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ABSTRACT

The thesis dJocuments an investigation aimed at
determining a suitable basis for interactive graphics
support software, The functional similarities of
interactive graphical display programs have been
considered. Based on these points of similarity, a design

is presented for a stratified set of support software.

As a first step in the development of interactive
graphics software, the author believes that a low level data
structure system must be provided. The ALAS system is
Froposed to satisfy this need. The second step is the
creation of a graphical interface. The design of the PRIG
system is presented as an example of a graphical interface
which makes use of the structure handling capabilities of
ALAS, A possible extension of the ALAS/PRIG systenm is
explored to illustrate one feasible path for the development

of higher levels of support.

The most important step in the evolution of interactive
graphics software is seen to be the development of low level
software as a foundation upon which an entire family of
support may be built. The author believes that a data
structure system such as ALAS would provide a basis which is
much superior to that provided by a standard assembly

language.
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CHAPTER I

INTRODUCTION

The view is fairly well accepted that, despite its in-
itial prcmise, interactive graphics has been less than spec~
tacularly successful. The major obstacle to the wider use
of interactive graphics is the inadeguacy of most existing
software support for programming any but the simpler apglic-
ations, 1In this thesis, the author investigates the func-
tional nature of interactive graphical display programs in
order to develop a tasis for support systems for such pro<
gramming. In developing an overall plan for graphics sup-
port, the author perceives a need for a low 1level data

structure systen.

Interactive graphical display programs have two

functional objectives in common:

a) to utilize effectively the graphical
capabilities of the terminal, and

b) to effect a man-machine synergism oriented to
the program's objectives.
There is obviously a functional similarity between such
programs; in particular, their operation appears similar to
that of an interpreter, a type of computer language
processor which accepts strings and translates and executes
them without generating intermediate object code, as is done

by a compiler. Both Johnson (1970) and Deecker (1970)



describe ‘console languages"* which are processed
interpretively by their programs. Also, the need for
effective inputy/output software for communicating with the
display is common. The use of a hierarchical structure to
represent a disrlayed picture holds much potential for
enhancing graphical input/output. This is particularly true
where displayed entities represent instances of other quite
different entities, that is, where an effort is made to
create graphical symbolic communication, such as in

Johnson's schematic display of a logic circuit.

In considering sugport for interactive graghics
programming the authcr projects the following four levels of
software:

a) Level 0 - this level is characterized by having
no particular graphics support. Most programming languages
exemplify this level.

b) Level 1 - this level 1is characterized by the
presence of a display terminal interface capability. An
example is GRIDSUB (Huen, 1970), which provides a block
structure technique for describing displays.

c) Level 2 - +this 1level is characterized by the
presence of an automated input analyzer in addition to level
1 sugport.

d) Level 3 - this level is characterized by the
presence of Level 2 software coupled to an automatic

semantics sequencer. Newman's system (Newman, 1968) is an



example of Level 3 software.

Examining the nature of such support has led to the
following conclusions:

a) support packages could be created which supply
all levels of support in an integrated fashion, a technigue
having the advantages cf compatibility of software Wwritten
at various levels, and

b) A comprehensive data structure facility at level
0 should be used as the basis for construction of other

supporte.

A number of data structure languages was investigated.
None were found which satisfied the author's requirement for
a wide range of capabilities coupled with a low level of
language. The author then designed ALAS (& List Assembler

Systen) .

Having designed what he regards as an effective level O
support vehicle, the author next considered a level 1
support systenr. The result is PRIG (Package for Remote
Interactive Graphics). Being low level, PRIG is designed
for a specific environment, the IBM 360/67 - CDC 160A GRID
configuration at the University of Alberta. However, it
entodies certain characteristics which the author considers
generally applicable in the area of level 1 support. One

principal characteristic is allowance for the hierarchical



structuring of pictures.

The development of higher levels of support requires
the investigation and development cf a systematic approach
to interactive graphical display programming. One such
approach is to consider an interactive graphical display
programming problem as a problea in language design and
implementation, This opens many avenues of exploration for
the support designer. The framework of support for programs
written in this way suggests the creation of an interpreter-
compiler as a level 3 support system. 1In view of some of
the programming techniques used for systeams at this level
(Newman, 1968) and possible fragments of systeas at this
level, such as analyzers (Cohen and Gotlieb, 1970) and
scanners, ALAS has a definite advantage as a level 0 support

systen.

ALAS represents, in the author's opinien, a significant
first step in the development of interactive graphics
support software. It is also intended to be usable more
generally as a 1lcw level data structure language. Its
facilities for string processing and linked list handling,
abetted by versatile dynamic storage allocation
capabilities, should provide an effective data structure

system.



CHAPTER II
INTERACTIVE GRAPHICAL DISPLAY PROGRAMS

AN INTRODUCTION

2.1 INTRODUCTION

To provide a basis for further discussion, this chapter
introduces a number of definitions and concepts. In
particular, a brief dJdiscussion introduces an overview of
interactive man-machine graphical communication, and the
nature of an interactive graphical display program is

explored.

2.2 GRAPHICAL CCMMUNICATION

As used within this thesis, the terna tgraphical
communication! implies the imparting, coanveying, or exchange
of ideas, knowledge, information, through the use of
diagrams, linear figures, or symbolic curves. Techniques
involving graphical communication are in evidence in many
fields of endeavor. Some media for graphical communication
are:

a) maps

b) mechanical drawvings
c) schematic drawings

d) performance graphs

e) paintings



Although this ccncept of graphical communication is
completely general, the author tends to direct this
discussion to the use of graphical communication as a tool

for the solution of technical problems.

Techniques c¢f graphical communication are more powerful
than techniques of string language ccmmpunication, in that
certain concepts may be more directly and conscisely
expressed. In many areas, graphical comsmunication is a more
natural mode of ccmpunication for a human than string
language, a fact torne out by the extensive use of graphical

communication,

For example, an electrical schematic diagram is more
concise and direct tham a written description of the sanme
circuit. The symkolic interconnections of components can be
easily recognized, and have a simple, direct association

with the physical circuit.

Because of its power, graphical compunication has been
extensively explored as a facet of the man-machine
interface. Many hardware devices, such as plotters,. CRT
terminals and picture encoders, and many software systems to
make use of them have been designed to provide graphical
communication between man and computer. Much has been
written on graphical communication, and scme of the more

significant software systems are listed below.



Sutherland's SKETCHPAD (Sutherland, 1963), one of the
first interactive systeams to use graphical communication,
provided for a limited degree of picture input, display and
manipulation. The facilities of SKETCHPAD were deemed (at
the time) most useful in the following areas:

a) “for stcring and updating drawings..."

b) "for gaining scientific or engineering
understanding cf operations that can be described
graphically..."

c) "as a topological input for circuit simulators,
etc."

d) "for highly repetetive drawings..."

Mezei's SPARTA (Mezei, 1968), a plotting package, was
designed to simplify the use of the computer as a drawing

device.

In “Graphical Commurication and Control Languages",
Roberts (1964) discusses the advancement of interactive
graphics beyonrd the picture manipulation stage. He
introduced such ccncepts as that "... the pictures are
really abstractions used as labels for the external eantities
S0 that it is fpossible to create, interconnect, and
rearrange the entities with a two-dimensional 1language
rather than the normal one-dimensional text stream". He

relates the concepts described to the current research



efforts at M.I.T., such as the development and use of CORAL

(N. R. Sutherland, 1966) .

Kulsrud (1968) discusses the requirements for a general
purpose graphic language and indicates some of the inherent
problens., He describes a system for constructing and
testing graphics languages, and presents a model language

which fulfills a large number of the requirements.

Newman (1968) describes a Ssystem which is oriented
about the interactive nature of a graphical display
program. The system allows the individual to describe a
program as a state diagram or network. The description may
then be encoded into a "Network Definition Language", which
can be processed tc form the desired graphical display

programe.

Thomas (1967) provides yet another system description,
based in part on the design philosophy represented in
SKETCHPAD., His GRASP systen provides the programmer-user
with the ability to create and manipulate drawings as well

as alphanumeric information.

Van Dam and Evans (1967) , in their paper "“A Compact
Data Structure for Storing, Retrieving and Manipulating Line
Drawings", descrite PENCIL, (Picture ENCodIng Language) , and

the data structures created by their system for drawings



represented in PENCIL.

Denil (1966) provides yet another language, DL1, which
uses an interactive graphical environment to provide a

facility for the design of three~dirensional structures.

Cameron, Ewing and Liveright (1967) describe "DIALOG, a
conversational system with a graphical orientation", which

is a system for on-line use of an algebraic language.

Corbin and Frank (1967) describe a system which is
oriented to on-line graphics (DOCUS). This system is a
programming environment, designed to provide for high level
language programming (FORTRAN, COBOL) and executive language
programming (either General Operating language or Procedure

Implementation Language).

This brief resume is far from exhaustive, but is
sufficient to illustrate that there have been a variety of

points of view on interactive graphical display programming.

As with many fields of computing, the terminology used
is in a state of confusion and definitions of basic ccncepts
have not yet been agreed upon. Therefore, a discussion of
facets of interactive graphical man-machine communication
software systerns is difficult, unless the working

definitions to be used are presented. In the next section,
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certain terms in ccmmon use are discusseqd.

2.3 INTERACTIVE GRAPHICAL DISPLAY PROGRAMS

As used within this thesis, the ternm "interactive
graphical display program" implies a program which makes use
of an interactive graphical man-machine interface to further
in some substantial manner the objective of the progranm.
The user of the program is involved in a contrcil loop with

the program, as shown in Figure 2.1.

Program User
Output Observation
Display

Computer User
Terminal

Program User
Input Actions

Figure 2.1 Man/machine Loop

One may think of interactive graphical display progranms
in a manner akin to the approach of Newman (1968), that is,
in terms of possible user actions and program reactions or
responses to such actions. The interaction allows the user
andsor the program to direct the course of the man-machine

systen.,

An example of such a program is CALD (Johnson, 1969),

which provides the user with an interactive logic «circuit
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design facility. The user can "construct" a logic circuit
design by drawing a 1logic circuit schematic on the
terminal. He may then specify input values for the circuit,
and have the ccmputer determine the circuit's output(s).

The user may edit the design and recheck it until the

circuit design is satisfactory.

CALT is a computer aided design system, whose operation
is as follows. The "construction" ¢f a logic circuit design
diagram on the display is reflected within the program by
the construction of a data structure "model" of the
circuit. Editing of the «circuit diagram is reflected as
editing of the model. Analysis of the circuit to determine
output(s) 1is performed by the program on the model. As in
most other programs for computer aided design, the
techniques for encoding the model in CALD were tailored to
the application irn crder to facilitate easy and rapid

analysis.

The distinction between interactive graphical display
brograms, such as CALD, and interactive graphical display

t systems such as PENCIL, Newman's system, and GRIDSUB

5

Suppo
(Huen, 1968), should be noted. The former are programs
designed for a particular area of application, while the
latter are designed to assist the creation of programs of

the former sort.
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While each interactive graphical display program has
individual characteristics peculiar to the problem it is
capable of solving, it is the author®s contention that a
functional division of such programs may be observed, and
that this division is common to most programs. This
contention is torne out by the design of some of the
software systems. Fcr example, Thomas (1967) distinguishes
four areas in GRASP:

a) The model, and routines tc handle the model.
The 'model' in GRASP 1is "“the internal or computer
representation of a draving".

b) The comnsole commands, and command processing
routines. With commands the user may request the
manipulation of graphical data, or call on the display and
system functions.

c) Display routines, which process the rodel
according to user determined parameters tO dJenerate a
display.

d) System service routines which aid in building or
changing the system, and in the <control of application
processing. Such facilities as saving and restoring part or
all of the model, printing out the model (for diagnostic
purposes) and initializing and starting application programs

are provided.

The idea that interactive graphical programs have

functional components in common will be developed further in



Chapter 3 to obtain insight into

graphical display support systems.

13

the implementation of
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CHAPTER III
INTERACTIVE GRAPHICAL DISPLAY PROGRAMS

FURTHER CONSIDERATIONS

3.1 INTIRODUCTION

In this chapter, the author describes concepts which
influence the structure of interactive graphical display
programs, to bring out what the author sees as the

fundamental nature of these programs.

3.2 CCNCEPIS

The following are characteristics of most interactive
graphical display programs:
a) Interactivity
b) Modelling

c) Graphical Communication

a) Interactivity
An interactive graphical display progran is one
which alternately accepts user input and reacts to it. The
user's input is based on his consideration of the state of
the progranm, and the interaction 1loop is therefore
complete: man acts on machine, machine acts on jtself,
change in machine state influences man, man acts on machine,

machine acts on jtself, and so on.
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b) Modelling

A computer model of some problem, object or system
is the computer representation of that problem, object or
system. A model consists of a data structure and associated
procedures for meaningfully handling the data structure.
Quite often the data structure is considered to be the
model, and the procedures a part of the environment. For
example, Johnson's CALD (Johnson, 1969) creates a model of a
logic circuit, a data structure formed in a way which
facilitates analysis of the circuit. Another example is the
simulation of a computer, which may be considered to be the

construction and use of a model of the computer.

The structure and significance of a computer model
depend upon the application for which the model is
intended. As an example of how one particular item may be
modelled in a number of ways, consider the following models
of a straight line displayed on a graphical display unit:

i) The line may indicate a ccnnection between two
objects. In this case, assuming the connected objects to be
described as blocks, the line may be represented by pointers
within the blocks. (Figure 3.1a)

ii) The 1line may indicate a connection between two
objects (such as a wire connecting two electrical elements)
and also represent the connecting medium., In this case, the
line may be represented as a block containing pointers to

the blocks representing the connected objects, which in turn
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contain rointers to the block Lepresenting the connecting
medium. (Figure 3.1b)

iii) The 1line may have only graphical significance
and may ke represented as a set of twvo coordinate pairs,
each coordinate pair specifying an end point of a line.

iv) The 1line may have significance only in that it
is part of another object. 1In this Case, there may be no
part of the nodel which directly represents the line.
However, as the object containing the line is modelled, the

lipne is implicitly modelled.

C) Graphical Interface
The form of graphical interface suitable to
interactive graphical display programs can be considered in
two rarts:
i) facilities for the specification and generation
of displays, and
ii) facilities for the deceding of input from the

terminal.

The facilities for coping with interactivity,
modelling, and graphical interface are the tools with which
the programmer may isplement an effective form of graphical

man-machine communication through the display terminal.
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(@) Line Represented by Pointers

Model

Line

Display

(b Line Represented by a Block

Figure 3.1 Two Models of a Line

Model
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3.3 CONCILUSICNS

Being interactive, graphical display programs act 1like
interpreters in that the prcgram interprets a ‘'language’
comprised of actions taken by the conscle operator. This
inspires some to approach interactive graphical display
programming as an exercise imn 1language definition and
interpreter construction. For example, Deecker's
implementation of the SIEVE process (Deecker, 1970) involved
the definition of a 'command language®, which is executed
interpretively. Another example is DL1 (Denil, 1966), which
specifies a language that allows the wuser to use the
computer as a three dimensional drafting machine. Such
languages are usually formed of 1linear strings of input
actions such as pressing alpha keys and light pen picks of

displayed entities.

The use c¢f models by interactive graphical display
programs is a logical outcome of attempting to use symkolic
graphical communication, that is, graphical communication in
which the displayed entities symbolize the system being
considered. For example, the pictorial representation of a
three dimensional tic-tac-toe cube on a CRT enables the user
to visualize the game. However, this representation is
symbolic, as a program to play tic-tac-toe would (in all
likelihood) wuse a computer model which is quite different

from the visual representation. The model would be designed
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to facilitate the program's pléy and analysis of the game,

(A typical model for this program would be an array.)

Another possible wuse of modelling in interactive
graphical display is in the area of graphical interface. 1In
descriting a picture, one could be creating a model of the
picture which can be used to create the display, and to
provide context fer input from the terminal. A principal
advantage of such an approach is that picture editing is
simplified. Such a model and its associated processes could
form part of the software support for interactive graphical
display programmning. To distinguish betvween a model used
for this purpose and a model used to describe a problen
system, the author will refer to the former as a display

model, and the latter as a problem model.

The characteristics discussed above are fundamental to
interactive graphical display programs. As such, they bear
examination to yield insight into such programs, and into

interactive graphical display support systeunms.

This approach to understanding the nature of
interactive graphical display programs may be contrasted
with the ‘'top down" approach utilized by others, such as
Ross and Rodriguez (1963). By limiting the area of concern
to one particular field, computer aided design, they are

able to consider an overall objective of all programs within
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this field, and develop their system in the 1light of this
objective - effectively working from the "top down". The
chief merit of the approach used in this thesis is the lack
of restrictions on the nature of the programs discussed, as
the objectives of interactive graphical display progranms

vary widely.

The next chapter discusses the implications of the
characteristics mentioned above on the design of interactive
graphical display programming support, in an effort to

develop a logical basis for the design of such support.
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CHAPTER IV

ON SOFTWARE SUPPORT FOR INTERACTIVE GRAPHICS

4.1 INTRODUCTION

Through developing the concepts of Chapter 3 further,
we show in this chapter a functional organization which is
typical of interactive graphical display prograas. An
examination of this organization reveals the elements needed
in interactive graphical display Fprograaming support.
Levels of support are discussed, and the author's ALAS and

PRIG are introduced.

4.2 FUNCTIONAL CRGANIZATION OF AN INTERACTIVE GRAPHICAL

DISPLAY PROGRAM

Since interactive graphical display prcgrams attempt to
exploit interactive graphical man-machine communication,
they have certain components in common:

a) Display terminal software, which includes:
i) Software to dJenerate the hardware display
commands, and
ii) Software to process input from the
terminal.
b) A ccmgonent which decodes input from the
terminal, provides error responses when there is invalid

input, and directs control to routines which generate the
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computer's responses, and
c) A problem component, which consists of routines

which generate the computer's responses and the data on
which these responses are based. The problem component may
be conceptualized as a model or set of models, which
describe the system of interest, and a gJroup of program
modules which ofperate on the model as directed by terminal
input. 'Model' here means the problem model discussed
previously, although in certain cases a problem model may
not exist explicitly, or may be coincident with the display
mnodel (see Chapter 3). The authcr maintains that the
problem component of an interactive graphical display
program may be considered as

i) a model, whether explicit as a data
structure, or implicit within the program, and

ii) a component for wmodel synthesis and
analysis. Figure 4.1 illustrates the interaction of the

three common components discussed above.

(The reader should note that the display nodel, a
highly specialized type of model, is seen by the author to

be part of the display terminal comgcnent,)

To illustrate further the functional components of an
interactive graphical display program, let us consider the
example of a hypothetical program 201, which allows the user

to design passive electrical networks and to compute their



23

transfer functions. 20T has two basic modes:

a) The Synthesis Mode, which provides the facility
for entering and altering network designs, and

b) The Analysis Mode, which provides the facility

for analyzing a network design.

Through the use of these two modes, the user can
complete the design of a passive electrical network. In
either mode, information is entered via the terminal. The
graphical capabilities allow the user to present the design
to the computer in the schematic language used for drawing
electrical circuits. This "language" is extremely concise,
and the user can express the torology of the circuit and
component types and values with relatively few operator
actions. For example, placing a resistor into a circuit
alters its topology, and is symbolized by the inclusion of a
resistor symbol in the schenmatic. In terms of operator
actions, such alterations to the design are brought about
by:

a) pressing a key to indicate a request to add to
the circuit,

b) picking, with the light pen, a ‘prototype!
resistor,

C) picking the nodes to which the resistor is to be
connected, and

d) entering values for the parameters of the

resistor via the keyboard.
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The results of analysis of a circuit are presented to
the user as perfcrmance graphs, for example, time domain or
frequency domain Iesponse curves, impedance curves, and so

on.

The display texrminal component of 20T 1is responsible
for denerating displays of circuit diagrams in a way which
allows unique identificaticn of the circuit elements. It is
responsible for returning to the pProgram various user
inputs, such as light pen pPicks, in the context of the
displayed entities, For example, if the operator Ficks
resistor R3, the display terminal software returns this
information. The display terminal component is also
responsible for generating displays of the results of
circuit analysis,

The input iggggggggg;;gg gomponent of ZOT is resronsible
for generating error hessages for invalig input (such as
character input when a light pen pick is €xpected) , and for
determining which pcrtion of the problem component nust be
executed, For examrle, the input Sequence described above
may be forwarded to the input interpretation component as
'ADD,R,NODES,NODEG,SGO OHMS,0.5 WATT,10%'. oOn the basis of
this, the input interpretation Cchronent would call the
'ADD' module of the problen Component, with the string,

'R,NS,N6,560,0.5,0.1' aS a parameter list.



25

20T uses an explicit model of the circuit being
examined, and the distinction Letween mcdel and program can
be easily seen in the problem component of ZOT. The
problem component cf 20T is responsible for «creating,
maintaining and analyzing the circuit model. A typical
block and pointer model may be vizualized as having blocks
representing circuit elements and multiccnnection nodes, and
pointers indicating connections to other components. These
blocks contain attribute informaticn concerning the element

represented. An example of a circuit and its corresponding

block-pointer model are shown in Figure 4.2,

An example of a program module which is part of the
problem component of ZOT would be the *ADD! module referred
to above. The module would:

a) create the block representing the new resistor,

b) initialize the block, assigning the resistor a
name (say R6),

c) locate the blocks for NODES and NODE6, and add
to them rointers to the block R6,

d) set <the pointers in E6 to point to the blocks
NODES and NODES6,

e) adjust the display model by adding the display
of a resistor which is shown as connected to NODES5 and
NODE6, and

f) revert to display.
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In this example, virtually all of the actions performed
by the module deal with altering the problem model. This is

not always the case,

4.3 FRCGRAMMING SUPPORT

Support software for a particular class of prorcamming
problems provides for programming in that class. For
example, the CALCCMP plotter subroutines are designed to

make use of the plotter available to the FORTRAN programmer.

Based on the functional description given in Section
4.2, one may project some of the requirements of such
support software. Let us consider the components of an
interactive graphical display program in terms of their

support requirements:

a) Display <Terminal Software as discussed in
Section 4.2, may be considered in two parts, only one of
them program dependent. Certain facilities, such as the
controls to display a 1line or a string of characters, or
returning from the terminal a string of characters, are
program independent. On the other hand, the facility to
determine the significance of a picked 1line or typed
character is program dependent, as these inputs are only

significant in the context of a particular progran.
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Display terminal support software should aid the
programmer in building the program Jdependent portion of the
display terminal software. Consider, for example, the block
type of organization utilized by GRIDSUB for organizing
displays. GRIDSUB allows the programmé: to identify
displayed elements Lty numbering %blocks" of display
elements. In addition, the programmer can identify
different displayed instances of the same block through‘ the
use of an ID function. The block number and ID are returned

by GRIDSUB upon the detection of a light pen pick.

The program dependence of the display terminal software
can be nminimized through providing a gemeral hierarchical
scheme for creating and describing pictures. A graphical
interface based on these concepts should be an integeral

portion of interactive graphical display program support.

b) The Input Interpretaticn (Component is almost
entirely program dependent. Usually a language is provided
with which a ©programmer may build his own input

interpretation component.

There is, however, some merit to considering a table-~
or structure-driven approach to input interpretation.
Newman's system (Newman, 1968) approaches the problem of
interactive graphical display programming as a problenm in

description of the program in terms of actions and
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reactions; that is, input actions and program ‘“reactions".
Once the description has been created, it may be encoded in
the two languages provided:

i) a ccntrol-oriented language to encode the
state description cf the program, and

ii) a procedure-oriented language to encode
the procedures required by the program in transferring

states,

Newman calls the control-oriented language the Network
Defipition Language. The interesting thing is that the
control portion cf the interactive graphical display program
is written in NDL, and compiled into a ring structure which
is used to drive an interpreter called the Reaction
Handler. The Reaction Handler is responsible for the tasks
outlined above as being required of the input interpretation
component. Thus, table- or structure-driven processing is a

possible approach to input interpretation.

Cc) Ihe Problem Component: The requirements of
interactive graphical display programs in the area of
problem component support are extremely varied. A large
proportion of interactive graphical display programs will
require some medium in which they can create and analyze
problem models, Facilities adequate for the modelling
needed for some rroblems are available in sonme general

purpose languages, but this is not true for all problenms.



31

Thus, one part of ccmprehensive support must be a data
structure system, which would insure that a programmer could
Ccreate extensive problenm models, and handle then

effectively.

For that portion of the problem component which does
not handle the model, any of a number of general purpose
languages is suitable. However, there is the difficulty of
interfacing the modelling system and the general purpose
language. One has three possible alternatives:

i) to augment an existing high level 1language
to provide a modelling facility. For example, SLIP
(Wiezenbaum, 1963) is a list processor embedded in.FORTRAN.

ii) to design an entire general purpose
language, which provides the necessary modelling facility as
well as the required graphical orientation. Kulsrud (1968)
proposes an approach similar to this alternati&e.

iii) to select a general purpose language and

a modelling system, and resolve the interfacing problen.

As alternative iii) requires the programmer to
understand more than one language, the author considers it
undesirable. Those advocating alternative ii) point out
that, in the case of augmented general purpose language, any
augmentation will reflect the original language's good and
bad features, and the design of the program may therefore be

"restricted" by the lack of various facilities in the
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original language, People advocating an augmented language
point out that programmers who already use the original
language need not learn a new language, but merely additions

to the o0ld one.

Regardless of which alternative is chosen, the emphasis
should be on enhancing the verSatility and efficiency of the
support softvare system. The approach the author advocates
is alternative ii) with overtones of alternative iii), that
is, a general purpose language with adequate interface to

allow the use of other languages as desired.

4.4 LEVELS OF GRAPHICS SUPPORT: AN INTRODUCTION TO

ALAS AND PRIG

As there is a wide diversity of applications which may
make use of interactive graphics, any approach to providing
support of such Frogramming has to be flexible. The author
believes that the solution to this problem lies in providing
a solid foundation upon which support systems of various

scopes and levels may be constructed.

As was mentioned previously, interactive graphical
display programs have in common a need for a graphical
interface, and there are definite advantages to handling
this area through thke use of a data structure. Also, many

graphical applications need a modelling system to facilitate
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analysis of problem systems. Therefore, it is obvious that
a solid foundation for interactive graphical support
software would be a 1low level, data structure language.

While a number of data structure 1languages are available,
their facilities are not always available to the programmer
at a low enough level to be used as a basis for support. In
Chapter 5, a description is presented of a 1language which
would fulfill the requirement. The language, ALAS (A list
Assembler System), is designed specifically to give the
programmer an assembler level language with data structure
capabilities. Tyfpically, programs in ALAS are assembled to
produce code which is a mix of directly executable code and
calls tc an address translator, storage allocator, and

supervisor which make up the ALAS interpreter.

ALAS does not contain a graphical interface facility
such as that discussed in Section 4.3. The programmer may
create the interface of his choice. Thus, ALAS is the

lowest level of graghics support.

The flexibility of ALAS in handling structures can be
used to provide a picture modelling and handling system. 1In
Chapter 8, a ktrief description of such a system is
presented. PRIG (Package for Remote Interactive Graphics)
is proposed to be implemented in ALAS in the form of a
system of macro instructions. It provides the ALAS

programmer with a particularly simple picture modelling
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capability, cougled with mechanisms to evaluate input in
terms of the «current picture. PRIG, and other systems at

this level, are at the next lowest level of support.

The next level of support would involve a greater
degree of automatic graphical input translation. An example
would be a system which provides a table driven analyzer
which works on graphical input. Implicitly, this involves
the creation and use of graphical entities as terminal
symbols. The program would have available in some form the
parsed string to use as input, thus removing some of the

burden of programming at a lower level.

At the highest 1level of support, the author sees
systems such as an entirely table driven system, which
localizes the programmer'’s task to that of specifying his
application program as a problem defirnition in some
formalized manner, such as a language specification or a

series of decision tables.

The author believes that the construction of systems at
each of these 1levels would benefit from the structure

handling capabilities of ALAS. (Table 4.1)
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Table 4.1 Levels of Graphical Support

Characteristics
no especially graphically
oriented support
picture modelling

picture modelling and
automated input analysis

picture modelling,
automated program
generation and processing

Example

Asseambler, ALAS

PRIG in ALAS

table driven syn-
tax analyzer

a metacompiler or
compiler~compiler
system such as
Kulsrud®s (1968)
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CHAPTER V

ALAS - A LIST ASSEMBLER SYSTEM

5.1 INIRODUCTION

In +this chapter, a brief description of ALAS is
presented. The principle objective cf the design is to
provide a data structure systen in an assenbler
environment. In specifying an assembler systeam, the author
intends to leave sufficient latitude in the assembly process
and machine configuration to allow implementers to create

efficient emulaticns of the ALAS language.

In Chapter 6, some of the more advantageous features of
ALAS are discussed and illustrated with a programming
example. Chapter 7 discusses some pcssible methods of

implementing ALAS.

In describing ALAS in this chapter, we follow the
example of Knowlton's specification of L® (Knowlton, 1966)
and present the system in a form appropriate for a potential
user. Pecause of the length and degree of detail, wve also

follow Knowlton by providing an index to the chapter:



INDEX TO CHAPTER V

5.1 INTECDUCTICN
5.2 STORAGE ELEMENTS
5.2.1 Blccks
5.2.2 Fields
5.2.3 Templates
5.2.4 Blcck Types
5.3 STORAGE ALLOCATION
5.3.1 Static Allocation
5+.3.2 Dynamic Allocation
5.3.3 Storage Elements and Their Allocatability
5.4 ACLCRESSING
S.4.1 Base Address Generation
S.4.2 Modifiers
5.4.3 Literals
5.4.4 Operand Length
€.4.5 Operand Alignment
5.5 REGISTERS
5.5.1 Fixed Length Registers
5.5.2 Variable Length Registers
5.5.3 Register Stacks
5.6 OPERATIONS
5.6.1 Condition Code
5.6.2 Register and Operand Specification

S5.6.3 Operation Descriptions

37



5.7 MACHINE INSTRUCTIONS
5.7.1 General Purpose Instructions
5.7.2 Arithmetic Instructions
5.7.3 Bit and Character Instructions
5.7.4 Addressing Instructions
5.7.5 Conversion Instructions
S.7.6 Allocator Instructions
S«7.7 Control Instructions

5.8 ASSEMBLER INSTRUCTIONS
5.8.1 Listing Control Instructions
5.8.2 Allocator Instructions
5.8.3 Communication Instructions
5.8.4 Others

5.9 THE LCADER

5.10 CONCLUSICNS

38



5.2 STORAGE ELEMENTIS

ALAS has two principal type of storage elements:
a) Blocks, and

b) Fields.

5.2.1 Blocks

block is a group of consecutive memory 1locationms.

A ck
The blcck address is the address of the first location of
the group. There is a group of locations at the beginning
of each block which provide information concerning the
length of the block, and its structure. A block is either
amorphous or prestructured. An amorphous block has no
predefined structure. A prestructured block is one which
has had a specification made in its declaration which
tattaches' a template +to the bleck. This template

determines the block length, and may be used in referring to

the block (Section £.2.3 and Figure 5.1).

5.2.2 Fields

A field is a memory word of programmer specified
length. A field is either
a) a relative field, or
b) an absolute field.

A relative field 1is not bound to a fixed 1location in
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nemory. It is an addressing mechanism used to refer to
memory locations in terms of displacement on ancther
address. This will be explained further in Section 5.4. An

absolute field is an actual memory area (Figure 5.2).

5.2.3 1Tenmplates

To facilitate addressing within an ALAS program, two
extended addressing mechanisms are provided under the
general heading of Templates. Iemplates are provided for
the construction of and accessing of blocks. The two types
of templates are yectors and patterns.

A vector specification is a field containing a field
length specification and a quantity. A vector specification
is incorporated into the block header of a block defined as
a vector. A block so defined can then be accessed by
subscripting, as well as by other storage accessing

techniques (Figure 5.3).

A pattern specification is a vector (and hence a block)

of relative field specifications. The primary value of
templates is the capability of organizing groups of relative
field definitions for symbolic reference in a structured
manner. The field definitions within a pattern may only be
referred to in conjunction with the pattern name. A block

defined wusing a pattern has that pattern's address retained
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in the header (Figure 5.4),

5.2.4 PRlock Types

There are four types of blocks:

a) Program block (PBLOCK): - A program block is an
amorphous block containing ALAS program code, and is
initialized by the assembler on the basis of ALAS
instruction records appearing in the block declaration
(Figure 5.5),

b) Address block (ABLOCK): - An address block is a
vector of addresses, and is initialized by ALAS on the kasis
of the address constants in the block declaration (Figure
5.6) .

C) Static Data block (SBLOCK): - A static data
block is a block specified by the programmer which will
exist for the duration of the job.

d) Dymamic Data block (DBLOCK): - & dynamic data
block is specified by the programmer to be brought into
being during execution, and may be discarded under the same

conditions.

Certain static data blocks have default definitions.
The programmer may define them as he seces fit, (A complete
description and discussion of them will not be presented
here in the interests of brevity). These are:

a) Interrupt Control Block, a vector of control
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words wutilized for directing control upon receipt of
interrupts,

b) Transput Control Blocks, vecters of control
words for handling I/0O devices, and the

c) Allocatqr Control Block, a vector of control

words utilized by the allocator.
5.3 STORAGE ALLOCATION
ALAS has twe modes of storage allocation:
a) Static, and
b) Dynanmic.

5.3.1 Static Allccation

Static allocation is the assignment of storage prior to

program execution. Statically allocated storage cannot be
detached during program execution, and has a stable location
during execution. References to statically allocated
storage can therefore be resolved by the assembler and the

loader.

5.3.2 ©Dynamic Allocation

Rynamic allocation is the process through which storage

P —— i —

can be ottained and released under program control. This

enables more efficient use of storage, in that a storage
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area can be reused by the program in varying confiqurations.
5.3.3 Storage Elements and Their Allocatability

Table 5.1 illustrates the allocatability status of the

various types of storage elements previously described. It

should be noted that a statically allocated element cannot

be reallocated within the same program; however, a program

block overlay feature is available.

TJable 5.1 Aallocatability of Storage Elements

Element Static Dynamic
Program Elock X

Address Elock X

Data Block X X
Absolute Field X X
Relative Field b X
Vector X

Pattern X

Control Blocks X

S.4 ALCDRESSING

A flexible addressing scheme allows the programmer to

intermix references to statically and dynamically allocated
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storage and immediate data to create an address. For
examnple, the operand address
AT@B_<I3>+2
wvhere AT refers to a dynamically allocated block,

B is a statically defined relative field,

I3 is an index register, and

2 is immediate data,
is valid, and generates an address as followus:

a) The address of AT is determined, and becomes the
base address.

b) The displacement and 1length of the relativéA
field B is determined, and the Ltase address AT is
incremented by the displacement.

c) The indirector (underscore) causes the base
address to becbme the contents of the field addressed by
ATaB.

d) The subscript expression <I3> causes the address
processor to fetch the header of the block addressed by
AT@B_ and to set the base address to the address of the
element subscripted by the contents of the register I3.

€) The value 2 is added to the base address, and

the result is taken as the actual address of the operand.

The syntax of operand addresses is given in Table 5.2.
An operand address string can be used wherever a storage

reference is required as an operand.
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Table 5.2 Grammar of Operand Addresses

a) Grammar

1.

9.
10.
11.
12.
13.
14,
15.
16.
17.
18.
19.

20.

[operand address]::={base address generator { modifier
list option]

[ base address generator]::=[ symbol Je[absolute
expression ]([address register]))

[modifier list option]::=[modifier list]e[empty]

{modifier list }::=[subfield specifier Je[ modifier ]e
[modifier J[modifier list]

[sukfield specifier]::=:([subtyp],{integer operand
option],[integer orerand))

[suttyp]::=BeC

(modifier J::=[ absolute expressicn modifier Je[indexer Je
(indirector Je[ relative field
modifier Je[ templater ]

[absolute exrression modifier ]::=[ sign]{absolute
expression]

[sign]:i=+e~

{indexer]::=([ index operand]))

(indirectorj::=_

[relative field modifier ]J::=8[symbol]
[templater ]J::=[ subscriptor ]Je[ pattern reference]

[ subscriptor }: :=<{index operand}>

[ pattern reference]::=|[symbol ]Je[symbol]

[integer operand option ])::=[integer operand }J¢[empty]
[integer operand]::=(integer register Jef{ index operand]
(index operand }::=[index register ]Je¢[{self defining term]
[address register]::=A[ hexq]

[index register ]::=I[hexq]



Table 5.2 continued

21. [integer register ]J::=F{ quartq]

22. [symkol]::=[letter Je[ symbol J{char]
23. [char]::=[decqg Je[ letter)

24, [letter]::=AeBeCe,.,..0X0Ye?Z

25. [hexg]::={decqg]e10e11e12¢130714e15
26, [decg]::=fquartqjedeSepeTe8e9

27. [quartg]::=[bing)e2e3

28, [(ting]::=0e1

b) Notation
The notation used is a hcomomorphism of B.N.F.:
where [ ] are the metalinguistic Lkrackets,
::= is the 'defined as' sign, and

e is the alternation symbol.

c) Examples

Rule Examples (separated by two blanks)
1 AT@B_<I3>+2

2 AT 72(A3)

3 8B_

4 :(B,,I2) @B @B_:(b,,I2)

5 :(C,3,F2) :(B,,I2)

6 B C

7 +32 (I2) _ @B <I4> (ALPHAQD
8 =75  +2 |

9 + -
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1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Table 5.2 continued

(I5) (12)

@B @DOG

<3> |ALPHA@DOG
<2> <I3>
{ALPHA®DIRT |FMT1aB
38

F2 I3 62

13 62

212

110

F3

AT B9 X12P3

a 3

b X T
112

1 8

1 3

49
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Certain elements of the grammar are not completely
defined in the table. These elements will be discussed in

conjunction with the constructs of which they are part.

An address is created by the processor as followus:

a) The [base address generator] is interpreted to
give a machine address and a length specification, and this
information is given to the ofperations processor and
executicn proceeds.

b) If there are modifiers, they are applied in the
order given, using the address and length determined by the
preceding modifier, or the base address generator in the
case of the first modifier, and they in turn generate new

addresses and lengths.

5.4.1 Base Address Generation

A [Lase address generator] is either a [symbol], (a
group of letters and digits, the first of which must be a
letter), or a displacement and register specification. To
be used as a base address denerator, a symbol must be
defined in the same PBLOCK as associated with a storage
location. This can be done by placing the symbol in the
name field of an instruction, by placing the symbol as the
first operand of a DBLOCK, DFRD or DFAD instruction, or by
placing the symbol in the operand list of an EXTRN or EXTRND

instruction.
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The displacesent and register specification of an
address is assembled into a form from which an address may
be created by summing the contents of the register and the
value of the displacement. The displacement is given as an
[absolute expressiomn], which is an individual term which has
an absolute arithmetic value, or an arithmetic combination
of terms that will yield an absolute arithmetic value and

can be processed to yield this value by the assembler.

S.4.2 Modifiers

Modifiers are the working handles which the programmer
has on the extended addressing mechanisms. They are:
a) [absolute expression modifier]
b) [indexer]
c) [indirector]
d) [relative field podifier]
e) [templater])

f) [subfield specifier]

An ([absolute expression modifier] is a plus or minus
sign followed by an absolute expression, the value of which
is added to or subtracted from the previous address. The
length specification remains unchanged. As an example, the

pmodifier "+32" adds the quantity 32 to the address.
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An [indexer] is a bracketed index register specification
or self defining term. R self defining term is an unsigned
decimal integer or a qualifier followed by a quoted
expression 1in terms specified by the qualifier. The value
of the term or the value contained in the regiéter is wused
to increment the previous address. The length specification
remains unchanged. For example, the indexer " (I6)"

increments the address by the contents of the register I6.

An [indirector] is an underscore. The [indirector]
causes the address to be replaced by the contents of memory
currently addressed. The 1length specification remains
unchanged. For example, if the current address refers to a
field containing the address of B, modification of the
current address by the indirector would cause it to become

the address of B.

A [relative field modifier] is the symbol @ followed by
a [symbol]. The [symbol ] must have appeared in association
with a relative field definition. The relative field
definition provides the information needed to adjust the
address and 1length information. If B is defined to be the
relative field with a displacement of 10 and a length of 8
characters, the modifier @B would increment the current

address by 10, and set the length to 8 characters.
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A [templater] may be used to provide subscripting or
pattern referencing. A subscriptor is the symbol < followed
by either a self defining term or an index register
reference followed by the symbol »>. The value of the
expression or the content of the register is used as a zero
origin subscript into the vector assumed addressed by the
current address. FPor example, if the current address points
to a block defined as a vector, the modifier <5> would set
the current address to point to the sixth element of that
vector, and set the 1length to be that of the vector
element. A pattern reference is the symbol | followed by a
[symbol] followed by a [relative field wmodifier] which
refers to a relative field described in the pattern
definition associated with the [symbol]. The [relative
field specification] so specified is used to adjust the
address and length information appropriately. For example,
if the relative field D is defined in the pattern ALPHA as a
displacement of three characters and a length of seven
characters, the modifier |ALPHA®D would increment the
current address Lty three and set the length to seven

characters.,

A [subfield specifier] is the final modifier when it
appears, and is defined as follows:
[subfield specifier ]J::=: ([ subtyp],{integer operand option],
[integer operand}])

[(subtyp] indicates whether bit (B) or character (C) field
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trimming is to be performed, and the second [integer
operand ] indicates the length of the desired result. The
first ([integer operand] is a zero origin index indicating
the starting point in the field. If the first [integer
operand] is omitted, a value of 2zero is assumed. The
address and length specification are adjusted
appropriately. For example, the subfield specifier : (B,3,5)
would access bits 3 to 7 inclusive of the field currently

addressed.

5.4.3 Lliterals

Literals are ofperands specified directly in 1lieu of
addressed operands. The assembler builds a table og these
items, for which addresses are generated and substituted
into code, This table, the literal fool, is created anew
for each PBLOCK, and is added to the end of the assembled

form of the PBLOCK.

5.4.4 storage Operand Length Considerations

Depending upon the operation and the form of the
operand list, certain storage operands may be required to be
of a specific length. The case where a specific length of
operand is required is called a hard requirement for a
storage operand. The case where a specific 1length of

operand is not required is called a goft requirement.
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In the case of soft requirements, the operand length is
taken to be that determined by the addressing operation. An
example of an operation which has a soft requirement for a
storage operand is the load operation applied to a variable
length register.

L B3,A
would load the field referenced by A into register B3,
regardless of the length of A, and the length of B3 after

the operation would ccincide with the length of A.

In the case of hard requirements, one of two
possibilities occurs:

a) the regquired. length of the operand is equal to
the 1length determined during address calculation. For
examgle, if the block D is defined as a vector of elements
of the same length as the integer registers, the operation A
which has a hard requirement for a storage operand would
encounter this condition in the case of the instruction

A F3,D<2> .

b) the required length of the operand is not equal
to the length determined.during address processing, in which
case, there are two possible courses of action:

i) the 1length determined during address
processing 1is ignored, and the length of the operand is
assumed to be the required length, and the operation
proceeds. For examgle, given block D and operation A which

has a hard requirement, the instruction
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A F3,D(3)
would use as its operand a field of length required by the
operation A, starting at the address D(3).

ii) the length determined during address
processing is used to access the operand, which is then
altered in length and Jjustification to Le of the style
required by the operation, and the operation proceeds using
the altered form of the operand. For example, given block D
as a vector whose elements are not the same length as the
integer registers, the instruction

A F3,D<3>
would select the fourth element of the vector D, and adjust
its 1length to match that of the register, amd then perform

the operation.

The course of action selected in the case of unequal
hard required 1length and generated length is determined by
the addressing process. The length specification determined
during addressing is either soft (in which case, subcase b)
i) is used), or bhard (in which case, sukcase b) ii) is
used). 1The elements of an address sequence set the solidity
of the length specification as shown in Table 5.3. To
summarize, the length of an addressed orerand which is used

in an operation may ke determined from Table 5.4.

As anh examfple to illustrate the determination of

operand lengths, consider the load operation "L". Depending
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upon the type of register selected as a target for the load,
the operation has either a soft or a hard length
requirement. The block D is defined as a vector of elements
whose lengths are not the same as that of the integer

registers. The example is given in Table 5.5.

S.4.5 Storage Operand Alignment Considerations

In certain cases of hard 1length requirements, the
operations processcr requires alignment of the operand
address, i.e. the address is required tc be a multiple of a
certain quantity. If the addressed 1length is hard, this
requirement (alignment) is assumed satisfied. If the
addressed length is soft, the address must be aligned, or
alignment is not satisfed. The sensitivity to alignment of
storage operands is igplementation dependent, and therefore

will not be discussed further in this description.
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Table 5.3 sSolidity of Address Processor Determined Lengths

Pase Address Generators

—

[absolute expression]([address register})

{ symbol)] if the symbol is a
field name

if the symbol is a
block name

Modifiers

[absolute expression modifier ]
{indexer)

[indirector])

(relative field modifier]

[ templater)

[(subfield specifier]}

Selidity

soft

hard

soft

soft
soft
soft
hard
hard
hard
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Solidity of

Solidity

of Required

Addressed

Operand
ength

Operand length

4 Addressed Operand Lengths

Soft

Hard

Soft

Hard

Length determined
py address proces-
sor

ength required by

peration, no

djustment before-
hangd

Length determined
by address proces-

Operand is adjusted
to fit the required

length

sSOor

Takle 5.5 Example of Operand Length Determination

Solidity
of
Required
Length

Soft

Soft

Hard

Hard

Solidity
of Instruction

Addressed

Length

Soft L B3,D+5
Hard L B3,D<5>
Soft L F3,D+5
Hard L F3,D<5>

Length
Accessed

Default
length of
register

Length of
vector
element

Length of
register

Length of
vector
element

Length
Used

Default
length of
register

Length of
vector
element

Length of
register

Length of
register
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5.5 REGISTERS

ALAS has a set of registers which are used mainly for
holding operands and results of operations. The registers
can be divided intc two groups, fixed length registers, and
variable lenqth registers. Operations performed upon a
fixed 1length register usually involve the entire register.
The yariable lenath registers are actually long fixed length
registers, which have a length register attached to each of
then. The amount of a variable register which is active at

any one time is designated by its length register, and nmay

vary under operations performed using that register.

5.5.1 Fixed Length Registers

Fixed length registers are of four Lkasic types:

a) Address registers, of which there are 16,
designated A0,21,...,A15

b) Index registers, of which there are 16,
designated I0,I1,...,I115

c)} Fixed point registers, of which there are 4,
designated FO,F1,F2,F3

d) Floating point registers, of which there are 4,

designated E0,E1,E2,E3

Depending upon the machine <¢f imsplementation, the

numeric registers may be extended to provide other
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precisions. For example, on IBM 360 machines, in addition
to the above, one may find halfword fixed point and
doubleword floating point registers. Such things would be

considered extensions of ALAS.

5.5.2 Variable Length Registers

vVvariable length registers are of two types:
a) Bit registers, of which there are 4, designated
B0O,B1,E2,B3
b) Character registers, af which there are 4,

designated C0,C1,C2,C3

The maximum length of a variable length register is 255
elements. Variable length operands may in some cases be
trimmed as addressed operands were trimmed. The trimming
specifier bas the syntactic form

: ({integer operand],[integer operand]))

where the value of the first integer is taken as the zero
origin index of the start of the subregister specified, and
the value of the second integer is the length of the
subregister specified. For example,

c1:(2,3) specifies characters 2,3 and &
of register C1; and

B3:(5,9) specifies bits 5 to 13

inclusive of register B3.
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Either of the operands may be left empty, in which case
certain defaults determined by the operation are assumed.
If the second operand is left out, the comma preceding it

may also be omitted.

5.5.3 Register Stacks

ALAS registers may be stacked. The stacks are pointer
chain constructs steaming frca pointer registers associated
with the data registers into the dynamic data area. The
operations PSH and POP are provided for handling the

register stacks.

5.6 OPERATIONS

5.6.,1 Corndition Code

The operations processor upon completion of sonme
operations sets a four state conditjon code, which can be

tested using the branch or the execute operation.

In Section 5.7, the machine operations are tabulated,
and the conditicn codes they set are described as follows:
a) The codes that can be set by an instruction are
listed, and
b) The appropriate row of Table 5.6 is selected.

The factor which is tested to set the condition code is
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Table 5.6 Condition Codes

Condition
Code 0 1 2 3
Set
a zero negative positive empty, or
overflow
b all zero all one mixed zeros empty
bits bits and ones
c 1st = 2nd i1st < 2nd 1st > 2nd empty, or
overflow
d normal device error interface device not
error available
e non-emgty - - empty

mentioned in the operation descriptior.

5.6.2 Register and Operand Description

In describing ALAS operations below, a letter selected
according to Table 5.7 is used to refer to a register of a
particular type. 1If a register may be one of a number of
types, the letters will be enclosed in braces, and separated
by commas,

For exawmgle,
{F,I}
indicates either a fixed point or an index register. A

storage operand is referred to by the letter s. Immediate



64

Table 5.7 Register Character Codes

Letter Begister Type
A Address
B Bit
o Character
E Floating point
F Fixed point
I Index

operands, which are data operands placed directly into the
ALAS machine code instruction, are referred to by the letter

D.

a digit may be suffizxed to an operand type
specification. This indicates that there is a hard 1length
requirement involved, and by duplication (of the suffix
digit) within the operand list, the other operands (if any)
which are associated with the requirement. The first
instance of a suffix digit in an operand list description is
considered the binding instance from the point of view of
the hard length requirement. For example, the operand list
description

{A0,E0,F0,10},S0
describes an operand list containing two elements, the first
of which may be an address register, a floating point

register, a fixed point register or an index register, and
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the second is an addressed operand with a hard 1length

requirement determined by the first operand.

In some cases (notably with immediate operands) there
is a constraint cn an operand which is not directly related
to the other operands within the list. In these cases, a
digit suffix is used which is not duplicated within the
operand list description. For example,

Do,s
describes a two cperand list, in which the first operand is
an immediate operand with some particular restriction on it,
and the second operand is an addressed operand, without any
restriction related to the first operand, (since it is not
suffixed by 0), and without any restrictions (since it does

not have any numeric suffix).

5.6.3 Operation Lescriptioms

The following paragraphs describe the set of
operations. The mnemonic, the operand lists allowed, and a
brief description of the semantics cf the operation are
given. The operations are split intc two major categories:

a) Machine Instructions, described in Section 5.7,
and

b) Assemkler Instructions, described in Section
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5.7 MACHINE INSTRUCTIONS

Machine instructions are organized into seven groups:
a) General purpose
b) Arithmetic
c) Bit and Character
d) Address
€) Conversion
f) Allocator

g) Contrcl

5.7.1 General Purpose Instructions

General purpose instructions rperform basic functions
vhich are usually applicable to all of the register types.
They will be considered in three subgroups:

a) LOAD Instructions
b) STORE Instructions
c) Initialization, Comparison, and Content Control

Instructions

a) LOAD Imstructions
Eunction: The 1lcad instructions (Table 5.8) load memory or
register contents into the register(s) specified as the
first operand(s).
Notes: i) Load and Test, Load and Test Register (LT, LTR)

These instructions test the second operand as it is being
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Table 5.8 LOAD and STORE Imstructions

Instruction Oopcode Operand List Condition
Name Row Ccdes
Load L {AO,EO,FO,IO},SO or unchanged
{B(C},S
Load Register LR {A,B,C,E,F,I},{A,B, unchanged
C,E,F,1}
Load and Test LT {AO,EO,FO,IO},SO or a 0,1,2
B,S or b 0,1,2,3
C'S e 0'3
Load and Test LTR {A.E,F,I},{A,E,C,E,F,I} or a 0,1,2
Register B,{A,B,C,E,P,I} or b 0,1,2,3
C,{A,B,C.E.F,I} e 0,3
Load Multiple LM {2,B,C,E,F,I},{A,B, unchanged
C,E,F,1} .S
Load specified LS {B.C}.,S unchanged
Store ST {AO,BO,CO,EO,PO,IO},SO unchanged
Store Justified STJ {AO,BO,CO,EO,?O,IO},SO unchanged
store Multiple STM {A,B,C,E,F,I},{A,B, : unchanged
C,E,F,I},5
store Specified S1S {(B,C},S unchanged

loaded, and set the condition code.

ii) Load Multiple (LM) - This instruction 1loads a
range of registers designated by the first two operands fron
storage starting at the address given by the third operand.
For register ranges extending across register type group
boundaries, the following ordering of register type groups

is in effect:
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A,1,F,E,B,C.
The loading of B or C type registers is performed as for the
Load Specified instruction.

iii) Load specified (LS) - This instruction loads a
variable length register with a field stored with a

preceding tag which indicates the field's length,

b) STIORE Instructions
Function: The stcre instructions (Table 5.8) store register
contents into @memoOry. Store instructions reverse the
priorities on operand length determination. The length of
the register is always considered hard, and the addressed
length is either hard or soft as meptioned previously. The
length of the stored data is either the addressed length 1if
the addressed length is hard (which may involve
justification and length alteration) or the register length
if the addressed length is soft.
Notes: i) Store Justified (STJ) reverses nominal
justification of stored data. If, for example, register c1
contains 'ABCD', and field A is only three characters long,
ST C1.A
would result in field A containing 'ABC' (left justification
is standard for variable length registers) while,
sTJd C1,A
would result in field A containing *BCD'.
ii) Store Multiple (STM) is the mirror image of

Load Multiple (LM). The same considerations apply, except
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that data is tramsfered to memory, instead of from it.
iii) Stoxe Specified (STS) is used to store a
variable length register in the form suitable for loading

with the Load Specified (LS) instruction.

c) Initialization, Comparison, and Content Control

Instructions

”7.1

unction: These instructions (Table 5.9) are universally

Py

applicable, but varied in function. The details of their

operation are given in the notes below.

4

otes: i) Zero or Eampty (ZE) =zeros fixed 1length and

empties variable length registers.

ii) Push (PSH) and Pop (POP) are the register
stacking instructions. Push stacks the register (s)
contents, and Pop unstacks them. The condition code is set
by Pop on the basis of the stack size prior to the
operation.

iii) Swap, Swap Register (SW, SWR) interchange the
contents of their first and second operand addresses. The
condition code is set on the basis of the lengths of the
operands prior to the operation. Condition code three
indicates an overflow caused by cne of the operands being
larger than its recieving location. The operation is still
completed, the offending operand being truncated.

iv) Compare, Compare Register (C, CR) compare the
first and second operands. The comparison is logical if the

first operand is A, B or C, and arithmetic if the first

_J
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Table 5.9 Initialization and Comparisor Instructions

Instruction Opcode Operand List Condition
Name Row Codes
Zero or Empty ZE {,8,C,E,F,I} # unchanged
Push PSH {(,B,C,E,F,I} # unchanged
Pop pop {2,B,C,E,F,I} # e 0,3
Swap SW {A0,EQ0,F0,I0},S0 or c 0,1,2,3
{B,C},S
Swap Register SHWR {A,B,C,E,F,I},{A,B, c 0,12,3
C,E,F,I}
Compare (o {A0,E0,F0,I0},S0 or c 0,12
{B,C}S c 0,1,2,3
Compare CR {,,B,C,E,F,1},{A,B, c 0,1,2,3
Register C(,E,F,I}

# indicates that the operand 1list may be repeated,
separated by commas

operand is E, F or I. The conditicn code is set based upon
the result of the ccmparison. If a variable length register
is the first operand, the comparison is made on a field

length that is the shorter of the two operand lengths.

5.7.2 Arithmetic Imnstructions

Function: The operations associated with @most of these
instructions (Table 5.10) are evident frcm the instruction
names. Cases where there may be doubt are explained below.
The condition code is set according to the result of the

operation. The result always replaces the first operand.
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Table 5.10 Arithmetic Instructions

Instruction Opcode Operand List Condition
Name Row Codes
Adad A {EO,F0,I0},S0 a 0,1,2,3
Add Register AR {F,I} ,{F,I} or E,E a 0,1,2,3
Subtract S {E0,F0,10},S0 a 0,1,2,3
Subtract SR {F,I}, {F,I} or E,E a 0,1,2,3
Register
Multiply M {EO0,F0} ,SO a 0,1,2,3
Multiply MR E,E or F,{F,I1} a 0,1,2,3
Register
Full Multiply FM F0,s0 a 0,1,2
Full Multiply FMR F,{F, 1} a 0,1,2
Register
Divide C {EO,F0,I0},S0 a 0,1,2,3
Divide Register DR E,E or F, (F,I} a 0,1,2,3
Full Divide FL F0,S0 a 0,1,2,3
Full Divide FDR F, {F, I} a 0,1,2,3
Register
Negate EKegister NR {E,F,I} or a 0,1,2
B b 0,1,2,3
Load Positive LP {EO,F0,I0},S0 a 0,2,3
Load Positive LPR {F,1},{F,I} or E,E a 0,2,3
Register
Load Negative LN {EO,F0,10},S0 a 0,1
Load Negative LNR {F,1}, {F,I} or E,E a 0,1

Register
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Notes: i) Full Multiply, Full Multiply Register (FM, FMR)
‘he wmultiply instructions (M, MR), when applied to a fixed
point register of length n, generate only the right hand n
bits of the result, If the 1left hand n-~1 bits contain
significant information, condition code three is set. Full
Multiply generates the entire product, which requires two
registers, and stores it in order in the first operand
register, and the register immediately following it.

ii) Full Divide, Full Divide Register (FD, FDR) 1In
doing a fixed point divide with the Divide instructions ¢D,
DR), the remainder is discarded. A Full Divide retains the
remainder, and places it 1in the register immediately
following the first cperand register (where the quotient is
placed).

iii) Negate Register (NR) arithmetically negates E,
F or I operands, and logically negates B operands.

iv) Load Positive, Load Positive Register (LP, LPR)
ensure that the result is positive, negating it if
necessary.

v) Load Negative, Load Negative Register (LN, LNR)
ensure that the result is negative, negating it if

necessary.

5.7.3 Bit and Character Instructions

These instructicns operate primarily on variable length

registers. They will be considered in three subgroups:
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a) Loading and Deleting Instructions
b) Test Instructions

c) Bit Inmstructions

a) loading and Deleting Imstructions
Functjon: These instructions (Table 5.11) provide flexible
mechanisms for loading and deleting information in variable
length registers. The result always replaces the first
operand.

Notes: i) The Build instructions (BUL, BULR, BUR, BURR)

concatenate the seccnd operand to the first operand. The
use of a displaced variable 1length register as a first
operand causes widening of the register at the indicated
place. It is widened by the leagth of the second operand,
which is then inserted.

ii) widen (WD) acts as an immediate data form of
the Build Left instruction. The field concatenated is
described by the two immediate operands, D1 and DO. DO must
be one element of the same type as the first operand. D1 is
an immediate integer specifying the length of the field, in
terms of replications of DO.

iii) The Overlay instructions (OV, OVR) load the
second operand over top of register contents without
altering the remainder of the register. This operation
differs from Load in that it does not empty the register
before 1loading, and it differs from Build and Widen in that

it does not move register contents before loading.



Table 5,11

Instruction
Name

Build left

Build lLeft
Register

Build Right

Build Right
Register

Widen
Overlay

Overlay
Register

Eliminate

Eliminate
Register

Shift

Shift Register

Rotate

Rotate Register

Translate
Expand
Compress
Merge

Merge Register

Opcode Operand List

BUL

BULR

BUR

BURR

WL
ov

OVR

EL

EIR

SH

SHR

RT

RIR

TR

EXP

cMP

MRG

MRGR

{B,C},5

B,B or C,C

{B,C},s

B,B or C,C

{80,C0},D1,D0
{B,C},sS

B,B or C,C

{B,C},s

B,B or ¢c,C
{F,I},s0 or
B,S0 or

Cc,S0
{F,1},{F,I} or
B, {F,1I} or
C,{F,I}
{F,I},S0 or
B,S0 or

c,S0

{F,1}, {F,I} or
B, {F,I} or
C.{F,I}
{B0,C0},B0
{B0,C0},BO

{80,Cc0},s0,B0

c0,C0,B0 or B0,B0,BO
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Loading and Deleting Instructions

Condition
Row Codes

unchanged

unchanged

unchanged

unchanged

unchanged
unchanged

unchanged

a 0,2,3
a 0,2,3

oo

a
b 0
e
unchanged
unchanged
unchanged

unchanged

unchanged
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iv) The Eliminate instructions (EL, ELR) eliminate
all instances of the second operand from the first operand,
shortening it appropriately.

v) The Shift and Rotate instructions (SH, SHR, RT,
RTR) alter register contents in the following fashion. The
second operand is used as a signed integer which =sgpecifies
the number of rositions to be shifted or rotated tc the
left. Rotation moves ciements within a register circularly;
i.e. elements moved out of one end of the register are
inserted at the other end. Shifting discards elements moved
out of the end c¢f a register. The elements moved are bits
in arithmetic and bit registers, and ctharacters in character
registers. Shifting applied to a variable 1length register
alters the register length.

vi) The Translate instruction (TIR) replaces the
characters of the first operand by characters selected by
using the characters of the first operand as zero origin
indices into a table of characters addressed by the second
operand.

vii) The Expand, Compress and Merge instructions
(EXP, CME, MRG, MRGR) provide bit field control over the
contents of variable 1length registers. In the case of
Expand, the first operand is expanded to be of the sanme
length as the second operand, and contains the base element
(i.e. 0 in the case of bit registers, or the character which
when evaluated as an integer has the value zero in the case

of character registers) at positions corresponding to 0 bit
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positions in the seccnd operand. The elements of the first
operand are placed in the result at the positions

corresponding to 1's in the second operand. Compress is the
inverse instructicn to Expand. The elements of the first
operand selected by corresponding in position to 1's in the
second operand are packed, to yield the result. The Merge
instructions blend the first and second operands under the
control of the third operand by selecting consecutive
elements from the first operand for positions in the result
corresponding to 0's in the third operand, and consecutive
elements from the seccnd operand for positions in the result

corresponding to 1's in the third operand.

b) Test Instructions

Function: These instructions (Table 5.12) are used for

testing variable 1length registers. Those instructions
marked with an asterisk (*) must have an L or an R
concatenated to the opcode which indicates in which
direction the scanning is to proceed.

Notes: i) The Size instruction (SIZE) places the length of
the first operand in the second operand.

ii) The Count instructions (CNT, CNTI, CNTR) count
the number of instances of the second operand in the first
operand, and place the quantity in the third operand. In the
case of Count Immediate, the immediate data is one element
corresponding in tyge to the first operand. The condition

code is set based on the quantity.
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iji) The 1Index instructions (IEF*, TIIEF*, IEU*,
ITEU*, ISF*) scan the first operand until a particular
criterion is satisfied, or the operand is exhausted.
Immediate data must be one element corresponding in type to
the first operand. If the scanning criterion is satisfied,
the index into the register of the first element or the
first of a group of elements satisfying the criterion is

Placed into the third operand. The criteria are as follows:

Mpemonic Criteria
IEF* { Any element of the second operand
IIEF* } is found in the first operand
IEU* Q First element found that is
IIEU=* j { not in the second operand
ISF* The second operand is a substring

in the first operand

iv) The Compare Length instructions (CL, CLR, CLIR)
compare the length of the first operand with either the
length of the second operand (Cl, CLR) or the value
contained in an integer register (CLIR) . The condition code
is set by the comparison.

v) The Translate and Test instructions (TRT*) scan
by performing a table look~up operation as for the Tranmslate
instruction. The scan continues until the first operand is

exhausted, or the character accessed fronm the table is not



Table 5.12 variatkle

Instruction
Name

Size

Count

Count Immediate

Count Register

Index Element
Found

Index Immediate
Element Found

Index Element
Unfound

Index Immediate
Element Unfound

Index Substring
Found

Compare Llength

Compare length
Register

Compare Length
to Int. Reg.

Translate and
Test

Membership

Opccde

SIZE
CNT

CNTI
CNTR

IEF*

IIEF*

IEU=*

IIEU=*

ISF=*

ClL

CLR

CLIR

TRT*

MEMR
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Length Register Test Instructiorns

Operand List

{B,C},{F,1}

{B,C},s, (F,1}

{B0,C0} ,DO, {F, I}

B,B, {F,I} or C,C, (F,I}

B,B, {F,I} or C,C, {F,I}

{B0,CO0} ,DO, {F,I1}

B,B, {F,I} or cC,cC, {F,I}

{80,C0},D0, (F, I}

B,B, {F,I} or c,C,{F,1}

{B,C},s

{B,C}, {B,C}

{8.C},{F,1}

¢,s0, {F,I}, (F,I}

c,C,B

Condition
Row Codes
a 0,2
a c,2,3
a 0,2
a 0,2,3
a 0,2,3
a 0,2
a 0,2,3
a 0,2
a 0,2,3
c 0,1,2
c 0,1,2
c 0,1,2
a 0,2
b 0,1,2,3

* must ke replaced by L or R to indicate direction of scan
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the base character. 1In the event of the 1latter happening,
the third operand is set to the index of that character
within the first operand, and the fourth operand is set to
the numeric value of the table entry.

vi) The Membership instruction (MEMR) sets the
third operand to contain non-zero bits where elements of the
second operand are found in the first operand, and zero bits
elsevhere. The condition code is set on the basis of the

number found.

c) Bit Instructions
Fupction: The fecllowing instructions (Table 5.13) affect
only bit registers. The operations associated with these
instructions are evident from the instruction names. The
length of the result is always the same as the length of the
first operand. The second operand is always taken as left
justified, and is truncated or extended as necessary. If
extended, it is extended with bits selected such that the
operation on the extended portion does not affect the values
of the first operand in this area. The result replaces the

first operand.

1=

otes: i) The &and instructions (ND, NDR) perform the
logical product operation upon the two operands.

ii) The Or instructions (OR, ORR) perform the
bitwise disjoint union of the two operands.
iii) The Exclusive Or instructionms (xo, XOR)

perform the bitwise disjoint logical sum operation on the
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Table 5.13 Bit Instructioms

Instruction opcode Operand List condition
Name Row Codes
And ND B,S b 0,1,2,3
And Register NDR B,S b 0,1,2,3
or OR B,S b 0,1,2,3
Oor Register OFR B,B b 0,1,2,3
Exclusive Or XR B,S b 0,1,2,3
Exclusive Or XRR B,B b 0,1,2,3
Register

two operands.

5.7.4 Addressing Instructions

Fupction: These instructions (Table 5.14) are used to
modify the contents of address registers.

Notes: i) The Point instruction (ENT) 1loads the address
generated for the second operand into the first operand.

ii) The Indirect instruction (IND) causes a
standard sized field addressed by the operand to be loaded
into the operand.

iii) The Push and Indirect instruction (PIND) does
a Push operation followed by an Indirect operation.

iv) The Scan instructions (SCAN, SCANL) scan linked

lists. 1The first operand addresses the list element under
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Table 5.14 Addressing Instructions

Instruction Opcode Operand List Condition

Name Row Codes
Point ENT A,S unchanged
Indirect IND A unchanged
Push & Indirect PIND A unchanged
Scan SCAN A,s0, {B,C},S1, {F,1} see below
Scan Limited SCANL 14,S0, {B,C},S1,{F,1},{F,I} see below

consideration, The second operand is a relative field
reference, and in conjunction with the first operand refers
to the link field of the list element. The third operand is
a variakle length register which is used as one of the
comparands in the scanning operation. The fourth ofperand is
a relative field reference, and in conjunction with the
first operand specifies the field to be ccmpared to the
third ofperand. The f£ifth operand is a register which
contains the count o¢f the 1list element currently being
examined. In the case of SCANL, the sixth orerand contains
a value which is the upper limit for the fifth operand. The
operation proceeds as follows:

a) The fifth operand is zeroced.

b) The second operand is compared with the
field addressed by the first and fourth operands.

c) If equality exists, the operation stops
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with a condition code of zero. Otherwise, continue.

d) The field addressed by the first and second
operands is accessed. If it is zero, the operation stops
with a condition code of one. If it is an invalid address,
the operation stops with a condition code of three.
Otherwise, continue.

e) The fifth operand is incremented. 1In the
case of SCANL, if the fifth operand is now greater than the
sixth operahd, the operation stops with a condition code of
two. Otherwise, continue.

f) The field accessed in ster d) is 1loaded
into the first operand, and the process continues at step

b).

5.7.5 Comversion Instructions
Eunction: The Conversion instructions (Table 5.15) are used
for converting data from one internal fcrmat to another.
Data is internally represented in the following formats:

a) Character

b) Bit

c) Floating point (numeric)

di Fixed point (numeric)
Table 5.16 summarizes the conversions and the applicable

instructions.
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Instruction Opcode Operand List Condition
Name - Row Codes
Convert Numeric VNN {F,I},E or E, {F,I1} a 0,1,2,3
Convert Chart's to VCN {E,F,1},C a 0,1,2,3
Numeric
Convert Chart's toc VCB B,C b 0,12,3
Bits
Convert Floating VEC C,E unchanged
to Char's:
Floating Format
Convert Floating VECE C,E unchanged
to Char's:
Exp. Format
Convert Fixed to VFC C, {F,I} unchanged
Char's
Convert Bits to VBC Cc,B unchanged
Char's
Table 5.16 Data Foramat Conversions
To |Character Bit Floating Fixed
From Foint Point
Character - VCB VCN VCN
Bit VBC - - -
Floating VEC, - - VNN
Point VECE
Fixed VFC - VNN -
Eoint
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5.7.6 Allocator Instructions

Fupction: The Allocator Instructioms (Table 5.17) provide
control over dynamic storage allocation.

Notes: i) set Dynaaic Space (SDS) and Add Dymamic Space
{ADS) do as their names imply. In a program which uses
dynamic allocaticn, there must be one SDS instruction to
initialize the allocator. The operand is taken as a
positive integer indicating in terms of characters the
amount of space to be available for dynamic allocation. ADS
alters the amount of dynamic space, its operand indicating
the number of characters to be added. SDS amnd ADS set
condition code three to indicate that there is not enough
storage available to satisfy their requirements. ADS sets
condition code two to indicate that the quantity indicated
cannot be deleted, either because the amount of free space
is not sufficient, or the amount of dynamic space is not
sufficient. Successful completion of these operations sets
condition code zero.

ii) Query Free Space (QFS) and Query Dynamic Space
(QDS) 1load the amount of free space and dynamic space
respectively into the operand.

iii) The Length of Block instruction (LBL)
determines the length of the block addressed by the second
operand (in terms of vector elements if it is a vector, in
terms of characters otherwise), and loads this quantity into

the first operand.
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Table 5.17 Allocator Instructions

Iastruction Opcode Operand List Condition
Name Row Codes

Set Dynamic SLS {F,I,D0} see below
Space

Add Dynamic ALS {F,1,D0} see below
Space

Query Free QFS {F,1} unchanged
Space

Query Dynamic QDs {F.,1} unchanged
Space

Length of Block LEL {F,1},S0 unchanged

Get Dynamic CBLOCK [dblock oplist] Table 5. 18 see below
Block

Get Dynamic CFAD [dfad oplist ] Table 5. 18 see below
Abs. Field

Get Dynanmic CFRD [dfrd oplist] Table 5.18 see below
Rel. Field

Drop Block XBL [xbl oplist] Table 5.18 unchanged

Drop Field XFI { symbol] Table 5.2 unchanged

iv) The block and field allocation instructions
(DBLOCK, DFAD, DFRD, XBL, XFI) have a special operand 1list
structure given by Table 5.18.

v) The DBLOCK instruction allocates a block from
dynamic storage and associates it with the [symbol] which is
the instructiont's first operand. The second operand

determines the length of the block allocated. 1In the case
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Table 5.18 Grammar of Allocator Instruction Operand Lists

[dblock oplist]::=[ symbol],[ length ][ repopt]

[dfad oplist]::=[syabol],[field length generator]

[dfrd oplist]::={symbol],[disp],[field length generator]
[ xt1l oplist]::=[symbol ]J[repopt]

[ repopt }::={ empty Jle,[ operand address]e,[modifier list]
[length]::=[ integer operand]eT[ template reference]

[template reference]::='[ symbol]'e ([ integer operand ],[ field
length generator]))

{ field length generator]::=F'[symbol]'e[bc],[ integer
operand ]

[bc]::=EeC
[(disp]::=[ integer operand ]e ([ integer operand],[integer
operand))
Types used from Table 5.2 are:
{integer operand]

[ symbol]

(empty]
{operand address]
(modifier list]

of the length being an [integer operand], the length is the
value of the operand in terms of characters. In the case of
the length being a [template reference], the length of the
template is used. The template may be specified either as a
symbol or as a dynamic vector generation. If non-empty, the
third operand specifies the 1location where the address

previously associated with the first operand is to be
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stored. If this address is specified as a [modifier list],
the address of the newly allocated block is used as a base
address,

vi) The DFAD instruction allocates an absoclute
field from dynamic storage and associates it with the
[symbol] which is the first operand. The length of the-
field allocated is determined by the second operand, which
either specifies another field or indicates whether the
third operand €xpresses the number of bits or characters,

vii) The DFRD instruction associates a relative
field definition with the [symbcl] which is the first
operand. The second portion of the operand field determines
the displacement of the field, and the third portion
determines the fielgd length as fcr the DFAD instruction,
The displacement is specified either as a number of
characters, or as a number of characters and a number of
bits.

viii) The XBL instruction deletes the block
currently associated with the {symbol] which is the first
operand. If the second operand is non-empty, it addresses a
location from which an address may be retrieved to becone
associated with the first operand. If the second Ooferand is
specified as a (modifier list], the address of the block to
be deleted is used as a base address.

ix) The XPL instruction deletes the field or field
definiticn associated with the [symbol] which is the

operand.
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5.7.7 Control Instructions

The following instructiens deal with transfers and
monitoring of control within the program. As ALAS is
oriented to operating under a monitor system which handles
input/output, the control instructions include the
input/output instructions. These instructions will be
considered in twc subgroups:

a) Internal Program Control Instructions

b) Input/Output Instructions

a) Irnternal Program Control Instructions

(5]

unction: For the nmost part, these instructions (Table

ut

«19) bhandle the wmechanisms of transfer of control,
Transfers of ccntrol within a program are performed in two
vays:

i) Branching, and

ii) Executing.
Branching involves a direct transfer of control. The
address in the operand field is taken as the address of the
next executable instruction. Executing involves a transfer
of control in a manner which allows control to be returned
later to the instruction immediately following the execute
instruction. The actual mechanism of an execute instruction
involves stacking the current instruction address prior to
the transfer, The instruction which reverses the effect of

the Execute is the Revert instruction.
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Notes: i) The Conditional Branch and Execute instructions
(BC, BCR, EC, ECR) test the condition code with a four bit
mask, one bit for each possible condition. This mask, the
first operand, is specified as immediate data having a
decimal value of from zero to fifteen inclusive. The test
is considered positive if the current condition code is
selected by the mask. For example,
Condition Code 2 : 0 0 1 0
Mask 12: 1100
The test is negative.
Condition Code 3 : 0 0 0 1
Mask 11 : 1011
The test is positive.
If the test is positive, the branch or execute is perforemed,
using the address specified by the second operand.

ii) The Zero or Empty Branch and Execute
instructions (ZEB, ZEE, ZEBR, ZEER) branch or execute to the
second operand address if the first operand 1is zero or
empty.

iii) The Translate and Branch or Execute
instructions (TRB, TRE) branch or execute on the basis of
the following test. The second operand is a table of
characters as for the Translate and Test instructionm. The
third operand is a table of addresses. The first operand is
scanned, its characters being used to look up characters in
the seccnd operand. As long as the characters selected are

base characters, and the first operand is not exhausted, the
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Table 5.19 Internal Control Instructions

Instruction Name Opcode Operand List

Branch Conditional BC Do,S

Branch Conditional BCR DO,A
Register

Execute Conditional EC Do,sS

Execute Conditiomal ECR D0,A
Register

Zero or Empty ZEB {B,C,E,F,1},S
Branch

Zero or Empty ZEBR {B,C,E,F,I},A
Branch Register

Zero or Empty ZEE {B,C,E,F,I},S
Execute

Zero or Empty ZEER {B,C,E,F,I},2
Execute Register

Translate and TRB c,S0,S1,{F,1}
Branch

Translate and TRE c,S0,51, {F,1}
Execute

Revert REV

Query Depth of QDE {F,I1}
Execute

Set Condition Code SCC {B,F,1,D0}

Loop Loop I,{F,I1I,D},{F,I,D},{F,I,D}

Loop End LEND

Pop Loop Stack PLOOP

Query Depth of QDL {F,1}
Loop Stack

The only instruction in the above table which sets the
condition code is SCC.



91

scan continues. If the first operand is exhausted,
processing continues with the next instruction. If a non-
base character is looked up, it is used as a zero origin
index into the third operand to retrieve an address which is
the target of the branck or execute. The index within the
first operand of the character which selected the target is
placed in the fourth operand.

iv) Revert (REV) pops the execution stack,
returning control to the point of the last currently active
Execute instruction.

v) Query Depth of Execute (QDE) retrieves a
numerical value indicating the current depth of the execute
stack.

vi) Set Condition Code (SCC) sets the condition
code to the numerical value of the 1last two bits of the
operand if it is arithmetic, or the first two bits of a bit
operand.

vii) The instructiomns LOOP, LEND, PLOOP, and QDL
are concerned with the constructing of 1loops. LOOP
initializes the lcop in the following way:

a) The first operand is pushed down on its own
stack, and is initialized to the value of the second
operand.

b) The first operand, the address of the
instruction following the Loop instruction (the ‘range top
address'), and the values of the second and third operands

are formed into a composite, and pushed down on the loop
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stack.
The LEND instruction examines the top e€entry on the loop
stack, using it in the following way:

a) The first operand is incremented by the
value of the fourth operand, and tested against the value of
the third operand.

b) If it is less than or equal to the third
operand, a branch to the 'range top address' is taken.

Cc) Othervise, the first operand is popped, and
the loop stack is popped, and processing continues with the
next instruction. PLOOP pops an entry from the loop stack,
and may be used in the case of abnormal exits fronm loops.

QDL may te used to check the depth of the loop stack.

b) Input/Output Instructions

Function: The fcllowing instructions (Table 5.20) handle
input/output and calls to programs writtem in languages
other than ALAS.

Notes: i) Inputs/Output may be executed in-line or
concurrent with other programaming. The in-line I/0
instructions (INE, OUT) have the effect of the out-of-line
instructions (BGINP, BGOUT) followed impediately by WAIT
instructions. The first operand of the I/0 instructions
(INP, OUT, BGINP, BGOUT) indicates the device to be used.
The second operand is the address of a control string to be

used by the device interface. The third operand is the

address of a memory buffer into or from which data is to be
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Table 5.20 Input/Output Instructions

Instruction Opcode Operand List Condition
Name Row Codes

Input INP D0,S1,S1 d 0,1,2,3

Output ouT D0,S1,s2 a 0,1,2,3

Start Input BGINP DO,S1,S2 d 0,1,3

Start Output BGOUT DO,S1,S2 d 0,1,3

Halt I/0 KIO DO unchanged

Device Busy LBB bo,s unchanged
Branch ,

Device Busy CBBR Do,A unchanged

Branch Register

Device Busy CBE Do,s unchanged
Execute

Device Busy CBER Do0,A unchanged
Execute Reg.

Wait WAIT or DO,D1,D1,.40 a 0,1,2,3

Set Mask SM Do,D1 unchanged

Set Status SS DO,D1,D1,e00 unchanged

Call CALL D0,sS1,52 unchanged

transferred.

ii) KIO halts the operation of the device specified
as its ofperand.

iii) WAIT is used to await ccmpletion interrupts on
I/0 devices. An empty operand 1list indicates that the
program is to resume operation after the next completion, or

immediately if no devices are active. The non-empty operand
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list specifies the number of devices to be watched, and
which ones they are. Completion on all specified devices is
required before processing continues. The condition code is
set to the highest code due to a completion within the
group. The control strings for I/0 devices contain status
information updated by the interfaces. The program can
therefore determine the completion status of individual
devices even though they may be grouped in the operand list
of one WAIT instruction. As control strings are machine and
device dependent, they will not be discussed further at this
point.

iv) The Device Busy branch and execute commands
(DBB, DEBR, DBE, DBER) test the device indicated by the
first operand, and kranch or execute if it is busy.

v) Set Mask (SM) and Set Status (SS) control the
program trapping of interrﬁpts as follows. Set Mask sets a
mask used to control which interrupts will be acknowledged.
Set Status is used to set or reset interrupt lines and other
status controls. These instructions in conjunction with the
error and interrupt control blocks mentioned previously
afford the programmer a considerable degree of control over
interrupt handling. Default masks are set at the outset of
the program.

vi) CALL is a macro instruction which is
conditionally assembled to provide standard addressing
linkages to programs compiled from languages other than

ALAS. fThe first operand indicates the source language of



95

the called module. The second operand is the address of the
module, and the third operand is the address of the
parameter address list. The proper fcrmatting of data is

the programmer's responsibility.

5.8 ASSEMBLER INSTRUCTIONS

The following section includes instructions which
control the assemkler and, in some cases, generate wmachine
code. The instructions presented are grouped into four
classes:

a) Listing Control
b) Allocation
c) Communication, and

d) Others

5.8.1 1listing Control

The following five instructions provide program coatrol

over the assembly listing:

a) Name : Listing off
Mpemonic : LOFF
Operand List : nil
Effect : Listing of assembler output is

suspended
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b) Name : Listing On
Mnemonic : LON
Operand List : nil

Effect: Listing of assembler output is started

c) Name : Space
Mnemonic : SPACE
Operand List : DO
Effect : The value cf the operand determines

the number of lines skipped at this point in the listing

d) Name : Eject Page
Mpnemonic : EJECT
Operand Llist : nil
Effect : The listing is continued at the top

of the next page

€) Name : Title
Mnemonic : TITLE
Operand list : DO
Effect : The operand must be a character
string enclosed in quotes. It replaces the current title.
The title appears at the top of each page of the listing.
The effect of the Title instruction includes the effect of

an Eject instruction.
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5.8.2 Allocation Instructions

The following instructions control static allocation.

a) Name : Program Block

Mnemonic : PBLOCK

Operand List ¢ nil

Effect : This instruction generates the main
entry point code and initializes the assembler to take
ensuing instructions until an END instruction is encountered
as an ALAS program module. A name in the label field of a
PBLOCK instruction becomes associated with the module as its

main entry point, and as the module's nanme.

b) Name : Static Block

Mnemonic : SBLOCK

Operand List : [empty] or [symbol] or DO

Effect : This instruction causes a static
allocation of a block of nemory. The name in the label
field of an SBLOCK becomes associated with the address of
the block. If the operand list of an SBLOCK instruction is
not empty, it must either specify a template, whose length
determines the length of the block, or specify a number of
characters which is to be the size of the block. If the
operand 1list is empty, the size of the block is determined
as large enough to enclose the ensuing Define Field

instructions, terminated with an END instruction. Define
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Field instructions appearing within a static block
description perform a special fumction. Although their form
is that of an absolute field definition, the name (if any)
on such a DFA instruction becomes associated with a relative
field description describing the position within the block
of that field. The initialization within the field

definition initializes the block.

c) Name : Address Block

Mnemonic : ABLOCK

Operand List : nil

Effect : The ABLOCK instruction initializes
the assembler to accept the ensuing instructions to the next
END instruction as defining a series of addresses. The name
in the 1label field of an ABLOCK instruction is associated
with the block address, The body of the block description
consists of DFA instructions whose label fields are ignored,
and whose operand fields must contain address references

which can be resolved by the assembler or loader.

d) Name : Interrupt Control Block
Mnemonic : INTCB
Operand List : nil
Effect : This instruction is the header of a
static klock declaration, The blcck so declared will be
attached to the supervisor, and used to controcl the trapping

of interrupts. The content is initialized by ensuing DFA
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instructions, whose label fields are ignored. The block has
a standard length; however, terminating the declaration with
an END instruction is permitted, in which case the
undeclared portion is initialized by the assembler to
contain the appropriate portion of the default Interrupt

Control Elock.

€) Name : Allocator Control Block

Mnemonic : ALLCB

Operand list : nil

Effect : This instruction is the header of a
static tklock declaration. The block so declared will be
attached to the allocator, and used to control its operation
during the execution of the prcgranm. The content is
initialized by ensuing DFA instructions, whose label fields
are ignored. The block has a standard length; however,
premature terminaticn of the declaration with an END
instruction is pereitted, in which case the undeclared
portion is initialized by the assembler to contain the

appropriate portion of the default Allocator Control Block.

f) Name : Input Output Device Control Block
Mnemonic : IODCB
Operand list : nil
Effect : This instruction is the header of a
static tFtlock declaration. The block so declared will be

attached to the program, and used to assist in performing
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input/output operations. The block contains a description
of an I/0 device, and is initialized by following the IODCB
instruction with a series of DFA instructions, terminated by
an END instruction. The IODCB imstruction must be
labelled. IODCB labels are used in DIODE instructions (see

belovw) .

q) Name : Define Pattern

Mnemonic : DP

Operand lList : nil

Effect : Define Pattern initiates a pattern
description. A name must be present in the label field of a
DP instruction, and it becomes associated with the pattern.
The instructions following DP up to the next END instruction
are the body of the pattern description, and must be DFR
instructions describing the various fields within the
pattern. The associations of names and relative fields
within a pattern are local to that pattern and do not affect

other instances of those names outside the pattern

description.
h) Name : Define Vector
Mnemonic : DV
Operand List : DO,[field 1length generator]J*
Table 5.18

Effect : Define Vector defines a vector

description and associates it with the name which is present
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in the label field of the DV instruction. The operand 1list
consists of an immediate element whose value determines the
number of fields in the vector, and a special version of the
field length generator as described in Section 5.7.6. The
modification consists of prohibiting the use of registers in

the specification of the field length.

i) Name : Define Field Absolute

Mpemonic : DFA

Operand List : conforms to Table 5.21

Effect : The DFA instruction may be used in
many different areas in an ALAS program. Except as noted, a
name appearing in the 1label field of a DFA instruction
becomes associated with the address of the beginning of the
field. The operand list of the DFA instruction is processed
in the following way:

i) The [repetition factor] (if present)
determines the number of copies of the ensuing definition to
be generated contiguously within memory. If ommitted, it is
assumed to be cne.

ii) The ([type] indicator indicates the
type of terms to be used in initializing if the
initialization oftion is non-empty, and the length of each
of the terms in the initialization list if the length option
is empty.

iii) The (length option] (if non-empty)

specifies the size of each of the terms in the
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Table 5.21 Grammar of DFA Operands
[dfa oplist]::=[repetition option][ type]{length option ]
[initialization option]
[repetition option]::=(empty Je[decimal integer]
[type]::=AeBeCeEeleX

[length cption]::=[ emptyJel[ decimal integer JeLB[{ decimal
integer]

(initialization option)::=[empty)e[initialization list]

(initialization listl::='[char string]*e{initialization
list[,*[char string]*

initialization <cption (if it is non-empty). The length is
in terms of characters in the case of L, and in terms of
bits in the case c¢f LB. 1If omitted, the length is assumed
to be that specified by the type indicator.

iv) The initialization option (if non-
empty) specifies one or more values to be wused for
initializing memory. The required format of the character
string is determined by the type indicator. If more than
one value is present, a field of the size determined
previously is used for each of the terms, If the
initialization orftion is empty, no initializing is
performed. The duration of the association of a name and a
field depends upon the location of the DFA instruction. If
it is within a PBLOCK declaration, the association is valid
within that éﬁLOCK only, unless the name is mentioned in a

GLBL instruction (see Section 5.8.3). If the DFA
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instruction is external to any block declaration, the name-
field associaticn is considered global, i. e. the name is
permanently bound to the 1location for the purpose of
loading, use by Frograr modules, etc. If the DFA
instruction is used within an SBLOCK declaration, its name

becomes associated with a global relative field definition.

J) Name : Define Field Relative

Mnemonic : DFR

Operand List : conforms to Table 5.22

Effect : The DFR instruction associates the
relative field definition presented as the operand list with
the name in the label field of the instruction. The first
half of the operand list specifies the displacement of the
field, in terms of either characters or characters and
bits. The second half of the operand list specifies the
field length, as for the DV instruction. As with DFA, the
position of a DFR instruction determines the duration of the

association of the name and field definition.

k) Name : End
Mnemonic : END
Operand List : nil
Effect : END is used to terminate all static
allocations which have a declaration requiring more than one

instruction.
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Table 5,22 Grammar of DFR Operands
{dfr oplist]::=(bc]{decimal integer ],[decimal integer
option ]J{ bc]
[ decimal integer cpticn]::=(empty])e[decimal integer ]

{bc]::=BeC

1) Name : Declare I/0 Device

Mnemonic : DIODE

Operand List : DO,[sy®mbol]

Effect This instruction informs the
assembler that a particular device (indicated by DO) will he
attached to the rfrocessor during program execution. The
[symbol] is a label of an IODCB block. If a name is present
in the label field, it beccmes associated with the device,

and may ke used in specifying the device in lieu of DO.

5.8.3 Ccmmunication Instructions

The following instructions provide for the
comnunication of address information between program
modules., The assembler and 1loader resolve references

created by these instructions.
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a) Name : Entry

Mnemoni¢ : ENTRY

Operand List : a group of one or more
[ symbol]s, separated by commas

Effect : This instruction denotes certain
symbols within a EBLOCK as entry points, i.e. points which
may be used in other modules in Execute or Branch
instructions. Such symbols become global by virtue of being
in the operand 1list of an Entry instruction. The
instruction also causes the necessary multiple entry point

code to ke generated.

b) Name : Global

Mnemonic : GLBL

Operand List : a group of one or more
[ syrbol }Js, separated by commas

Effect : Name-address associations within a
PBLOCK are implicitly localized to the PBEOCK. This
instruction provides a mechanism for overriding the implicit
localization. Symbols listed in the operand list of a GLBL
instruction are marked by the assembler for comnsideration by
the loader at load time. Symbols in the operand list of a
GLBL instruction wmust be associated with addresses of

statically allocated entities.
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c) Name : Global Dynamic

Mnemonic : GLBLD

Operand List : a group of one or more
{ symbol ]s, separated by commas

Effect : As with statically allocated name-
address associations, dynamically allocated néme-address
associations are normally implicitly restricted to access
within the PBLOCK containing the allocation. GLBLD is used
to override this phenomenon. A siamilar process to that
referred to for resolving statically allocated name-address
associations during loading is used to construct a dynamic
dictionary. The dynamic dictionary bhas two distinct
portions, a public portion, and a private portion. The
public pertion contains all global dynamically allocated
name-address references; and the private portion contains
all locally dynamically allocated name-address references.
The presence of a dynamically allocated symbol in a GLBLD
operand list promotes the name-address reference from the
private portion of the dynamic dictionary to the public

portion.

d) Name : External
Mnemonic : EXTRN
Operand List : a group of one or more
[symbol]s, separated by commas
Effect : The EXTRN instruction is used to

identify symbols used within a PBLOCK that are static global
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symbols. The localization of symbols within a PBLOCK also
has the effect that symbols defined outside a PBLOCK cannot
be accessed within that block. The EXTRN instruction
overrides this function. (Note: There is one exception to
the exclusion phenomenon mentioned herein, and that is the
case of symbols used as targets in branch and execute
instructions. 1In that case, the symbols are implicitly

declared external if they cannot be resolved internally.)

e) Name : External Dynamic
Mnemonic : EXTRND
Operand List ¢ a group of one or more
[ symbol)s, separated by comamas
Effect : This instruction has the same effect
as EX1IRN, except that the syabols involved nust be

dynamically defined.
5.8.4 Others

Other instructions available in ALAS present a
conditional assembly and a macro facility. These must be
omitted at this time in the interests of brevity.

5.9 THE LOADER

The loader creates a core image of a program by

combining the various outputs frcm the assembler, other
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language processors, and libraries according to control
information which may or may not be provided by the
programmer. It loads the necessary system support and
compiles the dynamic dictionary. It resolves intra-modular
references and provides error information as necessary. An
additional feature of the 1loader, visualized, but not
completely formalized at this point, is an overlay feature
which would allow progran controlled overlaying of
statically allocated storage. The 1loader control input

format will not ke detailed at this tiame.

5.10 CONCLUSION

ALAS's principal operational points have been presented
above, The format of ALAS is primarily asseabler level in
nature. The author feels that the intrinsic tedium of the
medium is more than outweighed by the attendant

flexibility.

In the next chapter, some of the more important
advantages of ALAS are discussed, and a programsing example
is presented. Chapter 7 discusses three techniques of

implementing ALAS,
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CHAPTER VI

DISCUSSION AND EXAMPLE

6.1 INTIRODUCTION

In this chapter, the author discusses what he considers
to be the most iaportant characteristics of ALAS:
a) Address processing mechanisa,
b) Static and dynaaic storage allocation, and

c) Variable length registers.

The value of a programming language can only be
determined by its use, and an example bas therefore been

given in Section 6.5.

Throughout this chapter, illustrative comparisons
between ALAS and other languages, notably Ls, are
presented. The choice of L& for purposes of comparison was
made primarily lecause 1¢ is, 1like ALAS, a 1low 1level
language, designed to be almost universal in its

applications.

6.2 ADDRESS PROCESSING

In an assembler language which is not data structure
oriented, data structure programming can involve complicated

address manipulaticn, a direct consequence of the extemsive
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use of pointers. To provide for easier handling of address
manipulation, ALAS has an address processing feature which
allows for extensive processing of various components within
an address specification used as an operand. The address
processor affords the following facilities:

a) Direct addressing,

b) Indirect addressing,

C) Subscripting (use of vectors),

d) Symbolic displacement (the use of relative field
definitions),

e) Indexing, and

f) Arithmetic expression displacenment.

In comparison, consider L&, another 1low level data
structure language. 1In particular, its addressing feature
allows no direct addressing of storage, but only indirect
addressing. It allows for symbolic displacement, but no
indexing, subscripting, or arithmetic expression

displacenment.

To illustrate the significance of these differences,
suppose that a block of memory is set aside to contain a
series of fields, all of the same length. These fields each
contain the address of a block elsewhere in memory (Figure
6.1a) . The block o¢f addresses is to be used to access,
within a loop, words in other blocks whose position within

the block depends on the value of a variable (Figure 6.1b).
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A ——————

A\

(a) Structure to be Accessed asin (b)

Determine v

Fetch the v word of the block

addressed by the i" word of A
[

L

i in X
Increment and test i J
bounds
‘ iout of

(b) Flowchart of the Loop Containing the Access

Figure 6.1 Accessing Example
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In Lé¢, it 1is necessary tc redefine relative fields
within the loop, as the relative field mechanism is the main
displaced addressing facility. In ALAS, however, the access
may be performed using subscripting and indexing (as well as
indirect addressing), all within the operand specification.

a) L¢ code: Assuame that the variable displacement
is in bug Vv, the loop index is in bug I, and the address of
the block of addresses is in bug A. To get the result into
a bug, three instructions are required:

(V,DV,16,31),(1,D1,0,31), (X,E,ALIV)
is in register I1, the loop index is in register 10, and the
address of the block of addresses is associated with the
name A. To load the same field into a register, only one
instruction is required:

L I2,A<I0>_(I1):(B,16,16)

Another indication of the difference in power between
the two systems' addressing features is the relative ease
with which the ALAS address mechanisms can duplicate those
of 1¢, while the converse is quite complicated. For
example, assume that the relative fields are defined to be
the same in both systems, and bug A (in L6) points to the
location with which the npame A (in ALAS) is associated.
Then the L¢ address ABCD can be duplicated in ALAS as
A@B_aC_aD. However, the subscripting mechanism in ALAS (to

consider just one example) can only be duplicated in L6
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through computation: Consider an ALAS vector of fields 24
bits long. The i'™ element of the vector can be accessed by
the address A<I0>, if register IO contains the subscript i.

In L6, the program must determine the word or words which
contain the field or portions of it, and define the
appropriate field or fields, and perform the access by
merging, if necessary, the results of the two relative field

acCesseEs.

The addressing mechanisms of ALAS are not solely
oriented toward data structure processing, which is an
advantage in that programmers are not restricted to a
particular technique of accessing memory. In LISP, for
example, the programmer has an asscociative addressing
feature which, combined with the ofperations CAR and CDR,
forms the basis of all memory accessing., While a technique
of this simplicity is aesthetically attractive, it is
inconvenient when dealing with data that cannot be easily
formed into binary trees. The absolute field of ALAS could
be used to handle trees in a similar way to LISP, while
other mechanisms in ALAS are more suited to the data that

cannot be handled conveniently in the form of a binary tree,
6.3 STORAGE MANAGEMENT

In ALAS, storage allocation can be performed either

statically, or dynamically. In the case of statically
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allocated storage, the assembler can resolve more of the
addressing, and the resultant code can be nmore efficient,
than if the storage is allocated dynamically. BY contrast,

LISP and L¢ do not allow static allocation.

ALAS storage is block and field oriented. In some
ways, this is similar to the L6 system, but ALAS provides
also for absolute field allocation. An absolute field is a
memory word of programmer defined length. The distinction
between a block and an absclate field lies in the existence
of the “header" field at the beginning of a block. 2 block
header contains information which is used by the address
processor and by the allocator, and is part of the price
paid for the extended addressing mechanisas present in
ALAS. An absolute field does not have a header, and the use

of extra storage for block headers can be avoided.

6.4 VARIABLE LENGTH REGISTERS

The variable 1length registers of ALAS represent a
departure from commonly accepted machine architecture, and
complement the use of variable length fields in memory. The
registers are intended for character and bit string
processing, which is important for data structure

programming as character or bit strings are often used.
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As a simple example, consider the representation of a
graph by its incidence matrix, a Boclean matrix A whose
elements a,;; are true if there is an arc from node i to node
J, and false otherwise. While no low level language handles
this representation in a particularly copvenient manner,
ALAS's variable length bit registers and fields are amore
suitable in this situation than those of, for example, LS.
A typical representation of such a matrix in ALAS would be a
block, a vector of length n, with fields in the vector being
n bits lcng. The block would contain a direct tramscription
of the matrix; that is, the ith element of the would be an
n-bit field which represents the i'" row of the incidence

matrix (Figure 6.2).

The variable length registers and string operations of
ALAS would also be useful in synthesizing the facilities of
certain higher 1level languages (such as SNOBOL) for string
processing, Using the ALAS operations, the programmer may
create string processing packages which are tailored to
particular applications, thus gaining efficiency over
similar systems written in a higher level language

environment,

For example, consider the interpretive processing of
FORTRAN format statements. Part of the processing is
concerned with the recognition of the various format codes

and transfer of control based on the code recognized (See
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(a) The Graph
0 1 0 1
0 0 1 0
1 0 0 0
0 1 | 0

(b Its Incidence Matrix

0 1 0 1
0 0 1 0
1 0 0 0
0 1 1 0

(c) The ALAS Vector

Figure 6.2 A Graph and Its Representations
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Lee (1967), Figure 6.1). In SNOBOL, branching is limited to
one binary choice of exit per test. 1In ALAS, there are the
instructions TRB and TRE, which allow the choice of up to
255 exits on ome test. To branch according to the format
code at the current pointer position would require as many
SNOBOL statements as format codes, statements vhich perforn
a linear search of the list of codes. 1In ALAS, however, a

single instruction could perform the same job.

6.5 A EROGRAMMING EXAMPLE

As a prograamming examfle, consider the use of the graph
representation shcwn in Figure 6.2 in decomposing a graph
into its strongly connected coaponents. The strongly
connected component of a vertex i of the graph G = (N,I') 1is
the graph G6; = (N;,T;), where N; is the set consisting of i
and of those vertices j€N for which there exists a circuit
in G passing through i and j, while I';j is defined for JEN
as being I';jj = TjnN;, i. e. the set of those k€I'j which

belong also to N,

1

(Hammer and Rudeanu, 1967, Chapter 9).
The object of the decomposition is the generation of m
pairwise disjoint subsets N ,N,ecesNp of the set of

vertices N.

The decomposition may be performed as follows:
a) Given the incidence matrix A of the graph,

determine the incidence matrix & cf the transitive closure
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of the graph. This may be performed by determining the
incidence matrix A of the algebraic closure of the graph,
and using the identity & = EUK; where E is the square
Boolean matrix with 1's on the diagonal, and 0's elsewhere.

4 may be detersined through the successive application of
simple transformations to the incidence matrix A. The
transformation T; (i=1,.e.,n) is defined as follows. 1If A =
{fanle Tid = f{fapn}s, wWhere anpy = Bhkvahidjke In order to
compute row h of T;A, one proceeds as follows. If a,; = O,
then the rtow h of T,A coincides with row h of A: ey = Ay
(k=1,eeepsn)s If a,; = 1, then row h of T,A is the
disjunction  of rous i and h of A: apy = apva;

(k=1,...,0). It can be shown that X = T T, ;...T R.

The following PBLOCK accepts a square Boolean matrix A
pointed to by the register AO, and generates the incidence

natrix & of the transitive closure of the graph whose matrix

is A.

MBCLOSE PBLOCK
PSH 10,I11,12,B3
LBL 10,0(¢a0) GET N
DBLOCK AT,T (10,B,10) GET AT
S I0,0ONE

* THIS LOOP COPIES A INTO AT
LOOP I11,0,I0,1
L B3,0 (A0) <I1>
ST B3,AT<KI1>
LEND
LOOP I11,0,10,1 LOOP THRU T (I)
LOOP 12,0,10,1 LOOP FOR T (I)
LT B3,AT<12>:(B,I1,1) IS A(H,I) = 07
BC 8, ENDLP IF so, GET OUT
L B3,ATKI2> ELSE ROW H =

OR B3,AT<IT ROW H OR ROW I
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ST B3,AT<I2>
ENDLP LEND
LEND
* AT THIS POINT AT IS THE ALGEBRAIC CLOSURE
L B3,=B*'1!
- * THIS LOOP MAKES IT THE TRANSITIVE .CLOSURE (SEE TEXT)
LOOE I1,0,10,1
ST B3,AT<I1>:(B,I1,1)
LEND
PNT A1,AT LOCATE AT
PoP 10,I11,12,B3 CLEAN UP
REV RETURN
ONE DFaA Itqe
END

b) Given the transitive closure of the graph, the
determination of the strongly connected components of a
graph, and its reduced graph, is simply the determination of
the following two matrices:

i) the decomposition matrix D = {d;;} baving n
rovws and m columns, where
{ 0 if idN;,
di; =
1 if i€N;;
ii) the incidence matrix AR of the reduced

graph GR,

These matrices may be determined through the use of two
simple transformations A—AY and A—AY, defined for square
(say, n kty n) Boclean matrices A:

i) The matrix AY is obtained in m (m < n)
steps, each one of them consisting of the deletion of
certain columns. More precisely, in step p (P=14ee.,m) vwe
consider the first column h which remained undeleted after

the previous steps, and delete all of those coluans j for
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which j > h and Ajp = 1.
ii) AV is the matrix which coincides with the

matrix A except on the diagonal, where it has only zeros.

It can be shown that D = [X x(®T)]Y, and AR = (DT x a x
D)w. Given the transitive closure cf the graph, represented
by X, the determination of the decomposition is accomplished
as follows:
i) Form 2 x(27)
ii) Transform [R x(87)] to give D
iii) Pora DT x 2 x D
iv) Transform DT x A x D to give AR
To perform part b) of the decomposition, the author
programmed the fcllowing routines:
i) A matrix transposition routine
ii) A matrix multiplication routine
iii) A V transform routine

iv) A W transform routine

The matrix transposition routine and the matrix product
routine are complicated somewhat by the vagaries of columnar
access in the representation utilized in this exanmple.
However, the operations which may' be performed
simultaneously upon a complete row of a matrix in this
representation more than repay accessing difficulties. For
example, the fragment

LR B2,B3
ND B2,0 (A0) <I5>
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BC 6,0NEL
performs the expression ﬁgaijbjk, exiting to 'ONEL* if the
result is 1, dropping through if the result is 0. Without
ALAS's bit registers and operations, prograamming this
portion of the pmatrix multiplication would require a loop,

possibly with two double subscript accesses within it.

The following modules perform the operations necessary

for part k) of the decomposition described above:
i) Matrix Transpose - This PBLOCK accepts a
Boolean matrix represented as above, and creates its
transpose. Upon entering the routine, it is assumed thag
register A0 points to the matrix, and upomn returning,

register A1 points to the transpose.

MBTRANS PBLCCK
PSH 10,11,12,I3,B3
* DETERMINE SIZE CF MATRIX - I1 BY I0
L B3,0 (20) <0>
SIZE B3,I0
LBL 11,0 (A0)

* GET BLCCK FOR TEANSPOSE
DBLOCK AT,T(I0,B,1I1)
* DECREMENT INDICES TO ALLOW FOR ZEEO ORIGIN

S 10,0NE
S I1,0NE
* LOOP THROUGH THE ROWS OF A
LOOP 12,0,I1,1
* ACCESS I2TH ROW OF A
L B3,0 (A0) <I2>
* LOOP THROUGH THE COLUMNS OF A
LOOE 13,0,10,1
* SEED A(I2,I3) AT AT(I3,I2)
ST B3:(I13,1) ,AT<I3>: (B,I2,1)
LEND
LEND
PNT A1,AT LOCATE AT
POP 10,11,I2,13,B3 CLEAN UP
REV RETURN

ONE DFA I
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END

ii) Matrix Product - This PBLOCK accepts two
matrices, pointed to by A0 and A1, and generates the matrix

product defined as follows:

If A = {a;;}: i=1,..0.,m; J=14¢0.,pP, and

B = [bjk}: j=1'ooopp; k=1,...,n, then
AXB=2C-= {Cik}: i=1,...,ll; k=1'.¢.'n'
where ¢;, = j@laijbjk.
MBERCD PBLOCK
PSH 10,11,12,13,14,15,81,B2,B3
* DETERMINE SIZE OF MATRIX A - I0 BY I1
LBL I0,0(a0)
1 B3,0 (A0) <0>
SIZE B3,I1
* DETERMINE SIZE OF MATRIX B - I1 BY 12
L B3,0 (A1) <0>
SIZE B3,I2

* GET THE BLOCK FOR THE PRODUCT
DBLGCK c,T(10,B,I2)
* DECREMENT INDICES FOR ZERO ORIGIN INDEXING

S 10,ONE
S I1,0NE
S 12,0NE
L B1,=B'01"
* LOOP THROUGH THE COLUMNS OF THE PROLUCT
LOOP 14,0,12,1
ZE B3
* THIS LOOP BUILDS THE I4TH COLUMN OF B IN B3
LOOP 13,0,I1,1
BUR B3,0 (A1) <I3>: (B,I4,1)
LEND
* THIS LCCP PRODUCES A COLUMN OF THE FROLUCT
LOOP 15,0,I0,1
LR B2,B3
ND B2,0 (A0)<I5>
BC 6,0NEL
ST B1:(0,1) ,C<I5>: (B,I4,1)
B MLOOP
ONEL ST B1: (1,1) ,C<I5>: (B,I4,1)
MLGOP LEND
LEND
PNT A2,C LOCATE C
POP 10,11,12,13,1%,15,81,B2,B3 CLEAN UP

REV RETURN
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ONE DFA It1e
END
iii) v Tramnsform - This PBLOCK accepts a

square Boolean matrix addressed by A0 and stored as
described above, and performs the v transform upon it. The
matrix created is in the same form as the original, and is
addressed by register A1 at the completion of the
procedure. It should be noted that the procedure below
performs ihe v transform on any square Boolean patrix, while
in the case of transforming 2 x(AT), further simplification
of the program can ke performed due to the fact that A x(AT)
is symmetrical. 1In particular, the statements labelled X to
Y inclusive may te replaced by the statement

OR BB:(IZ,I3).0(A0)<IZ>:(B,IZ,I3)
In full, the module is as follovus:
MBVTR PBLOCK

psH 10,11,I2,13,B2,B3
* DETERMINE SIZE OF MATRIX - IO BY 10

L B3,0 (A0) <0>
SIZE B3,10

* SET UP LOOP COUNTERS IO = N-1, I1 =N
LR 11,10
S I0,0NE

* INITIALIZE THE ELIMINATION STRING
XOR B3,B3

*

THE STATEMENTS FOLLOWING DOWN TO "QUT" GENERATE A
BIT FIFLD WHICH MARKS THE COLUMNS TO BE ELIMINATED

»*

2E 12
ELIM LR 13,11
SR 13,12
X ZE B2
LOOP 13,12,10,1
BUR B2,0 (A0) <I3>: (B,I2, 1)
LEND
Y ORR B3: (I2,13) ,B2
L B3: (I2,1) ,=B'0"
SHELIM A 12,0NE

CR 12,10



124

BC 2,00T
LTR B3:(I2,1),B3:(I2,1)
BC 8,ELINM
B SHELIN

* THIS SECTION BUILDS THE COMPRESSED MATRIX, USING
* THE ORIGINAL MATRIX A, AND TRE ELIMINATION STRING

ouT NR B3

CNTI1 B3,B*1',1I3

DBLOCK D,T(I1,B,I3)

LOOP 12,0,10,1

L B2,0 (A0Q) <I2>

Cup B2,B3

ST B2,D<I2>

LEND

PNT A1,D LOCATE D

POP 10,11,12,13,B2,B3 CLEAN UP

REV RETURN
ONE DFA Ivqe

END

iv) W Transforam - This PBLOCK accepts a square
Boolean matrix A pointed to by register AO, and forms a
second matrix BW = ENA, which is effectively A with its

diagonal elements all zero.

MBWTR PBLCCK
PSH 10,I1,B3
* DETERMINE SIZE OF THE MATRIX - IO BY IO
LBL 10,0 (A0)
DBLOCK BW¥,T (10,B,I0)
S 10,0NE
LOGE 11,0,I0,1
L B3,0(A0)<I1>
L B3: (I1,1),=B'0*
ST B3,BW<IT
LEND
PNT A1,BW
POP 10,I1,B3
REV
ONE DFA 1010
END

The following PBLOCK calls on the modules given above
to perform the overall operation of decomposing a graph into

its strongly connected components. Given the incidence
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matrix of the graph, pointed to by register A0, it returas
the decomposition matrix D, and the incidence matrix of the

reduced graph, AR, pointed to by registers A1 and A2

respectively.

DECOMP PBLOCK
PSH AQ REMEMBER A
E MBCLOSE GET TRANSITIVE CLOSURE
iR 40,A1
E MBTRANS GET ITS TRANSPOSE
E MBPROD MULTIPLY THEM
XBL 0 (a0) DROP THE CLOSURE
XBL 0 (A1) AND ITS TRANSPOSE
LR A0,A2
E MBVTR FCEM D
XBL 0 (A0) DISPOSE OF PRODUCT
PSH A1 REMEMBER D
LR A0,A1
E MBTRANS GET D TRANSPOSE
POP A0 RETRIEVE ADDRESS OF
PSH A0 A THEN REVERSE ARGUMENTS
SWR A0,A1 FOR MBPROD
E MBPROD FORM D TRANS X A
XBL 0 (A0) DROP D TRANS
LR AQ,A2
POP a1 RETRIEVE ADDRESS OF
PSH A1 D
E MBPROD FORM (D TR X A) X D
XBL 0 (A0) DROP (D TR X 1)
LR AQ,A2
E MBWTIR FOEM AR
XBL 0 (a0) DROP (D TR X &) X D
LR A2,A1
POP A0,A1
REV
END

To program the above example in a language which did
not have the variable length operations and bit addressing
of ALAS would probably require more data storage and more
intermediate programming concerned with data access. In
particular, the 1lack of a vector and subscripting facility

in L¢ makes creation of and accessing a Boolean matrix of
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indeterminant size more complex than it is in ALAS. To
illustrate, consider that locating the i'" word in an L6
block requires either the addition of the quantity i to a
bug containing the address of the block, or the definition
of a relative field of displacement i, while in ALAS, the
location of the i'" element of an ALAS vector involves the
simple use of the subscript operation. Consider also that
the elements in an ALAS vector are not necessarily vword
length. The amount of Lé programming effort increases again
if one attempts to duplicate the storage appearance of the
ALAS vector - in that the i'" element may not lie in the it

word, it may lie in the jth or j and j+1th words, where i >

j = £ (i,1le,1w); 1. = element length, and 1, = vword leagth.
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CEAPTER VII

IMPLEMENTATION

7.1 INTIRODUCTION

At the beginning of this thesis, we pointed out that
attempts at designing general purpose sof tvare for
interactive graphics have not been outstandingly
successful. Rather than simply using the available hardware
and software tools to design yet another software support
system, we have chosen to return to first principles in
developing an eséentiallj new approach to the design of

graphics software.

The operations required for interactive graphics
software involve a great deal of string processing and model
building which fall under the general heading of data
structure manipulation. The crux of the problem is that
machines are not yet well designed for this type of work.
The author has therefore designed a low level data structure
system which, in his opinion, 1is very suitable for the

purpose.

In the 1long term, the author forsees the gradual
evolution of machines designed more explicitly for data
structure manipulation. In the meantime, systems such as

the one described in this thesis should be implemented for
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experimentation, using those hardware techniques at present
available. Possitle methods of implementation are discussed

in the remainder of this chapter.
7.2 THE HYBRID SOFTWARE IMPLEMENTATION

The author considers that the most convenient method
for ieplementing ALAS is a hybrid technigue, part assembly
and part interpretation. The software is split into two
components: a preprocessing componept, which includes the
assembler and 1lcader, and an dn=core gcomponept, which

includes the storage allocator, the interpreter for extended

operations, and the address processor.

The assembler translates ALAS Programs into a amixture
of wmachine code and calls to the in-core component. The
loader attaches the required external routines to the ALAS
program, and creates a core image of the static part of the
program. It then requests storage for the prograa, loads
it, and initiates execution. As the ALAS program is partly
in-line code and partly subroutine cal;s, the author

considers the translation process a hybrid of assembly and

interpretation.

The decision on which operations are to be interpreted
and which operations translated as in~line code depends upon

the characteristics of the machine,
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As an example, consider the evaluation of operand
addresses. Each evaluation may be handled by generated
machine code, or through a call to a special routine. The
choice would be made by weighing the possible saving in
space using a call against the saving in time using in-line
code. For an implementation on the 360, the author would

choose:

Addressing Operation Technigue
Base Address Generation In-line Code

Absolute Expression Modifier In-Line Code

Index Modifier In«Line Code
Indirect Modifier Call
Relative Field Modifier Call
Subscript Modifier Call
Pattern Reference Call
Subfield Specifier Bits Call

Subfield specifier Characters In-Line Code

In this case, the address string
AT@B_<I3>+2
where AT refers to a dynamic block,
B is a statically defined relative field,
I3 is an index register, and
2 is immediate data,
would translate into the following:

a) In-lipe code to get the address of block AT,
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b) A& call to the relative field modifier routine,
c) A call to get the indirect address,
d) A call to the subscripting routine, and

€) In-line code to add 2.

example of translation into 360 Assembler would be

as follows:

* BASE ADDRESS GENERATION - PART A)

LM 4,5,AAT PICK UP ADDRESS OF AT
LIR 4,4 IS IT VALID?
BC 13,R1ME3 IF NOT, ERROR TIME

* RELATIVE FIELD CALL - PART B)
La 6,B GET ADDRESS OF B
BAL 14,S1F CALL FIELD PROCESSOR

* INDIRECT ADDRESSING COMPOUND - PART C)
La 6,TOLFT GET ADDRESS OF AREA O
BAL 14,MO0VER MOVE PIELD INTO AREA O
BAL 14,CONAD CHANGE AREA 0 TO ADDRESS
L 4,TORGT~4 ADDRESS TO REG 4
La 5,32 DEFAULT LENGTH

* SUBSCRIPTOR CALL - PART D)
L 6,13 GET SUBSCRIPT INTO 6
BAL 14,s0s CALL SUBSCRIPTOR

* ABSOLUTE EXPRESSION CODE - PART E)
LA 6,2 EVALUATE EXPRESSION
AR 4,6 AND ADD IT

Notes:

i) AAT contains the address of the block currently
associated with AT

ii) ALAS registers are in core and associated with
names identical to their specifiers.

iii) ALAS address words are one full word, used as
follows:
Bit Contents
0 on if address invalid
1 on if address word aligned
2 on if address byte aligned
-4 unused, always off
-7 bit remainder of address
31 360 (byte) address
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A similar [Fprocess may be applied to the operation code
set., Machines with more powerful hardware will of course
have more in-line code and fewer subroutine calls. The
hybrid technique has the advantage that it is realizable

with present machinery.

7.3 HARLCWARE IMPLEMENTATIONS

Since ALAS is at the assembler level, its design may be
said to reflect the architecture of a hypothetical wmachine.
All ALAS operations are realizable in modern hardware
design, and storage management could be handled with
techniques already used by some assemblers. The major
obstacle is the high expected cost of building an ALAS
processor. The author feels that a period of
experimentation with an assembler/interpreter implementation

is necessary.

A second stage in experimentation might wmake use of
microprogramming. This technique involves a processor which
has a number of simple, high speed operations (micro-
operations) which are combined into programs (microprograms)
retained usually (though not always) in read-only storage,
and executed as unit instructions. The selection.of the
appropriate microprogram is based on the "instruction code"
fetched from memory. Thus, when the machine appears to be

executing a machine code instruction, it is actually
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performing a program of wmicro-code instructions. This
technique is used commercially in most machines in the IBM

36C series.

The author feels that implementation of ALAS on a
machine with variable microprogranm storage would be
worthvwhile. A microprogrammed ALAS machine would be faster
than a system using the hybrid software technique. However,
micro-computers themselves are not well designed for
handling many of the functions required in ALAS, in
particular the use of variable 1length operands. One can
foresee eventually the design of micro-computers oriented
specifically towards the implementation of this type of

systenm.



133

CHAPTER VIII

A GRAPHICAL INTERFACE IN ALAS

8.1 INIRODUCTION

ALAS itself does not have any particular graphical
facilities. What it does have are standard instructions for
sending strings of data to any output device (including a
graphics terminal), and accepting strings from any input
device. However, ALAS has been designed to be particularly
suitable for building a graphics package to aid the

programmer.

The following package (PRIG: Package for Remote
Interactive Graphics) is intended for implementation in ALAS
for the IBM 360/67 - CDC GRID System at the University of
Alberta, to be made available as part of the ALAS 1library.
As ALAS is at the assembler level, the characteristics of
the terminal will affect the interface. 1In particular, the
design of PRIG is affected by the fact that the display
terminal controller is a computer, and is therefore capable
of performing some processing of data transmitted to and

from the ALAS program in the 360.

Using PRIG, output to the display terminal is brought
about as follows:

a) The ALAS program uses PRIG routines to create a
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picture descripticn.
b) PRIG frocesses the picture description to create
appropriate code for the terminal, forwards the code to the

terminal, and initiates display of the Picture described.

Using PRIG, input from the display terminal is

organized into grours of user actions, which are called

'messages!’,

PRIG is used to provide functions of three types:

a) Picture Building

b) Display cCcntrol

C) Input Processing
A brief description of PRIG follows in the next three
Subsections, The techniques used to describe aAlas (Chapter
S5) will be used in this chapter. Aan example, a progranm
which provides a simple sketching facility, is given in

Appeﬁdix a.
8.2 PICTURE BUILLDING

The PRIG picture model is a plexlike structure created
from blocks called nodes which contain drawing information,

status control infornation, and references to other nodes.

The PRIG commands for picture modelling fall into four

categories, dealing with:
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a) Structure,
b) Drawing Content,
c) Status Sensing and Control Content, and

d) Editing.

8.2.1 Structure Commands

Functjon: The Structure Coamands (Table 8.1) are concerned
with the creation and interrelationships of nodes.

Notes: i) NODE and ENDNODE delimit a node definition.
NODE initiates node definition mode, and associates its
operand, as a name, with the node created by the remainder
of the definition. ENDNODE terminates node definition
mode. The body o¢f the node definition consists of those
PRIG node content ccmmands which occur between a NODE
command and an ENDNODE command. Use of these node content
commands inserts code into the node.

ii) SHOW inserts code (into the current node
definition) which shows another node, named by its first
operand. This code includes a pointer to the shown node
(the t*target' node), and control parameters given by the
remainder of the SHOW command operand list. Inserting a
reference to a mnode via a SHOW command is considered to
subjugate the target node to the current node for the
instance of the SHOW command. The hierarchical
relationships so defined can be used in editing picture
descriptions and appraising input strings. Examples of

these uses are to be found in Appendix A, The second and



136

Table 8.1 Structure Commands

Command Name Opcode Operand List

Node NODE [(symbcl])

Endnode ENDNODE

Show SHOW [syabecl},s0,51,S2,53,S4,55,S6,
s7

Repeat Node RNODE [symbol ],[symbol]

Delete Node XNODE [(symbol]

third operands indicate the position of the origin of the
target node (relative, of course to the origin of the
current node)., The fourth and fifth operands are values to
be wused in scaling the target node. The sixth and seventh
operands indicate the time range during which the target
node is to be displayed. The eighth operand is a bit
operand indicating whether or not the target node is to be
blinking in this instance. The pinth operand is a bit
operand indicating whether the target node is to be blanked
in this instance. Any or all of the control parameters
(operands two to nine) may be omitted, but the commas must
be included, The omission of a parameter indicates that a
default action is desired. The defaults are:

a) Operand Two - No X displacement

b) Operand Three - No Y displacement

C) Operand Four - No X scaling



137

d) Operand Five - No Y scaling

e) Cperand Six - Start Time = 0

f) Operand Seven - Stop Time = 2047
g) Operand EBight - Not Blinking (0)
h) Operand Nine - Not Blanked (0)

iii) The Repeat Node coamand (RNODE) creates a copy
of the node associated with its first operand, and
associates the copy with its second operand.

iv) Delete Node (XNODE) causes the deletion of the

node associated with its operand.

8.2.2 Drawing Content Coamands
Function: The Drawing Content commands (Table 8.2) insert
draving code into the current node definition.

Notes: i) The Vector commands (VCT, VCTC) insert code

which results in the drawing of a series of connected
straight 1line segsents. The first operand indicates the
number of line segments to be drawn. The second and third
operands are ALAS vectors vwhich contain in corresponding
positions the x and y coordinates (respectively) of the
series of points used consecutively as end points of the
line segments. VCT draws the series of connected straight
line segments starting at the first point through the points
consecutively to the last point. VCTC draws the same series
as VCT, and an additiomnal line from the last coordinate pair
used by the preceding drawing content command to the first

point in the series. The fourth operand is a bit operand
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Table 8.2 Drawing Content Ccmmands

Command Name Orpcode Operand List
Vector VCT s0,s1,s2,s3
Vector Continued VCTC s0,s51,s2,53
Point POINT s0,s1,82
Symbol SYMBOL s0,s1,s2,s3
Text TEXT s0,s1,52,s53,s4,S5
Text Continued TEXTC S0,581,52,S3
Text Register TEXTR c,s0,s1,s2,S3
Text Register TEXTRC c,s0,s51

Continued

indicating whether or not the line is to be dashed.

ii) The POINT command inserts code vhich shows a
series of points. The first operand indicates the number of
points to be shown, and the second and third operands
indicate their pPcsitions, as in the case of the Vector
commands.

iii) The SYMBOL coamand operates in the same manner
as the POINT command, except that instead of a point, the
character addressed by the fourth operand is shown at the
points indicated. The first, second and third operands are
identical in type and function to those of the POINT

command.
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iv) The Text commands (TXTI, TXIC, TXTR, TXTRC)
insert code which shows strings of characters. In the case
of TXT and TXTC, the strings are in memory, and their first
operands indicate the lengths of the strings, and their
second operands address the strings. TXTR and TXTRC obtain
their strings from character registers, specified as their
first operands. The +third and fourth operands of the TXT
command and the second and third operands of the TXTR
conmand iﬁdicate the x and y coordinates of the start
position of the string. TXTC and TITRC start their strings
at the next character position following the last coordinate
pair used by the rpreceding drawing content command. The
last two operands of all four instructions are identical in
function and style. The second last operand is a bit
operand indicating whether the characters are to be large or
small. The last operand is a bit operand indicating whether
or not the character string is to be horizontal (left to
right), or vertical (bottom to top). An example of the use

of both TEXT and TEITR is to be found in Appendix A.

.2.3 Status Sensing and Control Content Commands

1 [o

unctjon: These nine coamands (Table 8.3) are concerned
with the insertion of code which makes the picture sensitive
to certain environmental considerations, such as the value
of the timer, the key code of the 1last function key

depressed, light fpen interrupts, and so on.
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_Table 8.3 Status Sensing and Control Content Commands

Command Name Opcode Operand List

Identify ip s0

Disable Interrupts DISINT S0,51

Enable Interrupts ENINT s0,51

Branch Timer Low TMBL s0,[symbol]

Branch Timer Not TMBNL S0,[syambol)]
Low

Branch Function Key FKBE S0,[ syabol]

Latch Equal

Branch Function Key FKBNE S0,[symbol]
lLatch Not Equal

Timer Control TMC S0,S1

Request Next Frame NXFR

Notes: i) ID - As mentioned in connection with the SHOW

command, there is a hierarchy in a PRIG picture structure.

For the purposes of discussion, a node body will be
considered one lateral level; i. e. all code within a given
node is at a common lateral level. SHOW commands define
vertical connections. A node containing a SHOW command is
considered to be, in that instance, at a level above the
node shown by that command. Thus, PRIG picture models may
be thought of as having levels. The levels are considered
in terms of the number of SHOW commards between the top

level of the picture and the node under consideration.
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Level is a structural characteristic, not a characteristic
of a node, as a node may be utilized at many different
levels within one picture model. Every node has an identity
character. This character can be changed within the node
through the use of the ID command. The default identity

character is the base character.

Identity characters are used by the PRIG picture
generator in the following way. During display, the display
controller software maintains an ID stack. Whenever a SHOW
command code is encountered, the ID stack is pushed down,
and the top of the stack is set to the identity character of
the node shown. Whenever the end of a node is encountered,
the ID stack is popped up. Whenever an ID command code is
encountered, the contents of the top element of the ID stack
are changed to the character specified by the command. This
is done to provide a basis for the identification of
interrupts. When an interrupt occurs, such as the light pen
pick of a displayed entity, the curremt ID stack is copied

as part of the action description.

The identity character is also used in the editing
process. The locating of SHOW command code for the purposes
of alteration can be directed through the use of an 1ID
chain, The edit functions identically to the display
controller software in handling identity characters. For

example, the ID chain associated with a light pen pick will,



142

when wutilized by the editor, locate the code generating the
display of the element picked.

ii) The Interrupt Control commands (DISINT, ENINT)
insert code which respectively disables or enables
interrupts. The cperands are two binary values, the first
of which is associated with light pen interrupts, and the
second with alphanumeric kéyboard interrupts. If an operand
is true (1), the enablesdisable status is altered for the
corresponding interrupt type; otherwvise, there is no effect.

iii) The Timer Branch commands (TMBL, TMBNL) insert
code into the current node which will alter the order of
execution of code within the node on the folloving’ basis.
The GRID display terminal displays a picture by looping
through display code, as the terminal does not use a storage
CRT. To prevent possiktle burning of the phosphor in the
CRT, the 1loop must not be executed more than fifty times a
second. The GRID instruction set includes an instruction
which, when present in the display loop, ensures that the
maximum refresh rate (i.e. frequency cf loop execution) is
not exceeded. This instruction effectively provides a time
base, as long as the display 1loop takes no longer than
twenty milliseconds to execute. FRIG's timer is a counter
updated by the display controller software each time the
display 1loop is executed. The timer can be zeroed at the
initiation of a frame (Section 8.3), and may be altered by

code generated by the Timer Control command (see below).
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The timer has two modes of operation, finme and coagse.
In fine mode, one timer unit corresponds to one display loop
execution (twenty milliseconds under optimal comditions).
In goarse mode, one timer unit corresponds to sixty-four
executions of the display loop (1.28 seconds under optimal
conditions). The Timer Branch commands insert code which
checks their first operands against the timer, and branches
if the timer is either low (TMBL), or not low (TMBNL). The
addresses to which branches are taken are generated bty the
picture generator, and are specified as [symbol]s which have
occurred in the label fields of PRIG node content commands
vithin the same node definition as the branches. The timer
commands provide the wuser with time dependent display
capabilities. |
iv) The Function Key Branch commands (FKBE, FKBNE)
insert code which will alter the order of execution of code
within a node in the following manner. On the keyboard of
the GKID terminal, there are latching keys called Status
keys, and special keys called Function keys (Section 8.5).
Pressing Status keys causes them to latch; if the key vwere
on (in) it switches off (out), and vise versa., Status keys
do not cause interrupts; however, on every interrupt they
are read. Depressing Function keys causes interrupts.
Except when none of the Status keys are depressed (Status
0), Function key interrupts cause the display controller
softvare to update a control word which contains a composite

of the Status and the Function key number, referred to as
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the Status/Function Key Latch. The code inserted by the
Function Key Branch commands checks the Status/Function key
composites which are their first operands against the
Status/Function Key Latch. FKBE branches if they are equal;
FKBNE branches if they are not equal. The addresses for
branches are determined from their second operands as in the
case of the Timer Branch commands.

v) The 1Timer Control command (TINMC) inserts code to
alter the operation of the timer. It has two Dbinary
operands. The first operand affects the mode of operation
of the timer. If it is true (1), the timer is altered to,
or remains in, coarse mode. If it is false (0), the timer
is altered to, or remains in, fine mode. If it is omitted,
the mode of operation of the timer is unaltered. The second
operand, if true (1), requests that the timer be restarted.

vi) The Next Frame command (NXFR) inserts code that
requests the display controller software to display the next

franme.

8.2.4 Editing Commands
Fupctiop: PRIG picture editing allovws for the following
operations:

a) Deletion of nodes (see XNODE, above) ,

b) Chaining of nodes, and

c) Altering the parameters of SHOW commands.

The commands are shown in Table 8.4.
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Table 8.4 Editing Commands

Command Name Opcode Operand List
Chain CHAIN [ symbol],[ symbol]
Locate Show LOSH { symbol],D0,{ symbol },51,52
Locate Next Show NXSH

Query Origin COR {F,I},{F,I}

Query Scale Qsc {F,1}, (F, I}

Query Timer Limits QTI {F,I},(F,I}

Query Elink QBLI B

Query Elank QBLA B

Set Node SETND [symbol]

Set Origin SETOR {FeI},{F, I}

Set Scale SETSC (PeI},{F,1}

Set Timer Limits SETTI {(PoI}, {F,I}

Set Blinking On BLINK

Set Blinking Off UNELINK

Set Blanking On BLANK

Set Blanking Off UNBLANK

Copy Node CNODE [symbcl]

Notes: i) CHAIN attaches a copy of the body of the node
named by its second operand to the node named by its first

operand.
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ii) The Locate Show commands (LOSH, NXSH) scan the
picture model for a SHOW command which satisfies a
particular set of criteria, LOSH initiates the scan, Its
first operand identifies the topr node of the picture (or
picture fragment) which is to be scanned. Its second
operand indicates the combination of criteria to be used to
locate the SHOW ccmmand code. The third, fourth and fifth
operands of the LCSH command specify the scanning criteria.
If a particular criterion is not required by the combination
in use, the corresponding operand may be cmitted. NXSH
continues the scan, using the sane criteria, and starting at
a point in the picture model just after the SHOW located by
the previous LOSH or NXSH command. If a SHOW satisfying the
criteria is located, condition code Zero is set. Otherwise,
condition code three is set. The three criteria that are
used to make up the criteria combinations are
a) A Node ﬁame - operand three
b) A level Indicator - operand four
C) BAn ID Chain - operand five
The seven combinaticns and their interpretations are as
follows:
a) Operand Two : 1
Cperand Active : five
Effect : The SHOW command sougat is in
code with an ID chain equal to operand five.
b) Operand Two : 2

Operand Active : four
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Effect : The SHOW ccmmand sought is on
the level indicated.
C) Operand Two : 3
Operands Active : four,five
Effect : The SHOW command sought is on
the level indicated. It must also either show a node
(either directly or indirectly) which ccntains code with an
ID chain equal to operand five, have an ID chain equal to
operand five, or have an ID chain whose leftmost portion is
equal to operand five,
d) Operand Two : 4
Cperand Active : three
Effect : The SHOW command sought directly
shows the node named by operand three.
e) Operand Two : 5
Operands Active : three,five
Effect : The SHOW command sought directly
shows the node named by operand three. It must also either
show a node (either directly or indirectly) which contains
code with an ID chain equal to operand five, have an 1ID
chain equal to operand five, or have an ID chain whose
leftmost portion is equal to operand five.
£) Operand Two : 6
Operands Active : three, four
Effect : The SHOW ccmmand sought directly
shows the node named by operand three on the level indicated

by operand four.
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g) dperand Two : 7

Orerands Active : three, four, five

Effect : The SHOW command sought directly
shows the node named by operand three at the level indicated
by operard four. It must also either show a node (either
directly or indirectly) which contains code with an ID chain
equal tc operand five, have an ID chain equal to operand
five, or have an ID chain whose leftmost portion is equal to
operand five,

iii) The Query commands (QOE, QsCc, QTL, QTU, OBLI,
QBLA) retrieve the current contrcl parameters associated
with the SHOW command most recently found by the locate Show
commands. The mnemonics and the parameters accessed are as
in Table 8.5.

iv) The Set commands (SEIND, SETOR,SETSC, SETTI,
BLINK, UNBLINK, BLANK, UNBLANK) alter the control parameters
associated with the SHOW command most recently found by the
Locate Show ccmmands. The mnemonics and the parameters
altered are as in Table 8.6.

v) Omission of parameters from the Query and Set
commands 1is permitted, and the omitted operands are either
not accessed (Query commands) or not altered (Set commands).

vi) The Copy Node command (CNODE) generates a copy
of the node containing the SHOW command most recently found
by the Locate Show commands. This copy replaces the
instance of the node that contains the selected SHOW

command. The copy may be named (optional) by the operand of
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Table 8.5 Parameters Retrieved by Query Commands

Mpepopic Rarageters Accesgsed

QOR The displacement of the origin of
the target node relative to
the origin of the node
containing the SHOW.

gsc The scale parameters applied by the
SHOW

QTI The timer limits applied by the SHOW

OBLI The blink control value (true (1) if
blinking)

QBLA The blank control value (true (1) if
blanked)

the CNCDE command, Ensuing modifications to the selected
SHOW cosmand affect the copy, which nov in effect contains
the selected SHOW ccmpand. (Note that, without copying,
alterations to a node in the form of alterations to SHOW
commands contained within that node affect all displayed
instances of that node, as there is norinally omly one copy

of any node.)

8.3 DISPLAY CONTROL

Structures created by the picture building commands are

processed by the PRIG picture generator to prepare display

controller code. This code is forwarded to the display
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Table 8.6 Parameters Altered by Set Coammands

Mpemonjc  Parapeters Altered

SETND The node shown becomes that named by
the SETND operand

SETOR The displacement of the target node
origin relative to the origin
of the node containing the
SHOW is set to the SETOR

operands

SETSC The scale parameters applied by the
SHOW are set to the SETSC
operands

SETTI The timer liamits applied by the SHOW

are set to the SETTI operands

BLINK The blink control value is set to
true (blinking)

UNBLINK The blink control value is set to
false (not blinking)

BLANK The blank control value is set to
true (blanked)

UNBLANK The blank control value is set to
false (unblanked)

controller, which then creates displays on the CRT. The
Display Control commands (Table 8.7) provide program control

over these processes.

Notes: i) The Initialize Display command (IDISP) initiates
communication with the display controller, initializing the

display controller software. If specified, the operand
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Table 8.7 Display Control Commands

Command Name opcode Operand List
Initialize Display IDISP so
Reinitialize REDISP s0

Display
Close Display XDISP
Frame FRAME [symbol], {F,I}
Add Node ADNODE [syabol], {F,I}
Send SEND {F,1},{F,I}
Frame Status FSIST B

indicates the number éf frases vhich can exist
sipultaneously in the display controller storage. A frame
is one complete display loop and, therefore, only one frame
can be displayed at a time. The capability of having more
than one frame in the display controller storage at any one
time is made available to allow the overlapping of frame
transfer time and user interaction with the current
displayed image. The frame being processed to create the
current displayed image will be referred to as the active
frame, the process of initiating the display of a frame
being activation of the frame. The default is one frame.
ii) The Reinitialize Display command (REDISP)
resets the display controller software, discarding any

frames in display controller storage, and initializing the
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display controller software to provide for the number of
frames indicated Lty the operand, as in the case of IDISP
above. In the case of REDISP, however, the default number
of frames is the number associated with the previous IDISP
or REDISFE command.

iii) The Close Display command (XDISP) terminates
communication with the terminal.

iv) The Frame command (FRAME) processes the picture
structure whose initial (*topmost?) node is named by its
first operand. It creates the display controller code which
will display the picture nodelled. The second . operand is
optional, and indicates a frame index, a numerical
identifier used in the case of the multiple framing process
mentioned above. The PRIG picture generator maintains a
number of staging areas equal to the number of frames which
can exist simultaneously in the display controller storage.
The second operand of FRAME specifies which staging area the
display controller code is to occupy. If the frame index is
not specified, the néxt available frame staging area is
utilized. For the purposes of this decision, the frame
staging area which is occupied by the active frame is
considered available, however, it is alvays used only if no
other frame staging areas are available.

V) ADNODE processes the picture structure whose
initial ('topmost') node is named by its first operand. The
code created is added to a previously generated franme. Iif

the second operand is specified, it indicates the frame
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index of the frame to which the code is to be attached.
Othervise, the code is attached to the most recently created
frame. (Note - This code is pot autcmatically forwarded to
the terminal, even if the augmented frame is active.)

vi) The Send command (SEND) controls output to the
terminal controller. Its first operand is a control value,
expressed as a decimal integer in the range 0 to 31
inclusive. The control value is interpreted as five control

bits, whose contrecls are as follows:

Table 8.8 Control Value Interpretation

Bit Control
0 Send frane
1 Send added node
2 Activate Frame
3 Reset timer

4 Set timer coarse mode

The bit indices in the table are from left to right in the
control value. For example, the control value 22 ((Bit 0 =
16) + (Bit 2 = 4) + (Bit 3 = 2) = 22) indicates that a frame
is to be sent and activated, with the timer reset to 0 and
operating in fine mode. The second operand of SEND is an
optional frame index specification. If a frame index is

required by the command, but not supplied, the index of the
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most recently created frame is used.

vii) The Frame Status command (FSTST) retrieves
information concerning the status of frames. The
information is returned in groups of four bits, one group
per frame to a maximum of eight frames. The groups are
ordered with respect to frame indices, and combined into a
field which is lcaded into the operand (a bit register).
The four bits are interpreted as follows:

a) Bit 0 - Frame Possible - If a staging area
for this frame exists, this bit is on.

b) Bit 1 - Frame Active - If this frame is
currently being disglayed, this bit is on.

c) Bit 2 <« Prame Sent - If the most recently
created copy of this frame has been sent to the display
controller, this bit is on.

d) Bit 3 - Frame Amended - If the frame in the
staging area and the frame in the display controller storage
differ only in that the frame in the staging area is an
augmznted version of the frame in the display controller

storage, this bit is on.

8.4 INPUT HANDLING

A message (input record from the terminal) is returned
to the ALAS program as a structure. The facilities of PRIG
include an 'await input' command, and commands for accessing

and decoding the structure. Input may be decoded through
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the use of regular ALAS instructions as vwell. Input from
the terminal that occurs prior to the progranm encountering
an 'avait input' command is held until such a command is

encounteregd.

Prior to considering the actual commands, a brief

discourse on the input structure is in order.

The input message is structured as an ALAS vector, with
pointers within it which point to varying length portions of
two other blocks., Each field of the vector has five
subfields:

i) Action 1Identifier - This subfield contains a
numerical value which indicates the type of message
component this vector element describes. Table 8.9 describes
the actions and their corresponding action identifiers.

ii) Timer/Active PFrame/Status Composite - This
subfield contains the setting of the Status keys, the active
frame index, and the value and mode of operation of the
timer at the time of the interrupt (the first interrupt in
the case of a multiple interrupt component) which created
this message component.

iii) X-Y Composite - This subfield contains the
values of X and Y to be associated with this message
component, The significance of these values depends upon
the type of the message component. Table 8.10 indicates the

significance of the X and Y values in terms of the Action
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Action Identifiers and Their Actions

Actjon

Light pen hit

Alpha key hit
Function key hit
Special key hit

Alpha key string
Point string

Vector

New Frame interaction
Timer hit maximunm

End of message

Significance of X-Y Composite

Signjficance of X-Y Composite

contents of X register and Y register of
the display controller at the time
of the interrupt, which effectively
indicate the position of the
element hit

the position of the cursor at the time of
interrupt

the cursor position at the beginning of
the string

the position of the first point
starting position of the vector

no significance
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Identifiers.

iv) ID - This subfield contains the length of the
ID chain, and if that value is less than three, the ID chain
itself. As in the case of the Timer/Active Frame/Status
composite, if the message component is a multiple interrupt
type, the 1ID chain is the ID chain that was current at the
time of the first interrupt of the series. If the length of
the ID chain is greater than three, this subfield contains a
pointer into the ID heap, a block which contains ID chains.

v) Contents Composite - This subfield contains
variable information, dependent on message component type as

well as interrupt information, as in Table 8.11.

Table 8.11 Contents Composite Contents vs Component Type

Action IL gontents
1,9,10 Not relevant
2,3,4 Key code
5 Count of characters and pointer to

character string

6,7 Count of, and pointer to a contiguous
group of X-Y composites

8 A value which indicate what interactions
have taken place concerning frame
status
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Character strings, and vecters of X-Y composites are
held in a block called the Data Heap. 1D chains longer than
three characters are held in a block called the 1ID Heap.
The PRIG input handling commands are listed in Table 8.12,
and detailed in the notes below:

Notes: i) Await Graphical Input (AWGINP) suspends ALAS

program operation until the next message from the terminal
arrives.

| ii) The Accessing commands (CTION, ASTFRTI, ASTAT,
AFRAM, ATIME, AXY, AX, AY, AID, ASTR, AKCD, AVECT, ACONT)
each access portions of the current input message. The
first operand is an integer register which contains the
index of the message component being examined, and the
remainder of the operand list specifies the areas to which
the desired information is transferred. Table 8,13 details

the information accessed.
8.5 MESSAGE COMPONENT GENERATION

This section describes the user actions required to
generate the message components discussed in Section 8.4.
In the course of this discussion, the consolidation
functions of the display controller software become

evident.

Message components may be the following:

a) Light pen hit
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Table 8.12 1iInput Handling Commands

Command Name Opcode Operand List
Avait Graphical AWGINP
Input

Access Action ID ACTION I,{F,1}

Access Status/Frame ASTFRTI I,{F,1}
/Time Composite

Access Status ASTAT I,{F,1}
Access Frame Index AFRANM i,(P,I}
Access Timer Value ATIME I,{P,1}
Access X-Y AXY I,{F,I}
Composite
Access X Valye AX I, {F,I}
Access Y Value AY I, {?,I}
Access IC Chain AID I,cC
Access Character ASTR I,C
String
Access Key Code AKCD I, {8B,C,F,I}
Access Vector AVECT I,{FeI}.,A,2
Addresses
Access Contents ACONT I, {F,I},A

Subfield
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Table 8.13 Information Accessed by Access Commands

Mpemonic Information Accessed

ACTION The Action Identifier as in Table 8.9

ASTFRTI The Timer/Active Frame/Status subfield

ASTAT The Status

AFRAM The active frame index

ATIME The timer value

AXY The X-Y Composite

AX The X value of the X-Y Composite subfield

AY The Y value of the X-Y Composite subfield

AID The ID Chain

AS1IR The character string associated with the
component

AKCD The key code associated with the
component

AVECT The length of the list of points, and the

addresses of the vectors of X
values and Y values

ACON1T The length parameter and address
parameter from the conteats
subfield
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b) Alpha key hit

c) Function key hit

d) special key hit

e) Alpha key string

f) Point string

g) Vector

h) New frase interaction
i) Timer hit maximum

j) End of message

Allowable user actions at the terminal are (in this
case) the following:
a) Depressing the keys on the terminal keyboard
(see Figure 8.1), and

b) Selecting displayed entities with the light pen.

For a more elaborate description of the display
terminal, the reader is referred to the GRID Display
Subsysten Hardware Reference Manual {Control Data

Corporation, 1968).

PRIG display controller software considers the keyboard
as divided into four classes:
a) Status keys, which are the four unlabeled keys
at the top,
b) Function keys, which are those labelled F1, F2,

eeeg F9, FO, and INTER,
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C) Special keys, which are those labelled SEND, AUX
SEND, RETURN, REPT, SHIFT, CLEAR, LINE, CLR, DEL, LINE DOWN,
LINE UP, EDIT, TAB, TABSET, RESET, LINESKIP, BKSP, and SKIP,
and

d) Alphanuseric keys, which are the remainder of

the keys on the board.

The status keys do not generate an interrupt when
activated. Instead, they are read by the display controller

software whenever an interrupt occurs.

If the status keys are all disengaged, the status is
zero, and the function keys have particular functions which
control the state of the terminal, and entries into the
message tuffer. If any or all of the status keys are
depressed, depressing a function key generates an message
component of the type ‘'function key hit°*. Status zero

function key hits will be discussed later.

Some of the special keys have particular functions (to
be discussed later), but usually they generate *special key

hit's when depressed.

The alphanumeric keys generate 'alpha key hit's when
depressed. If no other manual interrupts intervene between
‘alpha key hit's, they are concatenated to form an *alpha

key string'. There is a position indicator displayed by the
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display controller software. This position indicator,
hereinafter called the cursor, is utilized by the display
controller software to indicate the position which the
display controller last acknowledged. An entered ‘alpha key
string* is displayed starting at the current cursor
position. As the string is typed in, the cursor moves,
indicating the next position in which a character can be
typed. A second cursor, called the echo cursor, remains at

the beginning of the displayed *alpha key string?.

The above section describes the generation of message
components b through e. Message components £ through j are
created by a compcsite of software and user actioms. As
they do to some extent depend on the status zero function
keys, let us nov consider the actions caused by depressing

then.

Function key 1 is a position indicating key. 1t
determines the light pen position by displaying a complete
scan of the screen. The cursor is moved to the position at
which the light pen is pointed. The echo cursor is left at
the last cursor position acknowledged at a status 0 function
key 4 hit, or an alpha key hit, or an alpha key string's

first character.

Function key 2 is also a position indicating key. It

determines the light pen position by tracking the light pen,
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that is, by displaying a small figure which is detected by
the light pen and moved across the screen by tdragging' it
with the 1light pen. The cursor is moved with the tracking
figure, and unless the operator is drawing a vector, the
echo cursor is not moved. This key acts as a latch type
switch., Repeated defressions of it turm the tracking figure

on and off.

Function key 3 is a control switch for the resolution
of the tracking process. Repeated depressions of the key
cause the tracking resolution to alternate betwveen a fine

and a coarse degree.

Function key 4 is wused to indicate that the cursor
position is of interest. It causes the echo cursor to Rove
to the current cursor. If the user is in vector drawing

mode, the point is added to the vector.

Function key 5 is used to indicate that the current
cursor position is to be entered into the message as a
'point*. As a 'point string' may be omne or more points,
this is the beginning of, or entire generation of, the
message component ‘point string‘. Consecutive '‘point!*
entries are merged into a ‘'point stringt if no other

interrupts intervene.
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Function key 6 is the vector drawing mode 1latch.
Repeated depressicns of the key cause the display controller
softwvare to alternately enter and 1leave vector drawing
mode. Upon entering vector drawing mode, the current cursor
position is taken as the starting point of the vector. If
the user uses function key 1 to position the cursor, he can
depress the Here Key, function key 4. That point is then
added to the vector, and the echc cursor is moved to that
position. If the operator uses tracking to move the cursor,
points are inserted into the vector (and the echo cursor
moved correspondingly) at regular intervals of line length.
The line 1length is selected by the selection of tracking
resolution. If necessary, the tracking cursor positioning
mode can be prompted to insert a point by using the Here
Key. The use of FK1 and FK2 positioning may be used in
combination to draw a vector. When Function key 6 is
depressed to exit frcm vector drawing mode, the nmessage

component *vector' has been entered into the message.

Function key 7 1is the timer reset key. Depressing it
causes the timer to be reset to zero, and does not generate

a message component.

Function key 8 is the timer mode latch, Depressing it
causes the timer mode to be changed to the opposite of its

present mode. No message component is generated.
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Function key 9 is the status display latch. Repeated
depressicns of the switch cause a status display to appear
or disappear. The following information is displayed in the
status display:

a) Tracking latch

b) Tracking Resolution latch

c) Vector latch

d) Timer value

€) Timer mcde

f) Input buffer space remaining

g) Light pen interruptibility (see below)
h) Current Status/Function key latch

No message component is generated by Function key 9.

Function key 0 is the display protection 1latch.
Repeated depressing of this key causes all display
information (other than positional displays) to be
alternately completely 1locked out (protected against light
pen picks), or enabled to light pen interrupts as originally

specified. No message component is generated.

The ATTN key is used as the New Frame Request key.
Depressing it causes the display controller software to
activate the next frame if it is available. Frames are
selected in the order of their frame indices, with a wrap-
around occurring frcm the highest frame index to the first

frame. The message component *new frame interaction' is
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created regardless of whether or not the new frame 1is

displayed.

‘The message component ‘timer hit maximum' is generated
automatically at the point when the timer hits a value of
2047, which in fine operation is approximately 41 seconds,
and in coarse operation is approximately 44 minutes. When
the timer hits maximum, it holds at the maximum value until
it is reset by function key 7 or by output from the PRIG

program.

A 'light pen hit' is generated when a displayed entity
other than the positioning displays has been picked by the
light pen. A *light pen hit' moves the cursor, and
generates a special echo cursor that is not erased until the

message is sent.

The message component tend of message' is generated and
inserted automatically by depressing the SEND key, which

also forwards the message to the ALAS program.

There are some simple editing and control functions
available through the use of certain special keys, and these
are as follows:

a) The CLEAR key empties the current input buffer
vhen depressed.

b) The DELETE key deletes the message component
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currently under construction.

c) The BKSP key destroys the last element entered
in the construction of the current message component. For
example, an ‘*algha key string' could be altered by
backspacing and retyping.

d) The RETURN key generates the equivalent of a
carriage return. The cursor is returned to the echo cursor,
and moved down an appropriate distance. The RETURN key also

causes a special key hit.
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CHAPTER IX

EXTENSIONS

9.1 INIRODUCTION

In this chapter, the author describes an approach to
interactive graphical display programeing to indicate a
possible route for extemsion of the ALAS/PRIG system to
jnclude higher levels of support. In planning this systen,
certain problems and questions of technique are encountered,

vhich are mentioned, though not explored in detail.

9.2 AN APPROACH TO0 INTERACTIVE GRAPHICAL DISPLAY

PROGRAMMING

To consider higher levels of graphics support, one must
select an approach for formalizing the definition of the
interactive graphical display prograsming problem. One such
approach consists of considering the interactive graphical
display programsing problem as a problen in 1language
definition and isplementation. The language being designed
is a special purpose problem oriented language, a medium
through which the user may direct and observe the attempted
solution of his problems 1In particular, this language is
expected to make use of graphical communication in reaching
this soclution. This approach is similar to that adopted by

Kulsrud (1968) and Roberts (1966).
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If one localizes the effects of a graphical display
terainal to those areas of input recognition and output
generation, one may choose from a number of techniques of
translator generation, for example: Graham (1964), Samelson
and Bauer (1969), Kanner, Kosinski and Robinson (1965),
Cheatham and Sattley (1964), Irons {1961) , Rosen (1964),
Feldman and Gries (1968). As the design of a translator is
as subject to personal factors as is any other program, it
is as difficult to specify an "ideal" translator generator

as it is to specify a programming language.

One style considered by the author involves the usq of
a structure driven analyzer, such as cne of those described
by Cohen and Gottlieb (1970) , to generate an intermediate
form of the input, this intermediate forms then being used to
direct control to a group of semantics routines. The
display terninal presents some intriguing problems from the
~point of view of input entity generation; such as that of
that of identifying elements picked by a light pen, for
example. However, the author believes that these problems
may be solved through the use of a special scaaning progran
wvhose prime purpose is to identify user actions and resolve
them into entities of a consistent style. Given that this
may be done, the string of user actions effectively being
resolved into a string of elements of a consistent generic
type (such as integers, or characters), a translator can

then function in teras of a language defined in terms of
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this type, reducing the problem of translator generation to
one which has already been explored and solved by others.
The support system would consist of:

a) Scanner

k) Analyzer

c) Semanticizer

d) Preprocessing Routines

e) Display Output Routines

The scanner, analyzer and semanticizer would be table
(or structure) driven. The preprocessing routines would
include facilities to prepare the necessary tables
{structures) for the scanner, analyzer, and semanticizer, as
well as translators needed for the semantics routines. The
display output routines include facilities for generating
displays and contrelling the envircnaent to effect proper
input recognition. To clarify facilities of the latter
nature, an example facility is the ID chain facility in
PRIG. In specifying Identity Characters for the nodes in a
PRIG picture structure, one is creating a context that may
be used for determining which displayed elements have been

picked by the light pen.

Use of the system is a two phase process:
a) Phase I - Generation: In this phase, the
language description is translated into various tables,

structures and modules of machine code for use by the second



173

phase.

b) Phase 1II - Operation: In this phase, the output
of Phase I is utilized to control the operation of the
scanner, analyzer and semanticizer in processing input from

and generating output for the terminal.

The programmer would prepare a four part description of
the interpreter he desires:

a) Terminal Syabol Descriptions: - In each
description, the terminal symbol is named, and described in
terms of the required user actioams (suéh as light pen picks)
and in terms of required environmental considerations (such
as displayed entities with a particular range of 1ID
chains). For example, terminal symbol ALPHA nay be
described as a light pen pick (a user action) of an element
with the ID chain 'ABC! (an environmental comsideration).

b) The grammar of the language plus information to
aid interpretation: - This part includes a description of
the syntax of the language, with information that describes
relevant intermediate forms to be gemerated upon recognition
of various constructs within the input string. For the
purpose of this discussioﬁ, this information will be
considered in the form of tags appended to the rules
describing the affected constructs, these tags indicating

the significance of the constructs recognized.
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c) Semantics Mapping Rules: - This part describes
the mapping of the tags encoded im part b) to calls to
various semantics routines.

d) Ssemantics Routines: ~ This part includes that
code which the programmer desires executed upon recognition

of various input.

In Phase I, the preprocessing routines would accept the
above description and generate an intermediate form of the
interpreter consisting of the following four components:

a) A tatular 6: structural representation of
terminal symbol descriptionms,

b) A tabular or structural representation of the
grammar of the language, including semantics tags,

c) A tabular or structural representation of the
semantics mapping rules, and

d) The pachine representation of the semantics

routines.

In Phase II, the intermediate form specified above
would be used by the scanner, analyzer and semanticizer to
process input from the terminal as follows:

a) A sequence of input actions are performed at the
terminal and delimited as an input string.

b) Through the combined efforts of the scanner and
the analyzer, the input string is transformed into an

intermediate form for input to the semanticizer.
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c) The semanticizer directs control to the various
semantics routines under control of the output from the
analyzer. In processing the message, scme of the semantics
routines may call upon the display output routines to update

and display information.

The system is not different in principle froa some
other types of tramslator generator. The differences in
detail are that:

a) One needs a special formalism for defining the
source language, which can be regarded as a string language
wvhose symbols are sequences of actions taken by the terminal
operator.

b) At least some of the semantics routines must be
written in a language, such as PRIG, which is oriented

toward graphical ccmmunication.

The support system described above is analagous in
operation to the common compile-execute sequence. The
compile phase is Phase I, in which the language description
is ‘t'compiled* into an intermediate fora, corresponding
roughly to the object module output of a compiler. This
tobject module' (the intermediate form) is then executed on
an textended' machine (Phase 1II), which contains the

scanner, analyzer, semanticizer and display output routines.
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One may observe that in this system, ‘recompilation’ of
an entire description is not necessarily essential to
implement changes. One may also observe that the techaigque
of implementing this systen (that is, the support
mechanisas) may vary fronm in one case implementing an
entirely table driven support system, to in another case
implementing extensive preprocessors which almost eliminate
the need for the scanner, analyzer and semanticizer Dbecause
they essentially create a scanner, analyzer and semanticizer
which are gquite rudimentary, and tailored to the language

description used as input.

Another relevant consideration in implementing a
support system of this nature is determining the formalism
for grammar specification. Perhaps by restricting the
programmer to a certain style of grammar for his language, a
considerable increase in speed of analysis and/or scanning
may be realized. The questions to be explored in this area
are

i) What restrictions may be imposed, and

ii) Are these restrictions worth the added speed?

An added advantage of the support system as structured
above is that the programmer may use only part or all of it
as he desires. Por example, in the case of a simple
application, the prcgrammer may require only the scanner,

preferring to construct his own analyzer. In another case,
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the programmer may find that the recognition of terminal
symbols is extremely simple, and may construct his own
scanner, while retaining the remainder of the systen.

Choices of this nature are largely a matter of taste, and
the advantage of the above System is that such choices nmay

be made.

The author views the construction of a sysfem styled as
above as a desiratle objective, one which would benefit from
the solid foundaticn of the picture modelling system, PRIG.
PRIG's capability for embedding and recognizing contextual
information in display input/outgput would supply an
effective basis for input scanning. The structural
programming capabilities of ALAS are useful for creating
structure drivenm programs such as the analyzer and the
Scanner. Cohen and Gotlieb's (1970) analysis algorithas
»which operate under the direction of a structure describing

the syntax are cases in point.
9.3 CONCLUSION

The preceding section describes a route through which
ALAS and PRIG may be expanded to provide a higher level of
suppoft. The author views the conjunction of ALAS, PRIG,
and structure driven input processing and structure
controlled semantics as a family of support software,

running the gamut from assembler level languages such as
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ALAS through the highest level languages available on the

be used to write

machine of implementation, which can

semantics routines.
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CHAPTER X

CONCLUSIONS

By studying interactive graphical display programs, the
author has brought out the functions common to such
prograams. Consideration of support software for these
programs led to the design of ALAS, an assembler level data
structure language, and PRIG, a graphical display interface

language intended for isplementation in ALAS.

Interactive graphical display programs have in common
the requirement for recognition and interpretation of

graphical input.

Recognition cf graphical input is complicated by the
use of symbolic graphical communication, that is,
communication in which the displayed entities represent
other more abstract entities. Graphical communication is
nade most flexible through the use of a data structure model
of the displayed picture, which can be organized in a way
which aids recognition of graphical input, generation of

graphical output, and modification of the current display.

The need to act interpretively is a direct consegquence
of the interactive nature of such programs. An interactive
graphics program is essentially an interpreter which has, as

its source language, input (graphical or otherwise) from the
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display terminal. Support software for the construction of
interpreters is typically at the lowest level, as
interpreters are usually systems prograas developed by
systems programmers. The operation of interpreters involves
the scanning of input strings, and the resolution of the
questions of what actions must be taken. Providing such
support can be done most effectively, in the author's

opinion, through the use of a data structure systea.

As prospective graphics programmers should not be
expected to bLe systems programasers, support should be
availatle at a guite high level. To insure well designed
software at the highest level, one must have well designed
support at lower levels. The author from the outset

envisaged four levels of support:

a) Level 0 - no specific support for graphics

b) Level 1 - graphics terminal interface

c) Level 2 - automated input analysis

d) Level 3 - automated input analysis and semantics
sequencing

level 1 support can be provided adequately through an
appropriate modelling systen. Level 2 and level 3 support
would characteristically involve table or structure driven
processing. These factors, combined with the desire to
develop each level of support in terms of lower levels, led
to the conclusion that data structure capabilities at Level

0 would be almost essential. The desire to develop each
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level of support in terms of lower levels also implies that
Level 0 support should be at the assembler level to maximize

efficiency.

With these objectives in mind, the author considered
the suitability of several data structure 1languages. of
those considered, all except Lé were at a reasonably high
level, and were therefore considered unsuitable. In the
case of L6, the author felt that its capabilities in some
areas were inadequate, noteably for string processing and
for interfacing with program wmodules generated from some

other source language.

To fill this gap, the author designed ALAS. ALAS has a
storage management technique which allows both static and
dynamic storage allocation. Static allocation can be
handled by the asseubler, and caé@ result in faster code
being generated than that for equivalent operations on
dynamically allocated storage. Thus, by not keing
restricted to the use of dynamically allocated storage, the
programmer is expected to obtain faster execution of his
programs. The string processing capabilities of ALAS
include string matching and editing instructioms. ALAS's
facilities for 1linked 1list processing are supplied in an
incremental fashion, to afford the progranmer maximum

flexibility in creating and processing data structures.
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A Level 1 support system, PRIG, was designed to be
implemented in ALAS for the IBM 360 computer and Control
Data GRID terminal. The principal component of a PRIG
prograe is a data structure vhich models the displayed
picture. PRIG consists of ALAS wmacros which create and
modify picture structures, and process information input
froe the terminal. PRIG, to be written in ALAS, is at the
same programaming language level as ALAS, and should have the
efficiency characteristic of such a 1level. PRIG was
designed as an example of Level 1 support, embodying a
technique of using data structures as a vehicle of
communication. Being low level, it is necessarily hardwvare
oriented. However, the structured picture concept can be

applied in virtually any hardvare environment.

In extending support to higher levels, table or
structure driven processing holds the greatest promise.
Where this type of software is available, the programaer
would define a conscle language consisting of the statements
needed to request solutions to probleas in his area. This
language description would be transformed into a series of
structures to be used for controlling the interpretation of

strings in the language as they are input from the terminal.

While ALAS is a product of grarhics research, it is a
general purpose data structure systen. It contains

facilities for string and linked list processing, arithametic
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processing, and dynamic storage management. ALAS is at the
assembler level, tc provide efficient coding and maximize
flexibility. It has a macro handling facility which, when
used in conjunction with the conditional assembly feature,
affords great flexibility in the use of macros to "extend"
the language. Its variable length registers and
interpretive address processor represent departures froaz
wstandard" computer structure, departures intended to
enhance the flexibility of ALAS. These and other features
contribute to making ALAS a powerful, general purpose, data

structure language.
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APPENDIX A

A FREEHAND INPUT PROGRAM

The objective of the following programr is to provide a
simple freehand drawing input capability through the use of
the light pen. The user utilizes the vector, point aﬁd text
input modes of the display controller software to draw on
the CRI, and the prograr builds a structural representation
of the picture tc provide for editing and processing for

hard cogpy.

The display format consists of a series of ‘command
words® displayed along the top of the display area, and a
drawing area, surrounded by a frame, The user's input may
be considered as strings in a language which is defined by

the grammar in Takle A.1.

The semantics of the language are as follows:

i) An [input element] of the type [picture name]
attaches the [alpha key string] within it to the picture as
its title.

ii) An [input element] of the type PLOT causes the
picture currently viewed to be converted for hard copy.

iii) An [input element] of the type [erase command]
causes part or all of the picture currently viewed to be
erased. If the [light pen pick list option] is empty, the

entire picture is erased. Otherwise, the elements picked



Table A.1 Syntax of Input for Freehand Input Program
[input string)::=[end of message]e[input element ]J[input
string]

[{input element]::=[ command Je{dravwing information ]Je[null
indicant]

[ command ]J: :=[ picture name Je[ plot ]Je[ erase command Je[ stop]
[ picture name ]::=PICTUREePICTURE[alpha key string]
{plot]:s=FLOT

[ erase command ]: :=ERASE®ERASE[ light pen pick 1list]
[stop]::=STOP

[light pen pick list]::=[light pen pick]e[light pen pick
list )[1ight pen pick]

[drawing information])::=[drawing element Je[ drawving
information){drawing element ]

(draving element ]::=[ alpha key hit ]e[{ alpha key string]e
{point stringJe[vector}
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[null indicant]::=[ function key hit Je[special key hit Je[new

frame interaction]e[ timer hit

maxiaun ]
Terminal Symbols:
PICTURE
PLOT These are light pen picks of the
ERASE command words displayed on the
STIOP screen.
{alpha key hit]
[light pen pick]
{alpha key string]
{point string] These are fundamental elements
[vector] of PRIG input, and are
[special key hit] identified by PRIG display
[function key hit] controller software
(timer hit wmaximum) (See Sections 8.4 and 8.5).

(new frame interaction]
(end of message]
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(other than command words) are deleted frcm the picture.

iv) An {input element] of the type STOP causes the
program to terminate.

v) An [input element] of the type [drawing element]
Causes an additicn to the picture such that the [drawing
element] is displayed, and can be uniquely identified for
the [erase command].

vi) An [input element) of the type [null indicant]

is ignored.

Table A.2 is the ALAS/PRIG program to perform the above
task. Ivo modules have been left out in the interest of
brevity, as they would add nothing toc the example. These
two modules, and their functions, are:

i) PLOTPREP, which prepares the plotter interface,
and

ii) PLOTTER, which parses the current picture in
order to generate code for the Gflotter which draws the

entire picture except for the coammand words.
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Table A.Z Freehand Input Program in PRIG

* PBLOCK: MAIN
*
* PBLCCK *MAIN* IS THE OVERALL CONTFOLLING MODULE OF THE
* FREEHAND INPUT PROGRAM, AND INCLUDES THE INPUT
* INTERPRETATION AND TRANSMIT/RECEIVE LOOPS
*
PBLCCEK
EXTRN
GLEL
* INITIALIZATION
IDISP 2
E PLOTPREP
E PRIMER
* MASTER LOOP: SEND/RECEIVE CYCLE
LETSGO FRAME MAST
SEND 22
AWGINP
ZE 10
* INPUT INTERPRETATICN LOOP
NEXT A 10,=F*1°
ACTION 10,11
ACTBR B ACT<IT>_
* MESSAGE COMPONENT IS A SINGLE ALPHA KEY HIT
ONEALPHA AKCD 10,C0
B ALEND
* MESSAGE COMPONENT IS AN ALPHA KEY STEING
STRALPHA ASTR 10,C0
* ATTACH ALPHA KEY COMPONENT TO PICTURE
ALEND E ANODER
B NEXT
* MESSAGE COMPONENT IS A POINT STRING
STRPOINT AVECT 10,I2,A0,A1
* ATTACH POINT STRING TO PICTURE
E PNODER
B NEXT
* MESSAGE COMPONENT IS A VECTOR
STRVECT AVECT 10,I2,30,A1
* ATTACH VECTOR TO PICTURE
E VNODER
B NEXT

* MESSAGF COMPONENT IS A LIGHT PEN HIT;
* IS IT A COMMAND?

CCMTEST AID 10,C0
c c0,=X'00"

* IP IT ISN'T AT THIS POINT, IGNORE IT
BC 7,NEXT

* IT IS A COMMAND; WHICH CNE?

COMTEST1 L I1,C0: (1,1)

B COMITN>_
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* COMMAND WAS STOP; SHUT DOWN AND CLEAR OUT

TERMINUS XDISP
REV
* COMMAND WAS PLOT; PLOT IT
PLOTIT E PLOTTER
B NEXT
* COMMAND WAS PICTURE; CHANGE THE TITLE
TITLIT E TNODER
B NEXT
* COMMAND WAS ERASE; IS ALL OF THE BICTURE TO GO?
ERASE A I0,1FP* 1
ACTION I0,I1
C I1,=F*'1?
* IF THE NEXT COMPONENT IS NOT A LIGHT PEN HIT, YES
BC 7,DROPIC
AID I0,C0
C c0,=Xx'00"
* 1IF THE NEXT COMPONENT PICKS A COMMAND, YES
BC 8 ,DROPIC
* OTHEBRWISE, THBE ENTITY PICKED IS DESTINED FOR OBLIVION
ERSLCOF ST C0,IDCH
* FIND THE COMMAND WHICH SHOWS THE ENTITY
LOSH MAST,3,,=F*1',IDCH
* WIPE IT OUT
SEIND NULL
* IS THE NEXT MESSAGE COMPONENT ALSO A LIGHT PEN PICK?
A I0,=F*1?
ACTION 10,11
Cc I1,=F*1?
* IF NOT, BACK TO THE MAIN INPUT INTERPRETATION LOOP
BC 7,ACTBR
* 1IF SO, LCOES IT PICK A COMMAND?
AID I0,C0
C C0,=X100"
* IF IT PICKS A COMMAND, BACK TO THE CCMMAND INTERP LOOP
BC 8,COMTESTH
* OTHERWISE, ANOTHER ENTITY FOR THE AXE
B ERSLCOP
* TIME 10 DISPOSE OF THE ENTIRE PICTURE
DROPIC E BILDMAST
B ACTBR
* CCNSTANTS, ETC.
IDA DFA C
IDB DFA C
IDCH DFaA 2C
END
*

*
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*

* ADDRESS BLOCKS USED BY *MAIN* IN INTERPRETING INPUT
*

ACT ABLCCK
DFA A'NEXT'
DFA A*COMTEST!
DFA A*ONEALPHA®
DFA A*NEXT*
DFA A *NEXT!
DFA A*STEALPHA®
DFA A'STRPOINT'
DFA A*STRVECT®
DFA AYNEXT'
DFA - AYNEXT'
DFA A'LETSGO*
END
*x
%*
com ABLCCK
DFA A'TERMINUS®
DFA A'TITLIT®
DFA A*PLOTIT!
DFA A ERASE'
DFA A'NEXT!
END
*
%*
*
* THE FOLLOWING SEVEN PBLOCKS ARE USED IN COMPLETING
* THE FUNCTIONS CF *MAIN*
*
* PBLCCK *ANODER* ATTACHES AN ALPHA KEY COMPONENT TO
* TEE PICTURE
x
ANODER PBLOCK
EXTEN
* GET THE LOCATION OF THE ALPHA KEY COMFONENT
AX 10,12
ST I2,FX
AY 10,12
ST I2,FY
* GENERATE NODE *SPARE* WITH ALPHA ENTITY
NODE SPARE
ID IDB
TEXIR CO,FX,PY
ENDNODE
* ATTACH A COMMAND *SHOW*ING *SPARE* TO *MAST*
E CNER
REV
FX DFA I
FY DFA I

END



*
*
*

PBLOCK *BILDMAST* (RE) CREATES THE MAIN NODE *MAST*

BILDMAST PBLCCK
EXTRN
NODE MAST
33 =X100°
SHOW PC
SHOW PLIC
SHCW ERC
SHOW STC
SHOW TNODE
iD =X*01*
ENCNODE
* INITIALIZE THE ID CHARACTERS
ZE 12
ST 12,IDB
A 12,=P' 1"
ST 12,IDA
REV
END
*x
*
* PBLOCK *CNER* ATTACHES A COMMAND *SHOW®*ING *SPARE*,
* INCREMENTING THE ID AS NECESSARY
*
CNER PBLCCK
EXTRN

* CREATE A NODE CONTAINING THE *SHOW*, AND AN *ID%*
* 1IF NECESSARY

NODE ESHOW
SHOR SPARE

* INCREMENT ID
L I2,1IDB
a I2,=PFP'1!?
ST I2,IDB
S I2,=F1256"
BC 4,G0

REA L I2,IDA
A I2,=F*1¢
ST I2,IDA
S I2,=F*256"
BC 11,REA
ID IDa

GO ENCNODE
CHAIN MAST,ESHOW
REV

END
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*x
* PBLOCK *PNODER* ATTACHES A POINT STRING TO THE PICTURE
*
PNODER PBLOCK
EXTEN
* STORE THE NUMBER OF POINTS IN THE STRING
ST 12,NP ‘
* GENERATE NODE #SPARE* CONTAINING THE POINT STRING
NODE SPARE
D 1DB
POINT NP,0 (20) ,0 (A1)
EN DNODE
* ATTACH A COMMAND *SHOW*ING *SPARE* TO *MAST*
E CNER
REV
NP DFA F
END
*x
*
* PBLOCK *PRIMER* SETS UP THE COMMAND WORD NODES, AND
* BUILDS THE FIRST INSTANCE OF NODE *MAST#*
*
PRIMER PBLOCK
EXTEN
NODE PC
1D =X*01¢
TEXT =F*7¢,=C*PICTURE',=F*100¢,=F*950"
ENDNODE
NODE PLC
ID =X*02"
TEXT =F'44,=C'PLOT*,=F*350¢,=F1950"
ENDNODE
NODE ERC
ID =x'03°
TEXT =F'5',=C*ERASE',=F'600',=F*950"
ENLNODE
NODE STC
ID =X¢00°*
TEXT =F'4¢,=CYSTOP',=F*'850¢,=F1950"*
ENCNODE
NODE TNGDE
ID =X004"
ENCNODE
E BILDMAST
REV

END
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* PBLOCK *TNODER* CREATES A NEW TITLE NODE,
* DISPLACES THE OLD ONE WITH IT
*

T

NODER

* FIND OLD TITLE NODE

* WIPE 1T OUT

* START BUILDING A NEW

ONEC
FIXIT

NOTIT
FIN

NODER

* CREATE NODE

* ATTACH *SPA

NV

PBLOCK
EXTEN

LOSH
SETND

NODE
ID

A
ACTION
C

BC

C

BC
ASTR
B
AKCT
SIZE
M

A

ST
TEXTIR
B

S
ENCNODE
SETIND
REV
CFA
END

MAST,4,TNODE

NULL

ONE

TNODE
=Xty
I0,=F*'1?
I0,I1
I1,=F12¢
8,0NEC
I1,=PF*S5*
7,NOTIT
10,C0
FITIT
10,C0

Fo '=P. -8.
FO,=F*512!
FO,TX
c0,TX,=Ft900"
FIN

IG,=F' 1 ‘

TNODE

F
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AND

*
*
* PBLOCK *VNODER* ATTACHES A VECTOF TC TBE PICTURE
*
v

PBLCCK

EXTRN

S I2,=Pt1

ST I2,NV

*SPARE* WHICH CONTAINS THE VECTOR
NODE SPARE

ID IDB

VCT NV,0 (AO) ,0 (A1)
ENCNODE

RE* TO *MAST*

E CNER

REV

DFA F

END
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APPENDIX B

TABULATION OF MNEMONICS

This appendix contains a complete tabulation of the
gnemonics discussed in ccnnection with ALAS and PRIG. The
mnemonics are liisted in alphabetical order, complete with
the instruction name, type and bhost section within the

thesis.

The instruction type is indicated by a character, L for

assembler, M for machine, and P for PEIG.

Mpemonjic Name Type Segtion
A Add M 56762
ABLOCK Address Block A 5.8.2
ACONT Access Contents Subfield P 8.4
ACTICN Access Action ID P 8.4
ADNODE Add Node P 8.3
ADS Add Dymamic Space M 5.7.6
AFRAM Access Frame Index P 8.4
AID Access IT Chain P 8.4
ARCD Access Key Code P 8.4
ALLCB Allocatcr Control Block A 5.8.2
AR Add Register M 5.7.2
ASTAT Access Status p 8.4

ASTFRTI Access Status/Frame/Time Ccmposite P 8.4
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Mnemopic Name Iype Section
ASTR Access Character String P 8.4
ATIME Access Timer Value P 8.4
AVECT Access Vector Addresses P 8.4
AWGINE Await Graphical Input P 8.4
AX Access X Value ) 8.4
AXY Access X=Y Composite P 8.4
AY Access Y Value P 8.4
BC Branch Conditional M Se747
BCR Branch Conditional Register M S5.7.7
BGINF Start Input M 5.7.7
BGCUT Start Output .| S5.7.7
BLANK Set Blanking On P 8.2.4
BLINK Set Blinking On P 8.2.4
BUL Build Left ' M 5.7.3
BULR Build Left ERegister M 5.7.3
BOR Build Right u 5.7.3
BURR Build Right Register M 5.7.3
C Ccompare M 5.7.1
CALL Call M S5¢7.7
CHAIN Chain P 8.2.4
cL Compare Length M 5.7.3
CLIR Compare lLength to Integer Fegister M 5.7.3
CLR Ccmpare length Register M 5.7.3
CMEF compress M 5.7.3

CNODE Copy Node P 8.2.4
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Mpemopjc Name Iype Section
CNI Count M 5¢743
CNTI count Immediate N 54743
CNTR Count Register | 5.7.3
CR Compare Register M 5.7.1
D Divide M 5.7.2
DBB Device Busy Branch | 5.7¢7
DBBR Device Busy Branch Register M 5.7.7
DBE Device Busy Execute | 5.7.7
DBER Device Busy Execute Register M 5.7.7
DBLOCK Get Dynamic Block M 5.7.6
DFA Define Field Absolute A 5.8.2
DFAD Get Dynamic Absolute Field M 5.7.6
DFR Define Field Relative .\ 5.8.2
DFRD Get Dynamic Relative Field M 5746
DIODE Declare I/0 Device A 5.8.2
DISINT Disable Interrupts P 8.2.3
DP Define Pattern A 5.8.2
DR Divide Register M 5.7.2
DV Lefine Vector A 5.842
EC Execute Conditional M 5.7.7
ECR Fxecute Conditional Register M 5.7.7
EJECT Eject Page A 5.8.1
EL Eliminate M 5.7.3
ELR Eliminate Register M 5.7.3

END End A 5.842
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Mnemopic Name Iype Segtion
ENDNCDE Endnode P 8.2.1
ENINT Enable Interrupts P 8.263
ENTRY Entry A 5.8.3
EXP Expand M 5673
EXTRN External A 5.8.3
EXTRND Externil Dynamic A 5.8.3
FD Full Divide M 5.7.2
FDR Full Dpivide Register .| 5¢762
FKBE Function Key Branch Equal P 8.2.3
FKBNE Function Key Branch Note Equal P 8.2.3
FM Full Multiply M 5.7.2
FMR Full Multirly Register M 5.7.2
FRAME Frame p 8.3
FSTST Frame Status P 8.3
GLBL Global A 5.8.3
GLBLD Global Dynamic A 5.8.3
ID Identify P 8.2.3
IDISE Initialize Display P 8.3
IEF* Index Element Found | 5.7.3
IBU* Index Element Unfound M Se7e3
ITEF* Index Immediate Element Found M 573
IIEU* Index Imwediate Element Unfound M 5.743
IND Indirect M S.7.4
INP Input M 5.7.7

INICB Interrupt Control Block A 5.8.2
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Ypemonic Name Iype Section
I0DCB I/0 Device Control Block A 5.8.2
ISF* Index Sukstring Found M 5.7.3
KIO Halt Input/Output I 5.7.7
L Load M 5.7.1
LBL Length of Block M 5.7.6
LEND loop End M 5¢7.7
LM l1oad Multirple M 5.7.1
LN Load Negative M 5.7.2
LNR Load Negétive Register M 5.7.2
LOFF listing Off A 5.8.1
LON listing On A 5.8.1
LOOP loop M 5.7.7
LOSH Locate Show P 8.2.4
LP Load Positive M 5072
LPR Load Positive Register M 5.7.2
LR Load Register M S5.7.1
LS Load Specified M 5.7.1
LT load and Test M Se7a1
LTR load and Test Register M 5¢7.1
M Multiply M 5.7.2
MEMR Membership Register M 5.7.3
MR Multiply Register M 5.7.2
MRG Merge M 5.7.3
MRGR Merge Register M 5.7.3

ND And M 5.7.3
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Uneponic Nape Iype Section
NDR And Register M 5.7.3
NODE Node P 8.2.1
NR Negate Register M 5.7.2
NXFR Request Next Frame P 8.2.3
NXSH locate Next Show P 8.2.4
OR or M 5¢7.3
ORR Or Register M 5.7.3
0uT cutput M 5.7.7
ov Overlay M 5.7.3
OVR Overlay Register M S5¢7.3
PBLOCK Frogram Elock A 5.8.2
PIND Push and Indirect M 5.7.4
PLOGP Pop Loop Stack M 5.7.7
PNT Foint .| 5.7.4
POINT Foint P 8.2.2
POP Pop M 5¢7.1
PSH Push i SeTel
QBLA Query Blank P 8.2.4
QBLI Query Blink P 8.2.4
QDE Query Depth of Execute M 5.7.7
QDL Query Depth cf Loop M 5.7.7
QDs Query Dynamic Space M SeTe6
QFsS Query Free Space M 5¢7.6
QOR Query Origin P 8.2.4

QscC Query Scale P 8.2.4



Mpemonic Name

QTI
REDISP
REV
RNODE
RT
RTR

S
SBLCCK
SCAN
SCANL
sCC
SDS
SEND
SETIND
SETOR
SETSC
SETTI
SH
SHOW
SHR
SIZE
SH
SPACE
SR

SS

Query Timer limits

Reinitialize Display

Revert

Repeat Node
Rotate

Rotate Register
Subtract

Static Block
Scan

Scan lLimited

Set Condition Code

Set Dynamic Space
Send

Set Node

Set Origin

Set Scale

Set Timer Limits
Shift

Show

shift Register
Size

Set Mask

Space listing
Subtract Register

Set Status

< 3 < TN < = <

=

= w v w W O
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Mpemopic Name Iype Section
ST Store M 5.7.1
STJ Store Justified M 5.7.1
STHM Store Multiple .| 5.7.1
STS Store Specified M 5.7.1
SW Swap M S5.7.1
SWR Swap Register M S5.7.1
SYMBCL Symbol P 8.2.2
TEXT Text P 8.2.2
TEXTC Jext Continued P 8.2.2
TEXTR Text Register P 8.2.2
TEXTRC Text Register Continued P 8.2,2
TITLE Title A 5.8.1
TMBL Branch on Timer Low P 8.2.3
TMBNL Branch on Timer Not Low P 8.2.3
TMC Timer Ccntrel P 8.2.3
TR Translate M 5.7.3
TRB TIranslate and Branch M 5.7.7
TRE Translate and Execute M 5.7.7
TRT* Translate and Test M 5.7.3
UNBLANK Set Blanking Off P 8.2.4
UNBLINK Set Blinking Off p 8.2.4
VBC Convert Bits to Characters M 5.7.5
VCB Convert Characters to Bits ] 5.7.5
VCN Convert Characters to Numerics M 5.7.5

VCT Vector P 8.2.2
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Mnemonic Nape Iype Section
VCTC Vector Continued P 8.2.2
VEC Convert Floating to Characters M 5.7.5
VECE Convert Floating to Characters M 5.7.5
VFC Convert Fixed to Characters M 5.7.5
VNN Convert Numeric to Numeric M 5.7.5
WAIT Wait M Se7e7
WD Widen M 5¢7.3
XBL Celete Block M 5.7.6
XDISP Close Display M 8.3
XFI Lelete Field M 5.7.6
ZNCDE Delete Node P 8+ 241
XR Exclusive Or M S5¢7.3
XRR Exclusive Or Register M 5.7.3
ZE Zero or Empty M S5.7.1
ZEB Zero or Empty Branch M 5.7.7
ZEBR Zero or Empty Branch Register M 5.7.7
ZEE Zero or Empty Execute M 5¢7.7

ZEER Zero or Empty Execute Register M 5.7.7



