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\
‘ Some linear and Ronlinear wave propagation problems in solids
governed by hyperbolic systems of partial differential equations are
solved using the MacCormack schepe. It 1is shown that the MacCormack
scheme is a suitable method.for tgg solution of boundary initfal valuc
problems governed b& systems of the form
, au  A(U) au P
=+~ " = 4 BU) =0 . e
at N D -

As a preliminary to application to waﬁe propagation ;roblvﬁﬁ in
_ So&fdéé the MacCormack scheme is applied to severgl(linear and nonliﬁeﬁr
. . P

scalar equa;ions. Stability of the MacCormack scheme applied to linear
first order partial differential equations and é hyperbolic system of
first order equations equivalent to the Klein Gordon equation i«
examined using the wvon Neumann method. The numerical results iﬂhifut« N
that the ‘term g{!) in the governing equations can influence the
stability of the MaéCormack scheme.

The;.HSECormack scheme 1is, then, applied to various infinitesinal
plane wave propagation problems 1in linear viscoelastic media. It is

shown that the MacCormack scheme is a useful altersative to the Laplace

transform technique, particularly for viscoelastic Wodels with two

)
relaxation times. i
: \ .
Finite amplitude wave propagation 1in incompressible hyperelastic
solids 1is also investigated using the MacCormack scheme . Axial ¢! ei

wave propagation and combined axial and torsional shear wave propagatici.

: \
in an axially symmetric unbounded hfperelastic solid are considered. Ti.



governing equations are of the form (1), and flo analytical solutions

]
» were found. The numerical scheme ig useful in examining finite amplitude
wave propagation problems Jhich are difficult to solve In closed form.

P |
N
'%¢ The numerical results obtained using a conservative difference

scheme satisfy conservation:™

and - arg consistent with
. - \

X mechanical energy consideratians.

. L%
The MacCormack scheme is used to investigate finit

propagation in a standard viscoelastic solid. The numerical results are

[

compared to known analytical solutions. Conservation of momentum is
1

satisfied even though a nonconseryative difference scheme is used.

’ It is shown that the MacCormack scheme is extremely useful in

obtaining solutions of boundary initial value problems éoverned by
s nonlinear hyperbolic systems of the form (1). These problems are dynamic

problems of nonlinear elasticity and viscoelasticity. The numerical

solutions demonstrate important wave propagation phenomena as well as

. being interesting applications of numerical analysis.

- .
]
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"The fascinating phenomena of wave propagation has always becn
central to the physical sciences and 'engineering" (Engglbrecht. 1983) .
In particular, "the propagation of mechanicﬁl disturbances in solids"
(Achenbach, 1973) is of considerable interest, since "sudden loading as
from an explosion or sddden displacément as in slip at a seismic fault
in the -earth causing an earthquake presents essentially dynamic
problems" (Timoshenko and Goodier, 19Si). This interest in wave
propagation in solids has 1inevitably led to research into finite
aéplitude waves in nonlinear elastieity and nonlinear viscéelasticity.

., Problems of wave propagation 1in solids are an important arca in
applied mechanics and there is considerable intetestl in solutions of
these problems. Yet, there has been much less emphasi§ on numerical
approaches to the solution of boundary initial value wave propagation
problems in solids, particularly nonlinear problems, than for similar
_ problems in fluid dynamicé. The purpose of this research is to obtain
numerical procedures which can be used in the solution of nonlinear
hyperelastic and viscoelastic wave propagation pré%lems, because of the
inherent difficulty in obtaining ‘closed form solutions. Somee linear

problems 1involving hyperelastic and viscoelastic solids are also

considered..
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There have been extensive studies on linear wave propagation in
'solids using analytical matho@l (Achenbach, 1973, Eringen, 1976). In
particular, Achenbach demonstrates the usefulness of 1n£egral transform
techniques, wavefront expansion techniques and the method of
charactefistics for the solution of boundary initial value infinitesimal
amplitude wave propagation problo;s in elastic and viscoelastic solids.
Achenbach also solved a problem of transiedt nonlinear wave finite
amplitude wave propagation using a simple wave solution.

In this stud;, a distinction is made between linear and nonlinear
Qave propagation problems. Problems which give rise to a linear
hyperbolic system of equations are classified as "1ﬂ;ear", and problems
which give rise to a quasi-linear (nonlinear) hyperbolic system of
partial differential equations are classified as "nonlinear". The
constitutive relationship determines whether elastic or viscg;&astic
materials are considered and the measure of the deformation
distinguishes finite amplitude waves from infiditesimal amplitude waves.
It is possible to have a linear finite amplitude wave propagation
problem, if one considers dynamic shear of a Mooney-Rivlin hyperelastic
solid.

The wave propagation problems considered, then, are boundary
initial wvalue probl?ms .governed by linear or quasi-linear hyperbolic
systems of partial differential equations;-“ Linear problems can be
solved using integral transform techniques (Achenbach, 1973,
Christensen, 1982), or the method of characteristics. For certain
linear viscoela:tic wave propagation problems, the Laplace transform

technique results in complicated transforms, which may require numerical

©
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inyérsion (Lee and Morrison, 1956); and the method of characteristics
becomes unattractive for viscoelastic solids with more than one
relaxation time. Nonlinear problems become even more difficult to
"solve, since Laplace transforms cannot be used and the method of
characteristics is difficult to implement because shock paths do not, in
general, coincide with characteristics (Haddow and Mioduchowski, 1975).

Consequently, a sujtable numerical technique, which 1is applicable to a

variety of linear and nonlinear boundary initial value problems, is

presented. .
1,2 Numerical Solution of Wave Propagation Problems

There 1{s extensive 1literature on the numerical solution of
nonlinear hyperbolic equations (Anderson et al, 1984, Mitchell and

CGriffiths, 1980,HCourant and Friedrichs, 1948), but the applications

have been mainly to problems in gas dynamics and fluid dynamics. A"

numerical method is. selected for application te wave propagation
problems in solids in which the most {important consideration is shock
capturing. This is extremely important for the nonlinear problems. The
numerical method proposed is a slight modification of the MacCormack
scheme (MacCormack, 1969). It is well suited for application to
Boundary 1nitial value problems and 1s a second order accurate finite
differencgh‘écheme capable of predicting the position of shock fronts
(Kutler, 1974). |

Théré are some difficultiés involved in the wuse of the MacCormack

scheme,i which become apparent as the method 1is applied to various

“
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problems. Some of these difficulties are documented in the literature
(Anderson et al, 1984, Kutler, 1974).

A major thrust of this study 1is the application of the MacCormack
scheme to problems which are_complicated by an additional term in the
matrix representation of the system of equations. The numerical scheme
was proposed originally for problems of two spatial dimensions and the

application to one spatial dimension has been for systems of the form
= 4 — = 0 , (1. 1)

where U is a column vector -of the depéndent variables, A(U) is a matrix

function of U and x and t are the spatial and ;emporal variables,

respectively. The problems considered in this study are governed by
AR

\
systems of the form '

au Q(U) au
— + 7 — +BU) =0 |, (1.2)
at ax ~ - 7
except for transverse shear wave propagation in a hyperelastic solid
which is governed by (1.1).

Some researchers have inﬁroduced source terms similar to E(g) in
(1.2), but apparently have not presented any application of finite
difference techniques such as the Lax-Wendroff and MacCormack schemes
to the solution of boundary initial wvalue problems governed by (1.2)
(Kutler, 1974). It has been suggested that the term E(H) in (1.2) can
affect the numerical stability of the solution (Mitchell, 1984).

However, an 1in-depth assessment of the MacCormack scheme applied to



p)
systems of equations (1.2) was nog found. Consequently, the ‘motgpd is
applied to various wave propagation problems and the Lolutions are
assessed by various analytical and numerical means. As a result of the
research, some conclusions are drawn regarding the application of the
MacCormack scheme to the system of equations (1.2) based on the
numerical results which are obtained and a stability analysis for some
of the linear problems.

Before the MacCormack scheme i{s applied to the solution of wave
prﬁpagation problems in solids, the difference scheme is analyzed in
Chapter 2 using simple first order’and second order wave equations. The
numerical results are compared to results from known analytical
solutiéns or solutions obtained using the method of characteristics,
which is often used for the solution of problems governed By hyperbolic
systems of equations. Ip aadition, the effect of the term g(g) i«
examined in the simple; context of a scalar equation to determine some
of the ramificatious of ;n additional term in equation (1.2). A von
Neumann stability analysis is used on the simpler first order lincar
equations with and without the term E(E), using the MacCormack scheme to
determine the effect of the additional term. The analysis shows that
the stability of the MacCormack ‘scheme is affected by the additional
term. *

The application of the MacCormack scheme to the simpler first and
second order equations 1indicates that the method 1is suitable for
application to boundary_initial value problems governed by (1.2), and

the method is applied to the solution of various linear and nonlinear

wave propagation problems in solids.



L.3 Purpose of This Investigation

The wave propagation problems considered are classified as:

(a) 1linear viscoelastic infinitesimal amplitude wave propagation;
(b) 1linear and nonlinear finite amplitude wave propagation in
hyperelastic solids; and

(¢) nonlinear viscoelastic finite amplitude wave propagation.

Chapter 3 deals with solutions of infinitesimal amplitude wave
propagation problems in viscoelastic media  The MacCormaék sc%eme is
applied to 'the solution of various boundary initial value problems
governed by linear systems of equations (1.2), where f is a ;onstnnt and
E(y) is a linear function of 9. Numerical solutions are compared to
exact solutions where possible, and conservation of momentum is
examined. The MacCormack scheme is proposed 'as a useful alternative to
Laplace transform solutions of linear problems.

WPEGI‘ 4 contains solutions of finite a>mp11t:ude wave propagation
problems in {incompressible hyperelastic solids. The problegs are
governed by equations of the form (1.2). The hyperelastic solids
considered give rise to linear or nonlinear systems of the form (1.213 .

o .
depending on the strain energy function. The numerical solutions(»qrg\ !
compared with those.from the method of characteryétics where poss%b&;'
and conservation of momentum 1is examined. Mechanical energy is
considered, particularly where evolution of shocks occur.

Chapter 5 deals with nonlinear finite amplitude wave propagation in

a standard viscoelastic solid. Boundary 1initial value problems are

solved using the MacCormack scheme. The numerical results are compared
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with results obtained by Tait et al (1984), where possible. Further

results are presented.
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4.1 Selection of The MacCormack Scheme

The MacCormack finite difference scheme was initially developed for
the solution of a two dimensional hypervelocity impact cratering problem
(MacCormack, 1969). The method was applied to the solution of a system
of partial differential equations given in gonservatiun form (Whitham,
19747 a- ¢

au 6F 4G

Ei + gi + 5§ - 9 , (2.1
where H is a column vector éf the 'dependent variables, E and g are
columrn vectors of the conservation variables, x and v are
spatial variables and t is the temporal variable.

This scheme is often referred to as a two step variant of the
Lax-Wendroff finite difference scheme (Mitchell and Criffiths, 1980 and
Anderson et al, 1984, Both the Lax-Wendroff and MacCormack scheres are
second order accurate shock capturing finite difference scﬂ‘es based on
a Taylor series expansion in t with the terms O((At)3) truncated.

The numerical scheme proposed by Manormack for the solution of

equation (2.1) is given by
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!
The subscripts refer to a spatial mesh of points (xj.ykl with
spacing Ax and Ay, and the superscripts refer to times t « nAt where At

is the time ing

Equation (2.2), is referred to as the predictor
step and equa 2)y Is referred to as the corrector step.

Since t al diffemencing s first order in each st¢p in

(2.2), the MacClrmacl scheme {s more suitable than the Pax-Wendrott
scheme foff Um*.solution of boundary initial value problems. Gottliet.
' »

and Turkel (1973 provide an excellent discussion on the application of

"

boundary conditions using the MacCormack scheme. %nder%on, et al (14980
also discuss some of the advantages in compari;on tg other finit
difference schemes. Mitchell and Griffiths (19§O) categorize  the
MacCormack scheme as suitable for application to nonlinear hyperbolic
systéms of partial-differential equations. All the references cited in
the last paragraph, the majofity of which relate to £lyid dynamics
problems, recomnend the use of the scheme for the solution of boundary

FEDTI
initial value problems  governed by nonlinea; ~ hyperbolic partial

differential equations.

It aﬁpears that the - MacCormack scheme has been applied

predominantly to one dimensional systems of equations of the following

form
&£



LI 4

e | 10
N ,

4where A(U) {s a matrix function of H, or the two dimensional analogue
given by'equation (2715 (Mitchell and Griffiths, 1980, Anderson et al,
1984) . There “seems 'to be 1little information " available on the
application Af this method to nonli.near"1 hyperbolic systems of partial

differential e&uations of the form

du  A(U) au
=4+~ " = 4+BU)=C , ’ L2.4)
at ax ~ -~ -

-

.

where B(U) 1is a vector function of U, and possibly the spatial

coordinate Xx.

1

Kutler (1974) and Richtmyer and Morton (1967) discuss various

systems of equations with terms similar to B(U) in equation (2.4).

However, no results are presented for specific applications.

-

The systems of eigations considered in this study, which govern

.wave propagation in soligé, are of the form given by equation (2.4), or

the -conservation form o?/;quation'(Z.A) given by a
o
?:
euU  aQU)
~= + —— 4+ B(Ups= 0 , 2.5Y
at ox ~(~%i - ‘g
y

where Q@ is a vector function of U.
-~ ~ ,«u“'
The MacCormack scheme, equation (2.2), is .revised feor applicatfon

to equations (2.4) and (2.5). This modi§§§ftiaﬂk which incorporates the

term B(U), is the version of the sche E used throughout this study.

A

-

1 Whitham (1974) refers to systems of the form (2.4) as quasi-linear.
The term nonlinear is wused here to distinguish between equations
(2.4) and the linear version given by equation (2.13).

-
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The derivation of* the modificatioaﬁis straightforward, and is based on a
substitution ?f g(y) for ag/ay in equation (2.1). A justification for
this modification, wusing the 1linear wversion of equation (2.4), is
presented 1in Appendix 1. The scheme is compared to the Lax-Wendroff
scheme, and conclusions regarding their similarity are made.

The MacCormack scheme applied to equation (2.4) gives

umtl g ae AUy W™ . - UT) | ac BUD)
~ =30 =g ~ ]

=3 T )T ax 1 ~j -

(2.6)
vt IU? S U e acu™hy) ot o™y ae Bu™ )
~] 2 (37 A ax T ) ~J =j-1 7 -]

and applied to.equation (2.5) gives

Un+1

_ Ut oAt (Ut ) - Qu)) - at BUT)
=] et A2 R R ~ -]
' (2.
o™l 1t e u™ o ae (qutthy - oquutthy) ¢ oac BU™Y)
Bt B B ax T ) = =j-1 -] -

lfhé sawg,finite dif;erence notation for subscripts and superscripts used
by HaCC;rchk is used here, except that the subscript k associated with
Ay 1is no longer present, since only one spatial dimension is
considered. The versions of the MacCormack scheme given by (2.6) and
(2.7) are c?lled forward backward (FB) difference schemes because the
predictor step uses forward spatial differencing and the cor;ector s;ép
uses backward spatial differencing.- Anderson et al (iQQA).suggesfviﬂﬂv
the best resolution of discontinuities occurs when tﬁe differeﬂfe 16 t@g\

predictor step 1is in, the direction of the propagatioﬁ of the

discontinuity. Since the problems considered in this study involwve
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waves propagating in the positive spatial direction, the FB version is

~

used:
The difference equations given by (2.6) are simplified if A(U) is a
constant matrix A. In addition, if B(U) 1is a 1linear function of U,

equation (2.4) reduces to a limear hyperbolic systéﬁ, of partial
-

W

.differential equations. The technique‘Lis applied 1later to linear

hyperbolic systems of equations with the term B(U), for the solution of

linear wave propagation problems in viscoelastic media.

2.2 Definition Numerjcal Terms

Since the MacCormack scheme is a finite difference method, some
knowledge of the fundamentals of finite difference schemes is necessary
for the application of this technique. Anderson et al (1984), Roache
(1982) and Mitchell and Griffiths (1980; provide a detailed account of
finite difference schemes. A’ summary'of‘some of the basic definitions

used in giscussing numerical solutions obtained using finite differences

aie presented,

(a)J The VCourapt number v is definea as v = cAt/Ax where ¢ is thé
numerica}lz-ﬁépatest eigenvalue of ﬁ(g) for a given problem, and &x
aga At are the spatial and temporal grid spacings respectively
(Ander§§n et al, 1984). ’ )

(b) The modified equation is the partial differential equation
that is actually 'soived numefi;aily using the specified finite

difference scheme. The mdéi?ked equation can be used to examine

stability‘of a finite-difference scheme (Warming and Hyétt, 1974) .

Ay
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(c) The truncation error is a measure of how well the solution of
the partial differential equation satiﬁfies the finite difference

equations (Kutler, 1974).

BT Y,
(d) ' . qpfﬁty is the order of the truncation error. The
ST

MacCo ‘ieﬁ a&ﬁeme is second order accurate.

(e) If the solution of the difference equation approaches the
solution of the partial differential equation, as the step size
approaches zero, the finite difference scheme is convergent.

(fY Stabilify of a finite difference scheme is solely ggpenﬂcni on
the difference scheme, and requires th;t the solution. k}*unded as
the step size goes to zero. The stability analysis of the
MacCormack scheme applied to various equations is examined in the

Section 2.4.

(g) Numerical dispersion occurs as a result of phase errors in the

numerical solution. Different Fourier components spread apart or
disperse’as the numerical solution proceeds and the phenomenon is
refer;ed to as numerical dispersion error. Numerical dispersion is
a direct result ,of the odd order spatial derivative terms which
appear in the modified equation. Second order accurate finite
difference schemes are predominantly dispersive. | </
(h) Numerical dissipation 'is the damping of high frequency terms

inherent to the finite difference scheme, and is present if there

are even order spatial derivatives in the modified equation. First

order accurate finite difference schemes such as Lax’'s first order

scheme are predominantly dissipative.

1]
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(1) Nuﬁetical diffusion is the combined. effect of numerical
dispersion and numerical dissipation. This causes a discontinuity

in the solution to be smeared out.
The above terms are very important in digcussing the numerical
results. It is important to note that the numeriéal solutiqn is an

approximation to the exact solution of the boundary initial value
> .

problem. Numerical phenomena such as dispersion or dissipation can
affect the‘ex‘ected numerical results. The purpose of this chapter is
) : .-y .

to examine the MacCormack scheme with regard to stability, numerical
"R
dispersion and numerical dissipation.

. .
2.3 ADDlicétion of Boundary Conditions
L

) Since boundary initial valge problems are considered in this study,
v'\‘

the numerical application of boundary conditions igﬁlmportant. Mitchell
and Griffiths (1980) stress- that boundary conditions are an added
complication which can lead to instabilities in the numerical
calculations. Stability analyses for systems of equations with boundary
~and initial value data are complicated. Therefore, in this ' study the
stability of boundary conditions 1is not examined in detail. The
boundary conditions are applied as proposed by Gottlieb and Turkel
(1978), who have considered various types of boundary conditions for the
MacCormack finite differere ;chgme and make recommendations.
Gottlieb and T;rkel (1978) consider six groups of ‘methods for the
treatment of boundary conditions, From their analysis of stability and
accuracy, they conclude that the difference operator in the MacCormack

scheme should be reversed at a boundary. For a boundary condition
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applied at the left edge (x = 0), the difference operator'in the
corrector step should be reversed, so that the MacCormack scheme uses
forward forward (FF) differences at the 1left edge. The boundary
condition at the left edge, Uy, 1is obtained by replacing (U, - j-l)
with (9j+1 - ~j) in equation (2.6), and (g(gj)-g(yj_l)) with
(9(9j+1)-9(9j?) in equation (2.7)2. Assuming that j = 0 at the left

édge, the boundary condition at the left edge for the MacCormack schemc

is
UG Up - s (A U - U e () ¥

Lx

yntl 1 {Ug + yntl At (A(U3+1)}(UT*1 ) U8+1) At B(Ug'l)}
2 U ax T 7 - - -

for the nonconservative scheme and

g™ A Q™ - Qu™y) - at BUM):
5ot - - e e - e BT

(2.9

0 ~0 A} 2120 =20

untl g {U“ + oL acuttly - quutly) - at B(u“*1>}
2 1 AX

,
for the conservative scheme. It should'be noted that the predictor
steps, “equations (2.8)1, and ﬂ2.9)1, are a direct consequence of the
MacCormack scheme for j = 0 (see equations (2.6) and (2.7)). - For th
boundary condition at the left edge, only the corrector step is revised.
Boundary conditions for the right edge can be obtained in a similar
manner to those for the left edge, except that the differencing is

reversed in the predictor step, to give backward backward (BB)

/

o
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‘differences at the right edge. Assuming that J = N at the right edge,

the boundary conditions for Uy are given by

u;‘:I yn AU yqun - Y - at B(U"
Ug. =Y 2_);( (-(~N)” -N-l’ -(~N)

(2.10)

~N < =N ~N-1

yntl _1 {UN + US+1 At (A(U“*l))(un+1 N U“*l) . At B(U:tl)}
2 7 - ax ~ =N .

for the nonconservative scheme and

—_— A
Un+1 n " yn B l.
N - EN ﬁ; (3(~ ) g(~N 1 . At ~(_N

(2.11)

~ = 2 ZCIN-

Un+1 1 {Un U§+1 At (Q(UE*I) Q(Un+i)) . At B(Un*l)}
Ax

=N - 9 +

for the conservative scheme. In this case (N + 1) is the number of grid
points and N is the number of {ntervals in the finite difference grid.
As this method of applying the boundary conditions is not applicable to
one step methods, such as the Lax-Wendroff scheme, it demonstrates an
important advantage of the MacCormack scheme. In some instances, when
boundary conditions age specified as part of the problem, the difference
methods for the bo.r?aries may not be used.‘ In particular this is true
with scalar equation. where tﬁere is only one dependent variable, which
is specified at tne boundary, and therefore does mot require

implementation of the ... lieb boundary condition.

2.4 Stability Analysis of The MacCormack Scheme
Applied to Linear Systems of Equations

Stability analyses of finite difference schemes are important,

since some finite difference schemes are wunconditionally unstable. A
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stability analysis of the MacCormack scheme applied to equation (2.4)
was not found, consequently, such an anlysis is a part of this study.

Mitchell and Griffiths (1980) recommend the use of the von Neumann
method to investigate stability for initial value problems governed by
linear hyperbolic systems of equékions. However, in this case, caution
must be exercised {n 1nterﬁreting the results obtained from such a
stability analysis for boundary initial value problems, because the von
Neumann method does not include the effects of boundary conditions and
is not always a sufficient condition for stability. There are some
special cases, whic¢ch will be discussed later, where the condition for
;tabflity using the von Neumann method is a necessary and sufficient
stability co:dirion for initial value problems. In general, for the
boundagy %rpé;;f vglue problems considered, this is not the case.

Although the wvon Neumann method is not alwavs a sufficient
condition for stability for boundary initial wvalue problems, it is a
necessary condition, and if instabllity is indicated by the von Neumann
method, the .finite difference scheme 1is unstable. The von Neumann
method is used to obtain a necessary condition for the stability of the
MacCormack scheme Applied to linear systems of hyperbolic equations of
the form (214)' where é is constant and g(g) is a linear function of E.
‘Stability analyses of nonlinear systems are not considercd here,
however, some of the results fo!‘finear systems can be extended to
nonlinear systems (Anderson et al, 1984).

The von Neumann or Fourier analysis is based on the assumption that

the error e¢(x,t) in the numerical solution, due to roundoff errors, can

be written as a series of the form
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N
€(x,t) = Bmeikmx , (2.12)
¢ -

where ¢ is a vector of the error terms, B& is a column vector of the

coefficients, and k  1is the wave number for a given m. A detailed
explanation of the von Neumann analysis 1is given by Mitchell and
Griffiths (1980) and Anderson et al (1984). A typical error term
:(x,t) - gmeikmx given in (2.12) 1is substituted into the linear version
of equation (2.6), with é constant and g(g) - gg, a linear function of 9
(see Appendix 1). An amp1£f£cation matrix 9 is obtained as a result of
this analysis. A necessary condition that must be satisfied if the
numerical solution does nét grow with time is X < 1, where X is the
spectral radius of 9.

The amplification matrix for the MacCormack scheme applied to

au A adu

A
— +7 = 4+ BU =0 , (2.13)
Gt ox o~~~
is given as e
, A M2 2 .2 ‘ 2 A A ,
G(at,k) = {i1-8cB + (Ae)?B? | A% 86\ ° (cosp-1) | (A6)* (BA-AB)(cosp-1)]
- B - 2 - T oAx 246x% T
, BA + AB
i ! (At —_ (Qg)z A ] sing :
Ax 2 ax’ , (2.14)

where B = k Ax (see Appendix 1).

A necessary condition for stability is that X < 1. If G is a normal

matrix, then X < 1 is a necessary and sufficient condition for stability

of an 1initial value problem (Richtmyer and Morton, 1967). Equation -

(2.14) can be used to examine the stability of various systems of linear
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A
equations or scalar equations by substituting the appropriate A and B

terms.

The MacCormack scheme given by equation (2.6) or (2.7), is
applied to boundary 1initial wvalue problems for each of the

following normalized scalar equations

du , due g . (2.15)

at ax

du yduy, oo , (2.16)

at ax : .
- du ,udu , (2.17)

. 'at ax
du L ugdu g , (2.18)
Jt ax

for the interval 0 < Xx < =

’

subject to quiescent initial conditions

~ u(x,0) =0 : (2.19)
and boundarv conditions
u(0,t) = UpH(t) , (2.20)
or
u(0,t) = Uosinnt H(t) H(1l-t) , (2.21)

where UO is a constant, and H(t) is the Heaviside unit function,
where H(t) = 0 for t < 0 and H(t) = 1 for t > O.

These equations do not necessarily represent M dical
examples, but are used to examine numerical phenomena. For this
reason, equations (2.15. 2.18) are presented in normalized form.

By considering a more general scalar equation
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v, N ,au-0 | (2.22)
at ax

where u, ¢, and a are constants, and making the substitution

t=at , x =gx . (2.23)
. .

equation (2.16), which {1is actually nondimensional, is%btained,
where the superposed bars have been omitted. It is somewhat easier
to consider nondimensional variables, so that the constants ¢ and a
are not part gf the analysis of the numerical scheme. Equations
(2.15), (2.17; and (2.18) are normalized in a similar manner,
by suitably scaling the dependent and independent variables.
Equations (2.15 - 2.18), with the appropriate initial and
boundary conditions, illustrate linear and nonlinear wave
propagation with and without the term §(9) appearing 1in equation
(2.4). The numerical solutions of these equations demonstrate the
“numerical phenomena described in Section 2.2. Some of the boundary
initial wvalue problems that are solved numerically can also be
solved in closed form using' the method of characteristics (see
Appendix 2). The numerical solutions are compared to the exact
solutions where possible. The effects of Courant number and grid
size are shown.
2.5.2 Stabjlity Criteria
The stability of the MacCormack scheme applied to equations
(2.15) and (2.16) can be examined using the scalar case of
expgéssion (2.14) for E obtained in Section 2.4. Since u(0,t) is
specified and the equation is scalar, the -boundary condition is

ol
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exact in each case, and should not affect the lt;gility of the
numerical solution. For scalar equations ;he staﬁi’lty ‘:T;:%la is
a necessary and sufficient condition for initial value p?ﬁi{éms and
the scalar amplification factor G {s considered rather than the
matrix given by (2.14) (Richtmyer and Morton, 1967).

Application of the von Neumann analysis- to equation (2.15)

4

gives

G = 1+ (Qg)z (cosp-1) | + | 1 pr 2 ¢ing (2 24)
ax AN )

~

and to equation (2.16) gives

G - { 1 - At + atl 4 (A;)z_(cosﬂ~1) + i ate (é;)7 sinf
2 Ax AX AX

Since the amplification matrices for the scalar equations
are scalar quantities, i.e. complex numbers, the spectral radius )\
is given by the modulus of G. By substituting v = At/Ax for thesc

problems, since ¢ =1, the spectral radius for the MacCormack

scheme is

2 1/2

A= [ 1+ 2 (cosB-1)]% - v sinlp ) , (2.26)

for equation (2.15) and,

2

1/2
A - { {l - At + (A;)z + uz(cosﬂ-l) + (v + vAt]zsin2ﬂ }
2 .

(2.27)

for equation (2.16).

.
.
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The condition v €1, for stability of the in{tial value
problem, is satisfied for equation (2.15), however this i{s not true
for equation (24'6). Eqd;tion (2.27) 1is more complicated than
(2.26), since XA is not a function of v alone, but is also a

function of the grid spacing. The stability criteria for the

. MacCormack scheme applied to equation (2.16) 1is evaluated by

plotting (A-1) .against 8 for 0 < f < 2n. The von Neumann stability
criteria .implies that, 1{f (%-1) > 0, for Ax » 0, the scheme {s
unstable, since the errors in the numerical solution grow with
time. The results of the stability enalysis for equation (2.16)
are presented in the next section along with the numerical

solutions obtained wusing the version pf the MacCOQ%ack scheme
. . ‘.<‘~‘ .’

a, ; ’ ‘»\.
. ¥ “

~, - ey,

equation given by (2.6).

ot .
It is interesting to note that' thé Mdgtormafﬁ; che !hc' 3

P 5 3’.
Lax-Wendroff method are identical fbt eqdatipns (2 1$§§§hd (2 1&1 _,l
f&@‘

2

X

and therefore the stability criterlu are Ehe ‘ame . ?7 ﬂgﬁ%
. @%' ", " N 'gg.l' 4 jgﬁ ?% .
2.5.3 Numerical Results K w oo iRy T e EEE
T . .VI e X d - B
In this section, the numeri{fal sofucions for uhg va ﬁi’ﬁﬁ
. s ]
of u with x, at wvarious time ave beenaobCained usiﬁg che
MacCofmack scheme. unless othekw specified; The ‘results

presented have the initial condit% ﬁ? £2. 19)} _Figures 2‘1 -‘~2.3
ayed -7

show the effect of Courant num(;;loqr the solution obtained for

; i

~grfition (2 20) with UO = 1.

equation (2.15) with the boundé;fJ
A 3 P
The exact solution, obtained by £ .?ﬂﬁod of characteristics (see

Appendix 2), is  u(x,t) = Uy ( e, which descfibes a step

discontinuity in the field yw ©u propagatiné*unchanged in

.
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v= 10000 4&x = 0.010
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2.1 The MacCormack scheme applied to u, + u #= 0 subject to

t

u(x,0) = 0, u(0,t) = Uph(t), Uy = 1, for v =« 1.0, and

Ax~e 0.01.

)
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Fig. 2.2  The MaqCormack scheme applied to u_. + u, = 0 subject to

,fu(x,O) ; Q) u(0,t) = UOH(t), UO =1, for v = 0.99, and
o [ B ‘ .
Ax = 0.0Y.
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u(x,0) = 0, u(O,t.)s-‘UoH(t), Ug = 1, for v = 0.5 and
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Ax = 0.01. v
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shape, in the positive x directjon, with tbe wavefront located at
X = °t, The numérical results, p;esenfed for Ax = 0.01, for the
various Courant numbers are, in general, in excellent agreément
with the analytieal solutién except for numericalhdispersion:
Numerical dispersion appears as osc?&lations immediately behind the
wavefront when v = 0.99 (Figure 2.2) and v = 0.5 (Fig&re 2.3).
There is no numerical dispeﬁsion when v = 1.0 (Figufe 2.1), which
is consistent with results ébtained by other authors (Anderson ét
al, 1984). There is no instability indicated by the results in
Figure&g:l, which is also consisteﬂ% with the von Neumann stability
analysi: of the finite ‘difference scheme applied to equakion
(2.15).; The stability condition given previously, v < 1, is the
necessary and sufficient condition for'stability of the initial

value p;oblem. Since thelboundéry condition is speéified‘ there
”s’}?ouldi be no'bound@ effects, and, therefore, the stabili'ty
+7 ,condition should directly apply. to the boundary initidl value
solutions given in Figures 2.i to-2.3. “

Figures 2.4 -, 2.6 show the *effect of Courant number on the
numerical solution of equation (2.1%), with boundary condition
(2.21), with UO‘- 1. The exact solution (see® Appendix 2) is
u(x,t) = sinm(t-x) H(t-x) H(1l-(t-x)), which describes a sine’pulse
of duration t = 1, p;opagatipg unchagged in shape in the positive X
direction. The comments made regarding fhe step function are valid
for the sine pulse, except that numerical-disp®trsion is less severe

for the sine pulse’ than for the step ,discontinuity, for a given

Courant  number. Mitchell and Griffiths (1980) confirm this

4
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v =10 and Ax = 0.01.
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Fig. 2.5 The macCormack scheme applied to u. +u, = 0 subject to
u(x,0) = 0,  u(0,t) = Uosinxt H(t) H(l-t), UO -1, for
v = 0.99 .and Ax = 0.01.
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Fig. 2.6 The MacCprmack scheme applied to u. + u, = 0 subject to

u(x,0) - J* u(@,t) 4

s, H(C) H(1-0), Uy = 1, for
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observation for initial value problems solved wusing the

Lax-Wendroff technique. Since the Lax-Wendroff  technique {is

equivalent to the MacCormack scheme for this problem, the comments

made by Mitchell directly apply.

Figures 2.7 - 2.9 show the effect of Courant number on the
numerical - solution of equation (2.16), with boundary condition
(2.20), with UO = 1. Numerical instability is indicated by the
results presented in Figure 2.7, for v = 1.0, which does not appear
in the results shown in Figure 2.1. This phenomena is.ektremely
important, because it suggests that the additionai term u in
equation (2.16) affects the stability of the finite difference
scheme. Numerical dispersion is also evident in Figures 2.8 and
2.9, with the same trends as were observed fof equagg;;ﬁ(Z.IS).
The exact solution corresponding to the numerical solution (see
Appendix 2) is u(x,t) = er'xH(c-x). The numérical solution %é in

3

excellent agreement with , the exact ‘ solution, except where
instability or numerical dispersion is present.
Figures 2.10a and 2.10b show the results of the von Neumann

stability analysis for the MacCormack scheme aﬁplied to equation

(2.16) . The quantity (A-1), . is. plotted against 8 for various

Courant nymbers and grid spacings of &x = 0.025 and Ax = 0.01,

-

reﬁpgc ely. The stability analysis indicates that the MacCormack

scheme *is unstable for v = 1.0 and ox = 0. Olgs G e erical .

”

“

. A ' ; .
results (sée Figurg‘2 7) are consistenc Mith the ¢ bbysis’

v

ghe stability\$na1ysis shows ‘that the ﬁtg_; PPterion is

a function ofv the grtd spaiiag This can be seen d.rectly from
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Fig. 2.7 The MacCormack scheme applied}ﬂ to u. + u, +u = 0 subject to
‘ .
u(x,0) = 0, u(0,t) = Uy H(t), Ug = 1, for v = 1.0 and

-

Ax = 0.01.
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v= 09900 Ax = 0.010

"7

* Fig. 2.8 The Mac€ormack scheme applted to u, + u, + u = 0 subject to
) u(x,0) = 0, u(0,t) = Uy H(t), Uy =1, for v = 0.99 and

Ax = 0.01. a
~.,£$'¢
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v = 0.5000 Ax = 0.010
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X
Fig. 2.9 The MacCormack scheme applied to u. + u, + u = 0 subject to

u(x,0) = 0, u(0,t) = UO H(t), UO -1, for v =0.5 and

Ax = 0.01.



004  Ao. ' 54
AﬁX—CLO?S “

0.02

-0.02

'
o
(®]
j -
T

a)

o
o
T
<
1
b

Ax=0.01 <

-0.01

-0.02

b) -0.04

Fig. 2.10 ... von hewnann stability analysis for the le.

difference scheme applied to u, + u, + u = 0 for ax = 0.01 and
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equation (2.27). This dependence of stability on grid spacing
makes it difficult to obtain a simple stability criterion for the
problem considered. A comparison of the graphs for Ax = 0.01 and
Ax = 0.025 shows that the'smaller grid size Ax = 0.01, {s desirable
for stability since the ma;imum Courant number for stabilitv {s
closer to 1 than for ax = 0.025.

Figures 2.11 and 2.12 show numerical solutions at various
times for equation (2.16), for bgundary éondition (2.20), with
U0 -1, for v = 0.9975 and 0.995, respectively, with ax = 0.01.
Figure 2.13  shows similar solutions, for v = 0.9975, and
&x = 0.025. The stability analysis using the von Neumann method i-
consistent with these numerical results.

Figures 2.14 - 2.16 show the numerical solutions fo
equation (2.16), yith boundary condition (2.21), with Uy = 1. The
exact solution (see Appendix 2) is u{x,t) = er-X sinm(t-x) H(t-x)
H(1-(t-x)), which describes a <ine pulse of duration t = 1

4

propagating in the positive x direction. The sine pulse changes
shape due to the factor e X in the exact solution. The
numerical solution is wunstable for v = 1.0 (see Figure 2.14),
similar to the step function, but the instability 1is less severe
for the sine pulse for a given time than for the step function
boundary condition (2.20). Numerical dispersion 1is evident in
Figure 2.16 but less evideﬁ%" in Figure 2.15, since the solutiomn

attenuates rapidly. In some instances 1t can be difffcult to

distinguiﬁf between numerical dispersion and physical dispersion.
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Fig. 2.11 The MacCormack scheme applied to w, + u, +u = 0 subject to

u(x,0) = 0, u(0,t) = Uy H(t), Up =1, for v = 0.9975 and

Ax = 0.01.
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4

u(x,0) = 0, u(0,t) = Uy sinrt H(t) H(l-t), Uy =Y, for ‘ f.;ég

v = 0.5 and Ax = 0.01.
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The nonlinear ‘versions of equations (2.15) and (2.16) are
4 B

solved 'usiing the conser\;ative MacCormaclg scheme (2'7)‘.A value _o‘f
¢ = 1 is used to determine the Courant number, réther than the wave
speed u. This gives good results for U -\1. Although the results
from t}}e‘ von Neumann stability analyses for equations;',,&Z.lS) and

(2.16) do noc'directlﬂpbly, thg numerical phenomena indicated by

. I
the numerical results for the linear scalar equations, are similar -

%‘ those observed in the qumerical solutions of the nonlinear

. . R .
scalk equations. . E
’ "h - v s ‘
" FigMres 2.17 - 2,19 show the effect of Courant number on‘the
. k)
. ¥ '
nm’férica]; soluti(’gs oi\~ equation (2.17), for boundary condition .
. N 5.
(2.20), with Ug = 1. Tﬂe numer_ik,l solatiohs, .1 the tiinfs
- ‘ ’ Lt

indicated, for v = 1.0 (see Figure’ 2..17), are stable but :.exhib.i-t“

nuéerical dispersion for v = 0.5 (see F‘igure 2.19):. -There ;‘s much

L

less dispersion in the solutions for v = 0.99, than for their
linear counterparts (see Figure 2.2). The exact solution, obt&ined

by the methd8d of y characteristics, . indicates that a .step

discontinuity of magnitude U, must prbpagate with a shocK speed

\ -’(I/Z)UO. The numerical ' solution is in good agreement w{th the
exact solution. It should be noted, "however, that the MacCormaék
o .

scheme applied to equationy(2.17) did not work for Ug ; 0.01. This -
. = . . N

behaviour is expected since u (/s/associat'ed with the wave speed,

AR . A
“#nd as u becomes small, fthe wave spged tends to Jerq. . o

-k

Figures 2.20 - 2.22 sﬁov the effect of Courant nu‘n;ber én the

(4
numerical solution of equation (2.17), v;ith boundary caondition

(2.21), with Uy = 1. Since the boundary condition is a sine pulse

™

. '
- \ - -

-
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Fig. 2.19 The MacCormack scheme applied to u_ + uu, = 0 subject to
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[y , Ax = 0.01.

-

u(x;0) = 0, "u@,t) = Uy H(t), Uy=1, forwv = 0.5 and
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of duration t = 1, it is evident from Figures 2.20 - 2.22 ¢®t the

wave has brbken, which is indicative of shock formation. There arc
oscillatigns behinq;/ the wavefront. in each ‘of the f}g?yvs
considered, and, the oscﬁllations are most severe for v = 0.5 (Qrv
Figure 2.22).

The numerical solutions for equation (2.18), with boundary
i .
~condition (2.20), with<U0 = 1 are shown for various Courant nymbers

in Figures-2.23 - 2.25.‘ The numerical solution f?twv = 1.0 shPws *

some numerical dispersion, but does not appear unstable for the
i x

L] , »
times cofiwidered. The iresults are in excellent agreement with
! et \

those obtained by the method of characteristics (see Appendix ).
which gives ulw t) = (fcx/Uo)H(l-e('t/2)-x). A comparison of Figurc.
. '

2.23 to Figufe 2.7, which is thé linear counterpart, indicates that

8

numerical instability in the solution to the linear equation (9;16)
= .
is not present in the solution to $he nonlinear equation (2.18).

The numerical results for equation (2:18),‘£Qr bouﬁdary
> - St

L3

condition (2.21), are shown in Figures 2.26 - 2.28 for various

Courant numbers and timed. There are severe oscillatlons in the
. .

numerical resdlts in each figure, however[,tge oscillations are the
£ PN /- )

worst for v = 0.5. There does not appear to be any instability for .
. * ) .

/

v = 1.0, which differs from the results 10btaip@¢”fv:;f_fv
. . SRR ) i

sca‘fa]r equé.tioﬁ' (2.16). ~ - . W .

Figgré 2.9 §hovis,the effect of grid si* o}x“hé | '; “
solution of gquation (2.17), with boundary cénd%;@on (2.20), with « Z;{%
Ug = 1. Thére is very little différence;ﬁecween the solutions for ' ;

* L 4

Ax = 0.92 and _Ax = 0.01, and therefore Ax » 0.0l was chosen as a

\ e
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2.25 The MacCormack scheme applied to u. + uu, + u = 0 subject to

u(x,0) = 0, u(0,t) = Uy H(t), Ug=1, for v =10.5 and

»

Ax‘-fg.dl.
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u(x,0) = 0, u(0,t) = Uy sinrt H(t) H(l-t), Uy =1, for
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v = 1.0 and Ax = 0.01.
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Fig. 2.27 The MacCormack scheme applied t¢ u, + uu, ++ u = 0 subject to
1

u(x,0) = 0, u(0,t) = UO sinmt H(t) H(l-t), UO -1, for -

v = 0.99 ard ax = 0.0..
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Fig. 2.28 The MacCormack scheme applied to u, + uu, + u = 0 subject to
u(x,0) = 0, u(0,t) = Uy sinrt H(t) H(l-t), Ug = 1‘ ifr

v =0.5 and Ax = 0.01.
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2.29 Effect of grid size on theé numerical solution  of
v
u, + uui = 0 subject to u(x,0) = 0, u(0,t) = UOH(t), with

Up =1, for v = 0.99 using the MacCormack scheme.
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suitable step size. The effect of grid size on the numerical

‘ solutién- for equations (2.15), (2.16) and (2:18) for the various

problems considered is similar to that prenehg,d in Figure 2.2@.

-
-

. ' ‘ - B
The  previous section considers the application of the

b MacCormack scheme to scalar equations. The numerical results are

LY

yaseful in ’redicting*fhe numerical phenomena associated with the
4 I N
seb :
application of the method. ’'In this section, the application of the

MacCor@ack scheme to a hyperbolic.system of 1linear equatioTr is

Eons}dered, to examine the suitability of the method. and some of
the inherent problems,involvéd in solviﬁg boundary initii; value
| problems governed by a system of partial differential equations.

The Klein Gordon equation is a second order linear partial

differential equagion,

LA 2P 2
2 Svetu-o . (2.28)
at . ax L. . a .,

and the independent variables can be nondimensionalized using the

nondimensionalizatidn schemé

X =g t =-at . (2.29)
c . - -
.to obtain
32u  a2u . . 3.3y
3 2 u = | .30)
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»

It {5 convenient to consi{der nondimensional independent varfables
/

with the superposed barg pmitted, hereafter.. Equation (2.30) ¢

: be put {n the form of equatien (2.13), by introducing \\\

e \
YT o ax ’ (23D

to obtain a hyperbolic system of equations (Whitham, 1974),

fo . de +u=20
at ax ' .
' (2.32) P
\ } 4
Qﬂ + u - w - 0 ’ /
at  8x
which is of the form

. a 8u A adu \

— 4+ 7 — + BU =0 A
' at -~ -

where

The gigenvalues éf é, given by (2.33)®, are *1. Consequently, the
Cdﬁ¥~at number is given by At/Ax. Numerical ;olutions of the
system of equations (2.32), are obtained for boundary ipitial value
éroblems for the 1ﬁ-t;=rva1 0 < %< o, usinq the slight;ly modified‘
MacCormack scheme given by equation (2.6),j>with f(!) - f and

A .
B(U) = BU. Quiescent initial conditions R

-

- . -~

u(x,0) = 0 u(x,0) - 0 (2.34)

AY

\
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are considered. The boundary condition u(0,t) 1is specified but
L

¢(0,t) 1s not known a priori, and {s obtained from a forward

forward (FF) predictor corrector scheme, as discussed in Section

2.3, with pg*l obtained from oduntioL (2.6);, and ¢3‘1 from

(2.35)

The modified MacCormack scheme is applie the problem

with quiescent initial conditions, and boundary conditions

| u(0,t) = Uy H(E) *(2.36)
or E L J
w(0,t) = Uy sinnt H(t) H(1-t) . (2.37)

Results obtained from the method of characteristics (see

Appendix 2) are compared with "the results obtained wusing the

MacCormack scheme. The method of characteristics is implemented

" numerically using finite differences. The relationships along the

characteristics and the chafacteristic directions are given as
‘-
9 , u =0 on . '
de - . dt
- N oo (2.38)

du é =0 on - S|
dt dt

The specific details of this analysis are not included as part of
this study. More information on the method of characteristics is

-

given by Whitham (1974). Some ‘of the boundary initial value

—

problems considered are n654nece§far11y physical examples, alfhough

the Klein Gordon equation governs certain physical phenomena. In
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he context of this study, the Klein Gordon equation is used to

xamine numerical solutions of hyperbolic systems of equations

.

obtained from the MacCormack scheme.
2.6.2 Stability Criteris

The von Neumann method of stability analysis, as outlined in
Section 2.4, i{s used to investigate tho»stlb}llty of the MacCormack
scheme applied to the system of equations (2.32). The

amplification matrix for the finite difference scheme {s
[+

(L + £§lﬁ.(-At + P) L
— o

G - (2.39)
(ot + P) (L - M)
and its spectral radius is
2 2 2 2 .1/2 *
A= (L2 M lpl s (a2 /2 (2.40)
vhere L= (1-((at)2/2) + v2 (cosp-1)), M = (vsing), and

P = {vot(cosk-1)) for v = At/ox and B = k Ax. If the stability for
the Lax-Wendrof heme, applied to equation (2.32), is considered,
L and M are Ehe same as abo;e, but P = 0. The matrix 9 in (2.59)
is a normal matrix only if P = 0. Hence, the stability anal;sis
provides oqu a necessary condition for stability of initial wvalue
problems governed by (2.32).

» . For v = 1.0, the spectrdl radius given by (2.40) approaches
1 for all B as Ax - 0, but for nonzero Ax, X > 1 for all 8 in the
neighbourhood of f = 0, and 8 = 2n, asrindic;ted in Figure 2.30.
This indicates that the slightly modified MacCorma;k scheme used in

/ ‘
this study 1is wunstable for v = 1, for the system of equations
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(2.32): It follows from equation (2.40) . that fqr Ax » 0, X > 1
near f = 0 and f=2x as shown in Figure 2.30. This means that the
finite dig?oronc; schems applied to the Klein Gordon equation is
uq:tnblc. Rfl;ur3l2.30 shows the relationships between (A-1) and 8
for v = 0.99 and 0.995 with Ax = 0.01 and &x = 0.025. The positive
| values of (A-1), which indicate 1A|tnb111ty, are magnified as
indicated. This stability analysis is wuseful in.oxnmining the
numerical solutions of.thc bd!ndarf initial value problems governed
by equation (2.32) which are solved -using the slightly modified
MacCormack uchon."propoud in :hu chapter. Although tho. scheme {3
. strictly unstable for all v and A; w 0, useful results are obtained
with a suitable choice of these parametersg.
2.6.2 Numerical Results ‘

In this section, numerical soluttons for the Klein Gordon

equation are given for u versus nondimensional x and are presented
for various nondimensional timesr t. The numerical results are
obtained using the MacCormack scheme with the boundary conditions
applied according to equation (2.35) wunless otherwise specified.

¥ quiescent 1initial conditions as

The results presented are for
specified by equation (2.34). Figure 2.30 shows the results of the
von Neunann“stability analysis for the MacCormack scheme applied to
the system of equations (2.32). The quantity (A-1) is plotted
against 8 for various Cour&nt numbers (v = 0.9§ and v = 0.995) and
grid spacings (Ax = 0.025, ax =« 0.010). ~'The stability analysis

indicates that the MacCormack scheme 1is unstable for the cases

considered. Figures 2.31 - 2.36 show the numerical solutions for

-
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Fig. 2.30 The von Neumgann stability analysis for the MacCormack scheme
applied to the Klein Gordon equation, fc;r aAx = 0.01 and

Ax = 0.025.
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Fig. 2.31 The MacCormack scheme applied to the Klein Gordon equation

subject to u(x,0) = 0, u(0,t) - UOH(t), with Uo -1, for

v = 1.0 and ax = 0.025.
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Fig. 2.32 The MacCormack scheme applied to the Klein Gordon equation °
v
subject to u(x,0) - 0, wh ) = UgH(t), with Uy =1, for.

. !
v =» 0.995 and Ax = 0.025.
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Fig. 2.33 The MacCormack scheme ‘applied to the Kleim Gordon equation:
subject to u(x,0) = 0, u(0,t) = UgH(t), with Uy = 1, for

v = 0,99 and Ax = 0.025.



66

t g | [ BRI | 1 1 y {

—G.4 , .
00 1.0 20 3.0 40 50 60 7.0 80 9.0 10.0
X

-

Fig. 2.34 The MacCormack scheme applied to the Klein Gordon equation
subject to 'u(x,0) = @, u(0,t) = UOH(t), with Ug = 1, for

v =1.0and Ax = 0.01.
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Fig. 2.35 Q\e MacCormack sghame applied to the Klein Gordon equation
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iv.= 0.995 and ‘Axx; 0.01.
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boundary condition (2.36), with Uy =1, for 'the grid spaciﬁgs,
AX"= 0.025 and Ax = o.f. indcated in Figure 230. The numerical
results in Figures 2'3;:;:24 2?}& indicate that the solutions are
unstable for v - 1.0, ;ith Ax = 0.025 and Ax -‘0.010, respectively.
The numericAI results confirm ‘the results. obfained from the
étability analysis. The von Neumann analysis predicts instabilify
for v =0.99 and v = 0.995 for Ax = 0.025. Figures 2.32 and 2.33,
,\\ddch show the numerical solutions corregpoﬁding to the stabil}ty
curves shown in Figures 2.30 b) and 2.30 a), respectively, indicate
instabilityr/for V- 0.993 but fgot for v = 0.996. for the times
indicated. Numerical résults wareuiaﬂﬁo obtained for v~ = 0.990 to
v = 0.995 in increments of._0.001.>;‘These resﬁlts indicated a

gradual transition to an unstable solution. Although the results
.

"in Figure 2.33 do not appear to be unstable, they may be unstable

for larger times. For practical ﬁurposes, however, the solution is
stable for v = 0,990 and A"-.0.025. Figures 2.35 and 2.56‘shoy
oQi\iETiiisg}—~solutions corresponding to the stability curves' in
Figures 2.30 d) and c),. respectively. There is no instability
indicated in the solutions shown in Figure.2.35 and 2.36. There is
a gtadual transition to an unstable soldtion with Ax = 0.01 ,
imilar to that observed with Ax'- 0.025. The effect of gridgsize
o stgbility is demonstrated by comparing the results in Figure
,_/2%55/:;:% those ¥in Fig&re \2.35. The numerical solution obtained
using‘Ax = 0.025 is more un;;;ble for a given Courant number, than
the results obtained for Ax = 0.01. Since it is desirable to havé v

as close to 1.0 as possible, to minimize numerical dispersion, the
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grid size Ax = 0.01 {s mote.iuicabde than ax = #.025, in Jerms of
"stability. Fi'gure 2:37 shows the numerical solution of 'the py;tem \
of equations (2.32) with quiescent initfal conditions and boundary
.codﬁition (2.36), with Ugﬂ; 1, using the method of ch:iactefisticsf
f?he numerical refults obtained us;ng the MacCormack scheme <are in
good agreement with the method of eharacteristics; except for the
magnitude of the discontinuity at the wavefront. The position of - ’
the wavefront at x = tv'is deFermined accurately 16 all of t%e
figures, however, a comparison of'figure 2.§6 to Figure 2.37, for
t -9.0, sho;; ; signifitant difference in the magnitude of u at )
the wavefront. This might be attributed to numerfédl dispersion,
which is typical of the MacCormack scheme. Figur%r2.38 _ compares
numerical results obtaihed using the MacCermack gcheme (v = 0.99)
with_those obtained using the m%Fhod of charact@tistics, for the
solution of the Klein Gordon! equation for boundary condition
! “

(2.37), with UO - 1. The results obtained from the MacCormack
' r

scheme are 3irtua11» identical to those obtatned from the method of -

-

]

i . AN ‘-'

) ‘e . N A 1
N - - ’ . ) -

characteristics. The MacCormack scheme with v = 1.0 is unstab’%u' e

N
4

-

although no results are presented, The degree of instability™" e
. ‘ . * ¢
appears to be dependent on the type of boundary condition, {.e.

<

instability is more severe for boundary condition (2.36)°

(discontinuity 1in the field variable) than for boundary condition

- N »
(2.37) (discontinuity in the derivat%ve of the field variable). S
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Fig. 2.37 The method of characteristics applied to the Klein Gordon

/
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;Ji » 6quation subject to u(x,0) = 0, u(0,t) = UyH(r), with

Uo = 1, for Ax = 0.01.
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Fig. 2.38 Comparison of numerical results obtained from the method of
characteristics to those obtained from the MacCormack scheme
for the solution of the Klein Gordon equation subject to

u(x,0) = 0, u(0,t) = Uosinxt H(t) H(1l-t), with UO - 1.
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The results presented in this chapter indicate that the MacCormao‘

scheme 1is a suitable method for the solution of boundary initial value
Q4

' problems governed by 1linear and nonlinéar hyperbolic systems of
equations provided Ax and v are sulitably chosen. The term B(U) in (2.4)
affects the stability of the MacCormack scheme, partiéularly for linear

equations of the form (2.13). Although the additional term B(U) causes
. R -

instability in the numerical results for certain Courant numbers, it

-—

appears to dampen the oscillations, which appear as a result of

ndmerical dispersion, as time increases. g



In this chapter, the MacCormacksﬁ @me introducéd in Chapter 2 is

used for the solution of pla ;11'_'1 yigcoelastic wave propagatibn

4
spatially uniform stress at the surface o 1scoelastic half space are

dat

problems. A step function' s a

considered. This problem involves one spatial dimension and {s governed
by a 1linear hyperbolic system of partial differential equations
éxpresséd in matrix form by equation (2.4), where x and t Qre the
spatial and temporal independent variables, respectively and 9 is the
column matrix of dependent variables. The problems considered are based
on the assumption of a homogeneous and time translation invariant linear
viscoelas;ic medium, so that the square matrix A is constant and
the column matrix g‘g) is a linear function of H, which does not depend
on x an?’t.

¢

Viscoelastic materials with relaxation moduli Af the form

N -t/rn
G(t) =Eqapg+ Z oape (3.1)
n=1
are considered, where E is the appropriate impact modulus, a, 20 for
(n=-0,1,...N), 7 are the relaxation times and
N
. L a, - 1
n=0

»



spectrum, which may be roghrdoJ\an an approximation to the integral form

L]
G(t) = ayE + J F(r)e ®/7 at (3.2)
0

* If F(r) is replaced by a discrete approximation using the Dirac de

}function.‘ é(t), so” that F(r) = g ay 6(r-ri), equati
. i=1
obtained. The discrete form of the relaxation function given byt(3.1) is
a moré general speciffcation of viscoelastic materials (Lockett, 1972).
For the special case when N = 1, the standard model, which is the
simplest viscoelastic solid which exhibits an {mpact response, is
obtained. Wh;n apy = 0 and N = 1, cthe Maxwell model is obtained. In
equation (2.4), the matrix f is a ((2N + 1) x (2N'+ 1)) matrix, and E
and E(H) are ((2N + 1) x 1) matrices, if ag 0. When ag = Q and N = i,
a system of 2 equations is obtaine@ rather than 3 equations when aj » 0.
The MacCormack scheme, modified account for §(9) = 0, }s:applied to
the governing equations with 1nif§a1 and boundary conditiows specified.
Stability and numerical disper;ion are investigated. The numerical
solution using the MacCormack scheme for wave propagation in a Aaxwell
m;terial subject to a veigéity boundary condition and quiescent initial
conditions s compared to an exact solution obtained using Laplace
transforms (Christensen,,1982). A further modification, incorporating

results from a wavefront expansion, is introduced and numerical results

with and without ;hﬂs modifiTation are compared.
~
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The main purpose of this chapter is to investigate the usefulness

of the HacCornaék scheme Jor linear systems with !(9) » 0, as cl
prciin@nary to applicntion to nonlinear problems for which : depends on
U and B(U) 1is a nonlinear function of 9. However, for linear
viscoelastic wave propagation probl;nl. the method f{s &  wuseful
alternative to the method of characteristics and to 'qho Laplace

transform method when .nuncrical inversions ‘of othervise intraltable
transforms are required. C '

The method 1is outlined and numerical results are presented for

N =1, N=2 and the special case of dg = 0 with N = 1.{

L
2.2 Governing Equations

The basig equations governing one dimensional plane wave
propagation in viscoel®stic materials (;e derived in detail in numerous
texts (Flugge, 1974, Christensen, 1982, Pipkin, 1972, ;nd Kolsky, 1963).
- - The governing system of partial differential equations for one

dimensional plane wave propagation in a linear viscoelastic material

(see Figure 3.1) consists of the equation of motion,

A
gv . lde g : | (3.3
at p ax
the compatibility equation
' o a
fe . v .o 3.4
3t Ix - ' § . G0
<
and the constitutive equation,
de age :
dg + g = g (— + —) , (3.9)

at 1 at 181



’
for N a1l (Standard material), or

. h*&--;zu

1Y ot '1 at

for ag = 0, N = 1 (Maxwell materfal), or.

620 R 8o + Deo 22, . 4 ane
P1 3¢ * Po ‘lzug-‘h;; LY

for N = 2, where v {s the particle velocity, » s the density, ¢ 1is the

strain, and Py = (ry + '2)/'i'2'

ql - E[(CO + 01)'1 + (ao *\ﬂz)'zl/'lfz .hd qO - ho/(’lfz).

7 ~

N |
. (3.6)
. : (3.7

he b=

Po = (i)t q, = E,

An equivelent hyperbolic system of first order partial .ferentinl

cquati&ns expressible in the matrix form given by (2.4) consists of

equation (3.3), equation (3.4).and

do Edv,e Ky, .o

at ax r r '
1 1

for ag O and N =« 1";

de EQv 2 _,
at J8x 1y ’

for ag = O, N=1;

o _Edv , @ _Eay e _ ’
at x rq 1 ' .
gy _1de _ .

at  p 8x '

de . q &y . q, av + Plb +P0% . 9 =0
.14 ax ax

’

where v = 3v/3t and o0 = 3do/3t, for N = 2.

.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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The following nondimensionalization schame is introduced
1/2 < . - -
X = X 2 , tegt " 14 -1 ' 14 -7 .
T [ E ] T S 279
. L
v e v‘[ Y] 172 ' o - 2 . : - eI,
- E E E
ao-exz'al'.‘h}-qz'!z'l-'
E o~ | S
(3.13)
- 2 n .
Po = PoT" . P = P1T . ;
' N 2 2
a1(r1)% ¢+ ay (79)
where T = 11 2 2

dl'l + arfy

is the mean relaxation time defined by Pipkin (1972). Not all of the
variables in the nondimensionalization scheme (3.13) apply to the
Maxweil and* Standard models, since these two models have only one
relaxation time 7y. Henceforth, nondimensional quantities are used but

the superposed bars are omitted.
4
[}

» The nondimensional governing equations can be .put in the form of

au¢ A a9y

= 4+~ = 4+ B(U) =0 ith
at ax ' BY v -
v 0 0 -1 0
Uﬁ- € , A - -1 O 0 . B(U) = 0 , 3 .14)
o 1 O 0

a"aof

for N = 1 and ag # 0. For the special case when a; = 0 and N = 1, the
system of equations reduces to a second order system of equations given

by
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Semi-Infinite Linear Viscoelastic Medium

Diagrammatic representation of Plane

semi-infinite viscoelastic medium.

Wave Propagation in a
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o 0 -1 : l o

%gw .
U= 13" A= . B(U) - . (3.15%)
- vl - -1 4] , - 0 ‘

For N = 2, the following system is obtained

. & '
[ v ] [ 0 0 -1 O o" | 0 ]
€ % 0 0 0 O 0
U=|o|. A=] 00000, BW - -6 . (3.16)
v 0 0 0 0 O 0
| o . -9 0 0 -1 O | | p16+poo-qoe ]
' L
In each case, A hias éigenvalues < that the nondimensional wave
speed is 1. The third eigenvélue ot \u'ii)z is zero, and the remaining

three eigenvalues of (3.16)2 are zero,

Boundary initial value proplems for the -interval 0 < x < «, with

the boundary

quiescent initial conditions U(x,0) = U(x,0) = 0 and .

condition,

o(0,t) = og H(t) , (3.17)

where HA(¢) 1is the unit step function, are considered (see Figurec

3.1). The boundary condition (3.17) and the nondimensional crecy.

functions

'aot
J(t) « § 1.+ e [1-_1] , For N=1, ay >0 , (3.18)
'?*\ Qo QO>
¢ J(t) = (1 + t) for N = 1, ag = o, (%.19)
and
p Aqt Ant
/ 1 2
J(t) = (ap + aje + aje ) , for N = 2 (3.20)

‘.v
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give the strain

€(0,t) = 0g J(t) H(t) : (3.21)

The creep function given in equati;n (3.18) is not wvalid for the

by
special case when ag = 0. However, since ¢ is not a dependent variable

¢ .~

in the system of equations (3.15), the creep function (3.19) is not

explicitly used. In equation (3.20)

A= '% [ q) + (Q§ . “qO)l/z 1 .

v (3.22)

Ag = -1 [ 41 - (qf - 1“'-10)1/2 1 .

po‘k [po + (/\1)2 + 91/\1] {po + (Azjz + pl’\E
al - - , 82 -

ao-—.
A1%2 Ay (Agmap) Ay (Ap-Ap)

L

Boundary initial wvalue problems for the interval O < % < oy with

quiescent initial conditions and the boundary condition

0(0,t) = og sin nt E(t) H(t™-t) (3.23)

which represents a sine pulse of finite duration, with t" = 1, are

also considered.

Wavefron xpansion

A useful technique, which can be incorporated into the the

MacCormack scheme, for the solufion of the linear viscoelastic wea«
- r3 v ‘ r ’ 3

propagation problems, is a wavefront expansion technique. Christensen

(1682) wuses this method to obtain the magnitude of & propagating

discontinuity of stress in a viscoelastic rod. in termrs of the
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relaxation function. Achenbach and Reddy (1967) have obtained a
solution similar to Christensen, which gives the solution at a fixed
location. These solutions are valid near the wavefront, but do not give

the entire solution of the problem. In this study, the wavefromnt

or

expansion a step function in stress is incorporated into the

procedure to obtain the - entire solution fo; o, ¢ and vv.f The
proced for incorporating the rwavef;ont expansion into the numerical
schgzc is pglven in the next section. ‘The wavefront expansion for a
S .
linea;Jviscoelastic material is developed in this section.

The wavquont expansion in terms of the creep function J(t), is
obtained using a procedure similar to that of Christeﬁsen_(198?) for the
nondimensional | boundary - condition (3.17)  and quiescen: iri-;
conditions.

The details of the wavefront expansion are given 1n“Appendix 7.
From the wavefront expansion, o It-x' aa/atlt_x, 6o/ax|t__X are obtained
where o, x, ard t are the nondimensidnal variables in the governing

equations obtained in Section 3.2. The wavefront expansion for boutd, .

- - . . C e c o L I
condition (2.17), with quiescent initial conditions gives the following

expressions
ey
t=x - 2J(0)
foXed = 0 exp [ -J'(0) x - J"(0) x + ] J'(0) ]2 X (3.24}
¢t jt=x 2J(0) 2300) 2.1 210y |
da = 0p exp -3 (0) % -3 (0) | Jtoy » 1 110 ]2 b ',
X |t=x 2J(0) 2J(0) 2J(0) 2 { 2J(0)

~

where a prime citiotes differention with respect to tl.e« arguncr:
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For the #;undard material, N = 1, the riondimensional creep function

1§'given by equation (3.18). The derivitfves J'(t) and J"(t) are given

by ~ ‘ ' l’
'Oot
J'(t) = ’Qoe 1 - l_
’ 00
'aot e (325)
J"(t) = a’e 1 -4 t ‘
20

i

Evaluating J(0), J'(0) and J"(0) and substituting into equations (3.24),

gives
0 - 0n €Xp - (l-a ) x
t=x 0 [ 2 0 ] (3.2¢)
o - 2 2
fo = 0n eXp - (l-an) x -1 (a a x +1 [ l-ag X L
rrl PO [ 2 0 ] { 2 © ¥ 2 [ 2 ] |
go = og exp [ - (lway) x -(lag) + 1(a§-a0> x - [ la, ]2 X
OX | t=x l Z 2 2 . 2 .

A similar procedure can be used.for the Maxwell model (°O - 0, N=1)
and the model with two relaxation times, where N = 2. The procedure is
straightforward, and the relationships for each model are not given.

The wavefront expansions given by equations (3.24) and (3.26) are
valid only for the specified boundary éohdition. In other words, the
relationships for o, do/3t, and d80/8x must be evaluated for different
boundary conditions. The wavefront expansion for boundary condition
(3.23) 1's moré complicated than that for boundary condition (3.17), and
is not considered in this study. Because %f the complexity in

evaluating the wavefront expansion, the modification in the MacCormack

3
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scheme, using the wavefront expansion, might\e unattractive for certain
problems. The wavefroﬁt expansion is used/ Ao illustrate‘elimlnntlon of
numerical dispersion. - | - f '

The exact solutiéﬁ given by Christensen (1985) for a.Maxwell
material subject to a velocity boundary condition v(0,t) = V4H(t) is
used to evaluate the numerical resu1t§ obtained using \;he MacCormack
scheme with and without a wavefront expansion. To incorporate the
wave}rqnt expansion in;o the MacCormack scheme, the wavefront e#pension
is evaluated for a velocity boundary condition for a Maxwell material
using the same procedure outlined in Appendix 3. The expressions for

the wavefront expansion for a Maxwell ' material subject ‘to

v, t) = VgH(t) are given as

- ;vo exp {‘X } ,
t=x 2

gﬁ !t-x ) %0 P {;g } . o (20

- -V, exp -g -1+ X ' CLo
t=x . 2 2 §

where all of the variables in equations (3.28) are nondimensional

do
at

variables. ’

3.4 Irplementation of the MacCormack Schere ' .

The predictor and corrector finite difference equations for the

MacCormack scheme are given by equation (2.6). If AfU) = A. vhere A,
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is a constant matrix, and B(U) is a linear function of U, the difference
equations are given by

u;-‘:'-I - Ul -'A; A(U“‘ - u") - at BUM
S I e At s

2 ~J , (3.27)

- e i R B

Jﬁ:re U? - U-(ij} nAt) and (B(U;)) -'(0, 0, (a'°0‘)§)T for

{

N=1, (B(U?)) - (a?. 0T for ag =0, N=1 and (B(U?), -

L
(0, 0, - 6?. 0, (pyo + pge - qge)

"mT | for N = 2. »
] \

Stability énalyses of the MacCormack scheme with §(g) - Q, indicate
that a neces;ary condition for stability {is that v < 1 where v is the
Courant number defined previously as v = cAt/Ax. In this case, ¢ = 1,
and v = At/Ax. So far, no stability analysis is available for the
scheme when E(E)‘— 0. However, it was found in this study, that tH;—
MacCormack scheme -is numerically unstable if v = 1. The stability
analysis presented ir Chapter 2, for the MacCormack scheme applied to
linear hjperbolic systems of equations given‘ﬁy (2.13); is applied to
the system of equations governing the Maxwell model. This analysis and
results are presented in Section 3.6.“Since the systems of equations

LT

governing the standard model and the model with _ty ”rqlaxation times

result in (3 x 3) and (5 x 5) amplification matrices G, respghtively.
stability of the MacCormack scheme, applied \t? these higher order

systems, is not considered.

3
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In order to apply the finite difference equations given by (3.27),
o(0,t), ¢(0,t) and v(0,t) are required for N = 1 and, in addition,
0(0,t) nnd.\'r(O.t-) sre required for N = 2. F;:r the special case ay =0
and N = 1, oniy 0(0,t) and v(0,t) are required. Boundary condition
(3.17). and J(t) give o(0,t), ¢(0,t) and 0(0,t) where required. The vg
are obtained from a forward forward (FF) difference predictor and
corrector finite difference ;Ehemé. &s described- earlier (see

.

Section 213), so that

vn*; - v3 - bt ( -o™ o+ 08 ),

‘ 0 AX
(3.29)
n+l n n+l ' n+l n+l
v Voo+ v - At - +
0 "_%{o 0 ac (- oy %0 )}
based‘on the nondimensional form of equation (3.3). For N = 2, the 08
are then found from the preé&ctor and corrector backward -diffcrence

scherre,

;_ (vo)n+1 . (Vo)n

v+l :
Lt
(3. 20
Gl L ogemel
0 0
When the wavefront modification- is not used, ° ‘ng values az
X =0, t=0 are taken for boundary condi: ith o = 1;
Uj-O for § >2 and N = 1,2; ag-lfor n!‘ -4 %y a(lj-O.S

03'- 1 and 68 -0 forn > 2, 6(1)- 1/t for N = 2‘

An unmodified application ’of equaiion (2.27) to the problens

considered, results in numerical dispersion and a smearing of the shoclk.
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In order to elimidate these effects, the prior knowledge of the position
of the wavefront and the discontinuity relations at the wavefront may be
incorporated into the procedure.

The nondimensionaf form of the waveéront is x = t, for the linegi'

problem canidered, and the jumps in the field variables across the

wavefront satisfy the nondimensional .relations,
o] = [e] , [v] = -[0] (3.31)

since equations (3.}) and (3.4) are in conservation form. In equation

(3.315 the square brackets [] indicate the jump in the quantity across

the wavefrontz.

The first term in the wavefront expansion {is given by equation
(3.2“)1»
(0] = e PX (3.32)

)

2J(0)

conditions are quiescent, U = 0 just ahead of the wavefront, and the

where 8 = { L(0) } and [0] denotes the Jjump in ¢. Since the initial

elements U just behind the wavefront can be obtained from equationrs

(3.31) and (3.32).
The modification, which incorporates the elements Uv at the
th

wavefront is now described. Suppose at the n time step the wavefront

passes betwéen the mesh points (jax, nat), ((j+l)ax, nAt) or passes
through (jax, nat). Then the U: are obtained from the results at the

(n-l)th step using equations (3.27), where s < j if the wavefront passes

2 In this context |[] denote jump conditions. Elsewhere square [
brackets are used as brackets only. It should be clear where []
denote jumps in quantities. \»
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through (jax, ﬁAt), otherwise s < j. In both csases, fictitious values of
1 are obtained by extrapolation, wusing the wavefrorft
values in order to apply equations (3.27) to the determination of U?*l.

the elemenc:_gj U?

An - unmodified application of the scheme takes U?+1 - 0, since the
Vpresence of the wavefront 1is ignored. However, this results {n

numerical dispersion and smearing of the shock.

entu side
Since momentum must be conserved for the problems considered,
numerical evaluation of momentum provides a check on the numerical

" solution. The relationship for the nondimensional momentum is given by

Xf(t)

. t '
)
J 0(0,n)dn = J vdy ' (2.3
¢]

0

where x(t) is the position of the wavefront at time t. The right hand
side ,of equation (3.33) 1is evaluated numerically using a Simpson's
integration schemc¢. The left hand side is evaluated analytically b

substituting the apprépriate boundary condition, and integrating.

3.6 Stabilitv of the MacCor heme for the Maxwell Model

Since the pgoverning equations (3.15) for the Maxwell modcl arc

linear and the syster consists of two first order equations, the syste:
A

can be put in the form (2.13) where A is given by (3.15), and B is given

10
by ]

[ ari]
]

00 |
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The wvon Neumann stability analysis can be applied to examine the
lt.bilit& of the MacCormack scheme, by substituting the appropriate

‘'values for A and ﬁ {nto equation (2.14).
‘ .
The amplification matrix for the MacCormack scheme applied to the
Maxwell model is

]
A )

L (- M+ {N)
G -
- @+ 1K) P : (3.34)
where L = { 1.- at + (&0)? + w2 (cosp-1) } , N=w { 1-at } sing |
. 2 N3 2 .
\
-
P=(1+u2 (cosf-1>) and M = (vAt (cosf-1))/2 for the MacCormack

scheuhzq The relation between (A-1) and 8 = kmAx. where ) is the
spectral radius is shown in Figure 3.7, for various Courant numbers.
The matrix given by (3.34) is not a normal matrix so that A <1is

*

a necessary but pot sufficient condition for stability of an initial

value problem. This condition' is satisfied. for v < 0.9967 whern
ax = 0.01. These results will be discussed further in regard to the
numerical results obtained using the MacCormack scheme. The

investigation of stability for higher order linear systems becomes
increasingly difficult, since the determination of the spectral radius
is compficnted with larger 9 matrices. The spectral radius 2 of the C
matrix can be evaluated numerically {f a stability analysis ic¢

essential.
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4.7 Numerical Resulta
The numerical results in this section have been obtained using the
&¥
MacCormack scheme with a grid spacing of ax = 0.01 unless otherwise
specified. Numerical results are presented for nondimensional stress o
versus nondimensional Qtltanco X, at nortdimensional times t. Only

’

quiescent {nitial conditions g(x,O) - g.nrc considered. .The numerical
results are divided {nto three sections, one for e’ih of the
viscoelastic models.- "
3.7.1 Maxwell Model (ag = 0, N = 1)
Figure 3.2 sh;ws the cxact‘lolution for the variation of o

with x obtained by Christensen (1982), for v(0,t) = VoH(t). The

]
exact sclution, in terms of nondimensional variables, is

N ) o -
o(x,t) = -Yoe b~ IO {[ > } } H(t-x) , (3.35)

where 10 is the modified Bessel function of the first kind of order

)

zero.

The wavefront occurs® at x = t, and the mﬁgnitgde of the
s®ess at the wavefront can be found from the wavefront expansion
for a Maxwell model. Figures 3.3 - 3.5 show the cortesponding
numerical sol%tions compared to the exact solution for the Maxwell’
model subject to v(0,t) = VOH(t), with Vo = -1. The numerical
results are 1in good agreement with the exact solution except where
numerical ‘dispersion or numerical instability occur. Figure 3.3
indicates that the MacCormack scheme is unstable for the syster of

equations which govern the Maxwell viscoelastic material when

Pad
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Ax = 0.010

00§ A . ,
0.0 1.0 20 3.0 40 50 60 70 8.0 9.0 100
X
e
Fig. 3.2 Maxwell Model - Variation of nondimensional ¢ with

nondimensional . x for v(0,t) - VoH(t), with V5 = -1,

obtained using Laplace transforms (Christensen, 1982).
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H‘uwéll Model - Comparison of the MacCormack solution to the
Laplace transform  solution (Christensen, 1982), for

nondimensional ¢ versus nondimensional x for v(0,t) = VOH(t),

with Vo - -1, and v = 1.0.
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Maxwell Model - Comparison of the MacCormack solution to the
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with VO - -1, and v = 0.99.
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t
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i

. foo

nondimensional ¢ versus nondimen*onal x for vi0,t) = VOH/t)‘

with Vo = -1, and v = 0.5,
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u‘- 1.0. Figure 3.5 shows severe numerical dispersion for v = 0.5
but no instability.

E}gure 3.6 shows numerical results obta?ned using the
MacCormack scheme with a wavefront expansion for v(0,t) = VhH(t),
with Vg = -1. The wavefront expansioﬁ technique is implemented for
v =-0.5. It is evident from Figure 3.6 tﬁat the wavefront
expansion modification. eliminates disper.ion such that the
numerical solution is virtually identical to the exact solution
(see Figure 3.2).

Figure 3.7 shows the results of the von Neumann anbility
analysis for the MacCormack scheme applied to the system of
equations given by (3.15): The quantity (A-lj is plotcéd against f
for yarious Courant numbers and a grid spacing of ax = 0.01. The
stability analysis indicates that the MacCormack scheme is unstable
for\u = 1.0 The numerical resulgg presented in Figure 3.3 also
confirm this instability.

Figures 3.8 - 1,10 show pumericaf results for  beoundary
conaition (3.17), with oy = 1,.for the Maxwell ‘modecl, for Courant

numbers v = 1.0, v = 0.990 and v = 0.9985, and &x = 0.Ql .which

correspond to the stability curves presented in Figure 3.7. The

¥
" numerical _ results afe consistent with the stability analysis.,

Figure 3.1! showsg the numerical results for boundary conditior
(3.17), with oy = 1, for aAx = 0.025. The results shovur |in
Figures 3.9 - 3.11 indicate that the stability of the MacCormack

4 o
scheme applied to the system of equations (3.15), is dependent on

PN

~S
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v =0.5000 Ax = 0.010
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X

Maxwell Model - Variation of nondimensional ¢ witl

nondimensional x forr v(0,t) = VOH(t), with Vg = -1,
} ;
obtained wusing the MacCormack scheme with a wavefront

expapsion with v = 0.5.



. 97
) <
0.006
0.004
0002+
:.\ I l. i\ ]
< O 1 | V -
< . 27
»=0.999 ,
- -0002} N/ B
-0.004 : )
\V‘—‘O.QQBS
-0.006 + : BN
- ' S
\ )

Fig. 3.7 The von Neumann stability analysis for the MacCormack scheme

applied to the Maxwell Model for Ax = 0.01.
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v = 1.0000 Ax = 0.010
1.0

0.8

004

02

0.0l
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. o .
Fig. 3.8 Maxwell Model - Variagion of nondimensional ¢ with

nondimensional x for a(O,E) - oOH(c), with o - l-gnd v =1.0,
’d

using the MacCormack scheme.
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Fig. 3.9 Maxwell Model - Variation of nondimensional o with

nondimensional x for c(0,t) = OOH(C), with o9 = 1 and

v = 0.999 using the MacCormack schepe.
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Maxwell Model - Variation of nondimensional o with

nondimensional x for o(0,t) = aoH(t), with og = 1 and

v = 0.9985 using the MacCormack scheme.
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X
Maxwell Model - Variation of nondimensional ¢ with

nondimensional x for c(0,t) = aoH(t), with op = 1 and

v = 0.9990, Aox = 0.025 using the MacCormack scheme.
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the grid size, since the numerical results show greater instability
for Ax = 0.025 than for ax = 0.01 for a given Cour:;t number .

Figures 3.12 and. 3.13 show the numerical resultf foé boundarv
“condition (3.23), with oy = 1, for the Maxwell model, for Courant
numbers v = 1.0 and v = 0.99, respectively. Figure 3.12 shows
slowing growing instability at t = 9, however, the instability is
less severe than for boundary condition (3.17) (see.Figuré 3.8).

Figure 3.14 shows the effect of grid size on the numerical
solution for boundary condition (3.17), with g = 1. The coarse
mesh"size Ax = 0.04 indicates smearing of the shock front. There
is alm;st no difference hetween Ax = 0.02 and Ax = 0.01, therefore,
most of the numefical results are presented for ax = 0.01.

All of &the numerical results presented in this section
satisfy conservation of momentum according to equation (3.33). The
numerical dispersion present for small Courant numbers (v = 0.5)
does not dramatically aéfect the momentur evaluated from the
numerical résults, but  instability does affect momentum.
Tables 3.1 and 3.2 illustrate typical momentur calculations for the
Maxwell material for boundary condition (3.17) and (3.23)
respectively with o4y = 1. Table 3.1 corresponds to Figure 3.9 and
Table 3.2 corresponds to Figure 3.13. The wavefront, for all the
numerical solutions presented, {s located at x = t, which is in
excellent agreement with theoretical predictions. Since ax = 0 0]
is a finite grid spacing for most of the results presented, the

wavefront closely approximates a discontinuity.
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v=1.0000 Ax = 0.010
¢

t=1.5

X .
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-
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/) J e
Fig. 3.12 Maxwell Model - Variation of nondimensional o with

nondimensional x for o(0,t) = opsinet H(t) H(l-t), with

0p = 1 and v = 1.0 using the MacCormack scheme.
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v= 00900 Ax = 0.010

t=1.5 .

0.0 \
00 1.0 2.0 3.0 40 5.0 60 7.0 80 9.0 10.0
X
Fig. 3.13 Maxwell Model - Variation of nondimensional o with

nondimensional x for o(0,t) = aosinxt H(t) H(l-t), with

0g = 1 and v = 0.999 using the MacCormack scheme.

"~
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Fig. 3.14 Maxwell Model &Effect of grid size on numeric.al results
obtain®? using the MacCormack scheme for nondimensional v

versus nondimensional x for o¢(0,t) = aoH(t). with og = 1 and.

v = 0.99.
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Table 3.1 Nondimensional Momentum Calculations for a Maxwe!! Materia)

subject to 0(0,t) =.ggH(t), o) = 1, and quiescent inftial
conditions, for v = 0.999. (See Figure 3.9)

Nondimensional Exact Value Numerically Evaluated
Time t of Momentum Momentum
1.5 -1.5 -1.497
3.0 , -3.0 -2.994
4.5 -4.5 -4.490
. 6 -6.0 = -5.987
-1.5 v -7.484
. N
=9.0 -8.981
' ’ N .
‘ .

Table 3.2 Nondimensional Momentum Calculations for a Maxwel) Material
subject to o(0,t) =,oosinnt H(t) H(l-t): o'o =1, and
quiescent initial conditions for »=0.999.

(See Figure 3.13) ’

'Y Nondimensional Exact Value « Numerically Evaluated

Time t of Momentum Momentum

1.5 -0.6366 -0.6356
3.0 -0.6366 o -0.6358 "

4.5 -0.6366 -0.6359

6.0 ’ -0.6366 -0.6359

1.5 -0.6366 -0.6359

, 9.0 -0.6366 -0.6359

o>
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[y

el (ao >0, N=1)
Y P

Figures 3.15 - 3.17 show the numerical results foY boundary
i S ' . . ¥
condition (3.17), with og = 1, for wvarious vq}ues of ag. The

values of ag 1illustrate varying degrees of viscoelasticity

-"according to the relaxation function given by (3.1). A value of

ag = 1 corresponds to’ an elastic material, a; = 0.9 corresponds to
a material which is slightly visc;elastic and ag = 0.i corresponds
to a very viscoelastic materiai. For -he prebleps corsidered aj
cannot be zero.because the creep function is undefined when ag = 0
is substituted in (3.18). The numerical results in Figure 3.15
with ag = 1 show a discontinuity .in stress of magnitude o = 1
propagating in the positive‘x direction with the wavefront located
at x = t.. This 1is in complete agreement with the theory of
infinitesimal elagticity, except for numericél dispersion whgéh is
present immediagely behind the wavefront. Figures 3.16 and 3.17
show numerical results for ag = 6.9 and aj = 0.1, respedﬁively..

Numerical inskability is evident in both figures, however, the

R

wavefronts are/ located at x = t, as expected from theoretical

-~

considerationg.

) Y %?% . R L
condition (3.23), with o5 =1, for various values of ag. The
Y :

numerical results in Figure 3.18 represent a stress pulse of

Figures:3.18 - 3.20 show tgt numerical results for bogndarf“

magnitude ¢ = 1 propagating unchanged in shape in the pqgffiue,x\

N e 4 [ ]
- ) i - ‘
direction. The wavefront is at x = t. The .results aré *in

-

excellent agreement with exp;SIQd results for an infinitesimal,k >°

amplitude pulse propagating in a linear elastic medium. NS

4

bt 4
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numericai dispersion 1is apparent. Figures 3.19 and 3.20 show
numerical results for boundary condition (3.23)..w§5h o9 = 1, for
ag = 0.9 and ag = 0.1. No analytical . solutions were found to
compare to these results, The Laplace t;ansform technique
described by Christensen (1982) for this boundary condition results
in an extremely complicated inversion. The MacCormack scheme has a

considerable advantage compared to the Laplace transform technique,

°
for this problem.

Figures 3.21 - 3.25 show the results obtained - by
incorporating the wavefront expansion into the MacCormack scﬁemé
for boundary.<condition (3.17), with 09 = 1. Figures 3721 and 3.2?
show the numerical tesu1t§ obtained with thelwavefront expansion
fér v =10, for ao.- 0.9 and ap = 0.1, respectively. The ﬁodified
numersfgllfesurts do not show evidence of numerical dispersion but
Sﬁqwzsbme evidence of mild instability for t = 9 and ag =~ 0.1 (see
Figure 3.22). Fggures 3.23 - 3.25 show similar numerical results
obtained with the wavefront expanéion for v = 0.5, for'o0 - 1.0,

ag = 0.9 and ag = 0.1, respéctively. There {s no evidence of

numerical dispersion or numerical instability in any of these

figures. The Wavefront expansion ‘modification influences the
growth of numerical instability and eliminates numerical
dispersion. However, the modification must be re-evaluated for

different boundary conditions. The wavefront expansion technique

has not been used for boundar,condition (3.23).
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‘-
A1l of the numerical results in this section satisfy
conservatfon of momentum according. te equation (3.33) .within

acceptable numerical errors.

3.7.3 Viscoelastic Model with Two Relaxation Times (Extended
Model), N « 2

Since the viscoelastic model with two relaxation times
(N = 2), is a more general specification of viscoelastic materials.

than the Maxwell or standard model, there are infinitely many more

. E

ways {n which the parameters ay, ay, a, and 12/11, can be

. 2 -

specified, so that £ a, = 1. In this study, two specific models
n=0

are cansidered to demonstrate the numerical results

(a) ag = 0.9, a) = ay = 0.05, and ’2/'1 = 2.0 and
(b) ag = 0.1, a) = apy = 0.45, and 12/11 - 2.0.

Jo
These models are chosen so that a comparison can be made wi
L4

standard model. ,
. N ]

-

FigJ;;f £?26 and 3,2; show numerical reszlts obtained wusing

the MacCormack scheme for boundéry condition (3.17), with 0 "= 1,

for case (a) and case (b), respectively, for v = 1.0. The numerical

results in Figure 3.26 show instability at the boundary, x = 0,

“which occurs for large times, t > 6, and numerical dispersion or

instability behind the wavefront for all times. The numerical

‘rcghlts in Figure 3.27 show severe instability at the wavefront for
case- (b). ¢

Figures 3.28 and 3.29 show the numerical results for

boundary condition (3.17), with og = 1, fo§ case (a) and case (b)

respectively, for v = 0.99. The results in Figure 3.28 show no
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fimprovement in the numerical solution in regard to instability at
" the bound;u'y or at the wavefront, compared with v =1.0 (see
Figure 3.26). However, Figure 3.29 indicates that instability has
been eliminated for v = 0.99 at the expense. of numerical
dispersion. ‘The ﬁumerical dispersion in Figure 3.29 decreases with
increasing time. This could be due to the presence of the B(U)
“term in the governing equations.

Figures 3.30 and 5.31 show numerical results for boundafy
'condition (3.23), with oy =1, for case (a) and case (b),
respectively, for v = 0.99. Figure 3.30 indicates severe
instabilify at x = 0. Numerical evaluation of momentum for the
numerical solutions presented in" Figure 3130 indicates that
momentum 1is not conserved for t > 6. Figure 3.31 shows some
instability at x -.0, however the instability is less severe‘than
for case (a). The numerically evaluated momentum‘igfapproximatelf
conserved for the timgs eonsidered in Figure 3.%&;

Figures 3.32 and 3.33 provide a comparféoﬁ of the standard
modél and the viscoelastic model with two relaxation. times, fo’b
boundary condition (3.17), with o5 = 1. In Figure 3.32, ay = 0.1
fgr both models, but r,/r) = 2 for the viscoelastic model with two -
'relagation times. There 1is a significant difference between the
two.séts of curves. This demonstrates the increased flexibility in
using a viscoelastic model with two relaxation times. _Figure 3.33.
compares the standard model to the viscoelastic model with two

relaxation times, for 1identical parameters, since ag = 0.1,
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a; = a; = 0.45, and 12/11 -1 reduces to the standard model. The

-numerical results for the two different models are identical except
for oscillations at x = 0, for the viscoelastic model with two

relaxation times. This indicates that the results for

£
obtained from the system of 5 equations governing the more general

nn=Tn

viscoelastic model are identical to those obtained from the system
of 3 equatiéns that govern the standard model, except for the
instability at the boundary. It is possible that the in;tability
at the boundary is que to the variable v, since v(0,t) is obtained
using the Gottlieb boundary condition, which dis;egards the direct
depéndence on V. SeveralAmodifications of the boundary conditions
wére unsuccessfullylattempted.

Figures 3.34 and 3.35 give numerical results obtained using
the MacCormack scheme with a wavefront expansion for case (b) and
case (a), respectiveiy. .for v = 0.5 and boundary condition (3.17).
There is no numerical dispersion evide:t in the results in either
figure. However, the instability at the boundary is still present.
Figure 3.36 gives numerical results for a5 =10.1, a; - 0.3,
ayp = 0.6 and To/71 = 5, obtained using the wavefront expansion
modification. These results show how the parameters ag, aj, ap and
T9/71 can be varied to obtain numerical solutionsi for other
viscoelastic models with two relaxation times.

All of the results presented in this section, except those
in Figures 3.30 and 3.31, satisfy conservation of momentum
according to equation (3.33). Except for numerical dispersion in

some cases, and instability at the boundary, the numerical results
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are in excellent agreement with theoretical considerations. The

[ a

MacCormack scheme appears to be a viable method for solving wavg

»
propagation problems in viscoelastic mptérials wvhose relaxation
function has the goneril form given by oquatgpn (3.1). For N > 2,

the  {mplementation of the M&cCormack scheme s extremely

complicated. : ’



. ¢ CHAPTER 4 -
O : - i
7 ®PNITE AMPLITUDE , SHEAR WAVE PROPAGATION !
. . ' ) « ".‘ ’ I ‘ ' A )
w v :

The propagation of infinitesipal amplttude axial shear waves in an
<

isotropic laslic solid is governed by the lineg; wave equation
. S ' - y
P a%w  1av 1 8%
—_ - ==, (4.1)

) 2 | c% at2

where w is the axial displacement, r is the radial coordinaté, t is time
, ‘ . .
.and ¢ is the wave speed. Boundary initial value problems governed by
~ s
~ equation (4.1) can be solved by integral transform methods or the method

of characteristacs (Achenbach, 1973). Integral transform methods are
. N
5
not applicable to nonllnear problems of finite amplitude elastlc wave

propagation and. the method of characteristics results in considerable
<\ : - .y 5 LO .
computational difficulties,’ since shock pa&hs do not, 1in general,

coincide with characteristics. Consequently, the modified MacCormack

scheme is used to obtain solutions to the nonlinear problems.

k3

Finlte amplltude axial shear wave p;opgghtion is ’governed bv
equation {6.1) for the Mooney Rivlin and neo-Hookean mater1als but for

,
r

other incompressible hyperelastic models’ equation (4. 1) 19 replaced by

a \honlinear partial differential equaaion ' The Mooney-valin and
7 ' T

‘neo-Hookean materials are’ lxmi;ing cases of the  more gereral materials
. 3 ’ " (" * ’
- : -’ L S T8

. . .
e '%‘ . M
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considered, so ,that the solution of the linear equation (4.1) can be
3 N .

used to check thé validity of the numerical procedure.

Finite amplitude plane transverse shear wave propagation is also
considered and the numerical results are compared with tho;e obtained by’
.the‘method of characteristics up to the time when the~wave'breaks. The
breaking time is calculated - from the characteristic rmethod and is
compared to the breaking time 1ndicated‘ﬁy thqpnumefl;'ﬂ lplutign 

0 4 | A '.’: [ ’
Conservation of momentum and mechaniday' en%‘dhs igation are”.
& - .

- ) »
calculated for each problem considered for both axial and plane,

0

4 transverse shear wave propagation.
.

To gdemonstrate the applicabilityfof the MacCormaé} scheme to more’
complicated problems, combined torsional and axial shear waye

8

propagation in’an iﬁcomﬁressible isotroPic hypefelastic solid are also

-

coﬂsidered. The deformation and stress fields for the combined
. ] ) L]

* ipfinitesimal torsigpal apd axial shear of a lineaw elastic solid can be
- o ] . k . ¥

U . RN .
* L ) S . v i; . . . -
4 ob't'*négf‘ f romy sﬁé?p ition by 'coéidering the toz!ional and axial

sheard separately, since the effects of torsion and axial shear are

4

uqcoupled. For finite-deformation of‘% Mooney-Rivlin material, Ahich'is

- a special case of the gtrain energy function under consideration, the
equations governing the propagation of finite amplitude axdal and

. . \ )
t&ssional ‘waves are uncoupled and identical' to those for.classical

-
r

linear 1pfinitgsima1 etasticity. The major purpose of this section is “

Y

. . . 2
to investjgate the coupling that occurs when finite‘:i:>;tud¢ axial and
e c ) . ) . .

¢

tdrs?onal waves -are simulﬁaheously propagated in _4f" incompressible

¥

&

e w'y

R

v

: : s > = AN Y
hypefelastlc matgfial‘whose strainf energy fuqttipy igy?xéle
?d . . > L . ‘ ?"6 . ’

. . » . " 4 S &4
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*

power series QOdgen, 1984). The effects of prestress on the propagation

of coupled finite amplitude waves are also examined.

The governing equations for axial shear wave propagation are
obtained from the theory of nonlinear :elasticity. Treatments of
the subject are given by Ogden (1984) and Spencer (1980). The.

materials con§idered‘ are ‘Green Elastic’ or 'hyperelagéic’

’

* . ematerfals and have a strain.energy function which is ‘expressible as
. ' » oo . !
a power series in terms of the basic invariants of the left

Cauchy-Green tensor é? A more detailed account of the theory which

-
v

is presented is given by Ogden (1984).
. . W ) )
Time dependent axial . shear is defined by the deformation

-

field ) - . ’ = )
. r=R, § =8, z=2Z+ w(R,t) ,

. s
i . LS

(4.2)

L

where (R,6,Z) and (r,6,z) are the cylindrical polar coordinates of

- a particle 1in the undeformed regerence conf&guration and spatial
J configuration, respectively and Ww(R,0) = 0. The bhy“sgl
x _ , '
v components of the deformation gradient tensor F, and the left

Cauchy-Green tensor B = FFT, where the -, superscript T denotes

transpose, computed from equation (4.2) are ~
, 1 00 . "1 0 wg -
. : 4
F=10'1 0 B«10 1 0 ‘ - (4.3
4 ( ’ ) ' . 2 / ' ‘ .'g
- WR 0 1 %R 0 14w/ . }9 :
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} The basic invariants Il' 12 and 13 of E are i}ven by
] .

I, ytrB, I, - %((trg)z - tr(®)?), 1y = det(B)
S 5}-1’

and, for the,spgc1fied deformation field are

o ‘2
11-12-3+WR, 13-1

where wp = 3w/G6R and from equatio?< (4.2), it follows that

-

wp =W, = dw/ar.

. The Caughy stress tensor o for gn’isotro incompressible
‘ ‘& ’ B -~ .
Ad .’.'.;‘_
astic solid is given by,
. .
o= -pl +23WB-29uBl | (4.5)
. where W(Iy,I,) 1is the strain energy function and -p is

hydrostatjc stress which- is not determiﬁ?d by the deformation
4

(Spence??, 1980). 1t follows from equations (4.3), (4.4) and (4.5)

Whe nonzero components of Cauchy stress are

op = -p + 3 3W -~2(1+w3_") M. (4.6)
, | . a1, : 31, ,
o, = -p +23W -2 3W , L6
. v g 0 g‘il o, /(
‘ )
. ‘ . i - " N
) l az--p+2(l+w2)ﬂ- 2 3w, (4.8)
SRI-) ¢ al . B 3
_ 1 2 .
[ LS
. Trg, = 2 (4 + 34 ) w, . “.9)

"‘j\ . lall 612
) . o
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with the usual notation for the ‘hysical components of Cauchy

stress in cylindrical polar 'coordinetes. '

The nontrivial equations of motion for axial shear are

v ' do o_ -0 ' )
r 6 ‘
L+ "0 (4.10)
or r )
af r -
rz rz v
. - + — - pu - (4.11)
. . ar r .
P ! ' ' . "
‘ ‘ ) o ~ -
where a. superposed dot denotes differentiation with respect to
| &
?,&me. and p is taken as indeperident of § and {.' It follows from
o .
,equg!{ons. (l. A),and (4.9) that 'rz is | ugction of W, so that

’ o - ~
w(r,t) c¥an be obtaine‘;by solving equation (4.11), ang the str'éss
- bl |

ccmponelnts O, aoind o can t:hen be obtained by substituting w in 3

equations (4. 6 - 4.8) and .then s‘o%ing eﬂxation &o 10) to O’W»W
[] ) . \

.

p(r,t).
- T
If the strain energy function for inGOm?‘ressxble
"isotyopic hypere‘lastfic“ solid is contlnually dlfferemciaiv.'ith

) Trespect to I, and I,, it'can be expressed as a power series (Ogden,

.~ X ’ ' ) . :
1984)3, o - : , L
» 'l 'm ' ' |
«r W(I,1p) = 5 €Ty - P, - T, (4:12)
p.q=0 :
, R <
v .
. x » "4
~ N Y * ~

()/ l . N »
# . ) v

3 &nes and Wilson, (1979) suggest that h1gher ordér strain energy
fynctions are useful when the MoondY form is no longer adequate

~

e : . e : .
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higher. order .
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where Cpq are constants and Cp -,0: When C,, and‘n are the only

nonzero Cpq, equation (4.12) gives the strain energy function for -

the Mooney-Rivlin material. Haines and Wilson "‘(‘1979) have
’ . 3

copside‘ed a strain energy function .

~

W= Guo(13-3) + Cop(Ip-3) + Cop(Iy-1)2 + €1(17-3)(15-3) (%.13)

ang. concluded, by ° ) "x'periment:a.l data, that the
"

strain ‘enerSREEEMM®Ton given by (4.13) is well

repres rubbers tested by Treloar (1958). The strain

energy; given by (4.13) has an adc]it‘ional term C30(Il-3)3,

which ‘ha been considered in this study. Howevér, the genersl
i * TTe
conclusion reached by Haines\ and Wilson is that higher order strain

energy functions are.useful, if the lgoverning equations, which are

\ . -
more complicated as _g result of the higher order terms, can be
‘ = : L

-

solved. ' i .
It may be deduced fram equati?ns (4.4) and (4.9) that, for

strain energ}"fuxlctions of the form (4.12),

» L !
o B [y ' -
) ‘ 1 . 2n-1 ' : .
. i ) Trz' - 3 azn_l(wr) y . (z‘~11‘,
4 n=1 ‘ )
where ;he on-l are constants expressible in;terms oE the cpq . 1t
. . i -
t%.se;_ies (4.14) is truncated so the maximum value of (p+tq) = N,
then P \. \ . - El o ‘ M \‘ .
' LN .
N . s
. 2n-1 - .
ez = 21 85n.17(W,) .. (4.15) ‘
nN= s . K .

-
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. - - ‘ “_ S - A
' For thé Mooney-Rivlin materfal N = 1, so that the r'elatiqn between
5o . ™ ’ ¢ e, '
S e 7 .1, and v, is linear.
The theory in this chapter is presénted for, N = 2, so that
' . - . .
the strain enérgy function can be put in' the fd¥m . .
. B . ’ L) .5 N g
A P . ?V’ a
] ) ’ : 2 v ; 31%2 .
Wl [alf3%(1-a) (15-3)+y1 (171-3)%+75(11-3)(15-3)+73 (¥ ) : “?g
2. . ET P . 3 ;‘ ‘_‘ A
] c . T,
(4716)
+ where u is the mod qof +rigidity for infinitesimal deformation

,and 0 < a <1. It follows then that.“

o ’

t, ezt M [wr +.2v(w)3 } . (4.17)

- €

where vy = v + T, + 73. Numegical 1ts for the nonlinear preblem

are, presented fior vy = 0.1, which 1is realistic for certain
¥ * N ..
elastomers (Treloar, 1958).
p -

4,2,2 Formulation of the Problem - a " | ~ ‘

A\n axial, spatially uniform sre’a'ring stress is applied to .

the surface of'a circulat cylindrical cavity, of radius a (se®

Fig. 4.1), if%fan unbounded hypereTastic medium which is ‘initiaily A‘

( ‘unstgessed ,and at rest. The akis of the -cavity coincides with : tha‘
"z axig of the cylindr',icavlr polar coomdinate system. .Two boundary
. ‘ - & e ' : . ‘0.
o a . ) . ‘ 1' »

The symbol r is used to denote ‘shfar stress. The shear stress being
considered depends on the c&hgext of the problém. ¢

» >

A T o
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conditions are considered, 2]

rrz(é,t) =10 H(t) , ) .
or , (&)

¢’

rrz(a.8) = 1 sin I oHee) H(eMe)

’
)" t
P M nf*.up -« ‘
w r- , and the initial conditions are * \
. , “ ’,' . ) . ."w
. ‘l‘: » .rrz(r,(?) -0 , w(r,0) =0 , * N ‘ (lo.l. A
\" ‘ .. h ¢ : " * P S
\ w yhore H(t) is the unit step function and ™o and t are constants. - .
- ' T : ;e
It is convenient to introduce the following #»*
- nondimensionalization scheme, ' ‘ :
LI * ' [ 4 [
, _ ‘ "
- Trz R w,r - : . .
v Tep = —s (W) = (—), t-= [“]1/22' W-w[e]l/z (4.20)
."‘. ' # a p a ' “ :
Py . . ’ ) .
. Henceforth, nondimensioTI variables are used but the superposed
’ ’ rs are omitted.
. X L
; ‘ Substituting equation (4.17) into equation (4,11) and using °
S . - ‘ i - . “ '
L > ‘ ,tﬁe nondigensionalization scheme (4.20) gives ,
' § ' : ) [ (Ledya) Biwg 1D
.(1+67(wr) YW+ —_— - W (4.21)
. - . ‘ . ' i
’ ' )
Equation (4.21) can be re.placéd by a hyperbolic system of
1 : .
first order partial differential equations o -
. ' ' A > /\
. - . A ‘
gu . (+byedyge | (s2vede Ly . k.2
., at ” dr r .
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Fu de _aw._go . (6.23)
at ar

L4

" ? where ¢ = w.. Equations (4.22) and (4.23) are of the form
\

' 3u  A(U) au - ,
. ==+ " T =B =0 , 4.24
at , o 2= (“.24)
vhére N\
: ' 2,1 3
w 0 -(1+467¢“) (1425 ¢ o
U= ., A(U) &= , B¢U) = r , »
- € -7 -1 0 - 0 o )
(4.25) - .
¢ '
L . : ‘
THe eigenvalues of A are the nondimensional wave speeds tc, where \
* 2,172 ’
c = (1+67¢“) , : (6.26)
) &
CooeT e
- . g L R
and the slopes of the two families o,f characteristics in the (QL -l
. _ ~ !
plane are dr/dt = +c. Since results using the method of
chaxacteristi'cs are not presented - f‘n this .- problem, the-
relationships along the characteristics ar®not given. In brder to
apply the numcrical method, it is recomnended that eqdation (4.22)
, . # ’ —_—
be expressed i® cohiservation form (Kutler, 1974), .
. \ : ce VL . ’
aw _ L<\+2ve’> C (+2ye?) ¢ U RPN
- . . .
at ar r . )
' -

. . v .
Equation (4.23) is already in conservation form‘ and the matrix forg 4 !

of equations (4.23).-gnd (4.27) is ' ’ . -
b N .
) .
au aQ(u)
., — + —=—= + B(U) = 0 . 4.28
3t ar _(~) ( )
?



“‘e where Q = (-(¢+21¢3),-‘€:)T and U and B(U) are given by (4.25),

)
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*

and (4.25)5.
A If a- sh:ck occurs, it follows from equatlions (4.23) and
(4.27) t;;t
(v] = -V[e) o : (4.29)
[r,,) ~ele+2yed] = -V[w] , (4.30)
& » " o

where V is the nbnagmensional shock speed and the square brackets

4

, . : _ .
{ ] indicate the jygp in the qunntity.s The shock speed V is then

- given by

.

4

L B S , 'w“‘
4 . entation 0 cheme * += *"5. haali L

-The MacCormack finite difference scheme given by equation

v
(2.6) for the nonconservation form of thé equations "and by equation

R
. )
(2.7) for the conservation form of the equations, {s used to solve

the systems of equations 'given in matrix form by equation (4.24)

gnd equation (4.28), respectively. Boch( the nonconservation @rm'

]}1/2 . . [} .(/‘.‘31.)”’

.

and the conservation form 4of the systems of equatidhs are

considered “using the erical method to examine the éffgct’of
using'a nonconservative finite difference scheme . . -
' T , ..
/ ) .
. N o '
3

5

Square brackets denote jump condigions only when it is specified.
Otherwise squdare brackets are UEpd as enclosure brackets for
mathematical expressions. toe
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Application of the conservative version of the finite
difference equationé given by (2.7), gives the followiﬁé%‘redictor

and corrector equations, respectively,

_ -
U™l oot L oae U ) - QU™ - at BUM) S )
~J “doar Tt =) - =) (4.32)

un+l o 1 { U o+ yntl o At (Q(Un*l) . Q(Un+1)) - At B(U?*l) }-

ot AN IS RS R vl =-1-1
' . »
The nonconservative version is given by
( ‘v. ’
U™l oooun g AUt | - UM - ac BUT) :
~J ~Ja pr ~ 73 <341~ -3 ‘ ” .
e (4.33a.
T o _ »
el oy Qg o, gt At A<Un+1)(Um1 . Unfl) - at B(UM )
S I 5 S v T B -~ '
. s '
In both cases, . . '
’ U;' = U(l + jar, nat) , ‘ .o
w . / )
with the subscript and super¥cript notation {as indicated in
‘/\ ;n
Chapter 2. T e

L 4 ~e v

The element ¢(1l,t) of U(l,t) is obtained from the boundary-

condition (4.18) and the eonstitutive equation (4.17) so that ‘3 is
! .

v

. Y ‘ .
known for all n. In order to apply equations (4.32) or (4.33), w8

» v ’ .

is also required for all n, and this is obtained by applying
7 . - : o o
boundary - conditions ., as ‘ discussed’ in )

- X [ I 5 N | 9
forward fo¥ward (FF) differencing. For, the corrse Az 4
. L4 -

schemé; .. ~ . S : 6 e D aat



e

g

ég" -0 2; [ @7 - @y ] - at(B )7 (:34)
r ’ » . -
Y
witl o dun antl at ((Q );:I - (Q yntly) R } ’
0 2{0 0 A b1 10 L o439

where Q - - (¢+27¢1) and Bl - - (1+2'yc2)¢/p ’w first elements

o

of QgU) and B(U), respectively. The boundary 'condition~ the
bt - )

nonconSer§9t1ve scheme is given as
L]

wetl - wn - akADD (€] - D) - ac(B)D o (4.36)

-n+1 ‘N ‘n+l n+l , n+l n+l n+l
- - At A : . at(B 4.37
*o 12‘{"0”'0 ac oty ‘0 ®10 } (4-37)

where Ay - -(1 + 679%) and Bl - -(1 + 21c2)c/r.

* ]
.

-

This progedure for “the application of hd‘adary conditions,

previouély‘discussed in Section 2;3, was suggested by Gottlieb and

L4

Turkel (1978). .

The stability analysis done in Section 2.4 shows that for

linear hyperbolic systemsp bf equations of the form.(a.2a) with

B(U) = 0, the MacCormack finite diffe;éngp Qcheme is ngpérically
stable 1f v = 1, where v = cAt/Ar, is the Courant number for this

differencc schené and ¢ is the'numerical}y greatest eigenvalue of
~ .

Tpere is .no analysLs available hc.presené regarding stabilityv
v!“f,,. 4 . X o . w, . -

uhen B(U’{’ 0 bnt nunerlcal results obtained for the linear case,

-

that is ‘with vy = 0, indicate 1nstab111ty with v = 1. For the

lingar ‘problem,‘ c =1 is constant, however * when vy » O,

1/2

cC = (1+61¢ ) so that_ for a constant Courant number, At/ir
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féangol. Gonsequently, in the Application of ’thc sc£0m5 to the
nonlinear . problem, Ar 13(‘pld 'constant and At {s adjusted at onc?
time séop by assuming a constant value of v < 1 and taking & as the
maximum of (1+61¢2)1/2, obtained from the previous time step. This
procedure wds suggéhted by ¢ Hanagud and Abhyankar (1984), . who
considered a nonlinear finite amplitude wave propagation problem in
a neo-Hook;an material which resulted in a nonlinear hyperbolic
system of equations with E(g) - é.

Bouhdaty conditipn'14.18)1.rosu1ts in a shock, initiated at
r=1,¢t=0, whiéh propagates radially outwards with speed V given
by equation (4.31). For the linear problem, with v - 0, V=1 which
is CHF salhq as the constant wave speed ‘and the éosltion~o£ the
shock front is trivially determined. ° When y » O, #t follows from
equation (4.31) apd the. initial conditions (4.19) that ¢ just
behind the shock must be known in order to determine the shocy
sp%ed. Conseq‘rntly. the position of the shock 1is not kno%ﬁ
beforehand, but has to be determined as part of -the solution.‘ The
solutions obtained 'from the applicatiop of equations (&.32)//and
(4.33) to tht problem with ; » 0,and boundary condition (b/éB)l,

locate the shock but® the shock is smeared, that %s; spread over

/

several mesh ‘intervals, and there is’ numerical disperéibn behind -

the shock. 1In order to- calculate the shock precfs;1y for boundary
conditién (4.18)1, the relationships between w and r and between «¢
and r for-a given time t'are extrapolfted from the interval {l.rz],

L .

whére r* {is chosen so that the dispersion occurs for r > r*. The

extrapolation is terminated when the jump conditions " (4.29) and
\ ' .

¢

&

/
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] (&,30) are satisfied. Since we=¢ = 0 ahead of the shock, from

(4.19), these coﬁditions,are equivalent to,
[ 2

: Wl (1427y¢?) 2 =0 . - (4.38)

~4,2.4 Momentum and Energy Consjideratjons ®
. [
Since momentum . must be conserved f{or the -problems
. . hd
" : : - .
considered, numerical evaluation” of momentum " provides a check on
N .

the numerical solution. The nondimensional relation

(ol

rf(E-)

Tr.(1in)dn = wrdr , (4 139)

vhere ‘re(t) is  the position of the wavefront at time t, follows
. . ! ' -

from conservation of momentum. The right ‘hand side of equation

(4.39) 1is evaluated numerically wusing a Simpson’'s integration

) . e e (2 -——-———/
scheme. The left hand side is evaluated analytically by

' su?stituting»the abpropriate bdundary condition (“;1ﬁ°1 or (A‘18)2.
>”//\\ and integrating. The exact ‘values‘ of nondimensional momentium,
found from evaluatipg the left hand side of (4.39) fqr boundary
_conditions (A.18)1 or (A.18)2 with v = 0.and v = 0.1 are used tg‘

compare to those obtained from the numerical resulty and are

presented in Tables 4.1 - 4.10.

»
-

Since  momentum must be conserved, the numerical evaluation
of momentum for each time step should be identical to the exact

values found from the E:aluation of the left hand side of (4.39). - "

pu
3 . AN .
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¥or the axial shear problem, the mechanical energy V3
' . i /‘ * y ) ‘
evaluated by considering the summation of the nondimensional strain

and kinetic eﬁergﬁes. The nondimensionzl mechaniqgy energy for

the problem considered is gﬁ&én by

rf(t)

rf(t)
E=| (24 “)r dr + I : (4.40)
1

l
1 /w, ]

. . .
When the boundary condition (4.18), is considered for the nonlinear

- . ) , v
‘problem (y = 0), the system is conservative until the wave breaks,

. ] . { )
and then mechanical endrgy is dissipated. Numerical evaluation of

~equation (4.40), wusing a Siﬁpson's integration scheme provides

anotHer check for the numerical solution. One 'would expect the
nuperical results to show dissipation of mechanical energv yhen the

wave breaks (Haddow, 1985). It may also be shown that

-

Te(e)

2 v, (Lmw(l,n)dny = (2.4 ve*) + (0)r dr o (4.41)

(e
—

-

must be satisfied until the wave breaks in the nonlinear problem
and 1s always satisfied when vy = 0. ~If t>1 for botilridra'ry condition
(6.18),, with e - 1, the energy must be constant for the linear
problem and constant until the wave breaks for the.nonlinea;

problem. Results for the energy calculations are presented in

Tables 4.3 and 4.4,
" |
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The numerical results p;esented'in this section have been

obtained using the conservative version of‘\she MacCormack scheme

unless .otherwise specified. Numerical results are presented for

nondimensional values of stress r = Tyg ' OF velocity W, versus _

nondimensional distance r, at- mondimensicnal . timeés, t. 'Only
r i . . . 2 v [

‘quiescent unstressed initial conditiors’ (4.19) are considered. In

this gaéqllf and w correspond ' to hondimensional axial shear stress
and axlal particle veloctty, respectively. Figures 4.2 - '%.4 show

tﬁ; effect of Courant number on the numerical " solution r vs r fér
boundary condition (4.18)1, with o~ 1, for v = 0, ewhich is a
linear problem. -It should be noted that there is mild instabilitv

in’ the numerical results shown 'in Figure 4.2, for v = 1.0. This

_instability is not present for smaller v, but numerical dispersion

. -~
appears for v = 0.99, and v = 0.5. Since vy = 0, the

nondimensional shock speed is V = 1, and the wavefront should be
located at r = t+l. Excellent agreement is obtained with expected

results for RPgutes 4.2 - 4.4, ggwever, the smearing of ;hg shock

. oy
front increases as v decreases. This suggests that .L.O, to

avoid instabiLit%' but that v should be maintained as close to 1

*-\\4

as possiblejto minimize numerical dispersion. An appropriate valuc
of v is obtgined using a trial and error approach.

Figures 4.5 - 4.7 show the effect of Courant number on the

numerical solution r vs r for boundary condition (A,18)1, with

7g = 1, for y = 0.1, which 1is a nonlinear problem. Again, there
seems to be some instability in the numerical requt§_ shown in

)

Y
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r9 = 1, using the MacCormack scheme, with v = 1.0.
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nondimensional r for y = 0.1 subject to r(1,t) = ToH(t), with

g = 1, using the MacCormack aﬁﬁeme,'with"v - 1.0.
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9 < 1, using the MacCormack scheme, with v = 0.5.
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Figure 6.3.‘ as wsll as numerical dilpo:‘aion. “The numerical
dilporuon‘ in t.ho solytions presented {n Figures 4.6 and 4.7 s
more l;voﬁ: than for t?‘illncnr counterparts (see Figures 4.3 and
4.4), for v = 0.99 and v = 0.5, respectively.

Figures 4.8 and 4.9 show ;ho effect of grid size on "the
numerical solution for r, for boundary condition (4.18)1, with
rg = 1, for v = 0 and vy = 0.1, respettively, and a Courant number
v =099 A grid size of Ar = 0.:01 is used hereafter, since the
results give good ruol\élon of shock fronts. Smaller grid sizes
can be used, however, th?re is not much ;1sib1e di{ferencé in the
solution.

The remainder of the regults presented in this section are
for v = 0;99 and Ar = 0.01. There is no further distussion on the
effects of Courant number or grid size on the MacCormack scheme for
this solution. Most of the numerical phenomena described in
Chapter 2 for the linear and nonlinear scaiar equations have been
summarized previously.

§1nce the Courant number {s chosen to be v <1 (v = 0.99)
and Ar = 0.01, there 1is numerical dispersion present in the
solutions (see Fig;tes 4.3 and 4.6). Therefore, the extrapolation '
technique described in Section 4.2.3 is wused to smooth the
solutions. Figﬁrés 4.10 and 4.11 compare the numerical solutions
‘for boundary condition (A.18)1, with ro'- 1, with and without the
extrapolation technique for y = 0 and vy = 0.1, respectively. -The
exé;apolation technique eliminates numerical dispersion and ensures

(]

that "the jump conditions (4.38) are sati‘fied. Momentum

¢
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>

calcula ions ~ corresponding to Figures 4.10 and 4.11 are preSented v

in Tables 4.1 and 4.2 respectively, with and without fhe

extrapolation technique. The numerically  evaluated moméntum

calculatiéns are compared to the,exact values found from evaluating

equation (4.39) for boundary condition (a.18)1. There is good
Q

agreement with exact values of momentum with and without /

E

extrapolation. The extrapolated values are somewhat higher thng/
the values obtained from MacCormack'’s method withou; extrapolatiyé,
however, the largest difference is approximately 1%. |

Figure 4.12 compares the numerical solutions obtaired for
y=0 and v = 0.1 for boundary condition (A.18)1 with T = 0.01.
Since the amplitude, 0. of the boundary condition is”small, the -
solution for thevnonlinear problem, vy = 0.1, should ab ‘oach  that
of the linear problem, y = 0. Figure 4.12  shows gligible
difference between the two solutions. Momentum calculations
corresponding to the two solutions are almost identical.

Figures 4.13 and 4.14 show the variation of w with r for
boundary condition (4.18);, with 74 =1, for v =0 and = 0.1
respectively. These curves are presénted to illustrate tha{ tﬁ:
wavefronts of the velocity profile coincide with the wavefronts of
the stress profiles, for both the linear and nonlinear solutions.
In addition, the wvelocity profiles exhibit numerical dispersion
similar to the solutions obtained for r.

Figures 4.15 and 4.16 show the numericél solution for 7 for

¥

boundary condition (&.18)2, with L I 1.



Table 4.1

& initia) conditions for

™,

\ ’ | ke

Nondimensional Momentum Calculations for Axia) Shear subject
to t(l,t) = toH(t), with Ty~ 1, and quiescent unstressed

Y =0and v= Q.99.

(See Figure 4.10)

" Numerically Evaluated Momentum
Nondimens ional Exact Value | ------------c-=cc-ec-- seesssomeo-
Time t of Momentum | No Extrapulation | Extrapolation
1.5 -1N5 -1.500 -1.510
3.0 -3.0 -2.994 / -3.018
4.5 -4.5 -4.499 -4.516
6.0 -6.0 -6.504‘ -6.028
1.5 =7.5 -7.498 -7.520
“9.0 -9.0 =9.002 -9.033
Table 4.2 Nondimensional Momentum Calculations for Axial Shear subject

Cto t(1l,t)

= toH(t), ‘with t, = 1, and quiescent unstressed

0
initial* conditions for v = 0.1 and v = 0.99.
L ]

(See Figure 4.11) ' .,"..
y Numerically Evaduated Momentum
Nondimensional Exact Value | ;--------=-==----cccocccecmooooo-
Time t of Momentum | No Extrapolation | Extrapolation
- | 1.5 -1.5 " -1.499 -1.526 °
3.0 -3.0 3.001 -3.010
4.5 -4.5 }-4.496 -4.507
6.0 -6.0 -5.999 -6.040
7.5 -7.5 -7.493 -7:831
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7o = 1 using the MacCormack scheme with v = Q.99.
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v = 0.99.



169

- v = 09900 Ar = 0.010
008 = -
- A\
t=1.5. o

0.6 - _ -

T 4

— 9.0

-~
—0.2 b= Il L L e 1 ) A L
1.0 20 3.0 40 50 6.0 7.0 8.0 9.0 10.0 11.0
r A\

Fig. 4.16 Axial Shear - Variation of nondimenstbnal r with

ndndimensional r for vy = 0.1 subject to r(l,t) = roéinnt H(t)

H(1-t), with L 1 using the MacCormack scheme with

v = 0.99. . \
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A value of t* = 1 1s used so that

T(1,v) = ro sinnt H(t) H(l-t) (54D
for v ; 0 ;nd vy =0.1, respectiVQIQ. Figure 4.16 1nd1cates’shock
evolution, since it-is visually evident that for t > 3.0 the wave
ha; broken. A representation of the shock is obtained using the
MacCormack scheme. There {is élso some numerical dispersion present
which can be seen as small oscillations in the solutions shown in
Figures 4.15 and 4.16. The extrapolation procedure is mot applied
to sélutions obtained for boundaryf condition (4.18),.
Nondimensional mome ntum 4and mechanical energy cdlculations

corresponding to Figures 4.15 and 4.16 aré presented in Tables 4.3

and 4.4, respectively. Momentum must be conserved. Tables 4.3 and

4.4 compare the exact value obtained from the left hand side of

equation (4.39) evaluated for boundary condition (&.18)2, with
results obtained from the numerical evaluation of the right hand

side of equation (4.39). Agreement is good. The values obtained

’

i .
for vy = 0.1 are somewhat higher than thg exact values, however,

momentum is conserved for the times considered. Mechanical energy
caleulations using equation (4.40) are also presented in addition
to. momentum calculations. For the linear ’problem v = 0 (see
Table 4.3), energy is conserved. For the nonlinear problem
Y ->0.1, (see Table 4.4) energy decreases significantly between
t =15 and t = 9.0. This is consistent with theoretical
expectations, since‘ a shoék has evolved between t = 1.5 and

t = 9.0. Although it {is difficult to establish the exact time of



Table 4.3

Shear subject to T(l,t) = tosinnt H(t) ;

C 1

1-t), with t, = 1,

0

e and quiescent unstressed initial conditipns for v.= 0 and
"% v =0.99. (See F\igure 4.15) °

Nondimenstonal | Exact Valye
Time t of Momentum

1.5 -0;6366

3.0 ~0.. 6366

4.5 -0.6366

6.0 -0.6366

7.5 -0.6366

9.0 -0.6366

Table 4.4 Nondim'nsiona1 Momentum and Energy Calculations for Axial

Shear subject to t(l,t) = tosinnt H(t) H(1-t), with t
and quiescent unstressed .nitial condi

0o =1
:fons for Yy=10.1 and

vV=10.99. (See Figure 4.16) )
Nondimensional | Exact Value Numerically Numerically Eval.
Time t of Mowmentum | Evaluated Momentum | Mechanical Energy
1.5 -0.6366 -0.6365 0.7829
3.0 -0.6366 -0.6365 0.7818
4.5 -0.6366 -0.6369 0.7776
6.0 -0.6366 -0.6374 0.7681 ‘
7.5 -0.6366 -0.6362 0.7574 .
9.0 -0.6366 -0.6364 0.7468
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the formation of the shock from the numerical results, the results
presented e 1n good agreement with analytical considerations Aﬂh
shock formation is indicated.

The importance of conservative versus noncon;ervative‘

difference schemes 1is of considerable interest, in regard to t

problems considered. Figures 4.17 and 4.18 compare

y=0 and y = 0.1 obtained using the nonconservative &N fference

‘scheme givenA by equation (4.33), with those obtained usin
conservative version given by equation ‘44.32). for boundar
condition (A.18)1, with }0 - 1, Agre;menc is good. The two curves
are almost identical. Tables 4.5 and 4.6 compare nondimensional
momentum calculations for Figures‘h.17 and 4.18, respectively.
There is a significant difference between the conservative and
nonconservative schemes for the results obtained from the momentum
calculations with vy = 0.1. The numerical results obtained froﬁﬂkhe
nonconservative difference scheme do not conserve momentum as well
as the those obtained from the conservative difference schedse:
Yet, there is no signifi?ant difference in the numerical‘solut{ogs
for nondimensional r. Figures 4.19 and 4.20 show the cor;espoﬁding
velocity solutions for vy =0 and <y = 0.1 respectively. Again,
there is ﬁot Quch visual difference bgtween the two solutions.

Figures 4.21 and 4.22 give a comparison of the conservative
and nonconservative finite @ifforence solutions for vy = 0 and
v = 0.1, respectively, gubject to boundary condition (4.18),, with
o = 1. Tables 4.7 ';nd 4.8 give the corresponding momentuin

\
calculations. All of the above results indicate that caution must
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Fig. 4.18 Axial Shear - Variation of 'nondimensional r wftﬁ

>

nondimensional r for y = 0.1 subject to r(1,t) = rgl(t), with

&

7o = 1 using the conservative and nonconservative MacCormack
N 1

schemes with v =_0.99.
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Nondimensional Momentum Calculations for Axial Shear subject
to T(1,t) = TH(t), with t(; = 1, and quiescent unstressed:
initial conditions fer Y= 0 and »= (0.99.
(See Figure 4.17)

o ) Numerically Evaluated m&-
londiunsiooq - Exact Value | -----=ccccccccacccccccccoe-.

Time t | of Momentum | Conservative Nemcoaservative

1.5 | -1.5 -1.500 -1.500

3.0 a0 | oz | 2.9

4.5 | -4.5 -4.499 -4.499

6.0 -6.0 -6.004 -6.004

7.5 -7.5 -7.498 -7.498

i 9.0 | - -9.0 -9.002 -9.002

AN
v

Table 4.6 Nondimensional Momentum Calculations for Axial Shear subject
to t(l,t) =t oH(t), with o =1, and quiescent unstressed
1n1¥1a1 cond1t1ons for vy = 0.1 and V= 0.99.

(See Figure 4.18)

Nuserically Eviluated Momentum
Nondimensjonal Exact Value | ---<------c-cccomcccncomeacanao
Time t of Momentum Conservative | Nonconservative

1.5 -1.5 -1.499 -1.450

3.0 -3.0 -3.001 -2.930

4.5 -4 .5 -4.496 -4.410'

6.0 -6.0 -5.999 -5.902

7.5 -7.5 "-7.493 -7.396
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Nondimensional Momentum Calculations for Axial Shear subject

to T(1,t) = Tysinnt H(t) H(1-t), with t; =1, and quiescent
unstressed initial conditions for v = 0 and » = 0.99.
(See Figure 4.21)

RS

’ : Numerically Evaldatod Momentum
. Nondimensional Exact Value | -=-------=---c=csocomcmcocneo :
Time t of Momentum Conservative Nonconservat‘vi
<
1.5 -0.6366 -0.6365 -0.6365
3.0 -0.6366 © -0.6365 -0.6365
4.5 -0.6366 -0.6365 -0.6365
6.0 -0.6366 -0.6365 -0.6365
7.5 -0.6366 -0.6365 -0 8365
9.0 -0.6366 . -0.6366 -0.63 '
y -
J)
“Table 4.8 Nondimensional Momentum Ca]qdlations for Axial Shear subject *
- to t(l,t) = tosinnt H(t) H(1-t), with T © 1, and quiestent
' unstressed initial conditions for ¥ = 0.1 and »= 0.99.
(See Figure 4.22)
: Numerically Evaluated Momentum
Nondimensional Exact Value | ------=---=-c--c--cecmcocoooooo
Time t of Momentum Conservative | Nonconservative
1.5 -0.6366 -0.6365 -0.6365
3.0 -.6366 -0.6365
4.5 -0.6366 -0.6369
6.0 . -0.6366 -0.6374
7.5 -0.6366 -0.6362
9.0 -0.6366 -0.6364
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be taken in interpreting results using noncoﬁservativé'differ;nce
schemes . ' ' .

~In general, the numerical results obtained for axial shear
wave propagation using the MacCormack scheme are in good agreement
with what is expected theoretically. The presence of the term P(g)
affects the numerical stability of the solutions of the linear
sysﬁem of equations but does not appear to affect the stability of
the solutions,of fhe nonlinear system of equations. The numerical
results obtained for v - 0 have been compéred to the method of
characteristics. Although none of these results ﬁave b;en included

in this analysis, agreement was good.

.3 Plane Transvérse Shear Wave Propagation

4.3,1 Governing Equations

Plane transverse shear wave propagation in an incompressible

‘ hyperelastic‘solid is considered as a test case for the MacCorma
scheme, because certain boundary initial wvalue problew;\:_—\be
partially -solved using the method of characteristics. The theory
for the derivation of the governing equafions is similar to that
given in Section 4.2 for the axial shear wave problem. The

governing equations are derived in reference to previous work done

/
+

by Haddow (1985).
Transverse shear is defined by the deformation field

\“\" ° xl - Xl + C(C)XZ -, XZ - X2 , X3 - X3 ’ (1‘43)

where (X;, X,, X3) and (x;, Xp, X3) are the rectangular Cartesian

coordinates of a8 particle in the undeformed reference and spatial
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configurations, ”golpqctively, and ¢(t) = aul/ax2 where u is a
component of thé displdcement vector (uj, 0, 0). The cartesian

components '~ of the deformation gradient tensJ;\\\g, vhere

Fix - dx/3X), and the left Cauchy-Green tensor B - EET are

1l ¢ O 1+¢2 € 0
F=10 1 0 B~ € 1 0
: 0 0 1 0 0 1 ,
and the basic invariants 1,, I, and I; are given by .
I, =Ty =3+ ¢ 15 -1 as)y
1 2 ' 3 J .

where ¢ = ¢(t).

The Cauchy stress tensor for an incompressible isotropic
hyperelastic material is given in Section 4.2 by equétion (4.5).

The nonzero components of Cauchy stress for this problem are given

by
o = -p+23W (L+e€d) -28w , (4.46)
o, = -p + 23W - 234 (1 + €2) (4.47)
Y a1, a4l
. 1 2 El
o, = -p + 230 - 23 S (4.48)
a1, oI,
ow = T o= 20M 208 () , Y (6.49)
a1, a1, :

with the wusual notation for °the physical components of Cauchy

stress in Cartesian coordinates, and r is used for the shearing
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stress Tyx: The nheariﬁg stress ry, =1 can also be regarded.as a
componenf - of the mnominal 'stress tenspr for the simple shear
deformation given by equation (4.43). However, the Cauchy shearing
stress Txy is not equal to the corresponding component of the

nonsymmetric nominal stress tensor.
!

*»

The nontrivial equation of motion for plame transverse shear

iS '
ar = i, e (.50
oX

where, as denoted previously, the superposed dot denotes
differentiation with respect to time, and p is the constant density
and X is used in place of X2. In this case, w = 8u1/3t, which is
the transverse particle velocity. ,/

The strain energy function which is used for this problem is
given by equation (4.16), with N = 2. Proceeding in a similar
manner to that outlined for the axial shear problem, the strain

energy function gives the following nonlinear relation,

T =4 (e + 27(3) , (+.51)

7

between 7 and «. The form of equation (4.51) ¢ to“.

equation (4.17), which gives the axial shear str

¥y =20 in equation (4.51),  the linear rel
Mooney-Rivlin material is recovered, and the resultin
wave propagation problem 1is governed by the <classical wave

equation.
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4.3.2 Formulation of the Problem S
A homogeneous material half space X > 0, 1initially at rest

1s' considered (see Figure 4.3). A spatially un{form shearing
stress is applied at the surface of the unbounded half space which

1s!in1t1a11y unstressed. Two boundary conditions are considered,

r(0,t) = rg H(t)
or (4.52)

r(0,t) = rosin.ZE H(t) a&:*;c)
t

and the initial conditions are
r(X,0) =0 w(X,0) = 0 , (4.53y 7

* *
where L) and t are constants and for the numerical results t = 1.

It is convenient to introdugce .
A /
A A ' A \ | \
r =1 we=w t = cot X=X (4.54)
Co “y

which eliminates cog = (u/p)l/2 from the governing equations, and
the variables given in (4.54) are henceforth referred to as

6 Henceforth, the normalized variables given

normalized variables.
by (4.54) are used but the superposed "A" are omitted.
Substituting equation (4.51) into equation (4.50), and using

the normalized variables, gives

6 For boundary condition (4.52)2, there is no characteristic length or

time so that it is not possible to obtain nondimensional forms for
all the variables.
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7(0,1) =1 (1)

o ////////::;;;;;;;:ifi;;::::::::// . .
%
Unbounded Isotropic
X, X Incompressible Hyperelastic
Medium
/

Fig. 4.23 Dilagrammatic Representation of Plane Transverse Shear Wave
Propagation in an  Unbounded Isotropic Incompressible

Hyperelastic solid.
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Aw _ (e + 2113) -0

' 4.55
at X ( )
and uliné‘tho compatibility equation
g v _ g , (4.56)
LEI ) §

L
.

results in & nonlinsar hxperbolic system of partial differential

equations of the form

d -

au  3Q(u)
_:+ e - o N (1057)
at ax ~ :
where
w ' -(e + 2763)
. U= Q) = . (4.58)
2y - ¢ - -w )

The conservation form (4.57) can be written in

nonconservation form

3U  A(U) au
. =4+~ =a0 , (4.59)
at ax ~

where the matrix A(U) is given as

0 1 .
ACU) = , (4 .60)
- - -(1+6v¢2) 0 s

and U is defined by (b.58)1.
The eigenvalues of A(U) are wave speeds, in this case
corresponding to the normalized variables, and are given by

cle) = + (1 + 6yeH)¥/2 (4. 61)
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The 9lopei of the two families of characteristics in the (X,t)
plane are dX/dt = + c.

The jump conditions for a shock can be found from equations

(4.55) and (4.56), and are given by
4

[e 4 2v%) = [r] = -V{w} (4.63)
[é] - °V[¢] '
where V is the shock speed, and the square brackets [] denotenthe

Jjump. Re-arranging (4.62) gives the shock speed V as

V- {[%%1_{31}1/2 ] (4.63)
€ .

Equatioens (4.63) and (4.31) are of the same vform. Equations (4.57)
and (4.59) are similar to eq&ations (4.28) and (4.24) exéépt that
E(H) - 9. Since E(H) - 9, the system of equations.(4.57) or (4.59)
can be solved using a simple wave solution uﬁ;il a shock forms
(Appendix 2). Therefore, the numerical results 6btaiped using the
MacCormack scheme can be compared, f?r this problem, to the method
of characteristics. r
4 tion a

-

The MacCormack finite difference scheme given by equation
(2.6) for the non;onservation form of the equations and by
équacion (2.7) for the conservation form of equations, is used to
solve boundary initial value problems for plane transverse shear

in the same manner as that used for axial shear in Seetion

4.2.3. The numerical scheme is the same as that gi{¥®n in equations
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(4.32) and (4.33) except thar.'!(g) - 9. Ar is replaced Dby 4X and
}_JJ = U(JaX,nAt). The boundary conditions for the conservative and
nonconservative sehemes are given by (4.34) and (4.35), (4.36), and
(4.37) respectively, again, with 5(9) - 9 and Ar replaced by AX.
4.3.4 Meghod of Characteristics

The method of characteristics is used to obtain the solution
to boundary initial value problems goverhed by equations (4.55) and
(4.56) with boundary and initial coqﬂitt\:s specified by (4.52),
or (4.52), and (4.53). Since the term -Q) is not present in
equition (4.59) and the wave is propa;at;;g into‘ a region of
constant state, the sglution is a simple wave so}héion until a
shock is formed. The eigenvalues of f(g) have already been derived
in equation (4.61), and these give the slopes of the
characteristics dX/dt.

For the simple wave solution, the Riemann invariants are

-

given by
W ¥ g(e) = constant on gX = #(1 + 67¢2)1/2 (4.64)
dt
.
where g(e) = (¢ + 21¢3). Since w=¢ =0 on t = 0, due to the

initial conditions, w + g(e)'- 0 on the ¢~ characterf{stic so that

w = -g(e) in the region where the simple wave solution is valid.

~
It follows (see Figure 4.24) that the characteristics emanating

v
from the t axis are straight lines with the slopes

(2 + 67(e(0, egNH2 = (1 + 6y (egnNDH I - c(£(ty)

where f(to) is given by the boundary condition (4.52) solved in
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Fig. 4.24 Diagrammatic representation of the method of characteristics

applied to the transverse shear problem.
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L]
terms of ¢ using equation (4.51). The equations of these ¢t
chddacteristics are
t =ty +lX - (4.65)

7 F(t)

where F(to) - c(f(to)\. The simple wave solution is valid until

the ¢t characteristics intersect, then a shock evolves. After

intersection, the'c’ characteristics give a multivalued solution

{
&

which 1is not physically acceptable. This multivalued sqldtfén
involves an envelope of the c* characteristics which is obtained by

eliminating tg from equation (4.65) and

xF'(to)
1l = —, (4.66)
(F(tp))

. The parametric equations of the envelope, then, become

a (F(£p))?
R — , i (4.67)
" and . ' ’ i .
1 F(to)
t =ty + 2 FUNEN (4.68)
F'(to)

The wave breaks when

i

F(tg)F"(tg)
0=2 — (4.69)

(F' (g2 ™.
Findfng t; from equation (4.€9) and substituting into équations
(4.67) and (4.68) gives‘(xB, tB) where xB‘and ty are the breaking

distance and time, respectively. When the boundary condition is

.‘(4.52)1, a shock is initiated at t = 0, and there is no simple wave

solutior. However, when the boundary condition 1is given by
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(4.52)2, a breaking‘time tp can be found, and the simple wave 1is
valid until the wave breaks.

For the boundary condition {4.52),, the envelope of

characteristics has a cusp at (xg, tp). There 1is a simple waw»7

.. solution for the area bounded by the x and t axes a the ¢’

;haracteristic' through ’(xB,tB). Outside this regio fthe ¢~

charaeteristics cross a shock and the., Riemann invariant w + gle)

underéoes a jump across the shock. The argument leading to the

<

characteristics being straight lines is no longer valid, and the

. ; k]
simple wave solution breaks down.

Applying this analysis to the problem ef planc transversec

-

wave propagation wéth boundary condition (A.52)2 and initial
N_/
conditions (4.53) for o = 1 and v = 0.1 equation (4.69)

'
“gives the following breaking conditions

xg = 1.806
(4.70)
tp = 1.861
- B
These values were ' ained numerically because of the complexity of.

relation between 7 ..d ¢ given by (4.51), where ¢ must be found in

terms of the specified bo&ndér& condition for r.

4.3.5 Momentum and Energy Considerations

’

Al
Since  momentum must be conserveqg for the problems

considered, numerical evaluation of momentum provides a check o
he numerical solution. The relation for the momentum, based on

the normalized variables (4.54) is

/*
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t Xf(t)
Y -7 .
- r(0.n)dy = | wdx , \‘ 4.71)
J | :

0

-
.

where Xf(t) is the position of the wavefront at time t. The right
hand side of equation (4.71) 1is evaluated numerically using a
Simpson’s 1integration scheme. The left hand side is evaluated

analytically by substituting the appropriate boundary condition

‘KA.SZ)l or (4.52)2, and integrating. Tables 4.9 and 4.10 are used

to illustrate that the numerical solution satisfies conservation of
momentum according to equation (4;71).

Treating the transverse shear problem in a similar manner to’
the axial shear problem, the mechanical energy is evaludteﬁtpi_
considering the sum of the strain and_‘kinetic energies. The
mechanical energy in terms of the normalized variables for the

Py .

problem considered is given by

Xp(©) Xg(t)
ol (24 yhHax 1] 2 (4.72)
2 2 , .
’ v

o) iF
. The same scussion which was given Section 4.2.4 for axial
shear, regarding conservation of mechanical energy when y = 0 and

dissibation of - mechanical energy when 7“- 0.1, applies to the

&

-

%”\
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The numerical results in this section have been obtained
using the conservative vefsion of the MacCormack 'scheme with
AX - 0.01, ;nless otherwise specified. Numerical resulls are
preseﬁted for norma¥ized values of r or w versus normalized X, for
-normalized times t. Only quiescent unstressed initial conditions
(4.53) are considered. In this -case r and w are the normalized
transverse shear stress and normalized transverse particle
velocity, respectively. ‘Figures 4.25 and A.2§ show the effect of
Courant number on the numerical solution r wvs k“for boundary
condition (A.52)1, with g =1, for y=- 0: .which .corresponds to
the linear case. There 1is no instability indicated in either
figure, but fumerical dispersion 'ident in boLh Figures 4 .25
and 4.26, for i -f%.b and v = 0.99,'respective1y. MTh; numerical
dispersion is more se&g;; for v = 0.99 than for v = 1.0. Figure
4.27 shows the numerical solution for w which corresponds to the
numerical solution for r given in Figure 4.25, for v = 1.0. The
numerical dispersion evident in the curves in Figure 4.27 for w is
similar to that which appears 1in the curves in Figure 4.25 for r.
The positions of the wavefront are thg same in both figures, and
are located at X = t, which is in complete agreement with
theoretical éonsideratiod%.

Figures 4.28 aﬁd 4.29 show the numerical results obtained
for bouncary condition (h152)1, with o= 1, foE v = 0.1 and

Courant numbers of v =10 and v = 0.99, requctively. The

oscillations behind the wavefront, which 1indicate numerical
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! X e O
Fig. 4.25 Transverse Shear - Variation of normalized r with normalized '

X for y = 0 subject to r(0,t) = rOH(t), with 74 = 1 using

the MacCormack scheme with v = 1.0,
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4
Fig. 4.26 Transverse Shear - Variation of normalized r with normalized

X for vy =0 'subject to r(0,t) = roH(t), with ry =1 wusing

the MacCorm;ck scheme with v = 0.99.
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v= 1.0000 VAI = 0.010
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Fig. 4.27 Transverse Shear - Variation of normalized w with normalized

X for y = 0. subject to r(0,t) = rOH(t), with o = 1 using

the MacCormack scheme with v = 1.0.
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Fig. 4.28 Transverse Shear - Variation of normalized r with normalized

X.for vy =20.1 subjéct to r(0,t) = roH(t), with Ty - 1 using
¥

» the MacCormack scheme with v = 1.0.
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Fig. 4.29 Transverse Shear

eb

X for v = 0.1 subject to 7(0,t) = rgH(r),

00 1.0 20 3.0 40 50

X

the MacCormack scheme with v = 0.99.

60 7.0 80 9.0 0.0

- Variation of normalized r with nOrmalized

with o~ 1 using
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dispersion, are more severe for v = 1,0 than for v « 0.99. The

/!

oscillations whicg occur behind the wavefront in the pumerical
solutions obtained for vy = 0.1 (Figures 4.28 and 4.29) are
qualitatively different from the oscillations which occur behind
the wavefront in the numerical solutions o§tained for y = 0
(Figures 4.25-and 4.26). This could be due to the nonlinearity of
the>governing system of equations for y = 0.1. Figure 4.30 shows
the numerical solusion for w which corresponds to the numerical
solution for r given in Figure 4.28, for v = 1.0. The oscillations
which occur behind the wavefroﬁé‘in the curves presented for w are
similar to the oscillations which appear in the curves prescnted
for r in Figure 4.28. The po;ition of the wavefront for a given
time t is the same in both figures. In Figures 4.28 - 4 30 the
wavefront is not located at X = t, but 1is located ahead of this
position. This is c0nsis£ent with equation (4.63) for the shock
speed, which indicates that vV > 1, for y = 0.1.

The variation of r and w with X for boundary condition
(A.52)2, with 9 = 1, obtained from the MacCormack scheme with
v = 1.0 is shown 1in Figures 4.31 and 4.32 for v = 0 and in Figures
4.33 and 4.34 for vy =0.1. The numerical results presented in
Figureé 4.31 and 4 .32 represent the propagation of a sine pulse for
various times t, with no shock formation. The wavefront is located
at' X = t. The numerical results in Figures 4.33 and 4.34 indicate

)

the evolution of a shock, since the wave appears to be broken for

t > 3.0. The representation of a shock given by the MacCormack
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Fig. 4.30 Transverse Shear - Variation of normalized w with normalized
X for v = 0.1 subject to r(0,t) = roH(t), with rg~ 1 wusing

the MacCormack scheme with v = 1.0.
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X
Fig. 4.31 Transverse Shear - Variation of normalized r with normalized .

X for y =0 subject to r(0,t) = rosinmt H(t) H(l-t), with

g = 1 using the MacCormack scheme with v = 1.0.
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Fig. 4.32 Transverse Shear - Variation of normalized w with normalized
X for y =0 subjeéct to r(0,t) = rgsinrt H(t) H(l-t), with

ro = 1 using the MacCormack scheme with v = 1.0.



203 .

1.2

v= 10000 AX = 0.010-
1.0 |

4.5

re
0.8
0.6
r
0.4
0.2
0.0
~0.2 bl
00 1.0 20 3.0 40 50 6.0 7.0 80 9.0 10.0
_ y X '
' Fig. 4.33 Transverse Shear ' - Variation of normalized r with normalized

X for +y = 0.1 subject to r(0,t) = rosinmt H(t) H(l-t)  with

‘ 7o = 1 using the MacCormack scheme with v = 1.0.
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scheme is spread over several gesh intervals. Consequently, an
«
accurate determihation of the breaking time is not possible.
Figure 4.35 shows the variation of r with X oStained using the
MacCormack scheme for boundary condition (a.52)2, with o = 1 and
v =0.99. The oscillations which appear immediately behind the
wavefront for t > 1.5, are less severe for v = 0.99 than for
v = 1.0 (see Figure 4.33). For the times indicated, it appears
that the osc{llations behind the wavetront appear after the wave
.

breaks. Figure 4.36 gives numerical results for boundary condition
(4.52)2, with To = 1 and v = 0.99 which are similar to the results

presented in Figure 4,35, except that the time incEement between

two ‘successive curves is smaller. Figure 4.36 demonstrates that

- representation of the shock front is not a discontinuity, but i«

"smeared over several mesh iutervals. A kink occurs in stress
curve, 7 vs ¥, at t = 1.95.. This could correspond to shock
formation. The breaking time calculated wusing the method of

charaemeristics is &g = 1.861. Although it is difficult to obtain

-Jan accurate representation of the shock front using the MacCormack

scheme,* the numerical' results are consistent with theoretical
predictions.

Momentum and energy considerations provide a check on the

numerical results, since the results are not valid if momentum .

conservation is violated. Table 4.9 gives normalized values for

momentum gnd mechanical energy calculations according to (4:71) and

(4.72), for the numerical results presented in - ﬁigure'a:36n'

¢
Momentum is conserved for the times indicated, and there appeard to
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) Fig. 4.35 Transverse Shear - Variation of normalized r with normalized

X for y=0.1 sﬁbject.to r(0,t) -Jrosinnt H(t) H(l-t), with

o = 1 using the MacCormacﬁgﬁ%ﬁeme with v = 0.99.
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_ v = 0.9900 AX = 0.010
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Fig. 4.36 Transverse Shear - Variation of normalized r with normalized

X for y = 0.1 subject to r(0,t) = rgsinmt H(t) H(1-t), with

to = 1 using the MacCormack scheme with v = 0.99.
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Table 4.9 Normalized Momentum Calculations and Energy Calculations for
~ Transverse Shear subject to t(l,t) = tos‘innt H(t) H(1l- t)
with T = 1, and quiescent unstressed initial conditions for
Yy=0.1and v = 0.99.
(See Figure 4.36)

¢+ Normalijzed Exact Value Numerically Numerically Eval.
Time t of Momentum | Evaluated Momentum | Mechanical Energy
>
1.70 -0.6366 -0.6365 ° 0.4716
1.75 6366 -0.6365 ' 0.4715
1.80 1. ]E.szss -06366 0.4713
1.85. -9.6366 -0.6364 0.4710
1.90 -0, 6366 -0.6365 0.4708
1.95 ! -0.6366 -0.6367 0.4703
2.00 4 40,6366 -0.6363 0.4695
. . )
I ’ ;

Table 4.10 Normalized Momentum Calculations and Energy Ca]q’1at1ons for -
Transverse Shear subject to t(l,t) = tos1nnt H(t) H(1-t),
with to = 0.01, and quiescent unstressed initial conditions
and v= 0.99. ‘

(See Figure 4.37)

Normalized Exact Value Numerically Eval. Numerically Eva]
Time t of Momentum Momentum (X102) Mech. Energy (XlO )
Y=0 ¥= 0.1 Y= 0 ‘r=01

1.5 -0.6366 -0.6365 | -0.6366 | 0.4996 0.4997

3.0 ' -0.6366 -0.6365 | -0.6365 | 0:.4996 0.4996

4.5 -0.6366 - -0.6365 | -0.6365 | 0.4995 0.4996

6.0 ~0.6366 -0.6364 | -0.6365 | 0.4995 0.4995

1.5 %0.6366 -0.6364 | -0.6364 | 0.4994 0.4994

9.0 -0.6366 -0.6364 | -0.6364 0.4994 0.4994
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be a significant decrease {in mechanical energy after t - 1.95.
When a shock forms, mechanical energy is dissipated, and since the
theory presented in this section is based solely on mechanical
considerations, .tﬁe energy should decrease after a shéck forms.
The numerical results are consistent with conservation of momentum
and dissipation of mechanical energy after shock formation.

Figure 4.37 gives a comp;rison of the numerical results
obtained with y = 0 to those obtained with vy ~ 0.1, for boundary
condigion (&;52)2, witﬁ T = 0.01. The ‘curves, for the t}mes
considered , are. almost 1dentica1. This is consist:%t\\with
the;;Z:1ca1 predictions, ;ince the solution of the nonliiéar
problem (y = 0.1) should approach the solution for the linear
problem as the amplitude of the wave approaches zero. Table A.IQ
contains normalized momentum and energy calculations accordingyeo
(4.71) and(&.?é), .which cérrespohd to Figure 4.37. Momentum and
mechanical energy are conserved for y = 0 and vy « 0.1. This is
consistent with theoretical predictions, since a shock has not yet
evolved for v = 0.1. &

In Figure 4.38 numerical resulﬁs obtained for y = 0.1 using
the conservative MacCormack scheme are compared with those obtained
using™ a nonconservative difference scheme fsr boundar- cénditioﬁ
(4.52)1, with o = 1l and v = 0.99, The resuiﬁs obtgined using the
nonconservative .difference scheme are significantly different than
those obtained using the conservative scheme, and coﬁsérvation of

momentum, evaluated numerically according to equation (4.72), is

not satisfied. Figure 4.39 shows similar results for boundary
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Fig. 4.37 Transverse Shea. - A4 comparison of the numerical results
obtained for + W X with 5y = 0 to those obtained with
vy =0.1, subject to r(0,t) = fosinnt H(t) H(l-t), with

g = 0.01 using the MacCormack scheme with v = 0.99.
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MacCormack schemes with v = 0,99,
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condition (4.52),, with r45 = 1. The \jump conditions given by
equation (4.62) are not satisfied at t = 7.5.

In Figure 4.40 numerical results obtained for y = 0 using
the conservative MacCormack scheme are compared to those obtained
*using the nonconservative difference scheme, for boundary condition
(4.52),, withry =1 and v = 0.99. Since the governing equations
are linear for y = 0, there should be no difference. The numerical
results are consistent with this expectation. Momentum and eneryy,

evaluated numerically, are conserved.

Combined Axjal apd Torsjonal Shear Wave Propagation

4.4, Governin uations

1]

mbined axial and torsional shear wave propagation in an

’
incompressible isotropic hyperelastic solid 1is considerd. The

theory used in the derivation of the governing equations is similar
to that given in Sections 4.2 and 4.3 for axial shear and planc
t;ansverse shear, reséectively. Odgen (1984) and Spencer (1980)
provide a more detailed treatment of the finite deformation theory.

Combined axial and torsional shear 1is defined by the

deformation field
r =R , f -6 + a(R,t) , z =2+ w(R,t) , (4.73)

where (R,8,Z) and (r,#,z) are the cylindrical polar coordinates of
a particle in the undeformed reference configuration and spatial

configuration, respectively, and since quiescent initial conditions
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are considered, w(R,0) = a(R,0) = 0. The physical components of

(raed

the deformation gradient tensor F, and the left Cauchyt‘y;on 1

B, computed fromuequntion (4.73) are

1 0 0 1 rap wR
E - rap 1. 0 _ B = rag rza;+l rwepap (4.74)
‘ wR 0 1 , wR rwpap w§+1 ,

and the basic invariants 1,, I, and I, are given by

2.2 2
11-12-3+raR+wR., 13-1

where wp = ow/dr, ag = da/dR and from equation (4.72), it

that WR =W, = dw/dr and ap = a, = Ja/dr.

The’ Cauchy stress tensér is given by equation (4.95) in
Section 4.2.1, for an incompressible hyperefgstic solid. It
follows from (4.74), (4.75) and (4.5), and the Rivlin-type strain
energy function given by equation (4.12) with N = 2, that the

nonzero components of Cauchy stress are

o = -p + u(l + 2v(rla 2 + wi)) | , (4 76)
O = Pt ou (1 + 27(r 2 + wi))(r2af + 1) , (4.77)
o, = -p+u (l+ 27(r203 + wi))(wg v 1) _ (4.78)
rep = n (14 27(r2a2 sl 2yy(ra 3 , (4.79)

1o =k (1 + 2y(r?a? + w?))(w,) , (4 £0)
r r
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2,2

rgz = u (1 + 27(rfal + wd))(rwia,) . . (b.81)

The nontrivial ‘pquationl #f pmotion for combined axial and

tors{ional shear are

do g._-0
(] . N

___: + r - -proz - , (1‘82)
ar r
3 "2 ‘

14 T

ré 8 .-
+ - pra ' (4.83)

or r 4
ar r

or r

where a superposed dot denotes differenﬁiation ‘ith respect to

time, p is the constant density and p, which gﬂ'not determined by
. e o

the deformation field is independent of 6 andr“}; w»;‘ﬁr.qhe a\ﬁ

particle velocity and a is the angulai‘ veloqitf
equations (4.79) and (4.80), that f rry snd'r_ neﬁunctig& of b';
a, and w_, consequently equatiofi (4,{!3) and ’gi &49 a}:t.,coupﬁ

By solving equations (4.83) and (A.BA) simuﬂ‘aneously w(r t) aﬁ

s

" <
a(r,t) can lge obtained, and the stressgo nents ar %4 aod a can

then be obtained by substituting w, AR r in equadons "(Q Y6 -

4.78) ana solving equation (4.82) ta"'o!)t in p-(r t) The Céuchb,

rt 0

stress v,  can be found directly'i#&mr equation (A 81),

substituting w_ and a .

\}
4,6.2 Foymulatijon of the Problem ¢
‘ Axial and torsional spa§ gniform. time. ‘dependent

surface of a cylindrical

.

shearing stresses are applied

-n X

d@"nuﬂ

*
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cavity, of radius a, (see Figure 4.41) in an unbounded medium which *

is initially at rest. The axis of the cavity coincides with the 2z
axis of the cylindricil polar coordinate system. Problems are
considered for an unstressed modiuﬁ and a prestressed medium. Two
boundary conditions are considered, applied ‘at the inner surface

with radius r -‘n,

'rz(a't) = Til Tl
: + H(%)

rr;\p.t) - Ti2 T2 , (4.89)
or

1rz(a.t)

1r$(a,t)
where Til' Ti2' Tl and T2 are all . constants, and t* - 1. for the

. ) , ' ”n

T, .
sin & H(e) H(t™-t)
* Y
. (4 86)

T, t

{

4 t{
problems considered. ;

hd

The initial conditions are

T Ty ‘ .
rrz(r,O) - g 7r0(r.0) - ——, w(r,0) =0, a(r,0) =0, (4.87)

2

.where the stresses given by (&.88)1, and (4.88), satisfy the
equilibriun' equations. Various combinations of the initf{al and
bOundary conditions ar{ used to study the combined wave propagation
problem. The combined problem of axial and torsional shear wave
propagation can be reduced to the axial problem considered in
Section 4.2, by considering 'rﬁ(a't) - 0 with either boundary
condition (4.85) or (4.86) for Tezr and the quiescent initia]

conditions (A.g7). Foer propagation into an unstressed region

J:EHQ‘A_
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be - coppared to the previous

Til - T12 - Q. These resul
results, for axialvshear wave prOpagation.

It is convenient to introduce * the following

. -
nondimensionalization scheme v
- = Trz' Tré - - _
(Trz.frg) - (——) , (w,r,) - (u) , t = [_u 1/2 t,
H a , .
w=w([p 172 ) a=-a |, a-alp 172 1
- Lu a (4.88)

13

\

Henceforth, nondimensional variables are used but the superposed
bars are omitted.
Substituting equations (4.78) and (4.80) iﬁtd equat ions

(4.83) and (4.84) gives

.

" [310yr% (a ) Pa6y (uy) )

[1+67r2(ar)2+27(w1;)2]arr + Aywrwrrar + — ap = a
v

) , (4.89)

TR b ) (1+6vr2(a) a2y wp?]

F1+27r (a )" +67(w,) 1wrr + 4vr weaa,, + - W =W

" : , (4.90)

and making the substitution wp = € and a, = 6, equations (4.89) and

(4.90) ‘can be ,geplaced,gby‘,é » hyperbolic system of four partial

L] LY \
differential equations s 4 ,

1 .



dw (1+2yr26246ve2) ¢ .
at ' ar

(
de W _
at ar
3a _ (1+6vr25242v¢2)p8
at ar
86 . da _ g
at ar

Equations

are in the form,

au
. at
"where

[ w ] [, 0
KE -1

U=, A(U) =
-~ & _— 0
5 | 0
\ B(U) =

(4.91 - 4.94)

-

l‘>.. -

b 220
dyrles 25 (L6vr26242v¢2) € _ o (4 o1

¢ or ' r

(4.92)
Lyeb de (3+10M26246ve2)g _ 0 (4.93)
ar r

o

are not in

A(U) ‘au
+ -~ = 4B =0,
ar ~ -
-(142v52862464¢2) 0

é@ﬂ. 0 O»-

-byé@ B 0

0] -1

[ (1467r262424¢2) ¢ /1
0

3+10vr262+67¢2)5 /¢

-
»

0

-bvyr

-(1+§7r

A

2

0

0

(4.94)

conservation form, but

(4.95).

b

+27(2)

(4.96)

-~

The, eigenvalues of A are the nondimensional wave speeds *cy and

+ ¢y vhere ) . ! ¢
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262 2)1/2
) . (6.97)
cy = (1 + 61r262 + 67(2)1/2 .

ey = (1 + 2r + 27ye

~

'and the slopes of the four families of characteristics in the (r;t)
plane are dr/dt = % €, * cy. Since the method of characteristics
is not used in fhis problem, the relationships alo;g the
characteristics are not given.

Because of the complexity of the problem, the numerical
procedure is only.applied pto the conservation form of equations

+

(4.91 - 4.94), given in matrix form as

au aQ(u) M
= —— + B'(U) = 0 (4.98)

Equations (4.92) and (4.94) are already in conservation form so
that the conservation form of equations (4.91 - 4.94) is given by

equation (4.98) where .
v

[ - (e + 27(3 + 21r26?e) ] '-(1+21§2+21$?32)é/r1'
- | | ;"'6' *\'
9(9) B -(6 + 27526 + 27r263) T EI(H) ) -(%}67¢2+67r26256/f
2 T e - (4.99)

and U is given by ; tion (4.96).

1f a shock occurs; it follows from equations (4.98, and

e

. (4.99) that ' : . -

T ﬁ? o .
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shear alone, 1 4
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Vile] = -[w]

Vy[6]) = -[a] : (4.100)
Vl[ﬁ] - -[e + 27e3 + 27r262¢]

<16 + 2ve2s + 242283

vyla]

where Vi and V, are the nondimensional shock speeds, and are given

K

by
. +
4 \-‘-i’ »
ﬁtﬁ% f e + 27?3 + 27r262¢] 1/2
ety - - (4.101)
(6 + 2ve2s + 2yr253) 11/2
V2 - ’ (5] (4.102)

It 1is interesting to note that there are two shock speeds

for the problem considered. If 6§ = 0, which 'correspondg td axial
I

-
1

- | le + 2ve3] 11/2 _ |
- vy - e . (4.103)

This expression is identical to equation (4.31), the shock' speed
for axial shear. When v = 0., which corresponds to the linear

problem, V; = 1. and Vé = 1., and the governing equations are

‘uncoupled. It should also be noted that for propagation into an

J—

undeformed region, Vl - 02, and the s?ock spéed is ide?gical to the
wave speed c, given by equation (4.97),. Therefore, if shocks are
formeq in the éropagation of axial and torsional finite amplitude
waves into an undeformed medium, the shocks should propagate at the«

sams Speed.
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| The MacCormack finite difference scheme given by equation
(2.7) for the conservative system 6f equations is used to solve the
system oé equations (4.91 - 4.94) given in m;trix f;rm by equation
(4.98). Application of the* conservative version of the finite
difference equaﬁions gives the same predictor and corrector

equations (4.32) as those for the axial shear problem, where

»

g? - U(1 + jér, nAt) ,

using the same notation for the difference scheme.
The elements €(l,t) and §(1,t) of U(l,t) are obtained from

the boundary conditions (4.85) or (4.86) and the constitutive

eqqations (4.79) and (4.80), where ¢ = w_ and 3 = a_ so that cg

r r and

63 are known for all n. In order to apply equations (4.32); and

(4.32),, Qg and dg are also required for all n, and these are

obtained by applying boundary conditions according to Gottlieb
(1978), which have been discussed at length in previous sectibns.

In order to apply the difference equations given by (4.32),
1
w! and o are required foa all n. Equation (4.32), gives the

Y 0
intermediate values w8+1 3*1

by v ’ ‘ ".i‘

and a , and the final values are given

'm "l _ 'ﬂ+1 . m _ B’ n—+1_
{ R AR IO @I - aeis) }

2

1 0

(4.104)
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.@where Q = -te + 2ye3 + 2922620, Bie -(1+ 2v¢e? &+ 262y ) e/r,

TQy = - (8 + 2ye? + 2yr%6) and By = - 13+ 6v(e2 + r262y))8/r. \
S

It should be noted that a numerical procedure is used to find ‘8
and 63 using the nonlinear constitutive relationships, given by
equations (4.79) and (4.80), where ¢ = W, ang § = a..
The stabiiity analysis done in Section 2.6 does not directly
apply to the nonlinear system of equations derived in ghis section;
There 1is” no rigorous stability analysis available for boundary
initial value problems governed by systems of equatioﬁs of Ehe form
.(4.98). However, it has been demonstrated by Hanagﬁd and
Abhyankar (1984), that the step size must be varied for nonlinear
problems. That 1s, for a constant Courant number,-Ar is held
constant and At is adjusted at each time ‘step by assuming a
constant value of v < 1, and taking c as the maximum numerical wave
speed 6b£ained from the prevous time step. This procedure is.
similar to that used for the akialo shear wave problem, except.that
there are two wave speeds to be considered for the combined

problem. A comparison of the wave speeds, c; and cy, given by

(4.97)1 and (4.97),, respectively, for avgiQen‘c and §, shows that \

ﬁQ is always numericaily larger than cq. Therxefore,

. L)
cy) = (1 ¢+ 6&2 + 61c251/2 'is used to adjust the time step At.

o 4

Unsatisfactpiy results dre obtained in some cases, wi
» - ’

) o 2 o B
step is not {b‘ied. , - L .
BN : U
N o B T
- - Vv r N “:& Y . ' [ . * “\%5
) . Lo "*\'fﬁ. B bl i@ . . ; )
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4,4,4 Numerical Results
The numerical‘ results presented 1in this section have been
obtained wusing the " conservative version of the MacCormack scheme

with Ar = 0.0l, unless otherwise specified. Numerical results are

presented for nondimensional fy, and 1., versus nondimensional r

for varfous nondimensional times t. . In this case, r and'rfa are

rz

the nondimensional axial and torsional shear stresses,
respecti@élyr

Figures 4.42 and 4.43 show the variation of -'rz and 7 .

respectively, with r for boundary condition (&.8§),' with
Til - Ti? - 0, Ty = T2 -1, apd ¥y =0, for v = 1.0 and various
times. The numerical solution for ., given in Figure 4. 42
indicates a slowly growing instapility and the numerical solution

for r ., is very wunstable for v = 1.0. Figures 4.44 and 4.45 show

the wvariation of and r

rz rg+ respectively with r for boundary

condition (4.85), with Til - Typ = b and T =T, =1, and v = 0.1.
The numerical solutions in both figures do ﬁot appear to be
unstable for the gimes considered, but exhibit some numerical
dispersion.

Since some of the numerical results exhibit instability for
v = 1.0, the remainder of the results p;esentedlin this section arec
for v = 0.99. ) .&'

Figures 4 .46 - 4.49 show the varigﬁion of 1}2 and 7, with r
for beundary condition (4.85), witH\Tii\- Ti2 -0, T, = T2 -1,

Y= 0 and vy = 0.1, respectively, for v.= 0.99. Figures 4.46 and

4:47, for g = O,‘ indicate that the wavefront is located at

3
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v = 1.0000 Ar = 0.010
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Fig. 4.42 Combined Shear

r

Variation of :’:}go dimensional

rz

with

nondimensional r for '7 - 0, for ‘%oundary condition (4.85),
&

with T;y = Tyjp =0 and T, -iTé -1, us;ng the MacCormack

scheme with v = 1.0.
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T L 1 T T -1 1 1 T

v = 1.0000 Ar = 0.010

45

(
t - - 1 s | 1
10 20 30 40 50 60 70 80 9.0 10.0 11.0
r .
Combined Shear - Variation of nondimensional Tro with

nondimensional r for »y = 0 for boundary condition (4.85),
with T4y = Ty =0 and T} =T, =1, wusing the MacCormack

scheme with v = 1.0.



v = 1.0000 Ar = 0.010

"

0.0 - e L 4 ) ] L )
10 20 30 40 50 60 70 80 9.0 100 11.Q
r
Fig. 4.44 Combined Shear - Variation of nondimensional .7, . with

L]

nondimensional r for y = 0.1, for boundary condition (4.85),
with Ty = Typ = 0 and T, =T, = 1, wusing the MacCormack

scheme with v = 1.0. \
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1.2
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Fig. 4.45 Combined Shear - Variation of nondimensional Trg with

nondimensional r for v -QQ.} for'boundary condition (4.895),
with T;y = T;p = 0 and Ty = T = 1, using the MacCormack

scheme with v = 1.0.
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scheme with v = 0.99,
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r = 1+t, fot the times considered, for curves of r

rz and T8 Th;s

is ;onsistent with theoretical predictions, since ¥y =0
corrqsﬁonds to _a -linear problem, and both shock speeds

V1L7 Vy = 1, tnd the equations are uncoupled. Figures 4.48 and

4.49, for v = 0.1, indicate that the wavefront is located slightly
ahead of r = 1+t. Again, this is consistent with what is obtained

from theoretical considerations. Except for some /numerical
‘ : /
dispersion behind the wavefront, the curves obtained in Figures

4.46 . - 4.49 are good represeqtations of the wave propagation
‘, N . .
phenomena. s

Figures 4.50 - 4.53 conpare numerical results obtained with

the extrapolation technique to those resultsqutained using the

MacCormack scheme only, for r ., énd rr¢ Vs r, for boundary

condition (4.85), with T;; =Ty =0, T, =Ty =1, =0 and

vy = 0.1, respectively, for v = 0‘99i The extrapolation téchnique
eliminates nu@erical dispersion, in each figure, and satisfies the

jump conditions given by (4.100) . JThere is significant improvement, .
. : 4 '

with the extrapolation technique, in Figures 4.52 and 4.53 for'

: %

¥ :'0.1, since the shock fronts obtained without the extrapdlatibn

¢

technique are smeared by the numerical dispersion. -,

Figures 4.54 and 4.55 illustrate the coupling effect on the

numerical solutions of the nonlinear governing equations for 7., |

'

£’ The combined probiem  is

for boundary conditiqn (4.85)}3

given by T;y'=T;jp, =0, T; = T?_ -1, which rep’sents comt‘med

»

axial and torsional shear wave propagation The pur axial pfoblem -

is givbn by Tjq = Ty =0, Ty =1, Ty = 0 and ﬁh uge ‘torsional
A d .

. * A *. .
3 D

_ dy
s . ’ ’ w0

»
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m Fig. 4.50 Combinéd Shear - Variation of nondimensional 1.2 ¥ith
) . nondimensional r for vy = 0 for boundary condition (4.85),
b ’ -
/’ i with T;p = Ty, “0 and Ty = Tp = 1, using the MacCormack

scheme with and without extrapolation with v = 0.99.
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v - R )
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2

s ﬁonaimeﬁsional r for v = 0.1 for boundary con&ition (4.85),

Tl =1, T2 = 0 for axial shear, using the MacCormack scheme
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scheme with extrapolation with v = 0.99.
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problem is given by Ty, = Tgp =0, Ty =0 and Ty = 1., The
numer%cal results presented in Figures 4.54 and 4.55 are smoothed

using the extrapolation technfque. The numerical results indicate
'

" that the shock speeds for 'the tombined wave propagation problem are

greater' than those for the corresponding uncoupled problems.

Again, this is consisteﬁt with theoretical conslderatiohs. !

Figures 4.56 and 4.57 {llustrate the coupling effect on the

numerical solution of the nonlinear governing equaéions (vy.=- 0.1)

)

for rrz..and rrg for boundary condition (4.86). The numerica}g

results indicate that the breaking times for the stress ‘pulses for
Trz and 7r0. for the combined problem aré different than those
. obtained for axiai and torsional shear alone. S X

<

Figures 4.58 and 4.59 give numqriqfl'results obtained for

Ty and L for boundary condition (4.85), with Til - Ti2 - 0.5 and

Ty = T, = 0.5, which represents combined axial 'a:"torsiona'l shear

wave propagation into a prestressed quiescent region, for y - 0.0

\

an¢ v = 0.1, respectively, with v = 0.99. The numerical results
: , ¢ o

presented in Figure 4.58 indicate thaf the shock fronts for T,, and

Trg coincide. This is consiste\f\'t with theoretical cons{der_&ti'ons‘

-
since vy = 0 corresponds to the linear problem. The nuﬁfrical

results presented in Figure 4.59 indicate that the position of the

shock fronts for r_, and Trp With v ¢ 0.1 are not the same," for

wave propagatiog into a prestressed material. Again, this is .
p :
consistent with theoretical coqsiderations. L,
’ N

-

S | | .
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4.5 Conclud ema

- 'The conservative version of the MacCormack scheme gives results

»

that are in excellent agreement with analytical considerations, for the

“

boundary initial value problems considered, provided the Courant number

_ . ' '

and Ar are carefully chosen. Numerical solutions are obtained for
} : .

finite amplitude wave propagation into an 1initially prestressed

quiescent incompressible hyperelastic solid, which would be difficult to

obtain using other methods.



5.1 Introduction of the Problem o,
" The nonlinear viscoelastic wave propagation problems considered fn

this chapter are bdsed on a single integral constitutive equation for an

-

isotropic incompressible ; viscoelastic solid. A class of constitutive
o&uations has been proposed by Tait et al (1984) for finite deformation

l e
of viscoelastic solidg, and the particular case considered here assumes

J :
“" both the impact and equilibrium responseshare neo-Hookean. i )
Several other classés of single integral constitutive equations

have been proposed for finitey deformation of isotropic incompressible

viscoelastic solids. The class proposed by Taig et al (1984) is a

" subclass of - a more, general class proposed by Lockett (1972). This.

subclass is of the form

[

—

o = -pl '+ F(t){u(e)}}

>

G(t-s) ————ds | (U()] P F()T  (5.1)

t
’ dy[C(s) ]
ds

< -

whefe I is the idéntity matrix, p is not determined by the deformation,
- 3

" F(t) is the deformation gradient tensor at time t, C(t) is the right
Cauchy-Green tensor C(tﬁ - F(t)TF(t) - [U(t)]2 at time t, where

- J ~ -~ ’ . .
superscript T denotes .transpose, and [U(t)]'1 can be written as a

function of C(t) and the basic invariants of‘C(t). The function G(t-s)

“ - 247 - -

is the relaxation function and y[C(s)] = B1C + ﬁ2C2, where B, and B, are
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functions of the first and'Second' invariants of .C. A_\Eore“dﬁtllled
- - \
derivation of the .onstitutive rel&tfonship is given by aic ot al

3

(1984).

N .

For the problems considered, the refhxationvfunction

G(t) = u { m o+ (l-m)é;t/f\} o (5.2 .

_— B . £

is assumed, where 0 <m <! and r is the relaxation time,’ u is the -

3

*  impact éhear modulus along with ¥ (C) = C to obtain .
. , . ' N
, ) T e ,
’ ) 1 "dC(s) : ® )
Lo = -pl + AF(t)[U(t) 1] (m+(1-mye (E-S)/T) = ds (ucey) ! Foey?
~ —~ - - s . - .
SRR e - ‘
> . (h.3)
[ ] . /

whicli -gives' a neo-Hookean relation for both impact and equilibrium
L .
e s . . > . ‘»
responses. This constitutive equation may be a good™ modcl for
. " 'slightly’ wviscoelastic solids - for which the impact and equilibrium'

responses are close. According to Tait et al (1984) a realistic

condition for uniaxial stress problems %Byolving compressive shocks, is

I
s

{A] < 0.1 where X is tg;"axial stretch. Other sipgle inteéral relggions
have been proposed by Christensen (1980) and Coleman and Noll.f;fi‘).
It may be shown that the £lass (5.1) is very-similar but not exactly the
N same as the class of constitutive equations given by Coleman and Noll
(1961). The main' purpose of tﬁis chapter is to extend the results
obtained by Tait et al (198&;, using the proposed constitutive

relationship and solving the ggverning equations by implementing the

’ “
MacCormack scheme for the solution of boundary initial value problems.
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5.2 Governing EQHE!!QPS‘ -
~  The. nonlinear Qiscoolnstfc vave propnéatto? pro@lcmu coPsid-red in
this chapter are based on ‘the single integral'coﬁstitutiée Jquation for
a‘viécoelastic ﬁaterial (Taity et fl, 1§84). The theory, as it applies
to these probiems, is summarizéd.~ Christensen (1982) and‘Lockett (1972)
‘give a detaii;d treatment of the theory of nenlinear viscoelasticity.
The governing equations for. the boundary initial value phoblems .

considered have been derived by Tait et al (1984) and ahaiy;ical results
p}esentdd for m -+ 1.0 for an initially quiescent semi-infigite bar for
. : .

-bounda#y)'condition 5(0,t) = SpH(t). The derivation of the governing

e'quat:ionsL where S {s the no;inal axial scfess, is summarized.
Onev‘dimensional wave propagation in a .semi-infinite wuniform -

prigmatic bar éomposed pf an isotropic incompressible standard
vfscoelastic solid  with conécigutive equation (5.3) fs cpnsidered.
Radial inert}a is neglected, the stress is assumed to be uniformly
distributed across cross-sections normal to the axis of the bar, and it
is assumed that crﬁss-sections remain plane. A onev dimensional
Cartesianm coordinate system is used with the X axis, coinciding with the”

' axis of the bar (see Figure 5.1), where X and x af; the coordingtes of a
particle Ein the undeformed and spatial configurations, resp&ctively.
The axis of the bar occupies the region 0 < X < » in the quiescent

"pndgformed configuration at t = 0, where t is the temporal variable.

The deformation gradient tensor for the isochoric deformation due

to uniaxial stress is

F - diag (A, A"1/2 2-1/2, . (5.4)
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Fig. 5.1 Diagrammatic represer\tation of finite amplitude longitudinal
stress wave propagation in semi-infinite incompres*ble

isqtropic standard viscoelastic rod. ’
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and the right Cauchy Green tensor C = FIF is given by .
c - diag (a2, i°1, a1y . (5.5)

where )\ w 6;/8X for the uniaxial stress problem considered.
\
-To 1investigate longLsuAinal wave propagation iy a semi-infinite
bar, the constitutive equation foé an isotropic incompressible standard

viscoelastic 'solid, as descfibed earlier by equation (5.3), is used.

For the deformation considered,. the constitutive relationship (5.3

. .

. . . ' —_—
reduces\g? y ?’
t . .
2 ,-1
: AC-A
o -_J p { m+ (1-me (E-8)/7 } d [ ] ds , (5.6)
' ds
- a0 T e s
' @
where o is the uniaxial Cauchy stress. Since o = \S, lwhere- S is the
axial nominal stress, the differential form of the constitutive equation
1s
3 +1 AS beuda +m 42 -1 L (5.7)
at T . at T
Equation (5.75\hlong with the equation of motion and compatibility,
. p gv _ 0 )
, aX at (5.8) '
v 4 _ g .
axX ot , (5.9)

.

where v = v(X,t) is the axial velocity, p is the constaht density, gives

the governing equations.
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; The goyerning nonlinear hyperbolic system of equations (5.7 - 5.9)

i{s nondimensionalized, using the nondimeasionalization scheme

t-t, (X,%) = (X.X) . (V,v) = (L.v) , (5,0) = (S.0) . (5.10)
r Shi co . m

where c, = (u/p)l/2 is a reference velocity, and V {s the shock speed,

The governing equations in nondimensional form are

[] '

3 . v _ ¢ _
X  at .
bl : (5.11)
v 3X _ g
axX dt
' L 41 As P =4 imjed a2yt ) ‘
"t ‘ at .
Siﬂce ﬁequations (5.11)1 and (5.11)2 are In conservation form, thc\
following nondimensional discontinuity relations are obtained,
(S} = - V[v] _ (5 17

ro (vl o= - V(4] :

where [] denotes v{g?'jump in the quantity and V is the nondimensional

shock velocity.

* The system of equations (5.11) can be put in the form i

au A(U) au j)
=+~ 7 = 4+BWU) -0 . - (5.1

ac X

which {s the form used fqr the application of the MacCormack scheme to
obtain numerical solupions. Equation (5.11)3 is not in conservation

form. Although it 1is desirable to ap;\y the MacCormack schene to

—_——
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-
‘

systems of equations In conservation form, a conservatiop form was not

4

found for equatfon (5.11),.
' 8

Equation (5.11) fn the form (5.13) gives

s 10 ((S/A)-2-(1/A3)) 0

s-m(x-(1%)y 1. -

(3

The matrix A(U) in equation (5.14) has eigenvalues given by ic,
and zero where

c =2+ 3 .2 lels? . (5.15)

Consequently the characteristig:’:;’the (X,t) plane haye slopes

[y

. dax dx _ o ' (5.16)

In the undisturbed region ahead of the wavefront A =1, S = 0, so that

c(l) = /3

-

+ 5,3 Formulation g{ the Problem

Longitudinal wave propagation along a semi-infinite - uniform

prismatic bar (see Figure 5.1) due °to a sudden application of an axial

force at the free end or a finite duration pulse in the force at the

free end 1is considered. The initial conditions are quiescent and
unstressed so that .
S(X,0) = 0 , v(X,0) =0, X0 =1 . (5.17)
b )]
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' The boundary co {tions at X = 0 are
$(0,t) = SdH(t) , - . (5.18)

or 4 .
) , $(0,t) = Sy sinnt H(t) H(l-t) , (5.19)
~GF

corresponding to the sudden application of axial stress £5.18) or a

finite duratigq stress pulse (5.19). ‘It, should be noted that the

governing equations are given in terms of the material coorddnates. For

a compressive axial force, S5 < 0. _ |

- B J
4 Implementation of the e
- The MacCormack finite difference scheme given by equation (?.7)
' d

L
for the nonconservation form of the equations is used to solve the

system of equations (5.13) and (5.14). Application of the finite

difference equations (2.7) gives the following predictor and corrector

steps,
U™l 0 L oarAD) (U0 - UM - s BOUTY
~] "3 oax T i -3l 4] St R

1

Lo {un e e oae aqutly umtl L oyntly L oae puntly
2l -3 -] N =] =j-1 - -3

where U = U (jAX, nAt) , y-0,1, 2... n=-0,1, 2...,
..J —

with the subscript and sup&rscript notation as indicated in Chapte:® 2.

v
!
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The elenment S(0,t) of U(0,t) 1is obtained from the boundary

condition (5.18) or (5.19), so that 83 is known foft all n. In otdo;

to apply equations (5.20).-&8 and vg are also required for all n, and

this 1is obtaine8 by applying bouhjnry ¢pnditfons as discussed in
(

’

Section 2.3, using forward fothrd FF) .differencing at the  left

.boundary and backward backward (BB) ‘at the 'right boundary. For the

nonconservative difference scheme, A8+1 and v3+1 can be found directly

from the bredictor equation (5.20);, by substituting j = 0, and the

corrector equatiens, thed are given by
-

A+l 14+ \n+l A;'(-vn*l + vl
2 0 0 1 ~ 0

. 0 AX
: . ‘
and . . ‘ (5.21)
v8+1 « 14 v yntl o AL, (_Sn+1 + Sn+1)
2 0 0 AX .1 0 ’

according to Gottlieb and Terkel (1978) .

For the boundary condition (5.18), a modified.-treatment of the
bou?dary condition is also Lsed{ tg\iompare with the method s;ggested by
Gottliéb and Turkel (1978). Using the constitutive equation (5.7),

A(0,t) is found by evaluating the differential equation

g +1 -3 +m
{at } {A‘O,t) S(O.t)} {at }

(A(0,£)12 - (A(O.t))'l}

(3. .22)
and for boundary condition (5.18), the equatTon simplifies to
0.0 _ [m 20,012 - 8552 - __m So - 23(0,¢) - & 7°1
dt 2(0,t) a2 (523

(] _
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Since S5 1is specified, A(0,t)” can "be evaluated using a Runge Kutta

technique for the bolution of the differential equation (5.23).

Y e '.

.

o SR
i‘i__unmlnsum_ﬁgplinaxnsiﬂnn

) Since momentum must be egniorvod for the problems considered,

numerical evaluation of momentum provides a check on the numerical

- solution. The nondimensionnf.relation

.
'

«  Xe(ty

t
. J S(0.m)dp = | viX,t) ax , (5.24)
0

wherg Xf(t) is the ﬁosition of the wavefront at time t, follows from
conservation of momentum. The right hand-side of equation (5.24) is
evaluated numerically using a Simpsbn's integration scheme. vTho exn;t
values of nondimensional momentum, found by e§a1uat1ng the left hand
side of equation (5.24) are'used to compare to those obtgined trom the
numerical results. : | .

The numerical evaluation of momentum for each time step must
be equal to the values obtained by integrating the 19%1 hand side of

(5.24) for the specified boundary conditions. The,mechanical energy is

not considered, since the governing equations are dissipative.

3.6 Numerical Results
The numerical results in this section have beer. obtaincd 'using the
nonconservative version of the MacCormack scheme. and Gottlieb boundary

conditions unless otherwise specified. Numerical results are presented

-
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for nondtlonllcnni S versus nondimensional X for various nondimensional

times t. Only quiescent unstressed initial conditions, given by (5.17),

are considered.

The numerical results in Figure 5.2 show the effect of Courant

number ik!xboundary condition (5.18), vlth‘so = -1.0 and m = 0.1. The
Coursnt number does not affect the position of the wavefront indicated
by the results. However , the numerical lgluélons at various times
obtained using a small Courant number (v = 0.5) have severe numerical
dinporllon.' There i{s no apparent inltnbiliti-in the numerical results
for this probl;n, for v = 1.0, and the maximum nondtéensionnl time
considered. The momentum = calculations corresponding to each figure,
according to equation (5.24), are in agreement with exact values for
each of the Courant numbers considoted.‘ Figure 5.2 shows results for
Sop = -1.0 which i{s not physically realistic, since the jump in
cross-sectional area implied by a shock would have to take place over
too long a length for the shock assumption to be vaI;d. A value of
So = -0.16 gives [A] = 0.0506, which is ;1thin the recommended limit of
[A] < 0.1 (Tait et al 1984) and should be con;idered for practical
appa’tacion. Figure 5.2 1s'presented as a de@onstration of the effect

of Gourant number on the numerical solution.
..,

-

Figure 5.3 gives numeriéal results for a more realistic problem
for boundary condifion (5.18), since Sop = -0.16. The results presented
ip Figure 5.3, for m = 0.9, are in good agreement with those obtained by
Tait et al (1984). The position of the shock front is consistent with
the shock speeds given by Tait et al (1984). Nondimensional momentum

calculations, based on the numerical results, indicate conservation of

-
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Fig. 5.2 Effect of Courant number on the variation of nondimensional §
with ‘nondimensional X for m = 0.1 and S(0O,t) = SOH(t), with
Sp = -1.0, wusing thg nenconservative MacCormack scheme with

v = 1.0.
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nonconservative MacCormack scheme with v = 1.0.
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momentum for the times considefed, and the jump conditions given by
(5.12) are satisfied. Even though the nonconservative version of th&

~

MacCdrmack scheme is used, there does not appear to be any violation of

momentum conservation or jump. conditions at the shock front. The

MacCormack scheme for this problem is in complete agreement wyith the
results obtained by Tait et al (1984), for m » 1.0
- Figures 5.4 and 5.5 show the variation of S with X at various times

for® boundary condition (5.18), with Sg = -0.16, for m = 0.1 and m = 1.0,

respectively, where m = 0.1 corresponds to a very viscoelastic solid and-

-

m= 1.0 corresponds to a neo-Hookean solid. The numerical resuL{s
presented in Figure 5.5 are consistent with theoretical considerations
for boundary condition (5.18), which indicate that a compressive step
discontinuity in stress should propagaté unchanged in sbabo in an
elastic solid. There is numerical dispersion evident in both
Figures 5.4 and 5.5, buﬁ no instability. \\\
Figur;s 5 6 - 5.8 show the variation of § with X at various times
for boundary condition (5.19), with Sg = -0.16, for m - 0.1, m= 0.9 and
m=1.0, respectively. There 1is a slight steepening of the wavefront
for increasing time in each of Figures 5.6 - 5.8. The numerical results
indicate the possibility of shock e?olution for each of the problems

represented.

Figures 5.9 - 5.11 show the variation of S with X at various times

for boundary condition (5.18), with Sgp = 0.16, for m~ 0.1, m=10.9 and.

-~

m = 1.0, respectively. Since Sy > 0, these results are for sudden

application of tensile stress & X = 0. The numerical results in Figure

Al
5.11 correspond to wave propagation in a neo-Hookean solidy since

- e

o,
\\\



261

0'05 ‘ | T , 1 LB ¥ L{ l ‘l 1 ¥

. , - v=10000 AX = 0.010

0.00

-0.15

-0.20 1 | 1 1 ] 1 1- h 1’ "
00 10 20 30 40 50 6.0 7.0 8? 9.0 10.0

X

-

>

Fig. 5.4 Variation of gpondimensional @with nondimensional X for
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m = 0.1 and S(0,t) = Spsinrt H(t) H(1-t), with S, = -0.16,

using the nonconservative MacCormack scheme with v = 1.0.
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m=1.0 and S(0,t) = SQH(t), with .Sy = 0.16, using the

qpnconservative MacCormack scheme with v = 1.0,
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m=1.0.The numerice} regults in Figure 5.11 are in éowplefq agreement
with results obtained by the wethod oé chgractgrlltic;\except for
numerical dispersfon. There {is numerical dispersion evident in
Figures 5.9 - 5.11. The amount of numerical dispersion in Figure 5.9
fo; m = 0.1 decreases with increasing time.

ﬁigures 5.12 - 5.14 show the variatién of S with X at various times
for boundary condition (5.195. with SO - 0.16, for me=0.1, m= 0.9 and
m=1.0, ireipectively. Since §j, > 0, these results correspond to a
tensile axial stress pulse at X = 0, There appears ;o be some
steepening of the wunloading portion of the sine pulse, which indicates
the evolution of an unloading shock, in each of F:éures 5.12 - 5.14
;here appears to be very little numerical dispersion, in ahy of these
figures.

Aithough the boundary condition (5.19) with [SO| - 1 does not give
a physically realistic problem, some interesting results were obtained.
Figures 5.15 - 5.17 show the variation of S with X at various times for
boundary condition (5.19), with SO - -1.0, form=0.1, m= 0.9 and
me- 1.0, respectively. Figures 5.15 - 5.17 indicate that the wave,,
propagating into the material, breaks. The wave breaks at di%fereﬁf
“times, for different values of m. In Figure 5.15, the wave breaks at

t =30 form=2O0.1. In Figure 5.16, the wave breaks at t = 2.0, for

2.0, for

N

m=20.9. In Figure 5.17, thée wave bréakf, again for t
m= 1.0. There are very unusual oscillations appearing in the numerical
results given in Figures 5.16 and St17, which appear after the wave

breaks. These oscillations are not apparent in Figure 5.15.

v 4
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Fig. 5.12 Variation of nondimensional § with nondimensional X for

m=0.1 and S(0,t) = Spsinmt H(t) H(l-t), with Sog = 0.16,
]
using the nonconservative MacCormack scheme with v = 1.0.
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using the nonconservative MacCormack scheme with v =1.0.
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m-=10 and S(0,t) = Soanwt H(t) H(l-t), with SO - 0.16,

using the nonconservative MacCormack scheme with v = 1.0.
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me=0.1and S(0,t) = Sosinwt H(t) H(1-t), with SO = -1.0,

using the nonconservative MacCormack scheme with v = 1.0,
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using the nonconservative MacCormack scheme with v = 1.0.
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Figures 5.18 - 5.20 show nonphysical numerical results for the

!
variation of S with X at various times for boundary condition (5.19),
g;}h SO ~10, for m=0.1, m=0.9 and m = 1.0, respectively. 'In
# ures 5.18 - 5.20 the numerical results indicate that the wave breaks
on the unloading portiog of the tensile stress pulse. Again, therc arc

°

severe oscillations belind the shock representation in Figures 5.19 and
5.20, after the wave—greaks. These oscillations ar; not apparent iu'thr
results presented\’ip Figure 5.18. Although the numerical results
presented for |§O|'- 1.0 are not physical, they demonstrate some
interesting numerical phgaomena and possibly some observations which
could apply for s;aller Sp-

The numerical results for boundary condition (5.19), with
SO= -1.0, do indicate shockﬁ\lolution in the viscoelastic solid
modelled by the constitutive relationship given by Tait et al (1984).
This suggests, that even though shock evolution is not evidonr for
|SO|\— 0.16, for the times considered, that shocks could evolve for’
larger times.

All of the results presented in this section, satisfv conscrvation
of momentun: according to equation (5.24). Tﬁis is a necessary
condition that the numerical@sults must satisfy. The presence of

e

severe oscillations or numerical dispersion Mo not cause momentum
/

conservation to be violated. When shockg evolve, jump conditions are

satisfied according to equation (5.12). In general, the results arc

consistent with theoretical considerations’ except , for numerical

dispersion. The modified boundary condition for A(0,t) pgiven by

equation ¢5.23) did not improve the numerical results. The Gottliclh

pIaY
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m=0.1and S(0,t) = Spysinat H(t) H(1l-t), with S; = 1.0,

using the nonconservative MacCormack scheme with v = 1.0.
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m=0.9 and S(0,t) = Sosinnt H(t) H(l-t), with Sg = 1.0,

using the nonconservative MacCormack scheme with v = 1.0.
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boundary conditions involve less prograﬁhing effort and give results
which are virtually indistinguighable from the modified approach. The
nonconservative difference scheme does not seem to introduce errors in

momentum conservation.

Co [

Although a nonconservative system of equat{;ns is considered,
application of the MacCormack scheme gives results »which satisfy
momentum conservatizn ané the jump relations. These are not satisfied

(4
when the scheme is applied to nonconservative systems for other problems
such as axial shear and transverse shear wave propagation in an
incompressible hype;elastic solid, for which conservative systems coglh
Se found easily. 1The MacCormack scheme would be uséful for examining
boundary initial value wave propagation problens i; viscoeladtic solids
modelled by other constitutfie relationships. In this way, different

constitutive relationships for nonlinear viscoelastic solids could be

compared.
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4

The mumerical results obtained in this study show that the
MacCormack scheme is a suitable numerical technique for the solution of
boundary initial valu; problems governed by hyperbolic systems of
partial differential equations of the form

au . A(U) 4U

— +7 7T =4+ B(U) - O (6.1)
at ax - - -

The solutions of the wave ﬁropagation problems considered in
Chapters 4 and 5, particularly, are of an intrinsic value to the studv
of elastodynamics, since analytical solution§ to' the finite amplitude
wave propagation problems in nonlinear elastic and viscoelastic
materials are not available. The solutions of the linear plane wawe
propagation problems considered in Chapter 3 are also extremely
important in their own right, since analytical solutions of wave
propagation problems i% linear viscoelastic solids with more than one
relaxation time are extremely difficult to obtain using Lapy%ce
transforms or the method of characteristics. The numerical results show
that there is a significant difference 1in the wave solutions for a
standard material compared with those for viscoelastic solid with two
relaxation times (extended model), for the parameters considered. The
extended model has more flexibility in modelling real materials.

Although the numerical solutions obtained using the MacCormack

scheme are wunstable for certain applications to equations of the form

- 281 -
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(6.1), {f E(g) # 0, sometimes the effect of the instability can be
minimized i{f the grid spacing and Courant number are suitably chosen. In
agdition, the numerical results often exhibit numerical dispersion,
which distorts the solution, usually near the wavefront, and smears the
wavefront.‘The numerical results obtained in this study show that, for
some problems, numerical instability and numerical dispersion can be
eliminated by modifying the difference scheme.

In general, the numerical solutions for the plane wave propagation
problems 'in linear viscoelastic solids, the axial and transverse shear
wave propagation problems in an incompressible hyperelastic solid and
the finite ’amplitudc Wave propagation problems in the npﬁlinvnr
viscoelastic solid satisfy‘conservation of momentum, and conscrvation of
mechanical energy before a shock evolves. The numerical solutfons pive a
representation of shock evolution which is consistent with theoret jcal
predicitions that are available,

A major thrust of this study was to examine the suitability of the
MacCormack scheme “for the solution of boundary initial value wave
propagation problems in nonl?near viscoelastic solids. The numerical
results indicate that this technique is a valuable tool in solving wave
propagation problems governed by systems of partial differential
equations of the form (6.1). 1In pgrt;cular, the MacCormack scheme could

be used in further studies to compare wave propagation effects using

various nonlinear viscoelastic constitutive relationships.

"
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In this appendix it is shown that

equations of the form

Adu -
— + "= +BU =0
at ax -~ =~

where A and B are consgant matrices, the proposed modification of tl.

for linear hyperbolic systems of

(Al D

.

>

.

MacCormack scheme is equivalent to the Lax-Wendroff scheme.

The Lax-Wendroff method is obtained from a Taylor series expansion,

-

3U a2u -
Ut + At) = U(t) + At == + (a8)2 —= + 0 ((at)d) P (Al 2)
~ ~ at 2 at2
Substituting
au [ A 3dU }
— = -1~ = 4+BU
at ax -
(Al 3
and 3%y A2 3%y > . . U .
—= =" —= 4+ (AB + BA) — 4 82U
. %2 — == ax o~ -
into‘equation (Al1.2), gives‘ i
Tau ) a2 326 ~ . 8L
U(t + at) = U(t) - at 5_—1‘+ BU | +_(pt) T —= 4+ (AB + BA) =
- -~ Ix -~ ) %2 ~-= =27 ax

<+

1> >

2y } + 0 ((atd))

- 286 -

(Al . 4) \\:
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'8
vt

‘By replacing the terms 62U/6x2, 8U/8x, U with the apugopriaté differedge
expressions and truncating the terms O((At)3), the solution for the

(n+i)th time steﬁ is given by
. o

© o~} 2 - 26%

A N A oA AL {1
yntl o { [1 Cacf s (ar)? 32] U? + [(A;)z (AB + BA) - At A] [zlil—:l;l}
, - 2 |- -~. - ~

l o
A : U . -2U +U.

2 (/.\.X)2

¢

(Al1.5)

e
v 2w

w

where 1 is the unit matrix, and U? = U(jax, nAt). When B = Q,
~J — -—

equation (Al.5) reduces to the familiar version of the Lax-Wendroff

’ ' ) .
scheme (Anderson et al, 1984). The finite difference scheme rqpresented

us

by equation (Al.5) is considered to be "second order" accurate, because
the terms O((At)z) have been fetained.
A slight modification of the MacCormack scheme for systems of

~

Vequations of the form (A}.i), with B=0 is

7/
vl oD s st A (U - U ) - aBU® ;
-] ) oax — it -] ==
) :
b
Uﬂ+1 -1 Ut 4 U?+1 - At A | U?+1 R U?+1 - AtBUr.1+1
~ 2 {73 ) ax ~ -j-1 =] (al.6)

'

» .
This is a forward backward mgdified wversion of the MacCormack scheme
. A »

(MacCormack, 1969). Elimination of U?+1 (predictor step) from equations

(A1.4)1, and (A1.6), gives
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‘

. . . A a6)2a2 [u 204 v
I-atB+(at)? B2+(at)? (AB-BA) | UD 4+ = | el =i i)
T T 2 T e T | 2 (ax)"

e AN VL BAUT' - - ABU"
R t A ~.I"']. "’i'l + (M)Z ~~~j+1 "'""'1'1
2 ~ ox 2 ox (Al

A ~

A comparison of equations (Al.5) and (Al.7) shows that the Lax-w('h'uft

scheme and the MacCormack scheme are equivalent if AB = BA .

, in

particular, for the scalar equation

>

%E + ¢y au- 0
ot ax (Al )
Also, when B = 0, the two. numerical schemes are equivalent {or the

linear system of equations.

N
1t should also be notedﬂthét the analysis provided in this section

I 4

is much more difficult for the nonlinear version of equation (Al 1),
For nonlinear systems of "equations, the two schemes are no always

equivalent and would not necessarily have the same stability criteria.
|

The  justification for usjng the modification of thé,MncCorWJﬂk

1
scheme given in (Al1.6), is based on a comparison with the Lax-w(ndrufg
scheme for linear equ 1S . Since the method reduce:r ta  thd

Lax-Wendroff scheme, in certain cases,.and is a two step method suitable

for boundary applications, the method is used for the solution of wave

.

'] -

propagatfgn prwblems in solids.

.
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’

2. _Stability Analysis of a Finite Difference Scheme

In order to examine the stability of the modified difference
schemes, the von Neumann method (Mitchell & Griffiths, 1980) {is used,
' 0

which assumes a Fourier series representation for the errors €

j=0,1,2... N, at time t = 0. The error distribution at the grid

points for t = 0 is then assumed to be given by

N ikmx
e{x,0) = Z Bme , (A1.9)
. - m=0 = :
or
N ik (jax)
= ¢ (jox,0) = T Be , (A1.10)
R o) - m=0 =

for an interval O < x < L where Ax = L/N, so that the number of
harmonics (N + 1) is equal to the number of grid points at t = 0. 1In

equiition (Al1.9), the Bm are constanq;‘%olﬁmn matrices, which can be
[ . S Y

-~

determined by the co, and Lkm - mn/L. The real part of the series

(Al1.9) is a half rangeJcosine series for the interval 0 < x < L.
The errorS*sétisfy the finite difference equations and a solution of

these equations, which reduces to (A1.10) when t - 0 is

at g ik (jax)

) : N a
. R n n
4 (j -so e Bm e , (A1.11)

LY A -
where a, may be ocomplex. Since superposition is valid, the stability
condition is obtained by substituting a2 single harmonic in the finite

é? v
difference equations (Al1.5) or (Al.7) to obtain

~
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™o 6 (acLk) (A1.12)

n
-3 e |

M,

where E is defined as the amplification matrix of the finite difference
scheme. A necessary condition for stability {is |e'aAt |< 1, and this is
satisfied if A < 1, where A 1is the gpectral radius of 9. The spectral
radius of G is the largest modulus of the eigenvalues of the matrix G.

If G is a '"normal matrix, then A <1 is a necessary and sufficient

condition for stability for "initial value problems (Richtmyer and

Morton, 1967). For the special case of single scalar equation, the

amplification matrix degenerates to a scalar factor G.

Application of the von Neumann method to equations (Al.95) and

'

(Al.7), gives the following complex amplification matrices,

G(At, k) = { [ I - atB + (at)2 B2 + A2 [ ac 12 (cosﬁ-l)J +
~ - - 2~ " | ax

« . 3
~ ~ N

AB + BA ; °
i At {4t | =—/—==1 - A sin'g
Ax 2 - , (A1.13)
V)]
for the Lax-Wendroff scheme, and
G(at k) = 1 - aeB + (at)? B2 + a2 [ ac 1?2 (cosp-1)] +
- - - 2 - - Ox
~ ~ AB + BA .
(0t)% (BA-AB)(cosf-1)-+ i [ at {at =21 - ar] sin g
20x% T AX - , (A1 .14)
N

for the modified MacCormack scheme, respectively, where g = k&x. The

spectral radii of (Al.13) and (Al.14), and, hence the stabiligy criteria
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are examined by evaluating A as a function of A. 1Instability of the
difference scheme is 1indicated, if ) exceeds 1 for some B. However,
A < 1, does not always imply stability, since the von Neumann method is

<
a necesi?ry condition for stability, but not sufficient unless G is a

normal matrix. Also, this analysis does not include the effects of

boundary conditions.

A

This appendix provides an analysis of the "effect of the term BU in
equation (Al.1l), as it affeéts the stability of the MacCormack finite
difference scheme. Also, the stability analysis of the linear systems

of equations, provides some insight into the application to nonlinear

sys tems.

’



The wave propagation problems considered in this study are governed

by systems of quasi-linear hyperbolic partial differential equations of

the form

U  A(U) au

— + — 4+ B(U) =0 2.
at ax ~(-) ~ . (az.1)

where U is a vecter of the dependent variables, A(U) is a matrix

function of U, B(U) is a vector function of U, and possibly x, and x and

t are the. independent  variables representing space and time
respectively. Some of the simpler problems considered, one dimensional
infinitesimal wave propagation in linear viscoelastic media, are
governed by equation (A2.1), ;h;re é(g) is a constant matrix é and 5(9)
is a linear function of H.

There ‘Is extensive literature on the theory of hyperbolic equations
(Whitham, 1974, Jeffrey, 1977), particularly on the method  of
characteristics. It is interesting to note, however; that linear
problems or nonlinear problems with E(H) - 9 are most frequently
considered. Whitham (1974) provides an analytical treatment of the
theory of hyperbolic equations and Mitchell (1980) provides a numerical
treatment of hyperbolic equations. This appendix summarizes the major
concepts of hyperbolic systeﬁs ;f partial differential equations.

Equation (A2.1) represents a quasi-linear system of first order'

equations, since the equations are linear in the first derivatives of

- 292 -
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the éependent variables 9. The matrix é(g) and the vector'g(g) may be
‘functions of x and t as Jell as 9. However, in this study 5(9) and §(9)
are‘not fun;tions of t. By definition,wequation (A2.1) is an nth order

o

hyperbolic system of equations if there are n linearly independent left

n

<eigenvectors 1™ which correspond to n different real roots c”, given by
det | A(U) - cI | =0 . (A2.2)
where I is the identify matrix and det | | denotes the determinant of
the matrix given by [A(U) - cI]. The characteristic curves are given by
& o e 2.3
at ' (A2.3)
and the relationships along the characteristics are
du i
. 1T = +1T By -0 : (A2.4)
W ~ 4t - ~ -
provided that
1Ta-1T% , (42.5)
Equation (A2.1) written in conservation form is
A au  3Q(V)
— + —— + B(U) =0 A2.6
at ax ~(~) ~ ( )

Thq'servatibn form is useful in determining the jump conditions 1if a

shock is formed (Whitham, 1974). <A shock exists when the field

" variables U are discontinuous. A shock may exist due to the'boundary
condition (i.e., 1in both linear and nonlinear problems), or a shock may
evolve from a smooth boundary condition (nonlinear problem). When the
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wave breaks and a shock is formed, the jump relationship can be written

as

-V [U]l + [QU)] =0 : (A2.7)

where V is the wvelocity of propagation of the discontinuity (shock
speed)’ and the square brackets [ ) denote the jump in the quantities
within the brackets. The‘jump ;elationships are useful in determining

the magnitude of the discontinuity in the field variables at the shock
|
front. The breaking time for a given problem can be bbtained by

)
i

determining “whefe the characteristics intersect (Whith&m, 1974) .

|
Whitham primarily considers initial value problems, but the ' theory is

: \
quite easily extended to boundary initial value problems. '
Simple wave solutions to equation (A2.6) for boundary 1nit§pl value

problems do not, in general, exist. A simple wave solution for;a piven

problem exists, if one of the Rlemann invariants is 1ddntica11y
. . \ ‘,’

constant, which implies that: /

( 1) Riemann invariants exist for the problem; and

’

(ii) the wave is propagating into a region of constant/state.

Riemann invariants ‘eXist if B(U) = O. In most of the problems

considered in this study, E(E) » 0, and therefore even ﬁhough the waves
propagate into a region of comstant state (undeformeﬁ and quiescent),
the simple wave‘w501utionl is not possible. Achénbach (1973) has
considered simple/{Qavelsolutions for finite ampliyﬁde wave propagation
in a hyperelasticw medium where the governing gguation is of the forn
(A2.1) with E(?; - 9. Simple wave solutions ‘?;e valid wuntil a shock

;

forms.
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2. The Method of Characteristics Applied to Scalar Equations
Analytical solutions for some of the boundary initial value problems
considered in Sec;ion 2.5.1, obtained using the method of
characteristics, are presented in this appendix.

The solution of

i A
QE*.Q_L_]-O
at ax (A2.8)
for initial condition u(x,0) = 0 and boundary condition

u(0,t) = f(t)H(L), is easily obtained from the method lof

characteristics, or otherwise, and is

u(x,t) = f(t-x)H(t-x) . (A2.9)

The solution of ' “©
u , du,yu.-o
at ax . \ (A2.10)
for initctal condition u(x,0) = 0 and boundary condition
u(0,t) = f(t)H(t), is obtained from the method of characteristics. It
follows from the method of characteristics that
du , y-po ondx_
dt dt . (A2.11)
Integrating equation (A2.11), and using the initial condition, gives

(x+t

u = C(to)e- O) H(to) on t = tO + X . (A212)
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use of the boundary condition, then, gives

t {
- 0 !
c(ty) = f(t)e O (A2.13),
so that v
u(x,t) = f(t-x)e *H(t-x) . (A2 . 149
The solution of
du , ugdu T (A2.1%)
at ax
with initial condition u(x,0) = 0 and boundary condition

u(0,t) = UOH(t), easily obtained from the method of characteristics, is

u(x,t) = Uy Hot-2x; .

UO » (A-).I(’)
satisfies equation (A2.15), the boundary condition and initial
conditions, and the jump condition |

Viu] = [(1/2u?] (A2.17)
where V is the shock speed. The jump relations (A2.17) come from

considering the conservation form of equation (A2.15).
The solution which satisfies

(4

Qu udu L0
at ax

. (A2 .18)
for initial condition u(x,0) = 0 and boundary condition u(0,t) - UOH(l),

follows from the method of characteristics, which implies that

+u=20 on dx . u

t dt . (A7 .19)

d

[ed

l



297

Intogratién of (A2.19) glves

u=cet on dx = u :
dat . (A2.20)

“

The characteristic emanating from t,;, where ty > 0, has the slope

dx - c(tge’t
dc : (A2.21)

Consequently, the equation of the characteristic {s

-to -t
° X = C(to)(e -e ), (A2.22) .

since x = 0, when t = ty- Use of the boundary condition, then, gives .

to )
c(to) - er . (A2 .23)

Therefore, the characteristic emanating from t; has the form

(to't)

X = Uo(l-e ) . (A2.24)

Eliminating to begween (A2.24) and (A2.20) gives

) °
1 - x
u(x,t) = =
( ( UO) (A2.25)
/Y
7y
The position of the wavefront is foyhd by considering the shock speed \'I X
‘ gl

V = 1/2{u}j, for the quiescent initial condition. It follows from

(A2.25) and the relation for the shock speed that

’ * 1')(*
Veds =1
dt 2 Uo| (A2.26)
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" L
where x  is the position of the wavefront. Therefore,

2dx"
v l‘r‘
TR (A2.27)

Integration of (A2.27) gives the time required to reach x*, as’

*
X

*
X
te 2 dn - -2 UoLn (l-n)
(l-n) UO 0 ‘, (A2.28)
0 UO
and . Yy
t = -2U4 Ln (1-x%)
Ug © (A2.29)
Therefore, fbr UO -1,

x¥ a1 . et/ (A2 30)

. *
The whvefront positions x  for various times are given as

>

t . >
1.5 0.52°6,
3.0- 0.7769
4.5 0.8955
6.0 0.9502
7.5 0.9765
As t =@ ., x' 2 1.0

-

Combining (A2.25) and (A2.30) gives

u(x.t) = (1-x) Hl - e (-t/2) (A2 31)
Uo ) .



The wavefront expansion contained in this agpendix is similar to that
obtatnéa by Christensen (1982), except that the expansion i{s given in
terms of the creep function rather than the relaxation function. .

Consider the wave front expansion for the boundary condition,
0(0,t) = ogH(t) . (A3.1)

It follows from the equation of motion for an initially quiescent

semi-infinite rod, with the end at x = 0, that

a(x,s) - gg exp (-0(s)x)
[

‘ ’ ‘. (A3.2)
where -
12 }
a(s) = T2 < jeed T(s))1/2
B (A3.3)
Expanding J(t) as a Taylor series gives
) J(t) = J(0) + tJ'(0) + 23
2! (A3.4)

and taking the Laplace transform of (A3.4) gives

o

(A3.5)

- J(0) 47 (0) J"(0)
J(s) = s + 2 + 3 +

s jlls

Substituting (A3.5) into (A3.3) results in the following expression

2+t 3

S S s

' , ) 1/2
acs) - { psd [LQ 1O IO N
' ' (A3.6)

- 299 -
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\
and simplifying gives

N4

) 1/2
-{p [-%(0) + 8J'(0) +L£-Ql+ ]}

(A3.7)

Making the substitution for c = 1 ]1/2
pJ (0) ' (A3.8)
into (A3.7) and rearranging gives
- , : . 172 ¢
i(s) = s { 1+ L (0) + + ... )
< « sJ(0) ) , . (A1.9)

Using the Binomial e theorem 3ivés /

S
{

\
Vg
fs) - 2 { b % s10) * % s23(0) Ji [ZSJ(O) ] v } & (A3.10)
) 3.

Substitution of (A3.10) into (A3.2) gives

-— ’ ! l: ’ 2
4 s c 2J(0) ¢ 2sJ(0) ¢ 2s {(2J(0) ./ ¢
(A2 1)
Expanding the second exponential gives, -

<

— ’ ” ’ 2 ,
) = 20 exp [15] enp [£002 ] {1 R Ry (oA }
s c 2J(0) ¢ 2sJ(0) ¢ 2s 2J(0) .

(A3.12)
and rearranging gives,

= e - 28] exp [0 x]J1 | [LO)] 1
o(x,8) = o, exp[ CJexP[ 2J(0) C}{s [24(0)} s

O Ix

. [LM]ZLZ x +._}
2J(0)| 2s° ¢ .

P} L]

(A3.13)
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¢
Taking * the Liflace‘ktransform inversion of the expression within the

-

brackets { ) in (A3.13) gives ‘}L
A .
. % , :
pu - X -XS 'M_Q). p. 1 - JL(_QI X + L.(gl x +..
o(x,s) =0, exp [ c] #¥P 1 23(0) ¢ 27(0) ¢ | [23(0)] 2c .
(A3.14)
The shifting theorem is applied to give
© o(x,t) = o exp -J(0) x[J1-[J" (O [Ee-x|x + J;(O) 2(;-§] X, Lylez
0 2J(0) ¢ 2J(0) clc 2J(0)] 22 e ] - cj.
.« o ' (A3.15)

Uging the nondimensionalization scheme given by (* 13) in Chapter
giveé the wavefront expansion, where the superposed bars indicate

nondimensional variables, as follows

o(ﬁ,t) ~ 0 exp 23(0) 1- 23(0),(t-x)x + 23(0)' (g;;)x +. .. H(t-x?
Pl ' (A3.16)
’ \

Differentiating with respect Ey t gives

1
2 2J(0)
*
N . s
N (A3.17)+
The expression for 8a/3t at the Yavefront is given by ’.

2 -

'at t=x

Iy 1% o
- X + ... p H(t-x»).

’ [ o J { Loy oy [ 2 o
A A = 0g exp - - - X + = - X .
2J(0) 23(0) 2 | 23¢0) (a3.18)

g ©
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Differentiating with respect to x gives
de  -3'(0) _ 231 (3% e _ _ _ [1u,)®
ax - 23(0> ag exp “23—(0) 1- 23(0) (t-xX)x + 23(0) (t-x)x +...
_ -3 (0)X )] _ [ - [1«o)? -
- - _ X
* 9 X | 93 (0) Y23y X7 23| P 7 Loy 2
1@ )% *
+ - (t-x) + ...
2J(0) 2 , (A3.19)
and the expression for da/dx at the wavefront is given by
_6_; _ . 3'(0); 3"(0) jn(O); 31(0) ? -
- - oggexp | - - - - + - -l - el 2
% |ty 2J(0) 2J(0) 2J(0) 2J(0) 2
(A3.20)

h



