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Abstract

The objectives of this thesis are to develop data-driven approaches for control perfor­

mance assessment and predictive control design for multirate systems. Some related 

outstanding problems for univariate systems are also addressed. The benchmark is 

chosen as minimum variance control (MVC) to assess multirate control loop perfor­

mance because MVC provides us a theoretical lower bound of the output variance 

under linear feedback control, and it provides useful information such as how well 

the current controller is performing and how much “potential” there is to improve 

the control performance.

Generally speaking, a multirate controller performs better than a slow-single rate 

(SSR) controller but worse than a fast single-rate (FSR) controller in the sense of 

minimum variance control. This conjecture is theoretically proved in Chapter 2 

for a continuous linear time-invariant (LTI) single-input and single-output (SISO) 

system. The optimal FSR  multirate and SSR controllers are designed under the 

same performance criterion: variance of the fast sampled output. Basic statistical 

properties of the discretization of continuous stochastic disturbance models are in­

vestigated. A linear matrix inequality (LMI) approach is developed to derive the 

optimal controllers for dual-rate (DR) and SSR loops.

Chapter 3 discusses data-driven MVC design and control performance assess­

ment based on the MVC-benchmark for multirate systems. A lifted model is used 

to  a n a ly ze  th e  m u ltir a te  sy s te m  in  a  s ta te -s p a c e  fram ew ork  an d  th e  lif t in g  te c h ­

nique is applied to derive a subspace equation for multirate systems. From the 

subspace equation the multirate MVC law and the algorithm to estimate the multi­

rate MVC-benchmark variance or performance index are developed. The m ultirate 

optimal controller is derived from a set of input-output open-loop experimental data 

and thus this approach is data-driven since it does not involve an explicit model.
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The presented MVC-benchmark algorithm requires a set of open-loop experimental 

data and closed-loop routine operating data. In contrast to traditional control per­

formance assessment algorithms, no explicit models or model parameters, namely, 

transfer function matrices, Markov parameters or interactor matrices, are needed in 

the data driven approach.

Besides the data-driven MVC control, predictive control laws are also designed 

in Chapter 3 and 4 for both single-rate and multirate systems via system open-loop 

input-output data. Comparing with the previous data-driven predictive control ap­

proach, the developed predictive controllers can handle systems where only partial 

on-line outputs measurements are available and m ultirate systems. This is to circum­

vent the problems tha t in reality, some outputs may not be measured in real-time, 

or are too costly to measure at fast sampling rate.
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Chapter 1

Introduction

W ith an objective towards data-driven subspace approach for performance assess­

ment and predictive control, the work of this thesis is related to several fundamental 

subjects in control and identification, such as multirate systems, control perfor­

mance assessment, subspace identification and subspace-based predictive control. 

This chapter starts by reviewing existing work in these areas, then discusses the 

objectives, motivation, and contribution of the thesis research, and finally presents 

the outline of the thesis.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 M ultirate system s

M ultirate systems, also known as multirate sampled-data (MRSD) systems, consist 

of two or more sampling and hold elements tha t operate with different frequen­

cies. M ultirate systems have been widely applied in many industrial fields such as 

electrical, mechanical and chemical engineering. This is because in large scale mul­

tivariable digital systems it is often unrealistic or sometimes impossible to sample 

all physical signals at one single rate. For example, in chemical processes, different 

variables such as flows, temperatures and compositions may be sampled at different 

rates depending on their signal bandwidths. Another reason is tha t multirate sys­

tems can often achieve objectives tha t cannot be achieved by single-rate systems, for 

instance, usually the optimal linear quadratic Gaussian (LQG) cost function of a 

multirate system is larger than tha t of a fast single-rate (FSR) system and less than 

tha t of a slow-single rate (SSR) system; thus a better performance-implementation 

tradeoff can be obtained by using multirate systems.

The research on multirate systems can be traced back to 1957 [40], when the 

concept of lifting was developed by Kranc from the switch decomposition tech­

nique. From then on, the lifting technique, which converts a linear periodically 

time-varying (LPTV ) multirate system to a linear time-invariant (LTI) one, has 

been a most powerful tool used for m ultirate systems design and analysis. Much of 

the recent work on multirate systems has been in the control design and model iden­

tification fields. M ultirate LQG design was studied in [47], in which it was noted 

tha t the causality constraint was a convex one and hence a numerical technique 

based on convex optimization was proposed. In [76], explicit optimal solutions for 

the multirate H 2 optimal problem were obtained by using a projection method. In 

[11], a direct method was given based on the frequency-domain technique and the 

nest algebra. A state-space approach was shown in [67], which treated a multirate 

pure discrete-time system by a state space model and solved the H 2 control problem 

with the causality constraint in terms of two Riccati equations. A direct state-space 

solution of the multirate system H i  optimal control was given in [57], which avoided 

converting the sampled-data problem to an equivalent discrete-time problem. A 

generalized predictive control scheme for multirate systems was proposed in [66].

2
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In the multirate model identification area, an algorithm was proposed tha t uses 

slowly sampled outputs and fast control inputs to estimate the intersample outputs 

in [45]. A technique was presented in [74] to estimate the models of periodically 

time-varying systems. The problem of identifying a fast single-rate model with slow 

sampling period was studied in [42] based on multirate input-output data, which 

differs from [74] in tha t not only a lifted model for the multirate process but also 

a fast single-rate model was identified. The related issues were further discussed in

[78] such as the uniqueness of the fast-rate system, controllability and observability 

of the lifted system. The paper [65] provided a method estimating the time delay 

of a SISO continuous-time system by analyzing the interactor matrix of the lifted 

system. The identifiability of closed-loop identification via fast-sampling direct ap­

proach was studied in [77], which gave a new point of view based on cyclostationary 

signal processing and bispectral analysis showing tha t a traditional identifiability 

condition (an external persistently exciting test signal) may be removed.

The study of multirate systems has been very active for decades, but little work 

has been done in multirate control performance assessment. Like all controllers, mul­

tirate controllers need to be maintained, monitored and tuned routinely. Because 

some problems can not be avoided such as sensor or actuator failure, equipment 

fouling, feedstock variability, product changes, and seasonal influences, even if a 

controller initially performs well, the aforementioned factors may lead to its abrupt 

or gradual performance deterioration. Thus, for those control loops where multi­

rate controllers have been implemented, m ultirate control performance assessment is 

necessary to ensure tha t they are working as designed. This is our initial motivation 

to choose multirate performance assessment as one of the proposed research top­

ics. M ultirate control performance assessment is an intersection between multirate 

control systems and control performance assessment fields.

1.2 Control performance assessm ent

Control performance assessment is an im portant technique to assist process opera­

tions with high efficiency. There are many ways to assess the performance of process 

controllers, but in general they explicitly or implicitly involve comparing the current 

control quality against some standard. To the best of our knowledge, little work

3
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has been done in multirate control performance assessment, even though multirate 

sampling or operations are not uncommon in industry. Due to the lack of pub­

lished work on m ultirate control performance assessment, we will only review the 

im portant research which has been done for single-rate control loops.

For linear systems, it is known tha t minimum variance control (MVC) is the best 

possible control in the sense tha t no other controllers can provide a lower closed- 

loop variance [5]. Many papers [22, 12, 68, 46, 28] have shown tha t MVC is a useful 

benchmark to assess control-loop performance. Several excellent reviews of control 

performance assessment theoretical issues have been published, such as [55, 21, 70]. 

The current status in control performance assessment technology and industrial ap­

plications was reviewed in [31]. A significant work is [22] by Harris, who presented a 

new direction and framework for the control performance-assessment area. It applies 

time-series analysis to find a suitable expression for the feedback controller-invariant 

terms from closed-loop routine operating data, and subsequently uses it as a bench­

mark to assess single-input and single-output (SISO) control-loop performance. The 

filtering and correlation analysis in [28] extends the method in [22] to multi-input 

and multi-output (MIMO) processes. Other MIMO performance assessment work 

can also be found in [23]. To estimate the MVC-benchmark variance from routine 

operating data, the time delay (SISO case) or the interactor m atrix (MIMO case) 

must be known a priori. This is a common point in these aforementioned traditional 

methods. The factorization of the interactor matrix by singular value decomposi­

tion is one of the main contributions in [29]. A similar result is given in [38], which 

presents a one-shot solution to estimate the MVC-benchmark variance, but it re­

quires the first few Markov parameters in multivariable feedback control loops. A 

framework based on subspace matrices is studied for the estimation of the MVC- 

benchmark variance for multivariate feedback control systems [27]. This algorithm 

consolidates the traditional three-step procedure, model identification, closed-loop 

time series analysis, and extraction of the MVC benchmark, into a single shot. No 

prior knowledge, such as Markov parameters or interactor matrices are needed in 

the algorithm.

There are approaches other than the MVC-based techniques, such as frequency 

analysis [35], and likelihood ratio methods [71]. The method to estimate the PID-

4
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achievable performance is studied in [37, 18]. A benchmark in terms of user-specified 

closed-loop dynamics is discussed in [29] by defining in advance what performance 

is acceptable. To take control action limitation into account, the paper [25] presents 

a pragmatic approach to evaluate control performance based on the LQG control 

benchmark via LQG trade-off curves from the estimated plant and disturbance mod­

els. In [32], a method to assess the performance with LQG benchmark for univariate 

model predictive controllers is proposed. A monitoring technique is proposed to de­

tect and flag poor control performance for an individual controlled variable based 

on analyzing run length distribution [44],

1.3 Subspace identification m ethods

System identification can be defined as building mathematical models of systems 

using input-output measurements. Subspace identification methods were developed 

in the late 80’s and early 90’s. They allow the identification of a system state space 

model directly from data, which is very convenient for estimation, filtering, predic­

tion and control. The name “subspace” comes from the fact tha t the basic objects 

which are constructed in the algorithms are subspaces generated by the data. A 

typical subspace identification algorithm contains two steps: the first step is mak­

ing data projections to obtain subspace matrices; the second step is to extract a 

state space model from the subspace matrices [52]. Subspace methods are appeal­

ing because neither canonical parametrization nor iterative nonlinear optimization 

is involved; instead, the main computational tools are simple and numerically ro­

bust such as orthogonal projections and singular-value decompositions. Moreover, 

subspace methods have better numerical reliability and modest computational com­

plexity compared with the prediction error method (PEM ) particularly when the 

numbers of outputs and states are large.

A m o n g  th e  su b sp a ce  id en tific a tio n  m e th o d s , th e  ca n o n ica l v a r ia te  a n a ly s is  (C V A )  

by Larimore [41], the numerical algorithms for subspace state space identification 

(N4SID) by Van Overschee and De Moor [51], the multivariable output error state 

space identification procedure (M O ESP) by Verhaegen [73] and the deterministic 

and stochastic subspace system identification and realization (DSR) by Di Ruscio 

[58] are the algorithms which not only resolve the problem of system identification

5
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but also deal with the additional problem of structure identification. A unifying the­

orem is given in [52] providing a framework in which several subspace identification 

methods can be interpreted as a singular-value decomposition (SVD) task with dif­

ference choices of weighing. An overview of theoretical and numerical issues about 

subspace identification methods can be found in [75] and [50]. An instrumental vari­

able subspace identification approach, which gives consistent model estimates under 

the errors-in-variables situation, is developed using principal component analysis in

[79]. A closed-loop subspace identification approach adopted the error in variable 

structure through a QR projection and SVD decomposition is proposed in [26].

1.4 Subspace-based predictive control

The predictive control has usually been studied under the heading of model pre­

dictive control (M PC). This is because M PC  has considerable advantages relative 

to other conventional control strategies: the ability to handle input and state con­

straints for large scale multivariable plants, the capability of dealing with variables 

interaction, and the ease of adaptation to new operating conditions [17, 32]. MPC 

refers to a class of computer control algorithms tha t utilize an explicit process model 

to predict the future response of a plant, and then using the predicted response in 

a cost function minimization to obtain a sequence of future optimal control signals. 

Only the first optimal control input will be sent into the plant, this is also known 

as receding horizon control.

Like any other model-based control, conventional MPC relies heavily on process 

models. An accurate process model is required if the process is to be regulated 

tightly. Usually there are two ways to obtain process models: the analytic approach 

where certain process knowledge (such as fundamental physical laws) is required to 

derive the model and the experimental approach by fitting a model to the input- 

o u tp u t  d a ta  th r o u g h  s y s te m  id en tific a tio n . U n lik e  th e  m o d e l-b a se d  co n tro l d es ig n  

approach, where the system model is required, we follow a new approach based on 

results from the area of subspace system identification [58, 59] to design optimal 

control laws when only the input-output data of a given system are available. Fig­

ure 1.1 illustrates the difference between the model-based predictive control and 

the data-driven predictive control, where one can see tha t the process modelling is

6
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M odel-based
P rocess  knowledge

Coni.ro H e rP rocess  mode.!.

In p u t/o u tp u t d a ta

Figure 1.1: Model-based approach vs. data-driven approach.

bypassed. The idea of designing predictive controllers using subspace system iden­

tification techniques has been investigated in recent years. For instance, subspace 

matrices are used in the model-free LQG design [14] and subspace predictive control 

design [15]. In addition, the extended state space model is used to obtain predictive 

controllers [60]. The subspace approach to designing a predictive controller with all 

the im portant predictive control features is investigated in [34]. A model-free predic­

tive controller based on subspace identification technique with Laguerre polynomials 

is proposed in [7]. A data-based LQG control design including a data-based observer 

and an optimal feedback based on the system Markov parameters is developed in [2].

1.5 M otivation and objectives

Our work is motivated by the following reasons:

• Compared with single-rate systems, multirate systems are more complex and 

challenging. Though much research has been done in single-rate performance 

assessment areas, the work for multirate performance assessment is rare.

• The data-driven design approaches presented in the literature so far has been 

limited to single-rate systems. Particularly, they are developed under condi­

tions tha t all output measurements are obtained on-line in closed-loop systems.

Due to these reasons, the main objectives of this thesis are to develop a data- 

driven control performance assessment method for multirate systems, and to design 

optimal control for single-rate systems (when not all outputs are measurable) and

7
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for multirate systems. We choose MVC as the benchmark to assess multirate control 

loop performance because it provides us a theoretical lower bound of the output vari­

ance under linear feedback control, and it gives useful information such as how well 

the current controller is performing and how much “potential” there is to improve 

the control quality. Besides the data-driven MVC control, we design a data-driven 

predictive control which can handle input and state constraints, deal with variables 

interaction, and adapt to new operating conditions easily. Our detailed objectives 

are given below:

• Exploring and then analyzing the performance limits caused by time delays 

of multirate systems and single-rate systems. Theoretically justifying tha t a 

multirate controller performs better than an SSR controller but worse than 

an FSR controller in the sense of minimum variance control. This topic is of 

importance to control specialists and process engineers who have implemented 

multirate control systems to their control loops.

• Developing data-driven MVC design and control performance assessment based 

on MVC-benchmark for multirate systems.

•  Designing the single-rate data-driven predictive control based on partially 

available system outputs. This is to circumvent the problem tha t in reality, 

some outputs may not be measured in real time, or are too costly to measure 

on-line.

•  Developing multirate data-driven predictive control based on system input- 

output data.

1.6 Contributions of this thesis

Oriented by the objectives, we have mainly contributed in:

• Investigation of the minimum variance control problem for single-input single­

output linear systems sampled with different rates: fast, dual and slow rates. 

A discretization method preserving the mean and auto-correlation of a con­

tinuous stochastic disturbance model is developed. A linear m atrix inequality

8
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(LMI) approach is proposed to derive the minimum variance controllers for 

the lifted dual-rate and slow-rate control loops. It is theoretically proved that 

the performance of an optimal dual-rate controller is superior to tha t of a 

slow single rate controller but inferior to tha t of an optimal fast single rate 

controller in the sense of minimum variance control.

•  Development of the data-driven MVC and the MVC-benchmark variance es­

tim ation for a multirate system. A m ultirate subspace input-output equation 

is derived via the lifting approach, from which the multirate MVC law and 

the algorithm to estimate the m ultirate MVC-benchmark variance are devel­

oped. The proposed algorithms are data-driven: the multirate MVC controller 

design only requires a set of input-output experimental data; the presented 

MVC-benchmark estimation algorithm requires a set of open-loop experimen­

tal data  and closed-loop routine operating data.

• Proposal of a predictive control strategy tha t can handle constraints and op­

timize control performance using the subspace approach. Comparing with 

the previous data-driven predictive control approach, the developed predic­

tive controller can handle systems where only partial on-line outputs mea­

surements are available. The proposed algorithm is demonstrated through a 

SOFC model which has been commonly investigated in the dynamic SOFC 

modeling/control literature lately.

• Development of a multirate data-driven predictive control including feedfor­

ward control. The proposed multirate predictive control is data-driven. Par­

ticularly, the developed algorithm is applied to a multirate SOFC system, 

where the explicit dynamic model of SOFC is generally difficult to develop, 

and the fuel utilization is difficult to sample in the fast rate.

1.7 Organization of the thesis

Chapter 2 investigates the MVC problem for single-input single-output linear sys­

tems sampled with different rates: fast, dual and slow rates. The conjecture is 

theoretically justified tha t a dual-rate (DR) controller performs better than an

9
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SSR controller but worse than an FSR controller in the sense of minimum vari­

ance control. The optimal FSR, DR and SSR controllers are designed under the 

same performance criterion: variance of the fast sampled output. The discretiza­

tion of continuous stochastic disturbance models is investigated preserving certain 

basic statistical properties. An LMI approach is developed to calculate the optimal 

controllers for DR and SSR loops.

Chapter 3 discusses MVC design and control performance assessment based on 

the MVC-benchmark for multirate systems. A lifted model is used to analyze the 

multirate system in a state-space framework and the lifting technique is applied to 

derive a subspace equation for multirate systems. From the subspace equation the 

m ultirate MVC law and the algorithm to estimate the multirate MVC-benchmark 

variance or performance index are developed. The multirate optimal controller is 

calculated from a set of input-output open-loop experimental data and thus this 

approach is data-driven since it does not involve an explicit model. In parallel, the 

presented MVC-benchmark estimation algorithm requires a set of open-loop exper­

imental data and closed-loop routine operating data. No explicit models, namely, 

transfer function matrices, Markov parameters or interactor matrices, are needed. 

This is in contrast to traditional control performance assessment algorithms.

Chapter 4 is concerned with single-rate predictive control design. The predic­

tive control applied is completely data based. In addition, unlike other data-driven 

predictive control designs, the proposed approach can deal with systems without 

complete on-line measurement of all output variables. It has been shown in previ­

ous studies tha t control of SOFC is challenging owing to the slow response and tight 

operating constraints [36]. In Chapter 4, the developed data-driven predictive con­

trol approach is applied to solving the control problem of the SOFC system [53, 85], 

and the simulation results have demonstrated the feasibility and robustness of the 

control application.

In Chapter 5 we mainly explore a data-driven predictive control law for multirate 

systems, when only the open-loop input-output data are available. This control 

design includes both feedback and feedforward control. Particularly, the developed 

dual-rate predictive control is verified by a multirate SOFC system, where the fuel 

utilization is sampled in slow rate while other variables are sampled in fast rate.

10
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The last chapter summarizes the work in this thesis, and outlines some possible 

future research directions.
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Chapter 2

M inim um  Variance in Fast, Slow  
and D ual-rate Control Loops

In certain industrial applications, the control updating rate is faster than the output 

sampling rate by a certain factor, which leads to dual-rate (DR) control problems. 

Generally speaking, a D R controller performs better than a SSR controller but 

worse than  a FSR controller in the sense of minimum variance control. This con­

jecture is theoretically justified in this chapter for a continuous LTI single-input 

and single-output (SISO) system. The optimal FSR, DR and SSR controllers are 

designed under the same performance criterion: variance of the fast sampled out­

put. The discretization of continuous stochastic disturbance models is investigated 

preserving certain basic statistical properties. A linear matrix inequality (LMI) 

approach is developed to calculate the optimal controllers for DR and SSR loops. 

The theoretical results are illustrated by two simulation examples.

1The m aterials in th is chapter has been published in “X. Wang, L. Zhang, T . Chen, and B. 
Huang. Minimum variance in fast, slow and dual-rate control loops. Int. J. of A daptive Contr. 
and Signal Processing, 19(8):575-600, 2005” .
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2.1 Introduction

In industry, processes almost always operate in continuous time while controllers ex­

ecute their commands in the discrete-time domain, which constitutes sampled-data 

systems. Thus a sampled-data system is a hybrid system involving both continuous­

time and discrete-time signals. In many applications of electrical, mechanical and 

chemical engineering, control signals and output measurements need to be sampled 

at different rates, leading to multirate sampled-data systems. The research on mul­

tirate systems began in the late 1950s. Much recent work on multirate systems has 

been done on the LQG/LQR design [47], the H i  design [10, 56, 67, 57], the Hoo 

design [10, 11], and model identification and validation [42, 78]. Far less work has 

been done on multirate control-loop performance-monitoring.

There are many possible limitations or constraints on the achievable performance 

such as time delays and non-minimum phase dynamics. The most fundamental 

performance limitation is the time-delay. Time delays are fairly common in chem­

ical processes and pose the main limitation toward minimum variance control [28]. 

This chapter is concerned with exploring and then analyzing the performance limits 

caused by time delays of multirate systems and single-rate systems. This topic is 

of importance to control specialists and process engineers who have implemented 

multirate control systems to their control loops. It is also meaningful to estimate 

the benefits of changing control loops from single-rate to multirate. Instead of 

treating general multirate systems, we consider the DR system where the sampling 

frequency of the controller output is M  times tha t of the controller input (M  is a 

positive integer). This setup holds most of the fundamental features of multirate 

systems while maintains some clarity in exposition. Loosely speaking, compared 

with SSR controllers, DR controllers can yield additional performance because of 

the fast-rate D /A  converters (holds). But they obtain less measurement information 

than FSR controllers due to the slow-rate A /D  converters (samplers). Hence, an 

intuitive thought is tha t a DR controller performs superior to an SSR controller but 

inferior to an FSR controller. This conjecture is proved in this chapter in the sense 

of minimum variance control by a theoretical analysis and two simulation examples.

To make a fair comparison, a uniform benchmark should be set up for the afore-
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mentioned three kinds of control loops. Here we choose the variance of the fast 

sampled closed-loop output as the control cost function. It is known tha t the MVC 

is the best possible control in the sense tha t no controllers can provide a lower vari­

ance for linear systems with time delays. Many papers [22, 12, 6 8 , 46, 28] have 

shown tha t minimum variance is a useful benchmark to assess control-loop perfor­

mance. A significant one is [22] which presented a new direction and framework 

for the control-loop performance-monitoring area. It applied time-series analysis to 

find a suitable expression for the feedback controller-invariant term  from routine op­

erating data and subsequently used it as a benchmark to assess SISO control-loop 

performance. The filtering and correlation analysis in [28] extended this method 

to M IM O processes. An overview of the status of control performance monitoring 

using minimum variance principles is presented in [55]. In contrast to  some results 

[10, 57] with criteria in continuous time for DR control, this chapter uses a criterion 

in the discrete-time domain. The rationales are: the existing benchmarks in the 

performance-monitoring field are all in discrete time; if the fast sampling interval is 

chosen small enough, we can almost guarantee the control performance even though 

the plant operates in continuous time; the problem may be simplified by choosing 

a criterion; considering the fast rate criterion, we may eliminate or reduce the pos­

sibility of inter-sample ripples for the slow sampled output in DR and SSR control 

loops. The advantage will be shown by comparing the control effects under the 

optimal controllers designed by fast-rate and slow-rate criteria in Section 2.6.

The systems studied are LTI systems driven by white noises (zero mean and 

unit variance). A fact is tha t the TL2 norm square of this kind of systems equals 

the variance of the output signal. Hence, the MVC problem can be treated as a TC 

optimal control problem. Many pieces of work for the H.2 optimal control design of 

multirate systems have been completed. It is known tha t in general using the lifting 

technique [40], a L P T V  multirate system can be transferred to an LTI one. In 

solving the multirate sampled-data 77-2 control problem using the lifting approach, 

one needs to  solve a discrete-time Ji 2 optimal control problem for a generalized plant 

with the consideration of the so-called causality constraint. This constraint restricts 

the direct feedthrough terms in lifted controllers to be (block) lower-triangular. This 

condition is induced by the fact tha t the control signal can only be a function of
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present and past measurements during the period. There exist two techniques to 

solve this constrained Jii  optimal control problem: a frequency-domain solution 

is shown in [56]; a more implementable one via state-space approach is presented 

in [67]. In this chapter the systems of concern are SISO ones, where the lifted 

controllers have the structures satisfying the causality constraint automatically. As 

shown in [1 0 ], using the state-space method to solve the 77 2 optimal control problem, 

the controllers can be obtained as explicit formulas in terms of the solutions of two 

Riccati equations. But the generalized plants need to satisfy several regularity 

assumptions. For the generalized plants of lifted DR and SSR control loops, it turns 

out tha t not all the regularity assumptions can be satisfied. Thus an LMI approach 

is exploited to find the optimal H 2 controllers for DR and SSR control loops using 

output feedback. W ith this algorithm, the optimal performance can be obtained 

together with the optimal control law simultaneously. For the FSR control loops, 

the MVC law developed in [5, 6 , 29] is applied.

This chapter is organized as follows. The problem is described in detail in Section 

2.2. Section 2.3 presents a way to discretize a continuous-time noise model preserving 

the mean and auto-correlation. In Section 2.4, different methods are investigated to 

design the optimal controllers: the MVC law is applied to FSR control loops; then 

the solution to the discrete-time 77 2 optimal control problem is given via LMIs for 

plants not satisfying the regularity assumptions, which can handle the lifted DR and 

SSR control loops. Section 2.5 analyzes the reason why optimal DR controllers have 

performance between optimal FSR controllers and SSR controllers. Two illustrative 

examples are provided in Section 2.6, followed by conclusions in Section 2.7.

2.2 Problem  statem ent

Considering a continuous SISO plant, Pc, and a continuous SISO noise, N c, as shown 

in  Fig. 2 .1 , where a  is  a  co n tin u o u s -t im e  s ta n d a r d  w h ite  n o ise , an d  yt a n d  u t are th e  

continuous output and control signals, we have three objectives. The first objective 

is to design discrete output feedback controllers K f , K d  and K s , which are shown 

in Fig. 2.2 where H f  and S f  are the fast hold and sampler, H s and S s are the slow 

hold and sampler, Uf and y f  are the fast sampled control and output signals, and 

us and ys are the slow sampled signals. Controllers K f , K j  and K s are of three
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different rates: fast-rate, dual-rate and slow-rate respectively and their targets are 

the same: minimizing the variance of the fast sampled closed-loop output yj,  which 

is also defined as:

J  = min [Var(y/ ) \ .

at

TV.

Figure 2.1: The open-loop diagram

Figure 2.2: The fast-rate, dual-rate and slow-rate controllers

The second objective is to find J f ast, Jduai and Jsi„w for FSR, DR and SSR 

control loops respectively after the derivation of the optimal controllers. In gen­

eral, the DR controllers outperform SSR controllers but are outperformed by FSR 

controllers, which can be presented as:

Jfast ^  Jdual ^  Jslow 

The third objective is to prove this conjecture through a theoretical analysis.

2.3 N oise model discretization

Although our problem begins in the continuous-time domain, to design a discrete 

controller, the discretization of the noise model is necessary. There are many meth-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ods to discretize LTI continuous systems to discrete-time systems with determin­

istic inputs, such as zero-order hold, bilinear (Tustin) approximation and impulse- 

invariant discretization. But now we are concerned with the problem of finding 

suitable ways to characterize a stochastic continuous disturbance model with a 

stochastic discrete one. It is desirable to preserve some basic statistical proper­

ties. The method to be developed below preserves the properties of the mean and 

auto-correlation of the continuous system output at the sampling instances.

T h e o re m  2.1 Given a stable, strictly proper stochastic continuous disturbance model 

N c (the system starts at t — —oo), which has the state space model

" A B  '
C 0

where the input is a standard white noise a, i f  the discretized model is given by

A  d B d
C 0

where A j  — ehA, B ^ B ^  — etAB B T etA-T dt, and h is the sampling period, then Nd, 

subject to a discrete white noise input, preserves the mean and the auto-correlation 

of the output of N c at the sampling instances.

P ro o f. Considering the continuous model N c, which can be expressed as

x — A x  +  Ba,

V =  Cx,

at sampling time t^, it can be seen that

(ehAY  x 0 +  1 [ k e{h~t)ABa(t)dt  +  • ■ ■ +  e ^ - ^ ABa(t)dt

(2 .1)
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and

Xtk+1 =  e hAx tk + i - 1 +  /  e (tfc+i_t)A.Ba(f)df
Jtk+i- 1 

fe+i /  , . \ f c + i —1 ["h
=  (eM ) fc+i x 0 +  (ehA) fe+i 1 J  e ^ - ^ ABa(t)dt  + ■■■

( \  I f ^ k  f t k  +  l
ehA\ / e(^-t)AB a ^ dt +  . . .  +  / e{tk+l- t)ABa{t)dt.  (2.2) 

J t k - l  J t k + l - 1

Noticing tha t xq =  0 and ytk =  C xtk, the expectation of ytk should be zero, i.e.

E(ytk) =  0. (2.3)

From (2.1), (2.2) and A d = ehA, the auto-correlation of ytk can be calculated as

R K  (!)] = £ { w L ,} = c e  {V J+,} c T

= C { A kd~l f h etAB B TetATdtATdk+l~1 + ■■■
Jo

+  f  e^tk~t')AB B Te^k^ AT d tAdl}CT
dtk-i

=  C { A kd~l [ H etAB B TetATdtA ^ k ~ 1 +  • • • +  [ *  etAB B TetATdtATdl}CT. 
Jo Jo

Substituting etAB B TetATdt — B dB d into the above equation, it gives

R \yt„ (l)} = C  {A*-1Bi BjA™-1 + + ■ ■ ■ + BdB j } A” CT

=  CLdATd‘CT, (2.4)

where L d is the unique symmetric solution of the discrete Lyapunov equation Ld = 

A dL dA Td +  B dB j .

Considering the discrete stochastic system N d, we have

Xk — A dxo -I- A d B d&o -(- • • * -(- A dB dak~ 2  “t~ B ddk—i,

Xk+i = A d+lx  o +  A d+t 1B dao +  ■ ■ • +  A ldB da,k- 1  +  • • • +  B dak+i~ i-

It can be seen that

E(yk) = 0 (2.5)
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and

R  {yk (I)} = E  {ykyl+i} = C E  {x kx l +l} C T

=  C  { A ^ B t B j A ? - 1 +  A ^ B . B J a Y - 2 + ■■■ +  Brf-Bj} A” C t  

= C L dA f C T . (2.6)

From (2.3)-(2.6), it is clear that

E (.Vtk) = E (yk), R  [ytk (01 =  R  [Vk (01 •

Thus the theorem is proved. ■

It is noticed tha t the solution of equation B dB J  =  etA B B TetAT dt is not

unique. A simple way to solve B d from this equation is through the Cholesky 

factorization. But using this method the dimension of B d may be different from that 

of B,  e.g, in the later numerical simulation example for the given SISO continuous 

noise model N c we obtain a 1 x 2 multi-input single-output (MISO) discrete model 

N d = [ N di N d2 ]. We need to combine N di and N d2 to a SISO discrete model to 

keep the same input dimension. To this end the co-inner-outer factorization method 

is applied. Suppose N d is stable and has no zeros on the unit circle, the inner-outer 

factorization of N j  is as
p

N d{ 2x1) =  N i{ 2 x l ) N 0( lx l )

or
r p  p

N d( 1x2) =  N o { l x l ) N i(lx2)  =  ^ c o ( lx l ) - ^ c i ( lx 2 ) ,

where N co is the co-outer factor and N cl is the co-inner factor [16]. Because we 

have N ciN ci — I,  where N ci is the shorthand for It can be seen tha t N co

and N d have the same H 2 norm. Thus we can use N co instead of N d to present 

the discrete noise model. The algorithm in [30] is applied to calculate the inner- 

outer factorization, which is numerically effective. Thus till now we have presented 

a method which discretizes a continuous stochastic disturbance model to a discrete 

one preserving the mean and the auto-correlation.

2.4 The minimum variance controller design

The objective of this section is to design the optimal controllers for FSR, DR and 

SSR control loops. As we have discussed before, the MVC problem is similar to the
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H.2 optimal control problem for linear systems which are driven by white noises. The 

MVC law is directly applied to FSR control loops to obtain the optimal controllers. 

The generalized models of DR and SSR control loops are obtained via the lifting 

technique. Since it can be found tha t the derived models do not satisfy all the 

regularity assumptions of the general discrete-time H 2 optimal control problem [1 0 ], 

an LMI method is developed to handle the lifted DR and SSR control loops.

2 .4 .1  T h e  F S R  co n tro l lo o p

The principle of MVC was pioneered by [5]. A more explicit solution can be found 

in [29]. Here we design an output feedback controller for the fast-rate loop. The 

output of the fast-rate loop can be written as

N f
y j  =

1  — P f K f
-a = F f  +  Z d f R f  „  z  df ( R f  + Pf K f Ff)

1 -  Pf K f  f  1 -  P / K f

(A ,  +  z ~ l CnB n +  z~2CnA nB n +  ••■. +  z - df +1CnA dnf ~2B n^

+ ri R f  +  p f K f Ff ) a,
1 - P f K f

where N f ,  Pf , d f  and K f  are the fast-rate noise, plant, time delay and controller 

respectively; Pf  is the delay-free plant transfer function; ai- is a discrete-time stan­

dard white noise at the fast rate. Using Diophantine equation or long division [6 ], 

we have N f  — Ff + z~df R f  and Ff  is the first df  controller-invariant term of yj.  

The state space model of N f  is given as

N f A n B n
[ c n Dn

(2.7)

It can be observed tha t when

K f  =  - P j l R f F j \

the variance of y / is minimal, tha t is, the minimum variance of the FSR loop is 

Jfast  = Var(Ff a) =  D 2n +  (CnB nf  + (CnA nB nf  +  • • • +  ( c nA ^ " 2 Rn ) 2 . (2.8)
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2 .4 .2  T h e  D R  co n tro l lo o p

The DR controller K (i in Fig. 2.2 is time-varying due to the presence of H f  and Ss. 

To avoid dealing with the time-varying DR controller directly, here we introduce 

the lifting technique, which can be attributed to Kranc in 1957 [40]. Let y be a 

discrete-time signal:

V =  M ° ) » 2/(1) i y ( 2) > ■•■}) 

and y be the vectored-valued sequence as follows:

J

y (o) y ( M )

V
_ y (M  — 1) _

5

_ y (2M — 1) _

The map from y to y is then defined as the lifting operator L m ■ After lifting, both 

the signal dimension and the underlying period are increased by a factor of M.  

The inverse lifting operator L ^  is defined in the obvious way. It can be seen that 

L m  — I  ■

Introducing the lifting operator and inverse lifting operator, the DR closed-loop 

can be transferred to an LTI system in Fig. 2.3, where P  is the lifted version of 

the fast plant model Pf,  jV is the lifted version of the fast disturbance model N f ,  

y j  is the lifting of the fast sampled output y f  u  is the lifting of the fast control 

signal uf,  a is the nth  dimensional lifted version of the discrete standard white 

noise. Fig. 2.3 can be further simplified to Fig. 2.4, where jV, P, u and a have been 

defined before; S  — SsL]^ =  [ I  0 • • • 0 ] (M  blocks). Combining the lifting

operator L m  and the DR time-varying controller K^,  the lifted DR controller is as: 

Kfj — LmKd — [ K \  K 2 ■ ■ ■ K m  ] ■ which is time-invariant and satisfying the 

causality constraint by its special structure. The generalized model of Fig. 2.4 can 

be expressed as:

' VJ_ ' N P a
. Vs . _ S N S P U

where y / is the signal to be controlled, a is the disturbance, and ys, u are the 

controller input and output signals respectively. It is known tha t stationary ran­

dom processes, when passed through m ultirate systems, become cyclo-stationary [4]. 

Thus the fast-sampled output of the DR system, yf ,  is a cyclo-stationary signal. Its
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Figure 2.3: The lifted DR closed-loop diagram

Figure 2.4: The lifted dual-rate closed-loop sketch

min
Var(y f i ) — min trace

Var(y£)

Kd M Kd M

variance is periodic with period M.  The control objective is to design the optimal 

controller to minimize the average of the variance of yf .  The minimum cost function 

of the DR control-loops is defined as:

(2 .10)

where yji  is i th  row of the lifted output yj.

2 .4 .3  T h e  S S R  co n tro l lo o p

By the lifting technique, the lifted SSR closed-loop diagram can be drawn in Fig. 

2.5. Here we change the slow holder Hs = H f S f H s. Then Fig. 2.5 can be simplified 

to Fig. 2.6, where H  =  L MS f H s — [  I  • • •  I  ]T (M  blocks). The generalized 

model of Fig. 2.6 can be written as:
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L,/

Sf H v. N 1

Figure 2.5: The lifted slow-rate closed-loop diagram

Figure 2.6: The lifted slow rate closed-loop sketch

’  v i ' N P H a
. Vs . _ S N S P H . Us .

(2 .11 )

where y/ , a and ys are of the same meanings as defined in the previous subsection. 

The only difference is that here us is the controller output signal. Because y j  is 

cyclo-stationary, similarly to the DR minimum control cost function, the slow-rate 

one is defined as:

(2 .12)

Now we show tha t the generalized plants do not satisfy all the regularity assump­

tions for the general discrete-time H 2 optimal control problem by the state-space

min
'E £ i C o r  (Vli)

— min trace
Var(yj)

K a M K s M

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



approach. The generalized lifted dual-rate and slow-rate models (2.9), (2.11) can be 

put into the same structure as

'  A Ba B
G = c z Dza Dz

C Da Du
(2.13)

If the fast-rate plant model is given as

Pf = A f B f  1
[ c f D f  \

(2.14)

then its lifted version is ([1 0 ])

r  Af AT xBf Af ~ 2Bf ■■•  Bf

P =
C f

C f A f

D f
CfBf

0
D f

0
0

1  ̂
..

i CfAf ~ 2Bf CfAf - 3Bf  • • '  Df

(2.15)

r ^ Bi 1

L Ci Di J

Considering the generalized model of the lifted DR loop, it can be seen from (2.9) and 

(2.13) tha t Dz — Di  and Du — SDi  =  [  Df  0 • • • 0 ] (M  blocks). Considering

the lifted SSR case, from (2.11) and (2.13) we have Dz —  DiH  and Du =  Df.  

Because the fast plant model has time delays, which means D f  — 0, thus in the 

common model G, Dz does not always have full column rank which violates one 

of the regularity assumptions in [10]. This is the motivation tha t we use the LMI 

approach to find the optimal control solution.

2 .4 .4  L M I 7 i2 o p tim a l co n tro ller  d es ig n

In this subsection, we will design the optimal output feedback controller for a gen­

eralized model G , which has the state space model as follows

'  A Ba B
G = c z Dza Dz

G Da 0

(2.16)
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The input and output signals of G are 

state of G is x(k).  The output feedbac'

a(k) and " z ik ) '

u(k ) . y(k) _
contro ler K d is as

£(k +  1) =  A K£(k) +  B K y(k), 

u{k) =  CKZ,{k) +  D K y(k),

respectively, and the

(2.17)

(2.18)

where £(fc) is the state vector of the controller of the same dimension as x(k').

The optimal control problem can be stated as: for the discrete-time system

(2.16), find a controller given by (2.17) and (2.18) such that the resulting closed-
11 2loop system is stable and its H 2 norm square from a to z, denoted as | Tza \ \ 2 , is as 

small as possible, tha t is

min 7 . (2.19)
S-t.\\'Tza\\2*̂-7

The resulted closed-loop system from G and the controller in (2.17) and (2.18) has 

the state space model as

x ci(k +  1) =  A x ci(k) +  B aa(k), 

z{k) =  C x (k ) +  D aa(k),

where

Xd(k) =

C  =  [ Cz +  D zD k C D zCk  J , D a — D za +  DzDKDa.

The TL2 norm of the closed-loop system is:

x{k) A  =
'  A + B D k C BCk  ' Bn = Ba +  B D k Do,

. m . Bk C A k
? J-' (I B KDa

||Ta o | | 2 =  y  trace(CY  +  D aD l )  = ^ t r a c e ( B j X B a + D j D a),

where X  and Y  are the symmetric solutions of the following discrete Lyapunov 

equations:

A Y  F  - Y  + B aB Ta =  0,

a t x a  - x  + c t c  = 0 .

Based on the above analysis, we have the following theorems:
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T h e o re m  2.2 [63] For the closed-loop system, ||Tz o | |2  < 7  if  and only i f  the follow­

ing matrix inequalities

trace(CYCT +  Daf>a) < 7 , 

- Y  +  A y A t  +  B aB Ta < 0

hold for Y  > 0, or dually

t r a c e ( B j X B a + D ^ D a) < 7,

ATx A - x  + c Tc  < o

(2 .20)

(2 .2 1 )

(2 .22)

for X  > 0.

T h e o re m  2.3 For a discrete-time plant G in (2.16), there exists an output feedback 

controller in (2.17) and (2.18) such that IIT^Hj < 7  i f  and only if  the following LMIs 

are feasible:

( c zx  + d zc Y

3c Y  (CZ + D ZD C Y  

0  

0

- I
(2 .2;

- X - I ( a x  + b c ) t AT

- I - Y
T

( a  +  B b c ) ( y a

A X +  BC A + BD C - X - I
A Y A  + BC - I - Y
CZX  +  DZC Cz +  DZDC 0 0

- P ( . BDDa + Ba) (B D a + Y B a )

B D D a +  B a - X - I
BDa + Y B a - I - Y
DzDDa +  D,ta 0 0

<

0

0

trace(P) < 7

I f  (2.23)-(2.25) are feasible, the controller is given as

A k  =  IV” 1 \A -  N B k C X  -  Y B C k W t  -  Y ( A  + B D C ) X  1 ( W ‘ 

B K = N ~ l ( B - Y B b ) ,

CK = (C -  D C X ) ( W T) - \

d k  — b .

T \  —1

< 0 ,

'(2.24)

(2.25)

(2.26)

(2.27)

(2.28) 

(2.29)
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Here P, X, Y, A, B , C, D are LM I variables where P  > 0, and X  and Y  are 

symmetric. W  and N  are invertible matrices such that

W N 1 = I  -  X Y . (2.30)

Proof. The similar method to design continuous-time controllers can be found in 

[64], Let n  be the number of states of the plant. X  and X - 1  can be partitioned as

X  -
Y  N
N t  * x ~1 =

X  w
W T *

where X  and Y  are n  x n  and symmetric. Let us now define

IIi =

* 1—
1

r i  y  i

1

4 o 1

, n 2 =

i o 4
•

and the change of controller variables as follows:

A = N A k W t  +  N B k C X  + Y B C k W t  + Y ( A  +  B D K C)X,  

B  = N B k  + Y B D k , 

C = Ck W t  + D k C X , 

d  = d k .

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

The motivation for this transformation lies in the following identities derived from

(2.31)-(2.35):

n ^ x i n i  =

n  J x B a  =

A X  + B C  A  + B D C  
A  Y A  + B C

B D KD a +  B a 
B D a +  Y B a

CUi  =  | C2X  +  D ZC Cz +  DZDC  

X  I
n f x n x = I  Y

Prom Theorem 2.2, we need (2.21) and (2.22) to hold. By Schur complements, (2.22)
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is equivalent to

—X ATx  c T '
X A 1 0 < 0  ^

.  c 0 —I  .

r n r 0  0  ■ ' - X A TX c T 1 a 0 0

0 u j  0 X A - X 0 0  IR 0 < 0  <t7
0 0  1 C 0 I 0 0 /

- I l f X I I i
i t f X A I h

CU i

n f i Tx n i
- n f x n i

o

n \ c T i  
o

- i
< o. (2.36)

On the other hand, (2.21) is equivalent to:

B l X B a + D Ta D a < P , 

trace(P)  < 7 ,

for P  > 0. By Schur complements again, (2.37) can be written as:

(2.37)

(2.38)

I  0
0  n  
0  0

0

0

1

- p
X B a
Da

' - p B I X

1

X B a - X 0 < 0  O
. Da 0 - 1  _

B I X D i  ' ' I  0 0 '
—X 0 0  n 1 0 < 0

0 - I 1 O O 1

- p B l X I h D I '
n J X B a - n j x n , 0 < 0 .
Da 0 - I  _

(2.39)

After simple calculations, (2.36) and (2.39) can be transferred to (2.23) and (2.24) 

respectively. Inequality (2.38) is the same as (2.25). Thus the problem is already 

changed to three LMIs (2.23)-(2.25). If these LMIs are feasible, P , X ,  Y, A, B,  C, 

D  can be solved. If W  and N  are invertible, (2.26)-(2.29) can be obtained from

(2.32)-(2.35). It has been proved in [64] tha t one can always find invertible matrices 

W  an d  N  sa t is fy in g  (2 .3 0 ) . ■

Noticing tha t the control objective function shown in (2.19) is to minimize the 

variance of the lifted fast sampled output of the lifted DR and SSR systems, thus 

from (2 .1 0 ) and (2 .1 2 ) we have

Jdual mm m za\\2dual
M > Jslow — min cza|l2 slow

M
(2.40)
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where ||Tza||2duai, ||Tza||2s;oiu denote the square of the JL2 norms of the lifted closed- 

loop DR and SSR systems, respectively.

2.5 Comparison of the minimum variance of FSR, D R  
and SSR control loops

In this section, the objective is to calculate and then compare the minimum cost 

functions of FSR, DR and SSR loops, which are denoted as -Jfast■ Jdual,  and J siow  

The conjecture tha t Jfast  ^  Jdual ^  J stow is proved theoretically by two parts: 

the first subsection shows tha t Jdual ^  J s l o w the second subsection shows tha t 

Jdual J f a s t ■

2 .5 .1  C o m p a r iso n  o f  D R  an d  S S R  co n tro l loo p s

In this subsection, Jdual and Jslow will be compared. The lifted dual-rate closed- 

loop system (Fig. 2.4) and the lifted slow-rate closed-loop system (Fig. 2.6) can be 

generalized to the same system (Fig. 2.7), except tha t the lifted DR controller is 

[ K \  K 2 ■ ■ ■ K m  ]T while the lifted SSR controller is [ K s K s ■ ■ ■ K s ]T, 

where K s is the SSR optimal controller. From the controller structures we can 

see tha t the lifted SSR optimal control problem is a constrained lifted DR op­

timal problem, i.e., the optimum solution must satisfy K \  — K 2 = ■■■ — Km-

Hence, the solution, min
2 0 II2  slow , obtained from (2.19) in the lifted SSR control-

loop is a constrained minimum whereas the solution of the lifted DR control-loop,

mm I T  11 ^ \1 za\\2dual , is the unconstraint minimum. So according to (2.40), the mini­

mum cost function of DR control-loop must be less than or equal to tha t of the SSR 

control-loop, which gives:

Jdual ^5 Js lo w

2 .5 .2  C o m p a r iso n  o f  D R  an d  F S R  co n tro l loo p s

In this subsection, we will calculate the minimum cost functions of DR and FSR 

control-loops: Jdual and Jfast  and then prove tha t Jdual J  Jfast-  Recalling (2 .8 ), 

the fast-rate minimum variance is as
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N

p

K
'

Figure 2.7: The slow/dual-rate closed-loop sketch

Jfast  = D 2n + (CnBn)2 + ( CnA nBnf  +  ■ • • +  ( c nA dnf 2Bnf .  (2.41)

To calculate JduaU we must know the time delay of the lifted DR loop, which is 

defined as d,jUal • The following parts will first investigate the time delay of the lifted 

plant model, then calculate the minimum cost function of the lifted DR loop.

P ure tim e delay o f th e  lifted plant m odel

In this part the pure time delay of the lifted plant model will be discussed. Given 

the FSR plant transfer function as Pf  (z) =  z~df Pf  (z) where df  is the fast-rate 

time delay and Pf (z) is the delay-free plant transfer function. If the pure time 

delay of the lifted plant, d^ual, is defined as the number of initial zero matrices in 

the impulse, then it satisfies: when ^  =  k, d^ual =  k; when ^  =  k + j j ,  ddual = k, 

where k, i are integers and i G {1, • • • , M  -  1}. This property can be proved by the 

following analysis.

The state-space model of the fast rate plant is (2.14), which gives the impulse 

response of the fast rate plant as follows:

PPf  • {hoj h \ , , , fadf i }
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where

ho = D f  = 0 , 

hi = C f B f  =  0 ,

h i , . ,  =  C ,Ad’- 2B ,  =  0. 

hi,  =  Ci Adf~1B ,  /  0,

When ^  — k, the impulse response sequence of P  is as:

Hp = {hpo , • • • , h n ,  • ■ • }

where

r Df 0 0

hpo —

C f B f D f 0

. Cf A f ~ 2B f C f A f ~ sB f  ••• D f -

C f A d/ ~ l B f 0

hpk =
C , A d/ B , Cf A d/ - l B f

_ Cf A d/ +M 2B f  Cf A d/ +M 3B f  • • • Cf A d/  1 B f

Since C f A ^ ^ B f  ^  0, it can be seen that: the first k blocks are zero matrices; the 

(k +  1) th  block hpk is the first non-singular one. Hence,

ddual =  k, P{z) =  z~d—'P{z) (2.42)

where P(z)  is the lifted plant transfer function matrix and P(z)  is the pure delay- 

free transfer function matrix of the lifted plant. When ^  =  k + i, the impulse 

response of the lifted plant P  is

Hp = {hpo, hpk, hP(k+i), ••■}
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where

hpo =

Df
C f B f

0

Df

Cf A f ~ 2B f  C f A f ^ B f

0

0

D f

0 0 0 0 0  • • 0

0 0 0 0 0  • • 0

hpk = Cf A d/ - ' B f 0 0 0 0  ■ • 0

Cf A d/ B i Cf A d/ ~ l B f 0 0 0  • • 0

_ C f A ^ {k+1)~2B f Cf A f {k+l)~3B f Cf A d/ ~ l B f 0  • • 0

hP ( k + 1)
C f Af Af

M ( k + 1) B f C fAf A f

0

M(fc+1 ) - 1 Bf

C f Af Af
M { k + 2)-2 B f  C f A j

M ( k + 2)-3 B f

0

0

Cf A™{k+l)- l B f

In the impulse response sequence: the first k blocks are zero matrices; the (k +  1) th 

block hpk is a singular matrix; and the (k  +  2 ) th block hp^+i)  is the first non­

singular one. The trick here is tha t each block of Hp_ is a lower triangular Toeplitz 

matrix with constant values along all the diagonals, thus if the (1 , 1 ) element of a 

block is non-zero, tha t block is non-singular. So the pure time delay is as

ddual — k-

Here we can also write P(z) — z~hP(z) .  Hence it has been proved tha t the pure 

time delay of the lifted plant is k.

T he D R  m inim um  cost function

In this part we will give explicit expression of the DR minimum cost function Jdual 

and show tha t Jdual A  J f a s t■ First the lifted models in the DR control loop will be 

derived, by which the minimum cost function of the lifted output can be calculated. 

It is shown in Fig. 2.4 that

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vf =  N_a +  P u (2.43)

where a — [ a\ ■ ■ ■ cim ] denotes the lifted standard white noise and u — 

[ u\  • • • um  ]T denotes the lifted control signal. As the fast disturbance model 

is shown in (2.7), from [10] we can obtain the lifted noise state space model as

r a m A ^ B n a M - 2 tj
rt-n n n Bn

Cn Dn 0 ■ 0
N  = Cn-A-n CnB n Dn 0

r< a M - 1 CnA * f - 2B n CnA*f~3B n ■ D n

(2.44)

and its transfer function matrix as

n\ z  1tim ■

1C4e7

'  IV! ‘

n 2 ni • -z l n3
—

n 2

_  tim TlU-1 n\ . N m

K (z )  =

where is the kth  row of N_. Prom the above equation it can be seen tha t

Ark = N MNik, (2.45)

where
0  z ~ l J
1

{ M —k) x { M —k) 
0 J M x M

Nik is an inner function where the subscripts % and k denote inner and the kth  row 

of N_ respectively. Similarly, the lifted plant transfer function matrix is as:

(2.46)

where Pk represents the kth  row of P.

To prove tha t Jdual J  Jfasti we will first investigate the minimum variance of

each branch of the lifted output. The first sampled output y /i, which is also the

control feedback signal at the slow rate, can be obtained from (2.43) as

Pi Z 1PnM ■ ist 1

to

1

'  Pi  '

P{z) =
P2 Pi

1

CO P2
—

PM Pm - i Pi 11

yf  i  =  N \a  + PiKdUfi,
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where Kd — [ K \  K 2 ■ ■ ■ K m  ]T is the lifted dual-rate controller in Fig. 2.4.

Thus we have

( 2 ' 4 7 )

From (2.45) we can see tha t N m  is an outer factor of N\,  thus designing a minimum 

variance dual-rate controller against the disturbance N\  is the same as against N m - 

The Diophantine decomposition of N m  is as

K m  =  [ nM • • ■ ni  ] =  Fm  +  z~ddualRM,  (2.48)

where

FM = [ f M • • • f i  ] , R m  = [ rM • • • n  ] . (2.49)

Substituting (2.49) into (2.47) and noticing Pi =  z~ddualP\ where P i is the delay-free

transfer function of P i, (2.47) can be written as

, -dH , ( r m  +  P\KdFM \Vf \ = FMa +  « ddual I  1 _  p —^—  I a. (2.50)

Supposing there exists an optimal controller which could cancel the second term of 

the above equation, and noticing tha t a i, • • • , cim are independent white noises, we 

have

R m  + P\KdFM

= [ tm  ■■■ n  ] +  (piKi + z ~ 1pMK 2 H h z~1p2K M) [ f M ■■■ f i  ] =  0,

which leads to
ri r2 _  rM 
f i  f i  Jm

Unfortunately in (2.48) n* is generally different from n:l (i ^  j ), thus this equation

cannot be satisfied, which means tha t the optimal controller can not make the second 

term of (2.50) zero but can minimize its H 2 norm instead. So the minimum variance 

of yj i  can be written as

Jyf 1 =  Var(FMa) +  cx (2.51)

2

where ci =  min Rm+PiK<iFm
1 ~ P iK d . Var(FMd)  will be derived by the following analy­

sis. When i i  =  k, from (2.44) the impulse response of N m  is
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H-Nm {  h NM0, ' ' ' ^,Nn(k—1) > }

where

hNMo =  [ CnA™ -2B n CnA ^ ~ 3B n ■■■ Dn ], (2.52)

hN M( k - 1) r  Adf 2r  r 1 4d/ 3r  ••• c, Adf M 1r-*->rc i->n c-'r>^Ln  -L-'n (2.53)

From (2.48) we can see tha t Fm  is a transfer function of order z ~ddual, hence 
ai

are the first dduai items of the impulse response sequence[ I m h

of N m , which gives

cti a( 0 )

Fm « =  [ /m • h ]
aM

=  [ hNM 0 ’ • hNM(k-\)  ]
a(k — 1 )

where a(m)  is the lifted standard white noise signal at different sampling time, i.e., 

a{m) — z~ma(0) and m  is an integer. Considering J fast shown in (2.41), (2.51) can 

be revised as

Jyji ~~ [ hNMo • ■ • hN u (k_ i) ]

a(0 ) 

a(k — 1 )
+  ci

=  D \  +  (CnBn)2 +  ( CnAnB nf  +  • • • +  ( CnAdnf 2Bn)2 +  c x  

~  Jfas t  +  Cl ^  Jfast-

T ill  n o w  w e  h a v e  sh o w n  th e  c o m p o n e n ts  o f  JVfl - L et u s co n sid er  th e  m in im u m  

variance Jyfi of the ith (2 F 'i, F. n) row of the lifted output yj.  In the fast single 

rate control loop we have minVar(yf i) = Jfast ,  where Uf — K f  [ yj i  ■ ■ ■ yjM ] 

and K f  is the lifted fast rate controller. But in the lifted dual rate control loop 

Jy — minVar(yfi),  where Ud =  K dS  [ y f \  yf M ]T =  KdVfi- It can be seen
Ud
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tha t vamVar(yfi)  ^  minVar{y/i)  , i.e., Jyfi ^  Jfast- According to (2 .1 0 ), we have
U d U f

Jdual =  min trace 
K<d

Var{yj)

M
=  min

Kd
— E {  trace 
M

/ vn vn
T \ )]

V .  V f M _ . V f M  _ I 1
Jy y i d” Jyf2 A * * * “I- J%

M
Jfas t  +  C Jfast i

V f M  >  Jfast  +  Cj +  Jfast  +  ' • ' +  Jfast
M

where c is positive number usually presenting a minimized JL-y norm of a certain

transfer function matrix. When
dJL -

k + following the exactly same proof as

in the case when — k, we can still prove Jduai ^  Jfast  since the first k terms 

of the output are control independent. Thus, we have shown tha t Jduai ^  Jfast-  

Combining this conclusion and tha t of the previous subsection: Jduai ^  Jslow j if has 

been proved tha t the conjecture J f ast ^  Jduai Jslow holds.

2.6 Simulation exam ples

The key results are illustrated by two univariate examples: Example 1 is a numerical 

one; Example 2 is a case study of a stirred tank heater. In the examples, the 

continuous disturbances are discretized via the proposed discretization method, and 

then the optimal controllers are designed for the control loops of three rates : the 

MVC law is employed to the FSR control loops; the LMI H 2 optimal controller 

design method is applied to the DR and SSR control loops. The simulation results 

of both examples show that: the performance of the optimal DR controller is better 

than tha t of the optimal SSR controller but worse than that of the optimal FSR 

controller. In addition, Example 1 illustrates the optimal controllers derived by the 

fast-rate criterion obtain smaller inter-sample ripples than the optimal controllers 

derived by the slow-rate criterion.

2 .6 .1  E x a m p le  1

A continuous plant and a continuous disturbance models are given as:

_ n .  +  0.7s T  0.3 2s +  0.2
Pc = e

s2 +  0 .36s+  0.24’
N r

s2 + 0 .3 6 s +  0.24'
(2.54)
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We adopt the fast and slow sampling periods as Tf = lsec  and Ts = 2 sec re­

spectively. Thus the dual-rate factor M  — 2. In the FSR control loop, using the 

zero-order-hold discretization, the discrete-time plant is acquired as:

__21 -  1.2Z-1 +  0.44662-2 
1 ~ Z  1 -  1 . 5 Z - 1 + 0 .6977z-2 '

By the proposed discretization method, the fast-rate noise model is:

N f  = 1 .7 0 9 ^ ~ 1- 1 .5 3 ^ ~ 2 0 .0 5 8 5 2 ~ 1-0 .1 4 8 6 z
l - 1 . 5 z - 1+ 0 .6 9 7 7 z - 2 l - 1 . 5 z - 1+ 0 .6977z-+ 0 .6 9 7 7 z - 2

of N f  can be obtained as:Since the co-inner-outer factorization

a t  —  a t  a t  — 1-723 — 1.523^ 1 r o.9 9 i9 z- i-o ,8 8 8 z - 2  0 .0 3 3 9 5Z-1-
f  co a  1 - 1 .5 2 - ! +  0.69772-2 i 1 -0 -8 8 3 7 Z -1  1 -0 .8 8 ;

7C0 is anthe outer-factor Nco is

J.8 8 3 7 Z -1 

. equivalent of Nf,  such that

^  -0 .0 8 6 2 5 z ~ 2 
1 - 0 .8 8 3 7 Z - 1

N f  4$ Ncn =
1.723 -  1.5232 - 1

1 -  1.52-1 +  0.69772-2'

In the lifted DR and SSR control loops, after lifting by L 2 , we can calculate the 

lifted plant and disturbance transfer function matrices from (2.15) and (2.44) as

P =

N  =

z-qi-o.esssz-W o.snez-2)
l-o.sssz-wcusesz- 2
z _ 1 (0 .3005—0 .1 6 7 z _ 1 )
WaMsWWolsosW7

1 .723—1 .0 8 2 4 Z "1
l-o.sssz-wtwsesz- 2

1.0615—1 .0 6 2 6 4 z~ 1 
l-o.sBSz-J+o.isesz- 2

z -2  (0.3005—0.167z_ 1 )
l-o.sssz-wo^sesz- 2

z-Ti-o-ssssz-j+omiez-2)
T d 7 8 5 5 F rT+ 0 4 8 6 8 z  

z - 1 (1.0615—1.06264z_ 1 ) 
i-o.sssz-i+o^sesz- 2 

1 .7 2 3 -1 .0 8 2 4 z~ 1 
l-o.sssz-wo.isesz-'2

and S, H  in (2.9) and (2.11) as

S = [  1 0 ] ,H  = [  1 1 ] T .

We design the FSR, DR and SSR optimal controllers: Kf ,  Kd  and K s to minimize 

the variance in the sense of the fast sampled output. To show the advantage of 

adopting the fast-rate cost function as criterion, we design controller (for the 

DR case) and Kg (for the SSR case) minimizing the variances of the slow sampled 

outputs. The simulation results are shown in Table 1, where y /i, y / 2  are the first 

and second row of the lifted y/, and Var  denotes the variance of a signal. It should 

be noticed tha t yf  \ is the slow sampled output actually. From theoretical minimum

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1: Results of Example 1
Optimal controllers K f K d * 5 K s K s

Fast-rate minimum cost function 4.0955 4.4094 - 4.5273 -

Slow-rate minimum cost function — — 4.3264 — 4.3264
Simulated Var{yf\) — 4.3509 4.3509 4.4895 4.3509
Simulated Var{yf 2 ) — 4.4364 5.1377 4.5362 5.1180

Simulated minimum cost function 4.0966 4.3937 4.7445 4.5078 4.7344

cost functions and the consistent simulation results one can see tha t Jfas t  ^  Jduai ^  

J s lo w  One can also see that the variances of y / under K ([ and K s are smaller than 

those under and Kg respectively, although and K ss may have even better 

control effects at some slow sampling instances (y/i). Hence, considering the fast 

sampled output, controllers by fast-rate criteria achieve better performances than 

controllers by slow-rate criteria.

2 .6 .2  E x a m p le  2

Tank 
In le t Ti

Jacket F  j 
O u tle t  T

Figure 2.8: The stirred tank heater

In this example, we consider a stirred tank heater shown in Fig. 2.8. Similar 

examples can be found in [49] and [8 ]. The stirred tank may serve as a chemical 

reactor, in which the reaction often occurs at a certain temperature to obtain the 

desired yield. In this example, saturated steam is circulated through the jacket to 

heat the fluid in the tank. The assumptions made in writing the dynamic modeling 

equations to find the tank tem perature are as follows:

(1) Perfect mixing in both the tank and the jacket.
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(2) The steam and liquids have constant density and heat capacity.

(3) The temperature and the flow rate of the saturated steam are constant through 

the jacket.

(4) The tank inlet flow rate T), tank outlet flow rate F0. tank inlet temperature 

Tj vary with time.

Neglecting the work done by the impeller, we use energy balance around the 

tank to obtain the modeling equation given by

£  = V (T' ~ T°) + W c P' ( 2 ' 5 5 )

where p is the liquid density, V  is the volume of the tank, Cp is the heat capacity, 

Q is the rate of heat transfer from the jacket to the tank. It is governed by the 

equation

Q =  UA(Tj  -  T0),

where U  is the overall heat transfer coefficient and A  is the area for the heat transfer. 

The subscripts i and j  denote inlet and jacket. Considering F(}, T0, and Tj as the 

manipulated variable, the controlled variable and the disturbance respectively, the 

steady-state can be obtained by solving the dynamic equation ^  =  0. The steady- 

state variables of this system and some parameters are given as:

Fs= 5.0 ft3 /m in , pCp =  61.3 B tu /°F  • ft3, V=20  ft3, Tis =  50°F,  Ts =  125°F, 

Fjs = 1.5 ft3 /m in , PjCpj = 61.3 B tu /°F  • ft3, Vj = 1ft3, Tjis = 200°F,

Tjs =  150°F, UA = 183.9, Var(T$  =  25 (°F ) 2

Linearizing (2.55) and applying Laplace transform yield

f  =  1 / V ( T „ - T „ )  p  Fos/ V  f
° s + F os/ V  + UA!pVCp ° s + F0s/V + UA/pVCp l ' '

Inserting the above parameters values and assuming tha t the temperature measure­

ment has a time delay of 0.3 sec, (2.56) can be written as

-7 .5 e “ °-3s - 1.25
To ~  s + 0.4 Fo +  V + 0 A a

where a is a continuous standard white noise signal. The fast and slow sampling

periods are chosen as Tf  =  0.1 min and Ts = 0.3 min, respectively. Thus the lifting
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Table 2.2: Results of Example 2
Control loops FSR DR SSR

Fast-rate minimum cost function (°F ) 2 0.5349 0.6411 0.6882
Simulated Var{y f \ ) (°F ) 2 - 0.7418 0.7573
Simulated Var(y f 2 ) (°F ) 2 - 0.5338 0.6462
Simulated Var(y fs ) (°F ) 2 - 0.6392 0.6492

Simulated minimum cost function (°F ) 2 0.5321 0.6383 0.6842

operator in this example is L3 . After discretization, the fast-rate system can be 

expressed as
m _ 4  -0.7352 0.3875

1 -  0.9608z_1 ° + 1 -0 .9 6 0 8 ^ -iafe’

where a*, is a discrete-time white noise with zero mean and unit variance. The lifted

plant and disturbance transfer function matrices can be calculated from (2.15) and

(2.44). S, H  in (2.9) and (2.11) are as

S = [  1 0 0 ] , H  = [ 1 1 1 ]T .

Thus the generalized models of the lifted DR rate and SSR rate can be obtained 

from (2.9) and (2.11). For the FSR, DR and SSR control loops, we design the 

optimal controllers, calculate the minimum cost functions and then do simulations. 

The results are shown in Table 2 where yf i ,  y j 2 , and y j 3 are the first, second and 

third row of the lifted yj .  It can be seen tha t the results illustrate the effectiveness 

of the proposed methods and validate our results again.

2.7 Conclusions

In this chapter we have investigated the MVC problem for single-input single-output 

linear systems sampled with different rates: fast, dual and slow rates. The mini­

mum variance of the fast sampled output was chosen as the control cost function. 

A  d isc r e t iz a tio n  m e th o d  p reserv in g  th e  m ea n  a n d  a u to -co r re la tio n  of a  co n tin u o u s  

stochastic disturbance model was developed. The MVC law was directly applied to 

the design of the optimal controller for the fast-rate control loop. Using the lifting 

technique, the dual-rate and the slow-rate control loops can be unified under a com­

mon structural plant. This kind of plants do not satisfy the regularity assumptions 

for a general discrete-time 772 optimal control problem. Hence, a novel linear matrix
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inequality approach to solve this problem was developed. Then the new approach 

was used to derive the optimal controllers for the lifted dual-rate and slow-rate con­

trol loops. It was theoretically proved tha t the performance of a dual-rate controller 

is superior to that of a slow single rate controller but inferior to that of a fast single 

rate controller in the sense of MVC. The effectiveness of the proposed methods were 

illustrated by two simulation examples. The future work is to develop an experi­

mental methodology to estimate the dual-rate minimum variance from data for the 

assessment of dual-rate control loops.
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Chapter 3

M ultirate M inim um  Variance 
Control D esign and Control 
Performance Assessm ent: a 
Data-driven Subspace 
Approach

This chapter discusses MVC design and control performance assessment based on 

the MVC-benchmark for multirate systems. In particular, a dual-rate system with 

a fast control updating rate and a slow output sampling rate is considered, which is 

not uncommon in practice. A lifted model is used to analyze the multirate system 

in a state-space framework and the lifting technique is applied to derive a sub­

space equation for multirate systems. Prom the subspace equation the m ultirate 

MVC law and the algorithm to estimate the multirate MVC-benchmark variance 

or performance index are developed. The multirate optimal controller is calculated 

from a set of input/output open-loop experimental data and thus this approach is 

data-driven since it does not involve an explicit model. In parallel, the presented 

MVC-benchmark estimation algorithm requires a set of open-loop experimental data 

and closed-loop routine operating data. No explicit models, namely, transfer func­

tion matrices, Markov parameters or interactor matrices, are needed. This is in 

contrast to traditional control performance assessment algorithms. The proposed

2The m aterials in th is chapter will be published in “X. Wang, B. Huang, and T. Chen. M ultirate 
minimum variance control design and control perform ance assessment: A data-driven subspace 
approach. IEEE  Trans. Contr. Syst. Technol., 15(1): 65-74, 2007” .
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methods are illustrated through a simulation example.
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3.1 Introduction

In this chapter we consider a dual-rate system where the sampling frequency of the 

controller output is M  (a positive integer) times tha t of the plant output. There exist 

other cases of dual-rate systems, e.g., those systems where the plant output is fast 

sampled and the controller output is slow sampled. However, the former one is more 

common in practice. For example, polymer reactors [48], fermentation processes 

[20] and octane quality control [43] are this kind of multirate systems, where the 

manipulated variables are sampled faster than the output measurements. This is 

because the composition, density and molecular weight distribution measurements 

are typically obtained after several minutes of analysis, whereas the manipulated 

variables can be adjusted at relatively fast rates.

The first objective of this work is to explore a dual-rate MVC law, when only 

the input-output data of a given dual-rate system are available. Unlike the tradi­

tional methods, where Diophantine or Riccati equations are solved to achieve this 

goal, we follow a novel approach based on results from the area of subspace system 

identification [58, 59]. Subspace identification methods, which were developed in 

the late 80’s and early 90’s, allow the identification of a system’s state space model 

directly from input-output data [41, 51, 73]. Subspace identification algorithms 

contain two steps. The first step is making data projections to obtain subspace 

matrices; the second step is to extract the state space model from the subspace 

matrices [52]. The idea of designing predictive controllers using subspace system 

identification techniques has been around for a few years. For instance, subspace 

matrices are used in the model-free LQG design [14] and subspace predictive control 

design [15]. In addition, the extended state space model is used to obtain predictive 

controllers [60]. The subspace approach to designing a predictive controller with 

all the im portant predictive control features is investigated in [34], The model-free 

design approach presented in the literature so far has been limited to single-rate 

systems. In this work, we will consider the MVC design for dual-rate systems. As 

it will be shown, a subspace equation will be proposed with the lifting technique. 

This subspace equation is of importance because as soon as the subspace matrices 

in it are determined, the dual-rate MVC law can be obtained without relying on an
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explicit model. It should be noticed tha t the determination of subspace matrices 

is different from subspace identification. The former does not identify an explicit 

state space model, but the latter does. This is why the method we use is so-called 

model-free or data-driven in the literature.

The second objective of this work is to assess dual-rate control-loop performance 

using input-output data. Control performance assessment is an im portant technol­

ogy used to assist high efficiency process operations. There are many ways to assess 

the quality of process controllers, but in general they explicitly or implicitly in­

volve comparing the current control quality against some standard. To the best of 

our knowledge, little work has been done in multirate control performance assess­

ment, even though multirate sampling or operations are not uncommon in industry. 

Due to the lack of published work on multirate control performance assessment, we 

will only review the im portant research which has been done for single-rate control 

loops. For linear systems, it is known tha t the MVC is the best possible control 

in the sense tha t no controllers can provide a lower closed-loop variance [5]. Many 

papers [22, 12, 68, 46, 28] have shown tha t MVC is a useful benchmark to assess 

control-loop performance. A comprehensive overview of research up to 1998 on con­

trol performance assessment using minimum variance principles can be found in [55]. 

A significant work is [22] by Harris, who presented a new direction and framework 

for the control performance-assessment area. It applies time-series analysis to find 

a suitable expression for the feedback controller-invariant terms from closed-loop 

routine operating data, and subsequently uses it as a benchmark to assess SISO 

control-loop performance. The filtering and correlation analysis in [28] extends the 

method in [22] to M IM O processes. Other MIMO performance assessment work 

can also be found in [23]. To estimate the MVC-benchmark variance from routine 

operating data, the time delay (SISO case) or the interactor matrix (MIMO case) 

must be known a priori. This is a common point in these aforementioned traditional 

methods. The factorization of the interactor m atrix by singular value decomposi­

tion is one of the main contributions in [29]. A similar result is given in [38], which 

presents a one-shot solution to estimate the MVC-benchmark variance, but it re­

quires the first few Markov parameters in multivariable feedback control loops. A 

framework based on subspace matrices is studied for the estimation of the MVC-
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Controller Zero-Order-Hold Process Sampler

Figure 3.1: Block diagram of a sampled-data system

benchmark variance for multivariate feedback control systems [27]. This algorithm 

consolidates the traditional three-step procedure, model identification, closed-loop 

time series analysis, and extraction of the MVC benchmark, into a single shot. No 

prior knowledge, such as Markov parameters and interactor matrices are needed 

in the algorithm. The second objective of our work, estimation of the dual-rate 

MVC-benchmark variance, is an extension of the work in [27] to dual-rate systems 

by using a novel multirate subspace algorithm [59, 62],

The remainder of this chapter is organized as follows. The system and the prob­

lem formulation are described in detail in Section 3.2. Section 3.3 presents the 

derivation of the dual-rate subspace equation via the lifting technique. In Section 

3.4, a model-free approach which is based on the subspace equation, is investigated 

to design the dual-rate MVC controllers. Section 3.5 presents a data-driven frame­

work to estimate the dual-rate MVC-benchmark variance. An illustrative numerical 

example is provided in Section 3.6, followed by conclusions in Section 3.7.

3.2 System  description and problem statem ent

Consider the following discrete-time, time-invariant, linear state space model of the 

form

x k+x — A x k + B u k + E ek (3.1)

yk =  C xk + D uk + F ek (3.2)

where A; is a discrete-time instance, x k € R n is the state vector, yk 6 R m is the system 

output, uk e R r is the system input, and ek e R m is white noise with zero mean and

identity covariance matrix. A, B, C, D. E, F  are system matrices with appropriate

dimensions. We assume tha t (C, A) is observable, (A, B)  is controllable, and u and e
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are independent signals. The system is shown in Figure 3.1, where H  and S  denote

a zero-order-hold and an output sampler with interval T, respectively, the solid

line represents continuous-time signals, and the dashed line indicates discrete-time 

signals. Thus the discrete-time state space model of the system S P H  is (A, B, C , D), 

and the discretized state space model of the disturbance S N  is (A , E , C , F ). In 

certain industrial applications [43], it is common tha t the control updating rate is 

faster than the output sampling rate by a certain factor, which leads to dual-rate 

systems. Assume tha t the input variable is sampled with a fast sampling rate Tfast =  

T  and the output variable is sampled with a slow sampling rate Tsiow =  M T ^ t , 

where M  — 5 ^  is the lifting factor. The problem investigated in this chapter is
J  fa s t

to design the dual-rate MVC law, and then estimate the MVC-benchmark variance 

directly from the input-output data defined as

f uk, k = i +  fc0, Vi =  0,1, • • • , N u -  1,
\  yk, k = j M  +  k0, Vj =  0,1, • • ■ ,N y -  1,

where ko > 1 is the first discrete-time instance when yk is available. The lengths 

of input and output data satisfy N u — N y  x M, which means tha t the last time 

instance when Uk is available equals to the last time instance when yk is available.

3.3 A dual-rate subspace equation with the lifting ap­
proach

The two objectives of this work, dual-rate MVC design and dual-rate control per­

formance assessment via data-driven approaches, are both based on a dual-rate 

subspace equation. This input-output subspace equation is also named as extended 

state space model in the D SR algorithm [59, 62] and the related predictive con­

trol algorithm [60]. Here, we will derive it for dual-rate systems with the lifting 

technique, which makes it possible to follow the conventional subspace approach in 

solving multirate problem, and, most importantly, facilitates the derivation of the 

model-free m ultirate control performance assessment algorithm.

3 .3 .1  D e fin it io n s

For the sake of presentation, the following definitions are adopted. In this chapter, 

{• • • } is used to represent a data set, and [• • • ] is used to denote a vector. For a
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sequence of data

S t e R nrXn% Vt =  0,1, - - - , k , k  + l ,---

with nT being the number of the rows and n c the number of the columns in st , given 

positive integers k, J, L  and K ,  the extended signal sequence sk\L G i?(Lxnr)xn„ js 

defined as

s k\L
def

s k
Sk+1

Sk+L- 1

(3.3)

and the Hankel matrix Sk\L G f j ( L x n r ) x K nc j eg ne(^ as

Sk Sfc+l S k + K - 1
a def Sk+1 s k + 2 Sk+K
b k\L —

. S k + L - 1 Sk+L ■ Sk+ K + L - 2 .

(3.4)

where k is the starting index and k — k o + J M ; L, the number of n r-block rows in sk\Iy 

and Sk\L> is defined as the prediction horizon. K  is the number of nc-block columns 

in In this chapter we work with vector sequences, i.e., sk is a vector (nc =  1)

in this case. The number of block columns in S k\L is chosen as K  =  N y — L — J  

[62], where J  is the past horizon to define the instrumental variable matrix.

3 .3 .2  L iftin g  an d  in p u t-o u tp u t su b sp a ce  eq u a tio n

In the dual-rate control loop in Figure 3.1 the slow sampled output signal is y = {yk0,

• • • , Uk, Uk+M, • • ■ }, and the fast sampled input signal is u = {uko, ■ ■ ■ , uk, uk+1 ,

• • ■ }. The dual-rate controller is time-varying due to the presence of the fast-rate 

hold and the slow-rate sampler. To avoid dealing with the time-varying system 

directly, we introduce the lifting technique. By the definition in equation (3.3), the 

control signals can be stacked as vector-valued sequences as follows:

U. =  {uk0\M) ? u k\M> Uk+M\M , ■ ■ ■ } .

For instance, if M  — 2, the lifted control signal is as

{

1
os'

Uk Uk+2

^fco + l
> ' ' ' ) u k+ 1

5
Uk+3 I

The map from u to u is defined as the lifting operator L m  [40]. The inverse lifting 

operator LA} is the reverse of the mapping. It can be seen tha t L~^L m  =  I  and
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L m L]^ — I. After lifting, both the signal dimension and the underlying period 

are increased by a factor of M. The system from u to y is the lifted system which 

is single-rate and linear time-invariant. Recall tha t the state space model for the 

system S P H  in Figure 3.1 is (A, B , C, D ). The systems we are studying in this work 

have at least one time delay, hence matrix D  can be set to a zero m atrix without loss 

of generality. From the known state space model of the fast-rate plant, the lifted 

system Gm  can be written as [10]:

Xk+M =  A Mx k +  B u k\M , 

Uk — C xk +  D Muk\M

(3.5)

(3.6)

where B  =  [ A M~l B  

trix, and D m  — [ 0

• A B  B  } 6 jjnx(Mxr) ^ 1C lifted external input ma-

• 0 ] € f tm y(Mxr) is the lifted direct control input-to- 

output matrix. Again, by lifting yk and uk\M with the user chosen prediction 

horizon L, equation (3.6) can be written as

Vk c

V k+ M C A M
— Xk +

.  V k + ( L - 1 ) M
C A ( L ~ l ) M

D m
C B

C A ( L - 2 ) M B

0
0

0
D m

u k \ M

U k + M \ M

u k + ( L - l ) M \ M
(3.7)

Let us make the following matrix definitions. The dual-rate extended observability 

matrix Ol  for the pair (C, A M) is defined as

C
C A M

j ^ ( L x m ) x n (3.8)

Q A M(L~l)

and the lower block triangular Toeplitz m atrix H l is defined as

H l =f

D m 0 0
CB 0 0

C A m B • 0 0

0
_  C A ^ - ^ B  ■ • C B D m

B ( L x m ) x ( L x M x r ) (3.9)

Then (3.7) can be expressed as

Uk\L — O L X k  +  H l U k \L M -
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Then it can be obtained from (3.5, 3.10) tha t [58]

U k + M \ L  =  0 L X k + M  +  H L U k + M \ LM

— C>L{AM Xk +  B u k\M  ) +  H L U k + M \LM

— O l A m  ( O ^ O l ) 1O j j O L O L 1 ( y k \L  — H l u ^ l m ) +  O l R u ^ m  +  H L U k + m \l m  

=  M ( y k\L — H i u k\LM) +  C>L,Buk\M + H i u k+M\LM

=  M y k \L -  M  [ H l  0 ( L x m ) x ( M x r )  ] U k \ ( L + l ) M

+  [ O l R  0 ( L x m ) x ( L x M x r )  ) U k \ ( L + l ) M  +  [ 0 ( L x m ) x ( M x r )  H l  } U k \ ( L + l ) M  

=  M y k\L +  ([ O l R  H l  ] -  M [ H L Q { L x m ) x ( M x r ) ] ] u k \ ( L + l ) M  

= M y k\L + N u k\(L+i)M (3-11)

where M  and N  are defined as

M ^ 0 L A M { 0 TL 0 L r l 0 TL,

N  d=lf [ O l R  H l ] - M [ H l 0(Lxm)x(Mxr) ] . (3.12)

The subspace model in (3.11) is disturbance free. Now let us consider the noisy part 

of the model. The disturbance model is in the slow sampling rate and the corre­

sponding discrete-time state space model is as (AM, E s, C, Fs), where the subscript 

s denotes the slow sampling rate. Actually, this model can also be obtained from 

the fast-rate noise model (A, E, C, F) by lifting. The relationship between these 

two models is discussed in detail in [82]. So by taking into account the disturbance, 

via similar derivation as shown in (3.11), it can be seen that

Vk+M\L — M y k\L + N u k\(L+i-)M +  T ek\L+\ (3.13)

where ek\L+l is defined in (3.3), T  =f [ Ol E s H SL } -  M  [ H SL 0(Lxm)xm ], and

I I SL is defined as

H s =f

Fs 0 0
C E a 0 0

C A ME a 0 0

0
C A ( L - 2 ) M Eg . • CEs Fs .

j^(Lxm) x (Lxm) (3.14)

Prom (3.13), it can be observed that

Yk+M\L — M Y k\L NU,k\(L+l)M + TE,'k\L+l (3.15)
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where the data  matrices Y k + M \L, ^fc|L> U ) . and -®fc|L+i are defined as in (3.4). 

Equations (3.13) and (3.15) are equivalent, and they both are input-output equations 

for dual-rate systems. Though in [62] equation (3.13), named as the extended state 

space model, is derived by an M -step predictor approach, our alternative method 

approaches the problem from a different way, i.e. lifting, which makes it possible to 

use conventional subspace approach to  solve m ultirate problem.

3 .3 .3  D e te r m in a t io n  o f  su b sp a ce  m a tr ic es

Since the subspace matrices M , N  and T  in (3.13) and (3.15) will play im portant 

roles in the later dual-rate MVC controller design and MVC variance estimation, in 

this part we will show how to determine them directly from the open-loop input- 

output data. It is im portant to mention tha t estimating the subspace matrices is 

not equivalent to estimating state space matrices of the lifted system, although the 

steps which will be presented here are clearly based on techniques from the area 

of subspace identification. Using the subspace matrices calculated from the input- 

output data we can directly design the control law as well as assess the control loop 

performance, while the lifted dual-rate system parameters A M, B, C, D m , E s and 

Fs are never explicitly calculated. The sketch to determine the subspace matrices is 

shown in the following by using a QR decomposition from DSR algorithm [59, 62], 

The first step is to structure the data matrix in the left-hand side of (3.16) from the 

open-loop input-output data set. Then, the QR decomposition of the data matrix 

can be defined as

1
U k\ { L+ l )M

w = RQ =
y f K Yk\L

. Y k +M \L  .

R \ \  0 0 0
i?2i R22 0 0
R z i  R 32  R 33  0

R 4I R-42 R i 3  R 44

Qi
Q2
Q  3

.  Qi

(3.16)

where W  — Y t  TJtI k0\J ko\JM denotes the past information including the past 

input and output data. The QR decomposition can be treated as a data compres­

sion step, i.e., the data matrix in the left-hand side of (3.16) can be compressed 

to a usually much smaller lower triangular m atrix R  which contains the relevant 

information of the system. By certain derivations [59], the subspace matrices can
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be obtained as follows:

M  — i?42i?32

N  =  ( i ? 4 i  -  M R ^ R ^ i R n R ^ ) - 1

T  = -R43  — -MR33

(3.17)

(3.18)

(3.19)

where the superscript f means the Moore-Penrose pseudo inverse.

3.4 Data-driven MVC law design

3 .4 .1  C o n tro l o b je c t iv e

For linear systems, it is known tha t MVC is the best possible control in the sense of 

variance control because no controllers could provide a lower closed-loop variance. 

The control objective for the system in Figure 3.1 can be expressed as

k = 1

Given the transfer function of a system, e.g., an ARMAX model, the principle 

of MVC can be obtained by solving a Diophantine equation [6]. A more explicit

the MVC problem can be reformulated into an H 2 optimal problem. For the FG 

optimal problem, an elegant solution is developed by solving two Riccati equations 

[10]. Numerical solutions can also be found by solving a group of linear matrix 

inequalities [63, 82],

3 .4 .2  P r e d ic t io n  m o d e l

W hat inspired one to develop MVC law via subspace approach is the following idea. 

It can be seen tha t the subspace input-output equations (3.13) and (3.15) contain 

inherent relationship b etw e en  the past an d  the fu tu re  c o n tr o l/o u tp u t  s ig n a ls . T h e n  

by setting the future predicted output variance to the minimum, the optimal future 

control signals will be expressed as a certain combination of the past control and 

past output signals. Hence, we can obtain the feedback MVC. law. Next, it will 

be shown how to present the explicit relationship between the past and the future 

control/output signals by the subspace equations.

min EiVkVk} =  min (3.20)

solution can be found in [29]. Also, if the system state-space model is known,
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P ro p o s itio n  3.1 The prediction model for the future outputs is

Vk+M\L ~  P y V k - ( L - l ) M \ L  +  P L - l U k - ( L - l ) M \ ( L - l ) M  +  ^L + lwJfe|(L+l)Mi (3.21) 

and the terms are given by

where

P y  = M L ,

P l - 1  =  [ P 1  P2 ••• P L- 1 ], 

Fl+i =  [ h  h  • • • I l + i  L

Pi — ^  ' P j + L —i,j Vi — 1, • • • , L  1, 

i=i
L/—i-\- 2 L

f i  — ^ 2  H j , j + i -1 Vi =  2, ■ ■ • , L  +  1, f i  — y ' H j j .
3 = 1 i=i

(3.22)

(3.23)

(3.24)

H ij  denotes the sub-block of the Hankel Matrix H, which is structured by the subspace 

matrices M  and N  :

(3.25)

P ro o f. By noting tha t ek\L+x is a white noise sequence, it follows from (3.13) tha t 

an optimal prediction of y k + M \ L  can be written as

N '  H n  • H i ,l + i

def M N
=

H 2 i  • ■ H 2,l + i

_ M L~l N  _ _ H L1 ■ ■ H l ,l + i

V k + M \ L  — M y k \L +  N U k \(L + i ) M ■ 

It can be derived from this equation tha t

Vk+ 2M\L =  M 2Vk\L + [ M N  iV [ U^ + l ) M
1 1 . «fc+M|(i+l)M

(3.26)

y k + LM\L = M Lyk\L + [ M L~l N  M l - 2N  ••• N ]

u k \ { L + l ) M  

U k + M \ ( L + 1 ) M

_ Uk + { L - 1 ) M \ ( L + 1 ) M
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By letting k' =  k +  (L — 1 )M  and then substituting k' with k. the above equation 

can be written as

V k + M \ L  = M Lyk\L +  [ M L~l N  M l ~2N N

Uk - ( L - 1 ) M \ ( L + 1 ) M

Uk - ( L - 2 ) M \ ( L + 1 ) M

u k \ ( L + l ) M
(3.27)

From equations (3.26) and (3.27) it can be seen tha t P y — M L. To prove tha t (3.23) 

and (3.24) hold, we first rewrite the term  P L - i U k - { L - i ) M \ { L - i ) M  +  F L + i u k \ ( L+ i )M  

as follows:

P L —l u k —( L —l ) M \ ( L —l ) M  +  F L + l U k \ ( L + l ) M  

= [  P i  P 2  ■■■ P L - 1  }

U k - ( L - 1 ) M \ M u k\ M

Uk - ( L - 2 ) M \ M
+  [ f l  h ■ f L + 1  }

U k + M \ M

Uk - M \ M . U k + L M \ M

(3.28)

Then the second term in (3.27) can be reformulated as 

[ M l - xN  M l ~2N  ■■■ N  ]

U k - { L - 1 ) M \ ( L + 1 ) M

U k - ( L - 2 ) M \ { L + 1 ) M

u k \ { L + l ) M

u k\ M Uk —M \ M U k —(L —1 ) M \ M

N
U k + M \ M

+ M N
u k \ M

+  • ■ ■ +  M L~l N
U k - ( L - 2 ) M \ M

. U k + L M \ M . “ fe+(L-l)Ar|Ar U k + M \ M
(3.29)

Considering the Hankel Matrix

N ' H U Hl2 •• H i ,l + i
M N

—

H 2i h 22 •• H 2,l + i

1 &:
« 1 

••
1-.

1 _ H l i H L2 ■ H l ,l + i

from (3.28) and (3.29) it can be seen tha t

the coefficient of u k\M : f \  =  H \ \  +  H 22 +  ■ • ■ +  H l l ,  

the coefficient of u k+M \M : fa — H u  +  # 2 3  H H H l , l + 1 ,
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the coefficient of uk+LM\M  : f L+1 =  H ltL+l.

Then equation (3.24) is proven. Similarly, by collecting and comparing the 

coefficients of the past control signals in (3.28) and (3.29), we can obtain tha t 

the coefficient of Ufc-(L-i)MjM : pi =  HLi, 

the coefficient of «fe-(L-2)M|(L+i)M : P 2 =  +  H L2 ,

the coefficient of uk_M\M : P l - i  =  H 21 +  # 3 2  H +  H l , l - i -

Thus, equation (3.23) holds. The similar prediction model for single-rate case 

can be found in [60]. ■

3 .4 .3  C o m p u tin g  M V C  co n tro l law

P ro p o s itio n  3.2 Considering the prediction model in (3.21), the L-step ahead op­

timal control variables, which minimize the control cost function

J l  — y k+ M \L y k +M \L> (3.30)

can be computed as

u k\(L+l)M =  - { F l + i FL+ i ) ] F l + 1 { M Ly k^ L_ l ) M \L +  P L - l U k- ( L - \ ) M \ ( L - l ) M ) -

(3.31)

P ro o f. Inserting y k+ M\L shown in (3.21) into the control objective function (3.30), 

it can be shown tha t

— ------   2 F l + 1 ( M Ly k_ (L_ 1)M{L
9 u k\(L+l)M

+  P L - l U k- ( L - l ) M \ ( L - l ) M  +  F L + lU k\(L+l)M)-  

By setting -5—^ —  =  0, the optimal control variables can be obtained asJ °  °Uk\(L+1)M ^

u k\(L+l)M =  ~ { F l + 1 F L + ^ F l +1

x { M L y k - ( L - l ) M \ L  + P L - l U k - ( L - l ) M \ ( L - l ) M ) -

■
After the optimal control sequence uk is calculated, only the first block 

row of «/c|(z,+i)m> u k\Mi is implemented as the receding horizon MVC law. Observing 

equation (3.31) we can make some im portant remarks:
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• The data-driven MVC law avoids the system identification step in the tradi­

tional MVC design. Moreover, the lifted system matrices A M, D, C, D m , E s 

and Fs do not have to be calculated. The only parameters of importance are 

M  and N .  The Riccati equation or Diophantine equation is replaced by one 

single QR decomposition of data block matrices (see (3.16)).

•  Although only the first control action is implemented, it has been shown [14] 

as the horizon being increased, the receding horizon implementation converges 

to the true optimal control. This fact will be further elaborated next.

•  Looking at both, the data-driven MVC law derived via the subspace approach 

and the classic MVC law, one might wonder what the link between these two is, 

and if they are equivalent. The answer to the latter question is positive. The 

reason is tha t as discussed in [39], the minimum variance controllers designed 

for ARMAX systems using Diophantine equations are identical to the LQG 

controllers for any system delay. Thus, the MVC problem is a special case of 

the LQG problem. Also, it is proved tha t a subspace-based LQG approach is 

equivalent to the classical LQG when the horizon is infinite [14]. Due to the 

equivalence of the subspace identification methods, we can conclude tha t the 

data-driven MVC controllers approach the classical MVC controllers when the 

prediction horizon goes to infinity (L —> oo). This fact has also been verified 

from our simulation studies.

•  The prediction horizon L  must be chosen greater than or equal to the order 

of the interactor of the lifted system d. Recall H  and N  are defined in (3.25) 

and (3.12) as
N  

M N

M l ~xN  _

and

N  d̂ f [ O l B H l } ~  M[  H l  0(ixm)x(Mxr) ].

When L  < d — 1, from (3.8) and (3.9) it can be seen that OlR  and H l are zero 

matrices, thus N  and H  are zero matrices. In addition, the optimal future
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control signals in (3.31) are zeroes. Therefore the minimum prediction horizon 

.Zimin should be chosen as Lm;n =  d [60].

• A dual-rate system where the outputs are sampled at the same rate is consid­

ered in this chapter, to make the exposition simple and clear. Notice th a t a 

multirate system where the outputs are sampled at different rates can also be 

handled within the framework, if the proper lifting operators are applied. Con- 

sidering a system where y = [ y j  y j \  • V\ is sampled at n \T ,  y% is sampled 

at ri2T,  and the input u is fast-updated with period T, to apply the designed 

algorithms we need to lift the input signal u by the lifting operator Lm (M  is 

the least common multiple of n iand  n 2 ), lift y\ by Ay, (N\ = ~ )  and lift r/2  by 

L n 2 (N 2 = The lifted system from the lifted input u — L m u  to the lifted

output y = (Ly12/i)T (Ljv2y2)i is a single-rate linear time-invariant
T

system with sampling period M T .  Thus our algorithms can be applied.

3.5 Estim ation of the M VC-benchmark variance directly  
from input-output data

3 .5 .1  E s t im a tio n  o f  th e  s in g le -r a te  M V C -b en ch m a rk  var ia n ce

In [27], a data-driven approach is developed for multivariate feedback control perfor­

mance assessment for any structure of time delays. It presents the extended output 

y*.|L of the process (in Figure 3.1) as

Vk\L — O i x t +  \L ,

and the output variance under MVC can be written as

J mvc =  min E [y ly k] =  trace(min E[ykyl\)

= trace (I  -  -  H l h { ) t  (3.32)

where H l is defined as in (3.9) with M  = 1 as it addressed in the single-rate case; I I fj 

is defined as in (3.14), and H]  1 denotes the first block column of The impor­

tan t contribution of this algorithm is tha t “it consolidates the traditional three-step 

procedure, model identification, closed-loop time series analysis, and extraction of 

the MVC benchmark into a single shot” . Thus “no concepts, such as transfer func­

tion matrices, state space matrices, Markov parameters, interactor matrices, etc. are
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needed anymore in the algorithm” [27]. In the following subsection we will introduce 

the estimation of the dual-rate MVC-benchmark variance based on this method.

3 .5 .2  E s t im a tio n  o f  th e  d u a l-ra te  M V C -b en ch m a rk  var ia n ce

It is shown in (3.32) tha t the J mvc can be estimated if H l and H I  1 are known. In 

the following, we will discuss how to estimate these two matrices. From (3.21, 3.22) 

it can be seen that

Vk\L =  M L y k_L M \L  +  P L ~ l u k—LM\{L—l ) M  +  F L + l u k - M \ { L + l ) M

— LwWp +  H LnklLM,

1 T
where W„ T  T

y k - L M \ L  Uk—LM\LM denotes the past information (output and 

control signals), and L w = [ M L P l - i Fl + i (:, 1 : M  x r) ]. Then H l , the 

estimation of H l,  can be determined as

H L = [ h !  h2 h*L (3.33)

where
L - i + l

h i  — ^  ^  — 1) ' '  ’ A,
3=1

(3.34)

and H  is the estimation of the Hankel M atrix defined in (3.25). To estimate H j  

we need first define another Hankel matrix

A =

then H'l 1 can be obtained as

T '  A n  • ■ M ,l +i
M T

—
A 2 1  • • h-2'L+l

I
.. 

i

1 _ A ^ i  • ■ A ^ l + i

(3.35)

" I a - E Ai..j+ i-
i= i

(3.36)

The proof of (3.33), (3.34) and (3.36) is omitted since the procedure is the same as 

tha t in Proposition 3.1. Therefore, the estimated MVC-benchmark variance can be 

computed as

J mvc =  trace (I  -  H l h I ) H sl a H ^ ( I  -  H l H \ ) j .
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So far we have shown the procedure to estimate the dual-rate MVC-benchmark 

variance: the first step is to arrange the data matrix in the left-hand side of (3.16) 

from the open-loop input-output data; then the subspace matrices M , N  and T  

should be determined by a QR decomposition; finally the dual-rate MVC-benchmark 

variance can be calculated by (3.37), where H l and H SL 1 are obtained from Hankel 

Matrices (3.25) and (3.35). Notice tha t H sL l  is preferably estimated from a set 

of representative closed-loop routine operating data to reflect control performance 

assessment under routine operating condition. W ith the estimated MVC-benchmark 

variance, the closed-loop performance index can be computed as the ratio between 

the estimated MVC-benchmark variance and the current output variance:

  Jmvc
var(yk)'

3.6 A simulation exam ple

E nriched vapor
Cooling w a ter

~ Condensate

D is ti l la te
RefluxF eed

^  Reboiler

B o tto m  p ro d u c ts

Figure 3.2: The distillation column [1]

This distillation column example is adopted from [83] and illustrated in Figure

3.2. Similar examples can be found in [34] and MATLAB/Control Toolbox User’s 

Guide [1]. This distillation column is used to separate a mix of methanol and water 

(the feed) into bottom  products (mostly water) and a methanol-saturated distillate. 

The linearized transfer function model around the steady-state operation condition 

is:
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2/1 (»)
. 2/2 («) .

1 2 .8 e ~ s 
1 6 .7 s + l  
6 .6 e“ ' s

— 18 .9e~  
2 1 .0 s + l

— 19 .4 e—3s
ui(s)
u2(s)

1 0 .9 s + l  1 4 .4 s + l

where the regulated output variables y\ and y2 are the percentage of methanol in 

the distillate and in the bottom products, respectively; the manipulated variable u\ 

is the reflux flow rate, and u2 is the steam flow rate in the reboiler. We assume 

the control signals are fast sampled while the output signals are slow sampled. The 

fast and slow sampling periods are chosen as T / =  1 sec and Ts — 2 sec; therefore 

the lifting factor M  — 2 in this example. By discretization and lifting [10], we can 

obtain the lifted dual-rate system model as

’ Vl(z) '
. 2/2 (z ) .

0 .7 4 4 z ~ 1 —0 .8 7 8 9 z ~ 2 0 .7 0 7 7 z ~ 2
1—0 .8 8 7 1 z_1 1—0 .9 0 9 2 z_1 1 - 0 .8 8 7 1 Z - 1

0 .5 7 8 6 z- 4  —1 .3 0 2 z- 2  0 .5 2 7 8 z ~ 5

—Q .838z~3 
1—0 .9 0 9 2 z- 1

1.211; 3
1 -0 .8 3 2 4 Z -1 1—0.8703z_1 1 -0 .8 3 2 4 Z -1 1 -0 .8 7 0 3 Z -1

U i ( z )

U2(z)

where u\  and u2 are lifted control signals. We assume the slow-rate transfer function 

model of the disturbance, under which the dual-rate system works, is as

1 0.7
N s(z) = l-0.4;FT -0.3 1-0.32^ 1

ei {z) 
e2{z)1 - 0 .6 Z - 1 1 -0 .  b z - 1 J

where ei and e 2 are independent white noises with unit variance in slow rate. The 

unitary interactor matrix of the lifted dual-rate system is calculated [29] as

Din, —

and the order of the interactor matrix d — 2. As stated in Theorem 6.2.1 in [29], 

the interactor-filtered disturbance model can be separated as

r -i r 1 0.7 I
z dDinN s =  z 2

—z
■p2

1—0.4z_1 -0.3 1—0.3z-1 1— Z L 1—0.6z_1 1 -0 .5 Z " 1 J
=  N f  +  z~ 2N R,

where

and

N f  = - z - 1

_ 0.3 +  0.18z-1

N r  —

-0 .7  z” 1 
-1 -  0.5z-1

—0 .4 z ~ 2 —0 .2 1 z ~ 2
1—0 .4 z _1 
0 .1 0 8 z ~ 2

1-0.3Z-1 
—0.25z~2

1—0 .6 z _1 1 —0 .5 z - 1
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Thus, the theoretical minimum variance can be calculated as

Jmvc =  trac e(ata j)  = 2.8624,

where at =  N p [ e[  e j  ]T .

In the following part, we are going to use this distillation column example to 

illustrate both the dual-rate data-driven MVC algorithm and the control perfor­

mance assessment algorithm. To design the data-driven dual-rate MVC, the open- 

loop input-output data are required to identify the subspace matrices. Open loop 

input-output data are obtained by exciting the open loop dual-rate system using a 

designed random binary signal of magnitude 1 for the inputs, and random numbers 

with unit variance for the white noise sequences. The input and output data  are 

collected over 600 seconds with their respective sampling rates. The data are plot­

ted in Figure 3.3. After estimating the subspace matrices from the input-output 

data by equations (3.17) and (3.18), the optimal control signal series are computed 

from (3.31). Notice tha t only the first 2M  rows of the optimal control signal are 

implemented because of the receding horizon MVC control law. According to Re­

mark 3, the longer prediction horizon L  we choose, the better control performance 

we could obtain. Using the same group of open loop data, we design different MVC 

controllers with different prediction horizons for the dual-rate system, such tha t L 

changes from 10 to 20 and the past horizon J  — 2. The simulation results are shown 

in Table 3.1, where var (?//,.) is the simulated output variance, and the relative error 

between the simulated and the theoretical minimum variances Oe — var(y^>~Jmvr_
J m v c

Table 3.1 shows tha t the error between var(y*.) and the J mvc is small, which verifies 

the dual-rate data-driven algorithm. Also, it can be observed tha t when L  increases, 

var(yfc) approaches the theoretical minimum variance J mvc■ This validates Remark 

3. The fast-rate optimal control signals and slow-rate regulated outputs are shown 

in Figure 3.4 when L  =  20.

Table 3.1: Simulation results of the distillation column under the designed data- 
driven dual-rate MVC controllers_____________________________________________

Prediction horizon L 10 11 12 13 14 15 20
var(yk) 2.9906 2.9756 2.9750 2.9360 2.9025 2.8931 2.8915

Oe 0.0448 0.0395 0.0393 0.0257 0.0140 0.0107 0.0102

Now let us look at simulations for the data-driven dual-rate MVC-benchmark
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Figure 3.3: The open loop input-output data from simulations

Table 3.2: Simulation results of the distillation column for the data-driven dual-rate 
MYC-benchmark performance assessment

Control law Prediction horizon L var(yk) Jm vc Jm vc Ve
Non-optimal 13 3.2510 2.8624 2.8339 0.0100
Non-optimal 14 3.2018 2.8624 2.7751 0.0305

Optimal 10 2.9872 2.8624 2.8040 0.0204
Optimal 11 2.9721 2.8624 2.9931 0.0457

performance assessment algorithm. Open-loop and closed-loop input-output data 

sets are needed to estimate H l  and H SL -L, respectively. Then the MVC-benchmark 

variance is calculated according to equation (3.37). The open-loop data set is gener­

ated in the same way as in the dual-rate MVC design simulations. The closed-loop 

data sets are collected under two kinds of control laws: the non-optimal and the 

optimal. The non-optimal control law is computed by multiplying the optimal re­

ceding horizon MVC control signals by 1.5. For each of the cases listed in Table

3.2, we run the simulations for 1000 seconds. The simulation results are listed in 

Table 3.2, where var (yk) is the simulated output variance, J mvc is the theoretical 

minimum variance, J mvc is the estimated minimum variance from each simulation,

and 7/e = is the absolute value of the performance index esti-var(j/fc) var (yk)

mation error. We can see that r/e is small, which verifies the derived dual-rate 

MVC-benchmark performance assessment algorithm.
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Figure 3.4: The closed-loop control/output signals when L = 20

3.7 Conclusions

In this chapter, the data-driven minimum variance control and the MVC-benchmark 

variance estimation have been discussed for a dual-rate system. A subspace input- 

output equation is derived by the lifting technique to obtain a prediction model. The 

dual-rate optimal controller design is data-driven since it only requires a set of input- 

output open-loop experimental data and the explicit process model is not needed. 

The presented MVC-benchmark estimation algorithm requires a set of open-loop 

experimental data  plus a set of closed-loop routine operating data. The proposed 

algorithms were illustrated through a distillation column simulation example. In 

this chapter we consider a dual-rate system where the outputs are sampled at the 

same rate, to make the exposition simple and clear. Notice tha t a multirate system 

where the outputs are sampled at different rates can also be handled within the 

framework, if the proper lifting operators are applied.
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Chapter 4

A D ata-driven Predictive  
Control for Single-rate System s 3

This chapter is concerned with some outstanding problems in predictive control of 

single-rate systems. The predictive control applied is completely data based and 

does not need an explicit model. In addition, unlike other data-driven predictive 

control designs, the proposed approach can deal with systems without complete 

on-line measurement of all output variables. The proposed data-driven predictive 

control approach is applied to solving the control problem of a solid oxide fuel cell 

(SOFC) system, which is challenging owing to its slow response and tight operat­

ing constraints. Simulation results have demonstrated the feasibility of the control 

application.

3The m aterials in this chapter will be published in “X. Wang, B. Huang, and T. Chen. Data- 
driven predictive control for solid oxide fuel cells. J. of Process Contr., to  be published, 2007” .

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1 Introduction

One of the objectives of this chapter is to explore a data-driven predictive control 

law for single-rate systems, when only open-loop input-output data are available. 

Unlike the model-based approach, where the system model is required to achieve this 

goal, we follow a novel approach based on results from subspace system identification 

[58, 59]. The data-driven design approach presented in the literature so far has been 

derived under the condition tha t all outputs measurements are measured on-line 

in closed-loop systems. However, in reality, some outputs may not be measured in 

real time, or are too costly to be measured on-line although they may be measured 

in some off-line model identification experiments in a laboratory. For example, it 

may be difficult and costly to on-line measure the fuel utilization which is the ratio 

between the reacted fuel flow rate and the inlet fuel flow rate which is a component 

of total inlet flow in the SOFC system [53, 85]. To circumvent this problem, we 

consider the data-driven predictive control design based on only partially available 

output measurements.

In this chapter we propose a predictive control method via subspace approach. 

The predictive control has usually been studied under the heading of MPC. This 

is because MPC has considerable advantages relative to other conventional control 

strategies: the ability to handle input and state constraints for large scale multi- 

variable plants, the capability of dealing with variables interaction, and the ease of 

adaptation to new operating conditions [17, 32]. Like any other model-based con­

trol, conventional MPC relies heavily on process models. An accurate process model 

is required if the process is to be regulated tightly. Usually there are two ways to 

obtain process models: the analytic approach where certain process knowledge (such 

as fundamental physical laws) is required to derive the model and the experimental 

approach by fitting a model to the input-output data through system identification. 

In this chapter the proposed predictive control is completely data  based and does 

not need an explicit model. It can explicitly deal with constraints and incomplete 

on-line measurements.

The remainder of this chapter is organized as follows. The system description and 

the problem formulation are described in Section 4.2. In Section 4.3, a data-driven
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approach is investigated to design the predictive controller using partial closed-loop 

output measurements. The SOFC dynamic model and operating conditions are 

given in Section 4.4. SOFC control simulation is provided in Section 4.5, followed 

by conclusions in Section 4.6.

4.2 System  description and problem statem ent

As it can be seen later in Section 4.4, the SOFC model of concern is linear in its 

dynamics but nonlinear in its output equation (due to the Nernst equation). In 

this chapter, we restrict to a linear predictive control strategy. The model is not 

linearized from the original nonlinear model. Instead, we assume tha t the nonlinear 

model is not available, but an off-line experiment can be performed by varying fuel 

and oxygen inlet flows. In classical system identification, a linear state space model 

can be identified. Note tha t in the proposed method only certain subspace matrices, 

not an explicit system model, need to be determined. To formulate the problem, 

we consider a general linear time-invariant system which can be described by the 

following discrete-time state-space model

x k+i =  A x k + B u k +  E ek (4.1)

yk =  C xk +  D uk +  F ek (4.2)

where A; is a discrete-time instance, x k G R n the state vector, yk G R m the system 

output, uk G R r the system input, and ek G R m a white noise sequence with zero 

mean and identity covariance matrix. A, B, C, D, E, F  are system matrices with 

appropriate dimensions. We assume tha t (C, A) is observable, (A, B)  is controllable, 

and u and e are independent signals. Due to time-delay, it is generally assumed that 

D  =  0.

For the sake of presentation, the following definitions are adopted. {• • • } is used

to  p resen t a  d a ta  se t, an d  [• - ■ ] is u sed  to  d e n o te  a  v ec to r . The p ro b lem  in v e s t ig a te d

in this chapter is to design the data-driven predictive control law directly from the

experimental input-output data defined as

{uk , yk: k =  0,1, • • • , iV — 1} .

The lengths of input and output data  equal to N.  Particularly, the controller to
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be designed needs to work in control-loops where only partial measurements are 

available, i.e., the output can be described as yk — [(ysk)T {Vk)T V  e  where y'l E 

R a denotes the measurable outputs and yk E R b indicates the unmeasurable outputs. 

The superscript s means “sampled” and u indicates “unmeasured” respectively. It 

is obvious tha t a + b — m.

4.3 Data-driven predictive control algorithm

Recall tha t in this work the extended signal sequence sk\i £ /?ix r ' r is defined as

def r T  T  T  1T
s k\L — s k+1 ‘ ' ' s k + L - l \  >

where St E R Ur (t — ko, ■ ■ ■ , k, k +  1, • • •) is a sequence of data  with nr being the 

number of the rows; k is the starting index; L  is the number of nT-block rows in 

sk\L- The control objective of this work is to minimize a standard cost function in 

model-based predictive control subject to certain constraints. This can be re-written 

in vector form for convenience as follows:

m in Jfc =  r n m ( y k + 1\L - r k + l \L)T Q ( y k + i \ L - r k + i\L) +  ̂ u l \ j cR j cA u k\ j c +  u l \ j cP j cu k\ j r ,
A u k \ J c

(4.3)

subject to

“ K  < <4-4>

<  Au^, (4.5)

C -V  « fc+Hi < * “ l. (4-8)

where L  is defined as the prediction horizon; J c (Jc ^  L ) is the control horizon;

y k+ i\L  is a vector of the prediction of future output; r k+ \ \ l  is a vector of future 

reference signals; u k\ jc is a vector of future manipulated signal; A 1 — z 1 with 

z ~ 1 being the back shift operator; hence A u k =  u k — u k~i is the incremental input 

or control move, and A u ki Jc is a vector of future incremental inputs over the next 

J c samples. A u k is introduced to ensure zero steady state error in the case of 

non-zero constant reference or load step changes [9]. Q  E R ( L x m )x (L x m )̂  R Jc g 

r(J<-/ r ) x(X;xr) an(j e  p ( J c x r ) x ( J r X r )  are weighting matrices with block diagonal
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Figure 4.1: Block diagram of the closed-loop system

structure on the error between the predictive outputs and the future references, 

the future incremental inputs and the future control efforts respectively. Note tha t 

Q, R jc, and Pjc can be time-varying in general. Different from [60, 61] where the 

prediction horizon and the control horizon are both chosen to be L, we set the 

control horizon to J c to make the predictive control law more flexible. The closed- 

loop system diagram is shown in Figure 4.1, where uk is the control signal to make 

yk — [(y[)T {y^)T]T follow the reference r or satisfy certain constraints, while only 

partial measurements, yf., are available on line.

Given the measured output as y — {y^0, • • ■ , y y ^ +1 , ■ ■ ■ }, and the input as 

u  — { u ko, • • • , Uk, Uk+1 , • • • }, the subspace predictive equation of the measured 

outputs can be written as [60]

V k + l \ L  =  S) L y Sk - { L ~ l ) \ L  +  P i ~ \ u k - ( L - 1 ) \ L - 1  + P L u k \ L , (4-7)

where M s, P 'l_{and F[ are subspace matrices which can be obtained from the 

experimental input-output data [60].

P ro p o s itio n  4.1 It can be obtained that the predictive equation for the unmeasured 

outputs is

Vk+l\L = P L - l u k - ( L - l ) \ L - l  + P L u k\ L + Up, (4.8)

where Pf _ i  and F f  are subspace matrices obtained in the same way that Pf ^x and 

F[ are formed, respectively, in [60], and Up is a constant matrix in terms of past 

inputs.
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P ro o f. By iteratively substituting yk_jL+l\L where j  — 1, • • • . i. it can be obtained 

[60]

yfc+l|L =  (M U)Ly l_ [L_ m  +  P l _ x U k_ ( L _ X) \ L - l  +  F L u k\L

= (M u)L[(Mu)Lyuk_2L+llL + P£_lUk- 2L+1 | i_ x +  F l u k„L |L]

+  F L - l u k - ( L - l ) \ L - l  +  F L u k\L

where

=  [(M uy xLyuk_ixL+llL +  (M,‘)(<- 1)L^ _ 1ufc_ixL+1|L_ 1 

+  ( M U) ^ _1 î F i 'U fe - ( i_ 1) i + 1|i, 4---------1- ( M U) L P L - l U k- 2 L + l \ L - l

+  ( M U)L Ft u k_L\L] +  P L - l u k - { L - l ) \ L - l  +  F L^k\L  

= ( MUf XLyk_ixL+1 \L +  P L - l u k - ( L - l ) \ L - l  +  F L u k\L +  Up

U p  =  [ • • • ( M u ) i P £ _ 1 ]

u k - i x L + l \ L - l

[ . . . [M u)LF1 ]

Uk - 2 L + 1 \ L - 1  

u k - ( i - l ) L + l \ L

Uk—L\L

+

(4.9)

It will be proven below tha t (M u)txL —» 0 when i x L  —> oo. Assuming tha t in the 

operating control loop some measurements are unavailable, we can re-write (4.1) 

and (4.2) as

*£/c+i — A x k -f- B u k 4“
D . 1 P

where the superscripts s and u indicate “sampled”and “unmeasured” . Thus, the 

state-space model from u to yu is

x fc+i =  A x k + B u k + E ek 

yk =  Cux k 4-  Duuk +  Fuek

yl ' c s ' ‘ D s ' ' p s '
Vk = a K

. Vk .
C u x k +

D u
Uk +

.  Fu .
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and O f . the extended observability m atrix for the pair (C u. A) is defined as

g  j ^ ( L x b ) x nqu d e f

c u
CUA

L - 1Cu (A)

It can be obtained tha t [59]

M u =  OuLA[{OuL)TOuL]"l {OuL)T .

Noting tha t

hence

Ag(AB)  =  eig (BA)-, 

eig (M u) =  eig {OuLA[(OuLf  O t ] - 1 (O f f } 

=  eig { A [ ( O l f  O f t ' 1 ( O l f  0"L}

=  eig(A).

Because the identified discrete-time open-loop system is stable, i.e., eig(Tl) < 1, thus 

when i x L  goes to infinity,

eig [(Mu)ixL] = eig[(A)ix i ]

=  [eig(kl)]ix i  0 

=> (M u)ixL 0.

Therefore, it can be seen tha t when i x L  is large enough to make (M v )tyL —► 0, 

(4.9) can be w ritten as

Vk+1\L -  P L ~ l u k - ( L - l ) \ L - l  +  F l u k\L +  U1V

P ro p o s itio n  4.2 Combining (4-7) and (4-8), it can be obtained the prediction of the 

future outputs presented by the past available measurements and past input signals

as

i l k+l \L  — M Lyk-(L-l)\L +  P L - l U k - ( L - l ) \ L - l  +  F L Uk\L +  ^p- (4-10)
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P ro o f. The matrices in equation (4.10) are as follows:

( M s)l ( 1,1) 0 ••• (M s)l (1 : L) O '
0 0 ••• 0 0

m l =
( M s)l (L, 1) 0 ••• (M s)l (L ,L ) 0

0 0 0 0

and

* p = [ 0  Up( 1,:)T ••• 0 Up(L,:)t }T .

In the above equations, each block is with appropriate dimension, such as for j  =

P ro p o s itio n  4.3 Substituting (4-10) into (4-3) to predict the future measured and 

unmeasured outputs, one can formulate the control objective as a Quadratic Pro­

gramming (QP) problem [61], i.e.,

min Jk = A u l ]LH A u klL + 2 f ^ A u k{L, (4.11)

subject to constraints:

A A u k\L ^  bk. (4.12)

Proof. Defining matrices S  and c as

I'p Of 
^  d e f  ^  Ir

0r

^  G R(Lxr)x (Lxr)

and

c = [ I r i r . . .  i r }T e R {Lxr)xr
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we can obtain

uk\L — S A u ^ i  +  (4.13)

Thus, equation (4.10) can be re-written as

Vk+1\L = - ^ L2/fc-(L-l)|L +  PL-lUk-{L-l) \L-l +  FLUk\L +

=  4>i(fc) +  Flu^ l 

=  $ L(fc) +  FL( S A u k\L + cuk- i )

= * $ ( k ) + F £ A u k\L (4.14)

where

§L{k) — M L?/A;-(L-1) \L +  PL-lUk-(L-l) \L-l  +  (4-15)

^ ( f c )  =  $ L (fc) +  F LCUfc_ 1 , 

i f  =  Fl S.

It can be seen tha t (4.3) is equivalent to (4.16) with the future control moves be­

ing zero after k + Jc step, i.e. A u k+Jc+i ^ i _ j c  ̂ — 0. Thus (4.3)-(4.6) can be

re-formulated as

min Jk =  min(yk+1\L -  rk+l\L)TQ{yk+1\L -  rk+1{L) +  A u l lLR A u k]L +  ul\LP u k\L,
L

(4.16)

subject to

< Uk\L < ,

A u ™  < AuklL <  A tigjf,

„.min ^  ^  ..max
Vk+1\L ^  Vk+1\L ^  Vk+l\Li

&Uk+Jc+1\(L -jc) =  0.

Control signal related weighting matrices and constraints are all extended from 

original ones to those with proper dimensions. Substituting (4.13) and (4.14) into
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(4.16), we have

J k  — {Vk+1\L — r k + l \ L ) T Q { y k + l \ L  — r k + l \L )  +  A u k \LR A u k\L +  v £ \L P u k \L

=  (*£(fc) +  F t A u k[L -  rk+1]L)T Q ( ^ ( k )  +  F £ A u k]L -  rk+1]L)

+ A u k \ L R A u k \ L  +  ( S A u k\L +  CUk- i f  P  (S A u k\L +  cuk- 1)

=  A ul\L( F £ Q F £  + R  + S TP S ) A u k]L + 2 ($£(*;) -  rk+1 {Lf  Q F £ A u k{L 

+  2 (cuk_ i)T P S A u k\L +  (4>£(fc) -  r fc+i|L)T Q ($£(&) -  r fc+1|L) +  (cuk_ i f  P  (cuk- i )

=  A u k\LH A u k\L +  2 f k A u k\L +  «ife>

where

H  = f £ q f £  + R  + S TPS,

fk  =  F £ t Q (<&£(*:) -  r fe+1|i )  +  S TPcuk- i ,

Jk = ($ L (*) -  r fe+i|L)T Q ($ £  (*0 -  ^ + i | l )  +  Ufc-lCr PcMfc_i.

The constraints on control are

u ^ ^ S A u ^  +  c u k - x ^ u ^ ? *

S A u k \L  ^  -  c u k - 1 ,

-'S 'A ^IL  < - ufe|L +  c“ fc-i-

The control rate constraints are

A u k\ i  ^  A ufci£ ^  ^

i i x r A w f c | L  ^  A u ^ k \ L  ’

- / L x r A u fc|L  <  - A u J 5 j £ .

T h e  o u tp u t  c o n stra in ts  are

C i V  < y ^ i L  «  C “ n  »

! C i , i  <  * i ( ‘ )  +  Ft <  ! C J | L  »

<  * “ |L -  * £ (* ),

- f f  &uitL <  - s S " 1|t +  #£(*)•
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To change the control horizon from L  to Jc (Jc A L) we set A u k+j r+iq L - jc) =  0. 

Thus

I ( L - J c) r ^ u k+ Jc+ 1 \ ( L - J c) ^  0 an(l ~  I ( L - J c) r ^ u k + J c+ 1 \ ( L -J r.) ^  0 O

M JcA u k\L ^  0 and -  M j cA u k\L sj 0

where

M j c —

g (Jcx r )x (L xr )  

q  ( L - J c) r x ( J c Xr) j ( L —Jc)r

All these constraints above can be written as an equivalent linear inequality:

A A u k\L ^  bk (4.17)

where

A  =

'  5  '
- S

iLxr
I lxt

F t
, and bk —

- F t
M j c

L ~ M j c .

~  cuk-ik\L

~ Uk\ l  +  CUk- 1 
A u ^

t
y™i\L ~  *£ (* )

“ C V + *£(*)
0 
0

Thus the predictive control law can be solved by the following QP problem

min {AuZLH A u k\L +  2 / J A u k\L),
&V-k\L '

subject to A A u k\L ^  bk, 

which can be solved in MATLAB as

Au*k\L = qp(H, f k , A, bk).

■
After the optimal control sequence uk\r, is calculated, only the first block row, 

uk, is implemented in the receding horizon predictive control law.

4.4 Dynam ic m odel of SOFC and operating conditions

A fuel cell is an electrochemical device tha t converts the chemical energy of a fuel 

directly into electricity and heat without combustion. The electricity produced has
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all kinds of applications such as residential power stations, portable devices, military 

services and transportation. The byproduct heat is also used in some applications, 

e.g., for space heating. Though certain problems still remain, fuel cells have shown 

their potential for high energy conversion efficiency, low to zero emissions, quiet 

operation, and high reliability over conventional power generation equipment [24]. 

Depending on the electrolytes used, there are different types of fuel cells:

•  Alkaline fuel cell (AFC)

•  Direct methanol fuel cell (DM FC)

• Molten carbonate fuel cell (M CFC)

• Phosphoric acid fuel cell (PAFC)

• Polymer electrolyte/ Proton exchange membrane fuel cell (PEM FC )

• SOFC

They are all based on a central design tha t consists of two electrodes, a positive 

cathode and a negative anode. Almost all the research that has been conducted in 

fuel cell control is model-based [54, 85, 72, 19, 69, 3, 36], i.e., an explicit model of the 

fuel cell system is required to design controllers. In [54] a combination of a nonlinear 

feedforward and a linear feedback controller was designed to improve the transient 

oxygen response. An SOFC dynamic model tha t has been well studied lately is 

originally presented in [53]. Its dynamic performance is analyzed and evaluated 

in [85]. A model predictive controller is developed in [72] for a hybrid PEMFC 

system with ultracapacitors as an auxiliary source of power. A feedforward controller 

is utilized to solve the “oxygen starvation” problem in [19]. A nonlinear model- 

based controller is developed for the regulation for a PEMFC system. A detailed 

dynamic model is presented and a multi-loop control strategy is proposed for a simple 

SOFC hybrid system in [69]. In [3], a master controller which maintains constant 

fuel utilization and air ratio and a typical feedback proportional-integral-derivative 

tem perature controller are implemented for an SOFC model. In [36], two robust 

controllers, which are synthesized by solving an mixed-sensitivity optimization, 

are designed for a linearized SOFC power plant tha t is originally developed in [53],
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Figure 4.2: SOFC system dynamic model

The SOFC model tha t is selected for control study in this chapter has been 

investigated by several researchers for dynamic modeling and control [53, 85, 33, 36]. 

Although the model is a simplified dynamic model of SOFC systems, it has been 

shown to be a challenging control problem owing to the SOFC’s slow dynamics and 

tight operating constraints [36]. The solid oxide fuel cell (SOFC) system dynamic 

model [53, 85] is shown in Figure 4.2. This SOFC system includes three main parts:

• Power section (fuel cells), which generates electricity. There are numerous 

individual fuel cells in the power section. The SOFC stack dynamic model is 

based on the following assumptions [53]: ideal gas and isothermal operation. 

The only source of losses is ohmic loss, as the working conditions of interest 

are not close to the upper and lower extremes of current. The channels tha t 

transport gases along the electrodes have a small and fixed volume; thus it is 

only necessary to define one single pressure value in the interior. The exhaust 

of each channel is via a single orifice, which can be considered choked. The 

Nernst equation can be applied to calculate the voltage.

• Fuel processor, which converts fuels such as natural gas to hydrogen and 

byproduct gases. The chemical response in the fuel processor is generally
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slow. It is associated with the time to change the chemical reaction parame-

of the fuel processor is modeled as a first-order transfer function with a time 

constant of 5 s [85].

•  D ata driven predictive controller, which is to be designed via the subspace 

approach. There are four variables to be controlled including the voltage (to 

be given later). The only on-line measurement is fuel cell stack output voltage. 

Other three controlled variables are assumed not to be measured in real time.

The electrochemical reaction in the triple phase boundary is

qlQ2 is the input oxygen flow. The steady state of the inputs is [0.7023 0.6134]T 

mol/s, and the constraints are

• The fuel cell current demand iin is considered as the disturbance. The power 

output of the fuel cell system is lOOkW, under which the nominal value of the 

voltage demand Vjn is 333.8 V and the current demand is 300 A. The dynamic 

response function from 7;n to the fuel cell current 7r is modeled as a first order 

transfer function with a time constant of 0.8 s. This electrical response time 

in fuel cells is usually fast, and it is mainly associated with the speed at which 

the chemical reaction is capable of restoring the charge tha t has been drained 

by the load.

• The controlled variables &re[VT U{ 7 ? h _ o  Pdif\T , where

— Vr is the fuel cell stack output voltage. Applying Nernst’s equation and 

Ohm’s law (to consider ohmic losses), the stack output voltage is repre­

sented by the following expression [53]:

ters after a change in the flow of reactants. This dynamic response function

h 2+ ^ o 2 ^ h 2o .

• The manipulated variables are [g™ <?o2]T, where q\n is the input fuel flow and

[0 0]T mol/s <  [qj11 q g 2]r  < [1.7023 1.6134]r  mol/s.

In PH 2 y/P(h 
Pn2o
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where pn2, P02 and pn2() are hydrogen, oxygen and water partial pressure. 

The constraint on Vr is 328.8 V < Vr ^  338.8 V, and 333.8 V is chosen as 

the operating point. In the closed-loop simulation, we assume tha t only 

Vr is measurable.

— Uf is fuel utilization, which is defined as the ratio between the H2 flow 

tha t reacts and the input H2 flow, i.e.,

U ^ q h M r

Typically, an 80% — 90% fuel utilization is desired [53]. We choose the 

operating point of C/f as 85%.

— i?H_o is the ratio between inlet H2 and O2 flows, which is defined as

R hjo = <&,/&■

In the simulation, the constraint on R h_o is set as 0 ^  R b _o ^  2, and 

the operating point is as i?H.O =  1-145 [85].

— pa if is the fuel cell pressure difference between the hydrogen and oxygen 

passing through the anode and cathode gas compartments, i.e., p<jif =  

Ph2 ~ PO'2 ■ By taking Laplace transform, it can be derived tha t [53]

th  ̂ =  h  the value of the system pole associated with the hy­

drogen flow, where Van is the volume of the anode. Similar expressions 

can be obtained for all the reactants and products such as po2 and P h 2o - 

To prevent damage to the electrolyte, |paif| needs to be kept below 8 kPa 

under transient conditions [85]. The steady operating point of p^if is 0 

kPa. All parameters and operating conditions are summarized in Table

4.1 and Table 4.2, respectively.

4.5 Control of SOFC

In this section we apply the proposed data-driven predictive control to the SOFC 

problem discussed in Section 4.4 to achieve optimal fuel utilization and maintain op­

eration constraints when only the voltage output is measurable online. The sampling
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Table 4.1: Parameters in the SOFC system model
Param eter Value Unit Representation
T0 1273 K Absolute temperature
F0 96485 C/mol Faraday’s constant
R q 8.314 J/(m ol K) Universal gas constant
E q 1.18 V Ideal standard potential
No 384 - Number of cells in series in the stack
K r 0.996xl0~3 m ol/(s A) Constant, K r — No/ 4/q
K h2 8 .32x l0-6 m ol/(s Pa) Valve molar constant for hydrogen
K u2o 2 .77x l0"6 m ol/(s Pa) Valve molar constant for water
K o2 2.49xl0~5 m ol/(s Pa) Valve molar constant for oxygen
th2 26.1 s Response time of hydrogen flow
^HaO 78.3 s Response time of water flow
*̂02 2.91 s Response time of oxygen flow

r 0.126 n Ohmic loss
Te 0.8 s Electrical response time
Tf 5 s Fuel processor response time

Table 4.2: Operating conditions of the SOFC system model
Variable Nominal Value Constraint Unit

in
1n2 0.7023 0 ^  ^  1.7023 mol/s

m
ao2 0.6134 (K qlS2 < 1-6134 mol/s
Ur 333.8 328.8 ^  Ur ^  338.8 V
/in 300 - A
u f 85% 80% ^  Uf ^  90% -
Rh_o 1.145 0 ^  R h.o % 2 -
IPdifl 0 0< |pdif| < 8 kPa
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Figure 4.3: The open-loop SOFC disturbance, input and output signals

rate of the SOFC and the predictive controller is chosen as T  =  1 s mainly target­

ing the system’s dominant dynamics (see Table 4.1). To design the data-driven 

predictive controllers, open-loop input-output data are required to determine the 

subspace matrices. Open loop input-output data  are obtained by exciting the open 

loop SOFC system using a designed random binary signal of magnitude 0.1 mol/s 

for the fuel and oxygen inlet flows, and a white noise with variance 5 A2 for the 

current demand disturbance (see the generated disturbance signal in Figure 4.3). 

The input and output data are collected over 2000 seconds, and they are plotted 

in Figure 4.3. In the control objective function in (4.3), the weighting matrices are 

selected as Q =diag(Q i, • • • ,Q l ), Qq =diag(104,104, 0 ,103), where q — 1, • • • , L, 

R j c —0.1x1,  and P jc — I.  The predictive control is applied to the SOFC system 

after t  = 100 s.

4 .5 .1  T h e  e ffect o f  p r e d ic tio n  o f  th e  u n m ea su red  o u tp u ts

To demonstrate the effect of prediction of the unmeasured outputs, we did the 

closed-loop simulations with two different predictive control laws -  without and with 

prediction of the unmeasured outputs Uf, Rn.o  and pdif- I11 this example, the best 

control tuning with prediction horizon L — 9 and the control horizon J, =  9 for the 

developed predictive control with prediction of the unmeasured outputs is chosen. 

For the control without prediction, the best tuning with prediction horizon L — 3 

and the control horizon Jc = 1 is chosen. It can be seen that the optimal prediction
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horizon selected through simulations is not very large. Since the actual system is 

nonlinear but the prediction based on subspace matrices is linear, larger prediction 

horizons may also introduce larger prediction error. In addition, not all outputs 

are measured and they need to be predicted from data and the subspace matrices, 

a longer prediction horizon also introduces larger prediction error. We performed 

several simulations to determine the best prediction horizon. In Table 4.3 we listed 

the integral absolute errors (IAE) of the SOFC outputs under the developed data- 

driven predictive control with a number of different prediction horizons. In terms of 

the IAEs of the output voltage and fuel utilization (while both the H /O  ratio and 

pressure difference are controlled within their constraints), we find tha t L = 9 is 

the optimal prediction horizon length for the control law obtained for this example. 

As for the control without prediction of the unmeasured outputs, the simulation 

results show tha t with 2 ^  L  ^  5, the controller works better than with longer 

prediction horizons. In this latter case, there is neither measurement nor prediction 

of the unmeasured outputs tha t are assumed to be available for the feedback when 

the control is designed. This is equivalent to an additional model-plant mismatch 

and thus a longer prediction horizon yields larger error.

The fuel cell current demand disturbance is a multiple step signal which increases 

from 300 A to 330 A when t = 200 s, changes from 330 A to 270 A when t =  300 

s, and goes back to 300 A after t =  350 s. The closed-loop outputs and inputs are 

shown in Figure 4.4 and Figure 4.5, where the signals under the controller without 

prediction of the unmeasured outputs are plotted in the left-hand side, and the 

signals under the controller with prediction are drawn in the right-hand side. The 

errors between the SOFC outputs and their respective operating points are shown 

in Figure 4.6, and the integral absolute errors (IAE) of the SOFC outputs from 

time 101 to 500 s are listed in the first two rows of Table 4.4. It can be seen from 

both Figure 4.6 and Table 4.4 tha t the regulatory errors with prediction of the 

unmeasured outputs are smaller than those without prediction. In addition, from 

Figure 4.6 it can be seen tha t the errors of voltage and utilization are kept close to 

zero steady state under large current load step changes, which is the effect of the 

integral control. Furthermore, we compare the control results in terms of electrical 

power of the SOFC system in Figure 4.7. The power demand of the SOFC is defined
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Figure 4.4: The SOFC output signals without and with prediction of the unmeasured 
outputs
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Figure 4.5: The SOFC disturbance and control signals without and with prediction 
of the unmeasured outputs

as P;n =  Vln-Zin and the real power is as Pr =  VTIT. The results show tha t under the 

control with prediction of the unmeasured outputs, the real power provided by the 

SOFC tracks the power demand better. All the above comparisons show tha t the 

predictive control with prediction of the unmeasured outputs yields higher control 

performance.

4 .5 .2  R o b u s tn e ss  te s t

To test whether the proposed predictive controller performs well under different 

operating conditions, we perform simulations as follows: a group of open-loop data
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Figure 4.6: The errors of SOFC outputs without and with prediction of the unmea­
sured outputs
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Figure 4.7: The SOFC demand and real power without and with prediction of the 
unmeasured outputs

 Table 4.3: IAE of the SOFC outputs with different prediction horizons__________
Prediction and control horizon IA E(K) (V) IAE(C/f) IAE(-Rh.o) IAE(pdif) (kPa) 

L = Jc = 8 5 .457xl02 5.414 2.613x10 7.548x10^
L = Jc — 9 3 .037xl02 4.430 3.097x10 7.847xl02

L =  J C =  10 3.477xl02 4.973 3.308x10 8.661xl02
L = JC = 15 5.714xl02 6.169 3.176x10 9.017xl02
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Table 4.4: IAE of the SOFC outputs without and with prediction of the unmeasured
outputs

IAE &  (A) IAE(Fr) (V) IAE(Cf) IAE(Rh.o ) IAE(pdif) (kPa)
W ithout prediction 300 6.027xl02 6.204 4.172x10 l.llO xlO 3

W ith prediction 300 3.037xl02 4.430 3.097x10 7.847xl02
Robustness test 350 3.593xl02 4.738 3.188x10 8.656xl02
Robustness test 250 3.649xl02 8.003 4.532x10 7.957xl02
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Figure 4.8: The SOFC output signals, disturbance and control signals of Case 1

is collected under the nominal condition I r =  300 A and Vr — 333.8 V (the open- 

loop disturbance is a white noise signal with variance of 5); this group of open-loop 

data are applied to determine subspace matrices and then design the predictive 

controller; the designed controller are run in the closed-loop SOFC system under 

two different operating conditions shown in Cases 1 and 2.

Case 1 The operating condition in this case is as Ir — 350 A with corre­

sponding Vr = 328.4 V; [g(n q™2}T -  [0.8202 0.7163]T mol/s; [Uf Rg_.o Pdii f  = [0-85 

1.145 0]T. The constraint on Vr is 323.4 Vr ^  333.4 V. The current disturbance is 

a multiple step signal which increases from 350 A to 380 A when t — 200 s, changes 

from 380 A to 320 A when t — 300 s, and goes back to 350 A after t = 350 s. 

Simulation results are plotted in Figures 4.8 and 4.9, and the IAEs of the SOFC 

outputs from time 101 to 500 s are shown in the third row of Table 4.4, from where 

it can be seen tha t the power generated by the SOFC can track the power demand 

well, and the SOFC outputs errors under the designed controller are negligibly small 

under this non-nominal condition.
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Figure 4.9: The SOFC outputs errors, demand and real power of Case 1
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Figure 4.10: The SOFC output signals, disturbance and control signals of Case 2

Case 2 The operating condition in this case is as Ir — 250 A with corre­

sponding Vr =  335.9 V; [gj11 q o 2]T — [0.5859 0.5117]T mol/s; [Uf R n .o  PdifV' — [0.851 

1.1450]t . The constraint on VT is 330.9 Vr < 340.9 V. The current disturbance is 

a multiple step signal which increases from 250 A to 280 A when t  = 200 s, changes 

from 280 A to 220 A when t  =  300 s and goes back to 250 A after t  — 350 s. 

Simulation results can be found in Figures 4.10 and 4.11, and the IAE of the SOFC 

outputs from time 101 to 500 s are shown in the fourth row of Table 4.4. Similar 

conclusions can be obtained as in Case 1.

Here, we make some im portant remarks about the proposed data-driven predic­

tive control for the SOFC system:
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Figure 4.11: The SOFC outputs errors, demand and real power of Case 2

• In the simulations, certain subspace matrices are calculated from open-loop 

input-output data. It is im portant to mention tha t estimating the subspace 

matrices is not equivalent to estimating state space matrices of the SOFC 

system. Using the subspace matrices calculated from the input-output data 

we can directly design the control law, while the system matrices A, B,  C, D, 

E,  and F  are never explicitly calculated.

• Although only the first control action is implemented, it has been shown in 

[14] tha t as the horizon increases, the data-driven receding horizon implemen­

tation converges to the true optimal control, i.e., the data-driven predictive 

controllers approach the classical MPC controllers when the prediction horizon 

L  goes to infinity.

• The problem of stability of the subspace-based data-driven controllers is still 

open [13, 84], There is no explicit model used in the proposed data-driven ap­

proach. Intuitively, one would expect tha t the longer the prediction horizon, 

the greater the probability that the closed-loop system is stable [13, 84]. How­

ever, since the actual system is nonlinear but the prediction based on subspace 

matrices is linear, larger prediction horizons may also introduce larger predic­

tion error. Thus, the choice of prediction horizon length is a design parameter 

which must be selected by the designer.

•  If a model is obtained from experimental data, the model is only valid within
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the experimental region if the system of concern is nonlinear. The first- 

principle models represent nonlinear systems better, but this type of mod­

els are typically difficult to obtain and, even if available, difficult for control 

design. The proposed method is data driven; thus it is subject to the same lim­

itation as using models identified through experiments. However, since SOFC 

control is mainly regulatory and the system is expected to operate around an 

operating point, a carefully designed experiment around the operating point 

can provide a good dynamic model for control purpose as we did in this chap­

ter. In general, however, if the system needs to operate in several distinguished 

operating points, a nonlinear control or a multiple model control should be ap­

plied. In this case, several experiments or an experiment tha t cover a large 

operating region must be considered.

• The previous studies have shown tha t control of SOFC is challenging due to 

the slow response and tight operation constraints [36]. Any feasible control 

must take into account of hard constraints of the manipulated variables. Thus, 

constraint predictive control appears to be the most appropriate control stra t­

egy. Comparable control strategies for a similar SOFC model, such as or 

control [36], have been shown not satisfactory.

4.6 Conclusions

An SOFC model has been commonly investigated in the dynamic SOFC model­

ing/control literature lately. The previous studies have shown tha t control of SOFC 

is challenging due to the slow response and tight operation constraints. In this chap­

ter, a predictive control strategy tha t can handle constraints and optimize control 

performance has been developed via the subspace approach for the SOFC system. 

Unlike model-based approaches, the proposed predictive controller is data-driven 

since it only requires a set of input-output open-loop data; thus it provides an al­

ternative to SOFC control problem. This is particularly effective for SOFC since 

the explicit dynamic model of SOFC is generally difficult to develop. Comparing 

with the previous data-driven predictive control approach, the developed predictive 

controller can handle systems where only partial on-line outputs measurements are
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available. This solution is im portant when, for example, the fuel utilization in the 

SOFC system may not be measured in real-time control applications. The simu­

lation results validate the proposed data-driven predictive control algorithm. The 

robustness of the proposed predictive controller is verified by simulation.
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Chapter 5

A  Data-driven Predictive  
Control for M ultirate System s

This chapter discusses predictive control of m ultirate systems. The multirate pre­

diction strategy tha t can handle constraints and optimize control performance is 

developed via the subspace approach. The proposed multirate predictive control 

is data-driven since it only requires a set of input-output open-loop experimental 

data and the explicit process model is not needed. This algorithm is effective for 

multirate systems where some measurements are difficult to sample at the fast rate. 

The proposed algorithm is illustrated through simulations of a distillation column 

and an SOFC control.
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5.1 Introduction

The objective of this work is to explore a data-driven predictive control law for 

multirate systems, when only the open-loop input-output data are available. Unlike 

the model-based approach, where the system model is required to achieve this goal, 

we follow an approach based on results from multirate subspace system identification 

[59, 81]. The data-driven approach presented in the literature so far has been derived 

for single-rate systems. However, in reality, some outputs may not be measured or 

too costly to be measured at the fast sampling rate, leading to multirate systems. In 

many applications of electrical, mechanical and chemical engineering, control signals 

and output measurements need to be sampled at different rates. For example, in 

control of solid oxide fuel cell it may be difficult and costly to measure the fuel 

utilization at the fast sampling rate because the fuel utilization is the ratio between 

the reacted fuel flow rate and the inlet fuel flow rate which is a component of 

total inlet flow [53, 85]. To circumvent this problem, we consider the data-driven 

predictive control design for multirate systems. Instead of treating general multirate 

systems, in this chapter we consider a dual-rate system where the sampling frequency 

of some signals is M  (a positive integer) times tha t of the rest signals. Polymer 

reactors [48], fermentation processes [20] and octane quality control [43] are examples 

of this kind of multirate systems, where the manipulated variables are faster than 

the output measurements. Particularly, the developed dual-rate predictive control 

is verified by a distillation column system and a solid oxide fuel cell system [53, 85].

The remainder of this chapter is organized as follows. The system and the 

problem formulation are described in detail in Section 5.2. Section 5.3 presents the 

derivation of the dual-rate predictive control algorithm. Two illustrative examples 

are provided in Section 5.4, followed by conclusions in Section 5.5.

5.2 System, description and problem statement

Consider a multirate system shown in Figure 5.1, where H  denotes a zero-order-hold; 

S f  and S s are fast-rate and slow-rate samplers with interval T  and M T  respectively; 

the superscript /  denotes fast rate, s means slow rate, and M  is the lifting factor 

which is an integer; P ( s ) and N(s)  are the continuous-time process and disturbance;
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Controller Zero-Order-Hold Process „
Fast Sampler

Figure 5.1: Block diagram of the described multi-rate system

K (z)  is the discrete-time predictive controller; solid lines represent continuous-time 

signals, and dashed lines indicate discrete-time signals. Assume tha t the control 

input variable uk G R r. the measurable disturbance wk G R r“J and some output 

variables yf, G R nif are sampled with a fast sampling rate at sampling period T,  

and the remaining output variables y'l G R rn are sampled with a slow sampling rate 

with sampling period M T .  The problem investigated in this paper is to design the 

data-driven dual-rate predictive law directly from the input/output data defined as

uck,wk,y[,  k = i + k0, Vi =  0,1, • • • , N U-  1, 
y sk, k = j M  +  k0, \fj = 0,1, • • • , N y - l

where fco > 1 is the first discrete-time instance when the data is available, and 

N u =  N y  x M.

5.3 M ultirate data-driven predictive control algorithm

5 .3 .1  D e sc r ip tio n

For the sake of presentation, the following definitions are adopted. {• • • } is used to 

present a data set, and [• • ■] is used to denote a vector. Recall tha t the extended 

signal sequence sk\L G R Lxrir is defined as

def r T  T  T  11’
s k\L ~  LSfc Sk+ 1 ’ ' ' Sk + L ~lJ > (5.1)

where st 6 R Ur (t — ko, ■ ■ ■ , k, k +  1, • ■ •) is a sequence of data with nr being the 

number of the rows; k is the starting index; L  is the number of n r-block rows in 

s k\L-
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5 .3 .2  C o n tro l o b je c t iv e

The control objective of this work is to minimize a standard cost function in model- 

based predictive control subject to certain constraints. This can be re-written in 

vector form for convenience as follows:

min Jk — m n̂ ( V k + M \ L  ~  r k + M \ L ) T Q { y Sk + M \ L  ~  r k + M \ L )
& u k \ J M

+  ^ i U 'k\JcM - ^ ' J c M ^ U ^ j cM  +  u 'k\jcM ^ >J c M u k\JcM  1 ( 5 - 2 )

subject to

„,min < /„ ,  /  max ( r  o \
k\JcM  ^  u k\JcM  ^  u k\JcM i  V0 "5!

A u k\JcM  < A u k\JcM  < (5.4)

V k + M \ L  ^  V k + M \ L  ^  V k + M \ L ’ ( 5 ' 5 )

f  min <  - /  <  /  max /r
yk+l\LM ^  yk+l\LM ^  yk+l\LM 

where L is defined as the prediction horizon on the slowly sampled output (thus L M  

is the prediction horizon on the fast sampled output); JCM  (Jc ^  L) is the control 

horizon defined on the fast sampled control signal; ysk+M\l and yk+i\LM are vec-t°rs 

of the predictions of future slowly sampled and fast sampled outputs, respectively; 

r k+M\L  is a vector of future reference signals in slow rate; uk\JcM is a vector of 

future manipulated signal; A =f 1 — z-1 with z~ l being the back shift operator; 

hence A Uk — Uk — uk~ 1 is the incremental input or control move, and A u k\jrM is 

a vector of future incremental inputs over next JCM  samples. A Uk is introduced 

to ensure zero steady state error in the case of non-zero constant reference or load 

step changes [9]. Q, R j cm  and P j cm  are weighting matrices with block diagonal 

structure on the error between the predicted outputs and the future references, the 

future incremental inputs and the future control efforts respectively. Q, R j cm t and 

P j c.M  can be time-varying in general. Note tha t here we set the control horizon to 

JCM  to make the predictive control law more flexible.

5 .3 .3  T h e  d u a l-ra te  su b sp a ce  in p u t-o u tp u t  eq u a tio n

Although the dual-rate subspace input-output equation has been derived in Chapter 

3, to keep the continuity of this Chapter, we will review it in the following part.
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In the dual-rate control loop shown in Figure 5.1 the slow sampled output signal is 

Vs = {ysk0i • • ■ > 2/fc> Vk+Mi • • • }> and the fast sampled input signal is u = {uko, 
uk, Uk-1-1 , • • • }• The dual-rate controller is time-varying due to the presence of the 

fast-rate hold and the slow-rate sampler. To avoid dealing with the time-varying 

system directly, we introduce the lifting technique. By the definition in equation 

(??), the control signals can be stacked as vector-valued sequences as follows:

H =  { u k0\Mi ' ' ' > u k\Mi Uk + M \ M t ' ' ' } ■

For instance, if M  — 2, the lifted control signal is as

u k0 Uk uk + 2

u k0+ l
? ’ ’ * ) . uk+i . U)c+3

The map from u to u is defined as the lifting operator L m  [40]. The inverse lifting 

operator L MX is the reverse of the mapping. It can be seen tha t L ^ L m  — I  and 

L m L^] — I.  After lifting, both the signal dimension and the underlying period are 

increased by a factor of M.  The system from u to y is the lifted system which is 

single-rate and linear time-invariant. Assume tha t the fast-rate state space model 

from uk to the output tha t is going to be slowly sampled is

x k+i =  A x k +  B u k +  E w k (5.7)

Vk =  C x k +  D u k + F w k (5.8)

where x k 6 R n is the state vector:A, B, C, D, E,  F  are system matrices with 

appropriate dimensions. We assume that (C, A)  is observable, (A, B)  is controllable, 

and u and w are independent signals. The systems we are studying in this work 

have at least one time delay due to the hold, hence matrix D  can be set to a zero 

matrix without loss of generality. From the known state space model of the fast-rate 

plant, the lifted system Gm  from the lifted control signal {uk\M, wk\M) to the slowly 

sa m p led  o u tp u t  y sk ca n  b e  w r itte n  as [10]:

x k+M — A Mx k +  B u k\M +  E w k |M) (5-9)

Vk — C x k +  D m U^m  +  ^ M wk\M (5.10)

where B  =  [ A M~l B  ■■■ A B  B  ] and E  — [ A M~l E  ■■■ A E  E ]  are the

lifted external input matrices, and D m  — [ 0 • ■ • 0 ] and Fm  = [ F  0 • • • 0 ]
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are the lifted direct control input-to-output matrices. Note the lifted duel-rate 

system is a linear-time-invariant system. By lifting yk, uk M and wk\M with the 

user chosen prediction horizon L, we can re-write equation (5.10) as [81]

Vk+M\L — M y k \L +  N u k\ { L + l )M  +  T w k^L+1 M̂ . 

M ,  N  and T  are subspace matrices tha t are defined as

M ^ O l A m { O tl O l ) - 1O tl ,

N  d̂ f [ O l B  H l ] - M [ H l  0 L m x M r } ,

(5.11)

(5.12)

T  [ O l E  H sl ] - M [  H sl  0Lm x M r u

where O l  is the dual-rate extended observability matrix for the pair ( C ,  A M ) defined 

as

O l

C
C A M

C A m (l - i)

G JlHxrn)Xn (5.13)

and H i  and H i  are lower block triangular Toeplitz matrices defined as

j j ( L x m ) x ( ix M x r )

D m 0 0

C B 0 0
H l  def C A m B 0 0 e  l

0
C B D m

r  h s 0 0
C E S 0 0

H i
def c a m e s 0 0

0
_ C A H - m E s C E S F s  .

(5.14)

j^(Lxm)  x (L x m ) (5.15)

Though in [62], equation (5.11), named the extended state space model, is derived by 

an M -step predictor approach, our alternative method approaches the problem from 

a different way, i.e. lifting, which makes it possible to use conventional subspace 

approach to solve multirate problem. It can be seen tha t the lifted subspace input- 

output equation (5.11) contains inherent relationship between the past and the 

future control/output signals. It can be shown tha t the explicit relationship between
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the past and the future control/output signals is as

y Sk+M\L =  M L y Sk - ( L - l ) M \ L  + P L - l U k - ( L - l ) M \ ( L - l ) M  +  F LUk\LM 

+  P w W k - ( L - l ) M \ { L - \ ) M  + PwWk \LM-

The subspace input-output equation of the fast sampled output y f  is as [58]

(5.16)

y fk + l \ L M  (M-^)  V k - L M + l \ L M  + P L M - l u k - L M + l \ L M - l  + F [ M Uk\LM  

+ P£>w k - L M + 1 \ L M - 1  + F l w k\LM (5.17)

where M s, P i - 1 , Fi ,  Pw and Fw are dual-rate subspace matrices which can be

5 .3 .4  D a ta -d r iv e n  d u a l-ra te  p r e d ic tiv e  co n tro l law

P ro p o s itio n  5.1 Substituting (5.16) and (5.17) into (5.2) and (5.6), one can for­

mulate the control objective as a Quadratic Programming problem [61, 80], i.e.,

min J fc =  A u l lLMH A u klLM + 2 f ^ A u k{LM, (5.18)
A U k \ L M

subject to constraints:

P ro o f. In the following we will show how to formulate the problem described in

obtained from the experimental input-output data (uk, wk, yf.) [58, 81], and M F

f [ m - i ’ f [ m , P i  and f £ are single-rate subspace matrices tha t can be calculated
£

from the open-loop experimental d a ta («&, wk, yk ).

(5.19)

(5.2) under the constraints (5.3)-(5.6) to a QP problem as shown in (5.18) with the 

constraints in (5.19). Defining matrices S  and c as [61, 80]

g  j ^ j L M x r ) x ( L M x r )

and

we can obtain

Uk\L M  ~  S A u k\LM + C ltfc - i . (5.20)
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Thus, the dual-rate subspace input-output equation (5.16) can be re-written as

Vk+M\L  =  ^ L y k - ( L - 1 ) M \ L  +  P L - l U k - ( L - l ) M \ ( L - l ) M  +  F LUk\LM ( 5 -2 1 )

+  F w w k—{L—1)M\(L—1)M +  FwWk\LM 

=  ® L (k )  +  F LUk\LM

=  +  F l { S A u k\LM +  CUk- l )

— ® L ( k )  +  FL S A u k\LM +  F Lc u k - 1

= *${k) + F £ A u k\LM (5.22)

where

$£,(&) =  M Lyk-(L- i ) M \L +  P L - l U k- ( L - l ) M \ ( L - l ) M  +  -P«;^fc-(L-1)M|(Z,-1)M +  F w Wk\LM,
(5.23)

Q/£(k)  = * L[ k ) + F Lcuk- 1,

F £  =  Fl 5.

The subspace equation of the fast-rate output y f  is as

y l + l \ L M  =  y l - L M + l \ L M  F  F L M - l u k - L M + l \ L M - l  +  F L M u k \LM (5.24)

+  P l w k - L M + 1  \ L M - 1  +  F £ w k \L M  

~  ^ L A f ( k )  +  F L M u k \ L M  

=  +  F l m ( S  ̂ u k \ L M  +  C U k - l )

= $ fLAM(k) + F l * A u klLM (5.25)

where

* fL M ( k )  ~  ( M ^ )  y t - L M + l \ L M  F  F L M - l Uk —L M + l \ L M - l F w w k - L M + l \ L M - l  F  F w w k \LM

(5.26)

*LM(*0 =  ^L(k)  +  F[Mcuk- i
p/A _  El/ Q
■ LM  ~  LM

It can be seen tha t (5.2) is equivalent to

min Jk = m m (ysk+M{L- r k+M\L)T Q{ysk+MlL- r k+M\L) + A u l lLMR A u klLM+ u l lLMP u klLM

(5.27)
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with the future control moves being zero after k+ JcM  step, i.e. A u k+j cM+\\(L-Jr)M — 

0. Thus (5.2)-(5.6) can be re-written as (5.27) subject to

-,m in s '  nt flimax
uk\LM ^  uk\LM ^  uk\LMi

^ uk\LM ^  ^ uk\LM ^
„,min ^  ^  max
Vk+M\L ^  Vk+M\L ^  Vk+M\Li
f  min ^  ^  „ /  max

yk+l\LM ^  ^fc+l|LM ^  ^fe+l|LM

^fc+JcM+lKL-JclM =  0-

Substituting (5.20) and (5.22) into (5.27), we have

Jk =  (ySk+M\L ~  rk+M\L)TQ{y&k+M\L ~  rk+M\h) +  A u ^ LMR A u k\LM +  uk\LMP u k\LM 

~  {®L (k) +  FL A uk\LM -  rk+M\L) Q ($£ (ty +  F £  A u k\LM -  rk+M\L)

+  ^'^k \LMF ^ Uk\LM +  ( S A u k\LM +  CUk_ i )  P  (S A u k\LM +  c u k - 1)

=  A u l lLM(F £ Q F £  + R  + S TP S ) A u k{LM +  2 ($£(fc) -  rk+M\L)T QF^ A u k\LM 

+  2 (eufc_i)T P S A u k\LM +  (k) -  rk+M\L) Q (k) -  rk+M\L)

+  (ctift—l) P  {cuk—\)

— ^ uk\LMF- ^ Uk\LM +  2f k A u k\LM +  Jk>

where

H  = f £ q f £  + R  + S TPS,  

f k = F t TQ ($£(fc) -  rk+M\L) +  S TPcuk.

Jk =  ($£ (* ) -  ^ + M |i)T Q ($L (k) -  rk+M]L) +  U k -xJP c u k - i .

In the following part, we are going to show tha t the constraints can be written 

as an equivalent linear inequality:

A u k\LM ^  bk
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where

A =

5 Ut\L M  ~  CUk-1

- S +  cufc-l

I l M t
A „ m a x

k\LM

—I l M r - * ■ < ‘l m

F t
- F tf A

, a n d  bk — v I T S i l  -  

- j C w  +  * £ «rpf A  
LM  
71 f  A

LM
M j c 0

0_ - M Jc _

From equation (5.20), the output amplitude constraints are

„ ,m in  „ m a x
u klLM ^  u k\LM  =5 u k\LM  ^

Uk\LM ^  S A U k \ L M  +  c u k- 1 ^  u k\LM ^

S A u k]LM <  U ^ M -  CUfc_ i ,

- S A u k\LM ^  -Uk\LM +  cuk-i- 

The control change constraints are

A ul < A inPc|LM ^  L̂ Ll'k\LM ^  ^ ' “ fclLM 

lLM r^U k\LM ^  A lt^ j^ ,

~lLM r^U k\LM ^  —̂ u fc|LM- 

From equation (5.22), the constraints on slowly sampled output are

Vk+M\L  ^  y k + M \ L  ^  2/fc+Afjz,

2/£+M|L < +  F t ^ uk\LM < 2/fc+M|

A“ fc|LM < y“ |L -  (fc)<

--f^Atifcjijvr ^  _ yfc+M|L +

F rom  e q u a tio n  (5 .2 5 ) , th e  c o n stra in ts  o n  fa st sa m p led  o u tp u t  are

( /  m in
S 4 + 1 |L M  ^  y k + l \ L M  ^  % + l | L M< ( /  m ax

^fc+l'lLM ^  & L M & )  +  F [ M A u k\LM  <  Vk+l\LM

F l*  A u k\LM ^  y{™*LM -

-FLM&uk\LM ^  “ J/fc ™|LAf +

,/A /A /  m ax
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To change the control horizon from L M  to JCM  (,JC L)

A u k + J CM + 1 \ ( L - J C) M  — 0  

I { L - J c) M r A u k + J cM \ { L - J c) M  ^  0 and — I ( L - J c) M r A u k + J rM \ ( L - J c) M

M jcuk\LM ^  0 and -  M jcuk\LM ^  0

0
0 ( JcM x r ) x ( L M x r ) 

\ { L - J c) M x r \ x { J cM x r )  I { L - J c) M x r
where M jc =  

proved.

Thus the control law can be solved by the following QP problem

Thus equation (5.19) is

Au
min (Av%\LMH A u k{LM+ 2 f£ A u klLM),

k \ L M

which can be solved as

subject to A u k\LM <  bk,

A u k \ L M  = q p (H J k,A ,b k).

After the optimal control sequence uk<L is calculated, only the first block row, 

uk, is implemented in the receding horizon predictive control law.

5 .3 .5  P r e d ic t io n  o f  fu tu re  d is tu rb a n c e

It can be seen tha t in equations (5.16) and (5.17), the vectors w k - ( L - i ) M \ ( L - i ) M  

and wk_Lm + i\lm -i are Pas  ̂ disturbance which are known. wk\kM is a vector which 

consists of current and future disturbance signals as

w k \ L M

Wk
Wk+1 W k

_ W k + 1 \ L M - 1

W k + L M - l

where the current disturbance wk is known but disturbances from tufe+ito wk+LM- 1  

are unknown. In the following part we will discuss how to predict iUfc+i|LAf-i using 

past to current w data. Note tha t w  is sampled at fast rate. From [60], it can be 

seen tha t

W k +1 \L  =  M ^ W k - L + l \ L  +  *
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where M w can be estimated by DSR subspace identification method, and * is the 

future white noise related term. Hence, the optimal prediction of w^+i \l is given by 

the first term  of the above equation, such tha t

Wk+1\L =  M ^W k_L+1|L.

Thus

and

Wk+l\LM — Wk-LM+1\LM i

^fc+l|LM—1 =  ^fc+lILM [1 : (L M  - l ) * r u

5.4 Simulation exam ples

5 .4 .1  E x a m p le  1

This distillation column example is adopted from [83] and illustrated in Figure

3.2. Similar examples can be found in [34] and MATLAB/Control Toolbox User’s 

Guide [1]. The linearized transfer function model around the steady-state operation 

condition is: -.A. As   0 . A A _ Q o n__
Ul(s)
U2(s)

’ 2/100
. 2/10)

12.8e~s
16 .7S+1
6 .6 e _

— 1 8 .9 e~ 33 
2 1 .0 s + l

— 1 9 .4 e~ 3s
10 .9S+1 14.4S+1

The control signals are fast sampled with two-time units and the plant outputs are 

slow sampled with four-time units. So the lifting factor M  — 2. By discretization 

and lifting [10], the lifted dual-rate system is a 2-by-4 LTI as:

" yi(z) '
. 2/2 (z) .

0.744z 
1—0 .8 8 7 1 Z -1 

0 .5 7 8 6 Z "4

—0 .8 7 8 9 z ~ 2 
1—0 .9 0 9 2 Z -1 

— 1 .3 0 2 z ~ 2 
1—0 .8 7 0 3 z_1

0 .7 0 7 7 z ~ 2 
1—0 .8 8 7 1 z_1 

Q .5278z~5

_UX838z2Lr
1 - 0 .9 0 9 2 Z - 1 

— 1 .214z—3
1—0.8324z_1 1—0.8703z_1 1 -0 .8 3 2 4 Z -1 1 -0 .8 7 0 3 Z -1

where u± and U2 are lifted control signals. The cost function is

Jk = (Vk+M\L ~  rk+M\L)TQ(i/k+M\L ~  rk+M\L) +  A u ^ LMR A u k\LM

Ui(z)
ug(z)

uk\LML>uk\LM

where the weighting matrices are Q =  I , R  =  0.51 and P  = 0.1/. The constraints 

are
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—21 < uk\LM ^  21,

- I  ^  A u k\LM ^  I,

- 6 /  ^  yk+M\L ^  6/.

By collecting open-loop data (2000 time-units) with designed random binary inputs, 

we computed the dual-rate data-driven MPC law by the derived algorithm for L — 4 

and Jc =  2, and L — 5 and Jc — 4, respectively. Also, supposing the lifted model 

is known, we designed MPC controllers via MATLAB/MPC toolbox with the same 

prediction horizon and control horizon for a comparison. The set point is multiple 

step signal which increases from 0 to 5 when t = l l  s and goes back to 0 after 

20 s. The output and control signals, under dual-rate MPC controllers both from 

the data-driven algorithm and from MATLAB/MPC toolbox, are shown in the 

following figures. It can be seen tha t the difference between the control results under 

proposed data-driven and MPC control law is minor. Thus, the proposed data- 

driven predictive control algorithm is comparable to the traditional MPC algorithm 

in terms of performance, but the proposed approach has the advantage tha t no 

parametric model is needed.

The distillation column with disturbances is modeled as [34]:

’ i/l(s) '
. yi(s)

12.8e~s —18.9e~3a
2 1 .0 s + l  

— 19.4e- 3 ‘5
1 6 .7 s+ l
6.6e
1 0 .9 s+ l 1 4 .4 s+ l

ui(s) 
U2(s) +

3.8e“
1 4 .9 s+ l  q0-3s4.9e“
1 3 .2 s+ l

w(s) (5.28)

where w is a measurable disturbance. In the simulation we first set w is a random 

walk signal such that
1

w =   rO
1 - z - 1

where a is discrete-time white noise with a 2 (a) — 0.5. The prediction horizon 

and control horizon are chosen as L — 4 and Jc — 3. The simulations are done 

with feedforward control law and without feedforward control law. From control 

results shown in Figure 5.6 and Figure 5.8, it is obvious that the performance with 

feedforward plus feedback control strategy is better than that with feedback control 

only. Also, we did simulation with w as a fast changing dynamical signal as

1
w

1 -  0 . 9 5 Z - 1 
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Figure 5.2: The outputs when L — 4 and Jc = 2
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Figure 5.3: The control signals when L — 4 and Jc — 2
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Figure 5.4: The outputs when L — 5 and Jc =  4

with cr2(a) =  0.5. The prediction horizon and control horizon are chosen as L — 4 

and Jc =  3. The controlled variables and manipulated variables are shown in Figure 

5.10 and 5.11, respectively. From the figures, we can see that the outputs variables 

follow the set points well.

5 .4 .2  E x a m p le  2

The solid oxide fuel cell (SOFC) system dynamic model [53, 85] is the same as we 

used in Chapter 4. Readers are referred to Chapter 4 for details. The problem is 

briefly summarized below:

• The manipulated variables are [ q™ Qq2 ] , where q\n is the input fuel flow 

and qQ2 is th e  in p u t o x y g e n  flow. T h e y  are sa m p led  in fa st ra te . T h e  s te a d y  

state of the inputs is [ 0.7023 0.6134 ]Tmol/s, and the constraints are

[ 0 0 }T m o l/s  < [ q f  q$2 f  < [ 1.7023 1.6134 f  mol/s.

•  The fuel cell current demand I[n is considered as the measurable disturbance 

which is also sampled in fast rate. The power output of the fuel cell system is
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Figure 5.5: The control signals when L — 5 and Jc — 4
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Figure 5.6: The outputs when L — 4 and Jc — 3 with feedforward
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Figure 5.7: The control signals when L — 4 and Jc =  3 with feedforward

 y1-QP
O Set PointiOOOO

-oeoeooobcroooooo

-10

Without feedforward control law

 y2-QP
O Set Point

.-̂ ®OOOOOOOOOQOOOO
-oeeeoe^oooooooo

-10

The slow rate sam ples

Figure 5.8: The control signals when L — 4 and Jc — 3 without feedforward
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Figure 5.9: The control signals when L — 4 and Jc = 3 without feedforward
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Figure 5.10: The outputs when L = 4 and J c =  3
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Figure 5.11: The control signals when L — 4 and Jc — 3

lOOkW, under which the nominal value of the voltage demand Vjn is 333.8 V 

and the current demand is 300 A.

•  The controlled variables are[ U{ Vr R h_o Pdif ]T , where

•  C/f is fuel utilization, which is defined as the ratio between the H2 flow that 

reacts and the input H2 flow, i.e.,

Tt ~r / in
Uf -  t e 2/ f e 2-

Typically, an 80%—90% fuel utilization is desired [53]. We choose the operating 

point of Uf as 85%. It is a component of total inlet flow in the SOFC system 

[53, 85]. T h u s , it is  d ifficu lt an d  c o s t ly  to  m ea su re  th e  fuel u til iz a t io n  in  th e  

fast rate.

• VT is the fuel cell stack output voltage. The constraint on Vr is 313.8 Vr ^  

353.8 V, and 333.8 V is chosen as the operating point. In the closed-loop 

simulation, we assume that only VT is measurable.
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• ^H .o is the ratio between inlet H2 and O2 flows, which is defined as

R h.o =  <&/«&•

In the simulation, the constraint on R h.o is set as 0 ^  R h.o ^  2, and the 

operating point is as R h.o = 1-145 [85].

•  pdif is the fuel cell pressure difference between the hydrogen and oxygen passing 

through the anode and cathode gas compartments, i.e., p^if =  Ph2 ~  Po2- 

To prevent damage to the electrolyte, |paif| needs to be kept below 8 kPa 

under transient conditions [85]. The operating point of paif is 0 kPa. All 

parameters and operating conditions are summarized in Table 4.1 and Table

4.2, respectively. In the SOFC system, the slowly sample fuel utilization is the 

controlled variable, the other fast sampled outputs are constraint variables, 

and the fast sampled current is the measurable disturbance.

We apply the proposed data-driven predictive control to the SOFC problem dis­

cussed in the previous subsection to achieve optimal fuel utilization and maintain 

operation constraints. The fast sampling rate is chosen as 7}. ,̂ =  1 s mainly ta r­

geting the system dominant dynamics (see Table 4.1). 7jn, Vr, R h.o  and Pdif are 

sampled in the fast rate. The slow sampling rate is Tslow =  5 s to sample U\. Thus, 

the lifting factor of the SOFC systems is M  — ypy  =  5. The dual-rate predictive 

controller updates control inputs and outputs every 1 s. To design the data-driven 

predictive controllers, the open-loop input-output data are required to determine 

the subspace matrices. Open loop input-output data are obtained by exciting the 

open loop SOFC system using a designed random binary signals of magnitude 0.1 

for the fuel and oxygen inlet flows. The fuel cell current demand disturbance is 

a multiple step signal which increases from 300 A to 330 A when t — 200 s, and 

goes back to 300 A after t — 400 s. A white noise with variance 5 is added to 

the current demand as measurement noise (see the generated disturbance signal in 

Figure 5.12). The input and output data are collected over 1000 seconds, and they 

are plotted in Figure 5.13. In the control objective function (5.2), the prediction 

horizon L  =  2, the control horizon Jc =  2, and the weighting matrices are selected as 

Q = d iag (Q i,Q 2 ) where Q i^ =diag(102), Rm  =0.1x7, and Pm =  0. The multirate 

predictive control is applied to the SOFC system after t =  100 s.
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Figure 5.12: The open-loop SOFC disturbance and input signals
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Figure 5.13: The open-loop SOFC output signals

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F eed b ack  Only

340

°  320

450350 400100 150 200 250

cr

450300 350 400100 150 200 250

Q .

Q

350 400 450200 300100 150 250
Time(sec)

Figure 5.14: The SOFC output signals under feedback control

To demonstrate the effect of feedforward control, we did the closed-loop simu­

lations with two different multirate predictive control laws- feedback control only 

and feedback plus feedforward control. The closed-loop outputs and inputs under 

the feedback controller are plotted in Figure 5.14 and Figure 5.15, and the signals 

under the feedback plus feedforward controller are drawn in Figure 5.16 and Figure 

5.17. From Figure 5.14 and Figure 5.16, it can be seen that under both predic­

tive controller, the errors of utilization are kept close to zero at steady state under 

large current load step changes, which is the effect of the integral control action. 

Furthermore, we compare the control results in terms of the mean and variance of 

utilization, Uf and Var(«/), over closed-loop simulation. Under the feedback control 

Uf — 0.8660 and V ar(u /)=  0.0028; under the feedback plus feedforward control, 

Uf = 0.8577 (which is closer to the utilization set point 0.85) and V ar(ti/)=  0.0027. 

The results show tha t under the feedback plus feedforward control, the utilization 

of the m ultirate SOFC system tracks the set point better. In other words, the 

feedforward plus feedback control yields higher control performance.
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Figure 5.15: The SOFC control signals under feedback control
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Figure 5.16: The SOFC output signals under feedback plus feedforward control
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Figure 5.17: The SOFC disturbance and control signals under feedback plus feed­
forward control

5.5 Conclusions

A data-driven predictive control including feedforward control has been discussed 

for multirate systems. The multirate predictive strategy that can handle constraints 

and optimize control performance has been developed via the subspace approach. 

The proposed multirate predictive control is data-driven since it only requires a set 

of input-output open-loop experimental data and the explicit parametric process 

model is not needed. This algorithm is effective for multirate systems where some 

measurements are difficult to sample in fast rates. The proposed algorithm was illus­

trated  through a distillation column and an SOFC model which have been commonly 

investigated in the literature. A multirate system where the outputs are sampled 

with more than two sampling rates can also be handled within the framework, by 

applying appropriate lifting.
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Chapter 6

Conclusions and Future Work

In this chapter, the main contributions of this thesis are summarized and some 

suggestions for the future research are outlined.
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6.1 Conclusions

We have investigated the MVC problem for single-input single-output linear systems 

sampled at different rates: fast, dual and slow rates. The minimum variance of the 

fast sampled output was chosen as the control cost function. The MVC law was 

directly applied to the design of the optimal controller for the fast-rate control 

loop. Using the lifting technique, the dual-rate and the slow-rate control loops can 

be unified under a common structural model. A discretization method preserving 

the mean and auto-correlation of a continuous stochastic disturbance model was 

developed. A novel linear matrix inequality approach was proposed and then was 

used to derive the optimal controllers for the lifted dual-rate and slow-rate control 

loops. It was theoretically proven th a t the performance of a dual-rate controller is 

superior to tha t of a slow single rate controller but inferior to tha t of a fast single 

rate controller in the sense of MVC.

We have derived a data-driven MVC and the MVC-benchmark variance estima­

tion has been discussed for dual-rate systems. A subspace input-output equation is 

derived by the lifting technique to obtain a prediction model for m ultirate systems. 

The multirate minimum variance controller is calculated from a set of input-output 

open-loop experimental data and thus this approach is data-driven since it does 

not need an explicit model. In parallel, the presented MVC-benchmark estimation 

algorithm requires a set of open-loop experimental data plus a set of closed-loop 

routine operating data.

Also, a predictive control strategy tha t can handle constraints and optimize con­

trol performance has been developed via the subspace approach. This algorithm is 

validated by an SOFC simulation example tha t has been commonly investigated in 

the dynamic SOFC modeling/control literature lately. The previous studies have 

shown tha t control of SOFC is challenging due to the slow response and tight oper­

ation constraints. In this work, unlike model-based approaches, the proposed pre­

dictive controller is data-driven; thus it provides an alternative solution to SOFC 

control problem. This is particularly effective for systems where an explicit dynamic 

model is generally difficult to develop. Comparing with the previous data-driven 

predictive control approach, the developed predictive controller can handle systems
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where only partial on-line outputs measurements are available.

The proposed data-driven predictive control has been extended to solution of 

m ultirate problems. This solution is of importance when, for example, the fuel 

utilization in the SOFC system may not be measured at the fast rate due to sensor 

physical limits. The proposed data-driven m ultirate predictive control only requires 

a set of input-output open-loop experimental data and an explicit lifted process 

model is not needed.

6.2 Future work

• In this thesis, we proposed data-driven predictive control laws via subspace 

approach for both single-rate and multirate systems. The problem of stability 

of the subspace-based data-driven controllers is still open [13, 84]. Certain 

terminal constraints can be introduced to achieve the closed-loop stability 

when the model is an exact representation of the plant. However, in our 

data-driven approach there is no explicit model used. Thus, considering the 

terminal constraint without relying on an explicit model in order to prove the 

closed-loop stability is one of the possible future directions.

• The previous study [14] has shown tha t the data-driven control laws approach 

the LQG controllers when the prediction horizon goes to infinity. This fact has 

also been verified by our simulation studies in Chapters 3 and 4. In addition, 

the longer the prediction horizon, the greater the probability tha t the closed- 

loop system is stable [13, 84], However, simulation results in Chapter 4 have 

shown tha t larger prediction horizons may also introduce larger prediction 

errors. Thus, how to choose the prediction horizon is an interesting problem 

to be studied.

•  W ith  th e  lif t in g  tec h n iq u e  w e ca n  tra n sfer  a n  L P T V  sy s te m  to  an  LT I sy s te m .

At the same time the input-output dimensions are enlarged considerably. If 

a lifted system has an unmanageable dimension, we may not be able to im­

plement the developed data-driven optimal control and control performance 

algorithms for the system owing to the memory limitation of the computer. 

Hence, a following problem tha t needs to be considered is how to reduce the
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computation complexity for a high dimensional lifted system.

• To make the exposition simple and clear, a dual-rate system where the outputs 

are fast sampled and inputs are slowly sampled is considered in this thesis. 

The next step should be to extend the proposed data-driven MVC, predictive 

control and control performance algorithms to general multirate systems. Note 

tha t the casuality constraint may arise. This condition is induced by the fact 

tha t the control signal can only be a function of present and past measurements 

during the period. The causality constraint on a lifted controller Kd means 

tha t Kd must be causal and the direct feedthrough term in K d , denoted as 

D k , must satisfy certain causality constraint, i.e., D k  must be (block) lower- 

triangular [10]. Hence, it would be interesting to study how to compute data- 

driven optimal control laws, based on subspace matrices identified from open- 

loop data, subject to casuality constraints.
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