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Abstract

Distributions of sequences modulo one (mod 1) have been studied over

the past century with applications in algebra, number theory, statistics, and

computer science. For a given sequence, the weak convergence of the associated

empirical distributions has been the usual approach to these studies. In this

thesis, we give a formula for calculating the Kantrovich distance between mod

1 probability measures. We then use this distance to study the convergence

behavior of the (mod 1) empirical distributions associated with real sequences

(xn)
∞
n=1 for which limn→∞ n(xn−xn−1) exists. We find that for such sequences,

every probability distribution in the limit set of the empirical distributions is

a rotated version of a certain exponential distribution. We also describe the

speed of convergence to this limit set of distributions.

Keywords: distribution modulo one, slow-growing sequence, Kantorovich-

Wasserstein distance, empirical measure, weak convergence
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Motivation

For a real number x, its fractional part ⟨x⟩ is the number in [0, 1) such that

x− ⟨x⟩ is an integer. For example, ⟨3.14⟩ is 0.14 . Consideration of the frac-

tional part of a real number is, in algebraic terms, considering its equivalence

class in the quotient space T := R/Z. As a natural consequence of taking

numbers modulo 1 (mod 1 for short), one is compelled to think of the frac-

tional parts of reals not as the usual interval [0, 1), but as the interval bent to

form a circle so that the two endpoints overlap. This topology is an obvious

choice in light of a sequence like (0.9, 0.99, 0.999, · · · ), and the consideration

of the fractional part of its limit.

The question is ‘how are the fractional parts of a sequence (xn)
∞
n=1 distributed

on the circle?’ Take, for example, the sequence x = (
√
2n)∞n=1 . Plotting the

first N elements of this sequence on the circle for larger and larger N seems to

suggest that the points are uniformly distributed mod 1 (see Figure 0.1). This

is indeed known to be the case [19]. In other words, the sequence (ωN)
∞
N=1 of

empirical distributions associated with x given by

ωN =
1

N

N∑︂
n=1

δxn+Z ∀N ∈ N ,

converges for every interval [a, b] ⊆ [0, 1) to the length of that interval, i.e.,

limN→∞ ωN

(︁
[a, b]

)︁
= b − a . This is equivalent to the notion of weak conver-

gence of measures (see (1.4)).
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N=6 N=60 N=600

Figure 0.1: Plotting the first N points of the sequence (
√
2n)∞n=1 mod 1. The

pattern seems to suggest that in the limit, the points are uniformly distributed.
This is known to be the case.

N=5 N=50 N=500

Figure 0.2: Plotting the first N points of the sequence (log10 n)
∞
n=1 mod 1 for

N = 5, 50 and 500. The visible points are fewer than N because some points
overlap. The pattern seems to suggest that in the limit, the points are most densely
distributed to one side of log10N , and least densely to the other side.

In contrast, the sequence (log10 n)
∞
n=1 is known to not have a unique dis-

tribution mod 1 [17]. However, for carefuly chosen Ns, plotting the first N

points of the sequence seems to reveal a pattern. For example, if we plot the

first 5, 50, and 500 points of (log10 n)
∞
n=1 mod 1 and compare them side by

side as in Figure 0.2, it appears the points tend to be more densely distributed

exactly behind the last drawn point namely ⟨log10 500⟩ = ⟨log10 50⟩ = ⟨log10 5⟩
on the circle. While it turns out that indeed for every ωN the highest den-

sity precedes the final point log10N , the observed pattern is an artifact of our

chosen Ns. If we choose to plot the first 10, and 100 points, the high density

would precede ⟨log10 1⟩ on the circle (see Figure 0.3). The most dense portion
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of ωN keeps rotating to log10N on the circle as N increases, and hence there is

no unique distribution mod 1 for (log10 n)
∞
n=1. We ask the question, however,

if something can be said about the pattern observed in the carefully chosen

subsequence of empirical distributions plotted Figure 0.2, namely (ω5×10j)
∞
j=1,

or other similar subsequences of (ωN)
∞
N=1 like in Figure 0.3.

To describe the common pattern observed in Figures 0.2 and 0.3, take

the points for one particular N , say N = 10 in Figure 0.3. Note that the

distance between two consecutive points on the circle decreases. That is to

say, the distance between the first two points log10 1 and log10 2 is larger than

the distance between the next two points log10 2 and log10 3, and so on. These

points, circled in red, are also present for N = 100, with 9 additional points

‘squeezed’ between them. The pattern continues for N = 1000 (not pictured),

and so the windows to squeeze the next 9 points in get smaller, yet more

numerous.

N=10 N=100

Figure 0.3: Plotting the first N points of the sequence (log10 n)
∞
n=1 mod 1 for

N = 10 (circled in red), and 100. For N = 100 all the red-circled points are still
present, and there are 9 new points inserted in between any two of them.

Once we have set up the apparatus to investigate the above question, we

can also get more insight to the curious Benford’s law. Reading numbers from

left to right, Benford’s law informally says that in many different situations,

observed numbers most probably begin with the digit 1 (more than 30%), fol-
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lowed by 2 being less likely (about 18%), and so on all the way to 9 being

the least likely first digit (less than 5%). This pattern is observed in many

seemingly irrelevant recordings of numbers such as lengths of rivers, population

sizes of countries, even the numbers appearing on the first page of a newspaper

[5]. More precisely, the law states that for any d ∈ {1, 2, · · · , 9}, the proba-

bility that the first significant digit of a number is d equals log10
d+1
d

. Many

sequences follow this rule. The sequence of Fibonacci numbers, factorials,

powers of 2, or even powers of e all follow Benford’s law in the sense that the

proportion of the elements whose first digit is d among the first N elements of

the sequence approaches log10
d+1
d

as N grows [26, 23, 22]. Take for example

the sequence (2n)∞n=1 , and for some N ∈ N, count the elements that have the

first digit 1. If we denote this count by #
{︁
n ∈ {1, 2, · · · , N} : D1(2

n) = 1
}︁
,

then
#
{︁
n ∈ {1, 2, · · · , N} : D1(2

n) = 1
}︁

N

N→∞−−−−−→ log10 2 ,

as demonstrated in Figure 0.4. The analogous ratio for the first digit being 2

approaches log10
3
2
, and so on for the other possible first digits.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

  log
10

2

0.35

Figure 0.4: The ratio of the powers of 2 that have first digit 1 among the first N
powers. The ratio approaches log10 2 as N grows larger.

A natural (no pun intended) question to ask is if the sequence of N is
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also Benford in the above sense. In other words, would the proportion of

the first N natural numbers whose first digit is d approach log10
d+1
d

as N

gets larger? The answer is no. The proportion does not converge for any

d ∈ {1, 2, · · · , 9}. Figure 0.5 depicts the mentioned ratio for first digit being

1. Instead of approaching the value log10 2 , the ratio seems to oscillate up

and down in every order of magnitude. The oscillation pattern is present for

other possible first digits as well. Focusing on Figure 0.5, the first upward

region is for N between 10 and 19; and the downward region after that is for

N from 20 to 99. Clearly, that is followed by another upward pattern from

100 to 199, and so on. The up-down oscillation takes a periodic form if the

horizontal scale is logarithmic (see Figure 0.6).

0 100 200 300 400 500 600 700 800 900 1000
0

1/9

0.2

  log
10

2

0.4

5/9
0.6

0.8

1

Figure 0.5: The proportion of the firstN naturals with first digit 1 keeps oscillating
up and down over each order of magnitude.

In this thesis, we work with the Kantorovich/1-Wasserstein metric dT on

the space P of all probability measures on the circle, which induces the weak

topology mentioned above [10]. We introduce an explicit formula for calculat-

ing dT between any two µ, ν ∈ P , and through that formula we explore the

basic topology of P with this metric. We calculate, for example, the distance

between an exponential and the uniform distributions mod 1. We will see that

5



for the sequence (log10 n)
∞
n=1 , the subsequence of (ωN)

∞
N=1 that is pictured in

Figure 0.2 converges (in the dT sense) to an exponential distribution mod 1

rotated so that its most dense point is at log10 5 . More generally, we will see

that if all ωNs are rotated so that their most dense points coincide (e.g., at

0+Z ), they all converge to a unique exponential distribution. We will also see

that the pattern observed in Figures 0.5 and 0.6 is the measure of an arc on

the circle under a sequence of rotating empirical distributions associated with

a log-like sequence, which turn out to be approximations of an exponential

distribution rotating around the circle.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1/9

0.2

  log
10

2

0.4

5/9
0.6

0.8

1

Figure 0.6: The proportion of the first N naturals with first digit 1 plotted against
a logarithmic horizontal scale. The ratio seems to follow a periodic pattern.

For the reader’s convenience, the preliminary work required for the main

results of each chapter are presented separately in the first section of the

chapter with the exception of Chapter 1 in which the first section is dedicated

to notations. Additionally, all proofs are presented in a different color so that

the reader has the option of skipping them at their discretion.
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Chapter 1

Preliminaries

In this chapter, we formally introduce the main objects of study in this thesis.

Before doing so, we first clarify the notations and conventions in Section 1.1.

Additionally, a list of the symbols and their meanings is provided at the be-

ginning of this thesis for reference. Section 1.2 includes preparatory remarks

and lemmas required for the rest of the chapter.

1.1 Notations and conventions

Throughout this document, C, R, R+, R, Z, and N denote the set of com-

plex numbers, real numbers, non-negative reals, extended reals, integers, and

natural numbers, respectively. The natural logarithm is always denoted log.

For every function f : R → R, we call f increasing if for every x, y ∈ R
such that x < y , we have f(x) ≤ f(y) . Similarly, f is decreasing if for every

x, y ∈ R such that x < y , we have f(x) ≥ f(y). A function that is either

increasing or decreasing is monotone. The adverb “strictly” modifies the above

adjectives to mean that our monotone function preserves strict inequalities.

Furthermore, for every x0 ∈ Dom(f), we denote limϵ↘0 f(x0 − ϵ) by f(x−0 ),

and likewise limϵ↘0 f(x0 + ϵ) by f(x+0 ), provided these limits exist.

For every t ∈ R, we denote the largest integer that is less than or equal

to t by ⌊t⌋ := max {k ∈ Z : k ≤ t}, and denote the fractional part of t by

7



⟨t⟩ := t− ⌊t⌋ . The number ⟨t⟩ is also referred to as the residue of t modulo 1

[17], and is interpreted geometrically as the distance between t and the first

integer to its left on the real line. Furthermore, t+Z is a shorthand notation

for the set {· · · , t− 2 , t− 1 , t , t+ 1, t+ 2 , · · · } .

For any two metric spaces (X, dX) and (Y, dY ), denote by C (X;Y ) the set

of all continuous functions from domain X to codomain Y , i.e., C (X;Y ) :={︁
f ∈ Y X : f is continuous

}︁
; and similarly denote by Lipa (X;Y ) the set of all

a-Lipschitz continuous functions, i.e.,

Lipa (X;Y ) :=
{︂
h ∈ C(X;Y ) : dY

(︁
h(x1), h(x2)

)︁
≤ a dX(x1, x2) ∀x1, x2 ∈ X

}︂
.

If Y is omitted in these notations for collections of functions, it is understood

that Y = R, e.g., C (X) = C (X;R). Furthermore, for every f ∈ Y X and every

B ⊆ Y , define the notation {f ∈ B} :=
{︁
x ∈ X : f(x) ∈ B

}︁
. Lastly, denote

by 1X , IdX , X , and #X , the indicator function, the identity function, the

closure, and the cardinality of X, respectively.

For two measures µ and ν defined on the same measurable space, denote by

µ≪ ν absolute continuity of µ with respect to ν.

1.2 Preparatory work

The preparatory results and lemmas used to prove the main statements in this

chapter are gathered in this section and are as follows.

Remark 1.2.1 (composition of continuous functions is continuous). Let (X, τX),

(Y, τY ) and (Z, τZ) be topological spaces. Let f : X → Y and g : Y → Z be

continuous functions. Then g ◦ f : X → Z is also continuous.

Remark 1.2.2 (composition of Lipschitz functions is Lipschitz). Let (X, dX),

(Y, dY ) and (Z, dZ) be metric spaces, and let f : X → Y and g : Y → Z

be Lipschitz continuous functions. Then g ◦ f : X → Z is also Lipschitz

continuous. Furthermore, if L′ and L′′ denote Lipschitz constants of f and g,

then a Lipschitz constant of g ◦ f is L′L′′ .

8



Remark 1.2.3 (Range of a continuous function on a compact space is com-

pact). Let (X, τX) and (Y, τY ) be topological spaces, where (X, τX) is com-

pact. Then for every continuous function f : X → Y , Range (f) := f (X) is

also compact.

Corollary 1.2.4 (Continuous functions map compact sets to compact sets).

Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a continuous

function. Then f(K) is compact for every compact set K ⊆ X.

Remark 1.2.5 (isometries are one-to-one). Let (X, dX) and (Y, dY ) be metric

spaces, and let f : X → Y be an isometry. Then f is injective.

Lemma 1.2.6 (auto-isometries on compact domains are onto). Let (X, dX)

be a compact metric space, and let f : X → X be an isometry. Then f is

surjective.

Proof. We want to show f(X) = X.

Clearly, Range(f) ⊆ CoDom(f) and therefore f(X) ⊆ X . Thus it suffices to

show X ⊆ f(X) . Assume, by contradiction, ∃x ∈ X \ f(X) .

Claim 1.2.6.1. The point x is not a limit point of f(X), i.e.,

x /∈ f(X) .

Proof. X is compact; thus through Remark 1.2.3 , f(X) is compact. If x was

a limit point, then there would exist a sequence in f(X) that was convergent

(in X) to x. This sequence and all of its subsequences, therefore, would be

divergent in f(X). This contradicts the sequential compactness of f(X) . □

By Claim 1.2.6.1, we know dX
(︁
x, f(X)

)︁
> 0 . Let d := dX

(︁
x, f(X)

)︁
.

Therefore we know

∀y ∈ f(X), dX(x, y) ≥ d . (1.1)

Consider the recursively defined sequence (xn)
∞
n=1 ⊆ X in which every element

is the image of the previous element under f , i.e., consider

x1 := x ∧ ∀n ≥ 2, xn := f(xn−1) .

9



By (1.1), we know that ∀n ≥ 2, d(x1, xn) ≥ d . This implies through the

following steps that no two elements are ever closer to each other than d .

Let arbitrary m,n ∈ N : m ̸= n be given. WLOG assume m < n . By (1.1)

and the fact that composition of isometries is still an isometry we know

dX(xm, xn) = dX
(︁
fm−1(x1), f

m−1(xn−m+1)
)︁ isometry

=== dX (x1, xn−m+1)
(1.1)

≥ d .

So no subsequence of (xn)
∞
n=2 ⊆ f(X) can be convergent. This contradicts the

sequential compactness of f(X) . ■

Corollary 1.2.7. We see immediately from Remark 1.2.5 and Lemma 1.2.6

that an isometry on a compact domain is invertible, and its inverse is an

isometry as well.

Definition 1.2.8. We define the function dT : R× R → [0, 1
2
] as

∀ a, b ∈ R, dT(a, b) := min
k∈Z

|a− b+ k| .

Note that in the above definition, the function dT : R×R → R+ is invariant

under shifts by integers. More precisely,

∀ a, b ∈ R, ∀k1, k2 ∈ Z, dT(a+ k1 , b+ k2) = dT(a, b) . (1.2)

1.3 The circle

Denote by T the quotient space R/Z . Note that every x ∈ T has the form

x = t + Z for some t ∈ R. This real t is not unique, and any two t ∈ R
yielding the same points in T differ by an integer, i.e., if t1 + Z = t2 + Z ,

then t1− t2 ∈ Z . (The converse of this conditional statement is obviously true

as well [4].) It is known that equipped with the quotient topology (i.e., the

topology induced by the map t ↦→ t+Z), T is a compact metrizable space [21].

Note that dT in Definition 1.2.8 is well-defined on T× T in the sense that for

every x, y ∈ T, the value dT(s, t) is independent of the chosen representatives

s, t ∈ R of x = s+Z and y = t+Z , by (1.2). When interpreted as a function
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on T × T , dT becomes a metric that induces the quotient topology. We

formally define this metric in Definition 1.3.1, and we use the same notation

to avoid introducing new notations.

Definition 1.3.1. We define the metric dT : T× T → [0, 1
2
] as

∀ t1 + Z , t2 + Z ∈ T, dT (t1 + Z , t2 + Z) := min
k∈Z

|t1 − t2 + k| .

The set T corresponds to the unit circle centered at the origin in the complex

plane C in a bijective fashion. One such bijection ιC : T →
{︁
z ∈ C : |z| = 1

}︁
is defined in Definition 1.3.2. Furthermore, the bijection ιC is in fact a home-

omorphism (see Remark 1.3.3) and therefore (T, dT) is (topologically) isomor-

phic to
(︂{︁

z ∈ C : |z| = 1
}︁
, | · |

)︂
, and as such, we are justified in referring to

T as a circle. It is convenient to geometrically interpret (T, dT) as the unit

circle centered at the origin in C where the metric dT(x, y) is the (normalized)

arclength of a shortest arc connecting the two points ιC(x), ιC(y) on the circle.

To define the bijection ιC, note that just as was the case with dT in Defini-

tion 1.2.8, the complex-valued function of a real variable t ↦→ et2πi is invariant

under shifts by integers, and thus ιC in Definition 1.3.2 is well-defined.

Definition 1.3.2. We define ιC : T →
{︁
z ∈ C : |z| = 1

}︁
as

∀ t+ Z ∈ T, ιC (t+ Z) := et2πi .

Remark 1.3.3. [6] The bijection ιC defined in Definition 1.3.2 satisfies

∀x, y ∈ T, 4 dT(x, y) ≤
⃓⃓
ιC(x)− ιC(y)

⃓⃓
≤ 2π dT(x, y) ,

and is therefore bi-Lipschitz continuous. Thus (T, dT) is Lipschitz isomorphic

[11] (aka Lipschitz equivalent) to
(︂{︁

z ∈ C : |z| = 1
}︁
, | · |

)︂
. This implies that

(T, dT) is a compact metric space.

Denote by P the set of all probability measures on the measurable space

(T,BT), where BT denotes the Borel σ-algebra on T. Every µ ∈ P is uniquely

11



determined by its (cumulative) distribution function Fµ as defined in Defini-

tion 1.3.4. Note that despite our use of the usual notation F for a cumulative

distribution function, Definition 1.3.4 is not exactly the same as the usual

definition, yet is closely related and contains the same information. This def-

inition is comprehended more easily in light of the bijection ιR defined in

Definition 1.3.6.

Definition 1.3.4. For every µ ∈ P , we define the associated distribution

function Fµ : R → R as

∀ t ∈ R, Fµ(t) := µ
(︂{︁
s+ Z : s ∈ [0, ⟨t⟩]

}︁)︂
+ ⌊t⌋ .

Every probability distribution function Fµ, as defined in Definition 1.3.4,

is increasing and right-continuous, and Fµ(0) ≥ 0. Additionally, the function

t ↦→ Fµ(t) − t is 1-periodic, and Fµ(1
−) = 1. Conversely, every function with

these properties is the distribution function of a (unique) µ ∈ P .

In talking about measures we often use the concept of a pushforward mea-

sure or image measure. Every measurable function from a measure space to

a measurable space induces a measure on the codomain that is in a sense

the domain measure ‘pushed forward’ onto the codomain by the measurable

function.

Definition 1.3.5 (Pushforward measure). Let (X,M, µ) be a measure space

and (Y,N ) a measurable space. If f : X → Y is anM-N -measurable function,

then ν := µ ◦ f−1 is a measure on (Y,N ) — the pushforward of µ under f .

We now turn to introduce the bijection ιR which provides scaffolding not

only for a more intuitive interpretation of probability measures in P and their

distribution functions, but also for the calculations that follow in Chapter 4.

12



As a set, T also corresponds to the unit interval [0, 1) in a bijective fashion.

One such bijection is ιR : T → [0, 1) defined in Definition 1.3.6. If equipped

with the right topology, the interval [0, 1) can become topologically isomorphic

to T through ιR . The metric dT as defined in Definition 1.2.8 gives the right

topology when restricted to [0, 1). With the Euclidean metric | · |, however,
[0, 1) is not topologically isomorphic to the circle T (see Remark 1.3.7). To

define the bijection ιR, we again note that just like the map t ↦→ et2πi, the

map ⟨ · ⟩ : R → [0, 1) as defined in Section 1.1 outputs the same value for all

equivalent ts in every t+Z ∈ T; and thus ιR in Definition 1.3.6 is well-defined.

Definition 1.3.6. We define ιR : T → [0, 1) as

∀ t+ Z ∈ T, ιR (t+ Z) := ⟨ t ⟩ .

Remark 1.3.7. The bijection ιR : T → [0, 1) defined in Definition 1.3.6 is

bi-measurable. While ιR is not continuous, ι−1
R : [0, 1) → T is 1-Lipschitz.

While
(︁
[0, 1) , | · |

)︁
is not topologically isomorphic to (T, dT), it is of interest

because of our familiarity with the calculus of real-valued functions on [0, 1)

(see Theorem 2.2.8). Using the measurable map ιR, we can think of any

µ ∈ P as a probability distribution on the measurable space
(︁
[0, 1) ,B[0,1)

)︁
.

The Fµ defined in Definition 1.3.4 is the result of extending the cumulative

distribution function of such a pushforward measure by shifting copies of its

graph one unit to the right and unit up repeatedly to form a ‘diagonal’ in the

first quadrant of R2, and similarly one unit to the left and one unit down for

the third quadrant’s ‘diagonal’. To see this, note that for any given µ ∈ P ,

Fµ(s) = µ ◦ ι−1
R
(︁
[0, s]

)︁
∀ s ∈ [0, 1) . (1.3)

A few examples of probability measures in P and their distribution func-

tions are given in Section 1.4. In that section, we will see that despite not

being our approach later on, each of the examples of interest could be defined

as push-forward measures (under ι−1
R ) of a probability measure that we know

on [0, 1). Similarly, the bijection ιR allows us to identify any function on T
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as a function on [0, 1). Thus from now on, for any function h on T and any

s ∈ [0, 1), the notation h(s) is understood to mean h◦ ι−1
R (s) . Not surprisingly

we define the derivative of any h to be that of h ◦ ι−1
R .

Definition 1.3.8 (Derivative of a function on T). Let h : T → R be a real-

valued function, x0 ∈ T, and s0 := ιR(x0) . We say h is differentiable at x0 if

h ◦ ι−1
R ◦ ⟨·⟩ : R → R is differentiable at s0 in the usual sense; and we define the

derivative of h at x0 as

h′(x0) :=
(︁
h ◦ ι−1

R ◦ ⟨·⟩
)︁′
(s0) ,

where
(︁
h ◦ ι−1

R ◦ ⟨·⟩
)︁′
(s0) is understood to be limt→s0

h◦ι−1
R ◦⟨·⟩(t)−h◦ι−1

R ◦⟨·⟩(s0)
t−s0

.

If h is differentiable at every x0 ∈ T, we call it differentiable (everywhere).

1.4 Some examples of measures in P
There are a few elements of P that are of particular interest to us and they

are as follows.

Perhaps the simplest family of probability distributions is the family of point

mass (or Dirac) distributions denoted by δx0 for every point x0 ∈ T, in which

all probability mass is assigned to a single point x0 ∈ T, or s0 ∈ [0, 1) if one

sees the distribution on [0, 1) :

∀x0 ∈ T, ∀B ∈ BT, δx0 (B) := 1B(x0) .

The distribution function of δx0 satisfies

∀s ∈ [0, 1) , Fδx0
(s) =

⎧⎨⎩0 s < s0 ,

1 s ≥ s0 ,

where s0 = ιR(x0) . We could have used this formula of Fδx0
to define the

measure δx0 — an approach we take for the remaining probability measures

in this section. Note that the formula above is the same as the distribution
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function of δs0 on [0, 1). Since every distribution function uniquely determines

a probability measure, we see through (1.3) that δx0 ◦ ι−1
R = δs0 . Conversely,

we conclude that δx0 = δs0 ◦
(︁
ι−1
R
)︁−1

.

Another simple element of P is the uniform (or Lebesgue) distribution de-

noted by λT in which every open arc on the circle T is assigned its (normalized)

arclength as its probability mass. We define the distribution function FλT as

follows, and thereby we will have fully defined λT:

∀s ∈ [0, 1) FλT(s) := s .

Again, note that the above formula is the same as the distribution function

of λ , the familiar Lebesgue measure on [0, 1). By uniqueness of distribution

functions, we see through (1.3) that λT◦ι−1
R = λ and therefore λT = λ◦

(︁
ι−1
R
)︁−1

.

Remark 1.4.1. It is noteworthy that if µ ∈ P is absolutely continuous with

respect to λT, then µ ◦ ι−1
R is absolutely continuous with respect to λ, with

density
d
(︁
µ ◦ ι−1

R
)︁

dλ
=

dµ

dλT
◦ ι−1

R .
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Figure 1.1: The distribution functions of δs0 and λT plotted on [0, 1) .
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In this thesis, an important family in P consists of exponential distributions,

denoted ηa for every non-zero real a. We define ηa via its distribution function

as

∀s ∈ [0, 1) , Fηa(s) :=
eas − 1

ea − 1
.

One may wonder why ηa is called ‘exponential’. This is because it can be

shown (see Proposition 1.4.2) that ηa is the distribution of ⟨−1
a
Y ⟩+ Z where

Y ∼ Expo(1). Before demonstrating this, we must recall that if X is a random

variable such that X ∼ Expo(θ) where θ > 0 denotes the rate parameter,

then 1
a
X ∼ Expo(a θ) for every a > 0 [9]. We also recall that if X has an

exponential distribution with rate θ > 0, i.e., if X has the density function

∀t ∈ R, fX(t) =

⎧⎨⎩θ e−θt t ≥ 0 ,

0 t < 0 ,

then −X has the density function

∀t ∈ R, f−X(t) =

⎧⎨⎩0 t > 0 ,

θ eθt t ≤ 0 .

Proposition 1.4.2. Let a ∈ R\{0} be given, and let Y : (Ω,M,P) → (R,BR)

be a standard exponential random variable, i.e., let Y ∼ Expo(1). Then the

function s ↦→ eas−1
ea−1

is the distribution function of ⟨− 1
a
Y ⟩ on [0, 1).

Proof. Let arbitrary Y ∼ Expo(1) and an arbitrary a ∈ R \ {0} be given. We

want to show that F⟨−1
a
Y ⟩(s) =

eas−1
ea−1

∀s ∈ [0, 1) .

Let arbitrary s ∈ [0, 1) be given.

Case 1 a > 0 .

We know that f− 1
a
Y (t) =

⎧⎨⎩0 t > 0 ,

a eat t ≤ 0 .

By definition of the distribution function,

F⟨−1
a
Y ⟩(s) = P

(︄{︃
⟨−1

a
Y ⟩ ≤ s

}︃)︄
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= P

(︄
∞⨄︂
n=0

{︃
−1− n ≤ −1

a
Y ≤ −(1− s)− n

}︃)︄

=
∞∑︂
n=0

∫︂ s−1−n

−1−n

a eat dt = lim
N→∞

⎛⎝ N∑︂
n=0

∫︂ s−1

−1

a ea(t−n) dt

⎞⎠
= lim

N→∞

⎛⎝ N∑︂
n=0

e−an

∫︂ s−1

−1

a ea t dt

⎞⎠
=

∫︂ s−1

−1

a ea t dt lim
N→∞

N∑︂
n=0

e−an =
[︁
eat
]︁s−1

−1

1

1− e−a

=
ea(s−1) − e−a

1− e−a
=

��e−a (eas − 1)

��e−a (ea − 1)
=

eas − 1

ea − 1
.

Case 2 a < 0

The proof of this case is analogous to that of Case 1.

Thus we have shown that ∀a ∈ R \ {0}, F⟨−1
a
Y ⟩(s) =

eas−1
ea−1

∀s ∈ [0, 1) . ■
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Figure 1.2: The distribution function of ηa plotted on [0, 1) when a is positive
(left) and when a is negative (right). The closer a is to 0, the more Fηa resembles
FλT .
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The final family we introduce in P consists of distributions ζa where a is a

non-zero real. We define ζa via its distribution function as

∀s ∈ [0, 1) , Fζa(s) :=
eas(a+ 1− as)− 1

ea − 1
+ a

eas − ea

(ea − 1)2
.

These distributions are examples of Gamma distributions because ζa is the

distribution of ⟨−1
a
Y1 +

−1
a
Y2⟩+ Z where Y1, Y2

i.i.d.∼ Expo(1) .

1.5 P as a compact metric space

In this section we topologize P by defining a convergence criterion for a

sequence in P . We then introduce a metric that induces that topology.

Note that with the notion of distance dT : T × T → R+ defined on T (see

Definition 1.3.1), the notion of continuity is well-defined for any real-valued

function on T. In addition, the set Lip1(T;R) of 1-Lipschitz continuous func-

tions is also well-defined.

Consider the fact that T is a compact metric space. Thus the space of all

finite Borel measures with the total variation norm is isometrically isomor-

phic to the (normed) space of bounded linear functionals on C(T) , i.e., the
dual space of C(T) denoted by C(T)∗ [15]. Under this isomorphism, ev-

ery probability measure µ ∈ P is identified with the functional φµ given by

φµ(h) :=
∫︁
T h dµ for every h ∈ C(T). The topology that we define on P is

through the notion of weak convergence in the following sense: A sequence

(µn)
∞
n=1 converges to µ in P iff

(︁
φµn

)︁∞
n=1

converges pointwise to φµ; in other

words, iff for every h ∈ C (T), the sequence
(︁∫︁

T h dµn

)︁∞
n=1

converges to
∫︁
T h dµ

in R . More succinctly,

µn
n→∞−−−−−→ µ ⇐⇒ ∀h ∈ C (T) ,

∫︂
T
h dµn

n→∞−−−−−→
∫︂
T
h dµ . (1.4)

In the terminology of linear analysis, this topology corresponds to the weak-*

topology on P , understood as a subset of C(T)∗. With this topology, P is
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compact and metrizable [21]. A metric that induces the weak topology is the

following metric known as the Kantorovich or the 1-Wasserstein metric [10].

Definition 1.5.1 (Kantorovich/1-Wasserstein metric). The Kantorovich met-

ric dT : P × P → R+ is defined as

∀µ, ν ∈ P , dT(µ, ν) := sup
h∈Lip1(T)

(︃∫︂
T
h dµ −

∫︂
T
h dν

)︃
.

In Chapter 2 we will prove that the above supremum is in fact a maximum

(see Corollary 2.1.5.) Even then, however, the computation of the Kantorovich

distance remains difficult. A less abstract and easier-to-use formula for dT is

introduced in Theorem 2.2.8.

Apart from convenience, the main reason why we use the same symbol

dT for both the metric on T and the metric on P is that the Kantorovich

metric in Definition 1.5.1 is an extension of dT as defined in Definition 1.3.1

in that dT
(︁
δx , δy

)︁
= dT(x, y) for every x, y ∈ T (see Theorem 1.5.3). Thus

through the map x ↦→ δx , the circle (T, dT) is isometrically isomorphic to

{δx ∈ P : x ∈ T} ⊆ P . That is to say, once P is equipped with the Kantorovich

metric dT, the map x ↦→ δx becomes an isometric embedding of T into P .

Lemma 1.5.2. Let (X, d) be a metric space, and let an arbitrary y ∈ X

be given. Define the function hy : X → R as hy(·) := d( · , y) . Then

hy ∈ Lip1 (X) .

Proof. We want to show
⃓⃓
hy(b)− hy(a)

⃓⃓
≤ d(a, b) for every a, b ∈ X .

Let arbitrary a, b ∈ X be given. By the triangle inequality,

d(b, y) ≤ d(b, a) + d(a, y) . (1.5)

It is now readily seen that

⃓⃓
hy(b)− hy(a)

⃓⃓ def’n of hy

===
⃓⃓
d(b, y)− d(a, y)

⃓⃓ (1.5)

≤ d(b, a)
d symmetric

=== d(a, b) .

■
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Theorem 1.5.3. For every x, y ∈ T , dT
(︁
δx, δy

)︁
= dT (x, y) .

Proof. Let arbitrary x, y ∈ T be given. On the one hand, by definition,

dT
(︁
δx, δy

)︁
= sup

h∈Lip1(T)

(︃∫︂
T
h dδx −

∫︂
T
h dδy

)︃
= sup

h∈Lip1(T)

(︁
h(x)− h(y)

)︁
≤ sup

h∈Lip1(T)

⃓⃓
h(x)− h(y)

⃓⃓ h ∈ Lip1(T)≤ dT (x, y) .

On the other hand, considering the function hy : T → R given by hy(·) :=
dT( · , y) , We know

dT(x, y) = hy(x)− hy(y) =

∫︂
T
hy dδx −

∫︂
T
hy dδy

Lemma 1.5.2

≤ sup
h∈Lip1(T)

(︃∫︂
T
h dδx −

∫︂
T
h dδy

)︃
= dT

(︁
δx, δy

)︁
.

Thus dT
(︁
δx, δy

)︁
= dT (x, y) . ■

Note that Theorem 1.5.3 says in particular that the mapping x ↦→ δx is

an isometric embedding of T into P . Thus, the set {δx ∈ P : x ∈ T} may be

viewed as a circle. In Chapter 4, we will examine in detail the distance between

the probability measures introduced earlier, which will complete this informal

view on the space (P , dT); see Figure 4.4.

1.6 Rotating T and P
In this section, we introduce the rotation and reflection transformations that

will become important later in Chapters 4 and 5. We also consider the push-

forward probability measures under rotation. We then conclude that the Kan-

torovich distance between probability measures is invariant under rotation.

Considering (T, dT) as a circle in the complex plane, for every t+Z ∈ T, we
can rotate every point of the circle counterclockwise by 2πt. Another relevant

transformation would be to reflect the points about the real axis.
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Definition 1.6.1. Let t ∈ R be a real number. We define the rotation (isom-

etry) Rt : T → T as

∀x ∈ T, Rt(x) := x+ t ,

and the reflection (isometry) Q : T → T as

∀x ∈ T, Q(x) := −x .

We additionally interpret Rt+Z to mean Rt; and thereby Ry is well-defined

for every y ∈ T .

Remark 1.6.2. Note that for every s, t ∈ R ,

R−1
t = R−t , Rt ◦Rs = Rt+s , Q ◦Rt = R−t ◦Q , and Q−1 = Q .

Since Rt : T → T is (bi)measurable, we can consider the pushforward of

any µ ∈ P under Rt (or R−1
t ). The same is true for Q (or Q−1). When

thinking about µ ◦R−1
t , we can either think that the input set (i.e., the set to

be measured) is rotated by −t and then measured by µ, or we can think of

the probability measure µ itself being rotated around the circle by t while the

input sets remain where they are. See Figure 1.3 for an example. With this

view, the mapping µ ↦→ µ ◦ R−1
t can be thought of as a rotation defined on

P . This mapping is an isometry too (see Theorem 1.6.5). In other words, the

metric dT : P × P → R+ is invariant under rotations. In symbols,

∀µ, ν ∈ P , ∀t ∈ R, dT (µ, ν) = dT
(︁
µ ◦R−1

t , ν ◦R−1
t

)︁
. (1.6)

Similarly, µ ↦→ µ ◦Q−1 reflects measures in P and dT is invariant under it.

It is easy to see that the rotated (or reflected) version of the uniform distri-

bution is the uniform distribution itself, and that the rotated (or reflected)

version of a Dirac measure is again a Dirac measure with the massive point

rotated (or reflected).
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Remark 1.6.3. Note that λT = λT ◦Q−1 , and that for every t ∈ R and every

x0 ∈ T ,

λT = λT ◦R−1
t , δx0 ◦R−1

t = δx0+t , δx0 ◦Q−1 = δ−x0 , and ηa ◦Q−1 = η−a ,

for every a ∈ R \ {0} .

Figure 1.3: Schematic depiction of the probability distributions ηa (left) and ηa ◦
R−1

3/4 (right) where a > 0. The dark red color represents the highest probability
density, and the light yellow color the lowest.

The rotated versions of ηa will be of particular importance in Chapter 5.

Considering the example depicted in Figure 1.3, it is easy to see that with the

probability density of ηa rotated, the distribution function of ηa ◦R−1
t on [0, 1)

is essentially the distribution function of ηa on [0, 1) cut at ⟨t⟩ and rearranged

so that the section on [0, ⟨t⟩) and the section on [⟨t⟩, 1) are switched to produce

a continuous function (see Figure 1.4).

Another way of thinking about this is to first recall that Fηa ’s graph on [0, 1)

is the graph of Fηa on R in the sense of Definition 1.3.4 viewed through the

[0, 1) × [0, 1) frame. Similarly, we can think of the graph of Fηa◦R−1
t

on [0, 1)

to be the graph of Fηa viewed through the 1 × 1 frame shifted by 1 − ⟨t⟩ to

the right and by Fηa(1 − ⟨t⟩) upward (see Figure 1.5). Thinking of rotation
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Figure 1.4: The distribution function of ηa◦R−1
3/4 plotted on [0, 1) when a is positive

(left), and when a is negative (right).

as a shift of frame for viewing the distribution function of a measures will be

useful in Theorem 4.2.1.

It is thus not hard to see that once ηa is rotated by Rt , we have

∀s ∈ [0, ⟨t⟩), Fηa◦R−1
t
(s) = Fηa(1− ⟨t⟩+ s)− Fηa(1− ⟨t⟩) ,

∀s ∈ [⟨t⟩, 1), Fηa◦R−1
t
(s) = Fηa(1)− Fηa(1− ⟨t⟩) + Fηa(s− ⟨t⟩) .

which simplifies to the following

∀s ∈ [0, 1), Fηa◦R−1
t
(s) =

⎧⎨⎩
ea(1−⟨t⟩)(eas−1)

ea−1
if s ∈ [0, ⟨t⟩) ,

1− e−a⟨t⟩ ea−eas

ea−1
if s ∈ [⟨t⟩, 1) .

(1.7)

We will later learn in Chapter 4 that for any fixed exponential distribution

ηa, two rotated versions of it, say, ηa ◦R−1
t and ηa ◦R−1

t , are close in P if and

only if s and t are close in T; see Theorem 4.2.8 for a precise statement.
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Figure 1.5: The graph of Fηa ◦ R−1
3/4 plotted on [0, 1) is the graph of Fηa viewed

through the 1× 1 frame shifted by 1− t to the right and by Fηa(1− t) upward. In
this example a is positive.

The remainder of this section proves a few statements in general about the

mapping that takes a µ ∈ P and maps it to its pushforward. By the end of this

section the truth of dT’s invariance will have been shown not just for rotation

and reflection, but also for any auto-isometry on T.

Theorem 1.6.4. Let S : T → T be a continuous function. Then the map

µ ↦→ µ ◦ S−1 is also continuous.

Proof. Let an arbitrary convergent sequence (µn)
∞
n=1 in P be given, and let

µ ∈ P denote limn→∞ µn . By definition of weak convergence,

∀h̃ ∈ C (T) , lim
n→∞

∫︂
T
h̃ dµn =

∫︂
T
h̃ dµ . (1.8)
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We want to show

∀h ∈ C (T) , lim
n→∞

∫︂
T
h d
(︁
µn ◦ S−1

)︁
=

∫︂
T
h d
(︁
µ ◦ S−1

)︁
.

Let arbitrary h ∈ C (T) be given. Then,

lim
n→∞

∫︂
T
h d
(︁
µn ◦ S−1

)︁
= lim

n→∞

∫︂
T
h ◦ S dµn

(1.8)
=

∫︂
T
h ◦ S dµ =

∫︂
T
h d
(︁
µ ◦ S−1

)︁
,

where the second equality is due to the fact that h◦S ∈ C (T) by Remark 1.2.1.

■

Theorem 1.6.5. Let S : T → T be a an isometry. Then the map µ ↦→ µ◦S−1

is also an isometry.

Proof. By definition of isometry and by Corollary 1.2.7, S, S−1 ∈ Lip1 (T;T) .
We want to show that dT (µ, ν) = dT

(︁
µ ◦ S−1, ν ◦ S−1

)︁
for every µ, ν ∈ P .

Let arbitrary µ, ν ∈ P be given. On the one hand, we know by Remark 1.2.2

that h◦S−1 ∈ Lip1(T) for every h ∈ Lip1(T) . Thus considering the supremum

in the definition of dT
(︁
µ ◦ S−1, ν ◦ S−1

)︁
, we have for every h ∈ Lip1(T) ,

dT
(︁
µ ◦ S−1, ν ◦ S−1

)︁
≥
∫︂
T
h ◦ S−1 d

(︁
µ ◦ S−1

)︁
−
∫︂
T
h ◦ S−1 d

(︁
ν ◦ S−1

)︁
=

∫︂
T
h dµ−

∫︂
T
h dν .

Thus by taking the supremum over h ∈ Lip1(T) ,

dT
(︁
µ ◦ S−1, ν ◦ S−1

)︁
≥ dT (µ, ν) .

On the other hand, Remark 1.2.2 also tells us that h◦S ∈ Lip1(T) . Applying
the same argument to the supremum in the definiton of dT (µ, ν) , we get

dT (µ, ν) ≥ dT
(︁
µ ◦ S−1, ν ◦ S−1

)︁
.

Therefore dT (µ, ν) = dT
(︁
µ ◦ S−1, ν ◦ S−1

)︁
for every µ, ν ∈ P . ■
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Thus, in particular, we have proved the rotation invariance of dT mentioned

in (1.6). In light of the fact that the graph of Fµ◦R−1
t

⃓⃓⃓
[0,1)

is the graph of Fµ

viewed through a shifted 1× 1 frame, rotation invariance of dT becomes even

more intuitive once we prove in Chapter 2 that the dT distance between two

measures is just the minimal L1[0, 1) distance between vertically shifted ver-

sions of their distribution functions. This is because Definition 1.3.4 implies

that the difference of two distribution functions is 1-periodic, and thus the inte-

gral of this difference remains constant regardless of how much our integration

frame is moved.
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Chapter 2

A Formula for dT (µ, ν)

The goal of this chapter is to give a formula for the Kantorovich distance

dT. By the end of this chapter, we will have proved in Theorem 2.2.8 that

the Kantorovich distance between two distributions µ and ν is the minimal

L1
(︁
[0, 1) , B[0,1) , λ

)︁
distance between vertically shifted distribution functions

Fµ and Fν , i.e.,

dT(µ, ν) = min
t∈R

⃦⃦
Fµ − Fν − t

⃦⃦
L1([0,1) ,B[0,1) , λ)

.

This formula is more convenient to use in light of Theorem 3.2.13 which pro-

vides a characterization of a tmin ∈ R that minimizes such L1[0, 1) distance.

Thus, Chapters 2 and 3 together provide a practical way to compute the Kan-

torovich distance between any two µ, ν ∈ P .

Preparatory lemmas and results are needed for the proof of Theorem 2.2.8.

Section 2.1 includes the preparatory work, and Section 2.2 includes Theo-

rem 2.2.8 itself.

2.1 Preparatory work

In this preparatory section, we first recall that the supremum of a real-valued

function on a compact domain is attained.

27



Remark 2.1.1. Let (X, dX) be a nonempty compact metric space, and let

f : X → R be a continuous function. Then f attains its infimum and supre-

mum; i.e.,

∃ y, z ∈ X : f(y) = inf
x∈X

f(x) ∧ f(z) = sup
x∈X

f(x) .

Next, we introduce a subset of Lip1(T) as follows:

Lip1,0(T) :=
{︂
h ∈ C(T;R) : h(0) = 0 ∧

⃓⃓
h(x)− h(y)

⃓⃓
≤ dT(x, y) ∀x, y ∈ T

}︂
,

where h(0) is understood to mean the value of h at 0 + Z . The graphs of

Lip1,0(T) functions pass through the origin if we interpret T as [0, 1) .

Remark 2.1.2. Since h ∈ Lip1(T) if and only if h − h(0) ∈ Lip1,0(T) ,
Definition 1.5.1 remains unchanged if Lip1(T) is replaced by Lip1,0(T) .

With Remark 2.1.1 in mind, we will now prove that Lip1,0(T) is com-

pact. For this purpose, we first need to remind ourselves of the Arzela-Ascoli

theorem.

Remark 2.1.3 (Arzela-Ascoli). [13] Let (X, dX) be a compact metric space.

A set F ⊆ C (X) is relatively compact in
(︁
C (X) , ∥.∥∞

)︁
, i.e., F is compact

in
(︁
C (X) , ∥.∥∞

)︁
, if and only if F has the following two properties:

(i) F is (pointwise) bounded, i.e., the set
{︁
f(x) : f ∈ F

}︁
is bounded for

every x ∈ X.

(ii) F is equicontinuous, i.e., for every ϵ > 0 there exists δ > 0 such that

dX(x, y) < δ implies
⃓⃓
f(x)− f(y)

⃓⃓
< ϵ for every f ∈ F .

Lemma 2.1.4. The metric space
(︂
Lip1,0(T) , ∥.∥∞

)︂
is compact.

Proof. We will first use Arzela-Ascoli to prove that Lip1,0(T) is a relatively

compact subset of
(︁
C(T) , ∥.∥∞

)︁
. We will then prove that Lip1,0(T) is closed.

To show the boundedness of
{︂
h(x) ∈ R : h ∈ Lip1,0(T)

}︂
for every x ∈ T , let

an arbitrary x ∈ T be given. Clearly, for every h ∈ Lip1,0(T) ,

⃓⃓
h(x)

⃓⃓
=
⃓⃓
h(0)− h(x)

⃓⃓ Lipschitz

≤ dT(0, x) ≤
1

2
.
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Thus Lip1,0(T) is pointwise bounded. To show the equicontinuiuty of Lip1,0(T)
we need to show

∀ϵ > 0, ∃ δ > 0: ∀x, y ∈ T, dT(x, y) < δ =⇒
⃓⃓
h(x)− h(y)

⃓⃓
< ϵ ∀h ∈ Lip1,0(T) .

Let arbitrary ϵ > 0 be given, and let δ := ϵ
2
. Clearly for every x, y ∈ T such

that dT(x, y) < δ ,

⃓⃓
hn(x)− hn(y)

⃓⃓ Lipschitz

≤ dT(x, y) < δ =
ϵ

2
< ϵ ∀h ∈ Lip1,0(T) .

Thus Lip1,0(T) is also equicontinuous. Therefore by Remark 2.1.3, Lip1,0(T) is
relatively compact. To show that Lip1,0(T) is closed, let an arbitrary Cauchy

sequence (hn)
∞
n=1 in Lip1,0(T) be given. We know

Lip1,0(T) ⊆ C (T)
(C(T),∥·∥∞) is complete
===============⇒ ∃h ∈ C(T) : ∥hn − h∥∞

n→∞−−−−−→ 0 .

We want to show that h ∈ Lip1,0(T). Since sup-norm convergence implies

pointwise convergence, we know h(0) = 0 . To show h ∈ Lip1(T), let arbitrary
ϵ > 0 and x, y ∈ T be given. We have for sufficiently large n ∈ N ,

⃓⃓
h(x)− h(y)

⃓⃓
≤

⃓⃓
h(x)− hn(x)

⃓⃓
+
⃓⃓
hn(x)− hn(y)

⃓⃓
+
⃓⃓
hn(y)− h(y)

⃓⃓
< ϵ + dT(x, y) + ϵ ,

where the first inequality is the triangle inequality, and the second is by the

fact that hn ∈ Lip1 . Since ϵ > 0 was arbitrary,
⃓⃓
h(x)− h(y)

⃓⃓
≤ dT(x, y) and h

is 1-Lipschitz and thereby in Lip1,0(T) . Thus Lip1,0(T) = Lip1,0(T) . Therefore
we have proved that Lip1,0(T) is compact. ■

Next, note that for every µ ∈ P , the map h ↦→
∫︁
T h dµ defines a bounded

linear functional on C (T) because⃓⃓⃓⃓∫︂
T
h dµ

⃓⃓⃓⃓
≤
∫︂
T
|h| dµ ≤ ∥h∥∞ ∀h ∈ C(T) .

We therefore have the following corollary.
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Corollary 2.1.5. The supremum in Definition 1.5.1 is attained with Lip1(T)
replaced by Lip1,0(T) . In other words,

∀µ, ν ∈ P , ∃h0 ∈ Lip1,0(T) : dT(µ, ν) =
∫︂
T
h0 dµ −

∫︂
T
h0 dν .

Proof. Immediate by continuity of h ↦→
∫︁
T h dµ , Remark 2.1.1, and Lemma 2.1.4.

■

We close the section with a few lemmas about Lipschitz functions that are

going to be used in Section 2.2.

Remark 2.1.6. Every Lipschitz continuous function f : R → R is absolutely

continuous, and hence differentiable almost everywhere.

Lemma 2.1.7. Let h ∈ Lip1(T) , and let h′ be as defined in Definition 1.3.8.

Then, ⃦⃦
h′
⃦⃦
∞ ≤ 1 .

Proof. Recall from Remark 1.3.7 that ι−1
R ∈ Lip1

(︁
[0, 1);T

)︁
. By Remark 1.2.2,(︁

h ◦ ι−1
R
)︁
is 1-Lipschitz as well, i.e.,

∀s1, s2 ∈ [0, 1),
⃓⃓⃓(︁
h ◦ ι−1

R
)︁
(s1)−

(︁
h ◦ ι−1

R
)︁
(s2)

⃓⃓⃓
≤ |s1 − s2| . (2.1)

Through Remark 2.1.6, for almost every x0 ∈ T , we have by Definition 1.3.8,

⃓⃓
h′(x0)

⃓⃓
= lim

t→s0

⃓⃓
h ◦ ι−1

R ◦ ⟨·⟩(t) − h ◦ ι−1
R ◦ ⟨·⟩(s0)

⃓⃓
|t− s0|

.

Note that ∀x0 ∈ T\{0 + Z}, the function ⟨·⟩ acts as the identity for any point

in close neighborhoods of s0. In that case,

⃓⃓
h′(x0)

⃓⃓
= lim

s→s0

⃓⃓⃓(︁
h ◦ ι−1

R
)︁
(s)−

(︁
h ◦ ι−1

R
)︁
(s0)

⃓⃓⃓
|s− s0|

(2.1)

≤ lim
s→s0

1 = 1 .

And in the case where x0 = 0 + Z, i.e., where s0 = 0, we know that in the

right limit t→ 0+ subcase, the function ⟨·⟩ acts as the identity again, and the
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argument is the same as above. In the subcase where t→ 0−,

⃓⃓
h′(x0)

⃓⃓
= lim

s→1

⃓⃓⃓(︁
h ◦ ι−1

R
)︁
(s)−

(︁
h ◦ ι−1

R
)︁
(s0)

⃓⃓⃓
|s− s0|

(2.1)

≤ lim
s→1

1 = 1 .

Thus ∥h′∥∞ ≤ 1 . ■

Remark 2.1.8 (reverse triangle inequality). Let (X, dX) be a metric space.

Then,

∀a, b, c ∈ X,
⃓⃓
dX(a, b)− dX(a, c)

⃓⃓
≤ dX(c, b) .

2.2 The Kantorovich Formula

As mentioned in the chapter opening, in this section, we prove that the dT

distance between two measures µ and ν is the minimal L1
(︁
[0, 1) , B[0,1) , λ

)︁
distance between vertically shifted distribution functions Fµ and Fν . Some

of the tools we use in this task include the bijection ιR introduced in Defini-

tion 1.3.6, the Radon-Nikodym theorem, and integration by parts. Below are

applicable versions of the latter two statements.

Remark 2.2.1 (Radon-Nikodym Theorem). [24] Let (X,M) be a measurable

space, and let ν and µ be probability measures. Then, µ ≪ ν if and only

if there exists a measurable function f0 : X → R such that it satisfies the

following two conditions:

(i)
∫︁
X
f0 dν exists (in R) .

(ii) ∀f ∈ L1 (X,M, µ) ,
∫︁
X
f dµ =

∫︁
X
f f0 dν .

The function f0 is the Radon-Nikodym derivative of µ w.r.t. ν, denoted
dµ
dν

.

Remark 2.2.2 (Integration by parts). [20] Let [a, b] ⊂ R be an interval, and

let u, v : [a, b] → R be real-valued functions. If u is absolutely continuous and

v is integrable w.r.t. the Lebesgue measure λ on B[a,b] , then∫︂
[a,b]

u v dλ = u(b)V (b) −
∫︂
[a,b]

u′ V dλ ,
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where u′
λ-a.e.

=== du
dx

and V (x) =
∫︁
[a,x]

v dλ for every x ∈ [a, b] .

Recall from Remark 2.1.6 that Lipschitz continuity implies absolute conti-

nuity. The fact that every Lip1,0(T) function is absolutely continuous implies

Lemma 2.2.3 through the integration by parts formula. This lemma will be a

piece of the proof of the Kantorovich formula.

Lemma 2.2.3. Let µ ∈ P be absolutely continuous w.r.t. λT . Then,

∀h ∈ Lip1,0(T) ,
∫︂
T
h dµ = −

∫︂
[0,1)

h′ Fµ dλ .

Proof. Let an arbitrary µ ∈ P with µ≪ λT be given. By the Radon-Nikodym

theorem we know

∃ fµ ∈ L1 (T , BT , λT) : ∀f ∈ L1 (T , BT , µ) ,

∫︂
T
f dµ =

∫︂
T
f fµ dλT . (2.2)

Let an arbitrary h ∈ Lip1,0(T) be given. Since T is compact, we know

Lip1(T) ⊆ L1 (T , BT , λT) , and so (2.2) applies to h:∫︂
T
h dµ

(2.2)
=

∫︂
T
h fµ dλT =

∫︂
ιR(T)

(︁
h ◦ ι−1

R
)︁ (︁
fµ ◦ ι−1

R
)︁
d
(︁
λT ◦ ι−1

R
)︁

=

∫︂
[0,1)

(︁
h ◦ ι−1

R
)︁ (︁
fµ ◦ ι−1

R
)︁
dλ , (2.3)

where in the second and third equalities ιR : T → [0, 1) is as in Definition 1.3.6.

We would like to apply integration by parts to (2.3). In order to check the

conditions, we note that by Remark 1.2.2, h ◦ ι−1
R : [0, 1) → R is 1-Lipschitz,

and hence absolutely continuous through Remark 2.1.6. We also note that∫︂
[0,1)

fµ ◦ ι−1
R dλ =

∫︂
T
fµ dλT

(2.2)
=

∫︂
T
dµ = 1 <∞ .

Thus fµ ◦ ι−1
R is integrable w.r.t. λ , and we can integrate (2.3) by parts.

Recalling from Remark 1.4.1 that fµ ◦ ι−1
R is the density of the push-forward

measure µ ◦ ι−1
R , and from Definition 1.3.8 that

(︁
h ◦ ι−1

R
)︁′
=: h′, integration of
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(2.3) by parts yields

∫︂
T
h dµ =

������������⁓0[︂(︁
h ◦ ι−1

R
)︁
(s)Fµ(s)

]︂1−
0

−
∫︂
[0,1)

h′ Fµ dλ ,

where the first term vanishes since h ∈ Lip1,0(T), hence h(0) = h(1−) = 0 . ■

Remark 2.2.4. Through analogous steps to the above proof, one can show

that for any x ∈ T and absolutely continuous µ ∈ P ,

∀h ∈ Lip1,0(T) ,
∫︂
T
h d(µ ◦R−1

x ) = h(x)−
∫︂
[0,1)

h′ ◦Rx Fµ dλ .

As another puzzle piece to be used in the proof of the Kantorovich formula

we introduce the following:

Let M0 denote the set of all essentially bounded measurable functions on

[0, 1] that have sup-norm ≤ 1, and integrate to zero, i.e.,

M0 :=

{︄
g ∈ L∞[0, 1] : ∥g∥∞ ≤ 1 ∧

∫︂
[0,1]

g dλ = 0

}︄
. (2.4)

The functions in this set are exactly the derivatives of the functions in Lip1,0(T) ,
and in that way M0 is in one-to-one correspondence with Lip1,0(T) .

Lemma 2.2.5. With M0 as in (2.4), the function ψ : Lip1,0(T) → M0 given

by ψ(h) := h′ is a bijection.

Proof. To show that ψ is surjective, note that for every h ∈ Lip1,0(T) , h
is almost everywhere differentiable and by Lemma 2.1.7 , ∥h′∥∞ ≤ 1 . Also,∫︁
[0,1]

h′ dλ = 0 , since by Definition 1.3.8 ,

∫︂
[0,1]

h′ dλ =
[︂(︁
h ◦ ι−1

R
)︁
(s)
]︂1−
0

= 0− 0 = 0 .

Thus Range(ψ) ⊆M0. To show the reverse inclusion, let an arbitrary g ∈M0

be given. Note that g is integrable on [0, 1]. Consider the anti-derivative of
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g denoted h(s) :=
∫︁
[0,s]

g dλ. Clearly h(0) = 0 . We want to show that h is

1-Lipschitz as well.

Let arbitrary s1, s2 ∈ [0, 1] be given. WLOG assume s1 < s2 .

Case 1 |s1 − s2| ≤ 1
2

.

Note that in this case, dT (s1, s2) = s2 − s1 . By definition of h,

⃓⃓
h(s2)− h(s1)

⃓⃓
=

⃓⃓⃓⃓∫︂ s2

0

g(t) dt−
∫︂ s1

0

g(t) dt

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓
∫︂ s2

s1

g(t) dt

⃓⃓⃓⃓
⃓ ≤

∫︂ s2

s1

⃓⃓
g(t)

⃓⃓
dt

≤ ∥g∥∞
∫︂ s2

s1

1 dt ≤ 1 (s2 − s1) = dT (s1, s2) .

Case 2 |s1 − s2| > 1
2

.

Note that in this case, dT (s1, s2) = 1− s2+ s1 . Since
∫︁
[0,1]

g dλ = 0, we know

∫︂ s2

0

g(t) dt = −
∫︂ 1

s2

g(t) dt . (2.5)

By definition of h,

⃓⃓
h(s2)− h(s1)

⃓⃓
=

⃓⃓⃓⃓∫︂ s2

0

g(t) dt−
∫︂ s1

0

g(t) dt

⃓⃓⃓⃓
(2.5)
=

⃓⃓⃓⃓
⃓−
∫︂ 1

s2

g(t) dt−
∫︂ s1

0

g(t) dt

⃓⃓⃓⃓
⃓

≤
∫︂ 1

s2

⃓⃓
g(t)

⃓⃓
dt+

∫︂ s1

0

⃓⃓
g(t)

⃓⃓
dt

≤ ∥g∥∞
∫︂ 1

s2

1 dt + ∥g∥∞
∫︂ s1

0

1 dt

≤ 1 (1− s2) + 1 (s1) = dT (s1, s2) .

Thus in both cases h ∈ Lip1,0(T) , and ψ is surjective. To show its injectivity,

let h1, h2 ∈ Lip1,0(T) be such that ψ(h1) = ψ(h2) . Thus h′1 = h′2 almost
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everywhere. For every s ∈ [0, 1) ,

0 =

∫︂
[0,s]

(︁
h′1 − h′2

)︁
dλ =

∫︂
[0,s]

h′1 dλ−
∫︂
[0,s]

h′2 dλ = h1(s)− h2(s) ,

where the second and third equalities are by Remark 2.1.6, the fundamental

theorem of calculus, and the fact that h1(0) = h2(0) . Therefore we have

shown that h1 = h2 , and thus ψ is injective too. ■

As the final puzzle piece, we will prove Theorem 2.2.7; but to do so, we

need to remind ourselves of the Hahn-Banach theorem.

Remark 2.2.6 (Hahn-Banach). Let
(︁
X, ∥ · ∥X

)︁
be a normed linear space, and

A ⊆ X a (not necessarily closed) linear subspace. Then,

∀φ ∈ A∗, ∃ ˜︁φ ∈ X∗ : ˜︁φ⃓⃓⃓
A
= φ ∧ ∥˜︁φ∥X∗ = ∥φ∥A∗ ,

where A∗ and X∗ denote dual spaces.

Theorem 2.2.7. Let
(︁
X , ∥ · ∥

)︁
be a normed vector space over R , and let

x, y ∈ X . Then,

sup
{︁
φ(x) ∈ R : φ ∈ B0

}︁
= min

α∈R
∥x− αy∥ , (2.6)

where B0 :=
{︁
φ ∈ X∗ : ∥φ∥ ≤ 1 ∧ φ(y) = 0

}︁
is the set of bounded linear

functionals in the closed unit ball centered at 0 ∈ X∗ , that contain y in their

kernels.

Proof. Let arbitrary x, y ∈ X be given.

Case 1 x ∈ span {y} .

By definition of span, there exists α0 ∈ R such that x = α0 y . By linearity of φ ,

clearly φ(x) = 0 for all φ ∈ B0 , and therefore sup
{︁
φ(x) ∈ R : φ ∈ B0

}︁
= 0 .

On the other hand, by non-negativity of the norm, minα∈R ∥α0 y − αy∥ = 0 .

Thus (2.6) holds in this case.

Case 2 x /∈ span {y} .

In this case, the distance infα∈R ∥x− αy∥ of x to span{y} is positive. We
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will first show that this infimum is attained. Since the attainment is obvious

when y = 0 , assume y ̸= 0 . Note that α ↦→ ∥x− αy∥ is Lipschitz continuous

because for every α1, α2 ∈ R ,

⃓⃓
∥x− α1y∥ − ∥x− α2y∥

⃓⃓
≤ ∥−α1y + α2y∥ = |α2 − α1| ∥y∥ ,

where the inequality is by the reverse triangle inequality (see Remark 2.1.8).

Note that the reverse triangle inequality also gives us a lower bound

∥αy∥ − ∥x∥ ≤ ∥x− αy∥ ∀α ∈ R ;

which implies that limα→±∞ ∥x− αy∥ = +∞ . Thus considering α ↦→ ∥x− αy∥
on [−N,N ] for a large enough N , we see through Remark 2.1.1 that this map

attains a global minimum. Assume the infimum is attained at α0 and let b

denote this minimal value. That is, b := ∥x− α0y∥ = minα∈R ∥x− αy∥ > 0 .

We want to show that supφ∈B0
φ(x) = b . Note that −φ ∈ B0 for every

φ ∈ B0 . Thus supφ∈B φ(x) = supφ∈B
⃓⃓
φ(x)

⃓⃓
. By the linearity of φ , the

definition of B, and the definition of operator norm,

⃓⃓
φ(x)

⃓⃓
=
⃓⃓
φ(x− α0y)

⃓⃓
≤ ∥φ∥ ∥x− α0y∥ ≤ ∥x− α0y∥ = b ∀φ ∈ B .

Therefore

sup
φ∈B

⃓⃓
φ(x)

⃓⃓
≤ b . (2.7)

To show the reverse inequality, consider the vector z := x − α0y which is

clearly linearly independent of y , and thus the following linear functional ψ

on span {y, z} is well-defined:

∀s, t ∈ R, ψ(sy + tz) := t ,

To show that ψ is bounded, note that if t = 0 , then ∥sy + tz∥ ≥ |t| for all

s ∈ R . And in case where s ∈ R and t ∈ R \ {0} , we again find

∥sy + tz∥ = |t|
⃦⃦⃦⃦
s

t
y + (x− α0y)

⃦⃦⃦⃦
= |t|

⃦⃦⃦⃦
x−

(︁
α0 −

s

t

)︁
y

⃦⃦⃦⃦
≥ |t| b ,

36



where the inequality is true by definition of b . Therefore, for every s, t ∈ R ,

⃓⃓
ψ(sy + tz)

⃓⃓
= |t| ≤ ∥sy + tz∥

b
,

which implies that ∥ψ∥ ≤ 1
b
. By the Hahn-Banach theorem, there exists˜︁ψ ∈ X∗ such that ∥ ˜︁ψ∥ ≤ 1

b
, and ˜︁ψ(sy+tz) = t for every sy+tz ∈ span {y, z} .

Therefore b ˜︁ψ ∈ B0 and b ˜︁ψ(x) = b ψ(−α0y + z) = b . Thus by definition of

supremum,

b ≤ sup
φ∈B

⃓⃓
φ(x)

⃓⃓
. (2.8)

Through (2.7) and (2.8) we conclude that supφ∈B φ(x) = b , and thus (2.6)

holds in this case also. ■

Denote by P0 the space of probability measures on BT that have a fi-

nite support (i.e., µ(C) = 1 for some finite set C ⊆ T). Since dT induces

the weak topology on P , we know that P0 is dense in P [21]. The space

PAC of probability measures that are absolutely continuous w.r.t. λT can

approximate any µ ∈ P0 arbitrarily well, and thus PAC is dense in P too.

We will use this fact in the proof of Theorem 2.2.8 below. Needless to say

PC := {µ ∈ P : µ continuous } ⊇ PAC is consequently dense as well.

Theorem 2.2.8. For every µ, ν ∈ P,

dT (µ, ν) = min
t∈R

∫︂ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds .

Proof. We will first show the above holds true for any µ, ν ∈ PAC . We then

use the density of PAC in P to show the result is true for any µ, ν ∈ P .

Let arbitrary µ, ν ∈ PAC be given. By Corollary 2.1.5 ,

∃h0 ∈ Lip1,0(T) : dT(µ, ν) =

∫︂
T
h0 dµ −

∫︂
T
h0 dν .
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Since µ, ν ≪ λT , through Lemma 2.2.3 we know that

dT(µ, ν) =

∫︂ 1

0

h′0(s)
(︁
Fν(s)− Fµ(s)

)︁
ds

≤ sup
g∈M0

∫︂ 1

0

g(s)
(︁
Fν(s)− Fµ(s)

)︁
ds , (2.9)

where M0 is as defined in (2.4) , and the inequality is because Lemma 2.2.5

implies h′0 ∈M0 . On the other hand, Lemma 2.2.5 also implies that for every

h′ ∈ M0 ,
∫︁
T h dµ −

∫︁
T h dν ≤ dT(µ, ν) , and therefore through Lemma 2.2.3,

we know for every h′ ∈M0 ,∫︂ 1

0

h′(s)
(︁
Fν(s)− Fµ(s)

)︁
ds ≤ dT(µ, ν) .

Taking the supremum over all h′ ∈M0 we have

sup
g∈M0

∫︂ 1

0

g(s)
(︁
Fν(s)− Fµ(s)

)︁
ds ≤ dT(µ, ν) . (2.10)

Therefore through (2.9) and (2.10) we have

dT(µ, ν) = sup
g∈M0

∫︂ 1

0

g(s)
(︁
Fν(s)− Fµ(s)

)︁
ds . (2.11)

Through Corollary 2.1.5 and Lemma 2.2.5 we know that the supremum in

(2.11) is attained. Recall that the dual space of the Banach space
(︁
L1[0, 1] , ∥·∥L1

)︁
is simply

(︁
L∞[0, 1] , ∥·∥∞

)︁
up to an isometric isomorphism. Thus we can iden-

tify M0 in (2.4) with the set

N0 :=
{︁
φ ∈ L1[0, 1]∗ : ∥φ∥ ≤ 1 ∧ φ(1[0,1]) = 0

}︁
.

Consequently, (2.11) can be written as

dT(µ, ν) = sup
φ∈N0

φ
(︁
Fµ − Fν

)︁
. (2.12)

Note that 1[0,1] ∈ L1[0, 1] , and letting x = Fµ − Fν in Theorem 2.2.7 , we
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conclude that

dT(µ, ν) = min
t∈R

⃦⃦
Fµ − Fν − t

⃦⃦
L1 .

Claim 2.2.8.1. (2.11) holds for all µ, ν ∈ P .

Proof. Let arbitrary µ, ν ∈ P be given. By the density of PAC in P there

exist sequences (µn)
∞
n=1 and (νn)

∞
n=1 in PAC such that limn→∞ dT(µn, µ) =

limn→∞ dT(νn, ν) = 0 . Note that the definition of weak convergence implies

lim
n→∞

∫︂ 1

0

Fµn ds =

∫︂ 1

0

Fµ ds ∧ lim
n→∞

∫︂ 1

0

Fνn ds =

∫︂ 1

0

Fν ds . (2.13)

By what has already been proved, there exists a real sequence (tn)
∞
n=1 such

that

dT(µn, νn) =

∫︂ 1

0

⃓⃓
Fµn(s)− Fνn(s)− tn

⃓⃓
ds ∀n ∈ N .

Since tn minimizes
⃦⃦
Fµn − Fνn − ·

⃦⃦
L1 and Fµn−Fνn ≤ 1 , clearly the sequence

(tn)
∞
n=1 is bounded and thus has a convergent subsequence

(︁
tnj

)︁∞
j=1

. Therefore

lim
j→∞

dT(µnj
, νnj

) = lim
j→∞

∫︂ 1

0

⃓⃓⃓
Fµnj

(s)− Fνnj
(s)− tnj

⃓⃓⃓
ds

=⇒ dT (µ, ν) =

∫︂ 1

0

⃓⃓
Fµ − Fν − t0

⃓⃓
, (2.14)

where the second equality is by dominated convergence and (2.13). The symbol

t0 denotes the limit of
(︁
tnj

)︁∞
j=1

. We now show that the right hand side in

(2.14) is mint∈R
∫︁ 1

0

⃓⃓
Fµ − Fν − t

⃓⃓
. Assume, by contradiction, that∫︂ 1

0

⃓⃓
Fµ − Fν − tmin

⃓⃓
<

∫︂ 1

0

⃓⃓
Fµ − Fν − t0

⃓⃓
,

for some tmin ∈ R . By (2.14), we can choose ϵ > 0 so small that

ϵ <
dT (µ, ν)−

∫︁ 1

0

⃓⃓
Fµ − Fν − tmin

⃓⃓
3

. (2.15)
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Clearly by the continuity of dT there exists N1 ∈ N such that for every j > N1 ,

dT(µnj
, νnj

) > dT(µ,ν)− ϵ .

By (2.14) there exists N2 ∈ N such that for every j > N2 ,∫︂ 1

0

⃓⃓⃓
Fµnj

− Fνnj
− tmin

⃓⃓⃓
<

∫︂ 1

0

⃓⃓
Fµ − Fν − tmin

⃓⃓
+ ϵ .

Let N := max{N1, N2} . We have shown for every j ≥ N ,

dT(µnj
, νnj

)−
∫︂ 1

0

⃓⃓⃓
Fµnj

− Fνnj
− tmin

⃓⃓⃓
> dT(µ,ν)−

∫︂ 1

0

⃓⃓
Fµ − Fν − tmin

⃓⃓
− 2ϵ

(2.15)
> 3ϵ− 2ϵ = ϵ .

Taking the limit as n→ ∞ , this implies 0 > ϵ which is a clear contradiction.

Thus we have shown
∫︁ 1

0

⃓⃓
Fµ − Fν − t0

⃓⃓
= mint∈R

∫︁ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds. □

Thereby dT (µ, ν) = mint∈R
∫︁ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds for any µ, ν ∈ P . ■
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Chapter 3

Minimizing the L1 Distance

We learned in Chapter 2 that dT (µ, ν) = mint∈R
∫︁ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds

for every µ, ν ∈ P . The goal of this chapter is to show that the median value

of Fµ − Fν is a minimizer t for the above integral (see Theorem 3.2.13). We

will do so by more generally proving that for any L1 function g : [0, 1) → R
the L1 distance between g and a constant function t is minimized when t is

the median value of g. As with previous chapters, the preparatory lemmas

required for the proof of the main result are presented in the first section.

3.1 Preparatory work

In Section 3.2 we will begin the journey toward proving that the median

value of g minimizes
∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds by first proving it for monotone g. Also

prominent in an essential theorem (Theorem 3.2.10) will be the cumulative

distribution function of g which is a monotone function as well. For these rea-

sons we prove a few useful facts about monotone functions in this preparatory

section.

Remark 3.1.1. Let f : [a, b] → R be monotone. Then for every c ∈ (a, b) ,

f(c−) and f(c+) both exist. Specifically, if f is increasing,

f(c+) = inf
{︁
f(x) : c < x < b

}︁
∧ f(c−) = sup

{︁
f(x) : a < x < c

}︁
.
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Furthermore, for an increasing f we have

f(c−) ≤ f(c) ≤ f(c+) .

We will prove that monotone functions have only a countable number of

jump discontinuities. We first set the stage to that end.

Definition 3.1.2 (jump of a monotone function). Let f : [0, 1] → R be mono-

tone. We define the jump at a point c to be

jmp(c) := f(c+)− f(c−) ∀c ∈ (0, 1) .

We additionally define the jump at the end points as jmp(0) := f(0+)− f(0) ,

and jmp(1) := f(1)− f(1−) . Increasing functions have non-negative jumps.

Remark 3.1.3. Let f : [0, 1] → R be increasing, and let
{︁
xj
}︁n
j=0

be a partition

on [0, 1] , i.e., n ∈ N and 0 = x0 < x1 < x2 < ... < xn = 1 . Then,

n∑︂
j=0

jmp(xj) ≤ f(1)− f(0) .

Lemma 3.1.4 (Monotonicity implies countable discontinuity). Let f : [0, 1] →
R be monotone, and let S be the set of (necessarily jump) discontinuities of f ,

i.e., let S :=
{︁
x ∈ [0, 1] : jmp(x) ̸= 0

}︁
. Then S is countable.

Proof. WLOG assume f is increasing. For every m ∈ N, define the set Sm :={︁
x ∈ [0, 1] : jmp(x) > 1

m

}︁
. Clearly, Sm ⊆ S for all m ∈ N , and (Sm)

∞
m=1 ↗ S ,

i.e., Sm1 ⊆ Sm2 and
⋃︁∞

m=1 Sm = S for every m1,m2 ∈ N with m1 < m2 .

Claim 3.1.4.1. Every Sm defined above is a finite set.

Proof. Assume, by contradiction, that there exists some m0 ∈ N for which

Sm0 is infinite. Let n0 be a natural number such that (n0 − 1)
(︁

1
m0

)︁
> f(b)−

f(a) . Since #Sm0 > n0 , we can choose n0−1 points in Sm0 , which we name

42



x1, x2, · · · , xn0−1 in increasing order. Let x0 := 0 and xn0
:= 1 . Note that{︁

xj
}︁n0

j=0
is a partition on [0, 1] . By definition of Sm0 ,

n0−1∑︂
j=1

jmp(xj) >

n0−1∑︂
j−1

1

m0

= (n0 − 1)

(︃
1

m0

)︃
> f(b)− f(a) , ¸

which contradicts Remark 3.1.3. □

By Claim 3.1.4.1, every Sm is a countable set. Since countable union of

countable sets is countable, we have proved that S is countable. ■

Lemma 3.1.5. Let f : [0, 1] → R be a monotone function. Then for every

t0 ∈ Range(f), the set {f = t0} is a (possibly degenerate) interval.

Proof. WLOG assume f is increasing. Let an arbitrary t0 ∈ Range(f) be

given. By definition of range, {f = t0} ≠ ∅. We want to show that for every

a, b ∈ {f = t0} such that a ≤ b, we have [a, b] ⊆ {f = t0}.
Let arbitrary a, b ∈ {f = t0} where a ≤ b be given. For every c ∈ [a, b],

t0 = f(a) ≤ f(c) ≤ f(b) = t0 ,

since increasing functions preserve order. Thus we have shown that f(c) = t0

or c ∈ {f = t0} . ■

Recall that a monotone function is not necessarily invertible in the usual

sense because it may not be one-to-one or onto due to constant regions or

jumps, respectively. There is, however, a way to define ‘the inverse’ of a

monotone function, and we will make use of this definition because we will

need to invert distribution functions (which are increasing) in Section 3.2. In

this preparatory section we state the general definition and results about the

inverse of an increasing function f : R → R , and later in Section 3.2 we use

it for cumulative distribution functions ˆ︁g : (0, 1) → R of integrable functions g

on [0, 1) .
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Definition 3.1.6 (Inverse of an increasing function). Let f : R → R be an

increasing function. We define the inverse of f to be the function f−1 : R → R
given by:

∀a ∈ R, f−1(a) := sup {f ≤ a} ,

where {f ≤ a} is understood to mean {x ∈ R : f(x) ≤ a}. We follow the

usual convention that sup ∅ = −∞ .

Remark 3.1.7. The f−1 in Definition 3.1.6 is increasing and right-continuous.

We close off this section by proving a result which we will use in the proof

of Theorem 3.2.13.

Lemma 3.1.8. Let (Ω,M, µ) be a σ-finite measure space, and let φ : [0,+∞) →
R be a continuously differentiable, increasing function with φ(0) = 0 . Then

for every M-B[0,+∞)-measurable function f : Ω → [0,+∞) ,∫︂
Ω

φ
(︁
f(ω)

)︁
dµ(ω) =

∫︂ ∞

0

φ′(t)µ
(︁
{f ≥ t}

)︁
dt ,

Proof. By the Fundamental Theorem of Calculus,

∫︂
Ω

φ
(︁
f(ω)

)︁
dµ(ω) =

∫︂
Ω

(︄∫︂ f(ω)

0

φ′(t) dt

)︄
dµ(ω)

=

∫︂
Ω

(︃∫︂ ∞

0

φ′(t) 1[0,f(ω)](t) dt

)︃
dµ(ω) . (3.1)

Note that (Ω,M, µ) and
(︁
[0,+∞) , B[0,+∞) , λ[0,+∞)

)︁
are σ-finite measure

spaces. Also note that since φ′ is continuous, it is BR-B[0,+∞)-measurable.

Thus the map (t, ω) ↦→ φ′(t)1[0,f(ω)](t) is
(︁
M⊗B[0,+∞)

)︁
-BR-measurable. We

can therefore apply Tonelli’s theorem to (3.1):∫︂
Ω

φ
(︁
f(ω)

)︁
dµ(ω) =

∫︂ ∞

0

(︃∫︂
Ω

φ′(t) 1[0,f(ω)](t) dµ(ω)

)︃
dt

=

∫︂ ∞

0

φ′(t)

(︃∫︂
Ω

1[0,f(ω)](t) dµ(ω)

)︃
dt

=

∫︂ ∞

0

φ′(t) µ
(︂{︁
ω ∈ Ω : f(ω) ≥ t

}︁)︂
dt .
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■

Corollary 3.1.9. Let (Ω,M,P) be a probability space. Let X : Ω → [0,+∞) be

an M-B[0,+∞)-measurable function (“non-negative random variable”). Then,

E [X] =

∫︂
Ω

X(ω) dP(ω) =

∫︂ +∞

0

P (X ≥ t) dt .

3.2 tmin

The main goal of this section is to prove Theorem 3.2.13. Throughout this

section, we denote by tmin any t ∈ R that minimizes
∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds for

a given real-valued function g on [0, 1). Note that if existent, tmin is not

necessarily unique. We begin by proving the result for monotone g.

Theorem 3.2.1. Let g : [0, 1] → R be a monotone function. The value of∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds is minimized if and only if t is between the left limit and

right limit of g at 1
2
, i.e.,

min
t∈R

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds =

∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds ⇐⇒ t0 ∈

[︁
gm1

2
, gM1

2

]︁
,

where gm1
2

:= min
{︁
g(1

2

−
), g(1

2

+
)
}︁
, and gM1

2

:= max
{︁
g(1

2

−
), g(1

2

+
)
}︁
.

Proof. We prove the theorem for the case where g is increasing. The decreas-

ing case is completely analogous. Let t0 := g(1
2
) . Note that by Remark 3.1.1,

g
(︂ 1

2

− )︂
≤ t0 ≤ g

(︂ 1

2

+ )︂
. (3.2)

Let arbitrary t ∈ R be given. We distinguish three cases: t < g
(︁

1
2

−)︁
, t >

g
(︁

1
2

+)︁
, and t ∈

[︂
g(1

2

−
) , g(1

2

+
)
]︂
. We will show in Claims 3.2.1.1 and 3.2.1.2

that if t /∈
[︂
g(1

2

−
) , g(1

2

+
)
]︂
, then

∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds is strictly larger than

∫︁ 1

0

⃓⃓
g(s)− t0

⃓⃓
dt .

We then show in Claim 3.2.1.3 that in the case where t ∈
[︂
g(1

2

−
) , g(1

2

+
)
]︂
, the

value
∫︁ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds is equal to

∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds. The desired result will

thereby follow.
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Case 1 t < g
(︁

1
2

−)︁

Claim 3.2.1.1. The L1 distance between g and t is strictly greater than that

of g and t0 , i.e., ∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds <

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds .

Proof. We want to show
∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds −

∫︁ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds > 0 . (See

Figure 3.2 .) In order to do this, we need to know the sign of the integrands by

properly partitioning the domain of the integrals. To that end, we first note

that by assumption,

t < g
(︁ 1
2

−)︁ (3.2)
===⇒ t < t0 . (3.3)

Second, note that by Lemma 3.1.5, g−1
(︁
{t0}

)︁
is an interval. Let a < b ∈ [0, 1]

denote the endpoints of this interval. Additionally, let c := 0 if {g < t} = ∅.
Otherwise, denote c := sup{g < t}. Lastly denote d := inf{g > t}. And note

that since g is increasing,

0 ≤ c ≤ d ≤ a ≤ 1

2
≤ b ≤ 1 , (3.4)

as seen in Figure 3.1. The essence of the proof in this case comes down to

the following fact: d < 1
2
because the middle two inequalities in (3.4) cannot

simultaneously be equalities. That is, if a = 1
2
then d < a. We will soon

demonstrate this fact by distinguishing the subcases a = 1
2

and a < 1
2
.

Before that, however, we break down the integrals into a partition:∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds −

∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds =
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∫︂
{g≤t}

⃓⃓
g(s)− t

⃓⃓
ds+

∫︂
{g>t}

⃓⃓
g(s)− t

⃓⃓
ds

−
∫︂
{g<t0}

⃓⃓
g(s)− t0

⃓⃓
ds−

∫︂
{g≥t0}

⃓⃓
g(s)− t0

⃓⃓
ds

0 0.2 c  d 0.4  a 0.6  b 0.8 1

0

0.5

 t

 t
0

1

Figure 3.1: An example of a generic increasing g in the case where t < g(1/2−)
is in Range(g) . In this example, a = 1

2 .

=

∫︂ d

0

(︁
−g(s) + t

)︁
ds+

∫︂ 1

d

(︁
g(s)− t

)︁
ds

−
∫︂ a

0

(︁
−g(s) + t0

)︁
ds−

∫︂ 1

a

(︁
g(s)− t0

)︁
ds

=

∫︂ d

0

(︁
−g(s) + t

)︁
ds+

∫︂ a

d

(︁
g(s)− t

)︁
ds+

∫︂ 1

a

(︁
g(s)− t

)︁
ds

−
∫︂ d

0

(︁
−g(s) + t0

)︁
ds−

∫︂ a

d

(︁
−g(s) + t0

)︁
ds−

∫︂ 1

a

(︁
g(s)− t0

)︁
ds
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=

∫︂ d

0

(t− t0) ds+

∫︂ a

d

(︁
g(s)− t

)︁
ds+

∫︂ 1

a

(t0 − t) ds−
∫︂ a

d

(︁
−g(s) + t0

)︁
ds .

(3.5)

Assume a = 1
2
. In this subcase, d < a because otherwise we would have

inf{g > t} = d = a = 1
2
, which since g is increasing, implies that g(s) ≤ t

for all s < 1
2
, which in turn implies the contradiction g(1

2

−
) ≤ t . Also note

that the fact that g is increasing, together with the definition of inf{g > t} ,
implies that

t < g(s) < t0 ∀s ∈ (d, a) . (3.6)

By (3.5) we know

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
dt −

∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
dt

= d (t− t0) + (1− a)(t0 − t) +

∫︂ a

d

(︁
g(s)− t

)︁
ds−

∫︂ a

d

(︁
−g(s) + t0

)︁
ds

> d (t− t0) + (1− a)(t0 − t)−
∫︂ a

d

(︁
−g(s) + t0

)︁
ds

> d (t− t0)+(1−a)(t0−t)−
∫︂ a

d

(−t+ t0) ds = 0 ,

where the strict inequalities are by (3.6) and the fact that d < a . Now assume

that a < 1
2
. Again, by (3.5) we know

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
dt −

∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
dt

= d (t− t0) + (1− a)(t0 − t) +

∫︂ a

d

(︁
g(s)− t

)︁
ds−

∫︂ a

d

(︁
−g(s) + t0

)︁
ds

≥ d (t− t0) + (1− a)(t0 − t)−
∫︂ a

d

(︁
g(s)− t

)︁
ds−

∫︂ a

d

(︁
−g(s) + t0

)︁
ds

= d (t− t0)+ (1− a)(t0 − t)− (a− d)(t0 − t) = (1− 2a)(t0 − t) > 0 ,

where the inequalities are by (3.6) and the assumption that a < 1
2
.

□

Case 2 t > g
(︁

1
2

+)︁
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Figure 3.2: The area between g and t0 shaded in light orange (left) and the
area between the same g and t < g(1/2−) shaded in light red (right) , and the
superposition of the two pictures (middle). In Claim 3.2.1.1 we proved that the
light orange area is strictly bigger than the light red area.

Claim 3.2.1.2. The L1 distance between g and t is strictly greater than that

of g and t0 , i.e., ∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds <

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds .

Proof. Analogous to the proof of Claim 3.2.1.1 . □

Case 3 t ∈
[︂
g(1

2

−
) , g(1

2

+
)
]︂

Claim 3.2.1.3. The L1 distance between g and t is equal to that of g and t0 ,

i.e., ∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds =

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds .

Proof. Breaking down our integral,∫︂ 1

0

⃓⃓
g(s)− t0

⃓⃓
ds−

∫︂ 1

0

⃓⃓
g(s)− t

⃓⃓
ds =
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∫︂ 1
2

0

(︁
−g(s) + t0

)︁
ds+

∫︂ 1

1
2

(︁
g(s)− t0

)︁
ds

−
∫︂ 1

2

0

(︁
−g(s) + t

)︁
ds−

∫︂ 1

1
2

(︁
g(s)− t

)︁
ds

=

∫︂ 1
2

0

(t0 − t) ds+

∫︂ 1

1
2

(t− t0) ds =
1

2
(t0 − t)− 1

2
(t0 − t) = 0 ,

where the sign of the integrand g(s)−t in the first equality is by Remark 3.1.1.

□

Thus by Claim 3.2.1.2, Claim 3.2.1.1 and Claim 3.2.1.3, t ↦→
∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds

is minimized iff t ∈
[︂
g(1

2

−
) , g(1

2

+
)
]︂
. ■

Remark 3.2.2. As an immediate consequence of Theorem 3.2.1 we see that

mint∈R
∫︁ 1

0
|s− t | ds = 1

4
.

Informally speaking, Theorem 3.2.1 is saying that for a monotone g , the

value of the integral
∫︁ 1

0

⃓⃓
g(s)− t

⃓⃓
ds is minimized when half the time g is

above t, and half the time below. More precisely, it tells us that for every

monotone function g,

∥g − t∥1 is minimized ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ
(︁
{g ≤ t}

)︁
≥ 1

2
,

∧
λ
(︁
{g ≥ t}

)︁
≥ 1

2
,

which is to say that tmin is a median value of g . This fact is reminiscent

of a well-known fact in statistics [9] : If X is a random variable and t is a

constant estimator for X, then the t that minimizes the mean absolute error

E
[︁
|X − t|

]︁
is the median value of X ; see Theorem 3.2.3. While not identical,

this fact is closely related to Theorem 3.2.1. The exact relationship between

these two theorems will become clear in Theorem 3.2.13; but for now, one

such relation to know is that Theorem 3.2.1 is used to prove the statistics fact

stated in Theorem 3.2.3.
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Theorem 3.2.3. Let (Ω,M,P) be a probability space, and let X : Ω → R
be an M-BR-measurable, absolutely continuous function (i.e., X has a den-

sity). The value of
∫︁
Ω

⃓⃓
X(ω)− t

⃓⃓
dP(ω) with t ∈ R is minimized iff t ∈[︂

F−1
X (1

2

−
) , F−1

X (1
2

+
)
]︂
, where FX(x) := P

(︁
{X ≤ x}

)︁
for every x ∈ R .

Proof. By definition,∫︂
Ω

⃓⃓
X(ω)− t

⃓⃓
dP(ω) =

∫︂
R
|x− t| dPX(x)

=

∫︂
R
|x− t| fX(x) dx

=

∫︂
FX(R)

⃓⃓
F−1
X (z)− t

⃓⃓
dz =

∫︂ 1

0

⃓⃓
F−1
X (z)− t

⃓⃓
dz ,

where PX := P ◦ X−1, fX is the density of X, and the third equality is by

the substitution z = FX(x) which implies dz = fX(x) dx and x = F−1
X (z) .

Note that F−1
X is understood in the sense of Definition 3.1.6. By Remark 3.1.7,

F−1
X is increasing . Thus by Theorem 3.2.1, the above intergral is minimized

iff t ∈
[︂
F−1
X (1

2

−
) , F−1

X (1
2

+
)
]︂
. ■

Remark 3.2.4. Note that in the above corollary if FX is strictly increasing,

then F−1
X will be continuous, and therefore F−1

X (1
2

−
) = F−1

X (1
2

+
) and thus the

integral is minimized iff t = F−1
X (1

2
) , i.e., iff t is the median value.

If we let the probability space (Ω,M,P) in Theorem 3.2.3 be
(︁
[0, 1),B[0,1), λ

)︁
and rename the random variable X to g, it tells us, just as Theorem 3.2.1 did,

that ∥g − t∥1 is minimized if t is the median value of g. Unlike Theorem 3.2.1,

however, which required g to be a monotone function, Theorem 3.2.3 is mak-

ing this statement for absolutely continuous g. Both of these results can be

thought of as special cases of a general theorem that tells us g only needs to

be integrable for this result to hold true (see Theorem 3.2.13).

We will show in Theorem 3.2.10 that the integral of g can be re-written

as the integral of an increasing function, namely its cumulative distribution
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function in the usual sense (CDF). The usual notation for the CDF associated

with a random variable g is Fg [9]; however, since we have used the capital F

notation for distribution functions in the sense of Definition 1.3.4, we use the

notation ˆ︁g for the CDF of g.

Definition 3.2.5 (CDF). Consider the probability space
(︁
[0, 1) , B[0,1), λ

)︁
.

Let g : [0, 1) → R be a B[0,1)-BR -measurable function (aka a random variable).

Consider the pushforward probability measure λ ◦ g−1 on (R,BR). We de-

fine ˆ︁g to be the cumulative distribution function (CDF) of that probability

distribution, i.e., we define ˆ︁g : R → [0, 1] as

∀t ∈ R, ˆ︁g(t) := λ
(︁
{g ≤ t}

)︁
,

where {g ≤ t} is understood to be
{︁
s ∈ [0, 1) : g(s) ≤ t

}︁
.

Remark 3.2.6. Note that ˆ︁g + a = ˆ︁g( · − a) for every a ∈ R .

Lemma 3.2.7. Let g : [0, 1) → R be B[0,1)-BR -measurable, and let ˆ︁g : R →
[0, 1] be the CDF of g . Then,

∀t0 ∈ R, ˆ︁g(︁ t−0 )︁ = λ
(︁
{g < t0}

)︁
.

Proof. Let an arbitrary t0 ∈ R be given. Then

ˆ︁g(︁t−0 )︁ = lim
t↗t0

ˆ︁g(t) = lim
t↗t0

λ
(︁
{g ≤ t}

)︁
= lim

n→∞
λ

(︄{︃
g ≤ t0 −

1

n

}︃)︄

= λ

(︄
∞⋃︂
n=1

{︃
g ≤ t0 −

1

n

}︃)︄
= λ

(︁
{g < t0}

)︁
.

■

Consider any CDF ˆ︁g : R → [0, 1] as defined in Definition 3.2.5. Being an

increasing function, we can define its inverse as in Definition 3.1.6. However,

in this setting, we don’t have to be concerned with the extended reals. Since

limt→−∞ ˆ︁g(t) = 0 and limt→+∞ ˆ︁g(t) = 1 , we know that for every s in (0, 1),
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{ˆ︁g ≤ s} ≠ ∅ . We thus define ˆ︁g−1 : (0, 1) → R as

∀s ∈ (0, 1) , ˆ︁g−1(s) := sup {ˆ︁g ≤ s} , (3.7)

where {ˆ︁g ≤ s} is understood to mean
{︁
t ∈ R : ˆ︁g(t) ≤ s

}︁
.

Remark 3.2.8. By Remark 3.1.7 it is immediate that ˆ︁g−1 as defined in (3.7)

is increasing and right-continuous. Therefore, one can interpret this to mean

that the set
{︁
Fµ : µ ∈ P

}︁
⊂ [0, 1][0,1] of all distribution functions on [0, 1) is

closed under inversion, provided we treat the end-points with care.

Remark 3.2.9. Note that ˆ︁g + a
−1

= ˆ︁g−1 + a for every a ∈ R .

We now turn to prove the most essential part of characterizing tmin which

asserts the following: If our measurable function (random variable) g is inte-

grable (has an expected value) then its integral (expectation) can be written

as the integral of its CDF.

Theorem 3.2.10. Let g ∈ L1
(︁
[0, 1) , B[0,1) , λ

)︁
, and let ˆ︁g : R → [0, 1] be the

CDF of g . Then ∫︂
[0,1)

g dλ =

∫︂ 1

0

ˆ︁g−1(s) ds .

Proof. Recall that any real-valued measurable function g has a positive part

g+ and a negative part g− defined as

g+ := max {g, 0} ∧ g− := max {−g, 0} ,

both of which are non-negative measurable functions; and g = g+ − g− .

By definition,∫︂
[0,1)

g dλ =

∫︂
[0,1)

g+ dλ −
∫︂
[0,1)

g− dλ

=

∫︂ +∞

0

λ
(︁
g+ ≥ t

)︁
dt −

∫︂ +∞

0

λ
(︁
g− ≥ t

)︁
dt

=

∫︂ +∞

0

(︂
1− λ

(︁
g+ < t

)︁)︂
dt −

∫︂ +∞

0

λ
(︁
g− ≥ t

)︁
dt , (3.8)
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where the second equality is by Corollary 3.1.9. Note that

∀t ∈ (0,+∞) ,
{︁
g+ < t

}︁
= {g < t}

=⇒ ∀t ∈ (0,+∞) , λ
(︂{︁
g+ < t

}︁)︂
= λ

(︂
{g < t}

)︂ Lemma 3.2.7

=== ˆ︁g(︁ t−)︁ . (3.9)

Also note that

∀t ∈ (0,+∞) ,
{︁
g− ≥ t

}︁
=
{︁
−g− ≤ −t

}︁
= {g ≤ −t}

=⇒ ∀t ∈ (0,+∞) , λ
(︂{︁
g− ≥ t

}︁)︂
= λ

(︂
{g ≤ −t}

)︂
= ˆ︁g (−t) . (3.10)

Thus using (3.9) and (3.10), we conclude from (3.8) that∫︂
[0,1)

g dλ =

∫︂ ∞

0

(︁
1− ˆ︁g(t−) )︁ dt⏞ ⏟⏟ ⏞

I1

−
∫︂ 0

−∞
ˆ︁g(t) dt⏞ ⏟⏟ ⏞
I2

. (3.11)

Note that at the points of continuity of ˆ︁g , we have ˆ︁g(t−) = ˆ︁g(t) . And

since ˆ︁g is monotone, by Lemma 3.1.4 we know the points of discontinuity are

countable. Thus ˆ︁g(.−) λ-a.e.
=== ˆ︁g(.) . (3.12)

Also, (3.12) clearly implies

1− ˆ︁g(.−) λ-a.e.
=== 1− ˆ︁g(.) .

Thus I1 equals the area of the region above ˆ︁g and below the constant 1 on

[0,+∞). Let us call this area Epos, i.e., Epos :=
{︁
(t, s) ∈ [0,+∞)× [0, 1] : ˆ︁g(t) ≤ s

}︁
.

Thus,

I1 =

∫︂∫︂
[0,+∞)×[0,1]

1Epos(t, s) d (λ× λ) (t, s) (3.13)

=

∫︂ 1

0

(︄∫︂ +∞

0

1(Epos)
s(t) dλ(t)

)︄
dλ(s) =

∫︂ 1

0

λ
(︂ (︁
Epos

)︁s )︂
ds ,

where in the first equality, the second λ is understood to mean λ
⃓⃓⃓
[0,1]

, and the

54



second equality is by Fubini’s theorem. By definition, we know

∀s ∈ [0, 1],
(︁
Epos

)︁s
:=
{︁
t ∈ [0,+∞) : (t, s) ∈ Epos

}︁
=
{︁
t ∈ [0,+∞) : ˆ︁g(t−) ≤ s

}︁
(3.12)
===⇒

(︁
Epos

)︁s λ-a.e.
===

{︁
t ∈ [0,+∞) : ˆ︁g(t) ≤ s

}︁
= {ˆ︁g ≤ s} ∩ [0,+∞)

=⇒ I1 =

∫︂ 1

0

λ
(︂

{ˆ︁g ≤ s} ∩ [0,+∞)
)︂
ds . (3.14)

Similarly, I2 equals the area of the region below ˆ︁g and above the constant 0 on

(−∞, 0]. Let us call this area Eneg, i.e., Eneg :=
{︁
(t, s) ∈ (−∞, 0]× [0, 1] : s ≤ ˆ︁g(t) }︁ .

Thus,

I2 =

∫︂∫︂
(−∞,0]×[0,1]

1Eneg(t, s) d (λ× λ) (t, s) ,

where the second λ is understood to mean λ
⃓⃓⃓
[0,1]

. Thus by Fubini’s theorem,

I2 =

∫︂ 1

0

(︄∫︂ 0

−∞
1(Eneg)

s(t) dλ(t)

)︄
dλ(s) =

∫︂ 1

0

λ
(︂ (︁
Eneg

)︁s )︂
ds

=

∫︂ 1

0

λ
(︂{︁

t ∈ (−∞, 0] : s ≤ ˆ︁g}︁)︂ ds
=

∫︂ 1

0

λ
(︂
{ˆ︁g ≥ s} ∩ (−∞, 0]

)︂
ds . (3.15)

Thus using (3.14) and (3.15), we conclude from (3.11),∫︂
[0,1)

g dλ =

∫︂ 1

0

λ
(︂

{ˆ︁g ≤ s} ∩ [0,+∞)
)︂
ds −

∫︂ 1

0

λ
(︂
{ˆ︁g ≥ s} ∩ (−∞, 0]

)︂
ds

=

∫︂ 1

0

max
{︁ˆ︁g−1(s) , 0

}︁
ds −

∫︂ 1

0

−min
{︁ˆ︁g−1(s) , 0

}︁
ds

=

∫︂ 1

0

ˆ︁g−1(s) ds ,

where the penultimate equality is because λ
(︁
{ˆ︁g ≤ s}

)︁
= λ

(︁
(−∞ , ˆ︁g−1(s)]

)︁
for every s ∈ (0, 1) . ■
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Theorem 3.2.11. Let g ∈ L1
(︁
[0, 1) , B[0,1) , λ

)︁
, and let ˆ︁g : R → [0, 1] be the

CDF of g . Then, ∫︂
[0,1)

|g| dλ =

∫︂ 1

0

⃓⃓ˆ︁g−1(s)
⃓⃓
ds .

Proof. Recall that |g| = g++g− . With that, the rest of the proof is analogous

to the proof of Theorem 3.2.10. ■

Corollary 3.2.12. For every g ∈ L1
(︁
[0, 1) , B[0,1) , λ

)︁
,∫︂

[0,1)

|g − t| dλ =

∫︂ 1

0

⃓⃓ˆ︁g−1(s)− t
⃓⃓
ds .

Proof. Immediate from Theorem 3.2.11 through Remark 3.2.9. ■

Theorem 3.2.13. For every µ, ν ∈ P,

∫︂ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds is minimized ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ
(︂{︁

Fµ − Fν ≤ t
}︁)︂

≥ 1
2
,

∧
λ
(︂{︁

Fµ − Fν ≥ t
}︁)︂

≥ 1
2
,

where λ is understood to mean λ
⃓⃓⃓
[0,1]

.

Proof. We know that every monotone function is (Riemann) integrable [25].

Thus for every probability measure µ ∈ P , the distribution function Fµ is

integrable when considered as a function on [0, 1), and so is Fµ − Fν , i.e.,

Fµ − Fν ∈ L1
(︁
[0, 1) , B[0,1)

)︁
. Therefore by Corollary 3.2.12, we know∫︂ 1

0

⃓⃓
Fµ(s)− Fν(s)− t

⃓⃓
ds =

∫︂ 1

0

⃓⃓⃓
( ˆ︂Fµ − Fν)

−1 − t
⃓⃓⃓
ds .
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By Remark 3.1.7, ( ˆ︂Fµ − Fν)
−1 is increasing. Thus by Theorem 3.2.1, the above

integral is minimized iff t ∈
[︂
( ˆ︂Fµ − Fν)

−1(1
2

−
) , ( ˆ︂Fµ − Fν)

−1(1
2

+
)
]︂
, which is the

case iff λ
(︂{︁

Fµ − Fν ≤ tmin

}︁)︂
≥ 1

2
and λ

(︂{︁
Fµ − Fν ≥ tmin

}︁)︂
≥ 1

2
.

■

A number of times in Chapter 4 we find the distance between two (shifted)

continuous distribution functions Fµ and Fν + tmin that intersect at precisely

two points
(︁
s1 , Fµ(s1)

)︁
and

(︁
s2 , Fµ(s2)

)︁
. One implication of Theorem 3.2.13

is that s2 − s1 =
1
2
through the following steps:

λ
(︂{︁

Fµ ≤ Fν + tmin

}︁)︂
≥ 1

2
∧ λ

(︂{︁
Fµ ≥ Fν + tmin

}︁)︂
≥ 1

2

=⇒ λ
(︁
[s1 , s2]

)︁
≥ 1

2
∧ λ

(︁
[0 , s1] ⊎ [s2 , 1]

)︁
≥ 1

2

=⇒ s2 − s1 ≥
1

2
∧ (s1 − 0) + (1− s2) ≥

1

2

=⇒ s2 − s1 ≥
1

2
∧ 1− (s2 − s1) ≥

1

2

=⇒ s2 − s1 ≥
1

2
∧ s2 − s1 ≤

1

2
=⇒ s2 − s1 =

1

2
.

57



Chapter 4

Elementary Properties of (P , dT)

Chapters 2 and 3 together provide us with a tool to calculate the Kan-

torovich distance between probability distributions. In this chapter, we build

a picture of the points in (P , dT) by calculating some of these distances. These

calculations are simple yet long. The reader may choose to skip the proofs of

these distance results.

4.1 Preparatory work

The following lemma will be used in proving that the Kantorovich distance

of no probability distribution to the uniform distribution is ever more than 1
4

(see Theorem 4.2.1).

Lemma 4.1.1. Let (ai)
∞
i=1 be a sequence of non-negative numbers. Then,

∞∑︂
i=1

a2i ≤
(︃ ∞∑︂

i=1

ai

)︃2

. (4.1)

Moreover, equality in (4.1) with both sides being finite is achieved if and only

if ai ̸= 0 for at most one i ∈ N; i.e.,

∞∑︂
i=1

a2i =

(︃ ∞∑︂
i=1

ai

)︃2

⇐⇒ # {i ∈ N : ai ̸= 0} ≤ 1 . (4.2)
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Proof. Note that (4.1) holds trivially if
∑︁∞

i=1 ai = +∞ . Thus assume that

the series is (absolutely) convergent in R+. Let arbitrary n ∈ N be given,

and consider the non-negative real numbers a1, · · · , an . This proof essentially
comes down to the following inequality

n∑︂
i=1

ai
2 ≤

n∑︂
i=1

(︃ n∑︂
j=1

aiaj

)︃
, (4.3)

which holds true because the RHS sum includes the terms in the LHS sum

when i = j, as well as some additional non-negative terms aiaj when i ̸= j .

Taking the constant factors out of the RHS sums twice, we have

n∑︂
i=1

ai
2 ≤

n∑︂
i=1

⎛⎝ai(︃ n∑︂
j=1

aj

)︃⎞⎠ =

(︃ n∑︂
j=1

aj

)︃(︃ n∑︂
i=1

ai

)︃
=

(︃ n∑︂
i=1

ai

)︃2

,

Taking the limit as n → ∞ , we conclude the truth of (4.1). To prove (4.2),

we note that the converse implication is immediately true. That is, (4.3) turns

into an equality if aiaj = 0 for all distinct i, j ∈ {1, · · · , n}. To prove the

forward implication, assume (4.3) is an equality, and assume by contradiction

that there exists i0 ̸= j0 ∈ {1, · · · , n} such that ai0aj0 > 0 . Then

n∑︂
i=1

ai
2 =

n∑︂
i=1

(︃ n∑︂
j=1

aiaj

)︃
=
∑︂
i=j

aiaj +
∑︂
i ̸=j

aiaj ≥
n∑︂

i=1

a2i + ai0aj0 >
n∑︂

i=1

a2i , ¸

a clear contradiction. Taking the limit as n→ ∞ , we have proven (4.2). ■

Remark 4.1.2. The hyperbolic tangent function tanh: R → (−1, 1) given

by x ↦→ sinh (x)
cosh(x)

= ex−e−x

ex+e−x is a strictly increasing odd function.

We close this section by talking about compactifications of R. A compacti-

fication of R is a compact (topological) space in which R is a dense subspace

[1]. The usual extension R of the real numbers is the two-point compactifi-

cation of R, because we essentially union two additional points, namely +∞
and −∞, with R and form a compact space in which R is dense. The easiest
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way to appreciate the topology of R is through visualizing R as the open in-

terval (−1, 1) . The function tanh: R → (−1, 1) is a topological isomorphism

between the two spaces. Intuitively, it feels like two points are ‘missing’ from

(−1, 1) . While the endpoints −1 and 1 are not part of (−1, 1) , we know what

their open neighborhoods would be if they were to be included to make the

interval compact. Through the bijection tanh , the open neighborhoods of −1

and 1 precisely determine the open neighborhoods of −∞ and +∞ respec-

tively. For example, a sequence (xn)
∞
n=1 in R converges to +∞ if and only if

(tanhxn)
∞
n=1 in [−1, 1] converges to 1. In this view, we can think of R as an

interval with two endpoints points missing.

Since R is locally compact, it is known to also have a one-point compactifi-

cation [14]. As the name suggests, here we only include one additional point,

namely ∞, to form a compact space in which R is dense. Denote this space

R∞ . The open neighborhoods of ∞ are defined to be those sets U whose

complement in R∞ forms a compact subspace of R. The space R∞ is known

to be topologically isomorphic to a circle [18]. Again, the easiest way to ap-

preciate this is to visualize R as the interval (−1, 1) bent so that the two

endpoints coincide. Therefore in this view, we can think of R as a circle with

one point missing. For example, the mapping h : T \ {0 + Z} → (−1, 1) given

by

h
(︁
r +

1

2
+ Z

)︁
:= 2r ∀r ∈

(︁
− 1

2
,
1

2

)︁
,

is a topological isomorphism.

4.2 Some topological facts about (P , dT)
The main goal of this section is to provide the mental picture of (P , dT)

presented in Figure 4.4. In doing so, we also present some explicit formulae

for the distances between Dirac, uniform, and exponential distributions and

their rotated versions. We begin by proving that the distance between λT and

any µ ∈ P is at most 1
4
, and thereby we are justified in thinking about P at

a ball centered at λT.
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Theorem 4.2.1. For every µ ∈ P ,

dT(µ, λT) ≤
1

4
.

Proof. We first prove the result for µ ∈ PC , i.e., when Fµ is a continuous

function on [0, 1). The assertion will then follow from the fact that PC is

dense in P .

Let an arbitrary µ ∈ PC be given. We know by Theorem 2.2.8 that dT(µ, λT) =∫︁
[0,1)

⃓⃓
Fµ(s)− (s+ tmin)

⃓⃓
ds . By Theorem 3.2.13, the continuous functions Fµ

and FλT + tmin must have at least one intersection on [0, 1).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F

F + t
min

Figure 4.1: The graph of the functions Fµ and FλT + tmin where µ ∈ P is
continuous. When these two functions do not intersect at the origin, one can rotate
both measures, i.e., shift the 1 × 1 frame of the distribution functions, so that the
origin becomes their intersection.

WLOG assume that both Fµ and FλT + tmin intersect at the origin; oth-

erwise, using the fact that dT is invariant under rotation, we can rotate both
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µ and λT appropriately. As explained in Section 1.6, this can be viewed as

a frame shift when viewing graphs of Fµ and FλT (see Figures 1.5 and 4.1).

Note that the shift of frame in order to shift the intersection to the origin also

means we are assuming WLOG that (the rotated) Fµ and FλT + tmin inter-

sect at s = 1 as well (see Figure 4.1). The functions Fµ and FλT + tmin (now

WLOG assumed to be FλT) may coincide on intervals of positive measure.

These intervals’ contributions to the L1 distance is clearly 0. Therefore∫︂
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds =

���������������⁓0∫︂
{Fµ=FλT}

⃓⃓⃓⃓
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds +

∫︂
{Fµ ̸=FλT}

⃓⃓⃓⃓
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds

=

∫︂
{Fµ>FλT}

⃓⃓⃓⃓
[0,1)

(︁
Fµ(s)− s

)︁
ds+

∫︂
{Fµ<FλT}

⃓⃓⃓⃓
[0,1)

(︁
s− Fµ(s)

)︁
ds .

Fµ and FλT can also intersect at isolated points. Thus
{︁
Fµ > FλT

}︁ ⃓⃓⃓
[0,1)

is a

union of intervals, and there are countably many such intervals, i.e.,

{︁
Fµ > FλT

}︁ ⃓⃓⃓
[0,1)

=
∞⨄︂
j=1

Aj where ∀j ∈ N, Aj ⊆ [0, 1) is an open interval .

See Figure 4.2. Similarly,

{︁
Fµ < FλT

}︁ ⃓⃓⃓
[0,1)

=
∞⨄︂
k=1

Bk where ∀k ∈ N, Bk ⊆ [0, 1) is an open interval .

Therefore∫︂
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds =

∞∑︂
j=1

∫︂
Aj

(︁
Fµ(s)− s

)︁
ds+

∞∑︂
k=1

∫︂
Bk

(︁
s− Fµ(s)

)︁
ds . (4.4)
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Figure 4.2: The graphs of Fµ and FλT partition the interval [0, 1) into countably
many open intervals

{︁
Aj

}︁
j
and {Bk}k .

Claim 4.2.1.1. For the distance between Fµ and FλT on every Aj , we have

the following strict upper bound (see Figure 4.3):

∀Aj ,

∫︂
Aj

(︁
Fµ(s)− s

)︁
ds <

1

2
λ(Aj)

2 .

Proof. Consider an arbitrary Aj . Let aj1 < aj2 denote the two endpoints of

the interval Aj. By monotonicity of Fµ , we know Fµ(aj1) < Fµ(aj2) . Let

ϵ :=
Fµ(aj2)−Fµ(aj1)

2
. By continuity of Fµ ,

∃ δ > 0 : ∀s ∈
[︁
aj1, aj1 + δ

]︁
, Fµ(s)− s < Fµ(aj2)− s .

Therefore by monotonicity of integrals,∫︂ aj1+δ

aj1

(︁
Fµ(s)− s

)︁
ds <

∫︂ aj1+δ

aj1

(︁
Fµ(aj2)− s

)︁
ds . (4.5)
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Thus by breaking down the integral over Aj into partitions,∫︂
Aj

(︁
Fµ(s)− s

)︁
ds =

∫︂ aj1+δ

aj1

(︁
Fµ(s)− s

)︁
ds+

∫︂ aj2

aj1+δ

(︁
Fµ(s)− s

)︁
ds

(4.5)
<

∫︂ aj1+δ

aj1

(︁
Fµ(aj2)− s

)︁
ds+

∫︂ aj2

aj1+δ

(︁
Fµ(aj2)− s

)︁
ds

= λ
(︁
Aj

)︁
Fµ(aj2)−

1

2

(︂
a2j2 − a2j1

)︂
= λ

(︁
Aj

)︁(︃
aj2 −

1

2

(︁
aj2 + aj1

)︁)︃
= λ

(︁
Aj

)︁(︃1

2
aj2 −

1

2
aj1

)︃
=

1

2
λ
(︁
Aj

)︁2
.

□

Claim 4.2.1.2. For the distance between Fµ and FλT on every Bk , we have

the following strict upper bound (see Figure 4.3).

∀Bk ,

∫︂
Bk

(︁
s− Fµ(s)

)︁
ds <

1

2
λ(Bk)

2 .

Proof. Analogous to the proof of Claim 4.2.1.1 . □

Equation (4.4) implies through Claims 4.2.1.1 and 4.2.1.2 that∫︂
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds <

1

2

∞∑︂
j=1

λ(Aj)
2 +

1

2

∞∑︂
k=1

λ(Bk)
2 , (4.6)

as visualized in Figure 4.3. We also know from Theorem 3.2.13 that

∞∑︂
j=1

λ(Aj) ≤ 1

2
∧

∞∑︂
k=1

λ(Bk) ≤ 1

2
. (4.7)

Thus (4.6) and (4.7) imply through Lemma 4.1.1 that∫︂
[0,1)

⃓⃓
Fµ(s)− s

⃓⃓
ds <

1

2

(︃
1

2

)︃2

+
1

2

(︃
1

2

)︃2

=
1

4
. (4.8)
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So we have shown that dT(µ, λT) <
1
4

for every µ ∈ PC . The density of

PC in (P , dT) implies that the upper bound 1
4
holds for the distance of any

µ ∈ P to λT through the following steps: Let arbitrary µ ∈ P be given. By

the density of PC , there exists (µn)
∞
n=1 in PC such that dT(µn, µ)

n→∞−−−−−→ 0 .

By the triangle inequality we have for every n ∈ N,

dT(µ, λT) ≤ dT(µ, µn) + dT(µn, λT) < dT(µ, µn) +
1

4
.

Therefore,

dT(µ, λT) ≤
��������⁓0
lim
n→∞

dT(µ, µn) + lim
n→∞

1

4
=

1

4
,

as desired. ■

Theorem 4.2.2. For every µ ∈ P ,

dT(µ, λT) =
1

4
⇐⇒ µ = δx for some x ∈ T .

Proof. We will prove both the forward and the converse implications.

=⇒
Assume dT(µ, λT) =

1
4
. We want to show that µ = δx for some x ∈ T . The

proof of this implication is essentially the same as the proof of Theorem 4.2.1

with a more careful treatment of the inequalities. Without repeating every

detail of the proof, we outline what the more careful treatment is.

By the density of PC in P we know there exists (µn)
∞
n=1 in PC with µn

n→∞−−−−−→
µ . Let arbitrary n ∈ N be given. Consider the continuous distribution µn .

As shown in (4.4), we know∫︂
[0,1)

⃓⃓
Fµn(s)− s

⃓⃓
ds =

∞∑︂
j=1

∫︂
Aj

(︁
Fµn(s)− s

)︁
ds+

∞∑︂
k=1

∫︂
Bk

(︁
s− Fµn(s)

)︁
ds .
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Note that the inequality in (4.6) is strict. So there exists ϵn > 0 that makes

the inequality non-strict in the following way:∫︂
[0,1)

⃓⃓
Fµn(s)− s

⃓⃓
ds ≤ 1

2

∞∑︂
j=1

λ(Aj)
2 +

1

2

∞∑︂
k=1

λ(Bk)
2 − ϵn , (4.9)

where ϵn depends on the function Fµn . In particular, a closer look at the proof

of Claim 4.2.1.1 reveals that ϵn gets smaller the more Fµn resembles the step

function depicted in Figure 4.3.

Figure 4.3: The L1 distance of FλT to Fµn (right), and to the step function that is
constantly Fµn ’s right-endpoint value on every Aj and left-endpoint value on every
Bk (left). By (4.6), the former area is ϵn less than the latter for some ϵn > 0 .

We will shortly assert that our assumption requires ϵn to vanish as n grows;

but before we do that, we introduce another quantity that must vanish: Con-

sider the series in (4.9). Lemma 4.1.1 gives us an upper bound for each of

these series through (4.1). Moreover, (4.2) tells us that the inequality in (4.1)

is also strict unless there is at most one term in the series. So there exists

ϵ′n ≥ 0 such that∫︂
[0,1)

⃓⃓
Fµn(s)− s

⃓⃓
ds ≤ 1

2

(︃ ∞∑︂
j=1

λ(Aj)

)︃2

+
1

2

(︃ ∞∑︂
k=1

λ(Bk)

)︃2

−ϵn−ϵ′n , (4.10)

where ϵ′n depends on how many times Fµn intersects FλT . Lastly, we apply the
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upper bounds in (4.7) to (4.10). Note that the inequalities in (4.7) may also be

strict because Fµn and FλT may coincide on a set of positive measure. In this

proof WLOG we treat only the inequality for
∑︁∞

j=1 λ(Aj) with this additional

care. So there exists ϵ′′n ≥ 0 such that∫︂
[0,1)

⃓⃓
Fµn(s)− s

⃓⃓
ds ≤ 1

2

(︃
1

2
− ϵ′′n

)︃2

+
1

2

(︃
1

2

)︃2

− ϵn − ϵ′n ,

which is a more accurate version of (4.8). Therefore, through the triangle

inequality we know that for every n ∈ N ,

1

4
= dT(µ, λT) ≤ dT(µ, µn) +

1

2

(︃
1

2
− ϵ′′n

)︃2

+
1

2

(︃
1

2

)︃2

− ϵn − ϵ′n ,

which after letting n→ ∞ implies

1

4
≤ 1

2

(︃
1

2
− lim

n→∞
ϵ′′n

)︃2

+
1

2

(︃
1

2

)︃2

− lim
n→∞

ϵn − lim
n→∞

ϵ′n . (4.11)

It is now clear that ϵn, ϵ
′
n, and ϵ

′′
n all converge to 0; otherwise, (4.11) gives the

contradictory statement 1
4
≤ 1

4
− ϵ for some ϵ > 0 . The vanishing of each of

these limits reveals several properties that µ must have:

(i) limn→∞ ϵ′′n = 0 tells us that Fµn must not equal FλT on a set of non-

vanishing positive measure. Therefore the (L1) limit Fµ does not coincide

with FλT on a set of positive measure. In other words, by Theorem 3.2.13,

λ
(︂{︁
Fµ > FλT

}︁ ⃓⃓⃓
[0,1)

)︂
= λ

(︂{︁
Fµ < FλT

}︁ ⃓⃓⃓
[0,1)

)︂
=

1

2
. (4.12)

(ii) limn→∞ ϵ′n = 0 tells us that as n → ∞,
{︁
Fµn > FλT

}︁ ⃓⃓⃓
[0,1)

consists of at

most one interval Aj, and similarly
{︁
Fµ < FλT

}︁ ⃓⃓⃓
[0,1)

at most one interval Bk .

On the other hand, by Theorem 3.2.13, there must be at least one interval Aj

and one Bk ; so Fµ has precisely one interval on which it is above FλT and one
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interval on which it is below. That is

{︁
Fµ > FλT

}︁ ⃓⃓⃓
[0,1)

= A ∧
{︁
Fµ < FλT

}︁ ⃓⃓⃓
[0,1)

= B , (4.13)

where A,B ⊆ [0, 1) are intervals. We can WLOG assume the same for every

Fµn as well, i.e., assume
{︁
Fµn > FλT

}︁ ⃓⃓⃓
[0,1)

and
{︁
Fµn < FλT

}︁ ⃓⃓⃓
[0,1)

are respec-

tively A and B for every n ∈ N . Note that since every Fµn is continuous, our

WLOG assumptions imply that all Fµns intersect FλT on the same points in

[0, 1), namely the endpoints of A and B.

(iii) limn→∞ ϵn = 0 tells us through (4.13) together with our WLOG assump-

tions and a careful look at the proof of Claim 4.2.1.1 that Fµn converges to

Fµn(a2) on A in the L1 sense, where a2 is the right endpoint of A. Analogously

for Claim 4.2.1.2, it tells us that Fµn converges on B to Fµn(b1) where b1 is

the left endpoint of B. Since these endpoints are the points on which the Fµn

intersect FλT , we know that Fµn(a2) = a2 and Fµn(b1) = b1 for every n ∈ N.
So Fµ is the step function that takes the value b1 on B, and a2 on A, i.e.,

∀s ∈ [0, 1), Fµ(s) =

⎧⎨⎩Fµ(b1) s ∈ B ,

Fµ(a2) s ∈ A .
(4.14)

(4.12) and (4.13) imply that A and B are two disjoint subintervals of [0, 1) the

length of each of which is 1
2
. Recalling that neither include their endpoints,

clearly one of them must be (0, 1
2
) and the other (1

2
, 1). If B is (0, 1

2
), then by

(4.14), the value of Fµ on B is 0. Similarly in that case the value of Fµ on A

is 1. The value at 1
2
must be 1 to preserve right-continuity. So in this case,

∀s ∈ [0, 1), Fµ(s) =

⎧⎨⎩0 s ∈ [0, 1
2
) ,

1 s ∈ [1
2
, 1) ;

which is the distribution function of δ 1
2
. On the other hand if A is (0, 1

2
) then

Fµ constantly has the value 1
2
, which is the shifted distribution function of δ0.

In either case, the distribution µ ended up a Dirac measure after our WLOG
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rotation. Once rotated back, it will still be a Dirac distribution.

⇐=

Let arbitrary x ∈ T be given and assume µ = δx . We want to show that

dT(µ, λT) =
1
4
. By Theorem 2.2.8, dT(λT, µ) = mint∈R

∫︁ 1

0

⃓⃓
s− Fδx(s)− t

⃓⃓
ds .

We will show that mint∈R
∫︁ 1

0

⃓⃓
s− Fδx(s)− t

⃓⃓
ds = mint∈R

∫︁ 1

0
|s− t| ds , and by

Remark 3.2.2 our proof will be complete.

We extend the function s− Fδx(s)
⃓⃓⃓
[0,1)

in a 1-periodic fashion on both sides of

[0, 1). To avoid introducing a new notation let the same notation denote the

1-periodic extended version. For convenience, let s0 denote ιR(x) .

Partitioning [0, 1] into [0, 1] ∩ {Fδx = 0} and [0, 1] ∩ {Fδx = 1} , we have

∀t ∈ R,
∫︂ 1

0

⃓⃓
s− Fδx(s)− t

⃓⃓
ds =

∫︂ s0

0

|s− t| ds+
∫︂ 1

s0

|s− 1− t| ds

=

∫︂ s0

0

|s− t| ds+
∫︂ 0

s0−1

|s+ 1− 1− t| ds

=

∫︂ s0

0

|s− t| ds+
∫︂ 0

s0−1

|s− t| ds

=

∫︂ s0

s0−1

|s− t| ds =

∫︂ 1

0

|s− t+ x− 1| ds

=

∫︂ 1

0

⃓⃓
s− (t− x+ 1)

⃓⃓
ds .

Let t̃ := t− x+ 1 . So we have shown

min

{︄∫︂ 1

0

⃓⃓
s− Fδx(s)− t

⃓⃓
ds : t ∈ R

}︄
= min

{︄∫︂ 1

0

⃓⃓
s− t̃

⃓⃓
ds : t̃ ∈ R

}︄
.

And we know by Remark 3.2.2 that min
{︂∫︁ 1

0

⃓⃓
s− t̃

⃓⃓
ds : t̃ ∈ R

}︂
= 1

4
. Thus

we have shown that dT(µ, λT) =
1
4
. ■

Remark 4.2.3. As a corolllary of Theorem 4.2.1, we see that for every µ, ν ∈
P ,

(i) dT (µ, ν) ≤ 1
2
,

(ii) dT(µ, ν) =
1
2

⇐⇒ µ = δx, ν = δy for some x, y ∈ T with dT(x, y) =
1
2
.
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As explained at the end of Chapter 1, the set {δx ∈ P : x ∈ T} of all Dirac

probability measures can be thought of as an isometric copy of T in P (see

Theorem 1.5.3).

Theorem 4.2.4. For every a ∈ R \ {0},

dT(ηa, δ0) =
1

a
tanh

(︁ a
4

)︁
.

Proof. Let arbitrary a ∈ R \ {0} be given. By Theorem 2.2.8, dT(ηa, δ0) =

mint∈R
∫︁ 1

0

⃓⃓
Fηa(s)− Fδ0(s)− t

⃓⃓
ds . Thus,

dT(ηa, δ0) = min
t∈R

∫︂ 1

0

⃓⃓⃓⃓
eas − 1

ea − 1
− 1− t

⃓⃓⃓⃓
ds .

Let t̃ := 1 + t . Then,

dT(ηa, δ0) = min
t̃∈R

∫︂ 1

0

⃓⃓⃓⃓
eas − 1

ea − 1
− t̃

⃓⃓⃓⃓
ds .

By Theorem 3.2.1 and continuity of Fηa , t̃ = Fηa(
1
2
) minimizes the above

integral, i.e.,

dT(ηa, δ0) =

∫︂ 1

0

⃓⃓⃓⃓
⃓eas − 1

ea − 1
− e

a
2 − 1

ea − 1

⃓⃓⃓⃓
⃓ ds .

Case 1 a > 0 .

Breaking our integral down into a partition,

dT(ηa, δ0) =

∫︂ 1
2

0

(︄
−e

as − 1

ea − 1
+
e

a
2 − 1

ea − 1

)︄
ds +

∫︂ 1

1
2

(︄
eas − 1

ea − 1
− e

a
2 − 1

ea − 1

)︄
ds

=

∫︂ 1
2

0

− esa − 1

ea − 1
ds+

�
���

����∫︂ 1
2

0

e
a
2 − 1

ea − 1
ds +

∫︂ 1

1
2

eas − 1

ea − 1
ds−

��
���

��∫︂ 1

1
2

e
a
2 − 1

ea − 1
ds

=

[︃ −1

a (ea − 1)
eas
]︃ 1

2

0

+
�
���

���1

2

(︃
1

ea − 1

)︃
+

[︃
1

a (ea − 1)
eas
]︃1

1
2

−
�

���
���1

2

(︃
1

ea − 1

)︃
=

−1

a (ea − 1)

(︂
e

a
2 − 1

)︂
+

1

a (ea − 1)

(︂
ea − e

a
2

)︂
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=
1

a

(︄
−2e

a
2 + ea + 2− 1

ea − 1

)︄
=

1

a

⎛⎜⎝−2
(︂
e

a
2 − 1

)︂
ea − 1

+ 1

⎞⎟⎠
=

1

a

⎛⎜⎝ −2
�
����(︂
e

a
2 − 1

)︂
���

��(︂
e

a
2 − 1

)︂(︂
e

a
2 + 1

)︂ + 1

⎞⎟⎠ =
1

a

(︄
−2 e

−a
4

e
a
4 + e

−a
4

+ 1

)︄

=
1

a

(︄
−2 e

−a
4 + e

a
4 + e

−a
4

e
a
4 + e

−a
4

)︄
=

1

a

(︄
−e−a

4 + e
a
4

e
a
4 + e

−a
4

)︄
=

1

a
tanh

(︁a
4

)︁
.

Case 2 a < 0 .

By Theorem 1.6.5 and Remark 1.6.2 we know

dT(ηa, δ0) = dT(ηa ◦Q−1, δ0 ◦Q−1) = dT(η−a, δ0) . (4.15)

On the other hand, since a < 0 , we have −a > 0 . Therefore through Case 1

we know that

dT(η−a, δ0) =
1

−a tanh
(︁−a
4

)︁
=

1

a
tanh

(︁a
4

)︁
, (4.16)

where the second equality is because tanh is an odd function. By (4.15)

and (4.16), therefore,

dT(ηa, δ0) =
1

a
tanh

(︁a
4

)︁
.

■

Theorem 4.2.5. For every a ∈ R \ {0} ,

dT(ηa, λT) =
1

|a| log
(︂
cosh

(︁ a
4

)︁)︂
.

Proof. By Theorem 2.2.8, dT(ηa, λT) = mint∈R
∫︁ 1

0

⃓⃓
Fηa − FλT − t

⃓⃓
ds . By its

convexity or concavity, Fηa intersects the line FλT + tmin at two points, parti-

tioning [0, 1) into the interval between the points and the complement of the

interval in [0, 1) as explained at the end of Chapter 3. Let
(︁
s1 , FλT(s1)

)︁
and
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(︁
s2 , FλT(s2)

)︁
denote the intersection points, where we assume s1 < s2 . By

definition,

Fηa(s1) = FλT(s1) + tmin =⇒ eas1 − 1

ea − 1
= s1 + tmin ,

Fηa(s2) = FλT(s2) + tmin =⇒ eas2 − 1

ea − 1
= s2 + tmin .

In addition, we know that s2 − s1 = 1
2

(see the end of Chapter 3). Thus we

have three equations for the three unknowns s1 , s2 , and tmin . Subtracting

the first equation from the second yields

eas2 − eas1

ea − 1
= s2 − s1

=⇒ ea(s1+
1
2) − eas1

ea − 1
=

1

2

=⇒
eas1

�����(︂
e

a
2 − 1

)︂
��

���(︂
e

a
2 − 1

)︂(︂
e

a
2 + 1

)︂ =
1

2
.

Therefore we have

s1 =
1

a
log

(︄
e

a
4 + e

−a
4

2
e

a
4

)︄
=

1

a
log

(︃
cosh

(︁ a
4

)︁ )︃
+

1

a

(︃
a

4

)︃
=

1

a
log

(︃
cosh

(︁ a
4

)︁ )︃
+

1

4
. (4.17)

With these preparations, we are ready to calculate

dT(ηa, λT) =

∫︂ 1

0

⃓⃓⃓⃓
eas − 1

ea − 1
− s− tmin

⃓⃓⃓⃓
ds .

Case 1 a < 0
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Breaking our integral down into a partition,

dT(ηa, λT) =∫︂ s1

0

(︃
1− eas

ea − 1
+ s+ tmin

)︃
ds⏞ ⏟⏟ ⏞

I1

+

∫︂ s2

s1

(︃
eas − 1

ea − 1
− s− tmin

)︃
ds⏞ ⏟⏟ ⏞

I2

+

∫︂ 1

s2

(︃
1− eas

ea − 1
+ s+ tmin

)︃
ds⏞ ⏟⏟ ⏞

I3

.

Calculating I1 ,

I1 =
s1

ea − 1
−
[︃

1

a (ea − 1)
eas
]︃s1
0

+

[︃
1

2
s2
]︃s1
0

+ s1 tmin

=
s1

ea − 1
− eas1 − 1

a (ea − 1)
+
s21
2
+ s1 tmin . (4.18)

Calculating I3 ,

I3 =
1− s2
ea − 1

−
[︃

1

a (ea − 1)
eas
]︃1
s2

+

[︃
1

2
s2
]︃1
s2

+ (1− s2) tmin

=
1− s2
ea − 1

− ea − eas2

a (ea − 1)
+

1− s22
2

+ (1− s2) tmin . (4.19)

And by (4.18) and (4.19) we know the sum

I1 + I3 =
1− (s2 − s1)

ea − 1
− eas1 − eas2 + ea − 1

a (ea − 1)

+
s21 − s22 + 1

2
+
(︁
1− (s2 − s1)

)︁
tmin .

And since s2 − s1 =
1
2
, we have

I1 + I3 =
1
2

ea − 1
− eas1 − eas2

a (ea − 1)
− 1

a
+
s21 − s22

2
+

1

2
+

1

2
tmin . (4.20)

73



Finally, calculating I2 ,

I2 =
−(s2 − s1)

ea − 1
+

[︃
1

a (ea − 1)
eas
]︃s2
s1

−
[︃
1

2
s2
]︃s2
s1

− (s2 − s1) tmin

=
−(s2 − s1)

ea − 1
+
eas2 − eas1

a (ea − 1)
− s22 − s21

2
− (s2 − s1) tmin

s2 − s1 = 1
2

===
−1

2

ea − 1
+
eas2 − eas1

a (ea − 1)
− s22 − s21

2
− 1

2
tmin . (4.21)

And since dT(ηa, λT) = I1 + I1 + I3 , from (4.20) and (4.21) we get

dT(ηa, λT) = 2
eas2 − eas1

a (ea − 1)
− 1

a
−
(︁
s22 − s21

)︁
+

1

2

= 2
ea(s1+

1
2) − eas1

a (ea − 1)
− 1

a
− 1

2

(︃
2s1 +

1

2

)︃
+

1

2

= 2
eas1

���
��(︂

e
a
2 − 1

)︂
a
�
����(︂
e

a
2 − 1

)︂(︂
e

a
2 + 1

)︂ − 1

a
− s1 −

1

4
+

1

2

(4.17)
= 2

elog(cosh ( a
4
))+a

4

a
(︂
e

a
2 + 1

)︂ − 1

a
− 1

a
log

(︃
cosh

(︁ a
4

)︁ )︃
−

▷
▷
▷1

4
+

▷
▷
▷1

4

= 2
cosh ( a

4
) e

a
4

a
(︂
e

a
2 + 1

)︂ − 1

a
− 1

a
log

(︃
cosh

(︁ a
4

)︁ )︃
.

Replacing the cosh in the numerator of the first term by its definition,

dT(ηa, λT) =
1

a

⎛⎝�2 e
a
4 +e

−a
4

��2
e

a
4

e
a
2 + 1

− 1

⎞⎠− 1

a
log

(︃
cosh

(︁ a
4

)︁ )︃

=
1

a

⎛⎜⎜⎝
�

�
�
��>

1
e

2a
4 + 1

e
a
2 + 1

− 1

⎞⎟⎟⎠− 1

a
log

(︃
cosh

(︁ a
4

)︁ )︃

=
1

−a log
(︃
cosh

(︁ a
4

)︁)︃
,

as desired.
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Case 2 a > 0

dT (ηa , λT) = dT
(︁
ηa ◦Q−1 , λT ◦Q−1

)︁
= dT

(︂
η−a , λT

)︂
=

1

a
log

(︃
cosh

(︁ a
4

)︁)︃
,

where the three equalities are by Theorem 1.6.5, Remark 1.6.3, and Case 1,

respectively. Thus the result holds in this case as well. ■

Theorem 4.2.6. For every a, b ∈ R \ {0} such that a ̸= b ,

dT(ηa, ηb) =
|a− b|
ab

⎛⎜⎜⎝
(︂
cosh

(︁
a
4

)︁)︂ b
a−b(︂

cosh
(︁
b
4

)︁)︂ a
a−b

− 1

⎞⎟⎟⎠ .

Proof. By Theorem 2.2.8, dT(ηa, ηb) = mint∈R
∫︁ 1

0

⃓⃓
Fηa − Fηb − t

⃓⃓
ds . By its

convexity or concavity, Fηa intersects the curve Fηb + tmin at two points, par-

titioning [0, 1) into the interval between the points and the complement of the

interval in [0, 1) as explained at the end of Chapter 3. Let
(︁
s1 , Fηa(s1)

)︁
and(︁

s2 , Fηa(s2)
)︁
denote the intersection points, where s1 < s2 . By definition,

Fηa(s1) = Fηb(s1) + tmin =⇒ eas1 − 1

ea − 1
=
ebs1 − 1

eb − 1
+ tmin ,

Fηa(s2) = Fηb(s2) + tmin =⇒ eas2 − 1

ea − 1
=
ebs2 − 1

eb − 1
+ tmin .

In addition, we know that s2 − s1 = 1
2

(see the end of Chapter 3). Thus we

have three equations for the three unknowns s1 , s2 , tmin . Subtracting the

first equation from the second yields

eas2��−1− eas1��+1

ea − 1
=

ebs2��−1− ebs1��+1

eb − 1

=⇒ ea(s1+
1
2) − eas1

ea − 1
=

eb(s1+
1
2) − ebs1

eb − 1
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=⇒
eas1

�
����(︂
e

a
2 − 1

)︂
��

���(︂
e

a
2 − 1

)︂(︂
e

a
2 + 1

)︂ =
ebs1

���
���

���
��(︂

e
b
2 − 1

)︂
��

����

���
��(︂

e
b
2 − 1

)︂(︂
e

b
2 + 1

)︂
=⇒ e(a−b)s1 =

e
a
2 + 1

e
b
2 + 1

.

=⇒ s1 =
1

a− b
log

(︄
e

a
2 + 1

e
b
2 + 1

)︄
. (4.22)

With these preparations, we are ready to calculate

dT(ηa, ηb) =

∫︂ 1

0

⃓⃓⃓⃓
⃓eas − 1

ea − 1
− ebs − 1

eb − 1
− tmin

⃓⃓⃓⃓
⃓ ds .

Case 1 a < b

dT(ηa, ηb) =∫︂ s1

0

(︄
ebs − 1

eb − 1
+ tmin −

eas − 1

ea − 1

)︄
ds⏞ ⏟⏟ ⏞

I1

+

∫︂ s2

s1

(︄
eas − 1

ea − 1
− ebs − 1

eb − 1
− tmin

)︄
ds⏞ ⏟⏟ ⏞

I2

+

∫︂ 1

s2

(︄
ebs − 1

eb − 1
+ tmin −

eas − 1

ea − 1

)︄
ds⏞ ⏟⏟ ⏞

I3

.

Calculating I1,

I1 =

[︄
1

b
(︁
eb − 1

)︁ebs]︄s1
0

− s1
eb − 1

+ s1 tmin −
[︃

1

a (ea − 1)
eas
]︃s1
0

+
s1

ea − 1

=
ebs1 − 1

b
(︁
eb − 1

)︁ − s1
eb − 1

+ s1 tmin −
eas1 − 1

a (ea − 1)
+

s1
ea − 1

. (4.23)

Calculating I3,

I3 =

[︄
1

b
(︁
eb − 1

)︁ebs]︄1
s2

− 1− s2
eb − 1

+ (1− s2) tmin −
[︃

1

a (ea − 1)
eas
]︃1
s2

+
1− s2
ea − 1
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=
eb − ebs2

b
(︁
eb − 1

)︁ − 1− s2
eb − 1

+ (1− s2) tmin −
ea − eas2

a (ea − 1)
+

1− s2
ea − 1

=
eb − ebs2

b
(︁
eb − 1

)︁ − 1
2
− s1

eb − 1
+

(︃
1

2
− s1

)︃
tmin −

ea − eas2

a (ea − 1)
+

1
2
− s1

ea − 1
. (4.24)

Thus by (4.23) and (4.24) we know

I1 + I3 =
ebs1 − 1 + eb − ebs2

b
(︁
eb − 1

)︁ − ��s1 +
1
2
−��s1

eb − 1
+

(︃
����s1 +

1

2
−����s1

)︃
tmin

− eas1 − 1 + ea − eas2

a (ea − 1)
+ ������s1 +

1
2
−������s1

ea − 1
.

So we have shown that

I1 + I3 =
ebs1 − ebs2 + eb − 1

b
(︁
eb − 1

)︁ +
−1

2

eb − 1
+

(︃
1

2

)︃
tmin

− eas1 − eas2 + ea − 1

a (ea − 1)
+

+1
2

ea − 1
. (4.25)

Finally, calculating I2,

I2 =

[︃
1

a (ea − 1)
eas
]︃s2
s1

− s2 − s1
ea − 1

−
[︄

1

b
(︁
eb − 1

)︁ebs]︄s2
s1

+
(s2 − s1)

eb − 1
− (s2 − s1) tmin

=
eas2 − eas1

a (ea − 1)
+

−1
2

ea − 1
+
ebs1 − ebs2

b
(︁
eb − 1

)︁ +
1
2

eb − 1
− 1

2
tmin . (4.26)

Together (4.25) and (4.26) imply that

I1 + I2 + I3 =
2ebs1 − 2ebs2 + eb − 1

b
(︁
eb − 1

)︁ +
2eas2 − 2eas1 + 1− ea

a (ea − 1)

= −2
eb(s1+

1
2) − ebs1

b
(︁
eb − 1

)︁ +
1

b
+ 2

ea(s1+
1
2) − eas1

a (ea − 1)
− 1

a

= −2
ebs1

��
���(︂

e
b
2 − 1

)︂
b
���

��(︂
e

b
2 − 1

)︂(︂
e

b
2 + 1

)︂ + 2
eas1

��
���(︂

e
a
2 − 1

)︂
a
�

����(︂
e

a
2 − 1

)︂(︂
e

a
2 + 1

)︂ +
1

b
− 1

a
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= 2

⎛⎜⎝ eas1

a
(︂
e

a
2 + 1

)︂ − ebs1

b
(︂
e

b
2 + 1

)︂
⎞⎟⎠+

a− b

ab

(4.22)
= 2

⎛⎜⎜⎜⎝e
a

a−b
log

(︄
e
a
2 +1

e
b
2 +1

)︄

a
(︂
e

a
2 + 1

)︂ − e
b

a−b
log

(︄
e
a
2 +1

e
b
2 +1

)︄

b
(︂
e

b
2 + 1

)︂
⎞⎟⎟⎟⎠+

a− b

ab

= 2

⎛⎜⎜⎝
(︂
e

a
2 + 1

)︂ a
a−b

−1

a
(︂
e

b
2 + 1

)︂ a
a−b

−

(︂
e

a
2 + 1

)︂ b
a−b

b
(︂
e

b
2 + 1

)︂ b
a−b

+1

⎞⎟⎟⎠+
a− b

ab

=
2
(︂
e

a
2 + 1

)︂ b
a−b

(b− a)

a b
(︂
e

b
2 + 1

)︂ a
a−b

+
a− b

ab

=

2

(︄(︃
e
a
4 +e

−a
4

2

)︃(︃
2

e
−a
4

)︃)︄ b
a−b

(b− a)

a b

(︄(︃
e
b
4+e

−b
4

2

)︃(︃
2

e
−b
4

)︃)︄ a
a−b

+
a− b

ab
.

Thus we have shown that

dT(ηa, ηb) =

(b− a)
(︂
cosh

(︁
a
4

)︁)︂ b
a−b

���2
a

a−b

�
�

�
�

��

�
�

�
�
�1(︃

e
−b
4

)︃ a
a−b

a b
(︂
cosh

(︁
b
4

)︁)︂ a
a−b

���2
a

a−b

�
�

�
�

��

�
�

�
�
�1(︃

e
−b
4

)︃ a
a−b

+
a− b

ab

=
b− a

ab

(︄(︂
cosh

(︁
a
4

)︁)︂ b
a−b(︂

cosh
(︁
b
4

)︁)︂ a
a−b

− 1

)︄
.

Case 2 b < a

By Theorem 1.6.5 and Remark 1.6.2, we know

dT(ηa, ηb) = dT(ηa ◦Q−1, ηb ◦Q−1) = dT(η−a, η−b) . (4.27)
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On the other hand, since b < a , we know that −a < −b . Therefore by Case

1, we know

dT(η−a, η−b) =
(−b)− (−a)
(−a)(−b))

⎛⎜⎜⎝
(︂
cosh

(︁−a
4

)︁)︂ −b
−a+b

(︂
cosh

(︁−b
4

)︁)︂ −a
−a+b

− 1

⎞⎟⎟⎠

=
a− b

ab

⎛⎜⎜⎝
(︂
cosh

(︁
a
4

)︁)︂ b
a−b(︂

cosh
(︁
b
4

)︁)︂ a
a−b

− 1

⎞⎟⎟⎠ , (4.28)

where the second equality is because cosh is an even function. Therefore (4.27)

and (4.28) yield

dT(ηa, ηb) =
a− b

ab

⎛⎜⎜⎝
(︂
cosh

(︁
a
4

)︁)︂ b
a−b(︂

cosh
(︁
b
4

)︁)︂ a
a−b

− 1

⎞⎟⎟⎠ ,

as desired. ■

Theorem 4.2.7. For every a ∈ R \ {0} and r ∈ [0, 1) ,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

2

|a| log
cosh

(︁
a
4

)︁
cosh

(︁
a 1−2r

4

)︁ .

Proof. By Theorem 3.2.13, there is at least one intersection point between

Fηa◦R−1
r

and Fηa + tmin. In fact, there are exactly two intersections, and one of

these intersection points occurs on [0, r) and the other on [r, 1). This is easy

to see in light of the fact that both Fηa◦R−1
r

and Fηa start at 0 and end at 1,

but they go through this value change at different average speeds on the two

intervals because of the swapped concavities (see Figure 1.5). More concretely,

the rate of change of Fηa is a
ea−1

eas on both intervals, but the rate of change

of Fηa◦R−1
r

is a
ea−1

ea(1+s−r) on [0, r), and a
ea−1

ea(s−r) on [r, 1).

Let
(︁
s1, Fηa◦R−1

r
(s1)

)︁
and

(︁
s2, Fηa◦R−1

r
(s2)

)︁
denote the intersection points of

Fηa◦R−1
r

and Fηa + tmin . WLOG assume s1 ∈ [0, r) and s2 ∈ [r, 1) . By
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definition,

Fηa(s1) + tmin = Fηa◦R−1
r
(s1) =⇒ eas1 − 1

ea − 1
+ tmin =

ea(1−r)(eas1 − 1)

ea − 1
;

(4.29)

Fηa(s2) + tmin = Fηa◦R−1
r
(s2) =⇒ eas2 − 1

ea − 1
+ tmin = 1− e−ar e

a − eas2

ea − 1
.

(4.30)

Equating the expressions for tmin from (4.29) and (4.30),

ea(1−r)(eas1 − 1)− eas1 + 1

ea − 1
= 1 +

e−areas2 − e−area − eas2 + 1

ea − 1

ea(1−r+s1) − ea(1−r) − eas1 + 1 = ea��−1 + ea(s2−r) − ea(1−r) − eas2��+1 .

Using the fact that s2 − s1 =
1
2
,

eas1
(︂
ea(1−r) − 1

)︂
+ 1− ea(1−r) = eas1

(︂
ea(

1
2
−r) − e

a
2

)︂
+ ea − ea(1−r) .

Gathering all terms with the eas1 factor,

eas1
(︂
ea(1−r) − 1− ea(

1
2
−r) + e

a
2

)︂
= ea −����

ea(1−r) − 1 +����
ea(1−r) .

Thus,

eas1 =
ea − 1

e−ar
(︂
ea − e

a
2

)︂
+ e

a
2 − 1

= ���
��(︂

e
a
2 − 1

)︂(︂
e

a
2 + 1

)︂
e−are

a
2

�
����(︂
e

a
2 − 1

)︂
+����e

a
2 − 1

.

Taking the log of both sides,

as1 = log
e

a
2 + 1

ea(
a
2
−r) + 1

= log

(︄
e

a
4 + e

−a
4

e
a
4
(1−2r) + e

−a
4
(1−2r)

× e
−a
4
(1−2r)

e
−a
4

)︄

= log

(︂
e

a
4 + e

−a
4

)︂
1
2(︂

e
a
4
(1−2r) + e

−a
4
(1−2r)

)︂
1
2

+ log e
−a
4
(1−2r)+a

4 .
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Therefore

s1 =
1

a
log

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄+
r

2
. (4.31)

By Theorem 2.2.8 ,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

∫︂ 1

0

⃓⃓⃓
Fηa◦R−1

r
(s)− Fηa(s)− tmin

⃓⃓⃓
ds .

Case 1 a > 0

Breaking our integral down into a partition,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=∫︂ s1

0

(︂
−Fηa◦R−1

r
(s) + Fηa(s) + tmin

)︂
ds+

∫︂ s2

s1

(︂
Fηa◦R−1

r
(s)− Fηa(s)− tmin

)︂
ds

+

∫︂ 1

s2

(︂
−Fηa◦R−1

r
(s) + Fηa(s) + tmin

)︂
ds ,

where tmin terms can be canceled using s2 − s1 = 1− (s2 − s1) =
1
2
.

Breaking the middle integral down further,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=∫︂ s1

0

(︂
−Fηa◦R−1

r
(s) + Fηa(s) + tmin

)︂
ds⏞ ⏟⏟ ⏞

I1

+

∫︂ r

s1

(︂
Fηa◦R−1

r
(s)− Fηa(s)− tmin

)︂
ds⏞ ⏟⏟ ⏞

I2∫︂ s2

r

(︂
Fηa◦R−1

r
(s)− Fηa(s)− tmin

)︂
ds⏞ ⏟⏟ ⏞

I3

+

∫︂ 1

s2

(︂
−Fηa◦R−1

r
(s) + Fηa(s) + tmin

)︂
ds⏞ ⏟⏟ ⏞

I4

.
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Calculating I1 ,

I1 =

∫︂ s1

0

(︄
−ea(1−r)(eas − 1)

ea − 1
+
eas − 1

ea − 1

)︄
ds

=

∫︂ s1

0

(︄
−ea(1−r)

ea − 1
eas +

ea(1−r)

ea − 1
+

1

ea − 1
eas − 1

ea − 1

)︄
ds

=

[︄
−ea(1−r)

a (ea − 1)
eas

]︄s1
0

+

[︄
ea(1−r)

ea − 1
s

]︄s1
0

+

[︃
1

a (ea − 1)
eas
]︃s1
0

−
[︃

1

ea − 1
s

]︃s1
0

=
−ea(1−r) (eas1 − 1)

a (ea − 1)
+
s1 e

a(1−r)

ea − 1
+

eas1 − 1

a (ea − 1)
− s1
ea − 1

=

(︄
1− ea(1−r)

ea − 1

)︄(︄
eas1−1

a
− s1

)︄
. (4.32)

Calculating I2 ,

I2 =

∫︂ r

s1

(︄
ea(1−r)(eas − 1)

ea − 1
− eas − 1

ea − 1

)︄
ds

=

∫︂ r

s1

(︄
ea(1−r)

ea − 1
eas − ea(1−r)

ea − 1
− 1

ea − 1
eas +

1

ea − 1

)︄
ds

=

[︄
ea(1−r)

a (ea − 1)
eas

]︄r
s1

−
[︄
ea(1−r)

ea − 1
s

]︄r
s1

−
[︃

1

a (ea − 1)
eas
]︃r
s1

+

[︃
1

ea − 1
s

]︃r
s1

=
ea(1−r) (ear − eas1)

a (ea − 1)
− (r − s1) e

a(1−r)

ea − 1
− ear − eas1

a (ea − 1)
+
r − s1
ea − 1

=
1

ea − 1

(︄
ea − ea(1−r+s1) − ear + eas1

a
+ (r − s1)

(︂
1− ea(1−r)

)︂)︄

=
1

ea − 1

⎛⎜⎝ear
(︁
ea−ar − 1

)︁
− eas1

(︂
ea(1−r) − 1

)︂
a

+ (r − s1)
(︂
1− ea(1−r)

)︂⎞⎟⎠
=

1− ea(1−r)

ea − 1

(︃−ear + eas1

a
+ r − s1

)︃
. (4.33)
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Calculating I3 ,

I3 =

∫︂ s2

r

(︃
1− e−ar e

a − eas

ea − 1
− eas − 1

ea − 1

)︃
ds

=

[︄
1− ea(1−r)

ea − 1

]︄s2
r

+

[︃
e−ar

a(ea − 1)
eas
]︃s2
r

−
[︃

1

a(ea − 1)
eas
]︃s2
r

+

[︃
1

ea − 1

]︃s2
r

= (s2 − r)

(︄
1− ea(1−r)

ea − 1

)︄
+

(e−ar)(eas2 − ear)

a(ea − 1)
− eas2 − ear

a (ea − 1)
+
s2 − r

ea − 1

= (s2 − r)

(︄
1− ea(1−r) − 1

ea − 1

)︄
+

(e−ar − 1)(eas2 − ear)

a(ea − 1)

= (s2 − r)

(︄
ea
(︁
1− e−ar

)︁
ea − 1

)︄
+

(e−ar − 1)(eas2 − ear)

a(ea − 1)

=

(︃
1− e−ar

ea − 1

)︃(︃
(s2 − r)ea +

ear − eas2

a

)︃
. (4.34)

Calculating I4 ,

I4 =

∫︂ 1

s2

(︃
−1 + e−ar e

a − eas

ea − 1
+
eas − 1

ea − 1

)︃
ds

=

[︄
−1 +

ea(1−r)

ea − 1

]︄1
s2

−
[︃

e−ar

a(ea − 1)
eas
]︃1
s2

+

[︃
1

a(ea − 1)
eas
]︃1
s2

−
[︃

1

ea − 1

]︃1
s2

= (1− s2)

(︄
−1 +

ea(1−r)

ea − 1

)︄
− (e−ar)(ea − eas2)

a(ea − 1)
+
ea − eas2

a(ea − 1)
− s2 − 1

ea − 1

= s2 − 1 +
(s2 − 1)

(︂
1− ea(1−r)

)︂
ea − 1

+
(ea − eas2)

(︁
1− e−ar

)︁
a(ea − 1)

. (4.35)

By (4.32) and (4.33) we have

I1 + I2 =
1− ea(1−r)

ea − 1

(︃
2eas1 − 1− ear

a
− 2s1 + r

)︃
.

83



By (4.34) and (4.35) we have

I3 + I4 =

1− e−ar

ea − 1

(︃
(s2 − r)ea +

ea − eas2 + ear − eas2

a

)︃
+
(s2 − 1)

(︂
1− ea(1−r)

)︂
ea − 1

+s2−1 .

And therefore, since dT
(︁
ηa , ηa ◦R−1

r

)︁
= I1 + I2 + I3 + I4 ,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

1− ea(1−r)

ea − 1

(︃
2eas1 − 1− ear

a
− s1 + r − 1

2

)︃
+

1− e−ar

ea − 1

(︃
(s2 − r)ea +

−2eas2 + ea + ear

a

)︃
+ s2 − 1 .

Multiplying the numerator of each term into the parentheses,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

1

ea − 1

(︄
2eas1 − 1− ear − 2ea(1−r+s1) + ea(1−r) + ea

a

− ea(1−r)
(︂
− s1 + r − 1

2

)︂
− s1 + r − 1

2

)︄

+
1

ea − 1

(︄
−2eas2 + ea + ear + 2ea(s2−r) − ea(1−r) − 1

a

+ (s2 − r)ea − (s2 − r)ea(1−r)

)︄
+s2 − 1 .

Factoring 1
ea−1

out, and replacing s2 with s1 +
1
2
, we get

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

1

ea − 1

(︄
2eas1 − 2ea(s1+

1
2
) + 2ea + 2ea(s1−r+ 1

2
) − 2ea(s1−r+1) − 2

a

+
(︂
s1 +

1

2
− r
)︂
ea − s1 + r − 1

2

)︄
+s1 −

1

2
.
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By factorizing further,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

1

ea − 1

(︄
2

a

(︃
eas1(1−ea

2 )+ea(s1−r)(e
a
2−ea)+ea−1

)︃
+
(︂
s1+

1

2
−r
)︂
(ea−1)

)︄
+s1−

1

2
.

Multiplying the 1
ea−1

factor back inside the parentheses,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

2

a

⎛⎝ eas1�����⁓−1
(1− e

a
2 )

�����(e
a
2 − 1)(e

a
2 + 1)

+
ea(s1−r)e

a
2�����⁓−1
(1− e

a
2 )

�����(e
a
2 − 1)(e

a
2 + 1)

+ 1

⎞⎠+ s1 +
▷
▷
▷

▷
▷
▷1

2
− r + s1 −

▷
▷
▷

▷
▷
▷1

2
.

Factoring out ea(s1−r) from the two fractions in the parentheses as well as

commuting them with the +1,

dT
(︁
ηa , ηa ◦R−1

r

)︁
=

2

a

(︄
1− ea(s1−r) e

ar + e
a
2

(e
a
2 + 1)

)︄
+ 2s1 − r . (4.36)

We now prove that the expression inside the parentheses in (4.36) equates to

0, and thereby demonstrate that dT
(︁
ηa , ηa ◦R−1

r

)︁
= 2s1 − r . In other words,

we show that ea(s1−r) ear+e
a
2

(e
a
2 +1)

= 1 .

We know by (4.31) that

ea(s1−r) e
ar + e

a
2

(e
a
2 + 1)

(4.31)
=

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄ e−ar
2

ear + e
a
2

(e
a
2 + 1)

=

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄ e
ar
2 + e

a(1−r)
2

(e
a
2 + 1)

.

Multiplying both the numerator and the denominator by e
−a
4 ,

ea(s1−r) e
ar + e

a
2

(e
a
2 + 1)

=

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄ e
2ar−a

4 + e
2a(1−r)−a

4

(e
a
4 + e

−a
4 )

.
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Factoring out a
4
in the powers of the numerator,

ea(s1−r) e
ar + e

a
2

(e
a
2 + 1)

=

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄ e
a
4
(2r−1) + e

a
4
(2−2r−1)

(e
a
4 + e

−a
4 )

=

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄(︄cosh
(︁
a1−2r

4

)︁
cosh

(︁
a
4

)︁ )︄
= 1 ;

which implies through (4.36) that

dT
(︁
ηa , ηa ◦R−1

r

)︁
= 2s1 − r

(4.31)
= 2

⎛⎝1

a
log

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄+
r

2

⎞⎠− r

=
2

a
log

(︄
cosh

(︁
a
4

)︁
cosh

(︁
a1−2r

4

)︁)︄ .

■

Theorem 4.2.8. For every a ∈ R \ {0} and s, t ∈ R ,

4 log cosh
(︁
a
4

)︁
|a| dT (s, t) ≤ dT

(︁
ηa ◦R−1

s , ηa ◦R−1
t

)︁
≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
dT (s, t) .

Proof. Let arbitrary s, t ∈ R be given. We know through Theorem 1.6.5

and Remark 1.6.2 that

dT
(︁
ηa ◦R−1

s , ηa ◦R−1
t

)︁
= dT

(︂
ηa ◦R−1

s ◦
(︁
R−1

t

)︁−1
, ηa ◦R−1

t ◦
(︁
R−1

t

)︁−1
)︂

= dT
(︁
ηa ◦R−1

s−t , ηa
)︁

.

Letting r := s− t , it suffices to prove this theorem only for when one measure

is ηa rotated by r, and the other is not rotated. WLOG assume r ∈ [0, 1) .

Claim 4.2.8.1.

dT
(︁
ηa , ηa ◦R−1

r

)︁
≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
dT(0, r) .
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Proof. For every r ∈ [0, 1] , let d(r) := dT
(︁
ηa , ηa ◦R−1

r

)︁
. By Theorem 4.2.7,

d(r) =
2

|a| log
(︂
cosh

(︁ a
4

)︁)︂
− 2

a
log
(︂
cosh

(︁
a
1− 2r

4

)︁)︂
.

Clearly, d(0) = d(1) = 0 . As a function on [0, 1] , d is differentiable every-

where, and its derivative is

d′(r) =
2

a
(−2)

a

4
sinh

(︁ a(1− 2r)

4

)︁ −1

cosh
(︁ a(1−2r)

4

)︁ = tanh
(︁ a(1− 2r)

4

)︁
.

Clearly, d′ is continuous, and by Remark 2.1.1 has a maximum. To find this

maximum, note that d′
(︁
1
2

)︁
= 0 and thus through Remark 4.1.2 we know |d′|

is symmetric about 1
2
. Remark 4.1.2 also tells us that d′ is strictly decreasing

(if a > 0) or decreasing (if a < 0). Therefore

max
s∈[0,1]

⃓⃓
d′(s)

⃓⃓
=
⃓⃓
d′(0)

⃓⃓
=
⃓⃓
d′(1)

⃓⃓
=
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
.

Consequently, through the mean value theorem we know

d(r)− d(0) ≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
|r − 0| .

In particular, this implies that

∀r ∈ [0,
1

2
] , dT

(︁
ηa , ηa ◦R−1

r

)︁
≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
dT(0, r) . (4.37)

The mean value theorem also tell us that

d(r)− d(1) ≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
|r − 1| .

In particular, this implies that

∀r ∈ [
1

2
, 1] , dT

(︁
ηa , ηa ◦R−1

r

)︁
≤
⃓⃓⃓
tanh

(︁ a
4

)︁⃓⃓⃓
dT(0, r) . (4.38)

Thus (4.37) and (4.38) prove the claim. □
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Claim 4.2.8.2.
4 log cosh

(︁
a
4

)︁
|a| dT (0, r) ≤ dT

(︁
ηa , ηa ◦R−1

r

)︁
.

Proof. Let d be as in the proof of Claim 4.2.8.1. By Remark 4.1.2, d is

concave (if a > 0) or convex (if a < 0). Consider the secant passing through[︃
0

d(0)

]︃
and

[︃
1
2

d( 1
2
)

]︃
. By concavity,

∀r ∈ [0,
1

2
] , 2d(

1

2
) r ≤ d(r) .

In particular, this implies that

∀r ∈ [0,
1

2
] ,

4

|a| log cosh
(︁ a
4

)︁
dT (0, r) ≤ dT

(︁
ηa , ηa ◦R−1

r

)︁
. (4.39)

Similarly, consider the secant passing through

[︃
1
2

d( 1
2
)

]︃
and

[︃
1

d(1)

]︃
. By con-

cavity,

∀r ∈ [
1

2
, 1] , −2d(

1

2
) (r − 1) ≤ d(r) .

In particular, this implies that

∀r ∈ [
1

2
, 1] ,

4

|a| log cosh
(︁ a
4

)︁
dT (0, r) ≤ dT

(︁
ηa , ηa ◦R−1

r

)︁
. (4.40)

Thus (4.39) and (4.40) prove the claim. □

The truth of the theorem has thus been shown through Claims 4.2.8.1

and 4.2.8.2. (The argument above shows that the left and right inequality

becomes an equality when dT(s, t) =
1
2
and dT(s, t) → 0 , respectively.) ■

Recall the distribution function Fηa(s) =
eas−1
ea−1

(see Figure 1.2). While not

defined for a = 0, one can see that as a approaches 0, the continuous functions

Fηa approach (monotonically from below if a→ 0+, and from above if a→ 0−)
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the continuous distribution function FλT(s) = s pointwise:

∀s ∈ [0, 1], lim
a→0

eas − 1

ea − 1

L’Hospital

=== lim
a→0

s eas

ea
= lim

a→0
s (ea)s−1 = s .

One therefore suspects the Kantorovich distance between ηa and λT to go to 0

as well, and indeed it does (see Theorem 4.2.9). In fact, one could use Dini’s

theorem to show that the convergence is uniform [12]. As a result, we are

justified to define η0 := λT .

Theorem 4.2.9. The exponential distribution ηa converges (in P) to λT as

a→ 0, i.e.,

dT (ηa, λT)
a→0−−−−→ 0 .

Proof. By Theorem 4.2.5,

lim
a→0

dT(ηa, λT) = lim
a→0

1

a
log
(︂
cosh

(︁ a
4

)︁)︂
= lim

a→0

1
4
sinh

(︁
a
4

)︁
cosh

(︁
a
4

)︁ = 0 ,

where the second equality is by L’Hospital’s rule. ■

Additionally, we can see pointwise convergence of Fηa to δ0 as a→ +∞ .

For s = 1, lim
a→+∞

eas − 1

ea − 1

⃓⃓⃓⃓
s=1

= lim
a→+∞

1 = 1 ,

∀s ∈ [0, 1), lim
a→+∞

eas − 1

ea − 1
= lim

a→+∞

eas

ea
= lim

a→+∞
(ea)s−1

s − 1 < 0

=== 0 ,

which implies a jump at 1; but since the points 0 and 1 correspond to the

same point on our circle, we recognize this point mass distribution as δ0 in P .

Through analogous steps we see the pointwise convergence of Fηa to δ0 as a→
−∞ . We therefore define η−∞ := η+∞ := δ0 as justified by Theorem 4.2.10.

We lastly agree that η 1
0
= η∞ := δ0 .

Theorem 4.2.10. The exponential distribution ηa converges (in P) to δ0 as

a→ ±∞, i.e.,

dT (ηa, δ0)
|a|→∞−−−−−→ 0 .
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Proof. By Theorem 4.2.4 we see

lim
|a|→∞

dT(ηa, δ0) = lim
|a|→∞

1

a
tanh

(︁ a
4

)︁
= lim

|a|→∞

1

|a| = 0 ,

where the second equality is by the fact that |tanh| is bounded by 1. ■

Note that while originally ηa was only defined for any a ∈ R\{0} , we now
have it defined for any a ∈ R ∪ {∞} , where the symbol ∞ represents both

±∞ as one point since η−∞ = η+∞ . Noting how Fηa(s) :=
eas−1
ea−1

is continuous

with respect to a ∈ R\{0} , and how we defined η0 and η∞ by taking limits,

we can see that the map a ↦→ ηa is not only a bijection between R ∪ {∞}
and E :=

{︁
ηa ∈ P : a ∈ R ∪ {∞}

}︁
, but also a topological isomorphism if

R ∪ {∞} has the one-point compactification topology. On the other hand,

as explained at the end of Section 4.1, the one-point compactification of R is

topologically isomorphic to T. So we conclude that the set E of all unrotated

mod 1 exponential distributions forms a circle in P that on one side passes

through P ’s center, namely λT , and on the other passes through δ0 . This set

is depicted in blue in Figure 4.4. Note that E is closed under reflection but

not under rotation. For any t ∈ R , the set
{︁
ηa ◦R−1

t : a ∈ R ∪ {∞}
}︁

too is

a circle, and passes through λT and δt+Z .

Figure 4.4 pieces together the results of this chapter: Recall that Theo-

rem 4.2.1 tells us that the space (P , dT) can be thought of as a disc or a ball

of radius 1/4 centered at λT . Theorem 4.2.2 states that the outermost edge of

this disc is the set {δx : x ∈ T} of all Dirac distributions, which itself forms

a Lipschitz-isomorphic copy of T by Theorem 1.5.3. This circle is depicted in

Figure 4.4 in black. Note that through Theorem 4.2.8 we know that for every

a ∈ R \ {0}, the mapping s + Z ↦→ ηa ◦ R−1
s is bi-Lipschitz continuous. As

a result, for every a ∈ R \ {0} ,
{︁
ηa ◦R−1

s : s ∈ R
}︁
is a Lipschitz-isomorphic

copy of the circle T inside P . The rotation-invariance of dT implies that the

center of this circle must be λT . One such circle is depicted in red in Fig-

ure 4.4. Theorem 4.2.9 implies that the closer a is to 0, the smaller the radius

of the circle
{︁
ηa ◦R−1

s : s ∈ R
}︁
. This radius approaches 1

4
as a → ∞ by

Theorem 4.2.10.
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01
2

dT = 1
4x = Rx(0)

Q(x) = R−x(0)

T = R/Z

δ0 = η−∞ = η∞

δx = δ0 ◦R−1
x

δ1/2 λT = η0

P

ηa

ηa ◦R−1
x

η−a = ηa ◦Q−1

1

Figure 4.4: Schematic depictions of T (left), and P (right). The latter is a ball
of radius 1

4 with λT at the center. For a fixed nonzero a , the set
{︁
ηa ◦R−1

s : s ∈ R
}︁

(red) is Lipschitz-isomorphic to T.

We will learn in Chapter 5 that the empirical distributions of (log n)∞n=1

have the circular limit set
{︁
η1 ◦R−1

s : s ∈ R
}︁
.

91



Chapter 5

Empirical Distributions of

Slow-varying Sequences

In light of the questions raised in the Motivation, this chapter demonstrates

that for any sequence that grows to infinity at the pace of (log n)∞n=1 , the se-

quence of suitably rotated empirical distributions converges to an exponential

distribution in (P , dT). Theorem 5.2.10 provides an upper bound for the dT

distance between the rotated empirical distributions and the exponential limit.

Theorem 5.2.10 also applies to sequences that grow slower than (log n)∞n=1. We

will even be able to get information about the speed of the mentioned conver-

gence using this theorem. These tools are then used to explain the patterns

observed in the Motivation.

5.1 Preparatory work

Definition 5.1.1 (Asymptotic equivalence of sequences). Let (tn)
∞
n=1 and

(rn)
∞
n=1 be sequences in R+ \ {0} . We say (tn)

∞
n=1 and (rn)

∞
n=1 are asymp-

totically equivalent, in symbols tn ∼ rn , if

lim
n→∞

tn
rn

= 1 .

Definition 5.1.2 (Asymptotic order of decay of sequences). Let (tn)
∞
n=1 and

(rn)
∞
n=1 be positive real sequences that converge to 0 . We say (tn)

∞
n=1 decays
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no slower than (or is of the order) (rn)
∞
n=1 , in symbols tn = O ( rn ) , if

lim sup
n→∞

tn
rn

<∞ .

To numerically approximate the integral of a function w.r.t. Lebesgue

measure on an interval, one can sum the values of that function at certain

sample points in the interval. It is natural to ask what the difference between

the sum and the integral is. The Euler-Maclaurin summation formula answers

this question, and is also useful for approximating a sum by an integral [2].

The latter is what we will use the formula for in Lemma 5.2.9.

Remark 5.1.3 (Euler-Maclaurin summation formula). [3] Let g ∈ C1[t1, t2]

where t1 < t2 . Then,

∑︂
n∈Z∩[t1,t2]

g(n) =

∫︂ t2

t1

g(t) dt +

∫︂ t2

t1

(︂
⟨t⟩ − 1

2

)︂
g′(t) dt +

g(t1) + g(t2)

2
.

One other tool used in Theorem 5.2.10 is the variation of parameters

method for solving a linear differential equation.

Remark 5.1.4 (First-order variation of parameters). [16] Consider the initial

value problem ⎧⎨⎩g′ + αg = G(t) ,

g(t0) = g0 ,

where α is a constant, and G : [t0,+∞) → R is continuous. The unique

solution to this problem is

g(t) =

(︄
g0 +

∫︂ t

t0

eαrG(r) dr

)︄
e−αt ; t ≥ t0 .

For the main convergence result to follow from Theorem 5.2.10, we will use

the fact that if the value of a locally integrable function on R+ converges to a

real number as the input tends to +∞, then the average value of that function

over increasingly larger intervals converges to the same real number.
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Lemma 5.1.5. Let g ∈ L1
loc

(︁
R+ , BR+ , λ

)︁
. If limt→∞ g(t) = a for some

a ∈ R , then
1

T

∫︂ T

0

g(t) dt
T→∞−−−−−→ a .

Proof. Assume g(t)
t→∞−−−−→ a ∈ R , i.e., assume

∀ϵ1 > 0, ∃M1 ∈ R+ : ∀t ≥M1,
⃓⃓
g(t)− a

⃓⃓
< ϵ1 .

We want to show that ∀ϵ > 0, ∃M ∈ R+ : ∀T ≥M,
⃓⃓⃓
1
T

∫︁ T

0
g(t) dt− a

⃓⃓⃓
< ϵ .

Let an arbitrary ϵ > 0 be given, and let ϵ1 :=
ϵ
2
. By assumption,

∃M1 > 0 : ∀t ≥M1,
⃓⃓
g(t)− a

⃓⃓
<
ϵ

2
. (5.1)

Note that since g is locally integrable,
∫︁M1

0

⃓⃓
g(t)− a

⃓⃓
dt is finite. Thus,

∃M2 > 0 : ∀T ≥M2,

∫︁M1

0

⃓⃓
g(t)− a

⃓⃓
dt

T
<
ϵ

2
. (5.2)

Let M := max {M1,M2} . For every T ≥M + 1 ,⃓⃓⃓⃓
⃓ 1T
∫︂ T

0

g(t) dt− a

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
∫︁ T

0
g(t) dt− aT

T

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
∫︁ T

0
g(t) dt−

∫︁ T

0
a dt

T

⃓⃓⃓⃓
⃓

=

⃓⃓⃓∫︁ T

0

(︁
g(t)− a

)︁
dt
⃓⃓⃓

T
≤

∫︁ T

0

⃓⃓
g(t)− a

⃓⃓
dt

T

=
1

T

∫︂ M1

0

⃓⃓
g(t)− a

⃓⃓
dt +

1

T

∫︂ T

M1

⃓⃓
g(t)− a

⃓⃓
dt

≤ ϵ

2
+

1

T

∫︂ T

M1

ϵ

2
dt

=
ϵ

2
+

ϵ

2
− ϵM1

2T
< ϵ .

Thus we have shown that limT→∞
1
T

∫︁ T

0
g(t) dt = a . ■

In Example 5.2.13 we use the following useful fact:
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Lemma 5.1.6. The logarithmic integral function is given by Li(x) :=
∫︁ x

e
1

log t
dt

for every x ∈ [e,∞) . This function is asymptotically equivalent to x
log x

, i.e.,

lim
x→∞

∫︁ x

e
1

log t
dt

x
log x

= 1 .

Proof. By the L’Hospital rule, we have

lim
x→∞

∫︁ x

e
1

log t
dt

x
log x

= lim
x→∞

1
log x

log x−x
x

log(x)2

= lim
x→∞

log x

log x− 1
= 1 .

■

Remark 5.1.7. Let (ϵn)
∞
n=1 be a sequence in R \ {0} that converges to 0.

Then
(︁
log(1 + ϵn)

)︁∞
n=1

converges to 0 at the same rate, i.e.,

log(1 + ϵn) ∼ ϵn .

5.2 Convergent subsequences of empirical dis-

tributions

This section describes the limit set of the empirical distributions in (P , dT)
associated with slow-varying real sequences mod 1; it also provides an estimate

of the speed of convergence to those limits.

Definition 5.2.1 (Empirical distribution). Let x = (xn)
∞
n=1 be a sequence in

R . For every N ∈ N, we define the associated (mod 1) empirical distribution

to be

ωx
N :=

1

N

N∑︂
n=1

δxn+Z ,

where δxn+Z is as defined in Section 1.4. When the sequence with which the

empirical distribution is associated is clear from the context, we simplify the

notation to ωN .
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We call a sequence (xn)
∞
n=1 in R log-like if the distance between two con-

secutive elements decreases asymptotically equivalent to a constant multiple

of
(︁
1
n

)︁∞
n=1

, i.e., if

lim
n→∞

n(xn − xn−1) ∈ R \ {0} . (5.3)

Such a sequence will necessarily satisfy limn→∞ xn = ±∞ . Clearly, if the

limit in (5.3) is 0, then the sequence’s rate of change is eventually slower than

that of (log n)∞n=1 . The main results of this chapter ( Theorem 5.2.10 and its

implications) apply to these sequences as well as log-like ones. Hence we define

slow-varying sequences as follows.

Definition 5.2.2 (Slow-varying sequence). A sequence x = (xn)
∞
n=1 in R is

slow-varying if it satisfies

lim
n→∞

n(xn − xn−1) ∈ R . (5.4)

The limit in (5.4) is denoted bx .

As mentioned in the Motivation, the sequence (ωN)
∞
N=1 of empirical distri-

butions for a log-like sequence does not converge in P in the sense of (1.4).

However, Theorem 5.2.10 will tell us that if every ωN is rotated by −xN , we

will have a convergent sequence. We denote this rotated version of every ωN

by ˜︁ωN .

Definition 5.2.3 (Suitably rotated empirical distribution). Let x = (xn)
∞
n=1

be a sequence in R . For every empirical distribution ωx
N , we define its suitably

rotated version to be ˜︁ωx
N := ωx

N ◦R−1
−xN

.

As with Definition 5.2.1, we simplify the notation to ˜︁ωN when the sequence

is clear from the context.

Given a log-like sequence, in Theorem 5.2.16 we will characterize the limit

set of that sequence. For log-like sequences these limits end up being accumu-

lation points of the set {xn}∞n=1 . For this reason, we denote the limit set by

A.
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Definition 5.2.4. Let x = (xn)
∞
n=1 be a sequence in R . The set of limits of

all convergent subsequences of x in T is

Ax :=
{︂
y ∈ T : dT

(︁
xϕ(n), y

)︁ n→∞−−−→ 0 for a strictly increasing ϕ : N → N
}︂
.

We simplify the notation to A when there is no ambiguity about the sequence.

For a sequence of empirical distributions, we define the limits of convergent

subsequences in P similarly.

Definition 5.2.5. Let x = (xn)
∞
n=1 be a sequence in R , and let (ωN)

∞
N=1 be

the sequence of the associated empirical distributions. Then

Ωx :=
{︂
µ ∈ P : dT

(︁
ωϕ(N), µ

)︁ n→∞−−−→ 0 for a strictly increasing ϕ : N → N
}︂
.

We simplify the notation to Ω when there is no ambiguity about the sequence.

A sequence is in essence a function on N. Thus restricting the domain of

any function on R+ \ {0} to N specifies a sequence, and clearly every sequence

can be generated that way. The advantage of considering these functions

as opposed to sequences is the ability to use the Euler-Mclaurin summation

formula (see Remark 5.1.3). This summation formula is a central part of

Theorem 5.2.10. Thus henceforth, instead of a slow-varying sequence x , we

consider a function f : R+ → R that is a smooth interpolant for the graph(︁
[ n
xn ]
)︁∞
n=1

of x , and satisfies limt→∞ t f ′(t) = bx . We denote the collection of

such functions by F , thus,

F :=

{︃
f ∈ C∞ (︁R+ \ {0}

)︁
: lim

t→∞
t f ′(t) exists in R

}︃
. (5.5)

Hence for any given f ∈ F , we re-define the relevant quantities consistent with

their discrete counterparts:

bf := lim
t→∞

t f ′(t) ;

Af :=

{︃
x ∈ T : dT

(︂
f
(︁
ϕ(n)

)︁
, x
)︂

n→∞−−−→ 0 for a strictly increasing ϕ : N → N
}︃

;
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ωf
N :=

1

N

N∑︂
n=1

δf(n)+Z ∧ ˜︁ωf
N := ωf

N ◦R−1
−f(N) ∀N ∈ N ;

Ωf :=
{︂
µ ∈ P : dT

(︁
ωf
ϕ(N), µ

)︁ n→∞−−−→ 0 for a strictly increasing ϕ : N → N
}︂
.

As before, we simplify the notation by omitting the superscript f whenever the

function in question is clear from the context. Note that since dT is invariant

under reflection (Theorem 1.6.5) we have A−f = Q(Af ) . Next, we denote the

subset of functions that are asymptotically slower than log by F0 , i.e.,

F0 :=
{︂
f ∈ F : bf = 0

}︂
.

Thus the set of all log-like functions is F \ F0 . It is convenient for the proof

of Theorem 5.2.10 to introduce two more quantities for any given f ∈ F . The

first is the smooth function ∆f : R+ \ {0} → R given by

∆f (t) := tf ′(t)− bf ∀t ∈ R+ \ {0} . (5.6)

It is clear from the definition of F that limt→+∞ ∆f (t) = 0 for every f ∈ F .

For a given f ∈ F , one interpretation of ∆f (t) is that it tells us how different

the slope of f is compared to that of bf log t . Note how ∆g(t) = 0 for all

t ∈ R+ \ {0} if g(t) := bf log t . So in a sense, ∆f (t) measures how ‘far’ f(t)

is from bf log t at every t ∈ R+.

Lemma 5.2.6. Let f ∈ F . Then for every m, t ∈ R+ \ {0} ,

f(t) = f(m) + b log t− b logm+

∫︂ t

m

∆(s)

s
ds .

Proof. Let arbitrary m, t ∈ R+ be given. By (5.6),

f ′(t) =
∆(t) + b

t

Integrating both sides from m to t yields through the Fundamental Theorem
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of Calculus,

f(t)− f(m) =

∫︂ t

m

∆(s)

s
ds+ b log t− b logm ,

which is rearranged to show the desired result. ■

Lemma 5.2.7. Let f ∈ F . Then

lim
N→∞

∫︁ N

1

|∆(s)|
s

ds

logN
= 0 .

Proof. Let arbitrary ϵ be given. Since limt→∞ ∆(t) = 0, there exists Nϵ ∈ N
such that

⃓⃓
∆(t)

⃓⃓
< ϵ

2
for every N ≥ Nϵ . Clearly,∫︂ N

1

⃓⃓
∆(s)

⃓⃓
s

ds ≤
∫︂ Nϵ

1

∆(s)

s
ds+

∫︂ N

Nϵ

ϵ

2s
ds =

∫︂ Nϵ

1

∆(s)

s
ds− ϵ

2
logNϵ+

ϵ

2
logN .

Note that since ∆ is continuous,
∫︁ Nϵ

1
∆(s)
s
ds and thereby

∫︁ Nϵ

1
∆(s)
s
ds− ϵ

2
logNϵ

is bounded. After division by logN we find

0 ≤ lim
N→∞

∫︁ N

1

|∆(s)|
s

ds

logN
≤ ϵ

2
< ϵ .

Since ϵ was arbitrary, the limit must equal 0. ■

Lemma 5.2.7 states that logN eventually grows faster than
∫︁ N

1

|∆(s)|
s

ds .

Needless to say, this means that any constant multiple of
∫︁ N

1

|∆(s)|
s

ds or its

sum with any constant still grows eventually slower than logN .

The other quantity we define is Df
N for every N ∈ N :

Df
N := dT

(︂˜︁ωf
N , η 1

bf

)︂
= dT

(︂
ωf
N , η 1

bf
◦R−1

f(N)

)︂
,

which is the distance between η 1

bf
and the suitably rotated empirical distri-

bution of the first N elements of
(︁
f(n)

)︁∞
n=1

.
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In Theorem 5.2.10 we introduce a sequence of (eventual) upper bounds for

each of these distances. Since the upper bounds converge to 0, as a corollary

it becomes apparent that the distances Df
N also approach 0.

Lemma 5.2.8. Let f ∈ F be such that b > 0 . Then for every h ∈ Lip1(T)
and every N ∈ N ,∫︂

T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
= h ◦ f(N)−

∫︂ f(N)

−∞
h′(s) e

s−f(N)
b ds .

Proof. Let arbitrary h ∈ Lip1(T) and N ∈ N be given. Then∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
=

∫︂
R−1

f(N)
(T)
h ◦Rf(N) d

(︁
η 1

b
◦R−1

f(N) ◦Rf(N)

)︁
=

∫︂
T
h ◦Rf(N) dη 1

b

=

∫︂
T
h ◦Rf(N) fη 1

b

dλT =

∫︂
ιR(T)

(︁
h ◦Rf(N) ◦ ι−1

R
)︁ (︁
fη 1

b

◦ ι−1
R
)︁
dλ ,

where fη 1
b

is the Radon-Nikodym derivative
dη1/b
dλT

, and by Remark 1.4.1 equals

F ′
η 1
b

. Thus

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
=

∫︂ 1

0

h
(︁
s+ f(N)

)︁ es/b

b
(︁
e1/b − 1

)︁ ds
=

∫︂ 1

0

h
(︁
s+ f(N)

)︁ es/b
b

∞∑︂
j=1

(︁
e−1/b

)︁j
ds

=
∞∑︂
j=1

∫︂ 1−j

0−j

h
(︁
s+ j + f(N)

)︁ e s+j
b

b
e

−j
b ds

=
∞∑︂
j=1

∫︂ 1−j

−j

h
(︁
s+ f(N)

)︁ e s
b

b
ds =

∫︂ 0

−∞
h
(︁
s+ f(N)

)︁ e s
b

b
ds ,

where the geometric series formula is true by positivity of b, the third equality

is by dominated convergence, and the penultimate equality is by recalling

from Section 1.3 that by h
(︁
s+ j + f(N)

)︁
we mean h

(︁
s+ j + f(N) + Z

)︁
.
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Therefore∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
=

∫︂ f(N)

−∞
h (s)

e
s−f(N)

b

b
ds

=
[︂
h(s) e

s−f(N)
b

]︂f(N)

−∞
−
∫︂ f(N)

−∞
h′(s) e

s−f(N)
b ds

= h
(︁
f(N)

)︁
−
∫︂ f(N)

−∞
h′(s) e

s−f(N)
b ds ,

where the middle equality is because Remark 2.1.6 allows us to integrate by

parts, and the last equality is by the fact that h is bounded. ■

Lemma 5.2.9. Let f ∈ F . Then for every h ∈ Lip1(T) and every N1, N ∈ N
such that N1 ≤ N ,

N

∫︂
T
h dωN = N h ◦ f(N) +

∫︂ f(N)

f(N1)

(︂
⟨f−1(s)⟩ − 1

2

)︂
h′(s) ds

−
∫︂ f(N)

f(N1)

f−1(s)h′(s) ds+ aN ,

where aN =
∑︁N1−1

n=1

(︁
h ◦ f(n)− h ◦ f(N1)

)︁
+ 1

2

(︁
h ◦ f(N)− h ◦ f(N1)

)︁
.

Proof. Let arbitrary h ∈ Lip1(T) and N1, N ∈ N be given where N1 ≤ N .

Then

N

∫︂
T
h dωN =

N1−1∑︂
n=1

h ◦ f(n) +
N∑︂

n=N1

h ◦ f(n)

=

N1−1∑︂
n=1

h ◦ f(n) +
∫︂ N

N1

h ◦ f(t) dt+
∫︂ N

N1

(︂
⟨t⟩ − 1

2

)︂
(h ◦ f)′ (t) dt

+
h ◦ f(N1) + h ◦ f(N)

2
,

where the second equality is by Remark 5.1.3. Since f ′ is continuous and

f ′(t)
t→∞−−−→ 0 , we know that f , and thereby h ◦ f , are Lipschitz on [N1,+∞).
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Thus Remark 2.1.6 allows us to integrate the first integral by parts and get

N

∫︂
T
h dωN =

N1−1∑︂
n=1

h ◦ f(n) +
[︁
t h ◦ f(t)

]︁N
N1

−
∫︂ N

N1

t h′ ◦ f(t) f ′(t) dt

+

∫︂ N

N1

(︂
⟨t⟩ − 1

2

)︂
h′ ◦ f f ′(t)(t) dt+

h ◦ f(N1) + h ◦ f(N)

2
;

And by rearranging terms and using the substitution s = f(t) , we get

N

∫︂
T
h dωN =

N1−1∑︂
n=1

h ◦ f(n)−N1 h ◦ f(N1) +
h ◦ f(N1) + h ◦ f(N)

2

+N h ◦ f(N) +

∫︂ f(N)

f(N1)

(︂
⟨f−1(s)⟩ − 1

2

)︂
h′(s) ds−

∫︂ f(N)

f(N1)

f−1(s)h′(s) ds ;

Thus we have shown

N

∫︂
T
h dωN = N h ◦ f(N) +

∫︂ f(N)

f(N1)

(︂
⟨f−1(s)⟩ − 1

2

)︂
h′(s) ds

−
∫︂ f(N)

f(N1)

f−1(s)h′(s) ds+ aN ,

where aN =
∑︁N1−1

n=1

(︁
h ◦ f(n)− h ◦ f(N1)

)︁
+ 1

2

(︁
h ◦ f(N)− h ◦ f(N1)

)︁
. ■

The following theorem is the main result in this chapter.

Theorem 5.2.10. For every f ∈ F , there exists N0 ∈ N such that

∀N ≥ N0 , Df
N ≤ 1

4N
+

⃓⃓
bf
⃓⃓
logN

N
+

2

N

∫︂ N

1

⃓⃓⃓
∆f (t)

⃓⃓⃓
dt .

Proof. Fix f ∈ F . When the superscript in ∆f , bf , and ωf
N is omitted it is

understood to refer to that fixed function. For a fixed N ∈ N , we want to

find an upper bound for{︃∫︂
T
h dωN −

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
: h ∈ Lip1(T)

}︃
.
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Let an arbitrary h ∈ Lip1(T) be given.

Case 1 b > 0

Choose N1 ∈ N such that
⃓⃓
∆(t)

⃓⃓
≤ b

4
for every t ≥ N1 . Since f ′(t) > 0 for

every t ≥ N1 , we know that f−1 is defined on [f(N1),+∞) . Let g(t) be

defined to be f−1(t) for all t ≥ f(N1) , and the constant N1 for all t ≤ f(N1) .

By Lemmas 5.2.8 and 5.2.9,

−N

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
+N

∫︂
T
h dωN =

N

∫︂ f(N1)

−∞
h′(s) e

s−f(N)
b ds+N

∫︂ f(N)

f(N1)

h′(s) e
s−f(N1)

b ds

−
∫︂ f(N)

f(N1)

h′(s)g(s) ds+

∫︂ f(N)

f(N1)

(︂
⟨g(s)⟩ − 1

2

)︂
h′(s) ds+ aN .

Therefore

N

(︃∫︂
T
h dωN −

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁)︃
= bN

∫︂ f(N1)

−∞
h′(s) e

s
b ds⏞ ⏟⏟ ⏞

I1

+

∫︂ f(N)

f(N1)

h′(s)gN(s) ds⏞ ⏟⏟ ⏞
I2

+

∫︂ f(N)

f(N1)

(︂
⟨g(s)⟩ − 1

2

)︂
h′(s) ds+ aN⏞ ⏟⏟ ⏞

I3

, (5.7)

where bN := Ne
−f(N)

b , and gN is a smooth real function on [f(N1), f(N)]

given by gN(s) := bN e
s
b − g(s) for every N ≥ N1 . We now find an upper

bound for each of the labeled terms in (5.7).

(i) Firstly, for I1, by Lemma 2.2.5,
⃓⃓⃓∫︁ f(N1)

−∞ h′(s) e
s
b ds
⃓⃓⃓
is bounded by b e

f(N1)
b .

Therefore |I1| is bounded by some constant multiple of bN , namely |bN | b e
f(N1)

b .

Considering bN , note that by Lemma 5.2.6,

bN = N e
1
b

(︁
−f(1)−

∫︁N
1

∆(s)
s

ds
)︁
elog(1)−log(N) = e

−f(1)
b e

−1
b

∫︁N
1

∆(s)
s

ds

≤ e
−f(1)

b e
1
b

∫︁N
1

|∆(s)|
s

ds . (5.8)
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Clearly, if
∫︁ N

1

|∆(s)|
s

ds < ∞ , then (5.8) implies that bN is bounded too,

and thus limN→∞
bN

logN
= 0 . That is, in this subcase, clearly logN even-

tually grows faster than any constant multiple of bN . In the subcase where∫︁ N

1

|∆(s)|
s

ds = ∞ , we know that both the upper bound in (5.8) and
∫︁ N

1

⃓⃓
∆(s)

⃓⃓
ds

approach∞ as N grows. We show that limN→∞
bN∫︁N

1 |∆(s)| ds = 0 in this subcase.

By (5.8) and the L’Hospital rule we have,

0 ≤ lim
N→∞

bN∫︁ N

1

⃓⃓
∆(s)

⃓⃓
ds

(5.8)

≤ lim
N→∞

e
−f(1)

b e
1
b

∫︁N
1

|∆(s)|
s

ds∫︁ N

1

⃓⃓
∆(s)

⃓⃓
ds

= lim
N→∞

e
−f(1)

b e
1
b

∫︁N
1

|∆(s)|
s

ds ���|∆(N)|
bN

����⃓⃓
∆(N)

⃓⃓
=

1

b
e

−f(1)
b lim

N→∞
e

1
b

∫︁N
1

|∆(s)|
s

ds e− logN

≤ 1

b
e

f(1)
b e

limN→∞

(︃
1
b

∫︁N
1

|∆(s)|
s

ds−logN

)︃
= 0 ,

where the last equality is because Lemma 5.2.7 tells us the limit in the exponent

is −∞. Thus we have shown that in this subcase,
∫︁ N

1

⃓⃓
∆(s)

⃓⃓
ds eventually

grows faster than any constant multiple of bN . Therefore it is true in either

subcase that there exists N2 ∈ N such that

|I1| ≤
b

3
logN +

1

3

∫︂ N

1

⃓⃓
∆(s)

⃓⃓
ds ∀N ≥ N2 . (5.9)

(ii) Secondly, for I2 , noting that gN(s) = bN e
s
b − g(s) , we have

g′N(s) =
bN
b
e

s
b − 1

f ′
(︁
g(s)

)︁ ,

where the last term is because g = f−1 for every s ≥ f(N1) . Therefore we

know by (5.6) that for every s ≥ f(N1) ,

g′N(s) =
bN
b
e

s
b − g(s)

∆ ◦ g(s) + b

=

(︁
∆ ◦ g(s) + b

)︁
bNe

s
b − b g(s)

b
(︁
∆ ◦ g(s) + b

)︁ +
g(s)∆ ◦ g(s)− g(s)∆ ◦ g(s)

b
(︁
∆ ◦ g(s) + b

)︁
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=
bN e

s
b − g(s)

b
+

g(s)∆ ◦ g(s)
b
(︁
∆ ◦ g(s) + b

)︁ =
gN(s)

b
+

g(s)∆ ◦ g(s)
b
(︁
∆ ◦ g(s) + b

)︁ ,

which, together with the fact that gN
(︁
f(N)

)︁
= 0 poses a first-order initial

value problem. Since the right hand side of the last equation above is continu-

ous and its derivative w.r.t. gN is also continuous, we have a unique solution

which, by Remark 5.1.4, is:

gN(s) = −
∫︂ f(N)

s

e
s−r
b

g(r)∆ ◦ g(r)
b
(︁
∆ ◦ g(s) + b

)︁ dr ∀s ∈ [f(N1), f(N)] .

Substituting this formula for gN in I2 , we get

|I2| =
⃓⃓⃓⃓
⃓−
∫︂ f(N)

f(N1)

∫︂ f(N)

s

h′(s)e
s−r
b

g(r)∆ ◦ g(r)
b
(︁
∆ ◦ g(s) + b

)︁ dr ds⃓⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓−
∫︂ f(N)

f(N1)

g(r)∆ ◦ g(r)
b
(︁
∆ ◦ g(s) + b

)︁ ∫︂ r

f(N1)

h′(s)e
s−r
b ds dr

⃓⃓⃓⃓
⃓

≤
∫︂ f(N)

f(N1)

⃓⃓⃓⃓
⃓ g(r)∆ ◦ g(r)
b
(︁
∆ ◦ g(s) + b

)︁ ⃓⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
∫︂ r

f(N1)

h′(s)e
s−r
b

⃓⃓⃓⃓
⃓ ds dr ,

where the second equality is by reversing the order of integration. Therefore,

using the fact that g = f−1 and that
⃓⃓
∆(r)

⃓⃓
< b

4
for every r ≥ N1 ,

|I2| ≤
∫︂ f(N)

f(N1)

g(r) |∆| ◦ g(r)
b− |∆| ◦ g(s)

∫︂ r

f(N1)

⃓⃓⃓⃓
h′(s)

1

b
e

s−r
b

⃓⃓⃓⃓
ds dr

≤
∫︂ f(N)

f(N1)

g(r) |∆| ◦ g(r)
b− |∆| ◦ g(s)

∫︂ r

f(N1)

1

b
e

s−r
b ds dr

≤
∫︂ f(N)

f(N1)

g(r) |∆| ◦ g(r)
b− |∆| ◦ g(s) dr =

∫︂ N

N1

⃓⃓
∆(t)

⃓⃓ ∆(t) + b

b−
⃓⃓
∆(t)

⃓⃓ dt ,

where the second inequality is by Lemma 2.1.7 and the fact that 1
b
e

s−r
b > 0 ,

and the last equality is by the substitution t = g(r) . Therefore since
⃓⃓
∆(t)

⃓⃓
<
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b
4
for t ≥ N1, we have

|I2| ≤
b+ b

4

b− b
4

∫︂ N

N1

⃓⃓
∆(t)

⃓⃓
dt =

5

3

∫︂ N

N1

⃓⃓
∆(t)

⃓⃓
dt . (5.10)

(iii) Finally, to bound I3 , note that by the triangle inequality,

|aN | ≤
N1−1∑︂
n=1

⃓⃓⃓
h
(︁
f(n)

)︁
− h

(︁
f(N1)

)︁⃓⃓⃓
+

1

2

⃓⃓⃓
h
(︁
f(N)

)︁
− h

(︁
f(N1)

)︁⃓⃓⃓
≤

N1−1∑︂
n=1

dT
(︁
f(n), f(N1)

)︁
+

1

2
dT
(︁
f(N), f(N1)

)︁
≤

N1−1∑︂
n=1

1

2
+

1

2

(︂1
2

)︂
=
N1 − 1

2
+

1
2

2
=
N1 − 1

2

2
, (5.11)

where the second inequality is because h ∈ Lip1(T), and the third inequality

is by Definition 1.3.1. Thus (aN)
∞
N=N1

is bounded. Note that

|I3| ≤
∫︂ f(N)

f(N1)

⃓⃓⃓⃓
⟨g(s)⟩ − 1

2

⃓⃓⃓⃓ ⃓⃓
h′(s)

⃓⃓
ds+ |aN | ≤

f(N)− f(N1)

2
+ |aN |

(5.11)

≤ f(N)− f(N1) +N1 − 1
2

2

≤ 1

2

(︄
b logN +

∫︂ N

1

⃓⃓
∆(s)

⃓⃓
s

ds+ f(1)− f(N1) +N1 −
1

2

)︄
,

where the last inequality is by Lemma 5.2.6. Thus |I3| is bounded by half of

the sum of b logN and
∫︁ N

1

|∆(s)|
s

ds shifted by a constant. It therefore follows

from Lemma 5.2.7 that there exists N3 ∈ N such that

|I3| ≤
2b

3
logN ∀N ≥ N3 . (5.12)

Letting N0 := max{N1, N2, N3} and summing (5.9), (5.10) and (5.12), we find

an upper bound for (5.7).

N

(︃∫︂
T
h dωN −

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁)︃
≤ b logN+2

∫︂ N

1

⃓⃓
∆(s)

⃓⃓
ds ∀N ≥ N0 ,
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which proves the result for Case 1 once we notice that N1, N2, N3, and hence

also N0 are independent of h .

Case 2 b < 0

Define f̂ := −f and note that bf̂ = −bf > 0 . By definition of Df
N and

Theorem 1.6.5,

Df
N = dT

(︂
ωf
N , η 1

bf
◦R−1

f(N)

)︂
= dT

(︂
ωf
N ◦Q−1 , η 1

bf
◦R−1

f(N) ◦Q−1
)︂

= dT

(︂
ω−f
N , η 1

−bf
◦R−1

−f(N)

)︂
= Df̂

N ,

where the penultimate equality is by the definition of Q , Remark 1.6.2, and

Remark 1.6.3. Thus the truth of this case has already been shown in Case 1.

Case 3 b = 0

Let an arbitrary N ∈ N be given. On the one hand, recalling that η∞ = δ0 ,∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁
=

∫︂
T
h dδf(N) = h ◦ f(N) .

On the other hand, using Remark 5.1.3 and integration by parts through

similar steps to that of the proof of Lemma 5.2.9,

∫︂
T
h dωN = h ◦ f(N) +

1

N

(︄
h ◦ f(N)− h ◦ f(1)

2

−
∫︂ N

1

(︂
⟨t⟩ − 1

2
− t
)︂(︁
h ◦ f

)︁′
(t) dt

)︄
.

Therefore⃓⃓⃓⃓∫︂
T
h dωN −

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁⃓⃓⃓⃓
≤ 1

N

(︄⃓⃓
h ◦ f(N)− h ◦ f(1)

⃓⃓
2

+

∫︂ N

1

⃓⃓⃓
⟨t⟩ − 1

2
− t
⃓⃓⃓ ⃓⃓
h′ ◦ f(t)

⃓⃓ ⃓⃓
f ′(t)

⃓⃓
dt

)︄
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≤ 1

N

(︄
dT
(︁
f(N), f(1)

)︁
2

+

∫︂ N

1

⃓⃓⃓
− ⌊t⌋ − 1

2

⃓⃓⃓ ⃦⃦
h′
⃦⃦
∞

⃓⃓
f ′(t)

⃓⃓
dt

)︄

≤ 1

N

(︄
dT
(︁
f(N), f(1)

)︁
2

+

∫︂ N

1

(t+
1

2
)
⃓⃓
f ′(t)

⃓⃓
dt

)︄
,

where the second inequality is by the fact that h ∈ Lip1 (T) , and the third

inequality is by Lemma 2.1.7 as well as the fact that t > 0 . Thus, by definition

of dT , as well as the fact that tf ′ = ∆+ b ,⃓⃓⃓⃓∫︂
T
h dωN −

∫︂
T
h d
(︁
η 1

b
◦R−1

f(N)

)︁⃓⃓⃓⃓
≤ 1

N

(︄
1

4
+

∫︂ N

1

(1 +
1

2t
)
⃓⃓
∆(t)

⃓⃓
dt

)︄

≤ 1

N

(︄
1

4
+

3

2

∫︂ N

1

⃓⃓
∆(t)

⃓⃓
dt

)︄

≤ 1

4N
+

2

N

∫︂ N

1

⃓⃓
∆(t)

⃓⃓
dt .

Thus the theorem is true for this case as well as the other cases. ■

Corollary 5.2.11. For every f ∈ F ,

Df
N

N→∞−−−−−→ 0 .

Proof. Immediate from Theorem 5.2.10 through Lemma 5.1.5. ■

In particular, Corollary 5.2.11 proves the promised result that for a slow-

growing sequence in R, the associated sequence (˜︁ωN)
∞
N=1 converges to η 1

b
.

The upper bounds in Theorem 5.2.10 do more than just show convergence,

they also allow for gauging the speed of convergence, as shown in the following

examples.
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Example 5.2.12. Consider x = (log n)∞n=1 . This sequence is clearly log-like

with f = log ∈ F , and b = 1 , and ∆ = 0 constantly. By Theorem 5.2.10 we

know that eventually,

dT (˜︁ωN , η1) ≤ 1

4N
+

logN

N

=⇒ lim sup
N→∞

dT (˜︁ωN , η1)
logN
N

≤ lim sup
N→∞

(︃
1

4 logN
+ 1

)︃
= 1 <∞ ,

which means dT (˜︁ωN , η1) = O
(︁
logN
N

)︁
. A careful analysis [6] of dT (˜︁ωN , η1)

reveals that the precise speed of convergence is

dT (˜︁ωN , η1) ∼
1√
6π

√
logN

N
.

Thus the bound on dT (˜︁ωN , η1) provided by Theorem 5.2.10 is too pessimistic

by a factor
√
logN as N → ∞ .

Example 5.2.13. Consider x = (log log n)∞n=3 . Letting f := log log on

[e,∞) , we see that

b = lim
t→∞

1
t log t

1
t

= lim
t→∞

1

log t
= 0 ,

i.e., f ∈ F0 , and ∆(t) = 1
log t

for every t > e . By Theorem 5.2.10 we know

that eventually,

dT (˜︁ωN , δ0) ≤
1

4N
+

2

N

∫︂ N

e

1

log t
dt

=⇒ logN dT (˜︁ωN , δ0) ≤
logN

4N
+

2 logN

N

∫︂ N

e

1

log t
dt ,

which through Lemma 5.1.6 implies

lim sup
N→∞

dT (˜︁ωN , δ0)
1

logN

≤ 2 <∞ ,
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which means dT (˜︁ωN , δ0) = O
(︁

1
logN

)︁
. Again, it can be shown [8] that

dT (˜︁ωN , δ0) ∼
1

logN
.

Thus the bound on dT (˜︁ωN , δ0) provided by Theorem 5.2.10 is sharp as N →
∞, up to a constant factor.

Example 5.2.14. Consider x =
(︁
e−n
)︁∞
n=1

. Letting f(t) := e−t for every

t ∈ [1,+∞) , we see that

b = lim
t→∞

−e−t

1/t
= 0 ,

and thus f ∈ F0 , and ∆(t) = −te−t . Theorem 5.2.10 tells us that eventually,

dT (˜︁ωN , δ0) ≤
1

4N
+

2

N

∫︂ N

1

⃓⃓
−te−t

⃓⃓
dt

=⇒ N dT (˜︁ωN , δ0) ≤
1

4
+ 2

∫︂ N

1

te−t dt =
1

4
+ 2

(︃
2

e
− N + 1

eN

)︃
=⇒ lim sup

N→∞
N dT (˜︁ωN , δ0) ≤

1

4
+

4

e
≈ 1.722 <∞ ,

implying that dT (˜︁ωN , δ0) = O
(︁

1
N

)︁
. This upper bound which Theorem 5.2.10

yielded for lim supN→∞N dT (˜︁ωN , δ0) is consistent with the precise value of

the limit superior calculated from

dT (˜︁ωN , δ0) = sup
h∈Lip1,0(T)

⃓⃓⃓⃓
⃓⃓⃓∫︂

T
h d˜︁ωN −

�
�
�

��>
0∫︂

T
h dδ0

⃓⃓⃓⃓
⃓⃓⃓ = sup

h∈Lip+1,0(T)

1

N

N∑︂
n=1

h
(︁
e−n − e−N

)︁
.

Let I(x) := dT(x, 0) for all x ∈ T . Note that I ∈ Lip+
1,0(T) . For every

h ∈ Lip1,0(T), we have h ≤ I in the sense that h(x) ≤ I(x) for every

x ∈ T. If otherwise, we would contradict Lemma 2.1.7 through the Mean

Value theorem. Thus suph∈Lip+1,0(T)
h(x) = x for every x ∈ [0, 1

2
]. We have
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therefore shown

dT (˜︁ωN , δ0) =
1

N

N∑︂
n=1

(︁
e−n − e−N

)︁
,

and hence

lim
N→∞

N dT (˜︁ωN , δ0) = lim
N→∞

(︄
1− e−N

e− 1
− 1

eN

)︄
=

1

e− 1
≈ 0.5820 ,

implying dT (˜︁ωN , δ0) ∼ 1
(e−1)N

. Note that the bound on dT (˜︁ωN , δ0) provided

by Theorem 5.2.10 again is sharp as N → ∞, up to a constant factor.

Example 5.2.15. Consider x = (log n+ log log n)∞n=3 . Letting f(t) := log t+

log log t for every t ∈ [3,+∞) , we see that

b = lim
t→∞

1
t
+ 1

t log t

1
t

= lim
t→∞

(︁
1 +

1

log t

)︁
= 1 ,

and that ∆(t) = 1
log t

. Theorem 5.2.10 tells us that eventually,

dT (˜︁ωN , η1) ≤
1

4N
+

logN

N
+

2

N

∫︂ N

3

1

log t
dt

=⇒ logN dT (˜︁ωN , η1) ≤
logN

4N
+

log(N)2

N
+

2 logN

N

∫︂ N

3

1

log t
dt .

Therefore through Lemma 5.1.6 we know

lim sup
N→∞

logN dT (˜︁ωN , η1) ≤ 2 , (5.13)

implying dT (˜︁ωN , η1) = O
(︁

1
logN

)︁
. As with the previous two examples, this

asymptotic analysis gives the correct rate of convergence. In other words,

limN→∞ logN dT (˜︁ωN , η1) is finite and positive. We now show what this limit

is.

Since the domain of f is [3,+∞) , we have f ′(t) = log t+1
t log t

> 0 , and thus our

continuous f is also strictly increasing. Denote the inverse by g . While not
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explicitly expressed, g has a useful implicit formula. By definition of inverse,

for every s ∈ [f(3),+∞),

s = log g(s) + log log g(s)

=⇒ es = g(s) log g(s)

=⇒ g(s) =
es

log g(s)
.

Substituting this implicit formula into itself, we get

g(s) =
es

log es

log g(s)

=
es

s− log log g(s)
=

es

s− log log es

log g(s)

=
es

s− log (s− log log g(s))
.

Therefore for every s ∈ [f(3),+∞),

g(s) =
es

s− log s+ log s
s
˜︁g(s) , (5.14)

where ˜︁g(s) := s
log s

log
(︁
1− log log g(s)

s

)︁
.

Claim 5.2.15.1. The function ˜︁g is bounded.

Proof. Note that f(t) > log t for every t ∈ [3,+∞) . Since f is increasing and

continuous, so is g . Thus g is order-preserving and we have g◦f(t) > g◦log t .
Since g ◦ f = exp ◦ log = Id[3,+∞) , we have

exp(y) > g(y) ∀y ≥ f(3) .

Thus clearly, for every s ∈ [f(3),+∞),

log log g(s)

log(s)
< 1 =⇒ log log g(s)

s
= O

(︂ log s

s

)︂
.

Therefore by Remark 5.1.7, log
(︁
1 − log log g(s)

s

)︁
= O

(︁
log s
s

)︁
, and hence ˜︁g is

bounded. □

112



Consider the denominator in (5.14). Note that for a large enough N1 ∈ N,

s− log s+
log s

s
˜︁g(s) ≥ 1 ∀s ≥ f(N1) . (5.15)

For every N ≥ N1, let lN := logN for convenience. Let arbitrary h ∈ Lip1(T)
be given. By (5.7),

N

∫︂
T
h d
(︁
ωf
N−η1◦R−1

f(N)

)︁
= Ne−(lN+log lN )

∫︂ f(N1)

−∞
h′(s) e

s
b ds⏞ ⏟⏟ ⏞

J1

+

∫︂ f(N)

f(N1)

h′(s)gN(s) ds⏞ ⏟⏟ ⏞
J2

+

∫︂ f(N)

f(N1)

(︂
⟨g(s)⟩ − 1

2

)︂
h′(s) ds+ aN⏞ ⏟⏟ ⏞

J3

.

By (5.12), we know ∥J3∥ < lN eventually. Additionally, Lemma 2.2.5 implies

that
⃓⃓⃓∫︁ f(N1)

−∞ h′(s) es ds
⃓⃓⃓
is bounded by ef(N1) and thereby |J1| ≤��N 1

�N lN
N1 logN1 .

Thus we know that eventually,⃓⃓⃓⃓
⃓N
∫︂
T
h d
(︁
ωf
N − η1 ◦R−1

f(N)

)︁
−
∫︂ f(N)

f(N1)

h′(s) gN(s) ds

⃓⃓⃓⃓
⃓ < N1 logN1

lN
+ lN ,

which after the change of variable u = f(N)− s in the integral, implies that

eventually,

⃓⃓⃓⃓
⃓N
∫︂
T
h d
(︁
ωf
N − η1 ◦R−1

f(N)

)︁
−
∫︂ f(N)−f(N1)

0

h′(f(N)− s)gN(f(N)− s) ds

⃓⃓⃓⃓
⃓

<
N1 logN1

lN
+ lN .

Thus the LHS difference is O(lN) . This implies that the ratio of this difference

to l2N vanishes as N grows. Therefore there exists N2 ∈ N such that for every

N ≥ N2 ,

N

∫︂
T
h d
(︁
ωf
N − η1 ◦R−1

f(N)

)︁
= cN l

2
N +

∫︂ f(N)−f(N1)

0

h′(f(N)− s)gN(f(N)− s) ds ,

(5.16)
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where we know that the number cN , which clearly depends on N1 and thereby

on h , satisfies |cN | ≤ 1 for all N ≥ N2 .

We will partition the RHS integral in (5.16) into [0,
√
lN ] and [

√
lN , f(N)−

f(N1)] . Consider the integrand on the RHS. By definition of gN , we have for

every N ≥ N2 ,

gN(f(N)− s)

N
= e−s − g(f(N)− s)

N
∀s ∈ [0, f(N)− f(N1)] . (5.17)

On the other hand, by (5.14), we know that for every s ∈ [0 , f(N)− f(N1)] ,

g(f(N)− s)

N
=

1

N

ef(N)−s

f(N)− s− log(f(N)− s) + log(f(N)−s)
f(N)−s

˜︁g(f(N)− s)

(5.18)

=
lN e

−s

lN + log lN − s− log(lN + log lN − s) + log(lN+log lN−s)
lN+log lN−s

˜︁g(f(N)− s)

=
lN e

−s

lN − s− log(1 + log lN−s
lN

) +
log lN+log(1+

log lN−s

lN
)

lN+log lN−s
˜︁g(f(N)− s)

.

Therefore,

g(f(N)− s)

N
=

e−s

1− s
lN

+ 1

l
4/3
N

˜︁gN(s) ∀s ∈ [0, f(N)−f(N1)] , (5.19)

where ˜︁gN(s) := −l1/3N log(1 + log lN−s
lN

) + l
1/3
N

log lN+log(1+
log lN−s

lN
)

lN+log lN−s
˜︁g(f(N)− s) .

Claim 5.2.15.2. For every N ∈ N , the value ˜︁gN(s) vanishes as N → ∞ for

all s ∈ [0,
√
lN ].

Proof. Let an arbitrary s ∈ [0,
√
lN ] be given. Note that ˜︁gN is smooth.

Additionally, note that

0 = lim
N→∞

log lN −
√
lN

lN
≤ lim

N→∞

log lN − s

lN
≤ lim

N→∞

log lN
lN

= 0 . (5.20)
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Therefore by Remark 5.1.7,

lim
N→∞

l
1/3
N log(1 +

log lN − s

lN
) = lim

N→∞
l
1/3
N

log lN − s

lN

= lim
N→∞

log lN

l
2/3
N

− lim
N→∞

s

l
2/3
N

= 0 ,

where s

l
2/3
N

N→∞−−−−→ 0 because s ∈ [0, l
1/2
N ] . As for the second term in ˜︁gN , recall

that by Claim 5.2.15.1, ˜︁g (︁f(N)− s
)︁
is bounded for all N, s. For convenience,

we denote the bound simply by ˜︁g, so
lim

N→∞

log lN + log(1 + log lN−s
lN

)

l
2/3
N

(︁
1 + log lN−s

lN

)︁ ˜︁g = lim
N→∞

log lN

l
2/3
N

(︁
1 + log lN−s

lN

)︁ ˜︁g
+ lim

N→∞

log(1 + log lN−s
lN

)

l
2/3
N

(︁
1 + log lN−s

lN

)︁ ˜︁g = 0 ,

where the reason is Remark 5.1.7 as in the first term. Thus ˜︁gN is a continuous

function with limN→∞ ˜︁gN(s) = 0 uniformly on s ∈ [0,
√
lN ] . □

Claim 5.2.15.2 implies that there exists N3 ∈ N with N3 ≥ f(N1) such

that |˜︁gN | < 1 for all N ≥ N3 . Turning our focus to s ∈ [
√
lN , f(N)− f(N1)] ,

note that

f(N1) ≤ f(N)− s ≤ f(N)−
√︁
lN ,

and so (5.15) applies to (5.18), and therefore⃓⃓⃓⃓
g(f(N)− s)

N

⃓⃓⃓⃓
≤ e−s l2N ∀s ∈ [

√︁
lN , f(N)− f(N1)] . (5.21)
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Partitioning (5.16) implies through (5.17) that

lN

∫︂
T
h d
(︁
ωf
N−η1◦R−1

f(N)

)︁
=
cN l

3
N

N
+lN

∫︂ √
lN

0

h′(f(N)− s)

(︃
e−s − g(f(N)− s)

N

)︃
ds⏞ ⏟⏟ ⏞

K1

+ lN

∫︂ f(N)−f(N1)

√
lN

h′(f(N)− s)

(︃
e−s − g(f(N)− s)

N

)︃
ds⏞ ⏟⏟ ⏞

K2

. (5.22)

Claim 5.2.15.3. The limit of K2 as N grows is 0, i.e.,

lim
N→∞

K2 = 0 .

Proof. By the triangle inequality, Lemma 2.2.5, and (5.21),

|K2| ≤ lN

∫︂ ∞

√
lN

(︁
e−s + e−sl2N

)︁
= lN(1 + l2N)

[︁
−e−s

]︁∞
√
lN

=
(︁
lN + l3N

)︁
e−

√
lN ,

and thus limN→∞K2 = 0 . □

Claim 5.2.15.4. The term K1 approaches
∫︁∞
0
h′(f(N)−s)e−s(−s) ds as N →

∞, i.e.,

lim
N→∞

⃓⃓⃓⃓
K1 +

∫︂ ∞

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
= 0 .

Proof. We first note that by (5.19) we know

K1 = lN

∫︂ √
lN

0

h′(f(N)− s)e−s

(︃
1− 1

1− s
lN

+ 1

l
4/3
N

˜︁gN(s)
)︃
ds

=

∫︂ √
lN

0

h′(f(N)− s)e−s

(︃ −s+ 1

l
1/3
N

˜︁gN(s)
1− s

lN
+ 1

l
4/3
N

˜︁gN(s)
)︃
ds . (5.23)

Also note that by Lemma 2.1.7,⃓⃓⃓⃓
⃓
∫︂ ∞

√
lN

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
⃓ ≤

∫︂ ∞

√
lN

s e−s ds = (
√︁
lN + 1)e−

√
lN ,
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and thus limN→∞
∫︁∞√

lN
s h′(f(N)− s)e−s ds = 0 . Therefore,

lim
N→∞

⃓⃓⃓⃓
K1 +

∫︂ ∞

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
= lim

N→∞

⃓⃓⃓⃓
⃓K1 +

∫︂ √
lN

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
⃓ .

On the other hand, by (5.23) we know that⃓⃓⃓⃓
⃓K1 +

∫︂ √
lN

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓
⃓⃓⃓∫︂ √

lN

0

h′(f(N)− s)e−s

(︃ −s+ ˜︁gN (s)

l
1/3
N

1− s
lN

+ ˜︁gN (s)

l
4/3
N

+ s

)︃
ds

⃓⃓⃓⃓
⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓⃓∫︂ √

lN

0

h′(f(N)− s)e−s

˜︁gN (s)

l
1/3
N

− s2

lN
+ s˜︁gN (s)

l
4/3
N

1− s
lN

+ ˜︁gN (s)

l
4/3
N

ds

⃓⃓⃓⃓
⃓⃓⃓ .

Therefore by the triangle inequality,⃓⃓⃓⃓
⃓K1 +

∫︂ √
lN

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
⃓ ≤

1

l
1/3
N

⃓⃓⃓⃓
⃓⃓⃓∫︂ √

lN

0

h′(f(N)− s)e−s ˜︁gN(s)
1− s

lN
+ ˜︁gN (s)

l
4/3
N

ds

⃓⃓⃓⃓
⃓⃓⃓

⏞ ⏟⏟ ⏞˜︁K1

+
1

lN

⃓⃓⃓⃓
⃓⃓⃓∫︂ √

lN

0

h′(f(N)− s)e−s s2

1− s
lN

+ ˜︁gN (s)

l
4/3
N

ds

⃓⃓⃓⃓
⃓⃓⃓

⏞ ⏟⏟ ⏞˜︁K2

+
1

l
4/3
N

⃓⃓⃓⃓
⃓⃓⃓∫︂ √

lN

0

h′(f(N)− s)e−s s ˜︁gN(s)
1− s

lN
+ ˜︁gN (s)

l
4/3
N

ds

⃓⃓⃓⃓
⃓⃓⃓

⏞ ⏟⏟ ⏞˜︁K3

. (5.24)
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All three terms in the above equation converge to zero because ˜︁K1 , ˜︁K2 , and˜︁K3 are all bounded. To see this, note that for all N ≥ N3 and s ∈ [0,
√
lN ] ,

we have −
√
lN

lN
≤ −s

lN
≤ 0 and −1

l
4/3
N

≤ ˜︁gN
l
4/3
N

≤ 1

l
4/3
N

. Therefore

−
(︄√

lN
lN

+
1

l
4/3
N

)︄
≤ ˜︁gN

l
4/3
N

− s

lN
≤ 1

l
4/3
N

.

Thus for a large enough N4 ≥ N3 , we have for every N ≥ N4 ,⃓⃓⃓⃓
⃓1− s

lN
+
˜︁gN(s)
l
4/3
N

⃓⃓⃓⃓
⃓ = 1− s

lN
+
˜︁gN(s)
l
4/3
N

≥ 1−
√
lN
lN

− 1

l
4/3
N

. (5.25)

For ˜︁K1 , through Lemma 2.1.7 we have

⃓⃓⃓ ˜︁K1

⃓⃓⃓
≤
∫︂ √

lN

0

e−s

⃓⃓˜︁gN(s)⃓⃓⃓⃓⃓
1− s

lN
+ ˜︁gN (s)

l
4/3
N

⃓⃓⃓ <∞ ,

because the integrand is integrable on any finite interval in R+, and for ev-

ery N ≥ N4, the integral remains below some constant through (5.25) and

Claim 5.2.15.2. Analogously one can see that ˜︁K2 and ˜︁K3 are bounded as

well, and thereby (5.24) is 0, and thus we have shown that

lim
N→∞

⃓⃓⃓⃓
K1 +

∫︂ ∞

0

s h′(f(N)− s)e−s ds

⃓⃓⃓⃓
= 0 .

□

Thus (5.22) implies through Claims 5.2.15.3 and 5.2.15.4 that

lim
N→∞

lN

∫︂
T
h d
(︁
ωf
N − η1 ◦R−1

f(N)

)︁
= lim

N→∞

∫︂ ∞

0

h′(f(N)− s)e−s(−s) ds ,

(5.26)

uniformly in h ∈ Lip1(T) . On the other hand, we observe that

−
∫︂ ∞

0

h′
(︁
f(N)− s

)︁
se−s ds = −

∞∑︂
n=0

∫︂ n+1

n

h′
(︁
f(N)− s

)︁
se−s ds
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= −
∞∑︂
n=0

∫︂ 1

0

h′
(︁
f(N)− s

)︁
(s+ n)e−s−n ds

= −
∫︂ 1

0

h′
(︁
f(N)− s

)︁
e−s

(︃
s

∞∑︂
n=0

e−n +
∞∑︂
n=0

ne−n

)︃
ds

= −
∫︂ 1

0

h′
(︁
f(N)− s

)︁(︃se1−s

e− 1
+

e1−s

(e− 1)2

)︃
ds ,

where the second equality is because h′ is 1-periodic. This also implies that

h′
(︁
f(N)− s

)︁
= h′

(︁
f(N) + 1− s

)︁
. Using the substitution u = 1−s , we have

−
∫︂ ∞

0

h′
(︁
f(N)− s

)︁
se−s ds = −

∫︂ 1

0

h′
(︁
f(N) + u

)︁(︃(1− u)eu

e− 1
+

eu

(e− 1)2

)︃
du

= −
∫︂ 1

0

h′
(︁
f(N) + u

)︁(︃(1− u)eu

e− 1
+

eu − e

(e− 1)2

)︃
du

= −
∫︂ 1

0

h′
(︁
f(N) + u

)︁ (︁
Fζ1(u)− Fη1(u)

)︁
du

=

∫︂
T
h d
(︁
ζ1 ◦R−1

f(N)

)︁
−
∫︂
T
h d
(︁
η1 ◦R−1

f(N)

)︁
,

where the ultimate and antepenultimate equalities are by Remark 2.2.4 and

Lemma 2.2.5 respectively. Thus by (5.26) we have shown

lim
N→∞

(︃
lN

∫︂
T
h d
(︁
ωf
N − η1 ◦R−1

f(N)

)︁
−
∫︂
T
h d
(︁
(ζ1 − η1) ◦R−1

f(N)

)︁)︃
= 0 ,

uniformly in h ∈ Lip1(T) . Replacing h with h ◦R−1
f(N) ∈ Lip1(T) , we get

lim
N→∞

lN

∫︂
T
h d
(︁˜︁ωf

N − η1
)︁
= lim

N→∞

∫︂
T
h d(ζ1 − η1) .

Taking the supremum over h ∈ Lip1(T) yields

lim
N→∞

lN dT (˜︁ωN , η1) = dT(ζ1 , η1) .

Thus we have shown that dT (˜︁ωN , η1) is asymptotically equivalent to a constant

multiple of 1
logN

.
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Remarkably, the upper bound that Theorem 5.2.10 gauges for the rate

of the decay of Df
N was sharp in Examples 5.2.13 to 5.2.15,up to a constant

factor.

Consider a sequence of real numbers (xn)
∞
n=1 . Slow-varying or not, this

sequence has a convergent subsequence mod 1 simply because (T, dT) is com-

pact. In other words, A ̸= ∅. The same is true for the sequence (ωN)
∞
N=1

in the compact space (P , dT). In other words, Ω ̸= ∅. Theorem 5.2.17 uses

Corollary 5.2.11 to characterize the limit set Ω and its relation to A . It states

that precisely for the subsequences
(︁
xNj

)︁∞
j=1

that converge to a t mod 1, the

sequence
(︁
ωNj

)︁∞
j=1

of empirical distributions converge to an exponential dis-

tribution mod 1 rotated by t. On the other hand, Theorem 5.2.16 below tells

us that a slow-varying sequence (xn)
∞
n=1 accumulates everywhere on T .

Theorem 5.2.16. For every f ∈ F \ F0 , we have Af = T .

Proof. Let arbitrary f ∈ F \ F0 be given.

Case 1 b > 0 .

Since limt→∞
f ′(t)
1/t

= b > 0 , there exists t0 ∈ R+ such that f is strictly

increasing on [t0,+∞) . For this proof, it suffices to show T ⊆ Af . To that

end, let arbitrary x+ Z ∈ T be given. We want to show

∃
(︁
f(nj)

)︁∞
j=1

: ∀ϵ > 0, ∃j0 ∈ N : ∀j ≥ j0 , dT
(︁
f(nj), x

)︁
< ϵ .

Let an arbitrary ϵ > 0 be given. WLOG assume ϵ < 1
2
. Set j = 1 . To find

nj , let ϵj =
1
j
ϵ . Since

⃓⃓
f(n)− f(n− 1)

⃓⃓ n→∞−−−→ 0 , there exists n0j ∈ N such

that n0j ≥ t0 , and ⃓⃓
f(n)− f(n− 1)

⃓⃓
< ϵj ∀n ≥ n0j . (5.27)

The fact that f(n)
n→∞−−−→ +∞ tells us that the following set N is non-

empty:

N :=
{︂
N0 ∈ N : N0 ≥ n0j ∧ dist

(︁
f(N0), x+ Z

)︁
< ϵj

}︂
.
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Define nj := minN . Set t0 = nj, increment j by 1, and repeat the above

steps. Since ϵj
j→∞−−−→ 0 , we have shown the desired result.

Case 2 b < 0 .

Define f̂ := −f and note that

Af̂ = Q(Af ) = Q(T) = T ,

where the penultimate equality is by Case 1. ■

Theorem 5.2.17. Let (xn)
∞
n=1 be a slow-varying sequence of real numbers

in the sense of Definition 5.2.2, and let t ∈ R . Consider any subsequence(︁
xNj

)︁∞
j=1

. We have

ωNj

j→∞−−−−−→ η 1
b
◦R−1

t ⇐⇒ lim
j→∞

dT
(︁
xNj

, t
)︁
= 0 .

Proof.

⇐=

Assume xNj

j→∞−−−−−→ t . By the triangle inequality,

dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
≤ dT

(︂
ωNj

, η 1
b
◦R−1

xNj

)︂
+ dT

(︂
η 1

b
◦R−1

xNj
, η 1

b
◦R−1

t

)︂
≤ DNj

+ C dT
(︁
t, xNj

)︁
,

where the second inequality is by Theorem 4.2.8, and C =
⃓⃓⃓
tanh

(︁
1
4b

)︁⃓⃓⃓
. Tak-

ing the limit as j → ∞ ,

lim
j→∞

dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
≤

�
����⌃0

lim
j→∞

DNj
+ C

���������⁓0
lim
j→∞

dT
(︁
t, xNj

)︁
,

where limj→∞ dT
(︁
t, xNj

)︁
and limj→∞DNj

vanish by assumption and Corol-

lary 5.2.11 respectively. Thus limj→∞ dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
= 0 .

=⇒
Assume dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
j→∞−−−−−→ 0 . By Theorem 4.2.8 and the triangle
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inequality,

dT
(︁
xNj

, t
)︁

≤ C ′ dT

(︂
η 1

b
◦R−1

xNj
, η 1

b
◦R−1

t

)︂
≤ C ′

(︃
dT

(︂
η 1

b
◦R−1

xNj
, ωNj

)︂
+ dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂)︃
,

where C ′ =
| 1b |

4 log cosh
(︁

1
4b

)︁ . Taking the limit as j → ∞ ,

lim
j→∞

dT
(︁
xNj

, t
)︁
≤ C ′

�
����⌃0

lim
j→∞

DNj
+

������������⁓0

lim
j→∞

dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
,

where limj→∞ dT

(︂
ωNj

, η 1
b
◦R−1

t

)︂
and limj→∞DNj

vanish by assumption and

Corollary 5.2.11 respectively. Thus limj→∞ dT
(︁
xNj

, t
)︁
= 0 . ■

Clearly the above theorem says that the set of all empirical distributions

of (xn)
∞
n=1 and its subsequences accumulates at every mod 1 exponential dis-

tribution η 1
b
that is rotated by an accumulation point of (xn)

∞
n=1. We formally

state this characterization of Ω in Corollary 5.2.18.

Corollary 5.2.18. Let x = (xn)
∞
n=1 be a slow-varying sequence in R. Then,

Ωx =
{︂
η 1

bx
◦R−1

x0
: x0 ∈ A

}︂
.

Proof. Immediate from Theorem 5.2.17. ■

Thus, together with Theorem 5.2.16, we see that given a slow-varying se-

quence, for every x ∈ A , there exists a subsequence
(︁
ωNj

)︁∞
j=1

of mod 1

empirical distributions that converge to η 1
b
◦R−1

x .

In summary, given a log-like sequence (xn)
∞
n=1 , Theorem 5.2.10 told us

that if every mod 1 empirical distribution ωN is rotated by −xN , then(︁
ωN ◦R−1

−xN

)︁∞
N=1

converges to η 1
b
. Theorem 5.2.17 offered an alternative view

of this convergence: we do not need to rotate the empirical distributions if

they are associated with a convergent (in T) sequence. They converge to a
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η 1
b
rotated by the limit in T. This view explains the observations made in

Figures 0.2 and 0.3 regarding x = (log10 n)
∞
n=1 . The pattern observed in Fig-

ure 0.2 was for the empirical distributions associated with the subsequence(︁
log10(5× 10j)

)︁∞
j=1

which mod 1 is the constant sequence (log10 5)
∞
j=1 . The

empirical distributions do therefore, as suspected, converge to a mod 1 expo-

nential distribution, namely η 1
log10 e

◦ R−1
log10 5

. Similarly, the empirical distri-

butions associated with
(︁
log10(1× 10j)

)︁∞
j=1

depicted in Figure 0.3 converges

to η 1
log 10

◦ R−1
0 = η 1

log 10
. When it comes to the sequence x, any sequence of

empirical distributions that does converge, converges to some rotated version

of the same exponential distribution, namely η 1
log 10

.

5.3 Distribution of the first significant digits

In this section we explain how T and P are related to the question of significant

digits, and how they explain the pattern observed in Figures 0.5 and 0.6.

5.3.1 Setting the Benford stage

Most likely because of the number of fingers on human hands, the radix 10 is

central to perceiving and recording numbers. For example, the symbol 472, as

children learn in elementary school, means 4 hundreds plus 7 tens plus 2 ones.

In other words, every digit is associated with a power of 10. Informally, the

non-zero digit associated with the highest power of 10 is the first significant

digit. For a positive number, the defining property of this digit is that if

increased by 1, it will bound the number from above. In the given example, 5

hundreds bound 472 from above. That is to say, 472 is between 4 hundreds

and 5 hundreds. The same is clearly not the case for other digits: 472 is not

between 7 tens and 8 tens, nor is it between 2 ones and 3 ones.

Definition 5.3.1 (First significant digit). [7] Let t ∈ R be non-zero. The

first significant (decimal) digit of t , denoted D1(t) , is a unique integer j ∈
{1, 2, · · · , 9} satisfying

10k j ≤ |t| < 10k(j + 1) ,
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for some (necessarily unique) k ∈ Z .

The centrality of the radix 10 is also tangible in the scientific notation for

recording a number, which writes every t ∈ R \ {0} as

t = sgn(t)× 10⟨log10|t|⟩ × 10⌊log10|t|⌋ , (5.28)

where the left-most factor is the sign of t given by t
|t| , and the right-most

factor is an integer power of 10. The integer ⌊log10 |t|⌋ is called the order of

magnitude of t . The middle factor, known as the significand of t, is a number

in [1, 10) because ⟨log10 |t|⟩ is in [0, 1) . One can think of the significand of t

as the value of a function S : R \ {0} → [1, 10) at t.

Definition 5.3.2 (The significand). The significand is the function S : R \
{0} → [1, 10) given by

S(t) := 10⟨log10|t|⟩ ∀t ∈ R \ {0} .

We additionally define S(0) := 0 . It is easy to see that S is BR-B[1,10)-

measurable [7].

Given a real number t , the value S(t) ∈ [1, 10) contains all the information

about the significant digits of t . That is to say, in the representation (5.28) of

t , changes in the sign or the order of magnitude do not affect the significant

digits. For this reason, when it comes to probability measures for events

describing significant digits of reals, BR is too fine a σ-algebra on R . A more

suitable σ-algebra would include all real numbers that share a significand in

the same measurable set regardless of their order of magnitude or sign. For

example, if the event of interest is having precisely the three significant digits

472 (in that order), the set to be assigned a probability must be{︃
· · · , ±472

100
, ±472

10
, ±472 , ±4720 , ±47200 , · · ·

}︃
.
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The σ-algebra generated by S achieves this. We denote this σ-algebra by S.

S := σ (S) =
{︁
S−1(B) : B ∈ B[1,10)

}︁
⊂ 2R .

Despite what might be inferred from the Motivation, Benford’s law does not

only describe the distribution of the first significant digits, but all significant

digits as well as their combinations. This law is characterized by whether it

gives rise to log10 as the the CDF of S.

Definition 5.3.3 (Benford probability measure). A probability measure P on

(R,S) is Benford if and only if

P
(︁
{S ≤ t}

)︁
= log10 t ∀t ∈ [1, 10) . (5.29)

This probability measure is unique.

It is clearly seen that (5.29) implies the first-digit rule described in the

Motivation which stated

P
(︁
{D1 = d1}

)︁
= log10(d1 + 1)− log10(d1) ∀d1 ∈ {1, 2, · · · , 9} . (5.30)

Since the distribution of S on [1, 10) assigns a probability to any event con-

cerning significant digits (i.e., any set in S), it is sometimes convenient to skip

a level of abstraction and consider only the pushforward measure P := P◦S−1

as the main probability distribution. This poses no problems because P and

P fully determine each other. In this view, Definition 5.3.3 can be re-written

as the following.

Definition 5.3.4. A probability measure P on
(︁
[1, 10),B[1,10)

)︁
is Benford if

and only if

P
(︁
[1, t]

)︁
= log10 t ∀t ∈ [1, 10) .

This probability measure is unique.

Just as a real sequence x = (xn)
∞
n=1 has a sequence of associated mod 1 em-

pirical distributions (see Definition 5.2.1), it also has a sequence of significand
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empirical distributions defined for every N ∈ N to be

αx
N :=

1

N

N∑︂
n=1

δS(xn) .

Every αx
N is a probability distribution on

(︁
[1, 10),B[1,10)

)︁
. Figures 0.4 and 0.5

plot the value of αN

(︁
{D1 = 1}

)︁
for the sequences (2n)∞n=1 and (n)∞n=1 , re-

spectively.

We would like to call a sequence Benford if αx
N somehow approaches the

Benford probability measure P of Definition 5.3.4 as N increases. All we have

to define is the sense in which this convergence must occur.

5.3.2 The relevance to T

The range of S is easily perceived to have a circular structure if one takes a

real sequence like (9, 9.9, 9.99, 9.999, · · · ), and considers the significand of its

limit. This is the result of the fact that Definition 5.3.2 has a fractional part

as the power of 10. Thus the function log10 ◦S takes us to the familiar space

[0, 1) which we identify with T through the bijection ιR . The probability

distribution of log10 ◦S on (T,BT) fully determines the distribution of S on(︁
[1, 10),B[1,10)

)︁
and vice versa, and thereby fully determines the probability

measure defined on (R,S) and vice versa.

Example 5.3.5. Let P be a probability measure on (R,S). Assume the event

of interest is {D1 = 1} . We have

P
(︁
{D1 = 1}

)︁
= P

(︂{︁
S ∈ [1, 2)

}︁)︂
= P

(︂{︁
log10 ◦S ∈ [0, log10 2)

}︁)︂
= µS

(︂{︁
[0, log10 2) + Z

}︁)︂
,

where µS ∈ P is the pushforward of P under log10 ◦S. In other words, if µS

is known, then the probability of {D1 = 1} is just the µS-measure of the arc

from 0 + Z to log10 2 + Z on the circle.
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Analogously, in general, for every d1 ∈ {1, 2, · · · , 9},

P
(︁
{D1 = d1}

)︁
= µS

(︃{︂[︁
log10 d1 , log10(d1 + 1)

)︁
+ Z

}︂)︃
, (5.31)

Note that if µS simply returns the length of the arc of interest, then the

probability turns out exactly what the Benford law implies in (5.30). This

is no accident. In fact, it is well-known that P is Benford if and only if µS

is uniform [7]. In summary, the study of the distribution S on [1, 10) and

whether it is Benford, can be replaced with the study of the distribution of

⟨log10 |·|⟩ on T and whether it is uniform.

Therefore, given a sequence (xn)
∞
n=1 in R, the study of the distribution

of y =
(︁
S(xn)

)︁∞
n=1

on [1, 10) reduces to the study of the distribution of

x =
(︁
log10 |xn|

)︁∞
n=1

mod 1. The sequence (αy
N)

∞
N=1 converges to P if and

only if (ωx
N)

∞
N=1 converges to λT .

For the sequence of natural numbers, the question becomes whether or not

l = (log10 n)
∞
n=1 is uniformly distributed mod 1. Noting that

log10 n =
1

log 10
log n ∀n ∈ N ,

the sequence is slow-growing with bl = 1
log 10

, and therefore (ωl
N)

∞
N=1 does

not converge. It is therefore no surprise that the sequence (n)∞n=1 is not Ben-

ford. However, we know by Theorem 5.2.16 that for every M ∈ N , the

point log10M is an entry in a subsequence (log10Nj)
∞
j=1 that converges mod

1 to log10M . Thus through Theorem 5.2.17 we know that ωl
N is an ap-

proximation of η 1
log10 e

◦ R−1
log10(N) for every N ∈ N. Therefore ωl

N is just

more or less the exponential distribution η 1
log10 e

rotated such that its most

dense region is “behind” log10N . From the fact that log10N
N→∞−−−−→ +∞

and logN − log(N − 1)
N→∞−−−−→ 0, we see that the approximation of the ro-

tated ηlog 10 that ωl
N is, keeps rotating around the circle endlessly and in

increasingly fine angles as N grows (see Figure 5.1). It is this endless rotation

that causes the periodic up-down pattern seen in Figures 0.5 and 0.6. This

example captures the essence of the convergence behavior (or lack thereof)
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of slow-growing sequences: As N grows the empirical distributions approxi-

mate an exponential distribution increasingly well, yet there is no convergence

because the exponential distribution they approximate keeps rotating.
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N=100 N=112 N=125

N=137 N=150 N=162

N=175 N=187 N=200

Figure 5.1: A depiction of ωl
N (in blue) where l = (log10 n)

∞
n=1. Each ωN is an

approximation of a rotated version of ηlog 10, with the higher density “behind” the
point lN + Z (circled in blue). As N increases, the approximation rotates with
xN + Z. The event {D1(n) = 1} (in pink) has a small measure under ωl

100 because
it coincides with the least dense region of ωl

N . As N increases from 100 to 199 the
measure increases, and achieves a local max at N = 199 where the event coincides
with the most dense region of ωl

N . The measure of the event then starts to decrease
for any N after 200 and before 1000 (not pictured). This increase and decrease is
precisely the pattern observed in Figure 0.5.
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Conclusion

The Kantorovich metric dT induces the weak topology on the space P of all

mod 1 probability measures. For any two µ, ν ∈ P , the distance dT(µ, ν) can

be calculated using
∫︁ 1

0

⃓⃓
Fµ(s)− Fν(s)− tmin

⃓⃓
ds where tmin is a median value

of Fµ − Fν . The metric dT is invariant under rotations and reflections. With

this metric, P can be perceived as a compact ball of radius 1
4

centered at

λT . In other words, no probability measure in P is more than 1
4
away from

λT . The set of probability measures that are precisely 1
4
away from λT is the

set {δx : x ∈ T} of Dirac measures, which itself is topologically isomorphic to

T. Given any exponential distribution ηa, the set
{︁
ηa ◦R−1

s : s ∈ R
}︁

of all its

rotated versions is again topologically isomorphic to T .

Given a real sequence x = (xn)
∞
n=1 for which b := limn→∞ n(xn − xn−1)

exists in R, the limit set of the associated mod 1 empirical distributions is

precisely the set of mod 1 exponential distributions η 1
b
that are rotated by

every point of in the limit set of x, with the convention that η 1
0
= η∞ = δ0 .

More precisely, for any subsequence (xNj
)∞j=1 of x , the subsequence (ωNj

)∞j=1

of (ωN)
∞
N=1 converges to η 1

b
◦ R−1

x0
where x0 ∈ T is the limit of (xNj

)∞j=1 , in

symbols,

ωNj

j→∞−−−−−→ η 1
b
◦R−1

x0
⇐⇒ lim

j→∞
dT
(︁
xNj

, x0
)︁
= 0 .

Specifically, for a log-like sequence l = (ln)
∞
n=1 , this means that the associ-

ated empirical distributions accumulate at every rotated version of the ex-

ponential distribution η 1
b
. In other words, the limit set of (ωl

N)
∞
N=1 is the

circle
{︁
η 1

b
◦R−1

x : x ∈ T
}︁

provided that b ̸= 0. For example, the pattern
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seen in Figure 0.2 is a subsequence of the empirical distributions associated

with (log10 n)
∞
n=1 that approximate η 1

log10 e
◦ R−1

log10(5)
increasingly well since(︁

log10(5× 10j)
)︁∞
j=1

is a constant sequence mod 1.

The fact that (ωl
N)

∞
N=1 approximates some rotated version of η 1

b
is a result

of Theorem 5.2.10 which provides the following upper bound for the distance

Df
N between η 1

b
and the suitably rotated ωl

N :

Df
N ≤ 1

4N
+

⃓⃓
bf
⃓⃓
logN

N
+

2

N

∫︂ N

1

⃓⃓⃓
∆f (t)

⃓⃓⃓
dt ,

for every large enough N . This upper bound allows us to describe the speed of

convergence of (˜︁ωN)
∞
N=1 as big-O of a sequence. As shown in Examples 5.2.13

to 5.2.15, in some cases the upper bound is sharp, in that the big-O asymptotics

that it yields is in fact asymptotically equivalent toDf
N , up to a constant factor.

Natural questions to investigate in the future include finding the speed of

convergence for the empirical distributions associated with sequences that are

known to have a distribution mod 1. For example, how fast does the sequence

of empirical measures associated with (log10 Fn)
∞
n=1 of the logarithm of Fi-

bonacci numbers converge to the uniform distribution mod 1? Another inter-

esting question naturally arises in light of Example 5.2.15: The prime number

theorem implies that the sequence (pn)
∞
n=1 of prime numbers is asymptotically

equivalent to (n log n)∞n=1 , which implies that log pn ∼ log n+log log n . Since

in Example 5.2.15 we were able to find the limit set of the mod 1 empirical

distributions associated with (log n+ log log n)∞n=1 as well as the precise rate

of convergence, it is natural to ask whether anything can be said for the mod

1 empirical distributions associated with (log pn)
∞
n=1 .
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