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Abstract

Learning jointly from images and texts using contrastive pre-training has

emerged as an e↵ective method to train large-scale models with a strong grasp

of semantic image concepts. For instance, CLIP, pre-trained on a large corpus

of web data, excels in tasks like zero-shot image classification, object detection,

geolocalization, and more. These contrastive models embed input images and

texts into a shared representational space.

Recently, it was discovered that models like CLIP show a “modality gap”,

where image and text embeddings occupy disjoint areas in the representational

space. Previous research attributes this gap to factors like data artifacts (mis-

matched pairs), model architecture artifacts (the cone e↵ect), and the nature

of the loss landscape (getting stuck in local minima). In this thesis, we demon-

strate that even after accounting for these factors, the contrastive loss itself

creates this gap during training. We propose renaming this phenomenon as

the “contrastive gap” and show that it stems from low uniformity in the CLIP

space, where embeddings only occupy a small portion of the latent space. We

show that optimizing for uniformity and alignment in the CLIP space reduces

the contrastive gap. Our experiments show that this modified representational

space achieves better performance on downstream tasks like zero-shot image

classification and multi-modal arithmetic, suggesting the e↵ectiveness of clos-

ing the contrastive gap to boost CLIP performance.
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Preface

This thesis is based upon work that was published on arXiv (https://arxiv.

org/abs/2405.18570), with co-authors Dr. Alex Murphy and Dr. Alona

Fyshe.
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“Research is what I’m doing when I don’t know what I’m doing.”

– Wernher von Braun
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Chapter 1

Introduction

We experience and learn from our surroundings by receiving inputs from our

various sense organs. For example, our eyes capture light, allowing us to “see,”

while our ears detect sound, enabling us to “hear.” Our brain processes these

inputs together, integrating them to form a comprehensive understanding of

the world around us. This understanding is what allows us to perform the

wide range of tasks that we do every day. We can define the inputs to each

of our sense organs as a modality : sight, sound, and touch are all examples of

di↵erent modalities.

Motivated by the brain’s multi-modal processing, learning from di↵erent

modalities has recently become an emerging interest in the representation

learning community. This is evidenced by the large body of recent work done

in this field [1], [9], [14], [17], [18], [28], [30], [34], [38]–[40]. In this thesis, we

focus primarily on pre-trained vision-language models, where the models learn

representations from image and text modalities.

A machine learning model maps its inputs to a representational space to

solve a task relating to the input. For instance, an image classifier might

project an image into a 64-dimensional vector, using the features of that vector

to finally classify the image. In this case, the 64-dimensional vector represents

a point in a 64-dimensional representational space. However, a multi-modal

machine-learning model can take in inputs from di↵erent modalities simulta-

neously. Unlike a simple image classifier, a multi-modal model can process

(for instance) both images and sounds at the same time, mapping them into
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a unified representational space. In this way, the model can learn to solve

complex tasks by relating the inputs of the di↵erent modalities.

In this thesis, we focus primarily on pre-trained image-text models that

learn representations from image and text modalities by mapping them into

a shared representational space. The models learn to project semantically

similar inputs from di↵erent modalities to map to nearby points. This multi-

modal approach is beneficial as it thematically facilitates transfer between

modalities and aligns more closely with human sensory experiences (Than a

model that can work with only image or only text inputs).

CLIP (Contrastive Language Image Pre-training) Radford et al. [28] is a

strong proof-of-concept for multi-modal representation learning, particularly

in the context of learning from paired images and text. CLIP’s multi-modal

contrastive loss enables the model to predict the text associated with an image

and vice versa. By scaling this approach to a vast dataset of 400 million

image-caption pairs, CLIP learns embeddings that cover a wide variety of

visual concepts, making them applicable to many downstream tasks. Out of

the box, CLIP is capable of performing a wide range of tasks such as image-

text retrieval, zero-shot image classification, OCR, geo-localization, and action

recognition.

CLIP (Contrastive Language Image Pre-training) Radford et al. [28] es-

tablishes a strong proof-of-concept for multi-modal representation learning in

the context of learning from paired images and text. CLIP uses a multi-

modal contrastive loss to predict a caption associated with an image and vice

versa. CLIP scales this approach to a very large dataset of 400M image-caption

pairs, learning embeddings that cover a wide variety of visual concepts appli-

cable to many downstream tasks. For example, CLIP embeddings can be used

for tasks such as zero-shot image classification, OCR, geo-localization, and

action-recognition. There have been an influx of subsequent works adapting

(fine-tuning) the learned representations by CLIP for many tasks such includ-

ing few-shot image classification [27], [41], [45], video-retrieval [2], [3], [23],

depth estimation [42], image-captioning [5], [7], [24], [40] , and visual-question

answering [16], [29].
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But, while CLIP is powerful, it su↵ers from a modality gap, first identified

by Liang et al. [20]. In the CLIP representational space where all the input

images and texts are projected to, we expect that the image and text em-

beddings would occupy the same shared representational space as each other.

However, this is not the case. Data from di↵erent modalities (For example,

images and texts) are projected to copmpletely disjoint subspaces within the

shared representational space. We illustrate this phenomenon in Figure 1.1.

The modality gap phenomenon is pervasive in multi-modal contrastive

models across many di↵erent domains such as medical images [43], videos

[37], amino acid sequencing (https://github.com/MicPie/clasp) and brain

decoding [22]. Udandarao [31] suggests that the presence of this gap com-

plicates the visualization and interpretation of the embedding space, making

it harder to understand how models represent and relate di↵erent modalities.

Udandarao [31] also shows that the modality gap negatively a↵ects the model’s

ability to perform meaningful vector arithmetic between the image and text

sub-spaces, limiting the model’s potential for creative applications.

Prior work has shown that performance on downstream tasks can improve

when we minimize the modality gap. For instance, Liang et al. [20] show that

modifying the size of the modality gap by simply translating the image and

text embeddings can impact image-classification performance. Further, Zhou

et al. [44] show that reducing the modaltiy gap (by projecting the text embe-

dings onto another subspace of relevant attributes) improves interpretability

of the shared latent space, and allows for better text-guided image manip-

ulation using CLIP embeddings. Finally, Oh et al. [26] show that reducing

the modality gap (by training using synthetically generated data points) can

improve performance across a wide range of downstream tasks, such as image

classification, and caption generation using CLIP latents. Muttenthaler et al.

[25] has additionally shown that learning latent spaces of visual embeddings

via alignment with human similarity judgments improves downstream task

performance. Similarly, Luo et al. [22] related CLIP embeddings to human

brain data and found that representations that had reduced the gap between

modalities also led to improved downstream model performance. Therefore,

3
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Figure 1.1: Illustrating the modality gap phenomenon. Paired inputs (images
and their corresponding captions) are embedded into the CLIP space using
an image and a text encoder. The resulting embeddings are visualized in 3D
using PCA dimensionality reduction. Red points indicate image embeddings,
and blue points represent text embeddings. We observe a distinct gap between
the representational spaces of the two modalites. This is the modality gap.

4



analyzing and closing this gap is a promising direction to improve upon the

strong representational capacity of CLIP and its variants.

In this thesis, we aim to gain a deeper understanding of the modality gap,

challenge some of the existing assumptions about its emergence, and leverage

our insights to propose simple methods for closing the gap. Our study is guided

by the following research questions:

• What causes the modality gap in multi-modal contrastive learning?

• Can we close the gap? And,

• (If we can, ) How does closing the gap a↵ect downstream performance?

1.1 Contributions

In response to the above research questions, this thesis makes the following

contributions:

• The gap between embeddings is not caused by di↵erent modali-

ties or data distributions. After summarizing the common purported

causes of the modality gap, we perform comprehensive experiments that

show that accounting for these factors does not close the gap, suggesting

that the present understanding of modality gap may be flawed.

• The gap between embeddings results from the contrastive loss

itself. We present experiments that demonstrate that the gap is a

byproduct of a high dimensional CLIP space, combined with a con-

trastive loss that encourages CLIP embeddings to occupy a lower di-

mensional manifold relative to the latent space. As a result, we propose

renaming the “modality gap” as the contrastive gap.

• The contrastive gap can be closed. We first show that making

the distribution of the features in the CLIP space more uniform closes

the modality gap. The simplest way to do this is to increase the batch

sizes used in training. However, we would need unreasonably large batch
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sizes to close the gap in CLIP’s original high-dimensional setting (512D).

Instead, we show that simply fine-tuning CLIP by adding a factor for

uniformity and alignment can reduce the size of the gap by distributing

the embeddings more uniformly throughout CLIP’s latent space, while

allowing for more reasonable batch sizes during model training.

• Closing the contrastive gap improves downstream performance.

Finally, we present experiments to show that closing the contrastive gap,

and thereby creating more aligned and uniformly distributed representa-

tions, creates a representational space that is better for most downstream

tasks, including zero-shot image classification and multi-modal embed-

ding arithmetic.

1.2 Thesis Outline

In the next thesis chapter (Chapter 2), we give a detailed background on

the prerequisites for this work. We explain the contrastive loss that forms

the backbone of training CLIP, and the CLIP model architecture. We then

introduce the concepts of the modality gap, which we rename the contrastive

gap, and review the prior work in this area. Finally, we lay out metrics to

quantify the size of the contrastive gap, which we use throughout the thesis.

We start Chapter 3 by demonstrating inconsistencies in the factors pre-

viously attributed to be the cause of the modality gap. We present a proof-

of-concept experiment, showing that this gap in the latent space still persists

in 512-dimensional CLIP even when all these supposed causal factors are ac-

counted for and systematically removed. We then visualize the formation of

the contrastive gap in 3D CLIP space. We demonstrate that the contrastive

gap in CLIP space arises because embeddings of the same modality tend to

cluster closely together, forming distinct lower-dimensional groups for each

modality. We then reason that a new loss that encourages the uniform distri-

bution of the embeddings in CLIP space could close the contrastive gap.

In Chapter 4, we introduce the concepts of uniformity and alignment from

the uni-modal contrastive loss literature, and adapt it to the multi-modal case.

6



We reason that the contrastive gap happens because of low uniformity of the

embeddings in the CLIP space, and show experiments supporting this idea.

Finally, we introduce additional terms to the CLIP loss to explicitly optimize

for uniformity and alignment.

In Chapter 5, we present our experimental results, comparing fine-tuning

performance of the previously introduced losses on various evaluation tasks,

including image-text retrieval, zero-shot image classification, and multi-modal

arithmetic.

Finally, in Chapter 6, we summarize the work in this thesis with a conclu-

sion, and suggest avenues for future work.
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Chapter 2

Background

2.1 Chapter Overview

In this chapter, we start by introducing the contrastive learning objective, and

how it extends to the multi-modal case. We then introduce CLIP, giving an

overview of its architecture and loss function. Finally, we explain the modality

gap phenomenon that is prevalent in CLIP, and summarize the works in the

literature related to the modality gap.

2.2 Contrastive Learning

Contrastive learning is a type of self-supervised learning, where the model

learns to extract information from the underlying data distribution itself. This

is in contrast to fully-supervised learning, where hand-labelled data is provided

to the learning algorithm.

Contrastive methods learn representations by maximizing the similarity

between an input data point and a transformed (noisy) version of itself, while

minimizing similarities with the other data points. This approach ensures

that the learned representations are more invariant to noise, yet retain enough

information to distinguish important features. The transformed versions of

a data point form a positive pair, whereas semantically di↵erent data points

form negative pairs.

One popular model that exemplifies this approach is SimCLR (Chen et

al. [6]), which simplifies the contrastive learning framework compared to prior

8



Figure 2.1: Contrastive learning framework used in SimCLR (Chen et al. [6]) .
Two separate data augmentation operators are applied to each data sample to
obtain two correlated views of the same sample. SimCLR trains a base encoder
network f(·) and a projection head g(·) to maximize similarity between the
two augmented views of the same sample using a contrastive loss.

work (see Giakoumoglou and Stathaki [10]) by processing two augmented views

of an image through identical networks. SimCLR employs the NT-Xent (Nor-

malized Temperature-scaled Cross Entropy) loss to e�ciently learn robust im-

age representations. Unlike previous contrastive methods, such as those using

the InfoNCE loss (Balestriero et al. [4]), NT-Xent relies on cosine similarity as

a distance measure and normalizes the embeddings to lie on a unit hypersphere

in the representational space. Figure 2.1 illustrates contrastive learning in the

context of SimCLR.

2.3 Multi-modal Contrastive Learning

We now introduce the idea of multi-modal contrastive learning. In the uni-

modal contrastive method outlined in the previous section, contrastive learning

maximizes the similarity between noise-augmented versions of the same data-

point (positive pairs), while pushing apart other datapoints (negative pairs).

Thus, a contrastive learning algorithm learns a representational space where
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positive pairs are close together in the latent space, and negative pairs are far

apart.

Using this terminology, we can now extend the contrastive learning concept

to the multi-modal case. For images and image-captions, instead of data

augmentation to generate positive pairs, we simply define an image and its

corresponding caption to be a positive pair. Subsequently, any non-matching

image-caption pair would be a negative pair. In this way, the contrastive loss

ensures that an image embedding and its corresponding caption embedding

would be close together in the latent space.

2.4 The CLIP Approach

We now introduce the CLIP (Contrastive Image-Language Pre-training) model

([28]). CLIP takes advantage of the vast source of supervision from the web

and learns from textual descriptions of images. Radford et al. [28] show that

training a model on a simple task of matching captions to images is an e↵ective

way to learn robust image representations that can scale up to very large

datasets. The authors were able to train CLIP on a dataset of 400M image-

text pairs collected from the internet. Figure 2.2 illustrates the CLIP training

procedure.

2.4.1 Contrasting Images and Text using CLIP Loss

The CLIP loss (LCLIP) is based on NT-Xent loss. While NT-Xent loss is

designed to work on data points from a single modality, LCLIPis adapted to

work on two di↵erent modalities of data.

In our scenario, the multi-modal dataset contains N images and corre-

sponding captions. We obtain image embeddings EI
j 2 Rd by passing image Ij

through the image encoder. Similarly, we produce the text embedding ET
j 2 Rd

by passing caption Tj through the text encoder. CLIP aims to bring image

embeddings and their corresponding caption embeddings closer together in the

CLIP latent space (CLIP space) by increasing the similarity (inner product

h., .i) between the corresponding embeddings. The image and text embeddings

10



Figure 2.2: The CLIP training approach. Taken from Radford et al. [28]. CLIP
jointly trains an image encoder and a text encoder to correctly match text cap-
tion embeddings to image embeddings (Ex: matching pth caption embedding
(ET

p ) to the pth image embedding (EI
p), while pushing apart non-matching

image-text pairs (Ex: ET
j and EI

k , where j 6= k).

are normalized to lie on a unit hypersphere in Rd.

The full CLIP loss is:

LCLIP =� 1
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# (2.1)

where the first term (top) contrasts images with the texts (
PN

k=1 in the

denominator loops over text embeddings as negatives for the jth image) and

the second term (bottom) contrasts texts to images (
PN

j=1 in the denomi-

nator loops over image embeddings as negatives for the kth text). ⌧ represents

the temperature parameter (⌧ = 0.01 at the end of CLIP pre-training).

We need both the terms in the CLIP loss because, in the first term, the

model contrasts each image embedding against all text embeddings, treating

each text embedding as a potential negative (i.e., incorrect match) for that

image. Conversely, the second term does the opposite by contrasting each

text embedding against all image embeddings, treating each image embedding
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Figure 2.3: Illustration of the modality gap. Points are 2D UMAP visual-
izations of the CLIP embeddings. The lines indicate pairings of data points
between the modalities. Data points from each modality lie in distinct clusters
in the latent space. Figure taken from [20].

as a potential negative for that text. Since the two terms involve di↵erent sets

of negatives, the contributions of these terms to the loss function are inherently

di↵erent.

2.5 Related Work

Though CLIP e↵ectively associates images with related texts, it also creates

representational spaces with a modality gap, a phenomenon that has gener-

ated some interest. This was first identified by Liang et al. [20], and has

consequently spawned a series of works attempting to understand and resolve

the issue. We illustrate the issue of the modality gap in Figure 2.3.

The modality gap has been attributed to several factors. The first of these

is the the cone e↵ect, described by Liang et al. [20]. This e↵ect occurs when

the embeddings generated by the two separate encoders end up in two dis-

tinct, non-overlapping regions of the representational space, resembling narrow

cones. These cones form because the encoders, starting from di↵erent random

initializations, each learn to represent their respective modalities in a specific,

confined area of the space, leading to a separation—or gap—between the two

modalities.

Second, Liang et al. [20] note the existence of mismatched pairs in the

dataset, where the pairing of images and captions is incorrect for some data

points. Welle [35] studied the gap in three dimensions and attributed it to

conflicting uniformity and alignment terms in the contrastive loss, claiming
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that this leads to the existence of local minima that encourage the gap.

Uniformity and Alignment (defined by Wang and Isola [33]) are desirable

properties in the multi-modal space for obtaining the optimal loss value (Udan-

darao [31]). Udandarao [31] further established that training with higher tem-

perature values can enhance uniformity and alignment in CLIP. However, their

findings also indicate that fine-tuning at higher temperatures often degrades

downstream task performance. In contrast, our work identifies low uniformity,

exacerbated by small batch sizes in high-dimensional spaces, as a key driving

factor for the modality gap. We demonstrate that optimizing for uniformity

and alignment explicitly can improve downstream performance (as measured

by image-classification and multi-modal arithmetic)

The role of temperature and the contrastive loss function in the modality

gap has also been explored by Al-Ja↵ [13]. They found that di↵erent loss

functions could adjust the modality gap, but decreasing the gap did not con-

sistently improve downstream task performance. The authors suggest that the

modality gap might be an incidental outcome of certain contrastive methods

rather than a crucial factor in representation quality. Our work extends this

by relating the modality gap to low uniformity and proposing that the tem-

perature parameter alone does not fully explain the gap or the quality of the

learned representations.

On the other hand, exact modality alignment (i.e, zero modality gap) may

be sub-optimal (Jiang et al. [15]). Jiang et al. [15] argue that exact alignment

implies that only the shared information between the modalities is preserved

in the embedding, while the modality-specific information is discarded. Their

approach involves learning orthogonal subspaces for within-modality and cross-

modality contrastive learning. We argue that exact alignment is theoretically

ideal as it is directly optimized by the contrastive loss, and as a result, we

focus on understanding and addressing the contrastive gap itself.

Another approach to addressing the modality gap involves synthesizing

hard negatives from in-batch negatives, as proposed by Oh et al. [26] (For a

given image, its soft in-batch negatives are all the other images and captions

within the sampled batch). They demonstrate that using hard negatives and
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ensuring they lie on the unit sphere can close the modality gap and improve

downstream performance. Our work complements theirs, showing that higher

batch sizes also help to close the modality gap, suggesting that increasing the

number of soft in-batch negatives is another way to close the modality gap.

Ultimately, the required number of soft in-batch negatives rises to unreason-

able numbers as CLIP dimensionality increases. As a result, we suggest a

simpler e↵ective alternative: optimizing for uniformity and alignment, which

also closes the gap, while improving downstream performance and does not

require large batch size.

The modality gap emerges because of using soft in-batch negatives (Oh et

al. [26]). Their approach to close the gap involves synthesizing hard-negatives,

(from the in-batch negative pairs) making sure they lie on the unit sphere.

They show that fine-tuning multi-modal contrastive models using the gener-

ated hard-negatives closes the modality gap, and improves downstream per-

formance.

2.6 Chapter Conclusion

In this chapter, we gave an overview of the relevant uni-modal and multi-

modal contrastive learning literature, with an emphasis on CLIP. We explained

the training mechanism of CLIP, detailing how it leverages multi-modal con-

trastive learning to map image and text embeddings into a shared representa-

tional space. We then introduced and discussed the modality gap phenomenon,

which emerges in the representational space of CLIP and other multi-modal

contrastive models. We explored various factors that have been proposed in

the literature as contributing to the modality gap, including the cone e↵ect,

mismatched pairs, and the conflicting uniformity and alignment properties in

contrastive learning, leading to the existence of local minima in the CLIP loss

landscape.

Furthermore, we reviewed related work that have attempted to adjust the

modality gap through di↵erent approaches, such as adjusting the contrastive

loss function, fine-tuning with hard negatives, and adjusting the temperature
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hyperparameter. These studies highlight the complexity of the modality gap

and the ongoing debate about its impact on downstream task performance.

In conclusion, we posited that the modality gap may not simply be a result

of aligning di↵erent modalities in a shared representational space, but rather

a consequence of the inherent properties of the contrastive algorithm itself. To

capture this underlying phenomenon more accurately, we suggest that the term

“contrastive gap” may be more appropriate. In the next chapter (Chapter 3,

we present proof-of-concept experiments to show that the factors currently

attributed to the emergence of the gap do not su�ciently explain it. We will

also explore simple scenarios where the gap can be closed, o↵ering insights

into potential strategies for addressing it.
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Chapter 3

Characterizing the Gap

3.1 Chapter Overview

In the previous chapter, we introduced the phenomenon known as the modality

gap, which we rename the contrastive gap. In this chapter, we first outline two

measures to quantify the size of the contrastive gap. We then dive deeper into

this phenomenon and examine the factors that are thought to cause it. We

then show that the modality gap exists even after we systematically remove

all these factors. We demonstrate that CLIP in 3D behaves di↵erently from

high-dimensional CLIP, and formulate a hypothesis about the true cause of

the modality gap by relating the gap to the high-dimensional latent space that

the CLIP embeddings reside in.

3.2 Measuring the gap

To show that we have closed the gap between the embeddings generated by

the two encoders, we must first find a way to quantify the modality gap.

Each encoder projects its inputs into a shared representational space, and the

modality gap is the measure of separation between the embeddings of the two

modalities in this shared representational space. We introduce the following

two metrics to measure the size and severity of the gap:

Distance between modality centroids (from Liang et al. [20]) Given

N images and N captions, we denote the centroid of the image embeddings as

CI = 1/N
PN

j=1 E
I
j , (where E represents an embedding) and similarly for the
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centroid of the text embeddings. We compute the distance between centroids

as kCI � CTk2, and note that the centroid distance can vary from 0 to 2.

Linear Separability (from Welle [35]) is the percentage of embeddings

from the two encoders that can be distinguished by a linear classifier operating

in CLIP space. We used 80% of the dataset to train a linear model to classify

CLIP embeddings as originating from either encoder 1 or encoder 2. We then

tested the performance of the classifier on the remaining 20% of the dataset

and reported the accuracy. If a set of embeddings are 100% linearly separa-

ble, this means that the spaces occupied by embeddings from each encoder

are completely disjoint. Conversely, 50% linear separability means that the

embeddings of the two encoders are overlapping in CLIP space, meaning that

they occupy the same region of the latent space; i.e. there is no gap between

the embeddings.

To summarize, if we can e↵ectively close the gap we will find that the

distance between centroids is small and linear separability is close to 50%.

3.3 The Modality Gap Persists Even When
All Factors Are Accounted For

We ran several experiments to systematically remove the factors commonly

known to contribute to the modality gap (the cone e↵ect of the encoder net-

works, mismatched pairs in the dataset, and CLIP loss getting stuck in local

minima). We created an idealized scenario where:

1. There is only one modality. We replaced the text encoder in CLIP with

another copy of the image encoder and trained the model on pairs of

images instead of text-image pairs. Thus, for this experiment the CLIP

encoders are two identical image encoders with di↵erent random initial-

izations.

2. Embeddings from the two image encoders occupy the same cone at ini-

tialization. After we initialize the two image encoders, we computed a

fixed transformation matrix that translates the embeddings of the second
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image encoder to overlap with those of the first image encoder (following

[20]). Thus, the second encoder’s embeddings are translated to occupy

the same narrow cone as the first encoder’s embeddings at initialization.

This way, there is no modality gap at initialization.

3. There are no mismatched pairs. The positive pairs in our constructed

dataset are actually identical images. This eliminated the possibility

that there would be mismatched pairs in the dataset.

We ran this experiment on the full MS-COCO training dataset. We used

a batch size of 64, and the default CLIP dimensionality of 512D (i.e. Image

embeddings, EI 2 R512). We tested modality gap metrics (distance between

centroids of the embeddings from the two encoders, and linear separability

accuracy, from Section 3.2) and contrastive loss on the validation split. We

report the size of the modality gap and show 95% confidence interval across

three random initializations of encoder parameters in Table 3.1

At initialization After 15 epochs
Centroid distance 0.01± 0.01 0.40± 0.08
Linear separability acc. 0.53± 0.02 1.00± 0.00
Contrastive loss 3.42± 0.22 0.00± 0.01

Table 3.1: Modality gap persists even when all factors are accounted
for: Modality gap metrics and CLIP loss values before and after training
CLIP from scratch in ideal dataset conditions. At initialization: Distance
between the centroids of the embeddings from the two image encoders is close
to zero due to our transformation at initialization, and the embeddings are not
linearly separable, meaning that there is no modality gap. After training:
Centroid distance increases slightly, but the embeddings from the two image
encoders are perfectly linearly separable. Thus, the modality gap is created by
the contrastive loss.

Table 3.1 shows that even when the dataset is idealized and almost trivial to

optimize on, and the model is initialized without a gap, after training to near

zero loss, the CLIP embeddings are still perfectly linearly separable. Thus,

there is a contrastive gap that is created as a byproduct of the contrastive

loss, even when the two encoders are trained on the same modality and even

on the same inputs.
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We visualize the emergence of the contrastive gap in this idealized scenario

by:

Plotting the centroid distance over training steps Figure 3.1 shows

that centroid distance start at zero, and then abruptly increase and plateau,

indicating that the gap between the “modalities” is created by the contrastive

loss during training.

Visualizing the latent space in 3D using UMAP In Figure 3.2, we plot

1000 randomly selected data pairs during training to show the emergence of

the contrastive gap during training in this idealized scenario.

Figure 3.1: Distance between the two image centroids in idealized training
scenario. Distance begins at 0 because we artificially close the gap before
training begins. Distance increases and plateaus, showing that the contrastive
gap emerges during training. Plot shows average over 3 seeds (Shaded region
indicates the standard error).

3.4 Visualizing the Gap in 3D CLIP

In the previous experiment, we demonstrated that the modality gap emerged

during training when CLIP was trained in a 512-dimensional space. However,

Welle [35] showed that the CLIP loss function could close the gap between

embeddings by training on synthetically generated 3-dimensional points in

Euclidean space, without relying on a neural network. In their experiment,

they generated two sets of points scattered across a 3-dimensional Euclidean
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(a) At Initialization: We remove the gap at initialization by
translating the embeddings of encoder 2 to overlap with the em-
beddings of encoder 1.

(b)After 200 steps: CLIP’s contrastive loss creates a gap between
the image embeddings from the two encoders relatively early during
training. This occurs even when there are no mismatched pairs, and
when both input “modalities” are images.

(c) After 25k steps: As CLIP’s loss approaches zero, the gap be-
tween the embeddings remains. This demonstrates that the factors
previously thought to be responsible for the ’modality’ gap actually
arise due to the contrastive loss.

Figure 3.2: Visualizing changes in CLIP representational space when training
in an idealized scenario, starting with no contrastive gap. We plot the em-
beddings in 3D using UMAP visualization. The two di↵erent colors (red and
green) represent embeddings from di↵erent encoders.
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Figure 3.3: Proof-of-concept experiment taken from Wang and Liu [32] il-
lustrating that CLIP loss induces a modality gap. The authors randomly
generated two sets of points representing two modalities on a 3D sphere. Red
and green colors represent points from each point set. t is the training epoch.
Top: Results of running an optimizer on the euclidean positions of the two
sets of points to reduce the CLIP loss. Bottom: Results of running an opti-
mizer to reduce SimCLR (uni-modal) loss on just one set of points.

.

space, with each set representing a di↵erent modality. By directly optimizing

on the positions of these points within the Euclidean coordinate space, they

were able to investigate how the modality gap could be influenced purely by

the contrastive loss function itself (i.e, the parameter space for optimization is

the euclidean coordinate space of the points, instead of the weights of a neural

network). They randomly generated 1,000 points on a 3D sphere and trained

with a batch size of 10 and a learning rate of 0.01. We show the results of Welle

[35]’s experiment in Figure 3.3. This experiment highlights that the modality

gap can arise even in low-dimensional spaces and without any external factors

from the dataset or neural network architecture, but can eventually be closed

after a large number of training steps.

Following the work of Welle [35], we studied the behaviour of CLIP loss

when we reduce the CLIP dimensionality from 512D to 3D. We extended the

proof-of-concept experiment done by Welle [35] with the following changes:

• Using Real Data: We sampled 1,000 image-text pairs from the MS-

COCO dataset rather than using synthetic points. This way, we can

better capture the nuances of a real-world data distribution.

• Optimizing with CLIP architecture: In the original experiment by

Welle [35], the authors bypassed the neural network entirely by directly
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(a) Epoch 0
I ! T acc.: 0.0

(b) Epoch 37
I ! T acc.: 0.0

(c) Epoch 150
I ! T acc.: 0.1

(d) Epoch 275
I ! T acc.: 0.87

Figure 3.4: Visualizing the training stages of 3D CLIP on 1000 image-text
pairs from MS COCO. Red points are image embeddings, and blue points are
text embeddings. I ! T accuracy indicates how accurately the model can
retrieve the correct text given an image. Higher I ! T accuracies mean that
the model is better at distinguishing between correct (positive) image-text
pairs and incorrect (negative) pairs in the latent space. (a): The embeddings
of each modality initially reside in separate regions due to the cone e↵ect. (b),
(c): As training progresses, these embeddings begin to form arcs and gradually
merge into rings. (d): Finally, the embeddings from both modalities spread
out to fill the entire sphere.

optimizing the positions of points in a 3D Euclidean space. However, in

our modified experiment, we utilized the CLIP model to project image

and text representations into a 3D space (by adjusting the output pro-

jection layer from 512D to 3D). By doing so, we could examine how the

CLIP model and its loss function behave together, allowing us to assess

the impact of both the neural network and the loss function in a more

realistic setting.

In Figure 3.4 we see that after training on CLIP loss for 275 epochs, the

model is able to create a representational space that closes the contrastive gap

in 3D even on real-world data. This suggests that closing the contrastive gap

may be easier in lower dimensional vs. in high-dimensional spaces.

We measure the representational space quality using the text-retrieval ac-

curacy metric. Text-retrieval accuracy measures how accurately a model can

retrieve the correct textual description (caption) for a given image based on

their embeddings. A higher accuracy indicates that images and their corre-

sponding caption embeddings are closely aligned in the representational space,

suggesting that the model has e↵ectively captured the semantic relationships
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between the two modalities.

We report the text-retrieval accuracies in Figure 3.4 as the accuracy with

which we can retrieve an input image’s caption given the input image’s embed-

ding and the embeddings of all the captions in the dataset. The results show

that points on the 3D sphere are best aligned across modalities when they are

evenly distributed on the sphere (as evidenced by the very high text-retrieval

accuracy when Figure 3.4d). Therefore, we speculate that it is desirable close

the contrastive gap and to distribute the embeddings more uniformly on the

unit sphere in Rd to improve the quality of representations.

While this experiment suggests that it might be easier for CLIP to close the

contrastive gap in lower dimensionalities, simply reducing CLIP dimensionality

to close the contrastive gap may not be desirable. This is because lower-

dimensional spaces inherently have fewer degrees of freedom to capture the

complexities of the input data, resulting in the embeddings retaining lesser

information. Therefore, we propose explicitly optimizing for more uniformly

distributed embeddings in high-dimensional CLIP space. In Chapter 5, we will

see that, when the embeddings are more uniformly distributed in the latent

space, the contrastive gap decreases, and in turn, the quality of the learned

representations increases, as measured by performance in multiple downstream

tasks

3.5 Chapter Conclusion

In this chapter, we explored the possibility of closing the contrastive gap in

multi-modal models like CLIP. We began with a proof-of-concept experiment

that demonstrated how common factors such as the cone e↵ect, mismatched

pairs, local minima, and varying data distributions fail to fully explain the

emergence of the modality gap. We then presented experiments using a 3D

version of CLIP, where we showed that the contrastive gap can be closed. We

observed that the gap is closed when the embeddings are uniformly distributed

on the three-dimensional unit sphere.

We also demonstrated that a uniformly distributed representational space
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not only closes the gap but also leads to higher text-retrieval accuracies, sug-

gesting that a uniformly distributed embedding space without a contrastive

gap allows the model to better capture the semantic relationships between the

two modalities of data.

In the next chapter (Chapter 4), we will introduce the concepts of uni-

formity and alignment in the representational space. We will show that the

contrastive gap arises primarily due to low uniformity in the CLIP space and

propose that optimizing for these properties can be a key strategy in closing

the contrastive gap, ultimately leading to improved model performance.
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Chapter 4

Methodology (Closing the Gap)

4.1 Chapter Overview

In the previous chapter, we observed that in 3D space, the contrastive gap can

be minimized if embeddings are uniformly distributed across the unit hyper-

sphere, rather than being confined to nearly two-dimensional “rings.” Building

on this insight, we propose that a similar approach can be applied to high-

dimensional CLIP models by learning representational spaces where image and

text embeddings are more uniformly distributed. To achieve this, we introduce

the concepts of uniformity and alignment in the contrastive space. We adapt

these properties, originally derived from uni-modal contrastive literature, to

the multi-modal setting and incorporate them into CLIP’s loss function. By

incorporating uniformity and alignment into the CLIP loss, we aim to assess

the impact of these properties on closing the contrastive gap, with the intent

to improve downstream task performance. Finally, we present experiments

which show that the contrastive gap in CLIP arises from low uniformity in

the embeddings, which is exacerbated by training with small batch sizes in a

high-dimensional latent space.

25



4.2 Uniformity and Alignment
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We now explain the concepts of uniformity and alignment in the repre-

sentational space. Recall that the contrastive loss (Repeated in Equation 4.1)

learns a representational space where positive pairs are close to each other, and

negative pairs are far from each other. Following from this intuition, Wang

and Isola [33] suggest that the contrastive representational space should have

the following two properties:

• Alignment : For two samples from any positive pair, the samples should

be mapped to nearby embeddings (aligned) in the latent space, and

therefore be invariant to unnecessary noise features in the input.

• Uniformity : The embeddings should be projected such that they are

roughly uniformly distributed on the unit hypersphere in Rd, preserving

as much information in the data as possible.

Wang and Isola [33] introduced these properties in the context of uni-modal

contrastive learning (unsupervised learning using image augmentations) and

the NT-Xent loss (explained earlier in Section 2.2). The authors show that:

• Higher alignment and uniformity consistently and strongly correlate with

higher downstream performance.

• Directly optimizing for alignment and uniformity (without the use of a

contrastive loss) can lead to better representations than those optimized

using the contrastive loss.

• Both uniformity and alignment are necessary for high-quality represen-

tations.
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4.3 Uniformity and Alignment in Multi-modal
Contrastive Learning

We now adapt the uni-modal uniformity and alignment properties from the

work of Wang and Isola [33] to the multi-modal contrastive space. We define

these properties as losses in the representational space, so that lower values

of uniformity and alignment losses mean that the space has higher uniformity

and alignment.

Multi-modal Uniformity We extend the uniformity property to the multi-

modal setting by distinguishing between two types of uniformity:

• In-modal uniformity: This measures how evenly distributed the embed-

dings are within the same modality. For example, it assesses how well

image embeddings are spread out relative to each other.

• Cross-modal uniformity: This measures how evenly distributed the em-

beddings are across di↵erent modalities. For instance, it evaluates how

well image embeddings are distributed relative to text embeddings.

As an example, consider a representational space where image embeddings

are well spread out relative to text embeddings (high cross-modal uniformity)

but are clustered closely together among themselves (low in-modal unifor-

mity). This means that while the image embeddings are far from most text

embeddings, they are relatively close to other image embeddings. Udandarao

[31] showed that the CLIP representational space exhibits this pattern, with

high cross-modal uniformity but low in-model uniformity. In other words,

while image embeddings are well separated from text embeddings, they tend

to cluster too closely together among themselves. Udandarao [31] showed that

this arrangement is problematic because it leads to a poorly calibrated image-

only subspace within CLIP’s representational space, making it unreliable for

measuring image-image similarity.

We now define the uniformity losses as follows:
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Finally, the total LUniform (In-modal) term is:

LUniform (In-modal) =
1

2
(LT

Uniform + LI
Uniform) (4.4)

LI
Uniform and LT

Uniform each encourage the uniformity within the image and

text embeddings respectively. i.e., LUniform only encourages in-modal unifor-

mity. The original multi-modal contrastive loss (Equation 4.1) does not have

any such term that constrains embeddings within each modality to be far

apart. Instead, the denominators in Equation 4.1 only push negative text

samples away from positive image sample and vice versa.

To enforce a stronger constraint on the uniformity between negative image

and text samples, we also introduce a cross-modal uniformity term:

LXUniform = log
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Multi-modal Alignment We also incorporate an alignment term to en-

courage positive image-text samples to be close together in the latent space.

We adapt the alignment term from the work of Wang and Isola [33] to the

multi-modal setting as follows:

LAlign =
1

N

NX

j=1

(kEI
j � ET

j k2) (4.6)
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4.4 Optimizing Alignment and Uniformity of
CLIP Representations

Our 3D experiments in Section 3.4 demonstrated that the contrastive gap in

multi-modal CLIP is closed when embeddings are uniformly distributed on the

three-dimensional hypersphere. Additionally, we discussed in Section 4.2 that

uniformity and alignment are desirable properties in the uni-modal contrastive

space.

Drawing from these insights, we hypothesize that optimizing for multi-

modal uniformity and alignment in the CLIP representational space could

e↵ectively close the contrastive gap. To test this, we introduce modified CLIP

losses that explicitly optimize for uniformity and alignment in the CLIP space.

Specifically, in our experiments, we fine-tune a pre-trained CLIP model by in-

corporating LUniform, LXUniform, and LAlign terms into the original CLIP loss

(LCLIP, Equation 4.1). By fine-tuning CLIP using these new losses and study-

ing their performance, we can validate the desirability of the uniformity and

alignment properties in the multi-modal setting. In Chapter 5, we demonstrate

the e↵ects of fine-tuning pre-trained CLIP on the following losses:

• LCLIP: The default CLIP loss

• LCLIP+U+A (LCUA): LCLIP + LUniform + LAlign

• LCLIP+U+A+XU (LCUAXU): LCLIP+ LUniform + LAlign + LXUniform

The study of uniformity and alignment in multi-modal contrastive learn-

ing is not an original concept. Previous works, such as those by Goel et al.

[11] and Oh et al. [26], have suggested changes in the CLIP loss to improve

geometric properties of the CLIP space. These authors used LXUniform to as-

sess uniformity in the latent space (as opposed to optimizing for LXUniform).

Additionally, Al-Ja↵ [13] explored training multi-modal models with LUniform

(focusing solely on in-modal uniformity) and LAlign.

In our work, we build on these ideas by combining both in-modal and cross-

modal uniformity terms to promote greater uniformity in the latent space,
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with the goal of reducing the contrastive gap. Unlike prior works, we explicitly

optimize for LUniform, LXUniform, and LAlign by adding these terms to the original

CLIP loss function.

4.5 Contrastive Gap is due to Low Uniformity

In order to validate our approach of trying to close the contrastive gap by

optimizing for uniformity in CLIP space, we first test our hypothesis that the

contrastive gap arises due to low uniformity in the CLIP latent space. We

argue that the contrastive gap is a byproduct of CLIP embeddings lying on a

lower dimensional manifold relative to the CLIP space.

As shown by Wang and Isola [33], optimizing the uni-modal contrastive loss

is equivalent to optimizing for uniformity and alignment, in the limit of infinite

batch size. We extend this reasoning to the multi-modal case, suggesting that

the low uniformity in CLIP space arises due to the insu�cient batch sizes used

in training.

4.5.1 Increasing batch size increases uniformity for a
fixed CLIP dimensionality

Figure 4.1 shows that, for a fixed CLIP dimensionality (35D CLIP), larger

batch sizes lead to lower uniformity loss values (and thus higher uniformity

in the CLIP space). This result helps extend the theory that uni-modal con-

trastive learning with very large batch sizes optimizes for uniformity to the

multi-modal case.

4.5.2 Increasing batch sizes leads to a more rapid re-
duction of the contrastive gap

Figure 4.2 shows that, for a fixed CLIP dimensionality (35D CLIP), larger

batch sizes lead to lower linear separability accuracies (and thus force the

embeddings of di↵erent modalities closer together). Together with the result

from 4.5.1, this provides evidence that optimizing for uniformity helps close

the contrastive gap.
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Figure 4.1: Uniformity loss vs Training step when fine-tuning CLIP on the
MS-COCO dataset. Larger batch sizes lead to lower uniformity loss values,
and thus higher uniformity in CLIP space.

4.5.3 Reducing CLIP dimensionality helps reduce the
contrastive gap

Figure 4.3 shows that, for a fixed batch size (= 16), reducing the CLIP

dimensionality helps close the contrastive gap. This result gives insight into

why the contrastive gap is so prevalent in CLIP and its successor models today:

Most of them are very high dimensional, and probably do not use su�ciently

large batch sizes during training to close the contrastive gap.

4.6 Chapter Conclusion

In this chapter, introduced the concepts of uniformity and alignment in uni-

modal contrastive learning and adapted these properties to the multi-modal

setting. To quantify uniformity and alignment in the CLIP latent space, we

defined three new loss terms: LUniform, LXUniform, and LAlign. We then formu-

lated new loss functions—LCLIP, LCUA, and LCUAXU—which incorporate the

uniformity and alignment losses into the original CLIP loss function.

Finally, we empirically showed that the contrastive gap arises from low

uniformity in the CLIP space. We demonstrated that increasing batch sizes

while keeping the CLIP dimensionality fixed improves uniformity in the CLIP
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Figure 4.2: Linear Separability Accuracy vs Training step when fine-tuning
CLIP on the MS-COCO dataset. Larger batch sizes lead to lower linear sepa-
rability accuracies, and thus smaller contrastive gap size

Figure 4.3: Linear Separability Accuracy vs Training step when fine-tuning
CLIP on the MS-COCO dataset. Smaller CLIP dimensionalities lead to lower
linear separability accuracies, and thus smaller contrastive gap size.
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space, and helps reduce the contrastive gap faster. Based on these findings,

we concluded that improving uniformity in the CLIP space is a promising

approach to closing the contrastive gap.

In the next chapter (Chapter 5), we investigate how optimizing for the uni-

formity and alignment losses impacts the contrastive gap. We show that using

these new losses helps close the gap e↵ectively, even with reasonable batch sizes

and in high-dimensional latent spaces. Additionally, we will demonstrate that

minimizing the contrastive gap leads to improved performance on downstream

tasks, such as zero-shot image classification and multi-modal arithmetic. This

suggests that addressing the contrastive gap is a promising strategy for en-

hancing the performance of CLIP-like models.
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Chapter 5

Experiments

5.1 Chapter Overview

In the Chapter 4, we introduced the concepts of uniformity and alignment

within the context of multi-modal contrastive learning. We showed that in-

creasing uniformity in CLIP space—achieved by using larger batch sizes—helps

to minimize the contrastive gap. Building on this, we detailed how to modify

the original CLIP loss function by incorporating terms that specifically pro-

mote uniformity and alignment in the CLIP space, with the goal of reducing

the contrastive gap without the need to increase batch size during training.

In this chapter, we study the e↵ects of fine-tuning CLIP on the new uni-

form and align losses across multiple CLIP dimensionalities. We begin by

outlining the experimental setup for our study, including the hyperparameters

and dataset used to fine-tune the CLIP models. We then compare the size of

the contrastive gap after fine-tuning with the original vs. the new losses using

the standard image-caption dataset, MS-COCO. Our results demonstrate that

optimizing for uniformity and alignment during fine-tuning e↵ectively reduces

the contrastive gap.

We then evaluate the performance of the fine-tuned CLIP models across

three standard downstream tasks: zero-shot image classification, image-text

retrieval, and multi-modal arithmetic. Our findings reveal that reducing the

contrastive gap leads to improved performance in zero-shot image classification

and multi-modal arithmetic, but appears to hurt image-text retrieval perfor-

mance slightly.
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5.2 Experimental Setup

Hyperparameters Overview For our experiments, we fine-tuned the CLIP

model [28] made available by OpenAI from HuggingFace [36]1. We used the

ViT-B/32 variant of the image encoder and a transformer (from OpenAI’s

o�cial implementation2) as the text encoder. When fine-tuning, we adjusted

the dimensionality of CLIP (Rd, d 2 [32, 64, 128]) by changing the size of the

final linear projection layer of pre-trained CLIP (We illustrate this in Fig-

ure 5.1). For all our experiments, we fixed the temperature (⌧) parameter

to 0.01, as ⌧ converges to this value after CLIP pre-training. We list all the

hyperparameters from our setup in Table 5.1.

Hyperparameter Value
Image encoder model ViT/B-32
Text Encoder model Transformer (same as in 3)

Embedding dimensions [32, 64 ,128]
Temperature 0.01

Epochs 9
Batch size 64

Learning rate 1e-6
Adam beta1 0.9
Adam beta2 0.99

Adam weight decay 0.1
Scheduler None

Table 5.1: Hyperparameters used for fine-tuning the CLIP models

Fine-tuning Dataset We fine-tune our CLIP models on MS-COCO [21]4,

an image-caption dataset where each image has five corresponding human-

generated captions. We use the 2017 split, with 118k training images, and 5k

validation images. Throughout our experiments, we only use the first caption

for each image and discard the remaining 4 captions per image.

1https://huggingface.co/docs/transformers/en/model_doc/clip
2https://github.com/openai/CLIP
4https://cocodataset.org

35

https://huggingface.co/docs/transformers/en/model_doc/clip
https://cocodataset.org


(a) Default CLIP

(b) CLIP with changed dimensionality. (128D in this figure)

Figure 5.1: We adjust the dimensionality of CLIP latent space by changing
the size of the final projection layer. When fine-tuning, we keep the rest of
the model backbone from pre-trained CLIP, while randomly initializing the
projection layer.

Estimating Statistical Errors in our Results To estimate statistical

errors in our results, we used three di↵erent random seeds for initializing our

models. The numerical results and plots presented throughout this chapter

represent the averages obtained from the runs of these three seeds. To convey

the variability of our results, we include one standard error around the mean

as error bars in our plots.

5.3 E↵ects of Optimizing for Uniformity and
Alignment on the Contrastive Gap

Evaluating contrastive gap metrics For each of the losses, we measure

the contrastive gap using two metrics: the distance between the image and
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text centroids, and the linear separability accuracy of the image and text em-

beddings (These metrics are explained in Section 3.2). A lower value for these

metrics indicates a smaller contrastive gap. Figure 5.2 shows these metrics for

various CLIP dimensionalities and loss functions.

The plots in Figure 5.2 reveal that when fine-tuning with LCLIP, the con-

trastive gap becomes more pronounced as dimensionality increases. In con-

trast, this e↵ect is less significant when fine-tuning with LCUA and LCUAXU.

There is a growing disparity in the contrastive gap sizes between LCLIP and the

other losses with increasing dimensionality. These findings are consistent with

the earlier results presented in Section 4.5, supporting the idea that higher

CLIP dimensionalities make it harder for LCLIP to close the contrastive gap.

Overall, our results empirically support the claim that losses designed to

encourage uniformity in the CLIP space e↵ectively reduce the contrastive gap.

This supports our claim that increasing uniformity in CLIP space reduces the

size of the contrastive gap.

Evaluating the distribution of embeddings across latent space di-

mensions We evaluate how the image and text embeddings are distributed

within CLIP space by applying Principal Component Analysis (PCA) and

analyzing the explained variance ratios (Holland [12])

PCA is a dimensionality reduction technique that summarizes the data

into a smaller set of principal components (PCs). The explained variance ratio

indicates how much of the original data’s variance is captured, or “explained”,

by each PC. By examining the cumulative PCA explained variance curve,

we can assess how well the embeddings are spread across the dimensions of

the unit hypersphere in CLIP space. Ideally, if the embeddings are uniformly

distributed across all dimensions—indicating high uniformity—the cumulative

PCA explained variance curve will form a straight line. As discussed in Section

4.5, higher uniformity is associated with a smaller contrastive gap.

Figure 5.3 shows the cumulative explained variance of CLIP spaces learned

using various losses, and in di↵erent CLIP dimensionalites. Compared to LCLIP

and LCUA, the cumulative variance plot rises the slowest for LCUAXU in all
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(a) Distance between image and text centroids in CLIP space for each of
the losses. Recall that the gap closes when the centroid distance is small.

(b) Linear separability of image and text embeddings in CLIP space for
each of the losses. Recall that the gap closes when linear separability ⇡ 0.5.

Figure 5.2: Contrastive gap metrics after fine-tuning CLIP model on the three
losses (In the plot legends, Default = LCLIP, CUA = LCUA, and CUAXU =
LCUAXU) LCUA and LCUAXU have lower measures of both the metrics of the
contrastive gap. This indicates that the size of the gap is much smaller with
uniformity and alignment terms included. The di↵erences in the size of the
contrastive gap are more pronounced in higher CLIP dimensionalities.

the dimensionalities tested, indicating that cross-modal uniformity encourages

the embeddings to be distributed throughout the hypersphere more e↵ectively.

We therefore conclude that adding uniform and align losses encourages smaller

contrastive gaps in the latent space, across a range of dimensions.
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(a) 32D CLIP (b) 64D CLIP

(c) 128D CLIP

Figure 5.3: Cumulative explained variances for all principal components of
the latent space after fine-tuning CLIP with the di↵erent losses. The di↵erent
plots shows the PCA explained variances of di↵erent CLIP dimensionalities.
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5.4 E↵ects of Reducing Contrastive Gap on
Image-Text Retrieval

We now assess the e↵ects of reducing the contrastive gap on the image-text

retrieval task using the MS-COCO validation dataset, a standard benchmark

in the vision-language domain. In this task, we aim to retrieve the correct

caption from the dataset for a given input image, or, conversely, the correct

image for a given caption.

We define the image-retrieval task as follows:

1. Obtain Text Embedding: For an input caption (indexed by j), pass

it through the text encoder to get its text embedding, denoted as ET
j .

2. Generate Image Embeddings: Given a dataset of N images, pass

each image through the image encoder to get a list of N image embed-

dings, denoted as EI
[1...N ] .

3. Find the Most Similar Image: Find the image that best matches the

input caption by calculating the cosine similarity between ET
j and each

of EI
[1...N ]. The image with the highest similarity score is considered the

best match for the caption.

The text retrieval task is similar, but in reverse: we retrieve the most

relevant caption for a given input image.

We present the results of fine-tuning and evaluating CLIP on MS-COCO

in 5.4. For both the text-retrieval (I ! T ) and image-retrieval tasks (T ! I),

models fine-tuned with LCLIPoutperform the other models by a small margin.

The results suggest that the performance in the image-text retrieval task is

not well correlated with uniformity, alignment, and size of contrastive gap.

5.5 Zero-Shot Transfer

Previously, we saw that optimizing for uniformity and alignment reduces the

size of the contrastive gap by encouraging the image and text embeddings to be

spread more uniformly on the unit hypersphere and lie on higher dimensional
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(a) Top 5 recall for Image retrieval task for di↵erent fine-tuning losses.
LCLIPoutperforms other losses for this task.

(b) Top 5 recall for text retrieval task for di↵erent fine-tuning losses.
LCLIPoutperforms other losses for this task.

Figure 5.4: Top 5 recall for image to text and text to image retrieval tasks
on the MS-COCO validation set. Fine-tuning with LCLIPgives slightly higher
recall values compared to fine-tuning with LCUA and LCUAXU.

manifolds in Rd. Now, we analyze the e↵ects this has on zero-shot image

classification, a common downstream task for assessing the quality of CLIP

embeddings. We evaluate our fine-tuned CLIP models on the standard image-

classification datasets outlined in Table 5.2.

To test the zero-shot transfer capabilities of our CLIP models, we adopt the

evaluation strategy of Goel et al. [11], which is also recommended by Radford
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Figure 5.5: Average zero-shot transfer performance for fine-tuned CLIP on
the di↵erent losses. We plot the average metric value of all the datasets as
shown in Table 5.2. CLIP losses with uniformity and alignment terms added
consistently get better zero-shot performance than default fine-tuned CLIP on
the same dimensionality.

et al. [28]: We generate prompts using the class names to form sentences like

“a photo of a {class name}”, “A sketch of a {class name}”, etc. We then

pass these sentences through the text encoder to get prompt embeddings. We

average all the prompt embeddings to get a class embedding for each class.

Finally, to classify an image, we pass the input image through the image

encoder and obtain its image embedding. We then determine the predicted

class by finding the class embedding closest to the image embedding using

cosine similarity.

Figure 5.5 shows the average zero-shot metric values across all the datasets

for each of the losses and dimensionalities. CLIP losses with added alignment

and uniformity terms consistently outperform the default CLIP loss, and XU-

niform adds additional benefit. Further, the improvement in zero-shot transfer

performance is more significant in higher dimensionalities of CLIP.

This is a similar trend to that in Figure 5.2, where the di↵erence in the size

of the contrastive gap for the di↵erent losses was more significant in higher

dimensionalities. Thus, representational spaces with smaller contrastive gap

(as learned by models fine-tuned with LCUA and LCUAXU) appear to correlate
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Dataset Classes Test size Evaluation metric
CIFAR-10 10 10,000 Accuracy
CIFAR-100 100 10,000 Accuracy
SUN397 397 19,850 Accuracy
Pascal VOC 2007 20 4,952 11-Point mAP
Oxford-IIIT Pets 37 3,669 Mean Per Class
Caltech-101 102 6,085 Mean Per Class
ImageNet 1000 50,000 Accuracy
ImageNet-V2 1000 10,000 Accuracy
ImageNet-Sketch 1000 50,000 Accuracy
ImageNet-A 200 7,500 Accuracy
ImageNet-R 200 30,000 Accuracy
ImageNet-O 200 2,000 Accuracy
ObjectNet 113 50,000 Accuracy

Table 5.2: Datasets evaluated on to test zero-shot image-classification perfor-
mance of the di↵erent CLIP losses.

with higher performance for the zero-shot transfer task.

5.6 Multi-modal Arithmetic

A high quality multi-modal representational space should maintain consistent

structural relationships between the di↵erent modalities it learns, such as im-

ages and text. This means that similar concepts should be represented in a

structurally coherent way across both modalities. To evaluate such consis-

tency between CLIP’s image and text embeddings, we use SIMAT (Seman-

tic IMage Transformation), from Couairon et al. [8]. SIMAT assesses how

well the structural relationships are preserved between the two modalities by

transforming an image representation using text delta vectors. These vectors

capture the change from one text embedding to another, and are used to ad-

just the image embedding accordingly. Specifically, SIMAT computes a new

image representation with the formula EI
target = EI

input + � · (ET
target � ET

input),

where (ET
target � ET

input) is the text delta vector and � is a hyperparameter

that controls the strength of this transformation. In our experiments, we set

� to 1. We use this approach to retrieve the closest image to the transformed

embedding. By examining the retrieved image, we gain insight into how well
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the image and text embeddings align in the representational space.

Figure 5.6 further explains the methodology of SIMAT. SIMAT performs

image retrieval, guided by an input image and a query describing a text trans-

formation. The text transformation is mapped to a delta vector, which, when

added to the input image embedding, results in a transformed embedding.

SIMAT retrieves the closest image to the tranformed embedding from its im-

age database.

Finally, the evaluation module checks whether the retrieved image corre-

sponds correctly to the text-transformed caption. This validation is performed

using OSCAR (Li et al. [19]), an image-text matching oracle that assigns a

probability for a given image-caption pair, indicating how likely they are to

be associated with each other. For the SIMAT evaluation, the retrieved image

is considered correct if the OSCAR probability is greater than 0.5. Figure 5.7

illustrates the concept by showing examples of expected images to be retrieved

given an input image and a transformation query.

We present the results of SIMAT evaluation on the di↵erent loss functions

in Figure 5.8. Adding uniformity and loss terms to the CLIP loss leads to in-

creased SIMAT scores, indicating that the representational space learned with

uniform and align terms is more consistent with arithmetic operations between

modalities. Notably, the di↵erence in SIMAT scores between the baseline and

the modified CLIP losses becomes more significant as the dimensionality of

CLIP increases. We see a similar trend in Figure 5.2, where fine-tuning with

LCUA and LCUAXU lead to representational spaces with significantly lower con-

trastive gap, especially in higher dimensionalities, compared to fine-tuning

with LCLIP.

As an illustrative example of this improvement, Figure 5.9, shows that the

CLIP model fine-tuned with LCUAXU retrieves an image that is more represen-

tative of the transformed caption compared to CLIP model fine-tuned with

LCLIP.

From these empirical findings, we conclude that having a smaller con-

trastive gap is well correlated with higher performance in the multi-modal

arithmetic task. Our results suggest that closing the contrastive gap by fine-
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Figure 5.6: SIMAT Methodology: Image retrieval guided by text transforma-
tion query. Figure taken from Couairon et al. [8]

Figure 5.7: Examples of images that are expected to be retrieved given input
images and text transformations. Figure taken from Couairon et al. [8].

45



Figure 5.8: SIMAT Score vs Dimensionality plot. Higher SIMAT scores in-
dicate more consistency in the arrangement of image and text embeddings
in CLIP space. The plot shows that LCUA and LCUAXU have achieve higher
SIMAT scores than LCLIP. The di↵erence in SIMAT scores becomes more sig-
nificant as CLIP dimensionality increases from 32D to 128D.

tuning with added uniformity/alignment terms could benefit applications that

rely on the geometric structure and consistent arithmetic properties in the

latent space.

5.7 Chapter Conclusion

In this chapter, we studied the e↵ects of fine-tuning on losses LCLIP, LCUA,

and LCUAXU, characterizing their impact on the size of the contrastive gap,

image-text retreival accuracy on MS-COCO, zero-shot accuracy across vari-

ous standard image classification datasets, and performance in multi-modal

arithmetic tasks.

We conclude this chapter with the following key takeaways:

• Adding uniform and align terms to CLIP loss (as done in LCUA and

LCUAXU) significantly reduces the size of the contrastive gap, with the

reduction being more drastic compared to LCLIP as dimensionality in-

creases.
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Figure 5.9: Reducing contrastive gap improves quality of images retrieved
using text transformation queries. Top 2 rows: Arithmetic in CLIP space
with default contrastive gap (with model fine-tuned with LCLIP). Bottom 2
rows: Arithmetic in CLIP space with reduced contrastive gap (with model
fine-tuned with LCUA)

47



• Despite this reduction in the contrastive gap, fine-tuning with LCUA and

LCUAXU does not lead to improved image-text retrieval performance on

the MS-COCO dataset. This indicates that factors beyond the con-

trastive gap, uniformity, and alignment may play a critical role in deter-

mining the quality of embeddings for this particular task.

• Fine-tuning with LCUA and LCUAXU and thus minimizing the contrastive

gap enhances zero-shot image classification accuracy across a wide range

of datasets. This improvement in zero-shot transfer over LCLIPis more

significant in higher CLIP dimensionalities. We noticed that this trend

is also true for the size of the contrastive gap as dimensionality increases,

suggesting that the smaller contrastive gap is correlated to higher zero-

shot transfer performance.

• Minimizing the contrastive gap improves multi-modal arithmetic perfor-

mance. We observed similar trends in the measures of contrastive gap

and SIMAT scores, which suggest that high performance in the multi-

modal arithmetic task is correlated with smaller contrastive gap, and

that minimizing the gap is beneficial for tasks requiring complex reason-

ing across modalities.
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Chapter 6

Conclusions and Future Work

Multi-modal contrastive learning is a rapidly emerging approach in the field

of vision-language models. Models like CLIP and its many variants are being

used in a wide variety of applications ranging from simple image-text retrieval

all the way to studying representations formed from various stimuli in the

brain. Therefore, the contrastive gap is an emergent phenomenon that a↵ects

these applications, often in ways that are not trivial to analyze.

In this thesis, we studied the representations learned by multi-modal con-

trastive learning algorithms and analyzed the contrastive gap phenomenon.

We showed that eliminating all reasons commonly thought to cause the gap

does not close it. Thus, this is not a modality gap: We showed that the gap

is an inherent property that arises from the CLIP loss itself, and is not due to

properties of the data (such as mismatched pairs), the network (i.e. cone ef-

fect), nor the loss landscape (CLIP loss getting stuck in local minima), as prior

work has suggested. We instead proposed the term contrastive gap to describe

this phenomenon. By studying the behaviour of the contrastive loss in 3D, we

deduced that the most important factor behind the gap is low uniformity of

the embeddings in the unit hypersphere. We additionally demonstrated that

the contrastive gap is symptomatic of the representations lying on a lower

dimensional manifold in the latent space.

Motivated by the idea that the gap stems from low uniformity, we added

adding explicit uniformity and alignment terms to the CLIP loss. We showed

that directly optimizing for uniformity and alignment in the latent space sig-
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nificantly reduces the gap. This supports our claim that low uniformity in the

representational space causes the contrastive gap.

We further showed that closing the gap by simply fine-tuning CLIP with

added uniformity and alignment terms improved zero-shot image classifica-

tion and multi-modal arithmetic performance, which suggests that a smaller

contrastive gap may lead to higher performance for these tasks.

In this work we explored the contrastive gap in the context of limited data

(fine-tuning CLIP on MS COCO). In the future we would like to expand our

scope and include larger datasets. Training on larger datasets could lead to

more insights into the extent to which the contrastive gap closes by optimizing

uniformity and alignment at scale. Another interesting direction for future

work is to analyze the contrastive gap and downstream task performance using

all five captions per image in MS COCO, rather than just the first caption as

we did in our study. Since each of the five captions typically describes di↵erent

aspects of the same image, this approach could provide insights into how well

the model’s representation space aligns varied textual descriptions of the same

visual content.

Another promising direction would be to investigate the impact of reducing

the contrastive gap on generation tasks, such as generating images from texts

or vice versa using CLIP embeddings. Reducing the gap between modalities

could potentially improve the process of translating one modality (like text)

into the other (like images), leading to better generation results.

In our experiments, we added uniformity and alignment losses to the CLIP

loss to investigate their e↵ects on the representational space. An insightful

study would be to experiment with di↵erent weightings of these uniformity

and alignment terms. This would help determine the relative importance of

each of these terms in reducing the contrastive gap and improving task perfor-

mance. Such an empirical study could lead to the design of more e↵ective loss

functions and provide a deeper understanding of the multi-modal contrastive

latent space.
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6.1 Broader Impacts

The work we have presented here is quite theoretical so the broader impacts are

less clear. However, any model that learns from text and images has the ability

to incorporate or enhance biases that exist in the training data. For example, if

some captions are harmful, creating a better representational space for them

may also be harmful. The images included in MS COCO also represent a

biased sample of what occurs in the real world. For example, scenes from

certain countries are underrepresented. This will impact any model trained

on this data and could impact the utility of the model in certain deployment

scenarios.
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