = n'/?)|| = op(n~"772).

Therefore, if
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B, || = op(n"~1/%)
for any t, = @ + Op(n~"/?), then (4.11) holds.

4.4 Minimum Profile Hellinger Distance Estimation

The MHD estimator defined by (4.4) in semiparametric models (4.1) is based
on minimizing the Hellinger distance between a density estimator f, and the
parametric family fg ., i.e., the nuisance parameter n in fy, is replaced by an
estimator 7,. This approach is in line with Beran’s (1977) original mechanism
of deriving MHD estimators. Intuitively, one could also define a MHD estimator
of @ in semiparametric families (4.1) via profiles.

For any density function g, define a functional n(t, g) by

— : /2 1/2
n(t, 9) = argmin||f,3" — g**||. (4.34)
Set "
Stg = Jintsg) (4.35)
and define the MHD functional T} (g) as
Ti(g) = argmin(ls,, — g'/|| = argmax < s, g'/2 > . (4.36)

Here we don’t require that f;; is a density function for any h € H, but we
do require that the second equality in (4.36) holds for convenience. In case
that the second equality does not hold, we can use the r.h.s. of (4.36) as the
definition and the results of this section still hold. We call ||s; ,—g'/?|| the “pro-
file” Hellinger distance between f; ), and g. Now the minimum profile Hellinger
distance (MPHD) estimator is defined as T1(gy), where g, is an nonparametric
estimator of g based on observed data X3, ..., Xy. Clearly, T1(hg,) = 6 uniquely
if {fin}ico nen is identifiable. Assume that Ti(g) € int(©) is uniquely defined
and Hellinger continuous at g in the sense that T1(g,) — T1(g) for any sequence
{gn}nen such that Hg}/2 — g*?|| — 0 as n — oco. Assume further that for any ¢
in a small neighborhood of Ti(g) and any h in a small Hellinger neighborhood
of g, the map t — s, satisfies (4.5) and (4.6) with continuous gradient vector
¢ and continuous Hessian matrix 3;,. Let

H(t,g) =< 314, g/° > . (4.37)

Then H(Ti(g),9) = 0. Assume that {g,}nen is a sequence of estimators of g

such that ||lgn'> — g/2|| 5 0 and M(gn,g) 5> 0 as n — oo, where M is some
metric. Thus, there exists a version of {g,}, defined on a suitable probability
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space, such that T1(g,) — T1(g) and T1(g,) € int(©) w.p.1 and

0 = H(Ti(gn),9n) — H(T1(9), 9)
= [H(Ti(gn), 9n) — H(T1(9), 9n)] + [H(T1(9), 90) — H(T1(9), 9)].

Since the map t + s, satisfies (4.5) and (4.6), H(t, h) is differentiable in ¢ with
derivative .
H(t,h) =< &5, B2 >

that is continuous in ¢. Suppose that for any ¢ in a small neighborhood of T1(g),
H(t, h) is continuous at h = g w.r.t. metric M. Then

H(T1(gn), gn) — H(T1(9), 9n) 1
= (Tl(gn)"“Tl(g))/O H(Ty(g) + u(T1(gn) — T1(9)), gn) du.

Suppose further that there is a 1), such that < 1, g'/2 >= 0 and

H(Ty(9), 9n) — H(T1(9),9) = <y, 95> — "> > +o(|lgs/* — g"/*|])  (4.38)

1/2

for any sequence {g,}nen such that ||gn g% - 0asn — oco. If <

87y (g).g» 9% > is invertible, then we have

Ti(gn) —Ti(g9) = —(< lfT%(g)g, g2 >V 1o(1)) < by, g’ — g2 >
+o(llgn’” — g*2|)),

i.e., the MHD functional Ty is Hellinger differentiable provided that ||,]| < oo.
If g, satisfies

H(T1(g),gn) — H(T 22 ; /2 op(n~'/?), (4.39)
then

Ti(gn) ~ T1(9) = —( < 8ni(909» 92 > +oll Z2g1/2 op(n™%),

and therefore the asymptotic distribution of n'/2(T1(g,) — Ti(g)) is normal with

mean zero and variance ¥ defined by

H (Tl(g) ) < ww wT > H (Tl( ) ) (4 40)
1/2 -1 1/2 -1 .
<3m@ge 977 >< %, Yy >< 81y(g)9) 977 >

Y =

i =

With 6 := T;(g), note that

90



H(Tl(g)a g’n) - H(Tl(g)a g)
< Sgny g0 > — < S0, g¥% >

; 1/2 ) ) 1/2
2 < %4, gn/ — gt >+ < S0,9n — S6,9: gn/ _19;/2 > o
+ < S6,gn g'? > <gn/789,9>
. 1/2 . 12 .
= 2<3pg, g/ — g% > +[ < 04, 9?2 > — < g% S6.9 > |

+O([I$0,g, — S04]l - llgn'* — 1/2”)-
So if ||36.4, — S04 = 0 and
< Sog0r 97> = < g% S0g >=o0p(llgx”® ~ '), (4.41)
then 1y = 287, (g),4- These results are summarized in the next theorem.

Theorem 4.5. Suppose that

(i) T1(g) € int(O) is uniquely defined and Hellinger continuous at g.

(ii) For any t in a small neighborhood of T1(g) and any h in a small Hellinger
neighborhood of g, the map t — s;; defined in (4.35) satisfies (4.5) and (4.6)
with continuous gradient vector $,; and continuous Hessian matriz 3,;,; <
S11(g).g> 9% > is invertible.

(ii) For any t in a small neighborhood of T1(g), H(t,g) defined in (4.37)
satisfies (4.38) with < 1y, g"/* >=0 and ||¢h,| < 0o, and the derivative H(t, h)
s continuous at h = g w.r.t. some metric M.

(iv) {gn}nem is a sequence of estimators of g such that ||gn
and M(gn, 9) L0 as n — oo, and satisfies (4.39).
Then T, is Hellinger differentiable and the asymptotic distribution of n*/?(Ty(gy)
—Ti(g)) is N(0,%) with variance matriz ¥ defined by (4.40). Furthermore, if
gn satisfies (4.41) and ||$7,(g),g. — S04l L0, then the above result holds with
Vg = 251,(g),g-

1/2 1/2H i

Remark 4.9. Condition (4.38) requires in some sense that H defined in (4.37)

is Hellinger differentiable. In most cases, < 1y, g,l/ 2 g% >=1 2.2?%%?)-

op(n~1/2) (as shown in (4.23)). Therefore, it is reasonable to assume that both

(4.38) and (4.39) hold. The example on symmetric location models given in
Section 4.7 satisfies the conditions of Theorem 4.5.

In what follows, we consider the case that g = fs,. We suppose that

X, X, o fon, and f, is a nonparametric density estimator of fy, based

on observed data. Then a MPHD estimator is T1(f,,). Theorem 4.5 investigates
the asymptotic normality of MPHD estimator T1(f,). In order to see the effi-

91



cient of T1(f,) in the semiparametric sense, we need to examine the achievable
lower bound of the asymptotic variance, i.e., the explicit form of I, defined by
(4.29). The next theorem achieves this goal. For notational convenience, we let
fort € ©,

_ _ . 1/2 /2y /2 ,1/2
e = n0(t, fon) = argmin|[fy5" — for || = argmax < fi7", fo;7 > (4.42)

Obviously, 7s = n if the models { f; 4 }co nen is identifiable. Define

Hi={meH:ng=mn,t— ftl’{ltz is differentiable in Ly at point t = 0}.

Theorem 4.6. Suppose that { fipticonen s identifiable and s; = ftl’,/,f is dif-
ferentiable in Lo at point t = 0 with gradient $g, where 1, is defined by (4.42).
Then 1, is a least favorable curve among H1 in the sense of (4.27). Furthermore,
I, = 4 < 3¢, 85 > with I, defined by (4.29).

Proof. Clearly, n, € ‘H;. For any other n; € Hy, let sy = f;éi and $19 be the
gradient of sy, at point ¢ = 6. By the definition of #; in (4.42),

< 8 — 81, S>>0 forallte®. (4.43)
Note that
< 8¢+t — 89, S > = < So4t, Sg > — < 8¢, Sg >
= < 8pt,50 > —1
= <S¢+t S0 > —%(< S0+, S+t > + < g, 59 >)
= —i< S0+t — S9, So+t — S¢ >
T _ & T 2
= —5t' <3, 85 >t+o(]t]?).
Similarly, < s1(64+1) — S18, 510 >= —35 t% < 519, 51y >t + o(J|t[|*), and thus we
obtain

< 8¢+t — S1(0+t)s S0 >
= < 89+t — Sy S¢ > — < S1(0+t) — S10) S10 > (444)
= —1tT( < 39, 87 > — < 519, 8T > )t +o([It]%).

From (4.43) and (4.44), we have that
< g, 83 > < < $1p, Sl > -

Since 7y is arbitrary, this implies that 7, is a least favorable curve and by
definition (4.29) I, =4 < $, 35 >. O

Remark 4.10. With g = fg, and ¢y = 251,y ,, the asymptotic variance
defined by (4.40) is reduced to
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. /2 _—~ . . o 1/2  —
=< So,fom) f@,{') > 1< Soafe,'n’ Seafe,n >< 807f9;71’ f0,€l > ' )
It follows that < 3p¢, , fi{f >=—2 <5y, , 8604, > (see, e.g., the symmetric
location models discuss in Section 4.7). Then X is further reduced to ¥ = [4 <

50, foms S0.f0., > ]_1 = I7!. Therefore, Theorem 4.5 shows that the MPHD
estimator is efficient in the semiparametric sense. Theorem 4.5 in a certain
sense shows the best possible MHD type estimator and gives a set of sufficient
conditions to achieve this best estimator. Theorem 4.5 also demonstrates when
an adaptive MHD type estimator exists. If 395, = ;9% fon/(2 fol’/f), then there
exists an adaptive estimator.

4.5 Robustness

In this section, we examine some robustness properties of the MHD estimator
6, defined by (4.4). As many authors have pointed out, the robustness of
an estimator would be ideally be studied by considering what happens to the
distribution of the estimator as the distribution of the data is varied.

From Theorem 4.2 it follows that the estimator 6, defined in (4.4) is contin-
uous as a functional of f, and 7,. A small Hellinger-metric change in f, and
N, induced by data recording errors or other mechanisms will typically induce
correspondingly a small change in the value of 6, by virtue of the continuity of
this estimator.

To this end, we suppose that the true density of data is not strictly from
the class defined in (4.1). Instead, we suppose that Xi,..., X, & g with g in
a small Hellinger neighborhood of fy,, ie., ||g*/?(z) — f%]z(x)ﬂ < ¢ for some
positive small €. Then the actual parameter estimated is

0= Tafg) = argig [ (fl3(e) = 9/*()) o, (4.45)

€O
where Tj is in fact defined in (4.3). Suppose that {g,} is a sequence of estimators
of g based on (X3,...,X,), and 7, is a sequence of estimators of n that may
based on the same data or from other resources. Define a MHD estimator 6,, of

8 as
O = To(gn) = argmin| £, — g1 (4.46)

where T, is defined in (4.4). Clearly, definition (4.46) is a generalization of
(4.4). The next theorem shows that the estimator 6, defined in (4.46) is still
y/n—consistent even when the actual density is not from the class defined in
(4.1), exhibiting a desirable robustness property of 8,; i.e., 8, is not affected by
a small Hellinger perturbation of the density of data.
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Theorem 4.7. Suppose that
(i) 0 defined in (4.45) is unique and 0 € int(©), where © is a compact subset
of RP.

(i) For every n € H, the family {fi, : t € O} is identifiable, t — s, = ftl,,/f is
continuous in La, and (4.5) and (4.6) hold for s; and for every t € int(©)
with [ 3¢(z)g"*(z)dz nonsingular.

(1) {gn}new s a sequence of estimators of g based on (X1,...,X,) such that
for some r > 1/2,

[ (6@ - 9¥(@))ds = Op(n™), (4.47)

aife [ Bl ) o)) = op() (4.48)
g3/2(11)) n P 3 .

nl/2( / ;%2) gn(z)dz — %;gﬁigé))) = op(1). (4.49)

o~

(iv) {mn} is a sequence of estimators of n such that with s, = ftlfli and 5, = 23

sup / (:(z) — 5:())2dz = Op(n™), (4.50)

t€e
[ Giula) = s (@) = on(077) (451)

/ (5, (2) — &, (2)lg"/ () dz = 0p(n~*/?) (4.52)
for any sequence of random variables {t,} such that t, = 0 + Op(n™"/4).

Then the MHD estimator defined by (4.46) satisfies

n
j=1

) SR _
Op — 0 = —[/sa(x)g1/2(x)d:v] Zgl_iz(Xj) + op(n~Y?). (4.53)
Consequently,

n*(6, — 0) <> N(0,471 /pg(ac)pg(x)d:c),

where

po(@) = — | / 5o(2)g"(@)dz] 40 (). (4.54)



Remark 4.11. Theorem 4.7 is parallel to Theorem 4.5. Both are for a general
underlying density function g (may not be exactly the semiparametric model
fo.n). Theorem 4.5 discusses the asymptotic efficiency of the MPHD estimator of
0 in semiparametric sense, while Theorem 4.8 examines the asymptotic efficiency
of the MHD estimator of 6 in parametric sense (adaptivity). As discussed in
Remark 4.10, the MPHD estimator will be reduced to an adaptive estimator if
it exists.

Proof of Theorem 4.7. The proof follows along the same line as the proof of
Theorem 4.2.

Note that 6, defined by (4.46) is a minimizer of the function d,, and @ is the
unique minimizer of the function d, where

dn(t) = |18 — /|| and d(t) = ||s; — g**|l, te€®.
Observe that
Pt)=2-2<5, g?> and ?(t) =2 -2 < s, g/° >

Since ¢t + s; is continuous in Ly by assumption (ii), d,, and d are continuous
and 6, is well defined. By Minkowski inequality

0 = O = (18~ g+ oo 1) 15— 61l ~ e = 0|
(1)l + 11931 + sl +11g721) - 5 = 94> = s + '

413 — ]| + llga’® — g*72|)).

Thus, from (4.47) and (4.50), we obtain

INIA

A = sup |d2(t) — d2(t)| = Op(n~""?). (4.55)
t€®

Now define
= inf d*(t) —d*® .
#(s) te@j?—9|zs (1) = d°(6), s>0
If g is a member of models (4.1), then d(0) = 0 and we can follow the same line
as in the proof of Theorem 4.2 to prove that for some § > 0,
@(s) > cs?, 0<s<d. (4.56)

If g is not from the semiparametric models defined in (4.1), then d(#) > 0. Since
t = 0 € int(0) is the unique maximizer of < s;, g'/2 >, we have < $3, g/2 >= 0
and < 3¢, g'/? > is negative definite. Then by (4.5) and (4.6),
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d*(t) — d*(0)
= —2< s —sg, g/*>
= 2t —0)T <39, ¢? > —(t—0)T < 5, g2 > (t — 6) + o(||t — 0]?)
= (t—0)T < =5, g*>> (t —0) +o(|lt — 0|2,

and therefore d%(t) —d?(6) > c|t — 0|2 for some positive constant ¢ and all ¢ close
to 6. The preceding result and the continuity of d show that (4.56) holds. Next
we can show that the events {|0, — 8| > s} and {A, < ¢(s)/2} are disjoint for
0 < s < 6. Indeed, on their intersection we can conclude that d2(8) — d*(9) <
#(s)/2 and d2(0,) — (0) > (d(6,) — &(0)) — #(5)/2 = $(5) - 4(5)/2 = 8(5)/2,
and therefore dp(0) < dy(6,), which yields a contradiction to the definition of
0p. Thus, by (4.55) and (4.56) we have

P(|0, — 0] > en™*) < P(An > ¢(en™™*)/2) < P(A, > cen™2/2) = 0
for all € > 0. This establishes that
0, = 0+ Op(n™"/4).

It follows from assumption (ii) that < §;, s; >= 0 for every t € int(©) and that

< i’\on’ 9111/2 >= () on the event that 6,, is an interior point of ©. This event has
probability tending to one since 8, is a consistent estimator of § € int(©). On
this event we also have < 34, sg, >= 0 and thus

— <3, gt > =<5 — 3, gV > = <5y, — 3, /2> +R,, (4.57)
where .
R, =<§gn-—39n, ,1/2—g1/2>.

From (4.47), (4.51) and the Cauchy-Schwarz inequality , we obtain
|Bal < 18, = 86,1l ll92/* = 9"l = 0p(n=C2)0(n™™2) = 0p(n'/?).
The above result together with (4.57) and (4.52) yield that

1/2

< é@m gy = > = OP(n—l/Z)‘

Now from (4.6), we have

op(n12) = <4, g}/2 >
= < 854 30(0n — 0) + vn(6n — 0), gi/* >,

where the components of p X p matrix v,(z) converge in Ly to zero as n — oo.
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Thus, for n sufficiently large, one obtains

O —0 = — <38g+un, gi'> >1< 39, gi> > +op(n~1/2)
= — <t v, g >TI<G, gT — g > Hop(n V)
= <& g2 >l g /2 _ 1/2 ()
- 6, 9 > "< 8¢, gn g >
tan < S, g2 — g% > +op(n~1?),
where ay, L 0asn— oo. Applying the algebraic identity
pl/2 _ gt/ — (b— a)/(2al/2) —(b— a)Z/[zal/z(bl/Z 4 a1/2)2]
for b > 0 and a > 0, we have by assumption (iii) that
.12 $o()
w2 <, o g > = Wit [ 2 575 ()~ 9@)do + o
_ e [ %e(@)
=n / 291/2( )9 9n(z)dz + R, (4.59)
1 89
= ni/2. 2nz 17 (X)) +op(1) + R,

with |R,| < nl/2 [ 255/(2‘””)[9"( ) — g(z)]%dz 5 0. By the CLT, the asymptotic
distribution of n'/2(1 gﬁ%(X )) is N(0, [ 34(z)$% (z)dz). Therefore, (4.58) and
=1

(4.59) give the des1red result (4.53). This result also shows that the asymptotic
distribution of n*/2(, — 6) is N(0,47" [ py(z)pL (z)dz) as well. O

We now consider a special form of contamination. Let the true density
function be g and the contamination model be g, = (1 — @)g -+ au, with u,
denotes the uniform density on (y — €,y + ¢) for small € > 0. Here g,, models
the situation where a proportion o (0 < o < 1) of outliers located at (or near) y
occurs in a sample from the density g. Note that the Hellinger dlstance between
oy and g is no more than (2a)/2, since llgals — g*/2|2 < [ 9ay(z) — g(z)|de =
[ auy(z) — g(z)|dz < 20 Define

Gusy = Toltas) = vy [ (1) —f3@)’de. (4.00)

The next theorem compares 6, with 6 defined in (4.45), which is a generaliza-
tion of Theorem 7 in Beran (1977) to any density function g.

Theorem 4.8. Suppose that © is a compact subset of RP. Further suppose that
the family {fi, : t € O} is identifiable, t — s, = ftn is continuous in Lo, and
6 defined in (4.45) is unique. Then
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(i) ili% by =0 for any y.

(ii) If 04,y defined in (4.60) is unique for every y, then lqy is a continuous
bounded function of y such that I llim 0oy =90.
yl—oo

(i) If 0 € int(©), (4-5) and (4.6) hold for s, = f1* and for every t € int(©),
and [ 3¢(z)g*?*(z)dz is nonsingular, then for everyy

o>

o™ (6ay =) = 5 [ 4 P@p@u (o), (46)

where py(x) is defined in (4.54) and 3y and 8y are defined in (4.5) and
(4.6).

Since Theorem 4.8 holds for any semiparametric model f;,, we can replace
[ty throughout with f; .., where 7, is an estimator of 7. If further we replace g
with its estimator g,, then Theorem 4.8 holds with s; = ftl,,/,i and corresponding
g = gn and 6 = 0, defined in (4.46).

Theorem 4.8 (i) is a special case of the consistency of MHD estimators. A
more general result than Theorem 4.8 (i) is that the MHD estimator 6,, defined
in (4.46) is robust in the sense that small Hellinger-metric perturbation in the
underlying density g can only induce small changes in the density estimates g,,
and this in turn will only lead to small changes in the MHD estimator 6,,.

Theorem 4.8 (ii) represents the effect on MHD estimator (4.46) of adding
some outliers with large values around y. It shows that for any fixed con-
tamination rate a € (0,1) (even close to 1), MHD estimators based on the
contaminated data set are close to those based on data sets without contami-
nation for large enough y. This behavior is exhibited in the figures in Chapters
2 and 3, see particular Figure 3.1. Simulation studies in Section 4.6 further
demonstrates this fact.

The limit defined in (4.61) gives the IF (a function of y) of the functional
6 = To(g) defined in (4.45) at g, with modifications to Hampel’s (1968) definition
to suit functionals on a space of densities. As discussed above, (4.61) with
84 = ftléi and corresponding g = ¢, gives the IF of T,,(g,) = 6,, defined in (4.46).
These IFs are generally unbounded, but this does not rule out the robustness of
MHD estimators, as in the parametric case (Beran, 1977) and in semiparametric
cases considered in Chapters 2 and 3. In other words, a statistic does not need
to have a bounded IF in order to be robust, as noted by Beran (1977) and many
others. As shown in Theorem 4.8 (ii), the so called o-IF a'(6,, — 0) is a

bounded continuous function of y such that I1|im @ (fa,y — 0) = 0. Hence the
yl—oo

MHD estimator (4.46) is robust at g, against 100a% contamination by gross
errors at arbitrary real y. Thus the usage of the a-IF might be better than IF
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to assess the robustness of statistics in the present context. See Beran (1977,
pp 456-7) for further discussion on this issue.

Proof of Theorem 4.8. (i) Denote
d(t) = [1£i* = g% and da(t) = |fu” = s&l5Il

By Minkowski inequality,

ilelglda(t) —d(t)] < llgaly — 9"* < 20)'2 >0 asa—0.

Therefore we have
do(0) —d(0) — 0 and du(bsy) — d(fay) =0 asa— 0.

If 64,y - 0 as o — 0, then there exists a sequence {ay} such that a, — 0 and
Onny — 0 # 0 as n — o0o. It is easy to prove that || ftl,,/f — || is continuous in

t for any function ¢ € Ly, and thus d(6,, ,) — d(d') as n — co. From above
results, we have dq, (0a, 4) — da, (8) — d(8') — d(8) as n — oo. Furthermore, we
have dg,, (B, ) — o, (8) < 0 by the definition of 8, and hence d(6') —d(8) < 0.
But by the definition of § and the uniqueness of it, d(§') — d(6) > 0. This is a
contradiction. Therefore, ,, — 6.

(ii) Let Gay = [(1 — a)/2gY2 + o/2u/*)2. Since as Jy| — oo,

1/2 1/2 1/2 _1/2
sup|u P2 — gl = 11£20 = g |

/2 _1/2
Hga{y ga/y”

[ [ 1900(®) = Gaa(@)ld]

(do(1 — 0‘))1/4[/gl/z(x)u;”(x)da:] 1/2
0

b IA A

!

and

Ifer” = 3y 1P
= 2- 2 a)1/2/f1/2 :v)gl/2 x)da: 2a1/2/ft1,{;2($)u;/2(w)dx
4201 = 02 [ g4 (e (@)
— 2-2(1- )+ (- @V -
we have for any t € ©

H 1/2 1/2”2__)2 2(1 (14)1/2+(1 a)l/zu 1/2 g1/2“2 as |yl—>oo (4.62)

t,n t,n
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If 64y = 6 as |y| — oo, then there exists a sequence {y,} such that y, — oo
and 0,,, — 0 # 6 as n — oco. From (4.62), we have as n — oo,

1y = ey I = 2 =201 = @) 4 (1 = ) 2| £/2 — 2,

1£507 = g2 |12 = 2 = 21 — @) /2 + (1 — ) V2| £,12 — g2, (4.63)

Since [ 5% = galull = 1/y2 = galiull| < 152 = £,2]l = 0 by the continuity

1/2 .
of s; = ft,/7 in Ly, we have

oa,yn s

1532 0= G2 12— 2—2(1— )2+ (1— ) 2|2 = g2 (464)

By definition, ||f, a/ zyn n gelmll < I, ;;,2 — g&/Z || This together with (4.63) and

(4.64) yield erl/j —g? < ||f91,{72 — ¢*/?||. But by the uniqueness of 8, one has

Ilf 01//7727 —g*?| > | fel,{f — g*?||. This is a contradiction. Therefore, 8,, — 6 as
ly| — oo.

Note that [|garys — 901> < [19ay+s(7) = gay(@)lds = a [ luyss(@) —

uy(z)|de = ad/ ¢ — 0 as 6 — 0. Hence y — gal2 is continuous in L,. Since

the functional Tj in (4.60) is continuous at go, in the Hellinger topology (see
Theorem 1 of Beran (1977)), one has that 0q 45 — Oy 8s 6 — 0, ie. O,y is a
continuous function of y. The boundedness of 0, follows immediately.

(iii) Obviously Theorems 1 and 2 in Beran (1977) hold. As a result, The
proof follows along the same line as the proof of Theorem 7 in Beran (1977). O

4.6 Simulation Studies

In this section, we report the results of a Monte Carlo study designed to demon-
strate the efficiency and robustness of the proposed MHD estimator defined in
(4.4). We considered MHD estimation in mixture models. Specifically, we con-
sidered the semiparametric models

{fon : foy =606(0,1) + (1 —6)n,0 < 0 < 1,7 is a density function},

where ¢(u, o) denotes the normal density function with mean y and standard
deviation . We examined the situation where = ¢(a, b), i.e., normal mixture
models. Let ®(u, o) denote the distribution function of ¢(u, o). For different
values of 8, a and b, we considered ten normal mixture models displayed in
Table 4.1. The value of a was chosen to provide the desired overlap between
components, as defined by Woodward et al. (1995).
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Tab. 4.1: Summary of mixture models under study.

@ | Scale parameter b | Overlap Mixture model
0.25 1 0.03 ]0.258(0,1) +0.750(3.6,1)  (I)
0.1 |0.259(0,1) +0.75®(2.32,1) (II)
0.5 1 0.03 | 0.5®(0,1) +0.59(3.76,1)  (III)
0.1 |0.59(0,1)+0.59(2.56,1) (IV)
0.25 V2 0.03 | 0.250(0,1) +0.750(4.46,2) (V)
0.1 | 0.250(0,1) 4 0.750(2.96,2) (VI)
0.5 V2 0.03 | 0.50(0,1) 4+ 0.50(4.52,2) (VII)
0.1 | 0.58(0,1) +0.5®(3.07,2) (VIII)
0.75 V2 0.03 | 0.75®(0,1) + 0.25®(4.20,2) (IX)
0.1 | 0.758(0,1) + 0.25®(2.57,2) (X)

1. Robustness

This subsection analyzes the robustness of the proposed MHD estimator
defined by (4.4) for the normal mixture models labeled I to X in Table 4.1. We
examined the resistance of the MHD estimator to a single outlying observation.
For this purpose, the o-IF given in Beran (1977) is a suitable measure of the
change in the estimator. Here we have used the adapted version of the a-IF
employed by Lu et al. (2003).

For the ten models in Table 4.1, we chose a sample of size n = 100 from
the mixture model fs,. To construct an estimator 7, of n, we chose another
sample of size ng = 40 from the distribution 7, i.e., the second component in
the mixture model. So our data structure is

iid
Kipoon Xo % 02(0,1) +(1-6)2(ab) (4.65)
Yi,..., Y,

~ ®(a,b).

Note that the outlying observation could come from either the X;’s or the Y;’s.
Thus, after drawing data sets of the specified sizes, 98 alternate versions of the
data were created by replacing the last observation in the sample X;’s, or the
last observation in the sample Y;’s by an integer = from —24 to 24. We have

done ten replications and calculated the average of the ten replications. The
contamination rate a is then 1/140 and the two o-IFs are given by

W((m Xi )?—11’ (Yi)?=°1) - W((X Jie1s (Y)yfl)
1/140

IF(z) = (4.66)

and
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W (X, (@ Yiiti) — W (X, (Vi)
1/140 '

where W could be any functional (estimator of 6) based on two data sets from

fo.n and n, respectively. In our case, W is functional T}, defined in (4.4). Next we

define following adaptive kernel density estimators (see, e.g., Silverman, 1986)
of fy, and 7, respectively, based on data X;,..., X, and Y3,..., Yy, of (4.65):

IFy(z) =

(4.67)

1 - .’L’—Xi

fu(z) = nBbn 2 K( Sh )y (4.68)
_ 1 < T —Y;
() = g ;Ko( 50 (4.69)

where K and K are two smooth density functions, bandwidths b, and b,, are
positive constants such that b, — 0 as n — oo and by, — 0 as ng — o0,
and S, = Sp(Xy,...,X,) and Spy = Spy(Y1,...,Ys,) are robust scale statistics
(these statistics generally estimate the scale parameters of respective distribu-
tions). We used the compact-supported Epanechnikov kernel function

K(z) = % (1 - 5172) I_1y(x) (4.70)
for kernels K and Kj in (4.68) and (4.69), respectively. The bandwidths b,
and by, in (4.68) and (4.69), respectively, were taken to be b, = n~'/% and
by = Mg /3 For scale statistics S, and Sne in (4.68) and (4.69), respectively,
we used the following robust scale estimator proposed by Rousseeuw and Croux
(1993),

Sy, = 1.1926 med; (med;(|X; — Xj)).

For the average of the ten replications, the o-IFs (4.66) and (4.67) under the
ten models in Table 4.1 are calculated, of which four are graphically displayed
in Figure 4.1. The o-IFs under other models are similar. From Figure 4.1,
we can see that as the outlier approaches £oo, the a-IF appears to converge
to a constant, i.e., lim [F(z) = lim IF(z) and lim IFy(z) = lim IFy(x).
T—0 T~—>—0Q =0 L—r~—=0Q

This phenomenon is partially explained by Theorem 4.8 (ii). In fact, the o-IFs
outside the interval [—7, 10] seem to be constant, while they take varying values
inside the interval [—7, 10]. Specifically, IFj has a lower value inside the interval
[—7,10] than outside the interval.

We also compared our MHD estimator with two MLEs. We examined

the two MLEs based on following likelihood functions combined with the data
(Xl, . ,Xn)I
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Fig. 4.1: The o-influence function of MHD estimator 8, with respect to single outlier,
with e - IF and — - IFj.
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L=T]lor(x) + (1 - o)n(xy)]
i=1
and

Lo = [][0(X:) + (1 = O)ma(X3)],

=1

where f = ¢(0,1) and 7, is the kernel density estimator of n defined by (4.69).
In other words, the likelihood L is constructed assuming that density functions
f and g are completely known, whereas L, is obtained by replacing 7 by its
estimator 7,. Thus, L and L, are rather naturally constructed for simulation
purposes. We define

eMLE = arg maxrL (471)
0€(0,1]
and N
Oyie = arg maxLy, (4.72)
0€(0,1]

as the MLEs of 8 based on L and L,, respectively. In our simulation, the data
were again generated from the models defined in Table 4.1. For each model,
samples of sizes n = 50 and ny = 20 were obtained from the corresponding
distributions. For instance, for Model I, samples of size n = 50 were obtained
from the mixture distribution 0.25®(0,1) + 0.75®(3.6,1), while a sample of
size ng = 20 was obtained from the distribution ®(3.6,1). We used (4.66)
to calculate a-IFs for 6, Ovie and (?MLE defined in (4.4), (4.71) and (4.72),
respectively. For the sake of consistency, we used the contamination rate o =
1/50 = 0.02 in (4.66). For a single sample, the o-IFs of the three estimators
for Model I, IV, VI and IX are displayed in Figure 4.2. Influence functions
under other models are similar. From Figure 4.2, we can see that all the a-
IF's of 6, Oyie and Oype are approximately symmetric about zero. When the
outlier is between -30 and 30, the three estimators are competitive and the a-
IFs take values between -3 and 3. As mentioned in the Figure 4.1, the o-IF
of 0, outside the interval [—7, 7] seems to be constant, while the a-IFs of fyg
and Q\MLE have explored at some point around +40 and they take values as
high as 41.27. Nevertheless, Ovre works better thanAHMLE in the sense that the
‘exploration’ point of Oy is higher than that of fyr and the a-IF of Oy
after the exploration point has smaller absolute value than that of fyr. This
behavior can be expected since Oy employs more information (i.e., knowing
n, or in other words ny = o0) than either 6, or @\MLE. Note that fypg is not
available in practice and the sole purpose of analyzing it here is to examine the
amount of loss in performance when 7 is unknown. Figure 4.2 shows that 6,
is more robust than either fy g or Oy in the sense of resistance to a single
outlying observation.
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The breakdown point is the smallest fraction of data that, when strategically
placed, can cause an estimator to give an arbitrarily bad answer. Tamura
and Boos (1986) gave breakdown results for MHD estimators of multivariate
location and covariance. Cutler and Cordero-Brafia (1996) investigated the
breakdown point of MHD estimators for mixture models. The models considered
in both of these papers are parametric models, while ours is a semiparametric
model (7 unknown). We again considered the normal mixture model fy, =
06(0,1) 4 (1—80)(u, b) with b = 1,+/2, 8 = 0.25,0.5,0.75, and varying p values.
Define the contamination model

(1 —a)(0¢(0,1) + (1 — 0)¢(n, b)) + alfio)

with contamination of the point mass function If;0; and contamination rate o.

Here we numerically compared the behavior of 4, and :9\MLE defined in (4.4) and
(4.72), respectively, as we vary the value of u. For given values of 6, u and b,
consider increasing « until 6, jumps to fit the contamination, and similarly for
Ove. We used sample sizes n = 50 and ng = 20 for one single sampling. To
increase a, we replaced the last observation Xsy from the mixture model with
a value 10, and then the second last, and so on. The values of p are yu = 0.5k,
k=1,2,...,14. If the estimator jumps to and stays at value 1 as « increases,
then the estimator is fitting the contamination. The reason for this is that we
are using a compact-supported kernel function (4.70) for density estimation.
The results for the models (8,b) = (0.25,1) and (0.5,/2) are shown in Figure
4.3. The breakdown points under other normal mixture models are similar.
From Figure 4.3 we can see that the breakdown point a for 6, seems to be
constant 0.5 for any p value between 0.5 and 7.0, while for Oyg it is around
0.25 for p values between 0.5 and 7.0. So the breakdown point for 6, is about
twice of that for Oyrg. In other wgrds, MHD estimator 6,, shows more robust
behavior than the MLE estimator fypg in our simulation.

2. Efficiency

In each of the distributional situations considered in Table 4.1, we obtained
estimates of the bias and mean squared error (MSE) as follows:

_— 1 X
Bias = — 10; —
ias Ns;(u n
and
. 1 X
MSE = FZ(N@ - /‘)27
S i=1

where N, is the number of replications, and [i; denotes an estimate of u for the
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Fig. 4.3: The smallest proportion « of contamination at which 8, (solid) and é\MLE
(dashed) fit the contamination, as a function of u, with the contamination
model (1 — a)(6(0, 1) + (1 - 0)g(1, b)) + aIr0)-

ith replication. Here u = 6 and i denotes either the proposed MHD estimator
6, or the MLEs Oyi1r and Oyig. We chose N; = 500, n = 50 and ng = 20 in our
simulation. Kernel estimators f, and 7, are the same as those employed in the
robustness study above. Simulation results are summarized in Table 4.2.
__ We found that the MHD estimator 6, performed competitively with the MLE
Omie for all ten models. Thus, it is not surprising that in many circumstances
the MHD estimator achieves about the same efficiency as that of the MLE under
semiparametric models. On the other hand, the MLE Oy g, which is based on
assuming 7 is known, showed the best performance among the three estimators
for all ten models. This behavior can be expected for the reason mentioned
in the robustness study and the fact that the lower bound of the asymptotic
variance is higher when 7 is unknown than when it is known. In Figure 4.4,
we have given the normal probability plots of the three estimators for Models
I and VI. Figure 4.4 demonstrates that the sampling distribution of 8, closely
approximates a normal curve for each model considered. We have observed very
similar plots for other models considered as well. N

We also investigated the relative biases and relative MSEs of 6,, to Oyg for
the contamination model (1 — &) fo,, + af{10) With fy, being one of the models
defined in Table 4.1. We again chose N, = 500, n = 50 and ng = 20 in our
simulation. We considered four contamination rates, 2%, 4%, 10% and 20%.
For the contamination rate 2%, we replaced the last observation X5y with a
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Tab. 4.2: Estimates of the biases and mean squared errors of 4, §MLE and OyLg with
no contamination.

Model Bias(f,) MSE(6,) Bias(@MLE) MSE(fmre) Bias(fvie) MSE(fvLr)

I 0.0210 0.0075 0.0564 0.0099 0.0002 0.0044
II 0.0375 0.0138 0.0809 0.0189 -0.0021 0.0059
II1 0.0392 0.0088 0.0359 0.0084 -0.0011 0.0060
v 0.0511 0.0119 0.0533 0.0115 -0.0013 0.0069
A" 0.0308 0.0084 0.0587 0.0115 0.0017 0.0046
VI 0.0430 0.0127 0.0705 0.0154 0.0026 0.0060
VII 0.0439 0.0087 0.0378 0.0081 0.0022 0.0054
VIII 0.0483 0.0117 0.0404 0.0098 -0.0009 0.0069
IX 0.0501 0.0078 0.0166 0.0044 -0.0001 0.0037
X 0.0556 0.0112 0.0182 0.0070 -0.0041 0.0060
g T + o ° ° °
+ © _| .
0 o © «®
< ooo g i u
o ; ]
5 +1’o..‘ S
o Q see o _: .
© T T T T T © T T T T T T
-3 -2 -1 1 3 -3 -2 -1 0 2 3
Normal Quantiles Normal Quantiles
(a) Model I (b) Model VI

Fig. 4.4: Normal probability plots of estimates 6y, (e), 5MLE (o) and OyLE (+).
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value 10, for the contamination rate 4% we replaced the last two observations
X9 and Xyo with a value 10, and so on. Simulation results are summarized
in Table 4.3. From Table 4.3 one can see that most of the relative values are
less than one with exceptions on models with 8§ = 0.75. The relative biases and
relative MSEs are especially small for models with § = 0.25. An interesting
observation is that the relative biases and relative MSEs are uniformly smaller
for higher contamination rate o than for lower «. In particular, the relative
MSEs for models VII and VIII are bigger than one when o = 2%, while those
are less than one when a = 4%. All the relative biases and relative MSEs
decrease when the contamination rate o increases. One could probably expect
that all the relative bias and relative MSE values would be close to or less than
one when the contamination rate increases. This is another indication that 6,
seems to show more robust behavior than Gy in our simulation.

4.7 An Example

In this section, we consider a specific semiparametric model, the symmetric
location model. Here we construct and investigate the MHD estimator (4.4)
and MPHD estimator (4.36) for the parameter of interest. We will show that
the MPHD estimator of the location turns out to be an adaptive estimator, and
the MHD estimator of the location is also efficient in the parametric sense.

Symmetric Location Model. Assume that the data X;,..., X, € R are

ii.d. and satisfy the model
X =0+c¢,

where the center 6 is the parameter to be estimated and the error ¢ has a
continuous density 7(-) that is symmetric about the origin.

Therefore, the semiparametric model under consideration is
{fon(z) =n(z —06):0 € R,n € H}, (4.73)
where
H={he L :h>0, h#0, h(—z) = h(z), h is continuous}.

Although the parameter space for 6 is the real line in this case, it is reasonable
to set © = [-C,C|] with C being a large positive number such that the true

parameter 0 € int(0). Such a C could be decided based on the observations
X;’s, e.g., one could let C = _max {|X;i|}. With this assumption, we will
i=1,2....,n

not lose any information about # and at the same time we can guarantee the
consistency of the MHD estimator in most cases.
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1. MPHD estimator of ¢

To construct an efficient MPHD estimator for the location parameter 6 in
models (4.73), we first look at the MHD functional 7} defined in (4.36). Note
that for any density function g,

f”@+¢ﬁ=%@mﬁ+w%+¢”( — 7)) + (m@+m) 9" (t — z))

and that the first term on the r.h.s. in the above expression is an even function
of z while the second is odd. Then

-0 = [ (@) -g w4 0) o 2 § [ (22+2) g 2(6-))
with equality if n*/%(z) = 1 (g*/%(t + z) + ¢*/*(t — z)). Thus we have

(92t - 2) + g*(t + @)

A~ =

77(75,9) =

and
1

Stg = ~2.(91/2(2t —z)+ 91/2(x)).

With ¢, = g /(29"/?), we have é;4(z) = ¢,(2t — z). The function H defined
in (4.37) becomes

H(t,g) = /¢g(2t — 2)g"(z)dx = /¢g(x)gl/2(2t —z)dz,

and thus
H(t, g) = 2/¢g(w)¢g(2t —z)dx

The fact that fgm — 2)g*?*(z)dz = fgl/2 g'/%(2t — z)dz gives

[ bm(et = 0)¢2(a)ds = [ @)y (2t - 5)da,
i.e., (4.41) holds. Hence we have

H(t7gn) - H(t g)
= [ 0.2t = 2)(6}*() = 9V*(a) o

+/ (Bgn (2t — 2) — ¢y(2t — 7)) g"*(z)da
= [on 000~ @)de+ [ byt -0) @)~ @)
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2/¢g(2t~—x)(gi/2( ) = 9%(2))dz + O(llgn’® = ¢"21| - |65 — 4ll).

Thus if ||@g, — ¢g|l — 0, then (4.38) holds with ¢y4(z) = 2¢4(2T71(g9) — z). For
models (4.73), g(z) = fon(z) = n(z — §), and then

Mg — M (p —

(0 — z) n'(z — 0)
— 20 — 1) = - _

Vo, = 2045, (20 — 7) 77260 — 1) n2(z — 9)’

< d}fem’ f1/2
1
8t = Stafe,n = —2—(771/2(2t - — 9) + 771/2(.7; - 6)),
1 (z —6)

89 =8 = ———
0 Sa,fom 2"”1/2 (.’,C - 0))

S e B /G
e gtz —0) 22 (z - 0)
Define M(f1, f2) = |l¢s — ¢pll for any density functions f; and f,. Then
it is easy to see that M is a metric and H is continuous in the sense that
H(tn, gn) — H(t,g) whenever t, — t and M(gn,g) — 0 as n — co. Suppose
that the Fisher information of 8,

= [0@)n(e)ds
is finite and nonzero. Then |4y, (> = Iy < co. Therefore, condition (iii) in
Theorem 4.5 holds. Further assume that {g, }nen is a sequence of estimators of

fo.n such that ||gs/* — 1’22|| £ 0 and M(g,, Jom) L 0 as n — oo and satisfies
(4.39), i.e., condition (iv) in Theorem 4.5 holds. Then the MPHD estimator, as
defined in (4.36), is

Ti(gn) = argmin||seg, — g%l = argminflgy/*(2t — z) — g;/*(a)l|

— 1/2 _ 1/2 — 1/2
arg max / 9n (2t — )g;/"(z)dz = argmax / St,g.(2) gy “(z)dz.

The preceding estimator is identical to the estimator proposed in Beran (1978).
In other words, Beran’s estimator is a special case of the MPHD estimator.

Since any function in H can have only one symmetric point, the models
defined in (4.73) is identifiable and thus T1(fs,,) = 0 is well defined and unique.
This fact is also shown in Lemma 1 of Beran (1978). Lemma 2 in Beran (1978)
proves that T1(g) is Hellinger continuous at g = fs,. Thus condition (i) in
Theorem 4.5 holds. Note that
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— < 8o, fyl? >=2 < &g, 89 >=Ip/2.

If —f]lf—;)g, %)3)3 and ﬂ% are all in Ly and continuous, then condition (ii) in Theorem
4.5 is easily satisﬁed. Combined with all above discussion, Theorem 4.5 holds.
As a result, n'/?(T,,(g,) — 6) is asymptotically normally distributed with mean
zero and variance I, '. Note that I, is the regular Fisher information for 6
when 7 is known. This means that the MPHD estimator Ti(g,) is an adaptive
estimator for the location parameter 6, provided one can construct an estimator
gn of fgn that satisfies condition (iv) in Theorem 4.5. Here we choose g, as the
smoothly truncated kernel density estimator proposed in Beran (1978). Under
certain conditions, Beran (1978) proved that || gl — 01 {72|| 5o (Theorem 1) and
M(gn, fo) — 0 w.p.1 (Lemma 4). The proof of Theorem 2 in Beran (1978) also
shows that (4.39) holds. Since our MPHD estimator for location is the same as
that in Beran (1978), a detailed construction and proofs are omitted here. A
detailed construction of a MHD estimator is given in the next subsection.

2. MHD estimator of 6

In this subsection, we construct and investigate a MHD estimator of the
location parameter 6. To avoid technical difficulties, here we only consider
the case that n has a finite support. Clearly, for every n € H, the model
{fin : t € O} is identifiable, t — s, = ftl,,/f is continuous in L, and (4.5) and
(4.6) hold for s; and for every ¢ € int(©); i.e., condition (ii) of Theorem 4.2
holds.

We define following kernel density estimator of fj , based on data X, ..., Xy:

fol@) = LZKl(x_X"), (4.74)

T nb, by,

i=1

where K is a differentiable density function and bandwidths {b,} is a sequence
of positive numbers such that b, — 0 as n — oco. We can also use an adaptive
kernel density estimator (see, e.g., Silverman, 1986), which uses S,b, instead
of b, with S, a robust scale statistic. Here we employed a non-adaptive kernel
density estimator for simplicity.

An estimator n, of 7 can be constructed based on the same data set X1,..., X,
or it could be based on other resources, such as another data set from the density
7. When no other resources than X;’s are available, we can split the X;’s into
two groups {X1,...,Xn} and {Xpn11, ..., Xn} with m = [n/2], the integer part
of n/2. Based on the second group, one can construct an initial estimator of 4
(for example the mean or median) and denote the corresponding estimator by
X,m. Then, based on the transformed values Z; = X; — Xpem, ¢ = 1,...,m,
one can construct an estimator 7, of n by using kernel or by any other suitable
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nonparametric density estimation technique. For simplicity, we suppose there
is another data set Yi,...,Y,, from the density function 7. Another important
reason why we chose this situation here is that for classical estimators of loca-
tion ( mean or median) it is not easy to utilize the information contained in
the Y;’s and the second data set will likely be ignored. While the sample mean
is an efficient but non-robust estimator and the sample median is a robust but
non-efficient estimator, we will use the MHD method to construct an efficient
and robust estimator based on the information contained in both the X;’s and
the Y;’s.

To construct a symmetric estimator of 7, one can generate pseudo data by
reflecting all the Y;’s around the origin. Based on these 2m values, Y7,..., Yom,
one can define following kernel density estimator of 7,

1 2m iL‘—Y;'

() = 2mb K2(

(4.75)

where K is a differentiable density function symmetric about origin and band-
widths {bn} is a sequence of positive numbers such that b, — 0 as m — 0.
Obviously n,, € H and fi,, (¢) = nm (2 —t) is an estimator of f;, for any ¢t € ©.
Denote s; = n'/?(z — t), 8; = 1771,{2(% —t) and §; = 23;. Now we can define the
MHD estimator 6, of the location @ as in (4.4). The next theorem establishes
the efficiency of 6,, in the parametric sense, i.e. the adaptivity.

Theorem 4.9. Suppose that n > 0 on its compact support Wy, K and K, in
(4.74) and (4.75), respectively, are differentiable and symmetric about origin,
K > 0 and K3 > 0 on their compact supports. Further suppose that m = O(n®)
with o > 0, b, and by, n (4.74) and (4.75), respectively, satisfy b, = O(n™")
and by, = O(m™) with 1/4 < w < 1/2, u < 1/4, au > 1/7, a(1 — 2u) > 1/2,
a(l +u) > 1, 3au—w >0 and a(l — 3u) —w > 0. Then

nl/2(0, — 0) < N(0,I;1),
where Iy = [(nD(z))*n~!(z)dz.

Remark 4.12. If we take u = 1/5, then a > 5/6. This shows that m could
converge to infinity at a lower rate compared to n. This means that one can use a
comparatively smaller sample of Y;’s to estimate the nonparametric component
7.

To prove Theorem 4.9, we need following two lemmas.

Lemma 4.2. Suppose that n > 0 on its compact support Wy, Ky in (4.74)
is differentiable and symmetric about origin and has compact support Wg, on
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which K1 > 0, and b, in (4.74) satisfies b, = O(n

[ (@) - 5,

1/2

o [

[30(2)]
sh(@)

$o(T)
s9()

(fulz )—fa,n(w))zd:c — Op(n~W/2-w) 4 p-(iw-1/2)),

&,

1/2(37))20335 = Op(n~") 4 p=1v),

Proof. Note that, with § = ne%m(x) and § = min Ki(z),
TeWn

[ () -

/ (f2(z) - fi/%(2)) dz = Op((nby)"

and

AN

<

fon( z))

zeWk,

(:1:))2dx

2

/(fn< z) - s
f(@) + fon()

/(fn( ) - fan( D o+ /(fn(w

/fn
5/fn()

For kernel density estimator f,, it is known that f,(z)—fo,(z) =
b2), and as a result

I

O(n1/2

/(fn( ) -

) — fom(@))?

dzx

1
fgn d$+—‘

fonla >) 7).

f0,n(x))

O (n~13p:1 4 24t

Op(n~

(1/2— w)+n—(4w 1/2))
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/ (fala) -

fu(@)dz — %iLéa(Xi)) = Op(n~Cu-1/2),

fon(®)) dz

%) with w > 0. Then,

L4 bd) = Op(n~U) 4 =),



121 [ b0(z) 1 o-30(X)
n / [/ Sg(.’l;‘)fn(m)dw - E;SO(XJ]

n W — z — X, WX, —
= (2—171,1/2) 12[ bi nn(i — 0;)) Kl( an )d.’II _n ((X— 6?)]
(l
= (2_1n1/2) /K1 7 ._99++bbtt dt—/Kl ?dt}

~ (@) %Z [ i) o) (X, ~ o)t

+(log M) (X; — 0 + &)b2t* /2] dt

Op (n'/282)
= OP n—-(Zw—l/Z)).

U

Lemma 4.3. Suppose that n > 0 on its compact support Wy, Ky in (4.75)
is differentiable and symmetric about origin and has compact support Wy, on

which Ky > 0, and by, in (4.75) satisfies by, = O(m™*) with u > 0.

sup [ (5i(e) = :(+)) " ds = Op(m~ 0= 71,

€O

/ (8:(z) — ét(l’))ngj = op(m~(F2))
and
/é‘}(w)st(m)dx =0
for anyt € © and v such that 0 < v-< min{u, 3 — 2u}.

Proof. Using a similar proof as of Lemma 4.2, we have

sup [(Gle) - sue)de = [if@)  n*(@)do

te®
= O( [(nm(z) — n(x))*dz)
= OP (mbm)_l + bﬁm)
= Op(m~ (-9 4 m~),

Then

Since sup m®|pi¥ (z) — n® (z)| =5 0 as m — oo and for any 0 < v < min{u, 1

2u} (Scailuster, 1969),
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/ 8¢(z) — 3¢(z))3dx

1 [0 @ - e )P
/ 2 (@) (1 () — 1 (@) + 52 (@) — 172 (@) (a) P

< / T @) ) ~ 1z >>2dx+—;- [ 03@) = 172(a) 20 @) o

_ m (u+2v) +O( —uf 1/2 nl/?(x))Qd:L.)
oplm (u+2v); -I—Op(m +m_5")

1
4
1
4

= Op m_(u+2v) .

Since n, and 7 are symmetric about origin, one has

[at@)sta)a =5 [ @@ @yde = o.

O

Proof of Theorem 4.9. Since 1/4 < w < 1/2, Lemma 4.2 yields that (4.7), (4.8)
and (4.9) hold for some r < 1 — w. By assumptions in the theorem, a1 —u) >
a(l—2u) > 1/2, dau > 4/7 > 1/2. Also, a(l —u)+a(u+2u) = a(l+2u) > 1,
a(l —u) +ofu+ (1 —4u)] = a(2 —4u) > 1, dou+ a(u + 2u) = Tou > 1 and
doutafu+(1—~4u)] = a(l+u) > 1, and thus there exists some r' > 1/2 such that
(4.10), ( 4.11) and (4.12) hold. Furthermore, 1 —w+oa(u+2u) = 3au—w+1>1
and 1 —w+afu+(1—4u)] = o1 —3u) —w+1 > 1, and thus there exists some
common 7 > 1/2 such that (iii) and (iv) of Theorem 4.2 hold. Now the result
follows from Theorem 4.2. O

4.8 Concluding Remarks

The Hellinger distance approach has been applied to variety of parametric mod-
els in statistical inference. This approach yields statistics that have good efhi-
ciency and robustness properties. In this chapter, we have shown that the
Hellinger distance approach can be extended successfully to semiparametric
models of general form as well. As in the parametric case, the resulting MHD
estimators are robust and have good asymptotic efficiency properties - in many
cases our estimators are fully efficient in the semiparametric sense. We have
supported our theoretical findings with extensive finite sample simulation stud-
ies. We have also introduced a new distance measure; namely, profile Hellinger
distance, and have constructed the corresponding optimal estimator. The pre-
ceding approach is in some sense analogous to the profile likelihood approach.
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The success of Hellinger distance and profile Hellinger distance approaches in
semiparametric models considered in this chapter should encourage its appli-
cation to other models and problems as well. We consider following problems,
among others, to be worthy candidates for application: hypothesis testing, re-
gression models and perhaps to quantal assay models. To best of our knowledge,
minimum distance procedures have not been studied in general semiparametric
models (4.1) in the literature.

A few words comparing the MHD estimator T,,( f,) and the MPHD estimator
T1(fn) defined by (4.4) and (4.36), respectively, would be appropriate here. In
practice, the exact determination of Ti(f,) may not be easily possible due to
computational difficulties in calculating Hellinger profiles, and one may only be
able to come up with some numerical approximations. This is the rationale
behind the establishment of Theorem 4.2, which to some degree eases off some
computational difficulties. In the definition (4.4), a single 7, value is used to
replace n(t, f,.) defined in (4.34) for all ¢ € ©. The above discussion thus appears
to suggest that the estimator at (4.4) may have a smaller asymptotic variance
than that of the estimator defined by (4.36). Indeed, from Theorems 4.2 and
4.5 and Remark 4.10, it follows that T,,(f,) is efficient in the parametric sense
with asymptotic variance I;*, while T}(f,) is efficient in the semiparametric
sense with a generally larger asymptotic variance I '. However, this does not
imply that T,(f,) is a better estimator than Ti(f,), since the theorems are
proved under different conditions. From a practical point of view, Tp,(f,) may
be preferred over T1(f,) when a good estimator of 7 is available, while T7(f,)
may be preferred over T,,(f,) when one can easily calculate the profiles.

An heuristic argument of describing robustness of T,,(f,) = T({ fen,. }teo, fn)
defined by (4.4) is as follows. From Theorem 4.2 it follows that the estimator
T.(f.) is a Hellinger continuous functional of f,, and n,. Thus, small Hellinger
distance perturbations in the underlying density will only result in small changes
in the MHD estimator T,,(f,). In fact, the MHD functional is optimally insensi-
tive (in a certain sense) to small changes in the density (Beran, 1977). Theorems
4.7 and 4.8 have confirmed above arguments theoretically. Furthermore, the nu-
merical results presented in Section 4.6 again displayed the behavior suggested
in our theoretical findings.
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