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ABSTRACT 

We examine the use of Hellinger distance method to obtain robust statistics 

in a variety of problems in statistical inference. Minimum Hellinger distance 

(MHD) estimators are proposed and investigated for the two-component mix­

ture model, a two-sample semiparametric model, and semiparametric models of 

general form. We demonstrate that the proposed MHD estimators have excel­

lent robustness and efficiency properties for semiparametric models. 

In Chapter 2, we consider the problem of estimating the mixture propor­

tion in the two-component mixture model. We propose a MHD estimator of 

the mixture proportion which is strongly consistent, asymptotically normally 

distributed, and asymptotically efficient at a special case. Furthermore, the 

proposed MHD estimator is robust, a property that is not generally shared by 

the classical estimators such as the maximum likelihood estimator (MLE). Using 

a Monte Carlo study, the proposed estimator is shown to have good robustness 

properties with respect to a single outlier. A real data set is also analyzed to 

estimate the proportion of male halibut. 

In Chapter 3, we consider a two-sample semiparametric model, which in­

cludes the two-sample location-scale model as a special case. We construct a 



MHD estimator of regression parameters and examine the asymptotic properties 

of the proposed estimator. We show good robustness properties of the proposed 

estimator through a simulation study. A real data set is analyzed to investigate 

the relationship between age and coronary disease status. 

In Chapter 4, we consider the semiparametric models of general form. We 

construct MHD and minimum profile Hellinger distance (MPHD) estimators 

of the parametric component. We investigate asymptotic properties of the 

proposed estimators such as consistency, asymptotic normality, efficiency and 

adaptivity. We show the robustness and good small sample properties of the 

proposed estimators using Monte Carlo studies. This chapter demonstrates 

that both MHD and MPHD estimators in semiparametric models are generally 

efficient and robust. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background of This Research 

Statistical inference is based on statistical models for data. During most of the 
history of the subject, these have been parametric: the mechanism generat­
ing the data could be identified by specifying a few real parameters. However, 
during the last thirty years nonparametric and semiparametric models have 
flourished. The main reason has of course been the rise of computing power 
permitting of such models to large data sets showing the inadequacy of para­
metric models. The deficiency in interpretability of nonparametric models was 
filled by the development of semiparametric models. The main focus of re­
search in this area has been the construction of such models and corresponding 
statistical procedures in response to particular types of data arising in vari­
ous disciplines, primarily in biostatistics and econometrics. The well-known 
semiparametric models include the Cox proportional hazard model in survival 
analysis, econometric index models, regression models and errors-in-variables 
models, among many others. In this thesis, I mainly focus on semiparametric 
models. 

Many authors have considered efficient and adaptive estimation in semipara­
metric models for the past twenty years; see, for example, Bickel (1982), Schick 
(1986) and Forrester et al. (2003) for most references. However, the robustness 
in semiparametric models has been paid little attention. The efficiency when 
the model has been appropriately chosen and the robustness when it has not are 
two fundamental ideas in parametric estimation. It was long thought that there 
was an inherent contradiction between the aims of achieving robustness and 
efficiency; i.e., a robust estimator could not be efficient and vice versa. Some of 
the practical deficiencies of maximum likelihood estimators (MLEs) are the lack 
of resistance to outliers and the general non-robustness with respect to model 
misspecification. The need for robust statistics in statistical inference has been 
widely recognized now. Many different approaches for finding robust statistics 
for parametric models have been proposed, see Huber (1980) and Maronna et 
al. (2007) for summaries of most important methods. Such methods have had 
varying degree of success in dealing with "bad" data, but they may suffer from 
a loss of efficiency if the postulated model distribution is the true one. This 
is, however, not the case with minimum Hellinger distance (MHD) estimators. 
Lindsay (1994) has shown that MLE and MHD estimators are members of a 
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larger class of efficient estimators with various second-order efficiency proper­
ties. MHD estimators have been shown to have excellent robustness properties 
in parametric models such as the resistance to outliers and robustness with re­
spect to model misspecification, see Beran (1977) and Donoho and Liu (1988). 
[In fact, Donoho and Liu (1988) have shown a much stronger result that all min­
imum distance estimators are automatically robust with respect to the stability 
of the quantity being estimated.] Efficiency combined with excellent robustness 
properties make MHD estimators appealing in practice. Furthermore, Hellinger 
distance has the special attraction that it is dimensionless. For a comparison 
between MHD estimators with the MLEs and the balance between robustness 
and efficiency of estimators see the articles of Lindsay (1994) and Karlis and 
Xekalaki (1998, 2001). The literature on MHD estimation has been dominated 
by MHD estimation in fully parametric models. There appears to be very 
little research has been done on application of the MHD methodology to semi-
parametric models. In this thesis, I extend the use of MHD approach to the 
semiparametric models to obtain robust efficient estimators. 

1.2 MHD Estimation 

Consider the situation where we observe a sequence of independent and identi­
cally distributed (i.i.d.) random variables (r.v.) Xi,X2,... ,Xn from a distri­
bution with density function / . If / belongs to a specified parametric family 
^ - * = { / g : ^ G © C R p } then 9 may be estimated using well-known likelihood 
procedures. However, assuming / belongs strictly to the family T ignores the 
possibility of departures from the parametric model. In practice, data contami­
nation, lack of information, and other factors beyond our control can make the 
parametric model incorrect for the data at hand. Instead, we assume that / is 
either in T or close to a member of J7, and use a minimum distance estimation 
procedure. We use the minimum Hellinger distance approach as our estimation 
procedure, in which the estimate is chosen to minimize the Hellinger distance 
between the parametric model and a nonprametric density estimator of / . In 
other words, the MHD estimator of 9 is defined as the value of the parame­
ter that minimizes the Hellinger distance between a density estimator and the 
parametric density. If we use 9 to denote the MHD estimator, then 9 is defined 

^ a r g m i n | | / 0
1 / 2 - / n

1 / 2 | | , 

where || • || denotes the L2-norm and fn is a nonparametric density estimator of 
/ based on the observations Xi, X2,..., Xn. 

It is interesting to note that this estimator 6 is related heuristically to the 
MLE of 9. For n sufficiently large, the MLE should be close to the true pa­
rameter value 9 and the density estimator fn should be close to fg. Finding 
the MLE amounts to maximizing f log ft(x)dFn(x) over t € ©, where Fn is the 
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empirical distribution function of the data. Arguing formally, we expect that 
this procedure is nearly the same as maximizing over t near 9 the quantity 

/ fn(x) log \£&] dx = 2 / fn(x) log [l + ( 4 T ^ 4 - l ) l dx 
J lJn{X)A J I \Jn' ( x ) / J 

= -nfll2-flJ2f-

Thus, it is not unreasonable to expect that the MHD estimator 9 is asymptoti­
cally efficient under fg. On the other hand, simple calculation shows that 

ll/ t
V2-/y2 | |2 < J \ft(x) - fn(x)\dx < 2\\fi/a-fn, 

so the topology induced on the space of probability measures by the Hellinger 
metric is the same as that induced by the Lx-norm. It is known that the L\-
norm induces a robust topology. Thus, the MHD estimator could be expected 
to be robust as well. In fact, various asymptotic and robustness properties of 
9 have been studied under some regularity conditions in Beran (1977), Stather 
(1981) and Tamura and Boos (1986), among others. 

Now assume that / belongs to a class of general semiparametric models of 
the form 

{fe,v:OeecW,r,eH}, (1.1) 

where 0 is a compact subset of W and H is an arbitrary set, typically of infinite 
dimension. The problem is to estimate the parameter 6 assuming that 77 as a 
nuisance -parameter. If H is finite dimensional, then (1.1) is a fully parametric 
model. If we still use 9 to denote the MHD estimator, then 

^ = a r g m m | | 4 / 2 - / y 2 | | . (1.2) 

For semiparametric models, i.e., H is infinite dimensional, we can define a MHD 
estimator 9n of 9 in a natural way as 

9n = axgmmWfW - fi<% 

where r]n is a suitable estimator of 77. 
The literature on MHD estimation has been dominated by MHD estimation 

in fully parametric models. Beran (1977) has shown that the MHD estimator 
9 defined in (1.2) has excellent robustness and efficiency. Tamura and Boos 
(1986) extended the work of Beran (1977) to a multivariate setting, while the 
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corresponding MHD estimation for count data can be found in Simpson (1987). 
Yang (1991) and Ying (1992) investigated MHD estimation for censored data. 
Sriram and Vidyashankar (2000) and Woo and Sriram (2006, 2007) have studied 
MHD estimates for branching processes and the mixture complexity in a finite 
mixture model, respectively. However, there seems to be relatively very few 
attempts to apply the MHD approach to semiparametric models. The Hellinger 
deviance test was introduced in Karlis and Xekalaki (1998) for testing a semi-
parametric Poisson mixture. The only notable work reported in the literature 
on MHD estimation in semiparametric models appears to be that of the work 
by Lu et al. (2003). The preceding authors have investigated a MHD estima­
tor for finite mixtures of Poisson regression models with the distribution of the 
covariate variable unknown. 

1.3 Summary of Results 

In Chapter 2, we consider the problem of estimating the mixture proportion in 
the two-component mixture model 6F + (1 — 9)G, where F and G are two differ­
ent distribution functions. Specifically, suppose we observe three independent 
samples 

X\,..., Xno ~ F 

Y1,...,Yni
 1&G 

Zh...,Zn2 'u&6F + (l-d)G 

with density functions / , g and hg = Of + (1 — 9)g, respectively. Here 6 is 
called the mixture proportion, where 9 e [0,1]. The problem is to estimate the 
mixture parameter 9, treating / and g as nuisance parameters. We propose to 
estimate 6 using the MHD approach. Let n = n0 + ri\ + n2. We define a MHD 
estimator 9n of 6 as follows: 

9n = arg min \\(tf + (1 - t)g)x'2 - P'% 
te[o,i] 

where / , 'g and h are kernel-type density estimators of / , g and hg, respectively, 
based on the samples X^s, l^'s and Z^s, respectively. In other words, we 
minimize the Hellinger distance between a totally nonparametric kernel density 
estimator and a parameterized convolution of estimated component densities. 

In Theorem 2.1 we show the existence and the continuity of 9n as a func­
tional. Theorem 2.2 shows that 6n is consistent, while the asymptotic distri­
bution of 6n is established in Theorem 2.4 which is a consequence of Theorem 
2.3. To see the performance of 6n, in Section 2.3 we obtain a MLE of 9 with the 
asymptotic distribution established in Theorem 2.5. The proposed MHD esti­
mator is compared with the MLE and asymptotic efficiency properties of 9n are 
examined in Section 2.4. This is done by constructing a Cramer-Rao type lower 
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bound in Theorem 2.6 for nonparametric estimators of the mixture proportion. 
The full efficiency is achieved by the MHD estimator 6n at a special case as 
shown in Corollary 2.1, which is a simple consequence of Theorems 2.4 and 2.6. 
The robustness properties of our proposed MHD estimator 0n are studied using 
a Monte Carlo study in Section 2.5. Theoretical results on the robustness of 
MHD estimator seem difficult in the present context. We study four different 
mixtures of normal distributions in the simulation. The a-influence functions 
(IFs) demonstrate that the MHD estimator is very robust in the presence of 
outliers, a property that is not generally possessed by the classical estimators 
such as the MLEs. When compared with two MLEs constructed in Section 2.5, 
our proposed MHD estimator dn shows good efficiency properties. In Section 
2.6, a real data set is analyzed to estimate the proportion of male halibut. 

In Chapter 3, we consider a two-sample semiparametric model, where the 
log ratio of the two underlying density functions is of a regression model, i.e., 
hg(x) = g(x)exp[a + r(x)(3] with 0 = (a, (5). This setup includes the two-
sample location-scale model as a special case. This model is also closely related 
to the logistic regression model. We construct a MHD estimator of regression 
parameters in a quite nature way and examine the asymptotic properties of the 
proposed estimator. The existence and continuity of the proposed MHD esti­
mator are shown in Theorem 3.1. Theorem 3.2 shows that the proposed MHD 
estimator is consistent for both finite and infinite support cases of g. Due to 
the fact that techniques developed in Chapter 2 could be used to derive the 
asymptotic distribution of the proposed MHD estimator for the finite support 
case, we concentrate on developing the asymptotic distribution of the proposed 
MHD estimator for the infinite support case of g. Theorem 3.4 establishes the 
asymptotic normality of the proposed MHD estimator, which is a consequence 
of Theorem 3.3. Similar techniques as in Stather (1981) are used to prove the 
theorems. However, we extend his results developed for parametric models to 
semiparametric models. For the case that g has infinite support, we need to 
prove several technical results to control the effect of the tails. These require 
some conditions on the underlying densities g and hg, which are satisfied by a 
variety of families, such as the location-scale families as shown in Sections 3.2 
and 3.3. To see the performance of the proposed MHD estimator, in Section 3.4 
we compare the proposed MHD estimator with the semiparametric likelihood 
estimator developed in Zhang (2000), assuming that g and hg are normal distri­
butions N(0,1) and N(/i, 1), respectively. We observe that the proposed MHD 
estimator has comparative asymptotic variance when compared with the semi­
parametric likelihood estimator, especially when /i is close to zero; see Remark 
3.9. To see the small sample properties, a Monte Carlo simulation is conducted. 
While the estimated bias and MSE of the proposed MHD estimator of a are 
higher than those of the semiparametric likelihood estimator of a, our proposed 
MHD estimator of (5 performs uniformly better than the semiparametric like­
lihood estimator of (3 in the sense of having smaller estimated bias and MSE. 
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Note that /5 plays a more important role than a in most applications. To inves­
tigate the robustness, the a-IFs are calculated for a single outlying observation. 
The a-IFs of the proposed MHD estimators are bounded while those of the 
semiparametric likelihood estimator seem to increases dramatically in absolute 
value when the outlying observation moves to the left from -1. This shows that 
our proposed MHD estimator has good robustness properties. A real data set 
is also analyzed in Section 3.5 to investigate the relationship between age and 
coronary disease status. 

In Chapter 4, we consider the semiparametric models of general form: {fe,v '• 
6 G @ QW,r) EH}, where 0 is a compact subset of W and H is an arbitrary 
set of infinite dimension. The problem is to estimate the parameter 9 assum­
ing that rj as a nuisance parameter. Theorem 4.1 generalizes similar result of 
Beran (1977) on the efficiency of MHD estimator of a fully parametric model. 
For semiparametric models, a MHD estimator is constructed using a plug-in 
rule. This estimator is shown to be adaptive under certain assumptions, see 
Theorem 4.2. An efficient (in the semiparametric sense) MHD estimator is also 
investigated in Section 4.3. This estimator was studied by Huang (1982), who 
has left the consistency of the estimator an open problem. The consistency 
is established in Theorem 4.3, solving the preceding problem. We construct a 
minimum profile Hellinger distance (MPHD) estimator in Section 4.4 and it is 
shown to be efficient under certain conditions, see Theorems 4.5 and 4.6 and 
Remark 4.10. It is also shown in Section 4.5 that the proposed MHD esti­
mator of Theorem 4.2 is still asymptotically normally distributed even though 
the underlying density function is not strictly from the semiparametric model 
described above. In some sense, this shows the robustness of the MHD esti­
mator proposed in Section 4.2. A special form of contamination is considered 
and it also shows that the MHD estimator proposed in Section 4.2 is robust. 
A Monte Carlo study is designed to demonstrate the efficiency and robustness 
of the MHD estimator proposed in Section 4.2. In the simulation study, we 
consider the mixture of two normal distributions and the mixture proportion is 
considered as the parameter of interest. For comparison purposes, two MLEs 
of the mixture proportion are also constructed. When compared with the two 
MLEs, the proposed MHD estimator is observed to be more robust. In fact, 
the a-lF of the MHD estimator, with respect to a single outlying observation, 
is almost a constant valued around zero, while those of the two MLEs have big 
jumps when the outlying observation is further away from zero. This means 
that the MHD estimator is not much affected by a single outlying observation, 
while the MLEs are affected by the outlying observation. We also show that 
the breakdown point for the MHD estimator is about 0.5 (the best possible 
value), while that for one of the MLEs is around 0.25. In other words, MHD 
estimator shows more robust behavior than the MLEs analyzed. Furthermore, 
the MHD estimator has competitive efficiency when compared with the MLEs 
in the sense of having smaller estimated bias and MSE, under the true model 
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(without contamination). Under the contaminated model, the MHD estimator 
performs generally better than the MLEs. When the contamination rate is high, 
the MHD estimator has much smaller estimated bias and MSE than the MLEs. 
As an example, a symmetric location model is investigated in Section 4.7 and 
adaptive MHD and MPHD estimators are constructed for this model. 

In summary, we show that the MHD approach in parametric model can be 
extended successfully to semiparametric models, either for particular models or 
for a general model. The proposed MHD estimators in semiparametric models 
have been shown to have good efficiency and robustness properties. The suc­
cess of this approach in the problems considered of this thesis could encourage 
its further development in many other problems. We consider the following 
problems, among others, to be worthy candidates for future study: theoretical 
development of the robustness, application to semiparametric regression models, 
robust hypothesis testing, and classification. 
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CHAPTER TWO: MHD ESTIMATION IN THE 
TWO-COMPONENT MIXTURE MODEL 

2.1 Introduction 

Let F and G be two probability distributions and 0 be a positive real number 
between 0 and 1. Then 9F + (1 — 9)G defines a two-component mixture distri­
bution with mixture weights 9 and (1 — 0). When component distributions F 
and G are known to have some specific forms, then 9F + (1 — 9)G is called a 
parametric mixture. On the other hand, if F and G are completely unspecified 
but are different distributions then 9F + (1 — ff)G is known as a nonparametric 
mixture. A great deal of work has been done in parametric mixture models; see, 
e.g., Titterington et al. (1985), Lindsay (1995), Chen (1995, 1998), McLachlan 
and Peel (2000), and Scott (2001), among others for examples, applications and 
theory. The estimation problem of the mixture parameter 0 in a nonparamet­
ric mixture model, however, is faced with the lack of identifiability of 0. One 
way of overcoming this difficulty is to take training samples from each compo­
nent distribution as in Hall (1981). More specifically, suppose we observe three 
independent samples 

Yu...,Yni td
G (2.1) 

Zu...,Zn2 ^ 9F + (1-9)G, 

then the problem is to estimate the mixture parameter 0, treating F and G as 
nuisance parameters. For model (2.1), Hall (1981, 1983) described minimum dis­
tance estimators based on empirical distribution functions, Titterington (1983) 
considered minimum distance estimators based on density estimators, and Hall 
and Titterington (1984) constructed a sequence of multinomial approximations 
and related MLE estimators of 0 by grouping data for a similar model to (2.1). 
Qin (1999) developed a confidence interval for 9 using an empirical likelihood 
ratio based statistic assuming the log-likelihood ratio of densities of F and G 
is linear in observations. Hosmer (1973) used the model (2.1) to estimate the 
proportions of male and female fish in a population of halibut from some univari­
ate data provided by International Halibut Commission in Seattle, Washington. 
More applications can be found in the papers of the specific issue of Communi-
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cations in Statistics on Remote Sensing (1976). 
Robust methods such as M-estimation are not easily adapted for nonpara-

metric mixtures (Cutler and Cordero-Brafia, 1996). Minimum distance estima­
tion is an alternative approach that produces robust estimators. The model (2.1) 
has not been fully investigated using the preceding approach. In this chapter, 
we propose to estimate the mixture parameter 9 using the MHD approach. The 
Hellinger distance has the special attraction that it is dimensionless. Further­
more, MHD estimators have been shown to have excellent robustness properties 
such as resistance to outliers and robustness with respect to model misspecifica-
tion (Beran, 1977 and Donoho and Liu, 1988). Many robust estimators achieve 
robustness at some cost in first-order efficiency. This is, however, not the case 
with MHD estimators. Lindsay (1994) has shown that MLE and MHD estima­
tors are members of a larger class of efficient estimators with various robustness 
and second-order efficiency properties. 

The setup of Beran (1977) assumes that the observed random variables are 
i.i.d. with some unknown density g which is close in the Hellinger metric to 
a member of some specified parametric class {/# : 9 € [0,1]}. The model at 
(2.1) is not parametric, however. Thus, the results in this chapter exhibit an 
extension of Beran's (1977) MHD technique to a semiparametric model. Fur­
thermore, the combined data set of (2.1), Xiy..., Xno, Yi , . . . , Ynil Zi,..., Zn2, 
is a collection of independent observations, but not necessarily identically dis­
tributed. This feature also adds a degree of complexity to the development of 
asymptotic theoretical results of the proposed MHD estimator of 9. 

There have been very few attempts to estimate the parameters in a mix­
ture problem with the MHD method or similar minimum distance approaches. 
The only work on MHD estimation for mixtures appears to be that of Wood­
ward et al. (1995), Cordero-Brafia (1994), Cutler and Cordero-Brafia (1996) 
and Lu et al. (2003). However, their results are for the case that F and G 
are fully parametric models. More specifically, Woodward et al. (1995) have 
concentrated on estimating the mixture proportions (7Ti,... ,Ttk-\) m a m % 

parametric model of the form £ TTif(x\<j>i), whereas Cordero-Brafia (1994) and 
i—l 

Cutler and Cordero-Brafia (1996) have assumed that all the mixture parame­
ters (IT i,..., 7Tfc_i, (f>i,...,(j)k) are of interest, extending the work of Woodward 
et al. (1995), where / ( - | 0 i ) , . . . , f('\<f>k) a r e density functions on the real line 
and (pi E $ C Rs, i — 1 , . . . , k. Lu et al. (2003) have examined MHD estimation 
for finite mixtures of Poisson regression models. The present work thus shows 
a further extension of above papers to the case where the distributions F and 
G in model (2.1) are completely unknown. 

MHD estimation has been applied in many other settings. For example, 
Tamura and Boos (1986) extended the work of Beran (1977) to a multivariate 
setting, while the corresponding MHD estimation for count data can be found 
in Simpson (1987). Yang (1991) and Ying (1992) investigated MHD estimation 
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for censored data. Sriram and Vidyashankar (2000) and Woo and Srirani (2006, 
2007) have studied MHD estimators for branching processes and the mixture 
complexity in a finite mixture model, respectively. 

In Section 2.2, our proposed MHD estimator of 0 is given. Our approach 
is very natural. We minimize the Hellinger distance between a totally non-
parametric adaptive kernel density estimator and a parameterized convolution 
of estimated component densities. We study asymptotic theoretical properties 
such as strong consistency and asymptotic normality of the proposed estimator. 
In Section 2.3, we obtain a MLE of 8 using the approach of Hall and Tittering-
ton (1984). Asymptotic efficiency properties of the proposed MHD estimator 
are examined in Section 2.4. This is done by constructing a Cramer-Rao type 
lower bound for nonparametric estimators of the mixture proportion. In Section 
2.5, robustness properties of the proposed MHD estimator are studied using a 
Monte Carlo study. It is observed that the MHD estimator is very robust in the 
presence of outliers. Examples and concluding remarks are given in Sections 2.6 
and 2.7, respectively. All the proofs are deferred to Section 2.8. 

2.2 MHD Estimator of Mixture Proportion 

In this section, we assume the setup of model (2.1). In order to employ the 
MHD technique of Beran (1977), we first define a parametric family of densities 

he(x) = 9f{x) + (1 - e)g(x) (2.2) 

where / and g denote two different densities of F and G, respectively; i.e., we 
suppose that J \f(x) — g(x)\dx > 0. Next we define following adaptive kernel 
density estimators (see, e.g., Scott, 1992) of / and g, respectively, based on data 
X 1 , . . . , X n o a n d y 1 , . . . , y m o f ( 2 . 1 ) : 

/ (I) = ;=S4-5>(!T^). (2'3) 

where K0 and K\ are two smooth density functions, bandwidths bno and bni 

are positive constants such that bni —> 0 as rii —> oo, i = 0,1, and Sno = 
Sno(Xx,...,Xno) and Sni = Sni(Yx,..., Yni) are robust scale statistics (these 
statistics generally estimate the scale parameters of respective distributions). 
In a realistic situation, the bandwidths usually take the form bni = n~r with 
0 < r < 1 for i = 0,1. Estimators (2.3) and (2.4) are similar to the ones used 
in Beran (1977) for density estimation. For any t G [0,1] define 
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ht(x) = tf(x) + (l~t)g(x). (2.5) 

Note that hg is a parametric density function with the only unknown parameter 
being 0. Furthermore, 9 is identifiable from (2.5) since 9\ ^ 92 implies hg1 ^ 
hg2 (Titterington et al. (1985, Section 3.1)). Next we define a kernel density 
estimator based on the Zj's as follows: 

where again K2 is a smooth density function, bandwidth bn2 is a positive con­
stant such that bn2 —>• 0 as n2 —> oo, and Sn2 = Sn2(Zi,..., Zn2) is a robust 
scale statistic. 

Let 7i be the set of all densities w.r.t. Lebesgue measure on the real line. 
Following Beran (1977), we first define a MHD functional T0 : H —• [0,1] such 
that 

W ) = argmin \\ h]/2 - cf'2 \\, (2.7) 
te[o,i] 

where || • || denotes the L2-norm. When ht is known, the MHD estimator of 
TQ{4>) is defined as To(0), where $ is a nonparametric density estimator of (p. 
Since ht is unknown in our model (2.1), we propose to replace ht with ht, the 
parameterized convolution of estimated component densities defined by (2.5). 
Then a MHD estimator of TQ((f) is defined as functional T{cf) at <$>, where 

TU) = arg min II h\/2 - ^ 2 II . (2.8) 
te[o,i] 

Since the parameter space [0,1] is compact, T{4>) is attained. However, T(<p) 
may be multiple valued and so we shall use the notation T(0) to indicate any 
one of the possible values chosen arbitrarily (cf., Beran, 1977). In our situation, 
(f) = hg and <fi — h. Therefore, our proposed MHD estimator of 9 is defined as 

9n = T(h), (2.9) 

where h is given by (2.6) and where n = n0 + n\ + n2 is the total sample size. 
That is, 9n is the minimizer of the Hellinger distance between Of + (1 — 0)g and 
h with / and 'g defined by (2.3) and (2.4), respectively. We are interested in 
both the asymptotic and local properties of 9n. So we let n —> oo and at the 
same time suppose that rii/n —• pi for some positive constants p, as n —• oo, 
i = 0,1,2. 

We now discuss asymptotic properties of the proposed MHD estimator. 
First, we give some results on the existence, consistency and asymptotic unique-
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ness of the MHD estimator of 9. The next theorem, which gives conditions for 
the existence of 9n and the continuity of the functionals is analogous to Theorem 
1 of Beran (1977). 

Theorem 2 .1. Suppose that T0 and T are defined by (2.7) and (2.8), respec­
tively. Then, 

(i) For every 4> G H, there exists T{4>) G [0,1] satisfying (2.8). 
(ii) IfT0((f)) is unique, then T(4>n) —> To(<f>) for any sequences {<fin}neN and 

{ht]nem such that || </>n — 01/2 ||—> 0 and sup || ht — ht ||—>• 0 as n —•» oo. 
tG[0,l] 

(Hi) T0(ht) = t uniquely for any t € [0,1], where ht{x) = tf(x) + (l — t)g(x). 

Remark 2.1. Beran (1977) gave conditions for the Hellinger consistency of 
the density estimator. Devroye and Wagner (1979) have proved the L\ conver­
gence of such estimators under weaker conditions. In view of the equivalence of 
the Hellinger and L\ topologies (see, Devroye and Gyorfi, 1985), the Hellinger 

consistency of <pn is equivalent to J \<f>n — <f>\dx —• 0 as n —» oo. 

With further assumptions on the bandwidths and kernels in (2.3), (2.4) and 
(2.6), consistency of the MHD estimator 9n of 9 follows from the continuity of 
the functionals in the Hellinger topology. This result is given next. We first list 
the assumptions made in the theorems of this section: 

CI. The kernels Ko, K\ and K2 in (2.3), (2.4) and (2.6), respectively, are 
absolutely continuous on their compact support, and the first derivatives KQ , 
K{ ' and K\ are bounded. 

C2. / and g are uniformly continuous on their support. 
C3. The positive constants bno, bni, bn2 in (2.3), (2.4) and (2.6), respectively, 

satisfy bni —> 0 and n/ bni —> oo as n» —> oo, i — 0,1, 2. 
P 

C4. Sni —> Si, as rii —> oo, i = 0,1,2. 
C5. The sequences of densities {/i}neiN and {ht}ne^ converge to he and ht, 

respectively, in the sense that || hl/2 — hJ ||—+ 0 and supte[0]1] \\ht'—ht' ||—> 0 

a s n - > oo, where 9 G (0,1) and ht = tf + (1 — tyg with f and 'g converging to 
/ and g uniformly. 

C6. / and g have the same compact support, say W, on which ht(x) > 0 
for any t € [0,1]; and / , g, f, 'g and h are piecewise continuous. 

C7. K0, K\ and Ki are symmetric about zero and have compact support, 
and the second derivatives KQ ', K[ and K.\ exist and are bounded. 

C8. SQ = -§ghj has compact support W on which it is continuous, where 
ho is given by (2.2). 

C9. / , g > 0 on W and the second derivatives f^ and g^ exist and are 
bounded. 

C10. bn. -> 0, n/2bn. —> oo and n/ b\. —> 0 as n» —» oo, i = 0,1, 2. 
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Cll . There exist positive finite constants 5o, S\ and S2 depending on / and 
g such that n/ (Sni — Si) = 0p( l ) as n —*• 00, i = 0,1,2. 

Theorem 2.2. Suppose that rii/n —> p; /or some positive constants pi as n —»• 
oo, i = 0,1,2. Further suppose that assumptions CI to C4 hold with ht, h and 
9n given by (2.5), (2.6) and (2.9) respectively. Then C5 holds and it follows 
that 9n —• 9 as n —> 00. 

Remark 2.2. If Sni satisfies a stronger condition that Sni —> Si as n —> 00, 
00 

w.p.l, and Yl e xP ( ~~ lniKi) < °° f° r a n y 7 > 0 and i = 0,1,2, then the 

convergence in probability result given in Theorem 2.2 above can be changed 
to almost surely. For example, if one takes bni — [^r1]1 /2 for some 0 < e < 1, 

00 

then "52 exp ( — 7^6^ ) < 00 for any 7 > 0 and C3 is also satisfied. 
r » » = l 

We now state results on the asymptotic distribution of the proposed MHD 
estimator 9n. The next theorem gives an expression for the difference 9n — 9, 
which is fundamental for further developments of theory. 

Theorem 2.3. Suppose that densities ht defined in (2.5) and h in ( 2.6) satisfy 
assumptions C5 and C6. Define functional T({ht}te[0ti},<p) = arg min || ht' — 

££[0,1J 

01/2 || and suppose that the functional T is continuous at ({/H}te[o,rj) hg) in the 
sense of Theorem 2.1 (ii). Then, it follows that 

9n-9 = T({ht}temih) -T({ht}te[0A],he) 

= { [ / 2 ( ( 9 / i / a - % ) 3 / a ^ / a < f a r 1 + 7 n } x 

+ J (0f + (i-ew/*{f f)n 

I 
(6f + (l-d)g)W 
\(l + W-g) + g {d_g)P/,dx 

+«n J {f- ffdx + (3n J{g - gfdx], 

where {an}, {(5n} and {7n} are bounded sequences of real numbers and 7n —* 0 

Under further conditions on the parametric family he at (2.2) and the kernels, 
the next theorem shows that 9n = T(h) is asymptotically normally distributed 
about 9 = T0(he). 
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Theorem 2.4. Suppose that rii/n —> pi for some positive constants pi as n —> 
oo, i — 0,1,2. Suppose that ht, h and 6n given by (2.5), (2.6) and (2.9), 
respectively, satisfy assumptions C7 to Cll. Then the asymptotic distribution 
of nl/2{9n — 9) is N(0,a2), where a2 is defined by 

, „[aiogft.(z,)]|-ng!Var[3iogMx,) Ozf f M 8hgW)] 
I L 09 J J I p0

 l 38 J pi L <90 J 

Remark 2.3. The regularity conditions assumed in Theorems 2.1 to 2.4 above 
are typical in MHD estimation context; see, e.g., Beran (1977) and Cordero-
Brafia (1994). Prom Theorem 2.2 we observe that the proposed MHD estimator 
of 9 is consistent without the compact support requirement on the densities / 
and g. However, this assumption is critical for the asymptotic normality re­
sults established in Theorem 2.4. Therefore, in order to prove the asymptotic 
normality for the infinite support case of / and g, we must employ a different 
technique. Note that the asymptotic normality of an estimator is related to the 
differentiability of the functional To defined at (2.7). One way to achieve such 
a goal is to concentrate on the Hadamard (or compact) differentiability of the 
functional To; see Fernholz (1983). It is known that Hadamard differentiability 
will yield the asymptotic normality. Hadamard differentiability is weaker than 
Frechet differentiability that we rarely have for functionals. Fernholz (1983) 
has built up the Hadamard differentiability of three important estimators, M-, 
L- and R-estimators, and hence has obtained their asymptotic normality. The 
norm chosen on the domain of the functional is a crucial factor for the dif­
ferentiability, and moreover, it is desirable to have a topology which suggests 
"robustness" according to Hampel (1971). The weak topology, uniform topol­
ogy and the topology induced by the Hellinger metric are all "robust". Fernholz 
(1983) adopted the uniform topology, which is stronger than the weak topology 
but weaker than the topology induced by the Hellinger metric. Thus, what we 
may need to do is to set up the Hadamard differentiability under the Hellinger 
norm. Another way to obtain the asymptotic normality for the infinite sup­
port case is to consider the technique used in Stather (1981). We apply similar 
technique in Chapter 3 for a two-sample semiparametric model. 

2.3 MLE of Mixture Proportion 

In this section, we construct a MLE of the mixture proportion 9 of the model 
(2.1). We follow the approach of Hall and Titterington (1984), where they 
have obtained a MLE for Hosmer's (1973) model M2. Our model (2.1) with 
the assumptions made in this chapter is similar to the model Ml described in 

14 



Hosmer (1973), and there is no formal development of MLEs available for the 
mixture parameter 6 under model Ml in the literature. In Hosmer (1973), three 
models were investigated. The case when there are data only from the mixed 
distribution is referred to as the MO model. The data from the MO model is 
called mixed data. A sample where the component of origin of each observa­
tion is known with certainty is called known data. Two types of known data 
are possible according to whether or not the known data contains information 
about the mixture proportion. A sample which contains both mixed and known 
data and where the known data contains no information about the mixture 
proportion is called the Ml model. An M2 model refers to the case where the 
sample contains both mixed and known data, and information about the mix­
ture proportion is contained in the relative number of observations from the two 
components in the known data. In model (2.1), we do not assume any infor­
mation contained in the known data. It is appropriate and safe to use model 
(2.1) for the following three cases: (1) the relative number of observations from 
the two components contains no information about the mixture proportion; (2) 
we are not sure whether or not it contains any information and (3) we do not 
know in which way it contains the information. In this sense, model (2.1) is 
more robust than the model considered in Hall and Titterington (1984). 

As in Hall and Titterington (1984), we first partition the support of hg into 
L regions R\,R2,...,RL SO that each observation may be assigned uniquely to 
a single region. Define 

«o/ = / f(x)dx, 
jRl 

an = I g(x)dx, 
JRi 

ot2i = I he(x)dx = 6a0i + (1 - 6)alh 
JRi 

where / , g and hg denote densities of F, G and 9F + (1 — 9)G of model (2.1). 
L 

Note that Ylau = 1> * = 0> -*-• Let nu denote the number out of the rij which 
i=i 

come from region Ri, i — 0,1, 2. The likelihood from the data sets is then 
proportional to 

L 

n(a«)noi(a«)nu(^oi+(i - OWY*. (2.ii) 
1=1 

Let 9UL denote the MLE which maximizes (2.11). Unlike in Hall and Tittering­
ton (1984), an explicit solution which maximizes the likelihood function (2.11) 
is not easily available. Instead, we obtain a MLE from its implicit form. Tak­
ing the derivatives of the log likelihood and equating them to zero yields the 
following estimating system : 
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®oi «OL 9nLa0i + (1 - OnLjan 9nLa0L + (1 - OnL)a1L 

(2.12) 
w» w1L w a(l - 9nL) w2x,(l - flnL) = 

«1/ «1L ^nLttOi + (1 - QnLJO-ll 9nLa0L + (1 ~ 9nL)aiL 

(2.13) 

V M^-g»)^ = 0 (2.i4) —^9nLaQi + (1 - 6>nL)an / 

with constraints 

£)a« = 1, i = 0,1 

«ii > 0, i = 0,1, I = 1,...,L. 
(2.15) 

The consistency and asymptotic normality of 9ni obtained via equations (2.12)-
(2.15) are established in the next theorem. 

Theorem 2.5. Suppose that 9 ̂  0,1 and that rii/n —> Pi as n —> oo, i = 0,1, 2. 
There exist consistent MLEs of 9. Furthermore, if po/pi — 9/(1 — 9) and 
\/n(ni/n — pi) —>• 0, i = 0,1,2, then the consistent MLE 9nL is asymptotically 
normally distributed with mean 9 and variance AL , where 

* - i t(l^)!A(». + (i^)!Aa, + (i^)!AM], (216) 
A(2) p0 pi p2 

L L , L 

wtth A<°> = Z^txoi ~ (E^oi), A« = ES«« - E S a « ) a ^ A ( 2 ) = 

i 2 

E ^ — 1. 

1=1 a 1=1 1=1 2l 1=1 

Ua21 

Remark 2.4. As stated above, we assume that the known data (learning 
samples) may not contain information about A since our model is similar to 
model Ml of Hosmer (1973). In Theorem 2.5 it is shown that the MLE 9nL 

is asymptotically normal when the learning samples contain some information 
about 9, i.e., when po/pi = 9/(1 — 9) holds. For the case that po/Pi ^ 9/(1 — 9) 
the method used to prove Theorem 2.5 does not seem to work very well and it 
needs further study. On the other hand, the MHD estimator 9n defined in (2.9) 
is asymptotically normal whether po/pi — 9/(1 — 9) holds or not, see Theorem 
2.4 above. 

Remark 2.5. The MLE obtained using the likelihood function (2.11) is a 
function of L, the number of regions. In other words, we have a sequence of 
MLEs depending on L. In fact, the likelihood (2.11) is not the true likelihood 
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of the original data set given in (2.1). If sup {ai(M)«:u} ~> 0 as L —•* oo, 
/G{1,2,...,L} 

then for large L, (2.11) is a good approximation to the true likelihood of data 
in (2.1). As L increases, the number of unknown parameters a^'s (i = 0,1) 
in (2.11) increases, which in turn makes the maximization process of (2.11) 
tedious. 

2.4 Asymptotic Efficiency of MHD Estimator 

In this section, we discuss asymptotic efficiency properties of the proposed MHD 
estimator given in Section 2.2. In particular, we ask the question, "Are the MHD 
and MLE estimators optimal in some sense?" Asymptotic efficiencies of MHD 
estimators and MLEs are well-known in parametric models (Beran, 1977 and 
Lindsay, 1994). However, such properties in nonparametric or semiparamet-
ric settings have been less studied. Hall and Titterington (1984) have derived 
a Cramer-Rao type lower bound for nonparametric estimators of the mixture 
proportions and thereby characterize asymptotically optimal procedures for the 
case of sampling model M2 of Hosmer (1973). Furthermore, they have con­
structed a sequence of maximum likelihood estimators that attain the above 
mentioned lower bound and are therefore asymptotically optimal in this sense. 
Following the ideas of Hall and Titterington (1984), we also obtain a Cramer-
Rao type lower bound for nonparametric estimators of the mixture proportion 
9. Then we show that the proposed MHD estimator attains this lower bound 
under certain regularity conditions, showing an asymptotically optimal property 
of the proposed MHD estimator. 

Theorem 2.6. Let 9n denote a nonparametric estimator of 6 such that nll2{0'n— 
9) —> N(0,V(8,f,g,hg)) and nVar(9n — 9) —• V(9, f,g,hg) as n —• oo7 where 
f, g and he denote the densities of distributions F, G and 9F + (1 — 9)G, 
respectively, of (2.1). Suppose that rii/n — Pi —> 0, i = 0,1,2, and po/pi = 
9/(1 - 9). IfV{9,fn,gn,hn) -> V(9,f,g,he) whenever fn -* / , gn -> g and 
hn -^ he in the class of uniformly piecewise continuous densities, then 

V(9J,g,he)>A(9J,g,he) 

for any f ^ g and 9 E (0,1), where 

1 
A 

(l-8)\ (l-8)\ (1-8) 2 

A(0, / , g, hg) = -^\ ± '- A0 + ^ J-Ai + ± '- A2 (2.17) 
PO Pi P2 

with A0 = f ^fdx-(ffjdx)2, Ai = f £>gdx-(f £gdx)2 and A2 = / £efo-
1. 
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Corollary 2 .1. Assume that conditions of Theorem 2.4 hold. Then the asymp­
totic variance of the MHD estimator 9n of (2.9) is equal to A(9, f,g, he), where 
A(9,f,g,he) is given in (2.17). In this sense, 0n is asymptotically efficient. 

Remark 2.6. Theorem 2.5 only gives the asymptotic distribution when po/Pi = 
9/(1 — 6). For other cases, the method adopted in Section 2.3 does not work 
well and one may need to seek different ways to find a lower bound of the 
asymptotic variance. Therefore, for the case po/pi ^9/(1 — 9), the full efficiency 
of the MHD estimator 9n of (2.9) is unknown and it needs further research. 
Nevertheless, we have shown in Theorem 2.4 that 9n is n^-consistent, i.e. 
nl^2{9n — 9) = Op(l), which demonstrates that 9n has good efficiency properties 
whether po/pi = 9/(1 — 9) holds or not. One can also see this behavior from 
the numerical studies in Section 2.5. 

2.5 Robustness and Simulation Studies 

It is difficult to establish any theoretical results on the robustness of our MHD 
estimator because of the inherent complexity of this problem. Thus to study 
robustness properties of our estimator we relied on Monte Carlo methods. We 
considered a mixture of two normal distributions in this numerical study. Specif­
ically, we studied the following four mixture models: 

= 0.25iV(0,l)+0.75iV(3.60,l), 
= 0.25TV(0,1) + 0.75TV(2.32,1), 
= 0.5iV(0,l) + 0.5iV(3.76,l), K } 

= 0.5iV(0,l) + 0.5iV(2.56,l). 

That is, we set the distributions F and G of (2.1) as N(0,1) and N(p, 1), re­
spectively, where p ^ 0 depends on the Model. Note that Models I and III 
have an overlap of 0.03, whereas Models II and IV have an overlap of 0.1. 
Here the overlap is defined as the probability of misclassification using the rule: 
classify an observation x as being from population F if x < xc and from pop­
ulation G if x > xC} where xc is the unique point between 0 and p such that 
9f(xc) = (1 — 9)g(xc). We examined the resistance of our MHD estimator de­
fined at (2.9) to a single outlying observation. For this purpose, the CK-IF given 
in Beran (1977) is a suitable measure of the change in the estimator. It has been 
observed, however, that analytical evaluation of the a-IF is almost impossible 
in the mixture context (Karlis and Xekalaki, 1998). For this reason, adapted 
versions of the a-IF have been employed by many authors in the mixture con­
text; see, e.g., Lu et al. (2003). In this study, we have used the adapted OJ-IF 

defined in the preceding paper. 

First, we considered the case that po/pi = 9/(1 — 9). For Models I and II, we 
chose sample sizes n0 = 50, n\ = 150 and n2 = 300, and for Models III and IV, 

Model I : 
Model I I : 
Model III: 
Model IV : 

he 

he 
h9 

he 
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no = ni = 100 and n2 = 300 were chosen. Note that the outlying observation 
could come from any one of the three distributions. That is, for example, for 
Model I, the outlier may be from distributions N(0,1), or iV(3.60,1) or from 
the mixture distribution 0.25iV(0,1) + 0.75iV(3.60,1). Thus, after drawing data 
sets of the specified sizes, 147 alternate versions of the data were created by 
replacing the last observation in the first data set, the last observation in the 
second data set, or the last observation in the third data set by an integer from 
—24 to 24. Here we have chosen a moderate sample size of n = 500 in our 
study, and we have done 1000 replications and averaged the results over the 
1000 replications. The contamination rate is then 1/500 and the three a-IFs 
are given by 

IF0(x) = 

m(x) = 

IF2(x) = 

1/500 

w({Xi)^ (x^ZT1, (Zi)Zi) - w((*0£i, (TQ£i, (3)£i) 

1/500 

W((X«)£i, (Yi)£v (*, Z & - W((X,)£i> (YJZv (Zi)Zi) 1/500 

where W could be any functional (estimator of 0) based on three data sets from 
/ , g and hg, respectively. In our case, W is given by functional T(h) defined 
in (2.9) (which is also based on three data sets from / , g and he, respectively). 
We used the compact-supported Epanechnikov kernel function 

K(x) = ^(l-x2)Ihltl](x), 

for all three kernels K0, K\ and K2 in (2.3), (2.4) and (2.6), respectively. The 
positive constants bno,bni and bn2 in (2.3), (2.4) and (2.6), respectively, were 
taken to be bno = n^ ' , bni = n\ ' and bn2 = n^ . This selection satisfies 
the bandwidth assumptions in the theorems of Section 2.2. For scale statistics 
Sn0i Sni a n d Sn2 in (2.3), (2.4) and (2.6), respectively, we used the following 
robust scale estimator proposed by Rousseeuw and Croux (1993), 

Sn = 1.1926 medi(medj{\Xi - Xj\)). 

The choices of kernel function, bandwidth and scale estimator satisfy conditions 
CI, C3 and C4. Thus C5 is satisfied by Theorem 2.2. For the average of the 
1000 replications, the a-IFs under the four models are graphically displayed in 
Figure 2.1. From Figure 2.1, we can see that as the outlier approaches ±00, 
the a-IF appears to converge to a constant, i.e., lim.IFi(x) = lim IFi(x), 

X—*00 X—*—OO 

i = 0,1, 2. In fact, the ce-IFs outside the interval [—3, 7] seem to be constant, 
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while they take varying values inside the interval [—3, 7]. Specifically, IFQ has 
a higher value inside the interval [—3, 7] than outside the interval, whereas IF\ 
has a lower value inside the interval [—3, 7] than outside the interval. 

Next, we considered the case that po/pi 7̂  9/(1 — 9). We have used the 
same four models as above but with n0/ni ^6/(1 — 6). We observed that 
the resulting a-IFs were similar to those in the case that no/ni — 6/(1 — 6) 
considered above. Two typical examples are given in Figure 2.2, in which figure 
(a) is under Model I with sample sizes n0 = ni = 100 and n2 = 300, and figure 
(b) is under Model IV with sample sizes n0 = 50, n\ — 150 and n2 = 300. 
Robustness of the MHD estimator is evident from Figures 2.1 and 2.2 by the 
fact that the a-IFs are bounded. 

We also compared our MHD estimator with two MLEs. For the reasons 
stated in Remark 2.5, the MLE constructed in Section 2.3 was not used in 
our comparison. Instead, we examined two ML estimators based on following 
likelihood functions combined with the data (Zi,..., Zn2): 

ri2 

L^H[6f(Zi) + (l-6)g(Zi)} 

and 

L^l[[6f(Zi) + (l-6)g(Zi)}, 
j = i 

where / and g are the kernel density estimators of / and g defined by (2.3) and 
(2.4), respectively, with / and g as in model (2.2). In other words, the likelihood 
L is constructed assuming that density functions / and g are completely known, 
whereas L is obtained by replacing / and g by their estimators. Thus, L and L 
are rather naturally constructed for simulation purposes. We define 

#MLE = argmaxL (2-19) 
0e[o,i] 

and _ 
#MLE = argmaxL (2.20) 

<?e[o,i] 

as the MLEs of 6 based on L and L, respectively. In our simulation, the data 
were again generated from the models defined in (2.18). For each model, 500 
samples with n0 — n\ = 30 and n2 = 100 were obtained from the corresponding 
distributions. For instance, for Model I, samples of size n0 = 30 and n\ = 
30 were obtained from the distributions 7V(0,1) and iV(3.60,1), respectively, 
while a sample of size n2 = 100 was obtained from the mixture distribution 
0.25iV(0,1) +0.75/^(3.60,1). In each of the distributional situations considered, 
we obtained estimates of the bias and mean squared error (MSE) as follows: 
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(a) Model I (b) Model II 

(c) Model III (d) Model IV 

Fig. 2.1: The a-influence function of MHD estimator 6n with respect to single outlier 
under Model I-IV and p0/pi = 0/(1-8), with • - IF0, o - IFi and - - IF2. 
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(a) Model I: n0 = nx = 100 and n2 = 300 (b) Model IV: n0 = 50, nx = 150 and n2 = 
300 

Fig. 2.2: The a-influence function of MHD estimator 0n with respect to single outlier 
under Model I and IV and po/pi ^ 0/(1 — 9), with • - IFo, o - IF\ and — 
IF2. 

and 

________ ^ Na 

s i=l 

s i= i 

where Ns is the number of replications (Ns = 500 in our case), and % denotes 

an estimate of \i for the ith replication. Here it = 8 and _u denotes either the 

proposed MHD estimator 9n, #MLE or #MLE- Kernel estimators / and p are the 

same as those employed in the robustness study above. Simulation results are 

summarized in Table 2.1. 

Tab. 2.1: Estimates of the biases and MSEs of 8n, #MLE and 6MLE-

Model 
I 
II 
III 
IV 

Bias(0„) 
-0.0021 
0.0071 
-0.0006 
0.0031 

MSE(0n) 
0.0033 
0.0061 
0.0039 
0.0060 

Bias(6>MLE) 
-0.0023 
-0.0028 
-0.0018 
-0.0024 

M S E ( 0 M L E ) 
0.0021 
0.0029 
0.0029 
0.0036 

Bias(0MLE) 
-0.0098 
-0.0853 
-0.0295 
-0.1399 

M S E ( 0 M L E ) 
0.0028 
0.0119 
0.0052 
0.0281 
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We found that the MHD estimator 9n performed better than the MLE #MLE 

for models II, III and IV, and both were comparable for model I. On the other 
hand, the MLE #MLE, which is based on assuming / and g are known, showed 
the best performance among the three estimators considered for all four models. 
However, this behavior can be expected here since #MLE employs more informa­
tion (i.e., knowing / and g, or in other words n0 = oo and rii = oo) than either 
#MLE or #n- Note that #MLE is not available in practice and the sole purpose of 
analyzing it here is to examine the amount of loss in performance when / and g 
are unknown. The bias and MSE of 9n were less affected by the preceding fact 
compared to those of 0MLE-_Note that #MLE uses only the mixture sample of size 
B2 = 100, whereas 9n and #MLE are based on all three samples of sizes UQ — 30, 
ni — 30 and n2 = 100. (Data from / and g are not required for #MLE since it is 
based on the fact that / and g are known.) Thus, one might argue that a direct 

— 
comparison between 9n and #MLE may not be fair. In Figure 2.3, we have also 
given the normal probability plots of the proposed MHD estimator 9n based on 
the 500 replications for all the four models. Figure 2.3 demonstrates that the 
sampling distribution of 9n closely approximates a normal curve for each model, 
no matter po/pi = 9/(1 — 9) holds or not. 

Normal Quantiles Normal Quantiles 

(a) Model I and II (b) Model III and IV 

Fig. 2.3: Normal probability plots of MHD estimator 9n for sample sizes no = n\ = 30 
and n2 = 100, with • - Model I and III and o - Model II and IV. 
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2.6 Examples 

In this section, we applied the proposed MHD estimator constructed in Section 
2.2 to a real data set used in Hosmer (1973). The International Halibut Com­
mission in Seattle, Washington wanted to estimate the proportions of male or 
female halibut. They provided the lengths of 74 eleven year old male halibut 
and 134 eleven year old female halibut caught on one of their research cruises. 
A summary of the data is given in Table 2.2. 

Tab. 2.2: Frequency distribution of the lengths in centimeters of 11 year old male and 
female halibut caught on Western Trip I, April 1957. 

Sex 
Males 
Females 

75 
2 
0 

80 
7 
1 

85 
8 
0 

90 
6 
0 

95 
7 
4 

100 
11 
2 

105 
10 
7 

110 
9 
18 

115 
9 
22 

120 
3 
29 

125 
2 
28 

130 
0 
13 

135 
0 
10 

The sample proportion of males in this example is 74/208 « 0.3558. To illus­
trate computation of the MHD estimator, we randomly selected 14 male lengths 
and 26 female lengths from 74 and 134, respectively, so that the remaining male 
proportion was about the same as 0.3558 (60/168). These samples formed the 
first, second and the mixture samples, respectively. That is, n0 = 14, ni = 26 
and n2 = 168. This idea of selection of samples is similar to model Ml sampling 
mechanism described in Section 2.3. Based on above sample sizes, we carried 
out a simulation with 10 and 100 replications and averaged the results. The 
resulting MHD estimates were 0.2755 and 0.3144, respectively, for the male pro­
portion. The average squared errors from the sample proportion 0.3558 were 
0.0112 and 0.0125, respectively. Based on one replication, Hosmer (1973) ob­
tained a MLE of male proportion of 0.465 with a squared error of 0.012 from 
the sample proportion. Thus, our results are similar to those in Hosmer (1973). 
However, our estimator is constructed without the normality assumption on the 
densities / and g, whereas Hosmer (1973) assumed the two component distri­
butions were normal. The kernels K0, K\, K2, bandwidths and robust scale 
estimators of (2.3), (2.4) and (2.6), respectively, were chosen the same way as 
in Section 2.5 in the above simulation. 

Another example is given in Anderson (1979). Anderson (1979) generated 
samples (X1)...,Xno) = (1.15,0.25,2.31,2.44,3.28,3.34) from the N(2,l) dis­
tribution with n0 = 6, (Yi,.. .,Ym) = (0.74, -0.50,1.08,1.34, -0.74,0.15) from 
the N(0,1) distribution with nx = 6, and (Zu...,Zn2) = (-0.23,0.71,0.92, 
-0.53, -0.68,1.04,0.61, -0.88, -0.61,0.59,2.96,2.59) from the mixture 9N(2,1) 
+ (1 — 9)N(0,1) distribution with n2 = 12 and 9 = 0.25. Using the assumption 
that the log ratio of the two component density functions is linear (this is the 
case here), Anderson (1979) obtained a MLE of 9 as 0.19. Later Zhang (2002) 
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proposed an EM algorithm based argument on the same log linear model to 
calculate a MLE, and he gave his estimate of 6 to be 0.1890. Using the same 
data set, we obtained the MHD estimate of 6 defined in Section 2.2. Our es­
timate of 9 came to be 0.2045. Note that our estimate is much closer to the 
actual value of 9 than both Anderson (1979) and Zhang (2002) estimates, even 
though we made no assumptions about the relationship of the two component 
distributions while they made an extra assumption that the log ratio of the two 
component densities is linear. 

2.7 Concluding Remarks 

In this chapter, we have considered the problem of estimating the mixture pro­
portion in a general two-population mixture, when samples of sizes no and n\ 
are available from the two individual populations while a sample of size n^ is 
available from the mixture population. There have been very few attempts 
in the literature to estimate the parameters in a mixture problem under the 
preceding setup using the minimum distance approaches or by the method of 
maximum likelihood. Here we have constructed a MHD estimator of the mix­
ture proportion. The proposed MHD estimator has been shown to have good 
efficiency and robustness properties. By constructing a sequence of multino­
mial approximations, we have also obtained a sequence of asymptotically nor­
mal MLE estimator of the mixture proportion. Furthermore, we have derived 
a Cramer-Rao type lower bound for nonparametric estimators of the mixture 
proportion and thereby characterized asymptotically efficient estimators. 

The results in this chapter could be extended to the more general nonpara-
k 

metric mixture model studied in Hall and Titterington (1984) of the form YlPifu 
i=i 

k 
where 0 < Pi < 1 and J2pi = 1. We believe that results similar to those in this 

t = i 
chapter can be established for the semiparametric model proposed in Anderson 
(1979) as well. He assumed that the log ratio of the densities / and g is linear of 
the form log (g(x)/f(x)) = f30 + /3ix, or equivalently g(x) = f(x) exp(/?0 + j3\x). 
The three data sets in (2.1) then would come from the distributions f(x), 
f(x) exp(/?0 + fax) and {9 + (1 — 9) exp(/30 + @\x)}f(x), respectively; and MHD 
estimators of 9, (30 and j3i may be developed along arguments similar to those 
given in Section 2.2 above. A more general two-sample semiparametric model 
than the one considered in Anderson (1979) is investigated in Chapter 3. 

2.8 Proofs 

Proof of Theorem 2.1. 
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The method of proof is similar to that of Theorem 2.1 of Beran (1977). For 
completeness, we give the proof below. 

(i) Let dn(t) =|| h\' (x) — gl^2(x) ||. For any sequence {t^ : £* —» t,t^,t G 
[0,1]}, 

\ d2
n(tk) - dl(t) \ = \J[hl/

k\x)-g1/2(x)}2dx-J[h1
t
/2(x)-g1/2(x)]2dx\ 

= 2\ j[h]'k\x)-h]l\x)]gll\x)dx\ 

< 2\\h1J2{x)-h]/2{x)\\. 

Since J ht(x)dx = Jhtk(x)dx = 1, J[^t(a;) -htk(x)]+dx — f\ht(x) - htk(x)]~dx. 
Thus, J| ^ f c

/ 2 (o0-^ 1 / 2 (x )J 2 < / | fct(x) - M x ^ ds = 2/fo(:r) - Mx)]+da:. 
Also, [/it(x) — htk{x)]+ < ht(x) and, for every x, ht(x) is continuous in t. Thus, 
by the Dominated Convergence Theorem, || ht'k (x) — ht (x) ||—+ 0 as k —> oo. 
So, dn(tk) —> dn(t) as A; —> oo, i.e., o?n is continuous on [0,1] and achieves a 
minimum over t e [0,1]. Similarly, d(t) =|| ht' (x) — gl^2{x) || is continuous on 
[0,1]-

(ii) Suppose || <j>J — 01/2 ||—>• 0 and supter0)1i || ht' — ht' ||—> 0 as n —> oo. 

Putd„(t) =|| /i t
1/2(x)-0n /2(x) || andd(t) =|| ^ ( x ) - ^ 1 / 2 ^ ) ||. By Minkowski's 

inequality, 

I dn(t) - d(t) | 
1/2 

< { / [h\'\x) - ^(x) - hi%)+4>i/2(x)]2dXy 

< { 2 1 [h]'\x) - hl/2(x)]2dx + 21 [ti!\x) - cfl\x)}2dx)' 

Consequently, sup | dn(t) — d(t) |< {2 sup f[ht (x) — ht (x)]2dx+2 f[(f)n' (x) 
tG[0,l] *G[0,1] 

—</>1/'2(x)]2rfa:}1/'2, and the r.h.s. of the preceding expression goes to zero as 
n —• 00 by assumptions. Therefore, we have, as n —• 00, dn(90) —>• <i(#0) 
and dn(0„) - d(0n) -»• 0, with 0O = To(0) and 0n = f (0 n ) . If 0n -^ 0„, then 
there exists a subsequence {0m} ^ {#«} such that 0m —> 8' ^ 80, implying 
6' € [0,1] and d(0m) —>• d(6') by continuity of d. From above results, we have 
dm(dm) - dm(80) -> d{ff) - d(60). By the definition of 6m, dm(9m) - dm(60) < 0. 
Hence, d(6') — d(60) < 0. But by the definition of 60 and the uniqueness of it, 
d{9') > d(B0). This is a contradiction. Therefore, 6n —» #0-

(hi) For fixed / and g, ti ^ t2 implies /itl 7̂  ht2. So {/it}t€[0,i] is identifiable. 
Immediately, we have T0(ht) = t uniquely. • 

Proof of Theorem 2.2. 
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If we can prove that as n —>• oo, || /i1//2 — hj ||—> 0 and sup \\ht —h/ ||—> 
*e[o,i] 

0, then by Theorem 2.1, Qn - 6 = T(h) - T0(he) A 0 as n —> oo. It is easy to 
^ ID ID -*v D 

show that sup|/(rr) — f(x)\ —>• 0, sup|g(:r) — ^(x)| —> 0, sup|/i(a;) — he{x)\ —> 0 

and sup sup|/it(x) — ht{x)\ —> 0, see below. Prom an argument similar to the 
te[o,i] x 

proof of Theorem 2.1 (i), we have || h}^2(x) - hl
e'

2{x) ||2< J" | hg(x) — h{x) \ 
dx = 2/[ /^(z) - %(x)]+dx and [/^(:r) - li(x)]+ < f(x) + g(x). Then by the 

Dominated Convergence Theorem, it follows that || h1/2 — hj ||—> 0 as n —>• oo. 
^̂  — p 

On the other hand, sup|/it(rr) —/it(rr)| < sup|/(x) —/(x)|+sup|p(x) —^(a;)| —> 0. 
X X X 

Since sup / [ / i / (x) — ht (x^dx < sup / | ht(x) — ht(x) \ dx < f \f(x) — 
te[o,i] te[o,i] 

f{x)\dx + J \g(x) — ~g(x)\dx, it follows that sup \\ ht — ht ||—> 0. 
te[o,i] 

Finally we prove that sup|/(a;) — f(x)\ —>• 0 as n —> oo. Define 
X 

l / ( s ) = (feno^no)-1 /' K0(f^-)dF(y) 

and Bno(x) = n0' [Dno(x) — F(x)], where Dno denote the empirical c.d.f. of 
(Xi,X2,..., Xno). We have sup|£?no(x)| = Op(l) (see Kiefer and Wolfowitz 

(1958)) and then 

sup|/(:r) - Ef(x)\ < rro
l'2{bnnSn())-

1 sup \Bno(x)\ • / \K$\x)\dx ^ 0. (2.21) 
X X J 

Suppose K0 has compact support [a0,bo], then 

swp\Ef{x)-f(x)\ = sup| [° K0(t)f(x-bnoSnot)dt-f(x)\ 
X X Jan 

poo 
= sup| / KQ(t)dtf(x - bnoSno£no) - f(x)\, 

with £no e [ao, bo] 
< sup sup \f(x-bnoSnot)~ f(x)\ 

x te[a0,bo] 

$ 0. 
(2.22) 

From (2.21) and (2.22), one has sup|/(x) — f(x)\ —> 0. Similarly, sup|g(:r) — 
X X 

g(x)\ —> 0, sup|/i(x) — hg(x)\ —• 0, and sup sup|/it(x) — /it(x)| < sup|/(:c) — 
x te[o,i] » x 
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f(x)\+sup\g(x)-g(x)\-^0. • 
X 

Proof of Theorem 2.3. 

Since T is continuous at ({ht}t^[o,i}, hg) in the sense of Theorem 2.1 (ii) and 
|| h1/2 — he ||—> 0 and supt6r01i || ht — ht ||—» 0 as n —> oo, we obtain that 
r({^ t} t6[0)i],/i) —»• T,({/it}tG[0,i]^e) as n —> oo. That is, 6n —> (9 as n —> oo. 
Thus, for large n, 0n G (0,1) since 6 G (0,1). Denote St = ht . We claim that 
for any t G (0,1) 

St+a(x) = St(x) + aSt(x) + a/j,a(x), (2.23) 

St+a(x) = St{x) + aSt{x) + aua(x), (2.24) 

where St(x) = £*' and St(x) = 8f2
 a r e m ^2, and ixa{x) and fa(a;) tend 

to zero in L2 as a —> 0. The proof of this statement is shown at the^end of this 
proof. Since 0n € (0,1) minimizes the Hellinger distance between ht and h, or 
in other words 9n maximizes J ht' (x)h1^2(x)dx, (2.23) yields that 

lima"1 f[hli2
a(x) -hl/2(x)}h1/2{x)dx 

= [ d k \ ^h1/2(x)dx + lim / iia{x)h1/2{x)dx 

J Ot a^O J 

I ~Mh 
^ W K ' " ( « V f c . 

Ql 1 / 2 / \ ^ ^ . ^V 

and so we have 0 = J —^—hl/2{x)dx. Since / —• / and <? —>• # uniformly, by 
a Taylor expansion one obtains 

2iw = f-9 , ^ ( / ~ g ) + g „ , f n 

00,. "» pn / + (i - w / * [*„/ + (i - 0„)<?]3/2 u / ; 

| ( l + ^n) ( / -^ )+5 
x (d-g) 

[Onf + (1 - ^n)5]3/2 

x ( / - / ) 2 (2-25) 
§t(fr-gr) + engr 

2[0nfr + (1 - 0n)gr}
5/2 

x (g-g) 

— I iv j i • \ iv / j i j 

1(1 - 9n)(3 + 9n){fr-gr) + (l-0n)gr 2 
2[(9„/r + (1 - en)gr]W 

\9n(l+0n)(fr-gr) + (0n-l)gr 

[9nfr + (1 - ^)Pr]5 /2 

where fr(x) = r(x)f(x) + [1 — r(x)]/(a;), <7r(a:) = K^Os^) + [1 — r(x)]^"(x) and 
r(x) G [0,1]. Since /r(a;) —> /(x) and <7r(x) —> (/(x) uniformly as rt —• oo and 
ht > C for all £ G [0,1] and some C > 0, we have 
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' / a[ffV(1*- wn ^ /)' *»* I* « J(T- /)'*• 
I /• | ( 1 ~ *n)(3 + On)(fr - 9r) + (1 - ^n)gr ^ , 2 Tl/2 . , . / > , „ , 
' / 2[*B/r + ( l -*„)*]"» (1-9) hUx\<r2J(9-g)dx, 

fien(l + en)ifr-9r) + (en-\)9r(? ^ a ) ^ d x l 

< T3J(f-f)2dx + T4J(g-g)2dx 

for some positive constants r» (i = 1,2,3,4). Then from (2.25) and above three 
inequalities we have 

/

dhJ (x) ~1/0/ s 
'" v ' hxl2(x)dx 
O0n 

= J [enf + (1 -0n)9Y/2 kl/2dX + J [6nf + {1 ~ 0n)9]*'2 ^~ ^ ^ ^ 

-J \ej + {i-en)g)^{g~g)h dx 

+«n / ( / - ffdx + pn (g- gfdx, 

where \an\ < r5 and \(3n\ < r$ for some positive constant T5 > 0. Again since 
ht > C > 0 for all t € [0,1] and / and g are continuous on compact set W, 

(̂ .ASj noids tor at - [t/+(;_t)g]1/2, a* - [t/+(1_t)s]3/2 and at - [t/+(1_t)fl]3/2 on 
W. Applying (2.23) to preceding expressions, we obtain 

0 = / f Lll h^dx + [ ^f~9) + 9 (f- f) hl'*dx 

±(l + 6)(f-g)+g I 
-%-o){J 

[6f + (1 - % ] 3 / 2 @-g)ftt2dx} 

(f-g) 2 

2[6f + (1 - % ] 3 / 2 /^2cte 

/• l(3 + ^ ) ( / - g ) d + g ( / - g ) n , ~ 1 / a . 1 

+(#n - 6){J\inh
l/2dx + Jun(f- f)p/2dx + Jcjn(g-g)hi;2dx} 

+ {«n J(f- ffdx .+ & y (? - ^Ofe} 
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= {A, + A2- A3) - (6n - 0){BX + B2- B3) + (9n - 0){CX + C2 + C3) 
+(D1 + D2), say, 

where fJ,n{x), vn{x) a n d ojn(x) tend to zero in L2 as n —> oo. Then it follows 
that 9n - 9 = [(5: + 5 2 - 53) - (Ci + C2 + C3)]_1(4i + M - M + A + D2). 
It is easy to show that Ci —>• 0 (i = 1,2,3), Sj —»• 0 (i = 2,3) and that 

I / »P/jfc!qg]»/» • ^ - A J ' V l ^ C\Sft'* - O W / 2 -> 0. Hence the 
result. 

Finally we prove (2.23) and (2.24) hold for St = ht . By a Taylor expansion, 

6t+a = ^t + a - ^ - + ^ / - ? / - ?' 
5, t+ra 

with r = r(x) € [0,1]. Note that 

/ - < 7 / - 0 
Si t+ra <~I 

< \a 

(f(x) - g(x)r (f(x) - g(x)f 

< \a 

I 
I 
f>9 

\m-g(x)\* 
ht(x) 

dx 

dx 
ht+ra(x)ht(x) 

\?{x)-g{x)? 
t(t + ra)(f(x)-g(x)y 

-dx 

+ 
. r m 
J (l-t)(l-t-

\f(x)-g(x)\ 

f<9 

< \a\\— ~ + 

ra)(f{x)-g(x))2 

1 

-dx 

t(t-\a\) ( l - £ ) ( l - t 

< 2\a\\— — + 

0 
t(t-\a\) (1 - t)(l - t - \a\) 

^iy] / \?{x)-g{x)\dx 

} 

as a —> 0. Similarly one can prove that 5* 6 L2 and (2.24) holds. D 

Proof of Theorem 2.4. 
"—" P 

Since the proof of Theorem 2.2 gives that sup|/(a;) — f(x)\ —• 0, sup|#(;c) — 
a; a: 

g(x)\ -^ 0, || hW-h1/2 114 0 and sup || frJ/2-/iJ/2 | | ^ 0, (2.10) holds w.p.l for 
te[o,i] 

some versions by Skorokhod's representation theorem. So it suffices to give the 
asymptotic distribution of n1/2 J ai{x){hx^2{x) — hj (x)]dx + n1^2 J a2{x)[f(x) — 

f(x)]h1/2(x)dx-n1/2 fa3(x)[g(x) -g(x)]h1^{x)dx + n1/2an J[f(x)-f(x)]2dx + 
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n1/2(3nJ[g{x) - g{x)]2dx, where ax = ( g / + ( { j ) f l ) 1 / a , a2 = {g/j
f
{1^3/2 and a3 = 

(df-Lfi-d/wr Denote Hn2 the empirical c.d.f. of (Zi, Z 2 , . . . , Zn2) and # the 
c.d.f. of he- Using the algebraic identity 

hH2_ai/2 = ^z± (b~a)2
 b > 0 a > 0 

° a 2aV2 2oV2(6i/2 + ai/2)2' ^ u ' f l > u ' 

we have 

n1'2 [tT1(x)$1'2{x)-h1
9
/2(x)]dx = n1'2 [ a^x)^ ~he{x)dx + Rn, 

J Jw 2he' (x) 

where, for 8 = min̂ gvK hg(x) > 0, 

XKX) - he{x)) \K\ < nl/2 / K(z)|- -dx 
2hf(x) ^ 

< r 3 / 2 { n 2 / 2 J \ai(x)\\h(x) - Eh(x)]2dx (2.26) 

+"2 / 2 / Mz) | [M( :c ) - he{x)]2dx\ 

= S-3/2(Wln + W2n), say, 

where Eh(x) is defined by 

Eh(x) = {bn2Sn2y
l I' K2(^-)dH{y). 

J on2 on2 

By denoting Bn2(x) = n2
/ [Hn2(x) — H(x)], we have 

h{x) -Eh(x) = n^l/2(bn2Sn2)-
1 [K2(^-)dBn2(y) = Tln(x) + T2n(x), 

J "ri2 ^ n 2 

(2.27) 
where 

Tin(aO - n-1/2{bn2S2)-
1 f K2(^)dBn2(y), 

J 0n2^2 

and 

T2n(x) = - n , - 1 / 2 / [n2n%-2[K2(^) + ^Ki1\3~y-)]dtdBn2(y) 
J Jbn2S2 t t t 

pb„2Sn2 r 

= n2-
l/2 I t~2 / Bn2 (x - tz) [2K(

2
1] (z) + zK{

2
2) (z)] dzdt. 

Jbr,„Sl J 'bn2S2 

By direct calculation, 
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™2 L&n <b2 0 n 2 5 2 A j 2 ° 2 

- 2 c < , c / K2(z)he(x - bn2S2z)dz 
%On2D2 J 

and 

supT2n(x) = sup n^172 / r2cft • Op(l) • 0(1) 
x x J J I W S J 

n^ / 2 6 n 2 ( ^ 2 -5 2 )6 ; 2
2 O p ( l ) 

n^2 „ (2.28) 
52)6-2Op(l) 

^(faW1) 
since nJ/2(S»a - 5 2 ) = 0P(1). By CLT, Tln(x) = O ^ / ^ ) - 1 ^ ) . Then by 
(2.27), £(z) - Eh(x) = Ov{(n2bn2)-

1'2) and thus Wln = n2
,2Op{{n2bn2)-

1) = 

0P{n2
ll\l) 4 0 by (2.26) and 

% r̂»2 —̂  oo. Further since 

sup|^/i(x) -/i<?(x)| = sup| / K2(t)[h9(x - bn2Sn2t) - hg(x)]dt\ 
x x J - (2.29) 

< 2-162
252

2Sup 
X 

\hf\x)\ Ix2K2(x)dx, 

n2 b2
n2 —> 0 and ^fniuijn — p^) —> 0, we have iy2n —> 0 as well. Consequently, 

p p 
7?n —> 0 as n —> oo. Using a similar argument as for Rn —> 0, it can be shown 

that nj J(f(x)—f(x))2dx —• 0 and n{ J('g(x)—g(x))2dx —> 0. So it suffices to 

give the asymptotic distribution of n1 /2 / a i ( x ) h ^ ~ ^ d x + n1/2 / a2(x)[f(x) -
2he (x) 

f(x)]h1^2{x)dx — n1//2 joz(x)\g(x) — g(x)]h1^2(x)dx. Since for large n, 

Ja2(x)[f(x) - / (* )P 1 / 2 (x ) - hlJ\x)]dx = o( Jax{x)$V2(x) - hlJ2{x)}dx) 

and 

ja3(x)[g(x) - g(x)][hl?2(x) - hlJ2{x)\dx = o{ J ^(x^h^x) - h\'2(x)]dx), 
we only need to find the asymptotic distribution of n1'2 j a\(x) i~̂ 2 dx+ 

nV2 fa2(x)[f(x) - f(x)]hl/2(x)dx - n1/2 f a3(x)[g(x) - g{x)]hlJ2\x)dx. Let 

A(x) = a1(x)/[2h1
e
/2(x)]. Then by (2.27) 
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nT f a i i x ) ^ ^ ^ d x = nl
2
/2 f A(x)Tln(x)dx + n2

/2 f A{x)T2n{x)dx 

+nl/2 / A(x)[~Eh{x) - he{x))dx. 

(2.30) 
Also from (2.28), (2.29) and assumption CIO in the theorem, we have 
n2 I A(x)T2n(x)dx —»• 0 and n2 / A(x)[Eh(x) — he(x)]dx —• 0. The first term 
in (2.30) can be expressed as 

n f J A{x)Tln{x)dx = J A{x)^J K2{^)dBn2{y)dx 

= I ^ 1 A{x)K2{^i)dxdBnM 

= A(y + bmS2z)K2{z)dzdBn2{y). 

Thus straightforward calculations give 

E[n2
/2 J A(x)Tln(x)dx - J A(y)dBn2(y)]2 

= E{J K2(z) J[A(y + bn2S2z) - A(y)}dBn2(y)dz}2 

< E{J K2{z)[J(A(y + bn2S2z)-A(y))dBn2{y)]2dz} 

= J Kl(z)E[J{A(y + bn2S2z)-A{y))dBn2{y)fdz 

= f K2(z)Var[A{Z1 + bn2S2z) - A{Zx)\dz 

< \ K\{z) I [A(x + bn2S2z) - A(x)]2he(x)dxdz, 

which goes to zero as n —> oo. Therefore, n2 J A(x)Tin(x)dx—J A(y)dBn2 (y) —> 

0 as n2 —> oo, and the asymptotic distribution of n2 J(J\(x) I/2
6 dx is the 

2hg (x) 

same as that of f -^j^dBn2(y) = Jn^^-T, °lLZi) - f -^-hg(x)dx\. Ap-
J 2hl/2(y) " 2 V y / V L n 2 ^ 2 ^ / 2 ( Z 4 ) J 2hl/2(x) °X ' J ^ 

plying a similar argument to nj f a2(x)[f(x) — f(x)]h0 (x)dx and nx / a3(x)-
[#(x) — ^(a;)]/ig 2(a;)(ia;, it is enough to find the asymptotic distribution of 

33 



a2(a;)/ij/2(a;)/(x)dx - [—^ff3(y i)/ij / 2(y i) - / ai{x)hlJ2{x)g{x)dx j , 

i.e., 

L / — ^ T T h e ^ d x + / cr^(x)h1
0
/2(x)f(x)dx - / a3(x)/zj/2(a;)fif(2;)c?a: j . 

(2.31) 
By Liapounov's theorem, (2.31) is asymptotically normally distributed with 
mean zero and asymptotic variance 

-Varlo^hfiX,)} + -Var^Y^hf'•(¥,)} + -Var[ °ffl ] 
L J "- L J P2 L2/iJ/2(Z!)J 

4P0^orlMXi)J W Kar^,(y1)J + 4P2^KarU,(z1)J 

4 "• p 0
 L 06 J pi L ^A J d0 

1 „ rdloghe(Z: +—Var\ 
Pi L <9# % 

This completes the proof. 

Proof of Theorem 2.5. 

a 

By simple calculations, for large n, the estimating equations (2.12)-(2.15) 
are equivalent to the following equations: 

A{1 - 6nLYK + Bj(l - 6nL)au + Ci = 0,l = l,...,L, (2.32) 

1 1 
«0f 

and 

• x 
OnL n2 + ^ 

X nx (n0l+nii+n2i)-(n2+- T—) (l-0nz,)aii , Z = 1,.. . ,L 
1 — OnL J 

y^Q» =!» 

(2.33) 

(2.34) 
i=i 

where A = - (n2 + ^ fe - ^ ) , B, = (nu + nM) fe - ^ - (n0, + 
n i / )(^2+1^—) and Cj = nu(nQi+nu+n2i). Note that n^/n^ —>• a^ and rij/n —> 
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Pi as n —>• oo. If we let n —>• oo and plug these limits into equations (2.32)-(2.34), 
then we observe that {a0i,au,d} is a solution. This means that there exists a 
consistent sequence of roots to the likelihood equation. For notational conve­
nience, we use (Soi, • • •, OLQL, S I I , • • •, &IL, GHL) to denote the consistent sequence, 

i.e., (a0i, • • •, «OL, «ii, • • •, Six,, #nz.) -+ ("oi, • • •, "OL, a n , • • •, « IL , 0). One can 
easily see that the consistent solution to (2.32) is 

1 B, + y/B? - 4AC, , 
au = "T^Ix M . ' = L-.i-

By substituting above equation into (2.34), we have that 

Zy/Bf-AAQ = 2A(9nL-l)-f: 
i=i i=i 
^Bf-AAd = 2A[9nL-l)-YtBi. (2.35) 

Note that (2.35) has 6nL as the only unknown parameter, so we can use (2.35) 
to investigate the asymptotic properties of the MLE 6HL. Applying Taylor 

L 

expansion to the left hand side (l.h.s.) of (2.35), we have J2 V^f ~ ̂ ACt = 
i=i 

£ [ - 5j + 2ACi/Bl + 2A2C?/B? + op(A
2/n)}, and then 6nL - 1 = t,Cl/Bl + 

i=i i=i 
L 

A^Cf/Bf 4- op(A/n). Applying Taylor expansion again, we obtain 
i=i 

@nL — 1 
L 

_ y > nu(n0i + nu + n«) 

E nu{n0i + nu + n2i) ( u n 0 nx 

I=1 M^j^^F(ni'+ n2l){T - T^e) 

A-(a o\ v (^ nu(noi + nu + n2i) ni 
^(n0/ + ni /)(n2 + 1 ^ ) 2 ( l - ^ 

+ ^ ( n w + ni/)
2(n2 + ^)2<"" + "")(** + ( f T ^ ) ) 

L 2 , wi v n 0 m , y ^ foi^o/+ ^ + n2/)] 
+ ^ 2 +1_eH9 1_ g)2_, [(nw + n i J ) ( n a + ^ ) ] 

[-(26>-l)rt0ni 2n\ n0n2 nin2 

+ {VnL V)[ 0 2 ( ! _ 0 ) 2 ( 1 - 0 ) 3 02 (]_ _ #) 

i=1[(n0/ + n10(n2 + ^ ) ] 3 + O ^ i ' y j + °^n0 n ( l - 0 ) j ' 

x 
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Since y/n(ni/n — Pi) —> 0, i — 0,1, 2, further calculations then show that 

a -ft - i fl V^ rcu(n0; + n u + n2z) 
n L t T ( n « + n l i)(na + £ 5 ) 

n0 7ii v ni ,_2s-^nu{noi + nu + n2i)noiri2i 

^2 

, v ^ nn{noi + nlt + n2l) i , w"o , n\ x 
+ ^ ( n « + nli)»(na + ^ ) » ( n u + ^ ) ( F + ( T ^ 

r(2^ —l)n0ni 2nf n0n2 n\n2 -, 
+ l ^ 2 ( ! _ ^ 2 ~ ( 1 - ^ ) 3 - -02~ - ( i_0)2J X 

L 

, = 1 [ K + nw)(n2 + ^ ) p / 

_ 1 y ^ (1 - 0)n0in2i - ^ni;n2; 

- J „ 4-n 4- P 2 ^ 1 - g ) f " " ]<7? m 
+ i A) + Pl + -7- « / ^ —f. ^ \\PnL ~ V) 

I 0 9 ^Baoi + {l-9)auJ 
+op(n-l/2) + op{6nL-9), 

equivalently, 

^—'Vani + 1 -6 / an z=1-J!(M + ( l -^ )a i j 

\n2 + J±g ) ~ ™CK + « i / 

or 

= (°V - * ) £ , {a°l n ""I Yl >< MJl^- • - - 9) + 0,(1) 
/ = i <9aic« + (1 - <?)«!« ' i^in°l + n " n 2 

l - ^ / V ^ ^ n / , \ - i / - Y v ^ ™0J "2J 
E — - ! ) _ 1 >< V ^ f E - ^ ^ • — - » ) + 0,(1), # f^a2i \j-fn0i + nn n2 

(2.36) 
P P P 

since n0i/n0 -> a0«, W ^ i —> «iz and n2//n2 -> tfctoz + (1 - 9) au, l = l,...,L. 
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L 

We only need to find the asymptotic distribution of ^/n{^n
 n^ • ^ — #}. 

Observe that 

• 0 = > ( )«2/+> ( - Q!2/)+r, (2.37 
noi + nu n2 ^ v n o ; + riiz a2z f-f aw Kn2 

L 

£ where r = E ( ^ _ _ ^ ) ( ^ - a2l). Since y ^ ( ^ - ««) is asymptotically 

-n0i+nu a2i 
normal and y/n{rii/n — pi) —> 0, we have y/n(—nf ^nL) is asymptotically 
normal. Furthermore, 

r = Opin-1) = Op^-1/2). (2.38) 

We can write the first term on the r.h.s. of (2.37) as 

E , n0i 9a0i x 
{ : )®2i 

l=1
noi + nu a2l' 

= \-^n0i-(n0i + nii)9aoi/a2i y ^ noi ("np+n" ~ a ^ ) 2 

1=1 1=1 u x no+ni u 

L 1 

— ( ; 0aOi) ( a%) 

E riQi - {n0i + nn)da0l/a2i . _1/2. 
+ op{n l'% 

with the last equality follows from the fact that y/n(^®^-6a0i) and v ^ ^ + n " 
—a2i) are asymptotically normal. From (2.37), (2.38) and (2.39), we obtain 

(2.39) 

E % n2l 

n™ 4 - « . i i « r . 
+ ni/ n2 J = l 

E noi-{n0i + nu)9aoi/a2i y-^9a0i ,n2i . _1/2 
; + V (• an) + op{n l/ ) 

£ /-, /!\ £ 

(— 9aol) - > (— (1 - B)au) 
l=1 an n0 + ni ^ a j i ^ + ni 

^ a2/ n2 ' 

and thus by the CLT, y ^ ( ^ n
 n_̂ n • ^ — #) is asymptotically normal with 

mean zero and variance given by 
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92(1 - Of ^ aualm 

# (1 ~ 0) V ^ aO/Q!Om , r x , # V~^ ^OiCtOm / r x 
> v «l«(^m - OLlm) H > Ot2l{Olm ~ OL2m) 

Pi , ,^2^2™ P2, z-^a2 ;Q;2m 
l,m=l l,m=l 

9,(1 "^E^-C-"-) A> L^T a ^ tT«2/ 

•1 P2 L'P/Q;2/ J 
(2.40) 

where 5im denotes the Kronecker delta. Thus, by (2.36) and (2.40), \/n(9nL — 8) 
is asymptotically normal with mean 0 and variance A^ defined in (2.16). • 

Proof of Theorem 2.6. 

Suppose for some f ^ g and 9 e (0,1), S = A(9, f, g, he) — V(9, f, g, he) > 0. 
In view of the continuity of both V and A, we can choose step function densities 
/ , g and Me = 8f + (1 - 9)g such that A(9, f, g, Me) - V(9, /_, g, M9) > 5/2. De­
compose the real line R into regions {Ri} in such a way that / , g and MQ assume, 
respectively, a constant value on Ri for each I. When (/, g, Me) is the true se­
quence of densities and 9HL denotes the MLE of 9, by Theorem 2.5, nl/2(9nL — 9) 
is asymptotically normal with mean zero and variance A(9, / , g, MQ). Since 9UL 
is the MLE, A(9J,g,Me) < lim nVar(9 - 9) = V(9j,g,Me). This contra-

_ _ _ n—KX> 

diets A(9,f,g,Me) — V(6, f,g,Me) > 5/2 and so our assumption at the very 
beginning of the proof is incorrect and theorem must be true. • 

Proof of Corollary 2.1. 
g(*i) i — d 2 T / - _ r d i o g M * i ) i A . _ T ^ . r f(Yi) Note that Ac = Var[^} = 92Var[^^^], A, = Var[^] = (1 -

9fVar[dlogh
df

Y')] and A2 = ^ a r [ ^ g ] = (l-9)2Var[dlog^fZl)}, and therefore 
the asymptotic variance a2 derived in Theorem 2.4 of the proposed MHD esti­
mator 8n of (2.9) achieves the lower bound of (2.17) when po/Pi = ®/(l — 9)- ^ 

Proof of Remark 2.2. 

As aresult of Theorem 2.1.3 in Rao (1983), sup \f(x) — f(x)\ —• 0, sup \1j(x) — 
X X 

g(x)\ —> 0, sup|/i(a;) — he(x)\ —• 0, and sup swp\ht(x) — ht(x)\ < sup|/(x) — 
x te[o,i] x x 

f(x)\ + sup \g(x) — g(x)\ —> 0 w.p.l as n —»• oo. 
x 

By Devroye and Gyorfi (1995), / \f(x)-f(x)\dx -> 0 w.p.l. Since / [fl'2(x) 
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-f1/<2(x)]2dx < J \f(x) - f(x)\dx, we have || / ^ 2 - f1^ ||-* 0 w.p.l. Similarly, 

we have || g1/2 — g1/2 ||—• 0 and || h1/2 — hlJ2 ||—> 0 w.p.l, and furthermore 

sup || h]'2 - h\/2 ||< sup [J\ht(x) - ht(x)\dx]1/2 < [J\f(x) - f(x)\dx + 
t€[0,l] tG[0,l] 

,1/2 
/ \g(x)-g(x)\dx] ' -* 0 w.p.l. By Theorem 2.1, 6n-60 = T(h)-T0(M9o) - • 0 
w.p.l. • 
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CHAPTER THREE: MHD ESTIMATION IN A TWO-SAMPLE 
SEMIPARAMETRIC MODEL 

3.1 Introduction 

Semiparametric models have continued to receive increasing attention over the 
years from both practical and theoretical point of views due in large part to 
the fact that semiparametric models arise frequently in many areas, primar­
ily in biostatistics and econometrics. The well-known semiparametric models 
include the Cox proportional hazard model in survival analysis, econometric 
index models, regression models and errors-in-variables models, among many 
others. More examples and theory on semiparametric models can be found in 
the monographs of Bickel et al. (1993), Van der Vaart (1998) and in the review 
articles of Bickel and Kwon (2001) and Forrester et al. (2003). 

In this chapter, we consider the following two-sample semiparametric model: 
Let Xi,...,Xnbe& random sample from a population with distribution function 
G and density function g. Independently of the -Xj's, let Z 1 ; . . . , Zm be another 
random sample from a population with distribution function H and density 
function h. The two unknown density functions g and h are linked by an 
"exponential tilt" exp[a + r(x)f3]. Thus, we have 

Xx,...,Xn
 1-~" g(x) ,g ^ 

Zi,...,Zm
 1-~" g{x)exp[a + r(x)/3\, 

where r(x) = ( r i (x) , . . . , rp(x)) is a lxp vector of functions of x, (3 = (/3i,..., (5P)T 

is a p x 1 parameter vector, and a is a normalizing parameter that makes 
g(x)exp[a + r(x)0\ integrate to 1. In most applications r(x) = x or r(x) = 
(x,x2). We are concerned with estimation of parameters a and j3. 

For r(x) = x, model (3.1) encompasses many common distributions, includ­
ing two exponential distributions with different means and two normal distri­
butions with common variance but different means. Furthermore, model (3.1) 
with r(x) = x or r(x) = (x, x2) has wide applications in the logistic discriminant 
analysis (Anderson, 1972, 1979) and in case-control studies (Prentice and Pyke, 
1979; Breslow and Day, 1980). Suppose Y is a binary response variable and X 
is the associated covariate, then the (prospective) logistic regression model is of 
the form 
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where a* and /3 are parameters and the marginal distribution of X is not speci­
fied. In case-control studies, data are collected retrospectively in the sense that 
for samples of subjects having Y = 1 ('case') and having Y = 0 ('control'), the 
value x of X is observed. More specifically, suppose Xi,... ,Xn is a random 
sample from F(x\Y = 0) and, independently of the X^s, suppose Zi,..., Zm 

is a random sample from F(x\Y — 1). If ir — P(Y = 1) = 1 — P(Y = 0) and 
f(x\Y = i) is the conditional density of X given Y = i, i = 0,1, then it follows 
from (3.2) and Bayes rule that model (3.1) is satisfied with g(x) = f(x\Y = 0), 
h(x) = f(x\Y = 1), a — a* + log[(l — TT)/TV] and r(x) = x. 

Model (3.1) with r(x) = (x, x2) also coincides with exponential family of 
densities considered in Efron and Tibshirani (1996) in the case of two-sample 
problems. Moreover, model (3.1) can also be viewed as a biased sampling model 
with weight function exp[a + r{x)0\ depending on the unknown parameters a 
and p. 

Vardi (1982, 1985), Gill et al. (1988) and Qin (1993) discussed estimating 
distribution functions in biased sampling models with known weight functions. 
Gilbert et al. (1998) have employed model (3.1) with r(x) = (x,x2) to analyze 
HIV vaccine trial data for assessing differential vaccine protection against human 
immunodeficiency virus types. Qin and Zhang (1997) considered a goodness-of-
fit test for logistic regression model (3.2) based on case-control data by employ­
ing the maximum semiparametric likelihood estimator of G to test the validity 
of model (3.1) with r(x) — x. Zhang (2000) estimated quantiles of G under 
model (3.1). In this chapter, however, we are interested in the problem of esti­
mating the parameters a and f3 when g(x) is unknown. Note that since the form 
of g(x) is not specified, statistical inference based on model (3.1) with unknown 
g would be more robust than those based on a full parametric model in which 
the form of g{x) is known. Note that the test of equality of G and H can be 
regarded as a special case of model (3.1) with a = /? = 0. The results of this 
chapter will help to solve this kind of problem. 

In this chapter, we propose MHD estimation for the two-sample semipara­
metric model (3.1). This chapter is organized as follows. In Section 3.2, we 
investigate MHD estimators of the parameters 0 = (a, (5) and study their ex­
istence and strong consistency. In Section 3.3, we derive the asymptotic dis­
tribution of the proposed estimators. Section 3.4 contains a simulation study 
where efficiency and robustness properties of the proposed MHD estimator are 
studied using a Monte Carlo study. A real data set is analyzed in Section 3.5. 
The detailed proof of asymptotic normality of the estimators (Theorem 3.4) is 
deferred to Section 3.6. 
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3.2 MHD Estimators of Regression Parameters 

Define 9 = (a,0T)T, where a and f3 are as in (3.1). Then the model (3.1) can 
be written as 

Xu...,Xn
 L~' g(x) ,33< 

Zi,...-,Zm
 1-~' he(x), 

where hg(x) = g(x) exp[(l,r(:r))#], r(x) = (ri(x),... ,rp(x)) is a 1 x p vector of 
continuous functions of x on R, (3 — (/?i,..., /3P)T is a p x 1 parameter vector 
and a is a normalizing parameter that makes hg(x) integrate to 1. We assume 
here and in what follows that 9 € 0 and 0 is a compact subset of W+1. 

We first define following kernel density estimators of g and hg, respectively, 
based on data Xi,...,Xn and Z\,...,Zm of (3.3): 

1 _ra_ _ y 

*•(*) = ̂ EM^)> (3-4) 

1 m —7 

m "• j = i 

where Xo and i^i are symmetric density functions, bandwidths bn and 6TO are 
positive constants such that bn —> 0 as n —> oo and 6TO —>• 0 as m —>• oo. We 
can also use adaptive kernel density estimators, which use Snbn instead of bn 

with Sn being a robust scale statistic. Here we use non-adaptive kernel density 
estimators (3.4) and (3.5) for simplicity. The results can be easily extended for 
adaptive kernel density estimators with some additional conditions on Sn. 

Let H be the set of all densities w.r.t. Lebesgue measure on the real line. 
For cj) GH, the MHD functional T0(</») is defined as 

r0(^) = T({h0}eee, 0) = argmin || h1/2 - ^ || . (3.6) 

If the family {hg}g<zQ is identifiable, then the functional To is Fisher consistent, 
i.e., To(hg) — 9 for any 9 e 0 . Since hm defined by (3.5) is an estimator of hg, 
the MHD estimator of 9 will be T0(hm). However, this estimator is not available 
in reality since g and hence hg in (3.6) are unknown. Naturally, one can use 
the estimator gn of g and then apply the plug-in rule to construct a parametric 
model, i.e., one can replace hg with 

he(x) = exp[(l, r(x)) 9}gn(x). (3.7) 

Note that hg is a parametric density function with the unknown parameter being 
9. Let N = n + m be the total sample size here and in what follows. Now our 
proposed MHD estimator of 9 is defined as 
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6N = f(hm) = T({h9}e€e, hm) = argmin || hlJ2 - hg2 ||, (3.8) 

where hm and /i# are given by (3.5) and (3.7), respectively. That is, 0N is the 
minimizer of the Hellinger distance between the parametric density he and non-
parametric density estimator hm. This approach is in line with Beran's (1977) 
original mechanism of obtaining MHD estimators. Thus, we would expect 0N 

to have good robustness and asymptotic efficiency properties. Since T(hm) may 
be multiple valued, we shall use the notation T(hm) to indicate any one of the 
possible values chosen arbitrarily. We are interested in both the asymptotic 
properties and the local properties of 0N. So we let n —> oo and m —•> oo as 
J V ^ o o . 

Note that in (3.8) we are not minimizing the Hellinger distance over a subset 
of G including those #'s which make he densities, i.e., over {0 G 0 : J he(x)dx = 
1}. The reason being that even for 0 e 0 such that hg is not a density, it could 
make he a density. The true parameter value 0 may not make he a density, but 
it is not reasonable to exclude 0 as an estimate ON of itself defined by (3.8). 
Nevertheless, the definition of 0N is equivalent to a minimization over a smaller 
parameter space, as shown in the following Lemma 3.1. 

Lemma 3.1. (i) Suppose that for any 0 — (a,(3T)T G 0 there exists 0' = 
(a ,/3T)T G 0 such that f exp[ct + r{x)(3)g{x)dx = 1. Let 0O = {0 G 0 : 
J*exp[(l, r(x))0]g(x)dx < 1}. Then for any </> G H, 

T0(<j)) - argmin || hlJ2 - ft'2 ||= argmin || h]'2 - </>1/2 || . 

(ii) Suppose that for any 0 — (a, (3T)T G 0 there exists 0 = (a , (3T)T G 0 
such that J exp[a + r(x)/3]gn(x)dx = 1. Let 0„ = {0 G 0 : J"exp[(l,r(a;))0]-
gn(x)dx < 1}. Then for any <fi G H, 

f (</>) = argmin || hlJ2 - ^ ||= arg min || hf - ^ ||, 

where hg is defined by (3.7). 

Proof, (i) For 6 G 0 , let c = J hg(x)dx = f exp[a + r(x)/3]g(x)dx and suppose 
that c > 1. Obviously J e x p [ ( a — logc) + r(x)(3\g(x)dx = 1, and thus 0X = 
(a - l ogc , / ? r ) T G 0 O . Note that 

J (hl/2(x) - ^2{x))2dx - J (hlJ2{x) - ^2(x))2dx 

= J (he(x) - h6l(x)) -2[hlJ2{x) - h\/2{x)]cj)l'\x)dx 
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= (c - 1) - 2(v^ - 1) / h1
e
/
i
2(x)^2{x)dx 

> ( c - l ) - 2 ( v ^ - l ) 
= (Vc-l)2, 

i.e., jT(/iJ/2(x) - ^2(x))2dx > !{hl
e[\x) - (j>xl\x)fdx. 

(ii) Proof is similar to that of (i). • 

Remark 3.1. If f exp[(l,r(x))9]g(x)dx < oo for any 9 e 0 and the parameter 
space 0 is of the form 0 = R x Qp with R and 0 P denote the parameter spaces 
for a and (3, then the condition in Lemma 3.1 (i) holds. Furthermore, if gn 

is defined by (3.4) with kernel K0 compactly supported, then the condition in 
Lemma 3.1 (ii) also holds. Moreover, if C < sup J exp[r(x)/3]g(x)dx < oo 

(or C < sup f ex-p[r(x)fl]gn(x)dx < oo) for some constant C > 0, then the 
/5e0P 

condition in Lemma 3.1 (i) (or (ii)) holds with 0 = [—M,M] x @p for some 
finite positive value M. 

We now discuss asymptotic properties of the proposed MHD estimator #JV. 
First, we give some results on the functional T(-, •) related to the existence, 
consistency and asymptotic uniqueness of the MHD estimator of 9. The next 
condition and lemma will be used to prove above properties. 

(Dl) There exists an e-neighborhood B(9, e) of 9 such that ht — he is bounded 
by an integrable function for any t E B(9,e). 

Lemma 3.2. / / (Dl) holds for 9eO, then d(t) =|| h]'2 - ft1"1 || is continuous 
at point t — 9 for any $ G H. 

Proof. Suppose 9\. —> 9 as k —>• oo. From Minkowski's inequality, 

I d(9k) - d{9) | < || hlJ2 - h]'2 || < [J \ h6k{x) - h6{x) | dx]1/2. (3.9) 

By assumption (Dl), | hok — hg j is bounded by an integrable function, and 
therefore by the Dominated Convergence Theorem we have / | hgk(x) — hg(x) \ 
dx —>• 0 as k —> oo, i.e., d(9k) —• d(9) as k —>• oo and d(t) is continuous at point 
t = 9. D 

Remark 3.2. Condition (Dl) holds for many families including normal distri­
butions. Suppose that g(x) and h(x) denotes density functions of the normal 
distribution N(0,1) and iV(/x, 1), respectively. It is easy to see that h(x) = 

2 

he{x) = exp[(l, r(x))9]g(x), where r{x) = x and 9 = (a, (3) = (—^,/i). Obvi­
ously condition (Dl) holds for this example. 
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Theorem 3.1. Suppose that T0 and T are defined by (3.6) and (3.8), respec­
tively, and (Dl) holds for all 9 G O. Then we have following results. 

(i) For every 0 G H, there exists T{4>) G 0 satisfying (3.8) with he and gn 

defined by (3.7) and (3.4), respectively, and the kernel K0 in (3.4) compactly 
supported. For every cj) EH, there exists TQ{4>) G 0 satisfying (3.6). 

(ii) Suppose that n —> oo and m — > oo as N —> oo and 90 — T0(4>) is 
unique. Then 9N = T{(j)m) —> 90 as N —> oo for any density sequences {</>m}meN 
and {/i<?}neN0ee such that \\ (f>m — (ft1'2 ||—> 0 and sup || hj — hj ||—• 0 as 

iV-> oo. 
(Hi) If {he}oeQ is identifiable, then T0(he0) = 9Q uniquely for any 90 G 0 . 

Proof, (i) Let dn(t) =\\ ht' — 4>1^2 ||. Suppose sequence {tk\ C 0 such that 
tk —+ t as k —» oo. Since 0 is compact, t G 0 . Similar to (3.9), we have 

dnih) - dn(t) |< [ / | exp[(l,r(x))tk] - exp[(l,r(x))i] | gn(x) dx] 
1/2 

Since gn is compactly supported, we have by the Dominated Convergence The­
orem that dn(tk) —> dn(t) as k —> oo, i.e., dn(t) is continuous and achieves a 
minimum over t G 0 . 

Let d(t) =|| ht' —(f)1/2 ||. By Lemma 3.2, d(t) is continuous in t and therefore 
achieves a minimum over t G 0 . 

(ii) Suppose || <$? - (j)1'2 ||-> 0 and sup || h1/2 - h]'2 ||-»- 0 as N -»• oo. Put 
0ee 

div(^) =| | ^J /2(^) - (f>U2(x) || and d(0) =|| hlJ2{x) - <f>1/2(x) \\. By Minkowski's 
inequality, 

I dN(9) - d{9) | 

< { J[hl/2(x) ~ tf (*) ~ hl/2(x) + fixtfdx}1'2 

< {2J[h1J2(x) - hlJ2{x)fdx + 2J[<f>U2(x) - 4>ll2{x)]2dx}112, 

and consequently sup | dN{9) — d{9) |—> 0 as N —» oo. Therefore, as N —> oo, 
eee 

dN(9o) —• d(90) and dN(9N) — d{9N) —> 0. If ^ -/> #0, then there exists a 
subsequence {9^} C {6*^} such that 0^ —>• 9' ^ 0O- Since 0 is compact, 
0 G 0 . Lemma 3.2 yields that d(9]y() —• c?(0 ). Prom above results we obtain 
dNi{0Ni) - dNi(90) -> d(0') - d(0o). By the definition of 9Ni, dNi{9Ni) - dNi(90) < 
0. Hence, d(9') — d(9o) < 0. But by the definition and uniqueness of 0o, 
d(9') > d(90). This is a contradiction. Therefore, 9N —• 0o-

(iii) Since {/ie}eee is identifiable, we now have T0(hg0) = 0o uniquely for any 
0o € 0. • 
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Remark 3.3. If (l, r(x)) axe linearly independent, then {ho}geQ is identifiable. 
To see this clearly, note that for h6l = h02, we have (l,r(x))(8i — 92) — 0, and 
then #1 = 92 when (l,r(x)) are linearly independent. Therefore, {/i^l^ee is 
identifiable for any continuous density function g. 

With further assumptions on bandwidths and kernels in (3.4) and (3.5), the 
consistency of the MHD estimator of 6 follows from the continuity of functional 
T in the Hellinger topology. This result is given next. First, we state conditions 
(D2), (D3) and (D4): 

(D2) g and KQ in (3.3) and (3.4), respectively, have compact supports. 
(D3) sup sup(l,r(x))# < +oo. 

flee x 
(D4) g in (3.3) has infinite support, KQ in (3.4) is a bounded symmetric 

density with support [—ao,ao], 0 < ao < oo, and there exists a sequence {an} 
of positive numbers such that as n —> oo, an —> oo and 

sup / I{\x\>ctn}he(x)dx -»• 0, (3.10) 
eee J 

U2 [T Lf\ \9i2Hx + tbn)\ j n / Q i i \ 
K SUP / I{\x\>an}ho{.x) sup T-T dx -> 0, (3.11) 

eee J \t\<a0 9\x) 

/

q(x + tb ) 
h\x\<an}he{x) sup n dx -> 0, (3.12) 

\t\<a0 9 \x) 
h* f T h f \ \9{2)(x + tbn)-\^ 
bn sup / I{\x\<an}he(x) sup -— dx -> 0, (3.13) 

eee J |t|<a0
L 9\x) J 

where gW denotes the A;-th derivative of g and I A denotes the indicator function 
of a set A. 

Lemma 3.3. / / (D4) holds, then as n —• oo, 

sup /exp[( l , r (s ) )<%y 2 (s) - gl/\x)fdx 4 0. 
flee J 

Proof. By continuity of the function in 0 and the compactness of @, there exists 
9n e 0 which maximizes J exp[(l,r(x))9]\gn,2(x)-g^2(x)]2dx. By (3.10), (3.11) 
and a Taylor expansion, one has 

E | / I{\x\>anyexp[(l,r(x))6]gn(x)dx\ 

if 1 u — or 
= / I{\x\>an}exv[(l,r(x))6]—K0(——)g(y)dy dx 
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= / I{\*\><*n} exP[(!> r(x)W] / K0(t)g(x + tbn)dt dx 

= J h\A>«n} exp[(l, r(x))9] J K0(t) [g(x) + g™(x)tbn + ^<7(2)(0*X] dt dx 

< / I{\x\>an}h9(x)dx 

+bl [l{]xl>anMx)™plg(2){X,\tbn)ldx [t2K0(t)dt 
1 J \t\<ao g{%) J 

< sup / I{\x\>an}he{x)dx 
0e© J 

1 f I 
+ Obl SUP / ^{|x|>a„}^(») SUP -z eee J \t\<ao 

\9{2)(x + tbn) 

9{x) 
-dx ft2K0{t)dt 

Thus, as n - • oo, //{|x|>an} exp[(l,r(z))%n(x)cfo -£• 0 and 

//{MX*.} exp[(l ,r(x))0](^(rc) - ^ 1 / 2 ( x ) ) 2 ^ 

< 2 / /{|s|>a„} exp[(l, r(x))%n(x)dx + 2 / 7{|x|>a„}/i0(x)dx (3.14) 

0. 

On the other hand, 

| y 7{|x|<Qn} exp[(l, r(x))0\ {g^x) - gl'\x))2dx\ 

^ / J{N<an} ̂ [ ( l , r{x))e\g-\x) (gn{x) - g(x))2dx 

< 2 I{lx\<an}exp[(l,r(x))9]g-1(x)(gn(x)-Egn(x))2dx 

+ / 7{|a.|<an}exp[(l,r(a;))'%~1(x)(^n(x) -#(x))2da: 

= 2(Ain + A2n), say. 

By (3.12) as n —> oo 

E\Aln\ = I{\xl<an}exp[(l,r(x))9]g~l(x)E(gn(x)-Egn(x))2dx 

< y"/{M<aB}exp[(l,r(aO)0]<r1(aO ^ J K^(^-)g(y)dy dx 

V [ h\*\<"n} exP[(!' r 0*0)0] / #o (*)$(* + tbn)g-1{x)dt dx 
J J —an 

J —a 

= n 

< n " V sup / I{]x]<an]he(x) sup 9[X n)dx / K${t)dt 
eee J " ' ~ 

0, 
|t|<oo g2(x) 
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2 

dx 

P 
i.e., A\n —> 0 as n —>• oo. By a Taylor expansion and (3.13), 

/

/•ao 

AN<«n}exp[(l,r(x))^]c/-1(2;)[ / K0(t)(g(x+ tbn)-

- i 6 " / /{kl<a„}exp[(l,r(£))%-1( ;r)• 

sup|^2)(^ + t6n)| / f2tf0 (*)<** 
l*|<ao «/-ao 

< - 6 n sup / I{\x\<an}he{x) sup p-r dx ( / rK0(t)dt) 
4 O e e J | t |<a 0

L fiW J J-a0 

- » • 0 . 

Therefore //{|a.|<an}exp[(l,r(x))^](^n (#) — g1 /2^)) dx —>• 0 as n —• oo. This 

combined with (3.14) gives Jexp[(l,r(x))0][gi {x) — g1/2(x)]2dx —• 0 for any 
0 € G. By the continuity of the function in 0 and the compactness of G, hence 
the result. • 

Remark 3.4. Condition (D3) is satisfied when g and h$ are two normal density 
functions with different standard deviations. Assume that g(x) and h(x) denote 
density functions of JV(0,1) and N(/j,,a), respectively, where a < 1. It is easy 
to see that h(x) = h$(x) = exp[(l, r(x))9]g(x), where r\{x) = x, T2(x) = x2 and 
0 = (9o, 0i, 02) = (—-^2 — log a, j ^ , \ — 2^2). If the parameter space Q is such 
that its projection onto the third argument is to the left of zero, then obviously 
condition (D3) holds. 

Remark 3.5. Condition (D4) holds for many families and one such example is 
stated in Remark 3.2, i.e., g and h are two normal density functions with the 
same standard deviation. Without loss of generality, we suppose the compact 
parameter space G = [a, a] x [/?, 0\ for some finite numbers a, a, J3 and @. Then 
it is easy to show that (3.10)-(3.13) hold for some an, the log function of n, and 
any bandwidth bn such that bn —• 0 and nbn —> 00 as n —> 00. 

Theorem 3.2. Let n —• 00 and m —> 00 as N —> 00. Suppose that (l , r(x)) are 
linearly independent, (Dl) holds for any 9 G G, and bandwidths bn and bm in 
(3.4) and (3.5), respectively, satisfy bn, bm —• 0 and nbn, mbm —> 00 as JV —> 00. 
Further, suppose that either (D2), (D3) or (D4) holds. Then || h)l2 - hlJ2 ||-£ 0 
and sup || hg' — h0' ||—•>• 0 as iV —• 00. Furthermore, 0jv —>• # as TV —> 00, 

w/tere 0JV «s defined by (3.8) with gn, hm and he given by (3.4), (3.5) and (3.7) 
respectively. 

Proof. Remark 3.3 yields that {hg}oeQ is identifiable. So if we can prove that 
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|| hm — hg ||—> 0 and sup || hj — hQ 11 —>- 0 as N —»• oo, then #JV —> 9 as 
6»G9 

iV —>• oo by Theorem 3.1. 
p p 

It is known that gn —>• <? and /im —+ ^ as N —• oo (see Rao, 1983). Since 
J hg(x)dx = f hm(x)dx = 1, /[/^(x) — /im(a;)]+cte = / [ ^ ( x ) — /zm(a;)]~<ia; and 
|| /im — hg' ||2< J" | /i<j(x) — hm(x) | ob = 2 J[hg(x) — hm(x)]+dx. Since 
[/ie(x) — hm(x)]+ < h$(x), by the Dominated Convergence Theorem, it follows 
that || hj, — hj ||—• 0 as m —> oo. 

Note that /[ftj/2(x) -h1J2{x)fdx = j exV[(l,r{x))9][glJ2(x)-gll\x)]2dx < 
f exp[(l,r(x))9]\gn(x) — g(x)\dx. If (D2) holds, then gn — g will have a com-

- ^ i fry 

pact support, on which exp[(l, r(x))9] is bounded. Therefore, J[he' (x) — 
he (x)]2dx < Ci f \gn(x) — g(x)\dx = 2C\ J[g{x) — gn{x)]+dx for some posi-

tive number C\. Since gn —> g, by the Dominated Convergence Theorem we 

have sup || hg' — he' ||—> 0. If (D3) holds, then exp[(l,r(a;))0] is bounded and 
eee 

similarly sup || he' — /i0' ||—>• 0. If (D4) holds, then Lemma 3.3 gives that 
eee 

sup || h1/2 - hlJ2 | | 4 0. D 
eee 

3.3 Asymptotic Normality of MHD Estimator 

In this section, we develop the asymptotic distribution of the proposed MHD 
estimator 9N. We first state following conditions (D5) and (D6): 

(D5) There exists B(9, e), an e-neighborhood of 9 for some e > 0, such that 
for s = 1, 2 and i, j , k = 0 , 1 , . . . , p, 

sup sup exp[-(l,r(x))t]\ri(x)rj(x)rk(x)\ < oo, 
teenB(e,e) x s 

where ro(x) = 1. 
(D6) There exists B(9,e), an e-neighborhood of 9 for some e > 0, such that 

for s — 1,2, i,j, k = 0 , 1 , . . . ,p, r0(x) = 1, and n —» oo 

/ \Vi(x)rj(x)\2exp[(l,r(x))9]hg(x)dx < oo, (3.15) 

/
\ri(x)rj(x)rk(x)\s sup exp[(l,r(x))i] sup#(x + tbn) dx = 0(1), (3.16) 

teen.B(0,e) |t|<o0 

/ |ri(a;)r:;(a;)|2exp[2(l,r(a;))e] sup^(x + tfon) dx = 0(1). (3.17) 
J \t\<a0 
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Under condition (D2), (D5) or (D6), we derive an expression for the bias 
term ON — 0, which is presented in the next theorem. We denote 1(0) = 
f(l,r(x))T(l,r(x))ho(x)dx and assume that 1(0) is finite and nonsingular. 

Theorem 3.3. Suppose that 0 € int(&), K0 in (3.4) has compact support, and 
assumptions in Theorem 3.2 hold. Further suppose that either (D2), (D5) or 
(D6) holds. Then, it follows that 

0N-0 = [l-1(0)+f,N]x2j{exp[^(l,r(x))0}glJ\x)hU2(x) 

-exp[(l,r(x))0]gn(x)j(l,r(x))Tdx 

where ON is defined by (3.8) and HN is a (p + 1) x (p+ 1) matrix with elements 
tending to zero in probability as N —• oo. 

Remark 3.6. An example in which condition (D5) holds is stated in Remark 
3.4. In this example 0 = (Oo, 0%, 0?) with 0<i < 0. Therefore, one can easily prove 
that condition (D5) is satisfied. It is also obvious that 1(0) is finite in this case. 

Remark 3.7. Condition (D6) is satisfied for the example stated in Remark 3.2, 
i.e., two normal density functions with the same standard deviation. 

P 
Proof of Theorem 3.3. From Theorem 3.2 we have that ON —+ 0 as N —> oo. 
Since t = 0N^€ © minimizes the^ Hellinger distance between ht and hm, ON 
maximizes f ht' (x)hm (x)dx — \ht(x)dx. Also since K0 has compact support, 

we have 0 = / §-t\hl/2(x)hm(x) - ^ht(x)]\t=eN dx, i.e., 

J 2 . (3.19) 
- / exp[(l,r(x))0N]gn(x)(l,r(x))Tdx = 0. 

We will prove in the following that under condition (D2), (D5) or (D6), (3.19) 
will reduce to 

|{exp[i( l , r (x))%y2(a:) / iV2(a;)-exp[( l , r (x))%n(a ;)}( l , r (x))T
f l!x 

-[lJhd(x)(l,r(x))T(l,r(x))dx + cN}(0N-0) = 0, 

(3.20) 
where CN is a (p+1) x (p+1) matrix with elements tending to zero in probability 
as N —»• oo, i.e., (3.18) holds. 

(i) Suppose that (D2) or (D5) holds. Then for any t E Q n B(0, e), 
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I / n(x)rj(x)rk(x)exp[(l,r(x))t]gn(x)dx\ <C gn{x)dx = C 

| / ri(x)rj(x)rk(x)exp[-(l,r(x))t]gl/2(x)h1Jl
2(x)dx\ 

< C(Jgn(x)dx)1/2(fhm(x)dx)1/2 = C 

with some positive value C. Therefore, by a Taylor expansion of 9^ at 9, one 
obtains with 9t = t9 + (1 — t)9N for some 0 < t < 1, 

J ^(l^x))dM\x)hlia(x)(l,r{x))Tdx 

= J(l,r(x))T{exp[^(l,r(x))d} + ^ex^(l,r(x))e](l,^xWN-d) 

+ i exp[±(l, r(x))6t](eN - 9)T(1, r(x))T(l, r{x)){6N - 8))g1J\x)h1Jl\x)dx 

= y"ex p[ i( l , r (^))^]^/2(a;)^2(a:)( l , r(x))Tdx 

+ ^ / e x p [ i ( l , r ( 2 ; ) ) ^ ] ^ / 2 ( a ; ) ^ 2 ( a : ) ( l , r ( x ) ) T ( l , r ( x ) ) d x ( ^ - e ) 

+aN(8N-9), 
(3.21) 

/ exp[(l,r(x))8N]gn(x)(l,r(x))Tdx 

= J { exp[(l, r(s))(9] + exp[(l, r(x))9](l, r(x))(6N - 8) 

+ j e X p [ ( l , r ( a ; ) ) ^ ] ( ^ - ^ ) T ( l , r ( a ; ) ) T ( l , r ( a ; ) ) ( ^ - ^ ) } 5 n W ( l , r ( a ; ) ) T ^ 

= jexp[(l,r(x))9}gn(x)(l:r(x))Tdx 

+ Jexv[(l,r(x))6}gn(x)(l,r(x))T(l,r(x))dx(8N - 8) + bN(8N - 9), 

(3.22) 
where a^ and bN are (p+1) x(p+l) matrixes with elements tending to zero in 
probability as N -> oo by the fact that 9N ->• 9. Prom (3.19), (3.21) and (3.22), 
we obtain 

0 = | { e x p [ l ( l , r ( x ) ) % y 2 ( x ) / 4 / 2 ( x ) -exp[(l ,r(x))%B( ar)}(l lr(x)) rcfa 

+ { ^ y , e x p [ i ( l , r ( a : ) ) % ^ ( a : ) / 4 / a ( a ; ) ( i > r ( l ) ) r ( i | r ( a ) ) d a . 

- y exp[(l, r(x))9]gn(x)(l, r(x)f(l, r(x))dx}(9N - 9) 

+[aN-bN](9N-8). 
(3.23) 
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Since either (D2) or (D5) holds, 

C{ f glJ2{x)\h]i\x) - hlJ\x)\dx + J hl/2(x)\glJ2(x) - gl'\x)\dx) 

C{[j{h]i\x) - hf(x))2dx]1/2 + [J(g^(x) - gW(x))'dx]1/2} 

with the r.h.s. of the preceding inequality goes to zero in probability using the 
results in Theorem 3.2. Thus, 

J exp[i(l, r(x))e]gV2(x)hW(x)(l, r ( * ) f ( l , r(x))dx 

/ hd(x)(l,r(x))T(l,r(x))dx. 
(3.24) 

Similarly 

| J exp[(l, r(x))0] (gn(x) - g(x)) (1, r(x))T(l, r{x))d 

< C J\{glJ2{x) - g^{x)){g)l\x) + g1/2(x))\d 

< C 

< 2C 

± 0, 

j{gT{x)-9l/2{x)?dx 

j{9Tlp)-91,\*)?dx 

1 1 / 2 -

-.1/2 

'JWW+gV'ixtfdx]1'2 

i.e., 

Jexp[(l,r(x))6}gn(x)(l, r(x))T(l,r(x))dx £ J he(x){l, r(x))T(l, r(x))dx. 

(3.25) 
As a result, (3.23) reduces to (3.20). 

(ii) Suppose (D6) holds. Then by (3.16), 

E\ I \ri(x)rj{x)rk{x)\ sup exp[(l,r(x))t] gn{x)da 
J teens(e,e) 

\ri(x)rj(x)rk(x)\ sup exp [ ( l , r(x))t] E[gn(x)]dx 
J te<S>r\B(fl,e) 

/

rao 
\ri(x)rj(x)rk(x)\ sup exp[(l, r(x))t] / K0(t)g(x + tbn)dt dx 

teOnB(6,e) J-ao 
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< / \ri(x)rj(x)rk(x)\ sup exp[(l,r(x))t] supg(x + tbn) dx 
J teenB(0,e) \t\<a0 /q ofi\ 

= 0(1). l d , ^ j 

Therefore, / \ri(x)rj(x)rk(x)\ sup exp[(l,r(x)#t] gn(x)dx = Op(l) and thus 
teens(6»,e) 

(3.22) holds. Similarly, 

E[ l \n{x)rj{x)rk{x)\ sup exp[-( l , r (a;)) t ] glJ2{x)hlJl
2{x)dx}2 

J te&nB(6,e) z 

< E[ \ri{x)rj(x)rk{x)\2 sup exp[(l,r(x))t] gn(x)dx / /im(a:)efe] 
J teenB(0,e) 7 

= / |ri(a;)rJ(a;)rfc(2;)|2 sup exp[(l,r(a;))t] £[$n(a;)]da; 
7 te©nB(0,e) 

< / \ri(x)rj(x)rk{x)\2 sup exp[(l,r(x))£] supg(:r + tbn) dx 
J te&nB(e,e) \t\<a0 

= 0(1) 

and hence (3.21) holds. As a result (3.23) holds. By (3.15), (3.16) and a similar 
argument as in (3.26), 

| y " r i ( x ) r ^ x ) e x p [ i ( l , r ( x ) ) ^ ] { ^ 2 ( x ) ^ 2 ( x ) - ^ ( : c ) / l V 2 ( : c ) } d : c | 

< y | rKx)r i(x) | e Xp[^(l ,r(x))%y2(3 ;) |^2(x)-/»} / 2(x) |cfa 

+ | | r i ( a ; ) r j ( x ) | e x P [ i ( l , r ( a ; ) ) ^ / i ; / 2 ( x ) b y 2 ( x ) - ^ / 2 ( x ) | ^ 

< " y i n ^ r . ^ p e x p p ^ ^ ) ) ^ ] ^ ^ ) ^ ] 1 7 ^ ^ 2 ^ ) - ^ 2 ^ ) ) 2 ^ 

+ [ / \ri{x)rj(x)\2 exp[(l, r(x))^^(x)da:] ^ ^ (gtf2(x) - gV\x)fdx 

= 0P([j (h\l\x) - h]'\x))2dx]1'2) + 0([f (g^(x) - g^{x)fdx]1/2) 

and thus (3.24) holds. By (3.15), (3.17) and using a similar argument as in 
(3.26), 

| / n(x)rj{x) exp[(l, r(x))0] (gn(x) - g(x))dx\2 

< [ | | r i ( a ; ) r i ( ^ | e x p [ ( l , r ( x ) ) ^ | ( ^ 2 ( a ; ) - ^ 2 ( a ; ) ) ( 5 y 2 ( a ; ) + ^ / 2 ( a ; ) ) | ^ ] 2 

1/2 

T l / 2 
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< J\ri(x)rj(x)\2exp[2(l,r(x))d}(g1J2(x)+g1/2(x))2dxx 

f(glJ2(x)-g^(x))2dx 

< 2[ f \ri(x)rj(x)\2exp[2(l,r(x))9}gn(x)+ 

J Inix^ix)]2 exp[(l, r(x))9)he(x)dx] x J\glJ2{x) - g1l2(x))2dx 

= 0(J(gi/2(x)-g^(x))2dx) 

$ 0, 

i.e. (3.25) holds. As a result, (3.23) reduces to (3.20). • 

We now state the asymptotic distribution of the proposed MHD estimator 
ON of 9. Following conditions are made in the next theorem: 

Let {aN} be a sequence of positive numbers such that «jy —*• °° a s N —> oo, 
and 

(CO) g has infinite support (—00,00). 
(CI) The second derivatives of g and he exist. 
(C2) n/N —> p € (0,1) as N —> 00, and the bandwidths 6n and 6m in (3.4) 

and (3.5), respectively, converge to zero at the same rate as N —> 00. 
(C3) KQ and K\ in (3.4) and (3.5), respectively, are bounded symmetric 

densities with supports [—ao,ao] and [—a\,a\], 0 < ao,ai < 00. 
(C4) Both 1(9) and J(9) are finite, where 1(9) = f(l,r(x))T(l,r(x))h$(x)dx 

and J(9) = J(l1r(x))T(l,r(x))ex.p[(l1r(x))9]hd(x)dx. 
(C5) The second derivative of g exists and satisfies for i = 0 , 1 , . . . ,p, 

62 [£2
Ni(x)h0(x) sup ^ ( : r . + / b n ) l ^ = 0(1) as N -> 00, 

J |t|<a0 ffW 

where ejy(x) = (l,r(a:))T/{|a!|>ajv} = (eivo(^), ejvifc),... ,eNp(x))T and g(fe) de­
notes the k-th. derivative of g. 

(C5') The second derivative of g exists and satisfies 

N^bl [ \eN(x)\he(x) sup | g ^X.\tbn^dx = o(l) as TV - • 00. 
i |*|<a0 5 W 

(C6) 
N • P( |Zi | > aN - aibm) —> 0 as iV —> 00, 

iV-.P(|Xi| > «iv -a 0 6„) ->0 a s N - ^ o o . 
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(C7) With SN(x) = (l,r(x))TI{lx]<aN} = (Sm(x),8Nl(x),..., 5Np(x))T, 

he(x + tbm) 
N-lfV [\8N(x)\he(x)sup 

J \t\<ai ne{x) 

N1/2bi j ' \6N(x)\h6(x) sup [A* (x + tb"h* 
J |t|<oi 

dx —• 0 as AT —• oo, 

W _ 1 / V / " | ^ ( a : ) | ^ ( x ) 8 u p 
7 |t|<ar 

iV^X /"|M*)M*)sup 
y iti<oc 

|t|<ai he{x) 

g(x + tbn] 

] dx —• 0 as AT —> oo, 

dx —> 0 as A7 —» oo, 
iti<ao r w 

^ , T-T—— ax —• 0 as AT —> oo. 
|t|<ao 0 W 

(C8) 

/ V 1 / 2 ^ / M ^ M * ) sup ^ ^ f ^ d x - 0 as Â  -> oo, 
J |t|<oi ftflW 

^ V 2 ^ n / M ^ O M * ) sup ^2)(-X
r\

tbn^dx ^ 0 as AT 
J |t|<oo 9{x) 

(C9) 

sup sup . = G>(1) as AT —> oo, 
N<ajv|t |<ai ^ f l W 

g(s + tbn) 0 / 1 v . , 
sup sup T - T — = 0(1) as AT —> oo. 

W<ajv|t|<a0 P W 
(CIO) r(x) is differentiable and satisfies for i = 0 , 1 , . . . ,p, 

oo. 

6m / I{\x\<aN}he{x) sup ( r f ^ x + tbm))2dx -> 0 as AT -> oo, 
7 |t|<ai 

fen / / { |x |<a J V }^( ; r ) S U P 
7 |t|<on 

|t|<ai 

dri{y) expftl, r{y))0] 
\y=x+tbn 

dx —• 0 as Af —> oo. 

( C l l ) 

N~1/2b^ I | ^ ( a ; ) | o x p [ - ( l , r ( a ; ) ) f l ] d a ; - • 0 a s JV 

^ X / |<5;v(a:)| exp[i( l , r(x))^]da: - • 0 as AT - oo. 
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Theorem 3.4. Suppose that 0^ defined by (3.8) satisfies (3.18). Further sup­
pose that conditions (CO)-(CIO) and (C5') hold. Then the asymptotic distribu­
tion of N^2{0N - 0) is JV(0, £), where E is defined by 

E = r\0) [-E0 + JL-Ejl-H*) (3.27) 

with 

So - f(l,r(x))T(l,r(x))exp[(l,r(x))e]hd(x)d: 

(l,r(x))Thg(x)dx / (l,r(x))hg(x)d. 

x 
(3.28) 

x 

and 

E i = J {l,r(x))T(l,r(x))he(x)dx - I\l,r{x))The(x)dx f (l,r(x))he(x)dx. 

(3.29) 

Proof. The sketch of the proof is as follows. Note that 

exp[^(l , r (a;))^]^ 2(a;)^ 2( a ; ) ( l , r ( 2 ;)r-exp[( l , r ( a ; ) )^] 5 n(a;)( l , r ( a ; ) r 

= ( l , r ( a : ) ) r e x P [ ^ ( l ) r ( x ) ) ^ ^ ( ; E ) ^ i / 2 ( ; E ) _ ^ ( ^ 

- ( l . r ^ f e x p K l . r ^ ) ) ^ ^ 2 ^ ) ^ 2 ^ ) - ^ 2 ^ ) ] . 

We can prove that, as N —> oo, 

N^J(l,r(x)f exp[±(l,r(x))0][g^(x) - gW(x)][ttf(x) - hlJ\x)}dx £ 0 

and 

TV1/2 / \ l , r (z) ) r exp[( l , r (x))%* / 2 ( :c) - s1/2(x)]2dx 4 0. 

As a result we only need to give the asymptotic distribution of 

N^J(l,r(x))Thl/2(x)[h^(x) - hl/2(x)]dx 

and 

N^ J(1, r ( * ) f exp[(l, r(rr))%(x)[5y2(a;) - ^ 2 (x) ]dx . 

For details see Section 3.6. • 
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Remark 3.8. Consider the example stated in Remark 3.2. It is easy to see 
that conditions (CO), (CI) and (C4) hold. We can easily choose bandwidths bn 

and bm, and kernels K0 and K\ satisfing conditions (C2) and (C3). Since for 
k = 0,1,2, 

/
\x\kho{x) sup r ^—— dx = Oil) as n —> oo, 

U|<oo 9{x) 

\/2Hx + tbn)\ 
\t\<a0 

conditions (C5) and (C5') hold if Nb* = 0(1) as N -»• oo. Note that as N -> oo, 

/•oo /-oo 

AT / exp[-x2/2]dx < N / zexp[-:c2/2]d3; = JVexp[-a^/2]. 

Thus, if ATexp[—a%/2] —>• 0 as N —> oo, then condition (C6) holds. Since for 
i = 0,1 and j = 1,2, 

f \x\%(x) sup pj£+p*L\ldx = 0(1) a s i V ^ o o 
J |t|<oi M x ) 

l - ( 2 ) 

|*l<Ol 

and 

\x\lhg(x) sup I r^—— Vdx = 0(1) as JV —> oo, 
|t|<«o 9(x) ' 

(C8) and the second and fourth expressions in (C7) hold if Nb^ —> 0 as N —> oo. 
If bnaN —> 0 and AT_1/26~1a2

v- —> 0 as TV —> oo, then for i = 0,1 and AT —> oo 

jar|*/ie(a:) sup 
•aw lt |<oi 

raN 2 

\x\l sup exp[—ex + efj, ——\dx 
a.N | e | < a i b m ^ 

J raN 

\x\l exp[aibmx]dx 
2 _ °-

< — exp[ai6m|yu|] • N 1/2bJal
N(exp[a1bmaN] - l) 

= oV1^1*1) 
- o, 

and therefore the first expression in (C7) holds. Similarly, for i — 0,1 and 
N —> oo , o n e h a s 

N~l/2b-1 r \x\%(x) sup 9{x^^n)dx 
J-aN \t\<a0 92{X) 

/

aN 2 £ 2 

|x|* exp[//a; ——] sup exp[—ex — —]dx 
•an ^ |e|<an6„ * 
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/•QJV 

< N~x/2b~laN / exp[(/i + a0bn)x]dx 
0 o 

+AT-1/2fo-iajv / exp[(Li - a0bn)x]d. 
J — CXN 

= N 1/2bn
 1al

N(fi + a0bn)
 x (exp[(/i + aQbn)aN] - l) 

+N~1/2b~1aN(/j, - a0bn)~
l(l - exp[-(/i - a0bn)aN]) 

0(7V-1/2&-iQ;ivexp[|/i|aiv]) if / ^ 0, 

O ^ - ^ f e - i a ^ 1 ) if A* = 0. 

Therefore, if N~ll2b~laN exp[|/i|a/v] —* 0 as TV —> oo, then the third expression 
in (C7) holds. If bnaN = 0(1) as iV —» oo, then (C9) holds. It is easy to check 
that (CIO) is satisfied. Note that as N —>• oo, 

and 

Wexp[-(l,r(a;))0]Gb 
-aN

 z 

0(exp[|/i|« iV/2]) i f /x^O, 

O(aAr) if/x = 0, 

0(a;v exp[|ii|a^/2]) if // ^ 0, 

0(a&) if/x = 0. 

So if iV xb^OLN exp[|//|o!7v] —> 0 and Nb^a.N exp[|/i|ajv] —> 0 as N —> 00, then 
(Cll) hold. In summary, if we choose 

bn = 0(N~r), l / 4 < r < l / 2 

and 
aN = 0{(logNy), l/2<q<l, 

then conditions (CO)-(CIO) and (C5') are satisfied. Also by Remarks 3.2, 3.5 
and 3.7, (3.18) holds. As a result, (3.27) holds by Theorem 3.4. 

Remark 3.9. Again consider the example investigated in Remark 3.8. Simple 
calculation yields that the asymptotic variance for our proposed estimator ON 
of 0 is 

1 

P 

pi4 exp[/x2] - /J? exp[/i2] + exp[//2] - 1 -/x3 exp[//2] 
—/n3 exp[/U2] /W2 exp[ju2] + cxp[/^2] 

/ i 2 -fj, 

-V 1 1 

Zhang (2000) estimated 0 — (a, (5) by using semiparametric likelihood under 
model (3.1). He derived the asymptotic variance, say E, of his proposed estima-
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tor of 9. It is hard to give an explicit expression for the asymptotic variance E 
in this example. So, here we compare asymptotic variances in the simplest case 
when /Lt = 0. If p = 0 then the asymptotic variance of our proposed estimator 
9N is 

" 0 0 
E = 

0 P(I-P) 

which is exactly the same as that of E. More detailed comparison of E with E 
are shown in Section 3.4. 

3.4 Simulation Studies 

In this section, we report the results of simulation studies. We use Monte Carlo 
methods to demonstrate that the proposed MHD estimator 9N defined in (3.8) 
has good robustness and efficiency properties. 

In this simulation study, we considered the example stated in Remark 3.2. 
We assumed g(x) and h(x) as density functions of the normal distributions 
iV(0,1) and N(p,l), respectively. Thus h(x) — hg(x) = exp[(l,r(x))9]g(x), 

2 

where r(x) — x and 9 — (a,P) = (—^|-,/i). For different p and p values, 
Table 3.1 compares E denned in (3.27) with the asymptotic variance matrix 
E of the maximum semiparametric likelihood estimator 9 — (a, j3) of Zhang 
(2000). From Table 3.1, we can see that smaller p values give smaller values for 
the variance of estimator 9N = (a?,/?). The correlations are all negative since 
a — —E2- When p — 0, the asymptotic variance of 9N is exactly the same as 
that of 9 as shown in Remark 13.9. When p = 0.1, the asymptotic variance of 9^ 
is almost the same as that of 9 for all different p values. But for large p values, 
9N has much larger asymptotic variance compared with those of 9. In fact, we 
can expect this behavior from the expression of asymptotic variance derived in 
Remark 3.9. However, we have shown below in our simulation that 9^ could 
have smaller bias and mean squared error (MSE) than those of 9, and at the 
same time 9^ is much more robust to outliers than 9. 

Our aim of this simulation is to compare the performance of our proposed 
estimator 9^ defined at (3.8) with that of Zhang's maximum semiparametric 
likelihood estimator 9 = (5, (3), by examining their biases, MSEs and a-IFs. In 
our simulations, we let p — 0.5 be fixed and therefore 9 = (a, (5) — (—0.125,0.5). 
For each pair (n,m), we generated ten independent sets of combined random 
samples of size N = n + rn = 60 from the iV(0,1) and N(p, 1) distributions. 
Here the pair (n, m) takes varying values (10,50), (20,40), (30,30), (40, 20) and 
(50,10). For each pair (n,m) considered, we obtained estimates of the bias and 
MSE as follows: 

Bias = ^rE^-^ 
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and 
1 N„ 

MSE - - ^ £ ( 7 , - 7)2, 
J V S i= l 

where Ns is the number of replications (Ns = 10 in our case), and 7$ denotes an 
estimate of 7 for the ith replication. Here 7 = a or /?, and 7 denotes either the 
proposed MHD estimators a and (3 in (3.8), or the maximum semiparametric 
likelihood estimators a and (3 of Zhang (2000). The bandwidths bn and 6m in 
(3.4) and (3.5), respectively, were taken to be hn — n~2//5 and hm — m~2//5. We 
used Epanechnikov kernel function given by 

K(x) = ^(l-x2) /[_!,!](a), (3.30) 

for both Ko and K\. According to the discussion in Remark 3.8, our choice of 
kernel functions and bandwidths satisfy conditions (C0)-(C10) and (C5'), and 
therefore Theorem 3.4 holds. The simulation results are summarized in Table 
3.2. From Table 3.2, we can see that for each pair (n, m) considered, 5 is better 
than a considering the estimated bias and MSE. However, the MHD estimator 
(3 is uniformly better than (3 in the sense of having smaller estimated bias and 
MSE. Note that (3 is the coefficient of r(x) — x while a is only a normalizing 
parameter that makes g(x) exp[a + r(x)0\ integrate to one. We believe that (3 
plays a more important role than a in most applications. For instance, in the 
Cox model, the value exp[/?] can be interpreted as the ratio of the hazards of 
two individuals whose covariates are Z — 1 and Z = 0, respectively, but who 
are identical otherwise. 

Tab. 3.2: Estimates of the biases and MSEs of #JV = («,/?) and 6 — (5, (3) defined 
in (3.8) and Zhang (2000), respectively, when g and h are the densities of 
N(0,1) and JV(0.5,1), respectively. 

(n,m) Bias(a) MSE(S) BiasQfl) MSE(/3) BkTs(a) MSE(a) Bias(/3) MSE(/?) 
(10,50) -0.77 0.63 0.41 0.21 -0.41 0.19 0.58 0.37 
(20,40) -0.67 0.52 0.58 0.83 -0.51 0.35 0.86 1.39 
(30,30) -0.65 0.50 0.51 0.38 -0.42 0.21 0.56 0.40 
(40,20) -0.67 0.53 0.47 0.37 -0.42 0.22 0.68 0.55 
(50,10) -0.74 0.58 0.39 0.25 -0.48 0.26 0.59 0.42 

For the ten simulated replications, we examined at the same time the resis­
tance of our MHD estimator 6N to a single outlying observation, and compared 
it with that of 6. For this purpose, the a-W given in Beran (1977) is a suitable 
measure of the change in the estimator. Here we have used the adapted version 
of the QJ-IF employed by Lu et al. (2003), among many others. Note that the 
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outlying observation could come from either density g(x) or density h(x). Here 
we only considered the case that the outlying observation comes from h{x) and 
similar result applies to the other case. After drawing two data sets of the spec­
ified sizes n and m, we replaced the last observation from density h[x) by an 
integer from -9 to 11. The contamination rate is then 1/60 and the a-IFs are 
calculated by averaging the following value over ten replications 

IF{x) = I/eo ' 

where W could be any functional (estimator of 9) based on data sets from g{x) 
and h(x), respectively. In our case W is either 9 M or 6. For the average of the 
ten replications, the a-IFs for different pairs (n,m) are displayed in Figure 3.1, 
which shows that 9^ is more robust than 9 in the sense of resistance to a single 
outlying observation. 

We can see from Figure 3.1 that as the outlier increases in its absolute value, 
the a-IFs of 9^ (solid and dashed lines) appear to converge to constants. In 
fact, the absolute values of the a-IFs of 8N reach their peaks when outlying ob­
servation is around —1 and then slide down to the^O baseline on both directions 
with a constant outside the interval [—4,4]. For 9, however, when the outlying 
observation moves to the left from —1 , its a-IF increases dramatically in abso­
lute value. When the outlier is bigger than —1,9N and 9 are competitive. The 
behavior of the a-IF of 9 could be expected from the fact that the semipara-
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metric likelihood is proportional in some sense to the quantity II n+meT\a.+Bz] • 

Without an outlying observation, (3 should be a value around (3 = 0.5. When 
the outlying observation a; is a positive large value, —exPl°<+Px\ j g no^. a n ex_ 

tremely small value and therefore (5 is not much affected. If £ is a negative value 

with |a;| large enough, then —exp' zxL will be extremely small and hence the 
iv~\ fit tjA.^JItx -\ JJIIJJ 

maximizing process will tend to assign (5 a negative value with a large absolute 
value. Therefore, when x is negative with |x| large enough, the a-IF will be 
negative with large absolute values as shown in Figure 3.1. 

3.5 An Example 

Hosmer and Lemeshow (1989) analyzed the relationship between age and coro­
nary disease status. Table 1.1 in Hosmer and Lemeshow (1989) lists age in 
years (AGE), and presence or absence of evidence of significant coronary heart 
disease (CHD) for 100 subjects selected to participate in a study. The ourcome 
variable is CHD, which is coded with a value of 0 to indicate CHD is absent, or 
1 to indicate that it is present in the individual. A summary of the data is also 
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(a) (n,m) = (10,50) (b) {n,m) = (20,40) 

(c) (n,m) = (30,30) (d) (n,m) = (40,20) 

(e) (n, m) = (50,10) 

Fig. 3.1: The a-influence functions for a (solid), (3 (dashed), a (dotted^ and /?Jdot-
dashed) with respect to single outlier, where 0^ = (a , /?) and 0 = (S, /?) are 
defined in (3.8) and Zhang (2000), respectively. 
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given below in Table 3.3. 

Tab. 3.3: Age and coronary heart disease status (CHD) of 100 subjects. 

AGE 
20 
23 
24 
25 
25 
26 
26 
28 
28 
29 
30 
30 
30 
30 
30 
30 
32 
32 
33 
33 

CHD 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

AGE 
34 
34 
34 
34 
34 
35 
35 
36 
36 
36 
37 
37 
37 
38 
38 
39 
39 
40 
40 
41 

CHD 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 

AGE 
41 
42 
42 
42 
42 
43 
43 
43 
44 
44 
44 
44 
45 
45 
46 
46 
47 
47 
47 
48 

CHD 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 

AGE 
48 
48 
49 
49 
49 
50 
50 
51 
52 
52 
53 
53 
54 
55 
55 
55 
56 
56 
56 
57 

CHD 
1 
1 
0 
0 
1 
0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 

AGE 
57 
57 
57 
57 
57 
58 
58 
58 
59 
59 
60 
60 
61 
62 
62 
63 
64 
64 
65 
69 

CHD 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 

They analyzed the relationship between AGE and CHD based on those 100 
subjects by employing the logistic regression model (3.2). Let X denote the age 
and Y = 1 or 0 represent the presence or absence of coronary heart disease. 
Then the sample data (Xi,Yi), i = 1 , . . . , 100, can be thought of as being 
drawn independently and identically from the joint distribution of (X,Y). The 
proposed MHD estimate can be applied to this data set with n = 57 and 
m = 43. We again take the band widths hn = n~2/5 and hm = m~2/5 and use 
Epanechnikov kernel function defined in (3.30) for the two kernels KQ and K\ 
in (3.4) and (3.5), respectively. By fitting model (3.1), we obtained estimates 
eN = (a,/?) = (-4.64,0.09). When compared with Zhang's (2000) estimates, 
(5, P) = (—5.03,0.11), our estimates seem more conservative; in other words, 
our estimates are smaller in absolute values than Zhang's (2000) estimates. 

3.6 Proof of Asymptotic Normality 

To prove Theorem 3.4, we first state a series of lemmas that are employed in 
the proof. 
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Lemma 3.4. Suppose that (C3)-(C6) hold. Then as N —> oo, 

N1'2 JeN(x)exp[^(l,r(x))9]gV2(x)hll\x)dx 4 0, (3.31) 

N1'2 J\N(x)exp[1-(l,r(x))9}h1
g

/2(x)glJ2(x)dx 4 0. (3.32) 

Proof. By Cauchy-Schwarz Inequality, 

N • E[JeNi(x)exV[^(l,r(x))e}glJ2(x)hU2(x)dx]2 

< N • E[ e2
m(x)eacp[{l,r(x))0]gn(x)dx\ • E[ / I{\x\>aityhm(x)dx] 

= N • Ax • A2 , say. 

Note that by a Taylor expansion and using assumptions (C4) and (C5) 

|Ai| = J J e2
m{x)exV[(l,r{x))e\^K0{^)g{y)dydx 

e2
m(x)exp[(l,r(x))8] / K0(t)g(x + tbn)dt dx 

J —an 

/

ran 

e2
Ni(x)exp[(l,r(x))6} / K0(t)(g(x) + g^(x)tbn+ 

J—ao 

l-gV\t)tH2
n)dtdx 

< i r2(x)he(x)dx 
+1 bl I' e2

m(x)he(x) sup ^ { x ,+ *K)l dx P t2K0(t)dt 
Z J \t\<ao 9{X) J-a0 

= 0(1), 

i.e., Ai is bounded. On the other hand, 

f f 1 V — x 

|A2| = / / I{\x\>aN}j-Ki{—?—)he{y)dydx 

= / / I^x^a^K^heix + tbm)dt dx 

= / Kx(t) I h0(z)dz dt 
J—a\ J \z—tbm\><XN 

< / Kttydt / hg(z)dz 
J—oi J\z\>a\r— aibm 

(3.33) 

-Qi J\z\>aN-a\bm 

= P(\Zi\ > aN-axbm). 

By assumption (C6) we have that 
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N.E[Jem{x)eXp[^{l1r{x))0\g\f2{x)hli2{x)da:]a - O, 

i.e., (3.31) holds. 
By Cauchy-Schwarz Inequality and using a similar argument as in (3.33), 

N-E / em(x) exp[-(l, r(x))0}hlJ\x)glJ2(x)dx 

< N- r2(x)exp[(l,r(x))6]h9(x)dx-E I{\x\>0iN}gn(x)d 

/

/ / i l l T* 

r2(x)exp[(l,r{x))9]he(x)dx • / / I{\x\>aN}yK0{——)g(y)dy dx 
< N- I r2(x) exp[(l, r(x))6]he{x)dx • P{\XX\ > aN - a0bn), 

and by assumptions (C4) and (C6) we have that (3.32) holds. • 

Lemma 3.5. Suppose that (C0)-(C3) and (G7) hold. Then as N —> oo, 

N1'2 j \8N(x)\(h]l2{x) - hlJ2{x)fdx £ 0, (3.34) 

N1/2 J \5N(x)\ exp[(l,r(x))d](g}/2(x)-g^2{x))2dx^0. (3.35) 

Proof. Note that 

N1'2 J\8N{x)\(h]i2{x)-h1
e'\x))2dx 

N1'2 J \5N{x)\h-\x){hm{x)-he{x)fdx 

' N1/2 J \5N{x)\h-e
l{x)(hm{x) - Ehm{x)fdx 

+N1'2 J \8N{x)\he\x)(Ehm(x) ~ h0(x))2dx\ 

= 2(A1N + A2N), say. 

By conditions (CO), (C2), (C3) and (C7) as N -* oo, 

E\A1N\ = N1'2 f\SN(x)\h^(x)E(hm(x)-Ehm(x))2dx 

< N'l2 J \5N{x)\h-e\x) ^ JKl{y^)he{y)dy dx 

= AT1/2m-ife-i j \SN(X)\ j * K2(t)he{x + tbm)hg1(x)dt dx 
J J—at 

< 

< 2 
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< N^m-'b^1 f \5N(x)\ sup he{-X
u
+.^m)dx r K2(t)dt 

J \t\<ai he(x) J-ai 
- • 0 , 

LJ 

i.e., Any —> 0 as AT —> oo. By a Taylor expansion and using conditions (CI) 
and (C7), 

\8N(x)\he\x)^J Ki(t)(he(x + tbm) - h9(x))dt 
1 2 

dx 

< 
1 f r f0,1 12 
-N^bl / \8N{x)\hg\x) sup \hf\x + tbm)\ fK^dt 
4 J l\t\<ai J-ai 

.(2)/ 

dx 

< V ' £ / |M*)IM*) SUP [^ {^Jbm)]2dx ( r ^^(t)*)5 

^ J \t\<ai ll>e\X) J-ai 

0. 

Hence (3.34) holds. Proof of (3.35) is similar to that of (3.34). • 
Lemma 3.6. Suppose that (C0)-(C7) hold. Then the asymptotic distribution 
of 

N^J(l,r(x))TexV^(l,r(x))9}g^(x)(hll\x) - hl/2(x))dx (3.36) 

is the same as that of 

N1'2 J8N(x)hl/2(x)(h^(x) - hl/2(x))dx. 

Proof. Prom Lemma 3.4, 

N1/2 JeN(x)exp[^(l,r(x))e]g^(x)(hll2(x) - h]/2{x))dx £ 0, 

and as a result the asymptotic distribution of (3.36) is the same as that of 

N^ J 5N{x)eM\{hr{x))e]g^\x)(h]i\x) - hlJ2{x))dx. 

By Cauchy-Schwarz Inequality 

< iV1/2 / \8Ni(x)\eM(hr(x))e](gl
r/

2(x)-g^(x))2dx 

xN1'2 J \8m{x)\(htt2(x) - hl/2(x))2dx, 
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which is op(l) by Lemma 3.5. Hence the result. • 

Remark 3.10. In fact, the asymptotic distribution of (3.36) is the same as 
that of 

NWJ{\,T{x))Thy\x)(h)!?{x) - hl/2(x))dx. 

The reason being that as N —» oo, 

N1'2 jeN{x)hlJ2{x)(h]i2{x) - hl/2(x))dx 4 0 

under conditions (C3), (C4) and (C6). The proof is similar to that of Lemma 
3.4 and therefore be omitted. 

Remark 3.11. Instead of condition (C7), if hg and g have bounded second 
derivatives and conditions (C9) and (Cll) hold, then Lemma 3.6 still holds. 
Since 

{ i W W x ) e x P [ i ( i , r ( ^ 

< W1/2 / \Sm(x)\eXp[l(l,r(x))9}(9
i
n/

2(x)-g^(x))2dx 

x i V V ^ |5 i V . ( a : ) |exP[ i( l , r(a:))e](^2(x) - hfixtfdx, 

similar arguments as in the proof of Lemmas 3.5 and 3.6 give above conclusion. 

Lemma 3.7. Suppose that (C4) and (C6) hold. Then as N —»• oo; 

N1/2 / \eN(x)\he(x)dx ^ 0, 

Nl'2 • 1 E e ^ ( z * ) 4 °« 
N1'2 • i ^ ( X i ) e x p [ ( l , r ( X i ) ) e ] A 0. 

«=i 

Proof. By Cauchy-Schwarz Inequality, 

N 1 / 2 / |eAri(x)|/i0(a;)dx < [N I{]x\>aN}he{x)dx)1,2[ I r*(x)he(x)dx]1/2 

= [NPdZ,] > aN)]1/2[JrUx)he(x)dx] 
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As a result, 

1 m 1 m 

1=1 i = i 

= N1/2 f \eN(x)\he{x)dx 

- 0, 

^|iVi/2 . I ^ e j v ( X i ) e x p [ ( l , r ( X i ) ) ^ | 
i = i 

< E^1'2 • -^ |e i V (X i ) |exp[( l , r (X i ) )^ l ] 
n i = i 

= JV1/2 f \eN(x)\h6(x)dx 

and hence the results. • 

Lemma 3.8. Suppose that (C0)-(C4) and (C8)-(C10) hold. Then as N -> oo, 

TV1'2 / M x ) M x ) d x - W ^ - Y V C ^ i ) ^ 0, 

iV1/2 f SN(x)eW[(l,r(x))d}gn(x)dx - N^-Y^SNiX^exp^riXiM 4 0. 
7 n i = i 

Proof. We give only the proof for the second convergence, and the proof for the 
first convergence is similar. For i = 0 , 1 , . . . ,p, let 

0 M = iV1/2 / SNi(x)exV[(l,r(x))d}gn(x)dx~N1^-Y,SNi(Xi)exp[(l,r(Xi))d}. 
J ni=i 

Then by (C8) 

\E[Dm]\ = iV^jy* 
5Ari(a:)exp[(l,r(x))6l]S[^n(x)](ia;- / SNi(x)he(x)da 

/

rao 
6Ni{x)exp[{l,r(x))9] / tf0(t) (tf(s+ *&«)-s(x))dt da;| 

iV 1 ^ 2 / \6Ni(x)\he(x) sup | g 2 ^X + tbn^dx r t2K0(t)dt 
J \t\<a0 9{x) J-ao \t\<a0 yy-L) J-ao 

0. 
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Note that 

Var[DNi] 
N 

< —E 
n 
N „ 

= —E 
n 

—E 

< 

[ Sm(x) exp[(l, r(x))e]^K0i^-^1)dx - 8m{Xx) exp[(l,r(Xi))0] 

f ° K0(t) (5m(X1 + tbn) exp[(l, r(X1 + tbn))9] 

- < W * i ) e x p [ ( l , r ( ^ i ) ) 0 ] ) ^ 2 

/ KQ{t)ri{Xl + tbn) exp[(l, r{X1 + tbn))6] 

-I{\x1\<aN}jdt + / ^(^/{iXii^a^jfr^Xi + tbn) exp[(l, r(Xi + £&„))6>] 

-ri(X1)exp[(l,r(Xl))9]yt 

\E\ ifo(*)ri(A'i + t6 n )exp[( l , r (Xi+t6 n )^] 
*" L . / - a n ^ n 

- J {\Xi\<aN} dt + E 

2N 
= (Bm + CNi), say. 

n 

/ K0(t)Im \<aN} 
J-ao V

 2 

exp[(l,r(X! +t6„))<9] - r i(X1)exp[(l ,r(X1))^])^] } 

By Cauchy-Schwarz Inequality, 

/

ao 

tfo(*)rf (Xi + t6n) exp[2(l, r ( * i + tbn))d] (l{\xl+tbn\<aN} 
a° 

~Al-f i l<ajv}) d * 

= / K0(t) / r?(s, + t&n)exp[2(l,r(y + i&n))%(j,)d?/ 
./O lJ-aN-tbn -aN 

+ 
/•ajv 

J aiv—t 

rfiv + tbn) exp[2(l, r(y + tbn))9}g(y)dy 

+ 
apt-tbn 

/

O j aiy—tbn 

KoV) / r l % + ttn)exp[2(l,r(y + ^ ) ) % ( 2 / ) A / 
•an LJ—, 

dt 

+ 
-UN 

I 
J a 

a^—tbn 

rUy + tbn) exp[2(l, r(y + tbn))9]g(y)dy dt. 

(3.37) 
Note that rf(x) exp[(l, r(x))8]ho(x) is bounded by (C4) and therefore by (C9) 

/ K0(t) r*(y + tbn)exp[2(l,r(y + tbn))e}g(y)dy 
JO J—atf—tbn 

rao r—ax+tOn 

= I K0(t) rf(y)exp[2(l,r(y))9]g(y-tbn)dydt 
JO J—Q.N 
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/•do / • - < 

/ K0(t) 
JO J-a 

OtN+tbn 

r2(y) exp[(l, r(y))6}he(y)dy dt 
9(x + tbn) fa° 

< SUP SUP J-r ' 
\x\<aN\t\<a0 9\x) 

= 0(bn tK0(t)dt) 
Jo 

- > o , 
as N —>• oo, and other three terms on the r.h.s. of (3.37) go to zero using similar 
arguments. Thus BNi —>• 0 as N —> oo. For Cm, by Cauchy-Schwarz inequality 
and (CIO) we have 

CNi < E\ I K0{t)I{lXll<aN}(ri{Xl + tbn)exp[(l,r(Xt + tbn))d] 

-r i(X1)exp[(l,r(X1))^]) dt 

= / K0(t) I{\x\<aNy\ri(x + tbn)exp[(l,r(x + tbn))9] 

< b\ ?n / J { N < a ; v } S ( z ) SUp 
J \t\<a0 

0. 

—Ti(x) exp[(l, r(x))6] j g(x)dx dt 

dri(y)exp[(l,r(y))0\ 
dy \y=x+tbn 

2 r°o 
dx I t2K0(t)dt 

ao r 
J —a 

Thus Var[DNi] -»• 0 as N -> oo. This yields that £[£>y = ^ar-fD^] + 

(£[DjVi])2 —> 0, and therefore DNi —> 0 as iV —> oo. D 

Corollary 3.1. Suppose that (CO)-(CIO) hold. Then the asymptotic distribu­
tion of (3.36) is JV(0, ip1^)Si) with Si defined by (3.29). 

Proof. In view of Lemma 3.6, we only need to give the asymptotic distribution 
of 
N1/2 f 8^{x)hg {x)(hm (x) — hg (x))dx. Applying the following algebraic ex­
pression, with b > 0, a > 0, 

we have that as N —* oo, 

a}'2 = 
b_a (fri/a _ ai/2) = 

2aV2 2aV2 
(3.38) 

iV1/2 f 5N(x)hl/\x)(hH2(x) - hl/2(x))dx 

= \N112 J5N{x){hm{x) - he(x))dx+ \N^2 J5N(x){hH2(x) - hlJ\x))2dx 

/ 5N(x)(hm(x) — hg(x))dx + op(l) (by Lemma 3.5) 
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i 1 m r 
= o ^ t - E W ) - SN(x)he(x)dx] 

2 Lraz--' J 
%=\ 

i /• i m 

+^1/2[ / M * ) M ^ - -J>v(^)] +oP(l) 
1 J m

i = 1 

1 1 m /" 
= -Nlt2[—^yN{Zi)- 1 8N{x)he{x)dx\ + o P ( l ) (by Lemma 3.8) 

1 1 m /" 

= ^ 1 / 2 [ - y ; ( l , r ( Z i ) ) r - / ( l , r ( x ) ) T ^ ( x ) d a ; ] + o i , ( l ) (by Lemma 3.7). 

Obviously the asymptotic distribution of rn.1//2[^5]](l,r(Zi))T ~~ J(^^r(x))T' 

/^(a?)^] is iV(0, Hi). Hence the result. • 

Lemma 3.9. Suppose that (CO)-(CI) and (C5') hold. Then the asymptotic 
distribution of 

N^j(l,r(x))Texp[(l,r(x))0}gi^x)(gi/2(x)-g^(x))dx (3.39) 

is the same as that of 

N1'2 J'sN(x)eM(l,r(x))e}gl/2(x)(gl
n/

2(x)-gl^(x))dx. 

Proof. Note that by Cauchy-Schwarz Inequality, a Taylor expansion, (C5') and 
Lemma 3.7, 

E\N1'2 feNi(x) exp[(l,r(x))6]gn(x)dx\ 

/

ran 
\em(x)\exv[(l,r{x))9] / K0(t)g(x+ tbn)dt dx 

J —an 
/ r a t i 

\eNi(x)\exp[(l,r(x))e] / K0(t)(g(x) + g(1)(x)tbn 
J —an 

< N1/2 / \eNi{x)\he{x)dx 

+-t%l sup \g{2)(x + tbn)\)dt dx 
2 lt|<a0 

+W<X [\eNi(x)\he(x)suV
]9(2){x,+.tbn)l f ° t2K0(t)dt 

2 J \t\<ao 9\x) J-a0 

0. 

p 
Thus TV1/2 f £N(x)exp[(l,r(x))0]gn(x)dx —> 0. Combined with the result in 
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Lemma 3.4, we therefore have 

N^ JeN(x)cxP[(l,r(x))e}g^(x){g^(x) - gl'2{x))dx £ 0, 

and so the asymptotic distribution of (3.39) is the same as that of 

N^J5N(x)exV[(l,r(x))e]g1J2(x)(g1J2(x) - g1/2(x))dx 4 0. 

The result now follows from Lemma 3.5. • 

Corollary 3.2. Suppose that (C0)-(C10) and (C5') hold. Then the asymptotic 
distribution of (3.39) is N(0, ^ S 0 ) with E0 defined by (3.28). 

Proof. Similar to that of Corollary 3.1. 
Again in view of Lemma 3.9, we only need to give the asymptotic distribu­

tion of iV1/2 J8N(x)exi)[(l,r(x))e]g1/2(x)(gi/2{x) - g1/'2{x))dx. Applying the 
algebraic expression (3.38) we have that as N —> oo, 

N1'2 J'5N(x)exp[(l,r(x))d]g^2(x)(g1J2(x) - g^2(x))dx 

= ^N1/2 J5N(x)exp[(l,r(x))9](gn(x) - g(x))dx 

+\N1'2 f 5N(x) exp[(l, r(x))9] («£/*(*) - g^2(x))2dx 

= -N1/2 5N(x)exp[{l,r(x))6}(gn{x)-g(x))dx + oP(l) (by Lemma 3.5) 

= i i V 1 / 2 { ^ ^ ( ^ ) e x p [ ( l , r ( X i ) ) ^ ] - J 5N(x)he(x)dx} 

+ ^ i V 1 / 2 { y ^ ( ^ e x p [ ( l , r ( a ; ) ) ^ ^ ( x ) ^ - ^ ^ ( X i ) e x p [ ( l , r ( X i ) ) ^ } 

+oP(l) 

= - i V 1 / 2 { - ^ J V ( X i ) e x p [ ( l , r ( ^ ) ) ^ ] - J 6N(x)he(x)dx} + oP(l) 
4 = 1 

(by Lemma 3.8) 

= ^ 1 / 2 { ^ £ ( l , r M ) r e x p [ ( M * O M - J(l,r(x))Th6(x)dx} + oP(l) 
(by Lemma 3.7). 

Obviously the asymptotic distribution of n1 /2[^^(l ,r(Xj))Texp[(l ,r(Xi))^] — 

/ ( l , r{x))The(x)dx] is iV(0, E0). Hence the result. • 
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Proof of Theorem 3-4- Note that by Lemmas 3.6 and 3.9 

= N^I(l,r(x))Texp[\(l,r(x))e]g^(x)(hll2(x) - h\'\x))dx 

-N1'2 f {\Ax))TzMMx))e]gl!\x){glJ\x) - gl'\x))dx 

= Nx'2 f 6N{x)hy*{x)(hy?{x) - hlJ2(x))dx 

-N1'2 J SN(x) exp[(l, r{x)W\x)(glJ\x) - g^{x))dx + oP(l) 

and the first two terms on the r.h.s. of the preceding expression are independent. 
By Corollaries 3.1 and 3.2 and Slutsky's theorem, the result follows. • 
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CHAPTER FOUR: MHD ESTIMATION IN 
SEMIPARAMETRIC MODELS OF GENERAL FORM 

4.1 Introduction 

Consider the situation where we observe a sequence of i.i.d. random variables 
Xi,X2, ... ,Xn with continuous density function / . Assume that / belongs to 
a class of general semiparametric models of the form 

{fe,r,:eeecW,<oeH}, (4.1) 

where 0 is a compact subset of W and Ti is an arbitrary set of infinite dimension. 
The problem is to estimate the parameter 0 assuming that r\ as a nuisance 
parameter. The support of density functions may be finite or infinite in the 
Euclidean space, unless otherwise specified. 

Numerous examples fall into the class (4.1), well-known examples include 
semiparametric mixture models (Van der Vaart, 1996), errors-in-variables mod­
els (Bickel and Ritov, 1987 and Murphy and Van der Vaart, 1996), regression 
models (Van der Vaart, 1998) and Cox model for survival analysis (Cox, 1972). 
More examples and theory can be found in the monographs of Pfzangel (1990), 
Bickel et al. (1993) and Van der Vaart (1998) and in the articles of Murphy 
and Van der Vaart (2000), Bickel and Kwon (2001), and Forrester et al. (2003) 
and in the references therein. The two-component mixture model and the two-
sample model considered in Chapters 2 and 3, respectively, are two special cases 
of general semiparametric models (4.1). 

If r\ is known, then 6 can be easily estimated using the maximum likeli­
hood approach. If r\ is unknown, then replacing r\ by an appropriate estimator 
the maximum likelihood approach still may be implemented; see, e.g., Van der 
Vaart (1998, Section 25.8). These estimators are usually asymptotically effi­
cient, but may perform poorly if the parametric assumption is slightly violated. 
Applications of MHD estimators in the two semiparametric models considered 
in Chapters 2 and 3 suggest that MHD estimators have good efficiency and 
robustness properties in semiparametric models. In this chapter, we investigate 
the efficiency and robustness of MHD estimators in semiparametric models (4.1) 
of general form. 

In a parametric class of density functions of the form 
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{fe-.deec W}, (4.2) 

a MHD estimator of 6 is defined as a functional T0(g) = T({ft}tes,g) at / n 

(Beran, 1977) such that 

To(fn) = T({ft}tee, /„) = argmin||/ t
1/2 - / V ^ , (4.3) 

where /„ is a nonparametric density estimator of / based on the observations 
Xi,X2,... ,Xn. Various asymptotic and robustness properties of T0(/„) have 
been studied under some regularity conditions in Beran (1977), Stather (1981) 
and Tamura and Boos (1986), among others. MHD estimators in semiparamet-
ric models have not been yet obtained in the literature. 

In this chapter, we extend the Hellinger distance approach to general semi-
parametric models (4.1). Roughly speaking, a MHD estimator of 9 in semipara-
metric models (4.1) can be defined as 

0n = Tn(fn) = T ( { / ^ } 4 e e , / „ ) = a r g m m | | / ^ - tf% (4.4) 

where r\n is a suitable estimator of r\. Alternatively, one could also construct an 
estimator of 6 as 

Ufn) = T({ft,h}tee,henJn) = arg min \\fHh
2 - fl% 

t 4€fc),n€/t 

which we will call a minimum profile Hellinger distance (MPHD) estimator. 
Both types of these estimators will be investigated in this chapter. The main 
question is whether or not the proposed estimators retained any of the desir­
able properties of MHD in fully parametric models. In particular, we wish to 
examine the following important questions. Are the proposed estimators consis­
tent and asymptotically normal? Do they possess similar efficiency properties 
as in the parametric case? Are the proposed estimators still robust? What 
about other properties such as adaptivity? How does the presence of nuisance 
parameter affect the overall process of construction and efficiency? Clearly, it 
is of theoretical and practical interest to investigate above issues. The main 
purpose of this chapter is to attempt to answer these questions systematically. 
This chapter is organized as follows. Sections 4.2 and 4.3 discuss the efficiency 
of the MHD estimator (4.4) in parametric and semiparametric senses, respec­
tively. Minimum profile Hellinger distance (MPHD) estimator is constructed 
in Section 4.4. Section 4.5 studies robustness properties of the estimator (4.4). 
Simulation studies, examples and concluding remarks are given in Sections 4.6, 
4.7 and 4.8, respectively. 
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4.2 Efficiency in the Parametric Sense 

In this section, we first give a general result on the asymptotic efficiency of 
MHD estimators in the parametric family (4.2). Beran (1977) has shown that 
the MHD estimator defined by (4.3) is efficient and robust, at least for con­
tinuous distributions with compact support. Stather (1981) extended Beran's 
results to the case of discrete distributions and continuous distributions with 
infinite support. Brown and Hwang (1993) examined a MHD estimator using 
a histogram type estimator for fn. Tamura and Boos (1986) considered MHD 
estimators for multivariate location and scale models. In the next theorem we 
obtain the efficiency of the MHD estimator defined by (4.3) in a more general 

1/2 

sense; i.e., without assuming any specific form of /„. Let Sg = fe' and suppose 
for 9 £ 0 , there exist a p x l vector SQ(X) with components in L2 and a p x p 
matrix sg(x) with components in L2 such that for every p x l real vector e of 
unit Euclidean length and for every scalar a in a neighborhood of zero, 

se+ae{x) = se(x) + aeT' se(x) + aeTua(x) (4.5) 

sd+ae(x) = se(x) + asd(x)e + ava(x)e, (4.6) 

where ua(x) is p x 1, va(x) is pxp, and the components of ua and va tend to zero 
in L2 as a —> 0. The family {fe : 6 G 0 } is called identifiable if Q\ ^ 62 implies 
hi 7̂  fe2

 o n a s e t OI" positive Lebesgue measure. For notational simplicity, we 
p 

write |(ai,...,Op)| = £ l a i l -
i=i 

Theorem 4.1. Suppose that the family {ft : t G 0 } is identifiable with 0 
being a compact subset of Hp. Further suppose that X±,..., Xn ~ ' fg(x) with 
9 G int(Q), t i—>• st = fs is continuous in Li, (4-5) and (4-6) hold for every 
9 G int{Q), and IQ — 4jsg(x)s'g(x)dx is nonsingular. If a sequence of density 
functions {/„} satisfies, as n —> oo, that 

n1'2 

n1'2 

J(flJ\x)-se{x))2dx-^Q, 

U s6(x)In[X)dX n^soiXi)! 

fl-^f\1(Ux)-fe(x))2dx-^0, 
J s6Jx) 

0, 

s3
0(x) 

then the MHD estimator defined in (4-3) is asymptotically efficient; i.e., 

n 
l/2(T0(fn)-9)^N(Q,I^). 
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Proof. Similar to the proof of Theorem 4 of Beran (1977). • 

R e m a r k 4 . 1 . Suppose fn is the kernel density est imator given by fn(x) — 
n 

-jr—y^Ki^P^1), where \bn} being a sequence of bandwidths such t h a t lim nx^2bn 
n n £^[ n n n—>oo 

= oo and lim nl^b\ = 0, K being a symmetric smooth density wi th compact 
n—>oo 

support, and sn = sn(Xi,X2, ....,Xn) being a robust scale estimator such that 
^^(sn — s) = Op(l) for some positive constant s depending on fg. If the under­
lying model fg has compact support and satisfies certain smoothness properties, 
then Theorem 4.1 holds. This can be seen from Theorem 4 of Beran (1977). 

The asymptotic variance of T0(fn) attains the Fisher information Ig in para­
metric models (4.2), and therefore T0(/„) is an efficient estimator. For semipara-
metric models (4.1), the lower bound of the asymptotic variance IQ1 is attained 
only when a sequence of very good estimators r\n of 77 is available. This result 
is given next, and it is an extension over previous results given for parametric 
models. Let us denote Ie(V) = / ( ^ # * ) ( ^ ^ f fe,v dx. 

Theorem 4.2. Suppose that 

(i) Xi,... ,Xn
 l '~ ' fgtV G {ftjh : t G 6 , h G H} with 9 G int{&), where © is a 

compact subset of W and H is an infinite dimensional set. 

(ii) For every r\ G H, the family {ftifj : t G ©} is identifiable, 11—> st = ft'v is 
continuous in L2) and (4-5) and (4.6) hold for st and for every t G int(Q). 

(iii) {/n}neiN is a sequence of estimators of fg:V based on (Xi,... ,Xn) such 
that for some r > 1/2, 

J (flJ2{x) - s0(x))2dx = 0P(n-r), (4.7) 

i1'2 fl-^TT-(fn(x) - fg,v{x))2dx = oP(l) , (4.8) 
J sg\x) 

•if^yU^-l±^)=oP(l). (4.9, 

(iv) {r]n} is a sequence of estimators ofr\ such that with'st = ft^n and's't = §i^t 

sup f(st(x) - st{x)fdx = 0P(n-r), (4.10) 
tee J 
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J(K(x) - stn{x)fdx = oP(n-^-% (4.11) 

J K(x)stn(x)dx = oP(n-1'2) (4.12) 

for any sequence of random variables {tn} such that tn = 9 + Op(n~r/2). 

Then the MED estimator defined by (4-4) satisfies 

en-e = if\v) ^ £ ^ P Q + oP{n-^). (4.13) 

Consequently, 

nUSe 

n1/\en-e)^N(o,ii1(v)). 

Proof. Note that 9n is a minimizer of the function dn and 9 is the unique mini-
mizer of the function d, where 

*.(*) = Wflil - fn/2\\ and d(t) = Wftf - f%\\, t € G. 

Observe that 

<£(t) = 2-2jf}£{x)fi'*(x)dx and d2(t) = 2 - 2 J ftfwfi* (x) dx. 

Since ft'n is continuous in t in L2 by assumption (ii), dn and d are continuous 
and 9n is well defined. By Minkowski inequality 

\dn(t) ~ d(t)\ < WfUl - &> - ftf + f%\\ < WfUl - O + \\fW - f%\\. 

Thus, by (4.7) and (4.10), we obtain 

A„ := sup \dn(t) - d(t)\ = 0P{n-r'2). (4.14) 
tee 

We have from (4.5) that 

d\t) = \\st - a,||2 = \{t - 8)TIe(v)(t -9) + o(\\t - 0||2) 

and therefore d{t) > c\t — 9\ for some positive constant c and for all t close to 
9. The preceding result and the continuity of d show that 

4>{s) >cs, 0 < s < 5, (4.15) 

79 



for some 5 > 0, where <f> is given by <f>(s) = inf d(t), s > 0. Next we can 
tee,\t-6\>s 

show that the events {\9n—9\ > s} and {An < cf>(s)/2} are disjoint for 0 < s < 8. 
Indeed on their intersection we can conclude that dn(6) < d(9)+(f)(s)/2 — <j)(s)/2 
and dn{9n) > d(6n) - (f>(s)/2 > 4>(s) - 0(a)/2 = 0(s)/2, and therefore dn(d) < 
dn{9n), which yields a contradiction to the definition of 9n. Thus by (4.15) we 
have for all e > 0, 

P{\0n ~0\> en-r/2) < P(An > (/)(en-r/2)/2) < P(A n > cen-r/2/2). 

This and (4.14) establish that 

en = 9 + 0P{n-r/2). (4.16) 

As a consequence of (4.5), (4.7) and (4.16) we obtain 

II fV2 _ fV2 II < || rl/2 _ ,1/2,, ,, ,1/2 _ ,1/2,, 

= 0P{n-r'2) + 0P{\\6n-e\\) (4.17) 

- 0P(n-r/2). 

It follows from (ii) that J stft^ (x)dx = 0 for all t G int(0) and that the 
map t i—• J'stfn (x) dx is differentiable at each t G int(@) with derivative 
J%(x)fJ (x) dx. Since 0n maximizes this map, we see that J%n{x)fn (x)dx = 
0 on the event that 9n is an interior point of 0 . This event has probability 
tending to one since 6n is a consistent estimator of 9 G int(0) as shown in 
(4.16). On this event we also have / senfe

,
nri(x) dx = 0 and thus 

~ J sen(x)fn/2(x) dx = J fien(x)-sen(x)]fn/2(x) dx = J sQn{x) fllfa) dx+Rn, 

where 

Rn = J [sen(x) - seM [flJ2{x) - flUix)] dx. 

It follows from (4.11), (4.17) and Cauchy-Schwarz inequality that 

l*»l < I f e - B9J • \\flJ2 - flUW = op(n-^»2)Op(n^) = oP(n^2). 

The preceding result and (4.12) yield that 

f s9n{x)flJ2{x)dx = oP{n-1'2). (4.18) 

Note that 
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/ sdn{
x)fn/2{x)dx 

= ]sen{x)ifln'\x) - se{x))dx - J sgn(x)(sgn(x) - se{x))dx <4-19) 

= h-12, say. 

Then from (4.5), (4.6), (4.7) and (4.16) we obtain 

h = J Sg{x)(f^2(x) - Sg(x))dx + I (sgn(x) - Sg(x)) {^(x) - Sg(x))dx 

= f se{x)flJ\x)dx + 0(\\sdn -se\\- | | # 2 - se\\) 

= J se{x)flJ2{x)dx + 0P{n-r) 

= Jse(x)f^2(x)dx + oP(n-1/2) 

(4.20) 

h = / Sg(x)(sgn(x) - Sg(x))dx + / (sgn(x) - Sg(x))(sgn(x) - Sg(x))dx 

= [\ig(r,){dn ~e) + oP(\en - e\)] + oP(\\en - e\\2) 
= \ig(v)(en - e) + oP(\en - e\) 

(4.21) 
Equations (4.18)-(4.21) give 

6n - $ = AI6-\rj) J sg(x)f^(x)dx + anJ se{x)flJ2{x)dx + oP{n-1'2) (4.22) 

P 
with an —* 0 as n —» oo. Applying the algebraic identity 

&V2 _ ai/2 = ( 6 _ G)/(2a1/2) - (6 - a)2/[2a1/2(&1/2 + a1/2)2] 

for b > 0 and a > 0, we have by assumption (iii) that 

n1/2 j ' Sg(x)fl
n
/2(x)dx = n^2Jsg(x)[f^2(x)-Sg(x)]dx 

= n1'2 j J^[fn(x) - s2
e(x)]dx + Rn 

— n 

- r . l /2 1 y-^Sg 

= n^-^-Y,V^ + 0pM + Rn 
2n^se 
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with \Rn\ < n1/2 J §^)[ /n(z) - s2
e(x)]2dx 4 0. By the CLT, the asymptotic 

distribution of n 1 / 2 Q E ^ P Q ) is iV(0, \h(r))). Therefore, (4.22) and (4.23) 

give the desired result (4.13). This also shows that the asymptotic distribution 
otn1/2{9n-9)isN{Q,I,\r,)). D 

Remark 4.2. When kernel density estimators /„ and r\n are used to estimate fe 
and r], respectively, Theorem 4.2 holds for semiparametric models fe}„ of certain 
form. The symmetric location model is one such particular family and it is 
shown that conditions of Theorem 4.2 are satisfied for the preceding family, see 
Section 4.7. 

Corollary 4.1. Suppose that the conditions (i) and (ii) in Theorem 4-2 hold, 
{/njneiN is a sequence of estimators of fojV based on (Xi,... ,Xn) such that 
f \fn (x) — f6 (x)) dx = Op(n~l), and {rjn} is a sequence of estimators of 

rj such that sup/(/ t^r(:c) — fl'^{x))2dx = Op^'1). Then the MHD estimator 
tee 

defined by (4-4) is n1'2-consistent; i.e., n1^2(9n — 0) = Op(l). 

Remark 4.3. The conditions stated in Theorem 4.2 are typical assumptions 
made in this context (see, e.g., Beran, 1977) and are easily satisfied by many 
families, except the conditions (4.11) and (4.12) in assumption (iv). The condi­
tion (4.12) is analogous to but stronger than condition (2.3) in Schick (1986) if 
r < 1. If it is known that 9n is an n1,/2-consistent estimator of 9, then (4.12) can 
be weakened to hold only for sequences {tn} such that n1//2(£n — 9) = Op(l). 
For the mixture model 6f(x) + (1 — 6)g(x), in Chapter 2 we constructed a MHD 
estimator 0n and proved that n1/2(^n — 6) is asymptotically normal. But to 
weaken the condition (4.12) further, a general result about the boundedness of 
nxl2{Qn — 6) for the MHD estimator 9n may be needed. 

Remark 4.4. The condition (4.11) in some sense requires the rate of conver­
gence of rjn to n to be of order op(n~^~r^2). This could be satisfied by certain 
nonparametric estimators. The above convergence requirement of rjn, for ex­
ample, is fulfilled by most kernel density estimators of r\ in the mixture model 
9f{x) + (1 — 9)g{x) considered in Chapter 2 with rj = (/, g). In fact, in Chapter 
2 we have shown that f(stn(x) — stn(x))2dx = Op(n~ll2) (see (2.24) and the 
argument given just below (2.29)). But (4.12) was not satisfied by the MHD 
estimator 9n constructed in Chapter 2. However, if we change the setup of the 
model somewhat (in other words, we regard the data from the mixture as the 
whole sample, and the estimators of the two components are based on other re­
sources with sample sizes converge to infinity faster than that of the size of the 
sample from the mixture) then faster convergence rate of the estimators of the 
two components can be obtained and the lower bound /̂ "1(?y) can be achieved; 
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see Theorem 2.4 in Chapter 2. However, the unknown feature of 77 will usually 
bring an extra variance to the estimator. In fact, one cannot expect in most 
cases that the lower bound of the asymptotic variance for semiparametric mod­
els (4.1) to be the same as that for the parametric models (4.2): the former is 
always larger than the latter. 

Remark 4.5. The property that one can estimate 6 as well asymptotically not 
knowing r\ as knowing 77 is so called adaptivity. A sequence of estimators {6n} 
is adaptive if and only if, under f$ntV, 

whenever nl/2(9n — 0) = Op(l). The preceding expression is equivalent to 

1 n 

nl'\en - e - -Y,tfWkr,&i)) = Mi), 
• 1 

where lgtV = log fgtV and lo,v = j%le,ri- This follows from Theorem 6.3 of Fabian 
and Hannan (1982) and Theorem 6.1 of Bickel (1982) and the note thereafter. 

Remark 4.6. Given any n^-consistent estimator, Bickel (1982) used sample 
splitting techniques to give a general procedure for constructing adaptive esti­
mators in semiparametric models (4.1). Schick (1987) gave sufficient conditions 
for the construction of efficient estimators without sample splitting, which are 
stronger and more cumbersome to verify than the necessary and sufficient con­
ditions for the existence of efficient estimators which suffice for the construction 
based on sample splitting. Forrester et al. (2003) used a conditioning argu­
ment to weaken those conditions of Schick (1987) and showed that the resulting 
weaker conditions reduce to minimal conditions for the construction with sam­
ple splitting in a large class of semiparametric models and for properly chosen 
estimators of the score function. Theorem 4.2 in fact gives sufficient conditions 
for the estimator 9n of 6 defined in (4.4) to be adaptive. If the MHD estimator 
has been proved to be n1,/2-consistent (as the cases in Chapters 2 and 3), we can 
use one of the procedures given above to construct adaptive estimators based 
on the MHD estimator. 

4.3 Efficiency in the Semiparametric Sense 

The requirement of adaptivity is much stronger than efficiency. Also it is more 
reasonable to use the efficiency in the semiparametric sense, instead of the usual 
parametric sense. Next we construct non-adaptive but efficient estimators in 
the semiparametric sense (for the definition see (4.30) below). 
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In order to investigate the efficiency for semiparametric models (4.1), we 
first need to introduce a lower bound of the asymptotic variance under these 
models. For simplicity, suppose the parameter space is a compact interval 0 = 
[a,b] C W. The results could be easily extended to a more general space. 

Recall that the root-density f9' is said to be Hellinger-differentiable at 
(0,7]) € QxHii there exists pg e L2 and a bounded linear operator A : L2 —> L2 

such that 

|0„ - <>l + II*' 2 - v 1 , 2 \ \ 

for all sequences {9n} C 9 and {r]n} C H such that 9n —> 9 and \\r)l'2—rill2\\ —> 0 
as n —• oo. If 77 is known, then pg is typically just the usual parametric score 
function lg^ for 9 times \fgri . The operator A can be regarded as yielding a 
"score for 77". Here we use the Hellinger perturbations to define the differen­
tiability. The rationale for choosing Hellinger differentiability here because it 
is consistent with previous sections and it nicely ties in with local asymptotic 
normality (LAN). Define classes 

B = {0eL2: Hn1 /2^7 2 - r/1/2) - 0\\ -> 0 as n -> 00 
for some sequence {77n} C 7^}, 

(4.25) 

yl = {a e L2 : a = hpg + Aj3 for some heR, 0 € B}, (4.26) 

and make the following assumption: 

ASSUMPTION S. The set B defined in (4.25) is a subspace of L2 and {A0 : 
0 £ B} is closed. 

It is known that finding the "information" for estimation of 9 in the presence 
of nuisance parameters requires orthogonal projection of the score for the pa­
rameter of interest onto the space of nuisance parameter scores {A0 : 0 € B}, 
thereby yielding the "effective" component of pg orthogonal to the nuisance 
parameter scores. Under ASSUMPTION S, there exists a 0* E B minimizing 
\\pg - A0\\, i.e., 

0* = argmin||p0 - A0\\. (4.27) 

Here 0* represents a "least favorable" or worst possible direction of approach 
to 77 for the problem of estimating 9. Let 

S*(x,9,r1)=pg(x)-A0*(x) (4.28) 

and 
/* = 4| |S*(-,M)||2 . (4-29) 
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Assume that i* ̂  0. Obviously, /* < Ig (defined just above Theorem 4.2), and 
S* _L A(3 for any f3 G -6, where a±f3 denotes f a(x)(3(x)dx = 0. Under some 
regularity conditions, Begun et al. (1983) proved that J"1 is the achievable 
lower bound of the asymptotic variance. Informally, an estimator 9n of 9 is said 
to be asymptotically efficient in the semiparametric sense if 

n 
1/2 (en-6)-^N(0,I-1). (4.30) 

This definition can be made precise in the sense of a convolution and local 
asymptotic minimax (LAM) theorem, as is explained in Begun et al. (1983). 
We now construct an estimator of 9 based on the Hellinger distance, which 
achieves the semiparametric efficiency bound in the sense of (4.30). 

When j] is known, the maximum likelihood method can usually be reduced 

to solving the score equation ^2,le{Xi) = 0. A natural generalization of esti-
i = l 

mating the parameter 9 in semiparametric models (4.1) is to solve 9 from the 

efficient score equations ^k^iX^) — 0, where IQ;V is the efficient score function 
«=i 

for 9 under the semiparametric sense, i.e., the projection of IQ^ onto the orthog­
onal complement of {Af3 : f3 E B}. We can substitute an estimator r\n for the 
unknown nuisance parameter 77, which results in solving the equation for 9 from 
the equation Ylh^n{Xi) = 0. Van der Vaart (1998) proved that such an esti-

i = l 

mator of 9 is asymptotically efficient under certain assumptions. Intuitively, we 
could make the definition of MHD estimator accommodates to semiparametric 
models similarly. Prom (4.4) we have that 9n = argmax J fg„n(x)fn (x)dx, or 

equivalently (in most situations) 9n solves Jpe[x)\v=Vnfn (x)dx = 0, where pg 
is given by (4.24). We now propose a MHD estimator of 9 as the solution of 

J S*(x,t,Vn)rt2{x)dx = 0, (4.31) 

where S* is given by (4.28). Suppose the solution exists and we denote it as 
9n. A similar estimator was investigated by Huang (1982) in a different context. 
He proved that his estimator is efficient under certain conditions including the 
consistency of the estimator. Schick (1986) pointed out that proving consistency 
of the estimator may pose difficult mathematical problems and therefore limit 
the use of Huang's estimator. Next we prove the consistency of the estimator 
9n under some reasonable conditions. 

Lemma 4 .1 . For pe, A, f3 G B and a G A defined in (4-24), (4-%5) and (4-26), 

we have pe-^-fl^, Ap±$* and a±fg^. 
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|| . 1 / 2 _ f l / 2 _ , f l / 2 _ i / 2 N | | 

Proof. Since " ^ J°Z2 , v ;" -> 0 and the definition of (3 imply that 
IIW -rr/2ll 

n 1 / 2 ^ 2 - ^i/2|| - H0H, we have \\n^{fl^ - /££) - n^A^J2 - vW)\\ - 0. 
Further, 

IK / 2( /£-0-^ll 
< h1/2(flZ ~ O ~ "1/2A(rj/2 - V

1/2)\\ + \\A\\ • \\nW(rj/2 - V
1/2) - P\\ 

- 0, 

and thus n\\fl'l ~ & = 0(1) a n d h1/2fl!l ~ WW ~ W^f^W - 0- This 
gives 

\\nll\fl'l ~ flit) ~ A/3||2 

= \\n1,2fZ - ^ l l 2 + h^ftfW2 ~ 2n < / # , fZ > +2nV> < / # , Af> > 

= 2" < 4;2> fi!n - fill > +2nl/2 < C w > +°(!) 

-> 0. 

Hence, 

-i/2 < c /j/; - / ^ >+< ic Ap > 
_ 1 1 / 2 < fl/2 _ fl/2 ,1/2 _ ,1/2 f 1/2 A B 

-» • 0 

1 /*? 1 / 9 

and thus Afl-Lfg'v . Similarly, one can prove that pgl.fg' by the definition of 

PQ. Furthermore, a = (hpe + Af3) _L fe
2. D 

Theorem 4.3. Suppose that (t, rj1^2) i—• S*(-, t, n) is continuous in L2 at (t, r]1^2) 

for any t e int(Q), \\fn -fj>^\\ —> 0 and ||r?n -?71/'2|| —> 0 as n -> oo. Further 

suppose that equation JS*(x,t,rj)f0' (x)dx = 0 /ias unique solution in t. Then 

the MHD estimator defined in (4-31) satisfies 9n —• 0 as n —> oo. 

Proof. First suppose that ||/„ — fJ 11 —>- 0 w.p.l and \\r)n — ?71//2|| —> 0 w.p.l, 

as n —» oo. Lemma 4.1 gives J" £?*(#, 9, Tj)f0 (x)dx = 0; i.e., t = 9 is the unique 

solution to the equation J S*(x, t, rj)fe' (x)dx = 0. Note that 9 and 9n satisfy 

0 = j[S*(x,9n,Vn)f^2(x)-S*(x,9,V)f^(x)]dx 
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= J [S*(x,9n,Vn) - S*(x,6n,V)] fn/2(x)dx 

+ J S*(x, 9n, V) [flJ\x) - f${x)]dx (4.32) 

+ 1 [ST(xt9n,v) ~ S*(x,9,r])}f1
e;v

2(x)dx. 

In view of the compactness of 0 , the continuity of (i, r/1'2) i—» £>*(•,£, ij) in L^ 
implies that \\S*(-,9n,rjn) — S*(-,9n,7])\\ —> 0 as n —• oo and that sup||*S'*(-, *, 77)|j 

tee 
is bounded. As a result, as n —>• 00, 

I y[S*(z, 0n, r,„) - S'{x, 9n: r))]fV2(x)dx\ 

< \\S*(-X,Vn)-S*(;9n,V)\\-\\fn/2 

< \S*(;9mVn) - S*(-,9m77)11 • ( | | / ^ - fl»\\ + | | / # 

and 

|y5*(x,Lr;)K/2(a;)-/;/2(x)]da;| < \\S*(;9n,v)\\ • ll/^2 - O - 0. 

Thus (4.32) gives 

I [S*(ar, 0B> r/) - S*(x, 9, r])}fl
e^{x)dx -> 0. (4.33) 

Suppose #n -̂ > 9 as n —> 00. By the compactness of 0 , there exists a subsequence 
{9m} C {9n} such that f)m -> 9' ̂  9 for some 0' G 9 as m —> 00. Then (4.33) 
gives that f[S*(x, 0', rj)-S*(x, 9, V)]fff(x)dx = 0, i.e., / S*(x, 9', r,)fl'*{x)dx = 
0 and thus t = 9' is a solution to J S*(x1t,r])fe' [x)dx — 0. This contradicts 

to the uniqueness of the solution, and thus 9n —> 9 as n —» 00. Therefore, the 
solution to f S*(x,t,h)f1/2(x)dx — 0 as a functional of (/, /i) is continuous at 

(/<?,r/> ?7) m the Hellinger metric. As a result, 9n —> # as n —>• 00 for any sequences 

{/„} and {rjn} such that | | /« / 2 - / ^ 2 | | -^ 0 and \\r]l/2 -7?1/2|| -^ 0 as n ->• 00. D 

We now summarize all the conditions needed for the efficiency of the MHD 
estimator 9n defined by (4.31) as follows: 

51. fe,n{x) has compact support, twice absolutely continuous and the second 
derivative f^l(x) is bounded. Further, fJ is Hellinger-differentiable as defined 
in (4.24). 

52. (t,r}l/2) (->• S*(-,t,r}) is continuous in L2 at (t,rj1/2) for any t G int(0); 
equation f S*(x,t,,q)fe,n{x)dx — 0 has a unique solution in t; S*(-,9,rj) is 
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Hellinger-differentiable at (9, n) and J ^S*(x, 9, v)f0,v (x)dx is finite and nonzero. 

S3- | | /y 2 - O - 0 and nW J a(x) {^{x) - )^{x))dx -±> N(0, \\\af) 

as n —• oo for all a G L2 and J" a(x)fe (x)dx — 0. 

S4. ||?7n — 771/2!! —• 0, and S*(-,t,rjn) is well-defined for large n and all 

t € 0 . 

T h e o r e m 4.4. Under conditions S1-S4, any solution 9n of (4-31) is an asymp­

totically efficient estimator of 9; i.e., (4-30) holds for 9n. 

Proof. Similar to the proof of Theorem 5.2.1 of Huang (1982). • 

Remark 4.7. This remark is parallel to Remark 4.6, and we consider the case 
that we only have a n^-consis tency of the estimator 9n of 9 defined in (4.4). 
In this case, we can use one of the procedures mentioned in Remark 4.6 to 
construct asymptotically efficient estimators in the sense of (4.30). The only 
difference from the construction of an adaptive estimator is now we are using 
S* defined in (4.28) instead of pQ. 

Remark 4.8. Consider the estimator 9n defined by (4.4). Suppose that r)n 

is a consistent estimator of r\ in the Hellinger metric, and ft^ is Hellinger-

differentiable for each t G 6 with A = At in (4.24) satisfying sup||A t | | < M for 
tee 

some M > 0. Then the condition (4.10) in Theorem 4.2 could be reduced to 

lk /2-r71/2||2 = 0 p ( O . 

Suppose st is Hellinger-differentiable for each t € B(9, e) with some e > 0 and 
B(9,e) is an e-neighborhood of 9, then there exists a bounded linear operator 
Bt : L2 —> I/2 such that 

\& - st - BttfJ2 - n^)\\ 
—LJ- —> 0 as n —> 00. 

\\rjn - ?7 1 / 2 | | 

The condition (4.11) is now equivalent to, for any tn = 9 + Op(n~r/2), 

oP(n-(^/2) = \\K-stJ = \\BtM
/2- V1/2)\\ + odlv'J2 - V1/2\ 

= ll^fai/2-»/1/2)ll + Mn-r/2), 

and since r > 1/2, equivalently 

\\BtM
/2-V1/2)\\ = oP(n-^y>). 

Therefore, if 
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||2U = OPK-1/*) 

for any tn = 9 + 0P(n'r'2), then (4.11) holds. 

4.4 Minimum Profile Hellinger Distance Estimation 

The MHD estimator defined by (4.4) in semiparametric models (4.1) is based 
on minimizing the Hellinger distance between a density estimator fn and the 
parametric family fe>rin, i.e., the nuisance parameter r\ in fgtT] is replaced by an 
estimator r\n. This approach is in line with Beran's (1977) original mechanism 
of deriving MHD estimators. Intuitively, one could also define a MHD estimator 
of 8 in semiparametric families (4.1) via profiles. 

For any density function g, define a functional r){t, g) by 

V(t,g) = aignfa\\fff-g1'2\\. (4.34) 

Set 

and define the MHD functional Ti(g) as 

Tx{g) = argmin||st)S - gl/2\\ = argmax < st,a, g1/2 > . (4.36) 

Here we don't require that ftlh is a density function for any h £ H, but we 
do require that the second equality in (4.36) holds for convenience. In case 
that the second equality does not hold, we can use the r.h.s. of (4.36) as the 
definition and the results of this section still hold. We call \\st,g — fif1/,2|| the "pro­
file" Hellinger distance between ft^ and g. Now the minimum profile Hellinger 
distance (MPHD) estimator is defined as T\{gn), where gn is an nonparametric 
estimator of g based on observed data Xi,..., Xn. Clearly, T\{hg>r)) = 9 uniquely 
if {ft,h}teG,heH is identifiable. Assume that T\(g) G int(6) is uniquely defined 
and Hellinger continuous at g in the sense that T\{gn) —> T\(g) for any sequence 
{flVijneiN such that \\gj — #1//2|| - * 0 a s n - > o o . Assume further that for any t 
in a small neighborhood of 7\ (g) and any / l i n a small Hellinger neighborhood 
of g, the map t t—• stjh satisfies (4.5) and (4.6) with continuous gradient vector 
stth and continuous Hessian matrix stth- Let 

H(t,g)=<st,g, gl'2>. (4.37) 

Then H(T\{g),g) = 0. Assume that {gn}n&^ is a sequence of estimators of g 

such that \\gn — gl^2\\ ->• 0 and M(gn,g) —>• 0 as n —> 00, where M is some 
metric. Thus, there exists a version of {gn}, defined on a suitable probability 
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space, such that Ti(gn) —> T\(g) and T\(gn) € int(0) w.p.l and 

0 = HpiisnlgJ-HiT^g) 
= [HiT^gJ - Hfriglgn)] + [#(?!(<?), <?„) - H^g)^)]. 

Since the map 1i—> st)/, satisfies (4.5) and (4.6), H(t, h) is differentiable in t with 
derivative 

H(t,h)=<8tji}h
1'2> 

that is continuous in t. Suppose that for any t in a small neighborhood of T\(g), 
H(t, h) is continuous at h = g w.r.t. metric M. Then 

= ( T i O / n ) - ^ ) ) / Hfcig)+«&(&)-Tiig^gjdu. 
Jo 

Suppose further that there is a tpg such that < ifjg, g
1/2 >= 0 and 

HiT^gJ-HpiigU) = < if,g, glJ2 - g1'2 > +o{\\g1
n<

2 - <?1/2||) (4.38) 

for any sequence {gn}neN such that \\gn' — g1^ —»• 0 as n —> oo. If < 
sTl(fl)9, (j1/2 > is invertible, then we have 

Tr(gn) - ^(9) = - ( < S r i to ) j, <?1/2 >"J +o(l)) < V>9, </n/2 - <?1/2 > 
+0( lbn / 2 -^ / 2 | | ) , 

i.e., the MHD functional 7\ is Hellinger differentiable provided that H^H < oo. 
If gn satisfies 

HiUglgn) - HiTM.9) = \ E ^ T ^ ) + M"" 1 ' 2 ) , (4-39) 

then 

U9n) -T1(g) = -(< sTl{9),g, gW >"* +o(l)) ± £ ^ f y + M*" 1 ' 2 ) , 

and therefore the asymptotic distribution of nl/2(Ti(gn) —Ti(g)) is normal with 
mean zero and variance £ defined by 

S = \H-\T1(g),g)<^g,^>H-\T1(g),g) 
= I < %to),s> 91/2 >'< V>9> Vg >< STXWJ, 91/2 > _ 1 • 

With 6:=Ti(g), note that 
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H(T1(g),gn)-H(T1(g),g) 

= < S0,9n, 9n2 > - < se,g gl/2 > 

= 2 < se,g, g\!2 - g1'2 > + < se,gn - s0>g, glJ2 - g1/2 > 

+ < setgn, 91/2 >-< gl/2, h,g > 
= 2 < se,g, glJ2 - g1'2 > +[ < se,gn, g1'2 >-< glJ\ s9,g > ] 

+0(\\se,9n-seJ-\\g1J2-g1/2\\)-

ii -P 

So if \\se,gn - sg>g\\ -> 0 and 

< se,9n, 9l/2 >-< 9lJ2, se,g > = oP{\\gW - gV*\\), (4.41) 

then ipg = 2sTl(g),g- These results are summarized in the next theorem. 

Theorem 4.5. Suppose that 
(i) Ti(g) e int(@) is uniquely defined and Hellinger continuous at g. 
(ii) For any t in a small neighborhood ofTi(g) and any h in a small Hellinger 

neighborhood of g, the map t \-> st,h defined in (4-35) satisfies (4-5) and (4-6) 
with continuous gradient vector stth

 and continuous Hessian matrix s\h; < 
STi(g),g, g1^2 > is invertible. 

(in) For any t in a small neighborhood ofTi(g), H(t,g) defined in (4-37) 
satisfies (4-38) with < ipg, g1/2 > = 0 and \\tpg\\ < oo, and the derivative H(t,h) 
is continuous at h = g w.r.t. some metric M. 

(iv) {#n}neiN is a sequence of estimators of g such that \\gn — g1/,2|| —> 0 

and M(gn, g) —» 0 as n —> oo, and satisfies (4-39). 

Then 7\ is Hellinger differentiable and the asymptotic distribution ofnl^2{Ti{gn) 
—Ti(g)) is N(0, E) with variance matrix E defined by (4-40)- Furthermore, if 

gn satisfies (4-4V and pTj.(s),gn
 — S6,g\\ —* 0, then the above result holds with 

fg = 2sTl(9),g. 

Remark 4.9. Condition (4.38) requires in some sense that H defined in (4.37) 

is Hellinger differentiable. In most cases, < ipg, gn — g1^2 > = ^ Z^2 iAon ^ 

op(n_1/'2) (as shown in (4.23)). Therefore, it is reasonable to assume that both 
(4.38) and (4.39) hold. The example on symmetric location models given in 
Section 4.7 satisfies the conditions of Theorem 4.5. 

In what follows, we consider the case that g = fe^. We suppose that 

Xi,..., Xn ~ ' fgtV, and fn is a nonparametric density estimator of fe^ based 
on observed data. Then a MPHD estimator is T\(fn). Theorem 4.5 investigates 
the asymptotic normality of MPHD estimator Ti(/n). In order to see the effi-
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cient of Ti(/n) in the semiparametric sense, we need to examine the achievable 
lower bound of the asymptotic variance, i.e., the explicit form of /* defined by 
(4.29). The next theorem achieves this goal. For notational convenience, we let 
for t G 0 , 

Vt = V(t, So*) = argmin| | /^2 - / ^ 2 1 | = argmax < fff, fff > . (4.42) 

Obviously, r/g = rj if the models {ft,h}tee,hsn is identifiable. Define 

Wi = {rjt € H : ng = rj, t (—> / t ̂  is differentiable in L2 at point t = 9}. 

Theorem 4.6. Suppose that {ft,h}tee,h€H is identifiable and st = ftjVt is dif­
ferentiable in L<i at point t = 0 with gradient sg, where nt is defined by (4-42) • 
Then rjt is a least favorable curve among 7i\ in the sense of (4-27). Furthermore, 
I* = 4 < sg, SQ > with J* defined by (4-29). 

1/2 

Proof. Clearly, r\t € "Hi. For any other rfu G 7ii, let Sit = ft'Vlt
 a n d S\g be the 

gradient of s\t at point t = 9. By the definition of rjt in (4.42), 

< st ~ Su, sg > > 0 for all t € O. (4.43) 

Note that 

< Sg+t - Sg, Sg> = < se+t, Sg > - < Sg, Sg > 

= < Sg+t ,Sg > -1 

= < Sg+t, Sg > -^(< Sg+t, Sg+t > + < Sg, Sg >) 

= —o < Sg+t — Sg, Sg+t — Sg > 

= - \ t T <Sg, S9
r>t + 0(\\t\\2). 

Similarly, < si(g+t) — S\g, S\g > = —\ tT < s\g, s\0 > t + o(||£||2), and thus we 
obtain 

< Sg+t - Si(0+t), Sg > 

= < Sg+t - Sg, Sg> - < S1{g+t) - SW, Sld > (4.44) 

- - \ tT( < se, $ > - < s18, sjg >)t + o(\\t\\2). 

From (4.43) and (4.44), we have that 

< se, sj > < < sw, sje > . 

Since r)it is arbitrary, this implies that nt is a least favorable curve and by 
definition (4.29) i* = 4 < se, sj >. D 

Remark 4.10. With g — fgjT) and tpg = 2sTl(g),g, the asymptotic variance 
defined by (4.40) is reduced to 
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1/9 1 1 II l 
E = < 80,fe,vi fe,V > ~ < **,/«,„' *«>/M > < S«./M' fo,v > • 

It follows that < so,fe„i fe!v >= ~ 2 < *«./«,,' **./«,.» > (see> e-g-' t t i e s y m m e t r i c 

location models discuss in Section 4.7). Then E is further reduced to E = [4 < 

,̂/fl,T,i ^0,/e,„ > ] = -C"1, Therefore, Theorem 4.5 shows that the MPHD 
estimator is efficient in the semiparametric sense. Theorem 4.5 in a certain 
sense shows the best possible MHD type estimator and gives a set of sufficient 
conditions to achieve this best estimator. Theorem 4.5 also demonstrates when 
an adaptive MHD type estimator exists. If sg,f$iV = ^fo^/C^feii )•> then there 
exists an adaptive estimator. 

4.5 Robustness 

In this section, we examine some robustness properties of the MHD estimator 
9n defined by (4.4). As many authors have pointed out, the robustness of 
an estimator would be ideally be studied by considering what happens to the 
distribution of the estimator as the distribution of the data is varied. 

Prom Theorem 4.2 it follows that the estimator 9n defined in (4.4) is contin­
uous as a functional of /„ and rjn. A small Hellinger-metric change in /„ and 
rjn induced by data recording errors or other mechanisms will typically induce 
correspondingly a small change in the value of 9n by virtue of the continuity of 
this estimator. 

To this end, we suppose that the true density of data is not strictly from 
the class defined in (4.1). Instead, we suppose that Xi,..., Xn ~ g with g in 
a small Hellinger neighborhood of fgtV, i.e., ||g,1/'2(x) — fe' (x)\\ < e for some 
positive small e. Then the actual parameter estimated is 

9 = T0(g) = argmmy (/^(x) - g^2(x))2dx, (4.45) 

where To is in fact defined in (4.3). Suppose that {gn} is a sequence of estimators 
of g based on (Xi , . . . ,Xn), and rjn is a sequence of estimators of r\ that may 
based on the same data or from other resources. Define a MHD estimator 9n of 
9 as 

0n = Tn{gn) = a r g m i n | | / ^ - 9n
l2\\ (4.46) 

where Tn is defined in (4.4). Clearly, definition (4.46) is a generalization of 
(4.4). The next theorem shows that the estimator 9n defined in (4.46) is still 
-y/n—consistent even when the actual density is not from the class defined in 
(4.1), exhibiting a desirable robustness property of 9n\ i.e., 9n is not affected by 
a small Hellinger perturbation of the density of data. 
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Theorem 4.7. Suppose that 

(i) 9 defined in (4-4°~) ^s unique and 6 € int(Q), where Q is a compact subset 
ofW. 

(ii) For every TJ EH, the family {ftiT1 '• t G 0 } is identifiable, 1i—> st = ft'v is 
continuous in L2, and (4-5) and (4-6) hold for st and for every t 6 int{&) 
with f so(x)g1/2(x)dx nonsingular. 

(iii) {gn}n£N is a sequence of estimators of g based on (Xi,..., Xn) such that 
for some r > 1/2, 

/ (9n/2(x) ~ 9l/2{x))2dx = 0P(n-*), (4.47) 

n1/2 j ^ | {gn(x) - g(x))2dx = oP(l), (4.48) 

^JM9Mdx-^M?=°M- (4-49) 

(iv) {r)n} is a sequence of estimators ofrj such that with'st = ft^n and'st = j^st 

sup f(st(x) - st(x)fdx = 0P{n-r), (4.50) 
tee J 

/ & . ( * ) - hnix))2** = oP(n-^) (4.51) 

J[K{x) - StM}91/2Wdx = 0p(™_1/2) (4-52) 

for any sequence of random variables {tn} such that tn = 9 + 0P(n~r/4). 

Then the MED estimator defined by (4-46) satisfies 

se{x)g^{x)dx\-1 -^^(Xj) + oP{rr^). (4.53) 

Consequently, 

n1'2 (9n -0)-±4 N(QA~l J pg{x)pT
g{x)dx), 

where 

Pg(x) = -[j'se(x)g1/2(x)dx] heix). (4.54) 
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Remark 4.11. Theorem 4.7 is parallel to Theorem 4.5. Both are for a general 
underlying density function g (may not be exactly the semiparametric model 
/#,,,). Theorem 4.5 discusses the asymptotic efficiency of the MPHD estimator of 
9 in semiparametric sense, while Theorem 4.8 examines the asymptotic efficiency 
of the MHD estimator of 9 in parametric sense (adaptivity). As discussed in 
Remark 4.10, the MPHD estimator will be reduced to an adaptive estimator if 
it exists. 

Proof of Theorem 4-7. The proof follows along the same line as the proof of 
Theorem 4.2. 

Note that 9n defined by (4.46) is a minimizer of the function dn and 9 is the 
unique minimizer of the function d, where 

dn{t) = | |* - ^ / 2 | | and d(t) = \\st - g1^, t G 6 . 

Observe that 

d2
n(t) = 2 - 2 < si, glJ2 > and d2{t) = 2 - 2 < st, g1'2 > . 

Since t H-> st is continuous in L2 by assumption (ii), dn and d are continuous 
and 9n is well defined. By Minkowski inequality 

\dlit) - <P(t)\ = ( | | * ~ A/2\\ + II* - <?1/2H) • III* - 5n / 2 | | - II* - <?1/2||| 
< (11*11 + lbn/2|| + ||*|| + H^ll) • ||* - gi/2 - * + ^ 2 | | 
< 4(||Si-at|| + | | ^ a - ^ | | ) . 

Thus, from (4.47) and (4.50), we obtain 

An := sup \dl(t) - d2(t)\ = 0P{n-r'2). (4.55) 
tee 

Now define 
(t>(s) = inf d2(t)-d2(6), s > 0. v te&,\t-9\>s w v ' 

If g is a member of models (4.1), then d(9) = 0 and we can follow the same line 
as in the proof of Theorem 4.2 to prove that for some 5 > 0, 

4>(s) > cs2, 0 < s < 6. (4.56) 

If gr is not from the semiparametric models defined in (4.1), then d{9) > 0. Since 
t — 9 e int(O) is the unique maximizer of < st, g1^2 >, we have < sg, g1^2 >— 0 
and < so, g1^ > is negative definite. Then by (4.5) and (4.6), 
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cP{t) - d\6) 
= -2<8t- se, g1/2 > 

= -2(t - of < so, g1/2 >-(t-ef< se, gw >(t-0) + o(\\t - 9\2) 
= {t _ 0)T < _Sgt gl/2 > ( t _ 6) + o ( | | t _ 0||2)> 

and therefore d2(t) — d2(9) > c\t — 9\2 for some positive constant c and all t close 
to 9. The preceding result and the continuity of d show that (4.56) holds. Next 
we can show that the events {\9n — 9\ > s} and {An < </>(s)/2} are disjoint for 
0 < s < 5. Indeed, on their intersection we can conclude that d2

l(9) — d2{9) < 
<j>{s)/2 and d2

n{9n)-d
2{9) > (d2(9n)-d

2(9)) - 0 ( s ) / 2 > <f>{8)-<f>(s)/2 = <f>(s)/2, 
and therefore dn{9) < dn(9n), which yields a contradiction to the definition of 
9n. Thus, by (4.55) and (4.56) we have 

P{\9n ~9\> en~r/4) < P(A n > 0(erTr/4)/2) < P(An > ce2n-r'2/2) - • 0 

for all e > 0. This establishes that 

9n = 9 + 0P{n-r'A). 

It follows from assumption (ii) that < St, st > = 0 for every t E int(0) and that 
j ^ 1/2 

< soni 9n > = 0 on the event that 9n is an interior point of 0 . This event has 
probability tending to one since 9n is a consistent estimator of 9 G int(0). On 
this event we also have < sgn1 sgn > = 0 and thus 

-<S0n, gl/2 > = <sen~ s9n, glJ2 > = < ? „ „ - s6n, g1'2 > +K, (4.57) 

where 
Rn =<son-son, glJ2-91/2> • 

Prom (4.47), (4.51) and the Cauchy-Schwarz inequality , we obtain 

\Rn\ < W^-soJ-Wg^-g^W = op(n-^/2)Op(n^2) = oP{n^2). 

The above result together with (4.57) and (4.52) yield that 

< *en, 9lJ2 > = oP(n-V2). 

Now from (4.6), we have 

op(«~1/2) = < s6n, gT > 
= <se + se(9n -9)+ vn(9n - 9), glJ2 >, 

where the components of p x p matrix vn(x) converge in L<i to zero as n —> oo. 
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Thus, for n sufficiently large, one obtains 

0n-0 = - < s6 + vn, gn/2 > _ 1 < se, gn2 > +oP(n-1/2) 
= - < Se + vn, gxJ2 > - !< so, gl/2 - g1'2 > +oF(n~1/2) . . 
= - < S9i g*» >-*< 89, gX2 - g^ > ( 4 5 8 ) 

+an < s9, gl!2 - gl/2 > +oP(n-1/2), 

where an —• 0 as n —> oo. Applying the algebraic identity 

6V2 _ aV2 = (6 _ a)/(2a1/2) - (6 - a)2/[2a^2{b^2 + a1'2)2) 

for 6 > 0 and a > 0, we have by assumption (iii) that 

n1'* < 89, £'2 - g1'* > = n 1 / 2 / J0L[gn(x) - g(x)]dx + Rn 

f Sg(x) , . . 

7 2^7^)^n(x) + ^ (4-59) 
n1/2 

= w i / 2 
= n • ^ E 4 T O + ^ ( I ) + ^ 

2 n ^ l / 2 

with |i?n| < n1'2 J ^§j§^[gn{x) - g(x)]2dx -^ 0. By the CLT, the asymptotic 
n 

distribution of n1/2(^E-1^2 (^i)) isN(0, J s9(x)sj(x)dx). Therefore, (4.58) and 
i=l 

(4.59) give the desired result (4.53). This result also shows that the asymptotic 
distribution of nll2{Bn - 9) is JV(0,4_1 / pg(x)pj(x)dx) as well. • 

We now consider a special form of contamination. Let the true density 
function be g and the contamination model be gatV = (1 — a)g + auy with uy 

denotes the uniform density on (y — £,y + e) for small e > 0. Here gaiV models 
the situation where a proportion a (0 < a < 1) of outliers located at (or near) y 
occurs in a sample from the density g. Note that the Hellinger distance between 
g^y and g is no more than (2a)1/2, since \\gl(y -g

1/2\\2 < J \ga>y(x) -g(x)\dx = 
f a\uy(x) — g(x)\dx < 2a. Define 

0a,y = T0(ga,y) = a r g m m y (f^x) - g]J2{x)fdx. (4.60) 

The next theorem compares Qa<y with 0 defined in (4.45), which is a generaliza­
tion of Theorem 7 in Beran (1977) to any density function g. 

Theorem 4.8. Suppose that 0 is a compact subset ofW. Further suppose that 
the family {fttV : t G 0 } is identifiable, t t—> st = / t j , is continuous in L2, and 
8 defined in (4-45) is unique. Then 
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(i) lim daiV = 9 for any y. 
a—»0 

(ii) If 6a,y defined in (4-60) is unique for every y, then 9ajV is a continuous 
bounded function of y such that lim 9a^y = 9. 

| j / |->00 

(iii) If 9 € int(Q), (4-5) and (4-6) hold for st = ft'^ and for every t € m£(0), 
and f sg(x)g1/2(x)dx is nonsingular, then for every y 

lima-1(9a:y - 9) = \ f g-1^(x)pg(x)uy{x)dx, (4.61) 

where pg(x) is defined in (4.54) and ke and so are defined in (4-5) and 
(4.6). 

Since Theorem 4.8 holds for any semiparametric model /t)J/, we can replace 
fttV throughout with fttT]n, where r?n is an estimator of n. If further we replace g 

1/2 

with its estimator gn, then Theorem 4.8 holds with st = ft'Vn and corresponding 
g = gn and 9 = 9n defined in (4.46). 

Theorem 4.8 (i) is a special case of the consistency of MHD estimators. A 
more general result than Theorem 4.8 (i) is that the MHD estimator 9n defined 
in (4.46) is robust in the sense that small Hellinger-metric perturbation in the 
underlying density g can only induce small changes in the density estimates gn, 
and this in turn will only lead to small changes in the MHD estimator 9n. 

Theorem 4.8 (ii) represents the effect on MHD estimator (4.46) of adding 
some outliers with large values around y. It shows that for any fixed con­
tamination rate a € (0,1) (even close to 1), MHD estimators based on the 
contaminated data set are close to those based on data sets without contami­
nation for large enough y. This behavior is exhibited in the figures in Chapters 
2 and 3, see particular Figure 3.1. Simulation studies in Section 4.6 further 
demonstrates this fact. 

The limit defined in (4.61) gives the IF (a function of y) of the functional 
9 = T0(g) defined in (4.45) at g, with modifications to Hampel's (1968) definition 
to suit functionals on a space of densities. As discussed above, (4.61) with 
st = ft^n and corresponding g — gn gives the IF of Tn(gn) = 9n defined in (4.46). 
These IFs are generally unbounded, but this does not rule out the robustness of 
MHD estimators, as in the parametric case (Beran, 1977) and in semiparametric 
cases considered in Chapters 2 and 3. In other words, a statistic does not need 
to have a bounded IF in order to be robust, as noted by Beran (1977) and many 
others. As shown in Theorem 4.8 (ii), the so called a-IF a~1(9oliy — 9) is a 
bounded continuous function of y such that lim a~1(90tjy — 9) = 0. Hence the 

| l / | - too 

MHD estimator (4.46) is robust at gn against 100a% contamination by gross 
errors at arbitrary real y. Thus the usage of the a-IF might be better than IF 
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to assess the robustness of statistics in the present context. See Beran (1977, 
pp 456-7) for further discussion on this issue. 

Proof of Theorem 4-8. (i) Denote 

d(t) = WfH2 - 91/2\\ and d*(t) = | | /^2 - g%\\. 

By Minkowski inequality, 

supK(t) - d{t)\ < WgV* - pV2|| < (2a)V2 ^ 0 a s a _ , o. 
tee 

Therefore we have 

da(9) - d(9) -> 0 and da(9atV) - d{9a,y) - • 0 as a -* 0. 

If 6a,y -* 9 as a —• 0, then there exists a sequence {an} such that an —> 0 and 
8an,v —* $ 7̂  9 as n —> oo. It is easy to prove that | |/ t^ — t/;|| is continuous in 
t for any function ip £ L2, and thus d(9anjy) —> d(8 ) as n —> oo. From above 
results, we have dan(9anjy) — dan(9) —> d(0') — d{9) as n —> oo. Furthermore, we 
have dan(9an!y) — dan(9) < 0 by the definition of Qa<y, and hence d(0 ) — d(9) < 0. 
But by the definition of 9 and the uniqueness of it, d{9 ) — d{9) > 0. This is a 
contradiction. Therefore, 6a,y —* 9. 

(ii) Let gatV = [(1 - ajV^Va + a^uj2}2. Since as |j/ | -> oo, 

sup|||/t^
2 - A2|| - ||/^2 - fli5ll| 

tee 
— \\y<x,V ya,y\ 

< [ J \9a,v(x) - gaiV{x)\dx]1/2 

= (4a(l - a))1/4 [ J gll2{x)ulJ2(x)dx] 
1/2 

and 

n - l / 2 1/2..2 

= 2 - 2(1 - a)1 /2 | ftf(x)gW{x)dx - 2a1'* f f^{x)^{x)dx 

+2a1 '2( l _ aji/2 f gV*(x)uy2(x)dx 

- 2-2(l-a)1/2 + (i_a)i/2||/V2_5i/2||2) 

we have for any t€0 

l l / ^ -^ 2 | | 2 -2 -2 ( l - a )^ + ( i _ a ) V 2 1 1 / V 2 _ 5 i / 2 f a s b H o o . ( 4 . 6 2 ) 
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If 6a,y -» d as \y\ —> co, then there exists a sequence {yn} such that yn —>• oo 
and #a>2M —* # 7̂  9 as n —> oo. Prom (4.62), we have as n —• oo, 

1 1 ^ - ^ l l l 2 - 2 - 2(1 - a)1 /2 + (1 - af'VJl - ^ 2 f , 

ll/J? - O 2 - 2 - 2(1 - a ) 1 ^ + (l - af'^Wfl1: ~ ^f- (4-63) 

Since 1 1 1 / ^ f l - g l U \ \ - \ \ $ * - g a { L \ \ \ < \ \ f s i l n , „ - / ^ J | H 0 by the continuity 
1/2 

of 5t = ft^ in L2, we have 

Wfl!L» - ^ i l l 2 - 2 - 2(1 - a ) 1 ^ + (i - a)i/»| |/VJ - ^ f . (4.64) 

By definition, H / ^ ^ - #a{yj| < \\f^ - glfin\\. This together with (4.63) and 

(4.64) yield ||/Y2 - gxl2\\ < \\f^ - g1/2^ But by the uniqueness of 9, one has 

11/!/2 - 91/2\\ > \\fifn - 91/2\\- This is a contradiction. Therefore, da,v -»• 0 as 

M -»• oo. 
Note that | | ^ + < 5 - £a2||2 < / |^a,i;+*(») - 9a,y(^)|^ = a J \uy+d(x) -

uy(x)\dx = a5/ e —>• 0 as 5 —>• 0. Hence ?/ i—>• ^ ^ is continuous in L2. Since 
the functional T0 in (4.60) is continuous at ga>y in the Hellinger topology (see 
Theorem 1 of Beran (1977)), one has that 9a>y+s —»• ^ajy as 5 —> 0, i.e. 9a^ is a 
continuous function of y. The boundedness of 9atV follows immediately. 

(iii) Obviously Theorems 1 and 2 in Beran (1977) hold. As a result, The 
proof follows along the same line as the proof of Theorem 7 in Beran (1977). • 

4.6 Simulation Studies 

In this section, we report the results of a Monte Carlo study designed to demon­
strate the efficiency and robustness of the proposed MHD estimator defined in 
(4.4). We considered MHD estimation in mixture models. Specifically, we con­
sidered the semiparametric models 

{fe,v '• fe,v = 00(0) 1) + (1 — 0)?7) 0 < 0 < 1,77 is a density function}, 

where 0(/x, a) denotes the normal density function with mean JJ, and standard 
deviation a. We examined the situation where r\ = 4>(a, 6), i.e., normal mixture 
models. Let $(/^, a) denote the distribution function of (p(n,a). For different 
values of 9, a and 6, we considered ten normal mixture models displayed in 
Table 4.1. The value of a was chosen to provide the desired overlap between 
components, as defined by Woodward et al. (1995). 
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Tab. 4.1: Summary of mixture models under study. 

9 
0.25 

0.5 

0.25 

0.5 

0.75 

Scale parameter b 
1 

1 

V2 

V2 

x/2 

Overlap 
0.03 
0.1 
0.03 
0.1 
0.03 
0.1 
0.03 
0.1 
0.03 
0.1 

Mixture model 
0.25$(0,1)+0.753(3.6,1) (I) 
0.253(0,1) + 0.753(2.32,1) (II) 
0.53(0,1) + 0.53(3.76,1) (III) 
0.53(0,1)+0.53(2.56,1) (IV) 
0.253(0,1) + 0.753(4.46,2) (V) 
0.253(0,1) + 0.753(2.96, 2) (VI) 
0.53(0,1)+ 0.53(4.52,2) (VII) 
0.53(0,1) + 0.53(3.07,2) (VIII) 
0.753(0,1) + 0.253(4.20,2) (IX) 
0.753(0,1) + 0.253(2.57,2) (X) 

1. Robustness 

This subsection analyzes the robustness of the proposed MHD estimator 
defined by (4.4) for the normal mixture models labeled I to X in Table 4.1. We 
examined the resistance of the MHD estimator to a single outlying observation. 
For this purpose, the a-IF given in Beran (1977) is a suitable measure of the 
change in the estimator. Here we have used the adapted version of the a-IF 
employed by Lu et al. (2003). 

For the ten models in Table 4.1, we chose a sample of size n — 100 from 
the mixture model fs,v- To construct an estimator r\n of 77, we chose another 
sample of size no = 40 from the distribution t], i.e., the second component in 
the mixture model. So our data structure is 

• ,Xn 

Y 
1 £no 

0$(O,l) + ( l - 0 ) $ ( a , 6 ) 

$(a,6). 
(4.65) 

Note that the outlying observation could come from either the X,'s or the l^'s. 
Thus, after drawing data sets of the specified sizes, 98 alternate versions of the 
data were created by replacing the last observation in the sample X^s, or the 
last observation in the sample l^'s by an integer x from —24 to 24. We have 
done ten replications and calculated the average of the ten replications. The 
contamination rate a is then 1/140 and the two a-IFs are given by 

IF(x) = 
w({x,xt)£l, (ypgj - w((XQiu, (r«)£i) 

1/140 
(4.66) 

and 
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**oW - 17140 ' ( } 

where W could be any functional (estimator of 9) based on two data sets from 
fgtT1 and 77, respectively. In our case, W is functional Tn defined in (4.4). Next we 
define following adaptive kernel density estimators (see, e.g., Silverman, 1986) 
of fe^v and 77, respectively, based on data Xi,..., Xn and Yi , . . . , Yno of (4.65): 

1 n — Y 

'nvn i= l 

1 1* r-Y-

where if and if0 are two smooth density functions, bandwidths 6n and 6no are 
positive constants such that bn —> 0 as n —» 00 and 6no —* 0 as n0 —> 00, 
and S"n = Sn(Xi,...,Xn) and S1^ = Sno(Yi,..., Fno) are robust scale statistics 
(these statistics generally estimate the scale parameters of respective distribu­
tions). We used the compact-supported Epanechnikov kernel function 

K(x) = ^{l-x2)l[.1,l](x) (4.70) 

for kernels K and KQ in (4.68) and (4.69), respectively. The bandwidths bn 

and bno in (4.68) and (4.69), respectively, were taken to be bn — n - 1 , / 3 and 
bno

 = no • For s c a l e statistics Sn and 5„0 in (4.68) and (4.69), respectively, 
we used the following robust scale estimator proposed by Rousseeuw and Croux 
(1993), 

Sn = 1.1926 med^medjflXj - Xj\)). 

For the average of the ten replications, the cc-IFs (4.66) and (4.67) under the 
ten models in Table 4.1 are calculated, of which four are graphically displayed 
in Figure 4.1. The a-IFs under other models are similar. From Figure 4.1, 
we can see that as the outlier approaches ±00, the a-IF appears to converge 
to a constant, i.e., lim IF(x) — lim IF(x) and lim/Fo(a;) = lim IFo(x). 

x—»oo x—>—co a;—>oo x—>—oo 

This phenomenon is partially explained by Theorem 4.8 (ii). In fact, the a-IFs 
outside the interval [—7,10] seem to be constant, while they take varying values 
inside the interval [—7,10]. Specifically, IFQ has a lower value inside the interval 
[—7,10] than outside the interval. 

We also compared our MHD estimator with two MLEs. We examined 
the two MLEs based on following likelihood functions combined with the data 
(Xi , . . . ,Xn): 
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Outlier Outlier 

(a) Model I (b) Model IV 

M I M M H H I I I M M I I 

-20 -10 

• • • • » > • > • • » • > • 

Outlier 

(c) Model VI (d) Model IX 

Fig. 4.1: The a-influence function of MHD estimator 9n with respect to single outlier, 
with • - IF and — IFQ. 
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n 

L = Y[[8f(Xi) + (l-e)ri(Xij\ 
i= l 

and 
n 

Ln = Y[[9f(Xi) + (l-0)rin(Xi)], 
t = i 

where / = 0(0,1) and r]n is the kernel density estimator of 77 defined by (4.69). 
In other words, the likelihood L is constructed assuming that density functions 
/ and g are completely known, whereas Ln is obtained by replacing 77 by its 
estimator r\n. Thus, L and Ln are rather naturally constructed for simulation 
purposes. We define 

#MLE = arg maxL (4-71) 
06 [0,1] 

and 
#MLE = arg maxLn (4.72) 

fle[o,i] 

as the MLEs of 9 based on L and Ln, respectively. In our simulation, the data 
were again generated from the models defined in Table 4.1. For each model, 
samples of sizes n = 50 and n0 = 20 were obtained from the corresponding 
distributions. For instance, for Model I, samples of size n = 50 were obtained 
from the mixture distribution 0.25$(0,1) + 0.75<&(3.6,1), while a sample of 
size n0 = 20 was obtained from the distribution $(3.6,1). We used (4.66) 
to calculate a-IFs for 9n, #MLE and #MLE defined in (4.4), (4.71) and (4.72), 
respectively. For the sake of consistency, we used the contamination rate a — 
1/50 = 0.02 in (4.66). For a single sample, the a-IFs of the three estimators 
for Model I, IV, VI and IX are displayed in Figure 4.2. Influence functions 
under other models are similar. From Figure 4.2, we can see that all the a-
IFs of 9n, #MLE and #MLE are approximately symmetric about zero. When the 
outlier is between -30 and 30, the three estimators are competitive and the a-
IFs take values between -3 and 3. As mentioned in the Figure 4.1, the a-IF 
of 9n outside the interval [—7, 7] seems to be constant, while the a-IFs of #MLE 

and #MLE have explored at some point around ±40 and they take values as 
high as 41.27. Nevertheless, #MLE works better thanJ?MLE in the sense that the 
'exploration' point of #MLE is higher than that of % L E and the a-IF of #MLE 

after the exploration point has smaller absolute value than that of #MLE- This 
behavior can be expected since #MLE employs more information (i.e., knowing 
77, or in other words UQ = 00) than either 6n or #MLE- Note that #MLE is n ° t 
available in practice and the sole purpose of analyzing it here is to examine the 
amount of loss in performance when rj is unknown. Figure 4.2 shows that 9n 

is more robust than either #MLE o r $MLE in the sense of resistance to a single 
outlying observation. 
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A^ 

-40 -20 

1 

0 

Outlier 

20 40 -40 -20 

I 

0 

Outlier 

20 40 

(a) Model I (b) Model IV 

Outlier Outlier 

(c) Model VI (d) Model IX 

Fig. 4.2: The a-infiuence functions for 6n (solid), #MLE (dashed) and #MLE (dotted) 
with respect to single outlier. 
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The breakdown point is the smallest fraction of data that, when strategically 
placed, can cause an estimator to give an arbitrarily bad answer. Tamura 
and Boos (1986) gave breakdown results for MHD estimators of multivariate 
location and covariance. Cutler and Cordero-Brana (1996) investigated the 
breakdown point of MHD estimators for mixture models. The models considered 
in both of these papers are parametric models, while ours is a semiparametric 
model (rj unknown). We again considered the normal mixture model fgtV = 
00(0,1) + (1 - 9)(j>(fjt, b) with b = 1, y/2, 9 = 0.25,0.5,0.75, and varying yu values. 
Define the contamination model 

(1 - a)(9cf>(0,1) + (1 - 9)(f>{(i, b)) + alm 

with contamination of the point mass function I{10y and contamination rate a. 
Here we numerically compared the behavior of 9n and #MLE defined in (4.4) and 
(4.72), respectively, as we vary the value of [i. For given values of 9, \i and b, 
consider increasing a until 9n jumps to fit the contamination, and similarly for 
#MLE- We used sample sizes n = 50 and no = 20 for one single sampling. To 
increase a, we replaced the last observation X50 from the mixture model with 
a value 10, and then the second last, and so on. The values of /x are [i = 0.5k, 
k — 1,2,..., 14. If the estimator jumps to and stays at value 1 as a increases, 
then the estimator is fitting the contamination. The reason for this is that we 
are using a compact-supported kernel function (4.70) for density estimation. 
The results for the models (9, b) = (0.25,1) and (0.5, y/2) are shown in Figure 
4.3. The breakdown points under other normal mixture models are similar. 
From Figure 4.3 we can see that the breakdown point a for 9n seems to be 
constant 0.5 for any /JL value between 0.5 and 7.0, while for #MLE it is around 
0.25 for ii values between 0.5 and 7.0. So the breakdown point for 9n is about 
twice of that for #MLE- In other words, MHD estimator 9n shows more robust 
behavior than the MLE estimator #MLE in our simulation. 

2. Efficiency 

In each of the distributional situations considered in Table 4.1, we obtained 
estimates of the bias and mean squared error (MSE) as follows: 

Ns 

Bias = - ^ ( f t - fi) 
s i = l 

and 
Ns 

^ E = ^ E ^ - ^ ) 2 ' Ns 

where Ns is the number of replications, and ju; denotes an estimate of fj, for the 
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(a) 9 = 0.25 and b = 1 (b) 6 = 0.5 and b = V2 

Fig. 4.3: The smallest proportion a of contamination at which 9n (solid) and #MLE 
(dashed) fit the contamination, as a function of /i, with the contamination 
model (1 - a){6<t>(0,1) + (1 - 0)0(/x, b)) + al{10}. 

ith replication. Here /J, — 9 and /2 denotes either the proposed MHD estimator 
9n or the MLEs #MLE and #MLE- We chose Ns = 500, n — 50 and no — 20 in our 
simulation. Kernel estimators fn and r\n are the same as those employed in the 
robustness study above. Simulation results are summarized in Table 4.2. 

We found that the MHD estimator 6n performed competitively with the MLE 
^MLE for all ten models. Thus, it is not surprising that in many circumstances 
the MHD estimator achieves about the same efficiency as that of the MLE under 
semiparametric models. On the other hand, the MLE #MLE, which is based on 
assuming r\ is known, showed the best performance among the three estimators 
for all ten models. This behavior can be expected for the reason mentioned 
in the robustness study and the fact that the lower bound of the asymptotic 
variance is higher when r\ is unknown than when it is known. In Figure 4.4, 
we have given the normal probability plots of the three estimators for Models 
I and VI. Figure 4.4 demonstrates that the sampling distribution of 6n closely 
approximates a normal curve for each model considered. We have observed very 
similar p lots for o ther models considered as well. 

We also investigated the relative biases and relative MSEs of 6n to 6>MLE for 
the contamination model (1 — ct)fgtV + a/{io} with fo^ being one of the models 
defined in Table 4.1. We again chose Ns = 500, n = 50 and n0 = 20 in our 
simulation. We considered four contamination rates, 2%, 4%, 10% and 20%. 
For the contamination rate 2%, we replaced the last observation X50 with a 
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Tab. 4.2: Estimates of the biases and mean squared errors of 6n, #MLE and #MLE with 
no contamination. 

Model 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 

Bias(0n) 
0.0210 
0.0375 
0.0392 
0.0511 
0.0308 
0.0430 
0.0439 
0.0483 
0.0501 
0.0556 

MSE(0 n) 
0.0075 
0.0138 
0.0088 
0.0119 
0.0084 
0.0127 
0.0087 
0.0117 
0.0078 
0.0112 

Bias(0MLE) 
0.0564 
0.0809 
0.0359 
0.0533 
0.0587 
0.0705 
0.0378 
0.0404 
0.0166 
0.0182 

M S E ( 0 M L E ) 

0.0099 
0.0189 
0.0084 
0.0115 
0.0115 
0.0154 
0.0081 
0.0098 
0.0044 
0.0070 

Bias(0MLE) 
0.0002 
-0.0021 
-0.0011 
-0.0013 
0.0017 
0.0026 
0.0022 
-0.0009 
-0.0001 
-0.0041 

M S E ( 0 M L E ) 
0.0044 
0.0059 
0.0060 
0.0069 
0.0046 
0.0060 
0.0054 
0.0069 
0.0037 
0.0060 

-1 0 1 

Normal Quantiles 

-1 0 1 

Normal Quantiles 

(a) Model I (b) Model VI 

Fig. 4.4: Normal probability plots of estimates 9n (•), #MLE (°) and #MLE (+)• 
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value 10, for the contamination rate 4% we replaced the last two observations 
X49 and X50 with a value 10, and so on. Simulation results are summarized 
in Table 4.3. From Table 4.3 one can see that most of the relative values are 
less than one with exceptions on models with 9 = 0.75. The relative biases and 
relative MSEs are especially small for models with 9 = 0.25. An interesting 
observation is that the relative biases and relative MSEs are uniformly smaller 
for higher contamination rate a than for lower a. In particular, the relative 
MSEs for models VII and VIII are bigger than one when a — 2%, while those 
are less than one when a = 4%. All the relative biases and relative MSEs 
decrease when the contamination rate a increases. One could probably expect 
that all the relative bias and relative MSE values would be close to or less than 
one when the contamination rate increases. This is another indication that 9n 

seems to show more robust behavior than #MLE in our simulation. 

4.7 An Example 

In this section, we consider a specific semiparametric model, the symmetric 
location model. Here we construct and investigate the MHD estimator (4.4) 
and MPHD estimator (4.36) for the parameter of interest. We will show that 
the MPHD estimator of the location turns out to be an adaptive estimator, and 
the MHD estimator of the location is also efficient in the parametric sense. 

Symmetric Location Model. Assume that the data Xi,... ,Xn € R are 
i.i.d. and satisfy the model 

X = 9 + e, 

where the center 9 is the parameter to be estimated and the error e has a 
continuous density rj(-) that is symmetric about the origin. 

Therefore, the semiparametric model under consideration is 

{f$,r,(x) = r1(x-9):9eR,r1eH}, (4.73) 

where 

H = {h E L\ : h > 0, h 7̂  0, h(—x) = h(x), h is continuous}. 

Although the parameter space for 9 is the real line in this case, it is reasonable 
to set 0 = [—C, C] with C being a large positive number such that the true 
parameter 9 € int(@). Such a C could be decided based on the observations 
Xj's, e.g., one could let C — max {|Xj|}. With this assumption, we will 

i = l , 2.. .,n 

not lose any information about 9 and at the same time we can guarantee the 
consistency of the MHD estimator in most cases. 
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1. MPHD estimator of 6 

To construct an efficient MPHD estimator for the location parameter 9 in 
models (4.73), we first look at the MHD functional 7\ defined in (4.36). Note 
that for any density function g, 

91/2(x + t) = \tfl\t + x) + g^it - x)) + \{g^{t + x) - g"\t - x)) 

and that the first term on the r.h.s. in the above expression is an even function 
of x while the second is odd. Then 

\\fli2-91/2\\2 = J (Vl/2(x)-g^(x+t))2dx >\J(g^(t+x)-g^(t-x))2dx 

with equality if r]l/2(x) = \{gl,2{t + x) + g1/2(t - x)). Thus we have 

v(t,9) = \{91/2(t-x)+gV2(t + x))2 

st,g = Ug^{2t-x)+9V\x)). 

and 
1 
2 

With 4>g = 5f(1V(2c/1/2), we have st,g{x) = <pg{2t - x). The function H defined 
in (4.37) becomes 

H(t,g) = / <t)g{2t - x)gl/2(x)dx = / (j)g(x)g1/2(2t - x)dx, 

and thus 

H(t, g) = 2 I <j>g(x)<f>g(2t - x)dx. 

The fact that / gl/2(2t - x)gl'2(x)dx = / gl/2(x)g1/2(2t - x)dx gives 

J cpgn(2t - x)g1/2(x)dx = JglJ2{x)<j>g{2t - x)dx, 

i.e., (4.41) holds. Hence we have 

H(t,gn)-H(t,g) 

= J<t>gn{2t-x){g)!2{x)-gll2{x))dx 

+ J (K& -x)~ ^ ( 2 * - x))gl'2{x)dx 

= J 09n(2* - x) (glJ2{x) - g^2(x))dx + J ^ ( 2 t - x) (glJ2{x) - gl'2{x))dx 
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= 2 1 0 , ( 2 * - x)(g)!*{x) - gl/2{x))dx + 0(\\glJ2 - g^\\ • U9n - 0 J ) . 

Thus if \\(f)gn - <f>g\\ -+ 0, then (4.38) holds with ipg(x) = 2(f>g(2T1(g) - x). For 
models (4.73), g(x) = fe,v(x) = rj(x — 9), and then 

, ,nn >< rtl\9-x) rfV{x-9) 

f l / 2 . 

i 
2* «* := ^/.„ = W/2(2t -*~G) + V1/2(x - 0)), 

. _ . rfx\x-e) 
S0--so,fe„- 2VV*{x-0y 

.. _ .. _ rf2\x-ff) _ {rp-\x-ff)f 
Se : " S0Je" ~ r]l/\x - 9) 2r?/\x - 9) " 

Define M( / 1 ; / 2 ) = H /̂j — </>/2|| for any density functions fx and /2 . Then 
it is easy to see that M is a metric and H is continuous in the sense that 
H{tn,gn) —> H(t,g) whenever tn —• £ and M(gmg) —• 0 as n —> oo. Suppose 
that the Fisher information of 0, 

Io = Jtf1){x))2/rl(x)dx, 

is finite and nonzero. Then ||^/ ||2 = Jg < oo. Therefore, condition (iii) in 
Theorem 4.5 holds. Further assume that {#n}neiN is a sequence of estimators of 

fe^ such that \\gn' — fe' || —> 0 and M(gn, fo,v) —> 0 as n —> oo and satisfies 
(4.39), i.e., condition (iv) in Theorem 4.5 holds. Then the MPHD estimator, as 
defined in (4.36), is 

Ti(gn) = a r g m m | | s t , P n - ^ / 2 | | = a r g m m | | ^ / 2 ( 2 i - x) - glJ2{x)\\ 

= argmax / glJ2{2t - x)glJ2(x)dx = argmax / st,an{x)glJ2{x)dx. 

The preceding estimator is identical to the estimator proposed in Beran (1978). 
In other words, Beran's estimator is a special case of the MPHD estimator. 

Since any function in Ti can have only one symmetric point, the models 
defined in (4.73) is identifiable and thus Ti(fe^) = 9 is well defined and unique. 
This fact is also shown in Lemma 1 of Beran (1978). Lemma 2 in Beran (1978) 
proves that Ti(g) is Hellinger continuous at g = fe,v- Thus condition (i) in 
Theorem 4.5 holds. Note that 
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,1/2 ~ < h, fe'r, > = 2 < se, se > = Ie/2. 

„(D (VW)2 n „(2) 
If ^m, 3/2 and ^72 are all in L2 and continuous, then condition (ii) in Theorem 
4.5 is easily satisfied. Combined with all above discussion, Theorem 4.5 holds. 
As a result, n1/2(T„(5r„) — 9) is asymptotically normally distributed with mean 
zero and variance Ig1. Note that I0 is the regular Fisher information for 9 
when n is known. This means that the MPHD estimator Ti(gn) is an adaptive 
estimator for the location parameter 9, provided one can construct an estimator 
9n of fe,rj that satisfies condition (iv) in Theorem 4.5. Here we choose gn as the 
smoothly truncated kernel density estimator proposed in Beran (1978). Under 

certain conditions, Beran (1978) proved that \\gl'2 — /jvll —> 0 (Theorem 1) and 
M(gn, fd:V) —• 0 w.p.l (Lemma 4). The proof of Theorem 2 in Beran (1978) also 
shows that (4.39) holds. Since our MPHD estimator for location is the same as 
that in Beran (1978), a detailed construction and proofs are omitted here. A 
detailed construction of a MHD estimator is given in the next subsection. 

2. MHD estimator of 9 

In this subsection, we construct and investigate a MHD estimator of the 
location parameter 9. To avoid technical difficulties, here we only consider 
the case that n has a finite support. Clearly, for every r\ G H, the model 
{ft,ri '• t G 0 } is identifiable, t 1—• st = ft^ is continuous in L2, and (4.5) and 
(4.6) hold for st and for every t G int(©); i.e., condition (ii) of Theorem 4.2 
holds. 

We define following kernel density estimator of fgiV based on data X\,..., Xn: 

1 n — Y 

nun • 1 un 

where K\ is a differentiable density function and bandwidths {bn} is a sequence 
of positive numbers such that bn —• 0 as n —• 00. We can also use an adaptive 
kernel density estimator (see, e.g., Silverman, 1986), which uses Snbn instead 
of bn with Sn a robust scale statistic. Here we employed a non-adaptive kernel 
density estimator for simplicity. 

An estimator r)n of 77 can be constructed based on the same data set Xi,..., Xn 

or it could be based on other resources, such as another data set from the density 
77. When no other resources than Xj's are available, we can split the Xi's into 
two groups {Xi,...,Xm} and {Xm+i,..., Xn} with m = [n/2], the integer part 
of n/2. Based on the second group, one can construct an initial estimator of 9 
(for example the mean or median) and denote the corresponding estimator by 
X n_m . Then, based on the transformed values Z{ — Xi — Xn_m , i = 1 , . . . , m, 
one can construct an estimator r?m of r\ by using kernel or by any other suitable 
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nonparametric density estimation technique. For simplicity, we suppose there 
is another data set Y\,... ,Ym from the density function n. Another important 
reason why we chose this situation here is that for classical estimators of loca­
tion ( mean or median) it is not easy to utilize the information contained in 
the >Vs and the second data set will likely be ignored. While the sample mean 
is an efficient but non-robust estimator and the sample median is a robust but 
non-efficient estimator, we will use the MHD method to construct an efficient 
and robust estimator based on the information contained in both the JQ's and 
the Yi's. 

To construct a symmetric estimator of r), one can generate pseudo data by 
reflecting all the 1 '̂s around the origin. Based on these 2m values, Yi , . . . , Y2m, 
one can define following kernel density estimator of n, 

1 2m _ y-

*•<*> = s s - E * ^ ) . <4 7 5> 
1=1 

where K2 is a differentiate density function symmetric about origin and band-
widths {bm} is a sequence of positive numbers such that bm —• 0 as m —»• 00. 
Obviously rjm €H and fttTlm{x) = r\m{x — t) is an estimator of fttV for any t € 6 . 

Denote st — nl/2(x — t),'st — Vm (x — t) and % = §1%. Now we can define the 
MHD estimator 6n of the location 0 as in (4.4). The next theorem establishes 
the efficiency of 9n in the parametric sense, i.e. the adaptivity. 

Theorem 4.9. Suppose that r\ > 0 on its compact support Wv, K\ and K2 in 
(4-74) and (4-75), respectively, are differentiable and symmetric about origin, 
K\ > 0 and K2 > 0 on their compact supports. Further suppose that m — 0(na) 
with a > 0, bn and bm in (4-74) and (4-75), respectively, satisfy bn — 0(rTw) 
and bm = 0{m,-u) with 1/4 < w < 1/2, u < 1/4, au > 1/7, a ( l - 2M) > 1/2, 
a ( l + u) > 1, 3au — w > 0 and a(l — 3u) — w > 0. Then 

nV2(0n-0)-^N(O,I-1), 

where I& = j(n(l\x))2rj~l(x)dx. 

Remark 4.12. If we take u = 1/5, then a, > 5/6. This shows that m could 
converge to infinity at a lower rate compared to n. This means that one can use a 
comparatively smaller sample of Fj's to estimate the nonparametric component 
V-

To prove Theorem 4.9, we need following two lemmas. 

Lemma 4.2. Suppose that r\ > 0 on its compact support Wv, K\ in (4-74) 
is differentiable and symmetric about origin and has compact support WKX on 
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which K\ > 0, and bn in (4-74) satisfies bn = 0{n w) with w > 0. Then, 

ni/2 fM^(Ux)-feri{x)ydx = 0p(n-W2-*,)+n-^-i/*>), 
J sg{x) 

nl'2t 

-dx 

Proof. Note that, with 5 — mm.r\{x) and 5 = min K\(x), 
xewv x£WKl 

/ ( /„ 1 / 2(x)- /^(x)) adx 

< [ (MX) - f*„(x))2 ^ 
J fn(x) + fe,vix) 

- J J W x ) ~ fari(x))2dx + - (fn{x) - /0>f?(x))2dx 

= 0(J (fn{x)-fetri(x))2dx). 

For kernel density estimator / n , it is known that fn(x)—fe^(x) = Op((n&„)-1//2+ 
6^), and as a result 

J\flJ2{x)-fl/2{x))2dx = O p f t n ^ ^ + fty = O p f n - ^ + n - 4 - ) , 

- n1/2J^~^(fn(x)-f9,v(x))2dx 

= 0(nX'* J\fn(x)-f9,rl(x))2dx) 

and 
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- (2 n ),n2t[ys:"S(^rifl("ir")dB" ^ - ^ ) ] 

^ttlJ v(Xi-8 + bnt) J nj rjiXi-9) J 

= (2"1n1/a) • -J2 f K^lOog^iXt - 0)M 

= ^K^) 
= O p ^ - ^ " 1 / 2 ) ) . 

D 

Lemma 4.3. Suppose that n > 0 on its compact support W^, K2 in (4-75) 
is differentiate and symmetric about origin and has compact support WK2

 on 

which K2 > 0, and bm in (4-15) satisfies bm = 0(m~u) with u > 0. Then 

sup / (st(x) - st{x)fdx = 0P(m-^-^ + m~4u), 
tee J 

(Si(rr) - st(x))2dx = oP(m^u+2v^) I 
and 

%{x)st{x)dx = 0 / = 

for any t G 0 and v such that 0 < v < min{«, \ — 2u}. 

Proof. Using a similar proof as of Lemma 4.2, we have 

sup f(st(x) - st{x)fdx = [(rl
1
rl

2(x)-r)^
2(x))2dx 

tee J J 
= 0{f(r,m(x)-rj(x))2dx) 

= 0P(m-^-^ + m-4u). 

Since sup mv\r]m{x) — rfl\x)\ ^ ' 0 as m -> 00 and for any 0 < v < min{w, \ 

2u] (Schuster, 1969), 
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/ (st(x) - st{x))2dx 

= \ J fal,2(*)r&\x) ~ V-1/2(x)T,V(x))2dx 

= \ J[rhk1/2{x)(vS?(x) ~ VW(x)) + {r,-V*{x) - rll2{x))^\x)fdx 

< \Jtf(xM\x) - ^\x)fdx + \ J(^1/2(x) - r
ll2{x)?{^\x)fdx 

= oP(m-(u+^) + 0(m-u J ( i / 2 (x ) - ^2{x))2dx) 
= op \m-^+2^\ + OP (m-1 + m~5u) 
= oP(m-^+2^). 

Since rjm and r\ are symmetric about origin, one has 

J %(x)st(x)dx =ljv™1/2(xWr!l
)(x)v1/2(x)dx = 0. 

• 

Proof of Theorem 4.9. Since 1/4 < w < 1/2, Lemma 4.2 yields that (4.7), (4.8) 
and (4.9) hold for some r < 1 — w. By assumptions in the theorem, a(l — u)> 
a ( l - 2M) > 1/2, 4cm > 4/7 > 1/2. Also, a(l-u) + a(u + 2u) = a(l + 2u) > 1, 
a(l — u) + a[u + (1 - 4M)] = a(2 — Au) > 1, Aau + a(u + 2u) = 7cra > 1 and 
Aau+a[u+(l—Au)] — a(l+u) > 1, and thus there exists some r > 1/2 such that 
(4.10), ( 4.11) and (4.12) hold. Furthermore, l-w+a(u+2u) = 3au-w + l > 1 
and l — w + a[u + (1 — Au)] = a(l — 3u) — w + 1 > 1, and thus there exists some 
common r > 1/2 such that (iii) and (iv) of Theorem 4.2 hold. Now the result 
follows from Theorem 4.2. • 

4.8 Concluding Remarks 

The Hellinger distance approach has been applied to variety of parametric mod­
els in statistical inference. This approach yields statistics that have good effi­
ciency and robustness properties. In this chapter, we have shown that the 
Hellinger distance approach can be extended successfully to semiparametric 
models of general form as well. As in the parametric case, the resulting MHD 
estimators are robust and have good asymptotic efficiency properties - in many 
cases our estimators are fully efficient in the semiparametric sense. We have 
supported our theoretical findings with extensive finite sample simulation stud­
ies. We have also introduced a new distance measure; namely, profile Hellinger 
distance, and have constructed the corresponding optimal estimator. The pre­
ceding approach is in some sense analogous to the profile likelihood approach. 
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The success of Hellinger distance and profile Hellinger distance approaches in 
semiparametric models considered in this chapter should encourage its appli­
cation to other models and problems as well. We consider following problems, 
among others, to be worthy candidates for application: hypothesis testing, re­
gression models and perhaps to quantal assay models. To best of our knowledge, 
minimum distance procedures have not been studied in general semiparametric 
models (4.1) in the literature. 

A few words comparing the MHD estimator Tn(fn) and the MPHD estimator 
Ti(fn) defined by (4.4) and (4.36), respectively, would be appropriate here. In 
practice, the exact determination of Ti(fn) may not be easily possible due to 
computational difficulties in calculating Hellinger profiles, and one may only be 
able to come up with some numerical approximations. This is the rationale 
behind the establishment of Theorem 4.2, which to some degree eases off some 
computational difficulties. In the definition (4.4), a single r\n value is used to 
replace r](t, /„) defined in (4.34) for all t G &. The above discussion thus appears 
to suggest that the estimator at (4.4) may have a smaller asymptotic variance 
than that of the estimator defined by (4.36). Indeed, from Theorems 4.2 and 
4.5 and Remark 4.10, it follows that Tn(fn) is efficient in the parametric sense 
with asymptotic variance J^"1, while Ti(fn) is efficient in the semiparametric 
sense with a generally larger asymptotic variance I~l. However, this does not 
imply that Tn(fn) is a better estimator than Ti(/n), since the theorems are 
proved under different conditions. Prom a practical point of view, Tn(fn) may 
be preferred over T\(fn) when a good estimator of rj is available, while T\{fn) 
may be preferred over Tn(fn) when one can easily calculate the profiles. 

An heuristic argument of describing robustness of Tn(/n) = T({ftiVn}tee, fn) 
defined by (4.4) is as follows. From Theorem 4.2 it follows that the estimator 
Tn{fn) is a Hellinger continuous functional of fn and r)n. Thus, small Hellinger 
distance perturbations in the underlying density will only result in small changes 
in the MHD estimator Tn(/n). In fact, the MHD functional is optimally insensi­
tive (in a certain sense) to small changes in the density (Beran, 1977). Theorems 
4.7 and 4.8 have confirmed above arguments theoretically. Furthermore, the nu­
merical results presented in Section 4.6 again displayed the behavior suggested 
in our theoretical findings. 
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