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Abstract

In this thesis, we study a mathematical model for the survival of a cells’ pop-

ulation exposed to various chemical compounds with different concentrations. For

experimental planning, it is important to find the threshold value for the initial con-

centrations at which the cells become extinct. First, we use a deterministic model

to perform parameter estimations and model validations with the experimental data

sets. We estimate the parameter sets for eight chemical compounds from different

clusters. To account for parameter uncertainty, we derive a stochastic version of

the model and perform the numerical analysis. The global Lipschitz condition is

essential for strong convergence in most explicit methods; we relax this condition

and prove convergence of the implicit Euler scheme with the one-sided Lipschitz

conditions solely. Then we compare the Euler scheme, the tamed Euler scheme and

the implicit Euler scheme by case studies in both stability and convergence analysis.

Finally, the Monte Carlo simulations for three chemical compounds are presented

to explore the distribution of thresholds.
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Chapter 1

Introduction

The steady increase of industrial activities around the world has led to a mass of

chemical compounds being constantly released into the environment. Some of these

compounds are classified as toxicants, because they are harmful to not only the en-

vironment but our health. Needless to say, there is an imperative demand to develop

efficient and reliable methods for toxicity assessments. A traditional methodology

for evaluating toxicity is by means of in vivo (Latin for “within the living”) assays

involving living organisms. Another approach is by means of in vitro (i.e., labo-

ratory experiments) assays in which a real-time cell electronic sensing system is

employed to perform cytotoxicity profiling [2]. The term cytotoxicity describes the

process of putting cells into a toxicant environment and letting the toxicant envi-

ronment affect the cells’ morphology and adhesion. Due to efficiency reasons and

moral/ethics related concerns, in vitro toxicity testing is naturally preferred.

Alberta Centre for Toxicology proposed a project for assessing toxicity by means

of the xCELLigence Real-Time Cell Analysis High Throughput (RTCA HT) sys-
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tem developed by ACEA Biosciences Inc. in San Diego, USA. The xCELLigence

RTCA HT system records the response curve of the cell index dynamically [7].

More specifically, it consists of four 384 well E-Plates where the cell index (CI),

as the representative for cell numbers, is recorded. In the experiments, the cells

were seeded onto the E-Plate; the attachment was allowed to reach the exponential

growth phase, which is approximately within 24 hours [4]. After the attachment

phase, test substances were added to the lag cell growth phase during which the

cells are the most viable. The compounds with 11 selected concentrations (1:3 se-

rial dilution of the stock solution) were dissolved in the cell culture medium [1].

The monitor time was 75 hours and the cellular responses were recorded. The

experiments were repeated 4 times to ensure the measurement reliability and data

accuracy. The time-dependent concentration response curves (TCRCs) for each

test substance in each cell line can be generated [9]. The cellular population is

measured by the impedance signal generated by microelectrodes. Other responses,

such as cell inhibitions and cell morphological changes, can also be generated by

the impedance signal [4].

The dataset used in this study is from the cytotoxicity test on human hepatocel-

lular carcinoma cell line HepG2 [10]. We have initially 63 chemical compounds

which are divided into 10 clusters according to the mode of action (MOA), which

involves functional and anatomical changes. The latter may include changes in cell

population, morphology, and cellular functions [9]. A methodology involving a

combination of clustering and machine learning models (artificial neural network

(ANN) and support vector machine (SVM)) has been proposed in [3]. In the fore-

going paper, the known MOAs in [9] are used for validations.
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BafilomycinA, which represents the critical point where the cells are headed to-

wards extinction.

A global parameter sensitivity analysis is done in[1] to assess the effects of pa-

rameters uncertainty. To capture the effect of randomness/stochasticity, a stochastic

model is proposed in this thesis. The most important contribution that we make is

the numerical analysis of the proposed stochastic model. We compare the stochas-

tic numerical schemes for several case studies from the perspectives of stability

and convergence. One main difficulty that we encounter is the relaxation of the

global Lipschitz condition on the coefficients of the stochastic differential equa-

tions (SDEs). It is widely known that the global Lipschitz condition is essential for

strong convergence in most explicit methods; for instance, the Euler–Maruyama

schemes proposed in [23] and the Milstein scheme[20]. Since it is challenging to

prove the global Lipschitz condition for our model, we consider other schemes like

the tamed Euler [25] and implicit Euler [28] schemes. Both of the schemes solely

require one-sided Lipschitz conditions on the coefficients to converge. We employ

Monte Carlo simulations to determine the stochastic thresholds and we also explore

the distribution of the thresholds.

This thesis is organized in the following way. In Chapter 2, we present the mathe-

matical model in the deterministic setting. Following the presentation of the model,

we discuss methods used for parameter estimations: the Non-linear Least Square

method and EM algorithm. We perform model validation by comparing the TCRCs

with the predicted values for the cell index. To conclude Chapter 2, we present

separation graphs using Runge-Kutta-Fehlberg Method (RKF45) applied to the de-

terministic model. Based on the global sensitivity analysis done in [1], we derive

4



the stochastic model in Chapter 3, with two parameters being random variables.

Next we present Euler and Milstein schemes by using stochastic Taylor expansions

and explore sufficient conditions for convergence. The introduction of tamed and

implicit Euler schemes follows immediately. At the end of Chapter 3 we include

conditions for convergence of the implicit Euler scheme. Chapter 5 mainly consists

of the final numerical results of various schemes for different noise levels. Monte

Carlo simulations based on the selected schemes are performed to explore the dis-

tribution of the stochastic thresholds. Chapter 6 contains the conclusion and some

future works.
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Chapter 2

Model Evaluation

In this chapter, we first present our model and perform data analysis for parameter

estimations and model validations. Some preliminary tools like expectation maxi-

mization algorithm and unscented filter will also be provided. An application of the

model, separation graph, will be shown at the end of this chapter.

2.1 Model Introduction

The model we choose is a three-dimensional model for an acute dose of test sub-

senses. The variables set are the cell index n(t), the concentration of toxicant in the

cell CI(t), and the concentration of toxicant in the environment CE(t). We focus on

modeling the phase when cells actively proliferate and have an exponential increase

in the cell density[1].

First, for the non-toxic environment, the negative control data measures the cell

index in the whole process without no testing substances. To model the negative
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control curve, we use the famous logistic model.

dn(t)

dt
= βn(t)(1− n(t)

K
) (2.1)

symbol definition

n(t) cell index at time t

β cell growth rate

K capacity volume

Table 2.1: Parameters for model (2.1)

For a toxic environment, we suppose the death rate of the cell is linearly depen-

dent on the concentration of internal toxicants CI(t) with coefficient α > 0. Since

only small-molecular compounds are tested in our experiments, carrier-mediated

transportation is ignored, and linear kinetic is only considered. It is assumed that

the change rate of the amount of toxicant in the environment as the sum of the input

rates and losses from the environment[1]. Consider following model:

dn(t)

dt
= βn(t)(1− n(t)

K
)−αCI(t)n(t)

dCI(t)

dt
= λ 2

1 CE(t)−η2
1CI(t) (2.2)

dCE(t)

dt
= λ 2

2 CI(t)n(t)−η2
2CE(t)n(t)

where CI(t) and CE(t) denote the intracellular and the extracellular concentrations

of toxicant at time t, respectively.
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symbol definition

α coefficient of toxicant on the cell’s growth

λ 2
1 the uptake rate of the toxicant from environment

λ 2
2 the toxicant uptake rate from cells

η2
1 the toxicant input rate to the environment

η2
2 the losses rate of toxicant absorbed by cells

Table 2.2: Parameters for model (2.2)

2.2 Parameter Estimation

Parameter estimation plays an essential role for model validation and implementa-

tion. To use the model (2.2), we need to determine the parameters in the model

first. The parameter set Θ = {β ,K,α,λ1,λ2,η1,η2} is estimated using the infor-

mation from the real experimental data. We use two different methods to perform

parameter estimation: Nonlinear Least Square(NLS) method and Expectation Max-

imization(EM) algorithm with the Unscented Filter(UF).

2.2.1 Nonlinear Least Square Method

A Nonlinear Least Square method is first employed to find β and K with negative

control data (no toxicity) based on the analytic solution of logistic model. We do

this by fitting the model with real experiemntal data from 20 to 90 hours using R

programming. From the figure below we can see that the curve shows the logistic

solution while the dots are experimental data.
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vk and wk are Gaussian white noise vectors, vk ∼ N(0;Q) and wk ∼ N(0;R) with

The 3×3 diagonal covariance matrix Q, the variance R > 0.

2.2.3 The Unscented Filter and Expectation Maximization algo-

rithm

We use the Expectation Maximization algorithm based on the Unscented Filter to

estimate the rest of the parameters{α,λ1,λ2,η1,η2}. Julier and Uhlmann intro-

duced the Unscented Filter for non-linear state-space models in [5]. Eight diluted

concentrations of the compound are used (largest 8 of 11 values of initial concen-

trations).

For the state-spaced model, we define

filtered values:xi = E[xi|y1, · · · ,yi]

predicted values:x̂i+1 = E[xi+1|y1, · · · ,yi]

So we have the conditional covariances:

Pi = E[(xi − xi)(xi − xi)
T |y1, · · · ,yi]

P̂i+1 = E
[
(xi+1 − x̂i+1)(xi+1 − x̂i+1)

T |y1, · · · ,yi

]
.

And smoothed values

xi|N = E[xi|y1, · · · ,yN ]

Pi|N = E[(xi − xN
i )(xi − xN

i )
T |y1, · · · ,yN ]
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Then, based on the state-space system, we define

f (x) = x+h









βxk[1](1− xk[1]
K

)−αxk[2]xk[1]

λ 2
1 xk[3]−η2

1 xk[2]

xk[1](λ
2
2 xk[2]−η2

2 xk[3])









, x ∈ R3 (2.5)

xk+1 = f (xk)+
∂ f

∂x
(xk)(xk − xk)+ vk+1 (2.6)

yk =Cxk +wk (2.7)

Where x1[1] = n(0), the initial cell numbers, x1[2] =CI(0) = 0 and x1[3] =CE(0),

the initial concentration of chemical compound. Then we have

Pxkxk+1
= E[(xk − xk)(xk+1 − x̂k+1)

T |x1, · · · ,xk] = Pk

∂ f T

∂x
(xk) (2.8)

We can use the Unscented Filter algorithm [5] to compute xk+1,Pk+1, x̂k+1, P̂k+1 and Pxkxk+1
.

Jk = Pxkxk+1
P̂−1

k+1

xk−1|N = xk−1 + Jk−1(xk|N − x̂k) (2.9)

Pk−1|N = Pk−1 + Jk−1(Pk|N − P̂k)J
T
k−1

The smoothed values can be computed using 2.9 starting with k = N.

The EM algorithm: The EM algorithm is an iterative method for estimating

parameters of linear models. The iteration is combined by an expectation step,

which creates a function for the expectation of the log-likelihood evaluated using

the current estimate for the parameters, and a maximization step, which computes
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parameters maximizing the expected log-likelihood found on the E step[11]. Since

our system is non-linear, we approximate the likelihood based on the linearization,

and the UF is used for filtering and smoothing. We start with an initial guess θ0 and

get the estimation θ ∗ by iterations, the following implementation regards (2.3) are

from [1].

1.The expectation-step:

Q(θ |θn) = E[log p(θ |Yaug)|Yobs,θn]

2.The Maximization-step :

θn+1 = arg max
θ

Q(θ |θn) :

3.The complete log-likelihood:

log(L) = logP(x1, · · · ,xN ,y1, · · · ,yN)

= logP(yN |yN−1, · · · ,y1,xN , · · · ,x1)+ · · ·+ logP(y1|xN , · · · ,x1)

+ logP(xN |xN−1, · · · ,x1)+ · · ·+ logP(x1)

Process for the EM algorithm

• Initialize the model parameters Θ = {Q,R,α,λ1,λ2,η1,η2}

• Repeat the following two steps until convergence:

– For k = 1, · · · ,N, compute xk+1,Pk+1, x̂k+1, P̂k+1 and Pxkxk+1
; For k =

N, · · · ,1 Calculate the smoothed values xk|N , and Pk|N using (2.9).

– Get new values of the parameters Θ to maximize the E step.

12













Chapter 3

Convergence Analysis

In this chapter, a stochastic model is derived starting from the deterministic model

(2.2). To solve the system numerically, we consider multiple dimensional Taylor

Expansions. After that, the convergent conditions for numerical schemes are ex-

plored.

3.1 Stochastic Model

A global parameter sensitivity analysis in [1] shows that the parameters K and β are

the most sensitive parameters of the model. We consider parameters β and γ = β
K

.

In practice we usually estimate a parameter by an average value plus an error term.

So the parameters β and γ are replaced by random variables :

β̃ = β + error1

γ̃ = γ + error2

18



By the central limit theorem, the error terms may be approximated by a normal

distribution with zero mean.The deterministic model is now replaced by a system

of stochastic differential equations:

dn(t) = n(t)(β − γn(t)−αCI(t))dt +σ1n(t)dB1(t)−σ2n2(t)dB2(t)

dCI(t) = (λ 2
1 CE(t)−η2

1CI(t))dt (3.1)

dCE(t) = (λ 2
2 CI(t)n(t)−η2

2CE(t)n(t))dt

where σi, i = 1,2 are noise intensities and Bi(t), i = 1,2 are independent standard

Brownian motions.

We can express the model (3.1) as

dXt = f (Xt)dt +









∑
2
j=1 σ j(Xt)dB j(t)

0

0









(3.2)

where Xt is a three-dimensional variable

Xt =









nt

CIt

CEt









and the drift part is

f (Xt) =









nt(β − γnt −αCIt)

λ 2
1 CEt −η2

1CIt

(λ 2
2 CIt −η2

2CEt)nt








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The diffusion term has two components: a linear part σ1n(t)dB1(t) and a non-

linear part σ2n2(t)dB2(t).

3.2 Stochastic Taylor Expansion

In this section, the multi-dimension of Ito-Taylor expansion and the multi-dimension

of Stratonovich-Taylor expansion are presented. Two explicit numerical schemes,

Euler scheme and Milstein scheme are derived according to the expansions.

3.2.1 Multi-Dimensional Ito-Taylor Expansion

Suppose we have stochastic differential equation [20]:

dXk
t = fk(Xt)dt +

n

∑
j=1

σk j(Xt)dB
j
t (k = 1,2, · · ·d) (3.3)

and the corresponding Ito processes:

Xk
t = Xk

t0
+

∫ t

t0

fk(Xs)ds+
n

∑
j=1

∫ t

t0

σk j(Xs)dB j
s

Using Ito’s Lemma we get

Xk
t = Xk

t0
+

∫ t

t0

( fk(Xt0)+
∫ s

t0

L0 fk(Xτ)dτ +
n

∑
j=1

∫ s

t0

L j fk(Xτ)dB
j
τ)ds

+
n

∑
j=1

∫ t

t0

(σk j(Xt0)+
∫ s

t0

L0σk j(Xτ)dτ +
n

∑
j=1

∫ s

t0

L jσk j(Xτ)dBl
τ)dB j

s

20



where the linear operators L0 and L j are defined by

L0 :=
∂

∂ t
+

d

∑
k=1

fk

∂

∂xk

+
1

2

d

∑
k,m=1

n

∑
j=1

σk jσm j
∂ 2

∂xk∂xm

L j :=
d

∑
k=1

σk j

∂

∂xk
( j = 1,2, · · · ,n)

From the formulas above we can derive the Ito-Taylor expansion for our system,

where we have

f1 = n(t)(β − γn(t)−αCI(t))

f2 = λ 2
1 CE(t)−η2

1CI(t)

f3 = λ 2
2 CI(t)n(t)−η2

2CE(t)n(t)

σ11 = σ1n(t)

σ12 =−σ2n2(t)

σ21 = σ22 = σ31 = σ32 = 0

L0 f1 = f1
∂ f1

∂n
+ f2

∂ f1

∂CI
+

1

2
(σ2

11

∂ f 2
1

∂ 2n
+σ2

12

∂ f 2
1

∂ 2n
)

= f1(β −2γn(t)−αCI(t))− f2αn(t)−2γ((σ1n(t))2 +(σ2n(t)2)2)

L0 f2 = λ 2
1 f3 −η2

1 f2

L0 f3 = f1(λ
2
2 CI(t)−η2

2CE(t))+λ 2
2 n(t) f2 −η2

2 n(t) f3

L1 f1 = σ1n(t)(β −2γn(t)−αCI(t))

L1 f2 = L2 f2 = 0

L1 f3 = σ1n(t)(λ 2
2 CI(t)−η2

2CE(t))
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L2 f1 =−σ2n(t)2(β −2γn(t)−αCI(t))

L2 f3 =−σ2n(t)2(λ 2
2 CI(t)−η2

2CE(t))

L0σ11 = f1σ1

L1σ11 = σ2
1 n(t)

L2σ11 =−σ1σ2n(t)2

L0σ12 =−2 f1σ2n(t)−σ2(σ
2
1 +σ2

2 )

L1σ12 =−2σ1σ2n(t)2

L2σ12 = 2σ2
2 n(t)3

3.2.2 Multi-Dimensional Stratonovich-Taylor Expansion

The Stratonovich representation [20] of the stochastic differential equation (3.3) is

dXk
t = fk(Xt)dt +

n

∑
j=1

σk j(Xt)◦dB
j
t (k = 1,2, · · ·d) (3.4)

And

Xk
t = Xk

t0
+

∫ t

t0

fk(Xs)ds+
n

∑
j=1

∫ t

t0

σk j(Xs)◦dB j
s

fi = fi −
1

2

d

∑
k=1

n

∑
j=1

σk j(Xt)
∂σi j

∂xk
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From the Stratonovich form of Ito’s Lemma we get

Xk
t = Xk

t0
+

∫ t

t0

( fk(Xt0)+
∫ s

t0

L0 fk(Xτ)dτ +
n

∑
j=1

∫ s

t0

L j fk(Xτ)dB
j
τ)ds

+
n

∑
j=1

∫ t

t0

(σk j(Xt0)+
∫ s

t0

L0σk j(Xτ)dτ +
n

∑
l=1

∫ s

t0

Llσk j(Xτ)dBl
τ)dB j

s ,

where the linear operators L0 and L j are defined by

L0 :=
∂

∂ t
+

d

∑
k=1

fk

∂

∂xk

L j :=
d

∑
k=1

σk j

∂

∂xk
( j = 1,2, · · · ,n)

Using formulas above we can derive the Stratonovich-Taylor expansion for our sys-

tem.

f1(Xt) = f1 −
1

2
(σ11

∂σ11

∂n
+σ12

∂σ12

∂n
)

= f1 −
1

2
(σ2

1 n(t)+2σ2
2 n(t)3)

= n(t)(β − γn(t)−αCI(t)− 1

2
σ2

1 −σ2
2 n(t)2)

f2(Xt) = f2 = λ 2
1 CE(t)−η2

1CI(t)

f3(Xt) = f3 = λ 2
2 CI(t)n(t)−η2

2CE(t)n(t)

L0 f1 = f1
∂ f1

∂n
+ f2

∂ f1

∂CI
+ f3

∂ f1

∂CE

= f1(β −2γn(t)−αC0(t)−
1

2
σ2

1 −3σ2
2 n(t)2)− f2αn(t)

L0 f2 =− f2η2
1 + f3λ 2

1

L0 f3 = f1(λ
2
2 CI(t)−η2

2CE(t))+ f2λ 2
2 n(t)− f3η2

2 n(t)
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L1 f1 = σ11
∂ f1

∂n
= σ1n(t)(β −2γn(t)−αCI(t)− 1

2
σ2

1 −3σ2
2 n(t)2)

L1 f2 = σ11
∂ f2

∂n
= 0

L1 f3 = σ11
∂ f3

∂n
= σ1n(t)(λ 2

2 CI(t)−η2
2CE(t))

L2 f1 = σ12
∂ f1

∂n
=−σ2n2(t)(β −2γn(t)−αCI(t)− 1

2
σ2

1 −3σ2
2 n(t)2)

L2 f2 = σ12
∂ f2

∂n
= 0

L2 f3 = σ12
∂ f3

∂n
=−σ2n2(t)(λ 2

2 CI(t)−η2
2CE(t))

L0σ11 = σ1 f1 = σ1n(t)(β − γn(t)−αCI(t)− 1

2
σ2

1 −σ2
2 n(t)2)

L0σ12 =−2σ2n(t) f1 =−2σ2n(t)(β − γn(t)−αCI(t)− 1

2
σ2

1 −σ2
2 n(t)2)

L1σ11 = σ11
∂σ11

∂n
= σ2

1 n(t) (3.5)

L1σ12 = σ11
∂σ12

∂n
=−2σ1σ2n(t)2 (3.6)

L2σ11 = σ12
∂σ11

∂n
=−σ1σ2n(t)2 (3.7)

L2σ12 = σ12
∂σ12

∂n
= 2σ2

2 n(t)3 (3.8)

3.2.3 Euler Method(order 0.5)

The k− th component of the Euler scheme is given by ([20], pp 341).

Y k
i+1 = Y k

i + f k
i ∆+

n

∑
j=1

σ k
j ∆B j (3.9)

for k = 1,2, · · · ,d where the drift and diffusion coefficients are d-dimensional vec-

tors, and
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∆B j = B
j
τi+1

−B
j
τi
= I( j) = J( j)

is the N(0;∆) distributed increment of the j− th component of the m-dimensional

standard Wiener process on [i, i+ 1], and B j1 and B j2 are independent for j1 6= j2.

Here I( j) denotes the multiple Ito integral while J( j) denotes the multiple Stratonovich

integral.

For our stochastic system we have,

ni+1 = ni +ni(β − γni −αCIi)∆t +σ1niI(1)−σ2n2
i I(2)

CIi+1 =CIi +(λ 2
1 CEi −η2

1CIi)∆t

CEi+1 =CEi +(λ 2
2 CIini −η2

2CEini)∆t

where I(1) and I(2) are independent Gaussian random variables I(1) ∼ N(0;∆), I(2) ∼

N(0;∆).

3.2.4 Milstein Method(order 1.0)

In the general multi-dimensional case with k = 1,2, · · · ,d the k− th component of

the Milstein scheme is given by ([20] pp 346)

Y k
i+1 = Y k

i + f k
i ∆+

n

∑
j=1

σ k
j ∆B j +

n

∑
j1, j2=1

L j1σ k
j2

J( j1, j2) (3.10)
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So the only difference compared to the Euler scheme is on the first equation of our

system, from (3.5)(3.6)(3.7)(3.8) and from [20] we obtain:

ni+1 = ni +ni(β − γni −αCIi −
1

2
σ2

1 −σ2
2 n2

i )∆t +σ1niI(1)−σ2n2
i I(2)+

L1h11J(11)+L1b12J(12)+L2b11J(21)+L2b12J(22)

J( j, j) =
1

2
(∆B j)2

J
p

( j1, j2)
= ∆(

1

2
ξ j1ξ j2 +

√
ρp(µ j1,pξ j2 −µ j2,pξ j1))+

∆

2π

p

∑
r=1

1

r
(ξ j1,r(

√
2ξ j2 +η j2,r)−

ξ j2,r(
√

2ξ j1 +η j1,r))

ρp =
1

12
− 1

2π2

p

∑
r=1

1

r2

J3
(12) = ∆(

1

2
ξ1ξ2 +

√
ρ3(µ(1,3)ξ2 −µ(2,3)ξ1))+

∆

2π

3

∑
r=1

1

r
(ξ(1,r)(

√
2ξ2 +η(2,r))−

ξ(2,r)(
√

2ξ1 +η(1,r)))

J3
(21) = ∆(

1

2
ξ1ξ2 +

√
ρ3(µ(2,3)ξ1 −µ(1,3)ξ2))+

∆

2π

3

∑
r=1

1

r
(ξ(2,r)(

√
2ξ1 +η(1,r))−

ξ(1,r)(
√

2ξ2 +η(2,r)))

J(1,1) =
1

2
(ξ1)

2h

J(2,2) =
1

2
(ξ2)

2h

ρ3 =
1

12
− 49

72π2

The rest of the scheme stays the same

CIi+1 =CIi +(λ 2
1 CEi −η2

1CIi)∆t

CEi+1 =CEi +(λ 2
2 CIini −η2

2CEini)∆t
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3.3 Convergent Conditions

Before doing numerical analysis on our non-linear stochastic system, we need to

consider which numerical scheme should be used. Since different schemes have

various conditions for convergence, we need to make sure that our system satisfies

certain conditions. Besides, a good scheme should also be efficient and accurate.

Form SDE (3.1), we have

f (X) =








nβ − γn2 −αnCI

λ 2
1 CE −η2

1CI

λ 2
2 CIn−η2

2CEn








f (X1)− f (X2) =








(n1 −n2)β − γ(n2
1 −n2

2)−α(n1CI1 −n2CI2)

λ 2
1 (CE1 −CE2)−η2

1 (CI1 −CI2)

λ 2
2 (CI1n1 −CI2n2)−η2

2 (CE1n1 −CE2n2)








| f (X1)− f (X2)|2 = (n1 −n2)
2β 2 + γ2(n1 +n2)

2(n1 −n2)
2 +α2(n1CI1 −n2CI2)

2

−2γβ (n1 +n2)(n1 −n2)
2 −2αβ (n1CI1 −n2CI2)(n1 −n2)

+2γα(n1CI1 −n2CI2)(n1 +n2)(n1 −n2)

+λ 4
1 (CE1 −CE2)

2 +η4
1 (CI1 −CI2)

2 −2λ 2
1 η2

1 (CE1 −CE2)(CI1 −CI2)

+λ 4
2 (CI1n1 −CI2n2)

2 +η4
2 (CE1n1 −CE2n2)

2

−2λ 2
2 η2

2 (CI1n1 −CI2n2)(CE1n1 −CE2n2)

Since we can not garantee n(t) will be bounded the whole time, we need to relax

the global Lipschitz condition for f (X).
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We want to explore a numerical scheme which relaxes the globally Lipschitz con-

dition for the coefficient fuction. In [22], it is shown that methods with global

Lipschitz condition can also work well with nonglobally Lipschitz coefficients if a

small number of bad-behavior trajectories are discarded. Higham and Mao prove in

[23] that the Euler scheme is convergent if the SDE is locally Lipschitz and the p-th

moments of the exact and numerical solution are bounded. In [24] it is proven that

if with the assumptions of the coefficients are one-sided Lipschitz and the moments

of Xk are bounded and the scheme is convergent with order q in the global Lipschitz

case then the scheme has the same convergence order q in the considered nonglobal

Lipschitz case. In [24], the boundedness of moments for a balanced method is

proved. But in general, the boundness on moments of a method Xk is often rather

difficult to prove. For Implicit scheme, Mao and Szpruch show in [27] that under a

dissipative condition on the drift coefficient and superlinear growth condition on the

diffusion coefficient the Backward Euler-Maruyama scheme converges with strong

order of 1
2
. The paper [25] proves that for a large class of SDEs with non-globally

Lipschitz continuous coefficients, the Euler scheme converges neither in the strong

mean-square sense nor in the numerically weak sense to the exact solution at a

finite time point. In [25] Martin Hutzenthaler proposes a “tamed” version of the ex-

plicit Euler scheme. The article shows that tamed Euler scheme converges strongly

with convergence order 1
2

to the exact solution of the SDE with the drift coefficient

function being globally one-sided Lipschitz continuous and at most polynomially

growing derivative. Also, the diffusion coefficient should be globally Lipschitz con-

tinuous [25]. Sotirios Sabanis explores the tamed Euler scheme further in [29].
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3.4 The Tamed Euler Scheme

In [25], the tamed Euler scheme is presented, and it is shown that it converges

strongly with the standard convergence order 1
2

to the exact solution of the SDE:

dXt = f (Xt)dt +σ(Xt)dBt (3.11)

The tamed Euler scheme

Xt+1 = Xt +
T/N · f (Xt)

1+‖T/N · f (Xt)‖
+σ(Xt)(B(t+1)·T/N −Bt·T/N) (3.12)

Convergent Conditions:

• f (X) : Rd → Rd be a continuously differentiable and globally one-sided Lip-

schitz continuous function whose derivative grows at most polynomially. i.e.

L,c ∈ (0,∞), for all X ,Y ∈ Rd

〈X −Y, f (X)− f (Y )〉 ≤ L|X −Y |2 (3.13)

| f ′(X)| ≤ c(1+ |X |c) (3.14)

• σ(X) be a globally Lipschitz continuous function.

For our model (3.2), notice that the tamed Euler scheme requires the diffusion

term σ1n(t)dB1(t)−σ2n2(t)dB2(t) to be globally Lipschitz continuous. This con-

dition can be satisfied only when σ2 = 0.
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3.5 The Implicit Euler method

The primary object of this section is to present the implicit Euler scheme and prove

its convergence. The implicit Euler scheme is:

Xt+1 = Xt + f (Xt+1) ·T/N +σ(Xt)(B(t+1)·T/N −Bt·T/N) (3.15)

We apply the implicit Euler scheme 3.15 to our system








nt+1

CIt+1

CEt+1








=








nt

CIt

CEt







+h








nt+1β − γn2
t+1 −αnt+1CIt+1

λ 2
1 CEt+1 −η2

1CIt+1

λ 2
2 CIt+1nt+1 −η2

2CEt+1nt+1







+








σ1nt∆Bt −σ2nt∆Bt

0

0















nt+1

CIt+1

CEt+1







−h








nt+1β − γn2
t+1 −αnt+1CIt+1

λ 2
1 CEt+1 −η2

1CIt+1

λ 2
2 CIt+1nt+1 −η2

2CEt+1nt+1








=








nt

CIt

CEt







+








σ1nt∆Bt −σ2nt∆Bt

0

0








To make the equations easier to read, we denote variables a = nt ,b = CIt ,c =

CEt ,x = nt+1,y = CIt+1,z = CEt+1,B = σ1nt∆Bt −σ2n2
t ∆Bt . The new system is

presented below








x

y

z








−h








x(β − γx−αy)

λ 2
1 z−η2

1 y

x(λ 2
2 y−η2

2 z)








=








a

b

c








+








B

0

0







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3.5.1 Proof of Convergence

For the convergence of the implicit Euler method, we assume that nt ≥ 0 for all

t ≥ 0 and we make the following assumption:

Assumption 1. Suppose δ = η2
1 η2

2 −λ 2
1 λ 2

2 > 0 and η2
1 > λ 2

1 ,η
2
2 > λ 2

2 in (3.1).

Lemma 3.5.1. For the implicit Euler method (3.16), we have

i. 0 ≤CIt ≤CE0 and 0 ≤CEt ≤CE0 for all t ≥ 0.

ii. η2
2CEt > λ 2

2 CIt .

iii. If nt1 > nt2 , then CIt1 <CIt2 , CEt1 <CEt2 , nt1CIt1 > nt2CIt2 .

Proof. i. By induction we assume that 0 ≤ b =CIt ≤CE0 and 0 ≤ c =CEt ≤CE0.

From (3.17) and (3.18), with the Assumption1, since x = nt+1 ≥ 0,

0 ≤CIt+1 = y =
b+ cλ 2

1 h+bη2
2 hx

1+hη2
1 +η2

2 hx+δh2x
< max(b,c)

0 ≤CEt+1 = z =
c+ cη2

1 h+bλ 2
2 hx

1+hη2
1 +η2

2 hx+δh2x
< max(b,c)

So 0 ≤CI ≤CE0 and 0 ≤CE ≤CE0 if η2
1 > λ 2

1 ,η
2
2 > λ 2

2 . That proves 1.

ii. This part is proved by induction:

Step 1: For the initial concentration CE0 6= 0 and CI0 = 0, it is true that η2
2CE0 >

λ 2
2 CI0.

Step 2: Suppose it is true for the k− th component b and c so that η2
2 c > λ 2

2 b.
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Step 3: For the k+1− th component

CIk+1 =
b+ cλ 2

1 h+bη2
2 hx

1+hη2
1 +η2

2 hx+δh2x

CEk+1 =
c+ cη2

1 h+bλ 2
2 hx

1+hη2
1 +η2

2 hx+δh2x

λ 2
2 CIk+1 =

λ 2
2 b+ cλ 2

1 λ 2
2 h+bλ 2

2 η2
2 hx

1+hη2
1 +η2

2 hx+δh2x

η2
2CEk+1 =

η2
2 c+ cη2

1 η2
2 h+bλ 2

2 η2
2 hx

1+hη2
1 +η2

2 hx+δh2x

So η2
2CEt > λ 2

2 CIt is true by induction.

iii. Calculate the derivatives of CI and CE using (3.17) and (3.18) with respect to x

CI =
b+ cλ 2

1 h+bη2
2 hx

1+hη2
1 +η2

2 hx+δh2x

∂CI

∂x
=

bη2
2 h(1+hη2

1 +η2
2 hx+δh2x)− (η2

2 h+δh2)(b+ cλ 2
1 h+bη2

2 hx)

(1+hη2
1 +η2

2 hx+δh2x)2

=
bh2λ 2

1 λ 2
2 − ch2λ 2

1 η2
2 − cδh3λ 2

1

(1+hη2
1 +η2

2 hx+δh2x)2
< 0 by (2)

CE =
c+ cη2

1 h+bλ 2
2 hx

1+hη2
1 +η2

2 hx+δh2x

∂CE

∂x
=

bλ 2
2 h(1+hη2

1 +η2
2 hx+δh2x)− (η2

2 h+δh2)(c+ cη2
1 h+bλ 2

2 hx)

(1+hη2
1 +η2

2 hx+δh2x)2

=
bhλ 2

2 − chη2
2 +bh2λ 2

2 η2
1 − ch2η2

2 η2
1 − ch2δ − cδh3η2

1

(1+hη2
1 +η2

2 hx+δh2x)2
< 0 by (2)

nCI =
bx+ cxλ 2

1 h+bx2η2
2 h

1+hη2
1 +η2

2 hx+δh2x

∂nCI

∂x
=

(b+ cλ 2
1 h+2bxη2

2 h)(1+hη2
1 +η2

2 hx+δh2x)− (η2
2 h+δh2)(bx+ cxλ 2

1 h+bx2η2
2 h)

(1+hη2
1 +η2

2 hx+δh2x)2
> 0
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So If nt1 > nt2 , then CIt1 <CIt2 ,CEt1 <CEt2 and nt1CIt1 > nt2CIt2 .

Convergent Conditions:

From [28] we know the convergent conditions for the implicit Euler (3.15)

1 Coefficients f (Xt) and σ(Xt) are locally Lipschitz continuous.

2 For some ρ ≥ 1, and r ∈N, r ≥ 1, there exist positive constants α0,α1,β ,β0,β1 >

0, such that for all Xt ∈ Rn

−β1|Xt |r+1 −β0 ≤ 〈Xt , f (Xt)〉 ≤ α0 −α1|Xt |r+1 (3.19)

σ(Xt)≤ β (1+ |Xt |ρ) (3.20)

3 (3.19)(3.20) must obey r+1 > 2ρ .

4 There exists a constant L > 0, such that

〈X −Y, f (X)− f (Y )〉 ≤ L|X −Y |2 (3.21)

5 The coefficients of Equation 3.15 satisfy the polynomial growth condition,

there exist positive constants H and h, h ≥ 1, such that

| f (Xt)|∨ |σ(Xt)| ≤ H(1+ |Xt |h),∀Xt ∈ Rn

Condition 1, 5 are fullfilled so we start by proving condition 2 and 3 first then

condition 4. Note that we only focus on the linear diffusion term here.
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Proof.

f (Xt) =









n(β − γn−αCI)

λ 2
1 CE −η2

1CI

(λ 2
2 CI −η2

2CE)n









Xt =









n

CI

CE









σ(Xt) = σ1n

To fullfill (3.20), ρ ≥ 1, we choose ρ = 1, from condition 3, r > 1, we choose r = 2.

From (3.19) we need to find positive constants α0,α1,β0,β1 so that

−β1|Xt |3 −β0 ≤ 〈Xt , f (Xt)〉 ≤ α0 −α1|Xt |3

We start with the right half 〈Xt , f (Xt)〉 ≤ α0 −α1|Xt |3. From preliminary results 1

we know that CEt ,CIt are positive and upper bounded by CE0. nt is also positive

but we don’t know if it is bounded.

〈Xt , f (Xt)〉= n2(β − γn−αCI)+λ 2
1 CI ·CE −η2

1CI2 +(λ 2
2 CI ·CE −η2

2CE2)n

=−γn3 +(β −αCI)n2 +(λ 2
2 CI ·CE −η2

2CE2)n+λ 2
1 CI ·CE −η2

1CI2

≤−γn3 +(β −αCI)n2 +λ 2
2 CI ·CE ·n+λ 2

1 CI ·CE

≤−γn3 +βn2 +λ 2
2 CE2

0 ·n+λ 2
1 CE2

0

So we transfer the problem into proving

−γn3 +βn2 +λ 2
2 CE2

0 ·n+λ 2
1 CE2

0 ≤ α0 −α1|Xt |3 (3.22)
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Since

|Xt |3 = (n2 +CE2 +CI2)
√

n2 +CE2 +CI2

≤ (n2 +CE2 +CI2)
√

n2 +2CE2
0

≤ (n2 +CE2 +CI2)(n+
√

2CE0)

= n3 +
√

2CE0n2 +(CE2 +CI2)n+
√

2CE0(CE2 +CI2)

≤ n3 +
√

2CE0n2 +2CE2
0 n+2

√
2CE3

0

So (3.22) becomes

− γn3 +βn2 +λ 2
2 CE2

0 ·n+λ 2
1 CE2

0 ≤ α0 −α1(n
3 +

√
2CE0n2 +2CE2

0 n+2
√

2CE3
0)

0 ≤ α0 +(γ −α1)n
3 − (α1

√
2CE0 +β )n2 − (2α1CE2

0 +λ 2
2 CE2

0)n−2
√

2α1CE3
0 −λ 2

1 CE2
0

︸ ︷︷ ︸

PolonomialFunction

(3.23)

If γ > α1, we can find the mimimum of the polonomial function for n ≥ 0, so the

value of α0 can be determined such that (3.23) holds.

We focus on the left half of (3.19)

−β1|Xt |3 −β0 ≤ 〈Xt , f (Xt)〉

〈Xt , f (Xt)〉= n2(β − γn−αCI)+λ 2
1 CI ·CE −η2

1CI2 +(λ 2
2 CI ·CE −η2

2CE2)n

=−γn3 +(β −αCI)n2 +(λ 2
2 CI ·CE −η2

2CE2)n+λ 2
1 CI ·CE −η2

1CI2

≥−γn3 −αCIn2 −η2
2CE2n−η2

1CI2

≥−γn3 −αCIn2 −η2
2CE2

0 n−η2
1CI2

≥−γn3 −αCE0n2 −η2
2CE2

0 n−η2
1CE2

0
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|Xt |3 = (n2 +CE2 +CI2)
√

n2 +CE2 +CI2

≥ (n2 +CE2 +CI2)n

≥ n3

We want to prove that

−β1n3 −β0 ≤−γn3 −αCE0n2 −η2
2CE2

0 n−η2
1CE2

0

−(β1 − γ)n3 +αCE0n2 +η2
2CE2

0 n+η2
1CE2

0
︸ ︷︷ ︸

PolonomialFunction

−β0 ≤ 0 (3.24)

So if we choose β1 > γ , we can find the maximum of the polonomial function for

n ≥ 0 and the value of β0 can be determined such the inequality (3.24) holds thus

the convergent conditions 2 and 3 are fullfilled.

We prove the one sided Lipschitz condition (3.21)

〈X −Y, f (X)− f (Y )〉 ≤ L|X −Y |2

Let

X =









n1

CI1

CE1









Y =









n2

CI2

CE2









f (X) =









n1(β − γn1 −αCI1)

λ 2
1 CE1 −η2

1CI1

(λ 2
2 CI1 −η2

2CE1)n1








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f (Y ) =









n2(β − γn2 −αCI2)

λ 2
1 CE2 −η2

1CI2

(λ 2
2 CI2 −η2

2CE2)n2









f (X)− f (Y ) =









(n1 −n2)β − γ(n2
1 −n2

2)−α(n1CI1 −n2CI2)

λ 2
1 (CE1 −CE2)−η2

1 (CI1 −CI2)

λ 2
2 (CI1n1 −CI2n2)−η2

2 (CE1n1 −CE2n2)









According to Condition (3.21)

〈X −Y, f (X)− f (Y )〉= (n1 −n2)
2β − γ(n1 +n2)(n1 −n2)

2 (3.25)

−α(n1CI1 −n2CI2)(n1 −n2) (3.26)

+λ 2
1 (CE1 −CE2)(CI1 −CI2) (3.27)

−η2
1 (CI1 −CI2)

2 (3.28)

+λ 2
2 (CI1n1 −CI2n2)(CE1 −CE2) (3.29)

−η2
2 (CE1n1 −CE2n2)(CE1 −CE2) (3.30)

|X −Y |2 = (n1 −n2)
2 +(CI1 −CI2)

2 +(CE1 −CE2)
2

Consider (3.25) first, so L ≥ β .

Then we deal with 3.27.

λ 2
1 (CE1 −CE2)(CI1 −CI2)≤ λ 2

1 (|CE1 −CE2|2 + |CI1 −CI2|2)

so we choose L ≥ λ 2
1 .
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We only need to consider (3.26)(3.29)(3.30). If we assume Lemma 3.5.1 (iii)

hold, n1 > n2 so CI1 <CI2,CE1 <CE2,n1CI1 > n2CI2.

Since

−α (n1CI1 −n2CI2)
︸ ︷︷ ︸

>0

(n1 −n2)
︸ ︷︷ ︸

>0

< 0

λ 2
2 (CI1n1 −CI2n2)
︸ ︷︷ ︸

>0

(CE1 −CE2)
︸ ︷︷ ︸

<0

< 0

only −η2
2 (CE1n1 −CE2n2)(CE1 −CE2) can be positive.

Since CE1 <CE2, consider (CE1n1 −CE2n2)> 0, so n1
n2

> CE2
CE1

> 1.

(CE1n1 −CE2n2)
2 =CE2

1 n2
1 +CE2

2 n2
2 −2n1n2CE1CE2

=CE2
1(n1 −n2)

2 +(CE2
2 −CE2

1)n
2
2 +2n1n2(CE2

1 −CE1CE2)

Since 1 < (CE1+CE2)
2CE1

< CE2
CE1

< n1
n2

, so (CE2
2 −CE2

1)n
2
2 + 2n1n2(CE2

1 −CE1CE2) <

0,(CE1n1 −CE2n2)
2 <CE2

1(n1 −n2)
2.

−η2
2 (CE1n1 −CE2n2)(CE1 −CE2)

≤ η2
2 [(CE1n1 −CE2n2)

2 +(CE1 −CE2)
2]

≤ η2
2 [CE2

1(n1 −n2)
2 +(CE1 −CE2)

2]

≤ η2
2 [CE0(n1 −n2)

2 +(CE1 −CE2)
2]

so we choose L ≥ η2
2 max(CE0,1). The function f (x) is one-sided Lispchitz con-

tinuous.
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Chapter 4

Numerical Result

In this chapter, we compare results obtained with various numerical schemes. Monte

Carlo simulations are performed to determine the threshold of which cells go from

surviving to extinction depending on values of the initial concentrations of the

chemical compounds.

4.1 Comparison of Numerical Schemes

Euler and implicit Euler

Figs 4.1 and 4.2 illustrate the results obtained with the Euler scheme and implicit

Euler scheme. Fig 4.1 shows that both schemes converge with a step size of 0.001.

Fig 4.2 indicates that with the same level of noise, but a larger step size, the Euler

scheme results in negative values, which is impossible since the y-axis stands for

the cell number. For this reason, the Euler should not be used, unless we choose a

very small time step.

Tamed Euler and implicit Euler
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range of the changing point of the initial concentration.

Result: Narrow the range of the threshold within a limit r = 10−3.

Initials: range [a0,b0].

while |bt −at |> r do

Test nt when CE0 =
bt+at

2

if nt → 0 then

at+1 = at ;bt+1 =
bt+at

2

else

at+1 =
bt+at

2
;bt+1 = bt

end

end

Algorithm 1: Bisection algorithm

Case studies are presented in Fig 4.5 with step size h = 0.001. It shows from the

graphs that Euler scheme, tamed Euler scheme and implicit Euler scheme converge

with step size 0.001. Because it is faster, we choose Euler scheme with step size

0.001 for simulations and plot the histogram after 1000 simulations. The red line in

each histogram represents the threshold for each chemical compound in the deter-

ministic case, C = 86 for BafilomycinA1, C = 129 for CRT0044876 and C = 160

for Dimethylenenastrone.

Compound and Noise Cluster σ1 = 0.1 σ1 = 0.2 σ1 = 0.3 σ1 = 0.4 σ2 = 0.05 σ2 = 0.1 σ2 = 0.2 σ2 = 0.3

BafilomycinA1 2 83.9354 79.3604 69.9481 32.1170

68.9428 63.9447 55.3176 48.8668

CRT0044876 1 122.1212 113.2431 86.0886 42.4520

114.8955 104.4070 80.5948 60.3685

Dimethylenenastrone 10 155.8048 121.1223 68.9385 55.1117

157.6048 152.5725 148.4866 143.1971

Table 4.1: Average of thresholds
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Chapter 5

Conclusion and Discussion

We study the effects of parameters uncertainty for toxicity assessment and con-

sider a mathematical model which represents our system with stochastic differential

equations. We solve this system numerically and run Monte Carlo simulations to

find the distributions of the threshold values of initial concentration of the chemical

compounds are to which the cells become extinct. Since the drift coefficient is not

a globally Lipschitz function, we explore the convergence of several finite differ-

ence schemes for stochastic differential equations: the explicit and implicit Euler

schemes and the tamed Euler scheme.

We choose three chemical compounds, CRT0044876 from cluster 1, BafilomycinA1

from cluster 2 and Dimethylenenastrone from cluster 10, to perform Monte Carlo

simulations and show the result in Table 4.1. Each chemical compound is simulated

with σ1 6= 0 and σ2 6= 0. From the histograms of the thresholds, we conclude that

all cells tend to go to extinction if noises σ1 or σ2 is large enough. As a result,

the threshold values for the initial concentration CE(0) shift to the left when noise

intensities increase. In other words, when planning the in vitro experiments, a con-
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servative estimation for the threshold should be used.

In the future, we would like to focus on the following aspects of our project:

• In our numerical result, we know that the Euler scheme is convergent with

small step sizes. We want to find a condition for the convergence of Euler

scheme for our model.

• All schemes we have explored till now are for the linear diffusion term, which

is a limitation of our model. We need to consider a better method which can

be used with non-linear diffusion term.

• The effects of the non-linear term is complex and it requires further study. In

the future, we will explore the impact that the non-linear diffusion terms have

on the stochastic model.
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