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Abstract 

 

The edge or perimeter of a wildland fire is an important characteristic that marks the extent of 

land area that has burned. It is not only an ecological boundary, but also an administrative way of 

documenting the direct impact of a wildfire. Weather has a well-established influence on fire 

cessation but changes rapidly and is difficult to predict over extended time periods.  In contrast, 

more stable landscape factors such as land cover, road networks, water coverage, and topography 

are well-suited for informing strategic assessments over longer horizons. Previous studies have 

shown that the variations in these attributes influence where fires stop.  However, these studies are 

mostly based on one or a few fire perimeter datasets, and the overall influences over a large spatial 

scale and a long temporal span (i.e., over a decade) are still unclear.  

In this thesis, the hypothesis is that key landscape factors play an important role in fire cessation 

over large spatial and temporal scales. Over one hundred fire perimeters were selected from 

thousands of documented fires between 2008 and 2018 in the Boreal Forest Region of Alberta, 

covering various natural ecological sub-regions. Five categories of explanatory variables were 

chosen from multiple spatial datasets based on provincial statistical maps and remote sensing, to 

represent landscape factors, including water, topography, fuel, previous burns and human activity. 

Algorithms to automatically match case-control data sampling (i.e., inside and outside the fire 

perimeter) and perform data extraction were developed, including a custom Python toolbox and 

ArcGIS model, resulting in vastly improved processing time. A combined modeling framework 

connecting matched case-control conditional logistic regression and Random Forest classification 

was used to identify the influence of key landscape variables on fire cessation and to predict the 

probability of fire cessation at a given location. 
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Twenty key landscape factors were identified as having a clear influence on fire cessation, with 

an Area Under the Curve (AUC) of 0.7. Fire boundaries form in areas of aspen, grass, water, and 

lower topography. Mixedwood, with conifer contents up to 60%, also played a very strong role in 

fire cessation (P < 0.001). In contrast, lands where previous fires recently occurred showed strong 

fire-stopping behaviour, but the effect decreased with the passage of time to the point where land 

burned 70 years ago behaved equivalent to a hazardous fuel.  Human activities also affected the 

location of wildfire perimeters. The closer a fire is to a roadway, the more likely it will stop. Four 

new fires were used to validate the model, and the highest AUC of the predictive model was 0.7. 

This modelling framework could be used by wildfire management agencies to inform strategic 

planning. The tool supports decision-making by calculating the fire boundary forming probability 

for any area within the Alberta boreal zone, based on temporally stable landscape factors. It could 

potentially guide the allocation of firefighting resources, identify high and low-risk areas for 

proactive measures, and assist in more efficient fire line planning. 

Key Words: Alberta, fire cessation modeling, fire perimeter prediction, fire cessation, matched 

case-control conditional logistic model, random forest model  
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1. Introduction 

 

1.1. Preamble 

Wildfire naturally occurs in forests around the globe. In Alberta, Canada, wildfire is a major 

natural hazard within boreal forests, which, as part of the North American Boreal Zone, is one of 

the biggest intact forests left on earth. While many wildfires in Alberta tend to be small and 

frequent, the relatively rare large fires account for the vast majority of the area burned (Stocks et 

al., 2002). When a fire surpasses suppression efforts and escapes, it may cause extensive damage 

to timber resources and other forest values. When wildfire is paired with extreme weather 

conditions, it can result in devastating damage to properties and can endanger the lives of residents. 

There is a long history of human interaction with wildfires in Alberta. Before European 

settlement, Indigenous people in Alberta used fire as an effective tool for ecosystem management 

(Nekrich, 2022). However, when Canada became a leading exporter of wood to consumers across 

the continent, there was a strong driver for the government to establish policies and agencies to 

maintain fire control within Alberta's provincial land (Tymstra et al., 2020). As more people move 

into Alberta, the increase of urban development in wildfire-dependent landscapes requires more 

attention from the government and fire management agencies.  

Suppression of wildfires can lead to accumulations of fuel and fuel continuity, thus promoting 

conditions for future wildfires (Arno & Brown, 1991; Tymstra et al., 2020). Increases in the time 

since the last fire are associated with increased likelihood that a new fire will escape initial 

suppression in some forest types (Beverly, 2017).  
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Suppression of wildfires is costly. Throughout Canada, provinces and territories are responsible 

for the fire management costs within each region, and combined nationally, suppression 

expenditures have been $800 million to $1.5 billion dollars annually for the past decade (Natural 

Resources Canada, 2022). The province of Alberta invests heavily in fire suppression. Due to the 

devastating fire season of 2023, Alberta introduced funding of $151 million over the next three 

years to enhance the wildfire management and preparation. (Horner, 2024).  

Provincial and territorial fire management agencies in Canada have strived to balance the 

disturbance and damage caused by wildfire with the beneficial effect of fire in a forest ecosystem. 

For example, in the province of Alberta, with limited resources at the disposal of fire management 

agencies, the policy dictates that all fires are responded to and suppressed before they grow larger 

than 2 hectares, and in the event these efforts are unsuccessful, an approved wildfire management 

plan is initiated (Tymstra et al., 2020). Throughout these fire suppression efforts, fire managers 

must decide how to allocate suppression resources to each fire.  

Information about landscape factors in relation to possible, current, and expected fire perimeters 

is critical to several fire management decisions. A fire’s perimeter is defined as the edge boundary 

of a wildfire, recorded after fire has ceased burning (i.e., the final perimeter) as well as during 

dormant periods throughout the life of the fire (i.e., daily fire progressions). Natural landscape 

factors like roads, water bodies, and natural topography interact differently with fire perimeters. 

The fire edge is a limited piece of administrative information; however, when combined with 

additional landscape data, it has research applications, providing a way of documenting the nature 

of fire disturbance on the land. Understanding the factors that dictate fire perimeters can also help 

an agency plan whether a fire needs to be suppressed (Hardy, 2005; Beverly et al., 2021). Agencies 

can reduce costs and support the ecological benefits of fires by allowing fires to burn when they 
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do not pose a threat to human lives, communities, property, or other valuable resources. However, 

to implement this approach effectively, fire managers must assess potential fire behaviour and 

predict fire spread. Strategic analysis derived from understanding the factors that influence the fire 

perimeter, may potentially assist fire managers in understanding the risks associated with a 

decision to let fires burn. Specific tools have been developed to help support fire managers' 

decisions with landscape information. In Canada, potential and actual fire behaviour is assessed 

with the Canadian Forest Danger Rating System (CFFDRS) and its two subsystems: the Canadian 

Forest Fire Weather Index (FWI) System (Van Wagner, 1987; Taylor & Alexander, 2006) and the 

Canadian Forest Fire Behaviour Prediction (FBP) System (Forestry Canada Fire Danger Group, 

1992).  

Emerging studies have investigated the interaction between fire perimeter formation and the 

surrounding spatial environment in the temperate forest (Narayanaraj & Wimberly, 2011; 

Holsinger et al., 2016; Macauley et al., 2022). Some studies have focused more on individual fires 

in single regions, such as the Canadian Rocky Mountains (Macauley et al., 2022). However, such 

studies lack a comprehensive understanding of the relationship within a larger geographical region 

over an extended period. This thesis aims to fill in the gap by expanding fire perimeter analysis to 

the scale of an entire province and over a much longer period. By combining fire perimeter and 

land cover information in a geographic information system (GIS), ArcGIS, a model was built to 

identify the key factors influencing the formation of a fire perimeter and predict expected 

perimeters within the boreal zone in Alberta. The tool developed by this study can potentially 

inform fire management decisions in Alberta‘s Boreal Zone, assisting with predictions of whether 

a fire is likely to be naturally contained. Implementing a potential provincial-wide fire perimeter 
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prediction system may help fire managers improve cost-efficiency in fire management planning 

and potentially enhance preparedness for dealing with escaped fires. 

1.2.  Literature Review 

1.2.1. Influential Factors on Wildfires 

A fire is a chemical reaction that requires three things: fuel (carbohydrate), oxygen, and heat. 

Combustion produces carbon dioxide, water vapour, heat, and light (Figure 1-1a). If any one of 

the three factors is missing, combustion would stop, and the fire would cease to burn. On a grander 

scale for wildfires, the cessation process extends from this triangle of combustion requirements to 

a 'fire behaviour triangle' (Countryman, 1972), consisting of three factors that influence fire 

behaviour (Figure 1-1b): topography, fuel, and weather. 

 

Figure 1-1 Illustration of the basic fire triangle for (Left) combustion, and (Right) a 

wildfire Event 

Weather is directly related to wildfires, exhibiting a dynamic effect that varies from location to 

location and over short time-periods. Tymstra et al. (2021) found that extreme weather conditions 

is the main driver for the occurrence and spread of large spring wildfires in Alberta and hot, dry 

weather is known to make fire suppression in Alberta more difficult (i.e., Whitman et al. (2022). 

However, even though weather is a driving factor of fires, a recent study (Walker et al., 2020) 
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reported that fuel availability controls boreal wildfire severity and carbon emissions more than fire 

weather.  

As a landscape factor, fuel influences fire as a bottom-up control (Parks et al., 2012; Fernandes 

et al., 2014). Like other landscape factors (e.g. topography, water bodies), fuel tends to remain 

unchanged for extended periods (i.e., 1-5 years). Changes in fuel availability have been found to 

affect the prediction of fire perimeter formation in various areas (Just et al., 2016; Rodrigues et al., 

2020); however, these changes are limited over the short term.  

Previously burned areas can provide a break in the continuity of the fuels. Areas burned by prior 

wildfires have exhibited a moderate to substantial influence on fire perimeter formation in the 

Western United States, and previous burns that happened long ago still impact fire dynamics, as 

demonstrated by Holsinger et al. (2016). Parks, Miller, et al. (2015) found that wildland fires 

exceeding 20 hectares have a regulating effect on the subsequent occurrence of fires in these 

regions. In the same study, they also found the regulating effect varies across different 

geographical locations. The effect lasts shorter (i.e., 9 years) in warm and dry area of the 

southwestern United States and longer (i.e., > 20 years) in the cool and wet areas of the northern 

Rocky Mountains (Parks, Miller, et al., 2015). Boreal spruce forests that burned 20-45 years prior 

were observed to have a protective effect such that new fires had a lower probability of escaping 

fire containment efforts (Beverly, 2017). Previous fire is rarely used as an input to fire spread 

pattern or perimeter prediction, and further research is needed. 

Topography, which includes slope, aspect, elevation, configuration, and other related indices, 

plays a critical role in wildfire dynamics. Topography is a static and physical landscape feature, 

that has influence on vegetation (fuel), weather (wind direction and speed), and the way fire 

spreads. Ridges and slope increase wind speed as it pass through an up hill region, which allows 
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pre-heating of fuels and faster fire spread (Rothermel, 1983; Linn et al., 2007). Holsinger et al. 

(2016) reported that both valley bottoms and ridge tops showed moderate to high correlation with 

fire boundaries in the Northern Rockies and the Southwest of the United States. In the latter region, 

topography was a dominant factor, often serving as a fuel break. O’Connor et al. (2017) reported 

that with the exception of the most extreme fire weather conditions, topography and fuels are the 

most significant factors affecting potential fire spread and burn severity in the Northern Rocky 

Mountains of the United States. However, topography's ruggedness in different landscapes varies 

significantly across eco-regions. Topographic controls were most prominent in mountainous eco-

regions and least influential in arid regions. Fire generally spread uphill, and ridge tops provided 

low-level control across all eco-regions of California (Povak et al., 2018). 

Additionally, in the Mediterranean region, steep-relief mountainous areas show low levels of 

fire cessation likelihood, and plains show high fire perimeter presence (Rodrigues et al., 2020). 

Topography significantly impacts the cessation of wildfires, but regional differences and site-

specific elements influences the relationship. The role of topography in fire cessation merits further 

study with additional research at multiple scales. Large water bodies, such as lakes, play a 

significant role in controlling wildfire spread. Nielsen et al. (2016) found that large lakes can 

effectively reduce the likelihood of wildfires in the boreal forest of Saskatchewan, Canada.  

Rodrigues et al. (2020) also found large rivers showing high fire perimeter presence in Catalonia, 

Spain.  

Roads and trails are examples of human-made fire breaks that provide easy access for heavy 

equipment, support resource delivery, and are sometimes used to anchor the construction of a fire 

containment line. Narayanaraj and Wimberly (2011) are among the earliest to study the effects of 

roads on fires. They found that roads are most influential to fire boundary formation in lower-
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elevation landscapes with high road network densities. Rodrigues et al. (2020) found that major 

roads show high fire perimeter presence. Povak et al. (2018) reported that roads were the dominant 

control across all ecoregions. However, they also found that removing roads from the analyses had 

no significant effect on the overall role of topography in wildfire extinguishment.  

1.2.2. Sampling Methods 

Various methods have been used to sample data in studies of fire edge formation. One approach is 

to use a vector layer with observed fire perimeters to establish the binary response variable where 

success is the presence of a fire perimeter (i.e., 1) and failure is the absence of a fire perimeter (i.e., 

0). Observed perimeter locations represented successful control areas, whereas the rest of the 

burned area corresponds to the locations the fire spread through (i.e., failures). This method has 

been utilized in many studies, such as O’Connor et al. (2017) and Rodrigues et al. (2020). Just et 

al. (2016) also used a binary variable determined by whether an adjacent field had burned or not. . 

Matched Case-Control (MCC) is a more complicated method inspired by prior applications in 

medical research (Breslow, 1996) and the ecology of animal movements (Compton et al., 2002; 

Whittington et al., 2005). Several studies (Narayanaraj & Wimberly, 2011; Holsinger et al., 2016; 

Macauley et al., 2022) have demonstrated its advantages in drawing meaningful conclusions 

between the fire cessation environment variables and the response variable (fire).  

In MCC, sampling points are selected regularly along the fire perimeter. At each of these chosen 

points, a perpendicular transect intersects the fire perimeter, with two corresponding points 

selected at the end of the transect, inside and outside the fire's interior, to create pairs. Narayanaraj 

and Wimberly (2011) used this approach to sample points at 200-m intervals along the fire 

boundary and at 100-m intervals perpendicular to the fire boundary. Macauley et al. (2022) refined 

this method by distributing sample points along the transect segments in the burned and unburned 
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areas at 40 m, 100 m, 200 m, 300 m, 400 m, and 500 m. The 100-m interval perpendicular to the 

fire boundary was found to sufficiently capture the difference between burned and unburned states.  

While the MCC method is expected to be highly efficient in capturing the key factors 

influencing the fire perimeter, previous research has shown that manual inspection was needed to 

remove points with mismatched burned/unburned status, which is labour-intensive. Holsinger et 

al. (2016) addressed this issue by choosing sampling points along the fire perimeter at 3-km 

intervals to reduce the data cleaning effort. Further studies are needed to evaluate the efficiency 

and labour costs involved in applying the MCC method over multiple fires in large regions. 

1.2.3. Methods to Detect Key Factors in Perimeter Formation  

In this thesis, the methods are divided into two categories: single factor and multiple factors. 

Grouping is determined by whether the influence of a given factor on fire perimeter formation is 

represented by one or multiple factors. For example, utilizing a single factor, Beverly et al. (2021) 

used stable physical fuel properties to develop a landscape metric of fire. By reclassifying conifer 

and mixedwood fuel types as hazardous fuels, any map cell that includes hazard fuels is treated as 

containing hazardous fuels. Parks, Miller, et al. (2015) investigated the factors influencing fire 

perimeter formation by assessing one representative factor: the time elapsed between the initial 

wildland fire and its subsequent ignition. This factor was used to explore further the role of 

previous fires on the fire cessation dynamics. Another example of the representative method was 

in Povak et al. (2018), which explored the interconnections between the topographic patch and fire 

size distributions. They implemented neutral landscape modelling to assess the significance of the 

topographic controls at fire boundaries across 16 ecoregions in California, USA. They used the 

topography feature as their single representative index. They assessed the differences in the 

topography between fire boundaries and fire interiors, which revealed distinct spatial control with 
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different fire sizes. Additionally, Nielsen et al. (2016) assessed a single factor: water(lakes) as a 

natural fire break influencing historical fire perimeters and found it had a strong bottom-up control 

on the local fire activities.  

Instead of relying on one single factor, some studies comprehensively explore the influences of 

multiple factors on a fire perimeter, often through establishing a machine learning model. For 

example, based on prescribed fire experiments, Just et al. (2016) examined the influence of 

vegetation structure with microclimate condition on the extent of fire spread along savanna–

wetland ecotonal gradients in Northern Carolina, USA, using linear mixed-effect models (GLMM). 

Rodrigues et al. (2020) effectively utilized a random forest model to predict fire cessation in 

Catalonia (northeastern Spain), achieving a high predictive accuracy with an Area Under the Curve 

(AUC) of 0.88. The model incorporated a variety of factors, including ground accessibility, fire 

breaks, and vegetation, among others. O’Connor et al. (2017) tested the spatial relationships 

between fire perimeter locations and physical landscape variables, potential fire behaviour, and 

access to suppression resources by extracting random samples over 238 US fires in the Northern 

Rocky Mountains. 

Matched case-control (MCC) conditional logistic regression (Clogit) has been used widely to 

explore how different variables affect fire perimeters. In previous studies that applied MCC Clogit 

methods (Narayanaraj & Wimberly, 2011; Holsinger et al., 2016; Macauley et al., 2022), 

researchers modeled fire cessation using environment variables at each "case" sample point, which 

represent the hazard event, in this case fire cessation, that is outside the fire perimeter and assigned 

a value of 1. This case sample point is paired with a corresponding "control" sample point inside 

the fire perimeter, which is assigned a value of 0. The Clogit routine creates the dummy variable 

of times (all 1) and the strata. 
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In standard logistic regression, all the points are divided into two groups. However, in MCC 

Clogit, case and control points are paired based on stratifying variables (Hosmer, 2000). The 

pairing of the case points on fire boundary with control points inside the fire boundary is similar 

to a paired t-test (Whittington et al., 2005). Instead of modelling the overall distributions of cases 

versus controls, MCC quantifies the difference between each case and its matched control point. 

Clogit can identify the direction and the significance of variables influencing the fire perimeter. 

However, this also means that when utilizing an MCC Clogit model established from a training 

dataset for predicting outcomes using new data, the new test dataset must have the exact same 

strata as the training dataset. The mandatory data matching introduces a new challenge for any 

study that implements MCC Clogit for testing and prediction.  

There are three types of methods to create test data for model evaluation (Xu & Goodacre, 

2018). The first is K-fold cross-validation, which divides the data into K number of parts and 

selects one of the parts as the test data. The second is a deterministic split, which cuts the dataset 

into two determined parts by giving a test-to-train ratio. This is best for multiple runs of the same 

dataset (Xu & Goodacre, 2018). The third method is to split by randomly choosing a threshold 

ratio of data as the training dataset and using the remainder as test data. This method is best for 

avoiding potential biases (Xu & Goodacre, 2018). However, MCC Clogit could not use any of the 

three splitting methods, and the requirement for an exact match of strata  between training and 

testing datasets became a limitation, making predicting new data using the MCC Clogit model 

problematic. The strength of the MCC Clogit (i.e., its exact matching)  also turns out to be its 

shortcoming when processing predictions, especially for all new data points from a new data 

sample. Researchers who implemented the MCC Clogit method encountered this issue. Some, like 

Narayanaraj and Wimberly (2011), acknowledged this limitation and chose not to proceed with 
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prediction. Others, such as Macauley et al. (2022), explored alternative prediction methods that 

used the result of the MCC Clogit model but applied a different function for prediction. Addressing 

this issue remains an area in need of further research.  

A promising alternative method for prediction is the Random Forest (RF) approach (Breiman, 

2001). To establish a robust model to explore the influence of multiple predictor variables on 

response variables, namely, identifying fire-prone variables, an example of a decision tree model 

can be established, as described in Figure 1-2. The decision tree model is constructed using the 

entire dataset, using all the predictor variables.  

 

Figure 1-2 Example diagram of a decision tree model for the detection of a fire-resistant 

or fire-prone region. 

The Random Forest model is an ensemble of decision trees that randomly selects a set of 

variables for each tree. Figure 1-3 illustrates an example of an RF model, where four decision trees 

are created, each taking two variables from the entire dataset. Each decision tree will predict the 

outcome based on the respective predictor variables used in that tree. The Random Forest model 
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aggregates the results by averaging predictions from all the decision trees. The advantage of the 

Random Forest model is that it increases predictive accuracy and robustness, making it a powerful 

tool for complex analyses involving multiple variables and potential interactions. 

 

Figure 1-3 Example diagram of a Random Forest model consisting of four decision trees 

and two variables in each tree 

Multiple decision trees must be created when implementing the Random Forest method. Each 

tree selects or votes the class (i.e., inside or outside the fire) based on the predictors’ information 

at each specific site, and the predicted class is the one receiving the most votes by a simple majority.  

Due to the random selection of variables in each decision tree, only random parts of the dataset 

are used. This randomness provides RF much more flexibility than a single decision tree. One 

particular advantage is avoiding overfitting issues in other algorithms. An overfitting issue happens 

when an algorithm reaches a very high model performance using training data but performs poorly 

predicting new data. In essence, this means that the disturbance can be well recorded and learned 

as concepts by the model in the training stage. Still, these concepts might not apply to the testing 
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data, which will negatively impact the model’s ability to classify the new data, reducing the testing 

data's accuracy. The RF bagging technique can reduce the prediction variation by combining the 

result of multiple decision trees, where each tree was trained on a different random sampling of 

the dataset.  

All the above characteristics demonstrate that RF has an advantage in handling high-

dimensional (HD) issues. Couronné et al. (2018) showed that RF outperforms Clogit in large-scale 

data. Shomal Zadeh et al. (2020) proposed a high-dimensional matched case-control data method, 

introducing the Matched Forest (MF) algorithm. MF is based on the potential outcome model, 

which is flexible regarding the number of matching and exposure variables and can detect 

interaction effects. The method preserves each instance's case and control values but transforms 

the matched case-control data with added counterfactuals. A modified variable importance score 

from a supervised learner is used to detect important variables. Simulation studies show the 

effectiveness of MF in identifying important variables. MF modelling is also applied to data from 

the biomedical domain, and its performance is compared with that of alternative approaches.  

Although RF and MF models excel in predicting outcomes with new data, they all struggle to 

detect the direction of the covariates (i.e., independent variables). In contrast, MCC Clogit excels 

in detecting the direction of the covariates but is limited for producing predictions. Combining the 

two algorithms could provide a possible solution to identify the key factors influencing fire 

cessation with prediction capability. 

1.3. Research Opportunities 

As summarized in Section 1.2, a relationship between landscape factors and fire cessation has been 

an emerging research topic, both scientifically and practically. Fire perimeter models for the boreal 

zone have yet to be developed. Prior studies have been limited to exploring specific factors. Studies 
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examining perimeters are more common; few studies have focused on the outside fire edge in the 

boreal zone, but often limited either spatially, by only focusing on single fires, or temporally, by 

only working with fires that occurred within a short time span. MCC techniques are effective in 

fire studies, but the data sampling method has largely remained manual and time consuming. 

Applying MCC for multiple fires over large-scale data is therefore challenging. 

 Fuel type is an explanatory variable used in fire perimeter modelling (Macauley et al., 2022). 

In statistical modelling, sometimes it is better to transform a categorical variable into a series of 

dummy variables (binary) to focus on each category individually. None of the documented studies 

to date have used dummy variables to explore the relationship between the fire perimeter and 

previously burned areas in the Alberta Boreal.  

While the MCC Clogit regression model is effective for exploring the directional influence of 

various factors on fire cessation, it lacks capability in prediction. On the other hand, RF excels in 

its prediction capability but cannot identify the direction of influence. Therefore, a combined 

approach using both MCC Clogit and RF could provide more comprehensive insight about the 

relationship under investigation. 

1.4. Research Objectives 

The aim of this thesis is to identify key landscape factors that influence fire perimeter formation, 

based on numerous historical fires, to provide insight for decision-makers to enhance fire 

management strategies across the boreal forest zone in Alberta. Firstly, suitable fires and 

explanatory variables were selected. Secondly, an automated algorithm was established to 

efficiently sample and extract MCC data points for both fire and explanatory variables. Thirdly, a 

joint modeling framework was used to not only detect the influences but also make predictions of 

the fire perimeter. 
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A flowchart illustrating the overall research process is presented in Figure 1-4. Four working 

tasks (WT) were achieved as follows.  

WT1: Fire and explanatory variables selection. Suitable fires and explanatory variables were 

selected.  This involved choosing fires that align with the study area and have the least number of 

external conditions affecting fire cessation. Additionally, relevant explanatory variables related to 

fire environment landscape elements were identified. This was achieved by two sub-tasks:  

WT1.1) Choose fires for better representativeness (rules and data quality control) 

WT1.2) Choose relevant variables to represent fire environment landscape elements 

WT2: MCC automation design and data cleaning. The workflow established automated algorithms 

for sampling and extracting MCC data points. Algorithms were developed to automate the MCC 

data sampling process and explanatory variable extraction process. In addition, data cleaning 

algorithms were developed to increase the efficiency and accuracy of the data collection process. 

Work Task 2 included three sub-tasks: 

WT2.1) Develop algorithms to automate MCC data sampling  

WT2.2) Develop algorithms to automate MCC data extraction  

WT2.3) Develop algorithms to clean data 

WT3: Identify the key variables by a joint modelling framework. In this task, MCC Clogit was 

used to identify key influential factors from the list of explanatory variables. This was achieved 

through a series of steps, starting with data preparation and pre-modeling processing, such as data 

cleaning and contingency testing. Various combinations of key influential factors called “schemes” 

were selected from MCC Clogit regression model runs. These schemes were refined using Random 
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Forest (RF) modelling. Additional schemes were determined based on importance scores from 

initial RF modelling. Subsequent RF modelling was conducted for each scheme resulting from the 

MCC Clogit and RF separately. The most effective scheme was selected based on performance 

measured by the RF model's Area Under the Curve (AUC). Three sub-tasks were included in Work 

Task 3: 

WT3.1) Obtain key variable sets via MCC Clogit under Clogit schemes (cp0.1 stepwise) 

WT3.2) Obtain key variable sets via MCC RF under RF schemes (importance score) 

WT3.3) Obtain the best key variable set by rerunning the RF model based on the best AUC 

WT4: Predict fire perimeter based on identified key variables. The key influential factors from the 

best-performing scheme were used to predict fire perimeter probability. This involved utilizing the 

trained model to predict brand new landscape environment data, and the fire perimeter maps 

predicted was verified with realistic fire maps. It included the following sub-tasks: 

WT4.1) Sample the data for prediction 

WT4.2) Predict fire perimeter based on identified key variables via RF 
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 Figure 1-4 A flow chart diagram of the research carried out in this thesis. 
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2. Data Selection and Modelling Framework 

 

2.1. Study Area 

Canada has about 650×104 km2 of forest ecosystems with a mosaic of trees, wetlands, and lakes 

(Wulder et al., 2008). Among them, the boreal forest occupies an area of  552 ×104 km2 (with 270 

×104 km2 of trees) (Brandt, 2009) across the country from east to west, forming one of the 

prominent features of Canada (Matasci et al., 2018).  

Alberta is a western province in Canada located in the Northwestern Hemisphere. The total area 

of Alberta is  66.18 ×104 km2 (Stamp, 2009; StatisticsCanada, 2021). The vast majority of Alberta 

is located within the Interior Plains region, featuring prairie grassland in the south, parkland in the 

center, and boreal forest in the north. The southwestern part of Alberta contains foothills that lead 

to the Rocky Mountains, and the northeastern corner transitions to the Canadian Shield. The prairie 

region of Alberta is relatively dry and consists mainly of grass, while the parkland region has a 

mixture of tall grasses and aspen trees. Within the Alberta boreal zone, the dominant tree species 

include white spruce (Picea glauca), black spruce (Picea mariana), jack pine (Pinus banksiana), 

balsam fir (Abies balsamea), paper birch (Betula papyrifera), and trembling aspen (Populus 

tremuloides) (Greene et al., 1999). The study area consists of the entire North American boreal 

range within the province of Alberta, which encompasses 48.33 ×104 km2 in the north half of 

Alberta and 3 km2 in the rocky mountain foothills (Figure 2-1).  
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.

 

Figure 2-1 (A) The location of Alberta in the globe, (B) The map of Alberta within the 

North American boreal zone, with the protected areas coloured in grey. The green area within 

Alberta, minus the protected areas, is what the final study area looks like.   

 

The Alberta boreal zone has five natural regions (Natural Regions Committee, 2006) (Figure 

2-2): Rocky Mountain, Boreal Forest, Parkland, Canadian Shield and Foothills. Each natural 

region is further divided into sub-regions (Figure 2-2). 
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Figure 2-2 (A) The natural regions in Alberta (B) The natural sub-regions in Alberta, the 

different colours represent the different natural regions within Alberta, and the black outline 

represents the range of the North American Boreal Zone within Alberta. These data are from 

Natural Regions Committee (2006)  
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2.2. Selection of Fires 

The fire  (i.e., response variable) were selected from an historical fire polygon database  (Alberta 

Agriculture and Forestry, 2016) delineating final perimeters of fires that occurred from 1931 to 

2020.  Each fire polygon record has multiple attributes including an identification number, the year 

of occurrence, fire name, burned area, timing of operational and administrative actions, and the 

method used to document the perimeter. As the data are imperfect, with the possibility of systemic 

or human errors, a set of six rules was used for selecting fires suitable for analysis. These are 

described as follows: 

Rule 1. Time Span Matching: The year of the fire was set from 2008 to 2018, which represents 

the most recent decade of available data at the time of study initiation. The timing of fires also 

matched the temporal values of the explanatory data.  

Rule 2. Spatial Restriction: All fires outside the Alberta boreal region or not entirely within 

the Alberta Boreal Region under provincial jurisdiction were removed using ArcGIS' "select by 

attribute" tool, including all fires that have majorly crossed the province border and fires within 

the federally protected parks. Those fires were removed with the geoprocessing tool “intersect.” 

Special consideration was made for stand-out fires that barely touched the border with a fire-by-

fire case.  

Rule 3. Only Lightning Caused: Only fires caused by lightning were selected. Fires that were 

not naturally started (i.e., caused by industry, railways, power lines, recreation, or other human-

sources) could create bias due to different fire suppression efforts, so only lightning-caused fires 

were chosen.  
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Rule 4. Fire Class Filtering: Only fires with size class D and E were selected. Fire classes A, 

B, C, D, and E refer to fires with a fire area being (0 to 0.1], (0.1 to 4], (4 to 40], (40 to 200] and 

greater than 200 ha, respectively. It is impractical to mine the detailed spatial information of small 

fires. Fire perimeters with a fire class other than D or E were omitted.  

Rule 5. Exclusion of unburned islands:  The fire polygon database includes unburned islands 

and partially burned areas. Smaller fires with large partially burned areas were removed.  Larger 

fires remained, but during the data cleaning process, a specific step was taken to remove all points 

sampled from areas considered “unburned islands.”  

Rule 6. Digitized Fires Only: The source of each fire polygon was classified as “0 - hand sketch 

of any type “, ”1 - non-corrected ground GPS“, “2 - non-corrected airborne GPS”, “3 - corrected 

ground GPS”, “4 - corrected airborne GPS”, “5 - digitized from aerial photo”, “12 - digital/satellite 

imagery (pixel 10 - 20m)” and “13 - digital/satellite imagery (pixel > 20m)”. Only digitized fire 

data, i.e., with the data source being digitized from aerial photos, digital/satellite imagery (pixel 

10m - 20m) and digital/satellite imagery (pixel > 20m) were analyzed, as the digitized fires often 

contained highly detailed polygons within the larger fire perimeter.  

 

2.3. Selection of Explanatory Variables 

In contrast to the conventional approach of categorizing the driving factors of fire perimeters into 

the fire triangle elements, as most literature did, the weather was excluded from the driving factors 

in this study, and only non-weather factors were investigated. While it is common knowledge that 

weather plays a significant role in fire behaviour, these factors are also challenging to quantify 
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across historical fires. Conversely, non-weather factors are relatively stable. The focus of this study 

is to examine which of those non-weather factors most affect the formation of fire perimeters. 

Five types of variables were identified to explain fire perimeters using a literature review of 

factors affecting fire perimeter formation and fire-stopping and considering data availability on a 

provincial scale, in favour of data with less time-sensitive variables (i.e., remaining stable for at 

least a year). These variables were defined in relation to human activities, water, topography, fuel  

and previous fires. 

 

2.3.1. Human Activities-related variables 

Human footprint data (Alberta Biodiversity Monitoring Institute, 2010) provides information 

about human activities and artificial structures in Alberta and includes 21 spatial features that 

capture various human activities (e.g., rail lines, canals, roads, and railways… etc.). These data 

were originally in a polyline format in the shapefile layer. 

The historical wildfire perimeters were overlayed with the human footprint. After manual 

inspection of all the possible human activities, the vast majority had no interactions with the 

wildfire perimeters. The only human feature that occasionally interacts with wildfire perimeters 

were roads. Thus, roads were chosen to represent human activity in the analysis. Like previous 

studies (Narayanaraj & Wimberly, 2011; O'Connor et al., 2017), a distance map to the nearest road 

using the "Euclidean Distance" Spatial Analysis tool in ArcGIS was created at a 30 m resolution. 

2.3.2. Water-related variables 

Water-related data were from the Boreal Surface Water Inventory, represented as polygons, and 

obtained from the ABMI (DeLancey et al., 2018). These data were in a shapefile comprising all of 
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Alberta's hydrography areas. The original dataset indicated the presence and location of water 

bodies, whether temporary or permanent.  

Following Nielsen et al. (2016), the original polygon data for water was first converted into a 

binary format, then later transformed into two distinct variables: 

(1) Proportion of water: The converted binary variable was used to calculate the amount of 

water in the surrounding area within a 90 m circular radius. The ArcGIS spatial analysis tool "Focal 

Statistics" was used to sum the occurrences of water within a circular moving window and output 

the total into a raster. The cell size was set as 30 m. Therefore, each cell in the output raster contains 

a number representing the total number of cells that contained water within a 90 m circular radius. 

A cell with a value of 0 indicates no water within the 90 m radius, while a value of 29 indicates it 

is fully surrounded by water (Figure 2-3).  

 

Figure 2-3 Example of the calculation of the water proportion around an example cell. 

Each square represents a 30×30 m cell pixel. The maximum of the spatial cells (30×30 m) 

outside of the yellow cell within a 90 m circular is (π 902)÷302 = 28.27 

(2) Distance to nearest water bodies. Using the spatial analysis "Euclidean Distance "tool in 

ArcGIS, the polygon layer is turned into a Euclidean distance layer. This layer depicts the closest 

distance in meters to the nearest water body, given a 30 m × 30 m resolution. The Euclidean 
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distance layer and the water proportion layer can better represent the effect of the water bodies in 

an area than simply the location or the status of whether the water body exists in a pixel. These 

two water variables are used to detect the influence of water, namely rivers, streams and lakes, on 

fire cessation. 

2.3.3. Topography-related variables 

Two variables are used to define the influence of topography on fire cessation, including a digital 

elevation model (DEM) and the slope. DEM data is in high resolution (10 m) at a datafile size of 

40 gigabytes. These high-resolution data were clipped to cover the North American Boreal Zone 

in Alberta. Using the ArcGIS spatial analysis "slope" tool, the slope percentage was calculated 

with the formula (2-1) 

Slope percentage = rise/run × 100     (2-1) 

Where “rise” and “run” are the vertical rise and horizontal run of a slope angle, respectively. The 

30 m elevation layer and the slope layer are created for representing topography.  

2.3.4. Fuel-related Landscape Factors  

To quantify the influence of land cover and fuel on fire cessation, the fuel type land cover 

classification of the FBP System were considered. The FBP System fuel data were in the form of 

individual raster data layers by year, with 100 m × 100 m resolution. In this case, for modelling 

consistency, the FBP fuel data were rescaled to 30 m x 30 m resolution using the ArcGIS spatial 

analysis tool "resize." This does not increase the resolution of the data; it only makes it convenient 

for the sampling process. Each cell contains a grid value that corresponds to an FBP System fuel 

type, including coniferous fuels: C1 – Spruce – Lichen Woodland, C2 – Boreal Spruce, C3 – 

Mature Jack or Lodgepole Pine, C4 – Immature Jack or Lodgepole Pine, deciduous fuels: D1/D2 

– Aspen, mixedwood: M1/M2, 05PC to 95PC – Mixedwood with a percentage of coniferous fuel, 
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grass: O1 – Grass, non-fuels: NF – Non-Fuel, VNF – Vegetated Non Fuel, and W - Water. For 

modelling purposes, fuel variables were converted into dummy variables corresponding to each 

fuel type, each of which will be entered into the modelling. In the case of the mixedwood category, 

three additional dummy variables were created to represent three categories of conifer composition:  

10-40%, 40-60% and 60- 90%. When sampling FBP System data, the year of the fuel variable is 

always set as the year prior to the fire.  

2.3.5. Time-since-fire 

To estimate the time-since-fire (TSF) of each fire, for each of the specific fire years, a sampled 

data point layer is created, and this layer is overlaid with the original fire polygon. This overlaid 

layer allows extraction of the year of past fire from the original polygon. The previously burned 

area was derived from the historical Spatial Wildfire database (Alberta Agriculture and Forestry, 

2021; Government of Alberta, 2022b). For each fire year, additional layers in ArcGIS were created 

to analyze the effect of previous fires on the formation of the fire perimeter. A layer containing all 

fires from previous years dating back to 1931 was created for each year of fire perimeters.  

There are two possibilities: NA (i.e., no fire data after 1931) or there is a prior fire present in a 

specific year. In the event of two overlapping past fires, the fire with the most recent year was used. 

The difference between that prior burn year and the year of the sampled fire from the geodatabase 

is TSF. TSF was converted into dummy variables representing decadal TSF categories (i.e.,  0 to 

< 10 years, 10 to < 20 years, and continuing to the oldest TSF category of ≥ 70 years.    

2.4. Summary of Data Sources 

The data source associated with each variable is summarized in in Table 2-1. 

Table 2-1 Variable data sources. 
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Description Source Spatial 

Extent/resolution 

Time 

Frame/resolution 

Format 

Alberta Digital 

Elevation (DEM) 

data 

AltaLIS (2021) Alberta, 30×30 m 

(resized) 

Not Applicable Shapefile 

Slope Calculated from  

DEM data 

North American 

Boreal Zone in Alberta, 

30×30 m 

North American 

Boreal Zone in 

Alberta 

Raster data 

Natural Regions 

and Subregions 

Polygon in Boreal 

Zone 

Government of 

Alberta (2022a) 

Alberta Up to date Shapefiles 

Fire cause/Weather 

Info on the fire 

start date 

Alberta Agriculture 

and Forestry (2016) 

Alberta, fire by fire 2008-2018, fire by 

fire 

Excel table 

Historical Wildfire 

Polygons 

Alberta 1931 - 2020 Shapefile 

Fuel data Alberta, 100×100 m, 

resampled into 30×30 m 

2010-2020, yearly Raster data 

Wall-to-wall 

Human Footprint  

 

Alberta Biodiversity 

Monitoring Institute 

(2010) 

Alberta, 30×30 m 2010, 2014, 2015, 

2016, 2017, 2018 

Shapefile 

Boreal Surface 

Water Inventory 

Alberta, 30×30 m 2016, 2017 Shapefile 

North American 

Boreal zone map 

Natural Resources 

Canada (2009) 

Canada 2010, five-yearly Shapefile 

Alberta Landsat 

Land Cover types 

Government of 

Canada (2010) 

Alberta 2010 & 2015 Shapefile 

 

2.5. Process for Sampling Points  

The key influential factors on fire cessation can be identified by finding the variation between 

factors inside and outside a fire perimeter. Following Narayanaraj and Wimberly (2011) and 

Macauley et al. (2022), a data sampling process was carefully designed to assign data as pairs.  

In fire data, the fire perimeters are represented by polygons in ArcMap. However, actual 

wildfires never sharply stop at the edge of a polygon. Fire cessation is often influenced by gradual 

changes in the fire environment as much as abrupt changes, such as fuel breaks (Fernandes et al., 

2016). Sampling directly at the edge of the digital fire perimeter may cause data pairs with no 
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variation if both points are within a band-shaped area created when the fire gradually stops. 

Therefore, a transect line is created at a 90-degree angle to the fire boundary at every sample 

location along the perimeter.  

With reference to Narayanaraj and Wimberly (2011) and Macauley et al. (2022), the choice of 

sampling intervals along fire perimeters in this thesis is set at 200 m, with the transect lines 

reaching 100 m inside and 100 m outside of the fire perimeter. The ‘control’ point is inside the fire 

perimeter and is expected to have a ‘burned’ state. The ‘case’ point is outside of the fire perimeter 

and is expected to have an ‘unburned’ state.  The paired points at each end of the transect line are 

considered a case-control pair of sample points. By sampling the points with the interval of 200 m 

along the perimeter line, enough variation in the information along the entire fire perimeter can be 

gathered while avoiding excessive sampling effort. At every 200 m on the fire perimeter, the 

difference in explanatory variables between the outside (unburn) and the inside (burn) of the 

perimeter can be explored (Figure 2-4). 
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Figure 2-4 An illustration of the sampling methodology with 100 m transects 

perpendicular to the fire perimeter; the point on each end of the transect is a matched pair 

of case and control points 

The detailed technical sampling process for a single fire polygon involves transforming the 

polygon into a line feature and then into a route feature under the ArcGIS spatial analysis tool. 

Through the ArcGIS calculation, the route feature file contains the total length of the route feature. 

By taking the value of the total length of the route, two different Excel tables called the "Event 

tables" are created, each with columns ‘ROUTEID,’ ‘MEASURE_LOCATION,’ and ‘OFFSET.’ 

The ‘ROUTEID’ column contains a universal 0, and the ‘MEASURE_LOCATION’ contains the 

sampling location along the perimeter, starting from 100 m, with an increment of 200 m to the 

total length of the route, and ‘OFFSET’ designates the sampled point being either control or case. 

Next, the ArcGIS Linear Referencing tool of "Make Route Event Layer" creates a feature layer of 

points as the sampled points. The Excel table created beforehand can control this process." 

ROUTEID" in the table can identify and match the route to the Event table, 
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"MEASURE_LOCATION" can pinpoint the exact locations along the route, and "OFFSET" 

creates points at exactly 100 m perpendicular to the original perimeter, the control point is inside 

the perimeter as it is represented by 100 (meaning sampled 100 m inward of the perimeter), and 

the case is represented by a -100 (meaning sampled 100 m outward of the perimeter) (Figure 2-5).  

 

Figure 2-5 Examples of sampling points on a sample fire (SWF120-2010). Each pair of 

points is 200 m apart along the perimeter, and each point is 100 m away from the 

perimeter. The corresponding value of each explanatory variable was extracted for each 

pair. 

This process generates two separate ArcGIS point layers  for each pair of points, at which a list 

of explanatory variables can be extracted to describe the detailed fire environment at those point 

locations from all the different ArcMap spatial information layers of explanatory variables. This 

entire process was completed manually in previous studies (Macauley et al., 2022). If a parameter 
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needs to reset a value, all the work must be repeated individually using each spatial analysis tool. 

All the points must be visually inspected to ensure they are correctly positioned. When sampled 

points are along complex sections of the fire perimeter, a control point or a case point may not be 

in their respective location, and manual adjustments to the respective point positions would be 

required, which is laborious, especially in the case of processing multiple polygons.  

2.6.  Automating Data Sampling and Extraction for Multiple Fires 

One of the main tasks of this study is to extend the sampling process from one or a few fires to 

more than one hundred fires, with vast spatial variability and temporal variability. It would be 

impractical and time-consuming to sample points manually. A new automated sampling technique 

is thus proposed, utilizing the ArcGIS Model Builder, custom Python script and Excel macro to 

streamline the process, reducing days of tedious, repetitive data processing  into a simplified and 

fully automated process that takes just hours. 

As detailed in the previous sections, the sampling process begins with initial filtering and 

selection of the fire perimeters. Since the fire polygons originate from different years, fires were 

first regrouped by year and stored separately in different geodatabases.  

Individual models were built with the iterator tool in ArcGIS Model Builder. This tool loops 

through various elements, such as a location, a fire, a folder, or an ArcGIS polygon feature, and 

provides users with a flexible modeling process. In this case, the single polygon feature layer is 

the base layer of operation.  

Before constructing the model in ArcGIS Model Builder, a Python-script-based tool to create 

event tables was developed and customized, as shown in Figure 2-6. This tool solves one of the 

Model Builder's key challenges for processing multiple fires, i.e., it automatically compiles two 
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individual event tables for every fire via the newly developed custom tool. This method eliminates 

manual work, making the process more efficient and practical. 

 

Figure 2-6 The interface of the custom-developed python-script tools for ArcGIS model 

builder.  The tool takes in the 3 column headings of the route shape file, i.e., sampling 

interval, initial location, offset distance, as the input. The tool provides an output table with 

“routeid,” and “measure_location.” 

 

The model builder starts with the creation of the route feature. It includes extracting each fire 

from the combined polygon feature layer, working with every single fire one at a time, converting 

it into a line feature, and converting each into a route feature, all stored into separate Geodatabases. 

The route feature contains an automated and calculated "Route length" attribute in its respective 
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attribute table. The details of these steps are shown in the first four rows of Figure 2-7.With the 

help of the custom tool, the model builder iterates through each fire, utilizing the individual fire 

perimeter's converted route length twice for each fire, and generating two tables, as shown in the 

fifth row of Figure 2-7. 

 

Figure 2-7 Data point sampling model for multiple fire polygons with automation 
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Storing all the generated tables in a Geodatabase, sample points can be generated using the 

ArcGIS Network Analysis tool "Make route event layer" twice for each fire. It uses the positive 

offset table (control) and the negative offset table (case) and creates two separate sets of points 

(case-control) that are uniquely stored. The two sets of corresponding points are then paired using 

the "merge" tool and output into a point shapefile by the "feature to point" tool, as shown in the 

sixth and seventh rows of  Figure 2-7. 

With all the sampled points from every single year stored in a separate Geodatabase, the last 

step is to extract associated spatial values and explanatory variables with minor changes such as 

changing the fuel data for different years, as shown in Figure 2-8. The sample points were 

intersected with all the processed explanatory variables: Euclidean distance to water, Euclidean 

distance to road, water proportion in a 90 m radius, slope (percentage rise), elevation,  natural 

region, natural sub-region, fuel type, presence of previous fire within recent 70 years, and presence 

of previous fire in the entire fire history and the utility layers such as the cleaning layer (details 

described in the next section). Extraction was done using the ArcGIS Spatial Analysis tool "Extract 

Multi Values to Points," ensuring the extraction process was completed without bilinear 

interpolation. After the individual points had been stored with the required spatial information, 

they were exported to Excel tables through the ArcGIS conversion tool "Table to Excel." 
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Figure 2-8 The illustration of  automated extraction of all the explanatory variables to 

each sample point, and output to excel files  

Before initiating modelling, an important issue had to be resolved. When ArcMap outputs tables 

from the ArcGIS model, the tables usually have the rows shifted in a random order. However, for 

modeling purposes, the format of the input file had to align the pairs of sampled points with each 

other (offset -100 pair with offset 100). While a simple re-sorting step in Excel could address this, 

the goal was to automate the process for hundreds of Excel files instead of using a manual 

command. A custom Microsoft Excel Macro was created to automatically loop through all the 

different Excel tables in the same folder and re-order them. This ensured that all the sampled points 

in each table were read into the regression model and paired without errors. 

2.7. Algorithms for Data Cleaning 

After the initial data sampling, a thorough cleaning process was applied to both the response 

variable and explanatory variables. After filtering the fires via the steps outlined in section 2.2, 

with further inspection, it was apparent that some fires encompass more than one distinct burned 

area, which necessitated a four-part cleaning process. 
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The first clean algorithm is an “inside-outside clean.” In the MCC data sampling, for a point 

along the fire perimeter, there is always a pair of data on the outside and inside of the fire. The 

points that are inside will be assigned a value for the flag variable OFFSET being 100, and those 

that are outside will be assigned a value for the flag variable OFFSET being -100. This is the 

normal case for most situations. However, in circumstances where the fire's perimeter is rigid and 

narrow, issues with the sample points might arise (Figure 2-9). The inside-outside cleaning 

algorithm retained normal points and removed abnormal points, as shown in Table 2-2. As the 

MCC sampling method is adopted in this thesis, all abnormal points were removed in pairs. 

Although it may reduce the sample size by excluding data, removal of matched pairs ensures that 

all the remaining data are in a strictly matched case-control status, which is necessary for Clogit 

modeling.  
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Figure 2-9 Illustration of the undesirable sample pairs that need cleaning. Brown areas 

represent the burned areas. In the text, 0 represents the sample point on the edge of the 

perimeter, and 1 and 1’ represent outside and inside fire points. Points A1 and A1’ show a 

normal pair. Point B1 is correctly at the outside of the fire, but its pair point B1’, is 

incorrectly outside the fire. Point C1, where its sample point is incorrectly inside fire 

perimeter polygon No.2. For the extreme case, point D1 is incorrectly inside another fire 

polygon No.3, and point D1’, which is supposed to be inside the perimeter, now is 

incorrectly outside the fire because of the irregular shape of the fire polygon No.1.  
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Table 2-2 Different conditions of sample data pairs, and corresponding action, and the 

symbols used are explained in Figure 2-9 

Condition   outside fire inside fire Normal Action 

1 A1(OFFSET = -100) Correct  Correct Keep 

 A1'(OFFSET = 100)  Correct Correct Keep 

2 B1(OFFSET = -100) Correct  Correct Remove 

 B1'(OFFSET = 100)  Incorrect Incorrect Remove 

3 C1(OFFSET = -100) Incorrect  Incorrect Remove 

 C1'(OFFSET = 100)  Correct Correct Remove 

4 D1(OFFSET = -100) Incorrect  Incorrect Remove 

 D1'(OFFSET = 100)   Incorrect Incorrect Remove 

 

The second cleaning algorithm is called NVB-clean. The relatively coarse resolution of the 

provincial fuel grid introduced some obvious errors. For example, when the 100-m fuel grid was 

overlaid with a much finer detailed fire perimeter, it was possible for non-fuel areas to appear 

inside the fire boundary (Figure 2-10). An algorithm was created to clean those points with FBP- 

VNF (vegetated non-fuel) and FBP- NF (non-fuel) inside the fire to remove the bias created by 

this mismatched fineness.  
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Figure 2-10 Example of the non-fuel uncertainty 
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The third cleaning algorithm is Input Data Cleaning. For points outside of the fire, the variable 

OFFSET must be -100; for points inside the fire, the value must be 100. This step of cleaning is 

mainly for the prevention of transcriptional errors. Due to the data needing to be transferred from 

ArcGIS to R to implement regression modelling through multiple transfers, occasionally, due to 

input errors, the data in the Excel file may not follow the standard order (first for data with Offset 

= -100, then for data with Offset = 100). A custom function was created using R-code to identify 

and correct those inputs.  

The fourth algorithm is to handle missing values. The missing values at variables ‘DataClean’ 

and ‘PreviousFireALL’ each represent a specific meaning. For ‘DataClean,’ it represents a very 

clear physical meaning: no fire, and for ‘PreviousFireALL,’ it means no previous fires happened 

at these data points within the period of the record (i.e., since 1933). These missing values were 

not treated; they were assigned a specific, very large constant, 999999. Time-since-fire (TSF) can 

be easily estimated by calculating the difference between the sampled fire year and earliest prior 

fire years from all the sampled points. For all other missing values, if found, a custom function has 

been created to remove the data points and delete the corresponding data points in pairs. 

2.8. Joint Modelling Framework 

2.8.1. MCC Clogit Modelling 

The Clogit model is established to explore the influence of water, anthropogenic factors, 

topography, fuel or land cover, and previous fires on the cessation of fire. From a famous quote, 

“The first law of geography: everything is related to everything else, but near things are more 

related than distant things.” (Tobler, 1970), the importance of spatial autocorrelation when using 

and sampling spatial data was acknowledged by previous studies of fire boundaries (Narayanaraj 

& Wimberly, 2011; Holsinger et al., 2016; Negret et al., 2020; Macauley et al., 2022). They 
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universally recommended independent case matching, as case-control pairing has significantly 

reduced confounding issues and improved model effectiveness.  

In the model, the binary variable, CASE, indicates whether (CASE=1) or not (CASE=0) a 

location can sustain a fire cessation event, which is the main interest. There are a series of 

explanatory variables x (𝑥1, 𝑥2, …, 𝑥K), with coefficients b (𝑏1, 𝑏2, … , 𝑏𝐾). Like a linear regression, 

the relationship between CASE and x can be written as: 

𝐶𝐴𝑆𝐸 = a + ∑ 𝑏𝑘𝑥𝑘

𝐾

1

(2 − 2) 

     

As CASE is a binary variable, a probability model is used instead to describe the probability 

of developing an event. The conditional probability formula for CASE=1 given x can be written 

as a sigmoid function (Breslow et al., 1978): 

𝑝 = 𝑝𝑟{𝐶𝐴𝑆𝐸 = 1|𝒙} =
1

1 + 𝑒−𝑎−∑ 𝑏𝑘𝑥𝑘
𝐾
1

(2 − 3) 

After substituting the equation (2-2) into Breslow’s probability formula,  

𝑝 =
1

1 + 𝑒−CASE
(2 − 4) 

Based on the above probability p and the definition of the odds, where:  

𝑂𝑑𝑑𝑠 =
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡
(2 − 5) 

 There is: 
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𝑂𝑑𝑑𝑠 =
𝑝

1 − 𝑝
=

1
1 + 𝑒−CASE

1 −
1

1 + 𝑒−CASE

=
1

𝑒−CASE
= 𝑒CASE (2 − 6) 

Logging both sides of the Equation (2-6), there is: 

ln(odds) =  ln (
𝑝

1 − 𝑝
) = ln(𝑒CASE) = CASE = 𝑎 + ∑ 𝑏𝑘𝑥𝑘

𝐾

1

(2 − 7) 

By defining: 

ℎ(𝑡) = (
𝑝

1 − 𝑝
) , ln (ℎ0(𝑡)) = 𝑎 (2 − 8) 

Equation (2-6) is in the same form as the log function of Cox’s hazard function, which is: 

ℎ(𝑡) = ℎ0(𝑡)exp ( 𝑏𝐾𝑥𝐾)      (2-9) 

The Cox proportional hazards model is widely used in survival analysis in the medical field 

(Gail et al., 1981). It estimates hazard (Odds) for each covariate, which represents the relative 

likelihood of experiencing the event at any given time, comparing different levels of covariates. 

t is time of survival, h(t) is the hazard influenced by covariates x(𝑥1, 𝑥2, … , 𝑥𝑘) with coefficients 

b (𝑏1, 𝑏2, … , 𝑏𝐾). The baseline hazard ℎ0(𝑡) represents the hazard when all covariates equal zero. 

𝑒𝑥𝑝 (𝑏𝑘) is called Hazard of a specific covariate. If 𝑏𝑘 is positive, this would make the value of 

HR = 𝑒𝑥𝑝 (𝑏𝑘) greater than 1, meaning as the value of the covariate 𝑥𝑖 increases, contribution of 

 𝑏𝑖 to the event hazard is positive. Thus, the probability of a hazard event increases. Since the fire 

cessation event is this study's main interest, here, the “hazard” means fire cessation, where fire 

boundary formed.  
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Due to the medical origin of the Cox proportional hazards model, the model often must deal 

with different human clinical clients as the input. The key assumption for the Cox model is that 

the survival curve of ℎ(𝑡)~𝑡 for the two clients cannot be crossed over.  

For example, for client k, its hazard function is: 

ℎ𝐾(𝑡) = ℎ0(𝑡)𝑒∑ 𝑏𝑘𝑥𝑘
𝐾
1 (2 − 10) 

For client k’, its hazard function is:   

ℎ𝐾′ (𝑡) = ℎ0(𝑡)𝑒∑ 𝑏′𝑘𝑥′𝑘
𝐾′
1 (2 − 11) 

The ratio of the hazard (Hazard Ratio) between these two clients is

 

ℎ𝑘(𝑡)

ℎ𝑘′(𝑡)
=

ℎ0(𝑡)𝑒∑ 𝑏𝑘𝑥𝑘
𝑘
1

ℎ0(𝑡)𝑒
∑ 𝑏

𝑘′𝑥
𝑘′

𝑘′
1

=
𝑒∑ 𝑏𝑘𝑥𝑘

𝑘
1

𝑒
∑ 𝑏

𝑘′𝑥
𝑘′

𝑘′
1

(2 − 12) 

The hazard ratio is not related to time t. It means that for any set of clients (aka sample), the 

hazard of the events is only changing with the covariates. This is exactly the relative ratio in MCC 

Clogit (Breslow et al., 1978); by setting the matched case-control pair as the strata input for the 

model, this model can focus on the difference inside each case-control pair without external 

influence from other sample pairs (Harrel, 2015). This explains why, in R, the code for MCC 

Clogit is equivalent to the code for CoxPh, which is what will be used in this thesis under the R 

package “survival” (Therneau, 2023) to do MCC Clogit modelling. 

2.8.2. Testing Multicollinearity (VIF) in the Clogit model 

Multicollinearity among the explanatory variable for every model is tested using the Variance 

Inflation Factor (VIF). Because the variables contain both categorical variables and numeric 
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variables, a more generalized Variance Inflation Factor (GVIF) was used in the form of 

𝐴𝑗𝑢𝑠𝑡𝑒𝑑 𝐺𝑉𝐼𝐹 =  𝐺𝑉𝐼𝐹
1

2 ×𝐷𝑒𝑔𝑟𝑒𝑒𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 (2 − 13) 

(Fox & Monette, 1992). Fox and Monette (1992) found that it provides a comprehensive measure 

of collinearity for each variable, and comparability among explanatory variables with different 

dimensions.  

Attempting to use all the variables to run the MCC-Clogit models always produces very high 

VIF values. Many methods were explored to decrease VIF values (O’brien, 2007). In the earlier 

stage of this thesis, it was observed that the adjusted GVIF value is always very high for fuel 

dummy variables. By setting a threshold being 10, those variables with high adjusted GVIF were 

removed, same as (O’brien, 2007). However, it was found that some variables’ GVIF will increase 

after such removal. It was found that dummy variables with too few data points can retain a high 

GVIF value and introduce unwanted bias to the model. Therefore, the final method to decrease 

GVIF is not to remove the highest GVIF variable but to remove dummy variables with too few 

sampled points. After this, all variables left in the established model have GVIF (< 10). 

2.8.3. Contingency Evaluation 

To raise model accuracy, an additional filtering option based on the contingency table was 

proposed, which means when applied, out of all the explanatory variables, only the ones with 

significant association were selected to build the final model. When this filtering option was 

applied, it is denoted as “cp0.1”, meaning the variable with a p-value of the contingency table less 

than 0.1 was selected. The p-value in the contingency test detects each variable's association at the 

points inside and outside the fire perimeter before the modelling. It could be viewed as testing for 

a null hypothesis: "There is no association between this variable inside and outside the fire 
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perimeter in the sampled.” With the P value smaller than 0.1, there is only a 10% chance of 

observing a result like this if there is no difference between inside and outside the fire perimeter. 

In this study, it is viewed that any variables with the Contingency Chi-square test’s P value < 0.1 

have an association and should be included in the model.  The models that used and did not use 

cp0.1 filtering are compared. 

2.8.4. Stepwise Selection and Four Schemes to Run Clogit 

StepAIC (Choose a model by Akaike’s Information Criterion (AIC) in a Stepwise Algorithm) 

function from the MASS package in R was used to complete an automatic stepwise backward 

model selection of the full model. The models with and without StepAIC were compared. 

Four schemes are designed to run MCC Clogit, as shown in Table 2-3. 

Table 2-3 The four schemes of Clogit modelling 

Scheme Abbreviation Select variables with the 

contingency table with a P-

value less than 0.1. 

Select variables using 

stepwise reduction. 

Scheme A Nocp0.1Nostep No No 

Scheme B Nocp0.1Withstep No Yes 

Scheme C Withcp0.1Nostep Yes No 

Scheme D Withcp0.1Withstep Yes Yes 

   

2.8.5. Combining Clogit Model and RF 

The MCC Clogit modelling framework is efficient at quantifying the effect of explanatory 

variables. However, because of the strata feature in Clogit, making predictions using new data 

becomes impossible. On the other hand, the Random Forest (RF) model is good at prediction. Still, 
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its capability in detecting the direction and strength of each explanatory variable’s effect is limited, 

especially when it would require high computation power, which is the case in this thesis.   

Bootstrapping creates a dataset randomly selected from the original data points, with the 

possibility of a data point being sampled more than once (Henderson, 2005). This way, out-of-bag 

points are created to represent data points that were not sampled. The idea of RF is based on 

bagging, a technique widely used to reduce the variation in prediction by combining the result of 

multiple decision trees, where each tree was trained on a different random sampling of the dataset 

(Breiman, 2001). 

The limited efficiency of existing tools in RF further complicates the analysis. Using RF alone 

is not sufficient to achieve the goal of this thesis. To overcome this limitation, a hybrid analysis 

approach was developed to  combine RF and Clogit, leveraging the merits of both models to 

identify the key influential factors on fire cessation over a vast amount of sampling points, and 

predict fire cessation probability(Figure 1-4). 

2.9. Model Performance and Variable Importance Quantification 

2.9.1. Assessing model fit 

 The concordance coefficient (CC) was used to evaluate model performance of MCC Clogit as a 

standard output alongside the MCC Clogit results from R’s Survival Package. When the response 

variable is binary, as in this study, CC equals the area under curve (AUC) from the Receiver 

Operating Characteristic (ROC) (Therneau, 2023), which was used to assess the fit of the RF model. 

Therefore, the assessment of the performance of models will focus on the AUC. 

As mentioned in Chapter 2.8.1, in Clogit, only the probability of the response variable CASE 

(event = 1, non-event = 0) is estimated by Eq. (2-3), not the response variable itself. To assess the 

model fit, a probability cut-off point (threshold) in the range of [0,1] is needed to derive the binary 
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response variable from the estimated probability (Hosmer Jr et al., 2013).  Take the cut point of 

0.5, for example. If the estimated probability is higher than 0.5, the value of the derived binary 

response variable will be 1 (event); otherwise, it will be 0 (non-event).  

To assess the performance of the whole model, and calculate the optimal cut point value, the 

most appropriate approach is to calculate the Receiver Operating Characteristics (ROC) curve, and 

the Area Under the Curve (AUC) (Fawcett, 2006). The methods originated from signal detection, 

where the test is about whether the receiver can correctly detect the true signal under the presence 

of noise (false signal) (Hosmer Jr et al., 2013).  

The bases of the ROC curve come from understanding the two sets of terms. The first set is the 

sensitivity, which is the percentage of true positives (TP) within all the positive (P) samples. In 

this study, the ratio of areas that were truly unburned and predicted as unburned, versus all the 

areas unburned (Equation 2-13).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑃
(2 − 14) 

The second set of terms, Specificity, is the percentage of True Negative (TN) out of all the 

negative (N) samples. In this study, this is calculated as the ratio of areas that were truly burned 

and predicted as burned, versus all areas burned (Equation 2-4).  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑁
(2 − 15) 

For a specific cut point within the range, there is a specific pair of Sensitivity and Specificity 

values. The optimal cut point is often identified where Sensitivity and Specificity are equalized, 

meaning the two values intersect. After using all values of cut point to calculate the corresponding 

Sensitivity and Specificity value pairs, they can be plotted on a graph, with Sensitivity as the Y-
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axis and Specificity as the X-axis (in reverse order). The value pairs are joined by lines, and the 

curve that appears is the ROC curve, as shown in Figure 2-11. With the increasing value of the cut 

point, there is always a decrease in sensitivity and an increase in specificity. The AUC curve has 

a minimum value of 0.5, representing the probability of a binary decision is 50% at all thresholds, 

and a maximum value of 1. A generally acceptable AUC value for models of binary response 

variables is above 0.7 (Hosmer Jr et al., 2013). 

 

Figure 2-11 Example of AUC as shaded area under the ROC curve. 

 

2.9.2. RF Model Importance  

RF uses variable importance measures to rank the list of predictors (Breiman, 2001). There are 

two ways to measure the importance of covariates in RF modelling, namely Mean Decrease Gini 
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and Mean Decrease Accuracy (Bannerman-Thompson et al., 2013). Starting with Mean Decrease 

Accuracy, for example this thesis used 29 explanatory variables. The RF model would run using 

all the explanatory variables and calculate the baseline accuracy based on the 29 variables. Then, 

a single explanatory variable would be randomly shuffled across all data points (permuted). The 

RF model with the permuted explanatory variable would get a new and lower accuracy compared 

to the baseline. After many repetitions of this step, by measuring this drop in the prediction 

accuracy, Mean Decrease Accuracy is obtained for that explanatory variable. The higher the Mean 

Decrease Accuracy, the more important the variable is in the model (Bannerman-Thompson et al., 

2013).  

Mean Decrease Gini is based on the concept of the Gini criterion (Breiman, 2001). Still taking this 

thesis for example, when all the 29 explanatory variables are used to train an RF model, each 

variable is considered a parent node (root node). Each root node will need to be split into two 

daughter nodes (Bannerman-Thompson et al., 2013). Regarding each of the nodes, a Gini impurity 

index is used to measure how often a data point is incorrectly classified. The Gini impurity index 

of a parent node will always be larger than that of its daughter nodes, and this Gini difference is 

recorded. After the permutation of a single explanatory variable, a new Gini difference is recorded. 

The step is repeated and averaged, and the Mean Decrease Gini is obtained. A higher Mean 

Decrease Gini would suggest that the variable is more important in making accurate predictions. 

The importance value in the result is a relative measure, where the absolute numerical value does 

not represent anything, rather than serving the purpose of comparing each variable (Breiman, 2001; 

Hastie et al., 2001).   

There were discussions about the stability of using the two indexes to rank the predictors. Calle 

and Urrea (2011) examined the stability of these measures and concluded that ranking based on 
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Mean Decrease Gini was more robust than those based on Mean Decrease Accuracy. However, 

Nicodemus (2011) later pointed out that ranking based on Mean Decrease Gini was sensitive to 

within-predictor correlation and differences in category frequencies, even when number of 

categories was held constant. Nicodemus (2011) argued that under a strong within-predictor 

correlation, the Mean Decrease Gini ranking was less stable than the Mean Decrease Accuracy. 

This thesis will use both measures to rank the predictors list and compare the results with those 

identified by Clogit. The significance of the importance measure for each variable in the RF model 

is calculated using the R package “rfpermute” (Archer & Archer, 2016). However, for higher 

dimensional data used in this thesis, the calculation is prolongated in time. 

2.10. Fire-stop Prediction 

Sampling new fires or regions is specially designed for fire perimeter prediction (Table 2-4). 

Table 2-4 Process of sampling new areas 

Step 
Content 

Step 1 
Determine which fire will be evaluated for the prediction. 

Step 2 
Use the edit function in ArcGIS Pro to draw a rectangle around the specific fire, 

ensuring that each side of the rectangle is at least 100 meters away from the fire 

perimeter. 

Step 3 Use the Create Fishnet geoprocessing tool in ArcGIS Pro to sample points at a 

100 m resolution within the rectangle and tick the "Create Label points" option 

in the toolset, which would generate a points layer. 

Step 4 Use the points layer as input and integrate it into the extract data model built 

previously to extract all the variables into the points layer. 

Step 5 Use the Add XY coordinate geoprocessing tool to add the longitude and latitude 

of each point under the same projection. 

Step 6 Export the table and then use the conversion tool to convert the ArcGIS table 

into Excel for RStudio to read. 
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Step 7 Read the Excel data and run through all the cleaning and classification of 

variable processes to prepare other sampled points. 

Step 8 Predict the fire perimeter probability using the cleaned data model from the 

matched case-control sampled points. 

Step 9 Output the results and plot in ArcGIS Pro. 

Step 10 Rasterize the points and then use the Kriging interpolation method to produce a 

probability map of the rectangle area. 

 

The result is the probability of forming a fire perimeter estimated at every one of the points on 

the map, with resolution only being determined by the computation power of the user. When 

viewed jointly with the other landscape features, such as waterways and road maps, there will be 

more confidence in explaining the map's high- and low-probability areas.  
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3. Quality Control and Descriptive Data Analysis 

In this Chapter, the data points sampled and extracted through the proposed automatic algorithms 

will be evaluated from two aspects: first, by conducting a visual inspection of individual fires for 

quality control, and second, by performing a descriptive analysis of each explanatory variable.  

3.1. Data Quality Control 

3.1.1. Overview 

After processing automated data sampling and extraction, data quality control was implemented 

for each pair of automated data sampling points. This was done by visual inspection of each fire 

one by one immediately after the sampling process. Additionally, after the extraction process, 

random inspections of the resulting input Excel files were performed to check for any issues in the 

data before importing it into modelling by R software. The automated data sampling and extraction 

process successfully samples matched case-control data points when the fire ID corresponds to a 

single unique fire polygon.  

The automated algorithm processes each fire systematically, sampling one fire polygon per fire 

ID. However, if the fire ID is associated with multiple fire polygons, or if the fire polygons don’t 

enclose into a complete polygon, or if the fire has particularly complicated fire perimeters, then 

large portions of the fire would remain unsampled or incorrectly sampled. Three types of quality 

control measures were implemented in response to each of these cases, as follows: 

(1) Category 1: Fire with the same fire ID but with multiple fire polygons. 

This happens when a single fire ID is associated with multiple fire polygons. Typically, the 

polygons of each fire were originally ordered by size under the same fire ID. Thus, the 

polygon to be sampled by the automation algorithm is usually the largest polygon of each 

fire, while other polygons are all relatively tiny. Even though this would mean that some 
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small parts of the fire perimeter were unsampled, the largest polygon’s sampling was 

sufficient to cover most of the fire perimeter. This method effectively preserves the most 

effective sample points automatically without requiring special treatment. These fires are 

exactly those large fires with burn code=” B” but usually have unburned islands and partially 

burned areas scattered around, as described in the methods section.  

However, through careful review, it was discovered that some polygons were incorrectly 

ordered by size due to unforeseen errors, resulting in sampling a tiny polygon instead of the 

largest one. For these fires, the polygons for each fire ID were reordered with fire size from 

high to low. This guarantees that the largest fire polygon will be sampled. 

Additionally, there were cases where the two largest polygons of similar size existed 

within the same fire ID, leading to only one polygon being sampled, leaving nearly half of 

the fire area unsampled. For such fires, each of the equally large fire polygons was 

artificially separated into new fires with specific fire IDs starting from 900 before redoing 

the sampling. Fires that have those issues are identified as Category 1. 

(2) Category 2, Same fire with different fire ID 

In rare situations, two fire polygons with different fire IDs belong to one actual fire. Part of 

the fire perimeter polygons, a portion of the single fire, now appears on the map as two 

separate fires. Such fires will be combined into one new fire under a new name, counting 

down from 999, and then the sampling process is re-done.  

(3) Category 3, complicated fires 

For fires that are detailed and complicated, they must be removed. An example of this case 

is the Fort McMurry fire in 2015, the fire ID being MWF009_2016. This fire perimeter was 

mapped in detail, even for small elements, such as a single roadway. This exceeded the level 
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of detail of all other digitized fires, and the developed sampling algorithms cannot sample 

these fires without extensive manual adjustments; as such, these fires were removed. The 

detailed processing of all the above categories is listed in Table 3-1. An example of data 

quality control to process fires belonging to Category types 1 and 3 is shown in Figure 3-1. 

 

Table 3-1 The procedure of data quality control  

Category 
Fires found with many missing 

values with explanatory variables 
Processing procedure 

1 HWF106_2012 

Sampled the largest polygon by using the 

same fire ID  

1 HWF107_2012 

1 HWF111_2015  

1 LWF175_2015 

1 HWF135_2012 

1 HWF142_2012 

1 LWF161_2015 

1 MWF091_2015  

1 MWF094_2015 

1 HWF120_2012 
Separate into two new fires: 

HWF900_2012 & HWF901_2012 

1 MWF106_2015 
Separate into two new fires: 

MWF900_2015 & MWF901_2015 

1 MWF110_2015 

Separate into three new fires: 

MWF902_2015, MWF903_2015 & 

MWF904_2015 
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1 SWF163_2015 
Separate into two new fires: SWF900_2015 

& SWF901_2015 

2 HWF212_2015 

Combined into a new fire: HWF998_2015 

2 HWF264_2015 

2 HWF217_2015 
Combined into a new fire: 

HHWF999_2015 
2 HWF220_2015 

2 MWF078_2015 

Combined into a new fire: MWF999_2015 

2 MWF101_2015 

3 HWF100_2016  Removed because too complicated 

3 HWF193_2016 Removed because too complicated 

3 MWF007_2011 
Removed because containing too detailed 

information 

3 MWF042_2013 
Removed because the original fire is an 

empty file 
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Figure 3-1 Example of quality control process of fires which belongs to Category 1 and 3 

The example of data quality control to process fires belonging to Category 2 fires is shown in 

Figure 3-2. The fires are representative of ones belonging to Category 1 and 3 

 

Figure 3-2 Example of data quality control process of fires which belongs to category 2 
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3.1.2. Final Fires Number and Data Pair Number  

Following implementation of quality control measures, a total of 109 fires were selected. There 

were 52,037 data pairs (104,074 data points) sampled along the 109 fire perimeters. Following 

removal of missing data, 51,833 data pairs (103,666 data points) remained. After IO (inside-

outside) cleaning, 71,030 data points remained. After the NVB clean, 65,078 data points remained. 

By applying a 70:30 percent random splitting for model training and testing , 45,336 data points 

remained for training data and 19,742 data points for testing as summarized in Table 3-3. The 

splitting approach was applied to all the data pairs instead of fire number, due to fires in Fire Class 

E vary greatly in sizes, and such that some large fires contain substantially more sample pairs than 

others. The Law of large numbers (Grimmett & Stirzaker, 2020) ensures that random sampling in 

a large sample size, would preserve the proportion of different categories (in this case, individual 

fires) for data points for training and testing respectively.  

Table 3-2 Final fires number and data pair number sampled and extracted. 

Total number of fires 109  

Initial Data points 104074  

Missing data clean applied 103666 

After Inside-Outside clean applied 71030 

After NVB clean applied 65078 

Train and test data divided 45336: 19742 
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3.2. Descriptive Analysis of Explanatory Variables 

The distribution and characteristics of the explanatory variables were explored with summary 

statistics and visualization, with the aim of selecting variables for later modelling that best capture 

the pattern of the fire perimeter formation. This analytical process was applied to both the training 

and testing dataset, ensuring the robustness of variable selection for subsequent modelling steps.  

 There were five categories of explanatory variables considered. These included one variable 

related to roads (EucDis_Water), two related to water (EucDis_Road and Water proportion), two 

associated with geomorphology (Slope_percentRise and Elevation), eight pertaining to previous 

fires (previous fire 0 – 10 years ago, previous fire 10 -20 years ago, previous fire 20 – 30 years 

ago, previous fire 30 – 40 years ago, previous fire 40 to 50 years ago, previous fire 50 to 60 years 

ago, previous fire 60 to 70 years ago, previous fire from more than 70 years ago) and sixteen 

generated FBP fuel dummy variables (C-1 (Spruce-Lichen Woodland), C-2 (Boreal spruce), C-3 

(Mature Jack or Lodgepole Pine),C-4 (Immature Jack or Lodgepole Pine), C-5 (Red and White 

Pine), C-7 (Ponderosa Pine–Douglas-Fir), D-1/D-2 (Aspen), S-2 (White Spruce - Balsam Slash), 

O-1 (grassland), M1/2 (mixedwood),NF (non-fuel) W (Water), VNF (vegetated non-fuel), 10-40% 

confer mixedwood, 40-60% confer mixedwood and 60-90% confer mixedwood). Among them, 

the variables for roads, water, and geomorphology are continuous, and all other variables are 

categorical. In total, there are 29 explanatory variables. The responding variable (CASE) is also a 

binary variable, with 1 and 0 values representing outside fire and inside fire, respectively.  

To reduce the number of variables used for modelling, descriptive analyses using summary 

statistics (minimum, first quartile, median, mean, third quartile, and maximum) and data 

visualization were used to evaluate variables between the case and control points. Binary variables 
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underwent additional analysis with contingency tables to explore the distribution shape and other 

data characteristics on each side of the perimeter.  

3.2.1. Continuous Variables 

The descriptive analysis results of all continuous variables are summarized in Table 3-2 and 

Table 3-3, and each individual continuous variable from Figure 3-3 to Figure 3-7. There was no 

distinct difference between Euclidean Distance to Roads, and the slope inside and outside the fire 

perimeter. It showed a clean and consistent pattern that the closest distance to water outside is less 

than the Euclidean Distance to water inside the fire perimeter, but only in the training data. There 

is a distinct and logical pattern indicating that the proportion of water outside is larger than the 

proportion inside the fire perimeter, for both training and testing data. Similarly, the elevation 

variable reveals a consistent, logically expected pattern, indicating that elevation outside the fire 

perimeter is lower than elevation inside, in both training and testing data. 

 

Figure 3-3 The distribution of the distance of the sampling points to a road (left  panel: 

train dataset; right panel: test dataset) 
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Figure 3-4 The distribution of the distance of the sampling points to water (left panel: train 

dataset; right panel: test dataset) 

 

 

Figure 3-5 The distribution of the area of water proportion where the sampling point is 

located (left panel: train dataset; right panel: test dataset) 
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Figure 3-6 The distribution of slope where the sampling point is located (left panel: train 

dataset; right panel: test dataset)  

 

Figure 3-7 The distribution of the elevation where the sampling point is located (left panel: 

train dataset; right panel: test dataset)  
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Table 3-3 Descriptive analysis table for training data 

Continuous 

variable 

Inside 

Min 

Inside 

First 

Quantile 

Inside 

Median 

Inside 

Mean 

Third 

Quantile 

Inside 

Max 

Outsid

e Min 

Outside 

Frist 

Quantile 

Outside 

Median 

Outside 

Mean 

Outside 

Third 

Quantile 

Outside 

Max 

Distance to road 

(m) 
0 620 8859 12732 16798 77198 0 3623 9967 12730 16784 77392 

Distance to 

water (m) 
0 485 991 1794 1831 94549 0 484 983 1785 1829 94647 

Water 

proportion 
0 0 0 0.59 0 20 0 0 0 0.7 0 29 

Slope (% rise) 0 1.00% 2.02% 3.68% 4.15% 
101.01

% 
0 0.92% 1.96% 3.93% 4.29% 

127.80

% 

Elevation (m) 211 4.3 590 580 714 1889 204 4.3 589 579 713 1883 
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Table 3-4 Descriptive analysis table for testing data 

Continuous 

variable 

Inside 

Min 

Inside 

First 

Quantile 

Inside 

Median 

Inside 

Mean 

Third 

Quantile 

Inside 

Max 

Outside 

Min 

Outside 

Frist 

Quantile 

Outside 

Median 

Outside 

Mean 

Outside 

Third 

Quantile 

Outsid

e Max 

Distance to 

road(m) 
0 3512 8754 12587 16738 77175 0 3504 8778 12588 16752 77385 

Distance to 

water(m) 
0 509 997 1738 1828 94597 0 489 999 1729 1830 94765 

Water 

proportion 
0 0 0 0.05 0 17 0 0 0 0.68 0 29 

Slope 0 1.01% 2.01% 3.68% 4.13% 
101.13

% 
0 0.90% 1.91% 3.74% 4.10% 

111.45

% 

DEM(m) 209 401 586 574 709 1875 205 400 585 573 708 1848 
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3.2.2. Binary variables 

3.2.2.1. Overview 

The contingency relationship for the binary variable for both the V700 train data and test data are 

presented in Appendix 1 and 2, summarized in Table 3-4 and Table 3-5, respectively. 

Table 3-5 Contingence table for training data 

 Binary 

variable 

Inside 

Non 

Existence 

Inside 

Existence 

Outside 

Non 

Existence 

Outside 

Existence 
p-value Train 

If it is  

cp0.1  

Variable? 

1 FBPC1 20345 2323 20648 2020 0.001 45336 N 

2 FBPC2 10851 11817 14097 8571 0.001 45336 N 

3 FBPC3 22089 579 22291 377 0.001 45336 N 

4 FBPC4 22039 629 22227 441 0.001 45336 N 

5 FBPC5 22623 45 22626 42 0.83 45336 Y 

6 FBPC7 22666 2 22666 2 1 45336 Y 

7 FBPD1/D2 20932 1736 19755 2913 0.001 45336 N 

8 FBPS2 22638 30 22651 17 0.08 45336 N 

9 FBPO1 19402 3266 18748 3920 0.001 45336 N 

10 FBPM12 22668 0 22667 1 1 45336 Y 

11 FBPNF 22668 0 22292 376 0.001 45336 N 

12 FBPW 22525 143 21884 784 0.001 45336 N 

13 FBPVNF 22668 0 22073 595 0.001 45336 N 

14 FBP10_40 22423 245 22256 412 0.001 45336 N 

15 FBP40_60 21651 1017 21277 1391 0.001 45336 N 

16 FBP60_90 21834 834 21863 805 0.481 45336 N 
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17 PrevFire10 22632 36 22341 327 0.001 45336 N 

18 PrevFire20 22616 52 22554 114 0.001 45336 N 

19 PrevFire30 22483 185 22471 197 0.572 45336 Y 

20 PrevFire40 20727 1941 20627 2041 0.1 45336 Y 

21 PrevFire50 22293 375 22295 373 0.971 45336 Y 

22 PrevFire60 22510 158 22519 149 0.647 45336 Y 

23 PrevFire70 22057 611 22064 604 0.861 45336 Y 

24 
PrevFire70p

lus 
3358 19310 3805 18863 0.001 45336 N 

 

Table 3-6 Contingence table for testing data 

 Binary 

variable 

Inside 

Non 

Existence 

Inside 

Existence 

Outsid

e 

Non 

Existence 

Outsid

e 

Existence 

p-value Train 

If it is  

cp0.1  

Variable? 

1 FBPC1 8881 990 8989 882 0.009 19742 N 

2 FBPC2 4720 5151 6132 3739 0.001 19742 N 

3 FBPC3 9658 213 9714 157 0.004 19742 N 

4 FBPC4 9627 244 9701 170 0.001 19742 N 

5 FBPC5 9856 15 9854 17 0.86 19742 Y 

6 FBPC7 9870 1 9870 1 1 19742 Y 

7 
FBPD1/D

2 
9098 773 8558 1313 0.001 19742 N 

8 FBPS2 9843 28 9858 13 0.029 19742 N 

9 FBPO1 8431 1440 8219 1652 0.001 19742 N 
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10 FBPM12 9871 0 9871 0 1 19742 Y 

11 FBPNF 9871 0 9696 175 0.001 19742 N 

12 FBPW 9818 53 9534 337 0.001 19742 N 

13 FBPVNF 9871 0 9606 265 0.001 19742 N 

14 FBP10_40 9763 108 9681 190 0.001 19742 N 

15 FBP40_60 9415 456 9239 632 0.001 19742 N 

16 FBP60_90 9473 398 9543 328 0.009 19742 N 

17 PrevFire10 9861 10 9734 137 0.001 19742 N 

18 PrevFire20 9853 18 9813 58 0.001 19742 N 

19 PrevFire30 9796 75 9794 77 0.935 19742 Y 

20 PrevFire40 9081 790 9056 815 0.532 19742 Y 

21 PrevFire50 9707 164 9708 163 1 19742 Y 

22 PrevFire60 9799 72 9805 66 0.669 19742 Y 

23 PrevFire70 9597 274 9598 273 1 19742 Y 

24 
PrevFire70

plus 
1403 8468 1589 8282 0.001 19742 N 

 

Analyzing the Training data as shown in Table 3-5, the count of the occurrence for variables 

including C-1 (Spruce-Lichen Woodland), C-2 (Boreal spruce), C-3 (Mature Jack or Lodgepole 

Pine), C-4 (Immature Jack or Lodgepole Pine), FBPC5 (Red and White Pine), S-2 (White Spruce–

Balsam Slash), 40-60% confer mixedwood, previous fire 40 to 50 years ago, previous fire 50 to 

60 years ago, previous fire 60 to 70 years ago and previous fire from more than 70 years ago inside 

the fire perimeter exceeds the count outside the fire perimeter. In contrast, for variables including 
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D-1/D-2 (Aspen), O-1 (grassland), NF (non-fuel), W (Water), VNF (vegetated non-fuel), 10-40% 

confer mixedwood, 40-60% confer mixedwood, previous fire 0 to 10 years ago, previous fire 10 

to 20 years ago, previous fire 20 to 30 years ago and previous fire 40 to 50 years ago, the count 

inside the fire perimeter is lower than the outside. 

For FBPC7 (Ponderosa Pine–Douglas-Fir) and M1/2 (mixedwood), the count inside and outside 

the fire perimeter are the same and very small (0, 1 or 2). 

Examining the testing data as shown in Table 3-6, the pattern remains consistent, with the count 

of occurrence for variables including C-1 (Spruce-Lichen Woodland), C-2 (Boreal spruce), FBPC3, 

C-4 (Immature Jack or Lodgepole Pine), S-2 (White Spruce–Balsam Slash), 60-90% confer 

mixedwood, previous fire 50 to 60, 60 to 70, and more than 70 years ago  has more points inside 

the fire perimeter than outside. Conversely, variables D-1/D-2 (Aspen), O-1 (grassland), NF (non-

fuel), W (Water), VNF (vegetated non-fuel), 10-40% confer mixedwood, 40-60% confer 

mixedwood, previous fire 0 to 10, 10 to 20, 20 to 30 and 30 to 40 years ago exhibit a lower count 

occurrence inside the fire perimeter compared with outside the fire perimeter. 

For FBPC5 (Red and White Pine), FBPC7 (Ponderosa Pine–Douglas-Fir), M1/2 (mixedwood) 

and previous fire 40 to 50 years ago, the counts inside and outside the fire perimeter are almost the 

same or very small (0, 1, or 2). This comprehensive analysis of the binary variable distribution 

provides valuable insight into the prevalence of those variables within and outside the fire 

perimeter in both the training and testing datasets.  

3.2.2.2. Variable selection based on contingency table 

The descriptive analysis reveals that some variables, such as FBPC5 (Red and White Pine), 

FBPC7 (Ponderosa Pine–Douglas-Fir), M1/2 (mixedwood) previous fire 40 to 50 years ago, 



68 

 

exhibit nearly equal counter occurrence inside and outside the fire perimeter, often totalling only 

0 or 1 or 2 instances among all the selected fires. Correspondingly, the p-values of the contingency 

table for these variables are 1. Additionally, several variables have p-values less than one but 

higher than 0.1. Specifically, 8 out of 29 variables, as observed from the contingency analysis, 

have a very weak association between occurrence inside and outside the fire perimeter. After 

removing weak variables, the next step was to run models with the reduced variables, denoted as 

cp0.1, either removed or retained.  

3.3. Discussion 

Matching pairs is a critical statistical step employed in MCC studies to ensure that the distribution 

of selected variables is similar across different groups. This method is instrumental in controlling 

for confounders variables that could potentially skew the analysis, thereby enhancing the statistical 

efficiency of the study. Matching on confounders can improve statistical efficiency (i.e., reduce 

the variance and improve power) for effect estimation. In this thesis, the implementation of pair 

matching is particularly challenging due to the vast scale and the intricate nature of the fire 

landscape. The complexity is compounded when dealing with large fires, where the perimeters can 

be highly irregular, presenting a significant challenge in ensuring accuracy and representation.  

This thesis employs automated algorithms to streamline the data sampling process to mitigate 

these challenges. The time and labour required to collect such data have now been significantly 

reduced, transforming what used to be a thorough process spanning weeks or months into a task 

that can be completed in days or hours. However, despite the convenience, automated algorithms 

may not always navigate the nuances of complex fire perimeters with complete accuracy. For 

example, the fire perimeter, represented as MWF007_2011 as described in Section 3.1, is 

particularly complicated. Some fires present with unique perimeter characteristics that are 
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incomparable to any other fires. The algorithm may struggle with irregular shapes or fail to 

generate accurate data points, particularly when the fire perimeter is not fully enclosed. This can 

lead to inconsistencies or errors in the sampled data, necessitating a manual review to ensure 

accuracy. Perimeter irregularities can confuse the custom Python script written to determine the 

location of the sampled point, especially given it relies on the assumption of closed geometric 

shapes to function correctly. By combining the efficiency of automation with the discerning eye 

of human review, this thesis reached a balance between speed and accuracy in analyzing fire 

perimeters within the Alberta Boreal zone. 

3.4. Summary 

Through visual inspection and descriptive analysis, this chapter has shown that the automated data 

sampling process and extraction were successful. Through data quality control methods, solutions 

were found to deal with the algorithms' challenges. The largest polygon was guaranteed to be 

sampled for fire polygons under the same fire ID. For fires which have two or more equally large 

polygons, each of the large polygons was separately resampled. For single fires that belonged to 

one fire but were misclassified into two separate fires, each fire pair was combined into one new 

fire and then re-sampled. For fires that were extremely complicate, were removed. 

Through the above processing, 109 fires were selected for analysis. After the cleaning process, 

65,078 data points remained for modelling. By applying a 70:30 percent  random splitting on all 

data points together for RF modelling, there are 45,336 data points for training data and 19,742 

data points for testing. Through the descriptive analysis, most explanatory variables demonstrated 

clean association inside and outside the fire boundary, aligning with common knowledge in 

physics. This shows a good database for further modelling in the next chapter.   
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4. Key Factors Detection  

In this Chapter, based on the sampled data pairs, six schemes (i.e., candidate lists of key factors), 

were produced, four from MCC Clogit and two from RF modelling. When modelling the variables 

in Clogit, the continuous variables of Euclidean distance to water, roads, water proportion, slope, 

and elevation were all standardized, with the aim of making the standardized coefficients for those 

continuous variables comparable. 

 

Table 4-1 The six variable schemes for comparison 

Scheme Abbreviation Description 

Scheme A S29Nocp0.1Nostep Scheme with all 29 variables, no contingency test. 

No stepwise selection 

Scheme B S20Nocp0.1Withstep Scheme with 20 variables, no contingency test, with 

stepwise selection 

Scheme C S20Withcp0.1Nostep Scheme with 20 variables, include contingency test, 

no stepwise selection 

Scheme D S18Nocp0.1Withstep Scheme with 18 variables, include contingency test, 

with stepwise selection 

Scheme E RF20 Scheme with 20 variables determined by Random 

Forest Importance (mean decrease accuracy) 

Scheme F RF18 Scheme with 18 variables determined by Random 

Forest Importance (mean decrease accuracy) 

 

 

4.1. Clogit Modelling Schemes 

By accounting for removing or retaining the cp0.1 variables as described in previous chapters, 

employing stepwise or not, four sets (i.e., schemes) of Clogit modelling results were obtained. 
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Each applied to V700 train data encompassing 109 fires. The specifics of each Clogit-scheme are 

described sequentially below.  

4.1.1. Scheme A: S29Nocp0.1Nostep 

This scheme utilizes Clogit modelling based on all 29 variables without stepwise selection and 

contingency table selection. The equation is: 

Clogit(CASE ~ EucDis_Road +  EucDis_Water +  Water_amount_90m 

+  Slope_percentRise + DEM10m +  FBPC1 +  FBPC2 + 

     FBPC3 +  FBPC4 + FBPC5 + FBPC7 +  FBPD12 +  FBPS2 +  FBPO1  

    + FBPM12 + FBPNF +  FBPW +  FBPVNF +  FBP10_40 +  FBP40_60 +  FBP60_90 +  

    PreviousFire10 +  PreviousFire20 +  PreviousFire30 +  PreviousFire40 +  

PreviousFire50 + PreviousFire60 +  PreviousFire70 +  PreviousFire70Plus 

+  strata(Sample), data = mydata)    

In RStudio, it can also be written as:  

coxph(formula 

=  Surv(rep(1, 45336L), CASE) ~ EucDis_Road +  EucDis_Water 

+  Water_amount_90m +  Slope_percentRise +  DEM_10m +  FBPC1 

+  FBPC2 + 

     FBPC3 +  FBPC4 + FBPC5 + FBPC7 +  FBPD12 +  FBPS2 +  FBPO1  

    + FBPM12 + FBPNF +  FBPW +  FBPVNF +  FBP10_40 +  FBP40_60 +  FBP60_90 +  

    PreviousFire10 +  PreviousFire20 +  PreviousFire30 +  PreviousFire40 +  
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PreviousFire50 + PreviousFire60 +  PreviousFire70 +  PreviousFire70Plus 

+  strata(Sample), data = mydata, 

    method =  "exact") 

The modelling result is shown in Table 4-1. It is impossible to get VIF for all the variables as 

the model has aliased coefficients, i.e., with some variables having too few samples. 

Table 4-2 The Clogit result for Scheme A 
 

Name coef exp(coef) se(coef) Pr(>|z|) Sig. 

1 EucDis_Road 

(standardized) 0.530 1.699 1.398 0.379 

 

2 EucDis_Water 

(standardized) -2.110 0.121 0.633 -3.335 

*** 

3 Water 

proportion 

(standardized) 0.458 1.580 0.040 11.463 

*** 

4 Slope 

(standardized) 0.119 1.126 0.021 5.759 

*** 

5 Elevation 

(standardized) -12.520 0.000 0.639 -19.585 

*** 

6 FBPC1 -0.329 0.720 1.434 -0.229 

 

7 FBPC2 -0.569 0.566 1.433 -0.397 

 

8 FBPC3 -0.768 0.464 1.436 -0.535 

 

9 FBPC4 -1.046 0.352 1.438 -0.727 

 

10 FBPC5 -0.077 0.926 1.462 -0.053 

 

11 FBPC7 -0.091 0.913 2.036 -0.045 

 

12 FBPD12 0.822 2.275 1.434 0.573 

 

13 FBPM12 -1.103 0.332 1.524 -0.724 

 

14 FBPS2 0.213 1.238 1.434 0.149 

 

15 FBPO1 18.660 1.269E+08 14790.000 0.001 

 

16 FBPNF 18.590 1.181E+08 730.300 0.025 

 

17 FBPW 0.612 1.844 1.440 0.425 

 

18 FBPVNF 18.560 1.155E+08 581.900 0.032 

 

19 FBP10_40 0.763 2.146 1.437 0.531 
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20 FBP40_60 0.409 1.505 1.434 0.285 

 

21 FBP60_90 -0.032 0.968 1.433 -0.022 

 

22 PrevFire10 1.489 4.431 0.387 3.845 *** 

23 PrevFire20 0.711 2.036 0.368 1.935 . 

24 PrevFire30 0.531 1.700 0.349 1.519 

 

25 PrevFire40 0.439 1.551 0.111 3.957 *** 

26 PrevFire50 0.111 1.117 0.247 0.449 

 

27 PrevFire60 -0.216 0.806 0.342 -0.631 

 

28 PrevFire70 -0.396 0.673 0.289 -1.368 

 

29 PrevFire70Plus NA NA 0.000 NA 

 

 

4.1.2. Scheme B: S20Nocp0.1Withstep 

This scheme is the same as Scheme A (S29Nocp0.1Nostep) but with stepwise selection, based 

on the Akaike Information Criterion (AIC). The total number of variables identified is 20, the most 

statistically significant among the original 29 variables in the modelling process. The results of 

this scheme are presented in Table 4-3. The VIF for these variables are all less than 3, as shown in 

Table 4-4 

Table 4-3 The Clogit result for Scheme B 
 

Name coef exp(coef) se(coef) Pr(>|z|) Sig. 

1 EucDis_Water 

(standardized) -2.117 0.120 0.632 -3.347 

*** 

2 Water proportion 

(standardized) 0.458 1.580 0.040 11.466 

*** 

3 Slope (standardized) 0.118 1.126 0.021 5.726 *** 

4 Elevation 

(standardized) -12.520 0.000 0.639 -19.595 

*** 

5 FBPC1 -0.298 0.742 0.072 -4.137 *** 

6 FBPC2 -0.538 0.584 0.063 -8.55 *** 

7 FBPC3 -0.736 0.479 0.110 -6.685 *** 

8 FBPC4 -1.012 0.363 0.129 -7.861 *** 

9 FBPD12 0.853 2.347 0.073 11.718 *** 
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10 FBPS2 -1.072 0.342 0.520 -2.06 * 

11 FBPO1 0.244 1.277 0.068 3.604 *** 

12 FBPNF 18.620 1.216E+08 730.500 0.025 

 

13 FBPW 0.643 1.902 0.147 4.374 *** 

14 FBPVNF 18.590 1.189E+08 582.000 0.032 

 

15 FBP10_40 0.790 2.203 0.115 6.856 *** 

16 FBP40_60 0.441 1.554 0.077 5.752 *** 

17 PrevFire10 1.485 4.416 0.387 3.838 *** 

18 PrevFire20 0.732 2.080 0.367 1.998 * 

19 PrevFire30 0.532 1.702 0.350 1.521 

 

20 PrevFire40 0.446 1.563 0.109 4.086 *** 

Table 4-4 The VIF for Scheme B 

 
Name GVIF df  GVIF^(1/(2*Df)) 

1 EucDis_Water 1.015 1 1.007 

2 Water proportion 1.134 1 1.065 

3 Slope 1.012 1 1.006 

4 Elevation 1.023 1 1.011 

5 FBPC1 2.423 1 1.557 

6 FBPC2 5.118 1 2.262 

7 FBPC3 1.386 1 1.177 

8 FBPC4 1.244 1 1.115 

9 FBPD12 2.537 1 1.593 

10 FBPS2 1.011 1 1.006 

11 FBPO1 3.714 1 1.927 

12 FBPNF 1.000 1 1.000 

13 FBPW 1.324 1 1.151 

14 FBPVNF 1.000 1 1.000 

15 FBP10_40 1.270 1 1.127 

16 FBP40_60 2.004 1 1.416 

17 PrevFire10 1.001 1 1.001 

18 PrevFire20 1.005 1 1.003 

19 PrevFire30 1.004 1 1.002 

20 PrevFire40 1.004 1 1.002 
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4.1.3. Scheme C: S20Withcp0.1Nostep 

This scheme is created by running the Clogit model based on the variables selected by the 

contingency table, but without stepwise selection, the results are shown in Table 4-5 , and the VIF 

is shown in Table 4-6. 

Table 4-5 The Clogit result for Scheme C 
 

Name coef exp(coef) se(coef) Pr(>|z|) Sig. 

1 EucDis_Road 

(standardized) 

0.507 
1.660 1.398 

0.71675 

 

2 EucDis_Water 

(standardized) 

-2.102 
0.122 0.632 

0.000885 

*** 

3 Water proportion 

(standardized) 

0.458 
1.580 0.040 

2.00E-16 

*** 

4 Slope (standardized) 0.117 1.124 0.021 1.41E-08 *** 

5 DEM_10 

(standardized) 

-12.540 
0.000 0.639 

2.00E-16 

*** 

6 FBPC1 -0.298 0.742 0.072 3.42E-05 *** 

7 FBPC2 -0.539 0.583 0.063 2.00E-16 *** 

8 FBPC3 -0.735 0.480 0.110 2.51E-11 *** 

9 FBPC4 -1.005 0.366 0.129 5.76E-15 *** 

10 FBPD12 0.852 2.344 0.073 2.00E-16 *** 

11 FBPS2 -1.073 0.342 0.520 0.039288 * 

12 FBPO1 0.244 1.276 0.068 0.00032 *** 

13 FBPNF 18.610 1.21E+08 730.600 0.979676 

 

14 FBPW 0.641 1.899 0.147 1.28E-05 *** 

15 FBPVNF 18.600 1.19E+08 581.900 0.974509 

 

16 FBP10_40 0.786 2.194 0.115 8.94E-12 *** 

17 FBP40_60 0.440 1.552 0.077 9.57E-09 *** 

18 PrevFire10 1.188 3.279 0.398 0.002835 ** 

19 PrevFire20 0.464 1.591 0.377 0.217981 

 

20 PrevFire70Plus -0.298 0.743 0.094 0.001485 ** 

Table 4-6 The VIF for Scheme C 

 
Name GVIF df GVIF^(1/(2*Df)) 

1 EucDis_Road 1.002 1 1.001 
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2 EucDis_Water 1.015 1 1.007 

3 Water proportion 1.134 1 1.065 

4 Slope 1.012 1 1.006 

5 Elevation 1.023 1 1.011 

6 FBPC1 2.425 1 1.557 

7 FBPC2 5.122 1 2.263 

8 FBPC3 1.386 1 1.177 

9 FBPC4 1.244 1 1.115 

10 FBPD12 2.539 1 1.593 

11 FBPS2 1.011 1 1.006 

12 FBPO1 3.716 1 1.928 

13 FBPNF 1.000 1 1.000 

14 FBPW 1.324 1 1.151 

15 FBPVNF 1.000 1 1.000 

16 FBP10_40 1.271 1 1.127 

17 FBP40_60 2.005 1 1.416 

18 PrevFire10 1.058 1 1.029 

19 PrevFire20 1.057 1 1.028 

20 PrevFire70Plus 1.114 1 1.056 

 

4.1.4. Scheme D: S18Withcp0.1Withstep 

This scheme proceeds with both AIC stepwise selection and contingency table selection. The 

total number of variables now becomes 18, the most statistically significant among 29 original 

variables participating in the modelling. The Clogit modelling results are shown in Table 4-7, and 

the VIF for the variables is less than 3, as shown in Table 4-8  

 

Table 4-7 The Clogit results for the Scheme D 

 
Name coef exp(coef) se(coef) Pr(>|z|) Sig 

1 
EucDis_Water 

(standardized) 
-2.105 0.122 0.632 -3.329 

*** 
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2 
Water proportion 

(standardized) 
0.457 1.580 0.040 11.466 

*** 

3 Slope (standardized) 0.118 1.125 0.021 5.719 *** 

4 
Elevation 

(standardized) 
-12.510 0.000 0.638 -19.593 

*** 

5 FBPC1 -0.299 0.742 0.072 -4.150 *** 

6 FBPC2 -0.539 0.583 0.063 -8.573 *** 

7 FBPC3 -0.734 0.480 0.110 -6.667 *** 

8 FBPC4 -1.006 0.366 0.129 -7.817 *** 

9 FBPD12 0.852 2.344 0.073 11.701 *** 

10 FBPS2 -1.073 0.342 0.520 -2.061 * 

11 FBPO1 0.245 1.278 0.068 3.614 *** 

12 FBPNF 18.630 1.23E+08 730.800 0.025 
 

13 FBPW 0.641 1.898 0.147 4.360 *** 

14 FBPVNF 18.620 1.23E+08 581.900 0.032 
 

15 FBP10_40 0.788 2.198 0.115 6.836 *** 

16 FBP40_60 0.439 1.552 0.077 5.735 *** 

17 PrevFire10 1.157 3.181 0.397 2.914 ** 

18 PrevFire70Plus -0.325 0.723 0.091 -3.563 *** 

 

Table 4-8 The VIF for the Scheme D 

 
Name GVIF df GVIF^(1/(2*Df)) 

1 EucDis_Water 1.015 1 1.007 

2 Water proportion 1.134 1 1.065 

3 Slope 1.010 1 1.005 

4 Elevation 1.021 1 1.010 

5 FBPC1 2.425 1 1.557 

6 FBPC2 5.123 1 2.263 

7 FBPC3 1.386 1 1.177 

8 FBPC4 1.244 1 1.115 

9 FBPD12 2.539 1 1.593 

10 FBPS2 1.011 1 1.006 
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11 FBPO1 3.718 1 1.928 

12 FBPNF 1.000 1 1.000 

13 FBPW 1.324 1 1.151 

14 FBPVNF 1.000 1 1.000 

15 FBP10_40 1.270 1 1.127 

16 FBP40_60 2.005 1 1.416 

17 PrevFire10 1.054 1 1.027 

18 PrevFire70Plus 1.059 1 1.029 

 

4.1.5. Comparison summary of the four schemes for V700-109fire 

Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4 provide a visualization of the  results of the four 

schemes, highlighting differences and similarities. 
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Figure 4-1 Clogit plot for Scheme A. The coefficient of non-fuel, vegetated non-fuel, elevation, and mixedwood has been 

reduced 10 times for better visuals.  
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Figure 4-2 Clogit plot for Scheme B. The coefficient of non-fuel, vegetated non-fuel, and elevation has been reduced 10 times 

for better visuals. 
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Figure 4-3 Clogit plot for Scheme C. The coefficient of non-fuel, vegetated non-fuel, and elevation has been reduced 10 times 

for better visuals. 
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Figure 4-4 Clogit plot for Scheme D. The coefficient of non-fuel, vegetated non-fuel, and elevation has been reduced 10 times 

for better visuals. 
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The Clogit visualized result plot reveals that Clogit models can identify the coefficient direction 

of every variable in all four schemes. Stepwise selection reduces the number of variables used but 

decreases model performance. The contingency table is useful for selecting variables with 

consistent CC values across all four schemes. However, among the four schemes of A through D, 

only four out of five continuous variables were detected in the same significant class (p<0.001) in 

all four schemes. Only two out of the 24 binary variables (NF, non-fuel, and VNF, vegetated non-

fuel) were found to be not significant (p>0.1) in all four schemes. This shows that further 

comparisons were needed. 

Next, the Random Forest (RF) model was employed to prepare the key factor list for schemes 

based on RF importance, called the RF schemes. Comparison between each scheme was done to 

determine the best-performing model for prediction.  

4.2. Identification of Two Schemes by RF Modelling 

Running RF for all 29 variables obtains the variable importance for all variables as described in 

the methods section. To make a comparison regarding the number of variables in the four schemes 

by Clogit modelling, 20 and 18 were used as the threshold for preparing the RF schemes. Based 

on the importance measure by Mean Decrease Accuracy, variable importance (Figure 4-5) was 

ranked from high to low based on the two thresholds. The two RF schemes are identified, e.g., 

Scheme E (RF_comIMP_20) and Scheme F (RF_comIMP_18), consisting of 20 and 18 variables 

in descending order of importance, respectively. 
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Figure 4-5 The ranked feature importance (Mean Decrease Accuracy) of 29 variables V700, train: test=0.7:0.3. Note: 

Water_amount_90m refers to water proportion, DEM refers to elevation, the same applies hereinafter. 
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4.3. Best Key Factor List from the Six Candidate Schemes 

For each of the six schemes, their performance in RF is shown in Table 4-9 and Figure 4-6 

Table 4-9 The comparison of the RF performance of 6 candidate schemes (among 109 fires, 

train: test=0.7:0.3, to 2 decimal place) 

model name 

Schemes 

AUC for 

Train data of 

109-V700 

AUC for 

Test data of 

109-V700 

Accuracy for 

Test data of 109-

V700 

Scheme A 0.67 0.71 0.65 

Scheme B 0.65 0.66 0.62 

Scheme C 0.67                                                                                                                                                                                                                                                                             0.70 0.64 

Scheme D 0.64 0.65 0.61 

Scheme E 0.67 0.70 0.64 

Scheme F 0.67 0.71 0.64 
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Figure 4-6 The comparison of RF modelling performance for each candidate scheme, green 

columns highlight the scheme chosen, red line indicates its value relative to others . 

As presented in Table 4-9 and Figure 4-6, indices of model performance increased with the 

number of variables for each scheme. This was true for all the modelling performance indices, 

including AUC and Accuracy. The model performance of Scheme B (S18Withcp0.1Withstep) was 

lower than the other schemes with higher number of variables, aligning with studies showing that 

the model performance is worse with the decrease in the number of variables (Couronné et al., 

2018). 

However, from further comparison, it was obvious that Scheme C (S20withcp0.1Nostep) was 

the best scheme. Firstly, the model performance for this scheme was the same as the best-

performing model, but the number of variables is much lower, as compared to Scheme A 

(S29NocpNostep). Secondly, compared to Scheme E (RF_comIMP_20), which had the same 

number of variables, after running the 20 variables selected by RF importance index in Clogit, 

from the results, it is clear that some variables among the 20 variables chosen by RF importance 

were insignificant (e.g. Euclidean distance to roads, W (Water), 40-60% confer mixedwood), as 
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shown in Figure 4-7. The result from the Scheme E when compared to Scheme C, covers less of 

the FBP fuel variables, and focuses more on the previous fire variables.  

 

Figure 4-7 The comparison of the variable status between scheme C (S20Withcp0.1Nostep) 

and scheme E (RF_comIMP_20) 

Although stepwise in Clogit allowed a reduction of variable number from 29 to 20, the model 

performance of Scheme B shows that if stepwise is applied, AUC was lower than that without 

stepwise as shown in Scheme C, shown in Table 4-9, indicating the pivotal role of the contingency 

table over stepwise in the modelling. Therefore, it was decided that Scheme C and its 20 

corresponding variables are the most effective in predicting fire perimeters. The detailed 

interpretation for each key underlying influential factor was analyzed below, and then their 

utilization in fire perimeter prediction were explored.  

4.4. ·Interpretation of the Identified Key Factors 

4.4.1. Key Factor Interpretation Based on Clogit 

The interpretation of the key underlying factors influencing fire cessation, based on Clogit, can be 

summarized in three parts. Firstly, the significance was determined by the p value in each Clogit 

table, representing the Wald statistic value. It corresponded to the ratio of each regression 
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coefficient (marked “coefficient” in Table and the y-axis of Clogit plot, or 𝑏𝑖 , in the hazard 

function (Eq. 2-8)) to its standard error (se(coef)). The Wald statistic evaluates whether 𝑏𝑖 the 

coefficient of a given variable is statistically significantly different from zero. As shown in Table 

4-5, 13 out of 20 variables showed a high statistically significant difference between the coefficient 

of each of these three variables and zero. The null hypothesis is that the variable's coefficient is 

not different from zero and is rejected for these covariates, highlighting their significance in the 

analysis. 

Secondly, the variable’s acting directional contribution to the event is determined by the sign of 

the regression coefficients (coef). A positive coefficient indicates an elevated hazard ratio (HR), 

represented as exp(𝑏𝑖), suggesting a higher risk of event and a less favourable prognosis. In Table 

4-5, variables such as Water proportion, Slope, D-1/D-2 (Aspen), O-1 (grassland), NF (non-fuel), 

W (Water), VNF (vegetated non-fuel), 10-40% confer mixedwood, 40-60% confer mixedwood, 

previous fire from 0 to 10 and 10 to 20 years ago exhibit positive coefficients, signifying a positive 

contribution to the event. In essence, for binary variables, an increase in the presence of these 

variables in a location and for continuous variables, an increase in their values would lead the 

Clogit hazard function to conclude that these variables enhance the likelihood of an area forming 

a fire boundary. Conversely, variables with a negative coefficient suggest a reduced likelihood of 

an area forming a fire boundary. In the case of binary variables, the presence of such variables, or 

an increase in their values for continuous variables, was associated with a lower probability of an 

area forming a fire boundary. The interpretation of the standardized continuous variables is 

different from the original, as the standardized coefficient of the standardized variable, means an 

increase in one standard deviation (SD) of the standardized variable, will result in an expected 

change in the likelihood of the area forming a fire boundary. For example, Euclidean distance to 
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water has a standardized coefficient of -2.102, and an exp(coef) of 0.122, meaning for each 

increase in one SD of Euclidean distance to water, the likelihood of forming a fire boundary would 

decrease by 88%.   

The third component of the results involves interpreting the effect size of the covariant, which 

was shown by the HR (exp (𝑏𝑖) coefficient). For example, disregarding the signs of the coefficient 

we mentioned in the previous paragraph, the variable C-3 (Mature Jack or Lodgepole Pine), 

encoding the presence or absence of C-3, demonstrated an HR of 0.48 (Table 4-5). This signifies 

that locations with C-3 have 0.48 (folds) times the risk of an event. It is the hazard ratio for the 

group taking a higher value relative to the group taking a lower value. In other words, because the 

coefficient sign for variable C-3 is negative (-7.35E-01), it can lead to the conclusion that the risk 

of an event (fire cessation) without C-3 is 0.48 times higher than the risk with C-3.  

Taking water as another example, the variable water proportion is encoded as the quantity of 

water, with a higher value meaning a higher proportion of water. Its HR represents the ratio of 

hazards for the group with more water versus that with less water. The HR for Water proportion = 

exp(0.165)= 1.18, with a positive sign for coefficient, indicating that areas with more water have 

1.18 times (fold) of risk of an event (fire cessation) than areas with less water. These HR 

interpretations provide insights into the impact of specific covariates on the likelihood of fire 

cessation. It is important to acknowledge that these conclusions are based on the assumption that 

all other covariates remained constant, as stipulated by the coxph model or Clogit model, which 

considers the interaction between the covariates; all the above conclusions are under the condition 

that all other covariates remain unchanged.  
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Figure 4-3 visually emphasize the significance of water proportion, Slope, D-1/D-2 (Aspen), O-

1 (grassland), NF (non-fuel), W (Water), VNF (vegetated non-fuel), 10-40% confer mixedwood, 

40-60% confer mixedwood, previous fire from 0 to 10, and 10 to 20 years ago as the significant 

fire-resistant factors. Notably, conifer content up to 60% in mixedwood remains a significant fire-

stopping factor. With more conifer content beyond 60%, the probability of fire cessation decreases 

from 2.19 to 1.55 folds. 

Furthermore, the analysis reveals some intriguing dynamics. Although previous fire from 0 to 

10, and 10 to 20 years play a significant role in fire cessation, fires older than 70 years exhibit an 

opposite effect. Grass and aspen are fire-stopping elements, and all pines (C-1 (Spruce-Lichen 

Woodland) to C-4 (Immature Jack or Lodgepole Pine)) are identified as fire-prone.  

NF (non-fuel) and VNF (vegetated non-fuel) showed highest exp(coefficient) values but with p 

value much higher than 0.1. This is expected as the NVB-clean step was applied which guarantees 

that these two fuel types only occur outside the fire perimeter without exceptions. For a comparison, 

Clogit for V700 for 109 fires without NVB-clean has been run, as shown in Table 4-10 and Table 

4-11. It was seen that many Clogit- coefficients turn out to be physically unreasonable, with CC 

now reduced from 0.653 to 0.639 (when using NVB clean), which means NF and VNF play an 

important role. After applying stepwise, it was still physically unreasonable, with CC being 0.641. 

This is the reason for cleaning the NVB before the Clogit modelling.  

Table 4-10 Clogit-contingency results of non-clean of VNF-NF-Barren (V700)-109 fires 

 
coef exp(coef) se(coef) z Pr(>|z|) 

 

EucDis_Road 

(standardized) 
1.137 3.118 1.283 0.887 0.37529  

EucDis_Water 

(standardized) 
-2.372 0.093 0.571 -4.152 3.30E-05 *** 
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Water 

proportion 

(standardized) 

0.494 1.638 0.040 12.497 2.00E-16 
*** 

Slope 

(standardized) 
0.080 1.083 0.019 4.273 1.93E-05 *** 

Elevation 

(standardized) 
-12.640 0.000 0.615 -20.549 2.00E-16 *** 

FBPC1 0.055 1.057 0.213 0.260 0.794904 
 

FBPC2 -0.234 0.791 0.210 -1.116 0.264257 
 

FBPC3 -0.399 0.671 0.226 -1.769 0.076899 
 

FBPC4 -0.661 0.517 0.238 -2.776 0.005501 
 

FBPC5 1.155 3.175 0.213 5.425 5.79E-08 
 

FBPD12 0.541 1.718 0.211 2.566 0.010283 * 

FBPS2 0.377 1.457 0.224 1.684 0.092118 
 

FBPO1 0.887 2.427 0.247 3.586 0.000335 
 

FBPNF 0.932 2.539 0.227 4.109 3.98E-05 
 

FBPW 1.172 3.228 0.230 5.106 3.30E-07 . 

FBPVNF 0.777 2.175 0.215 3.622 0.000293 . 

FBP10_40 0.229 1.258 0.217 1.058 0.289946 * 

FBP40_60 1.385 3.993 0.207 6.702 2.05E-11 
 

FBP60_90 0.594 1.811 0.224 2.651 0.008026 
 

PrevFire10 0.595 1.812 0.166 3.582 0.000341 *** 

PrevFire20 0.086 1.089 0.137 0.624 0.532337 ** 

PrevFire30 1.137 3.118 1.283 0.887 0.37529 
 

PrevFire40 -2.372 0.093 0.571 -4.152 3.30E-05 *** 

PrevFire50 0.494 1.638 0.040 12.497 2.00E-16 
 

PrevFire60 0.080 1.083 0.019 4.273 1.93E-05 
 

PrevFire70 -12.640 0.000 0.615 -20.549 2.00E-16 
 

PrevFire70-Plus 0.055 1.057 0.213 0.260 0.794904 
 

 

Table 4-11 Clogit stepwise results of non-clean of VNF-NF-Barren (V700)-109 fires 

 
coef exp(coef) se(coef) z Pr(>|z|) 
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EucDis_Water 

(standardized) 
-2.377 0.093 0.571 -4.161 3.17E-05 *** 

Water 

proportion 

(standardized) 

0.494 1.638 0.039 12.498 2.00E-16 
*** 

Slope 

(standardized) 
0.080 1.083 0.019 4.265 2.00E-05 *** 

Elevation 

(standardized) 
-12.640 0.000 0.615 -20.565 2.00E-16 *** 

FBPC1 -0.287 0.750 0.047 -6.119 9.41E-10 *** 

FBPC2 -0.450 0.638 0.097 -4.629 3.67E-06 . 

FBPC4 -0.714 0.490 0.119 -5.983 2.19E-09 . 

FBPC5 1.102 3.011 0.061 18.161 2.00E-16 * 

FBPD12 0.488 1.629 0.052 9.453 2.00E-16 *** 

FBPO1 0.323 1.381 0.090 3.578 0.000346 *** 

FBPNF 0.833 2.301 0.138 6.061 1.35E-09 *** 

FBPW 0.878 2.406 0.096 9.105 2.00E-16 *** 

FBPVNF 1.117 3.055 0.108 10.359 2.00E-16 *** 

FBP10_40 0.725 2.064 0.067 10.810 2.00E-16 *** 

FBP40_60 0.176 1.193 0.072 2.454 0.014109 *** 

FBP60_90 1.298 3.662 0.155 8.359 2.00E-16 *** 

PrevFire10 0.512 1.668 0.179 2.852 0.004346 *** 

PrevFire20 0.517 1.677 0.110 4.719 2.37E-06 ** 

PrevFire40 -2.377 0.093 0.571 -4.161 3.17E-05 *** 

 

4.4.2. Influence of Key Factors by RF Importance 

In this section, I explore the influence of each variable as detected by RF importance. Since the 

best scheme is Scheme C, the importance plot for this scheme is presented in Figure 4-8. In the 

figure, two measurements of importance were provided for each variable. The significance (p-

value) is shown in Figure 4-9, Figure 4-10, Figure 4-11, and Figure 4-12. 
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The Mean Decrease Accuracy indicates how much the accuracy decreases when the variable 

was excluded, calculated separately for the two outcome classes (0 for burned and 1 for unburned 

perimeters). On the other hand, Mean Decrease Gini follows a different logic. As Random Forest 

models utilize a random selection of variables to create a decision tree, each variable acts as a 

notch on the decision tree, influencing the classification into one of the two classes. In this case, 

the variable would be used to determine burned and unburned. The Gini value is at its highest 

before any notch begins and decreases with each notch the decision tree progresses. The Mean 

Decreased Gini for a single variable is calculated as the mean of the decrease in Gini of this single 

variable across all the decision trees combined. The numeric value of Gini is irrelevant, and the 

relative value holds significance. 

 

  

0 1 MeanDecreaseAccuracy MeanDecreaseGini

C-2 Boreal Spruce 37.4 39.0 105.2 391.5

Non-fuel 37.0 78.4 102.7 156.9

Vegetated non-fuel 42.3 64.3 96.9 248.9

Elevation 72.3 4.7 95.1 3661.1

EucDis_Road 58.0 30.3 90.4 3550.5

Slope 55.2 27.5 80.8 3567.4

EucDis_Water 56.0 37.3 74.2 3399.8

D-2 Aspen 3.8 42.0 67.0 91.4

C-4 Immature Jack/lodgepole pine 25.0 1.0 41.9 35.0

Fires 70+ years ago 35.0 1.9 41.7 163.3

C-1 Spruce-lichen woodland 26.7 -2.6 39.9 54.7

C-3 Mature Jack/Lodgepole pine 31.1 2.0 38.9 39.7

O-1 Grassland 2.6 24.1 37.8 74.3

10-40% conifer mixedwood -8.0 35.8 34.8 30.0

Water proportion 16.4 22.7 31.3 220.1

40-60% conifer mixedwood -10.8 27.6 31.3 51.6

FBPW (water) 9.7 10.9 14.3 42.9

Fires 10-20 years ago 10.9 5.2 13.5 13.6

Fires 0-10 years ago 14.7 -8.3 9.0 25.9

S-2 White Spruce-Balsam slash 9.2 -9.9 1.5 5.7
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Figure 4-8 The comparison between the four importance indexes for each key factor, with 

the 2nd to 4th columns representing the index of mean decrease accuracy for burn, unburn 

and both, the 5th column being mean decrease gini 

 

Figure 4-9 The p-value and importance in Mean Decrease Accuracy for scheme 

S20Withcp0.1Nostep 

 

Figure 4-10 The p-value and importance in Mean Decrease Gini for scheme 

S20Withcp0.1Nostep 
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Figure 4-11 The p-value and importance in Mean Decrease Accuracy for burn for scheme 

S20Withcp0.1Nostep 

 

Figure 4-12 The p-value and importance in Mean Decrease Accuracy for unburn for 

scheme S20Withcp0.1Nostep 
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4.4.2.1. Influence of Euclidean Distances to Road and Water Respectively 

The anthropogenic variable, namely the Euclidean distance to roads and water-related variables, 

such as Euclidean distance to water bodies, play an important role in predicting fire perimeters. 

The Euclidean distance to roads almost doubles the likelihood of predicting a burned area 

compared to an unburned one. Additionally, the predictive power of Euclidean distance to water 

bodies was lower, showing 1.5 times less the predictive power for unburned areas relative to 

Euclidean distance to roads. Both variables demonstrate statistical significance across all three 

categories of Mean Decrease Accuracy importance indexes (see Figure 4-9, Figure 4-10, Figure 

4-11, Figure 4-12) with P -values less than 0.1.  

From the Gini index, the variable Euclidean distance to roads was around 5% more important 

than Euclidean distance to water. However, both variables displayed no statistical significance in 

the Mean Decreased Gini. Despite this, the results across all four categories suggest the high 

importance of anthropogenic and water-related variables in forming fire boundaries in the boreal 

zone in Alberta. However, there is some discrepancy with Clogit's findings. The significance of 

Mean Decrease Accuracy agrees with Clogit, whereas Gini does not. 

4.4.2.2. Influence of Topography and Amount of Surrounding Water 

Among the topographic variables - slope (Percentage rise), digital elevation, and water proportion 

(90 m) – based on Mean Decrease Accuracy, digital elevation emerges as the absolute highest, 

followed by the slope (Percentage rise) with 70% of its predictive power. At the same time, water 

proportion has the lowest Mean Decrease Accuracy within the three variables, representing only 

12% of the predictive power of digital elevation. All three variables demonstrate statistical 

significance (P < 0.01) under each variable's Mean Decrease Accuracy category.  
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Digital elevation is much more important when predicting the burned area than the unburned. 

In contrast, water proportion is 1/3 times more important for predicting unburned perimeters than 

burned ones, which is expected. Slope, in this case, is twice as important for predicting burned 

areas than for unburned. Digital elevation and water proportion are more statistically significant 

(P < 0.01) when predicting burned areas than slope (P < 0.1). On the other hand, all three variables 

were less statistically significant when predicting unburned areas (P< 0.1 or P > 0.1). When 

examining the categories of Mean Decrease Gini, "digital elevation” and “slope” ranked as the 

absolute highest among any variables in the entire model, though they are insignificant. Water 

proportion was only 3.9% as important as digital elevation but is more statistically significant (P 

< 0.01). 

4.4.2.3. Influence of Fuels 

The selected variables related to fuels included the FBP System fuel types C-1(Spruce–Lichen 

Woodland),  C-2 (Boreal spruce), C-3 (Mature Jack or Lodgepole Pine), C-4 (Immature Jack or 

Lodgepole Pine), D-1/D-2 (Aspen), O-1 (grassland), S-2 (White Spruce - Balsam Slash), NF (non-

fuel), VNF (Vegetated non-fuel), W (water), and additional specific mixedwood ratios: M10-40 

(10 – 40% conifer mixedwood) and M40 – 60 (40 – 60% conifer mixedwood).  

When considering Mean Decrease Accuracy for variables in both classes, C-2, NF and VNF 

had the highest Mean Decrease Accuracy, with D-1/D-2 showing about 60% of Mean Decrease 

Accuracy of C-2. In contrast, all other variables were far less impactful. When predicting the 

burned areas, all variables except O-1 (grassland) and D-1/D-2 ((Aspen)) were not statistically 

significant. C-1(Spruce–Lichen Woodland), C-3 (Mature Jack or Lodgepole Pine), C-4 (Immature 

Jack or Lodgepole Pine), and S-2 (White Spruce - Balsam Slash) showed a higher predictive power 

for burned areas than unburned, while others exhibited the opposite pattern. For predicting the 
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unburned fire perimeters, NF (non-fuel), VNF (vegetated non-fuel), D-1/D-2 (Aspen), 10-40% 

confer mixedwood, 40-60% confer mixedwood, and O-1 (grassland) were statistically significant 

(P<0.01), while others were insignificant. Looking at the Mean Decrease Gini for all variables, all 

the fuel variables were in the low-importance category, but all remained significant (at least P<0.1). 

4.4.2.4. Influence of Previously Burned Areas 

Variables representing previously burned areas ranged from within 10 to 20 years of the sampled 

point to previously burned areas from more than 70 years prior were focused on. Regarding the 

Mean Decrease Accuracy, Previous fire from 0 to 10 years and 10 to 20 years were less important 

than Previousfire70Plus for all four importance indices. All three previous fire variables were more 

powerful in predicting burned areas than predicting unburned, and they were all significant in 

Mean Decrease Accuracy (P<0.01). Only previousFire10 was significant for Gini, and the other 

three were not. They all were significant in predicting burned areas (p<0.01). However, they were 

not significant for predicting the unburned areas. 

4.4.2.5. Summary of RF detection 

Mean Decrease Accuracy was more in agreement with Clogit in variable selection. It was more 

powerful for predicting unburned than burned. However, more variables were less significant in 

predicting unburned states than in predicting burned states. Overall, the pattern of the significance 

of each variable in RF was not as clear as those in Clogit, but RF Exceled at prediction. 

 

4.5. Fire Perimeter Prediction Using V1000 

Having identified S20withcp0.1Nostep as the most effective scheme through the model 

comparison, the next step involved using its corresponding variables to run a prediction model 
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with RF. This final model, encompassing sample points from all 109 fires (noted as V1000), 

emerged as a potent tool for predicting fire perimeter in the Boreal region in Alberta. To assess the 

predictive capabilities of the model, the area immediately surrounding four new fires were selected 

from the Alberta Boreal Region – HWF120_2012, HWF137_2018, SWF107_2017 and 

SWF008_2011. These areas were chosen to represent a spectrum of landscapes with diverse 

landcover and historical fire incidents that could be compared to the predictive results. 

The testing phase involved spatially sampling points at a resolution of 100 m. covering each of 

the four fires completely in the shapes of rectangles, and then having every point run in the RF 

model. Figure 4-13 to Figure 4-16 showed the fire perimeter prediction for the four selected regions. 

The grey scale colour gradient on these maps delineated varying levels of probabilities of fire 

stopping, providing a detailed understanding of how underlying factors contribute to the prediction 

outcomes.  

The prediction was evaluated using the Area Under the Curve (AUC). Values in Table 4-12 

served as a quantitative measure of the model's accuracy. Importantly, the AUC values for training 

(V1000 data) and testing data (newly sampled) affirmed the model's efficacy in capturing the key 

factors influencing fire perimeter. 

Table 4-12 The AUC in four Regions predicted by the final model S20Withcp0.1Nostep 

Fire name WD WS

km/h 

AUC-

Tain 

AUC-

Test 

Accuracy-

Test 

HWF120_2012 360 10 0.71 0.65 0.60 

HWF137_2018 0 0 0.71 0.70 0.66 

SWF107_2017 315 24 0.71 0.58 0.50 

SWF088_2011 360 22 0.71 0.57 0.56 
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Figure 4-13 Fire perimeter prediction for fire HWF120-2012  
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Figure 4-14 Fire perimeter prediction for fire HWF137-2018  
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Figure 4-15 Fire perimeter prediction for fire SWF088-2011  
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Figure 4-16 Fire perimeter prediction for fire SWF107-2017  
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For fire HWF120-2012, the prediction displayed two distinct fire-stopping lines associated with 

roads and rivers, with support from fuel distribution. This spatial distribution corresponded to 

HWF120-2012, showcasing the model’s ability to capture the nuance relationship between 

variables and fire probabilities. For fire HWF137-2018, the south and the east boundaries of the 

fire had low fire probability; this was validated as the area contains rivers and lakes. Fire SWF088-

2011 is characterised by area with a complex patchwork of both high and low fire-stopping 

probabilities. The distribution of fuels in this region plays an important fire-stopping role. However, 

the model’s predictive ability was weak for the fire SWF088-2011, which suggests weather 

conditions may have been a dominant factor. A review of weather records revealed relatively high 

wind speeds, which could potentially explain the weak predictive results.  

Lastly, fire SWF107-2017 demonstrated similar prediction results to SWF088-2011. The wind 

speed for SWF107-2017 data was also very high, at 24 km/h. The modelling process again had 

relatively lower modelling performance. However, the prediction was well-validated in many 

specific areas, such as the northern boundary, where the fire perimeter matched with the edges of 

D-1/D-2 (i.e., low flammability deciduous fuels) and water bodies, where the fire perimeter 

corresponded to the many different kinds of land cover, as shown in Figure 4-17. 
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Figure 4-17 SWF107-2017 with FBP fuel map of 2016 

 

This comprehensive evaluation shed light on the final model's practical application and 

limitations. The influence of weather conditions, especially high wind speeds, notably challenged 

modelling performance. Future refinements may involve integrating real-time weather data to 

enhance the model's accuracy in regions prone to weather-driven fire dynamics. 
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4.6. Discussions 

4.6.1. Comparison of the Modelling Performance  

After applying matched case-control (MCC) conditional logistic regression (Clogit) on the chosen 

scheme S20Withcp0.1Nostep, this Clogit model had a concordance coefficient index (CC) of 

0.653, which was moderate at best. Prior studies that applied the MCC Clogit (Macauley et al., 

2022) method reported a higher model CC of 0.79. Lower concordance reported in this thesis could 

be due to inclusion of over one hundred fires. A simulation experiment was conducted for each of 

the 109 fires individually, using the developed algorithm. The CC for an individual fire reached as 

high as 0.90 or even higher in a few fires (e.g. SWF175_2015). However, most of the fires has a 

CC between 0.6 - 0.8, with a few falling below 0.6 (e.g. MWF028_2009, PWF060_2012). For 

fires with exceptionally high CC, these cases were always correlated with extremely low sample 

size (<50). Due to the limited sample size, the statistical power was insufficient to detect the 

significant effects for any of the covariates. This also explained why the CC for most individual 

fires tended to be higher than the CC for our model with multiple fires. Therefore, for the model 

of 109 fires, the overall CC of 0.653 is reasonable on a high-dimensional dataset. It is worth noting 

that prior studies that reported higher concordance also considered weather conditions. Only 

landscape factors were considered in this thesis. 

Couronné et al. (2018) showed that RF outperforms Clogit based on large-scale data. The study 

in this thesis of 109 fires also supported this conclusion, in which the highest AUC in the RF model 

was 0.67. In contrast, the highest CC from MCC Clogit was 0.65. However, RF could not identify 

the direction of explanatory variables. Thus, instead of choosing only Clogit or RF, this thesis used 

both by taking advantage of the merits of each to achieve the goal. A previous study by Shomal 

Zadeh et al. (2020), who proposed a method of Matched Forests, to a certain degree, supports this 

idea as well. 
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4.6.2. Fuels  

Among the influence of various conifer fuel types on fire cessation, based on the result from the 

Clogit model (Table 4-5), the FBP C-4 and S-2 (White Spruce - Balsam Slash) fuel types were 

identified as the most fire-prone fuel, with C-4 showing a higher level of statistical significance (p 

< 0.001) compared with S-2 (p < 0.05), despite both having similar exp(coef.) values. Subsequently, 

the fuel types FBP C-3, FBP C-2, and FBP C-1 had decreasing susceptibility to fire. However, all 

these fuel types shared the same high level of statistical significance as FBP C-4 (p < 0.001). C-2 

fuel had the highest importance measures compared with all other fuel variables (Figure 4-8). This 

result was unsurprising, given that boreal conifers were considered highly fire-prone (Forestry 

Canada Fire Danger Group, 1992). C-3, C-1, and C-4 all had relatively similar Mean Decrease 

Accuracy, but C-2 alone had more than double the Mean Decrease Accuracy importance measure. 

This meant C-2 was much more influential and important for the RF model's accuracy in prediction. 

VNF and NF had the highest variable coefficients in the result. Still, the two variables were plagued 

with data inconsistencies and did not have a significant P value. This will be further discussed in 

Section 4.6.7. D-1/D-2 remained the most influential fuel variable (Coef. = 8.52E-01, P < 0.001) 

in stopping fires, which aligns with the common knowledge that deciduous forests are generally 

less flammable than coniferous forests (Cumming, 2001; Bernier et al., 2016).  

Previous studies used mixedwood as a simple fuel category; in contrast, this thesis explored the 

influence of differing conifer levels within the mixedwood fuel type. As would be expected, 

mixedwood forests with 10 to 40% of coniferous fuel were better at stopping fire than mixedwood 

forests with 40 to 60% of coniferous fuels. From the results of a different scheme RF20, as shown 

in Figure 4-7, in which all three mixedwood fuel variables were included, we can see that 

mixedwood forests with 10 to 40% of coniferous fuel are significantly fire-stopping, mixedwood 
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forest with 40 -60% showed no significance, and that mixedwood forest with 60-90% coniferous 

fuel were significantly fire-prone.  

This result provides insights into how different fuel types affect fire cessation. Fire management 

agencies could use this information to make informed decisions when planning strategic fire 

containment lines. Mixedwood forests can be viewed differently depending on the coniferous 

proportion. The findings indicate that a lower proportion of coniferous trees in mixedwood forest 

can help stop fires, whereas higher proportions increase fire susceptibility. Forest management 

agencies could use this understanding of conifer proportion inside the mixedwood forest as a 

guideline for fuel management to reduce coniferous proportion within a mixedwood forest to a 

threshold of 40 percent to maintain the mixedwood forest’s fire-stopping properties.   

4.6.3. Topography 

This study indicated that topography, such as elevation and slope difference, had a significant 

influence on halting and promoting wildfires. As shown in Figure 4-4, the standardized coefficient 

of slope and elevation is 0.117 and -12.540. The exp(coef) was 1.124 and < 0.001 respectively. 

This means the increase in one standard deviation of slope difference would increase probability 

of fire perimeter formation by 12%, and one standard deviation increase in elevation would 

increase the probability of fire stopping by more than 10 folds. The influence of those two variables 

should be viewed together. Normally, it is common to attribute elevation differences to the 

existence of hills or clips, and the negative coefficient of the continuous elevation coefficient 

matched this description perfectly. As mentioned in previous chapters, the negative coefficient 

means with increasing elevation as you move from the inside of a fire to the outside, there is a 

decreasing chance of forming a fire cessation event. Although the landscape in between is not 

accounted for, there is an uphill slope between the two points. It is in line with the common 
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knowledge that fire likely travels uphill much easier due to the preheating of fuels (Whelan, 1995; 

Linn et al., 2002; Dupuy et al., 2011).  

Slope also had a high level of statistical significance (P<0.001), but it had a positive coefficient. 

In this context, fire cessation is more likely to happen if the average slope (i.e., a unit in percentage 

rise) of the sampled point outside is higher than the inside point. A difference in slope between 

two sampled pairs typically indicates changing topographic features and often signifies a break in 

fuel continuity; this finding aligns with previous research showing that steeper slope changes 

usually resulted in such discontinuities (Beaty & Taylor, 2001; Heyerdahl et al., 2001; Knapp & 

Keeley, 2006). It is also noted that the slope variable had a relatively tiny coefficient, representing 

the influence of this variable on fire stopping, which was rather small compared to others. 

4.6.4. Water-related Variables 

By using both the proportion and the Euclidean distance to water, the effect of water to fire 

cessation had a high statistical significance (p<0.001). The respective coefficients suggest the 

presence of more water, and the closer to a water body, can increase the probability of fire cessation. 

This is to be expected, given the physical presence of waterways interrupts fuel continuity, 

encouraging fire cessation and providing strategic points for firefighting efforts. Water bodies also 

create cool, moist, and shady environments that support vegetation growth in adjacent areas that 

will have higher moisture content, thus acting as natural firebreaks. Moreover, these findings 

aligned with those from a previous study in Saskatchewan, Canada, where fire was more likely to 

occur in areas distant from circular-shaped lakes, in areas with less surrounding water (Nielsen et 

al., 2016). 
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4.6.5. Previous Burned Areas 

Areas that experienced a fire 0 to 10 years prior, demonstrated a fire-stopping capability even 

when compared with low flammability fuels like the FBP D-1/D-2 deciduous fuel type. This result 

suggests that recent fire history in a region contributes positively to reducing the spread of new 

fires, possibly due to the absence of fuel. The statistical significance (P < 0.01) underlined the 

robustness of this relationship, emphasizing the importance of considering recent fire history in 

fire management and modelling efforts.  

Conversely, the impact of fires occurring more than 70 years ago presented a stark contrast, 

presenting as fire prone with a high statistical significance (P < 0.001). The result suggests that the 

fire-stopping influence of historical fires diminishes over time, aligning with the characteristics of 

the spruce fuel types known for their highly flammable nature. After an extended period, the 

ecological and fuel conditions appeared to revert to a state that is indistinguishable from areas 

without a known fire history, indicating that the legacy of the past fire has been entirely erased. 

The result confirms the phenomenon of ecosystem memory, as the fuel limitation created by past 

fire would only last until the stands recovery and vegetation filled in (Peterson, 2002; Parks, 

Holsinger, et al., 2015; Harris & Taylor, 2017). In the result from scheme RF20 (Figure 4-7), this 

scheme included multiple variables such as the previous burned area from 30 to 40, 50 -60, 60 – 

70, and 70 plus years. Each of those previous burned variables in this scheme was significantly 

fire prone (P<0.001), reiterating the finding that the fire-stopping of the historical fires diminishes 

over time. Beverly (2017) reported the protective effect of previous fire that decreased the 

probability of a new fire escaping containment diminishes after 20 to 45 years. Parks, Miller, et al. 

(2015) reported the self-limiting nature of fire would last up to 20 years. Results of both of these 

prior studies were further confirmed with the results of this thesis.   
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These findings highlight the dynamic nature of fire-ecosystem interactions and the need to 

consider the temporal dimension of historical fire impacts on current fire perimeters. 

Understanding these temporal effects is necessary for improving  predictive models and 

developing more effective fire containment line planning and land management strategies. These 

findings open new directions for further explorations of how fuel types recover post-fire and 

influence the behaviour of subsequent fires. 

4.6.6. Automated Inside-outside Fire Points Data Clean Technique  

To ensure an unbiased MCC Clogit result, modellers must identify paired sample points exactly 

in the expected locations. Previous studies by Macauley et al. (2022) had specifically addressed 

the influence of the distance between matched pairs and discovered the best distance for model 

performance is 100 m, i.e., 100 m sampling distance both inside and outside the fire. The 100 m 

was used as a default in this thesis without regard to the size of the fires. While the 100-meter 

distance ensured  capture of the complete fire-environment interactions leading to fire cessation, 

working with digitized fire perimeters by using this 100 m sampling distance increased the chance 

of incorrect point sampling for the ridged fire edges. Macauley et al. (2022) addressed this issue 

visually by manually reviewing the data. This type of manual visual cleaning was not feasible for any 

study with a large-scale data set.  

In this thesis, creating a custom function in R by utilizing the “DataClean” variable for cleaning was 

used to automate the cleaning process to accommodate any number of fires. The custom function 

increased the efficiency of the cleaning process. It helped clarify the data and significance of these 

sampling issues in fire cessation modelling. An additional notable achievement of the function was 

that it cleaned the sampled data of the points accidentally sampled in the unburned islands or partially 

burned areas. As described previously, the fire polygons were transformed into a single line to ensure 
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the sampling model could correctly sample along the fire perimeter; some fires even required additional 

treatment for splitting and merging. The transformation had unintentionally created edges, resulting in 

sampled points occurring within unburned islands inside the fire, which are invalid sample points. 

Using the “DataClean” variables, areas of unburned islands were also considered outside the fire. 

Hence, the points sampled within were cleaned as well. In total, 30 percent of the total points were 

deemed unfit and removed.   

4.6.7. Automated NVB-clean Technique 

Out of all the dummy variables converted from the FBP System fuel grid, NF (non-fuel) and VNF 

(vegetated non-fuel) emerged as the most influential in the model (largest value of Clogit 

coefficient) but non-significant (p>0.1). An automated NVB-clean guaranteed that these two fuel 

types only occur outside the fire perimeter without exceptions. This cleaning step is crucial for 

maintaining the integrity and accuracy of the model, as it helps to eliminate potential biases that 

could arise from the misclassification of fuel types, as shown the comparison results in Section 

4.4.1. 

The main reason for using this clean is that there are possible biases in the fuel grid data 

regarding VNF and NF. This was substantiated with evidence when reviewing some of the selected 

fires in the study. For example, Figure 4-18 shows the MWF052_2015 fire perimeter overlaid on 

the 2014 fuel grid. Most of the fire perimeter burned into areas considered VNF. Figure 4-19 shows 

the perimeter of the latest previously burned fire near MWF052_2015, a fire called E01025_1998, 

which occurred 17 years prior. A further check using Google Earth imagery (Figure 4-20) showed 

that the land had undergone significant revegetation post-fire, contradicting its classification as 

VNF. It showed that other than the charred black areas, everywhere else was revegetated and 

contained possible burnable fuels. It is expected that the fuel grid is imperfect, and the assigned 
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classification may not represent conditions on the ground. Ecosystems are dynamic and the fuel 

grid is updated regularly as conditions change; however, due to the nature of large remotely sensed 

landcover data, misclassification can be expected, the fire perimeter from 1998 in this area (not 

shown in the figure) was also marked as VNF when burnable fuels had accumulated and sustained 

a burn already.  

As a result, extra care was taken when running models with the VNF or NF variable because 

fire perimeters in Boreal Alberta were very sensitive to these two fuel types. Understanding the 

limitations and potential inaccuracies in existing fuel classification methods is vital for improving 

fire prediction and management strategies, emphasizing the necessity of integrating field data and 

empirical observations into the modelling process. 
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Figure 4-18 The perimeter of MWF052_2015 and the 2014 Fuel map 
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Figure 4-19 The perimeter of E01025_1998 on top of MWF052_2015 and the 2014 Fuel 

map 
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Figure 4-20 The satellite image of MWF052_2015 from Google Earth 
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4.6.8. Fully Clean Technique 

As described in the data clean methodology, data cleaning was used to remove pairs of data 

points if at leas one of the points in the pair was erroneous. For convenience, this clean was defined 

as “full clean.” The alternative cleaning process was a partial clean, in which only the wrong data 

points were removed. Full clean was necessary for Clogit modelling as it needs to retain the feature 

of match of data pairs for the modelling. If only the Random Forest model was run, doing a full 

clean may not be necessary. Doing partial cleaning retains more sample points. Couronné et al. 

(2018) showed that RF model performance increased with the increase of data samples based on 

their large-scale benchmark datasets.  

A simulation experiment was done to compare the full and partial clean. The result was shown 

in Table 4-13. The second column of the table was from the first row of Table 4-9, i.e., full clean. 

Partial clean includes IO (inside-outside) partial clean and NVB partial clean. There are 86,227 

data points left after only using IO partial clean. After both partial IOclean and partial NVB clean, 

the model performance was raised significantly from AUC_train being 0.67 to 0.70. However, the 

AUC for Test data did not change very much. 

Recalling the methodology section about NVB clean, considering the non-Fuel classification 

was too coarse, this thesis created an algorithm to fully clean those points with FBP-VNF and 

FBP-NF inside the fire. To support this algorithm, the comparing simulation experiment was 

designed to simulate for partial IO clean but without NVB-clean, as shown in the final column of 

Table 4-13. After this, the model performance was not raised. This confirmed the same conclusions 

from the previous section in that VNF and NF were very sensitive. The model performance 

decreased without cleaning its inaccurate points, and the influence were not explored clearly. 

Partial cleaning can indeed raise model performance. However, as partial data cannot use Clogit, 



118 

 

Clogit is required to detect the variable direction. Ultimately, the MCC feature was kept to run RF 

with full clean, not using partial clean. 

Table 4-13 Comparison between partial clean and full clean for Scheme C for V700-109 

fires 

 Full IO clean - Full NVB 

clean 

Partial IO clean - 

Partial NVB clean 

Partial IO clean – 

No NVB clean 

Full or Partial Inside-Outside clean Full Partial Partial 

Data points After IO clean 71030 86227 86227 

NVB clean Full partial No 

Data points After NVB clean 65078 68054 71030 

AUC_Train 0.67 0.70 0.67 

AUC_Test 0.70 0.70 0.66 

Accuracy 0.64 0.64 0.61 

 

4.6.9. Mixed effect in modelling 

As mentioned in the previous sections, over 100 fires were used in the automated sampling process. 

This produced over 60,000 sampled points that were later used in modelling. It would raise the 

concern that each individual fire produced many sample points, meaning multiples observations 

are on the same "individual" (i.e., the same fire). The question of whether the independent variables 

are truly independent arises (Zuur et al., 2009). 

In a normal logistic regression model, there are possibilities of including a random effect to deal 

with this issue. However, in this thesis, a specific conditional logistic regression model was used 

(conditional (fixed effect) logistic regression), where the focus was primarily on the matched pairs, 

and the intercept was implicitly accounted for by the conditioning process. Therefore, as shown in 

the different schemes in Section 4.1, the model did not estimate any overall intercept across the 

dataset, but rather focusing on the matched case-control pairs (strata). It is possible incorporate 
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mixed effect into conditional logistical regression model, such as by using the “mclogit” package 

from R. However, the current algorithms in R do not have the capability to compute a mixed effect 

with paired data yet. In addition to that, the Clogit model from the “survival” package, that was 

used in the study does not support the additional of a mixed effect, therefore it is currently 

impossible to account for a mixed effect in this current study. Tackling this will be a future work 

for logistic regression.   

4.7. Summary 

The Matched Case-Control conditional logistic regression (MCC Clogit) model was used to 

identify the key influential factors on the fire perimeter under four schemes by mixing and 

matching the two conditions, with and without the help of stepwise regression (Step), with and 

without the consideration to the association of the variable inside and outside the fire perimeter 

based on the p-value of the contingency table being less than 0.1 (cp0.1). Due to the lack of 

prediction capability of MCC Clogit, the Random Forest (RF) model was used to evaluate the four 

MCC Clogit schemes, along with two additional RF schemes obtained using the variable 

importance measure of RF. Upon rerunning RF over the six schemes, it was found the scheme 

obtained by MCC Clogit while considering cp0.1 and without using Stepwise regression 

(S20withcp0.1Nostep), showed the best model performance, achieving the highest Area Under the 

Curve (AUC) and using the minimum number of variables. Selecting this scheme follows the 

principle of using the least number of variables to achieve the best model performance.  

Among the identified 20 key factors, water, slope, aspen, grass, non-fuel, vegetated non-fuel, 

mixedwood with 10-40% conifer, mixedwood with 40-60% conifer, previous fire 0-10 years ago 

were the most significant fire-stopping factors. Notably, conifer content up to 60% in mixedwood 

remained a significant fire-stopping factor. However, as the conifer percentage increased, the 
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effectiveness of mixedwood forming fire boundary decreased from 2.19 to 1.55 folds. Although 

previous fire from 0 to 10 years ago played an important role in fire cessation. Previous fires older 

than 70 years exhibited the opposite effect. Grass and aspen were fire-stopping variables, whereas 

conifer species (C-1 (Spruce-Lichen Woodland) to C-4 (Immature Jack or Lodgepole Pine)) were 

identified as fire-prone. 

Overall, RF’s variable importance was not as clear as that identified by MCC Clogit, 

highlighting the role of MCC Clogit in identifying the key factors contributing to fire cessation. 

Nevertheless, RF remained helpful in selecting the best scheme among the options comparing train 

and test datasets. RF helped the prediction of fire perimeters for four example fires that were not 

used in model building. Based on the best-performing scheme (S20withcp0.1Nostep), the 

identified variables were used to predict fire perimeters using RF. The established final model, 

encompassing all 109 fire data points (train and test combined, noted as V1000), provided a potent 

tool for predicting fire perimeters in the Boreal region in Alberta. The model's predictive 

capabilities were assessed with randomly selected diverse areas within the Alberta Boreal Region, 

each related to a fire record. The AUC of the predictive model was 0.70, indicating a prediction 

capability of 70%. The higher prediction capability was noted with regions less susceptible to fire 

weather conditions. 
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5. Conclusions and Prospective 

 

5.1. Main Takeaways of this Thesis 

(1) An automated algorithm for matched case-control data pair sampling and data extraction 

over 109 selected fires within the boreal region of Alberta during recent years was 

established. An event-table toolbox was developed to help sample matched pairs of data 

automatically on each side of the fire perimeters to represent burned and unburned states. 

Python models in ArcGIS Model Builder, custom Python tools, and custom Excel Macro 

were used to automatically extract spatial information representing the explanatory 

variables associated with each data point. Compared with a manual process, this 

automation reduced workload from several weeks to hours. 

(2) Visual review of  each analyzed fire was conducted individually to verify that the 

automated algorithm’s performance was consistent with  expectations. Various procedures 

were adopted for dealing with complicated fires with multiple fire polygons corresponding 

to the same fire ID. These included sampling the largest polygon with a small polygon 

neglected, combining two very closely related fires into a new fire, and separating large 

fires with two or more equal large polygons into two or more new ones. Several cleaning 

algorithms were employed in conjunction with those procedures, including the inside-

outside clean, NVB-clean, and others. This approach produced an accurate dataset, from 

which the basic association of the binary variable inside and outside the fire boundary was 

tested by statistical tests with p-values. Comparative descriptive features inside and outside 

the fire boundary for continuous variables were analyzed.   
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(3) An advanced R-based modelling framework was established by combining matched case-

control (MCC) conditional logistic regression (Clogit) and random forest (RF) to identify 

the key factors and predict fire perimeters. Four sets of factors were generated using MCC 

Clogit under different conditions: with and without stepwise regression (Step) and with 

and without considering the association of variables inside and outside the fire perimeter, 

based on the contingency table (P < 0.1). Additionally, two sets of factors were produced 

using RF according to the variable importance measure, with the same number of variables 

as the MCC Clogit schemes. RF was rerun over the six schemes, and the most optimal 

scheme was identified as the one considering cp0.1 without stepwise regression, achieving 

the highest Area Under the Curve (AUC) and utilizing the minimum number of variables.  

(4) Among the 20 variables in the best scheme, water proportion, slope, aspen, grass, non-fuel, 

water, vegetated non-fuel, mixedwood with 10-40% conifer, mixedwood with 40-60% 

conifer, previous fire from 0-10 years ago and previous fire from 10-20 years ago were the 

most significant fire-resistant variables. Notably, conifer content up to 60% in mixedwood 

remained a significant fire-stopping factor. With more conifer content, the probability of 

fire cessation decreased from 2.19 to 1.55 folds. Although previous fire from 0 to 10 and 

10 to 20 years ago played important roles in fire cessation, fires older than 70 years 

exhibited the opposite. Grass and aspen were fire-stopping elements, and all conifers (C-1 

(Spruce-Lichen Woodland) to C-4 (Immature Jack or Lodgepole Pine)) were identified as 

fire-prone, especially C-2, as it was the most important variable in RF models. The 

identified results in terms of Mean Decrease Accuracy in RF were more in agreement with 

results by Clogit detection than Mean Decrease Gini. Overall, the pattern of each variable 

identified only by RF’s variable importance was not as clear as that identified by MCC 
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Clogit, showing the value of MCC Clogit in identifying key factors that influence fire 

cessation. However, RF helped select the best factor list among the choices.  

(5) Based on the best factor list (S20withcp0.1Nostep), the identified variables were used to 

predict fire perimeters using RF. The established final model, encompassing all 109 fire 

data points (noted as V1000), provided a potent tool for predicting fire perimeter in the 

Boreal region in Alberta. The AUC of the predictive model was 0.70, indicating a 

prediction capability of 70%. It showed a higher prediction capability for a fire with milder 

fire weather conditions than those with high wind speed.   

(6) The findings of this thesis have implications for strategic containment line planning in 

wildfire management. By identifying the key factors influencing fire perimeter formation, 

the automated data collection methods and modelling framework of this study provide 

wildfire managers with valuable information on areas with high potential for containment 

and natural fire containment barriers. This information could aid in tailoring containment 

strategies and managing fire containment lines more effectively. Furthermore, this study 

offers wildfire managers a deeper understanding of the landscape variables influencing fire 

containment, enabling more informed strategic decision-making.  

5.2. Future Perspectives 

5.2.1. Seasonality 

The fire season in Alberta is from March 1 to October 31 (Government of Alberta, 2022b), 

beginning in early spring and extending to the end of autumn. The fire behaviours vary, influenced 

by the changing conditions of each season.  

In the early months of the fire season, particularly in spring, a notable phenomenon known as 

the “spring dip” occurs. This term refers to the period when deciduous trees and grasses, out of 
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dormancy, exhibit exceptionally low moisture content (Alexander & Cruz, 2013; De Jong et al., 

2016). This condition arises because these plants have not yet begun their new growth cycle after 

winter. Consequently, they have not yet replenished moisture through uptake from soil and 

initialized photosynthesis. As a result, these fuels become highly flammable during this period. 

However, as spring progresses and plants begin their growth, the moisture content increases, and 

their flammability gradually decreases.  

Despite the susceptibility to fire in the spring due to the spring dip, out of the 109 fires of my 

choice, only 32 out of the 109 fires occurred during the spring season, all later in spring, after the 

spring dip period. On the other hand, summer fires are influenced by different factors, including 

high temperatures and lower relative humidity, which collectively contribute to a peak in fire 

occurrence during summer. Future research considering seasonality’s role in fire perimeter 

formation will provide deeper insights into temporal fire patterns, ultimately aiding in developing 

more effective fire management and mitigation strategies. 

5.2.2. Future Research: FBP and LSAT 

Future research could explore potential improvements in model performance by using Landsat 

landcover data (Landsat) rather than the fuel grids used here, which identify the fuel types of the 

Canadian Forest Fire Behaviour Prediction (FBP) System. Landsat provides comprehensive, 

satellite-based landcover data that offers more precise data (i.e., 30 m resolution) than the FBP 

System fuel grid. Landsat data could be particularly beneficial in regions or scenarios where the 

FBP system might have limitations due to the unavailability of specific ground-based data or the 

need for more granular spatial resolution.  

A hybrid model incorporating the FBP System fuel grid, and Landsat factors could offer more 

robust predictive capabilities. By comparing these two data sources, researchers can identify the 



125 

 

strengths and weaknesses inherent to each and potentially uncover synergies between them. Future 

research that involves periodic ground-truthing of non-fuel fuel types through on-site 

investigations is also a promising direction for improving the accuracy of fuel maps. 
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Appendix 

Appendix A1: Contingency Plot for Binary Variables in V700-Train Data 

The number (n) and the percentage of non-existing (lightskyblue2) and existing (medium blue) 

data points for each of 29 variables inside (CASE=0) and outside (CASE=1) the fire perimeter for 

train data 
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Appendix A2: Contingency Plot for Binary Variables in V700 Test Data 

 

The number (n) and the percentage of non-existing (palegreen1) and existing (seagreen) data 

points for each of 29 variables inside (CASE=0) and outside (CASE=1) the fire perimeter for test 

data 
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