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ABSTRACT

Two of the most important loading conditions for pipelines in operation are 

ground movement and temperature change. Ground movement is caused by the factors 

such as fault settlement, slope movement, frost heave, and thaw settlement. The 

difference between the pipe temperature change in service and the tie-in temperature of 

the pipeline produces an axial compressive force in the pipeline. With a large enough 

temperature differential, the resulting compressive axial force can cause the overall 

buckling of the pipeline, leading to considerable vertical, lateral, or combined movement 

of the pipe. Many cases of thermal buckling have been recorded for both onshore and 

offshore pipelines. Pipelines subjected to ground movement or thermal buckling may 

deform into elastic-plastic range and form wrinkles.

In this research project, a two-dimensional, numerical model is developed for the 

analysis of pipelines under different loading conditions, and, in particular, under thermal 

loading. The finite element model features a new elastic-plastic, isoparametric C1 beam 

element capable of modeling large displacements and finite strains using an updated 

Lagrangian Formulation. The numerical model can handle highly irregular pipe and 

ground profiles in order to cover most practical cases. The resulting finite element model 

was implemented in the computer program ABP (Analysis of Buried Pipelines). The 

finite element model is verified through several examples by comparing the analytical 

results to those of closed-form solutions, experimental data, or other finite element 

programs. Two thermal buckling case studies, stemming from the investigations carried 

out on actual pipelines, demonstrate the application of the thermal analysis.
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Cj constants arising from far-field condition differential equations (i = 1, 2 , ,  6)

Cjjkl tensor of elastic moduli

★
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En Green-Lagrange axial strain (material coordinate system)
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‘F deformation gradient at time t with respect to the configuration at time t 

g(<Jjj) plastic potential function 
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k0 a parameter used to calculate transverse bearing capacity for sand

Ko coefficient of soil pressure at rest

K global stiffness matrix
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ds„
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NSUB number of sub-increments of inelastic strain increment 

Nc a bearing capacity factor for horizontal strip footing

Nc a parameter used to calculate transverse bearing capacity for sand

Nq a bearing capacity factor for horizontal strip footing

Ny a bearing capacity factor for horizontal strip footing

Nqv vertical uplift factor for sand

Ncv vertical uplift factor for clay

Nqh horizontal bearing capacity factor

Ncr critical (buckling) axial compressive load for a beam on elastic foundation

p pipe internal pressure

P0 a parameter substituting tcR j2 p

P external force vector

P reference load vector

P th thermal reference load vector

P Axial load

Pcr Euler buckling load

qp pseudo-transverse load due to internal pressure

qx total value of distributed load at a given point along an element in the global

direction

qy total value of distributed load at a given point along an element in the global

direction
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Qxs distributed load in global x direction per unit of sloped length

Qys distributed load in global y direction per unit of sloped length

q * gravity load per unit of sloped length

q| gravity load per unit of horizontal (global x) length

qxi x component of total distributed load at Node i of the element (i = 1, 2,3)

qyi y component of total distributed load at Node i of the element (i = 1, 2, 3)

Q equilibrium force vector

Q fraction of elastic strain increment to total strain increment

Q j equilibrating force vector for the pipe configuration at iteration j

r natural coordinate along beam element ( - l < r < l )

R a normalizing factor used in thermal solution scheme with non-dimensionalization

Ri pipe internal radius

Rm radius of the midline of pipe cross-section

s local s coordinate of pipe axis

So arc-length along beam element in initial configuration

Si coefficients used to express sin0 (i = 1, 2 , ,  6)

sij components of deviatoric stress tensor

Sij components of reduced deviatoric stress tensor

sf surface on which external tractions are applied

s„ surface on which displacements are prescribed

s u undrained shear strength of clay soil
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Sjj components of second Piola-Kirchhoff stress tensor in global coordinate system

*S second Piola-Kirchhoff stress tensor measured at time t with respect to the

configuration at time t 

[s j  components of stiffness matrix arising from internal virtual work

t pseudo-time indicating the progress of a nonlinear solution

t pipe wall thickness

[t ] rotation matrix to convert displacement increments from global to local system

AT temperature change

ATj initial lift-off temperature change

ATcr critical (buckling) temperature change

ATm temperature change at the minimum point

Uj components of displacement vector in global coordinate system (i = 1, 2, 3

referring to global direction)

Uj nodal displacements along global x-axis (i = 1, 2, 3 referring to node number)

u0 axial displacement at left end of pipe

uL axial displacement at right end of pipe

u1 notation used to represent U; and  ̂du  ̂

V d s o a
degrees of freedom at three nodes of

each beam element (i = 1,2,. . .  ,6) 

u displacement increment of arbitrary point along element axis in local s direction

(u) vector of nodal displacements for beam element
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u displacement vector of an arbitrary point on element axis 

u global displacement vector (whole structure)

Auj+1 displacement increment for the load step at the end of iteration j+1

dUj+1 displacement correction for iteration j+1

duj+1 first component of displacement correction for iteration j+1

du“+1 second component of displacement correction for iteration j+1

du relative longitudinal displacement increment of the pipe with respect to the 

ground

AUjmod modified displacement increments in settlement analysis 

U displacement of pipe material point in global x direction

U displacement increment of pipe material point along x (or s) axis in material (or 

local) coordinate system 

AU vector of unbalanced forces

Vj nodal displacements along global y-axis (i = 1, 2, 3 referring to node number)

v1 notation used to represent v; and
f  j  \dv

V d s o A
degrees of freedom at three nodes of

each beam element (i = 1,2,. . .  ,6) 

v displacement increment of arbitrary point along element axis in local h direction

V volume of pipe body

V displacement of pipe material point in global y direction

V displacement increment of pipe material point along y (or h) axis in material (or

local) coordinate system
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w a vector of weight factors used in displacement control method 

8Wext external virtual work

5W0ext external virtual work due to pressurization 

8W0nt internal virtual work due to pressurization 

8Wsex; external virtual work done by soil springs

8Wss“f  portion of external virtual work done by soil springs contributing to stiffness 

5Ws'°f portion of external virtual work done by soil springs contributing to load 

5W“ ‘ external virtual work due to transverse loading effect of internal pressure 

5Wp“jf portion of external virtual work done by the transverse loading effect of internal 

pressure contributing to stiffness 

8Wp“ d portion of external virtual work done by the transverse loading effect of internal 

pressure contributing to load 

8Wqext external virtual work done by distributed load 

W weighting matrix in constraint equation

X; global coordinates of a material point system (i = 1, 2, 3 referring to global

direction)

Xj global coordinates of three nodes of each beam element along global x-axis (i = 1,

2, 3 referring to node number)

x1 notation used to represent x, and 

=  1, 2 , . . . , 6)

dx

Vdso A
at three nodes of each beam element (i
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x position vector of an arbitrary point on element axis

xXR global x coordinate of the mid-point of transition zone

xGI global x coordinate of a Gaussian integration point

xjnt x coordinate of the interception point in gap calculation

x shifted x coordinate: x = x -  xTO

xo length of semi-infinite pipe with plastic soil friction

X coordinate of pipe material point in global x direction

yi global coordinates of each element nodes along global y-axis (i = 1, 2, 3 referring

to node number)

y1 notation used to represent y( and
( j  A_dy
V ŝo

at three nodes of each beam element (i

=  1, 2 , . . . , 6 )

yG1 global y coordinate of a Gaussian integration point

yint y coordinate of the interception point in gap calculation

AyG ground settlement at a given point along pipeline

Y coordinate of pipe material point in global Y direction

z a generic variable standing for any of these variables: x, y, u, and v

Greek Characters

a  angle of inclination at fixed support

a  adhesion factor for clay
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a  thermal expansion coefficient of pipe material

{Xj roots of quadratic equation for load factor correction (i = 1,2)

ay coordinates of the yield surface center in the stress space

P relaxation factor used in modified arc-length method

P a substitute parameter used in the derivation of elastic-plastic coefficient

P angle of ground settlement direction

p
P a substitute parameter: P = sign(u,)—

EA

y total soil unit weight

y angle between settlement direction and tangential direction at an integration point

y effective soil unit weight

8 interface angle of friction between soil and pipeline

8 total differential settlement

ABy bearing spring yield displacement

AUy uplift spring yield displacement

ALy longitudinal spring yield displacement

AHy horizontal bearing spring yield displacement

Au increment of upward pipe displacement with respect to the ground

A0 displacement limit in settlement solution scheme

dA ground settlement increment

Ej principal logarithmic (true) strains

ee hoop strain due to internal pressure
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Ep effective strain 

ep reduced effective strain

£0 sum of axial strains due to temperature change and internal pressure

dEjj components of strain increment tensor

d£jj components of elastic strain increment tensor

d£jj components of plastic strain increment tensor

d£||0 isotropic portions of the components of strain increment tensor 

d£yin kinematic portions of the components of strain increment tensor 

r|jj nonlinear portions of components of Green-Lagrange strain tensor in global 

coordinate system

fjn nonlinear portion of axial Green-Lagrange strain (material coordinate system)

<() pipe curvature

<j) angle of internal friction

dsA, stretch defined as X = -—
ds0

AA.j+j a scalar load factor whose product with the reference load vector forms the

external load increment for the current load step (i.e., AP = AA-j+jP)

dA,j+j load factor correction in the j+ 1st iteration

dA positive scalar factor of proportionality in flow rule

dp, a positive proportionality factor in Ziegler kinematic hardening rule

v Poisson's ratio for the pipe material
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0 angle specifying position of pipe material point around cross-section

0 inclination angle of cross-section

0 reference temperature change

0F final value of reference temperature change

p a parameter substituting for - =

dr

p mass density

o e hoop stress due to internal pressure

Gy components of Cauchy (true) stress tensor

CFjj components of reduced stress tensor

Gj principal Cauchy (true) stresses

Ge effective stress

Ge reduced effective stress

G Cauchy (true) stress tensor

AeGj elastic increment of longitudinal stress required to bring the stress state to von 

Mises yield ellipse

\|t a substitute parameter: \\f =

£ constraint equation parameter

displacement tolerance 

£,f force tolerance
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

In the last few decades, buried pipelines have become more widespread as a means 
of transporting oil and gas. They are replacing other means of transportation in oil and 
gas industries as the most economical alternative. As new oil and gas resources are 
explored in remote regions, such as the Arctic and sub-Arctic, pipelines are being 
extended into new and more severe environments. This requires a better understanding of 
pipeline behavior and powerful analytical tools capable of analyzing all the potential 
adverse conditions.

Two important environmental loadings for pipelines are imposed deformation and 
temperature variation. Imposed deformation can be caused by factors such as slope 
movement, frost heave, and thaw settlement. The most important effect of imposed 
deformation is the bending of the pipe due to the imposed curvature. Steel pipelines 
subjected to imposed deformation may deform into the elastic-plastic range and form 
wrinkles.

The difference between the pipe temperature in service (close to the fluid 
temperature) and the tie-in temperature of the pipeline, produces an axial compressive 
force in the pipeline. If the temperature differential is large enough, the resulting axial 
force can cause the pipeline to buckle leading to considerable vertical, lateral, or 
combined movement of the pipe. This may involve elastic-plastic deformation and 
wrinkling of the pipe. Many cases of thermal buckling have been recorded for both 
onshore and offshore pipelines.

This research project is an attempt to develop a rigorous, two-dimensional, 
numerical model capable of analyzing pipelines under different loading conditions, and, 
in particular, under thermal loading. The finite element model features an elastic-plastic, 
isoparametric C1 beam element capable of modeling large displacements and finite strains 
using an updated Lagrangian Formulation. The numerical model can handle highly 
irregular pipe and ground profiles to cover most practical cases. Two thermal buckling 
case studies, stemming from the investigations carried out on actual pipelines, 
demonstrate the application of the thermal analysis.

1
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Even though the finite element model developed in this study does not account for 
wrinkling or tearing of the pipe under severe tensile strains, the results of the analysis are 
valid up to the first occurrence of either critical tensile or compressive strains. In most 
practical cases, the pipe should meet the code requirements for specified maximum 
values of tensile and compressive strain under certain loading conditions. In these 
situations, the numerical model does not have to be capable of modeling wrinkles and 
tensile failures. Even in fitness-for-purpose cases, where the actual failure of the pipe is 
studied, the actual critical strain values can be obtained from the ever growing database of 
the critical strains in the literature. This database is, to a great degree, due to the research 
projects undertaken at the University of Alberta since 1990.

1.2 OBJECTIVES

The main objective of this research project is to develop a rigorous, two- 
dimensional, finite element model to study the behavior of buried pipelines, in general, 
and the thermal buckling of pipelines, in particular. This overall objective can be broken 
down into the following itemized objectives:

1) To develop a new two-dimensional, elastic-plastic, isoparametric C1 pipe beam 
element capable of modeling large displacements and finite strains using an updated 
Lagrangian formulation. This element is expected to improve on the deficiencies of 
the subparametric C1 pipe beam elements developed by Zhou and Murray (1993). 
The load and stiffness contributions of internal pressure need to be rigorously 
derived and implemented in the model.

2) To develop an elastic-plastic material model using the von Mises yield criterion, 
normality flow rule, and a mixed strain-hardening rule (a mix of isotropic and 
kinematic hardening rules). The resulting constitutive relationships need to be 
converted into the constitutive relationships required for the pipeline-beam element 
in an updated Lagrangian formulation.

3) To develop a pipeline-soil interaction model using soil springs on the basis of the 
classical Winkler foundation. A nonlinear constitutive relationship is required to 
model the bearing, uplift, transverse (for a horizontal analysis), and longitudinal soil 
springs. The constitutive relationship for the uplift spring should take into account 
the loss of the uplift spring force as the pipe moves drastically upwards in an 
upheaval buckling analysis.

2
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4) To develop a thermal analysis formulation in order to analyze thermal buckling 
phenomena such as upheaval buckling and snaking. The formulation should be 
capable of simulating infinitely long continuations of the pipeline in order to reduce 
the long length of the model that would otherwise be required.

5) To develop appropriate solution techniques to solve the nonlinear equilibrium 
equations for each of the loading types: applied loads, settlement, and thermal 
analysis.

6) To implement the above formulation into a computer program used to generate a 
variety of example solutions in order to verify different aspects of the finite element 
formulation developed in this study.

7) To employ the thermal analysis in actual pipe buckling cases to demonstrate the 
application of thermal analysis in practice.

1.3 LITERATURE REVIEW

The literature review has been divided into four categories. They are the pipe beam 
elements, the pipe-soil interaction model, the analysis of pipelines subjected to 
settlement, and the thermal buckling analysis of pipelines. These are presented in the 
following subsections.

1.3.1 Pipe Beam Elements

Pipe beam elements are created out of various types of beam elements by 
augmenting them with internal pressure loading. Therefore, it is only appropriate to 
review the most common types of beam element available in the literature. From the 
standpoint of shear deformations, beam elements can be divided into two categories:
■ Euler-Bernoulli beam elements: these elements are based on the classical Euler- 

Bemoulli assumption that the cross-sections perpendicular to the beam axis before 
deformation, remain planar, undistorted, and perpendicular to the deformed beam 
axis. Consequently, shear deformations, and hence, shear strains and stresses are 
ignored in the formulation of classical Euler-Bernoulli elements. These elements are 
suited only for modeling thin (slender) beams, such as pipelines, where the beam 
cross-sectional dimensions are small compared to typical distances along its axis.

■ Timoshenko Beam Elements: these elements are based on the Timoshenko beam 
theory which assumes that the cross-sections perpendicular to the beam axis before 
deformation, remain planar, undistorted, but not necessarily perpendicular to the 
deformed beam axis. Thus Timoshenko beam elements allow for transverse shear

3
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deformation. These elements can be used for modeling both thick and thin beams. 
The vast majority of the more recent research on beam elements has focused on C° 
Timoshenko beam elements.

The Euler-Bernoulli beam elements are normally two-node elements using cubic 
Hermitian interpolation functions for transverse displacement and linear interpolation for 
axial displacements. However, in order to achieve a higher accuracy for the Euler- 
Bernoulli beam element, a three-node element is sometimes used. Zhou and Murray 
(1993) adopted such an element in their finite element analysis of buried pipelines. A 
three-node element uses fifth order Hermitian interpolation functions for transverse 
displacement and quadratic interpolation functions for axial displacements. The 
subparametric element by Zhou and Murray occasionally produces undesired oscillations 
in the axial force and moment responses (as demonstrated in Chapter 4).

The beam elements can also be classified on the basis of the choice of independent 
unknowns. The oldest and the most widely-used elements are those that use nodal 
displacements as the independent unknowns. These elements are known as displacement- 
based elements. In contrast, hybrid elements are those that use some strain, stress, or 
internal force components in addition to nodal displacements as independent unknowns. 
Hybrid elements, introduced by Pian (1964), were rationalized by means of variational 
formulations by Tong and Pian (1969). Some cases of hybrid beam elements used in 
pipeline analysis are reviewed in the following.

■ The multipurpose finite element program ABAQUS offers hybrid and displacement- 
based versions of both Euler-Bernoulli and Timoshenko beam elements (Hibbit et al., 
2002). The hybrid beam elements in ABAQUS are designed for modeling very 
slender beams, where the axial stiffness of the beam is very large compared to the 
bending stiffness. Thus a mixed method, in which the axial force is treated as an 
independent unknown, is utilized. For Timoshenko beam elements, the transverse 
shear forces are also treated as independent unknowns.

■ Klever et al. (1990) created a two-node hybrid Euler-Bernoulli pipe beam element, 
where, in addition to the nodal displacements, the beam axial strain, curvature, axial 
force, and bending moment were treated as independent unknowns. They assumed 
the axial strain and axial force to be constant over the element. The curvature and 
bending moment were interpolated linearly over the element. A significant difference 
was shown between the performance of this element and that of a similar element

4
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using a full displacement approach for the post-buckling behavior of an axially 
compressed Euler beam. The response of the beam as given by the exact elastic 
solution was followed closely by hybrid elements, whereas displacement-based 
elements responded much too stiffly.

■ Saje (1990) came up with a hybrid beam element based on a new variational principle 
for initial 1 y-straight, elastic beams. The formulation, based on Euler-Bernoulli 
assumption, was designed for slender beams. In addition to the nodal displacements, 
the beam axial force, shear force, and bending moment were treated as independent 
unknowns. Two Lagrange multipliers, enforcing two kinematic relationships between 
the displacements, angular rotations, and the axial strain, were also independent 
unknowns in the formulation. Shaw and Bomba (1994) extended this formulation to 
include nonlinear material behavior in order to study the upheaval buckling response 
of pipelines. They found that the material nonlinearity had a significant effect on the 
buckling response. Namely, the pipe buckled at a much lower temperature for an 
elastic-plastic pipe than for a similar elastic pipe.

As for the pipe beam element adopted in this work, it was decided to create a new 
isoparametric C1 element based on the Euler-Bernoulli assumption and a displacement 
approach. This element, as described in Chapter 2, uses fifth order Hermitian 
interpolation functions for both transverse and axial displacements. The isoparametric 
element could be considered as a refined version of the subparametric C1 pipe beam 
element by Zhou and Murray (1993).

1.3.2 Pipe-Soillnteraction Model

Due to the highly nonlinear response of soil materials and the possibility of pipe 
distortion, buried pipe-soil systems have a relatively complex behavior. Two basic 
approaches are used for numerical modeling of buried pipelines: (1) the simplified model, 
using specialized beam type elements for the pipe and Winkler type representation of 
surrounding soil (soil spring structural models), and (2) the complex model, where the 
soil is modeled using continuum finite element or boundary element methods. Since the 
focus of this study is on the response of the pipe rather than the soil, a relatively complex 
model is required for the pipe, while the simplified model using soil springs is considered 
to be adequate. Some of these models are reviewed in the following.
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In lieu of site-specific data on the spring constants, "Guidelines for the Seismic 
Design of Oil and Gas Pipeline Systems" (CGL, 1984) has been widely used in the 
industry as the source for obtaining the spring constants from basic soil properties. 
Elastic-perfectly plastic force-deformation constitutive relationships were used to model 
the bearing, uplift, transverse (for a horizontal analysis), and longitudinal soil springs 
(CGL, 1984). Due to the wide scatter in experimental results, the soil spring values given 
in this reference are not to be viewed as precise values.

Some of the relationships given by the CGL have been questioned by subsequent 
experimental investigations. Paulin et al. (1997) determined from their full-scale pipe- 
soil interaction tests that for loose sand, the CGL equations generally overestimate the 
ultimate lateral (horizontal) resistance of the soil. Furthermore, their experimental results 
for the soil ultimate axial resistance were generally higher than the values predicted by 
the CGL for dense sand. However, for loose sand, the experimental values for the 
ultimate axial resistance were generally lower than the values predicted by the CGL. 
More importantly, the experimental findings of Rizkalla et al. (1996) and Cappelletto et 
al. (1998) showed that the CGL highly overestimated the ultimate axial resistance for 
cohesive soil.

Due to its importance in the upheaval buckling of pipelines, the soil uplift resistance 
has been the focus of many studies within the past two decades (Trautmann et al., 1985; 
Finch, 1999; and White et al., 2001). The most important parameters in the uplift models 
have typically been the cover depth to diameter ratio and the unit weight of the soil. 
These models generally equate the uplift resistance to a combination of the dead weight 
from the soil above the pipe and the shearing resistance provided by that segment of soil.

Cyclic thermal loading has been shown to be potentially affecting the soil uplift 
resistance (Nielsen et al., 1990; and Finch, 1999). Nielsen (1990) suggested that during 
uplift the cavity forming below the pipe is partially filled with soil particles from around 
the pipeline. Over a series of heating and cooling cycles of the pipeline, this flow of soil 
may lead to the migration of the pipe upward through its cover. This upward cyclic 
movement of the pipe has been known as cyclic ratcheting. The results of the tests by 
Finch (1999) indicate that a large number of thermal cycles result in the pipeline working 
its way upward to a point where insufficient cover remains.
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1.3.3 Analysis of Pipelines Subjected to Settlement

Over the past two decades, the analysis of pipelines subjected to ground movement 
has evolved from simple models using closed-form solutions (Yen et al., 1981) to the use 
of sophisticated finite element models incorporating pipe and soil material nonlinearities 
(Zhou and Murray, 1993). The main reason for this development is the expansion of 
pipelines buried into the Arctic and sub-Arctic regions within the past few decades, which 
has led to many cases of pipeline failure due to differential thaw settlement and frost 
heave.

Typically, the relative degrees of complexity of the pipe and soil models depend on 
the major interest of the investigator. Some of the important studies on the pipelines 
subjected to ground movement are summarized in the following.

1.3.3.1 Model of Nyman

Nyman (1983) used a two-dimensional beam-on-elastic-foundation model to carry 
out thaw settlement analysis for buried pipelines. The soil surrounding the pipe was 
modeled by three types of soil springs: bearing, uplift, and longitudinal springs. These 
springs represent the soil loading above the pipe, the bearing support below the pipe, and 
the longitudinal friction along the pipe. Equations for ultimate soil resistance and yield 
displacement were proposed for each type of soil spring. The settlement analyses were 
carried out using a public-domain program subject to a governing criterion of maximum 
allowable stress.

1.3.3.2 Model of Selvadurai

Selvadurai (1985) proposed a three-dimensional model where elastic beam elements 
were used to model the pipe and boundary elements were used to model the soil. The 
strength of the model was in the soil representation, where the soil was modeled as a 
three-dimensional continuous elastic medium rather than a series of uncoupled soil 
springs. This would result in a more accurate modeling of the soil behavior. The trade 
off for the more sophisticated soil model is that the soil had to be discretized two- 
dimensionally on the exterior surface as well as its interface with the pipe. This would 
result in a larger scale system, hence limiting the application of the model in practice.
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1.3.3.3 Model in PIPLIN-III

The program PIPLIN-III (SSD, 1989) has been on the market for almost two decades 
and is widely used by the pipeline industry. The theoretical background of the model 
used in PIPLIN-in is described in a paper by Row et al. (1983). The two-dimensional 
model uses elastic-plastic Euler-Bernoulli beam elements using Mroz theory of plasticity 
(1967) capable of modeling cyclic loading. The model does not account for ovalization 
or local buckling of the pipe. Thus the wrinkling strain, as an input to the program, is 
used as a limiting value to detect the onset of failure.

The soil is modeled by discrete nonlinear springs at the nodes between the pipe 
elements. The transverse spring consists of four components: nonlinear elastic soil 
spring, primary creep spring, and two creep dashpots to account for creep effects in soil. 
The transverse spring is capable of modeling the gap development between the soil and 
the pipeline under reverse loading and seasonal variation of uplift resistance. The 
longitudinal springs are nonlinear springs similar to the transverse springs except that 
their response does not depend on the direction of the axial movement of the pipe.

1.3.3.4 Model by Zhou and Murray

Zhou and Murray (1993) used a two-dimensional elastic-plastic beam element as 
described in Section 1.3.1. The soil surrounding the pipe was modeled by three types of 
soil springs: bearing, uplift, and longitudinal springs. These springs represent the soil 
loading above the pipe, the bearing support below the pipe, and the longitudinal friction 
along the pipe. Elastic-perfectly plastic force-deformation constitutive relationships were 
used to model the bearing, uplift, and longitudinal soil springs. The model was 
implemented in the program ABP. Using stiffness-property-deformation (SPD) relations, 
derived from post-buckling analyses of cylindrical shells could be implemented in the 
beam model in order to account for local buckling effects (Zhou and Murray, 1993 and 
1996).

The pipe response was found to be significantly influenced by local buckling, 
temperature differential, and the strength and stiffness of the uplift and bearing springs. 
The strength of longitudinal springs and the length of the settlement transition zone were 
determined to be relatively less influential on the pipe response. The rapid growth of 
localized deformation was found to be associated with the softening behavior of the pipe.
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1.3.4 Thermal Buckling Analysis of Pipelines

The main body of research on the thermal buckling of pipelines was fostered by a 
number of buckling incidents involving the operation of subsea pipelines in 1980's. In 
particular, the small-diameter pipelines on the bottom of the North Sea carrying hot 
untreated hydrocarbons from deep wells into adjacent facilities experienced several 
upheaval buckling failures (Nielsen et al., 1990). A submarine pipeline laid (without 
trenching) on the seabed normally undergoes lateral buckling (or snaking) as the fluid 
temperature rises in the pipeline (Miles and Calladine, 1999).

Thermal buckling is not limited to offshore pipelines. Many cases of upheaval 
buckling have been reported in North America including Alaska's Arctic Coastal Plain 
(Quimby and Fitzpatrick, 1996). In this case, poor restraint by thawed and saturated 
cover soil was a major contributor to the problem.

Some of the important numerical and experimental studies on the thermal buckling 
of pipelines are summarized in the following.

1.3.4.1 Study by Hobbs

Hobbs (1984) addressed both vertical (upheaval) and lateral (snaking) buckling 
responses of the pipeline to the rising temperature. The classical model for the buckling 
of continuously welded railroad tracks (Martinet, 1936 and Kerr, 1978) was adopted for 
the vertical mode of buckling. The governing differential equation for the buckled shape 
was derived for an infinitely long elastic beam-column resting on a rigid foundation under 
a lateral load equal to the self-weight. The model also assumed that the slopes were small 
and that the bending moment at the lift-off point was zero. The model accounted for the 
reduction in the compressive axial force because of the friction forces developing 
adjacent to the lift-off point as the ends of the buckled segment move in towards each 
other.

For the lateral mode of buckling, it was assumed that the initially perfect pipe would 
buckle into an indefinite number of half-waves. This assumption, partly based on some 
experimental observations, had the advantage of satisfying the lateral equilibrium. It was 
also assumed that the lateral frictional force is fully mobilized as the pipe buckles 
sideways on the foundation. The same differential equation as used for the vertical mode
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was used here with some change in the boundary conditions. Then the results of the 
works by Martinet (1936) and Kerr (1978) were presented for the first four modes of 
lateral buckling (Modes 1 to 4, where the number refers to the number of half-waves 
forming). Modes 2, 3, and 4 were concluded to be the most likely of all conceivable 
modes, with the initial imperfection determining which mode would develop in a 
particular case. Numerical examples showed that lateral modes are possible at smaller 
temperature change values than the vertical mode for realistic friction coefficients.

The equilibrium paths in terms of the temperature change vs. the buckle length and 
vs. the buckle amplitude were discussed. The initial out-of-straightness was shown to 
have a major effect on the temperature rise at which the pipe would actually buckle in 
reality. The buckling was shown to be a dynamic snap-through when the out-of­
straightness were small enough for the equilibrium path to have a minimum point. The 
temperature change corresponding to the minimum point was called the safe temperature 
change because regardless of the out-of-straightness value, the pipe would be unlikely to 
buckle below that value of temperature change.

The model has the following limitations:
■ Perfect elasticity of the pipe and small slopes were assumed. An elastic solution 

may lead to unconservative results.
■ The model does not apply to buried pipelines.
■ Only straight pipes were rigorously examined. The effect of out-of-straightness 

was not quantitatively determined.

1.3.4.2 Study by Hobbs and Liang

Hobbs and Liang (1989) extended the vertical and lateral buckling models by Hobbs 
(1984) for a semi-infinite line to cover a number of practical cases where a restricted 
length of line is subjected to temperature increase. The examples of such pipelines 
discussed include a line between a wellhead and another fixed point, and short exposed 
segments of pipeline between restraints provided by isolated "spot" rock dumping. The 
rock dumps were assumed to greatly increase the resistance to axial sliding, reflected by 
a large friction coefficient. The buckling models were established for both modes of 
buckling for three different combinations of end restraints: rigid (fixed) restraint at both 
ends, rock dump at both ends, and rigid restraint at one end and rock dump at the other 
end.
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Numerical examples showed that the use of discrete rock dumps or rigid restraints 
could increase the safe temperature change (as defined in the previous section) for both 
vertical and lateral buckling modes. In the case of lateral buckling, such restraints also 
reduced the bending stresses associated with a given temperature change greater than the 
safe temperature change.

1.3.4.3 Study by Ballet and Hobbs

Ballet and Hobbs (1989) expanded the vertical buckling model by Hobbs (1984) for 
a pipeline encountering a prop imperfection on the otherwise flat seabed. Both symmetric 
and nonsymmetric buckling were considered. For the symmetric case, the post-buckling 
upheaval curve, though depending on the prop height, was found to be asymptotic to the 
upheaval curve for the perfect (straight) pipe at large values of buckle length. It was 
shown that both upheaval and minimum temperature change values would increase with 
weight, justifying gravel covering operations.

The nonsymmetric buckling analysis was prompted by the remarkable sharpness of 
the cusp in the symmetric characteristic curve at upheaval, and the well-known 
asymmetry found in the buckling of shallow arches under a central load. Many possible 
asymmetric buckle positions for a given pipe resulted in a broad scatter band mostly 
under the symmetric upheaval case. This was considered to cast a serious doubt on the 
stability of the symmetric curve. However, the pre-upheaval parts of the asymmetric and 
symmetric responses were found close together.

1.3.4.4 Study by Ju and Kyriakides

Ju and Kyriakides (1988) studied the thermal vertical buckling of offshore pipelines 
by modeling the pipeline as a long heavy beam resting on a rigid foundation. They first 
summarized the results of pervious studies on upheaval buckling phenomenon as 
described in Section 5.2.

In the upheaval buckling formulation, the foundation could have one of two types of 
a symmetric imperfection: point imperfection and fully contacting imperfection. The 
friction between the pipe and the soil was modeled as Coulomb friction. Both elastic and 
elastic-plastic pipe material were considered in the study.
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In the case of small fully contacting imperfection, the temperature change vs. 
deformation response was found to be characterized by the following temperature change 
values:

■ The temperature change (ATu) corresponding to the first uplift
■ The limit (critical) temperature change (ATc) beyond which the pipe is unstable
■ The locally minimum temperature change (ATm) occurring after the critical 

temperature

The first two (ATu and ATc) were found to be controlled by the amplitude, 
wavelength, and shape of the imperfection. These temperature change values was found 
to be dramatically increasing as the initial imperfection decreases in size. However, they 
were found to be relatively insensitive to frictional effects. In contrast, ATm was found to 
be relatively unaffected as imperfection size decreases. For a large enough imperfection 
size, the response would monotonically increase following the initial uplift, with a severe 
reduction in resistance to deformation.

The pipe material nonlinearity caused earlier development of the limit temperature 
(ATc) and lowered the post-buckling response, in general. It was observed that ATc was 
reached soon after the yield.

In the case of point imperfection, ATu and ATc were found to coincide.

1.3.4.5 Study by Raoof and Maschner

Raoof and Maschner (1993 and 1994) started a study on the vertical buckling of 
heated offshore pipelines by performing a testing program on 7-m long, 16-mm diameter, 
copper/nickel pipes with a wall thickness of 1.05 mm. These unburied pipe, laid on a flat 
rigid bed, had a point prop imperfection in the middle with heights ranging from 2 to 
15.7 mm. Both gradual and rapid heating were used in the process of heating the pipes.

In gradual heating tests, the buckle had a tendency to seek symmetry both in the pre 
and post upheaval states. However, in cases where the large deformations during an 
asymmetric dynamic buckling (or snap) resulted in the plastification of the buckle apex, 
the tendency to achieve symmetry was significantly reduced. The asymmetry of the 
dynamic buckle greatly affected the form of the first static buckle after the snap.
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According to the terminology used by the authors, the portion of the pipe between 
the lift-off point nearer to the flow inlet and the apex is called Half-wave A, and the 
portion between the lift-off point farther from the flow inlet and the apex is called Half­
wave B. In the dynamic buckle, Half-wave A was always longer than Half-wave B. This 
was due to the temperature gradient, as Half-wave A, being closer to the hot fluid source, 
experienced higher temperatures than Half-wave B. Then to seek symmetry, the static 
buckle would move toward Half-wave B as the temperature was increased further.

In gradual heating tests, the pre-upheaval buckle forms were greatly affected by one 
of the half-waves reducing in length more rapidly right from the initial conditions. This 
resulted in an asymmetric buckle with respect to the prop position, also asymmetric in 
overall form. This movement restricted the development of constrained curvature in the 
pre-upheaval regime, resulting in longer wave lengths and earlier uplift temperatures off 
the prop. Therefore, a large amount of apex travel before upheaval was associated with a 
low uplift temperature off the prop. This led to less severe snaps and smaller dynamic 
buckles than those occurring in similar gradual heating tests. For the majority of the rapid 
tests, the dynamic buckle generated at the snap had a longer Half-wave B with the apex 
moving towards Half-wave A. This was not observed in any of the gradual tests. On 
average, rapid tests showed somewhat lower upheaval temperatures than the gradual tests.

The authors also developed a closed form solution to compare the test results with 
the theory. They used an approach similar to Hobbs and Liang (1989) to modify the 
infinite line formulations of Ballet and Hobbs (1992) to cater for the limited length of the 
test specimens. The theoretical curve for the temperature rise vs. the prop height was 
shown to be fitting the test data points as an average trend-line.

1.3.4.6 Study by Klever et al.

Klever et al. (1990) developed a finite element model for analyzing upheaval 
buckling response of submarine pipelines. They considered the classical design of 
protective covers to be over-conservative. The authors also criticize the more recent 
models that take into account realistic imperfections and the actual, nonlinear response of 
the cover. However, they considered these models unsuitable for fitness-for-purpose 
assessments of actual cases because these models consider only idealized, symmetric 
foundation imperfections. Therefore, they developed a computer model that accounts for 
all the relevant nonlinear parameters such as elastic-plastic material behavior, axial
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friction and sand/clay/rock cover uplift resistance. Moreover, both idealized 
imperfections and arbitrary foundation profiles could be modeled.

The two-dimensional hybrid beam element they implemented in the model is 
described in Section 1.3.1. The far-field condition, as an end boundary condition 
simulating infinitely long continuation of the pipeline, was implemented in the 
formulation. This would avoid having to use very long models in the analysis. They used 
an arc-length technique for iterative solution of the equilibrium equations.

Through numerical examples, it was demonstrated that the "effective weight" 
approach for modeling the uplift force results in unconservative results, and hence it is 
unreliable. Thus, it was concluded that the it is essential to use realistic, nonlinear uplift 
resistance behavior of the soil cover.

A major limitation for the model and the resulting computer programs UPBUCK and 
PLUS-ONE (Andrew Palmer and Associates, 1993) is that their application is confined to 
offshore pipelines. Thus, the model cannot be applied to onshore pipelines, for which 
many cases of upheaval buckling have been encountered.

1.4 LAYOUT OF THE THESIS

The remainder of this report consists of six Chapters. The major subjects and scope 
of each of the following chapters are summarized as follows.

Chapter 2 contains the formulation of the two-dimensional, elastic-plastic, 
isoparametric C1 pipe beam element capable of modeling large displacements and finite 
strains based on an updated Lagrangian formulation . The load and stiffness 
contributions of internal pressure were rigorously derived and implemented in the model. 
Special issues for the element such as moment loading are discussed.

Chapter 3 describes the elastic-plastic material model developed for the finite 
element formulation. The material model utilizes the von Mises yield criterion, normality 
flow rule, and a mixed strain-hardening rule. The resulting constitutive relationships are 
converted into the constitutive relationships required for the pipeline-beam element in an 
updated Lagrangian formulation.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 describes the pipeline-soil interaction model developed for the finite 
element formulation. This includes the nonlinear constitutive relationships required to 
model the bearing, uplift, transverse and longitudinal soil springs. The model is verified 
using an example and comparison of the results to those of PIPLIN.

Chapter 5 describes the thermal buckling formulation implemented in the finite 
element model. The thermal formulation is verified through three examples comparing 
the finite element results with theoretical and/or experimental counterparts.

Chapter 6 presents three case studies to demonstrate the application of thermal 
analysis. The first case study is an example of a parametric study, whereby the magnitude 
of initial imperfection is the variant. The second and third case studies stem from the 
investigations carried out on actual pipelines having undergone thermal buckling. The 
pipelines investigated in the second and third case studies are onshore and offshore 
pipelines, respectively.

Chapter 7 summarizes the results of this research project and discusses the areas for 
future developments.
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CHAPTER 2. FORMULATION OF C1 PIPELINE-BEAM ELEMENT

2.1 INTRODUCTION

This chapter contains the finite element formulation developed in this study. A new 
two-dimensional, isoparametric C1 beam element is presented that is capable of modeling 
large displacements and finite strains. The element uses a piecewise linear elastic-plastic 
material model, which is presented in Chapter 3. In order to apply this element to 
pipeline analysis, it has been equipped with features such as soil springs and internal 
pressure loading. The pipe-soil interaction model is described in Chapter 4.

This work is an evolution from the element developed by Zhou and Murray (1993) at 
the University of Alberta. The subparametric C1 element by Zhou and Murray (1993) 
showed poor performance in regards to the smoothness of the axial force variation, and to 
a lesser degree, the moment variation along the pipe. The undesired oscillations in the 
axial force and moment diagrams would normally appear around the peak regions for 
each variable (for example see Section 4.5). This is believed to be because the 
subparametric element uses a quadratic interpolation for the axial displacement vs. a 
fifth-order interpolation for transverse displacement. As a result, very fine meshes (i.e., 
short elements) are required for a successful analysis. This makes the use of the element 
computationally expensive.

The reason a C1 element was chosen over a C° element is that a C° beam element is 
normally used to model a beam for which shear deformations need to be accounted for. 
However the C1 beam element in this study is dedicated to pipelines, which are flexible 
line structures for which axial and flexural deformations are dominant. Also, where shear 
deformations can be ignored, a C1 beam element, using higher orders of interpolation, is 
expected to perform better than a C° element.

The subsequent sections describe the following: the fundamental assumptions in the 
new formulation; the element degrees of freedom and interpolation functions; the strain- 
displacement relations; the virtual work equation and its discretization; and, the load and 
stiffness contributions of internal pressure.
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2.2 THE BASIC PROBLEM

In the development to follow, the equations describing the motion of the body of a 
finite deformable pipeline are derived in a stationary Cartesian coordinate system. It is 
assumed that the pipe can experience large displacements, large rotations, large strains, 
and a nonlinear constitutive response. The goal is to evaluate the equilibrium 
configurations of the pipe at discrete time points 0, At, 2At, 3At, ... , where At is an 
increment in time. To develop a solution strategy, it is assumed that the solutions for the 
static and kinematic variables for all time steps from time 0 to time t, inclusive, have been 
obtained. Then the solution procedure for the next equilibrium configuration 
corresponding to time t + At is applied repetitively until the solution converges.

The solution requires that all particles of the pipe body be followed in their motion, 
from the original to the final configuration of the body. This means that a Lagrangian (or 
material) formulation needs to be adopted. A Lagrangian formulation stands in contrast 
to an Eulerian formulation, where the motion of material through a stationary control 
volume is considered. This makes the Eulerian formulation suitable for the analysis of 
fluid mechanics problems. However, for the analysis of solids and structures, a 
Lagrangian formulation represents a more natural and efficient approach than does an 
Eulerian formulation. Hence, a Lagrangian analysis approach is adopted in this study.

In the Lagrangian incremental analysis approach, the equilibrium of the pipe body at 
time t + At can be expressed using the principle of virtual work. This principle can be 
stated as follows: for any kinematically admissible virtual deformation field, the external 
virtual work must equal the internal virtual work. Using tensor notation, the principle of 
virtual work for the equilibrium of the body at time t + At requires that (Bathe, 1996)

2.3 VIRTUAL WORK EQUATION

f  t+Atf B g u _ d ,+Aty  + f  t+Atf s g u S d ,+Ats  (2J )
J l+Alv 1 J  t+Alsr 1 1

where

t+Al Oy = Cartesian components of the Cauchy stress tensor (force per unit areas in 

the deformed geometry)
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5 e = -t+A t c ij 2
95u: 98u:

1 -+- 3
a ,+A,x ; a ,+A,X;

= strain tensor corresponding to virtual displacements
d “ x jJ /

5Uj —components of virtual displacement vector imposed on configuration at time 
t + At, a function of t+AtXj,  j = 1,2,3

,+At Xj = Cartesian coordinates of material point at time t + At 
t+At V = volume at time t + At

t+A t =  C0rnp0nents 0f externally applied forces per unit volume at time t + At

t+AtfS _ components of externally applied surface traction per unit surface area at 

time t + At
,+AtSf = surface at time t + At on which external tractions are applied

5u^=8uj evaluated on the surface t+AtSf (the 5uj components are zero on 

t+A(Su, where displacements are prescribed)

In Eq. (2.1), the left-hand side is the internal virtual work and the right-hand side is the 
external virtual work. Following Bathe (1996), in the above equation as well as in the 
rest of this manuscript, the left superscript refers to configuration in which the quantity is 
evaluated; and the left subscript refers to the configuration with respect to which the 
quantity is evaluated.

The difficulty in the general application of Eq. (2.1) is that the configuration at the 
time t + At is unknown. This is in contrast with linear analysis where it is assumed that 
the displacements are infinitesimal so that original configuration can be used in Eq. (2.1). 
To overcome this difficulty in nonlinear analysis, second Piola-Kirchhoff stresses and 
Green-Lagrange strains, which can be evaluated with respect to a configuration prior to 
the current one, are used. The choice of the prior configuration has led to two Lagrangian 
incremental formulations of nonlinear problems. These are total Lagrangian (TL) and 
updated Lagrangian (UL) formulations (Bathe, 1996). In TL formulation, all static and 
kinematic variables are referred to the initial configuration at time 0. The UL formulation 
is based on the same procedures as used in the TL formulation, however, in the solution 
all static and kinematic variables are referred to the last calculated configuration.

Both the TL and UL formulations can handle large displacements, large rotations, 
and large strains. Thus, the only advantage of using one formulation rather than the other 
lies in the greater numerical efficiency it can provide. In general, the incremental strains 
in the TL formulation contain an initial displacement effect that leads to a more complex
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strain-displacement matrix than in the UL formulation (Bathe, 1996). Therefore, the UL 
formulation is deemed more convenient, and hence, adopted in this study. In the context 
of a UL formulation, the virtual work equation becomes (Bathe, 1996)

1 , ,+A,f B 5u; d t+A,V + (2 .2)

where

,+Aj Sjj = Cartesian components of the second Piola-Kirchhoff stress tensor with 

respect to the configuration at time t

Note that the right-hand side of Eq. (2.2) is evaluated based on the most recent 
configuration during the equilibrium iterations. Thus, at the beginning of the iterations, 
the configuration at time t, and thereafter, the most recent configuration at time t + At is 
used for evaluating the right-hand side of Eq. (2.2).

In the following equations of this chapter, variables without a left superscript signify 
the increment of that variable from the configuration at time t to time t + At.

Considering the following relationship for stresses

= Green-Lagrange strain increment tensor

corresponding to the virtual displacement increments with respect to the 
configuration at time t.

(2.3)

and the following relationships for strains

(2.4c)

(2.4a)

(2.4b)

_1
t f i i j  _ 2  1 t ^ k . j (2.4d)

the virtual work equation of Eq. (2.2) can be rewritten as
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where 5 Wext, the external virtual work at time t + At, equals the right-hand side of 

Eq. (2.1).

For the finite element formulation, a linearized version of the virtual work equation 
is required. Using approximations tSij=,Cyr̂  ,6^ (where tC |p are the elastic-plastic

constitutive coefficients derived in Chapter 3) and 6t =6t e^, Eq. (2.5) is linearized as

The virtual work equation expressed in Eq. (2.6) is the basis for the nonlinear finite 
element formulation developed in this investigation.

The isoparametric pipe beam element is developed based on the following
mathematical and physical assumptions:
(1) Euler-Bernoulli assumption: all cross-sections perpendicular to the pipe axis before 

the deformation, remain planar, undistorted, and perpendicular to the deformed pipe 
axis. This assumptions has the following implications:
(a) Shear deformations, and hence, shear strains and stresses are ignored. This is 

justified because pipelines are flexible line structures where axial and flexural 
deformations are dominant. Thus they fit into the category of thin beams.

(b) Any distortion of the pipe cross-section is ignored. Therefore ovalization and 
local shell buckling are not accounted for. The local shell effects are outside of 
the scope of this study. Future studies need to be carried out for the inclusion of 
these effects.

(2) The radial stresses are insignificant, and hence, are ignored. This is because for a
typical pipeline the pipe wall thickness is much smaller than the pipe diameter.

(3) The pipe material yields according to the von Mises criterion. After yielding, plastic
flow occurs according to the normality rule of the theory of plasticity.

(4) In the elastic-plastic material model, the strain-hardening of the material is 
represented by a mixed hardening formulation. The ratio between isotropic and 
kinematic hardening can be appropriately chosen and used in the analysis.

J , r®  e 5 e d V +t ljrs t c r s u t c i j u  v ~ a ^ e y d V  (2.6)

2.4 FUNDAMENTAL ASSUMPTIONS
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(5) The residual stresses due to pipe manufacturing procedure and transverse girth welds 
are not taken into account in this investigation.

(6) The soil support is modeled hy distributed elastic-plastic soil springs. This, in the 
case of lateral springs, corresponds to an elastic-plastic Winkler foundation. Thus, 
the surrounding soil can be divided into infinitesimal slices, where the interaction of 
each slice with the pipe is represented by soil springs. The Winkler’s hypothesis 
implies that the interaction between the hypothetical soil slices can be ignored. This 
assumption is generalized herein to apply to the longitudinal springs. Therefore, the 
longitudinal springs are also assumed to be independent of each other (i.e., 
decoupled). The Winkler’s hypothesis might introduce some inaccuracy since the 
interaction between slices can sometimes be important. However, given the low 
accuracy of the available soil properties in practice, this assumption is appropriate.

(7) In the scope of this study, it is assumed that the internal pressure, if any, is applied to 
the initial pipe configuration prior to any other loading. Moreover, it is assumed that 
during and at the end of pressurization, the pipe remains elastic.

2.5 ELEMENT DOF’S AND SHAPE FUNCTIONS

The global and local coordinate systems for the two-dimensional isoparametric 
curved pipe beam element are shown in Fig. 2.1. The s-axis of the local coordinate 
system passes through the centroidal axis of the cross-section. The local h-axis remains 
always normal to the s-axis. As shown in Fig. 2.1, the x-y plane defines the plane of 
bending deformation. The element nodes and degrees of freedom are also shown in Fig. 
2.1. The non-dimensional longitudinal ordinate, r, varies from -1 at Node 1 to 1 at Node 
3. At Node 2, r has a value of 0 regardless of the exact position of the node. Thus, the 
middle node does not have to be exactly at the midspan of the element.

There are four degrees of freedom per node. These are u;,
f  A  ^du
dS0u A

, Vj, and dv
ds0

V u A

for Node i (i = 1, 2, 3), where Uj and v; are nodal displacements along the global x and y- 
axes, respectively. Here so is the arc-length along the element in the initial 
configuration1.

1 See Section 2.13 for a more detailed description of the derivative DOFs.
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Notations u1 and v1 (i = 1, 2, , 6) are used to represent the nodal degrees of
freedom as follows:

(2.7a) 

(2.7b)

(2.7c) 

(2.7d)

(2.7e)

(2.7f)

(2.8a) 

(2.8b) 

(2.8c)

(2.8d) 

(2.8e) 

(2-8f)

U = U i

U2 =  U2

u 3 =  U3

4
( ad u

U =
d s 0 . 

^  u A

s r d u  ^u  =

l d s » l

6 d u
U =

a O 1̂̂3
—

V =  V) 

V2 =  V2

V = v3

v4 =
{  J \dv

ds

dv

0 A 
\

v6 =

ds

dv

0 / 2  

\

ds
a

Similarly, notations x' and y’ (i = 1, 2, ... , 6) are used to represent the nodal 
coordinates corresponding to the degrees of freedom:

X =  X] 

X2 =  X2

x 3 =  x 3

x4 = dx
dsr

dx
dsn

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)
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(2.90

y =y i  

y2 = y2 

y3 = y3

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.100

Hermitian shape functions, which provide C1 continuity across element boundaries, 
are used to interpolate the displacements u and v and the coordinates x and y of any given 
point along the element as a function of its position, represented by the non-dimensional 
coordinate r. In order to derive these shape functions, a generic variable, z, is introduced 
that can stand for any of the variables x, y, u, and v. The value of z at an arbitrary 
coordinate r along an element is expressed as

Where the Hermitian shape functions N j(r) (i = 1,2, ... , 6) are to be determined. Since 
there are six constraints involved here associated with the value of z and its derivative at 
the three nodes, a fifth order polynomial is used to evaluate z(r), with six unknown 
coefficients to be found:

z(r) = a5 r5+ a 4 r4+ a3 r3+ a2 r2+aj r + a0 (2 .12)

The six constraint equations can be expressed as 

z t = z(—1) = -a  5 + a4 -  a3 + a2 -  a] + a0

z2 =z(0) = a0

z3 = z (-l)  = a5 + a 4 + a3 + a 2 +aj + a0

(2.13b)

(2.13c)

(2.13a)

= Zj = z '(-l) = 5a5 - 4 a 4 +3a3 - 2 a 2 +a, (2.13d)
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Hence, the coefficients a* (i = 1 ,2 ,... , 6) are obtained as 

3 1
a 5 = ^ ( zi - z3) + ̂ ( zi + z3) + z2 (2.14a)

a4 = - | ( z ,  + z3) + ̂ -(-zJ + z'3) + z2 (2.14b)

a3 =-^(-z, + z3) —i( z | + z 3) - 2 z 2 (2.14c)

a2 = z ,+ z 3 - 2 z 2 + -^(z{-z3) (2.14d)

a ,= z 2 (2.14e)

ao = z 2 (2.14f)

The Hermitian shape functions Nj(r) (i = 1, 2, ... , 6) are obtained by substituting the 
coefficients a; (i = 1, 2, ... ,6 )  from Eqs. (2.14) into Eq. (2.12) and corresponding the 
resulting equation to Eq. (2.11). This yields the shape functions as

N ,(r )= 4 r5- 4 r 4 - 4 r 3+ r2 (2.15a)
4 2 4

N2(r) = r4 - 2 r 2 +1 (2.15b)

N3(r) = - | r 5 - I r 4 + | r 3 + r2 (2.15c)
4 2 4

N4(r) = -^(r5- r 4 - r 3+ r2) (2.15d)

N5(r) = r5- 2 r 3+ r (2.15e)

N6(r) = i-(r5+ r4 - r 3- r 2) (2.15f)

These equations are plotted in Fig. 2.2 for the range of -1  < r < 1. Equations (2.15) can 
be rewritten as

N,(r) = | r 2 ( l - r ) 21 r + ^  | (2.16a)
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N2(r) — (l — r2)

N3(r) = ™ r 2 (l + r)2 ( r - ^ )

N4( r ) = i r 2 ( l - r ) 2 (H-r)
4

N s W ^ r ^ - r 2)?

N6(r) = —j r 2(l + r)2( l - r )  
4

(2.16b)

(2.16c)

(2.16d)

(2.16e) 

(2.16f)

Before the shape functions are applied to the degrees of freedom, it is noted that the

derivatives in the DOFs are with respect to so (e.g., u =
ds0V u A

), whereas in the

derivation of the Hermitian shape functions, the derivatives are with respect to r. Thus, to
/ dsn ^

(i = 1, 2, 3) are introduced at the element nodes.reconcile the two, the derivatives
dr\  A

The chain rule results in 
/  , \  f  , \dz

dr
dz dso
dsn 11 dr V 0  3  v  /■

(i = 1,2, 3) (2.17)

Hence, Eq. (2.11) can be rewritten as 

z(r) = N, (r) z, + N2 (r) z2 + N3 (r) z3 + N4 (r) 

ds,

f  A  \  (  Adsn dz

Vdr 71 ds0V u  A
+ N5(r) ds0

dr ds
0 A

+ N6(r)
dr

(2.18)
Therefore, the last three shape functions (i.e., N4, N5, and Np) can be combined with the

corresponding dsp
dr } * *

give the interpolation functions for the DOFs adopted in this

work. Thus, the final form of the interpolation functions, h;(r) (i = 1, 2, ... ,6 ), can be 
written as (not to be confused with the local coordinate h, which, in contrast, does not 
bear any right subscripts in this work)

h,(r) = N1(r) = | r 2 ( l - r ) 2 ^ r + | )  

h2(r) = N2(r) = ( l - r 2)

(2.19a)

(2.19b)
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h3(r) = N3(r) = - | r 2 (l + r)2 ( r - | )

h4(r) = N4(r) dsn 1 1

A

h5(r) = N5(r)
ds
dr h\  A

= r ( l - r  2J ds

v dr n

h6(r) = N6(r)

(2.19c)

(2.19d)

(2.19e)

(2.19f)

Hence, z(r) can finally be expressed as

(2.20)z = ^ h i(r)z l
i= l

Since z is a generic variable representing x, y, u, and v, Eq. (2.20) is used to express these 
variable as

6
u = ^ h i(r)u1

i= l

v = 2 h i(r)vi
i=l

x = ^ h i(r)xi
i=l

y = i h , W y i

(2.21a) 

(2.21b) 

(2.21c) 

(2.2 Id)
i= i

2.6 STRESS AND STRAIN COMPONENTS IN VIRTUAL WORK 
EQUATION

It is important to first establish what components of strain need to be worked out for 
the formulation. As a result of the first two assumptions mentioned in Section 2.4, the 
only stress components that need to be considered are the longitudinal (i.e., axial) and 
hoop stresses. The first assumption also implies that the only strain component that can 
be computed based on the kinematic assumptions is the longitudinal strain. However, the 
hoop strain is, in general, nonzero because even due to longitudinal action only, the 
Poisson effect results in a change in the hoop strain. Therefore, hoop as well as 
longitudinal stress and strain must be considered for the internal virtual work.
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According to the seventh assumption of Section 2.4, the internal pressure, and hence 
the hoop stress, remain constant throughout the analysis. It is shown below that the 
contribution of hoop stress and strain to the internal virtual work equals the contribution 
of internal pressure and radial displacement of the pipe wall to the external virtual work. 
This holds true for a varying internal pressure as well. However, the following 
demonstration is carried out for constant internal pressure.

Figure 2.3 shows an infinitesimal element of pipe shell with a length of dx and
subtending an angle d0. The pipe is assumed to have an internal radius of R* and a wall
thickness of t. The hoop stress due to an internal pressure value of p is

a e = ^ i  (2 .2 2 )

The virtual hoop strain can be related to the virtual variation in the internal radius as
5vR

5ee =— L (2.23)
Ki

Assuming a small —  ratio, the internal virtual work due to the hoop stress and
Ri

strain for the element can be written as

d8 W^nt = a 9 6 e0 t Rj d6  dx (2.24)

which can be simplified using Eqs. (2.22) and (2.23) as

d8 W‘nt = P 8 Ri Rj d0 dx (2.25)

The external virtual work due to the internal pressure and radial displacement of pipe 
wall for the element can be written as

d8 Weext = P 8 Rj Rj d0 dx (2.26)

Thus, the contribution of hoop stress and strain in internal virtual work equals the 
contribution of internal pressure and radial displacement of pipe wall in the external 
virtual work. This implies that the hoop effects are decoupled from the longitudinal 
effects in the virtual work equation. Therefore the hoop strain and the radial 
displacement contributions can be dropped from the internal and external virtual work, 
respectively, leaving only the longitudinal effects. As a result, only the longitudinal stress
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and strain need to be considered in the virtual work equation of this finite element 
formulation.

2.7 STRAIN-DISPLACEMENT RELATIONSHIPS

For this section and the following sections of this chapter, the following notation is 
used: The variables without a left superscript signify the increment of that variable from 
the configuration at time t to time t + At. Quantities with left superscripts are the total 
values at the configuration time specified by the superscript.

Figure 2.4 shows the pipe configuration at a general time t. The global coordinate 
system is represented by the x and y axes. For a generic point of the pipe body, shown by 
P in the figure, there is a pipe cross-section perpendicular to the pipe axis. The center of 
the cross-section is indicated by A in Fig. 2.4. The local element coordinate system 
denoted by h and s has already been described in Section 2.5. For each material point, 
such as Point P in Fig. 2.3, a material coordinate system is defined with axes originating 
from that point and parallel to the local axes h and s. These axes, denoted by x and y in

Fig. 2.4, are used to express the longitudinal stress and strain quantities at the material 
point.

From Fig. 2.4, the coordinates of Point P in the global coordinates system, ' X and 
1Y , can be expressed in terms of the coordinates of point A in the global system, ' x and 
‘ y , and the h coordinate of Point P in the local element system as

‘X ^ x -h s in 1© (2.27a)

* Y=ty + hcos‘0 (2.27b)

Where * 0 is the inclination angle of the cross-section as shown in Fig. 2.4.

Thus, the displacements of Point P in the global coordinate system, 1U and 1V , 
become

‘U = tX -°X = tx - ox-h(sin ,0-sin°0)=  ,u -h (sin ,0-sin°0) (2.28a)

‘V = ‘Y—°Y = *y-°y + h(cost0 -co so0)= ‘v + h(cos‘0 -co so0) (2.28b)

Where * u and 1 v are the displacements of Point A in the global coordinate system.
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The material point displacements, ‘ U and 1V , need to be expressed in terms of the 
nodal displacements 'u 1 and lv '. Substituting for 'u  and 'v  from Eqs. (2.21a) and 
(2 .2 1 ) yields

'U  = 2 hi(r) tui -h(sin ,e -s in °e)
i=l

6

I
i=]

lV = 2 h i( r )  V  +h(cos10 -cos°e)

(2.29a)

(2.29b)

Thus, the displacement increments, U and V, become
6

u  =t+Al u  - 1 u  = ^  h, (r) uj -  h (sin1+At e -  sin ‘ e)
i=l

6

2
i=l

V =,+At V - ,V = X hi(r)v i +h (cos,+A‘ 0 -  cos' e)

(2.30a)

(2.30b)

The challenge now is to express the sin and cos terms in Eqs. (2.30) in terms of the
d‘x

increments of the nodal displacements u 1 and v1. This is done through the —— (=cos‘0)

d'y .
and —-(= sin  0 ) terms as follows: 

d*s

d s

cos‘0 :

d*x 
d’x _ dr 
d‘s d‘s 

dr

d*x
dr V

' a ' a2 d x
dr v /

/  ,t x2 d y
drv y

(2.31a)

dV
sin.0 = i ^ = A = . 

d s  d s
dr

dV
dr V

r d*xY (d ' y f  V ‘x '2+,y
drv dr

n (2.31b)

where x' and y' are the derivatives of x and y with respect to r, respectively. In general, 
the prime superscript signifies a derivative with respect to r for any given variable for the 
rest of this chapter unless otherwise is specified. Using Eq. (2.31a), the cos terms of 
Eq. (2.30b) can be expressed as
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cos,+A,0 -c o s '0  =

From there,

cos,+Al0 -co s ' 0  =

Hence,

cos,+At0 -co s, 0 -

d ,+Atx d'x ,+A,x' V
d'*“ s d's , p W Y

1 x'

^ x ' + x f + (’ y '+ y'J  V '^ '+ 'y ' 2

V + x ' V

where
2 t / / , /-»t / f . '2  , '2x x + 2  y y + x +y

(2.32)

(2.33)

(2.34)

(2.35)

Assuming small enough increments, ——-----   < 1. Thus, Binomial expansion can
x +'y

be applied to the term 1

1 +
W / 2

, ' + 'x'2+'y'2
V J /

in Eq. (2.34):

cost+At0 -co s ‘ 0  = *x'+x'

V’x ' V y ' 2
1 - \ + -

3a
2 ( , x / 2 + ' y , 2 ) " 8 ( t - , ' 2  . t . , / 2

V

x'+vJj.  V ' x '2+ , y'2
(2.36)

where only the first three terms of the Binomial have been maintained. This is because 
the higher order terms lead to cubic and higher order incremental terms, which do not 
play any role in the linearized equation of virtual work.

Defining * p = —— = ,. * ,=■, Eq. (2.36) becomes
d^s ^ V V y ' 2

dr

cos t+At
0 -cos*0 = lp x '— ^ -( ‘x '+ x /)a+ — *p5 *x'a2 

2 8

Keeping up to quadratic incremental terms, Eq. (2.37) reduces to

cos,+At0 -co s , 0 = *Cj x '+  *c2 y'+  lc3 x ' 2 + *c4 y/2+ *c5 x y '

where

(2.37)

(2.38)
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'c l='p ( ] - 'p2 V 2)

«c2 = - 'p 3 V y '

C3*" -  |  V  !x '( l - 'p 2 'x '2)

* t _ 3  t /p3 'x '( l - 3  ‘p2 ‘y/2)

'c 5 - ' P 3 y ( i - 3 'p 2 v 2)

Similarly, it can be shown that

sint+At0 -s in t 0  = ‘s, x '+  ‘s2 y '+  ts3 x ' 2 + ‘s4 y ' 2 + *s5 x y '

where

*s, = - ‘ P 3 v  y

>- p (i- ' p 2 V 2)

is3 *p 3 ‘/ M y  v 2;

-  3 ‘~3 ' " ' ( l - ' p 2 'y'2)s4 = - -  p y r p  y

*s5 = - * P 3 v ( i - 3 ' P 2 y 2;

(2.39a)

(2.39b)

(2.39c)

(2.39d)

(2.39e)

(2.40)

(2.41a)

(2.41b)

(2.41c)

(2.4 Id) 

(2.4 le)

Substituting the sin and cos terms from Eqs. (2.38) and (2.40) into Eqs. (2.30) yields 
the displacement increments for the material point P as

U = ] T h i ( r )  *u‘ - h ( * S j  x '+  *s2 y '+  *s3 x ' 2 + ‘s4 y ' 2 + ls5 x y ') (2.42a)
i=l

6

2
i=l

Noting that

V = ̂ h i ( r )  *v'+h(*c, x '+  ‘c2 y '+  ‘c3 x ' 2 + ‘c4 y,2+ *c5 xy ') (2.42b)

6

e '= t+At x x' =(,+At x ' - 0 x') -(* x ' - 0 x /)=t+At u /- t u' = u' = h ■ (r) u '
i=l

(2.43a)
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y — y y =( y —y ) ~■( y y )= v V = v — >  h;(r)v ' (2.43b)
6

S'
i=l

The displacement increments for the material point P can finally be written, by 
substituting Eqs. (2.43) into Eqs. (2.42), as

U = ^ h i(r)u i - h
i=l

‘ S 1 I X  U i +  ‘ S 2 S h i y i +  ‘ S 3 S h i u i
i=l

+  S>

i=l

\ 2  /
Vi=l /

+ 's

(2.44a)

V = ^ h i(r)v i +h
i=l

X  I X U' + X  I X  V'+  X  I X  U‘
i=l i=l

/ /  

\ 2  3

v i=l ,

X h: v1
V v i=l

+  C, S h J u 1 X h! v'
i=l i=l

(2.44b)

Here U and V are the displacement increments in the global coordinate system. They 
need to be converted into the material coordinate system (denoted by axes x and y in

Fig. 2.4). This conversion is carried out through a rotation transformation:

i;h « (2.45)

where U and V are the displacement increments in the material coordinate system and 
[' t J is the rotation matrix:

M =
cos1© sin1© 

-s in 1© cos1©
(2.46)

And the sin and cos terms can be expressed as

,Q d(x cos 0  =
VA t ^  t f

- p  X
d*s V W y ' 2

sin1© ^ ^ . . .  >y/ = » p y
d s  tJ 'x +xy'2

(2.47a)

(2.47b)

Hence, the rotation matrix becomes

['T p
t /  t fx y
t / t /-  y x

(2.48)
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As concluded in Section 2.6, the only strain component required for the formulation 
is the longitudinal or axial strain. The Green-Lagrange strain at the generic material 
point, P, with respect to the configuration at time t can be expressed as

1

where

Hence,

, u ,  = 30  ^ = , o sI ,X *\t~ *“\t * »Sd x d s

V -= 3 V = 3 V = Vt .x ~\t * *sa x  d s

(2.49)

(2.50a)

(2.50b)

(2.51)

Note that in taking the derivatives ,U S and ,VS using Eq. (2.45), the sin‘0 and 

cos'0 terms are treated as constants. This is because for any given point, the axes x and 
y at the configuration time t remain constant. Hence, Eq. (2.45) yields

.U,s
,V ,

(2.52)

In order to work out the derivatives of Eq. (2.52), the chain rule is applied:

3U

u  liLl_=*p u
‘ ’s 9 's ^ s  J ' x V y ' 2 ’f

a ‘r
And similarly,

tXs= tP tXr

Substituting for tU s and tV s in Eq. (2.52) from Eqs. (2.53) yields

(2.53a)

(2.53b)

:S;W'4,v:)
Substituting for [* TJ from Eq. (2.48) gives

(2.54)

. 0 / t _ 2 ' V V *

. t Y . .

•= P
. - V ‘x'

«U ,r '

«Xr
(2.55)
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Substituting for tU s and tV s from Eq. (2.55) into Eq. (2.51) yields

,E „ = 'p 2 ('x' ,U V y' ,V ') 4 'p 4 [ ( 'x ' ,U V y- , \ ' j  + ( - ' /  ,U'+'x' ,V 'J] (2.56) 

where the alternate notations of tU'=tU r and tV'=tV r have been used.

The longitudinal strain, tEn , is expressed as a sum of linear and nonlinear (i.e., 

quadratic) components. In other words,

tE n = t^i]+ tTlii (2-57)

Where t en and tfjn are the linear and nonlinear strains, respectively from Eqs. (2.4c) 
and (2.4d). Substituting for t U and tV from Eqs. (2.44) into Eqs. (2.56) leads to the 

following expressions for the linear and nonlinear strains:
(  6 6 ^

* A
/  6 A

,en = 'p 2 ' x ' I X  u V y ' £ h |  v 1

i=l  i=l

+ h
,Al X h : u '+ ,A2 £ h ' v i +

i=l  i=l

'A 8 X hi u, + * A9 E h i v'
i=l i=l

(2.58)
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till]
y (  6 Y

i=l

X h 'u *  + £ h ' v j

V

'Bc
2

X

‘B,

i=l

V  t B  (  6 Y

i=l

+'A 14

X h;-ui 5 X ui

v i=l y

^ (  6 
k-'B

i=l

S h > '  i t h ' V

i=l 

(  6

i=l
6

I h > ‘ X h> '
i=l i=l

f'B ,

vi=i X i=i
( 6 . Y 6

X h y  Z h ' u '
i=l i=l

t R  /  6  Y  * R  f  6 Y  ’ R  f  6Rin V> , / i Du  X~< , / i D <’ 10

' B /  6

X hi u‘
i=l

S h 'v '

(  6 Y
'11

v i=l J
I h ' v 1 + - ^  5 > f u ‘

\ 2

+
i=l

1=1

’B12
v i=l \ i= ]

6

2 » '  5 X v ‘

’B13 I X  «* X hru-
i=l i=l

+‘B

i=l 

(  6

i=l

14

lB
(  6 Y  6

15 I X  Y ^ h f v 1

vi=i x i=1

> ( 6 
f ’B'16

/

X h ; v  
,=> A  i=i
6 Y  6

I X v ’ I X u ‘
i=l (2.59)

Where Aj and Bj are defined as follows. 
' A , = y ( - v  w ' c . )

'A2='p2 ( - V  'sj+'y' ’c2)

'A, =2 'p2 ’sj+’y' 'c3)

'A4 = 2 ' p 2 ( - ' x ' ,s4+,y' *c4)

'A5='p2 ( - V  ' s 5 + V  *c5)

'A6='p2 (’y' •s,+>x' -c.)

(2.60a)

(2.60b)

(2.60c)

(2.60d)

(2.60e)

(2.60f)
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, A7 =’p2 (ty/ 's 2 +,x/ lc2) (2.60g)

‘A g ^ p 2 ( - V ‘s i + y  *C;) (2.60h)

, A9 =tp2 (-‘x ' 's jV y ' V2) (2 .6 Qi)

' A ^ P 2 (‘/ ‘s J + V 'c O  (2.60j)

‘A ^ 'p 2 (‘y 'V 2 + V 'c 2) (2.60k)

‘ A12=lp2 (-‘x' V3+ y  V 3 ) (2.601)

, A13=tp2 ( - V  V4+ y  ‘0 4 ) (2.60m)

1 Ai4=,p2 ( - V  Vj+y V5) (2 .6 0 n)

,B1=,A3 + lp2 'x' ‘A, (2.61a)

^ 2 = ^ 4 + *p2 ' y ' *A2 (2.61b)

*63=^5+ 'p2 'x' *A2 (2.61c)

‘6 4 = ^ 5 + lp2 *y' 'Aj (2.6Id)

,B5=t A,2 (2.61e)

, B6 =tA2 2 (2.61f)

% = %  *A2 (2.61g)

‘B8 = 2[‘A12+,p2 ( V  ‘A g - y  *A10)J (2.61h)

*B9 =2[tA13+,p2 ( 'y ' lA 9+lx ‘An )J (2.61i)

tBio=,Ag2+‘A102 (2.6 lj)

*6 ]]=* A92+*An 2 (2.61k)

Bi2 = Ag A9+ A10 Aj, (2.611)
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* B ,3=1 A, ‘A g (2.61m)

tB]4=,A2 'A 9 (2.61n)

'B I5= 'A 2 'Ag (2.61o)

,B16=iA, *A9 (2.61p)

In order to express Eqs. (2.58) and (2.59) in a matrix form, the following vectors are 
introduced

h 2 1*3 h 4 h5 h6 0 0 0 0 0 °> (2.62a)

<».> = <0 0 0 0 0 0 h, h 2 h 3 h4 h 5 h6> (2.62b)

h 2 h'3 h; h'5 h'6 0 0 0 0 0 °) (2.62c)

( h ; > = ( o 0 0 0 o o h; h'2 h'3 K h#5 h6) (2.62d)

(H u>=(hr h 2 ha h; h' h« 0 0 0 0 0 °) (2.62e)

(H ' M ° 0 0 0 0 0 h[ K h3 h; hs h » (2.62f)

and the vector of nodal displacement increments for the element is defined as

(u) = ̂ u' u2 u3 u4 u5 u6 v1 v2 v3 v4 v5 v6  ̂ (2.63)

In Matrix expressions, bold characters represent matrices and vectors, while plain 
characters represent their components. Moreover, the notations { }, < >, and [ ] represent 
a column vector, a row vector, and a matrix, respectively.

Equations (2.58) and (2.59) can be written in a matrix form as

,e„ = { 'B l)W = (u){‘B'-} (2.64)

. f l n - t o t B * * }  (2.65)

Where

( 'b l )= 'p2 (v { H ;,)+ y < H 'v)} th  ( 'a , ( h ; ) + 'a 2( h ; ) + 'a 8 ( h ; ) + 'a 9 <h;>) (2 .6 6 )
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)*
)+

h
(2.67)

['BNL]= ( 'p 2 +h'Bg + h2 'B l0 XH'uXH'„)+('p2 +h'B 9 + h 2 'B„){H'vX h ;) +

(h,A l4 + h 2 'B l2 )({H 'jH 'I > + {H'I ](H'u))H 

(h*B, + h 2 'b I3 )({h '„X h:)+{h;)(h '„»h 

(h-B2 + h 2 'b I4 )((h ;](h ;)+ { h ;X h ;))h  

(h'BJ + h2 'b ,5 )({h '„X h;)+ {h ;X h;))+

(h'B4 + h 2 'b ,6 )({h '„X h;>+ {h;X h;»+

(h2 'B.,){H;XH:>+(h2 ‘b 6 X h ;x h ;> +

(h2 'b 7 ) ( k x h : > + { h ; x h ; ) )

Since, in the virtual work equation, and [*BNL J are integrated over the volume of

the element, they need to be sorted out in terms of the local coordinate h:

where

and

(•B i-)= y  ( v < H ; ) + y ( H ; > )

( 'B S -y  a , ( h ; ) + 'a 2 {h'v>+'As ( H '>+'A, <H'V>

['BNLJ= l'B r1 J+h l* B f J+h2 I 'B f-J

where

I 'B f - p p 2 ({h ;,X h;)+  { h ;X h ;»

[ 'B f ] = h

'b 8 {h' Xh'„>+ 'b ,{ h ;X h ; ) + 'a ,4 ({h;,X h;)+{h'>X h;,»+ 

‘b, ( K X h O + K X h D V 'b ,  ({h'vX h ;)+ { h ;x h ;) )+

•b 3 ({ h '„ x h ;)+ { h ',x h '„ » - 'b 4 ({ h ;x h ')+ { h '0 x h ; »

' ' , b ,0 { h 'X h :) + 'b „ { h ;X h ;) + 'b , 2 ({h '„X h;>+ {h;X h;))+ ' 

' b,3 ({ H 'X h ;> + { h ;X h ;» - 'b ,4 ({ h ;X h ;)+ { h ;X h 'v))+ 

'b „  ({ H iX H ^ + K X H ^ V B ,, ({h'vX h ;)+ { h ;X h ;» +  

'b 3 K X H ;) + ( h 2 'b 6 X h ;x h ;) + 'b 7 ( { h 'X h ;)+ { h ;x h ') )

(2 .68)

(2.69a)

(2.69b)

(2.70)

(2.71a)

(2.71b)

(2.71c)
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The above equations will be used in derivation of the element stiffness matrix.

2.8 FINITE ELEMENT EXPANSION OF VIRTUAL WORK

There are several components involved in the equation of virtual work that need to 
be expressed in matrix form in order to establish the equilibrium equations. All of the 
three integrals in Eq. (2.6) pertain to the internal virtual work. The matrix form of these 
integrals are derived in Section 2.8.1 using the strain-displacement relations developed in 
Section 2.7.

t+At
The external virtual work, represented by o Wext in Eq. (2.6), includes the virtual

work done by all of the loads and soil springs. The work done by the soil springs, internal 
pressure, and distributed loads is derived in the following subsections. The thermal load 
and the associated virtual work component will be discussed at length in Chapter 5.

2.8.1 Finite Element Expansion of Internal Virtual Work

The internal virtual work expressed in Eq. (2.6) consists of three integrals. These are

load vector. Here the integrals are taken over the volume that the body of the whole pipe 
model occupies at time t.

As concluded in Section 2.6, only the longitudinal stress and strain need to be 
considered in the virtual work equation, and hence, in this finite element formulation. 
Thus, the integrals of Eqs. (2.72) can be simplified to

(2.72a)

(2.72b)

where integrals I] and h  contribute to the stiffness matrix and integral I3 contributes to the

(2.73a)

(2.73b)
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I = f '°n
J 'v

8 te,, d V (2.73c)

where, as the notations indicate, the stress and strain measures in Eqs. (2.73) are in the 
material coordinate system. The sole elastic-plastic constitutive coefficient, t CEP,, will

be shown as ,CEPfrom here on for simplicity. The procedure of calculating this 

coefficient is described in Chapter 3.

Substituting for t en in Eqs. (2.73a) and (2.73c) using Eqs. (2.64) and (2.68) yields 

Ii and I3 as follows

where

! .=x <4J('d, [%  w . k W j I ' s j K '
e V e

I3 =̂ {8")f J('F, {'B|-}f'F2

['S,]={'B^}(tBl')

t a M ' B ^ ' B ^ + l ' B ^ ' B ; )  

[ 'S s R b ^ 'b S ; }

‘D,= f
J ' A

'D2 = f  t<
J ' A

‘D3 = f  «<
J  'A

'f) = J t^ll d i
J  ‘A  

^2  = j t^ll
J  'A

{«}

CEpd A

. CEP h d A

,CEP h2 d ‘A

(2.74)

(2.75)

hd  A

(2.76a)

(2.76b)

(2.76c)

(2.77a)

(2.77b)

(2.77c)

(2.78a)

(2.78b)
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Substituting for (T)n in Eq. (2.73b) using Eqs. (2.65) and (2.70) yields It as

where

(2.80)
J  lA

The procedures for obtaining the longitudinal stress, to n , and the constitutive 

coefficient, ,CEP, in the integrals expressed by Eqs. (2.77), (2.78), and (2.80), are

described in the next chapter. These integrals are calculated using a number of Newton- 
Cotes integration points over the cross-sections that correspond to the Gauss integration 
points along the pipeline-beam element. The number of the equally-distanced integration 
points around the cross-section can be specified by the user of the program ABP. Ten to 
Twenty sampling points are recommended for one half of the cross-section.

2.8.2 Virtual Work Done by Soil Springs

The pipe-soil interaction and the constitutive relations for soil springs are described, 
in detail, in Chapter 4. The final action of the soil springs on the pipe, however, is 
considered here for the purpose of obtaining the stiffness and load contributions of the 
soil springs.

As Fig. 2.5 shows, the soil springs are considered to be oriented in the local 
coordinate system as distributed (or continuous) entities along the element. There are 
three types of springs modeling the reaction from soil surrounding the pipeline. 
Transverse support from the soil beneath and above the pipe are modeled by bearing and 
uplift springs, respectively (see Fig. 2.5). The interface frictional reaction along the 
pipeline is modeled using longitudinal springs.

The resultant of the transverse spring forces (i.e., the bearing and uplift springs) at 
time t + At, noted by t+AtFt, and the longitudinal spring force at time t + At, noted by I+AtFL, 
can be expressed as

,+a,Ft ='Ft—*kT v (2.81a)
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' ^ F ^ - ' k L U (2.81b)

where
1 Ft  = the resultant of the transverse spring forces at time t 
‘ Fl  = the longitudinal spring force at time t 
* kT =the resultant transverse spring stiffness at time t 
' kL =the longitudinal spring stiffness at time t 

Note that because of the distributed nature of the springs, the above force and stiffness 
values (for any given point along the axis of the pipeline) are measured per unit length of 
the pipe.

The external virtual work done by the soil springs can be expressed as 

8W“ | = £  f  ("* Ft  5 v +  '«' Fl  Su ) d ' s (2.82)

The reason for the virtual work done by the soil springs being external is that the 
reference body for the virtual work equation has been assumed to be the pipe body. The 
same transformation matrix as used in Eq. (2.45) can be used to obtain u and v , the 
displacement increments of the arbitrary point A in Fig. 2.4 in the local coordinate 
system. Hence,

w-[,Tlfcrp
t+Atr? j  t+At

t /  t /x y
t / t '-  y x

i u i
Ivl

(2.83)

Substituting for by Ft and Fl from Eq. (2.81), substituting for u and v from 
Eq. (2.83) into Eq. (2.82), and incorporating vectors of Eqs. (2.62) yield:

s w “ i = y

J ,p{8u)(-'y'{Hu}f’x'{Hl })[lFl - 'k T'p(-'y7H11}+’x’(H1))[u}]d'
* Le

f  * p(Su)(* x'{Hu j+'y'jH v })[‘ Fl -* kL 1 p(' x,(Hu}+,y'(Hv s

s +

(2.84)
This leads to the following stiffness matrix and load vector contributions:

/  /• \
‘s +

8 W s,iffsoil = X < 8 ")
f  'p2 ,kL(,x 'K V y '{ H ,J ( ,x'<H.)+,y'<H,))d,!

J 'h.

[u] (2.85)
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ftwloado v v soil -5>)
f  ' p 'F r p y 'K V ^ H j J d '  

J'Le

f  ' p 'F j 'x '^ V y ' i H j J d ' s

s +

(2.86)

Note that a sign change has been applied to the stiffness contribution of Eq. (2.85). This 
is because the stiffness contribution of Eq. (2.84) is considered to have moved to the left 
hand side of the virtual work equation.

2.8.3 Virtual Work Done by Internal Pressure

From the work carried out by Yoosef-Ghodsi et. al (1994), the effect of internal 
pressure on a bent pipe is a transverse distributed load in the direction from the intrados 
to the extrados of the pipe. This equivalent transverse load can be expressed as

qP=P0 <l> (2-87)

where <|> is the pipe curvature and P0 = TtRj2 p , in which R* is the pipe internal radius and 

p is the internal pressure.

Using a vector notation the virtual work done by the equivalent transverse load at 
time t+At can be written as

5Wext =v  T pres - P n
d’s2

d*s

j 2 ( t + At  - )

where, t+A,x=t+A,x i+ t+A,y j , fi = u i + v j ,  and - ■ V / .fin
d‘s

(2 .88)

8u signifies a dot product.

Here i and j are the base unit vectors for the global coordinate system in the x and y
^ 2  ( t + At

direction, respectively. The vector — k—-—- approximately matches the curvature vector
d s

^j2 (t+At —\
at time t+At, and hence, — — 1S almost perpendicular to the pipe axis at time t+At

^ 2  ( t + A t - )

(the reason  -—’ does not exactly equal the curvature vector at time t+At is that the
d s

derivative is taken with respect to s at time t rather than t+At). Therefore in Eq. (2.88),
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d2 (1+Alx)
d s

constitutes the equivalent lateral force, and because of the dot product,

\  \  
d's

only the projection of 8 u normal to the pipe axis plays a role.

Integration by parts yields Eq. (2.76) as 

SW- = -P0̂ [ ^ ( L , )  • 5a(Le) - ^ ( 0 )  • 6 0 (0 )]-^  . m

(2.89)

where 0 and Le represent the beginning and end of each element. Figure 2.6 shows the 
physical interpretation of the force components present in Eq. (2.89). It is noted that the

derivative — — - at any point along the pipe axis closely approximates the unit vector 
d s

tangent to the pipe axis at that point ( ,+A's = *s). Therefore all of the three forces shown 
in Fig. 2.6 are tangent to the pipe with a magnitude of P0. Thus only the projection of

8 u tangent to the pipe axis plays a role in Eq. (2.89). It is also noted that for any two
d(‘+A'x ) _consecutive elements, the term —̂ ^  8 u for the common node appears with opposite

d's
signs in the expressions for the two respective elements in Eq. (2.89). Hence for a single­
branch pipeline structure the first two terms on the right hand side of Eq. (2.89) are 
cancelled out except for the very ends of the model. Thus Eq. (2.89) becomes

8 W ext =  —P°  pres r 0 ^ ^ ( L ) - 8 u ( L ) - - ^ ^ ( 0 ) - 8 u(0 )l + Poy  [ f
d s  d s  J d s  d s

d's
y

(2.90)
where 0 and L represent the beginning and end of the model. 

Noting that t+A‘x=‘x + u , Eq. (2.90) can be rewritten as

8w- = - pl # L)+f <L)

\
• 8 u(L) -

i-----oato

) d s  d s\  7
d('x) dfl ^ d(8 u) t

tL I d 's d 's d 's
•d s

(2.91)

Equation (2.91) results in the following stiffness matrix and load vector contributions:
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8W,st if f _  p  
pres ~  0 ~ ( L )  -8 u (L )-^ -(0 )-  80(0)1- 

d s d s h i ! du d(8 u) t-------- —̂ i d 's
d 's d 's

(2.92)

x w load =  _ p
® pres r 0 ^ ( L ) - 8 u ( L ) - ^ - ^ ( 0 ) - 8 u(0 )l + P 0 V  f  ^ ) . ^ & ) d ' s  (2.93) 

d s d s J d 's d s

The first two terms of the expression for the stiffness contribution in Eq. (2.92), 
involving only the end nodes of the model, result in non-symmetricity of the stiffness 
matrix. Because the solution techniques for solving the equilibrium equations depend on 
the symmetricity of the stiffness matrix, the first two terms on the right hand side of 
Eq. (2.92) are neglected. This type of approximation is valid for an iterative solution 
scheme as employed herein, though it might delay the solution convergence to some 
degree. The stiffness contribution is, thus, taken to be

5 \ C = - P o U ,
du d(8 u) ,  —- d s
d 's d 's

(2.94)

Expanding the dot product of the integrand in Eq. (2.94) and applying the chain rule 
similar to that of Eq. (2.53a) result in the stiffness contribution as

S W p t?  = - P 0 ^ J ‘ p 2 ( t u >r8 , u  r+ t v r 8 t v r )  d ' s
* Lp

(2.95)

Using the vectors of Eqs. (2.62), Equation (2.95) can be expressed in a matrix form as

= -P 0 ^ ( 8 u ) f jv (K ) (H '„ )+ { H ;X H 'v) ) d 'S |u} (2.96)

Similarly, the load contribution in Eq. (2.92) can be expressed as 

8 Wp°ef = -Pq 1 P [(‘ x'(L) 8 u(L)+‘ y'(L) 8 v(L))- (* x/(0 )8 u(0 )+* y'(0 ) 8 v(0 ))J+

p0̂(8u)f JV ('x'KV’y'K}) d*s (2.97)

Note that according to Eq. (2.97), the end nodes of the model will have loads in the global 
x and y direction arising from the internal pressure. There is also a typical load vector for 
each element of the model, given by the integral in Eq. (2.97).
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2.8.4 Virtual Work Done by Distributed Loads

Overburden load and the pipe self-weight are the most common examples of 
distributed loads. However, a general distributed load, with components specified in the 
global x and y directions, is also considered herein.

It is assumed that the magnitude of the distributed load is given or evaluated at the 
three nodes of each element. In addition, the gravity is assumed to act in the global y 
direction. The total values of distributed load for a given point along an element at time t 
in the global x and y direction, noted by *qx and ' q y, respectively, are as follows:

9 x  9 x s

l q y-  q ys+tq f + , qhcost9

(2.98a)

(2.98b)

where

‘qxs = distributed load in the global x direction per unit of sloped length 

*qys = distributed load in the global y direction per unit of sloped length 

’ qf = gravity load per unit of sloped length (used for self weight)

‘q® = gravity load per unit of horizontal (global x) length (used for overburden load)

10 = slope angle as shown in Fig. 2.4. Note that cos' 0 = V

V W y ' 2
=’p V .

Having known the x and y components of total distributed load at the three nodes of 
each element, a quadratic interpolation is used to obtain the respective values at any point 
along the element. Hence,

‘qx( 0  =

, q y(r)=

9 x1 +  9x3 t

(  t „  . t
9yl  9y3 t

9x2

9y2

\

r 2 +
( t t \

9 x 3 -  9x1
2

V /

\

r 2 +

)

( t  t \
9y3 9yl

2
(  J

r +  9x2 r

r+  9 y2

(2.99a)

(2.99b)

where ’qxi and *qyi are the x and y components of total distributed load at Node i of the 

element (i = 1,2, 3).
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The external virtual work done by the distributed load at time t+At can be expressed
as

Using the vectors of Eqs. (2.62), Equation (2.100) can be expressed in a matrix form as

Note that in the iterative solution scheme, *qx and ’qy are used for t+A,qx and 

t+Atqy in the first iteration, respectively. From the second iteration onward, the latest 

values of ,+A,qx and t+A,qy are used based on the latest pipe configuration.

2.8.5 Finite Element Equilibrium Equations

Based on the derivations carried out in Sections 2.8.1 to 2.8.4, the virtual work 
equation expressed in Eq. (2.6) can be expanded using Eqs. (2.74), (2.75), (2.79), (2.85), 
(2.86), (2.96), (2.97), and (2.101). This results in

(2.100)

e

(2.101)
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(u}+

[u}+

x < 5 u ) l«}+

^ ( 6 u )  J (, D 1[‘S1]+,D 2[‘S2]+,D 3[‘S3])dt
e V Le /

^ 2 ( 8 u ) f  f  (*F, [tBj,L]+'F2[‘B f  1+^3 [‘B f  ])d‘
e V 'Le /

f  'P 2 ,kT(-'y'{H 0 }t-'x'{Hv})(-'y'(H„)+lx'{HI >)d, s +
*

f 'p2 ,kL('x'ftl„K'y'̂ ,}X,J1'(H«>+,y'<H.))<l,s
J '  Le

- P „ ^ ( 8 u)f J ^ ’p2 ({h;](H'„> + {h;XH'v)) d 's ju}=

f 'p'Ft (-'y'{H„]+'x'{H,})d
J> Le

f 'p 'F L(V{H„}t-'y'{Hv})d'S
‘Lc

- P o'p[('x'(L)6u(L)+,y'(L)8v(L))-('x'(0)5u(0)+,y'(O)5v(0))]+

P0^ < 8 u ) f j  lpJ(1x'{H'}f'y'{H'I})d's]+̂ {8«)fĵ  ('+4'qI{H0K%{H,})d'
(2 . 102)

The incremental finite element equilibrium equations are obtained by direct assembly 
procedure in the global coordinate system. The integrations along the length of the 
elements are carried out using Gauss quadrature. A minimum of five Gauss quadrature 
points are required for the element to prevent rank deficiency. However, a six-point 
Gauss integration is recommended.

2.9 SPECIAL ISSUES FOR C1 BEAM ELEMENT

Unlike traditional beam elements, the C1 beam element does not use rotation as a 
degree of freedom. This makes the application of concentrated moments and modeling of 
fixed supports (i.e., moment constraints) not as straight-forward as they are in the case of 
traditional beam elements. The following subsections address these two issues.
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2.9,1 Application of Concentrated Moment

It is not usual for a pipeline to be subjected to, and thus analyzed under, external 
moment loading. However, for the sake of completeness and noting that the element 
might be used for purposes other than pipeline analysis, this problem is discussed herein.

As Fig. 2.7 shows, a concentrated moment of M is considered to be applied at a node 
with an angle of inclination ' 0 corresponding to the configuration at time t. The objective

is to find the force components associated with the degrees of freedom - and at
ds0 ds0

the node. The two equations required to obtain the two force components are derived 
from the following two constraints:

a) Assuming there is an infinitesimal rotation increment of d0 at the node, the sum
of the work done by the two force components associated with the rotational

. du , dv , wcomponents o f   and   must equal Md0.
ds0 ds0

b) The sum of the work done by the two force components associated with the
- du , dvstretching components o f  and  must be zero.

ds0 ds0

™ j d 's , d 'x , d'yBy defining stretch at time t as A =  then, —-  and —-  can be written as
ds0 ds0 ds0

d'x d'x d 's d 'x t , t _ ,
 = — ------- = —— A = cos 0 A (2.103a)
ds0 d s ds0 d s

‘A = sin ' 0  'A (2.103b)d 'y _ d'y d 's _  d 'y t.
ds0 d 's ds0 d 's

It is assumed that the infinitesimal displacement increments occur within times t and t+dt.

The corresponding increment of the degrees of freedom and can be expressed
ds0 ds0

using Eqs. (2.103) as

■ = cos‘+d'0  t+d'A -cos ' 0  ' A = cos(' 0 + d0)(' A+ d A) -  cos ‘ 0 ‘A (2.104a)
du _ d'+d'x  d'x 
dsn dsn ds0 u a 0 u a 0 

t + d t , ,  J t ,

—  = - — ^ ~ ^  = sin‘+d ,0  ,+d'A -s in ' 0  'A = sin('0+d0)(‘A + dA)-sin ' 0  'A (2.104b) 
ds0 ds0 dsg
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Expanding the sin and cos terms in Eqs. (2.104) and neglecting quadratic and higher 
orders of infinitesimal terms result in 

du
ds0

= cos' 0  dX -sin ' 0  *Xd0  (2.105a)

- ^ -  = sin'0dA, + cost0 lXd0 (2.105b)
ds0

It is quite obvious that in Eqs. (2.105) the stretching components of the DOFs are the 
first term in each equation, containing the term dX, and the rotational components of the 
DOFs are the second term in each equation, containing the term d0 . Using these 
components, the constraints (a) and (b) of the previous page result in the following two 
equations, respectively:

Mu(-sin*0 ,Xd0) + M v(cos,0 'Xd0) = Md0 (2.106a)

Mu(cost0 d tX) + Mv(sin’0 d tX) = O (2.106b)

where Mu and Mv are the force components associated with the DOFs and
ds0 ds0

respectively. Equations (2.106) yield Mu and Mv as

,Mu = ~ s i n ' 0  (2.107a)
X

,M v =-^-cost0 (2.107b)
X

At the beginning of the analysis, °X = 1, and thus, Mu and M v become

°MU = -M  sin°0 (2.108a)

°Mv =Mcos°0 (2.108b)

In a small-deformation analysis, the values of Mu and M v, as given by Eqs. (2.108), 

can be maintained throughout the analysis.

2.9.2 Fixed Supports

Figure 2.8 shows a fixed support with an angle of inclination a  (i.e., the value of 0 at 
the support remaining constant throughout the analysis). Unlike traditional beam

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



elements, neither of the two rotational DOFs (i.e., -----  and — -) is zero at the node.
ds0 ds0

However, with d0 being zero at the support, Eqs. (2.105) reduce to

Hence,

du
cosadA (2.109a)

ds0

dv sinadA (2.109b)
ds0

du dv= cot a   (2 .1 1 0 a)
ds0 ds0

dv du s = ta n a   (2 .1 1 0 b)
ds0 ds0

Either of the Eqs. (2.110) can provide the constraint equation required for
eliminating one of the two rotational DOFs and maintaining the other one. For

Tt 3ka  = 0 or k , Eq. (2.110b) and for a  = —or — , Eq. (2.110a) should be used to avoid

numerical difficulties. For other values of a, either of the two equations is sufficient as 
the boundary constraint equation.

2.10 SOLUTION TECHNIQUES

Depending on the type of the main loading in an analysis, a particular solution 
technique is usually more appropriate than others. There are three main loading 
conditions considered in this study. These are:

a) applied loads
b) ground settlement
c) thermal loading

The ’ground settlement’ and ’thermal loading’ conditions are discussed in Chapters 4 
and 5, respectively.

The applied loads are defined as loading conditions where no settlement or advanced 
thermal loading are involved. In short, the loading is limited to fixed internal pressure, 
fixed temperature differential, and varying nodal and distributed loads. The nodal and
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distributed loads are varied in an incremental-iterative solution using an arc-length 
method. The arc-length solution technique adopted here is the scheme proposed by 
Bellini and Chulya (1987) and implemented by Zhou and Murray (1993). A description 
of the method is presented in the following subsections.

2.10.1 Incremental-Iterative Solution Procedure

A difficulty is nonlinear structural analysis is the dependence of the stiffness and 
internal forces on the displacements. A nonlinear finite element formulation generally 
ends up with the following set of equations

K u = P - Q  (2.111)

where K is the stiffness matrix, u is the nodal displacement vector, and P and Q are the 
external and the equilibrium force vectors, respectively. In a nonlinear analysis, K and Q 
depend on the displacements and stresses in the structure. When a structure reaches 
equilibrium, the difference between the equilibrating forces and the external loads 
vanishes.

Although it is possible to apply the entire external load in a single step, it is not 
appropriate in practical applications because iterative procedures usually do not lead to 
convergence for large load steps. In general, path-dependent material behavior requires 
small strain increments to ensure the accuracy of the prediction. Therefore, the total 
external load should be applied in a number of small loading steps (or increments). Such
a procedure is called an incremental procedure. Starting from an equilibrium
configuration at time t, an incremental displacement vector, Au, can be calculated by

*K Au = AP+*P-'Q (2.112)

where the total external load is comprised of *P, that is already present at the beginning 
of the load step and a load increment AP.

In an incremental solution procedure that is non-iterative, a significant drifting of the 
predicted path from the true equilibrium path may occur. This is fundamentally because 
the linearized equations that are solved in the solution procedure are only an 
approximation of the original nonlinear equilibrium equations. The linearized equations, 
such as Eqs. (2.112), are valid, strictly speaking, at the very beginning of the loading 
step. Consequently, the unbalanced loads at the end of each loading step will be carried

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



along in all subsequent loading steps. This implies that the error will likely be 
accumulated and cause a significant drift. This drift can be prevented or at least 
significantly reduced by performing equilibrium iterations within each loading step. The 
resulting solution procedure is called an incremental-iterative procedure.

There are many incremental-iterative solution procedures, each one being 
appropriate for a certain type of loading and analysis. Among these solution procedures 
are the Newton-Raphson procedures and control techniques such as displacement and arc- 
length control. The advantage of the arc-length control technique over the classical 
Newton-Raphson procedure that the arc-length method is capable of reaching limit loads, 
such as buckling loads, and tracing down the postbuckling equilibrium paths by 
decreasing the external load when necessary. The arc-length control method, which is the 
basis for the solution procedure for ’applied loads’, is presented in the following.

2.10.2 Arc-Length Control Method

One of the most robust procedures for nonlinear analysis of structures is known as 
arc-length control (Wempner, 1971, Riks, 1972, 1979, and Ramm, 1980). To describe 
the method, Equation (2.112) is considered as the starting point. Assuming that the 
solution, having converged at time t, is at iteration i+ 1  through the next load step, 
Equation (2.112) yields

AA,j+1 = a scalar load factor whose product with the reference load vector comprises 

the external load increment for the current load step (i.e., AP = AXj+jP );

The relationship between the load factor increment for the load step, AX^,, and the 
load factor correction in the j+ lst iteration, dXj+], can be written as

(2.113)

where
du j+1 = displacement correction for iteration j+ 1

K ■ = stiffness matrix for the pipe configuration at iteration j
Q j = equilibrating force vector for the pipe configuration at iteration j
A

P = a reference load vector

AXj+j -  AXj + dX^j (2.114)
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Similarly, the relationship between the displacement increment for the load step, 
AUj+), and the displacement correction in the j+ lsl iteration, du ^ ,, can be written as

Au J+, = Au j + du j+] (2.115)

The essence of the arc-length control is that the displacement correction is taken to 
be the sum of two separate contributions. The first part, denoted by duj+1, represents the

contribution of the external load components that are being incremented within this load 
step. This contribution is defined by

d u ^ K j - 'P  (2.116)

The second part is the response to the unbalanced forces, that is the difference between 
the sum of all external loads and equilibrating forces at the end of iteration j. Denoted by 
du]+j, this contribution can be expressed as

d u ^ K ^ f A ^ P + 'P - Q j )  (2.117)

From Eqs. (2.113), (2.116), and (2.117), it can be concluded that

duj+I = dX,j+] du]+1 +du£, (2.118)

In the arc-length control, the increment of the scalar load factor, AA, is considered as
an additional variable, which is determined by an additional equation called the
constraint equation. A very common constraint is that the Euclidean norm of the 
accumulated incremental displacement vector, A u^,, and the accumulate increment of
the load factor, AAj+1, in a load step remains constant during the load step. Hence,

Au£.i Auj+1 + AA,^+1 = Al2 (2.119)

where Al is a prescribed reference length. Substituting Eqs. (2.114), (2.115), and (2.118) 
into Eq. (2.119) and ignoring second order terms result in

AuJ du ̂  + AA,j dA, ,̂ = 0 (2.120)

This equation implies that the increment in iteration j+1 in the load-displacement 
space, ( du^ ,, dXj+j), is perpendicular to the accumulated increment up to iteration j,

(Auj, AXj). Substituting Eq. (2.118) into Eq. (2.120) yields dA,^ as
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Auj du]^ +A?ij
(2.121)

The form of equation expressed by Eq. (2.120) is called a linear constraint equation 
because of the linear relationship between the incremental load factor and the 
displacement increments due to the unbalanced forces. The quadratic constraint equation 
expressed by Eq. (2.119) is called a spherical constraint equation because it defines the 
iteration on a sphere in the load-displacement space and converges to the intersection of 
the sphere and the equilibrium path.

The spherical constraint equation can be generalized into a general quadratic 
equation as

displacement and load factor increments . When C, equals one, Eq. (2.122) defines the 
spherical constraint equation. When C, equals zero, the equation is referred to as a 
cylindrical constraint equation. For other values of C, , the equation becomes a 

ellipsoidal constraint equation.

Bellini and Chulya (1987) studied and compared these three forms of quadratic 
constraint equations, namely, the spherical, cylindrical, and ellipsoidal constraint 
equations. Based on six case studies including several benchmark problems, the 
cylindrical constraint equation was recommended for snap-through behavior. Moreover, 
it was concluded that for snap-back behavior and paths with very stiff loading and 
unloading, an ellipsoidal constraint equation would be more effective.

Arc-length methods might fail in cases that involve highly localized failure or 
bifurcation modes (de Borst, 1988) because the norm of the global displacement 
increment may not be sensitive enough to control highly localized displacement 
increments. To remedy this problem, the indirect displacement control technique was 
developed (de Borst, 1988). The basic idea of indirect displacement control is that the 
norm of displacement increment in the constraint equation is replaced by the norm of a 
weighted displacement increment. Thus, Eq. (2.122), for instance, changes to

Au J+1 Auj+1 +£AA.j+l = Al2 (2 .122)

where £ is a constant which allows different weights to be assigned to the values of

AuJ+1 W A u ^ - K A ^ A l 2 (2.123)
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where W is a weighting matrix. By assigning higher weight values to certain 
displacement components associated with the localized failure area, the norm of the 
weighted displacement increment will be more sensitive to selected localized failure or 
bifurcation modes. Because the failure or bifurcation modes are problem-dependent, the 
selection of the weight matrix W rests on the analyst’s understanding of the individual 
problem. As a result, the application of the indirect displacement control is limited.

2.10.3 Modified Arc-Length Method

The process of iteration with linear constraint equation, expressed by Eq. (2.120), is 
to find iteratively the intersection of a plane normal to the previous increment in the load- 
displacement space and the equilibrium path. If this intersection does not exist, the 
linearized arc-length control leads to divergence. In other cases, the size of the load step 
should be kept extremely small in order to achieve convergence. Therefore a better arc- 
length constraint equation is required to prevent the failure of the solution process 
associated with the linear constraint equation. The basic problem is that the linear 
constraint restricts only the direction of the subsequent displacement increments without 
limiting the magnitude of the accumulated displacement increment in the load step. This 
problem can be remedied by a quadratic arc-length equation.

The general form of quadratic arc-length constraint equation is defined by
Eq. (2.122). Substituting Eq. (2.118) into Eq. (2.122) results in a quadratic equation in
terms of the load factor increment, dA,^,, as (Zhou and Murray, 1993)

AdA2j+,+BdA.j+1+C = 0 (2.124)

where

A = du^ , 7  d u + £ (2.125a)

B = 2(duJ+1T du” j +AUjT du^, +£AA,j) (2.125b)

C = du"jT du” j +2AtijT du£, +AUjT AUj + £AA,2 -A12 (2.125c)

In order for Eq. (2.124) to have a real root the following condition has to be satisfied

B2 - 4  A C > 0 (2.126)
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Numerical examples indicate that the above condition cannot be satisfied when the 
contribution of the displacement increment from unbalanced forces, du]+, , is significantly

greater than the contribution from reference load, duj+,. To prevent the failure of the

solution process, a relaxation factor (5 is introduced into Eq. (2.118) as

Mathematically, the relaxation factor is used to satisfy the condition in Eq. (2.126). The 
physical interpretation of the relaxation factor, p, is that only a fraction of the unbalanced 
forces are considered in some of the iterations. In other words, an iterative procedure 
based on Eq. (2.127) is one where the unbalanced forces are applied partly. This usually 
increases the number of iterations, however, the stability of the iterative process can be 
improved. Substituting Eq. (2.127) into Eq. (2.122) gives

Only one of the two roots can be chosen as the load factor increment. The following 
criterion is utilized for this selection (Bellini and Chulya, 1987).

dX^, =(Xj if Auj (a 2 du]+1 +pdu5i.,)<Auj (a 1 du]+i+ p d u “ 1) (2.130a)

dXj+1 = a 2 if Auj (a 1 du‘+1 + pdu" 1)<A uj (a 2 du]+, + pdu£,) (2.130b)

The acceptable range for the relaxation factor P is determined by substituting A, B, 
and C, defined in Eqs. (2.128) into Eq. (2.126) and setting it equal to zero. This results in 
the following quadratic equation in terms of the relaxation factor p.

D p2 +E P + F = 0 (2.131)

du j+1 = dX, ,̂ du-+, + P du” , 0 < P < 1 (2.127)

B = 2(pduj+1T du” , + AujT du ‘+1 +£AXj)

C = p2du”h,T du” , +2 PAUjT du” , +AUjT AUj + £AA.2 -A l2 (2.128b)

(2.128a)

With a proper value for P, the real roots of Eq. (2.124) can be solved as

2 A
(2.129)

where
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E = 2 (AUjT du]+1)(duJ+1T du",) + 2 (duj+|T du",) 

- 2 (du]+1T du-^XAUj7  dujl_!) - 2 CAujT du£,
(2.132b)

F = (AUjT duj+, +^AXj) 2 -(du j+)T duj+, +0(AUjT AUj + £AA,2 -A12) (2.132c)

Equation (2.131) is guaranteed to have real roots because B2 - 4 A C > 0  is always 

satisfied. This can be proved as follows. Using Eq. (2.109), the second term in Eq. 
(2.132c) vanishes and F > 0  under all conditions. The first term in Eq. (2.132a) can be 
expressed as

Therefore, D is always a non-positive number. Consequently, the condition 
E2 -  4 D F > 0 is satisfied all the time. Thus, the real roots of Eq. (2.131) are

where (3, <0 and (32 ^ 0 . Since the condition in Eq. (2.126) is satisfied when the value 
of (3 is between these two roots, the acceptable range for (3 can be expressed as

It is very difficult to develop a universal method to choose a generally applicable 
value of reference arc-length, Al, because the optimum value depends on the response of 
the structure in its current state. Therefore, the reference arc-length, Al, should be 
adjusted as iteration proceeds to achieve maximum efficiency. The automatic adjustment 
proposed by Zhou and Murray (1993) is implemented in this work:

where Alo]d and Alnew are the arc length for the previous and current load step, 
respectively, Nopt is the optimal number of iterations (prescribed), and Nold is the

number of iterations for the previous load step.

(du]+1T du " , ) 2 =(duJ+,T duj+1)(du",T du",)cos2 6 (2.133)

where 0  is the angle between vectors du-+, and du",, and £ is a positive number.

2 E
(2.134)

where

0<B<Bvy _  p  _  p max

P max = m in ( l ,p 2)

max (2.135)

(2.136)

new (2.137)
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Note that a good initial value of the reference arc-length is hard to obtain for a new 
problem to be analyzed. Thus, there may be a situation where the iterative procedure 
converges very slowly, or does not converge within the specified maximum number of 
iterations. In these cases, the reference arc-length is reduced by a factor of 0.3 to 0.5, and 
the iterative procedure is restarted from the previous equilibrium configuration.

2.10.4 Loading Criterion

The loading criterion is particularly important for the predictive iteration (j = 0) in 
the loading step. At the beginning of the loading step, du” ,, AUj, and AX,j are zero and

In order to determine which root should be used, the criterion in Eqs. (2.130) cannot be 
utilized because the accumulated displacement increment in the load step is zero for the 
predictive iteration. The displacement increment for the predictive iteration can be 
expressed as

where AX,, is one of the two roots expressed by Eq. (2.138). The direction of the 

displacement increment depends on the loading criterion that is yet to be determined.

The loading criterion is established based on the fact that the main loading system, 
represented by the reference loads, always does positive work on the increments of the 
principal deformation pattern. The only exception to this rule is in a snap-back behavior, 
which can be distinguished from elastic unloading by checking the positive-definiteness 
of the tangent stiffness matrix. In general, the tangent stiffness matrix is positive-definite 
for elastic unloading, and is not positive-definite for a snap-back. The loading criterion is 
established such that the structure remains in a state of loading along the entire 
equilibrium path. This leads to the following loading criterion.

Eq. (2.129) gives

Al (2.138)

Au, = AX., du (2.139)

and (2.140a)

and (2.140b)
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A X v = a 2 if P T duJ<0 (2.140c)

where P is the reference load and NPE is the number of negative pivot elements in the 
diagonalized tangent stiffness matrix.

For iterations subsequent to the predictive (i.e., the first) iteration, the state of 
loading is ensured by the selection criterion expressed in Eqs. (2.130).

2.10.5 Convergence Criteria

Two convergence criteria are implemented to ensure that the solution is closely 
following the equilibrium path. These are the displacement and force criteria. In 
displacement criterion, the convergence of the iteration is measured by the ratio of the 
norm of the displacement increment at iteration j to the norm of the accumulated 
displacement increment up to iteration j. This can be expressed as

where qd is a specified displacement tolerance. A typical value of qd is about 0.001 in

the elastic ascending region, but can be relaxed somewhat in the region with significant 
nonlinearity and in the post-peak region.

The force convergence criterion adopted in this study can be expressed as 

||AU|| '
(2.142)

M l
where AU is the vector of unbalanced forces and £f is a specified force tolerance. The 
recommended value for £f is 0 .0 1 , but can be relaxed somewhat in the regions where 

solution has difficulty to converge.

2.11 DEVELOPMENT OF PROGRAM ABP

A computer program has been developed based on the finite element formulation of 
pipeline-beam element using the C1 beam element. This program, called ABP (Analysis 
of Buried Pipe), and was written in FORTRAN 90 language. This program has evolved 
from a program by the same name (ABP) developed by Zhou and Murray (1993).
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However, due to many limitations of the original program, such as its data structure, 
many subroutines have been rewritten and the language was upgraded from FORTRAN 
77 to FORTRAN 90. Moreover, the implementation of the formulations presented in this 
study required a substantial amount of code to be added to the program.

The program ABP can perform either as an stand-alone tool or as an analysis engine 
for the program ABPipe, which is an integrated analysis system with user-friendly 
preprocessor and postprocessor. The ABPipe program was developed at the University of 
Alberta and was partially sponsored by the pipeline industry.

The program ABP is capable of analyzing pipelines under applied loads, ground 
settlement, and thermal buckling analysis. Analysis under applied loads was described in 
this chapter. The ground settlement and thermal buckling analysis, as well as 
fundamental issues such as pipe-soil interaction and elastic-plastic material model, are 
discussed in the future chapters.

2.12 NUMERICAL EXAMPLES

In order to verify the implementation of the C1 beam element and to illustrate the 
performance of the arc-length control solution procedure, two numerical examples are 
presented in this section.

The elastic buckling of cantilever pipes is modeled in both examples. The pipes are 
subjected to a concentric axial load, which is applied in the analysis as a reference load. 
The examples are an approximation of the classical elastica problem, where an 
inextensible, flexible elastic bar is subjected to an axial load. The main difference 
between the finite-element models and the classical elastica is that in the finite-element 
models, the pipe beam is extensible. However, the axial stiffness of the pipes in the 
numerical examples is much greater than the bending stiffness of the pipes. Thus, except 
for the advanced stages of the load-deformation response, similar load-deformation 
characteristics are expected from the finite-element and classical solutions. Therefore, 
the responses from the two solutions can be compared together.

2.12.1 Example One

Figure 2.9 shows the layout of the pipe considered in this example. The pipe is 
324 mm in diameter, 6.35 mm in wall thickness and 1500 mm in length. The model
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consists of three 500-mm elements and seven nodes as shown in Fig. 2.9. The pipe is 
fixed at one end (i.e. all the DOFs constrained) and free at the other end, where the axial 
load is applied. The pipe is assumed to be elastic with an elastic modulus of
200,000 MPa. Since this is a buckling problem being analyzed by a finite-element 
procedure, an initial imperfection needs to be applied to the model. To that purpose, the 
pipe is assumed to have an out-of-straightness rising linearly from zero at the fixed end to 
0 .0 1  mm at the free end of the model.

Some of the analysis results are presented in Figs. 2.10, 2.11, and 2.12, where the 
analytical results are compared to those of the classical closed-form solution by 
Timoshenko (1936). Figures 2.10 and 2.11 show the load vs. the end axial displacement 
response and the load vs. the end transverse displacement response, respectively. Figure
2 .1 2  shows the deformed shape of the pipe obtained from the analysis for different values

P
of —  throughout the response. Here P is the axial load applied to the model and Pcr is

ĉr
the Euler buckling load given by 

7t2 E l
Pcr= — r -  (2.143)

4L

It should be noted that the pipe deformed shapes in Fig. 2.12 are generated by 
connecting the nodes with straight lines. Thus, unlike their representations in the figure, 
the actual deformed shapes are smooth.

As Figures 2.10 and 2.11 show, there is a good agreement between the two solutions, 
especially at the earlier stages of the response. However, at the later stages of the 
response, the two solutions start to separate somewhat. This is due to the fact that, later 
on in the finite-element solution, the axial deformation of the pipe becomes significant. 
Whereas, as mentioned above, the classical solution does not account for the axial 
deformation of the pipe.

2.12.2 Example Two

Example 2 has been devised with the motivation to investigate the effect of 
increasing the axial stiffness of the pipe relative to the bending stiffness. To that aim, 
while the pipe cross-section of Example 1 is a realistic one used in the industry, a 
hypothetical cross-section is assumed for this example. An outside diameter of 200 mm

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and thickness of 100 mm are assumed in Example 2. The only difference between the 
two examples is in cross-sectional geometry. Thus, Example 2 has the same layout and 
boundary conditions as those of Example 1

In the finite element formulation, the integration over the cross-section is performed 
as if the entire area of the cross-section is concentrated on the midline of the pipe cross- 
section. Therefore, the section properties as considered by the formulation, and hence, 
the computer program ABP, are as follows.

Where A is the cross-sectional area, Rm is the radius of the cross-section midline, I is the 
moment of inertia, and t is the pipe thickness.

In order to have a measure of the axial stiffness of the pipes relative to their bending 
stiffness, the following non-dimensional ratio is introduced.

This ratio has a value of 59.5 for Example 1 and a value of 600 for Example 2. 
Therefore, the objective of having a higher relative axial stiffness is met by the choice of 
the cross-section for Example 2.

The results for Example 2 are presented in Figs. 2.13, 2.14, and 2.15, where the
analytical results are compared to those of the classical closed-form solution. Figures
2.13 and 2.14 show the load vs. the end axial displacement response and the load vs. the
end transverse displacement response, respectively. Figure 2.15 shows the deformed

p
shape of the pipe obtained from the analysis for different values of —  throughout the

As Figures 2.13 and 2.14 show, there is a good agreement between the analytical and 
classical solutions throughout the response. This is in contrast to the response of 
Example 1 where, at the later stages of the response, the analytical solution departs from

A = 27tRmt = 27t(50)(100) 

I = 7tR^ t = rc(50)3(100) (2.144b)

(2.144a)

EA

(2.145)

response.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the classical solution. Thus, as expected, the increase in the relative axial stiffness, which 
brings the model closer to the assumption of inextensibility, results in better agreement 
with the classical elastica solution.

As Figure 2.12 and 2.15 indicate, the finite element solution is able to represent the
large deformation and large strain response of the pipe using a relatively coarse mesh.
The large bending deformation is especially noted for the first element (that attached to

p
the fixed support) at the —  value of 16.2 in Fig. 2.12 and 18.5 in Fig. 2.15. A

ĉr
significant stretching of the pipe is also evident for the deformed shape corresponding to

the —  value of 16.22 in Fig. 2.12.
PA cr

2.13 DESCRIPTION OF DERIVATIVE DEGREES OF FREEDOM

The derivative DOFs, and are functions of the rotation and stretch at a
ds0 ds0

given node. This is demonstrated in the following.

Using the chain rule and noting that tu=,x -°x , the derivative can be
dSr

expressed as

d*u _ d'u d's 
dsn d s dsn

d'x d°x 
d 's d 's

—  = (cos' 0 -  cos0 e ) ^  (2.146)
ds0 ds

d'vSimilarly, the derivative can be expressed as
ds0

d'v d'v d's
ds0 d 's ds0

^ _ ^ > ^ ( sinte - s i„ 0e ) ^  (2147)
d s d s jds0 ds0

It is evident from Eqs. (2.146) and (2.147) that the derivative DOFs,  an d  ,
ds0 ds0

d'sare each a function of the rotation, ' 0 , and the stretch,  (note that s0 = °s) ,  at a given
ds0

node. Furthermore, it can be seen that the choice of and as the derivative
d 's d 's
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DOFs would not have been viable because both and are functions of the
d 's  d 's

rotation only, and thus dependent.
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r = 0

Node 2
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Node 1

Fig. 2.1 Element Nodes and DOFs
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1 0 1

(a) Hermitian Shape Functions Ni, N2, and N3

0.3 1

-0.3 J

(b) Hermitian Shape Functions N4 , N5 , and N6 

Fig. 2.2 Fifth Order Hermitian Shape Functions
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dx

Center of Pipe Cross-Section

Fig. 2.3 An Infinitesimal Element of Pipe
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Point P: within pipe body
/ ✓

- f 1.'
Point A: on pipe axis

(a) Local Coordinate Axes (3D)

Pipe

Projection on x-y plane

Fig. 2.4 Pipe Geometry at Time t: Material point P vs. Axis point A
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1 Spring

Bearing
Spring

Node 1
Fig. 2.5 Distributed Soil Springs along Element

Po

Fig. 2.6 Force Components of Eq. (2.89) along Element

Fig. 2.7 Concentrated Moment Applied at a Node
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Fig. 2.8 Fixed Support with Angle of inclination a

1500 mm

(a) Initial Layout

(b) Deformed Shape

Fig. 2.9 Layout of Elastic Cantilever Pipe of Examples 1 & 2
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Fig. 2.10 Load vs. End Axial Displacement for Example 1
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Fig. 2.11 Load vs. End Transverse Displacement for Example 1
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Fig. 2.13 Load vs. End Axial Displacement for Example 2
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Fig. 2.14 Load vs. End Transverse Displacement for Example 2
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CHAPTER 3. CONSTITUTIVE RELATIONSHIPS FOR PIPE
MATERIAL

3.1 INTRODUCTION

This chapter describes the elastic-plastic material model developed for the finite 
element formulation. The plasticity formulation is presented after a discussion on the 
choices of stress and strain. The formulation utilizes the von Mises yield criterion which 
is widely used for steel. The material strain hardening is accounted for using a 
combination of isotropic and kinematic strain hardening. This chapter ends with a 
discussion on how the constitutive relationships fit into the updated Lagrangian 
formulation presented in the previous chapter.

3.2 THE CHOICE OF STRESS AND STRAIN MEASURES

The stress and strain measures employed in the elastic-plastic formulation must be 
work-conjugate. This means that their product can be used to evaluate the internal work 
in a given body. There are several work-conjugate pairs of stress and strain. The three 
most common pairs are the engineering stress and engineering strain, the 2nd Piola- 
Kirchhoff stress and Green-Lagrange strain, and Cauchy (true) stress and logarithmic 
(true) strain. As described in Sec. 2.3, the 2nd Piola-Kirchhoff stress and Green- 
Lagrange strain measures have been chosen in this study. Moreover, due to the choice of 
an updated Lagrangian formulation, the 2nd Piola-Kirchhoff stress and Green-Lagrange 
strain are measured with respect to the latest equilibrium configuration.

A formulation based on true stress and true strain is effective in large strain analysis 
because the stress and strain measures used are those that describe the material response 
in a natural way (Bathe 1982). True stress and logarithmic strain measures are commonly 
used for problems in metal plasticity. One motivation for this choice is that when true 
stress (force per current unit area) is plotted against logarithmic strain, the tension, 
compression, and torsion test results coincide closely with each other (Hibbit et al. 
1993a). Since Cauchy (true) stress and logarithmic (true) strain measures result in a 
material response which is independent of the mode of loading, they are the best choice 
for developing the constitutive relationships. Thus, the stress and strain measures used in 
the following section are true stress and strain measures.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 ELASTIC-PLASTIC FORMULATION

In the following subsections, first the fundamentals of the plasticity formulation are 
presented. Thereafter the necessary constitutive equations are derived and fine-tuned for 
the finite element formulation presented in this study.

Following the conclusion of Section 3.2, in the subsequent derivations, Gy and £y 

represent Cauchy (true) stress and logarithmic (true) strain, respectively.

3.3.1 Fundamentals of Elastic-Plastic Formulations

The fundamentals of elasto-plasticity formulation employed in this model, and 
discussed below, have been mostly adapted from the book by Chen and Han (1988). 
These include discussions on yield function, hardening rule, plastic potential and flow 
rule, and consistency condition.

3.3.1.1 Yield Function
The yield function determines the elastic limits of a material under a combined state 

of stress. The yield stress is, in general, a function of the state of stress, Gy, and can be

expressed as

f(G y,k) = 0 (3.1)

where k is a hardening parameter. The yield function can be represented geometrically as 
a surface in stress space. For a perfectly plastic material, the yield function remains 
unchanged. Thus, the parameter k in Eq. (3.1) is a constant, and the yield surface is hence 
fixed in the stress space. For a work-hardening material, however, the yield surface 
changes as elastic-plastic deformation occurs.

3.3.1.2 Hardening Rule

With the initial yield surface known, the work hardening rule defines its modification 
during the process of plastic flow. A number of hardening rules can be found in the 
literature. The most widely used are the isotropic hardening rule, the kinematic hardening 
rule, and a combination of both, the mixed hardening rule.

The isotropic hardening rule is based on the assumption that the initial yield surface 
expands uniformly without translation or distortion in the stress space as plastic
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deformation occurs. The size of the yield surface is governed by the value of the 
parameter k, which depends upon plastic strain history.

The kinematic hardening rules assume that, during the plastic flow, the loading
surface translates in stress space, maintaining the size, shape, and orientation of the initial
surface. This rule is implemented by keeping k constant and replacing the stress tenor, 
(Ty, in Eq. (3.1) with the reduced stress tensor, Ojj. Reduced stress components are

measured from the center of the yield surface:

where oĉ  are the coordinates of the yield surface center in the stress space, and they 

depend on the plastic strain history.

A combination of isotropic and kinematic hardening results in the more general
mixed hardening rule (Hodge, 1957). Here the yield surface undergoes a translation 
defined by a,j and a uniform expansion measured by k. This establishes a more general

work hardening, which contains the isotropic and kinematic hardening rules as its two 
bounds.

Detailed discussion on the contribution of the isotropic and kinematic strain 
hardening in the mixed hardening model is presented in Section 3.3.2. Further 
description of the kinematic hardening rule can be found in Section 3.3.3.

The kinematic and mixed-hardening rules are normally used for load reversal and 
cyclic loading conditions. In a monotonic loading condition, as is the main focus of this 
study, the isotropic hardening rule suffices. Thus, in all of the examples presented in this 
work, the isotropic hardening rule has been adopted.

3.3.1.3 Elastic and Plastic Strain Increment Tensors

A basic assumption for an elastic-plastic deformation is that the total strain 
increment tensor, dEy, consists of the sum of the elastic and plastic strain increment

tensors:

where d£y and dej? are the elastic and plastic strain increment tensors, respectively.

(3.2)

dejj = de-j + dejj (3.3)
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Hooke’s law is assumed to provide the necessary relationship between the 
incremental changes of stress and elastic strain; thus,

toy = Cyk] dekl (3.4)

where Cykl is the tensor of elastic moduli. Substituting for dek] from Eq. (3.3) gives

d a y  = Cijkl(dek]-d £ P ) (3.5)

This is one of the fundamental equations for developing the nonlinear constitutive 
relations to be discussed in Section 3.3.4.1.

3.3.1.4 Plastic Potential and Flow Rule

The flow rule is a kinematic assumption postulated for plastic deformation. It 
provides the components of the plastic strain increment tensor, deP, in the directions of a

gradient of a plastic potential function of the stresses, g ( G y ) .  The plastic flow equations

can be expressed as

d e j | = ^ c a  (3.6)
J day

where d/\. is a positive scalar factor of proportionality. Of great practical importance is 
the case where the yield function and the plastic potential functions coincide, that is, f = 
g. This implies

d e ? = ^  (3.7)

Consequently, the plastic flow develops along the normal to the yield surface. Equation 
(3.7) is called the associated flow rule and has been successfully used for metals (Chen 
and Han 1988). This is another fundamental equation to be used in formulating the 
nonlinear constitutive relations developed in Section 3.3.4.1.

3.3.1.5 Consistency Condition

The consistency condition requires the state of stress to remain on the yield surface 
during plastic flow. Thus, after a small elastic-plastic deformation, the yield condition 
expressed by Eq. (3.1) must still be satisfied. Hence,

f  ( G y  +  d e f y ,  k  +  d k )  =  f  ( G y ,  k )  +  d f  = 0 (3.8)
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This, in combination with Eq. (3.1), gives 

df = 0 (3.9)

The scalar dA, can be determined from this condition, as discussed in Section 3.3.4.1.

3.3.2 von Mises Yield Function

One of the most commonly used yield criteria in metal plasticity is the von Mises 
yield criterion. In the following subsections, the von Mises yield function is generalized 
for a mixed-hardening material. Subsequently, the plastic moduli are defined in 
connection with the von Mises yield function.

3.3.2.1 Generalization of Yield Function for Mixed Hardening

The von Mises yield criterion for an isotropic-hardening material can be expressed as

where Sy is the deviatoric stress, defined as

The hardening parameter, k, is generally defined as a function of either the effective
plastic strain or the plastic work. Bland (1956) showed that for any yield function that is
linear or quadratic (such as the von Mises yield function), using either the effective
plastic strain or the plastic work as the argument for k is mathematically equivalent.
Here, the effective plastic strain, which is the simpler choice, is adopted as k in the von 
Mises yield criterion. For a von Mises material, the effective strain, ep, is defined in

incremental form as

In a mixed hardening formulation, the plastic strain increment tensor is assumed to 
be the sum of isotropic and kinematic portions, denoted by de]]° and de|jin, respectively:

The isotropic plastic strain increment, de]]°, is associated with the expansion of the yield 

surface, whereas the kinematic plastic strain increment, d£yn, is associated with the

f(a ij, k ) = | s ijsij- k 2 =0 (3.10)

(3.12)

(3.13)
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translation of the yield surface. These two strain components can be expressed as (Chen 
and Han, 1988)

dejj0 = Mdejj (3.14)

dejf" =(l-M )deP (3.15)

in which M is the parameter of mixed hardening. It has the range 0 < M < 1.

For a mixed-hardening material, the generalized form of the von Mises yield 
function is defined as (Chen and Han, 1988)

f(o ij,k) = | s ijsij- P ( e p) = 0 (3.16)

where ŝ  is the reduced deviatoric stress, defined by

Sy = ^ - ^ 1* 85. (3.17)

and eD is the reduced effective strain, which is defined in incremental form as

dep = ^ | d e r <  (3.18)

From Eqs. (3.12), (3.14), and (3.18), the relationship between the effective strain and the 
reduced effective strain is obtained as

d£p = M d£p (3.19)

The hardening parameter for an isotropic-hardening material (i.e., k in Eq.(3.10)) is 
called the effective stress because it corresponds to the yield stress in a uniaxial tension 
test. For a von Mises material, the effective stress, o e, can be expressed as (Chen and 
Han, 1988)

° e = ^ 2 sijsij (3-20)

Similarly, for a mixed-hardening material, the reduced effective stress, a e, is used as the 
hardening parameter (i.e., k in Eq.(3.16)). The reduced effective stress for a von Mises 
material can be expressed as (Chen and Han, 1988)

f -a e = - J -SijSij (3-21)
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Substituting a e for k in Eq. (3.16) gives the von Mises yield condition for mixed 
hardening as

3.3.2.2 Plastic Moduli

The relationship between effective stress and effective strain, characterizing the 
hardening process of a material, is determined by the experimental uniaxial stress-strain 
relationship, which has the general form

where Hp(a e) is called the plastic modulus. For an isotropic-hardening material, the

plastic modulus is associated with the expansion of the yield surface. For a mixed- 
hardening material, however, it is the reduced plastic modulus defined by

that represents the expansion of the yield surface (Chen and Han, 1988). Nevertheless, 
note that the experimental relationship is always that expressed by Eq. (3.23). In a 
uniaxial test, d ae and dep are equal to da^ and def,, respectively. (Subscript 1

represents the longitudinal direction in the uniaxial test.) The values of the reduced 
effective stress and strain, however, depend on the choice of the mixed hardening 
parameter, M. Besides, the value of dae, which is equal to do) j, cannot be determined 
from the test results because the value of day  can be obtained only from the theory. 
(Note that day = daH -  day  according to Eq. (3.2).)

3.3.3 Kinematic Hardening Rule

There are two classical kinematic hardening rules that can be considered in the
formulation. They are the Prager and Ziegler kinematic hardening rules. The hardening 
rule in each case relates the increments in the coordinates of the yield surface center, dajj,

to the strain increments and the current states of stress and strain. Ziegler (1959) 
modified the Prager hardening rule to make it valid for subspaces. Moreover, the Ziegler

(3.22)

(3.23)

In the incremental form it becomes

dae = Hp dep (3.24)

(3.25)
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hardening rule results in less complex formulation in this study. Therefore, the Ziegler 
kinematic hardening rule is adopted herein.

Ziegler assumed that the translation of the yield surface occurs in the direction of the 
reduced stress vector as expressed by

d a ij =  d n ( o ij - a ij )  (3.26)

where dp is a positive proportionality factor, which depends on the history of the 
deformation. This factor is assumed to have the form

dp = a dep (3.27)

in which a is a positive non-dimensional constant characteristic for a given material. 
Thus,

doty =  a d e p (Gjj -  a y )  (3.28)

For a mixed-hardening material, d£p replaces d£p in Eq. (3.28) and it can be shown 

(Chen and Han 1988) that

Hp = Hp = a o e (3.29)

Thus, for a mixed-hardening material with the Ziegler rule, from Eqs. (3.29) and (3.15), 

doty = ^ ( l - M ) ( o ij -cc^dEp (3.30)

3.3.4 Derivation of Constitutive Relationships

In the following subsections, first the nonlinear constitutive relationships for a 
mixed-hardening material is derived. They relate the increments of stress and strain 
components during elastic-plastic deformation. Subsequently, the general constitutive 
relations are simplified for a pipe based of the assumptions made in Section 2.4. Finally, 
the constitutive relations are obtained for the stress and strain measures used in the 
pipeline-beam element formulation.

3.3.4.1 Derivation of Constitutive Tensor

In this section, the nonlinear constitutive relationships for a mixed-hardening 
material is derived. They relate the increments of stress and strain components during 
elastic-plastic deformation.
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For the yield function expressed in Eq. (3.22), the consistency condition, i.e., 
Eq. (3.9) becomes

d f = | : d o « + ^ + ^ = 0  (3 3 1 )

In the following, each of the six terms in Eq. (3.31) is determined in terms of the 
current stress and strain states, strain increments, and the scalar dA. After appropriate 
substitutions, Eq.(3.31) is solved for the scalar dA. The constitutive relationship is then 
obtained by using the expression for dA.

0  Expression for
acij

It can be shown (Chen and Han 1988) that 

df
3Ct::

— 3 Sjj (3.32)

ii) Expression for  dep

In order to derive dep, the term dejj is first obtained from Eq. (3.7) (i.e., the flow rule) 

and Eq. (3.32) as

dejj =3SydA (3.33)

Equations (3.12), (3.19), and (3.33) yield dep as

dep = 2  M a e dA (3.34)

dfiii) Expression for
dep

5fTo determine — - ,  Eq. (3.22) is differentiated with respect to £D.
d ep p

J -  = - 2 a e f i  = - 2 5 e Hp ,3.35)

From Eq. (3.29) for the Ziegler kinematic hardening rule, Hp equals Hp. Hence,

J -  = - 2 c e Hp (3.36)

iv) Expression for ~ —
day
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3fThe chain rule is used to find - — , using Eqs. (3.2) and (3.32), as
aaij

8f df aokl
aay a a kl aa^

where 5ji is the Kronecker delta. Hence, 

3f
aa:; -3 sSj (3.38)

v) Expression for  day
The term day can be obtained from Eqs. (3.30) and (3.34) as

day = 2 Hp (1 -  M) Oy dA (3.39)

vi) Expression for  day
Finally, day is obtained from Eqs. (3.5) and (3.33) as

dOy = CijkJ (dekl — 3 Sy dA.) (3.40)

Substituting Eqs. (3.32), (3.34), (3.36), (3.38), (3.39), and (3.40) into Eq. (3.31) and 
solving it for dA, results in the following equation for a mixed-hardening material.

3 Sj: dCi.|
dA = —:------ _ _ - i  (3-41)

9SijCijklskl+4Hpa e

Substituting Eq. (3.41) back into Eq. (3.40) gives
9 c s s r

da- = (C- —  iikl ninpq ) de (3 42)
'  J"  9s,JCiil,skl+4Hp3l2)dE"  < 3 ' 4 2 )

This is the constitutive relationship between the stress and strain increments in an elastic- 
plastic deformation.

By defining Cy^ as the term in the brackets in Eq. (3.42), namely,

P *  _ p  9  Cyy S k] s m n C jjjjjpq

c,i" = ’» ~ 9 W u + 4 n ,v . '  (3-43>

d0ij = Cijpq denq (3-44)

Equation (3.42) becomes
*

yij =  ijpq ^ p q  
*

where, Cypq is called the elastic-plastic constitutive tensor.
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3.3.4.2 Simplified Constitutive Relations for a Pipe

In this section, the general constitutive relationships, derived in the previous section, 
are simplified for a pipe based of the assumptions made in Section 2.4.

In this discussion, the indices 1 ,2 , and 3 refer to the longitudinal, circumferential, 
and through thickness directions, respectively, for any given material point on a pipe 
cross-section. Since the shear stresses are assumed to be insignificant, these three 
directions are considered to coincide with the principal axes.

As mentioned in Section 2.4, since the pipe wall thickness is much smaller than the 
pipe diameter for a typical pipeline, the radial stresses are insignificant, and hence, they 
are ignored. Thus,

Furthermore, as assumed in Section 2.4, the internal pressure, if any, is applied to the 
initial pipe configuration prior to any other loading. Moreover, it is assumed that during 
and at the end of pressurization, the pipe remains elastic. It is also assumed that the 
pressure remains constant throughout the analysis. Hence,

where p is the internal pressure, R; is the internal radius, and t is the pipe thickness.

g3 = da 3 = 0 (3.45)

(3.46a)

do2 =0 (3.46b)

Since da2 = da3 = 0, the term —— daif in Eq. (3.31) becomes
do ;;

(3.47)

which, in turn, can be expressed using Eqs. (3.5), (3.32), and (3.33) as
r) f

daj = 3 s, E (d£j - 3  s, dA,) (3.48)

where E is the modulus of elasticity.
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Using Eq. (3.48) and some algebraic simplification, Equations (3.41) and (3.42) 
become

(2a ,-a2)E-------------  de,
( 2 a , - a 2) E + 4Hpae

and

da, = 

By defining CEP as 

1------

1- (2a ,-a2) E
(2a ,-a2)2 E + 4Hpae2

E de.

CEP = (2a ,-a2) E
(2a,-a2)2E + 4Hpae2

E =
4H„ae2 E

(20,-<52)2 E +4H pa e2

Equation (3.50) becomes

da, = C EPde,

(3.49)

(3.50)

(3.51)

(3.52)

Note that in the all of the above equations, the stress and strain measures are the true 
(Cauchy) stress and true (logarithmic) strain measures, respectively.

3.3.4.3 Constitutive Relationship for Pipeline-Beam Element

In this section, the constitutive relationship derived in the previous section between 
the true stress and strain measures (i.e. Eq. (3.52)) is modified to obtain the constitutive 
relationship required for the pipeline-beam element.

In the analysis to find an equilibrium solution for time t+At, the pipeline-beam 
element formulation uses the 2nd Piola-Kirchhoff stress and Green-Lagrange strain 
measures with respect to the configuration at time t. In the following, first the 
modification of the constitutive coefficient, CEP, is considered for the 2nd Piola-

Kirchhoff stress and Green-Lagrange strain measures with respect to a general 
configuration. Then, the implications of choosing time t as the reference configuration 
are discussed.

The relationship between the longitudinal Green-Lagrange strain, Ei, and the 
longitudinal engineering strain, ej, assuming the longitudinal axis remains a principal 
axis, can be written as (Fung, 1965)
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The logarithmic strain in the longitudinal direction, e ,, can be expressed in terms of the 

engineering strain, ei, as (Hill, 1950)

e, = ln(l + e,) (3.54)

Equations (3.53) and (3.54) give the relationship between the longitudinal logarithmic 
strain and the longitudinal Green-Lagrange strain as

e, = | l n ( l  + 2E,) (3.55)

Differentiating both sides of Eq. (3.55) yields

de = - dl l   (3.56)
1 1 + 2E,

At time t, the relationship between the Cauchy (true) stress tensor and the 2nd Piola- 
Kirchhoff stress tensor measured with respect to the configuration at time x can be 
expressed as (Bathe, 1996)

; S = - ^  ;F-' 'a  ;F~t (3.57)
P

where
*S= the 2nd Piola-Kirchhoff stress tensor measured at time t with respect to the 

configuration at time x 
1 a  = the Cauchy (true) stress tensor measured at time t
'F _l =the inverse of the deformation gradient at time t with respect to the

configuration at time x excluding all rigid-body motions 
^F- t  = the transpose of ‘F _1 

Tp  = mass density at time x 
1 p  = mass density at time t

The ratio —  can be expressed as 
*P

7^' = 7 “  = (l+tei) ( l+ ^ 2) (1+* e3) (3.58)
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where ‘ej, ^e2, and 'e3 are the engineering strains measured at time t with respect to the 

configuration at time % in the longitudinal, circumferencial, and through-thickness 
directions, respectively. Using Eq. (3.54), Eq. (3.58) becomes 

1
-r^  = exp(‘e1+ 'e 2+^e3) (3.59)

P

where ’e ,, ‘e2, and 'e 3 are the logarithmic (true) strains measured at time t with respect 

to the longitudinal, circumferencial, and through-thickness directions, respectively.

Assuming the longitudinal, circumferencial, and through thickness directions remain 
the principal axes, Equation (3.57) can be written in matrix form as

X 1 

0

0

; s 2

1o 
o = V

t

i+ ;e

0

0 0 x S 3_
p

0

1 0

1
i+ ;ei

0

0

0

1
1+ie,

Hence,

tc _ exp(Te,+Te2+Te3) t_ 
 ^  1

From Eq. (3.53),

(l+^e1)2 = l + 2 ;E 1

which after substitution in Eq. (3.61) yields 

tc _ exp('e]+*e2+ ‘e3) t_
Tw>1---------------------------- Ol

1 + 2  ;e .

oi
0
0

0 0 '
i+;e

o 2 0 0
0 ‘o 3

0

1 0

1
i+ ;e,

0

0

0

1
i+ ;ei 

(3.60)

(3.61)

(3.62)

(3.63)

The differentiation of both sides in Eq. (3.63) results in the following equation after 
an infinitesimal deformation

dJS, =exp(*e]+^e2+*e3)
d 'o , 2 ‘a jd 'E ,

1+2 ;e , (1 + 2 ^E,)
+ (d t £j +d t £2 +d t £3)

1 + 2 JE, 
(3.64)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the infinitesimal increments of stress and strain occur within times t and t+dt. 
Using Eq. (3.52),

d 'a ,= tCEP tde, (3.65)

Which, using Eq. (3.56), becomes

, tc Epd;El
d o ,  = 2------~  (3.66)

1 + 2  ;e ,

The expression for the term (d,£, +dte2 +d,e3) in Eq. (3.64) depends on the state

of the material, when the material is still in elastic state, the following equations are 
considered.

6i =-^(ct, - vct2) (3.67a)
E

£2 = ^ 2 -v c ,)  (3.67b)
E

e3= ^ ( a , + o 2) (3.67c)
E

Noting that da2 = d a 3 = 0 , the differentiation of Eqs. (3.67) gives

d te, +dt£2 +dt£3 = -—— d 'a , = ( l -2 v )d t£, (3.68)
E

When the infinitesimal deformation is elastic-plastic, using Eq. (3.3) the term 
(dt£, +dt£2 +dt£3) can be expressed as

d,£j +dt£2 +dt£3 =dt£, + (d t£2 +dt£^) + (dt£3 +d,£^) (3.69)

The term d t£2 can be expressed by differentiating Eq. (3.67b) and using Eq. (3.3) as

d t£2 = — d 'o , =-vd,£® = -v (d t£, - d t£jp) (3.70)
E

Similarly,

d,£3 = r ~ d ‘o, = - v d t£? = -v (d t£, - d t£jp) (3.71)
E

Substituting for d t£2 and d t£3 from Eqs. (3.70) and (3.71) into Eq. (3.69) gives

d t£, +dt£2 +dt£3 =dt£, + (d t£  ̂+dt£^ )-2 v (d t£, - d t£f) (3.72)
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From Eq. (3.33),

d te f+ d t£P+dteP = 3sadA, = 0 (3.73)

Thus, the term (d,£^ +dt£^) in Eq. (3.72) can be replaced with - d t£f. Hence,

d t£, +dt£2 +d,£3 = ( l-2 v ) (d t£, - d , ^ )  (3.74)

The term d^f* is obtained from Eqs. (3.33) and (3.49) as

—- — 2
d .E f = ( 2 ,g |- ,g 2)<n.= _  (2I g '~ lg2), f. _ 2 d,e, (3.75)

( 2 , o l-, .a2)2 E + 4 tHpIae2

Incorporating Eq. (3.75) into Eq. (3.74) gives

4 , H ,  , o 2 ( l - 2 v )  
d ,e ,+ d ,e 2+d,e3 = 1 ‘ _  2 d.e, (3.76)

(2 i < J | - , o 2 ) E  +  4 t H p , o c

Therefore, as seen in both Eqs. (3.68) and (3.76), the term (dt£, +dt£2 +dt£3) can be 

written in a general form of

d t£, +dt£2 +dtE3 =(3dt£j (3.77)

where (3 can be expressed for an elastic deformation as

P = l - 2 v  (3.78)

and for an elastic-plastic deformation as

4 tH0 .<7 2 (1 r— 2v)R =------- 1— --e  .i 1-----  (3 7 9 )
(2 ta , - ta 2)2 E + 4 tHp tc e2

Incorporating Eqs. (3.56), (3.66), and (3.78) into Eq. (3.64) results in

d*S, =exp(-3‘£,+*£2+*£3)[tCEP + (P -2 ) ta 1]d*E, (3.80)

Thus, the constitutive coefficient used in the finite element formulation, tCEP, becomes

tCEP = exp(-3 * £j+ ‘ e2+ * £3) [t CEP + (P -  2) ‘ Oj ] (3.81)
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For a steel pipe material, the change in volume is very small. Therefore, the ratio
1

—  represented by exp(’£]+^£2+^£3) , is almost equal to one. Hence Eq. (3.81) 
'P

becomes

tCEP ~exp(-4*£j)[tCEP + (P -2 )‘a]] (3.82)

Moreover, at high levels of nonlinearity, where tHp is much smaller than E, the factor P

given by Eq. (3.79) becomes negligible compared to 2 in Eq. (3.82). Hence, Eq. (3.82) 
becomes

,CEP = exp(-4*£,)(tCEP -2*0,) (3.83)

When the steel material is still elastic, the effects of both exp(-4*£,) and (P~2),a 1 are 

negligible. Thus, Eq. (3.82) becomes

tCEP=tCEP =E (3.84)

For a total Lagrangian formulation, where the initial configuration is taken as the 
reference configuration, % = 0, and hence, Equation (3.81) becomes

t CEP = exp(-3 * £, +^e2 + * £3) [t CEP + (P -  2)' a, ] (3.85)

For an updated Lagrangian formulation, where the configuration at time t is taken as the 
reference configuration, x = t. And since |£1=j£2=|£3 = 0 , Equation (3.81) becomes

(CEp_  c EP + (p -2 ) 'a ,  (3.86)

Equation (3.86) is used in the updated Lagrangian formulation developed in this study.

3.4 PROCEDURE TO EVALUATE STRESS INCREMENT

The procedure to find the constitutive coefficient used in the finite element 
formulation, , CEP, was discussed in Section 3.3. In this section, the procedure to update

the longitudinal stress for a given strain increment is presented. This procedure needs to 
be carried out both in evaluating the stiffness matrix and in calculating the stresses upon 
achieving convergence in a loading step.
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In terms of the notation for the longitudinal stress, a , , it will be denoted by a, in 
this section. This is to avoid confusion because the notation 0 , is used for reduced 

longitudinal stress in this section.

Assuming the equilibrium configuration at time t is known, in order to update the 
longitudinal stress for the configuration at time t+At, whether the solution has converged 
or not, the following general equation is utilized.

To carry out the above integration, the total strain increment is divided into small enough 
strain increments. However, if there is an elastic portion to the strain increment, the 
integration for the elastic portion can be performed in one step, that is, no division needs 
to be carried out.

Equations (2.52) and (2.53) are used to calculate the linear and nonlinear portions of 
the strain increment for a given set of displacement increments. The summation of these 
two portions as per Eq. (2.45) produces the Green-Lagrange strain increment with respect 
to the configuration at time t, denoted by tE, (note that subscriptions 1 and 11 are used

interchangeably in this work). This strain must be converted to the logarithmic (true) 
strain measure before proceeding with the constitutive relationships. Thus,

where t e, is the equivalent logarithmic strain increment.

Given the longitudinal strain increment, t £], the following steps are carried out to 

calculate the longitudinal stress increment.

First, it should determined whether there will be any elastic-plastic deformation at
all. To do that the von Mises yield criterion is considered for a biaxial case (note that 
through-thickness stress, 03, is always assumed to be zero):

t+A t

d0. (3.87)

£, = —ln(l + 2 tE,) (3.88)

Step 1

f (0 ,, 0 2, a e) = 0 j2+ 0 22 -  0 j0 2 -  0 e2 = 0 (3.89)
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where a e remains equal to the initial yield stress, a y, up until the first occurrence of

plastic flow. In the stress space, the yield surface represented by Eq. (3.89) is reduced to 
an ellipse as shown by Fig. 3.1.

Assuming a purely elastic increment, i.e.,

t+Ato, = 'a, +E ,£, (3.90)

(i) if f ( t+At a , ,a 2,‘ a e) < 0, then the stress update based on Eq. (3.90) is valid. This 

is the end of the procedure.

(ii) if f ( t+A,a 1,a 2 ,t cte) > 0 , i.e., if the stress state falls out of the yield ellipse, then 

there is elastic-plastic deformation in the increment. Go to Step 2.

Stev 2
Here the elastic fraction of the increment, defined by Q, is determined. Thus, the 

elastic and elastic-plastic portions of the strain increment are Q , e, and (1 -  Q) t e ,,

respectively. To that aim, first the elastic increment in the longitudinal stress required to 
bring the stress state to the yield ellipse, denoted by Aea , , should be determined. Since
this is an elastic increment, the yield ellipse remains unchanged, and thus, Aeaj = Aea , . 

The value of Aec, can be obtained using Eq. (3.89) by replacing Gl with (‘a, + AeC7j):

(‘a, +AeCj)2+ a 22 - ( ‘a, +Aea ,) a 2- ' a e2 =0 (3.91)

This leads to the following two roots

AeC7] = l [ (° 2 -  2 * } “ 2 l^ i)2 + 4(, a e2- , a 12 -G 2V a , 5 2) j  (3.92)

Assuming point A in Fig. 3.1 represents the stress state at time t, these two roots 
correspond to the distances on the right and left of point A to be traversed along the o1
axis to get to the yield ellipse. If point A is located inside the ellipse at time t, one root is 
positive and the other is negative. The positive root corresponds to moving in the 
positive a, direction, and the negative root corresponds to moving in the negative a,

direction. If, however, point A is located on the yield ellipse at time t, one of the roots is 
zero.

The selection of the right root depends on the sign of the longitudinal strain 
increment, t e,. As Fig. 3.1 indicates, a positive longitudinal strain increment tends to
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move the stress state in the positive a, direction, whereas a negative t e, tends to move 
the stress state in the negative o, direction. Therefore, the right root is the one with the 
same sign as that of t e ,. In order for the selection criterion to work in the limiting

conditions, i.e., when the stress state is on the yield ellipse at time t, the criterion is 
defined as follows: the selected root is the one that produces a greater value for the ratio
AgOj_

t e.
The elastic strain increment, thus, can be expressed as

, 1 , ' = ^ -  (3.93)
E

Hence, the fraction Q is obtained as

Q = -4 r-  = ̂ r -  (3.94)
18j E te,

The stress can be updated for the elastic fraction of the strain increment as 
t+ A t _ .  e  t _  . a  _  ta, = a ,+ A eo,= a ,+ Q E  ,8, (3.95)

where t+Ata ,c is the updated stress for the elastic portion of the increment. Go to Step 3 
to update the stress for the inelastic portion of the strain increment, (1 -Q ) , e ,.

Step 3

To carry out the integration of Eq. (3.87), the inelastic portion of the strain 
increment, (1-Q) t8,, is divided into NSUB sub-increments. The value of NSUB should

be large enough to obtain the required precision. Assuming the acceptable size of strain 
sub-increments as 10 microstrain, the number NSUB can be estimated as

NSUB = (1~ — tgl (3.96)
0.00001 J

Hence, the magnitude of the strain sub-increments, d t 8j, can be obtained as

d e ,  = £ z QLiI l (397)
1 1 NSUB v 1

For each strain sub-increment, the stress sub-increment, dGj, is obtained from Eq. 
(3.52) and it is added to the total longitudinal stress from the last sub-increment:

<5,® =<51lW) +<to, = o 1<i-,) + C EP<W>d,e, (3.98)
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where i refers to the number of sub-increment for which the stress sub-increment is being 

calculated. And CEp(’ l} is calculated from Eq. (3.51) as

a t j  ( i - l ) y =  ( i - 1 )^  p  
~  p p ( i - l )  nCEpl = -----------------------   (3.99)

(2G,(,~,)- a 2)2 E + 4Hp(i~1)a e(l_1)

where is the value of obtained from the input stress-strain curve at the end
dep

of the previous sub-increment.

Before going to the next sub-increment, the values of the effective plastic strain, 
reduced effective stress, and the position of the center of the yield ellipse must be updated 
as well. The reduced effective stress is updated using Eq. (3.89):

a e(I) =-Jo}(1)2+ a22 - o}(1)g2 (3.100)

From Eqs. (3.12) and (3.21), the effective plastic strain can be updated as

ep(i) = £p(i-1) + dep = ep(i_1) + 2 a e(i) dA, (3.101)

where dX is obtained from Eq. (3.49) as

A - ----------- <2g' - g *)E --------- ,d ,e ,  (3.102)
(2a1(1_1)- o 2)2 E + 4H (l_,)oe<1_,)

Finally, the position of the center of the yield ellipse is updated using Eq. (3.39) as 

a ,(i) = a ,(i_1) +da, = a 1(i_,) +2Hp(i_1)( l-M )a , dX (3.103a)

a 2(i) = a 2(i_1) + d a 2 = a 2(W) +2Hp(i",)( l - M ) a 2 dX (3.103b)

These values are required for calculating the reduced values of stresses using Eq. (3.2)

The integrations over the cross-sectional area, as expressed by Eqs. 2.77, 2.78, and 
2.80, are carried out over the actual area at the latest converged configuration. This 
involves a correction of the tributary area of the sampling points around the cross-section
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based on the axial strain at the sampling point (Yoosef-Ghodsi et al., 1994). Thus, the 
modified tributary area, A‘A , used in solving for the time step t+At, can be expressed as

A° A
AtA = — -  (3.104)

1+ e,

where A0 A is the initial value of the tributary area (i.e., in a stress-free configuration),

and ‘e, is the engineering axial strain at the sampling point. Using Eq. (3.54), the
engineering axial strain at the sampling point, ' e ,, can be obtained as

'e, = ex p ('e ,)-l (3.105)

where ‘ e, is true strain value at the sampling point.
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Fig. 3.1 von Mises Yield Ellipse for Biaxial State of Stress
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CHAPTER 4. PIPELINE-SOIL INTERACTION MODEL

4.1 INTRODUCTION

This chapter describes the pipeline-soil interaction model developed for the finite 
element formulation. Pipeline-soil interaction plays an important role in the response of 
buried pipelines under a variety of loading conditions. This role is particularly important 
when the pipe is subjected to ground movement or where there is potential for thermal 
upheaval buckling.

In the case of ground settlement, all of the loading is imposed through pipeline-soil 
interaction. Thus, after describing the soil springs and pipe-soil interaction model, the 
ground settlement models developed in this study are presented. This includes a 
description of the solution method utilized in the ground settlement analysis. At the end, a 
numerical example is presented on the analysis of a pipeline subjected to ground 
settlement.

4.2 SOIL SPRINGS

As described in Section 2.8.2, the soil springs are considered to be oriented in the 
local coordinate system as continuous entities. As Fig. 2.5 shows, there are three types of 
springs modeling the reaction from soil surrounding the pipeline. The transverse support 
from the soil beneath and above the pipe are modeled by bearing and uplift springs, 
respectively. The frictional interaction along the pipeline is modeled using longitudinal 
springs.

The continuous effects of soil springs are evaluated at the Gauss integration points 
along the each element. Thus, in practice, the soil support is modeled by discrete soil 
springs. In terms of transverse pipe-soil interaction, this implies that the surrounding soil 
can be divided into slices, each represented by soil springs, such that interaction between 
slices can be ignored. As mentioned in Section 2.4, this corresponds to the main 
assumption for the classical Winkler foundation. This might introduce some inaccuracy 
since the interaction between slices can sometimes be important, such as for dense soil 
and soil at yield. However, given the low accuracy of the available soil properties in 
practice and the fact that the pipeline behavior is the focus of this study, this assumption 
is appropriate.
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The basic assumptions and the constitutive relations for the soil springs are discussed 
in the following subsections. The constitutive relations for soil springs are defined in 
terms of force-deformation relations. For each type of soil spring, formulas are suggested 
from "Guidelines for the Seismic Design of Oil and Gas Pipeline Systems" (CGL, 1984) 
for calculating the spring constants given the basic soil properties. These formulas, 
presented for sand and clay only, should be viewed as a general guide to be used in lieu of 
site-specific data on the spring constants.

4.2.1 Bearing Springs

The bearing springs are assumed to work only in compression and to have an elastic- 
perfectly plastic force-deformation constitutive relationship as shown in Fig. 4.1. For 
downward motion, the pipeline is assumed to act as a cylindrically-shaped strip footing 
and the ultimate soil resistance is obtained by the conventional bearing capacity theory as 
(CGL, 1984)

where
c = soil cohesion or undrained shear strength, Su 
7 = total soil unit weight 
7 = effective soil unit weight 

D = pipe outside diameter 
H = the depth of pipe center
Nc , Nq, and Ny = bearing capacity factors for horizontal strip footing given by

where <|) is the angle of internal friction.

For the case of undrained loading in clays, where <|) = 0, Equation (4.1) becomes

FBy= cN cD + yHNqD + -y D 2NT (4.1)

Nq = exp(7t tan $) tan (—+ —) (4.2a)

Nc = (Nq -1) COt<|) (4.2b)

Ny = (Nq -1) tan(1.4(j)) (4.2c)

FBy = cN cD = Su NCD (4.3)

where Su is the undrained shear strength of the clay soil.
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The yield displacement, ABy (as shown in Fig. 4.1), can be considered to be on the

order of 10% to 15% of the pipe outside diameter for both sand and clay (CGL, 1984). 
Thus,

ABy =0.10D to 0.15D (4.4)

4.2.2 Uplift Springs

Similarly to the bearing springs, the uplift springs are also assumed to work only in 
compression. Two types of constitutive relationship are available for the uplift springs. 
The first one is an elastic-perfectly plastic force-deformation constitutive relationship as 
shown in Fig. 4.2. This constitutive relationship, which is identical to that employed for 
the bearing springs, is adequate in most cases. The second type of constitutive 
relationship takes into account the loss of the uplift spring force as the pipe moves 
drastically upwards. This is particularly important in upheaval buckling of the pipe due 
to thermal action. Thus, the piecewise linear force-deformation relation ends with a 
descending branch that reaches a zero force value by the time the pipe emerges from the 
soil. A sample of such constitutive relationship is shown in Fig. 4.3.

For sands and other non-cohesive materials, the uplift resistance per unit length of 
pipeline, FUy (as shown in Figs. 4.2 and 4.3), can be expressed as (CGL, 1984)

FUy=yH N qvD (4.5)

where Nqv is the vertical uplift factor which can be obtained from Fig. 4.4 for different

H/D and 0 values. The curves in Fig. 4.4 are based on test results reported by Trautmann 
and O’Rourke (1983). The yield displacement, ABy (as shown in Figs. 4.2 and 4.3), can

be considered to range from 0.01H to 0.015H for dense to loose sand (CGL, 1984). Thus, 

AUy=0.01H to 0.015H for dense to loose sand (4.6)

For clays, the uplift resistance per unit length of pipeline, FUy, can be expressed as 

(CGL, 1984)

Fuy = Su Ncv D (4.7)

where Ncv is the vertical uplift factor which can be obtained from the theoretical 

solutions of Vesic (1969) as

N" =1'641( § )  (4-8)
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The yield displacement, ABy, can be considered to range from 0.1H to 0.2H for stiff to 

soft clay (CGL, 1984). Thus,

AUy=0.1H to 0.2 H for stiff to soft clay (4.9)

4.2.3 Longitudinal Springs

The longitudinal springs, which represent the sliding resistance along the pipeline, 
are assumed to have an elastic-perfectly plastic force-deformation constitutive 
relationship as shown in Fig. 4.5. The axial load per unit length of the pipeline is 
obtained by integrating the frictional stress along the length of contact between the soil 
and pipeline.

For sands and other non-cohesive materials, the longitudinal resistance per unit 
length of pipeline, pLy (as shown in Fig. 4.5), can be expressed as (CGL, 1984)

ttD
FLy= — YH(1 + K0)tan8 (4.10)

where
Ko = coefficient of soil pressure at rest, approximated as (1 -  sin (|))

8 = interface angle of friction between soil and pipeline

The yield displacement, ALy (as shown in Fig. 4.5), for sand can be considered to be on 

the order of 0.1 to 0.2 inches (2.5 to 5 mm) for dense to loose sand (CGL, 1984).

For clays, the longitudinal resistance per unit length of pipeline, FLy, can be 

expressed as (CGL, 1984)

FLy=7tDaSu (4.11)

where a  is an empirical coefficient, called the ’adhesion factor’. Figure 4.6 gives the 
value of the adhesion factor as functions of the undrained shear strength of the clay soil, 
Su based on studies by Woodward et al (1961) and Trigg and Rizkalla (1994). The 
following polynomial fit closely approximates the curve proposed by Woodward et al 
(1961):

a  = (-1.2435e - 9) Su4 + (4.2884e - 7) Su3 - (1,6562e - 6) Su2 - (0.012399) Su +1.4504
(4.12)
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Trigg and Rizkalla (1994), came up with a totally different curve based on NOVA’s full 
scale field longitudinal pipe pull-out tests in cohesive Alberta soils. This curve can be 
approximated by the following equations as plotted in Fig. 4.6.

For Su < 20; a  = 0.5 (4.13a)

For 20<SU <65; a  = 0 .2 5 + ^ ( 6 5 - S u) (4.13b)

For 65< Su < 100; a  = 0 . 2 + ^ ( l 0 0 - S u) (4.13c)

For Su >100; a  = 0.2 (4.13b)

The considerable difference between the two curves in Fig. 4.6 suggests that there might 
be other factors affecting the cohesion factor besides the undrained shear strength. Until 
further studies determine these factors, it is recommended that field tests be carried out to 
obtain a reliable adhesion factor value or curve for a specific location.

The yield displacement, ALy, for clay can be taken to be on the order of 0.2 to 0.4 

inches (5 to 10 mm) for stiff to soft clay (CGL, 1984). Thus,

ALy=0.2in. to 0.4in.(5mm to 10mm) for stiff to soft clay (4.14)

4.2.4 Transverse Horizontal Springs

In a special case where the pipe is analyzed in a horizontal plane, the bearing and
uplift springs should be replaced with horizontal springs. Assuming the ground surface is
horizontal too, there will be no distinction between the two sets of transverse horizontal
springs on either side of the pipeline. As a result of the symmetry, identical horizontal
springs replace both the bearing and uplift springs. The transverse horizontal springs are
assumed to work only in compression and to have an elastic-perfectly plastic force-
deformation constitutive relationship as shown in Fig. 4.7. The ultimate soil resistance in 
transverse horizontal motion, FHy, is obtained by a model originally developed for

vertical piles subjected to horizontal loading (Audibert and Nyman, 1977):

FHy=7H N qhD (4.15)

where Nqh is the horizontal bearing capacity factor. For sands and other non-cohesive 
materials, Nqh can be expressed as (Hansen, 1961)
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k 0q k iqa q

N qh=-
D

l + ar H
D

(4.16)

where

a q =
k 0q k 0 sin<})

(kiq - kOq)sin(^ + ̂ )in(”  ■ *

kiq = N cdick0 tan(()

k Oq =exp

(4.17a)

(4.17b)

,Tt
( -  + <10 tan <|> <kcos 9  tan(— + “ ) ~ exP — — <})) tan <]) I cos ({) tan(^ -  ̂ )

k0 = 1 — sin <|) 

1
Nc = exp(7ttan(|>) tan (

tan (j)

dic =1 + 0.5833 (7 tan4 <|> + l)

* + * ) - l l
4 2 J

For cohesive soils, Nqh can be expressed as (Hansen, 1961)

k 0c +  k ica c

N qh =
D

1 + a.
vD ,

where

k ic k 0c

kic =1.5833(71+2)

0c

(4.17c)

(4.17d)

(4.17e)

(4.17f)

(4.18)

(4.19a)

(4.19b)

(4.19c)
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The following values of yield displacement, AHy, are recommended for different 

sand types (CGL, 1984):

H y " 0.07 to 0.10 H + for loose sand

A Hy = 0.03 to 0.05 ( H + —1 for medium sand 
V 2 )

AHy= 0.02 to 0.03 H + for dense sand

(4.20a)

(4.20b)

(4.20c)

For clays, AHy, can be taken as (CGL, 1984)

AHy= 0.03 to 0.05 H + (4.21)
)

4.3 PIPE-SOIL INTERACTION MODEL

The pipe-soil interaction model is based on the assumptions for the pipe-soil 
interface springs and the procedures to obtain the deformation of the soil springs. These 
are discussed in the following subsections.

4.3.1 Ground Profile

The ground profile is defined as the profile of the soil interfacing the pipeline in the 
initial configuration of the pipeline. Geometrically, this profile corresponds to the 
pipeline axis and is approximated by straight lines connecting the nodal points. In a non­
settlement analysis, this profile remains constant, whereas in a settlement analysis, the 
profile changes as settlement increases.

There are a number of environmental phenomena that result in ground settlement. 
They include differential thaw settlement, frost heave, fault movement, and earthquake- 
induced ground movement. Thus in order to accommodate a variety of settlement types, 
three types of settlement templates have been implemented in this work. These are 
stepwise, smooth, and piecewise linear ground settlement as shown in Fig. 4.8a (Zhou 
and Murray, 1993).

For a given settlement, a part of the ground that fully settles is called the stable zone 
and the part of the ground that does not settle and hence remains stationary is called the
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unstable zone (see Fig. 4.8). In an actual settlement, there is a region of ground between 
the stable and unstable zones which is subjected to partial settlement varying from zero at 
its boundary with stable zone to full settlement at its boundary with the unstable zone. 
This region of the ground is called the transition zone.

The stepwise settlement profile is the most simplistic representation of the ground 
settlement profile. In this model, the transition zone between the stable and unstable 
zones is reduced to zero. However since the pipeline separates from the supporting soil 
in the transition zone, the simplification is acceptable. Moreover, a stepwise profile 
results in more severe pipe stresses than does a settlement profile including a transition 
zone. Therefore, from a design point of view, a stepwise settlement profile is the most 
conservative of all profiles. Only one parameter, the differential settlement *5, is 
required to define a step-wise settlement profile.

The smooth settlement profile represents the transition zone by a smooth curve. This 
curve consists of two parts that are symmetric about a center origin. The center is located 
at the middle of the transition zone and at half the differential settlement. According to 
the coordinate system of Fig. 4.8b, the smooth curve can be defined by the following 
equations:

*AyG =0 x < -L jr (4.22a)

'A y G = -T ^ H 2 (L TC+S)3-
(L fR  + X ) 4 - L xr < x <0 (4.22b)

'AYg ~'ZTi ^(Ljr
IL  t r  ^

0  <  x  < Lt r  ( 4 . 2 2 c )

'AyG = -‘8 x >L xr (4.22d)

Where
*AyG = ground settlement at time t
x = x - x XR

x = the global x coordinate of the ground
xXR = the global x coordinate of the mid-point of transition zone
*8 = the differential settlement
Lxr = the half-length of the transition zone.
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Equations (4.22) provide a settlement profile that is continuous up to the second-order 
derivative at both ends and at the center of the transition zone. The smooth profile allows 
the shape of the transition zone to be considered in an approximate way.

The piecewise linear settlement profile is composed of piecewise straight lines 
connecting the settlement ordinates at certain points (see Fig. 4.8c). When the differential 
settlement is increased, settlements at those points are proportionally increased. This 
provides a simple yet powerful tool for modeling a variety of settlement shapes. This 
allows for zone settlement analysis, where a relatively short length of pipe is subjected to 
a local settlement.

Unlike the step-wise and smooth settlement profiles, the piecewise linear settlement 
profile allows for application of non-vertical settlements. As Fig. 4.9 shows, this is 
particularly useful for settlement analysis of pipes embedded in slopes. In order to utilize 
a piecewise linear settlement profile, the user needs to provide the pattern and angle of 
settlement.

Based on the above discussion, in a non-settlement analysis, such as a thermal 
analysis, the ground profile is always a piecewise linear profile. This is true for 
settlement problems with the exception of the transition zone in the smooth settlement 
profile, which are defined by cubic curves of Eqs. (4.22b) and (4.22c).

4.3.2 Deformation of Soil Springs

The deformation of the three types of springs, described in Section 4.2, is determined 
from the relative position of the pipeline and the soil. The constitutive relations for these 
springs are then utilized to calculate the resultant lateral and longitudinal stiffness and 
force values used in the formulation. This process and the assumptions involved are 
described in the following subsections.

4.3.2.1 Lateral Springs

There are two major assumptions associated with vertical displacement of the pipe. 
They are

i. As the pipe moves downward the top soil is assumed to start moving down with 
the pipe after the force in the uplift spring has vanished. Thus, due to downward 
motion of the pipe, the force in the uplift spring, if any, starts to decrease
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according to the unloading path shown in Fig. 4.2. Once the unloading is 
completed, the top soil is assumed to move downward as the downward motion of 
the pipe continues.

ii. As the pipe moves upward, since the bottom soil is assumed to be stationary, a gap 
starts to form between the pipe and the bottom soil once the force in the bearing 
spring vanishes. Thus, due to upward motion of the pipe, the force in the bearing 
spring, if any, starts to decrease according to the unloading path shown in Fig. 4.1. 
Once the unloading is completed, a gap starts to form and grow as the upward 
motion of the pipe continues.

As a result of these assumptions, in most cases, for a pair of bearing and uplift springs 
acting on a given cross-section of a pipe, only one of them is active at any time.

The gap width for a cross-section is defined as the separation distance between the 
pipe and the ground profile in the direction normal to the current pipe configuration. As 
Fig. 4.10 shows, a negative gap width indicates that the pipe profile is below the ground 
profile at the sampling point.

As discussed in Section 2.8.2, in assembling the stiffness matrix and load vector, the 
soil stiffness and force values are calculated at Gaussian integration points. The gap 
width for an arbitrary integration point, located at global coordinates *xGI and * yGI, is

calculated using the equation of the line normal to the current pipe profile (see Fig. 4.10). 
The equation of the normal can be expressed as

(cos* 0) (x -1 x G1) + (sin * 6) (y—* yG!) = 0 (4.23)

Where, as shown in Fig. 4.10, *0 is the pipe slope at time t, and cos*0 and sin*0 are 
expressed by Eqs. (2.38a) and (2.38b), respectively.

The normal line defined by Eq. (4.23) is then intercepted with the ground profile, 
which is, in most cases, a piecewise linear profile. In this case, the interception point of 
the two straight lines are found simply by solving a system of two equations and two 
unknowns. However, for the transition zone in the smooth settlement profile, which are 
defined by cubic curves, the bisection method is used to find the x-coordinate of the 
intersection point. And hence, using the normal equation, the y-coordinate of the 
interception point is obtained. The gap width at time t, *G is then calculated as
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' G = V<' x o , x  )2 -C yc , y inl )2 (4.24)

Where *xjnt and 1 yint are the x- and y-coordinates of the interception point at time t, 

respectively.

Since the response of the lateral springs is path-dependent, the force and stiffness 
values are updated from the last equilibrium configuration. Thus, the increment of 
upward displacement of the pipe with respect to the ground at time t+At, ,+AtAu, is

calculated as

,+a,Au=,+a,G - ‘G (4.25)

A negative t+AlAu signifies a downward motion of the pipe with respect to the ground 

profile from time t to time t+At. The value of t+AtAu is then used in association with the 

constitutive relationships for the bearing and uplift springs, as described in Sections 4.2.1 
and 4.2.2, to update the force and stiffness values for each spring.

If a spring has yielded or has been disengaged due to a gap formation, the 
corresponding stiffness is set to zero. The resultant stiffness and force values are 
obtained by summing the corresponding values for the bearing and uplift springs.

4.3.2.2 Longitudinal Spring

It is assumed that the longitudinal springs operate independently from the bearing 
and uplift springs. In other words, the force level in the lateral springs is not accounted 
for in determining the longitudinal spring force. As a result, the stiffness of the 
longitudinal springs will not change due to the variation of lateral spring forces. 
Therefore, only the history of relative longitudinal displacement of the pipe with respect 
to the ground determines the longitudinal spring force and stiffness values.

Figure 4.11 shows the configuration of a pipe at time t, which, in the course the next 
time step, is subjected to a ground settlement increment of dA and displacement 
increments of u and v in the global coordinate system. The settlement increment is 
applied along an arbitrary direction, designated by the angle P as shown in Fig. 4.11. 
Note that for a vertical settlement analysis P is zero, and for a non-settlement analysis, dA 
is zero.
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The relative longitudinal displacement increment of the pipe with respect to the 
ground, du , at a given integration point from time t to time t+At can be expressed as

du = u+dAcos'y (4.26)

where the angle xy is the angle between the settlement direction and the tangential 

direction at the integration point at time t. The term u is the increment of the pipe 
displacement in tangential direction at the integration point. This displacement increment 
can be obtained in terms of the global displacement increments as

u = (cos'0)u + (sinl0)v (4.27)

The angle 1 y can be expressed in terms of the angles 10 and (3 as

lY = 9O°-('0 + p) (4.28)

Substituting for 1 y from Eq. (4.28) into Eq. (4.26) gives

du = u+  dA sin(*0 + P) (4.29)

The value of du , obtained from Eq. (4.29) is used in association with the 
constitutive relationships for the bearing and uplift springs, as described in Section 4.2.3, 
to update the force and stiffness value for the longitudinal spring.

4.4 SOLUTION PROCEDURE FOR SETTLEMENT ANALYSIS

The solution technique for settlement analysis was adapted from a constrained 
displacement technique proposed by Zhou and Murray (1993) for solving settlement 
problems. This scheme is a full Newton-Raphson iterative method with a constraint to 
limit the magnitude of the displacement increments in each iteration. The reason for 
implementing the constraint is that the displacement increments can be very large as the 
pipe loses its transverse support due to a settlement increment.

In a settlement analysis, using any of the settlement profiles described in Section 
4.3.1, the settlement is applied gradually by proportionally increasing a settlement pattern. 
Thus the total settlement at any given load step can be represented by a settlement factor, 
Fs, which multiplies by the settlement pattern to give the total settlement along the 
pipeline for that time step (time t). At the beginning of the next time step the settlement 
factor is increased by a prescribed value, AFS, which takes the pipe to the time step t+At. 
This will change both the stiffness matrix and the unbalanced load vector due to the soil
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spring modifications. The full Newton-Raphson procedure starts with the following 
system of equations:

Au1=,+AtK0_l(t+AtP0- ,Q0) (4.30)

where
AU] = vector of displacement increments for Iteration 1
t+A,K0 = stiffness matrix for the pipe configuration at Iteration 1 and incremented 

settlement (i.e., Fs + AFS)

1Q0 = equilibrating force vector for the pipe configuration at Iteration 1

t+Al P0 = External load vector including modified soil springs due to the settlement

increment

From the second iteration onward, the equilibrium equations can be written as

Au j+1 =,+At K j-' (,+At Pj - ,+At Q j) (4.31)

where
Au^, = vector of displacement corrections for Iteration j+1

t+AlKj = stiffness matrix for the pipe configuration at Iteration j and latest ground

configuration
t+At Q j = equilibrating force vector for the pipe configuration at Iteration j 

,+At Pj = External load vector matrix for the pipe configuration at Iteration j and 

latest ground configuration

The total displacement increment for the time step is then updated as

Au j+]Total = Au jTo,al + Au j+, (4.32)

When the norm of displacement increments obtained from Eqs. (4.30) and (4.31), 
Auj|, exceeds a prescribed limit, A0 (called displacement limit), the displacement

increments are modified as

Auim°d = ii72T Aui (4-33)
Aui
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Where AUjmod is the modified displacement increment vector. An appropriate value for 
the displacement limit, A0, can be obtained by numerical experimentation.

4.5 EXAMPLE AND VERIFICATION OF SETTLEMENT ANALYSIS

The solution for settlement analysis is verified by comparing the results of ABP to 
those of PIPLIN and ABP using the pipe element of Zhou and Murray (1993). The pipe 
element developed by Zhou and Murray, as the first pipe element employed in ABP, will 
be called old element, as opposed to new element referring to the C1 pipe element 
developed in this study.

The computer program PIPLIN has been commonly used and accepted in the 
pipeline industry for many years. Both ABP and PIPLIN use stress-strain constitutive 
relations and the plasticity theory based on von Mises yield condition. However, there 
are three main differences between the two programs in terms of the basic assumptions in 
the formulation:
■ Soil springs orientation: In ABP the springs directions remain constant with respect 

to the local coordinate system at any given integration point. Thus the directions of 
the soil springs rotate as the pipe rotates at a given point. Whereas in PIPLIN, the 
springs directions remain constant with respect to the global coordinate system, and 
hence they remain unchanged as the pipe rotates.

■ Hardening rules: In ABP a mixed hardening rule is used that can range from a fully 
isotropic hardening rule to a fully kinematic hardening rule. In PIPLIN, however, a 
special kind of kinematic hardening rule is used, which is based on Mroz (1967) 
theory. This is a different kind of kinematic hardening than ABP utilizes.

■ Integration over the cross-sectional area: Since ABP uses true stress and strain 
measure in its formulation, the integration of all quantities, such as stress, over the 
cross-sectional area utilizes the actual area in the latest converged configuration. This 
involves a correction of the tributary area of the sampling points around the cross- 
section using the axial strain at the sampling point (see Eq. (3.104)). In PIPLIN, 
however, the types of stress and strain measures used are not specified. Moreover, the 
cross-sectional integrations use the original area rather than the actual area.

The above differences are not considered to cause significant disparity between the 
responses from the two programs. Therefore, a relatively close agreement between the 
results of the two programs is still required to verify ABP. Moreover, since the ABP
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program using the old element has already been validated by Zhou and Murray (1993), a 
close agreement between the responses of the old and new elements should be expected. 
The following example demonstrates the above corroborations.

In this example, a pipeline of 550 feet (167.6 m) in length is subjected to differential 
settlement. The pipe has an outside diameter of 12.75 inches (324 mm), a thickness of 
0.247 inches (6.27 mm) and an internal pressure of 1 ksi (6.895 MPa). As Figure 4.12 
shows, a stepwise settlement zone of 600 inches (50 m) in length is assumed to occur in 
the middle of the pipe. Such a settlement is typically a consequence of non-uniform thaw 
settlement due to various environmental causes. The pipe is also assumed to be subjected 
to a uniformly distributed overburden load of 0.0656 kips/in.

The pipe material is assumed to be of grade X52 (SMYS = 52 ksi) steel with 
kinematic elastic-plastic hardening. The true stress-strain plot for the pipe material is 
shown in Fig. 4.13. The analytical results from ABP and PIPLIN are presented in the 
following.

The results presented here correspond to a ground settlement of 40 inches. 
Figure 4.14 shows the deformed configuration obtained from ABP (both old and new 
elements) and PIPLIN solutions. Figures 4.15 to 4.18 show the distribution of curvature, 
moment, bottom-fiber strain, and top-fiber strain along the pipe for the three solutions, 
respectively. Close agreement is observed between the ABP results of the old and new 
elements. A weaker agreement is seen between the ABP responses on one hand and the 
PIPLIN responses on the other hand. However, considering the above-mentioned 
differences between the fundamental assumptions for ABP and PIPLIN, the agreement 
between their responses is deemed satisfactory. These observations establish the 
credibility of the solution procedure implemented in ABP using the C1 pipe element for 
settlement analysis.

The superiority of the new element over the old element can be noted from the 
moment diagram in Fig. 4.16. In order to examine the differences more closely, the 
moment responses for only 600 inches of the pipe is shown in Figure 4.19. The undesired 
oscillatory nature of the moment response is diminished by switching from the old 
element to the new element. Similar observation can be made from the axial force 
responses of the two elements as shown in Fig. 4.20.
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CHAPTER 5. THERMAL BUCKLING ANALYSIS

5.1 INTRODUCTION

This chapter describes the thermal buckling formulation implemented in the finite 
element formulation. The significance of thermal buckling analysis is in situations where 
the pipe undergoes relatively large temperature changes. This is usually due to the large 
difference between the pipe temperature upon the completion of the pipeline construction 
and the temperature of the pipe in service. This is of particular importance for pipelines 
in arctic and sub-arctic areas, which are normally constructed in winter months and, 
depending on the fluid temperature, can experience high temperatures in service. In this 
case, the thermal buckling could occur in the summer, when the ground is not frozen , 
and thus, provides much less resistance to the upheaval than does the frozen ground in the 
winter months. In particular, when the pipe passes through muskeg areas or regions that 
can turn into marshland in the summer time, the chance of thermal buckling increases. 
This is because, in this case, the ground can provide little resistance against large pipe 
deformation.

Submarine pipelines that carry fluids at high temperature, such as the oil lines of 
North Sea, are also susceptible to thermal buckling. The main cause of the thermal 
buckling is the fact that the fluid in the pipe is much hotter than the surrounding sea 
water. In the past two decades, such pipelines have suffered some well-publicized 
thermal buckling failures resulting in substantial financial losses in terms of repair and 
replacement costs in addition to lost production. These pipelines have undergone two 
different types of thermal buckling. First is upheaval buckling, which occurs in a vertical 
plane and normally results in emerging of the pipe out of the ground or sea bed. Second 
is the snaking phenomenon, which causes the pipe to buckle in a horizontal plane leading 
to an S-shape pipe configuration.

This chapter first describes the physical phenomenon of thermal buckling. Then the 
formulation of thermal analysis is presented. This chapter ends with three examples 
verifying the thermal analysis formulation.

5.2 THERMAL BUCKLING PHENOMENON

When a pipeline operated at a higher temperature than the ambient temperature at the 
time of installation, it tends to expand. However, if the line is restrained from expansion,
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for example by soil friction, the pipe is subjected to an axial compressive load. For a 
buried (i.e., trenched or covered) pipeline, the lateral (horizontal) soil resistance normally 
exceeds the vertical uplift resistance, provided by the pipe’s weight (or submerged 
weight) and the soil cover. In this case, as Fig. 5.1 shows, the buried pipe moves up in 
the vertical plane, which in favorable circumstances, leads to emerging of the pipe out of 
the ground.

Ju and Kyriakides (1988) summarized the results of pervious studies on upheaval 
buckling phenomenon. They conclude, as shown in Figs. 5.2 and 5.3, that for both 
fictional and frictionless soils, the perfect geometry (i.e., zero out-of-straightness) does 
not possess a bifurcation load. In other words, the stable pre-buckling response and the 
unstable post-buckling response intersect only at an infinite value of axial load. 
Moreover, in a frictionless case, as shown in Fig. 5.2, the post-buckling response is totally 
unstable (Ju and Kyriakides, 1988). However, in a frictional case, as shown in Fig. 5.3, 
the post-buckling response is characterized by a minimum temperature rise, ATm, after 
which the post-buckling response becomes stable.

As both Figs. 5.3 and 5.3 show, in the presence of an initial out-of-straightness (i.e., 
imperfect geometry), the uplift response in characterized by a limit temperature rise, ATcr. 
Moreover, an initial temperature rise, AT;, is required to initially lift the pipe off the 
ground. Then upon reaching the critical temperature rise, ATcr, the pipe buckles. To 
follow the downward static equilibrium path requires a drop in temperature upon reaching 
ATcr, which does not normally occur for an actual pipeline. Thus, in reality, once the 
temperature reaches ATcr, the pipe snaps through dynamically to reach the upward, stable 
post-buckling curve (see Fig. 5.3).

5.3 THERMAL ANALYSIS SOLUTION

5.3.1 Introduction

The thermal analysis is formulated based on the isoparametric C1 beam element 
introduced in Chapter 2, the elastic-plastic constitutive relationships outlined in Chapter 
3, and the pipe-soil interaction model described in Chapter 4. The arc-length solution 
technique for applied loads, as discussed in Section 2.10.3, has been modified to be 
employed in the thermal solution. The details of the formulation are presented in the 
following sections.
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5.3.2 Thermal Load Vector

Temperature change, as loading condition, occurs independently from any other load, 
such as applied loads and ground settlement. Thus in this formulation, temperature is the 
only loading agent subject to variation. Moreover, the arc-length technique, introduced 
later in this chapter, also requires the temperature to be the only varying load. The 
temperature change is assumed to be uniform along the pipeline.

The contributions of the temperature change in the stiffness matrix and load vector 
are determined using the resulting thermal strain, E ? :

Assuming the equilibrium configuration has been obtained at time t corresponding 
to a temperature rise of *AT, the objective here is to find the equilibrium configuration at 
time t+At corresponding to an incremented temperature rise of ,+AtAT:

where AT is the increment of the temperature rise. Considering the virtual work equation 
expressed by Eq. (2.5), the incremental stress, tSjj becomes

,E j= a 'A T 6 ,J

where 1E? = The ij component of the thermal strain at time t

a  = Thermal expansion coefficient of the pipe material 
‘AT = The Temperature rise at time t

(5.1)

Kronecker delta
1 when i = j

,+At AT=*AT + AT (5.2)

(5.3)

This will add a thermal term, IT, to the equation of virtual work:

(5.4)

Whereby Equation (2.6) becomes

J ‘V J  'V  J  ‘V
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However, the term IT needs to be linearized and the stiffness and load contributions 

extracted.

As concluded in Section 2.6, only the longitudinal stress and strain need to be 
considered in the virtual work equation of the finite element formulation employed in this 
study. Therefore, also incorporating Eqs. (2.4b) and (5.2), thermal term, IT, can be

written as

IT = - a  'ATI tCEP 5ten d V CEP M n d 'V (5.6)

Since AT itself is an unknown to be determined in the iteration procedure, the second 
term in Eq. (5.6) is of the second order, and therefore, is dropped from the linearized 
equilibrium equation. Thus, retaining only its first term, Equation (5.6) reduces to

5 ,en d V (5.7)

Substituting for t en in Eq. (5.7) using Eqs. (2.64) and (2.68) yields IT as 

IT = - a  'AT ̂ ( 8 u ) f  J  (' D, {' B|-}+' D2 {' ])d'' s (5.8)

Thus, after linearization, IT contributes only to the load vector and not the stiffness

matrix. Moreover, Equation (5.8) indicates that the thermal load vector depends on the 
most recent geometry (through {‘Be ] and {'B^ ]) and the state of stress around the 
cross-section (through 1D, and 1D2). Therefore, unlike the reference load in an applied

load analysis, the thermal reference load varies as the pipe deforms and/or plastifies. 
Consequently, the thermal reference load is updated for each iteration within a load step.

5.3.3 Far-field Condition

In many cases of pipeline analysis, a characteristic length of an infinitely long pipe 
undergoes most of the transverse displacements and/or buckling. In these situations, it is 
computationally economical if only the characteristic length of the pipeline can be 
modeled by applying appropriate end boundary conditions. Far-field condition (Andrew
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Palmer and Associates, 1993) is the term referring to this end boundary condition that 
obviates the modeling of a very long length of pipeline.

The essence of far-field condition is to apply appropriate end axial forces given 
certain values of end axial displacements. It is assumed that the original pipe is infinitely 
long. However, since the axial friction dies down rapidly with increasing distance from 
the characteristic segment of the pipe, a long enough pipe can effectively be considered of 
infinite length for the far-field condition. Furthermore, it is assumed that the infinite 
lengths of pipe curtailed from the model are effectively straight and remain elastic 
throughout the analysis.

In the following derivation, the pipe is assumed to have an initial lay tension force of 
No, an internal pressure of p, and a temperature rise of AT. Moreover, as Fig. 5.4 shows, 
the left and right ends of the model are assumed to have axial displacements of uo and ul 
(subscript L referring to the model length), respectively. In a typical analysis, the two 
ends of the model move inwards (towards each other). Therefore uo and ut normally have 
positive and negative values, respectively. By the same token, Fo and Fl are normally 
positive and negative, respectively. In the analysis, each of these end forces is considered 
to be tangent to the pipe axis in the initial configuration. Thus the directions of the end 
forces remain constant throughout the analysis. The choice of the direction for the end 
forces as tangent to the pipe axis in the most recent configuration would constitute the 
end forces as follower forces, which are prone to cause solution instabilities.

Focusing on the infinitely long pipe segment to the right of the model, the axial 
equilibrium equation for the free body diagram in Fig. 5.4d can be written as

For the infinitely long pipe segments to the left and right of the model, which are 
assumed to remain elastic, the total axial force at a given cross-section can be obtained by 
summing all of the individual effects:

N + dN = N + fdx (5.9)

Hence

dN
dx

(5.10)

(5.11)
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where u is axial displacement along the pipe and e0 is the sum of the strains due to the 

temperature change, AT, and the internal pressure, p, if the pipe was free to deform 
axially (Yoosef-Ghodsi et al, 1994):

The solution from this point onward depends on whether or not the soil friction 
remains elastic all along the infinitely long segment. These cases are treated separately as 
follows.

(a) Elastic soil friction
When soil friction remains elastic all along the infinitely long segment, the friction at 

any point can be expressed as

(5.12)

Substituting for N from Eq. (5.11) into Eq. (5.10) yields

dx2
(5.13)

f = kL u (5.14)

Substituting for f from Eq. (5.14) into Eq. (5.13) yields

dx
(5.15)

where

(5.16)

The general solution for the differential equation (Eq. (5.15)) is 

u = C ie -vx+C 2evx (5.17)

By applying the following boundary conditions 

u(0) = uL (5.18a)

U(oo) =  0 (5.18b)

the solution turns into

(5.19)

Substituting for u from Eq. (5.19) into Eq. (5.11) yields
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N(x) = N0+EA (-\|/uLe ¥x- e 0) (5.20)

Hence, the axial force at the right end of the model becomes

Fl =N(0) = N0-EA(\|/ul +£0) (5.21)

Similarly, the axial force at the left end of the model can be shown to be

Fo = - No - EA(v u 0-eo ) (5.22)

(b) Elastic-plastic soil friction
The pipe axial displacement along the infinitely long segments, u, continually 

decreases with distance from the model ends. Thus, when the axial displacement at a 
model end exceeds the soil longitudinal yield displacement, ALy, a portion of the

infinitely long segment adjacent to the model end will have a plastified soil friction.
Therefore, over the length with plastic soil friction, specified by xo as per Fig. 5.4c, the 
soil friction is constant, at the yield value for the soil friction,

f = sign(uL)FLy for x < x 0 (5.23)

Substituting for f from Eq. (5.23) into Eq. (5.13) yields
, 2  p

—4  = (3 where (3 = sign(uL) ^  (5.24)
dx EA

The solution to the above differential equation is 

Bx2u=  — + C3x + C4 (5.25)

By applying the following boundary conditions

u(0) = uL (5.26a)

u(x0) = sign(uL)ALy (5.26b)

the constants, C3 and C4 become

C4 = u L (5.27a)

1C3= —  
xo

(  ■ , w  P X02>1sign(uL)ALy - u L (5.27b)
)

2

For x > x0 the soil friction is elastic. Thus, similarly to the elastic soil friction case, 

the governing differential equation is Eq. (5.15) with the solution:

u = C 5e"vx +C6evx (5.28)
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By applying the following boundary conditions

u(x0) = sign(uL)ALy (5.29a)

u(°o) = 0 (5.29b)

the solution turns into

u = sign(uL)ALy ev(Xy_x) (5.30)

The unknown xo is determined from the condition that the axial force, N, 
approaching from either side at x = xo should match up. Considering Eq. (5.11), this

condition require that —  have the same value at x = xo approaching from either side.
dx

Incorporating u from Eqs. (5.25) and (5.30) into this condition results in

px 0 +C 3 = -\|/sign(uL)ALy (5.31)

Substituting for C3 from Eq. (5.27b) into Eq. (5.31) yields
f  a 2 'N

PX0+-1
x o

s i g n ( u L ) A L y - u L — =-v|/sign(uL)ALy (5.32)

Choosing the positive root of the equation, xo can be expressed as

x0 = Slgn̂ ) ( > 2 ALy2 +2p(uL -sign(uL)ALy) -\|/A Ly j  (5.33)

which can be simplified to

X0 =  S I | ^ ( ^ 2|Ul | - AJ _ ¥ A J  ( 5 3 4 )

Using Eq. (5.11), the axial force at the right end of the model becomes

Fl =N(0) = No + EA (0 )-e 0 I (5.35)

Substituting for u from Eq. (5.25) into Eq. (5.35) gives

Fl  = N(0) = N0 + EA(C3 -  e0 ) (5.36)

The constant C3 can be obtained using Eqs. (5.31) and (5.34) as

C3 =-sign(uL)A/|p|(2 |uL| - A Ly) (5.37)

Substituting for C3 from Eq. (5.37) into Eq. (5.36) yields
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FL =N(0) = N0 -E A e0 -  sign (u L )(^EAFLy (2|u L | -  ALy)) (5.38)

Similarly, the axial force at the left end of the model can be shown to be

F0 =  “ N  o +  E A e o “  s i g n  ( u  o )(N/EAFLy (2|u 01 ~ ALy)) (5.39)

5.3.4 Solution Techniques

Three solution techniques were implemented for the thermal analysis. They are:
a) modified arc-length method
b) linearized arc-length method
c) displacement control method

These methods are described in the following subsections.

5.3.4.1 Modified Arc-Length Method

The modified arc-length method utilized in the thermal analysis has been devised 
based on the modified arc-length method used in the applied load analysis (as outlined in 
Section 2.10.3) with some enhancements. There are also differences due to the varying 
nature of the thermal reference load.

The temperature change at any time, AT, is assumed to be a multiple of a reference 
temperature change, 0. Thus at time t:

The sign change is because the thermal integral, IT, which contributes to the load vector 

only, is moved to the other side of the virtual work equation. Note that the above sum 
over all of the elements arranges the 12x1 vectors for the elements into a much larger- 
dimension vector for the whole pipeline. In this process, only the items relevant to the 
same degrees of freedom (at the junction nodes of adjacent elements) are added together.

'AT=*AX,0 (5.40)

where ‘AX, is the thermal load vector at time t. Hence the thermal reference load, P th, is 
obtained from Eq. (5.8) by substituting 0 for *AT and a sign change:

(5.41)
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If the option of far-field condition is applied at a pipe end, an axial force of 
magnitude E A a0  (in the same direction as the end axial force due to far-field condition)

needs to be added to the thermal reference load vector. This would account for the 
thermal effect of the infinitely long continuation of pipe not included in the model.

As an enhancement to the modified arc-length method of Section 2.10.3, an attempt 
is made to add the option of a non-dimensionalized constraint equation. The non- 
dimensionalizing process uses the norm of displacements and the load factor at the end of 
the first load step. Therefore, in practice, the non-dimensionalizing option can start from 
the second load step.

The non-dimensionalized constraint equation is built on the basis of the constraint 
equation expressed by Eq. (2.122) as

‘Aul, ‘Aui+1 r ‘aA,2̂ , 2
—  + 2~rrf=A1o <5 -42)Au 'All R2 'AA2

where 'Au and 'AA are the vector of displacements and load factor at the end of the first 
load step, respectively, Al0 is the arc length, and R is a normalizing factor for the ratio

'AA2 'AA2
-j— —— . For the first load step, the ratio -— ——  tends to be typically higher than 
Au Au Au Au

the rest of the load steps. Thus by choosing a value for R between zero and one, the ratio 
R 2 'A A2

-:— ——  can be made to be more representative of a typical load step.
Au Au

In order to use the same procedures and formulas as used for the modified arc-length 
method (see Section 2.10.3) for the non-dimensionalized option, the constraint equation 
expressed by Eq. (5.42) needs to be converted to a form similar to Eq. (2.122). 
Equation (5.42) can be rewritten as

. t , ’A**1 'Au t . A _ , \ O
A u ^  A u j+1 +  T i ^  AAj+i =  ( A u A u )A l0 (5.43)

This results in the following scaling of the load factor and arc length:
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’Au7 ]Au

'Â '  ^ w 1̂ 1 (5 '44)

Al2 = ('Aut 'Au)a102 (5.45)

where ’Ap,^, and Al are the new, scaled load factor and arc lengths, respectively.

In order to keep the temperature change constant while scaling the load factor, the 
reference temperature change, 0, needs to be scaled inversely:

6f = , R fo- 8 (5.46)
y Au ’Au

where 0F is the final value of the reference temperature change.

The new arc length value, Al, is determined by substituting ’Au and 'AA for ’AUj+] 

and lAAj+), respectively (note that Al cannot be obtained from Eq. (5.45) since Al0 is 

unknown itself):

Al = Au7 ’Au
R 2

J

(5.47)

Another feature implemented in the modified arc-length technique is the self- 
adaptive relaxation and tightening of the convergence tolerances. As convergence 
becomes more difficult (i.e., reaching a maximum number of iterations with no 
convergence), the first measure taken is to reduce the arc length. If convergence is not 
achieved before reaching the minimum arc length value, the tolerances are relaxed until 
convergence is obtained. The analyst can prescribe a limit to the extent the tolerances can 
be relaxed. The reverse is done when the solution seems to be carried on more easily. In 
other words, when the convergence criteria are met by a large margin, the tolerances are 
reduced accordingly.

5.3.4.2 Linearized Arc-Length Method

The basic difference between the linearized arc-length method and the modified arc- 
length method, described in the previous section, is that the constraint equation is 
linearized in the former to avoid solving a quadratic equation. This eliminates problems

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



associated with choosing the right root or dealing with the complex roots of a quadratic 
equation (such as Eq. (2.124), as discussed in Section 2.10.3).

Following Schweizerhof et al. (1986), the constraint equation can be expressed as

Note that, since the constraint equation is being linearized here, the original constraint 
equation will not exactly hold during the iterations and upon convergence. Thus, 
Equation (5.48) only signifies a relationship that will be enforced as closely as possible in 
a Newton iterative scheme. Hence, the function f will not be neglected in the following 
derivation. Considering Eqs. (2.114) and (2.115), the function f in Eq. (5.48) can be 
expanded in linear terms as

Substituting for duj+] from Eq. (2.118) into Eq. (5.50) gives the increment of the load 

factor, dX,j+1 as

The rest of the equations used in the linearized arc-length method are identical to those 
used in the modified arc-length method.

5.3.4.3 Displacement Control Method

The basic difference between the displacement control method and the arc-length 
methods is in the constraint equation they use (Ramm, 1980). The displacement control 
method is similar to the arc-length methods in other respects. The constraint equation for 
the displacement control method can be expressed as

f j+1 (Au ̂ , AX}+1 )= Au^, Au j+1 + CAX2j+1 -  Al2 = 0 (5.48)

( \ ( \ 9f j 3f:
V i(AuFi’A^j+i)= f j(Auj ’AXj)+ ^ - duj+i+ ^ 7 dXj+i= 0  (5-49)

This results in the linear equation:

2AuJ duj+) +2^AXj dX^, =- f j (5.50)

Auj du^j+CAXj
(5.51)
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w T AUj+1=A d (5.52)

where Ad is a prescribed value determining the size of the load step taken and wT is a

vector of carefully chosen weight factors. The weight vector can have zero members 
corresponding to the degrees of freedom that are intended to be excluded from the 
constraint equation. For example, in an upheaval buckling analysis, the analyst might 
choose to use only the transverse displacement of one node, which results in wT having

only one nonzero member associated with that displacement. If both displacements and 
rotation DOFs are to be included in the constraint equation, the weight factors can be 
chosen so as to compensate for the dimensional differences.

For the first iteration in a load step, incorporating Eq. (2.118) into Eq. (5.52) results
in

AX, wT Au{ + w T Au}1 =Ad (5.53)

This gives the initial value of the load factor change in the loading step as 

A d - w T Au!1
AX, =  T , (5.54)

w Au,

Thus, the iterations start with satisfying the constraint equation exactly. Having 
completed j iterations, the constraint equation for the j+ lst iteration the can be written by 
expanding Eq. (5.52) as

wT AUj+wT du^, = Ad (5.55)

Since the constraint equation has been exactly satisfied to his point, Equation (5.55) 
becomes

wT du^, =0  (5.56)

Substituting for du^, from Eq. (2.118) yields

dXj+, wT du ]+, + wT du" , = 0 (5.57)

This renders the increment of the load factor as
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The rest of the equations used in the displacement control method are identical to 
those used in the preceding arc-length methods.

5.4 VERIFICATION EXAMPLES

Three examples are presented in the following subsections to verify various aspects 
of the thermal analysis formulation.

5.4.1 Example 1: Elastic Buckling of Pressurized Pipe

In order to compare the ABP response with the theoretical buckling temperature, first
the theoretical elastic buckling temperature for a pressurized pipe needs to be established.
Internal pressure, by itself, is a destabilizing factor because, as discussed in Section 2.8.3, 
the internal pressure applies a lateral load, qp, onto a bent pipe (see Eq. (2.87)).

Figure 5.5 shows an initially-straight pipe of length L and pinned-end supports 
subjected to an internal pressure of p. The goal here is to determine the critical value for 
p (i.e., the internal pressure causing buckling of the pipe). The bent pipe in Fig. 5.5 
shows the buckled shape of the pipe, for which the equilibrium equation is expressed by 
equating the internal and external work values:

~J  qP y dx =\J  E l(y ')2 dx (5.59)

E xternal W ork  In ternal W ork

where from Eq. (2.87), qp can be expressed as

qP=P0 /  (5-60)

Note that at the initiation of buckling the deformations are small, and hence, the pipe 
curvature, 0, has been replaced with y "  (where y is the pipe deflection). Also it is

reminded that P0 = ttRj p , in which Rj is the pipe internal radius.

A close approximation for the buckled shape of the pipe can be expressed as 
TEX

y = y0 sin—  (5.6i)

Substituting for qp and y from Eqs. (5.60) and (5.61), respectively, into Eq. (5.59) yields
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(5.62)

Hence,

(Po)„= Ell (5.63)

E uler B uck ling  Load

from which, the critical pressure is obtained as

_(P0)cr_ JtEI
r ~  itRj2 _ (Rj L)2

(5.64)

Equation (5.63) implies that, for a simply supported pipe, the buckling occurs when 
P0 ( = 7tRi2p) reaches the Euler buckling load. It is also noted that, when a portion of a

very long pipe is being considered (i.e., plane strain condition), the Poisson effect of the 
hoop stress due to the internal pressure partially relieves the destabilizing effect described 
above.

Figure 5.6 shows the layout of the pipe considered in this example. The pipe is 
324.43 mm in outside diameter, 6.477 mm in wall thickness and 20 m in length. The 
model consists of six elements of equal length and 13 nodes. The simply-supported pipe 
is assumed to have far-field condition at the right end. This means that as the temperature 
rises, an axial load is applied at the right end of the model, simulating the effect of an 
infinitely long pipe segment. The pipe is assumed to be elastic with an elastic modulus of 
200,000 MPa and a thermal expansion coefficient of 0.00001 per °C. Since this is a 
buckling problem being analyzed by a finite-element procedure, an initial imperfection 
needs to be applied to the model. To that purpose, the pipe is given an out-of-straightness 
rising linearly from zero at each end to 0.02 mm at the midspan of the model.

The critical temperature change for the elastic pipe is determined by superimposing 
the contributions of the temperature change, the destabilizing effect of internal pressure, 
and the Poisson effect. Thus,

E I ( l l  =  A E a A T  +  n R * v  _ A v f ' T I l  (5-65)
> \ — 2 ^  T em pera tu re  E ffect D estabaliz ing  P re s su re  '------- 2 ^ --------- 2

E u ler B uck ling  L oad  E ffect Poisson E ffect

Hence, the critical temperature change is obtained as
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Two values of internal pressure are used in this example: 5 and 10 MPa. Equation (5.66) 
gives the critical temperature rise for these pressure values (5 and 10 MPa) as 19.783 °C 
and 8.374 °C, respectively.

Figure 5.7 shows the temperature change vs. midspan deflection response for the two 
pressure values in comparison with the theoretical values of critical temperature change. 
It can be seen that, using far-field condition, the finite element solution captures the 
critical temperature change precisely.

5.4.2 Example 2: Raoof and Maschner (1993) Test

Example 2 is an attempt to reproduce the results of an upheaval buckling experiment 
carried out by Raoof and Maschner (1993 and 1994). They tested a 90/10 Copper-Nickel- 
Iron (Kunifer 10) annealed pipe, 16 mm in outside diameter, and 1.05 mm in wall 
thickness. The pipe had a modulus of elasticity of 131,000 MPa and a thermal expansion 
coefficient of 0.000017 per °C. As Figure 5.8 shows, the specimen was 7 meters long and 
had a ’point’ or ’prop’ imperfection of 2 mm at the midspan. The overburden load 
(including the pipe and fluid weight) amounted to 0.009 N/mm. The specimen was 
heated gradually by pumping heated oil through it.

Since the buckling is expected to be elastic, the pipe is assumed to be elastic in the 
analysis. Moreover, since the relative pipe-soil displacements are expected to be small, 
the soil springs are assumed to be elastic. Based on the pipe embedment conditions in the 
experiment, the following stiffness values for the soil springs are considered:

♦ Bearing spring stiffness =100 N/mm/mm (almost rigid)
♦ Longitudinal spring stiffness = 0.003 N/mm/mm
♦ Uplift spring stiffness = 0 (virtually no spring)

Figure 5.9 shows the temperature change vs. midspan deflection response for the 
above model in comparison with the experimental response obtained by Raoof and 
Maschner (1993 and 1994). These authors also developed a closed-form theoretical 
response based on the works by Hobbs and Liang (1989) and Ballet and Hobbs (1992) as 
shown in Fig. 5.9. In the ABP model, the prop imperfection was generated by an initial
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settlement analysis so as to account for the pipe residual stresses in the propped 
configuration. The pipe was discretized by 28 elements in the ABP model.

Figure 5.9 indicates that the specimen snaps dynamically upon reaching the critical 
temperature, settling back onto a post-buckling equilibrium path. Both the ABP 
response and the closed-form theoretical response closely approximate the critical 
temperature change. Beyond buckling, the specimen, as expected, snaps through rather 
than following the static equilibrium paths of theoretical solutions. Nevertheless, the two 
theoretical solutions agree very well on the descending branch down to the minimum 
point. The parting of the two solutions beyond the minimum point may be due to the fact 
that the closed-form solution is based on small deformations -  an assumption becoming 
less valid as one proceeds up the ascending branch. However, a close agreement is 
observed between the ABP and experimental responses along the ascending post- 
buckling branch above the critical buckling temperature change.

5.4.3 Example 3: Validation by Beams on Elastic Foundation Theory

In order to compare the ABP response with the theoretical buckling temperature for 
an embedded pipe, first the theoretical buckling temperature for a beam on elastic 
foundation needs to be established. The critical value of the axial compressive force for a 
simply-supported beam on elastic foundation, as show in Fig. 5.10, can be expressed as 
(Hetenyi, 1974)

/  \2 ( T \ 2nit + k L
— —
L n7tV / V /

where k is modulus of the foundation and n is the number of half-waves that form after
buckling. For given values of k, L, and El, the value of n is determined in such a way as 
to make the above expression for NCT a minimum.

Figures 5.11 and 5.12 show the layout of the models considered in this example 
(Models A and B). Both pipes are 324.43 mm in outside diameter and 6.477 mm in wall 
thickness. The pipes are assumed to be elastic with an elastic modulus of 200,000 MPa 
and a thermal expansion coefficient of 0.0000116 per °C. Models A and B are 10 and 18 
meters long, and discretized into 6 and 9 elements, respectively.

The critical load of Eq. (5.67) is based on the assumption that the foundation reacts 
in both bearing and uplift directions (i.e., both lateral directions). Thus, in order to model
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a foundation modulus of 1 N/mm/mm, both bearing and uplift springs are given the 
stiffness value of 1 N/mm/mm. Moreover, following the assumptions of the theory of 
beams on elastic foundation leading to Eq. (5.67), the lateral springs are considered 
elastic and no longitudinal springs are included in the ABP models.

For a buckling problem to be analyzed by a finite-element procedure, an initial 
imperfection needs to be applied to the model. Figures 5.11 and 5.12 show the out-of- 
straightness patterns applied to Models A and B, respectively.

The simply-supported pipe is assumed to have far-field condition at the right end. 
This means that as the temperature rises, a compressive axial load proportional to the 
temperature change is applied at the right end of the model:

Hence, The critical (i.e., buckling) temperature is obtained by substituting N from 
Eq. (5.68) into Eq. (5.67) as

Based on Eq. (5.69), ATCT is minimum at n = 2 (i.e., 2 half-waves) for Model A, 

resulting in ATcr = 599.0 °C. For Model B, ATcr is minimum at n = 3 (i.e., 3 half­
waves), which results in ATcr = 541.8 °C .

Figures 5.13 and 5.14 show the temperature change vs. maximum deflection 
response for the Models A and B, respectively, in comparison with the theoretical values 
of critical temperature change. It can be seen that the finite element solution captures the 
critical temperature change in accordance to the beams on elastic foundation theory. 
Figures 5.15 and 5.16 show the final deformed configurations of the pipe in Models A 
and B, respectively. The number of half-waves for Models A and B is two and three, 
respectively. These match the numbers of half-waves predicted for the two models by the 
beams on elastic foundation theory.

N = AEaAT (5.68)

E A a  n7t
(5.69)
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Fig. 5.2 Typical Temperature-Displacement Relationship for Frictionless Trench
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Fig. 5.6 Example 1: Elastic Buckling of Pressurized Pipe
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CHAPTER 6. CASE STUDIES FOR THERMAL BUCKLING
ANALYSIS

6.1 INTRODUCTION

This chapter presents three case studies as examples demonstrating the application of 
thermal analysis. The first case study is a parametric study, whereby a single parameter is 
varied in order to study the effect of that variation. The second and third case studies 
stem from the investigations carried out on actual pipelines having undergone thermal 
buckling. The pipelines investigated in the second and third case studies are onshore and 
offshore pipelines, respectively.

Case Study 1 is a parametric study on the variation of the initial out-of-straightness 
(IOS) for a pipeline whose layout is show in Fig. 6.1. The pipe is 900 m long and has 
pinned ends. The out-of-straightness is applied over the middle 100-m length of the 
model in the shape of a cosine curve:

where y0 is the initial y coordinate of an arbitrary point located at coordinate x along the 

humped segment, and Lj is the length of the humped segment (1 0 0  m here).

The pipe and ground specifications are as follows:
- OD = 762 mm, Wall Thickness = 8.3 mm
- Elastic-plastic pipe material, SMYS = 483 MPa, E = 205,000 MPa, V = 0.3
- Thermal expansion coefficient = 0.0000116 per °C
- Pipe self-weight =1.51 N/mm
- Internal Pressure = 7.6 MPa
- Depth of cover = 0.8 m
- Effective Soil Density = 7 kN/m3 (Saturated Soil Condition)
- Bearing spring stiffness = 0.26 N/mm/m
- Bearing spring yield Longitudinal = 20.0 N/mm
- Longitudinal spring stiffness = 0. 8 N/mm/mm
- Longitudinal spring yield Longitudinal = 8.0 N/mm

6.2 CASE STUDY 1: A PARAMETRIC STUDY

(6.1)
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The input true stress-strain curve, as shown in Fig. 6.2, is obtained from the Ramberg- 
Osgood equation:

a
e = i + e »

/  \ n a
(6 .2)

y )

where
£ = logarithmic (true) strain 
<7 = Cauchy (true) stress 
Gy= SMYS (= 483 MPa)
£py = true plastic strain at SMYS, obtained from

c v
£nv =0.005---- -py E

n = Ramberg-Osgood exponent, obtained from 

20.9n =-

200c v
-1

(6.3)

(6.4)

)
The constant 20.9 in Eq. (6.4) has been obtained through fitting the Ramberg-Osgood 
equation to a large number of stress-strain curves obtained from the tension coupons at 
the University of Alberta.

The uplift spring is characterized by the force-displacement curve shown in Fig. 6.3. 
The curve has a descending branch to account for the loss of the uplift spring force as the 
pipe moves drastically upwards.

Figure 6.4 shows the temperature change vs. maximum deflection response of the 
above model for different IOS values, ranging from 0.2 m to 6 m. As expected, the 
critical temperature change drops as the IOS increases. The minimum point in the post- 
buckling response occurs at a maximum deflection of around 770 mm for all of the IOS 
values. Thus, the maximum deflection corresponding to the minimum point seems to be 
independent of the IOS. However, the temperature change associated with the minimum 
point, ATm, seems to be of small variation only for the IOS values under 1 m. For the 
IOS values over 0.7 m, the value of ATm increases rapidly with increasing IOS. This 
increase in ATm in combination with the decrease in the critical temperature, ATcr, as IOS 
increases, results in practically disappearing the maximum point associated with the 
critical temperature. This can be seen in Fig. 6.4 for the IOS values above 3 m.
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The ascending branches of the post-buckling responses seem to be clustered together 
only for the IOS values up to 1.5 m. For the IOS values above 1.5 m, the post-buckling 
ascending branch moves higher (i.e., higher temperature change values) as IOS increases. 
It can also be observed that the post-buckling ascending branches for the IOS values up to 
4 m are by and large parallel to each other.

The deformed shape of the pipeline in all cases follows the same pattern: the initial 
imperfection grows over the initial imperfection length as the solution progresses. An 
example for this is presented in Fig. 6.5, where the final deformed configuration of the 
pipe is displayed for the IOS values of 0.2 and 1 m.

6.3 CASE STUDY 2: AN ONSHORE PIPELINE

6.3.1 Introduction and Objectives

Case Study 2 summarizes the results of an investigation carried out on an onshore 
gas pipeline in Northern Alberta after it had undergone thermal upheaval buckling. The 
original configuration of the pipe was not exactly known, however it was assumed to be 
essentially straight. Although no site-specific soil data was provided, the pipeline 
segment containing the buckle was known to be mostly buried within muskeg areas, 
which turn into marshlands in the summer. Figure 6.6 shows the profile of the buckled 
segment. It can be seen that the pipe lifted over a length of about 100 m, with 40 meters 
of it emerging out of the ground. The depth of the soil cover to the top of the pipe is 
estimated to be on average 0.9 m.

The pipe was a 30-inch line (OD = 762 mm) with a wall thickness of 8.3 mm. The 
installation temperature (in the winter time) was estimated at about -30 °C, and the 
product temperature (and hence, the pipe temperature) in the buckled segment was 
estimated at about 5 °C. Therefore, the buckling was assumed to have occurred at a 
temperature change value of about 35 °C. The average operational pressure for the 
pipeline was given as 7.6 MPa.

The objectives of this study are outlined as follows:
■ To reproduce the buckle formation numerically by trying a variety of soil 

properties, in order to shed light on the circumstances under which the buckle 
might have formed
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■ To determine the maximum tensile and compressive strains in the buckled pipe 
(current configuration)

■ To determine the maximum tensile and compressive strains in the pipe as the 
temperature change reaches the design value (75 °C)

■ To determine the effects of placing a berm over the buckled segment

6.3.2 Analytical Model

The layout of the model used in the analysis is shown in Fig. 6.7. An IOS value of 
0.3 m over 100 m (the buckle length) was assumed to be reasonable. The pipe material 
properties, self-weight, and thermal expansion coefficient are the same as those for the 
pipe in Case Study 1. Since the mechanical properties of muskeg soils are not well 
defined, as a starting point, the soil was assumed to be a saturated cohesive soil with an 
effective density of 6 kN/m3 and an undrained shear strength of 3.5 kPa. The 
corresponding soil spring values are obtained using the equations presented in Sections 
4.2.1, 4.2.2, and 4.2.3 as given in Table 6.1.

Bearing Spring
Stiffness (N/mm/mm) 0.26
Yield Force (N/mm) 19.7

Longitudinal Spring
Stiffness (N/mm/mm) 2.36
Yield Force (N/mm) 11.8

Uplift Spring
Stiffness (N/mm/mm) 0.025
Yield Force (N/mm) 3.24

Table 6.1 Initial Properties of Soil Springs

Since this work was done as the far-field boundary condition was being developed, it
was decided not to use the far-field option. Thus a very long length (900 m) was
considered for the model to represent an infinitely long pipeline. The subsequent
examination of the axial strains at the ends of the model upon completion of the analyses
confirmed the adequacy of the model length (the axial strain values should be close to 
e0 as given by Eq. (5.12)).

The soil properties are varied within reasonable ranges until a solution (called the 
target solution) meets both following criteria:

1) The buckling must occur at a temperature rise of about 35 °C.
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2) The deformed model configuration after snap-through must match the current 
buckled pipe configuration (as shown in Fig. 6.6).

The model employed for the target solution is then used for the rest of the tasks as 
outlined above in the objectives.

6.3.3 Analytical Results

Over 30 analyses were carried out for different values of soil density and longitudinal 
and uplift spring properties. As an example for the soil property variations in search of 
the target solution, the final fine-tuning is presented herein. The final parametric 
variation involves three different values of uplift spring yield force resulting in the three 
different force-displacement relationships as shown in Fig. 6.8. The other soil properties, 
which are identical for the three solutions, have updated values as follows: the effective

y
soil density is 7 kN/m , the longitudinal springs stiffness and yield force are 0.8 N/mm 
and 8 N/mm, respectively, and the bearing springs properties remain unchanged (the same 
as those in Table 6.1). Figure 6.9 shows the temperature change vs. maximum deflection 
response for the three solutions corresponding to the three different uplift spring 
properties.

As Figure 6.9 shows, the critical temperature change increases as the uplift spring 
yield force, FUy, increases. Moreover, the descending post-buckling branches for the 
three solutions are parallel to each other, ending at minimum points, all occurring at 
almost the same midspan deflection value of 0.6 m. Starting off from the minimum 
points, the ascending post-buckling branches for the three solutions seem to be 
proceeding closely to each other. Thus, all the three solutions satisfy the second criterion 
for the target solution to the same degree. However, only the solution with Fuy =0.017 
N/mm seems to meet the first criterion, and therefore, chosen as the target solution.

As Figure 6.10 shows, the target solution closely approximates the actual buckle 
configuration at the temperature change of around 35 °C. Note that, since the solution did 
not produce an output point close enough to the temperature change of 35 °C, the 
deformed configurations corresponding to the data points immediately before and after 
the temperature change of 35 °C are shown in Fig. 10. The maximum tensile and 
compressive strain values at 37.4 °C are 0.18% and -0.12% , respectively, both 
occurring at the crest of the buckle. Furthermore, both strain values remain well below 
critical values (typically around 0.5%).

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Although the axial strains at the ends of the model were close to the e0 as obtained

from Eq. (5.12) for temperature changes up to 37.4 °C, the agreement seemed weaker for 
the temperature changes around 75 °C: axial strain values of about -0.02% vs. an 
e0 value of about -0.04% . Since the far-field option was operational by the time these

results were obtained, it was decided to reanalyze the same target model with the only 
change being the use of far-field condition at the ends instead of pinned ends. Figure 
6.11 shows the temperature change vs. maximum deflection response of the target model 
for the two end boundary condition options. It can be seen that the response for the far- 
field option closely follows the response for the pinned-pinned option well past 75 °C (the 
design temperature change).

The two solutions are also compared in terms of their strain response for the top and 
bottom fibers of the pipe at temperature changes of about 35 °C and 75 °C in Figs. 6.12 to 
6.15. The respective strain responses for the two boundary conditions accord well, 
especially in the case of the strain responses at the temperature change of about 75 °C. 
The larger difference between the strain responses at the temperature change of about 
35 °C is mainly due to the fact that the response for the pinned-pinned option corresponds 
to a slightly higher temperature change value than does the response for the far-field 
option (37.4 °C vs. 36.1 °C). For the solution using the far-field option, the maximum 
tensile and compressive strain values along the pipe at the temperature change of 36.1 °C 
are 0.18% and -0.11% , respectively (as compared to 0.18% and -0.12% , respectively, 
for the pinned-pinned option, as mentioned above).

For the model with pinned ends, the maximum tensile and compressive strain values 
at 75.1 °C are 0.41% and -0.38% , respectively, both occurring at the crest of the buckle. 
For the model using the far-field option, the corresponding strain values at 74.5 °C are
0.41% and -0.37% , respectively, also occurring at the crest of the buckle. Thus, even at 
the design temperature of 75 °C the strains remain under 0.5%.

To remedy to the buckle, it was assumed that placing a proper berm over the buckled 
section would straighten the buckled segment. The berm was assumed to be placed over 
a 200-m length of pipe centering on the crest of the buckle. The berm was considered to 
be 1.4 m high and have a density of 17.5 kN/m3. The analysis was carried out using the 
target model with pinned ends up to a temperature change of 37.4 °C (current condition). 
Then the berm was included as an added weight over the middle 200-m length of the
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model in a restart analysis. The results showed that, upon placing the berm, the buckle 
would snap down and straighten out. The maximum tensile and compressive strain 
values at 37.4 °C after straightening of the pipe were 0.002% and -0.037%, respectively. 
Then the temperature was raised to about the design value. At a temperature change of 
77.9 °C, the pipe remained essentially straight with the tensile strains all diminished. 
However, the maximum compressive strain increased to a value of -0.091%, still well 
below any critical value for the pipe.

6.4 CASE STUDY 3: AN OFFSHORE PIPELINE 

6.4.1. Introduction

Following the failure of an offshore oil pipeline near the coast of Guanabara Bay in 
January of 2000, a study was carried out in order to investigate the circumstances that led 
to the failure. As part of the study, some thermal analyses were carried out using the 
computer program ABP in order to simulate the snaking phenomenon that the pipe 
experienced prior to the leak. The buckles with an amplitude of about 4 m are considered 
to have formed at a temperature change value of around 75 °C.

This investigation will shed some light on the circumstances under which the 
deformation took place. Most importantly, it will determine the strength provided by the 
surrounding soil. In addition, the strains obtained from the numerical solutions will be 
compared to the wrinkling strains expected for the pipe based on the University of 
Alberta’s research results. Moreover, the analysis will yield the approximate value of the 
temperature differential at which the wrinkle started to form. The numerical model for 
the thermal analysis and the results are presented in the following sections.

The study of the fracture caused by the cyclic thermal loading is outside the scope of 
this work. There is an ongoing study at the University of Alberta on the topic of pipeline 
fracture under cyclic loading. Some insight to the failure phenomenon at Guanabara Bay 
should be gained from the results of that research.

6.4.2 Analytical Model

Figure 6.16 shows the layout of the numerical model. The initial out-of-straightness 
is chosen such that the S-shape buckling mode, similar to that of the actual pipe, is 
triggered. As Fig. 6.16 shows, the imperfections are assigned in triangular shapes, with a 
peak of 50 mm over a length of 20 m. Note that the vertical scale has been exaggerated
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in order for the initial imperfections to be visible. In Fig. 6.16, the letter F at the supports 
signifies the usage of far-field condition at the ends of the model. This means that at any 
configuration of the pipe during the solution, an axial force will be applied at the ends of 
the model to mimic the effect of infinitely long stretches of elastic pipe beyond the ends.

In the finite element model, the pipe is discretized into 54 elements, each two meters 
long. The pipe size and operating pressure were given as follows:

■ D = 406 mm
■ t =7.9 mm
■ Operating Pressure = 3.4 MPa

The engineering stress and strain values provided for the pipe material were converted to 
true stress and logarithmic (true) strain measures to be used in the input for the analysis. 
The resulting stress-strain curve is plotted in Fig. 6.17.

The main variants in different solutions are the soil spring values. The objective 
here is to change the soil properties until an acceptable solution is achieved. An 
acceptable solution is one that produces an amplitude buckle of about 4 m at a 
temperature change value of around 75 °C. The results of four of the total 14 solutions 
are presented here. The selected solutions and their respective soil spring values are 
listed Table 6.2.

Selected Transverse Springs Longitudinal Springs
Solution Stiffness Yield Stiffness Yield

[N/mm/mm] [N/mm] [N/mm/mm] [N/mm]
b5 0.02 1 0.2 2
b6 0.02 1 0.13 1.3
b8 0.02 1 0.1 1
b9 0.01 0.5 0.1 1

Table 6.2 Soil 5roperties for Selected Solutions
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6.4.3 Analytical Results

The results of the analyses are presented in the following subsections. They include 
the characteristic curves for the solutions, the longitudinal strains and how they compare 
to the wrinkling strain, and finally some plots of the results for the best solution.

6.4.3.1 Characteristic Curves

Figure 6.18 shows the temperature change vs. buckle amplitude for different 
solutions. These are called characteristic curves because they characterize the response 
of each solution. For all of the solutions, there is an early peak in temperature change, 
which corresponds to the overall buckling of the pipe into an ’S’ shape.

Similarly to the previous examples and case studies, the analytical model used in this 
investigation traces the path of static equilibrium. To follow the descending portion of 
the static post-buckling response, the temperature needs to drop in a controlled manner 
upon buckling, which normally do not materialize in the field. Thus, in reality, upon 
arriving at the critical temperature change, the pipe undergoes a dynamic deformation 
until it ends up on the ascending part of the post-buckling response. The snap-through 
phenomenon is shown by the horizontal black arrows in Fig. 6.18. Thus, the pipe is 
expected to gain its static equilibrium on the stable post-buckling path at the same value 
of temperature change as the peak point. Any further temperature increase results in 
tracking along the ascending branch of the characteristic curve.

Since the maximum temperature differential for the buckled pipe has been specified 
as 75 °C, an acceptable solution must have a peak temperature change of less than 75 °C. 
As Fig. 6.18 shows, for all of the selected solutions, the buckling temperature is below 
75 °C.

According to Table 6.2, Solutions b5, b6, and b8 all have the same transverse spring 

properties, but different longitudinal spring properties. Solution b9, on the other hand, 

has a weaker transverse spring than do the other three solutions, but the same longitudinal 

spring properties as for Solution b8. Thus, the following observation can be made from 

the curves of Fig. 6.18:
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i. The same transverse spring properties for Solutions b5, b6, and b8 result in the same 
buckling temperature of 61 °C for all these solutions. The weaker transverse spring 
for Solution b9, however, results in a lower buckling temperature of 42 °C for 
Solution b9.

ii. The same longitudinal spring properties for Solutions b8 and b9 result in closeness 
of their ascending post-buckling response, despite their different transverse spring 
properties.

iii. Out of the four solutions, only Solutions b8 and b9 yield an amplitude buckle of 
about 4 m at a temperature change value of around 75 °C. Therefore, considering 
the above observations, the longitudinal springs must have a yield value of about 1 
N/mm, and the transverse springs must have a yield value of about 1 N/mm or 
lower. Note that, in contrast to the yield values of the soil springs, the stiffness 
values of the soil springs have little effect in the post-buckling response of the pipe.

Figure 6.19 shows the deformed shape of the pipe for all of the solutions at 
configurations similar to the actual configuration of the failed pipe (i.e., amplitude buckle 
of 4m). Obviously, each solution produces that configuration at a different temperature 
value. As shown in Fig. 6.19, Solutions b5, b6, b8, and b9 reach that configuration at 
temperature increases of 108.4 °C, 88.3 °C, 77.8 °C, and 75.2 °C, respectively. Since only 
Solutions b8 and b9 can successfully simulate the field conditions, they will be the focus 
of the following sections for presenting the rest of analytical results.

6.4.3.2 Longitudinal Strain Values

Figure 6.20 shows the maximum and minimum values of the top and bottom fiber 
strains for Solutions b8 and b9. The maximum and minimum strain values always occur 
near the crests of the deformed S-shape where plastic hinges form at large deformations 
(see Fig. 6.19).

As Fig. 6.20 shows, at a given value of temperature change, Solution b8 produces 
slightly larger strains. However, the similar strain quantities for the two solutions are not 
far apart. At the temperature increase of 75 °C, the Solutions b8 and b9 produce 
compressive strains of 1.9% and 2.3%, respectively.

Extensive research has been carried out on the topic of wrinkling strains in pipelines 
at the University of Alberta for the past 10 years. Based on the results of this research, 
the wrinkling strain for this pipe, given its size and internal pressure, is estimated to be
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around 1%. This puts the current strain (about 2%) well above the wrinkling strain. 
Thus, extensive wrinkling is expected in the real pipe.

As for the initiation of the wrinkles, Solution b8 is expected to wrinkle during the 
snap-through at a temperature increase of about 61°C, where the maximum compressive 
strain jumps from 0.13% to 1.5% (i.e., past the wrinkling strain). For Solution b9, 
however, the maximum compressive strain jumps from 0.09% to only 0.23% in the snap- 
through. Here the wrinkling starts at a temperature increase of about 59 °C as the solution 
tracks along the stable post-buckling path. Ironically, the temperature differentials 
associated with the initiation of wrinkling for two solutions are very close to each other 
(61 °C vs. 59 °C).

6.4.3.3 More Results for Solution b8

Since Solution b8 produces slightly larger strains, it poses a more critical scenario. 
Thus, the rest of the results presented herein belong to Solution b8.

Figure 6.21 shows the deformed shape of the pipe for a few equilibrium 
configurations along the path of static equilibrium for Solution b8 (as depicted in 
Fig. 6.18). The first curve corresponds to the peak point in the characteristic curve (i.e., 
the point of overall buckling). The second curve in Fig. 6.21 corresponds to the 
subsequent minimum point. The next three curves correspond to three points along the 
ascending part of the post-buckling response ending with a configuration comparable to 
the actual pipe deformed shape (i.e., a buckle amplitude of 4 m at a temperature change of 
77.8°C). These curves show the development of the plastic hinges at the crests of the S- 
shape pipe configuration.

Figure 6.22 shows the variation of curvature along the pipe for the configuration at 
the temperature change of 77.8°C (which has a buckle amplitude of 4 m). Figure 6.23 
shows the variation of top and bottom strain for the same configuration. As expected, 
both figures display spikes at the plastic hinges developing at the crests of the S-shape 
pipe configuration.

6.4.4 Conclusion and Summary

The analytical model developed in this study successfully simulated the snaking 
phenomenon that the failed pipeline at Guanabara Bay experienced. The soil spring
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values were varied until acceptable solutions were obtained. Acceptable solution is 
defined as a solution that produces an amplitude buckle of about 4 m at a temperature 
change value of around 75°C (i.e., matching the field conditions). It was concluded that 
the longitudinal springs probably had a yield value of about 1 N/mm, and the transverse 
springs probably had a yield value of about 1 N/mm or less.

Based on the research on the wrinkling strains carried out at the University of 
Alberta, the wrinkling strain for the pipe is estimated to be around 1%. This puts the 
current analytical strain (about 2%) well above the wrinkling strain. Thus, extensive 
wrinkling is expected to be seen in the pipe, as is the case in the field. In addition, the 
temperature differential associated with the initiation of wrinkling is expected to have 
been around 60°C.

The study of fracture caused by the cyclic thermal loading is outside the scope of this 
work. The ongoing study at the University of Alberta on this topic might shed some light 
on the fracture phenomenon at Guanabara Bay.
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CHAPTER 7. SUMMARY AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

The main objective of this work was to develop a rigorous finite element model to 
study the behavior of buried pipelines, in general, and the thermal buckling of pipelines, 
in particular. The resulting finite element model was implemented in the computer 
program ABP (Analysis of Buried Pipelines). A summary of the study is outlined below:

1) A new two-dimensional, elastic-plastic, isoparametric C1 beam element was 
developed that is capable of modeling large displacements and finite strains. In order 
to apply this element to pipeline analysis, it was equipped with features such as soil 
springs and internal pressure loading. An updated Lagrangian formulation was 
employed in the context of virtual work equation in order to establish the equilibrium 
equations. The C1 beam element follows the Bernoulli’s assumption, whereby the 
shear deformations are neglected. The three-node element has four degrees of 
freedom pre node: two displacements and two displacement derivatives in the global 
x and y directions. Fifth order Hermitian shape functions were developed for 
interpolating both coordinates and displacements in both global x and y directions.

2) It was shown that the hoop strain and the radial displacement contributions (due to 
internal pressure) can be dropped from the internal and external virtual work, 
respectively, leaving only the longitudinal effects. As a result, only the longitudinal 
stress and strain needed to be considered in the virtual work equation of the finite 
element formulation.

3) The load and stiffness contributions of internal pressure were rigorously derived and 
implemented in the model.

4) Since unlike traditional beam elements, the C1 beam element does not use rotation as 
a degree of freedom, the application of concentrated moments and modeling of fixed 
supports (i.e., moment constraints) are not as straight-forward as they are in the case 
of traditional beam elements. However, the effects of concentrated moments or 
moment constraints were successfully broken down in terms of the derivative 
degrees of freedom at the nodes involved.

5) Modified arc-length method was used in order to carry out the incremental-iterative 
procedure for solving applied load problems. As an example for such problems, the 
classic elastica problem was analyzed. The finite element model was able to
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replicate the theoretical elastica response using appropriate axial stiffness to bending 
stiffness ratio. This not only verified the element, but also demonstrated the power 
of the element as only three elements were used in the model.

6) An elastic-plastic material model developed using the von Mises yield criterion, 
normality flow rule, and a mixed strain-hardening rule (a mix of isotropic and 
kinematic hardening rules). The resulting constitutive relationship between true 
stress and strain measures were modified to obtain the constitutive relationship 
required for the pipeline-beam element in an updated Lagrangian formulation (as 
well in a total Lagrangian formulation).

7) A pipeline-soil interaction model was developed using soil springs on the basis of 
the assumption for the classical Winkler foundation. An elastic-perfectly plastic 
force-deformation constitutive relationship was used to model the bearing, uplift, 
transverse (for a horizontal analysis), and longitudinal soil springs. A second type of 
constitutive relationship was also implemented for the uplift spring ending with a 
descending (or softening) branch. This takes into account the loss of the uplift spring 
force as the pipe moves drastically upwards in upheaval buckling analyses.

8) A full Newton-Raphson iterative method was utilized for solving settlement 
problem. The pipeline-soil interaction model was verified by comparing the results 
of ABP for a zone settlement problem to those of PIPLIN HI. Moreover, the C1 
beam element proved to be superior to the beam element of Zhou and Murray 
(1993).

9) A thermal analysis formulation was developed in order to analyze thermal buckling 
phenomena such as upheaval buckling and snaking. The far-field condition, 
simulating infinitely long continuation of the pipeline, was derived and implemented 
in the formulation. The thermal formulation was verified through three examples 
comparing the finite element results with theoretical and/or experimental 
counterparts.

10) Three case studies demonstrated the application of thermal analysis. The first case 
study was a parametric study with the initial out-of-straightness as the variant. The 
second and third case studies stemmed from the investigations carried out on actual 
pipelines having undergone thermal buckling.

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH

Although the results of this research project satisfy most of practical applications,
there is still room to expand the model to cover yet more practical cases. Furthermore,
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some of the fundamental assumptions in this study can be re-examined. Some specific
recommendations are outlined below:
1) The Bernoulli’s assumption, whereby the shear deformations are neglected, needs to 

be evaluated for practical cases. This might be of more necessity for pipelines 
subjected to zone settlement where the settlement zone is relatively short.

2) Pipelines can undergo substantial ovalization as they bend. It might be of interest to 
account for ovalization, albeit in a simplified way, in the analysis.

3) The internal pressure is assumed to be an elastic loading applied at the beginning of 
the analysis. However, it would be of practical interest to be able to vary (increase or 
decrease) the internal pressure as a load step at any point during the analysis. This 
would require the modification of the constitutive relationships to account for the 
varying hoop stress.

4) The effects of the normalizing parameters used in the arc-length techniques, such as 
R and C, in the constraint equation of Eq. (5.42), as well as the non-

dimensionalization of the constraint equation have not been fully investigated. 
Further study on these issues can calibrate these factors and lead to a significant 
improvement in the solution efficiency.

5) The local buckling or wrinkling of the pipe due to excessive bending normally leads 
to significant softening of the buckled segment. A research can be performed on the 
inclusion of this softening effect using a method similar to the ISPDR solution 
technique (Zhou and Murray, 1993 and 1996).

6) An extensive parametric study is proposed to be performed on the thermal response 
of the pipelines by varying major variants in practical situations. This study would 
result in a set of graphs, from which the temperature values associated with the 
modes of failure can be extracted for a given pipeline. These modes of failure might 
be reaching the critical values of tensile and compressive strains and the emergence 
of the pipe out of the ground. The variants in the parametric study would include 
pipe size and grade, internal pressure, initial out-of-straightness, cover depth, soil 
density and strength parameters.
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