Finding Syntactic Similarities Between XML Documents

Davood Rafiei
Dept. of Computing Science
University of Alberta, Canada

drafiei@cs.ualberta.ca

ABSTRACT

We present a concise and accurate structural summary of
XML documents and show that this summary can be used
to effectively cluster documents that belong to a structurally
similar class. We present efficient formulations of similarity
between structural summaries that leads to a better detec-
tion of documents that conform to the same DTD. Our for-
mulation is based on the intuition that two documents are
likely to be generated by the same DTD if a large fraction
of paths in the two documents are the same or similar. Our
experimental evaluation shows that this method does an ex-
cellent job of grouping documents generated by the same
DTD, outperforming some of the previously proposed solu-
tions based on a tree comparison.

Categories and Subject Descriptors

H.3.1 [Information Systems]: Information storage and
retrieval—content analysis and indexing

1. INTRODUCTION

There is a large and still growing number of applications
that use the eXtensible Markup Language (XML) for data
exchange. Storing documents generated by two or more ap-
plications in a database can be challenging as data may not
conform to a non-trivial unifying DTD or the unifying DTD
may be too complicated. A possible solution is to group doc-
uments that conform to the same or similar DTDs together
before before storing them.

Grouping similar XML files together can lead to a bet-
ter storage mapping and indexing [5, 9]. Without a proper
grouping, elements under structurally similar paths can be
scattered at different locations in the storage device, thus
making the retrievals inefficient. Furthermore, more specific
and accurate DTDs can be constructed for documents in a
cluster, which in turn can be useful in query evaluation and
can limit the access to only the relevant portions of data.

If the structure of an XML document is described as an
ordered tree, there is considerable past [10, 2, 11] and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ACM Conference on Hypertext and Hypermedia 2005

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Daniel Moise
Dept. of Computing Science
University of Alberta, Canada

moise@cs.ualberta.ca

Dabo Sun
Dept. of Computing Science
University of Alberta, Canada

dabo@cs.ualberta.ca

recent [7] work on finding the edit distance between ordered
trees which are applicable. These algorithms often use dy-
namic programming to find the edit distance between two
ordered trees and may vary in the set of edit operations or
their weightings. In the presence of a training dataset, Zaki
and Aggarwal propose a rule-based classifier that relates fre-
quent ordered tree structures in an XML document to class
labels [15].

There is past work that adopt a data centric view of an
XML document, i.e. element ordering is not relevant. A
hierarchical clustering algorithm based on common parent-
child tags between documents is proposed by Lian et al. [6].
Theobald et al. [13] use parent-child tags, pairs of tags and
content terms, twigs and the semantic relationships between
terms (defined by Wordnet [14]) to classify each XML doc-
ument into one of a few known classes.

In this paper, we take a data-centric view of an XML docu-
ment and transform the structural description of a document
to a concise set of paths and the frequency of each path. The
transformation in general is lossy but avoids a tree match-
ing problem which is often costly. When the structure of a
document is summarized in the form of a set, standard set
comparison techniques can be applied.

Our experiments on both real and synthetic data show
that our method, when used for clustering XML documents
generated by the same DTD, results in fewer misclusterings
and is much faster than tree-based approaches.

2. STRUCTURAL SUMMARY

An XML document can be modeled as a node-labeled di-
rected tree ! where each node in the tree represents either
an element or an attribute in the corresponding XML doc-
ument. When a node represents an element, the node is
labeled with the tag name of the element and when a node
represents an attribute, it is labeled with the name of the
attribute. Each edge of the tree represents a hierarchical
inclusion relationship between either two elements or an el-
ement and an attribute. Since we are only interested in the
structure of an XML document, we ignore other possible
node types such as data values, comments and processing
instructions. We refer to this tree description of an XML
document as a structure tree 2.

DEFINITION 1. A structure tree for an XML document d

!Two special attributes ID and IDREF, when present, may
not be properly represented in a tree.

>This is an adaptation of dataguide [3] for XML documents.

is a tree t such that for every path in d there is a correspond-
ing path in t and vice versa.

As an example, Figure 1 shows an structure tree for the
following XML document.

<people><person><name>Tom</name><address>UofA
</address></person> <person><name>Cat</name>
<age>18</age></person></people>

Figure 1: A structure tree

3. STRUCTURAL SIMILARITY

Given two XML documents, we want to find out if the
two documents are structurally similar irrespective of the
order in which the elements appear in each document. A
solution is to compare the respective structure trees of the
two XML documents. However, an XML document can have
more than one structure trees and it is not clear which one
should be used for a comparison. Furthermore, the problem
of finding the edit distance between two unordered trees is
NP-complete [16].

Our proposed solution is to describe the structure of an
XML document as a set of paths and to avoid a tree match-
ing problem. Even though an XML document can have more
than one structure trees, they all have the same set of paths
in common with the document (this is directly inferred from
the definition of a structure tree). For each XML document,
we extract from its structure tree every path that starts from
the root and ends at a leaf. These paths here are referred
to as the root paths.

To count for similar but not identical paths between two
XML documents, we extract for each XML document in
addition to the root paths all subpaths of the root paths
(i.e. a consecutive sequence of tag names); we refer to
the union of root paths and subpaths as the path set of
and XML document. The path set of our working exam-
ple is: { people/person/name, people/ person/address, peo-
ple/person/age, people/person, person/name, person/address,
person/age, people, person, name, address, age }. Further-
more, to count for paths that may appear more frequently,
we further extract from the original XML document the fre-
quency of each path.

Given the features of an XML document as a set of (path,
frequency), we can use standard set comparison techniques
to find out if two documents are similar; the equality op-
eration between two paths is the standard case-insensitive
comparison of two strings. Informally, we call two XML
documents similar if a large fraction of the paths in their
path sets are the same. There are a number of ways of com-
puting such an overlap including the Jaccard Coefficient or
its extensions, the Dice Coefficient and the well-known Co-
sine measure (see an information retrieval text such as [§]
for more details). Given the pair-wise similarity between
all documents in the collection, a clustering algorithm can
be applied to group similar XML documents into clusters,

where every cluster should ideally represent a set of XML
documents that share the same DTD.

4. EXPERIMENTS

To evaluate the effectiveness of our approach we ran ex-
periments using both real and synthetic data. Our real data,
referred to here as RE, was the online XML version of the
ACM Sigmod Record from March 1999 [12]. This collec-
tion contained XML files shared among four DTDs: Pro-
ceedingsPage, IndexTermsPage, OrdinarylssuePage and Sig-
modRecord. The collection had 989 XML files with a total
size of 3.35 MB.

For synthetic data, we selected all DTDs reported by Nier-
man and Jagadish [7] except one called HealthProduct.dtd
which we couldn’t obtain. This set of DTDs here are re-
ferred to as DTD set A. To further test our method, we also
used an extended set of DTDs which included DTD set A
and 5 additional DTDs. We refer to this set of DTDs as
DTD set B®. Using the IBM XML generator [4], we gener-
ated 100 XML files for each DTD and each setting of the
parameters M (the maximum repeat of an element marked
with a ‘+’ or “*’) and P (the probability that an optional
attribute appears). We grouped the files into eight data sets:

DS1: M=4,P=0.75,DTD set A DS2: M=4,P=1,DTD set A
DS3: M=8,P=0.75,DTD set A DS4: M=8,P=1,DTD set A
DS5: M=4,P=0.75,DTD set B DS6: M=4,P=1,DTD set B
DS7: M=8,P=0.75,DTD set B DS8: M=8,P=1,DTD set B

Our dataset was deliberately chosen as a superset of the
datasets used by Nierman and Jagadish [7] so that we could
compare our results not only with those of Nierman and Ja-
gadish and also with the results of the algorithms suggested
by Chawathe [1] and Shasha et al. [11] without implement-
ing these algorithms. Note that our synthetic data is gener-
ated randomly but using the same parameters as in [7], so
the two datasets may not be identical.

4.1 Evaluation

Ideally, we want to have all documents conforming to
the same DTD be clustered together, but in practice this
may not be the case. To measure the effectiveness of each
method, we use the same notion of mis-clustering introduced
by Nierman and Jagadish, i.e. the minimum number of the
documents that can be moved in order to obtain all doc-
uments conforming to the same DTD in the same cluster.
The hierarchical agglomerative clustering algorithm in the
R project for statistical computing® was used to cluster our
data sets. The result of the clustering is a dendrogram,
showing the clusters that collapse in each step. We use
the number of mis-clusterings reported by Nierman and Ja-
gadish over data sets DS1-DS4 and the Sigmod collection
as a base line to compare the performance of our approach
against theirs and those of Chawathe [1], Shasha [11] and
Tag Frequency [7].

Table 2 shows the number of mis-clusterings obtained us-
ing our approach when each document is represented as a
binary vector (BV), a frequency vector (FV) and a normal-
ized frequency vector (NFV) of the path occurrences. The
Cosine measure used to final the similarity between two doc-
uments. Using the path frequencies improves the clustering

8DTDs are available at www.cs.ualberta.ca/~drafiei/dtds.html.

“www.r-project.org

| RE | DS1 | DS2 | DS3 | DS4

Nierman 0 10 2 11 9
Chawathe 3 16 8 30 25
Shasha 3 16 9 32 39
Tag Frequency | 3 22 21 35 40

Table 1: Number of mis-clusterings reported by
Nierman and Jagadish

| RE | DS1-DS4 | DS5 | DS6 | DS7 | DSS |

BV 0 0 33 30 25 29
FV 0 0 0 0 0 0
NFV | 0 0 0 0 0 0

Table 2: Number of mis-clusterings using our ap-
proach

accuracy. We also did similar experiments using both the
Jaccard and the Dice Coefficients. The results were either
comparable or worse than the Cosine measure, thus it was
not reported.

One question is if we really need to extract paths and
if we can obtain similar results by only using the tag fre-
quencies and perhaps with some variations of the similarity
measure. Since the Cosine measure performs the best in our
experiments, we choose this measure for tag frequencies. We
also pick two additional distance functions, namely the city-
block distance because it is previously used [7] as reported
in Table 1 and the Euclidean distance. Table 3 shows that
the tag frequency is not enough to compare the structural
similarity between XML documents.

We found some inconsistencies between our results for
the tag frequency and the results reported earlier using the
city-block distance [7]. One possible explanation is that we
maybe counting the number of mis-clusterings differently.
In our case, the number of mis-clusterings are counted man-
ually, but we are not sure how this is done in the earlier
reporting. Since our counts of the mis-clusterings are higher
than those reported by Nierman and Jagadish, we feel jus-
tified to say that we are over-estimating the number of mis-
clusterings. Thus, our approach outperforms previously-
proposed methods.

5. DISCUSSIONS

We have proposed a simple and yet efficient approach to
find the structural similarity between XML documents. We
have also evaluated our approach with various data sets.
Given a document with n root paths, each of length [, there
are nl(l+1)/2 possible subpaths. Thus, the time complexity
is expected to be O(nl?). On a modest hardware (Pentium
4, 2.8GHz CPU and 1GB RAM), the path extraction (in
Java) for the Sigmod collection with 989 documents took
20 seconds. Computing the pair-wise distances (in C++)

|RE|DSl|DSZ|DS3|DS4|
City block | 24 | 208 | 200 | 211 | 240
Euclidean 24 0 62 0 0
Cosine 68 38 33 39 35

Table 3: Number of mis-clusterings using the tag
frequency

between all these documents took only 98 seconds.

A limitation of our approach is when we want to detect a
similarity between documents with the same structures but
different tag names. We expect this to be less problem with
an increasing use of the namespaces and also the same tag
names to refer to the same concepts. However, one solu-
tion is to allow users to specify some relabeling rules. For
instance, if the tag names in one document are in French
and the tag names in another document are in English, a
possible relabeling can be a word-to-word translation of the
tag names.

6. REFERENCES

[1] S. S. Chawathe. Comparing hierarchical data in
external memory. In Proceedings of the VLDB
Conference, pages 90-101, Edinburgh, 1999.

[2] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In Proceedings of the SIGMOD
Conference, pages 493-504. ACM Press, 1996.

[3] R. Goldman and J. Widom. Dataguides: enabling
query formulation and optimization in semistructured
databases. In Proceedings of the VLDB Conference,
pages 436445, 1997.

[4] IBM XML Generator.
www.alphaworks.ibm.com/tech /xmlgenerator.

[6] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in
graph-structured data. In Proceedings of the ICDE
Conference, pages 129-140, 2002.

[6] W. Lian, D. W. Cheung, N. Mamoulis, and S. M. Yiu.
An efficient and scalable algorithm for clustering xml
documents by structure. IEEE Transactions on
Knowledge and Data Engineering, 16(1):82-96, 2004.

[7] A. Nierman and H. V. Jagadish. Evaluating structural
similarity in XML documents. In Proceedings of the
WebDB Workshop, Madison, June 2002.

[8] G. Salton. Introduction to Modern Information
Retrieval. MacGraw Hill, 1983.

[9] H. Schoning. Tamino - a DBMS designed for XML. In
Proceedings of the ICDE Conference, pages 149-154,
2001.

[10] S. M. Selkow. The tree-to-tree editing problem. In In
Information Processing Letters, 6(6), pages 184-186,
1977.

[11] D. Shasha and K. Zhang. Approximate tree pattern
matching. In Pattern Matching Algorithms, pages
341-371. Oxford University Press, 1997.

[12] Sigmod Record in XML.
www.acm.org/sigmod/record /xml/index.html.

[13] M. Theobald, R. Schenkel, and G. Weikum.
Exploiting structure, annotation and ontological
knowledge for automatic classification of xml data. In
Proceedings of the WebDB Workshop, 2003.

[14] Wordnet:. a lexical database for the english language.
www.cogsci.princeton.edu/ wn.

[15] M. J. Zaki and C. C. Aggarwal. Xrules: an effective
structural classifier for xml data. In Proceedings of the
KDD Conference, pages 316-325, 2003.

[16] K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Information
Processing Letters, 42(3):133-139, 1992.

