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Abstract—In this paper, an integrated control strategy is
developed for both locomotion trajectory planning and postural
stability, enabling shared autonomy between the human and
lower-limb exoskeleton. Divergent component of motion (DCM)
analysis was employed previously based on the linear inverted
pendulum flywheel (LIPF) model to regulate the position of
the center of mass (CoM) for humanoid robots. In this study,
a new extended model is investigated for the DCM analysis
by replacing the previous LIPF model, which is tailored for
multi-degree-of-freedom (DOF) exoskeletons. This new model is
designed to be personalized for each specific user’s body by
relaxing the assumption of having the total CoM at the hip joint
in the previous LIPF model. Accordingly, the exoskeleton has
the authority to ensure the postural stability and viability of
locomotion in this human-robot interaction (HRI) by adjusting
the upper body position using a DCM-based hip correction
strategy. Integrating adaptive central pattern generators (CPGs),
the human has enough authority to modify the gait trajectories
in real-time, while the amplitude and frequency of walking are
constrained to their feasible ranges. The effectiveness of this
intelligent controller for safe and stable locomotion is investigated
through experimental studies on a lower-limb exoskeleton.

Index Terms—Central Pattern generator (CPG), Divergent
Component of Motion (DCM), Human-Robot interaction, Lower-
limb exoskeleton, Adaptive motion planning.

I. INTRODUCTION

SPINAL cord injuries, stroke, and multiple sclerosis are
some causes of neurological impairments in the human

gait. Millions of people affected by these conditions will be
able to handle their daily activities and enhance their physical
abilities by taking advantage of assistive and rehabilitative
wearable systems (e.g., exoskeleton) developed in recent years
[1]. The capabilities of exoskeletons in providing long-term
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repetitive movements, facilitating physical assistance and col-
lecting users’ motion data by their embedded sensory systems
make them unique for lower-limb rehabilitation purposes [2].
Despite all of the advantages of employing exoskeletons in
medical applications, providing adaptable trajectories and gait
features that can be amended by the wearer while preserving
the postural stability autonomously still needs to be addressed
to provide compliant and safe human-robot interaction (HRI)
[3].

Divergent component of motion (DCM) analysis was em-
ployed in trajectory generation for the center of mass (CoM)
in bipedal locomotion of humanoid robots [4]–[6]. In this
method, a linear inverted pendulum (LIP) model was used to
represent the bipedal movement, and the divergent part of the
LIP dynamics was introduced as the DCM [7]. Considering
this model, two strategies have been used to overcome the
disturbance applied during the bipedal locomotion including
the adjustments of the step time and length that affected
the frequency and amplitude of the gait, respectively [8].
However, these strategies are not suitable for the exoskeleton
applications, since the gait parameters (e.g., amplitude and
frequency of walking) are desired to be regulated based on the
wearer’s intention. Studies have designed optimal controllers
to combine both of these adjustment strategies in order to
realize a stable walking for bipedal robots. In Khadiv et
al. [8], and Jeong et al. [9], a higher cost was allocated to
the regulation of the foot landing position in the objective
function to keep the preplanned footprint as much as possible.
Jeong et al. [6] employed a linear inverted pendulum flywheel
(LIPF) model to extend the DCM adjustment strategy and
introduce a hip strategy (applying torque to the upper body) for
that purpose. Similar to the previous studies, an optimization
approach was suggested to minimize the error between desired
and actual DCM by regulation of the ankle and hip trajectories
in addition to the step size and walking speed [6].

Englsberger et al. [10] presented an enhanced centroidal
moment pivot (eCMP) and virtual repelling points to extend
the DCM trajectory in 3D space. The DCM dynamics was
utilized to determine required force for a stable bipedal
walking over an uneven ground and to generate a smooth
path for the eCMP point [10]. In a similar approach for 3D
DCM planning [11], the foot landing position was controlled
and the required ground reaction force (GRF) was determined
based on a viscoelastic model for the foot contact. It is worth
mentioning that DCM adjustment has not been utilized for the
postural stability of users wearing lower-limb exoskeletons so
far.

http://dx.doi.org/10.1109/LRA.2021.3098915 
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Fig. 1: Structure of the proposed intelligent control strategy with combination of DCM and CPG schemes for upper body
adjustment and trajectory shaping

The central pattern generators (CPGs) has been also em-
ployed as connected modules for locomotion planning of bio-
inspired robots due to its ability to produce synchronized
rhythmic motions for multiple joints [12], [13]. Fang et al. [14]
designed a CPG structure optimized by a genetic algorithm
(GA) to generate the reference hip and knee trajectories for a
multi-DOF exoskeleton. A similar GA-based scheme [15] was
employed to facilitate steady-state locomotion for a lower-limb
exoskeleton having specific CPG units for the knee stiffness
regulation. Matsuoka-style CPGs [16] were proposed as an-
other offline trajectory shaping integrated with fuzzy regulators
for the exoskeleton’s impedance variation. Zhang et al. [17]
benefited from CPGs to provide fixed rhythmic trajectories
for both the functional electrical stimulation and the torque
controller of a knee rehabilitation system. However, having
coupling between human and exoskeleton, it is essential to
consider pHRI signals for the CPG-based trajectory shaping,
which has not been investigated in previously developed
schemes.

To enhance human authority and safety, intelligent control
schemes have been developed to adapt the exoskeleton re-
sponse to the human’s physical behavior by monitoring the
interaction torque between the human and the exoskeleton
[18]. Accordingly, research studies have been dedicated to
investigating intelligent strategies for the estimation of HRI
force/torque (rather than direct measurement of them) using
musculoskeletal models and artificial intelligence (AI) tech-
niques. Linear proportional model [19] and Hill-type neuro-
musculoskeletal model [20], [21] are two of the commonly
used approaches for the HRI estimation applications. However,
due to the complexity of these models and the requirement
of online parameter calibration, most of the recent studies
have focused on the employment of AI-based techniques.
Given the model-free learning feature of neural networks
(NNs), they have been used to estimate HRI torque, shape
the motion trajectory and determine the gait phase for lower-
limb exoskeletons [22]. Radial basis function neural networks
(RBFNNs) were also utilized to estimate the passive and active
portions of the HRI torque in [23].

In the present study, an intelligent control strategy was de-
veloped and tested for lower-limb exoskeletons by introducing
a new integration of DCM and CPG schemes to facilitate

both postural stability and adaptive locomotion planning. The
DCM analysis, which was previously developed for bipedal
locomotion of humanoid robots, was extended and generalized
for the human-exoskeleton system (HES) for the first time. To
this end, the LIPF model was replaced with a new 4-DOF
body (4DB) model to address the following issues: (a) In the
LIPF model, the CoM of the whole system is considered to
be at the middle of the line that connects the right and left
hips. However, for the humans, the CoM is mostly higher than
this level and can be different for users based on their body
characteristics. Taking 4DB model into account, the CoM of
combination HES can be at any point higher or lower than this
level. (b) Due to the attachment of exoskeleton to the human
body, the mechanical properties (e.g., moment of inertia and
mass) for different segments of the HES can be significantly
different for various wearers. Using the proposed 4DB model,
these dynamic parameters can be personalized for each user
to make the locomotion control strategy case-specific.

Using the proposed DCM analysis, a hip joint correction
was generated in real-time to amend the trunk position and
consequently adjust the DCM on its desired value at the end
of each step. New adaptable CPGs were defined to shape
joint trajectories in response to the human interaction torques
by regulating the amplitude and frequency of walking. In
addition, the CPG dynamics was designed to guarantee that
gait frequency is less than the maximum stable frequency
of walking and the output trajectories are within the feasible
movement ranges of the exoskeleton joints. Accordingly, the
set of commands generated by the DCM and CPG schemes
were combined to autonomously facilitate locomotion trajec-
tories that are compatible with the user’s intention (active
interaction) and also ensure the viability of walking through
postural stability. The NARX neural network was employed
to learn the passive dynamics of the HES in offline training
sessions. Various position and velocity trajectories (inputs),
and associated joint torques (outputs) of the multi-DOF ex-
oskeleton were fed to this NN for training. The network
was then used to estimate the active portion of the human
interaction torque online and obtain HRI energy for the CPG-
based trajectory shaping. The rest of the paper is organized as
follows. The DCM and CPG formulations for upper-body and
gait adjustments are described in Section II. The experimental
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results of the proposed strategy having an able-bodied wearer
are demonstrated and discussed in Section III, and concluding
remarks are mentioned in Section IV.

II. METHODOLOGY

In this section, the mathematical formulations and different
components of the proposed intelligent control strategy with
their interconnections are explained. Using this strategy, the
exoskeleton’s wearer has the authority to adjust and person-
alize the gait parameters by applying torques and CPGs that
translate this HRI into complaint locomotion trajectories. In
order to guarantee the viability of walking, the exoskeleton
modifies the upper body position using a hip correction
approach based on a new DCM analysis. The structure of
this control strategy with the combination of DCM and CPG
schemes is shown in Fig. 1.

A. DCM Analysis with 4DB Model

The linear inverted pendulum flywheel model has been
widely used to simulate and analyze bipedal walking for
humanoid robots. In this model, the center of mass is con-
sidered to be exactly in the middle of the imaginary line
that connects the right and left hip joints. Also, the mass-less
inverted pendulum and flywheel represent the legs and upper
body, respectively, which are simplistic assumptions. To study
a collaborative human-exoskeleton walking, due to the human
body characteristics, the center of mass can be at any point
(not necessarily the hip joint). In order to address this issue,
a new 4-DOF body (4DB) model was developed to represent
the bipedal locomotion of the HES. As demonstrated in Fig.
2, the first link represents the stance leg, which is pivoted
on the ground at the foot’s center of pressure (CoP). The
second segment in this model is the upper body, and the third
and fourth links are devoted to the thigh and shank of the
swing leg. The center of mass (CoM) of the HES is person-
specific, which can be obtained based on the mechanical
specifications of the user and exoskeleton. Using the Euler-
Lagrange equation, the motion dynamics of the 4DB model
was derived as

M︷ ︸︸ ︷
M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44


q̈︷ ︸︸ ︷
q̈1
q̈2
q̈3
q̈4

+

G︷ ︸︸ ︷
G11 G12 G13 G14

0 G22 G23 G24

0 0 G33 G34

0 0 0 G44


p︷ ︸︸ ︷

cos(q1)
cos(q1 + q2)

cos(q1 + q2 + q3)
cos(q1 + q2 + q3 + q4)

 =

τ︷ ︸︸ ︷
0
τc
0
0


(1)

where the elements of the inertia (M ) and gravity (G) matrices
are defined in the Appendix. Note that in the derivation of
the 4DB model, the segments were considered to be close
to their vertical positions (q1 ' π

2 , q2, q3, q4 ' 0) in the
upright configuration of the body. Similar assumptions were
considered in the previous models, e.g., LIP and LIPF [7],

Fig. 2: Schematic of the proposed 4-DOF body (4DB) model
for DCM analysis

[6]. Given the 4DB model, the position and acceleration of
the Center of Mass (CoM) are

xCoM =

ϕ︷ ︸︸ ︷[
ϕ1 ϕ2 ϕ3 ϕ4

] [
p
]

(2)

ẍCoM =

ψ︷ ︸︸ ︷
−ϕ1 − ϕ2 − ϕ3 − ϕ4

−ϕ1 − ϕ2 − ϕ3

−ϕ1 − ϕ2

−ϕ1


T 

q̈1
q̈2
q̈3
q̈4

 (3)

in which ϕi for i = 1− 4 are defined as

ϕ1 =
m1lc1 +m2l1 +m3l1 +m4l1∑4

i=1mi

ϕ2 =
m2lc2∑4
i=1mi

ϕ3 =
m3lc3 +m4l3∑4

i=1mi

ϕ4 =
m4lc4∑4
i=1mi

(4)

Given (1), the joint acceleration vector can be summarized as

q̈ =M−1[τ −Gp] (5)

Note that the inertia matrix M is positive definite and always
invertible. Therefore, substituting (5) into (3), the acceleration
of CoM is obtained as

ẍCoM = ψM−1τ − ψM−1Gp (6)

Having (2), the acceleration of CoM can be rewritten as a
function of the CoM position (xCoM ) and the torque applied
to the trunk (τ ) as

ẍCoM = αxCoM + βτ (7)

where α and β are

α = −ψHxCoM β = ψM−1 (8)

and H = M−1Gϕ†, in which ϕ† is the right pseudo-inverse
of ϕ, defined as ϕ† = ϕT (ϕϕT )−1.
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Fig. 3: Demonstration of footprints and DCM trajectory and
offset during locomotion

Similar to the definition proposed in Jeong et al. [6], the
extended DCM for the new 4DB model is defined as (see
Appendix for detailed description)

ζ = x+
ẋ√
α

(9)

Substituting the CoM acceleration in the 4DB model (7) into
the time derivative of (9), the extended DCM dynamics is
obtained as

ζ̇ =
√
α(ζ +

β

α
τ) (10)

In order to facilitate stable locomotion, the DCM value (ζ)
at the end of each gait cycle needs to be controlled [24]. To
this end, an optimization problem was defined to minimize the
error between the actual and desired values of the DCM at the
end of each step by adjusting the correction torque applied to
the upper body.

min
τc

w1||τc||22 + w2||ζT − ζTd
||22 (11)

where ζT and ζTd
are the actual and desired end-of-step values

of the DCM, respectively, and w1 and w2 are the optimization
gains. Due to the attachment of the relative reference frame
to the stance foot (shown Fig. 3), the desired DCM value at
the end of the step (ζTd

) is equal to the desired DCM offset
at that moment (bd), which is defined in the next section.

B. DCM Offset for Viability of Walking

The DCM offset was defined as the difference between the
landing location of the foot at the end of its swing phase
and the point that DCM arrives at the end of that step. This
offset is known as the key factor to address the most important
characteristic of the bipedal locomotion, which is postural
stability ensuring the viability of walking [8]. For instance,
the higher gait velocities require larger DCM offset values and
vice versa [6]. Figure 3 depicts the schematic of footprints and
DCM offset in one stride.

The desired DCM offset for the 4DB model was determined
based on the amplitude and frequency characteristics of the
walking as described by Jeong et al. [6], and Khadiv et al.
[25]

bd =
L

e
√
αT − 1

(12)

where L is the stride length and T is the step time. By
reaching the desired offset value at the end of the step, in the
absence of any disturbance, the CoM will travel the desired
distance during the next step [8]. Using the CPG dynamics in
the proposed strategy, the user can modify the amplitude and
frequency of locomotion based on his/her desired gait pattern,
by applying HRI torque. Therefore, the desired DCM offset
will be affected by any change in the amplitude and frequency
of walking. Accordingly, the physical HRI can alter the desired
DCM value/offset at the end of each step.

Considering the kinematic and dynamic constraints of the
human-exoskeleton system, the maximum possible DCM off-
set is calculated as

bmax =
Lmax

e
√
αTmin − 1

(13)

where Lmax is the maximum feasible stride length and Tmin
is the minimum step time.

C. CPG Dynamics for Synchronized and Feasible Locomotion

Adaptive CPG dynamics was used for shaping stable gait
parameters based on the HRI. In order to prevent the loss
of postural stability during locomotion, threshold terms were
added to the CPG dynamics to confine the amplitude and
frequency of walking to the kinematic limits of the human-
exoskeleton system. Therefore, the user has the authority to
adjust the gait parameters over the stable limit by applying the
interaction torque. In order to determine the HRI torque, an au-
toregressive network with exogenous inputs (NARX) was used
to learn the passive dynamics of human limbs and exoskeleton.
To collect motion and motor actuation data, a neurologically
intact user was asked to walk with an exoskeleton over the
ground for several trials. The data were classified for the stance
phases of the right and left legs based on heel strike moments
from pressure sensors embedded in insoles. Also, the user was
asked to not apply any active interaction torque, so that the
whole system was actuated using the motor torque applied to
the joints. The position, velocity and torque values of the joints
were collected for different frequency and amplitude values
to be used for training the NARX. For the training process,
the position and velocity of the joints were considered as the
inputs u(t), and the motor toques of the joints as the output
y(t). The trained NARX had the capability of estimating
the passive dynamics of the human limbs and exoskeleton
(τpass) during the online experimental process. Therefore, the
interaction torque was determined as the difference between
the current joint torque of the joint (τi) and the passive joint
torque that was estimated by the NARX (τpass) as [26]

τHRIi = τi − τpass (14)

Given the HRI torque, the HRI energy for each joint i was
determined by taking the time integral of the multiplication of
HRI torque and velocity as

Ei(t) =

∫ t

0

τHRIi(t) q̇i(t) dt (15)

in which q̇i(t) is the velocity and τHRIi(t) is the estimated
human torque of the joint i = 1, ..., n. When the interaction
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torque had the same sign as velocity, the applied torque
accelerated and when they had opposite signs, this torque
caused deceleration of walking. The adaptive CPG dynamics
for the joint trajectory generation, considering maximum gait
frequency and amplitude, was defined as

θ̇i(t) = f(t) +

mi∑
j=1

vij sin(θi(t)− θj(t)− φij)

f̈(t) =µf (
µf
4
(F +

n∑
k=1

ηkEk − f(t))− ḟ(t))

− kf
DZ+(f(t)− fth)
(fmax − f(t))3

γ̈(t) =µγ(
µγ
4
(A+

n∑
k=1

λkEk − γ(t))− γ̇(t))

− kγ(t)
DZ+(γ(t)− γth)
(γmax − γ(t))3

(16)

where mi is the number of adjacent joints to the joint i,
and n is the number of all joints. fmax and γmax are the
maximum frequency and amplitude values considered based
on the motion constraints of the exoskeleton and walking
safety concerns. If the frequency and amplitude exceed their
threshold values fth and γth, the dead-zone function DZ+ is
triggered to control them below their maximum values. Note
that DZ+(x) = x for positive values of x and DZ+(x) = 0
for any non-positive x. The ηk and λk are constant gains for
the effect of HRI energy on the locomotion frequency and
amplitude, respectively. vij , µf and µγ are other constant
parameters of the dynamics. Using (16), the knee joint i’s
desired trajectory was formulated as

qdi(t) = γ(t)(ai0 +

Ni∑
l=1

(ail cos(lθi(t))+bil sin(lθi(t))) (17)

where ail and bil are the coefficients of the Fourier series (with
Ni terms) to initially coordinate the desired knee trajectory of
the joint i with a typical one, as presented in Fig. 1.

The correction trajectory for the hip joints is affected by the
obtained torque from the DCM adjustment strategy (see Eq.
(11)).

τc = Jθ̈corr (18)

where J is the moment of inertia for the upper-body of HES.
By integrating the DCM torque in (18) over time, the trajectory
correction for the hip joints (θcorr) was determined. This time-
varying correction adjusts the upper body position to reach
the desired DCM value at the end of each step. Therefore, the
desired trajectories of the stance and swing legs’ hip joints
were defined in terms of variables in (16) and (18) as

qdhST
(t) = γ(t)(ai0 +

Ni∑
l=1

(ail cos(lθi(t)) + bil sin(lθi(t)))

+ θcorr

qdhSW
(t) = γ(t)(ai0 +

Ni∑
l=1

(ail cos(lθi(t)) + bil sin(lθi(t)))

− θcorr
(19)

where qdhST
and qdhSW

are the desired trajectories of stance
and swing legs’ hip joints, respectively.

Given all of the desired joint trajectories, which are gen-
erated in real-time from the combination of DCM and CPG
schemes, a position tracking controller can be employed to
follow this comfortable and safe locomotion. Note that because
of the CPG dynamics, the wearer has enough authority to
adjust the gait parameters, but the intelligent controller of the
exoskeleton limits the amplitude and frequency to ensure the
viability of walking. Figure 1 demonstrates the structure of the
proposed autonomous trajectory shaping and postural stability
control.

III. RESULTS & DISCUSSION

In order to evaluate the effectiveness of the proposed
autonomous trajectory shaping strategy, experimental studies
were conducted using the Indego lower-limb exoskeleton
(Parker Hannifin Corporation) [27] and an able-bodied human
subject (height: 173 cm; weight: 67 kg) shown in Fig. 4. Note
that the body characteristics of the exoskeleton wearer in (1)
were estimated based on the provided formulations in Winter
[28] according to the height and weight of the subject. The
subject is asked to put a safety harness on, which is connected
to an overhead lift to prevent injury in the case of falling. Real-
time Desktop Simulink was utilized as the control software to
implement the proposed intelligent control strategy (it received
the sensory data, processed them and commanded the motor
torques) on the exoskeleton with a sampling frequency of 100
Hz. For following the generated online trajectory, the built-in
proportional-derivative (PD) position controller of the Indego
was employed with appropriately adjusted gains. A pair of
insole pressure sensors were embedded inside the shoes for
detecting heel strike and stance leg to switch the pivot point
of the 4DB model (Fig. 2) between the right and left legs. As
soon as the switching of the stance phase occurred from one
leg to the other, all DCM calculations switch correspondingly
such that the pivot point, shifted to the new stance foot.

The experimental results are presented in two parts. In
the first part, trunk position adjustment using the proposed
DCM analysis was evaluated for postural stability. In the
second section, the effect of human interaction torque on
the CPG-based shaping of the gait characteristics (frequency
and amplitude) and providing safe locomotion trajectories was
investigated. The parameters of the DCM dynamics (10) were
determined as α = 4.95 and β = 0.76 based on the mechanical
properties identified for the HES. The optimization gains were
also specified as w1 = 10−7 and w2 = 1 using a trial-and-error
method to have an appropriate trade-off between the obtained
torque (τc) for the trunk and the DCM error (ζT − ζTd

) at the
end of a step.

A. Trunk Adjustment Using DCM Analysis

The desired DCM offset value at the end of each step was
a function of the step length and total frequency of walking
based on Eq. (12). Due to the variation of landing positions,
the optimization approach (Sec. II-A) was utilized to obtain
the upper-body torque (τc) and determine the hip trajectory
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Fig. 4: Experimental set-up: Indego lower-limb exoskeleton
in a user study (having a safety harness) during over-ground
walking

correction (Eq. 18) in order to minimize the DCM error at
the end of each step. The correction value of the upper body
position (θcorr) was added to the reference CPG trajectory for
the hip joint of the stance leg. Note that, the negative value
of the θcorr was added to the reference CPG trajectory of the
hip joint of the swing leg, in order to not affect the swing
trajectory of the walking.

The primary amplitudes of the hip and knee motions were
considered 59 and 70 degrees, and the locomotion frequency
was set to 2.6 rad/s based on typical gait cycles. Figure
5 represents trajectories of the right and left hips with and
without applying the DCM correction for them. This motion
correction at the beginning of the stance phase of each leg
decreased the desired hip angle of that leg. As seen in Fig. 5,
the desired trajectory of the swing leg’s hip was also increased
in the opposite direction to preserve the landing position of the
next step (as described in Sec. II-C). The landing moments of
the left and right feet are pointed out in Fig. 5, where the
acceleration of hip corrections was changed. This behavior
is also illustrated in Fig. 6, where the modifications can be
seen in the relative motion of the hips. From the beginning of
the stance phase, the synchronization of the right and left hip
joints became distorted as highlighted in Fig. 6.

In order to elaborate more on the trunk position correction
obtained from the DCM analysis, Fig. 7 depicts the DCM
values for the stance phases of the right and left legs. Note that
in the calculation of DCM magnitude, the stance foot’s CoP
was considered as the Cartesian coordinates’ origin (shown
in Fig. 3). As seen in Fig. 7, for the first four steps of
walking (t = 0 − 5.17 s), the DCM has a disorganized
translation from the initial value to the end-of-step one due
to the wearer’s interaction with the exoskeleton. In order to
minimize the DCM end-of-step error, the highest position

0 1 2 3 4 5 6 7 8 9 10
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Fig. 5: Right and left hip trajectories in the presence and
absence of DCM corrections
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Fig. 6: Relative motion of the right and left hips with and
without considering DCM corrections

correction for upper body was suggested during this period
in comparison to the latest four steps as observed in Fig.
5. Similarly, in all of the other steps of walking, the upper
body’s position correction adjusted the hip joints’ trajectories
generated by CPGs to reach the desired DCM value at the
end of each step. In order to evaluate how the end-of-step
DCM error was affected by the upper body adjustment, the
result of DCM values in the absence of applying the proposed
DCM correction was investigated in another experiment. As
demonstrated in Fig. 8, the average end-of-step error without
upper body adjustment was 0.05 m, which was considerable
and caused unstable walking that would raise the risk of falling
down without employing a safety harness. However, using the
proposed DCM correction strategy, this error was reduced to
0.002 m and the DCM trajectory experienced more organized
variations (Fig. 5).

The desired trajectories for the hip and knee joints, obtained
from the combined CPG and DCM schemes, were commanded
to a PD position controller to be tracked by the exoskeleton.
The performance of this controller in following the desired
values of the right hip and knee (with the maximum errors of
0.6 degree and 1.1 degrees, respectively) are shown in Fig.
9.
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Fig. 7: Actual and desired end-of-step values of DCM for right
and left feet in the presence of DCM correction
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Fig. 8: End-of-step values of DCM in the absence of DCM
correction

B. Locomotion Shaping with Maximum Walking Frequency

The performance of the proposed CPGs in online shaping
of gait parameters was investigated while preserving the
postural stability. During this experiment, the wearer applied
accelerating torques on different joints in order to speed up his
walking. Although he was able to increase the amplitude and
frequency of locomotion, the threshold and maximum values
of these variables were set to be γth = 1.1, γmax = 1.2
and fth = 1.04π rad/s, fmax = 1.08π rad/s in (16) based
on practical limitations of the exoskeleton movement and the
safety of the human user. As seen in Fig. 10(a), the total
gait amplitude γ increased and reached its threshold value
at t = 0.85 s. After this time, the threshold regulation term
in (16) was activated to detract the increment rate of the
amplitude and saturate it around 1.19 at t = 14.5 s. Similar
behavior can be seen in Fig. 10(b) for the total frequency of
walking according to (16), where its threshold regulation term
was triggered at t = 2.15 s and then the frequency is saturated
below f1(t) = 3.39 rad/s until 18.5 s. Also, in order to
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Fig. 9: Performance of the position controller in tracking the
desired right hip and knee trajectories
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Fig. 10: Control of (a) the amplitude and (b) the frequency
of locomotion between their threshold and maximum values
using CPG dynamics
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Fig. 11: Variation of DCM offset below its maximum value

further evaluate the effectiveness of CPG in facilitating the
user’s intention, the wearer could change the frequency of
walking to a desired value less than the threshold in another
experiment. As seen in Fig. 10(b), the total frequency of
walking reached the desired value of f2(t) = 2.4 rad/s at
t = 7.5 s and the user retained this walking frequency for the
rest of his locomotion.

As discussed in Sec. II-B, the DCM offset is a function of
the walking frequency and the step length. Given the maximum
feasible amplitude and frequency of walking as γmax = 1.2
and fmax = 1.08π rad/s, the maximum DCM offset was
obtained as bmax = 7.5 mm. As is observed in Fig. 11, after
t = 2.17 s both amplitude and frequency threshold terms were
activated in (16), the variation rate of bd decreased drastically
and finally plateaued at t = 18.5 s around 6.6 mm which is
less than the maximum offset value (bmax = 7.5 mm).

IV. CONCLUSIONS

In the present study, a novel intelligent control strategy
was developed for the human exoskeleton system, which can
revise the locomotion trajectories in real-time for preserving
postural stability. In the proposed shared autonomy between
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the human and robot, the user has the authority of adjusting
the amplitude and frequency of walking, while the exoskeleton
has enough autonomy to correct the trunk position to guarantee
the viability of walking and limit the gait amplitude and
frequency within their feasible ranges. For these purposes, the
DCM analysis was extended by presenting a new 4-DOF body
(4DB) model to be compatible with the human-exoskeleton
system’s dynamics. Taking the advantage of this 4DB model,
the locomotion control was personalized by considering the
dynamic parameters of the body segments (moment of inertia,
mass and CoM) for each user.

The HRI torque was employed in the adaptable CPG struc-
ture to update the locomotion based on the user’s intention.
Also, the desired DCM value at the end of each step was calcu-
lated based on the user’s demanded amplitude and frequency,
which is facilitated by adjusting the upper body position using
a hip correction strategy for the exoskeleton. To this end, an
optimization problem was defined to minimize the DCM end-
of-step error by determining the required upper body motion
correction that should be added to the desired gait trajectories.
This revised trajectory generated by combination of DCM
and CPG schemes was tracked by the exoskeleton’s motor
controller. The proposed strategy was tested experimentally
on the Indego lower-limb exoskeleton, and the obtained results
proved its effectiveness in providing postural stability and the
adaptation of gait motion. Accordingly, this control method
enhanced the user’s safety and comfort in walking (as one of
the most essential activities) using an assistive exoskeleton by
offering a trade-off between the robot autonomy and human
authority. The upper-body position adjustment was designed
to provide postural stability with slight changes in the gait
parameters (amplitude and frequency) in response to the active
HRI torque. However, for the case of large disturbances, e.g.,
having a collision with the environment, an extended control
approach with the ankle joint’s actuation will be required.
This strategy can be investigated in future studies using fully
actuated exoskeletons.

APPENDIX
The elements of the inerta matrix and gravity vector, and

the DCM formulation are provided in https://github.com/tbs-
ualberta/Paper DCM Lower-limb Exo.git.
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