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Abstract

In machine learning and data mining, outliers—data points significantly differing from

the majority—often pose challenges by introducing irrelevant information. Unsuper-

vised methods are often used for detecting them as the information about outliers

is unknown. Global-Local Outlier Scores based on Hierarchies (GLOSH) is an un-

supervised outlier detection method within HDBSCAN*, a hierarchical clustering

approach. GLOSH estimates outlier scores (GLOSH scores) for each data point by

comparing its density to the highest density point in its closest cluster within the

HDBSCAN* hierarchy. However, GLOSH is sensitive to the minpts parameter, that

estimates the density in the hierarchy. Different minpts values may result in differ-

ent hierarchies, with some representing the underlying cluster structure better than

others. Given the lack of prior knowledge about the data in practice, it is unlikely

to know an appropriate minpts value beforehand, i.e., that assigns higher GLOSH

scores to “true outliers” than to “true inliers”. Moreover, to select outliers using

GLOSH, one has to pre-define a value n that is used to determine the n datapoints

with the highest GLOSH scores. These n datapoints are treated as “potential out-

liers”. However, in practice, one may not know how many outliers are present in a

dataset, making it unlikely to know a suitable value for n.

The first contribution of this thesis is an automated approach that aims at de-

termining the value of minpts from a large range of minpts values that results in the

best GLOSH performance. Given a range of minpts values, we can obtain a corre-

sponding range of GLOSH scores for each datapoint, which we call the datapoint’s

GLOSH–Profile. We study the behavior of GLOSH–Profiles for distinct outlier types,
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establishing their ability to distinguish between different kinds of outliers.

Our first major observation is that the minpts value that results in the best overall

GLOSH performance corresponds to minpts value where the GLOSH scores in the

GLOSH–Profiles start changing at a similar rate. Based on this observation, we

develop an automated, unsupervised method to find the minpts value at which the

GLOSH scores in the profiles start changing at a similar rate, thus potentially yielding

the best or nearly the best results for GLOSH. We apply our method on a range of

different synthetic and real datasets with added synthetic outliers, and show that our

approach of selecting the minpts value is able to match the best possible performance

of GLOSH in a given range of minpts values.

Our second major observation is regarding the minpts value that yields the best

GLOSH performance: the GLOSH scores of outlier datapoints notably deviate from

the inlier GLOSH scores (for that minpts value) when arranged in increasing order.

This observation serves as the key for the second contribution of this thesis—a strategy

to estimate a threshold for classifying points into inliers and (potential) outliers,

without relying on a pre-defined value of n. The proposed approach is evaluated across

synthetic, semi-synthetic, and real datasets. The results show that our approach

yields a consistently effective threshold.
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Chapter 1

Introduction

Outliers are rare examples in a data-space that significantly deviate from the rest

of the data (the inliers). The most cited definition of an outlier as proposed by

Hawkins [1] is stated as “an outlier is an observation that deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism”.

The presence of outliers is a common occurrence in real-world datasets. In many cases,

these instances do not contribute to new knowledge and can result in performance

degradation of machine learning models. In some other cases, they can exhibit unique

behaviors that can eventually give new insights in areas such as intrusion detection

[2], machine failure detection [3], twitter bot detection [4], and forest fire detection [5].

Hence, detecting outliers is an important task in machine learning and data mining.

The task of outlier detection is to capture these deviating instances using super-

vised, unsupervised, or one-class classification (OCC) strategies. In a supervised

setting, there are enough labeled examples of outliers and inliers (normal) examples

to train a binary classifier (typically with an imbalance between the number of outliers

and the number of normal examples) [6]. In an OCC setting, we have the information

about inliers and little or no information about outliers [7], and a model is learned

solely based on information about inliers. In an unsupervised setting, there is no prior

knowledge about the data, and unsupervised methods identify outliers as instances

that deviate from the rest of the data.
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Global-Local Outlier Scores based on Hierarchies (GLOSH) is an unsupervised out-

lier detection method which is a part of the HDBSCAN* clustering framework [8]. It

can detect the datapoints that deviate from their local neighborhood (local outliers)

and also the datapoints that differ more globally from the rest of the data (global

outliers). The GLOSH score of a datapoint p is computed as the normalized differ-

ence between the density estimated around p and the highest density estimated in

the cluster closest to p in the HDBSCAN* hierarchy. The hierarchy represents clus-

ters formed at different density levels and it is constructed w.r.t. a parameter value

minpts, a smoothing factor that is set by a user and determines the density estimates

and thereby, the GLOSH score. However, different minpts values can yield different

HDBSCAN* hierarchies, and one of them may better represent the intrinsic cluster

structure of the data than others. In practice, the underlying structure of the data

is unknown and a unsuitable value of minpts can result in an outlier getting a low

GLOSH score. It has also been shown that one might need to use multiple values of

minpts to reveal all the clusters in a dataset [9]. This means that the closest clusters

of a datapoint could be different for different values of minpts, and hence different

outlier detection results are possible for different values of minpts. In practice, as the

underlying data distribution is unknown, it is improbable to choose an appropriate

minpts value that correctly assigns most, if not all, “true outliers” higher GLOSH

scores than the “true inliers”.

Moreover, to find the outliers using GLOSH, it is essential to pre-define a value

n, which is used to find the n datapoints with the highest GLOSH scores. These

n datapoints are treated as “potential outliers” and are subsequently presented to

the domain experts for labelling the “true outliers” [10]. In practice, one may not

have any knowledge about how many outliers are present in a dataset. This makes it

difficult to pick a suitable value for n beforehand.
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1.1 Aim and Scope

In this thesis, we propose an approach that does not require to pick a single minpts

value in GLOSH, but uses GLOSH scores obtained at a range of different minpts

values to find the minpts value that can yield often the best results for GLOSH

in the given range of minpts values. We also propose an automated technique to

find a threshold for GLOSH scores that distinguishes inliers from potential outliers,

using the distribution of GLOSH scores. Our approaches can be applied in a fully

unsupervised way and can be computed efficiently by running the HDBSCAN* for a

range of minpts values as shown in [11]. This thesis primarily addresses two questions:

• Given a dataset, how to select a minpts value that can yield best or nearly the

best results with GLOSH, by using the GLOSH scores obtained for a range of

different minpts values?

• Given a minpts value that assigns most, if not all, “true outliers” higher GLOSH

scores than the “true inliers”, how to select a threshold to classify inliers and

potential outliers?

Our key contributions can be summarized as follows:

1. We introduce the notion of a GLOSH–Profile of a datapoint p as a sequence of

GLOSH scores for p with respect to a range of minpts values, and discuss its

properties.

2. We show empirically that the GLOSH–Profiles behave differently for different

kinds of outliers.

3. We show empirically that the GLOSH scores in the GLOSH–Profiles of each

datapoint show a pattern that allows us to identify the minpts value that results

in the GLOSH scores best distinguishes between inliers and outliers in a dataset.
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4. We introduce Automatic GLOSH parameter selection using Outlier Profiles

(Auto-GLOSH), an unsupervised strategy that uses the GLOSH–Profiles to find

a minpts value that can often result in best results with GLOSH on a dataset.

5. We introduce Potential Outlier Labelling AppRoach (POLAR), an unsupervised

strategy that uses the distribution of the GLOSH scores obtained using the

minpts value estimated by Auto-GLOSH, to find a GLOSH score that can serve

as a threshold for labelling inliers and potential outliers in a dataset.

1.2 Thesis Outline

The thesis is organized as follows:

In Chapter 2 we provide necessary background on Unsupervised Outlier Detec-

tion, Hierarchical DBSCAN* (HDBSCAN*), Global-Local Outlier Scores based on

Hierarchies (GLOSH), and Unsupervised Selection of a minpts value.

Chapter 3 addresses the problem of selecting a minpts value for GLOSH and has

three parts. Firstly, we propose GLOSH–Profiles as a tool to study the behavior of

GLOSH scores across different minpts values. Secondly, we systematically establish

the properties of GLOSH–Profiles for different kinds of datapoints, show the effec-

tiveness of using shorter profiles over full profiles, and establish the link between

the uniform rate of change in GLOSH scores within the GLOSH–Profiles and the

best minpts value for GLOSH results. Thirdly, we design an unsupervised method,

Auto-GLOSH, to find the minpts value that can potentially yield the best results for

GLOSH. We evaluate our method on a series of datasets and compare it with GLOSH

and other state-of-the-art outlier detection methods such as KNN and LOF.

In Chapter 4 we address the problem of choosing a threshold for labelling inliers and

potential outliers. Firstly, we investigate the distribution of the GLOSH scores at the

best minpts value. Secondly, we design an unsupervised strategy to find a threshold

to label inliers and potential outliers in a dataset. We evaluate our approach on fully

4



synthetic datasets, real datasets with added synthetically generated outliers, and real

one-class classification datasets, and compare it with the best achievable result.

Finally, in Chapter 5, we conclude this thesis by summarizing the entire study and

providing possible future directions of research.
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Chapter 2

Background and Related Work

2.1 Unsupervised Outlier Detection

In Unsupervised Outlier Detection, we are provided with data without access to

ground truth labels and the goal is to segregate outliers from inliers. The primary

idea behind unsupervised outlier detection is based on the notion that outlier in-

stances will deviate significantly in terms of their local or global neighbourhood from

that of inliers. The neighbourhood is determined based on a reference set of objects.

A global neighbourhood is used when the reference set contains all or most of the data

in the dataset and a local neighbourhood of an instance is a reference set constructed

using its neighbours based on a distance measure [12]. In a density based setting

the primary assumption is that outlier instances will mostly belong to regions in a

data-space with comparatively lower density. Whereas, inliers are assumed too be

lying in the higher density regions. In an unsupervised scenario, the density of each

instance from a given set of unlabelled examples are computed to measure its outlier

score.

Definition 2.1 (Outlier score). An outlier score is a numeric measure that quan-

tifies the degree to which a datapoint deviates from the majority of datapoints in a

collection mostly composed of so-called inliers, based on certain assumptions about

the nature of the distribution of the inliers.
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One of the earliest works on unsupervised outlier detection in the field of data

mining is the work by Knorr and Ng [13] where the authors define outliers as in-

stances that lie beyond a pre-determined distance from a large proportion of data. In

the following years, unsupervised algorithms were developed that assigned an outlier

score to each instance based on their k-Nearest Neighbor distance (kNN distance) [14].

The kNN distance kNN−dist(.) of a datapoint is treated as the outlier score, which

is computed as the distance between the datapoint and its kth nearest neighbor. The

datapoints that have significantly larger kth nearest neighbor distance are treated as

potential outliers. Outliers determined in this way can be considered ”global” outliers

since only their distance from ”the rest” of the data, as measure by the distance to

their k-nearest neighbors, is used in the computation of the score. Another family of

algorithms originated from the work that presented the Local Outlier Factor (LOF)

[15], where outliers are segregated based on their local neighborhood. To compute

LOF for any point xi, one has to compare the local reachability density LRDk(.) of xi

with the LRDk(.) of each of xi’s k nearest neighbours. The local reachability density

of xi if defined as:

LRDk(xi) =
1∑︁

o∈kNN−set(xi)
R−distk(xi,o)

|kNN−set(xi)|

(2.1)

where, R−distk(xi, o) measures the reachability distance between xi and o asmax(kNN−dist(o), d(xi, o)),

with d(xi, o) being the distance between xi and o. The LOF of xi is then defined as:

LOF(xi) =

∑︁
o∈kNN−set(xi)

LRDk(o)
LRDk(xi)

kNN−set(xi)
(2.2)
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Outlier detection methods are often characterized into local and global methods in

the literature [16].

2.2 HDBSCAN*

HDBSCAN* or Hierarchical DBSCAN* [8] is a hierarchical way of clustering data

and is based on DBSCAN*, which is an improvement of one of the most popular

density-based clustering algorithms, DBSCAN [17]. The density hierarchy is formed

following Hartigan’s model of density trees providing a complete hierarchy of all

possible clustering solutions that can be obtained at an infinite range of different

density thresholds or radii. In DBSCAN*, density-based clusters are constructed

using two parameters: (I) a radius ϵ, and (II) a minimum number of points minpts.

Any point xi in a dataset D is a core point if it has minpts many datapoints in its

ϵ–neighborhood Nϵ(xi) (i.e. in the set of points that are located less than or equal to

distance ϵ away from xi); otherwise, a point is called a noise point. Two core points

are density connected w.r.t. ϵ and minpts if they directly or transitively belong to

each other’s Nϵ. DBSCAN* defines a cluster as a maximal set of points where each

pair of points in the set are density connected.

HDBSCAN* improves on DBSCAN* and does not require the user to pre-define

an ϵ radius. For a given minpts value, it can provide DBSCAN*’s solutions at all

possible ϵ values. For each xi ∈ D, HDBSCAN* computes the core distance ϵc(xi),

which is the minimum ϵ distance required for xi to be a core point, and the mutual

reachability distance dmrd(., .), which is the minimum distance required for xi and xj

to be in each other’s ϵ-neighborhood while both are also core points. The dmrd(., .)

between two points xi and xj is defined as:

dmrd(xi, xj) = max{ϵc(xi), ϵc(xj), d(xi, xj)} (2.3)
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Figure 2.1: A Dendrogram representing the HDBSCAN* hierarchy obtained on a
small dataset with eleven datapoints, with minpts = 3. The pink arrows here repre-
sents datapoints as noise until they become core points and forms a cluster.

d(., .) represents the distance between two points in the dataset. The mutual reacha-

bility distance dmrd is dependent on the value of minpts. The HDBSCAN* hierarchy

w.r.t. a single minpts value is obtained by computing the minimum spanning tree

MSTminpts of a complete, edge-weighted, virtual graph Gminpts [11], where the ver-

tices represent the datapoints in the dataset, and the edge weights are the values of

the mutual reachability distance dmrd between them. The edges from the MST are

then removed in decreasing order of edge weights and at every step of the removal,

we obtain a set of connected core objects (which are the clusters) and the remaining

noise. This creates a hierarchy of all possible DBSCAN* clustering solutions obtained

at ϵ ∈ [0,∞] for a particular minpts value. One can represent the HDBSCAN* hier-

archy using a dendrogram, as presented in Figure 2.1. A clustering dendrogram is a

diagram of a tree in which the root represents the whole dataset as a single cluster,

and internal nodes represent clusters (C1 to C5) that are the result of splitting their
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parent cluster.

2.3 GLOSH

The HDBSCAN* clustering framework also includes the Global-Local Outlier Scores

based on Hierarchies (GLOSH) algorithm to detect outliers using the hierarchical

density estimates. GLOSH uses the cluster structure present in the hierarchy of

HDBSCAN*. The primary idea of GLOSH is to compute a score (called GLOSH

score) for each datapoint in a dataset by comparing the density estimate for the

datapoint with the density estimate of the most dense point of its nearest cluster

in the hierarchy. The reference set of points for any datapoint (found in the closest

cluster) is dynamically selected, therefore, allowing GLOSH to find outliers across

both local and global scales, depending on the specific hierarchy structure and the

datapoint’s placement within the clusters in the hierarchy.

To compute the GLOSH score for a point xi ∈ D, the information of the cluster

Cxi
closest to xi, in the hierarchy is used. In the hierarchy, Cxi

is the cluster where

the datapoint xi gets assigned to (when ϵ is large enough to make xi a core point)

following a bottom-up approach. The density of xi, λ(xi), is compared to that of the

densest point in Cxi
, λmax(Cxi

), which is the point that is assigned to the Cxi
when

it is first formed in the hierarchy (making it the longest surviving point in Cxi
). The

GLOSH score Γminpts(xi), of a point xi for a particular minpts value is defined as:

Γminpts(xi) =
λmax(Cxi

)− λ(xi)

λmax(Cxi
)

(2.4)

where, λ for any point xi is defined as 1
ϵc(xi)

. The density of the densest point in Cxi
,

represented as λmax(Cxi
), is used here as the referential density to compare the density

of any point xi that has Cxi
as its closest cluster in the hierarchy. The densest point in
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cluster Cxi
, is considered here as the most inlier point in Cxi

and its density serves as

the standard for all the points that are closest to Cxi
. The GLOSH score falls into the

range [0, 1). If xi resides in a dense region of a cluster, then λmax(Cxi
)− λ(xi) tends

to be 0 whereas, for points that are further away from the cluster, λmax(Cxi
)− λ(xi)

tends to become larger, resulting in higher GLOSH scores.

HDBSCAN* and GLOSH can be used as an one-class learner (OCL) by first ob-

taining the hierarchy using the available training data w.r.t. a single minpts value.

Then, the GLOSH scores of unknown instances are computed using the hierarchy as

a fixed model [18]. An unknown instance ui is first added to the pre-computed MST

underlying the hierarchy by connecting it to the training datapoint xi that has the

smallest dmrd to ui. Then the closest cluster of xi becomes the closest cluster of ui

and Γminpts(ui) is computed as in equation 2.4. To classify the instance, i.e., assign a

label, it is possible to apply a predetermined threshold to the GLOSH outputs. Points

that receive a GLOSH score falling below the threshold are classified as ‘inliers’, while

the points receiving a score higher than the threshold are classified as ‘outliers’ [19].

2.4 Unsupervised Selection of a minpts value

To our knowledge, there is no existing work on automated selection of a best value for

minpts, in GLOSH. Finding the best minpts value for GLOSH is challenging because

in an unsupervised setting, we do not have prior knowledge about the underlying

distribution of the data. In the absence of prior knowledge, it is impossible to assess

the outlier detection results at different minpts values and determine which value is

best. The closest related work focuses on outlier detection model selection through

meta learning [20]. Here, the authors proposed a method to select an outlier detection

model for a new dataset based on its past performance on similar datasets. This is

different from our setting. Firstly, we focus on a single outlier detection model,

GLOSH. Secondly, we operate in a scenario where there is no prior information about

the model or the dataset, precluding any history regarding the performance of GLOSH
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on similar datasets.
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Chapter 3

Using GLOSH–Profiles for minpts
Selection

3.1 GLOSH–Profile: Outlierness across minpts val-

ues

GLOSH scores w.r.t. a single minpts value (Γminpts) for any datapoint xi in dataset

D compare the density of xi with that of the densest point in the cluster structure it

density-connects to within the HDBSCAN* hierarchy after it becomes a core point.

The density of xi is computed as the inverse of its core distance 1
ϵc(xi)

. The impact of

changing the minpts values on cluster formation has been estimated in prior studies

[11, 21]. An increase in minpts values requires each point to have more points in its

ϵ–neighborhood to become a core point, resulting in larger core distance ϵc(.) values

for each point (forming its ϵc–neighborhood with points that are further away). This,

in turn, leads to the formation of larger clusters in the hierarchy. Conversely, de-

creasing minpts values allows points to become core points with smaller ϵc(.) values,

potentially forming smaller clusters within the hierarchy. Therefore, Γminpts(xi) at

different minpts values may compare its density with that of clusters of different sizes

(i.e. neighborhoods of different sizes) formed at those minpts values, influencing the

value of Γminpts(xi).

For a given value ofminpts, an outlier ranking can be constructed using the GLOSH

scores Γminpts of each datapoint xi in a dataset D by arranging the GLOSH scores
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Γminpts of each datapoint xi, either in increasing or decreasing order. A popular

approach is giving higher ranks to the datapoints getting higher GLOSH scores (i.e.

arranging the GLOSH scores in decreasing order). For example, the datapoint in D

with the highest GLOSH score gets rank 1, and the point with the lowest score gets

rank |D|. To apply GLOSH effectively, setting an appropriate value for minpts to

construct the density hierarchy using HDBSCAN* is crucial. An appropriate minpts

value is expected to assign higher GLOSH scores to the outliers than the inliers.

However, in practice, choosing a single minpts value where most, if not all, “true

outliers” receive higher GLOSH scores than the “true inliers” is improbable as we do

not have prior knowledge about the underlying data distribution.

To address the problem of finding a single value for minpts for GLOSH we propose

GLOSH–Profiles PΓmmax to capture the behavior of GLOSH scores for each datapoint

across different HDBSCAN* hierarchies obtained over a range of minpts values.

Definition 3.1 (GLOSH–Profile). A GLOSH–Profile PΓmmax(xi), is an array of

Γminpts(xi) values for a given point xi for a range [2,mmax] of minpts values between

2 and a maximum value mmax:

PΓmmax(xi) =

⎡⎢⎢⎢⎢⎢⎢⎣
Γ2(xi)

Γ3(xi)
...

Γmmax(xi)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

When mmax is clear from the context or not important for the discussion, we also

abbreviate PΓmmax(.) as PΓ(.). We use GLOSH–Profiles as a tool to investigate the

behavior of the GLOSH scores across different minpts values. The investigation will
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eventually guide us in selecting a best minpts value using the GLOSH–Profiles.

Three different kinds of outliers have been popularly explored in the literature

[22, 23]: local, global, and small groups of points (sometimes called “outlier clumps”

[22]) having similar behavior but being dissimilar from the rest of data. These types

of outliers differ from each other in terms of their spatial characteristics. Global

outliers are datapoints that are far away from the rest of the points in the data-

space, whereas local outliers are datapoints deviating from their local neighborhood

but are not necessarily far away from the rest of the data. Outliers in a clump, on

the other hand, are close to one another, while the whole group deviates from the

majority of the data. As each of the different kinds of outliers has different spatial

characteristics, we hypothesize that the behavior of their GLOSH–Profiles will differ.

The GLOSH scores forming the profile are derived from different HDBSCAN* hi-

erarchies w.r.t. different minpts values. In a single run of HDBSCAN* at minpts =

mmax, one can access the MSTminpts and the mmax-Nearest Neighbor Graph to con-

struct the CORE-distance based Spanning Graph, CORE-SGmmax [11]. Replacing

the complete graph in HDBSCAN* with CORE-SGmmax allows the extraction of all

MSTminpts independently, for minpts ∈ [1,mmax − 1]. This allows to extract all pos-

sible HDBSCAN* hierarchies and, consequently, the GLOSH scores with the same

asymptotic computational complexity as running HDBSCAN* once w.r.t. a single

minpts value. In practice, it has been shown in [11] that efficient extraction of the

HDBSCAN* hierarchies in the range [1, 100] is possible in a run-time that is close to

running HDBSCAN* twice.

As the core distances ϵc for each point increases as we increase the minpts value,

we are able to obtain different density estimates (computed as 1
ϵc(.)

) of the points and

thereby, different GLOSH scores Γminpts . The intuition behind the GLOSH–Profiles

PΓ is to capture the outlierness (based on GLOSH scores) of a point w.r.t. different

ϵc–neighborhoods. If for any xi ∈ D, its GLOSH–Profile contains consistently low

GLOSH scores across most minpts values, it indicates that xi is a relatively dense
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Figure 3.1: Inliers: GLOSH scores and Core distances at different minpts values

point when compared to neighborhoods of points with different sizes. Therefore, we

call these points global inliers. We use Figure 3.2 to illustrate global inliers. In Figure

3.2 the minpts value increases from 10 to 100. The core distance of the inlier point xi

(a point residing in a low density region the cluster), represented as ϵc(xi) and the core

distance of xd (the densest point inside the cluster), represented as ϵc, both increases

as the minpts value increases. One can see that for lower minpts value, xi records

a moderately high GLOSH score Γminpts of 0.55. In the figure, xd can be seen as a

global inlier as it records a low GLOSH score for all the values of minpts. This shows

that xd stays a dense point when compared both large and smaller neighborhoods of

points. As the minpts value increases, the core distances of xi becomes close to that
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Figure 3.2: Global Outliers: GLOSH scores and Core distances at different minpts

values

of xd. The figure also shows us that it is possible for certain inlier points to get a

high GLOSH score for certain minpts values.

As the minpts value increases, smaller clusters tend to be smoothed and vanish in

the hierarchy. Consequently, points tend to become core points at higher levels of the

HDBSCAN* hierarchy, and become part of larger clusters that resides at these levels.

If the GLOSH–Profile of any point contains high GLOSH scores across most minpts

values, this indicates that the density of xi is low (high core distance) compared to

the points in both large and small clusters. For instance, consider Figure 3.2 where

the minpts value increases from 10 to 100. The core distance of xi (a point that is
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Figure 3.3: Outlier Clumps: GLOSH scores and Core distances at different minpts

values

very far away from the cluster), represented as ϵc(xi) and the core distance of xd

(the densest point inside the cluster), represented as ϵc, both increases as the minpts

value increases. However, even if the minpts value increases, the core distance of xi

still stays significantly larger than that of xd, as xd is closely surrounded by more

points than xi. Therefore, xi keeps getting high GLOSH scores as the minpts value

increases. In Figure 3.2, xi is not a dense point when compared both large and smaller

neighborhoods of points, resulting in high GLOSH scores (Γminpts(xi)) for each of the

minpts values. We will refer to such points as global outliers.

In cases where a GLOSH–Profile starts with initially low GLOSH scores for lower

minpts values, but then has larger GLOSH scores for higher minpts values, this means

that the point is a dense point when compared to its close neighborhood points, but

not a dense point when compared to larger neighborhoods in the dataset (i.e., formed

by other points in the dataset) that are away from the point. This indicates that xi

is a part of a small group of points that is far away from a large section of points in

the dataset. In Figure 3.3, one can see that for a lower minpts value (minpts = 7)

xi (a point in a smaller clump of points) has a low GLOSH score (Γminpts(xi)) since

the number of points closely surrounding it is larger than 7 (resulting in a low core
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Figure 3.4: Multiple Clusters: GLOSH scores and Core distances at different minpts

values

distance, i.e., high density). However, for a larger value such as minpts = 20, to

become a core point, the radius around xi has to include points from the larger

cluster that is far away, resulting in a much larger core distance ϵc(xi) (lower density)

than that of the densest point xd in the larger cluster. Therefore, Γminpts(xi) (the

GLOSH score of xi) increases to 0.94. We call such points outlier clumps. Similar

behavior in GLOSH scores may be observed for points in different clusters. If there

are multiple clusters in the dataset, for the points in the smaller cluster, one can

expect that the GLOSH scores will have a sharp increase, as we keep increasing the

minpts values. These sharp increase in the GLOSH scores can occur as the points in
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Figure 3.5: Local Outliers: GLOSH scores and Core distances at different minpts

values

the smaller cluster will have to include more points from other larger clusters that

are further away, in order to become core points. For example, in Figure 3.4, one can

see two different clusters C0 and C1, where C1 is the smaller cluster with 98 points.

One can see that as the minpts becomes greater than 98, the ϵ radius of the densest

point in C1, i.e. x1, has to include points from the larger cluster C0. This results in

a increase in the GLOSH score of x1.

In other cases, the GLOSH–Profile of a point may initially capture high GLOSH

scores at lowerminpts values, followed by decreasing GLOSH scores as theminpts value

increases. This shows that when the point is compared to smaller neighborhoods, it
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looks like an outlier. However, when compared to larger neighborhoods (at larger

minpts values), the point looks more and more like an inlier. As the value for minpts

increases, the core distances of all the points lying inside or on the border of a cluster

becomes more and more similar, and therefore, the differences between their densities

tends to be reduced. For instance, in Figure 3.5, as we increase minpts from a smaller

value (10) to a larger value (100), the core distances of xi and xd (the densest point

in the cluster) become more and more close to each other and the difference between

the densities of xd (1/ϵc) and xi (1/ϵc(xi)) decreases. Therefore, as presented in the

Figure 3.5, xi records a high GLOSH score (Γminpts(xi) = 0.69) for a smaller minpts

value and Γminpts(xi) keeps decreasing rapidly after that (shown for minpts = 40 and

minpts = 100). We refer to these points as local outliers.

3.1.1 GLOSH–Profiles of different kinds of points

In Chapter 2 and section 3.1, we described the mechanism of GLOSH and the charac-

teristics of GLOSH–Profiles (PΓ) on an intuitive basis. In this section we investigate

the behavior of inlier and outlier GLOSH–Profiles in a simple experimental setting.

In summary, we ask two questions:

• RQ1: Can GLOSH–Profiles behave differently for different kinds of outliers?

• RQ2: Can GLOSH–Profiles behave differently for different inliers?

Following [23, 24], we concentrate on three kinds of outliers: global, local, and small

groups of points with similar behaviour but dissimilar from the rest of the data (outlier

clumps). As discussed in the previous section, we hypothesize that GLOSH–Profiles

will exhibit different behaviour for different kinds of outliers. Although inlier points

lie in the dense region of clusters, they may also exhibit high GLOSH scores in the

profiles at certain minpts values. For a cluster C, the profiles of each datapoint in

C will show an elevation in GLOSH scores once the minpts value becomes greater
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than |C|. When the minpts value surpasses the size of the cluster, the core distances

of each datapoint in the cluster, must include other points in the dataset that are

further away from the cluster. Therefore, datapoints from the same cluster tend to

show an elevation in GLOSH scores more or less at “the same time” i.e. in more or

less the same range of minpts values, and we hypothesize, that the GLOSH–Profiles

of inliers from the same cluster will show a similar behavior.

We study the behaviour of GLOSH–Profiles PΓmmax using simple 2-dimensional

synthetic datasets. Synthetic datasets are preferred here to provide more control

over the systematic evaluation of the GLOSH–Profiles. We use synthetic datasets

containing clusters following a Gaussian distribution with the addition of three kinds

of outliers points: (I) global outliers, (II) local outliers, and (III) outlier clumps

[23]. The Gaussian clusters are generated in a randomized way (random sizes, and

positions) as proposed by Prati et al. [25]. Then, we generate and add different kinds

of outliers to the datasets.

To generate global outliers, we follow [23] to generate instances that are far from

the Gaussian clusters. The instances are generated from a uniform distribution with

boundaries defined as (α · max(Dm), α · min(Dm)) where Dm represents the m-th

feature of the generated Gaussian dataD. However, this process of generating outliers

has a drawback as there is a chance that a generated outlier could fall inside on of the

clusters. To address this problem, we follow [26] and apply the tomek links technique

as a data-cleaning method to filter out such outliers. The tomek links technique is

based on looking at pairs of datapoints that are closest neighbors w.r.t. some distance

metric, but are from opposite classes. In our setting we have two classes, the inlier

class and the outlier class. Considering an instance xi from the generated Gaussian

clusters , i.e., an instance of the inlier class, and a generated outlier o, xi and o can

form a tomek link, w.r.t. a distance measure d(., .), if there is no other outlier instance

xk in the dataset that satisfies d(xi, xk) < d(xi, o) or d(o, xk) < d(xi, o). The intuition

behind a tomek link in this context is that if two instances form a tomek link then
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the generated outlier instance falls inside a cluster or is located close to the border

of a cluster, i.e., the generated outlier is not really a global outlier. We thus remove

generated outliers forming a tomek link from the set of global outliers.

To create local outliers, we randomly choose two different clusters from our gener-

ated Gaussian clusters. Then, we follow [23] and scale the covariance matrix Σ by a

factor of 5 (Σ̂ = αΣ where, α = 5) to generate the outliers using the generator that

we initially used to generate the clusters. The covariance matrix controls the spread

of the datapoints that are generated. We use the parameter α = 5, as proposed in [23]

to generate points that are nearby to the clusters. Opting for two different clusters

ensures that the outliers are generated in the vicinity of different clusters, avoiding

concentration in the same region.

To generate “outlier clumps” [23], we again choose two clusters from our generated

Gaussian clusters. Then we scale the mean feature vector µ of each of the clusters

by a factor of 5 (µ̂ = αµ where α = 5) to generate the outlier samples using the

generator. As the mean feature vector is shifted by α, that ensures that the outlier

samples are generated in the same region but away from the cluster.

Fig. 3.6 shows three 2–D datasets (containing 3 Gaussian clusters and different

kinds of outliers; it also shows the PΓmmax plots for the outliers.

The first major observation suggests an answer to our first research question of this

section. In case of global outliers, one can see that the GLOSH scores in profile PΓmmax

of a global outlier is overall higher across most minpts values than that of a local

outlier. This finding supports our characterization of global outliers in section 3.1.

In case of local outliers, one can see that their PΓmmax show high GLOSH scores for

lower minpts values, and the scores decrease as the minpts value increases. Unlike the

global outlier profiles, the GLOSH–Profiles of local outliers show a GLOSH score close

to 0 for a much smaller value of minpts. This finding supports our characterization

of local outliers in section 3.1. In the case of small groups of outliers or “oulier

clumps”, the GLOSH scores in the profiles of the points start from a low value and
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(a) Global (b) PΓmmax-Global

(c) Local (d) PΓmmax-Local

(e) Outlier Clumps (f) PΓmmax-Outlier Clumps

Figure 3.6: Synthetic Datasets with different kinds of points: (a) two Global outliers,
(b) PΓmmax of the Global outliers, (c) two Local outliers, (d) PΓmmax of the Local
outliers, (e) two Outlier Clumps, and (f) PΓmmax of all the points in each of the
clumps.

increase significantly as we increase the minpts value beyond the size of the clump,

and the values stay overall high for most minpts values. In a sense, the whole clump

behaves similarly to global outliers for minpts values greater than the size of the

outlier clump. This finding supports our characterization of outlier clumps in section
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3.1. The PΓmmax profiles shown here for different kinds of outliers have distinct

characteristics for different types of outliers, which suggests that the GLOSH–Profiles

PΓmmax may be used to characterize and detect diverse outlier patterns in a dataset.

(a) 3-Cluster Setting (b) PΓmmax-C0

(c) PΓmmax-C2 (d) PΓmmax-C3

Figure 3.7: PΓmmax of different clusters: (a) A synthetic dataset with three clusters
(different sizes) C0 (91), C2 (344), and C3 (425), (b) PΓmmax obtained for a data in
cluster C0, (c) PΓmmax obtained for a data in cluster C2, and (d) PΓmmax obtained
for a data in cluster C3.

We also study the behavior of GLOSH profiles for inliers. In Figure 3.7, we show

the GLOSH–Profile PΓmmax plots of two representative inlier points (represented by

a red star and a green triangle) from each of the clusters in the 2–D dataset.

Starting with cluster C0, one can see that GLOSH–Profile plots of points in the

cluster C0 have initially a GLOSH score Γminpts close to 0. The GLOSH scores have

a first spike at minpts > 91 and a second spike at minpts > 344. The first spike in

the GLOSH scores happens when minpts exceeds the size of the cluster C0. The core

distances of each point in C0 increases at that point significantly to include points
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from cluster C2 into their neighborhood to become a core point. The second spike in

the GLOSH scores happens when the ϵ-neighborhoods of datapoints in C0 need to

include points from the cluster C3 to become a core point (at minpts value > 344,

which is the combined size of clusters C0 and C2). After the first spike, one can see

that the profile of the green point in cluster C0 comes down to a GLOSH score close to

0 more quickly (for a smaller minpts value) compared to the red point. This happens

because the green point is located in a denser region within the cluster compared to

the red point. From these observations, we can conclude that the GLOSH–Profiles of

inlier points in cluster C0 behave similarly.

In the cluster C2 of Figure 3.7c, the GLOSH–Profiles PΓmmax of both points are

found to exhibit three spikes. One can see that GLOSH–Profiles of the points starts

from a GLOSH score close to 0 and the first spike in the score occurs for a low minpts

value. The green point is situated in a denser region of the cluster compared to the red

point and therefore, gets a relatively lower GLOSH score in the first spike. The second

spike in the GLOSH scores occurs when the minpts exceeds |C2|, at minpts = 344.

This spike in the scores happens as the core distances of the points in the cluster C2

increase together as they need more points (more than |C2|) in their neighborhood to

become a core point. Therefore, the core distance radius of points in cluster C2 start

including points from cluster C0, which is closer to C2 than C3.

For the cluster C3 in Figure 3.7, we again see that the GLOSH–Profiles PΓmmax

start from a low GLOSH score. The points in C3 show a spike in their GLOSH

scores for a lower minpts value and then a second spike when the minpts value exceeds

the size of C3. The second spike in the GLOSH scores occurs as the core distance

radius of points in the cluster C3 needs to include points from the clusters C0 and

C2 to become a core point. Overall, one can see that the GLOSH–Profiles of inlier

points from the same cluster are not identical but they share similarities in terms of

where (i.e. at what minpts value) certain spikes in the GLOSH scores occur. This

answers our second research question. When comparing the GLOSH–Profiles for

26



different clusters, one can see that the position (i.e. the minpts value) of the spikes in

the GLOSH–Profiles differ for different clusters w.r.t their sizes and positions in the

data-space.

We summarize the findings of this section as follows:

• Local outliers tends to have a higher GLOSH score initially for lowminpts values

but decrease rapidly as we increase the minpts values. Global outliers seem to

exhibit consistently higher GLOSH scores across most minpts values compared

to local outliers. Points in outlier clumps, seem to behave similarly to global

outliers for minpts values beyond the size of the outlier clump.

• The GLOSH–Profiles of inlier points from the same cluster tends to exhibit

similar behavior.

3.1.2 Limiting the size of the GLOSH–Profiles

As we have shown in section 3.1 and 3.1.1, the behavior of the GLOSH scores in the

profiles of outliers either become similar to that of inliers or do not change after a cer-

tain value of minpts. Extracting the full GLOSH–Profiles PΓmmax is straightforward

as it combines all possible GLOSH scores at all possible minpts values, and one does

not have to set a limit to it. However, if a shorter GLOSH–Profile can perform as well

or better than a full profile, then one can avoid the additional computational effort

of extracting full GLOSH–Profiles by setting a limit on the mmax value. Note that

CORE-SG [11], which introduces an efficient way to compute multiple HDBSCAN*

hierarchies, has been proposed with values of mmax typically up to 100 in mind, since

effective values of minpts for hierarchical clustering are typically much smaller than

100. Motivated by this, we compare the performance of GLOSH–Profiles of different

sizes with a full GLOSH–Profile in a simple setting that uses the profiles to define

a simple aggregate outlier score for each point based on its profile. We then use the

aggregate score to rank the points and compare the performance of these rankings
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Dataset Number of Samples Dimensions Outlier % Dataset Type

MVTec-AD zipper 391 512 5 Image

HEPATITIS 80 19 16.25 Healthcare

LETTER 1600 32 6.25 Image

PIMA 768 8 34.9 Healthcare

STAMPS 340 9 9.12 Document

VERTEBRAL 240 6 12.5 Biology

VOWELS 1456 12 3.43 Linguistics

WDBC 367 30 2.72 Healthcare

WINE 129 13 7.75 Chemistry

WPBC 198 33 23.74 Healthcare

YEAST 1484 8 34.16 Biology

BREASTW 683 9 34.99 Healthcare

CARDIO 1831 21 9.61 Healthcare

CARDIOTOCOGRAPHY 2114 21 22.04 Healthcare

20news 3 615 768 5 NLP

Table 3.1: Dataset Description

for outlier detection on some labelled benchmark datasets.

We use fifteen different real-world datasets that are popularly used in outlier de-

tection and one-class classification studies [23]—we refer to them as Type 1 datasets.

The datasets used are: MVTec-AD zipper, HEPATITIS, LETTER, PIMA, STAMPS,

VERTEBRAL, VOWELS, WDBC, WINE, WPBC, YEAST, BREASTW, CARDIO,

CARDIOTOCOGRAPHY, and 20news 3. We obtain the one-class datasets (Type

1) from the AdBench repository [23]. These datasets are originally classification

datasets that have been converted into one-class classification datasets in two ways:

(I) For binary classification datasets, one class is labelled as the inlier class and the

other as the outlier class which is downsampled, and (II) for multi-class datasets, all

but one of class labels are relabelled as inlier class, leaving one class that is labelled

as the outlier class which is downsampled. The datasets are described in Table 3.1.

We extract the following GLOSH–Profiles PΓmmax for each datapoint:
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• PΓ5: mmax = 5

• PΓ10: mmax = 10

• PΓ25: mmax = 25

• PΓ50: mmax = 50

• PΓ100: mmax = 100

• Full Profile: mmax = size of the dataset

As aggregate outlier score for a datapoint, we use the Area Under the Curve (AUC)

[27] that has been widely used in the literature to aggregate values of a function.

As a measure of performance of the resulting rankings, we use precision@n, which

is a popular evaluation metric in outlier detection [12]. Precision@n in this context

measures the fraction of “true” outliers among the top n points in a ranking of the

points from largest to smallest aggregated GLOSH-Profile value.

Table 3.2 compares the precision@n obtained by the aggregated GLOSH–Profiles

of different sizes across the different test datasets. When comparing the results, one

can see that aggregating a full GLOSH–Profile has no added benefits for most of

the datasets. One can see that in datasets such as MVTec-AD zipper, HEPATITIS,

LETTER, PIMA, VERTEBRAL, and 20news 3, aggregating the full GLOSH–Profiles

does not improve the precision@n over shorter profiles (PΓ5 to PΓ100). In datasets

such as LETTER, VOWELS, and YEAST one can see that aggregating the full

profile even reduces the precision@n compared to that what is obtained with any of

the shorter profiles.

In datasets such as STAMPS, BREASTW, CARDIO, and CARDIOTOCOGRA-

PHY, using a full GLOSH–Profile results in minor improvements over shorter profiles.

However, in the cases of STAMPS and BREASTW datasets, one can only see minor

improvements of 0.01, and 0.04 over the maximum precision@n obtained using the
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Dataset PΓ5PΓ5PΓ5 PΓ10PΓ10PΓ10 PΓ25PΓ25PΓ25 PΓ50PΓ50PΓ50 PΓ100PΓ100PΓ100 Full Profile

MVTec-AD zipper 0.60 0.60 0.60 0.60 0.61 0.60

HEPATITIS 0.15 0.23 0.23 0.23 - 0.23

LETTER 0.12 0.28 0.29 0.29 0.27 0.08

PIMA 0.53 0.52 0.54 0.54 0.54 0.53

STAMPS 0.22 0.19 0.19 0.19 0.19 0.26

VERTEBRAL 0.03 0.03 0.03 0.03 0.00 0.00

VOWELS 0.40 0.54 0.56 0.48 0.44 0.12

WDBC 0.20 0.40 0.40 0.40 0.50 0.60

WINE 0.00 0.00 0.10 0.30 0.30 0.2

WPBC 0.19 0.21 0.19 0.17 0.19 0.19

YEAST 0.29 0.28 0.27 0.27 0.27 0.24

BREASTW 0.63 0.54 0.77 0.84 0.91 0.95

CARDIO 0.19 0.25 0.31 0.37 0.42 0.57

CARDIOTOCOGRAPHY 0.30 0.29 0.21 0.24 0.34 0.50

20news 3 0.17 0.17 0.13 0.13 0.13 0.13

Table 3.2: Comparing the Precision@n obtained using shorter GLOSH–Profiles and
full GLOSH–Profile
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shorter profiles (PΓ5 to PΓ100). In the cases of CARDIO and CARDIOTOCOG-

RAPHY datasets using the full profiles results in a slightly larger gains. Overall,

the findings of this section suggest that using Full GLOSH–Profiles has little or no

benefits over using GLOSH–Profiles with lower mmax values (typically, mmax ≤ 100)

and does not justify the computational cost required. Therefore, in subsequent sec-

tions of this thesis, we adopt shorter GLOSH–Profiles (with mmax = 100) for our

investigations.

3.1.3 GLOSH–Profiles on Different Datasets

In section 3.1.1, we analyzed the behavior of GLOSH–Profiles of different kinds of

outlier and inlier points on simple 2-dimensional synthetic datasets. In this section

we analyse the behavior of the GLOSH–Profiles of different outliers and inliers on

more complex and more realistic datasets. The goal of this section is to confirm our

findings of section 3.1.1 on a wider range of (I) Type 1: Real One-Class Classification

datasets, and (II) Type 2: Datasets with real Inliers and added Synthetic Outliers

of controlled types (“semi-real” datasets).

As the Type 1 datasets are originally classification datasets, we hypothesize that

the datapoints “labelled as outliers” may not necessarily follow the characteristics of

outliers defined in the outlier detection literature. Consequently, the GLOSH–Profiles

of such points may in some cases behave more like that of inlier profiles and not exhibit

the characteristics discussed in sections 3.1 and 3.1.1.

The Type 1 datasets are the same that we used in Section 3.1.2: MVTec-AD -

zipper, HEPATITIS, LETTER, PIMA, STAMPS, VERTEBRAL, VOWELS, WDBC,

WINE,WPBC, YEAST, BREASTW, CARDIO, CARDIOTOCOGRAPHY, and 20news -

3. Although, these datasets are popular in outlier detection studies, they provide very

limited scope to analyze the properties of different kinds of outliers. This happens be-

cause one does not know what kind of outliers are in the so-called “outlier class”, and

datapoints in the “outlier class” often deviate from the characteristics typically asso-
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ciated with outliers in the outlier detection literature (global, local, clumps)—which

is also reflected in the overall very low precision@n values shown in Table 3.2, for

all but one dataset. To address these limitations we derive Type 2 datasets from

Type 1 datasets. The goal here is to use real inlier datapoints from the one-class

datasets and add different kinds of synthetic outliers in a controlled manner. As we

did in section 3.1.1, we follow [23] to generate different kinds of synthetic outliers

(local, global, and clumps) on real inlier data. For generating local outliers, we learn

a Gaussian Mixture Model (GMM) on the inlier samples of the one-class datasets.

The covariance matrix Σ of the inlier samples is estimated using the GMM and scaled

to Σ̂ = αΣ (where α = 5 as in [23]). We use the GMM model to generate the local

outlier samples using Σ̂. To generate outlier clumps, we use the GMM to estimate

the mean feature vector µ of the inlier class samples. Then, we scale the mean feature

vector by a factor of 5 (µ̂ = αµ where α = 5 as in [23]) to generate the clumps using

the GMM model. We generate the global outliers from a uniform distribution with

boundaries defined by (α · max(Dm), α · min(Dm)) where Dm represents the m-th

feature of the inlier class data. Then, as we did in section 3.1.1, we apply the tomek

links technique [26] to filter out generated points that fall ”too close” to the existing

inlier points, i.e., are not really global outliers.

In Figure 3.8, we illustrate the GLOSH–Profiles of inliers and global outliers from

the Type 2 datasets (datasets with real inliers and synthetic outliers). To have

a clear view of the individual GLOSH–Profiles, we randomly choose six inlier and

outlier datapoints and plot their GLOSH–Profiles. Firstly, one can see that there

exists a certain minpts value for each of the datapoints when their GLOSH–Profile

reaches its highest GLOSH score. Following that minpts value, the GLOSH scores

Γminpts gradually decreases as we increase the minpts value. In most datasets, it

appears that the GLOSH scores in all the profiles change (decrease) at an almost

similar rate after a certain minpts value. Moreover, one can see that, beyond that

minpts value, outliers show higher GLOSH scores than inliers. For example, in Figures
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.8: GLOSH–Profiles of Type 2 Datasets with Global Outliers

3.8a and 3.8h, one can see that the GLOSH scores in both inliers and outlier profiles

changes (decreases) at an almost similar rate as the minpts value increase from 22

and 15, respectively. Given the similar rate of change in the GLOSH scores across

different minpts values, if one would rank the datapoints based on GLOSH scores

(highest to lowest), the relative positions of the datapoints in the rankings would

remain nearly the same for minpts values larger than the minpts value at which the

GLOSH scores start decreasing. For example, considering the GLOSH–Profiles of the

twelve datapoints in Figure 3.8h, if one ranks the datapoints based on their GLOSH

scores Γminpts after minpts = 15, their positions in the rankings will remain unchanged
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.9: GLOSH–Profiles of Type 2 Datasets with Outlier Clumps

for subsequent minpts values. Consequently, their rankings will stay more or less the

same (“stabilize”) for consecutive minpts values.

We make similar observations on the Type 2 datasets with Outlier Clumps. In

Figure 3.9, we present the GLOSH–Profiles of six randomly chosen inlier datapoints

and an additional six datapoints randomly chosen from outlier clumps within the

Type 2 datasets. As we already observed in section 3.1.1, GLOSH–Profiles of out-

lier clumps start from a low GLOSH score and increase significantly after a certain

small minpts value corresponding to the clump size. As we increase the minpts value

beyond the minpts value for which the GLOSH–Profile shows the highest value for
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the first time, the GLOSH scores Γminpts in each of the profiles (inliers or outliers)

decrease gradually. Additionally, one can see that beyond a certain minpts value, the

rate of decrease in the GLOSH scores becomes similar for both outliers and inliers

and that, beyond that minpts value, the outliers have higher GLOSH scores than

inliers. Consequently, if one were to rank the datapoints based on their GLOSH

scores (highest to lowest) beyond that specific minpts value, the relative positions

of the datapoints in the rankings would remain mostly unchanged. For example, if

one ranks the twelve datapoints in Figure 3.9m, beyond minpts = 30, their positions

in the rankings will remain unchanged for the subsequent minpts values. In Figure

3.9m, beyond minpts = 30, the GLOSH–Profiles follow an almost straight line, which

means, the GLOSH scores in each of the profiles change at a similar rate.

In Figure 3.10, we present the GLOSH–Profiles of six randomly chosen inliers and

outliers from the Type 2 datasets with local outliers. When comparing Figures 3.8,

3.9, and 3.10, one can observe certain differences. For the global outliers and clumps,

one can see a gap between the outlier profiles and inlier profiles in most datasets.

Conversely, for local outliers, their profiles are similar to inliers, with a smaller gap

compared to global outliers and clumps. This is expected as by definition, local out-

liers are typically closer to inlier, and hence, their core distances are not significantly

higher or different than those of borderline points of the clusters. In datasets like

STAMPS and WPBC, it is also apparent that, in contrast to the GLOSH–Profiles of

global outliers and clumps, the GLOSH scores within the local outlier profiles exhibit

a more rapid decrease with increasing minpts value. Similar to what we observed for

global outliers and clumps, even for local outliers, the GLOSH scores in each of the

profiles decrease at an almost similar rate. One can see that in most cases, when the

GLOSH scores start to decrease, the outlier profiles tend to exhibit higher GLOSH

scores than the inlier profiles. However, as there is no significant gap between the

outlier and inlier profiles, the outliers might not consistently exhibit higher GLOSH

scores over an extended range of minpts values. As the minpts value increases, the
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.10: GLOSH–Profiles of Type 2 datasets with local outliers

outlier profiles may eventually get lower GLOSH scores than some inliers. Therefore,

intuitively, one would expect the outlier rankings to change in a way that affects the

precision@n.

Across the three different kinds of outliers we make two common observations:

• There exists aminpts value beyond which the GLOSH scores in all the GLOSH–Profiles

(inliers or outliers) change at almost a similar rate.

• Beyond that minpts value, the outlier profiles generally show higher GLOSH

scores than inlier profiles.
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(a) (b) (c) (d)
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(m) (n) (o)

Figure 3.11: GLOSH–Profiles of Type 1 datasets

Continuing our investigation, we also analyse the GLOSH–Profiles obtained on

Type 1 datasets (real one-class datasets). Firstly, one can see that in many of the

datasets, the GLOSH–Profiles of outlier datapoints overlap with the inlier profiles.

Secondly, there is also a range of minpts values where the GLOSH scores exhibit a

gradual decrease for all the datapoints and the rate of decrease in the GLOSH scores

becomes almost similar for all the datapoints. Therefore, one can again expect that

the outlier rankings will be similar between consecutive minpts values in that range.

However, in most of these datasets, the outlier datapoints either get GLOSH scores

lower than the inliers, or the profiles overlap in a way that makes ranking them
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higher more challenging. have GLOSH–Profiles that are not unlike GLOSH–Profiles

of inliers, which explains the relatively low precision@n results reported in Table 3.2,

earlier in this chapter. In these datasets, the datapoints labelled as outlier, do often

not follow the characteristics of local, global, or clumps outliers.

We summarize the findings of this section as follows:

• In most of the benchmark datasets often used to evaluate outlier detection

methods (Type 1 datasets), the GLOSH–Profiles of the datapoints labelled as

“outliers” do not show the characteristics of the common outlier types assumed

in the literature and discussed in sections 3.1 and 3.1.1. This supports our

hypothesis that the labelled outliers in these datasets may not exhibit the typical

traits of real outliers.

• In the Type 2 datasets, we observed that there exists a certain minpts value

beyond which the GLOSH scores in most profiles tends to change at a similar

rate.

• Furthermore, in the Type 2 datasets, we observed that once the GLOSH scores

in the profiles start changing at a similar rate, the outlier profiles tends to show

higher scores than the inlier profiles.

• Compared to global outliers and outlier clumps, the GLOSH–Profiles of local

outliers are similar in behavior to inlier profiles.

• The GLOSH–Profiles of global outliers and outlier clumps show higher GLOSH

scores than inliers for a wide range of minpts values, whereas, in many cases the

GLOSH scores in local outlier profiles decrease rapidly with the increase in the

minpts value.
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3.2 GLOSH Performance across minpts values

In this section we analyze the performance of GLOSH at different minpts values. This

analysis is necessary as one of the primary goals of this thesis is to find the minpts

value that leads to the best GLOSH performance. To achieve this goal, one has to

first understand how GLOSH performs across different minpts values and identify the

specific ranges of minpts values where it achieves its best performance

To assess the performance of GLOSH we use again the precision@n metric; it mea-

sures the fraction of “true outliers” among the points with the n-th highest GLOSH

scores, where n is taken as the total number of labelled outliers in a test dataset.

One of the key observations of section 3.1.3 was that GLOSH scores in the profiles

of global outliers and outlier clumps stay higher than that of the inliers for a long

range of minpts values. Therefore, for global outliers and clumps, we hypothesize

that GLOSH will have its highest precision@n score for a large range of minpts val-

ues. Therefore, there can be multiple minpts values that can yield the best result. In

section 3.1.3, we also saw that in many datasets, the GLOSH–Profiles of local outliers

are more similar to inlier profiles and they may have high GLOSH scores for smaller

values ofminpts, but the GLOSH scores decrease rapidly as theminpts value increases.

Therefore, we hypothesize that for local outliers, GLOSH will show high precision@n

scores for a shorter range of minpts compared to global outliers and clumps.

To gain a better intuitive understanding, we use three different kinds of synthetic

two dimensional datasets in this investigations: Anisotropic, Banana, and Circular,

obtained from [28]. To conduct a systematic investigation of different kinds of outliers,

we follow the same approach as discussed in section 3.1.3 to generate different kinds

of outliers using the inlier samples provided in the original datasets. The datasets

including the generated outliers are shown in Figure 3.12. Each of these datasets has

been enriched with different types of outliers, namely Local Outliers, Global Outliers,

and Outlier Clumps, hereafter referred to simply as ‘Clumps‘. We refer these datasets
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(a) Anisotropic–Local (b) Anisotropic–Clump (c) Anisotropic–Global

(d) Banana–Local (e) Banana–Clump (f) Banana–Global

(g) Circular–Local (h) Circular–Clump (i) Circular–Global

Figure 3.12: Type 3 Datasets: Synthetic 2D Datasets with different kinds of outliers

as Type 3 datasets.

Figure 3.13 illustrates the Precision@n (P@n) scores obtained by GLOSH on each

of the datasets, for different minpts values. Firstly, as we expected, one can see for

global outliers and clumps, GLOSH records its highest P@n scores for a large range

of minpts values. However, one can also see initially for lower minpts values, GLOSH

records low precision@n. Secondly, as per our expectations, for most of the datasets

with local outliers, GLOSH records a high P@n for a small range of minpts values and

then the P@n starts to decrease as the minpts value increases. In practice, we do not

know what kind of outliers are present in the dataset, therefore, one cannot easily

guess the minpts values where GLOSH achieves its best performance. However, since

it is easy for us to obtain the GLOSH scores for a large range of minpts values (i.e.,

obtain GLOSH–Profiles of a significant length) efficiently, a natural question to ask

is: Can we use the GLOSH–Profiles to estimate the range of minpts values where one
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(a) Anisotropic–Local (b) Anisotropic–Clump (c) Anisotropic–Global

(d) Banana–Local (e) Banana–Clump (f) Banana–Global

(g) Circular–Local (h) Circular–Clump (i) Circular–Global

Figure 3.13: Precision@n obtained by GLOSH at different minpts on Type 3 Datasets

can achieve the best or close to best P@n? To answer this question, one first has to

systematically investigate how the GLOSH–Profiles look like (i.e. how the GLOSH

scores behave) in the range of minpts values where GLOSH achieves the highest P@n.

In Figures 3.14 to 3.16, we compare GLOSH–Profiles with the Precision@n (P@n)

values obtained by GLOSH for different minpts values.

For the datasets with global outliers, in Figure 3.14, one can observe that initially

for low minpts values, the GLOSH scores in the profiles fluctuates, i.e., the GLOSH

scores change significantly between consecutiveminpts values and at different rates for

different profiles. The variation in the scores results in several outliers getting lower

GLOSH scores than inliers. Consequently, it is not a surprise that GLOSH records
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(a) Anisotropic–PΓ (b) Anisotropic–P@n

(c) Banana–PΓ (d) Banana–P@n

(e) Circular–PΓ (f) Circular–P@n

Figure 3.14: Highlighting the minpts value at which GLOSH achieves the highest Pre-
cision@n with Global Outliers: The red GLOSH–Profiles represent the outlier profiles
and the green line denotes the specific minpts value where GLOSH first achieves the
best Precision@n (P@n) within the range [2, 100] of minpts values.

low precision@n intially for low minpts values. Beyond a certain minpts value, the

GLOSH scores in the profiles start undergoing minimal changes between consecutive

minpts values, and when they do change, they change at similar rates so that the

resulting rankings are likely not changing in a way that the Precision@n is affected.

A major observation is that the minpts value where the GLOSH scores start to change

at a similar rate, corresponds to the minpts value at which GLOSH starts to yield the

best precision@n (P@n).
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(a) Anisotropic–PΓ (b) Anisotropic–P@n

(c) Banana–PΓ (d) Banana–P@n

(e) Circular–PΓ (f) Circular–P@n

Figure 3.15: Highlighting the minpts value at which GLOSH achieves the highest Pre-
cision@n with Outlier Clumps: The red GLOSH–Profiles represent the outlier profiles
and the green line denotes the specific minpts value where GLOSH first achieves the
best Precision@n (P@n) within the range [2, 100] of minpts values.

For datasets with outlier clumps, in Figure 3.15, we can make similar observations.

The GLOSH scores in the profiles show significant fluctuations initially for lower

minpts values, however, beyond a certain minpts value, the GLOSH scores start to

change at a similar rate in the profiles, with the outlier profiles showing higher GLOSH

scores than the inlier profiles. Notably, the minpts value at which the GLOSH scores

in the profiles start to change at a similar rate, corresponds to the minpts value at

which GLOSH starts yielding the highest precision@n (P@n).
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(a) Anisotropic–PΓ (b) Anisotropic–P@n

(c) Banana–PΓ (d) Banana–P@n

(e) Circular–PΓ (f) Circular–P@n

Figure 3.16: Highlighting the minpts value at which GLOSH achieves the best Pre-
cision@n with Local Outliers: The red GLOSH–Profiles represent the outlier profiles
and the green line denotes the specific minpts value where GLOSH first achieves the
best Precision@n (P@n) within the range [2, 100] of minpts values.

In Figure 3.16, we observe that even for local outliers, beyond a specific minpts

value the GLOSH scores, in general, start to decrease at a similar rate but not as

consistently as for other types of outliers. Nonetheless, this specific minpts value

corresponds to a minpts value that results in the best or nearly the best precision@n

for GLOSH. However, one cannot randomly choose a value beyond this specific minpts

value and expect to achieve the best precision@n. Unlike global outliers and clumps,

local outlier profiles are more similar to inlier profiles and there is no significant
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gap between them. In addition, as the minpts value increases significantly beyond the

value where the GLOSH scores start changing at a similar rate, the rate of change may

become more dissimilar again and some local outliers end up receiving scores lower

than several inlier points. This effect is particularly strong in the Banana dataset and

reduces the precision@n. When the scores change at a similar rate, ordered sequence

of the GLOSH scores may be similar between consecutive minpts values, even though

the relative ordering of the datapoints may differ.

Overall, we summarize the key observations of this section as follows:

• As the minpts value increases from 2 to 100, GLOSH initially tends to result

in low performance w.r.t. precision@n. However, this performance tends to

improve as the minpts value increases.

• For lower minpts values, the GLOSH scores in outlier profiles tends to exhibit

significant variations—resulting in outliers getting lower GLOSH scores than

inliers

• The minpts value at which the GLOSH scores starts to change at a similar rate

for most of the GLOSH–Profiles, corresponds to the minpts value that yields

the best Precision@n with GLOSH, however, choosing a minpts value beyond

that value does not always guarantee the best Precision@n.

3.3 Dissimilarity between GLOSH score rankings

for consecutive minpts values

In this section we study how the GLOSH scores change between consecutive minpts

values. One way to do that is by measuring the differences in the outlier rankings at

consecutive minpts values. However, it may happen that two datapoints get identical

GLOSH scores at consecutive minpts values. If one ranks the datapoints based on

their GLOSH scores, any specific ordering of those two datapoints may differ between
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Row
Datapoints

∆∆∆
x1x1x1 x2x2x2 x3x3x3 x4x4x4 x5x5x5 x6x6x6 x7x7x7 x8x8x8 x9x9x9 x10x10x10 x11x11x11 x12x12x12 x13x13x13 x14x14x14 x15x15x15 x16x16x16 x17x17x17 x18x18x18 x19x19x19 x20x20x20

A 0.001 0.046 0.107 0.005 0.207 0.198 0.08 0.167 0.017 0.015 0.101 0.048 0.221 0.022 0.065 0.233 0.001 0.13 0.044 0.893

0.0
Sorted-A 0.001 0.001 0.005 0.015 0.017 0.022 0.044 0.046 0.048 0.065 0.08 0.101 0.107 0.13 0.167 0.198 0.207 0.221 0.233 0.893

B 0.0002 0.0092 0.021 0.001 0.041 0.039 0.016 0.033 0.0034 0.003 0.02 0.0096 0.044 0.004 0.013 0.046 0.0002 0.026 0.008 0.178

Sorted-B 0.0002 0.0002 0.001 0.003 0.0034 0.004 0.008 0.0092 0.0096 0.013 0.016 0.02 0.021 0.026 0.033 0.039 0.041 0.044 0.046 0.178

Table 3.3: Pearson dissimilarity in a scenario where the GLOSH scores change at a
similar rate: Each score in the row A decreases by a factor of 5 in the row B. The
Sorted-A is the sorted sequence of the scores before they change (A), while the Sorted-
B is the sorted sequence of the scores after they decrease (B). The ∆ is computed
between the sorted sequences.

the consecutive minpts values but the scores of adjacent points in large stretches of a

ranking may be very similar. In these cases any measure of point ordering similarity

will be dominated by how the large number of inliers are ordered, which is not very

informative for outlier detection. For outlier detection, we are mostly interested in the

large values or a small portion at the large end of the sorted order. In such scenarios, it

is not clear how one can measure the difference between the two rankings. To bypass

this problem, we measure the dissimilarity not between the ordered point sequences

but between the sorted GLOSH scores, between consecutive minpts values in a way

that is sensitive to GLOSH scores that can indicate outliers.

To measure the dissimilarity between the sorted sequences we use Pearson cor-

relation. Pearson correlation is a popular symmetric metric that can measure the

relationship between two outlier score sequences [29]. For two sorted GLOSH score

sequences obtained at minpts = k (Sk) and minpts = l (Sl), the Pearson dissimilarity

measure ∆ is defined as:

∆(Sk, Sl) = 1−
⃓⃓⃓⃓

Cov(Sk,Sl)√
V ar(Sk)V ar(Sl)

⃓⃓⃓⃓
(3.2)

where, Cov measures the covariance between the two outlier score sequences obtained

at minpts = k and minpts = l, and V ar measures the variance of the values in each

of the sequences. When GLOSH–Profiles for most points start changing at a similar

rate (as observed in the previous section), the resulting relative order and relative
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Row
Datapoints

∆∆∆
x1x1x1 x2x2x2 x3x3x3 x4x4x4 x5x5x5 x6x6x6 x7x7x7 x8x8x8 x9x9x9 x10x10x10 x11x11x11 x12x12x12 x13x13x13 x14x14x14 x15x15x15 x16x16x16 x17x17x17 x18x18x18 x19x19x19 x20x20x20

A 0.001 0.046 0.107 0.005 0.207 0.198 0.08 0.167 0.017 0.015 0.101 0.048 0.221 0.022 0.065 0.233 0.001 0.13 0.044 0.152

0.26
Sorted-A 0.001 0.001 0.005 0.015 0.017 0.022 0.044 0.046 0.048 0.065 0.08 0.101 0.107 0.13 0.152 0.167 0.198 0.207 0.221 0.233

B 0.001 0.046 0.107 0.005 0.207 0.198 0.08 0.167 0.017 0.015 0.101 0.048 0.221 0.022 0.065 0.233 0.001 0.13 0.044 0.893

Sorted-B 0.001 0.001 0.005 0.015 0.017 0.022 0.044 0.046 0.048 0.065 0.08 0.101 0.107 0.13 0.167 0.198 0.207 0.221 0.233 0.893

Table 3.4: Pearson dissimilarity in a scenario where only one score jumps from low
to high, while the rest do not change: All the scores from row A are identical in the
row B apart from the score obtained by an outlier x20. The ∆ is computed between
the sorted sequences of A (Sorted-A) and B (Sorted-B).

magnitude of GLOSH scores for the points is likely to change only very little as

a consequence, between consecutive values of minpts. As the Pearson correlation

measures the covariance between the sequences, it remains unaffected to changes in

the absolute values as it measures the variations from the mean. When scores change

at a similar rate, that results in positive covariance, yielding a Pearson correlation

close to 1 and, consequently, a ∆ score close to 0. In Table 3.3, we show the scores

obtained on 20 points from the Anisotropic dataset with global outliers. One can see

that when the scores change at a similar rate (decreases by a factor of 5), we obtain

a Pearson dissimilarity ∆ of zero between the ordered sequences of the scores. In

practice, scores in the profiles may not change at exactly the same rate but if they

change at “almost” the similar rate, we expect the dissimilarity to be close to 0.

As we saw earlier, initially for lowerminpts values, the GLOSH scores in outlier pro-

files fluctuate significantly. In other words, there are significant jumps in the GLOSH

scores (either decreasing or increasing) between consecutive minpts values. When this

happens for a few points and the scores of most points (inliers) are not changing much

relative to each other, we expect the Pearson dissimilarity to be higher. In Table 3.4,

we show the simplest case when the score of only a single outlier datapoint (x20)

jumps from 0.152 to 0.893 while the rest scores are identical, we get a high dissimilar-

ity of 0.26 between the sorted sequences. When there are more outlier points present

in the sequence we expect the Pearson dissimilarity to be even higher between sorted

GLOSH scores sequences for certain consecutive minpts values. Therefore, initially

47



for lower minpts values, we expect a high Pearson dissimilarity between the sorted

sequences of GLOSH scores at consecutive minpts values until the point when the

scores start changing at a similar rate where we expect the Pearson dissimilarity to

be converge to 0.

To study the behavior of GLOSH score rankings in more detail, we first define

the GLOSH Outlier Rank Dissimilarity–Profile (ORD–Profile) Rmmax more formally.

The ORD–Profile basically quantifies the dissimilarity between the sorted sequences

of GLOSH scores at consecutive minpts values, as we increase the minpts values.

Definition 5.2. GLOSH Outlier Rank Dissimilarity–Profile: The GLOSH

Outlier Rank Dissimilarity–Profile Rmmax is an array of dissimilarity values for pairs

of sorted sequences of GLOSH scores Sminpts obtained at consecutive minpts values in

a range [2,mmax]:

Rmmax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆(S2, S3)

∆(S3, S4)

∆(S4, S5)
...

∆(Smmax−1, Smmax)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

Assuming the indices i of the dissimilarity scores in Rmmax starts from 0. As we

consider a range [2, 100] of minpts values, each dissimilarity score ri ∈ Rmmax is

obtained between minpts = i+ 2 and minpts = i+ 3.

For our Type 3 datasets with global outliers, one can see in Figure 3.17 that initially

when the GLOSH scores of outlier profiles fluctuate in the profiles, the dissimilarity

between the sorted sequences in the ORD–Profile is high. Then, when the GLOSH
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(a) Anisotropic–P@n (b) Anisotropic–Rmmax (c) Anisotropic–PΓ

(d) Banana–P@n (e) Banana–Rmmax (f) Banana–PΓ

(g) Circular–P@n (h) Circular–Rmmax (i) Circular–PΓ

Figure 3.17: Type 3 with Global Outliers: Comparing the ORD–Profiles (Rmmax) with
precision@n (P@n) achieved by GLOSH across different minpts values. Highlighting
the specific minpts value where GLOSH first records the best precision@n within a
range [2, 100] of minpts values.

scores start changing at a similar rate in the profiles, the ORD–Profile plots show an

“elbow like” structure for each of the datasets. The “elbow” can be seen as the point

from where GLOSH scores in most of the profiles starts changing at almost a similar

rate. Moreover, one can see that the minpts value where the “elbow” is formed corre-

sponds to the minpts value where GLOSH achieves its best precision@n. Therefore,

choosing the minpts value at the “elbow” may potentially yield the best precision@n.

In the last row of Figure 3.17, the dissimilarity score increases again for a minpts
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value around 28 when the GLOSH scores in most of the profiles increases. However,

this increased dissimilarity is not as high as what is observed at the beginning of the

ORD–Profile.

(a) Anisotropic–P@n (b) Anisotropic–Rmmax (c) Anisotropic–PΓ

(d) Banana–P@n (e) Banana–Rmmax (f) Banana–PΓ

(g) Circular–P@n (h) Circular–Rmmax (i) Circular–PΓ

Figure 3.18: Type 3 Datasets with Outlier Clumps: Comparing the ORD–Profiles
(Rmmax) with precision@n (P@n) achieved by GLOSH across different minpts values.
Highlighting the specificminpts value where GLOSH first records the best precision@n
within a range [2, 100] of minpts values.

One can make similar observations for the Type 3 datasets containing outlier

clumps in Figure 3.18. In each of the cases, one can see that the ORD–Profile forms

an “elbow like” structure when the GLOSH scores in the profiles start to change at a

similar rate. The minpts value at the “elbow” corresponds again to the minpts value
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that results in the best precision@n for GLOSH. These observations suggests that

choosing the minpts value at the “elbow” may potentially yield the best precision@n.

(a) Anisotropic–P@n (b) Anisotropic–Rmmax (c) Anisotropic–PΓ

(d) Banana–P@n (e) Banana–Rmmax (f) Banana–PΓ

(g) Circular–P@n (h) Circular–Rmmax (i) Circular–PΓ

Figure 3.19: Type 3 Datasets with Local Outliers: Comparing the ORD–Profiles
(Rmmax) with precision@n (P@n) achieved by GLOSH across different minpts values.
Highlighting the specificminpts value where GLOSH first records the best precision@n
within a range [2, 100] of minpts values.

Similarly, for the Type 3 datasets containing local outliers, one can see in Figure

3.19 that the plots of the ORD–Profiles show again an “elbow” when the GLOSH

scores in most of the profiles starts to change at a similar rate. As before, one can also

see that for the minpts value at the “elbow” in the ORD–Profile plot, GLOSH obtains

its best or nearly the best precision@n. However, in each of the datasets, if one selects
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a minpts value that is beyond the “elbow”, then GLOSH may potentially end up with

a very low precision@n. For example, in the second row of Figure 3.19, one can see

that beyond minpts = 30, even though the ORD–Profile show low dissimilarity scores,

the precision@n reduces for GLOSH.

Overall, the observations suggest that the minpts value at the “elbow” in the

ORD–Profile plot may potentially yield the best results for GLOSH. For global out-

liers and clumps, a minpts value greater than the “elbow” may still lead to good

results for GLOSH, however, this is not true for local outliers. In practice, we do not

know what kind of outliers are present in a dataset, therefore, selecting the minpts

directly at the “elbow” seems to be the best option.

(a) Letter–P@n (b) Letter–Rmmax (c) Letter–PΓ

(d) 20news 3–P@n (e) 20news 3–Rmmax (f) 20news 3–PΓ

Figure 3.20: LETTER and 20news 3 datasets with synthetic Outlier Clumps: Com-
paring the ORD–Profiles (Rmmax) with Precision@n achieved by GLOSH across differ-
ent minpts values. Highlighting the specific minpts value where GLOSH first records
the best Precision@n within a range [2, 100] of minpts values.

It may happen that the ORD–Profile plot shows multiple spikes in the dissimilarity

score plots. As we see in Figures 3.17h, 3.18h, and 3.19h, one can observe multiple
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(in this case two) spikes with two elbows in the profile plots. In each of these cases,

the second spike in the dissimilarity scores does not correspond to the maximum

dissimilarity. In these datasets, taking the minpts value at the first elbow is the

choice that leads to the best or nearly the best precision@n for GLOSH. In Figure

3.20 we present two Type 2 datasets with outlier clumps where we observe multiple

spikes in the ORD–Profile and where the last spike leads to the best precision@n.

Therefore, we can conclude that it is not the order of the spikes that can guide us

in selecting which value of minpts to select. However, what seems to be a common

pattern in all these cases is that the best or nearly best precision@n is obtained for

the minpts value at the first “elbow” in the ORD–Profile plots after the point where

the ORD–Profile shows a maximum dissimilarity.

3.4 Finding the “Best” minpts value

In this section, we propose a strategy, Auto-GLOSH, to find the minpts value at

the first “elbow” in the ORD–Profile plot that occurs after the first spike with the

maximum dissimilarity. We refer to this automatically selected minpts value as m∗.

Based on our findings in the previous sections, we expect this value to yield the best

or near-best results for GLOSH. We limit our search to a maximum minpts value

(mmax) of 100. It is common in research studies to assess the outlier detection results

obtained using GLOSH within a mmax value of 100 [30]. Additionally, as discussed

in section 3.1.2, using GLOSH scores at all possible minpts values up to the dataset’s

size is impractical and does not yield improved results compared to using shorter

profiles.

Given an ORD–Profile, Rmmax , we first find the (first in case of ties) maximum

dissimilarity score in Rmmax . Let this value be b at index i in the ORD-Profile Rmmax .

This score corresponds to the largest peak in the ORD–Profile plot. Next, we estimate

a displacement vector starting from the last value in Rmmax to the selected maximum

value in the Rmmax . In each of the sub-figures of Figure 3.21,
#    »

AB is the displacement
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(a) Banana-Global

(b) Circular-Global

(c) LETTER-Clumps

Figure 3.21: Illustrating the process of finding the Elbow of the Outlier Rank Dis-
similarity–Profile

vector drawn from the last value in Rmmax , A = (|Rmmax |, Rmmax [|Rmmax|]), and the

maximum value, B = (i, b), in the ORD–Profile. By visual inspection, one can see

that the first “elbow” point in the ORD–Profile plot after the selected maximum

value B, is the farthest point from the vector
#    »

AB. Intuitively, we will use the vector

#    »

AB as tool to find the dissimilarity score in the ORD–Profile that has the largest

“shortest distance” (orthogonal distance) to
#    »

AB.

With the help of vector algebra [31, 32], we compute first
#    »

AB as B − A. Next,
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we compute the orthogonal distances between each dissimilarity score lying between

A and B, and the vector
#    »

AB. To do this, we first draw displacement vectors from

A to each of the dissimilarity scores in the plot of the scores. In the first column

of Figure 3.21, we illustrate a displacement vector
#    »

AD drawn from A to a dissimi-

larity score D. This is computed as D − A. As presented in the figures,
#    »

AB) and

#    »

AD can be extended to form a virtual parallelogram ABCD. The shortest distance

(orthogonal distance) between D and
#    »

AB, represented as
#    »

DO, is the height of the

parallelogram if one assumes
#    »

AB as the base. In classical geometry, the area of a

parallelogram is computed as base × height. As showed in [31], in our setting, the

area of a parallelogram can be computed as the magnitude of
#    »

AD × #    »

AB represents

the:

|| #    »

AD × #    »

AB|| = || #    »

AB|| × || #    »

DO|| =⇒ || #    »

DO|| = || #    »

AD × #    »

AB||
||AB||

(3.4)

where ||.|| performs euclidean norm, computing magnitude. We compute the orthog-

onal distances of each dissimilarity scores lying between A and B in the ORD–Profile,

and find the score that has the maximum distance as the elbow point. If ri is the dis-

similarity score at the elbow, as discussed earlier, it is obtained at minpts = i+ 3, on

measuring the dissimilarity between the sequences atminpts = i+3 andminpts = i+2.

Therefore, we return i+ 3 as the value of m∗.

3.5 Experimental Analysis

3.5.1 Setup

The evaluation in the current section answers the following questions: (I) does the

“best”minpts value estimated using Auto-GLOSH,m∗, match the best performance of

GLOSH? (II) can the estimated min∗ value outperform or match the results achieved

using the commonly used minpts values in GLOSH? (III) can GLOSH with the m∗

value outperform existing state-of-the-art outlier detection methods?
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We compare Auto-GLOSH with the traditional GLOSH algorithm, wherein the

user has to pre-define a minpts value. For GLOSH, we use the minpts values that are

commonly used in the literature and practice [8, 33–36], including 5, 10, 25, 50, and

100. Additionally, we compare the performance achieved at the “best” minpts value,

m∗, as estimated by Auto-GLOSH, with the performance obtained at the best minpts

value in GLOSH in range [2, 100] where GLOSH obtain its highest performance.

Thirdly, we compare Auto-GLOSH with state-of-the-art outlier detection techniques

such as LOF and KNN. Specifically, we compare the results obtained using Auto-

GLOSH to those of LOF and KNN across various neighborhood parameter values k

in [5, 10, 25, 50, 100].

We again use precision@n to evaluate the performance of each of the methods, as

it is a popular evaluation metric in outlier detection [12]. For the current investi-

gation, we use a total of 69 datasets, including Type 2 and Type 3 datasets (as

described in section 3.1.3). The Type 2 datasets are the datasets with real inliers

and synthetically generated different kinds of outliers. As described in section 3.1.3,

we generate local outliers, global outliers, and outlier clumps using the real inlier sam-

ples. In addition to that, we also generate datasets including a mix of the different

kinds of outliers. To create these datasets, as described in 3.1, we use the inlier sam-

ples from the following datasets: MVTec-AD zipper, HEPATITIS, LETTER, PIMA,

STAMPS, VERTEBRAL, VOWELS, WDBC, WINE, WPBC, YEAST, BREASTW,

CARDIO, CARDIOTOCOGRAPHY, and 20news 3. The Type 3 datasets are syn-

thetic datasets obtained from [28], which are: Anisotropic, Banana, and Circular.

Similar to what we did for Type 2 datasets, we generate different kinds of outliers

(local, global, or outlier clumps) using the inlier samples in the datasets.

3.5.2 Auto-GLOSH versus GLOSH

In this section we compare the results obtained using Auto-GLOSH against the tra-

ditional GLOSH, where a user has to pre-define a minpts value. In Table 3.5, we
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Dataset Outlier Type Auto-GLOSH
GLOSH

Γ5Γ5Γ5 Γ10Γ10Γ10 Γ25Γ25Γ25 Γ50Γ50Γ50 Γ100Γ100Γ100 *Best

Anisotropic

Local

0.69 (21) 0.61 0.61 0.61 0.46 0.53 0.76 (16)

Banana 0.92 (22) 0.69 0.92 0.92 0.38 0.07 0.92 (4)

Circular 0.76 (26) 0.30 0.46 0.76 0.76 0.76 0.76 (25)

Anisotropic
Outlier

Clumps

1.0 (12) 0.26 0.0 1.0 1.0 1.0 1.0 (11)

Banana 1.0 (11) 0.05 1.0 1.0 1.0 1.0 1.0 (6)

Circular 1.0 (9) 1.0 1.0 1.0 1.0 1.0 1.0 (5)

Anisotropic

Global

1.0 (9) 0.15 1.0 1.0 1.0 1.0 1.0 (7)

Banana 1.0 (13) 1.0 1.0 1.0 1.0 1.0 1.0 (4)

Circular 1.0 (12) 0.94 1.0 1.0 1.0 1.0 1.0 (10)

Table 3.5: Auto-GLOSH vs GLOSH: Precision@n obtained on Type 3 Datasets

report three key metrics: (I) the precision@n obtained using the “best” minpts value,

m∗, as estimated using Auto-GLOSH (we report the m∗ value in brackets), (II) the

precision@n obtained using GLOSH with minpts values that are commonly used in

the literature and practice (Γ5 to Γ100), and (III) the best precision@n achieved by

GLOSH for a minpts value in range [2, 100] (we report the minpts value in brackets).

In Table 3.5, overall, one can see that in most cases, the estimated “best” minpts

value,m∗, results in the best precision@n that is achievable using GLOSH. One can see

that for the Anisotropic dataset with local outliers, the estimated “best”minpts value,

m∗, results in a higher P@n than any of the commonly used minpts values. Notably,

the precision@n obtained using m∗ (0.69) is the closest to the precision@n achievable

at the bestminpts value (0.76). For the Banana dataset with local outliers, one can see

that with theminpts values 10 and 25, one can achieve the best precision@n. However,

one still has to know which one to choose among [5, 10, 25, 50, 100]. Without prior

knowledge about the data, one might randomly choose a minpts value that might

result in a low precision@n. In contrast, our approach, Auto-GLOSH, estimates

the m∗ value that attains the best precision@n of 0.92, achievable using GLOSH.
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Dataset Auto-GLOSH
GLOSH

Γ5Γ5Γ5 Γ10Γ10Γ10 Γ25Γ25Γ25 Γ50Γ50Γ50 Γ100Γ100Γ100 *Best

MVTec-AD zipper 1.0 (16) 0.0 0.0 1.0 1.0 1.0 1.0 (14)

HEPATITIS 1.0 (5) 1.0 1.0 1.0 1.0 - 1.0 (3)

LETTER 1.0 (77) 0.13 0.50 0.29 0.0 1.0 1.0 (75)

PIMA 1.0 (27) 0.0 0.04 1.0 1.0 1.0 1.0 (25)

STAMPS 1.0 (15) 0.0 0.0 1.0 1.0 1.0 1.0 (13)

VERTEBRAL 1.0 (12) 0.2 1.0 1.0 1.0 1.0 1.0 (10)

VOWELS 1.0 (16) 0.14 0.02 1.0 1.0 1.0 1.0 (14)

WDBC 1.0 (20) 0.16 0.0 1.0 1.0 1.0 1.0 (18)

WINE 1.0 (8) 0.0 1.0 1.0 1.0 1.0 1.0 (6)

WPBC 1.0 (10) 0.0 1.0 1.0 1.0 1.0 1.0 (8)

YEAST 0.42 (9) 0.04 0.44 0.42 0.40 0.40 0.46 (13)

BREASTW 1.0 (25) 0.0 0.0 1.0 1.0 1.0 1.0 (23)

CARDIO 0.79 (16) 0.14 0.15 0.85 0.84 0.79 0.85 (25)

CARDIOTOCOGRAPHY 1.0 (84) 0.13 0.10 0.01 0.0 1.0 1.0 (82)

20news 3 1.0 (31) 0.0 0.0 0.0 1.0 1.0 1.0 (29)

Table 3.6: Auto-GLOSH vs GLOSH: Precision@n obtained on Type 2 Datasets with
Outlier Clumps

Similarly, for the Circular dataset with local outliers, choosing a minpts value of 4

or 10 yields low precision@n scores of 0.30 and 0.46, respectively. In contrast, with

Auto-GLOSH, one is able to automatically estimate the “best” minpts value of 33,

which results in the best precision@n score of 0.76. For Oulier Clumps, one can see

that when choosing minpts values 5 and 10, one obtains very low precision@n scores.

Auto-GLOSH, on the other hand, automatically achieves the best precision@n score

of 1.0.

In Table 3.6, one can see that for most Type 2 datasets with outlier clumps,

Auto-GLOSH is able to estimate the minpts value that leads to the best precision@n.

In contrast, for the LETTER and CARDIOTOCOGRAPHY datasets, among the
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Dataset Auto-GLOSH
GLOSH

Γ5Γ5Γ5 Γ10Γ10Γ10 Γ25Γ25Γ25 Γ50Γ50Γ50 Γ100Γ100Γ100 *Best

MVTec-AD zipper 1.0 (16) 0.0 0.0 1.0 1.0 1.0 1.0 (14)

HEPATITIS 1.0 (6) 1.0 1.0 1.0 1.0 - 1.0 (2)

LETTER 1.0 (5) 1.0 1.0 1.0 1.0 1.0 1.0 (3)

PIMA 1.0 (10) 1.0 1.0 1.0 1.0 1.0 1.0 (2)

STAMPS 1.0 (10) 1.0 1.0 1.0 0.93 0.93 1.0 (2)

VERTEBRAL 0.9 (7) 0.9 0.9 0.9 0.9 0.9 0.9 (4)

VOWELS 1.0 (5) 1.0 1.0 1.0 1.0 1.0 1.0 (3)

WDBC 1.0 (8) 1.0 1.0 1.0 1.0 1.0 1.0 (3)

WINE 1.0 (6) 1.0 1.0 1.0 1.0 1.0 1.0 (3)

WPBC 1.0 (10) 1.0 1.0 1.0 1.0 1.0 1.0 (2)

YEAST 1.0 (12) 0.04 0.73 1.0 1.0 1.0 1.0 (12)

BREASTW 1.0 (13) 0.9 1.0 1.0 1.0 1.0 1.0 (10)

CARDIO 1.0 (21) 1.0 1.0 1.0 1.0 1.0 1.0 (4)

CARDIOTOCOGRAPHY 1.0 (7) 1.0 1.0 1.0 1.0 1.0 1.0 (5)

20news 3 1.0 (31) 0.0 0.0 0.0 1.0 1.0 1.0 (29)

Table 3.7: Auto-GLOSH vs GLOSH: Precision@n obtained on Type 2 Datasets with
Global Outliers

commonly used minpts value, only minpts = 100 (Γ100) one can achieve the best

precision@n. Similarly, for the 20news 3 dataset, choosing any minpts value from

[5, 10, 25] yields a P@n of 0, while the value m∗ identified by Auto-GLOSH results in

the best precision@n. For YEAST and CARDIO, although the estimated m∗ did not

yield the best precision@n, the obtained precision@n is close to the best precision@n

that can be achieved using GLOSH.

Similar to clumps, in Table 3.7, one can see that for all the Type 2 datasets

with global outliers, the estimated “best” minpts value, m∗, is able to yield the best

precision@n score.

In Table 3.8, one can see that in many of the Type 2 datasets with local outliers,
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Dataset Auto-GLOSH
GLOSH

Γ5Γ5Γ5 Γ10Γ10Γ10 Γ25Γ25Γ25 Γ50Γ50Γ50 Γ100Γ100Γ100 *Best

MVTec-AD zipper 1.0 (7) 1.0 1.0 1.0 1.0 1.0 1.0 (2)

HEPATITIS 1.0 (5) 1.0 1.0 1.0 1.0 - 1.0 (3)

LETTER 0.90 (99) 0.93 0.83 0.81 0.9 0.9 0.93 (5)

PIMA 0.86 (11) 0.72 0.86 0.68 0.63 0.59 0.86 (4)

STAMPS 0.35 (11) 0.5 0.35 0.35 0.35 0.35 0.57 (4)

VERTEBRAL 0.7 (11) 0.7 0.7 0.7 0.7 0.7 0.7 (2)

VOWELS 0.88 (15) 0.92 0.88 0.88 0.84 0.88 0.92 (5)

WDBC 0.66 (7) 0.66 0.66 0.66 0.66 0.66 1.0 (2)

WINE 1.0 (7) 1.0 1.0 1.0 1.0 1.0 1.0 (2)

WPBC 0.8 (6) 0.8 0.8 1.0 0.8 1.0 1.0 (17)

YEAST 0.87 (7) 0.89 0.87 0.46 0.46 0.44 0.89 (4)

BREASTW 0.22 (23) 0.0 0.09 0.22 0.22 0.22 0.22 (20)

CARDIO 0.87 (14) 0.56 0.87 0.80 0.79 0.79 0.89 (9)

CARDIOTOCOGRAPHY 0.89 (17) 0.76 0.91 0.89 0.89 0.86 0.93 (6)

20news 3 0.95 (10) 0.0 0.95 0.95 0.95 0.91 0.95 (8)

Table 3.8: Auto-GLOSH vs GLOSH: Precision@n obtained on Type 2 Datasets with
Local Outliers
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Dataset Auto-GLOSH
GLOSH

Γ5Γ5Γ5 Γ10Γ10Γ10 Γ25Γ25Γ25 Γ50Γ50Γ50 Γ100Γ100Γ100 *Best

MVTec-AD zipper 1.0 (30) 0.56 0.0 1.0 1.0 1.0 1.0 (20)

HEPATITIS 1.0 (15) 1.0 1.0 1.0 1.0 - 1.0 (5)

LETTER 1.0 (71) 0.25 0.09 0.15 0.04 1.0 1.0 (61)

PIMA 1.0 (22) 0.42 0.14 1.0 1.0 1.0 1.0 (11)

STAMPS 1.0 (26) 0.0 0.0 1.0 1.0 1.0 1.0 (16)

VERTEBRAL 0.95 (20) 0.04 0.95 0.95 0.95 0.95 0.95 (10)

VOWELS 1.0 (23) 0.38 0.51 1.0 1.0 1.0 1.0 (13)

WDBC 0.96 (27) 0.59 0.07 0.96 0.96 0.96 0.96 (17)

WINE 1.0 (18) 0.0 1.0 1.0 1.0 1.0 1.0 (8)

WPBC 1.0 (18) 0.0 1.0 1.0 1.0 1.0 1.0 (8)

YEAST 0.76 (15) 0.76 0.79 0.82 0.82 0.81 0.83 (38)

BREASTW 1.0 (28) 0.22 0.08 1.0 1.0 1.0 1.0 (18)

CARDIO 0.92 (23) 0.43 0.42 0.94 0.94 0.91 0.94 (21)

CARDIOTOCOGRAPHY 1.0 (68) 0.14 0.01 0.0 0.005 1.0 1.0 (58)

20news 3 0.98 (39) 0.08 0.25 0.08 0.98 0.98 1.0 (20)

Table 3.9: Auto-GLOSH vs GLOSH: precision@n obtained on Type 2 Datasets with
mixed outliers

Auto-GLOSH is able to yield a precision@n score that is close to the best precision@n

achievable using GLOSH. Local outliers are more difficult to detect because they are

closer to the inlier clusters. Moreover, in real datasets, there may be inlier samples

already that deviate from the majority and behave like local outliers. For datasets

such as MVTec-AD zipper, HEPATITIS, PIMA, BREASTW, and 20news 3, one can

see that Auto-GLOSH is able to yield the best precision@n. For datasets such as

LETTER, VOWELS, YEAST, CARDIO, and CARDIOTOCOGRAPHY, one can

see that precision@n acheived by Auto-GLOSH is close to the best precision@n that

is achievable using GLOSH.

We make similar observations on datasets with mixed outliers. In Table 3.9, one

can see that for most of the datasets using the automatically selected minpts value,
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Dataset Outlier Type Auto-GLOSH
k = 5 k = 10 k = 25 k = 50 k = 100

*Best GLOSH
KNN LOF KNN LOF KNN LOF KNN LOF KNN LOF

Anisotropic

Local

0.69 0.53 0.46 0.53 0.61 0.53 0.84 0.53 0.53 0.53 0.53 0.76

Banana 0.92 1.0 0.72 1.0 1.0 1.0 1.0 0.54 1.0 0.36 0.63 0.92

Circular 0.76 0.88 0.61 0.83 0.83 0.77 0.83 0.72 0.5 0.72 0.77 0.76

Anisotropic
Outlier

Clumps

1.0 0.89 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Banana 1.0 1.0 0.21 1.0 0.31 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Circular 1.0 1.0 0.26 1.0 0.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Anisotropic

Global

1.0 1.0 0.15 1.0 0.26 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Banana 1.0 1.0 0.42 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Circular 1.0 1.0 0.47 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.10: Auto-GLOSH vs KNN and LOF: Precision@n obtained on Type 3
Datasets

m∗, resulted in the best precision@n that is achievable using GLOSH. Notably, for

datasets such as CARDIOTOCOGRAPHY and LETTER, one can see that among

the commonly used minpts values, one can only achieve the best precision@n when

using minpts = 100. Without any prior knowledge about the data, it is unlikely to

know which minpts value to choose. With Auto-GLOSH, one is able to estimate a

minpts value that results in the best or close to the best precision@n achievable by

GLOSH.

3.5.3 Auto-GLOSH versus KNN and LOF

In this section we compare the precision@n obtained using Auto-GLOSH against

precision@n obtained using the KNN and LOF algorithms. The results are presented

between Tables 3.10 to 3.14.

In Table 3.10, it is clear that overall, for local outliers, both KNN and LOF, for

some of the commonly used parameter values, can outperform the best results achiev-

able using GLOSH. Our proposed approach, Auto-GLOSH, is built upon GLOSH and

is designed to extract optimal results achievable with GLOSH. Consequently, it is ex-

pected that Auto-GLOSH may not surpass the performance of KNN and LOF when

GLOSH itself does not outperform these methods. For global outliers and clumps,

KNN and LOF record high precision@n across some of the commonly used neighbor-

hood parameter k values, however, one can notice that it is not the case when consid-
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Dataset Auto-GLOSH
k = 5k = 5k = 5 k = 10k = 10k = 10 k = 25k = 25k = 25 k = 50k = 50k = 50 k = 100k = 100k = 100

*Best GLOSH
KNN LOF KNN LOF KNN LOF KNN LOF KNN LOF

MVTec-AD zipper 1.0 0.48 0.07 0.48 0.03 0.81 0.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 - - 1.0

LETTER 1.0 0.61 0.1 0.66 0.06 0.93 0.17 1.0 0.0 1.0 0.02 1.0

PIMA 1.0 0.56 0.12 0.6 0.04 0.98 0.0 1.0 0.0 1.0 1.0 1.0

STAMPS 1.0 0.41 0.29 0.64 0.22 0.90 0.09 1.0 0.93 1.0 1.0 1.0

VERTEBRAL 1.0 0.33 0.23 0.66 0.23 1.0 0.95 1.0 0.95 1.0 1.0 1.0

VOWELS 1.0 0.63 0.17 0.68 0.09 0.90 0.43 1.0 1.0 1.0 1.0 1.0

WDBC 1.0 0.36 0.11 0.38 0.25 0.80 0.25 1.0 0.94 1.0 1.0 1.0

WINE 1.0 0.58 0.08 0.91 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 1.0 0.4 0.0 0.66 0.0 1.0 0.93 1.0 1.0 1.0 1.0 1.0

YEAST 0.42 0.48 0.15 0.47 0.17 0.54 0.26 0.55 0.44 0.57 0.51 0.46

BREASTW 1.0 0.31 0.0 0.38 0.0 0.7 0.0 1.0 0.04 1.0 0.68 1.0

CARDIO 0.79 0.62 0.06 0.63 0.07 0.75 0.25 0.86 0.50 0.85 0.85 0.85

CARDIOTOCOGRAPHY 1.0 0.58 0.07 0.58 0.05 0.68 0.18 0.87 0.22 0.98 0.01 1.0

20news 3 1.0 0.46 0.01 0.39 0.03 0.53 0.06 0.74 0.01 1.0 1.0 1.0

Table 3.11: Auto-GLOSH vs KNN and LOF: Precision@n obtained on Type 2
Datasets with Outlier clumps

ering local outliers. For local outliers, as the neighborhood parameter k increases, the

precision@n achieved by KNN tends to decrease, whereas, the precision@n obtained

by LOF increases initially and then begins to decline for k ≥ 50. These results show

the sensitivity of both KNN and LOF w.r.t. the value of k.

The results for Type 2 datasets with outlier clumps are shown in Table 3.11. One

can see that LOF does not perform well until the k value is equal to 100. Even with

k = 100, LOF results in a precision@n smaller than Auto-GLOSH in many cases.

Examples include LETTER, BREASTW, and CARDIOTOCOGRAPHY. Notably,

for LETTER and CARDIOTOCOGRAPHY, the precision@n decreases as we increase

the value of k. Examples like these makes it unclear which k value to choose for LOF

when there underlying data distribution is unknown. This underscores the need for

Auto-GLOSH, which achieves a good precision@n on most of the datasets without

having to choose a parameter value. KNN is found to be the most competitive

to Auto-GLOSH across all the datasets. However, it only performs well when the

k value is chosen carefully, which is difficult without knowing the underlying data

distribution. One might think that taking a high value for k (typically k ≥ 50) will
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Dataset Auto-GLOSH
k = 5k = 5k = 5 k = 10k = 10k = 10 k = 25k = 25k = 25 k = 50k = 50k = 50 k = 100k = 100k = 100

*Best GLOSH
KNN LOF KNN LOF KNN LOF KNN LOF KNN LOF

MVTec-AD zipper 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 1.0 0.42 1.0 1.0 1.0 1.0 1.0 1.0 - - 1.0

LETTER 1.0 1.0 0.35 1.0 0.52 1.0 0.82 1.0 0.94 1.0 0.98 1.0

PIMA 1.0 1.0 0.42 1.0 0.58 1.0 0.84 1.0 0.98 1.0 0.98 1.0

STAMPS 1.0 1.0 0.25 1.0 0.51 1.0 0.74 0.96 0.96 0.96 1.0 1.0

VERTEBRAL 0.9 0.95 0.23 0.95 0.47 0.95 0.9 0.95 0.95 0.95 0.95 0.9

VOWELS 1.0 1.0 0.82 1.0 0.97 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WDBC 1.0 1.0 0.08 1.0 0.19 1.0 0.52 1.0 0.94 1.0 1.0 1.0

WINE 1.0 1.0 0.08 1.0 0.16 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

YEAST 1.0 1.0 0.27 1.0 0.29 1.0 0.36 1.0 0.6 1.0 0.78 1.0

BREASTW 1.0 1.0 0.0 1.0 0.02 1.0 0.0 1.0 0.63 1.0 0.9 1.0

CARDIO 1.0 1.0 0.83 1.0 0.89 1.0 0.98 1.0 0.99 1.0 1.0 1.0

CARDIOTOCOGRAPHY 1.0 1.0 0.02 1.0 0.07 1.0 0.18 1.0 0.35 1.0 0.67 1.0

20news 3 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.98 1.0

Table 3.12: Auto-GLOSH vs KNN and LOF: Precision@n obtained on Type 2
Datasets with Global outliers

work all time. However, this is not the case. For example, in BREASTW, one can

achieve the highest precision@n (equal to 1) with k = 50, while for 20news 3, KNN

only achieves a precision@n of 1 when k = 100.

We make similar observations for global outliers, as presented in Table 3.12. How-

ever, global outliers are fairly easy to detect for all methods. For most datasets,

KNN obtains a high precision@n for most values of k. For LOF, one can see that a

high value of k (typically k = 100) works well for detecting global outliers. However,

our approach Auto-GLOSH is able to achieve high precision@n without selecting any

parameter.

In Table 3.13 one can see that in the datasets where KNN or LOF (with some typi-

cal values for k) outperforms Auto-GLOSH, they also outperform the best precision@n

achievable using GLOSH. Examples include STAMPS, VERTEBRAL, BREASTW,

and CARDIO, where KNN and LOF outperform GLOSH for some parameter values.

However, for many datasets, Auto-GLOSH achieves a precision@n close to the best

obtained by KNN and LOF. Additionally, precision@n results appear sensitive to the

choice of k in many cases for KNN and LOF. For example, in the LETTER dataset,
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Dataset Auto-GLOSH
k = 5k = 5k = 5 k = 10k = 10k = 10 k = 25k = 25k = 25 k = 50k = 50k = 50 k = 100k = 100k = 100

*Best GLOSH
KNN LOF KNN LOF KNN LOF KNN LOF KNN LOF

MVTec-AD zipper 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 1.0 0.0 1.0 0.75 1.0 1.0 1.0 1.0 - - 1.0

LETTER 0.90 0.95 0.95 0.95 1.0 0.90 0.98 0.90 0.98 0.90 0.98 0.93

PIMA 0.86 0.86 0.90 0.86 0.95 0.68 0.90 0.63 0.90 0.59 0.68 0.86

STAMPS 0.35 0.5 0.78 0.35 0.64 0.35 0.5 0.35 0.5 0.35 0.42 0.57

VERTEBRAL 0.7 0.71 0.64 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.7

VOWELS 0.88 0.92 0.92 0.88 0.92 0.88 1.0 0.84 1.0 0.88 1.0 0.92

WDBC 0.66 0.66 1.0 0.66 1.0 0.66 1.0 0.66 1.0 0.66 1.0 1.0

WINE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 0.8 0.8 0.4 0.8 0.8 1.0 0.8 0.8 1.0 1.0 1.0 1.0

YEAST 0.87 0.80 0.63 0.76 0.78 0.70 0.73 0.70 0.72 0.69 0.71 0.89

BREASTW 0.22 0.27 0.09 0.29 0.13 0.38 0.29 0.38 0.5 0.34 0.36 0.22

CARDIO 0.87 0.94 0.81 0.89 0.93 0.82 0.98 0.81 0.96 0.8 0.93 0.89

CARDIOTOCOGRAPHY 0.89 0.93 0.71 0.91 0.89 0.90 0.95 0.90 0.96 0.87 0.95 0.93

20news 3 0.95 0.95 0.73 0.95 0.95 0.95 0.95 0.95 0.95 0.91 0.95 0.95

Table 3.13: Auto-GLOSH vs KNN and LOF: Precision@n obtained on Type 2
Datasets with local outliers

increasing k decreases precision@n for KNN but keeps it stable for LOF, and for the

PIMA dataset, precision@n for both KNN and LOF changes as k increases, making

it unclear which k value should be chosen beforehand.

For the mixed outliers in Type 2 datasets, as presented in Table 3.14, one can

see that our approach, Auto-GLOSH, consistently achieves precision@n scores that

are either the best or very close to the best precision@n obtainable compared with

KNN and LOF for some of the commonly used k values. However, the uncertainty

about which k value to choose for LOF and KNN can be seen here as well. For

example, in BREASTW, KNN achieves a precision@n of 1 for k = 50. However, for

datasets such as CARDIO and YEAST, one can see that the precision@n obtained

using KNN decreases as the k value is increased from 50 to 100. LOF performs well

on some data sets such as MVTec-AD zipper, PIMA, STAMPS, VOWELS, WDBC,

and 20news 3, when choosing a high value of k, while for other datasets such as

CARDIOTOCOGRAPHY and LETTER, the precision@n of LOF decreases as the

value of k increases, and for datsets such as PIMA and STAMPS, the precision@n for

LOF decreases at first and then increases. Without having any prior knowledge about
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Dataset Auto-GLOSH
k = 5k = 5k = 5 k = 10k = 10k = 10 k = 25k = 25k = 25 k = 50k = 50k = 50 k = 100k = 100k = 100

*Best GLOSH
KNN LOF KNN LOF KNN LOF KNN LOF KNN LOF

MVTec-AD zipper 1.0 0.86 0.26 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LETTER 1.0 0.90 0.43 0.96 0.44 1.0 0.34 1.0 0.29 1.0 0.13 1.0

PIMA 1.0 0.94 0.29 1.0 0.25 1.0 0.20 1.0 0.44 1.0 1.0 1.0

STAMPS 1.0 0.93 0.18 0.96 0.12 1.0 0.15 1.0 0.84 1.0 1.0 1.0

VERTEBRAL 0.95 0.95 0.23 0.95 0.19 0.95 0.95 0.95 0.95 0.95 0.95 0.95

VOWELS 1.0 0.95 0.55 0.99 0.81 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WDBC 0.96 0.77 0.67 0.96 0.25 0.96 0.07 0.96 0.96 0.96 1.0 0.96

WINE 1.0 1.0 0.0 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

YEAST 0.76 0.76 0.35 0.79 0.47 0.82 0.61 0.82 0.67 0.81 0.75 0.83

BREASTW 1.0 0.58 0.0 0.72 0.0 0.97 0.0 1.0 0.06 1.0 0.87 1.0

CARDIO 0.92 0.86 0.39 0.87 0.43 0.94 0.77 0.94 0.92 0.91 0.95 0.94

CARDIOTOCOGRAPHY 1.0 0.86 0.33 0.91 0.39 0.98 0.33 0.99 0.13 1.0 0.08 1.0

20news 3 0.98 0.88 0.41 0.83 0.61 0.98 0.26 0.98 0.1 0.98 1.0 1.0

Table 3.14: Auto-GLOSH vs KNN and LOF: Precision@n obtained on Type 2
Datasets with mixed outliers

the underlying data distribution, it is difficult to choose a value of k that can yield the

best performance. For GLOSH, we have addressed this problem using our approach

Auto-GLOSH that can provide the best or nearly the best precision@n achievable by

GLOSH without choosing any parameters.

3.6 Conclusion

This chapter successfully answers the first research question of this thesis: “How

to select a minpts value to yield the best or nearly the best results for GLOSH by

utilizing the GLOSH scores obtained for a range of different minpts values?” Our

investigation showed that outlier GLOSH–Profiles behave differently than inlier pro-

files. Notably, beyond a specific minpts value, the outlier profiles start showing higher

GLOSH scores than inliers. We make two major observations at this specific minpts

value: (I) GLOSH scores within the profiles start changing at a similar rate, (II)

GLOSH achieves its best or nearly the best performance, in terms of precision@n.

We use these observations to develop an unsupervised strategy, Auto-GLOSH (Auto-

matic GLOSH parameter selection based on outlier profiles), to find the minpts value
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where the GLOSH scores in the profiles start changing at a similar rate—we refer

to it as m∗. We evaluate GLOSH using the m∗ value on various datasets, including

Type 2 datasets with real inliers and synthetically generated outliers (local, global,

and clumps). Overall, our evaluation showed that Auto-GLOSH is able to match the

best or nearly best precision@n that can be achieved using GLOSH. When comparing

Auto-GLOSH with the commonly used minpts values in GLOSH, we found that the

precision@n differs a lot as we change the values. Similarly, when comparing with

KNN and LOF, we found that among the commonly used neighborhood k values, the

precision@n can differ a lot. This shows the importance of Auto-GLOSH in achieving

an automated method for selecting a parameter that can result in high precision@n

values for one of the methods, GLOSH. Studying whether a similar approach could

be effective for KNN and LOF is left for future work.
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Chapter 4

Unsupervised Labelling of
Potential Outliers using GLOSH
scores

4.1 GLOSH scores at the “Best” minpts

In this section we study the sorted distribution of the GLOSH scores obtained at

the “best” minpts value, m∗, estimated using Auto-GLOSH. In practice, we do not

know n, the number of outliers, nor do we know a fixed threshold suitable to label

inliers and potential outliers. To address this issue, we first need to understand the

sorted sequence of the GLOSH scores obtained using the m∗ value, and investigate

the possibility of a pattern or gap in the GLOSH scores that can indicate a suitable

threshold. In the context of GLOSH scores, a “gap” can be defined as a noticeable

deviation or abrupt increase in an sorted sequence of GLOSH scores. Such a gap in

the GLOSH scores may indicate a sudden decrease in the density of points which may

indicate the possibility of outliers in a dataset.

As shown in the previous chapter, the m∗ value yields the best precision@n for

majority of the datasets. Thus, we expect GLOSH scores mostly of outliers to be at

the end of the sorted sequence of GLOSH scores. In Figure 4.1, we present the sorted

sequence of GLOSH scores obtained using the m∗ value on the Type 3 datasets.

The x-axis arranges the datapoints xi in ascending order of their GLOSH scores
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(a) Anisotropic–Clumps (b) Banana–Clumps (c) Circular–Clumps

(d) Anisotropic–Local (e) Banana–Local (f) Circular–Local

(g) Anisotropic–Global (h) Banana–Global (i) Circular–Global

Figure 4.1: Sorted Sequence of GLOSH scores at minpts = m∗

and the y-axis represents the corresponding GLOSH scores Γm∗(xi). The green dots

represents the GLOSH scores Γm∗ of inliers and red dots represents the scores of

outliers. Similar to what we observed for the Outlier Rank Dissimilarity–Profile

(ORD–Profile) in section 3.3, we observe an “knee like” structure, this time on the

right side of the plots. Initially, the GLOSH scores increase following an “almost

linear” trend and after a certain point, the GLOSH scores start deviating from this

trend and show an accelerated growth. The GLOSH scores of points at the beginning

of the sorted list are 0 (which is the lower bound of GLOSH scores). These scores

are assigned to the points that are the densest points in their own clusters, and after

that, since the GLOSH scores are arranged in an ascending order, they will follow an
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increasing trend. However, a more or less sudden, “knee like” increase in the GLOSH

scores should only happen, when there are points with significantly different densities

from the majority of points. Therefore, the GLOSH score at the “knee” may seem

to be a good option for a threshold to label inliers and potential outliers. However,

one can see that there are also a few inlier GLOSH scores after the “knee”. The

inlier data may itself contain points that satisfy the properties of local outliers. For

instance, if the inliers follow a Gaussian distribution, there can be datapoints that

are, for instance, more than three standard deviations away and those can already

behave like local outliers. In a strict sense, such datapoints are indeed local outliers,

but they maybe labelled as inliers.

4.2 Automatically Labelling Potential Outliers

In this section we design “Potential Outlier Labelling AppRoach” (POLAR)—a fully

unsupervised approach to label potential outliers by using the sorted sequence of

GLOSH scores obtained at the “best” minpts value, m∗, estimated using Auto-

GLOSH. Our approach does not need to specify n or any other parameter.

As we observed in the previous section, the sorted sequence of GLOSH scores forms

a “knee” when the GLOSH scores are sorted from smallest to largest. When the

GLOSH scores are computed using a minpts value that would give high precision@n,

the majority of the outliers are then (necessarily) at the tail end of the sorted list.

Taking the “knee” GLOSH score as a threshold has the potential to correctly label

the outliers and most of the inliers. Therefore, in a first step, our approach finds

the “knee” GLOSH score in the sorted sequence as the threshold. However, with

this threshold, inliers that behave like local outliers may increase the number of false

positives as their GLOSH scores may lie beyond the “knee”. Therefore, we propose

an additional strategy to estimate a threshold beyond the “knee” to lower the chances

of false positives. Taking a threshold value that is too high has a risk of labelling

outliers as inliers. Therefore, we select the value so that it is only slightly greater
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than the “knee” GLOSH score.

4.2.1 Finding the “knee” GLOSH score

In this section, we use a similar strategy to find the “knee” GLOSH score as previously

done in section 3.4 to locate the “elbow” in the ORD–Profile. As illustrated in Figure

4.2, we firstly compute the displacement vector
#    »

AB, as the difference between the last

GLOSH score B and the first GLOSH score A in the sorted sequence.

Figure 4.2: Banana Dataset with Outlier Clumps: Finding the “knee” point in the
sorted sequence of GLOSH scores at minpts = m∗. The GLOSH score E is the “knee”

GLOSH score that has the maximum orthogonal distance to
#    »

AB.

Next, we compute the orthogonal distances between each GLOSH score in the

sorted sequence and
#    »

AB. To do so, for every GLOSH score D in the sequence,

we first compute D − A to estimate the displacement vector
#    »

AD and subsequently,

the orthogonal distance as || #    »
AD× #    »

AB||
|| #    »
AB|| . The GLOSH score in the sequence with the

maximum orthogonal distance is identified as the “knee” GLOSH score.

4.2.2 Adjusting the Inlier Threshold

In this section we propose a strategy to find a threshold beyond the “knee” GLOSH

score in the sorted sequence. To do so, we first aim to capture the progression of

the inlier GLOSH scores in the sorted sequence. We use a simple linear regression

model [37] to estimate the trend of the inlier GLOSH scores in the sequence. The

idea here is to capture the “almost” linear trend of the GLOSH scores observed at

the beginning of the sorted sequence for inliers.
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The linear regression model estimates a quantitative value Ŷ based on a predictor

variable X, assuming there is approximately a linear relationship between X and Y.

The linear regression model can be represented using the following equation:

Ŷ = β0 + β1 ×X (4.1)

For a dataset with N points, the indexes of each GLOSH score in the sorted

sequence can be represented as [x1, x2, . . . , xN ]. We use the GLOSH scores until the

“knee” GLOSH score in the sorted sequence to estimate the model coefficients β0 and

β1. The optimal values for β0 and β1 are estimated by minimizing the Mean Squared

Error (MSE) between the estimated Ŷ and the known Y .

Figure 4.3: Illustration of the adjusted threshold estimation on Anisotropic dataset
with Outlier Clumps at minpts = m∗: Using a linear regression on the sorted sequence
of GLOSH scores to estimate the highest GLOSH score R. Then, we find the GLOSH
score I that is closest to R.

In Figure 4.3, the estimated regression line is represented as a black solid line.

Using the regression model we estimate the highest GLOSH score R at index xN

where N is the total number of datapoints. Intuitively, this estimated GLOSH score

R reflects the score that could have been reached if there were only inliers in the

dataset and the scores in the sequence followed the trend that was observed up to

the “knee”. Then, we search the GLOSH score that is the most similar to R in the

sorted sequence between the “knee” and xN . As shown in Figure 4.3, for the plotted
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sequence of GLOSH scores, the score I is closest to R and is taken as the adjusted

threshold.

4.3 Experimental Analysis

4.3.1 Setup

To evaluate our approach, POLAR, we use recall, F-measure, and Kubat’s G-Mean

metric [38, 39]. Recall measures the fraction of outliers labelled correctly out of all

the outliers. F-measure is the harmonic mean of recall and precision. Precision is

computed as the fraction of correctly predicted outliers out of all the instances that

are labelled as outliers. Kubat’s G-Mean metric computes a geometric mean between

recall and True Negative Rate (TNR). TNR is the fraction of inliers labelled cor-

rectly out of all inliers. The G-Mean metric is particularly useful when the datasets

are imbalanced, a common occurrence in outlier detection studies [40, 41]. It is useful

because its considers the performance in detecting both outlier and inlier samples

and provides a balanced measure. For the current investigation, we use a total of 84

datasets, including Type1, Type 2 and Type 3 datasets (as described in section

3.1.3). The Type 1 datasets are real one-class classification datasets. The datasets

used are: MVTec-AD zipper, HEPATITIS, LETTER, PIMA, STAMPS, VERTE-

BRAL, VOWELS, WDBC WINE, WPBC, YEAST, BREASTW, CARDIO, CAR-

DIOTOCOGRAPHY, and 20news 3. The Type 2 datasets are the datasets with real

inliers and synthetically generated different kinds of outliers (local, global, and outlier

clumps). To create these datasets, we use the inlier class samples from the one-class

classification datasets. The Type 3 datasets are synthetic datasets obtained from

[28], which are: Anisotropic, Banana, and Circular. Similar to what we did for Type

2 datasets, we generate different kinds of outliers (local, global, or outlier clumps)

using the inlier samples provided in the dataset.
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(a) Clumps (b) Global (c) Local

(d) Clumps (e) Global (f) Local

(g) Clumps (h) Global (i) Local

Figure 4.4: F-Measure obtained on Type 3 Datasets across different thresholds at
minpts = m∗: The red dashed line signifies the F-measure obtained when using the
knee GLOSH score as the threshold, while the green dotted line signifies the F-measure
obtained when using the adjusted threshold.

4.3.2 Results

In the following figures we plot the value of each measure as a function of every possible

threshold on a dataset. Each GLOSH score in the sorted sequence of GLOSH scores is

taken as a threshold and points with a GLOSH score below the threshold are labelled

as inlier. The X-axis represents the GLOSH scores taken as thresholds, while the

Y-axis represents the value of a measure obtained with that threshold.

Figure 4.4 shows the result for the F-Measure on Type 3 datasets. Firstly, one

can see that the “perfect” threshold—where the F-Measure is 1 or close to 1—varies

across datasets. For example, in the Anisotropic dataset with outlier clumps (Figure
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(a) Clumps (b) Global (c) Local

(d) Clumps (e) Global (f) Local

(g) Clumps (h) Global (i) Local

Figure 4.5: G-Mean obtained on Type 3 Datasets across different thresholds at
minpts = m∗: The red dashed line signifies the G-Mean obtained when using the
knee GLOSH score as the threshold, while the green dotted line signifies the G-Mean
obtained when using the adjusted threshold.

4.4c), a threshold of 0.5 results in a very low F-measure (less than 0.4). Whereas, for

the banana dataset with global outliers (Figure 4.4e), a threshold of 0.5 results in a

F-Measure of 1. This shows that one cannot assume a fixed threshold that will be

applicable across all datasets. Across most of the Type 3 datasets, one can see that

the adjusted threshold estimated using our method, POLAR, consistently leads to

an F-Measure of 1 or close to that. Taking the unadjusted knee GLOSH score as the

threshold results in a lower F-Measure in most of the datasets. As discussed earlier,

this happens because there may exist inliers with GLOSH scores beyond the knee,

leading to an increase in false positives.
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Dataset

POLAR
*Best

Knee Adjusted

Recall TNR F-Measure G-Mean Recall TNR F-Measure G-Mean F-Measure G-Mean

MVTec-AD zipper 1.0 0.89 0.49 0.94 1.0 0.98 0.87 0.99 1.0 1.0

HEPATITIS 1.0 0.97 0.75 0.98 1.0 1.0 1.0 1.0 1.0 1.0

LETTER 1.0 0.93 0.61 0.96 1.0 0.99 0.94 0.99 1.0 1.0

PIMA 1.0 0.93 0.61 0.96 1.0 0.99 0.96 0.99 1.0 1.0

STAMPS 1.0 0.86 0.41 0.92 1.0 0.97 0.79 0.98 1.0 1.0

VERTEBRAL 1.0 0.83 0.37 0.91 1.0 0.96 0.71 0.98 1.0 1.0

VOWELS 1.0 0.88 0.46 0.94 1.0 0.98 0.87 0.99 1.0 1.0

WDBC 1.0 0.79 0.33 0.89 1.0 0.98 0.83 0.99 1.0 1.0

WINE 1.0 0.85 0.41 0.92 1.0 0.99 0.92 0.99 1.0 1.0

WPBC 1.0 0.79 0.34 0.89 1.0 0.98 0.89 0.99 1.0 1.0

YEAST 1.0 0.78 0.31 0.88 0.40 0.96 0.40 0.62 0.56 0.95

BREASTW 1.0 0.64 0.21 0.80 1.0 0.88 0.46 0.94 1.0 1.0

CARDIO 1.0 0.83 0.37 0.91 0.71 0.99 0.76 0.83 0.85 0.99

CARDIOTOCOGRAPHY 1.0 0.92 0.55 0.95 1.0 0.99 0.96 0.99 1.0 1.0

20news 3 1.0 0.87 0.43 0.93 1.0 0.97 0.78 0.98 1.0 1.0

Table 4.1: Evaluating POLAR on Type 2 datasets with outlier clumps atminpts = m∗:
We compare the performance achieved by POLAR with the best performance that
can be achieved across all possible thresholds.

In Figure 4.5 we plot the G-Mean for every possible threshold on a dataset. Figure

4.5 shows the result for the G-Mean Measure on Type 3 datasets. One can observe

that for most of the Type 3 datasets, the adjusted threshold estimated by POLAR

consistently yields a G-Mean of 1 or close to 1 in most cases. This implies that the

adjusted threshold is often able to separate most of the inlier and outlier GLOSH

scores. For datasets such as Circular and Banana with local outliers, one can see that

with the adjusted threshold there is a drop in the G-Mean value compared to the

threshold placed at the “knee” GLOSH score. This happens when certain inliers get

GLOSH scores very close to the local outliers. In those cases, the “knee” GLOSH

score tends to perform better as a threshold.

In Table 4.1 we show the recall, true negative rate, F-measure, and G-Mean ob-

tained using the knee GLOSH score and the adjusted threshold on the Type 2 datasets

with outlier clumps. Additionally, we also show the F-measure and G-mean obtained

using the best possible threshold. One can see that for each of the datasets, the

adjusted threshold estimated by our approach, POLAR, leads to a better F-measure
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Dataset

POLAR
*Best

Knee Adjusted

Recall TNR F-Measure G-Mean Recall TNR F-Measure G-Mean F-Measure G-Mean

MVTec-AD zipper 1.0 0.93 0.60 0.96 1.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 0.95 0.66 0.97 1.0 1.0 1.0 1.0 1.0 1.0

LETTER 1.0 0.93 0.61 0.96 1.0 0.99 0.98 0.99 1.0 1.0

PIMA 1.0 0.95 0.70 0.97 1.0 0.99 0.94 0.99 1.0 1.0

STAMPS 1.0 0.81 0.34 0.90 1.0 0.96 0.73 0.98 1.0 1.0

VERTEBRAL 1.0 0.81 0.34 0.90 1.0 0.95 0.68 0.97 0.95 0.99

VOWELS 1.0 0.96 0.73 0.98 1.0 0.99 0.95 0.99 1.0 1.0

WDBC 1.0 0.82 0.36 0.90 1.0 0.98 0.85 0.99 1.0 1.0

WINE 1.0 0.87 0.44 0.93 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 1.0 0.82 0.18 0.90 1.0 0.96 0.54 0.98 1.0 1.0

YEAST 1.0 0.79 0.32 0.89 0.75 0.98 0.69 0.86 0.73 0.96

BREASTW 1.0 0.67 0.23 0.82 1.0 0.90 0.51 0.95 1.0 1.0

CARDIO 1.0 0.86 0.42 0.93 1.0 0.99 0.94 0.99 1.0 1.0

CARDIOTOCOGRAPHY 1.0 0.94 0.65 0.97 1.0 0.99 0.96 0.99 1.0 1.0

20news 3 1.0 0.87 0.45 0.93 1.0 0.97 0.79 0.98 1.0 1.0

Table 4.2: Evaluating POLAR on Type 2 datasets with global outliers atminpts = m∗:
We compare the performance achieved by POLAR with the best performance that
can be achieved across all possible thresholds.

than taking the knee GLOSH score. Although we get an increased F-measure, one

can see that for datasets such as YEAST and CARDIO, the recall drops from what

we could get with the knee GLOSH score as the threshold. This shows that the ad-

justed threshold increases the precision (reduces false positives) at the cost of recall

(increases false negatives) in those datasets. Therefore, one can see a drop in the

G-Mean with the adjusted threshold when compared to the “knee” GLOSH score.

However, across most of the datasets in Table 4.1, one can see that with the adjusted

threshold we achieve F-Measure and G-Mean scores that are close to the best that

can be achieved if one somehow knows the best possible threshold.

In Table 4.2 we show the recall, true negative rate, F-measure, and G-Mean ob-

tained using the knee GLOSH score and the adjusted threshold on the Type 2 datasets

with global outliers. We also show the F-measure and G-mean obtained using the

best possible threshold. Overall, one can see that even for global outliers, the adjusted

threshold tends to be a better choice than the knee. With the adjusted threshold, one

can see that except for the YEAST dataset, the recall does not drop for any of the
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Dataset

POLAR
*Best

Knee Adjusted

Recall TNR F-Measure G-Mean Recall TNR F-Measure G-Mean F-Measure G-Mean

MVTec-AD zipper 1.0 0.94 0.27 0.97 1.0 0.98 0.66 0.99 1.0 1.0

HEPATITIS 1.0 0.32 0.11 0.57 0.0 1.0 0.0 0.0 1.0 1.0

LETTER 1.0 0.95 0.65 0.97 0.85 0.99 0.91 0.92 0.92 0.98

PIMA 1.0 0.78 0.29 0.88 0.90 0.99 0.88 0.95 0.93 0.99

STAMPS 1.0 0.86 0.40 0.93 0.35 0.98 0.41 0.59 0.53 0.95

VERTEBRAL 1.0 0.82 0.35 0.91 0.8 0.96 0.61 0.87 0.77 0.96

VOWELS 1.0 0.93 0.35 0.96 0.96 0.98 0.74 0.97 0.92 0.99

WDBC 1.0 0.82 0.08 0.91 1.0 0.96 0.3 0.98 0.85 0.99

WINE 1.0 0.90 0.26 0.95 1.0 0.96 0.5 0.98 1.0 1.0

WPBC 1.0 0.80 0.25 0.89 1.0 0.96 0.66 0.98 0.88 0.99

YEAST 0.97 0.80 0.33 0.88 0.97 0.97 0.77 0.97 0.91 0.98

BREASTW 1.0 0.50 0.16 0.71 0.72 0.85 0.31 0.78 0.36 0.83

CARDIO 1.0 0.84 0.39 0.92 0.98 0.96 0.73 0.97 0.88 0.98

CARDIOTOCOGRAPHY 1.0 0.89 0.48 0.94 0.79 0.99 0.84 0.88 0.91 0.98

20news 3 1.0 0.89 0.43 0.94 1.0 0.97 0.75 0.98 0.97 0.99

Table 4.3: Evaluating POLAR on Type 2 datasets with local outliers at minpts = m∗:
We compare the performance achieved by POLAR with the best performance that
can be achieved across all possible thresholds.

other datasets when compared to the knee. This means that among the “potential

outliers” labelled using the adjusted threshold, all the “true outliers” have a larger

GLOSH score than the threshold most of the times. Overall, one can see that with

the adjusted threshold, we achieve high values for F-measure and G-Mean that are

close to the best possible values across many datasets. However, for both global out-

liers and clumps, choosing the “knee” GLOSH score as the threshold always results

in high recall.

In Table 4.3 we show the recall, true negative rate, F-measure, and G-Mean ob-

tained using the knee GLOSH score and the adjusted threshold on the Type 2 datasets

with local outliers. We also show the F-measure and G-mean scores that is achievable

using the best possible threshold. The local outliers are expected to pose a challenge

as some datapoints that are labelled as inliers may behave like local outliers. There-

fore, these inlier points end up with GLOSH scores very close to scores of “true local

outliers” and some may even have a higher score. In such cases, when we care more

about finding true positives than avoiding false positives, it maybe better to take the
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Dataset

POLAR
*Best

Knee Adjusted

Recall TNR F-Measure G-Mean Recall TNR F-Measure G-Mean F-Measure G-Mean

MVTec-AD zipper 1.0 0.91 0.66 0.95 1.0 1.0 1.0 1.0 1.0 1.0

HEPATITIS 1.0 0.97 0.85 0.98 1.0 0.98 0.92 0.99 1.0 1.0

LETTER 1.0 0.94 0.78 0.97 1.0 1.0 1.0 1.0 1.0 1.0

PIMA 1.0 0.88 0.65 0.94 1.0 0.898 0.67 0.94 1.0 1.0

STAMPS 1.0 0.86 0.61 0.92 1.0 0.88 0.66 0.94 1.0 1.0

VERTEBRAL 1.0 0.83 0.55 0.91 1.0 0.96 0.85 0.98 0.97 0.99

VOWELS 1.0 0.90 0.66 0.95 1.0 1.0 1.0 1.0 1.0 1.0

WDBC 1.0 0.82 0.46 0.90 1.0 0.93 0.68 0.96 0.98 0.99

WINE 1.0 0.84 0.51 0.91 1.0 1.0 1.0 1.0 1.0 1.0

WPBC 1.0 0.79 0.45 0.89 1.0 0.96 0.83 0.98 1.0 1.0

YEAST 1.0 0.72 0.43 0.85 0.83 0.96 0.77 0.89 0.77 0.95

BREASTW 1.0 0.98 0.93 0.99 1.0 0.88 0.65 0.94 1.0 1.0

CARDIO 1.0 0.83 0.56 0.91 0.91 0.99 0.92 0.95 0.94 0.99

CARDIOTOCOGRAPHY 1.0 0.83 0.56 0.91 1.0 0.99 0.98 0.99 1.0 1.0

20news 3 1.0 0.87 0.61 0.93 1.0 0.98 0.91 0.99 0.99 0.99

Table 4.4: Evaluating POLAR on Type 2 datasets with mixed outliers atminpts = m∗:
We compare the performance achieved by POLAR with the best performance that
can be achieved across all possible thresholds.

unadjusted threshold. In Table 4.3, one can see that there exists multiple datasets for

which taking the knee GLOSH score as the threshold yields a better recall. However,

in many of the datasets one can still get a high recall with the adjusted threshold

estimated using POLAR. One can see that with the adjusted threshold, one gets a

higher true negative rate (TNR). With any kind of outliers, the false positives tends

to be low using the adjusted threshold. Therefore, in most of the datasets using the

adjusted threshold yields a higher F-measure than choosing the knee. Even for local

outliers, across many datasets, taking the adjusted threshold for labelling is able to

yield a performance that is close to the best performance that can be achieved if one

knows the best possible threshold.

In Table 4.4 we show the results obtained on the Type 2 datasets with mixed

outliers. Overall, one can see that for mixed outliers, the adjusted threshold is a

better choice than taking the knee GLOSH score as the threshold. Although, the

adjusted threshold yields a lower recall for datasets such as YEAST and CARDIO,

its still records a higher F-Measure and G-Mean on both the datasets compared to
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Dataset

POLAR
*Best

Knee Adjusted

Recall TNR F-Measure G-Mean Recall TNR F-Measure G-Mean F-Measure G-Mean

MVTec-AD zipper 0.44 0.94 0.56 0.64 0.0 1.0 0.0 0.0 0.64 0.74

HEPATITIS 1.0 0.28 0.35 0.53 1.0 0.29 0.35 0.54 0.41 0.68

LETTER 0.27 0.9 0.19 0.49 0.0 1.0 0.0 0.0 0.2 0.62

PIMA 0.12 0.94 0.2 0.34 0.13 0.932 0.21 0.35 0.61 0.68

STAMPS 0.64 0.87 0.44 0.75 0.58 0.87 0.41 0.71 0.5 0.89

VERTEBRAL 0.03 0.78 0.02 0.16 0.0 0.96 0.0 0.0 0.22 0.46

VOWELS 0.94 0.83 0.27 0.88 0.0 1.0 0.0 0.0 0.55 0.89

WDBC 1.0 0.82 0.24 0.9 1.0 0.94 0.51 0.97 0.58 0.98

WINE 0.0 0.8 0.0 0.0 0.0 1.0 0.0 0.0 0.17 0.48

WPBC 0.17 0.8 0.18 0.36 0.0 0.97 0.0 0.0 0.42 0.56

YEAST 0.14 0.79 0.19 0.34 0.01 0.97 0.02 0.11 0.5 0.45

BREASTW 0.91 0.95 0.91 0.93 0.97 0.95 0.94 0.96 0.94 0.96

CARDIO 0.56 0.74 0.28 0.65 0.01 1.0 0.02 0.1 0.29 0.66

CARDIOTOCOGRAPHY 0.25 0.7 0.22 0.42 0.0 1.0 0.0 0.0 0.35 0.47

20news 3 0.23 0.93 0.18 0.46 0.06 0.99 0.11 0.25 0.25 0.67

Table 4.5: Evaluating POLAR on Type 1 datasets at minpts = m∗: We compare the
performance achieved by POLAR with the best performance that can be achieved
across all possible thresholds.

choosing the GLOSH score at the knee as the threshold. One can also see across

many datasets, the adjusted threshold estimated using POLAR yields a performance

that is close to the best possible performance.

In Table 4.5 we present the results in the real one-class classification datasets.

Overall, one can see that taking the “knee GLOSH score” as the threshold or the

adjusted threshold, the recall is low in most datasets. As we showed earlier in Figure

3.11, in these datasets, the GLOSH–Profiles of the datapoints labelled as outliers

show very close or even lower GLOSH scores than those of the datapoints labelled

as inliers. Therefore, many of the labelled outliers get a GLOSH score before the

knee GLOSH score in the sorted sequence. This impacts the overall performance as

reported in Table 4.5 and it shows once again that instances of downsampled classes

from classification datasets are not necessarily behaving according to the common

definitions of outliers in the given feature spaces.
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4.4 Conclusion

This chapter successfully answers the second research question of this thesis: Given a

minpts value that assigns most, if not all, “true outliers” higher GLOSH scores than

the “true inliers”, how to select a threshold to label inliers and “potential outliers”?

In this chapter we develop an unsupervised strategy, POLAR, to estimate a threshold

for labelling inliers and “potential outliers” using the “best” minpts value, m
∗. Across

many datasets, the results indicate that the threshold estimated using POLAR closely

approximates the best achievable performance w.r.t. f-measure and G-Mean.
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Chapter 5

Conclusion & Future Work

5.1 Conclusions

This thesis addresses two key challenges: (i) the selection of a minpts value that yields

the best or nearly the best performance for GLOSH, and (ii) the subsequent challenge

of determining a suitable threshold for labelling inliers and “potential outliers” once

the best or nearly the best minpts value is known.

To address the first challenge, we propose using GLOSH–Profiles, which that cap-

ture GLOSH scores at a range of different minpts values. Through a comprehensive

study on different datasets, we observe different behaviors in GLOSH–Profiles for dif-

ferent outlier types. One major observation revealed that at the minpts value where

GLOSH yields the best or nearly the best performance in terms of precision@n, the

GLOSH scores in the profiles start to change at a similar rate. This observation

served as a key to develop an unsupervised approach, Auto-GLOSH, to estimate the

minpts value where the GLOSH in the profiles scores start to change at a similar rate

—what we call as the “best” minpts value, m∗. The experimental analysis across a

range of datasets showed that the m∗ value determined using Auto-GLOSH is able

to yield the best or nearly the best results for GLOSH.

To address the second challenge, we firstly investigate the behavior of the sorted

sequence of the GLOSH scores w.r.t. the m∗ value. Our investigation revealed a

distinct pattern: the scores initially follow an “almost linear” trend followed by a
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“knee,” indicating a deviation where the outlier GLOSH scores lie. This observation

served as a key to develop an unsupervised strategy, POLAR, for automatic labeling

“potential outliers” and inliers in a dataset based on the distribution of the sorted

sequence of GLOSH scores at the “best” minpts value, m∗. POLAR undertakes a

parameter-less estimation of a threshold in the GLOSH scores for labelling. Across

various datasets, the results indicate that the threshold estimated using POLAR

closely approximates the best achievable performance when one knows the perfect

threshold for labelling.

5.2 Future Work

There are a few avenues that can be explored as future work in this area of research.

Similar to GLOSH, other nearest neighbor based outlier detection methods such as

KNN and LOF estimates outlier scores based on the deviation of a datapoint from

its nearest neighborhood, defined by a parameter k. Given the sensitivity of these

algorithms to the choice of k, our proposed strategy to find the “best” minpts value,

may hold potential for also identifying the “best” k value for those methods. Con-

sidering the commonality in their underlying principles, it is plausible that outlier

scores generated by these methods may exhibit a “knee”-like structure, similar to our

observations with GLOSH. Therefore, our threshold identification strategy, POLAR,

may be applicable to those methods. We plan to investigate the feasibility of apply-

ing our strategies, on algorithms that estimate outlier scores based on the nearest

neighborhood of datapoints.

In our investigation, we saw that the GLOSH–Profiles of different outliers behave

differently. Therefore, we also plan to investigate strategies that can capture the

behavior of GLOSH–Profiles to automatically identify the types of different outliers

in a dataset.
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[4] J. Rodŕıguez-Ruiz, J. I. Mata-Sánchez, R. Monroy, O. Loyola-Gonzalez, and A.
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