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ABSTRACT 
 

Plakoglobin (γ-catenin) is a member of the Armadillo family of proteins 

and a homolog of β-catenin with similar dual adhesive and signaling 

functions. The adhesive function of these proteins is mediated by their 

interactions with cadherins and their signaling function by association with 

various intracellular proteins, from signaling molecules to transcription 

factors. However, while β-catenin has well-documented oncogenic 

potential, plakoglobin signaling capabilities are typically associated with 

tumor/metastasis suppression through mechanisms that have remained 

unclear. The focus of this thesis was to elucidate the molecular 

mechanisms by which plakoglobin regulates tumorigenesis and 

metastasis. To this end, we expressed plakoglobin in plakoglobin-null 

human carcinoma cells and compared the mRNA and protein profiles of 

plakoglobin expressing cells with those of parental cells. We identified a 

number of oncogenes and tumor/metastasis suppressors whose 

mRNA/protein levels were decreased and increased, respectively, upon 

plakoglobin expression. Extensive characterization of the plakoglobin 

expressing cells showed that plakoglobin regulates tumorigenesis and 

metastasis by interacting with and altering the levels, localization and/or 

function of growth/metastasis regulating proteins and/or by associating 

with transcription factors that regulate the expression of genes involved in 

these processes.  



 Plakoglobin interacted with and increased both the protein and mRNA 

levels of the metastasis suppressor Nm23-H1 while only increasing the 

protein levels of Nm23-H2. Furthermore, in plakoglobin expressing cells, 

Nm23-H1/H2 complex was redistributed from the cytoplasm to the 

adherens junction at the membrane. 

We also showed that plakoglobin interacted with p53 and together they 

regulated the expression of a number of p53-target genes, including tumor 

suppressors SFN and NME1 and the tumor promoter SATB1. Concurrent 

with these changes, there was a significant decrease in cell proliferation 

and in vitro migration and invasion of plakoglobin expressing cells. 

These results clearly demonstrate that plakoglobin plays an active role 

in suppressing tumorigenesis/metastasis through both the regulation of 

gene expression and by interacting with and altering the levels, 

localization and function of various intracellular proteins involved in these 

processes. The larger implication of this work is that plakoglobin may be a 

useful marker for diagnosis and prognosis as well as a therapeutic target 

for the treatment of various cancers.  
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1.1. Cadherin-mediated cell adhesion1 

Epithelial tissues cover the surface of the body and line the internal 

cavities (McCaffrey and Macara, 2011). The structural integrity of these 

tissues requires extensive cell-cell adhesion and interactions mediated by 

the adhesive junctional complexes consisting of the adherens junction and 

desmosomes (Halbleib and Nelson, 2006; Jeanes et al., 2008; Makrilia et 

al., 2009; Yilmaz and Christofori, 2010, Saito et al., 2012; David and 

Rajasekaran, 2012). Adherens junctions are a ubiquitous type of 

intercellular junction and are present in both epithelial and non-epithelial 

cells (Halbleib and Nelson, 2006; Jeanes et al., 2008; Yonemura, 2011), 

whereas desmosomes are adhesive junctions that confer tensile strength 

and resilience to cells and are present not only in epithelial cells but also in 

non-epithelial cells that endure mechanical stress, such as cardiac muscle 

and meninges (Garrod and Chidgey, 2008; Kowalczyk and Green, 2013). 

Both adherens junctions and desmosomes are cadherin based. Cadherins 

are single-pass transmembrane glycoproteins that form homotypic 

interactions with cadherin proteins on neighboring cells and intracellularly 

interact with proteins of the catenin family (Saito et al., 2012; David and 

Rajasekaran, 2012). At the adherens junction, the C-terminal domain of E-

cadherin interacts, in a mutually exclusive manner, with β-catenin or γ-

catenin (plakoglobin), which then interacts with α-catenin, an actin-binding 

protein. A fourth catenin protein, p120-catenin, interacts with the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 A version of this chapter has been published in:  
Aktary Z, Pasdar M (2012). Plakoglobin: role in tumorigenesis and metastasis. 
International journal of cell biology 2012: 189521.	  



	   3 

juxtamembrane domain of E-cadherin and stabilizes the cadherin dimers 

at the membrane (Figure 1-1; Meng and Takeichi, 2009; Harris and 

Tepass, 2010; Brieher and Yap, 2013). At the desmosome, the 

desmosomal cadherins (desmocollins and desmogleins) interact 

intracellularly with plakophilin and plakoglobin, which in turn are 

associated with desmoplakin, an intermediate filament binding protein that 

connects the complex to the cytoskeleton (Figure 1-1; Garrod and 

Chidgey, 2008; Dusek and Attardi, 2011; Brooke et al., 2012).  

Although originally identified as structural proteins with a “glue-like” 

function, subsequent studies have shown significant interactions between 

the cadherin-based cell adhesion complexes and elements of signal 

transduction pathways regulating growth and morphogenesis (Qian et al., 

2004; Lilien and Balsamo, 2005; Nelson, 2008). More specifically, 

cadherin-independent β-catenin, plakoglobin and p120 have been shown 

to have signaling functions through their interactions with an array of 

functionally diverse proteins including receptor tyrosine kinases and 

phosphatases, tumor suppressors and transcription factors (Aktary and 

Pasdar, 2012; Pieters et al., 2012; Kim et al., 2013).  

1.2. Signaling through catenins 

Catenin-mediated cell signaling has been the focus of many studies, 

most of which have concentrated on β-catenin and p120-catenin, 

overlooking both α-catenin and plakoglobin. These studies have 

  



D
sg

 D
sc

 

In
te

rc
el

lu
la

r S
pa

ce
 

C
ad

he
rin

 

C
ad

he
rin

 

α
-c

at
 

α
-c

at
 

PK
P 

D
sc

 
D

sg
 

PK
P 

p1
20

 

D
P 

PG
 

D
P 

PG
 

p1
20

 

IF
 M

F M
F 

β-
ca

t 

PG
 

IF
, i

nt
er

m
ed

ia
te

 fi
la

m
en

ts
  

M
F,

 a
ct

in
 m

ic
ro

fil
am

en
ts

 

α
-c

at
en

in
 

β-
ca

te
ni

n 

Pl
ak

og
lo

bi
n 

D
es

m
og

le
in

 

D
es

m
oc

ol
lin

 

C
ad

he
rin

 

Pl
ak

op
hi

lin
 

D
es

m
op

la
ki

n 

p1
20

-c
at

en
in

 

Fi
gu

re
 1

-1
. C

el
l a

dh
es

io
n 

co
m

pl
ex

es
 in

 e
pi

th
el

ia
l c

el
ls

. C
el

l-c
el

l a
dh

es
io

n 
is

 m
ai

nt
ai

ne
d 

in
 e

pi
th

el
ia

l t
is

su
es

 b
y 

th
e 

ad
he

re
ns

 ju
nc

tio
n 

an
d 

de
sm

os
om

es
. A

t t
he

 a
dh

er
en

s 
ju

nc
tio

ns
, E

-c
ad

he
rin

 fo
rm

s 
ex

tra
ce

llu
la

r i
nt

er
ac

tio
ns

 w
ith

 E
-c

ad
he

rin
 m

ol
ec

ul
es

 o
n 

ne
ig

hb
or

in
g 

ce
lls

. 
In

tra
ce

llu
la

rly
, E

-c
ad

he
rin

 in
te

ra
ct

s 
w

ith
 e

ith
er

 β
-c

at
en

in
 o

r p
la

ko
gl

ob
in

, w
hi

ch
 th

en
 in

te
ra

ct
 w

ith
 α

-c
at

en
in

, a
n 

ac
tin

 b
in

di
ng

 p
ro

te
in

. A
 fo

ur
th

 
ca

te
ni

n,
 p

12
0-

ca
te

ni
n,

 a
ls

o 
in

te
ra

ct
s 

w
ith

 E
-c

ad
he

rin
 a

nd
 re

gu
la

te
s 

its
 s

ta
bi

lit
y 

at
 th

e 
m

em
br

an
e.

 A
t t

he
 d

es
m

os
om

e,
 th

e 
de

sm
os

om
al

 
ca

dh
er

in
s 

(d
es

m
og

le
in

 a
nd

 d
es

m
oc

ol
lin

) i
nt

er
ac

t w
ith

 p
la

ko
gl

ob
in

 a
nd

 p
la

ko
ph

ili
n,

 w
hi

ch
 in

te
ra

ct
 w

ith
 d

es
m

op
la

ki
n,

 w
hi

ch
 in

 tu
rn

 
as

so
ci

at
es

 w
ith

 th
e 

in
te

rm
ed

ia
te

 fi
la

m
en

t c
yt

os
ke

le
to

n.
 T

he
 b

as
ic

, c
or

e 
pr

ot
ei

n 
co

m
po

si
tio

n 
of

 th
e 

de
sm

os
om

es
 is

 re
pr

es
en

te
d 

he
re

: t
he

 
ex

ac
t p

ro
te

in
 c

on
st

itu
en

ts
 o

f t
he

 d
es

m
os

om
es

 a
nd

 th
ei

r i
nt

er
ac

tio
ns

 v
ar

y 
be

tw
ee

n 
di

ffe
re

nt
 ty

pe
s 

of
 c

el
ls

 a
nd

 ti
ss

ue
s.

 

A
dh

er
en

s 
 

Ju
nc

tio
n 

4 

D
es

m
os

om
e 



	   5 

suggested that both β-catenin and p120-catenin have oncogenic signaling 

activities through well-defined pathways, whereas plakoglobin acts as a 

tumor/metastasis suppressor through mechanisms that have just begun to 

be deciphered. Unlike β-catenin and p120, the role of α-catenin in cell 

signaling has not been examined to any significant detail. Only recently, a 

few studies have suggested that α-catenin may regulate the MAPK, 

Hedgehog and Hippo signaling pathways, although at this point it remains 

unclear as to how this regulation may occur (Vasioukhin et al., 2001; Lien 

et al., 2006; Schlegelmilch et al., 2011; Silvis et al., 2011; Maiden and 

Hardin, 2011).  

On the contrary, the oncogenic signaling potential of p120-catenin has 

been well documented. Several studies have shown that cadherin-

independent p120-catenin can translocate into the nucleus and interact 

with the transcription factor Kaiso, promoting the expression of tumor 

promoters, e.g. Siamois, c-Fos, Myc, cyclin D1, MMP7 (Figure 1-2; Pieters 

et al., 2012; Menke and Giehl, 2012). In addition, p120-catenin promotes 

cell migration by activating the Rho GTPases Rac and Cdc42 and 

inhibiting Rho, resulting in actin cytoskeleton remodeling and increased 

cell motility, migration and invasion (Pieters et al., 2012; Menke and Giehl, 

2012). 

β-catenin is the most extensively studied component of the cadherin 

catenin-complex with respect to signaling. β-catenin has a well-known  
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oncogenic role as the terminal component of the Wnt signaling pathway 

and will be discussed in further detail.  

1.3. β-catenin and the Wnt signaling pathway 

The Wnt pathway is a signaling cascade with fundamental roles in the 

regulation of cell proliferation, cell polarity and cell fate determination 

during embryonic development and in tissue homeostasis. Deregulation of 

this pathway results in birth defects and various diseases, including cancer 

(Clevers, 2006; MacDonald et al., 2009; Niehrs, 2012; Clevers and Nusse, 

2012; Kim et al. 2013).  

Under normal conditions and in the absence of Wnt, cytoplasmic, 

cadherin-independent β-catenin levels are kept low through the action of 

the destruction complex, which consists of the tumor suppressor 

adenomatous polyposis coli (APC), the scaffolding protein Axin, and the 

kinases casein kinase I (CKI) and glycogen synthase kinase (GSK)-3β . 

The formation of this complex results in the phosphorylation of β-catenin 

and its subsequent degradation via the proteasome pathway (Figure 1-3; 

Huang and He, 2008; MacDonald et al., 2009; Valenta et al., 2012; Kim et 

al. 2013). During development and tumorigenesis, Wnt binds to its co-

receptors frizzled and low-density lipoprotein receptor-related protein 

(LRP) 5/6. This binding leads to the activation of dishevelled protein and 

the relocalization of the components of the destruction complex to the 

membrane. As a result, the destruction complex does not form, which 

allows β-catenin to accumulate in the cytoplasm and translocate into the  
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nucleus where it interacts with the TCF/LEF family of transcription factors. 

The β-catenin-TCF complex can then activate the expression of genes 

involved in survival, proliferation, migration and invasion (Figure 1-3; 

Huang and He, 2008; MacDonald et al., 2009; Valenta et al., 2012; Kim et 

al. 2013). 

1.4. β-catenin and plakoglobin: structural and functional homologs 

Plakoglobin and β-catenin are structural and functional homologs and 

members of the Armadillo family of proteins (Peifer et al., 1992). As such, 

they share common intracellular partners, including classical cadherin, α-

catenin, Axin, APC and TCF/LEF (Figure 1-4; Butz et al., 1992; Shibata et 

al., 1994; Kodama et al., 1999; Zhurinsky et al., 2000a; Aktary and 

Pasdar, 2012). Despite their structural similarities and their common 

interacting partners, plakoglobin and β-catenin appear to play opposite 

roles with respect to cell signaling in tumorigenesis and metastasis. As 

discussed above, β-catenin has a well-defined oncogenic potential as the 

terminal component of the Wnt signaling pathway, whereas plakoglobin 

has been typically associated with tumor and metastasis suppressor 

activities through mechanisms that have, up until recently, remained 

unknown (Simcha et al., 1996; Parker et al., 1998; Pantel et al., 1998; 

Charpentier et al., 2000; Winn et al., 2002; Rieger-Christ et al., 2005; Yin 

et al., 2005; Kanazawa et al., 2008; Narkio-Makela et al., 2009; Todorovic 

et al., 2010; Bailey et al., 2012; Holen et al., 2012; Franzen et al., 2012).  
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This thesis is focused on characterizing the mechanisms by which 

plakoglobin regulates tumorigenesis and metastasis. 

1.5. Plakoglobin initial identification and early characterization 

Plakoglobin was initially identified as an 83 kDa protein component of 

the desmosomal plaque (Franke et al., 1983). Subsequently, experiments 

using monoclonal antibodies, cDNA cloning and a combination of 

biochemical, morphological and molecular approaches demonstrated that 

this 83 kDa protein was present in both desmosomes and the adherens 

junction and was given the name plakoglobin (Cowin et al., 1986).  

Although plakoglobin was identified as a junctional protein, the role that 

it played in junctional complexes was unclear, and the partners with which 

plakoglobin interacted were not identified. It was not until several years 

later that coimmunoprecipitation experiments showed that plakoglobin 

interacted with the desmosomal cadherin desmoglein, thereby confirming 

plakoglobin as a constituent of the desmosomes (Korman et al., 1989). 

Around the same time, several groups showed that E-cadherin (initially 

known as uvomorulin) immunoprecipitates contained three distinct 

proteins, named α-, β- and γ-catenin with molecular weights of 

approximately 102, 88 and 80 kDa, respectively, which interacted with the 

cytoplasmic domain of E-cadherin (Vestweber and Kemler, 1984; 

Peyrieras et al., 1985; Ozawa and Kemler, 1992). Further work analyzing 

the formation and stability of the E-cadherin-catenin complexes suggested 

that the E-cadherin-β-catenin complex was formed immediately after E-
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cadherin synthesis and was very stable. Interestingly, it was also 

determined that α-catenin could not be found in association with E-

cadherin independent of β-catenin, suggesting that β-catenin was a 

physical link between E-cadherin and α-catenin. However, since γ-catenin 

was found to be only loosely associated with E-cadherin, it was suggested 

that the main adhesive complexes consisted of E-cadherin, β-catenin and 

α-catenin, although the existence of a separate E-cadherin- γ-catenin 

complex could not be ruled out (Ozawa and Kemler, 1992). 

Soon after this initial characterization, work from several groups 

demonstrated that plakoglobin and γ-catenin were the same E-cadherin 

interacting protein and that this protein was homologous to, yet a different 

protein from, β-catenin (McCrea et al., 1991; Knudsen and Wheelock, 

1992; Piepenhagen and Nelson, 1993). Further studies demonstrated that 

plakoglobin and β-catenin are homologues of the Drosophila Armadillo 

protein with similar properties and together constituted the Armadillo 

multigene family (Peifer et al., 1992).  

Subsequent analysis of the kinetics of plakoglobin synthesis and 

associations with cadherins demonstrated that following synthesis, 

plakoglobin interacted with both desmoglein and E-cadherin in both the 

soluble and cytoskeleton-associated pools of cellular proteins. 

Furthermore, a distinct, cadherin-independent pool of plakoglobin was 

observed, suggesting that in addition to cell-cell adhesion, plakoglobin 

may have an adhesion-independent role in the cell (Pasdar et al., 1995). 
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Finally, phosphorylation experiments revealed that whereas the insoluble 

(cadherin-associated) pool of plakoglobin was serine phosphorylated, the 

soluble pool was serine, threonine and tyrosine phosphorylated, 

suggesting that these different pools of plakoglobin are differentially 

regulated and perform varying functions (Pasdar et al., 1995). Collectively, 

these studies demonstrated that plakoglobin is a homolog of β-catenin 

and a unique protein in that it is the only component common to both the 

adherens and desmosomal junctions. 

1.6. Plakoglobin and cell-cell adhesion 

The most documented role of plakoglobin within the cell is in cell-cell 

adhesion. The identification of plakoglobin as a constituent of both the 

adherens junction and desmosomes suggested that it plays an important 

role in regulating cell-cell adhesion. However, the observation that the 

adherens junctions could exist as a complex containing E-cadherin, β-

catenin and α-catenin, independent of plakoglobin (Ozawa and Kemler, 

1992), questioned the necessity of plakoglobin, at least at the adherens 

junctions. Regardless, it soon became apparent that plakoglobin does 

have an essential role in regulating cell-cell adhesion.  

Earlier in vitro studies had shown that the disruption of E-cadherin 

based cell-cell adhesion led to a transformed and/or invasive phenotype 

while re-expression of E-cadherin in E-cadherin-null cells resulted in a 

mesenchymal to epithelial phenotypic transition (Nagafuchi et al., 1987; 

Nose et al., 1988; Mege et al., 1988; Behrens et al., 1989; Vleminckx et 
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al., 1991; Chen and Obrink, 1991). Similarly, a number of in vivo studies 

demonstrated that the reduced expression of E-cadherin was inversely 

correlated with the differentiation grade of tumors (Shimoyama et al., 

1989; Schipper et al., 1991; Gamallo et al., 1993). Thus, while it was clear 

that the E-cadherin based junctions were important for the maintenance of 

an “epithelial” phenotype, the role of plakoglobin in this phenomenon was 

not discerned until it was shown that the re-expression of E- or P-cadherin 

in cadherin-null murine spindle cell carcinomas with very low levels of 

plakoglobin was not sufficient to modify the morphology or tumorigenicity 

of the cells (Navarro et al., 1993). In these cells, although the exogenously 

expressed cadherins were localized to the cell membrane and interacted 

with both α- and β-catenin, they did not interact with plakoglobin and there 

was no desmosome formation. From this work, the authors concluded  

that the presence of plakoglobin in the E-cadherin complex may 

be necessary for proper cell-to-cell adhesion.	  

The role of plakoglobin in regulating junction formation was also 

demonstrated when it was shown that A431 epithelial cells treated with 

dexamethasone (which decreased E-cadherin and plakoglobin levels) 

were unable to form adherens junctions and desmosomes and exhibited a 

fibroblastic morphology. Following the expression of E-cadherin in these 

cells, the adherens junction was formed but the fibroblastic morphology of 

the cells remained unchanged. The authors then expressed an E-

cadherin-plakoglobin chimeric protein in these cells, which led to the 
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formation of stable adherens junctions and desmosomes as well as an 

induction of an epithelioid morphology. Together, these results suggested 

that E-cadherin-plakoglobin interactions were necessary for the formation 

of stable adhesive complexes and provided the first indication that 

plakoglobin served as a molecule involved in cross-talk between the 

adherens junctions and desmosomes (Lewis et al., 1997).  

Following this study, our laboratory demonstrated the role of 

plakoglobin in junction formation by expressing plakoglobin in SCC9 cells, 

a human tongue squamous cell carcinoma cell line that lacks the 

expression of both plakoglobin and E-cadherin but expresses N-cadherin 

(Parker et al., 1998; Li et al., 1998). Transfectants expressing E-cadherin 

(SCC9-E) or low/physiological levels of plakoglobin (SCC9-PG) or both 

were generated and showed that the independent expression of either E-

cadherin or plakoglobin induced a mesenchymal (transformed) to 

epidermoid (normal) phenotypic transition. This phenotypic transition was 

associated with decreased cell proliferation and increased cell-cell 

adhesion and only SCC9-PG cells were able to form desmosomes. E-

cadherin or plakoglobin expression also coincided with decreased soluble 

β-catenin levels however, while E-cadherin expression downregulated N-

cadherin, plakoglobin expression increased N-cadherin levels and stability 

(Li et al., 1998; Parker et al., 1998). Since then, numerous subsequent 

studies identified the switch from E- to N-cadherin as a major contributing 

factor in epithelial to mesenchymal phenotypic transition and metastatic 
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progression. Significantly, our results clearly demonstrated that in the 

absence of E-cadherin, plakoglobin was able to inhibit N-cadherin tumor 

promoting activities and that the cadherin switch by itself cannot explain 

the transformed phenotype of SCC9 cells. Furthermore, the induction of 

the mesenchymal to epidermoid phenotype by E-cadherin and plakoglobin 

may occur via a common pathway that also involves β-catenin (Li et al., 

1998; Parker et al., 1998).  

Other studies have further characterized the role of plakoglobin in 

desmosome assembly and function, demonstrating the essential role of 

plakoglobin for the proper assembly of the desmosomal plaque and the 

efficient binding of desmoplakins to the intermediate filaments (Palka and 

Green, 1997; Acehan et al., 2008). Finally, work from Birchmeier’s 

laboratory showed that plakoglobin double knockout mice died during 

embryogenesis as a result of disrupted heart function due to the loss of 

stable desmosomes in the intercalated discs of cardiac muscle, further 

confirming the essential role of plakoglobin in desmosome formation and 

the adhesive properties of cells (Ruiz et al., 1996; Ruiz and Birchmeier, 

1998). 

1.7. Plakoglobin and cell signaling 

While the majority of plakoglobin is found in association with 

desmosomes and adherens junction, there is a considerable amount (~ 

35%) of non-junctional plakoglobin that can potentially participate in cell 

signaling (Pasdar et al., 1995). However, when studying the signaling 
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activity of plakoglobin one must take into account the fact that due to its 

structural and functional homology to β-catenin, plakoglobin can 

participate in cellular signaling in four ways (Figure 1-5). First, plakoglobin 

may potentially displace β-catenin from the adherens junction, causing 

increased cytoplasmic β-catenin levels and its subsequent nuclear 

translocation, ultimately leading to the activation of the Wnt pathway and 

changes in the expression of TCF/β-catenin target genes. In this scenario, 

plakoglobin would exhibit an oncogenic potential. Second, plakoglobin 

may compete with β-catenin signaling by inhibiting TCF/β-catenin-DNA 

interactions and Wnt target genes expression. Third, plakoglobin may 

interact with transcription factors and regulate gene expression 

independent of β-catenin. Finally, plakoglobin may interact with various 

cellular partners involved in signaling and alter their levels, localization 

and/or function (Figure 1-5). In the latter three cases, plakoglobin would 

exhibit growth inhibitory function. Experimental evidence from our 

laboratory and other groups suggests that plakoglobin participates in cell 

signaling through all of these mechanisms (see below).  

1.8. Plakoglobin oncogenic signaling 

The first clue that plakoglobin might participate in cell signaling came 

from studies of the exogenous expression of Wnt-1 in PC12 cells. In these 

cells, plakoglobin levels were increased and it underwent membrane 

redistribution, suggesting that in addition to β-catenin levels, Wnt-1 can 

modulate plakoglobin levels and localization (Bradley et al., 1993).  
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Subsequently, Karnovsky and Klymkowsky (1995) demonstrated 

plakoglobin signaling activity by microinjecting mRNAs encoding 

plakoglobin into fertilized Xenopus embryos, resulting in dorsalized 

gastrulation and anterior axis duplication. In this study, the exogenously 

expressed plakoglobin localized both at the plasma membrane and in 

punctate nuclear aggregates. Furthermore, the co-injection of mRNAs 

encoding plakoglobin and the cytoplasmic domain of desmoglein 

suppressed both dorsalized gastrulation and anterior axis duplication. In 

these embryos, plakoglobin was localized primarily to the plasma 

membrane with some peri-nuclear distribution. These results suggested 

that plakoglobin has signaling ability similar to β-catenin, but when it is 

sequestered at the plasma membrane (as part of junctional complexes), 

plakoglobin is unable to participate in cell signaling.  

Following these initial observations, the same group showed that this 

outcome does not depend on the nuclear localization of plakoglobin, since 

membrane-anchored forms of this protein produced the same axis 

duplication (Merriam et al., 1997). This demonstrated that nuclear 

plakoglobin was inconsequential in inducing a Wnt-like phenotype, since 

this phenotype was induced even when plakoglobin was sequestered in 

the cytoplasm. 

Later on, Kolligs et al. (2000) proposed that plakoglobin has oncogenic 

signaling activity and showed that the tumor suppressor adenomatous 

polyposis coli (APC), which was already known to regulate the levels of β-
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catenin, could also regulate plakoglobin protein levels. In this study, the 

authors also showed that exogenous overexpression of plakoglobin in rat 

RK3E cells, which express considerable amounts of endogenous 

plakoglobin and β-catenin (Kolligs et al., 2000; Bommer et al., 2005), 

resulted in a transformed phenotype, which they suggested was 

dependent on the upregulation of the oncogene c-Myc and activation of 

TCF/LEF signaling. More recently, Pan et al. (2007) showed that the 

exogenous expression of plakoglobin in HCT116 colon carcinoma cells, 

which express a mutant β-catenin protein that cannot be degraded (Morin 

et al., 1997), resulted in genomic instability and increased invasion and 

migration. 

Although these studies concluded that plakoglobin possessed 

oncogenic activity, evidence suggests that this activity may be indirectly 

achieved, through modulation of β-catenin protein levels and activation of 

its signaling function (Figure 1-5A). Since plakoglobin and β-catenin 

interact with some of the same proteins and display high sequence 

homology (Butz et al., 1992; Shibata et al., 1994; Kodama et al., 1999; 

Zhurinsky et al., 2000a; also see Figure 1-4), overexpressed plakoglobin 

may be able to promote tumorigenesis by interacting with proteins that 

would normally sequester β-catenin (e.g. E-cadherin, Axin, APC), resulting 

in increased levels of cytoplasmic and nuclear β-catenin and in turn, its 

enhanced signaling. Indeed, Salomon et al. (1997) showed that 

overexpression of plakoglobin in HT1080 fibrosarcoma cells resulted in the 
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replacement of β-catenin by plakoglobin in the cadherin-catenin 

complexes and subsequent translocation of the excess cytoplasmic β-

catenin into the nucleus. This was also supported by the overexpression of 

plakoglobin in NIH3T3 cells, which resulted in the nuclear accumulation of 

β-catenin (Simcha et al., 1998). Furthermore, overexpression of the Wnt 

co-activator LEF-1 in MDCK cells resulted in its preferential interaction 

with β-catenin (instead of plakoglobin) and the subsequent localization of 

the β-catenin-LEF-1 complexes to the nucleus, suggesting that when both 

plakoglobin and β-catenin were present within the cell, β-catenin-LEF-1 

complexes were more readily formed and transcriptionally active (Simcha 

et al., 1998). Additional studies examining the ability of plakoglobin and β-

catenin to signal via interactions with the TCF/LEF family of transcription 

factors showed that although plakoglobin interacted with LEF-1, this 

complex was inefficient in binding to DNA, whereas β-catenin-LEF-1 

complexes were readily associated with DNA. Furthermore, β-catenin was 

a much stronger activator of TCF/LEF target genes than plakoglobin and 

overexpression of plakoglobin resulted in increased β-catenin-LEF-1 

complex formation and its activation (Zhurinsky et al., 2000b; Williams et 

al., 2000). Consistent with these observation, work from our laboratory has 

shown that while the expression of low/physiological levels of plakoglobin 

in plakoglobin deficient SCC9 cells induced a mesenchymal to epidermoid 

change in phenotype, its overexpression led to a more transformed 

phenotype concurrent with upregulation of the pro-survival protein Bcl-2, 
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foci formation and decreased apoptosis (Hakimelahi et al., 2000). Using 

cDNAs encoding plakoglobin fused to nuclear localization (NLS) or nuclear 

export (NES) signals, we subsequently showed that Bcl-2 levels were 

upregulated in plakoglobin overexpressing-SCC9 cells regardless of 

plakoglobin localization. Furthermore, in these cells, β-catenin-N-cadherin 

interactions were decreased, and β-catenin accumulated in the nucleus, 

interacted with TCF and became transcriptionally active, confirming that 

the overexpressed plakoglobin acted indirectly by enhancing the signaling 

capability of β-catenin (Li et al., 2007a).  

Finally, recent studies in leukemia cells have shown that plakoglobin 

was overexpressed in both acute and chronic myeloid leukemias (AML 

and CML, respectively) and that this overexpression resulted in the 

increased stability and nuclear localization of β-catenin. In AML, TCF-

dependent reporter activity was increased in the presence of plakoglobin 

and in CML, knock down of plakoglobin resulted in decreased β-catenin 

nuclear localization, suggesting that plakoglobin promoted tumorigenesis 

in leukemia by increasing β-catenin signaling activity (Morgan et al., 2012; 

Niu et al., 2012).  

The above studies support the notion that the oncogenic activity of 

plakoglobin is indirect and mediated by β-catenin. Therefore, it is likely that 

in the studies reported by Kolligs et al. (2000) and Pan et al. (2007), the 

oncogenic potential of plakoglobin resulted from increased β-catenin 

signaling. In the Kolligs’s study where plakoglobin was overexpressed in 
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RK3E cells (which express endogenous β-catenin and plakoglobin; 

Bommer et al., 2005), it was not determined if plakoglobin could activate c-

Myc expression in the absence of β-catenin or whether either of these 

catenins was detected in the nucleus in association with the c-Myc 

promoter. In Pan’s study in which HCT116 cells showed increased 

genomic instability and migration and invasion upon plakoglobin 

expression, the endogenous β-catenin was a mutant protein that was 

unable to be degraded (Morin et al., 1997). Furthermore when these 

HCT116 cells were induced to overexpress plakoglobin they showed 

increased expression of the oncogenes securin and c-Myc and decreased 

expression of E-cadherin, all of which are well-documented β-catenin 

target genes (He et al., 1998; Zhou et al., 2005; ten Berge et al., 2008). 

Taken together, the evidence suggests that although plakoglobin 

expression may lead to a transformed phenotype, it is highly likely that this 

outcome is due to the increased levels of signaling competent β-catenin 

rather than plakoglobin’s oncogenic activity (Figure 1-5A). 

1.9. Plakoglobin tumor suppressor activity 

The first demonstration of the tumor suppressor activity of plakoglobin 

was when Simcha et al. (1996) found that plakoglobin expression in SV40-

transformed NIH3T3 cells decreased the ability of these cells to form 

tumors in syngeneic mice. This growth suppressive effect of plakoglobin 

was augmented by co-transfection with N-cadherin. The authors also 

expressed plakoglobin in the tumorigenic renal carcinoma cell line KTCTL 
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60, which lacks endogenous expression of E-cadherin and desmosomal 

cadherins, α-catenin, β-catenin, plakoglobin and desmoplakin. Plakoglobin 

expression in KTCTL 60 cells also inhibited the tumorigenicity of these 

cells in syngeneic mice. Notably, the majority of the plakoglobin in these 

cells was Triton X-100 soluble, suggesting that it was not junction 

associated. This observation was clearly significant because it 

demonstrated that plakoglobin could suppress tumorigenesis independent 

of its role in cell-cell adhesion. 

We previously showed that plakoglobin expression in plakoglobin-null 

SCC9 cells resulted in a mesenchymal to epidermoid phenotypic 

transition. This phenotypic transition of plakoglobin-expressing SCC9 cells 

was concurrent with the downregulation of β-catenin, stabilization of N-

cadherin, formation of desmosomes and decreased growth, migratory and 

invasive properties of these cells (Parker et al., 1998, Aktary and Pasdar 

2013). These results suggested that plakoglobin may act as a tumor and 

potentially a metastasis suppressor protein. 

The ability of plakoglobin to inhibit cell growth and proliferation was also 

observed by tissue specific expression of plakoglobin in epidermal basal 

cells and hair follicles of transgenic mice (Charpentier et al., 2000). In 

these animals, plakoglobin expression reduced the proliferative potential 

of the epidermal cells and the growth phase of the hair follicles and 

furthermore, hairs were shorter by roughly 30%.  
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Further evidence suggesting a growth suppressive activity for 

plakoglobin was provided in lung cancer, when it was shown that while β-

catenin was uniformly expressed in various Non-small cell lung cancer 

(NSCLC) cell lines and lung primary tumors, plakoglobin expression was 

very low or completely absent (Winn et al., 2002). The authors showed 

that exogenous expression of plakoglobin in the low-plakoglobin 

expressing NSCLC cells resulted in decreased β-catenin-TCF signaling, 

which was concurrent with decreased cell and anchorage-independent 

growth. This result also supported the idea that plakoglobin can act as a 

tumor suppressor by inhibiting the oncogenic activity of β-catenin.   

Interestingly, when the authors treated these NSCLC cells with the DNA 

methylation inhibitor 5-aza-2’-deoxycytidine (AZA) or the histone 

deacetylase inhibitor trichostatin A (TSA), plakoglobin levels were 

increased. Previous analysis of the plakoglobin promoter had described 

CpG islands within the promoter (Potter et al., 2001), and while it had 

been observed that inhibition of DNA methylation could result in increased 

plakoglobin protein levels in at least one thyroid carcinoma cell line 

(Husmark et al., 1999), this was the first indication that both DNA 

methylation and histone deacetylation played important roles in regulating 

plakoglobin expression.  

The occurrence of methylated CpG islands within the plakoglobin 

promoter as well as histone deacetylation has not been limited to NSCLC 

cell lines. Various groups have shown that the plakoglobin promoter is 
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methylated in prostate, bladder, trophoblastic and mammary carcinomas 

(Shiina et al., 2005; Canes et al., 2005; Rahnama et al., 2006; Shafiei et 

al., 2008), which is concurrent with a transformed phenotype. Canes et al. 

(2005) have shown that treatment of bladder carcinoma cells with TSA 

resulted in increased plakoglobin expression and a decreased ability of 

these cells to form tumors in mice, once again suggesting a growth 

inhibitory activity of plakoglobin. Similarly, when mammary carcinoma cell 

lines were treated with AZA, plakoglobin levels were increased while soft 

agar colony formation and overall cell growth were decreased (Shafiei et 

al., 2008).  

Consistent with its growth suppressor activity, several lines of evidence 

suggest that plakoglobin plays a role in regulating apoptosis. In their work 

describing the effects of plakoglobin on epithelial proliferation and hair 

growth in transgenic mice, Charpentier et al. (2000) also showed that 

plakoglobin expression resulted in premature apoptosis since the inner 

root sheath of the plakoglobin-expressing transgenic follicles underwent 

apoptosis two days earlier than in normal hair follicles. In agreement with 

these findings, we have previously shown that SCC9 cells expressing 

physiological levels of plakoglobin were more prone to undergo 

staurosporine-induced apoptosis relative to parental SCC9 cells 

(Hakimelahi et al., 2000). We have also observed that SCC9 cells 

expressing plakoglobin exclusively in the nucleus (SCC9-PG-NLS) 

showed decreased Bcl-2 levels compared to cells with overexpressed 
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wild-type plakoglobin (Li et al., 2007a), which suggests that plakoglobin 

may play a more direct role in regulating the expression of apoptotic 

genes. More recently, it has been shown that mouse keratinocytes that 

lack endogenous plakoglobin expression were protected from etoposide-

induced apoptosis, whereas plakoglobin-expressing keratinocytes readily 

underwent apoptosis upon etoposide treatment (Dusek et al., 2007). In 

this study, the authors demonstrated that plakoglobin-null keratinocytes 

were unable to release cytochrome c from the mitochondria and activate 

caspase 3, suggesting that plakoglobin may play a role in regulating the 

apoptotic cascade. Furthermore, the mRNA levels of the anti-apoptotic 

protein Bcl-XL were higher in the plakoglobin-null keratinocytes, which 

could potentially have prevented the translocation of cytochrome c from 

the mitochondria. Finally, the expression of plakoglobin in the null 

keratinocytes resulted in decreased Bcl-XL levels, caspase 3 activation 

and apoptosis induction following etoposide treatment. Taken together, 

these studies have demonstrated that plakoglobin does have some role in 

apoptosis signaling and potentially may exert part of its tumor suppressor 

activity through the modulation of apoptosis. 

1.10. Plakoglobin metastasis suppressor activity  

As the tumor suppressor activity of plakoglobin began to be revealed, it 

soon became evident that in addition to inhibiting the growth properties of 

carcinoma cell lines, plakoglobin also plays a role in regulating the 

invasive and migratory properties of cancer cells. The initial observation of 
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plakoglobin’s metastasis suppressor activity was documented in human 

umbilical vascular endothelial (HUVEC) cells, where plakoglobin is 

typically associated with sites of cell-cell contact (Nagashima et al., 1997). 

Plakoglobin anti-sense oligonucleotides increased HUVEC migration, 

suggesting that the loss of plakoglobin expression led to an increased 

migratory phenotype. Concurrent with increased migration, the anti-sense 

treated HUVEC cells also became more prone to forming tubular 

structures in Matrigel, suggesting that plakoglobin knock down also 

promoted angiogenesis.  

The metastasis suppressor activity of plakoglobin was next described 

using MCF-7 cells, which express membrane localized E-cadherin and 

plakoglobin, and stable cell junctions. In this study, the authors treated 

MCF-7 cells with human growth hormone (hGH) and observed a 

downregulation of plakoglobin, a cytoplasmic distribution of E-cadherin 

and an increased migratory and invasive phenotype, which was 

accompanied by an increase in matrix metalloproteinase levels. They 

demonstrated that hGH-mediated invasiveness was dependent on Src 

kinase and that chemical inhibitors of Src resulted in increased plakoglobin 

levels and in turn, decreased invasion and migration. To discern the 

specific role of plakoglobin in these processes, the authors expressed 

plakoglobin in the hGH-treated MCF-7 cells, which resulted in both the 

decreased migration and invasiveness of these cells (Mukhina et al., 

2004). Similarly, knockdown of plakoglobin in MCF-7 and T47D breast 
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cancer cells resulted in decreased cell-cell contact, increased in vitro 

invasion and in vivo tumor formation and spread (Holen et al., 2012).  

The metastasis suppressor activity of plakoglobin has also been 

described in bladder carcinomas, where the expression of plakoglobin in 

plakoglobin-null cell lines resulted not only in decreased growth and 

tumorigenicity (as assessed by colony formation in soft agar and tumor 

formation in nude mice, respectively), but also in decreased invasive and 

migratory capabilities of the transfectants (Rieger-Christ et al., 2005). 

Similarly, knock down of plakoglobin using siRNAs resulted in the 

increased tumorigenic and invasive properties of bladder carcinoma cells 

relative to their plakoglobin-expressing parental cell lines. This study 

further demonstrated that plakoglobin expression did not affect Wnt/β-

catenin signaling in these cells, which suggested that plakoglobin 

possessed tumor and metastasis suppressor activities independent of β-

catenin.  

The ability of plakoglobin to act as a metastasis suppressor 

independent of its role in cell-cell adhesion has been demonstrated using 

plakoglobin-null keratinocytes (Yin et al., 2005), which were shown to be 

less adherent and more migratory than plakoglobin expressing 

keratinocytes. However, when plakoglobin-null keratinocytes were induced 

to express plakoglobin, they became more adherent and less migratory. 

Using colloidal gold-coated coverslips, the authors were able to assess the 

migratory abilities of individual cells, and observed that individual 
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plakoglobin-null keratinocytes were more migratory than their plakoglobin-

expressing counterparts. They also showed that plakoglobin may regulate 

single keratinocyte migration by inhibition of Src signaling, which had been 

previously shown to promote migration and invasion of mammary 

carcinomas by downregulation of plakoglobin (see above; Mukhina et al., 

2004). These results suggested that plakoglobin could suppress migration 

through the modulation of cell-cell adhesion, as had been previously 

suggested. However, to determine whether plakoglobin could have an 

effect in migration independent of its role in cell-cell adhesion, plakoglobin-

null keratinocytes were transfected with cDNAs encoding mutant 

plakoglobin, missing either its N- or C-terminus (α-catenin binding and 

transactivation domain, respectively). The expression of either of these 

mutant proteins resulted in increased keratinocyte adhesiveness when 

compared to the plakoglobin-null cells, demonstrating that these domains 

were dispensable for the adhesive function of plakoglobin. Importantly, the 

authors showed that whereas individual keratinocytes expressing the N-

terminal deleted plakoglobin were not migratory, those that expressed the 

C-terminal deleted plakoglobin were migratory. This showed that 

plakoglobin could indeed suppress migration independent of its adhesive 

function (since keratinocytes expressing C-terminal deleted plakoglobin 

were as adhesive to one another as wild-type plakoglobin expressing 

keratinocytes). Subsequent work using these same keratinocytes has 

suggested that plakoglobin affected individual cell motility by regulating the 



	   31 

deposition of the extracellular matrix (ECM) protein fibronectin, actin 

cytoskeleton organization (which in turn regulates Src signaling) and 

RhoGTPases (Todorovic et al., 2010).  

More recently, the metastasis suppressor activity of plakoglobin was 

demonstrated in a study that showed that plakoglobin expression was 

repressed in triple negative breast cancer cells by the transcriptional 

repressor slug. In this study, the authors showed that slug bound to the 

plakoglobin gene (JUP) promoter and recruited the co-repressors CtBP 

and HDAC1, resulting in the silencing of gene expression. Furthermore, 

plakoglobin knock down in non-invasive MDA-MB-468 breast cancer cells 

resulted in actin reorganization, formation of membrane extensions 

(invadopodia) and increased cell migration, consistent with a migratory 

phenotype (Bailey et al., 2012). Collectively, these observations clearly 

demonstrate tumor/metastasis suppressor activity of plakoglobin 

independent of its role in cell-to-cell adhesion. 

1.11. Plakoglobin expression in human tumors 

The initial characterization of JUP, the gene encoding plakoglobin, 

mapped it to chromosome 17q21, proximal to the BRCA1 gene (Aberle et 

al., 1995). In this study, the authors also analyzed RNA isolated from 

ovarian and breast cancer tumors and showed that loss of heterozygosity 

in these tumors and low frequency mutations in the plakoglobin gene 

predisposed patients to familial breast and ovarian cancer. Since then, the 

loss of plakoglobin expression has been reported in a wide range of 
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tumors, with the majority of these reports examining plakoglobin in 

conjunction with other adhesive junctional proteins. These studies have 

demonstrated that loss of plakoglobin expression in conjunction with the 

lack of expression of other cell-cell adhesion proteins such as E-cadherin, 

α-catenin, β-catenin, desmoglein or desmoplakin resulted in increased 

tumor formation and size and was correlated with increased tumor stage, 

poor patient survival and increased metastasis in bladder, pituitary, oral, 

pharyngeal, skin, prostate and NSCLC tumors (Syrigos et al., 1998; 

Depondt et al., 1999; Morita et al., 1999; Lo Muzio et al., 1999; Tada et al., 

2000; Tziortzioti et al., 2001; Bremnes et al., 2002; Clairotte et al., 2006; 

Ueda et al., 2006). However, several studies (described below) have 

found that decreased levels of plakoglobin alone also occur in various 

tumors.  

The loss of plakoglobin expression has been observed in melanocytic 

and thyroid tumors (Sanders et al., 1999; Cerrato et al., 1998). Cerrato et 

al. (1998) found that nearly 90% of papillary and follicular tumors showed 

decreased or loss of membrane plakoglobin localization. Decreased 

expression of the plakoglobin gene was also observed in prostate tumors, 

where methylation of the plakoglobin gene was prevalent in localized 

prostate cancer relative to benign prostatic hyperplasia, suggesting that 

loss of plakoglobin expression was an early step in prostate tumorigenesis 

(Shiina et al., 2005). In oropharynx squamous cell carcinomas, decreased 

plakoglobin expression and its abnormal cytoplasmic distribution was 
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correlated with increased tumor size and poor clinical outcome 

(Papagerakis et al., 2004).  

In colon carcinomas, Lifschitz-Mercer et al. (2001) showed that β-

catenin accumulated in the nuclei of cells of primary and metastatic 

adenocarcinoma and adenoma lesions, while the levels of nuclear 

plakoglobin were decreased in these tumors, suggesting that nuclear 

plakoglobin did not promote tumorigenesis in the colon. In esophageal 

cancers, while decreased levels of E-cadherin and plakoglobin were 

associated with poor differentiation and decreased patient survival, 

reduced plakoglobin levels alone correlated with lymph node metastasis 

(Lin et al., 2004). The finding that reduced plakoglobin levels alone 

correlated with increased metastasis was also observed in renal 

carcinomas in which patients with tumors expressing plakoglobin showed 

significantly higher survival rates than those that did not (Buchner et al., 

1998). Aberrant or decreased plakoglobin levels have also been reported 

in Wilms’ tumors and soft tissue sarcomas, where the decrease in 

plakoglobin levels were associated with increased risk of pulmonary 

metastasis (Basta-Jovanovic et al., 2008; Kanazawa et al., 2008). In 

endometrial tumors, the aberrant expression of plakoglobin was correlated 

with myometrial invasion (Kim et al., 2002), whereas medulloblastoma 

tumors expressing plakoglobin were non-metastatic, with no evidence of 

subarachnoid or hematogenous metastasis (Misaki et al., 2005). Finally, 

reduced plakoglobin expression was also correlated with increased lymph 
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node metastasis in oral squamous cell and bladder tumors (Baumgart et 

al., 2007; Narkio-Makela et al., 2009). Collectively, these observations 

confirm the in vitro studies described earlier and suggest that lack or 

decreased expression of plakoglobin due to genetic or epigenetic causes 

in tumors of different origins is associated with poor clinical outcome and 

increased tumor formation and metastasis. 

1.12. Plakoglobin-mediated regulation of gene expression 

When discussing roles for plakoglobin during tumorigenesis and 

metastasis, it is important to consider that while plakoglobin may function 

as both a regulator of cell-cell adhesion and an intracellular signaling 

molecule, it may also affect these processes through the regulation of 

gene expression. Evidence supporting plakoglobin-mediated regulation of 

gene expression has started to emerge. Work from our laboratory and 

several other groups has suggested that plakoglobin interacts with 

transcription factors and regulates the expression of genes involved in 

cell-cycle control, apoptosis, cell proliferation and invasion (Figure 1-5C). 

Shtutman et al. (2002) showed that the exogenous expression of 

plakoglobin in renal carcinoma cells lacking both β-catenin and 

plakoglobin resulted in the increased expression of the tumor suppressor 

gene PML, a nuclear protein involved in the regulation of p53 activity. 

Importantly, the increased PML levels due to plakoglobin expression were 

independent of β catenin and TCF, since β-catenin was not detected in the 

plakoglobin-expressing cells and deletion of TCF/LEF sites in the PML 
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promoter did not affect the ability of plakoglobin to increase PML gene 

expression. Together, these observations suggested that plakoglobin may 

regulate gene expression independent of TCF/LEF. 

Williamson et al. (2006) have shown that plakoglobin acts as a 

repressor of the c-Myc (MYC) gene. Using mouse keratinocytes and 

reporter assays, the authors of this study showed that plakoglobin 

suppressed MYC expression in a LEF-1 dependent manner, suggesting 

that when plakoglobin interacted with LEF-1, this complex was unable to 

promote gene expression, confirming previous results demonstrating the 

inefficiency of plakoglobin-TCF/LEF complexes in binding DNA (Simcha et 

al., 1998; Zhurinsky et al., 2000b; Williams et al., 2000; Miravet et al., 

2002). This study further showed that the plakoglobin-mediated 

suppression of MYC was similar in both wild-type and β-catenin-null 

keratinocytes, demonstrating that plakoglobin could regulate gene 

expression independent of β-catenin. Finally, using chromatin 

immunoprecipitation with plakoglobin antibodies, the authors 

demonstrated that plakoglobin and LEF-1 associated with the MYC 

promoter in keratinocytes undergoing growth arrest, which implicated the 

downregulation of c-Myc gene expression as a possible reason for the 

suppression of cell growth by plakoglobin. 

As described earlier, Todorovic et al. (2010) have shown that 

plakoglobin can regulate cell motility by regulating Fibronectin and Rho-

dependent Src signaling. This study also demonstrated that plakoglobin 
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expression resulted in increased levels of Fibronectin mRNA without 

increasing expression from the Fibronectin promoter. Using Actinomycin D 

to inhibit transcription, the authors were able to demonstrate that 

plakoglobin expression led to the increased stability of Fibronectin mRNA, 

suggesting that in addition to its role in regulating gene expression at the 

level of transcription, plakoglobin may also regulate gene expression post-

transcriptionally. However, how plakoglobin does so remains unclear.  

Finally, a recent report demonstrated that plakoglobin regulates the 

expression of the desmosomal cadherin desmocollin 2 in keratinocytes 

through interactions with LEF-1 (Tokonzaba et al., 2013). The plakoglobin-

mediated activation of the desmocollin-2 gene (DSC2) promoter was 

dependent on a functional LEF-1 binding site. Overall, these studies 

suggest that plakoglobin regulates gene expression at the transcriptional, 

and potentially at post-transcriptional levels. 

1.13. Preliminary work and hypotheses  

The focus of our lab is characterizing, at the molecular level, the 

mechanisms by which plakoglobin suppresses tumorigenesis and 

metastasis. We have developed two experimental model systems using 

squamous and breast carcinoma cell lines with no or very low plakoglobin 

expression and various degrees of transformation/invasiveness to 

specifically assess the growth/metastasis inhibitory activities of 

plakoglobin. Using a combination of molecular and cell biological 

approaches, including proteomics and transcriptome analysis, we 
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compared the protein and mRNA profiles of plakoglobin-deficient and 

plakoglobin-expressing cell lines and their in vitro migration and 

invasiveness. These analyses led to the identification of several growth 

regulatory genes that were differentially expressed in plakoglobin-

expressing transfectants compared to their plakoglobin-deficient parental 

cells.  

Comparison of the proteomic profiles of the plakoglobin-null SCC9 cells 

and their plakoglobin-expressing transfectants (SCC9-PG-WT) allowed us 

to identify several tumor/metastasis regulating proteins, which were 

differentially expressed in SCC9-PG-WT transfectants relative to parental 

SCC9 cells. Further RNA microarray experiments were performed to 

determine whether changes in protein levels were associated with 

changes in gene expression. To determine whether the subcellular 

distribution of plakoglobin had an effect on gene expression, we also 

compared the RNA profiles of SCC9 and SCC9-PG-WT cells with those of 

SCC9 cells expressing plakoglobin exclusively in the nucleus (SCC9-PG-

NLS) or in the cytoplasm (SCC9-PG-NES). From these experiments, we 

identified three subsets of genes that were differentially expressed based 

on plakoglobin expression and its subcellular distribution: those whose 

differential expression required exclusively cytoplasmic plakoglobin, those 

whose differential expression required nuclear plakoglobin, and those 

whose differential expression required the ability of plakoglobin to shuttle 

between the nucleus and the cytoplasm. Based on the results of these 
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experiments and analysis of the expression patterns of plakoglobin-target 

genes in relation to plakoglobin subcellular distribution, we proposed that 

plakoglobin can regulate gene expression by three concurrent 

mechanisms (Figure 1-6). 

The first of these mechanisms involves the action of plakoglobin in the 

cytoplasm, where it would sequester a protein involved in the regulation of 

gene expression. In this case, plakoglobin would prevent an inhibitor of a 

tumor suppressor gene or a promoter of an oncogenic gene from entering 

the nucleus and affecting gene expression. Plakoglobin target genes 

whose expression patterns were similar in SCC9-PG-WT and SCC9-PG-

NES cells and were opposite to SCC9-PG-NLS cells would be considered 

part of this group. 

The second mechanism involves nuclear localized plakoglobin, which 

would directly associate with a nuclear factor and regulate gene 

expression. In this case, plakoglobin would interact with a transcriptional 

activator and promote gene expression, or conversely, it would interact 

with a transcriptional repressor and silence gene expression. Plakoglobin 

target genes whose expression patterns were similar in SCC9-PG-WT and 

SCC9-PG-NLS cells and were opposite to SCC9-PG-NES cells would be 

considered part of this group. 

The vast majority of plakoglobin target genes, however, belonged to the 

third group of genes: those whose differential expression depended on the 

ability of plakoglobin to shuttle between the nucleus and the cytoplasm. In  
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this case, plakoglobin would interact with some cytoplasmic cofactor, 

translocate into the nucleus, and regulate gene expression. Plakoglobin 

target genes whose expression patterns were similar in SCC9-PG-NES 

and SCC9-PG-NLS cells and were opposite to SCC9-PG-WT cells would 

be considered part of this group. 

Based on these initial results, we hypothesized that plakoglobin 

regulates tumorigenesis and metastasis by interacting with and 

altering the levels, localization and/or function of various 

growth/metastasis regulating proteins or by interacting with 

transcription factors that regulate the expression of genes involved 

in tumorigenesis and metastasis. 
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CHAPTER TWO: MATERIALS AND METHODS 
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2.1. Cell culture and conditions 

All tissue culture reagents were purchased from Invitrogen (Burlington, 

ON, Canada) and all cell lines were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA). Growth media and supplement 

specifications for culturing of each cell line are presented in Table 2-1.  

2.2. Plakoglobin shRNA transfection 

Scrambled shRNA (TR30013) and human plakoglobin shRNA 

(combination of GI348173-6) plasmids were obtained from OriGene 

(Rockville, MD, USA) and used to transfect MCF-7 cells according to the 

manufacturer’s protocol. Puromycin-resistant stable cell lines expressing 

the scrambled or plakoglobin shRNAs (shPG) were isolated and the 

decreased expression of plakoglobin was verified by western blot. Single-

cell isolated clones were obtained by limiting dilution. 

2.3. Generation of plakoglobin expressing MDA-231 cells 

The construct containing the full-length PG cDNA (pBK-CMV-PG) has 

been described (Parker et al., 1998). MDA-231 cells were transfected with 

4 mg of either pBK-CMV or pBK-CMV-PG using LipofectAMINE reagent 

(Life Technologies, Inc., CA, USA; Lam et al., 2012) according to the 

manufacturer’s protocol. G418-resistant colonies were selected and 

screened for plakoglobin expression using immunofluorescence and 

immunoblot assays. Positive colonies expressing plakoglobin were 

subcloned by limiting dilution to obtain single-cell isolated clones. 
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2.4. p53 knock down 

p53 siRNA (sc-29435) was obtained from Santa Cruz Biotechnology 

(Dallas, Texas, USA) and used to transfect SCC9-PG cells. Transfection 

experiments were performed using Lipofectamine 2000 reagent following 

the manufacturer’s instructions. Knock down was assayed by western blot 

48 hours following transfection. For luciferase assays, both p53 siRNA and 

luciferase reporter constructs were simultaneously transfected into SCC9-

PG cells and luciferase activity was measured 48 hours post transfection, 

as described. 

2.5. Cloning of SCC9 mutant p53 and transfection into H1299 cells 

The mutant p53 from SCC9 cells was cloned from cDNA by PCR and 

ligated into the pBK-CMV vector at KpnI and SacI sites, respectively. 

Primers used for the cloning reaction were CAGTggtaccATGGAGGAG-

CCGCAGTCAGATCCT  (forward, starting at p53 ORF codon 1) and 

AGCTgagctcTCAGTCTGAGTCAGGCCCTTCTGT (reverse, ending at p53 

ORF codon 394). Sequence accuracy was confirmed by DNA sequencing. 

The p53 constructs were then transfected into H1299 cells using calcium 

phosphate as previously described (Wu et al., 2011). Fourty-eight hours 

after transfection, cells were processed for subcellular fractionation, 

western blot, immunofluorescence and chromatin immunoprecipitation. 

2.6. Construction of SATB1-luciferase reporter constructs 

The SATB1 gene promoter was cloned from SCC9 genomic DNA by 

PCR and ligated into the pBV-Luc vector at KpnI and SacI sites, 
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respectively. The primer sequences used for the cloning reaction were 

CAGTggtaccGCCA-GGGCGACTCTAGAG (forward, starting at base pair 

14 in the SATB1 gene) and 

AGCTgagctcCACTTCAAAACTTGACAGCACATA (reverse, ending at 

base pair 1222 in the SATB1 gene). The plasmid was then used for 

transfection (see below; Chapter Five). 

2.7. RNA isolation and RT-PCR 

RNA was isolated from 150 mm confluent cell cultures using the 

RNeasy Plus Mini Kit (QIAGEN, Valencia, CA) according to the 

manufacturer’s protocol. Following isolation, RNA was pre-treated with 

RNase-free DNaseI and reverse transcribed using the RevertAid H Minus 

First Strand cDNA Synthesis Kit (Fermentas, Burlington, ON, Canada). 

Polymerase chain reaction (PCR) was performed (Fermentas, Burlington, 

ON, Canada) on the amplified cDNA. Primer sequences used for are 

outlined in Table 2-2. RT-PCR products were resolved on 2% agarose 

gels and visualized by ethidium bromide staining. qRT-PCR was 

performed using PerfeCta SYBR Green FastMix reagent (Quanta 

Biosciences) as per the manufacturer’s instructions. 

2.8. Microarray expression analysis 

Total RNA isolated from SCC9 and SCC9-PG cells was quantified using 

a NanoDrop 1000 Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA) and its integrity evaluated using a Bioanalyzer 2100 

(Agilent Technologies, Santa Clara, CA, USA) according to the 
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manufacturer’s protocols. RNA samples with RNA Integrity Numbers (RIN) 

greater than 7.0 were used in this study. The RNA was subjected to linear 

amplification and Cy3 labeling and hybridization to Agilent Whole Human 

Genome Arrays using Agilent kits (One Color Low RNA Input Linear 

Amplification Kit Plus, One Color RNA Spike-In Kit and Gene Expression 

Hybridization Kit) according to the manufacturer’s recommended 

protocols. The arrays were scanned using an Agilent Scanner, the data 

extracted and the quality evaluated using Feature Extraction Software 9.5 

(Agilent). The data was normalized and analyzed using GeneSpring GX 

7.3.1 (Agilent). 

2.9. Antibodies 

A list of antibodies and their respective dilutions in specific assays is 

presented in Table 2-3. 

2.10. Preparation of total cell extracts and western blotting 

Confluent 150 mm culture dishes were washed twice with cold PBS, 

solubilized in hot SDS sample buffer (10 mM Tris-HCl pH 6.8, 2% (w/v) 

SDS, 50 mM dithiothreitol (DTT), 2 mM EDTA, 0.5 mM PMSF) and boiled 

for 10 minutes. Protein determination was done using Bradford (Pierce) 

assays according to the manufacturer’s instructions. Twenty-five 

micrograms of total cellular protein were resolved by SDS-PAGE, 

transferred to nitrocellulose membranes, processed for immunoblotting 

and developed by standard ECL (Perkin Elmer, Woodbridge, Canada) 

procedures. 
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2.11. Immunoprecipitation 

Immunoprecipitation experiments were performed using one of two 

different protocols.  

For characterization of plakoglobin-Nm23 interactions (Chapter Three), 

confluent cultures (100 mm) were washed twice (on ice) with cold PBS 

containing 1mM NaF, Na3VO4 and CaCl2 and extracted for 20 minutes 

with a modified cytoskeleton extraction buffer (Pasdar and Nelson, 1988a; 

10 mM PIPES pH 6.8, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 0.5% 

NP-40, 1 mM NaF, 1 mM Na3VO4 and protease inhibitor cocktail). Cells 

were removed from the plates and centrifuged at 20,000 rpm for 10 

minutes. The resulting supernatant (soluble fraction) was separated from 

the pellet (insoluble), which was solubilized in SDS immunoprecipitation 

buffer (1% SDS, 10 mM Tris-HCl pH 7.5, 2 mM EDTA, 0.5 mM DTT and 

PMSF) and boiled for 15 minutes. The SDS was diluted to 0.1% with 

immunoprecipitation buffer. The soluble and insoluble fractions were split 

equally and processed for immunoprecipitation. 

To examine the interactions between plakoglobin and p53 (Chapter 

Four), confluent cultures (150 mm) were washed twice (on ice) with cold 

PBS containing 1mM NaF, Na3VO4 and CaCl2 and extracted for 15 

minutes with a modified RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 

0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 

mM NaF, 1 mM Na3VO4 and protease inhibitor cocktail) at 4°C. Cells were 
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removed from the plates and centrifuged at 20,000 rpm for 10 minutes. 

The resulting supernatant was divided into equal aliquots and processed 

for immunoprecipitation (see below). 

Antibodies and 40 µl protein A Sepharose CL-4B beads (Pierce, 

Nepean, Canada) were then added to each respective extract, and 

incubated overnight on a rocker-rotator at 4°C. To ensure complete 

depletion, samples were centrifuged briefly and the resulting supernatants 

were processed for another round of immunoprecipitation for 3 hours. 

Beads from the two immunoprecipitations were combined, washed three 

times with RIPA buffer and immune complexes separated by solubilization 

in SDS sample buffer. Equivalent amounts of total cellular proteins 

immunoprecipitated from each cell line were loaded onto SDS 

polyacrylamide gels and processed for western blot as described above. 

For immunoprecipitation of subcellular fractions (Chapter Three), cells 

were separated into nuclear and cytoplasmic fractions as previously 

described (Kim et al., 2009). Briefly, cells were lysed with cytoplasmic 

extraction buffer (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 

1.5 mM MgCl2, 1 mM DTT, 0.2% Nonidet P-40, 1 mM NaF, 1 mM Na3VO4 

and protease inhibitor cocktail) while rotating on a rocker-rotator at 4°C for 

15 minutes. The cells were then centrifuged at 14,000 rpm at 4°C for 

5 minutes and the resulting supernatant (cytoplasmic fraction) was 

collected. The pellet was resuspended in nuclear extraction buffer (20 mM 

HEPES pH 7.9, 420 mM NaCl, 0.1 mM EDTA, 1.5 mM MgCl2, 1 mM DTT, 
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0.2% Triton X-100, 1 mM NaF, 1 mM Na3VO4 and protease inhibitor 

cocktail) and incubated at room temperature for 10 minutes, after which it 

was centrifuged at 14,000 rpm at 4°C for 5 minutes. The resultant 

supernatant (nuclear fraction) was removed from the pellet (cytoskeleton) 

and the purity of each fraction was assessed by immunoblotting with 

antibodies to tubulin and lamin, respectively, prior to immunoprecipitation. 

Equal volumes of cytoplasmic and nuclear fractions corresponding to 

equal cell numbers were processed for immunoprecipitation and western 

blot. 

2.12. Immunofluorescence analysis 

For colocalization between Nm23 and cadherins/catenins (Chapter 

Three), cells were plated on glass coverslips and grown to confluence, 

after which they were rinsed twice with cold PBS, extracted with 

cytoskeleton extraction (CSK; Pasdar and Nelson, 1988b) buffer (50 mM 

NaCl, 300 mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgCl2, 0.5% Triton 

X-100, 1.2 mM PMSF, and 1 µg/ml DNase and RNase) for 10 minutes and 

fixed on ice with 1.75% formaldehyde for 15 minutes. Alternatively, cells 

were fixed with formaldehyde first and then permeabilized with CSK buffer.  

For characterization of p53 subcellular distribution in H1299-p53 

transfected cells (Chapter Four), H1299 cells were plated on glass 

coverslips and transfected with the SCC9 mutant p53 as described above. 

Fourty-eight hours following transfection, the cells were rinsed twice with 
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cold PBS (on ice), and fixed/extracted with ice-cold methanol for 5 

minutes.  

Coverslips were then blocked for 1 hour with 4.0% goat serum and 50 

mM NH4Cl4 in PBS containing 0.2% BSA (PBS-BSA) and processed for 

indirect immunofluorescence. One hour primary antibody incubation at 

room temperature was followed by 20 minutes incubation with 

fluorochrome-conjugated species-specific secondary antibodies. All 

antibodies were diluted in PBS-BSA. Nuclei were counterstained for 5 min 

with DAPI (1:2000 in PBS). Coverslips were mounted in elvanol containing 

0.2% (w/v) paraphenylene diamine (PPD) and viewed using a 63X 

objective of an LSM510 META (Zeiss) laser scanning confocal 

microscope. 

2.13. Chromatin immunoprecipitation  

Chromatin immunoprecipitation (ChIP) experiments were performed as 

previously described (Peng and Jahroudi, 2003). Confluent 150 mm 

cultures were trypsinized and 2x107 cells pelleted by centrifugation at 

3,500 rpm for 10 minutes. The cell pellets were then resuspended in 

growth media to which formaldehyde (Fisher) was added to a final 

concentration of 1% and incubated at room temperature for 10 minutes. 

To stop fixation, glycine was added to a final concentration of 125 mM. 

The cell suspension was then centrifuged at 3,500 rpm at 4°C for 10 

minutes. The resulting cell pellets were then washed twice with PBS 

containing 1 µg/ml aprotinin and leupeptin and 1 mM PMSF, after which 
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they were resuspended in cell lysis buffer (10 mM HEPES pH 7.9, 10 mM 

KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT and 0.49 mM PMSF) and 

incubated on ice for 15 minutes. NP-40 was then added (final 

concentration of 0.6%) after which the samples were vortexed for 10 

seconds at high speed and subsequently centrifuged at 13,000 rpm for 30 

seconds. The resulting pellets were then resuspended in sonication buffer 

(1% SDS, 10 mM EDTA, 50 mM Tris pH 8, 0.49 mM DTT and 0.02 µg/ml 

aprotinin and leupeptin) and left on ice for 10 minutes. The samples were 

then sonicated (Branson Sonifier 450) for 1 minute at 20% output for a 

total of four times.  

The sonicated chromatin samples were then diluted ten-fold in 

chromatin dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 

16.7 mM Tris pH 8, 167 mM NaCl) after which 50 µl was removed (Input). 

Fourty µl Protein A/G Agarose beads (Calbiochem) were added and the 

samples were pre-cleaned on a rocker-rotator at 4°C for 2 hours. 

Following incubation, the samples were centrifuged briefly and the 

resulting supernatant (pre-cleaned chromatin) was split into equal aliquots 

and processed for immunoprecipitation. Each aliquot was incubated with 5 

µg antibodies and 40 µl pre-cleaned (by overnight incubation with 4 µg 

Salmon Sperm DNA and BSA) Protein A/G Agarose beads overnight at 

4°C on a rocker-rotator.  

Following immunoprecipitation, the samples were centrifuged for 10 

minutes at 2,000 rpm at 4°C, after which the resulting supernatants were 
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removed. The beads were then subjected to six 5 minute washes in each 

of the four following wash buffers: W1 (1% SDS, 1% Triton X-100, 2 mM 

Tris pH 8, 167 mM NaCl), W2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 

20 mM Tris pH 8, 500 mM NaCl), W3 (250 mM LiCl, 1% NP-40, 1% 

sodium deoxycholate, 10 mM Tris pH 8, 1 mM EDTA) and W4 (10 mM Tris 

pH 8 and 1 mM EDTA). Following the washes, the protein-DNA complexes 

were eluted off the beads by incubation in elution buffer (1% SDS and 50 

mM NaHCO3) for 15 minutes at room temperature on a rocker-rotator. 

Following elution, 1 µg RNase and NaCl (final concentration 300 mM) 

were added to the samples, which were then incubated at 65°C for 4 

hours. Next, Tris pH 6.8, EDTA (final concentrations of 40 mM and 10 mM, 

respectively) and 4 µg proteinase K were added to the samples, which 

were incubated at 45°C for 2 hours. The samples were then purified using 

a PCR Purification Kit (QIAGEN, Valencia, CA) and processed for PCR.  

2.14. Nuclear Extraction  

Confluent 150 mm cell cultures were trypsinized and centrifuged at 

3,500 rpm for 10 minutes. Following centrifugation, the cell pellets were 

washed with PBS containing 1 mM NaF, Na3VO4 and CaCl2, resuspended 

in cytoplasmic extraction buffer (100 mM HEPES pH 7.9, 1 M KCl, 10 mM 

EDTA, 10 mM EGTA, 1 mM DTT, 0.5 mM PMSF) and incubated on ice for 

15 minutes. Next, NP-40 was added to a final concentration of 0.6% and 

the samples were vortexed on high speed for 10 seconds and centrifuged 

at 20,000 rpm for 30 seconds. Following centrifugation, the supernatant 
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was removed and the pellet was resuspended in nuclear extraction buffer 

(100 mM HEPES pH 7.9, 4 M NaCl, 10 mM EDTA, 10 mM EGTA, 1 mM 

DTT, 1 mM PMSF) and incubated at 4°C on a rocker-rotator for 25 

minutes. Following this incubation, the samples were centrifuged for 5 

minutes at 20,000 rpm (4°C) and the supernatant (nuclear extract) was 

stored. 

2.15. Electrophoretic mobility shift assay  

Electrophoretic mobility shift assay (EMSA) experiments were 

performed as previously described (Schreiber et al., 1989; Wang et al., 

2004). Briefly, a double-stranded nucleotide corresponding to the p53 

consensus sequence in the promoter of the 14-3-3σ (SFN) gene 

(Hermeking et al., 1997; Cai et al., 2009) was radioactively labeled with 

use of 32P-ATP (adenosine 5'-triphosphate; Perkin Elmer). Nuclear 

extracts (5 mg) were incubated with oligonucleotide probes (15,000 cpm) 

on ice for 10 minutes in EMSA reaction buffer (50 mM HEPES pH 7.9, 250 

mM KCl, 25 mM MgCl2, 5 mM EDTA, 5% glycerol and 1 mg poly (dI-dC) 

(Sigma)). When antibodies were added, nuclear extracts were incubated 

with 1 µg of each antibody in the EMSA reaction buffer for 20 minutes on 

ice. The oligonucleotide probes were then added to the nuclear extract-

antibody mixtures for 10 minutes on ice. Complexes were resolved on 5% 

non-denaturing polyacrylamide gels and exposed to film overnight. 
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2.16. Luciferase reporter assay 

Confluent 35 mm cultures were transfected with 4 µg of various 

luciferase reporter plasmids. Regulation of p53 transcriptional activity was 

determined through the use of reporter constructs downstream of either 

the wild-type p53-binding sequence within the 14-3-3σ (SFN) gene or a 

consensus p53 sequence, mutants of these sequences, or control vectors 

(Chapter Four; Table 2-4; Kern et al., 1992; Hermeking et al., 1997; 

Addgene plasmids 16515, 16516, 16539, 16442 and 16443, which were a 

kind gift of Dr. Bert Vogelstein), together with 1 µg of a plasmid encoding 

β-galactosidase. To assess activity from the NME1 promoter, cells were 

transfected with a reporter plasmid downstream of the NME1 promoter 

(Qu et al., 2008; a kind gift of Dr. Shimian Qu; Chapter Five). SATB1 

promoter activity was analyzed by using a reporter construct downstream 

of the full SATB1 promoter (Lei et al., 2010; Chapter Five). Fourty-eight 

hours post-transfection, luciferase and β-galactosidase activities were 

measured. Each experiment was repeated at least 3 times and the mean 

with standard deviation was calculated. Statistical analysis was performed 

using a Student’s t-test. 

2.17. Cell growth and proliferation assays 

To measure growth, 5x104 cells for each cell line were plated in triplicate 

in a 24-well plate. At 3, 5 and 7 days after plating, cultures were 

trypsinized and the cells were counted. Cell proliferation was assessed by 

performing BrdU incorporation experiments. For each cell line, 5x104 cells 
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were plated on glass coverslips and allowed to proliferate for 6 days at 

which times they were incubated with BrdU (100 µM; Sigma B-5002) for 

24 hours. To detect BrdU-labeled cells, coverslips were first prefixed by 

the addition of 3.7% formaldehyde directly to the culture media at a 1:1 

ratio (volume).  Coverslips were then rinsed, fixed with 3.7% formaldehyde 

for 15 minutes and permeabilized with 0.5% Triton X-100 for 5 minutes. 

Coverslips were then washed with PBS and incubated in 2N HCl for 1 

hour at room temperature followed by two 5-minute washes with 100 mM 

sodium borate (pH 8.5). Subsequently, coverslips were processed for 

immunofluorescence analysis using a mouse monoclonal anti-BrdU 

antibody (Table 2-3) as described above. 

2.18. Transwell cell migration and invasion assays 

For cell migration assays, 2x105 cells were resuspended in 0.5 ml 

serum-free media containing 0.1% BSA and plated in the upper chamber 

of transwells (3 µm pore, 6.5 µm diameter; BD Biosciences, MD, USA). 

Normal media containing 10% FBS (0.75 ml) was added to the lower 

chamber. Cultures were incubated at 37°C for 12 or 48 hours to allow cell 

migration. The inserts were then removed from the chambers, gently 

submerged in PBS to remove the unattached cells and then fixed and 

stained using Diff Quick (IHC World, MD, USA). Following staining, 

membranes were cut, mounted on slides using permount (Fisher, 

Canada), viewed under an inverted microscope using a 20X objective and 

photographed. The migrated cells on the underside of the membrane were 
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counted in five random fields for each transwell filter from the 

photographs.  

Matrigel invasion assays were performed according to the 

manufacturer’s protocol (BD Bioscience). For each cell line, 5x105 cells in 

0.6 ml serum-free media containing 0.1% BSA were plated in the top 

compartment of Matrigel-coated invasion chambers (8 µm pore 

membrane). Fibroblast conditioned media (0.75 ml) was added to the 

bottom chambers and plates were incubated overnight at 37°C in 5% CO2. 

Forty-eight hours later, the membranes were recovered, fixed, stained with 

Diff Quick, viewed under an inverted microscope using a 20X objective 

and photographed. The invaded cells were counted in five random fields 

for each membrane.  

Each assay was repeated 3 independent times. The numbers of 

migrated/invaded cells were calculated using the ImageJ Cell Counter 

program and averaged.   
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Table 2-1. Growth conditions for various cell lines used. 

 

 

  

Cell Line Origin Growth Media Supplements Selection 
A431 Vulva DMEM 10% FBS, 1% antibiotics - 

H1299 Lung MEM 10% FBS, 1% antibiotics - 
MCF-10-2A Breast DMEM/F12 5% Horse Serum, 20 ng/ml EGF, 

10 ng/ml insulin, 100 ng/ml cholera 
toxin, 500 ng/ml hydrocortisone, 50 

U/ml penicillin, 50 mg/ml 
streptomycin and 1% antibiotics 

- 

MCF-7 Breast MEM 10% FBS, 1% antibiotics - 
MCF-7-shPG Breast MEM 10% FBS, 1% antibiotics Puromycin, 

0.5 µg/ml 
MDA-231 Breast RPMI 10% FBS, 1% L-glutamine, Non-

Essential Amino Acids, Sodium 
Pyruvate, antibiotics 

- 

MDA-231-PG Breast RPMI 10% FBS, 1% L-glutamine, Non-
Essential Amino Acids, Sodium 

Pyruvate, antibiotics 

Geneticin,  
500 µg/ml 

MDCK Kidney DMEM 10% FBS, 1% antibiotics - 
PC3 Prostate F12K 10% FBS, 1% antibiotics - 

SCC9 Tongue MEM 10% FBS, 1% antibiotics - 
SCC9-PG Tongue MEM 10% FBS, 1% antibiotics Geneticin,  

200 µg/ml 
SCC9-PG-Flag-WT Tongue MEM 10% FBS, 1% antibiotics Geneticin,  

200 µg/ml 
SCC9-PG-Flag-ΔN122 Tongue MEM 10% FBS, 1% antibiotics Geneticin,  

200 µg/ml 
SW620 Colon Leibovitz’s/L15 10% FBS, 1% L-glutamine, 

antibiotics 
- 
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Table 2-2. Primer sequences and PCR conditions for reverse 
transcribed genes.  

 
 

For all primers, pre-denaturation was done at 95°C for 5 minutes. This was followed by 
35 cycles of denaturation at 95°C for 30 seconds, annealing for 45 seconds, and 
extension at 72°C for 45 seconds.  

 
  

Gene Primers Fragment 
Size (bp) 

Annealing Reference 

RT-PCR 
14-3-3σ   

 
Sense: 5'-GTGTGTCCCCAGAGCCATGG-3' 

Antisense: 5'-ACCTTCTCCCGGTACTCACG-3’ 
279 60°C 

 
Bhatia et al., 

2003 
 

NME1 Sense: 5'-CGCAGTTCAAACCTAAGCAGCAGCTGG-3' 
Antisense: 5'-AGATCCAGTTCTGAGCACAGCTCG-3’ 

483 60°C 
 

Ayabe et al., 
2004 

 
NME2 Sense: 5’-TGACCTGAAAGACCGACCAT-3’ 

Antisense: 5’-GAATGATGTTCCTGCCAACC-3’ 
193 55°C 

 
Syed et al., 

2005 
 

SATB1 Sense: 5’- TGCAAAGGTTGCAGCAACCAAAAGC-3’ 
Antisense: 5’- AACATGGATAATGTGGGGCGGCCT-3’ 

156 60°C 
 

Han et al., 
2008 

GAPDH Sense: 5’-GAAGGTGAAGGTCGGAGTC-3’ 
Antisense: 5’-GAAGATGGTGATGGGATTTC-3’ 

220 60°C 
 

Nakanishi et 
al., 2006 

 
ChIP 
14-3-3σ   Sense: 5’-CATGAAAGGCGCCGTGGAGAA-3’ 

Antisense: 5’-GCTGATGTCCATGGCCTCCTGG-3’ 
474 58.4°C 

 
Pulukuri and 
Rao, 2006 

MYC Sense: 5’-GGGATCGCGCTGAGTATAAAA-3’ 
Antisense: 5’-GAAGCCCCCTATTCGCTCC-3’ 

173 55°C - 

NME1 Sense: 5’-CAACTGTGAGCGTACCTTCAT-3’ 
Antisense: 5’-AACAAGGCGGAATCCTTTCTG-3’ 

102 53.6°C - 

SATB1 Sense:  5’-GATCATTTGAACGAGGCAACTCA-3’ 
Antisense: 5’-CCTGCATTTTTGCACCTGTACT-3’ 

157 53.6°C - 

VWF Sense: 5’-GCTTGTGGCCAAGACCTTCATCTT-3’ 
Antisense: 5’-AACAACACAGCTTCCTGATCCAGC-3’ 

200 58.4°C - 
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Table 2-3. Antibodies and their respective dilutions in specific 
assays. 

 
*A cocktail of Nm23-H1 and Nm23-H2 were used for immunoprecipitation  
** These antibodies were used for EMSA at a concentration of 1(antibody): 4(lysate) 
***Developmental Studies Hybridoma Bank, NCI, USA  

  
Species 

Assay  
Source WB IF IP ChIP 

1° Antibodies 
14-3-3σ (5D7) Mouse 1:500 - - - Santa Cruz, sc-100638 
α-catenin Mouse - 1:100 1:100  Zymed, #18-0225 
α-catenin Rabbit - - 1:100  Sigma, C-2081 
β-Actin Mouse 1:2000 - - - Sigma, A-5441 
β-catenin** Mouse 1:500 - 1:500 1:100 Sigma, C-7207 
BrdU Mouse - 1:300 - - Sigma, B-5002 
BRMS1 Mouse 1:200 - - - Santa Cruz, sc-101219 
c-Abl Rabbit 1:1000 - - - Santa Cruz, sc-131 
Claudin-1 Mouse 1:500 - - - Santa Cruz, sc-137121 
Control IgG Goat - - 1:500 1:2000 Sigma, M-5899 
E-cadherin Mouse 1:500 1:100 1:100 - Transduction Laboratories, 610182 
E-cadherin (3G8) Mouse - Neat 1:20 - Warren Gallin, U of A 
ErbB2 Rabbit 1:1000 - - - Upstate, 06-562 
Flag Mouse 1:1000 1:100 1:100 - Sigma, F-3165 
Kiss1 Rabbit 1:500 - - - Santa Cruz, sc-15400 
Lamin B1 Rabbit 1:500  - - Santa Cruz, sc-20682 
MMP3 Mouse 1:100 - - - Calbiochem, Ab-1 
N-cadherin Mouse 1:1000 1:200 1:100 - Sigma, C-1821 
N-cadherin Rabbit 1:1000 - 1:100 - (Li et al., 1998) Sigma, C-3678 
Nm23-H1* Mouse - - 1:200 - Santa Cruz, sc-465 
Nm23-H2* Goat - - 1:200 - Santa Cruz, sc-14789 
Nm23-H1/H2 Rabbit 1:500 - - - Chemicon, CBL-446 
Nm23-H1/H2/H3 Rabbit - 1:100 - - Santa Cruz, FL-152 
p53 (DO-1)** Mouse 1:500 1:100 1:300 1:80 Santa Cruz, sc-126 
p53 (FL-393) Rabbit 1:500 - 1:500 1:80 Santa Cruz, sc-6243 
Plakoglobin Mouse 1:500 1:100 - 1:100 Transduction Laboratories, 610254 
Plakoglobin** Rabbit - - 1:500 - Pasdar et al., 1995 
SATB1 Rabbit 1:1000 - - - Cell Signaling, L745 
Snail Rabbit 1:2000 - - - Abcam, ab17732 
Tubulin/E7 Mouse 1:300 - - - DSHB*** 
2° Antibodies 
Alexa Fluor 546 Goat - 1:750 - - Molecular Probes, A11029 
Alexa Fluor 488 Goat - 1:750 - - Molecular Probes, A11035 
Anti-mouse HRP Goat 1:5000 - - - Sigma, 054H-8914 
Anti-mouse HRP, 
Light Chain specific 

Goat 1:5000 - - - Jackson, 115-005-174 

Anti-rabbit HRP Goat 1:5000 - - -   Sigma, 054H-8918 
Anti-rabbit HRP, 
Light Chain specific 

Goat 1:5000 - - - Jackson, 211-002-177 
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Table 2-4. Sequences of p53-response elements used for luciferase 
reporter assays. 

 

Response 
Element 

Sequence Number 
of 

Repeats 

Reference 

14-3-3σ   
WT-p53 RE  CCTGTAGCATTAGCCCAGACATGTCCCTACTCCGTACGGA

GTAGGGACATGTCTGGGCTAATGCTACAGGGTAC 

3 Hermeking et al.,  
1997 

 
14-3-3σ   

MT-p53 RE 
CCTGTAGAATTATCCCAGAAATTTCCCTACTCCGTAC 
GGAGTAGGGAAATTTCTGGGATAATTCTACAGGGTAC 

3 Hermeking et al.,  
1997 

 
Consensus 
WT-p53 RE CCAGGCAAGTCCAGGCAGG 

13 Kern et al., 1992 

Consensus  
MT-p53 RE 

CCTTAATGGACTTTAATGG 
 

15 Kern et al., 1992 
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CHAPTER THREE: PLAKOGLOBIN INTERACTS WITH AND 
INCREASES THE LEVELS OF NM23 
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3.1. Introduction1 

3.1.1. Rationale 

The observed phenotypic transition upon plakoglobin expression in 

SCC9 cells suggested that plakoglobin may act as a tumor suppressor. 

Therefore, in order to elucidate the molecular mechanism by which 

plakoglobin may exert this function, our lab performed proteomic and 

transcription microarray experiments to identify potential genes and 

proteins that were differentially expressed in SCC9-PG cells compared to 

SCC9 cells. These experiments identified a number of growth/tumor 

promoters whose expression and protein levels were decreased and 

various growth/tumor suppressors whose expression and protein levels 

were increased in SCC9-PG cells. Among these differentially expressed 

genes and proteins, we identified the metastasis suppressors Nm23-H1 

and Nm23-H2. Therefore, we began our studies by examining the 

relationship between plakoglobin expression and the levels and 

subcellular localization of Nm23.   

3.1.2. Nm23  

Nonmetastatic protein 23 (Nm23) proteins are a family of nucleoside 

diphosphate kinases (NDPK) that are expressed from bacteria to 

mammals (Tee et al., 2006). In humans, there are ten members of the 

Nm23 family (Nm23-H1-10, respectively), with Nm23-H1 and -H2 being 

                                                
1 A version of this chapter has been published in: Aktary Z, Chapman K, Lam L, Lo A, Ji 
C, Graham K, Cook L, Li L, Mackey JR, Pasdar M (2010).  Plakoglobin interacts with and 
increases the protein levels of metastasis suppressor Nm23-H2 and regulates the 
expression of Nm23-H1. Oncogene 29: 2118-2129. 
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the best studied and characterized (Thakur et al., 2011; Marino et al., 

2012). Nm23-H1 was the first metastasis suppressor identified, where its 

decreased expression was observed in murine melanoma cells with 

increased metastatic potential (Steeg et al., 1988). Since its initial 

discovery, several studies have observed decreased levels of Nm23-H1 in 

invasive/metastatic breast, melanoma, colon and oral squamous cell 

carcinoma cell lines (MacDonald et al., 1993; Hartsough and Steeg, 1998; 

Steeg et al., 2003; Marino et al., 2012). Nm23-H2, which was 

subsequently identified as a gene with sequence homology (approximately 

90%) to Nm23-H1 (Stahl et al., 1991), also has metastasis suppressor 

activity and its decreased expression has been observed in a variety of 

invasive/metastatic carcinoma cell lines, including squamous, breast, 

ovarian and prostate (Hartsough and Steeg 2000; Ouatas et al. 2003). 

Decreased levels of Nm23 proteins have also been correlated with 

increased metastasis in various human tumors, including breast, 

melanoma, prostate, gastric, hepatocellular, lung and oral squamous 

(Muller et al., 1998; Pacifico et al., 2005; Hsu et al., 2007; Guo et al., 

2010; Dong et al., 2011; Andolfo et al., 2011). 

Nm23 proteins interact with numerous intracellular partners and have a 

wide variety of cellular functions (Marino et al., 2012). Nm23-H1 itself has 

diverse biological functions including nucleoside diphosphate kinase 

(NDPK), protein histidine kinase and 3’-5’ exonuclease activities, all of 

which may potentially contribute to its metastasis suppressor function 



 63 

(Wagner et al., 1997; Lacombe et al., 2000; Fan et al., 2003; Steeg et al., 

2008; Novak et al., 2011). In addition, both Nm23-H1 and -H2, appear to 

have DNA-binding ability (Postel et al., 1993, 2000; Ma et al., 2002; 

Postel, 2003; Cervoni et al., 2006; Thakur et al., 2009; Choudhuri et al., 

2010). However, the exact mechanisms by which these Nm23 proteins 

suppress migration, invasion and metastasis remain unclear. 

Several studies have shown that the exogenous expression of Nm23 in 

cells lacking its expression results not only in decreased migration and 

invasion, but also in decreased cell proliferation and inhibition of 

anchorage independent growth (Lee and Lee, 1999; Khan et al., 2001; 

Suzuki et al., 2004; Jung et al., 2006; McDermott et al., 2008). 

Furthermore, Nm23 proteins reduce telomerase activity (Kar et al., 2011), 

promote cell-cell adhesion (Bago et al., 2009), cell-cycle arrest and 

apoptosis (Choudhuri et al., 2010) and DNA-repair following U.V. and 

ionizing radiation (Zhang et al., 2011; Jarrett et al., 2012). These results 

suggest that Nm23 proteins may also suppress tumor formation in addition 

to metastasis. 

3.1.3. Specific aim and summary of results 

In this chapter, we investigated the effect of plakoglobin expression on 

Nm23 levels and localization. Our results show that plakoglobin 

expression led to the increased levels of Nm23-H1 mRNA and increased 

protein levels of both Nm23-H1 and -H2. We also show that upon 

plakoglobin expression, Nm23 interacted not only with plakoglobin, but 
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also with N-cadherin and α-catenin, and that these interactions occured at 

the sites of cell-cell contacts. We further confirmed these results in a 

number of non-epidermal epithelial cell lines. These results suggest that 

plakoglobin may assert part of its tumor suppressive activity through 

modulating the expression and subcellular localization of the metastasis 

suppressor Nm23, and that α-catenin acts as a bridge between 

plakoglobin and Nm23. 

3.2. Results 

3.2.1. Increased Nm23 levels and its membrane localization in SCC9-

PG cells.  

Plakoglobin expression in SCC9 cells (SCC9-PG) induced a 

mesenchymal to epidermoid phenotypic transition (Parker et al., 1998). To 

identify the underlying molecular mechanism for this phenotypic 

conversion, we examined the protein and mRNA profiles of SCC9 and 

SCC9-PG cells. Various tumor suppressors were identified as being 

increased upon plakoglobin expression, and among them were Nm23-H1 

and -H2. Figure 3-1 provides evidence to confirm the results of our 

proteomic and microarray studies. Upon plakoglobin expression, the levels 

of both Nm23-H1 and -H2 protein were increased, although the levels of 

Nm23-H2 were markedly higher than Nm23-H1 (Figure 3-1A), which was 

in agreement with our proteomics results, where Nm23-H2 levels were 

increased nearly 5-fold in SCC9-PG cells (unpublished data). To examine 

plakoglobin’s effect on Nm23 at the level of transcription, we performed  
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reverse-transcription experiments. Our data showed that while the levels 

of Nm23-H1 mRNA were increased in SCC9-PG cells, the levels of Nm23-

H2 mRNA were unaltered (Figure 3-1B). These results were in agreement 

with our microarray data, which also revealed a two-fold increase in the 

level of Nm23-H1 mRNA, while -H2 levels remained unchanged.  

3.2.2. Nm23 coprecipitates with plakoglobin and N-cadherin.  

Figure 3-1C revealed that not only were Nm23 protein levels increased 

in SCC9-PG cells, but some of it also appeared localized to the cell-cell 

contact areas. This raised the question of whether the membrane 

distribution of Nm23 was due to its associations with cell-cell junctions. To 

address this possibility, soluble and insoluble (cytoskeleton-associated) 

fractions from SCC9 and SCC9-PG cell extracts were processed for 

coimmunoprecipitation with plakoglobin or N-cadherin antibodies followed 

by immunoblotting with Nm23 antibodies. Plakoglobin antibodies 

coprecipitated only Nm23-H2 from the soluble fraction, and both Nm23-H1 

and -H2 from the insoluble fraction of SCC9-PG cells, although the 

amount of Nm23-H2 coprecipitated was notably higher than -H1 (Figure 3-

2A, IP: PG). As expected, immunoprecipitation of plakoglobin yielded 

negative results for association with Nm23 in SCC9 cells. In SCC9 cells, 

N-cadherin antibodies coprecipitated very small amounts of Nm23-H1 and 

-H2, mostly in the insoluble fraction. In SCC9-PG cells,  
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plakoglobin expression increased the amount of Nm23 coprecipitated with 

N-cadherin (Figure 3-2A, IP: N-cadherin). As with plakoglobin, more 

Nm23-H2 than -H1 was coprecipitated with N-cadherin antibodies. Nm23 

associations with plakoglobin and N-cadherin were further confirmed by 

reciprocal coimmunoprecipitations in which cell extracts were 

immunoprecipitated with Nm23 antibodies and blotted for plakoglobin and 

N-cadherin (Figure 3-3B). 

3.2.3. Nm23 colocalizes at the membrane with plakoglobin and N-

cadherin.  

We further confirmed the results of our coimmunoprecipitation studies 

with confocal microscopy using Nm23-H1/H2, plakoglobin and N-cadherin 

antibodies in conjunction with two different extraction/fixation protocols. In 

order to visualize the entire cellular pool of proteins, cells were first fixed 

using formaldehyde and subsequently permeabilized using CSK extraction 

buffer. Alternatively, CSK extraction buffer was used first to permeabilize 

and extract the soluble pool of cellular proteins, followed by fixation with 

formaldehyde, allowing for the visualization of the cytoskeleton-associated 

pool of proteins (Pasdar and Nelson, 1988b; Pasdar et al., 1995), 

including those stabilized by association with the adhesive complexes.  

Staining of fixed/permeabilized SCC9 cells with N-cadherin and Nm23-

H1/H2 showed that Nm23 was distributed throughout the cell while N-

cadherin was primarily detected at the membrane (Figure 3-2B, D, SCC9, 

Nm23/N-cadherin). Under similar conditions, SCC9-PG cells showed  



IP
: N

m
23

 

IB
 

N
-c

ad
he

rin
 

α
-c

at
en

in
 

P
G

 

SCC9 

SCC9-PG 

SCC9 

SCC9-PG 

SCC9 

SCC9-PG 

SCC9 

SCC9-PG 

S
ol

ub
le

 
In

so
lu

bl
e 

S
ol

ub
le

 
In

so
lu

bl
e 

IP
: C

on
tro

l 

B

Fi
gu

re
 3

-3
. N

m
23

 in
te

ra
ct

s 
w

ith
 α

-c
at

en
in

. (
A

) S
ol

ub
le

 a
nd

 in
so

lu
bl

e 
fra

ct
io

ns
 fr

om
 S

C
C

9 
an

d 
S

C
C

9-
P

G
 c

el
ls

 w
er

e 
pr

oc
es

se
d 

fo
r 

se
qu

en
tia

l i
m

m
un

op
re

ci
pi

ta
tio

n 
an

d 
im

m
un

ob
lo

tti
ng

 u
si

ng
 α

-c
at

en
in

 a
nd

 N
m

23
 a

nt
ib

od
ie

s,
 re

sp
ec

tiv
el

y.
 (B

) S
ol

ub
le

 a
nd

 in
so

lu
bl

e 
fra

ct
io

ns
 fr

om
 S

C
C

9 
an

d 
S

C
C

9-
P

G
 c

el
ls

 w
er

e 
pr

oc
es

se
d 

fo
r s

eq
ue

nt
ia

l i
m

m
un

op
re

ci
pi

ta
tio

n 
an

d 
im

m
un

ob
lo

tti
ng

 u
si

ng
 N

m
23

 fo
llo

w
ed

 
by

 N
-c

ad
he

rin
, α

-c
at

en
in

 a
nd

 p
la

ko
gl

ob
in

 a
nt

ib
od

ie
s.

 (C
) S

C
C

9 
an

d 
S

C
C

9-
P

G
 c

el
ls

 w
er

e 
fo

rm
al

de
hy

de
 fi

xe
d,

 C
S

K
 b

uf
fe

r e
xt

ra
ct

ed
 

an
d 

pr
oc

es
se

d 
fo

r c
on

fo
ca

l m
ic

ro
sc

op
y 

us
in

g 
N

m
23

 (r
ed

) a
nd

 α
-c

at
en

in
 (g

re
en

) a
nt

ib
od

ie
s.

 N
uc

le
i w

er
e 

co
un

te
rs

ta
in

ed
 w

ith
 D

A
P

I 
(b

lu
e)

. P
G

, p
la

ko
gl

ob
in

. B
ar

, 2
0 
µ

m
. 

 

IP
: α

-c
at

en
in

 
IB

: N
m

23
 

S
C

C
9 

S
C

C
9-

P
G

 

S
ol

ub
le

 

In
so

lu
bl

e 

- H
2 

S
C

C
9 

S
C

C
9-

P
G

 

IP
:C

on
tro

l 
IB

: N
m

23
 

To
ta

l c
el

l l
ys

at
e 

IB
: A

ct
in

 

- H
1 

- H
2 

- H
1 

A C
α

-c
at

en
in

 
M

er
ge

 
SCC9-PG SCC9 

N
m

23
 

70
 



 71 

overlapping distributions of Nm23-H1/H2 and N-cadherin (Figure 3-2B and 

D, SCC9-PG, Nm23/N-cadherin), as well as Nm23 and plakoglobin 

(Figure 3-2B, D, SCC9-PG, Nm23/PG).  

In SCC9 cells that were extracted before fixation, most of the staining 

for both Nm23-H1/H2 and N-cadherin, which was observed when these 

cells were fixed before extraction, was removed (Figure 3-2C, D). Under 

these conditions, SCC9-PG cells showed colocalization between Nm23-

H1/H2 and N-cadherin, as well as Nm23-H1/H2 and plakoglobin; 

furthermore, these codistributions were primarily at the membrane (Figure 

3-2C, D, SCC9-PG). Thus, Nm23 colocalized with the cytoskeleton-

associated pool of plakoglobin and N-cadherin.  

3.2.4. Nm23 interacts with α-catenin.  

Increased levels of Nm23-H1 and -H2 associated with the insoluble N-

cadherin in SCC9-PG cells and its membrane codistribution with both 

plakoglobin and N-cadherin in these cells suggested that plakoglobin 

expression may have led to the association of Nm23 with the stable 

cadherin-catenin complexes at the adherens junction. To this end, we 

examined whether α-catenin, which mediates N-cadherin-plakoglobin 

interactions with the actin cytoskeleton, also associated with Nm23-H1 

and -H2. Figure 3-3A shows that in SCC9 cells only Nm23-H2 was 

associated with α-catenin, mainly in the insoluble fraction (Figure 3-3A, 

SCC9). In contrast, in SCC9-PG cells, α-catenin antibodies coprecipitated 

Nm23-H2 and to a lesser extent -H1 from both the soluble and insoluble 
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fractions (Figure 3-3A, SCC9-PG). Reciprocal coimmunoprecipitation with 

Nm23 antibodies also detected α-catenin in the insoluble fraction of both 

SCC9 and SCC9-PG cells, with significantly higher levels in the latter 

(Figure 3-3B). These observations were further verified by 

immunofluorescence assays, which clearly showed α-catenin 

codistribution with Nm23-H1/H2 in SCC9-PG cells, while this 

colocalization was barely detectable in SCC9 cells (Figure 3-3C). 

Collectively, these results suggested that plakoglobin expression stabilized 

Nm23-H1 and -H2 interactions with cadherin-catenin complexes at the 

membrane.  

3.2.5. The N-terminal domain of plakoglobin is necessary for 

interaction with Nm23.  

So far, our data suggested that Nm23-H1 and -H2, plakoglobin, α-

catenin and N-cadherin may be present in the same complex. We then 

asked whether α-catenin could be a bridge between Nm23 and 

plakoglobin-N-cadherin complexes. To clarify this point, we assessed the 

interactions between Nm23, plakoglobin and N-cadherin in SCC9 cells 

expressing Flag-tagged wild-type plakoglobin or a mutant plakoglobin with 

a deletion in the N-terminal α-catenin binding domain (PG-ΔN123; Li et al., 

2007a; Kolligs et al., 2000). Soluble and insoluble cell extracts from PG-

Flag and PG-ΔN123 transfectants were processed for sequential 

coimmunoprecipitation and immunoblotting with Flag and Nm23 antibodies 

respectively.  
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Plakoglobin coprecipitated Nm23-H2 from the insoluble fractions of PG-

Flag cells but not the PG-ΔN123 cells in which plakoglobin is unable to 

bind α-catenin (Figure 3-4A, IP: Flag). No interaction between Nm23 and 

plakoglobin was detected in the soluble fraction. Since plakoglobin 

expression (SCC9-PG cells) increased the amount of Nm23 coprecipitated 

with N-cadherin (Figure 3-2A), we examined the effects of deleting the N-

terminal domain of plakoglobin on the association between Nm23 and N-

cadherin. N-cadherin was also found to coprecipitate Nm23 in PG-Flag 

cells and primarily in the insoluble fraction (Figure 3-4A, IP: N-cadherin). 

Immunofluorescence experiments confirmed the coimmunoprecipitation 

findings. Plakoglobin colocalized with Nm23-H1/H2 in PG-Flag cells, 

however, in -ΔN123 cells, plakoglobin/Nm23 colocalization was lost 

(Figure 3-4B, C, Nm23/Flag). Colocalization between Nm23-H1/H2 and N-

cadherin was observed in PG-Flag cells, whereas their codistribution was 

reduced in the -ΔN123 transfectants (Figure 3-4B, C, Nm23/N-cadherin). 

3.2.6. Nm23-plakoglobin interaction is dependent on α-catenin.  

Upon showing that loss of the N-terminal domain of plakoglobin resulted 

in the loss of its association with Nm23-H1 and -H2, we set out to 

determine whether α-catenin was necessary for this interaction. To do so, 

we used PC3 cells, a prostate carcinoma cell line which lacks α-catenin, 

while expressing E-cadherin, plakoglobin and Nm23 (Morton et al., 1993; 

Daniel and Reynolds, 1995; Igawa et al., 1994). We first confirmed, by 

Western blot, that PC3 cells lacked α-catenin, and expressed E-cadherin,  
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plakoglobin, and Nm23 (Figure 3-5A). Next, we performed 

coimmunoprecipitation experiments using plakoglobin and α-catenin 

antibodies, and showed that Nm23-H1 and -H2 were coprecipitated by 

neither of these antibodies in neither the soluble nor insoluble fractions 

(Figure 3-5B). Furthermore, the supernatants from the soluble and 

insoluble α-catenin and plakoglobin immunoprecipitates were processed 

for immunoblotting with Nm23. In these supernatants, Nm23-H1 and -H2 

were detected in the soluble but not the insoluble fractions. Reciprocal 

coimmunoprecipitation experiments confirmed our findings, showing that 

plakoglobin was not coprecipitated with Nm23-H1 and -H2, but rather was 

present in the supernatants from both soluble and insoluble Nm23 

immunoprecipitates (Figure 3-5C).  

To further confirm the coimmunoprecipitation study results, PC3 cells 

were processed for immunofluorescence with anti-Nm23-H1/H2, 

plakoglobin and α-catenin antibodies. Consistent with the lack of α-catenin 

expression, there was no detectable staining for this protein in these cells. 

Furthermore, in these cultures, Nm23-H1/H2 staining was detected 

throughout the cells but was notably absent from the peripheries (Figure 3-

5D, Nm23/α-catenin). In contrast, plakoglobin’s localization was primarily 

peripheral and membrane associated. Consistent with their distinct 

localizations, no detectable Nm23/plakoglobin codistribution was observed 

in these cells (Figure 3-5D, Nm23/PG).  
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3.2.7. Nm23 interaction with plakoglobin, cadherin and α-catenin is 

not cell line specific.  

To confirm that Nm23’s interactions with the cadherin-catenin complex 

were not N-cadherin or cell line specific, we examined Nm23’s 

associations with plakoglobin, α-catenin and E-cadherin in several non-

epidermal cell lines. Soluble and insoluble fractions from the E-cadherin 

and plakoglobin expressing MCF-10-2A, MCF-7, SW620 and MDCK cells 

were processed for coimmunoprecipitation and confocal microscopy using 

plakoglobin, E-cadherin, α-catenin and Nm23 antibodies. Nm23-H1 and -

H2 coprecipitated with plakoglobin and α-catenin in both the soluble and 

insoluble pools, whereas they were associated with E-cadherin only in the 

insoluble pool (Figure 3-6A). Reciprocal coimmunoprecipitation using 

Nm23 antibodies further supported these results, where plakoglobin, E-

cadherin, and α-catenin coprecipitated with Nm23-H1 and -H2 from 

insoluble fractions of all cell lines (Figure 3-6B). Immunofluorescence 

experiments also showed distinct colocalization between Nm23-H1/H2 

and plakoglobin, E-cadherin, and α-catenin in all cell lines (Figure 3-6C). 

These observations showed that Nm23-H1 and -H2 interacted with both 

N- and E-cadherin and furthermore, its associations with plakoglobin, α-

catenin and cadherins were not cell specific.  
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3.3. Discussion 

We identified Nm23 as a protein differentially expressed between 

plakoglobin-deficient SCC9 cells and their plakoglobin-expressing 

transfectants. Further analysis showed that plakoglobin expression led to 

the membrane localization of Nm23-H1/H2 and its interactions with 

plakoglobin, N-cadherin and α-catenin. Plakoglobin’s interaction with 

Nm23-H1 and -H2 required the first 123 amino acids in the N-terminal 

domain of plakoglobin, which mediates its interaction with α-catenin, and 

furthermore, in cells lacking α-catenin, interactions between plakoglobin 

and Nm23-H1 and -H2 were lost. Finally, we showed that the interactions 

between Nm23 and plakoglobin, cadherin, and α-catenin are not cell line 

specific.  

Our proteomic and microarray analyses identified several tumor 

suppressors whose levels were increased upon expression of plakoglobin 

in SCC9 cells. We chose to focus on Nm23 for several reasons, the first of 

which being that it in a variety of different cancers, both a decrease in 

Nm23 and cadherin-mediated adhesion is observed while the genes 

encoding these proteins remain unaltered (Chen et al., 2005; Che et al., 

2006). Previous studies have also shown that Nm23 is both targeted by 

and regulates c-myc, which was the first identified target of the Wnt/β-

catenin signaling network (He et al., 1998; Schuldiner et al., 2002; Arnaud-

Dabernat et al., 2004). Additionally, we have shown that the levels and 

subcellular localization of plakoglobin can modulate the amount of β-
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catenin and its signaling function in a cell context-dependent manner (Li et 

al., 2007a). 

Our results lend support to the observation made during our proteomic 

studies, which identified Nm23-H2 as being increased nearly five-fold in 

SCC9-PG cells as compared to parental SCC9 cells. Western blot 

analysis revealed that whereas the levels of both Nm23-H1 and -H2 were 

significantly increased upon plakoglobin expression, it was the levels of 

Nm23-H2 that were more notably increased. Examination of the effect of 

plakoglobin expression on the amount of Nm23-H1 and -H2 mRNA by RT-

PCR showed increased levels of Nm23-H1 mRNA only, consistent with 

the microarray analysis, which revealed significantly increased NME1 

(Nm23-H1) but not NME2 (Nm23-H2) expression in SCC9-PG cells. 

These results together suggest that plakoglobin may regulate NME1 at the 

level of transcription, and increases the levels of both Nm23-H1 but more 

so Nm23-H2 protein. Plakoglobin may increase Nm23-H2 protein levels by 

increasing its stability through their interactions, by inhibiting Nm23-H2’s 

degradation, or by other post-translational mechanisms. Additionally, the 

higher levels of Nm23-H1 transcripts that resulted in increased protein 

levels (albeit not as notable as Nm23-H2) could promote interactions 

between Nm23-H1 and -H2, resulting in its increased stability. Whether 

plakoglobin acts directly as a transcriptional regulator of Nm23-H1 

expression or alters the activity of other transcription factors is examined 

in Chapter Five of this thesis. Furthermore, why plakoglobin regulates 
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Nm23-H1 (NME1) gene expression and -H2 protein levels remains 

unclear. 

We observed Nm23-H1/H2 at the membrane in SCC9-PG cells, which 

was concurrent with a mesenchymal to epidermoid transition and the 

formation of stable junctional complexes and decided to further investigate 

whether Nm23-H1/H2 localized to junctional complexes, taking into 

account prior studies describing its membrane localization (Palacios et al., 

2002; Che et al., 2006). Immunofluorescence analysis revealed that 

Nm23-H1/H2 colocalized with the total, as well as the cytoskeleton-

associated pool of plakoglobin and N-cadherin in SCC9-PG cells.  

Reciprocal coimmunoprecipitation studies corroborated our 

immunofluorescence results and further, allowed us to distinguish between 

Nm23-H1 and -H2, and their respective interactions with the junctional 

components, which could not be differentiated by microscopy because the 

immunofluorescence antibodies recognized both Nm23-H1 and -H2. More 

specifically, greater amounts of Nm23-H2 coprecipitated with plakoglobin 

in insoluble fractions than Nm23-H1, while only Nm23-H2 coprecipitated 

with plakoglobin in the soluble fraction of these cells, suggesting that 

Nm23-H2-plakoglobin interactions may not require or precede Nm23-H1 

associations. While Nm23-H1 and (primarily) -H2 also interacted with both 

pools of N-cadherin in SCC9-PG cells, these interactions were significantly 

increased in the insoluble pool. That Nm23 interacted with plakoglobin and 

N-cadherin, and primarily in the cytoskeleton associated pool of proteins, 
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suggested that plakoglobin may play a role in recruiting Nm23-H2, and to 

a lesser extent, Nm23-H1, to the cadherin-catenin complex at the 

adherens junction. Since, at this junction, α-catenin mediates the link 

between the cadherin-catenin complex and the actin cytoskeleton, we 

sought to determine whether Nm23-H1/H2 and α-catenin interact. We 

found that they did interact, that the primary interaction was between 

Nm23-H2 and α-catenin, and that these interactions were independent of 

plakoglobin. Furthermore, we identified the N-terminal domain of 

plakoglobin, which is essential for its interaction with α-catenin (Sacco et 

al., 1995), as being necessary for its interaction with Nm23. 

Recent studies have shown the existence of two distinct cellular pools 

of α-catenin: one, composed of α-catenin monomers, that associates with 

the β-catenin-E-cadherin complex at the membrane, and another, 

composed of α-catenin dimers, that associates with the actin cytoskeleton 

(Drees et al., 2005; Yamada et al., 2005). These distinct pools of α-catenin 

may help to explain why so much more Nm23-H2 is associated with the 

junctional components in the cytoskeleton-associated pool: it may be 

possible that one pool of α-catenin associates with both Nm23-H1 and -

H2, while the other pool associates primarily with Nm23-H2.  

Coimmunoprecipitation experiments in the α-catenin deficient PC3 cell 

line were performed to further characterize the role that α-catenin plays in 

mediating the interactions between plakoglobin and Nm23-H1 and -H2. 

The results of these experiments confirmed that α-catenin is a critical 
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component of the plakoglobin-Nm23-H1/H2 complex, as Nm23-H1 and -

H2 did not coprecipitate with plakoglobin antibodies in these cells. 

Furthermore, all of Nm23 in PC3 cells was detected in the 

immunoprecipitates supernatants from the soluble fractions only. 

Consistent with these results, Nm23-H1 and -H2 were found in total cell 

extracts from the soluble fraction of PC3 cells, but not the insoluble 

fraction. These findings suggest that in cells that lack α-catenin, Nm23-H1 

and -H2 do not interact with any junctional components that are 

cytoskeleton-associated, and as a result remain exclusively in soluble 

fractions. Reciprocal coimmunoprecipitation experiments using Nm23 

antibodies further confirmed the absence of plakoglobin in Nm23 

immunoprecipitates. In these cells, plakoglobin was detected in the 

immunoprecipitates supernatants after Nm23 was removed. That Nm23-

H1/H2 and plakoglobin were not associated in PC3 cells also was 

detected by confocal microscopy, which clearly showed the absence of 

their membrane codistribution in these cells. Finally, examination of 

additional cell lines expressing E-cadherin showed that Nm23-H1 and -H2 

interact with both N- and E-cadherin and its associations with cadherins 

and plakoglobin is neither tissue nor species specific.  

Plakoglobin has often been associated with tumor suppressor activity, 

although the mechanisms behind this activity remain unclear (Simcha et 

al., 1996; Parker et al., 1998; Pantel et al., 1998; Winn et al., 2002; 

Rieger-Christ et al., 2005). More recently, downregulation of plakoglobin 
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also was shown to increase the risk of pulmonary metastasis in soft tissue 

sarcomas (Kanazawa et al., 2008), further supporting the idea that 

plakoglobin may act to suppress metastasis in addition to tumor formation. 

Similarly, a number of studies have shown that in addition to its well-

documented role as a metastasis suppressor, Nm23-H1 and -H2 have 

growth inhibitory activities (Lee et al., 2009; Jin et al., 2009). Our results 

suggest that plakoglobin’s tumor/metastasis suppressor activity may be 

mediated through the modulation of the levels, stability and subcellular 

localization of Nm23. In particular, plakoglobin, at least in the context of 

squamous cell oral carcinomas, exerts its effects more notably on Nm23-

H2. This result is supported by a previous study, which found that Nm23-

H2 plays a critical role as a metastasis/tumor suppressor in oral 

carcinomas (Miyazaki et al., 1999). Collectively, these observations 

suggest that plakoglobin and Nm23 may exert (at least part of) their anti-

tumor/metastasis activities in conjunction with one another. To this point, 

no studies have been performed which have examined the (lack of) 

expression of both Nm23 and plakoglobin in tumors.  

In conclusion, although the exact roles that Nm23 plays in 

tumorigenesis and metastasis remain unclear, our results and those of 

others indicate that it is the interactions of Nm23 with other cellular 

proteins that determine what type of a role it will play in these processes 

(Kim et al., 2009). Here, we identified plakoglobin as a novel Nm23 

interacting partner, an observation that also provides a potential 
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mechanism for the often-suggested role of plakoglobin as a tumor 

suppressor. The larger implication of this novel observation is the role of 

plakoglobin as a potential modulator of growth regulating proteins whose 

expressions are compromised or altered during tumor progression and 

metastasis.  

 



 88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER FOUR: PLAKOGLOBIN INTERACTS WITH P53 AND 
REGULATES THE EXPRESSION OF 14-3-3σ 
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4.1. Introduction1 

4.1.1. Rationale 

During the microarray experiments, we identified numerous tumor and 

metastasis suppressor genes that were upregulated and oncogenes that 

were downregulated in SCC9-PG cells (compared to SCC9 cells). 

Intriguingly, we noticed that several p53-target genes (including the tumor 

suppressor 14-3-3σ) were differentially expressed in SCC9-PG cells, 

which suggested that perhaps plakoglobin regulates gene expression in 

conjunction with p53. To address this possibility, we examined whether 

plakoglobin and p53 interact and if they associate with the same target 

gene promoters. 

4.1.2. p53 

The p53 tumor suppressor is regarded as one of the most important 

tumor suppressors and plays essential roles in the regulation of cell 

proliferation, senescence, survival, apoptosis and metabolism (Levine and 

Oren, 2009; Maddocks and Vousden, 2011; Mirzayans et al., 2012). As a 

tumor suppressor, the most documented role of p53 is that of a 

transcription factor, regulating the expression of genes involved in cell-

cycle control, apoptosis, tumorigenesis and metastasis (Harris and Levine, 

2005; Junttila and Evan, 2009; Menendez et al., 2009; Meek, 2009; 

Cicalese et al., 2009; Goh et al., 2011). In addition to its role in regulating 

gene expression, recent studies have demonstrated that p53 has non-

                                                
1 A version of this chapter has been published in: Aktary Z, Kulak S, Mackey JR, Jahroudi 
N, Pasdar M (2013). Plakogloin interacts with the transcription factor p53 and regulates 
the expression of 14-3-3σ. Journal of cell science 126: 3031-3042. 
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genomic functions in the cytoplasm, where it interacts with pro- and anti-

apoptotic proteins and promotes apoptosis by inducing mitochondrial outer 

membrane permeabilization (Mihara et al., 2003; Green and Kroemer, 

2009; Vaseva and Moll, 2009; Brady and Attardi, 2010; Golubovskaya and 

Cance, 2011; Lindenboim et al., 2011; Stegh, 2012). 

Inactivating mutations of p53 occur in half of all tumors, whereas in the 

remaining tumors, mutations in other components of the p53 pathway 

account for its functional inactivation (Junttila and Evan, 2009; Menendez 

et al., 2009; Goh et al., 2011). Furthermore, some mutations in p53, 

known as the “gain-of-function” mutations, endow this tumor suppressor 

with oncogenic activities that lead to the increased expression of tumor 

and metastasis promoting genes (O’Farrell et al., 2004; Tepper et al., 

2005; Brosh and Rotter, 2009; Oren and Rotter, 2010; Muller et al., 2012).  

Normally, p53 protein levels are kept under tight control, with the 

steady-state levels of the protein being quite low. Various studies have 

suggested that p53 has a half-life of roughly 20-30 minutes in non-

stressed cells (Moll and Petrenko, 2003; Agrawal et al., 2006). The levels 

of p53 are regulated by Hdm2, an E3 ubiquitin ligase, which under normal 

conditions interacts with and ubiquitinates p53 (Collavin et al., 2010; Wang 

and Jiang, 2012; Pei et al., 2012). Following ubiquitination, p53 is exported 

out of the nucleus, where it is degraded via cytoplasmic proteasomes 

(Figure 4-1A), although various studies have shown that it can be also be 

degraded in the nucleus by nuclear proteasomes (Boehme and Blattner,  
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2009; Collavin et al., 2010). When cells are stressed (e.g. exposed to UV 

or ionizing radiation, hypoxic environment or oncogenic insults, etc.), the 

levels of p53 are dramatically increased. Under these conditions, Hdm2-

mediated degradation of p53 is blocked, mainly through the actions of the 

tumor suppressor ARF, which sequesters Hdm2 in the nucleolus and 

liberates p53 (Figure 4-1B). Furthermore, under these conditions, various 

kinases (e.g. ATM, Chk2, etc.) become activated and phosphorylate p53, 

which inhibits its interaction with Hdm2. The stable p53 is then able to 

regulate the expression of its target genes and promote cell-cycle arrest 

and apoptosis (Boehme and Blattner, 2009; Collavin et al., 2010; Wang 

and Jiang, 2012). 

p53 protein stability is also regulated by several other post-translational 

modifications, including phosphorylation, acetylation and sumoylation 

(Boehme and Blattner, 2009; Collavin et al., 2010), and by its interactions 

with different cytoplasmic and nuclear proteins, which also alter its activity 

and function (Junttila and Evan, 2009; Menendez et al., 2009; Boehme 

and Blattner, 2009; Collavin et al., 2010; Goh et al., 2011). One such 

interacting protein that is known to activate the transcriptional activity of 

p53 is the tumor suppressor 14-3-3σ (Yang et al., 2003; Lee and Lozano, 

2006).  

4.1.3. 14-3-3 proteins 

The 14-3-3 family of proteins are abundant acidic polypeptides that are 

found in all eukaryotic organisms. Currently seven 14-3-3 isoforms have 
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been identified, which can form homo- and heterodimers (Sluchanko and 

Gusev, 2012). These proteins have a wide variety of cellular functions, 

ranging from cell survival and apoptosis to cell cycle control, and are 

known to interact with a vast array of cellular proteins, including 

transcription factors, cytoskeletal proteins, biosynthetic enzymes and 

signaling molecules (Obsilova et al., 2008; Morrison, 2008; Van Heusden, 

2009; Sluchanko and Gusev, 2012).  

14-3-3σ (also called stratifin, encoded by the SFN gene) was originally 

characterized as a human mammary epithelial-specific (HME1) marker 

that was downregulated in mammary carcinoma cells (Prasad et al., 1992) 

and is the only 14-3-3 isoform induced by p53 upon DNA damage 

(Lodygin and Hermeking, 2006; Lee and Lozano, 2006). In accordance, 

14-3-3σ has a well-documented tumor suppressor activity through its 

negative regulation of the cell cycle and positive regulation of p53 

transcriptional activity. In addition, 14-3-3σ downregulation is observed in 

a variety of solid tumors including breast, squamous cell, lung, liver, 

ovarian and prostate cancer and this downregulation has been associated 

with increased tumor metastasis (Yang et al., 2003; Lodygin and 

Hermeking, 2006; Lee and Lozano, 2006). 

4.1.4. Specific aim and summary of results 

In this chapter, we have identified plakoglobin as a novel p53-

interacting protein and examined the effect of plakoglobin expression on 

the levels of the p53 target gene 14-3-3σ. We show that plakoglobin 
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expression resulted in the induction of 14-3-3σ mRNA and protein. 

Furthermore, we show that plakoglobin interacted with p53 in squamous 

(SCC9-PG, A431) and mammary (MCF-10-2A, MCF-7) epithelial cell lines, 

that plakoglobin and p53 both associated with the 14-3-3σ gene (SFN) 

promoter, and that plakoglobin promoted p53 transcriptional activity. Our 

results show that plakoglobin interacts with p53 and suggest that together, 

plakoglobin and p53 control the expression of tumor/metastasis regulating 

genes, a function which also may account, in part, for plakoglobin’s often-

described tumor suppressor activity (Simcha et al., 1996; Pantel et al., 

1998; Charpentier et al., 2000; Winn et al., 2002; Reiger-Christ et al., 

2005; Yin et al., 2005; Kanazawa et al., 2008; Narkio-Makela et al., 2009; 

Todorovic et al., 2010; Aktary et al., 2010).  

4.2. Results 

4.2.1. 14-3-3σ levels are induced in SCC9-PG cells.  

Our microarray experiments showed that the levels of several p53 

target genes were altered in SCC9-PG cells compared to SCC9 cells. This 

result, while intriguing, was surprising since it has been reported that in 

SCC9 cells, p53 carries a mutation in its DNA-binding domain (Jung et al., 

1992). Interestingly, SFN, the gene encoding the tumor suppressor 14-3-

3σ, was upregulated 30-fold in SCC9-PG cells and was chosen for further 

investigation. To confirm the results of the microarray experiment, we 

began by performing RT-PCR and qRT-PCR experiments using mRNA 

from SCC9 and SCC9-PG cells and observed that while 14-3-3σ mRNA 
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was essentially undetectable in SCC9 cells, its levels were significantly 

upregulated in SCC9-PG cells (Figure 4-2B, C). Subsequent Western blot 

experiments verified that the expression of 14-3-3σ mRNA was 

accompanied by significant amounts of its protein in SCC9-PG cells, which 

was undetectable in SCC9 cells (Figure 4-2A). We repeated these 

experiments using different isolated clones of independent SCC9-PG 

transfectants and observed similar results with upregulation of both 14-3-

3σ mRNA and protein levels (data not shown). 

4.2.2. Plakoglobin interacts with p53 in SCC9-PG cells.  

The results from Figure 4-2A-C showed that plakoglobin expression 

resulted in the induction of 14-3-3σ mRNA and protein, which suggested 

that plakoglobin may regulate the expression of 14-3-3σ. Since 14-3-3σ is 

a well-known target of p53 (Obsilova et al., 2008; Morrison, 2008; Van 

Heusden, 2009), we set out to determine whether plakoglobin and p53 

interacted by performing reciprocal coimmunoprecipitation experiments 

using plakoglobin and p53 antibodies. Plakoglobin antibodies 

coprecipitated p53 in SCC9-PG cells and as expected, no interaction was 

observed in SCC9 cells due to their lack of endogenous plakoglobin 

expression (Figure 4-2D, IP: PG/IB: PG and p53). Reciprocal 

coimmunoprecipitation experiments using p53 antibodies coprecipitated 

plakoglobin from SCC9-PG cells but not SCC9 cells (Figure 4-2D, IP: 

p53/IB: PG and p53). Since plakoglobin and β-catenin have common 

interacting partners (Peifer et al., 1992; Zhurinsky et al., 2000b; Stemmler,  
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2008), we also examined β-catenin-p53 interactions in SCC9 and SCC9-

PG cells by reciprocal coimmunoprecipitation followed by immunoblotting 

using β-catenin and p53 antibodies. These experiments demonstrated that 

β-catenin did not interact with p53 (Figure 4-2E) and that the plakoglobin-

p53 interaction is specific to these two proteins. 

4.2.3. Plakoglobin and p53 interaction is not cell line specific.  

To confirm that the observed plakoglobin-p53 interaction is not specific 

to SCC9-PG transfectants, we performed coimmunoprecipitation 

experiments using MCF-10-2A, a normal mammary epithelial cell line, 

MCF-7, a mammary carcinoma cell line, and A431, a vulvar carcinoma cell 

line, which all express plakoglobin and p53 (Setzer et al., 2004; Li et al., 

2005; Kwok et al., 1994; Lam et al., 2009; Figure 4-3). We first confirmed 

that these cell lines expressed 14-3-3σ by Western blot analysis (Figure 4-

3A, TCL). Next, reciprocal coimmunoprecipitation experiments using 

plakoglobin (Figure 4-3B), p53 (Figure 4-3C) and preimmune (Figure 4-

3D) antibodies followed by immunoblotting demonstrated that plakoglobin 

and p53 were coprecipitated in non-epidermoid as well as epidermoid cell 

lines by plakoglobin and p53 but not preimmune antibodies. We also 

observed plakoglobin-p53 interactions in human and mouse fibroblast cell 

lines, supporting that these interactions were not cell type specific (data 

not shown).  Finally, reciprocal coimmunoprecipitation experiments using 

β-catenin and p53 antibodies in the non-epidermoid cell lines showed that  
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these two proteins did not interact, further demonstrating the specificity of 

the plakoglobin-p53 interaction (Figure 4-3E). 

4.2.4. Plakoglobin and p53 interact in both the cytoplasm and 

nucleus.  

Figures 1 and 2 demonstrated that plakoglobin interacted with p53, 

however, whether the interaction occurs in a specific subcellular 

compartment remained unclear. Since p53 functions as a transcription 

factor in the nucleus, we examined whether these two proteins interacted 

in the nucleus. To that end, we performed subcellular fractionation 

experiments in SCC9, SCC9-PG, A431, MCF-10-2A and MCF-7 cell lines 

and obtained distinct cytoplasmic and nuclear fractions that were 

processed for immunoprecipitation with p53 antibodies followed by 

Western blot with plakoglobin and p53 antibodies (Figure 4-4A, B). The 

results of these experiments confirmed the presence of p53 in both the 

cytoplasmic and nuclear fractions of all cell lines and the presence of 

plakoglobin in all cell lines except SCC9 (Figure 4-4A, B, IP: p53/IB: PG 

and p53). Furthermore, plakoglobin was coprecipitated with p53 in both 

the nuclear and cytoplasmic pools of protein in all cell lines except SCC9 

(Figure 4-4A, B, IP: p53/IB: PG).  

4.2.5. Plakoglobin and p53 associate with the 14-3-3σ gene promoter.  

Taken together, the results so far showed that plakoglobin expression 

resulted in induction of 14-3-3σ mRNA and protein expression and that 

plakoglobin and p53 interacted in the nucleus as well as in the cytoplasm.  
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These results suggested that plakoglobin and p53 may coordinately 

regulate gene expression. To examine this possibility, we performed 

chromatin immunoprecipitation (ChIP) experiments using extracts from 

SCC9 and SCC9-PG cells. We immunoprecipitated the chromatin with 

plakoglobin and p53 antibodies, respectively, and isolated the DNA 

associated with each protein. Subsequent PCR experiments using primers 

to detect the 14-3-3σ (SFN) promoter (Table 2-2) showed that both 

plakoglobin and p53 associated with the 14-3-3σ (SFN) promoter in 

SCC9-PG cells only (Figure 4-5A, SCC9 and SCC9-PG). ChIP with control 

IgG antibodies produced negative results.  

 Since we observed the plakoglobin-p53 interaction in MCF-10-2A, 

MCF-7 and A431 cells, we performed the ChIP experiments using 

chromatin from these cell lines. The results of these experiments were in 

agreement with the ChIP experiments from SCC9-PG cells: both 

plakoglobin and p53 associated with the 14-3-3σ promoter in these cell 

lines (Figure 4-5A, MCF-10-2A, MCF-7 and A431). 

 In addition, we performed ChIP experiments using β-catenin 

antibodies and chromatin from SCC9, SCC9-PG, MCF-10-2A and SW620 

cells. The colon carcinoma cell line SW620 was used because it 

expresses p53 and transcriptionally active β-catenin (Lamy et al., 2010; El-

Bahrawy et al., 2004; Li et al., 2007a). In agreement with the 

coimmunoprecipitation data, we did not observe an association between 

the 14-3-3σ (SFN) gene promoter and β-catenin in any cell line (Figure 4- 
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5B). As a positive control, we examined if β-catenin was associated with 

the MYC gene promoter, which is a well-known β-catenin target gene (He 

et al., 1998). β-catenin was associated with the MYC promoter in SCC9 

and SW620 cells, but not in SCC9-PG and MCF-10-2A cells. Finally, 

plakoglobin and p53 ChIP samples were processed for PCR using primers 

to the VWF gene (negative control), and no amplification was observed, 

whereas the same p53 ChIP sample clearly amplified the 14-3-3σ (SFN) 

promoter in both SCC9-PG and MCF-10-2A cells (Figure 4-5C). 

4.2.6. Plakoglobin binds the p53-consensus sequence in the 14-3-3σ 

promoter.  

Since plakoglobin interacted with p53 and regulated the 14-3-3σ gene, 

we hypothesized that plakoglobin may bind to the p53 consensus 

sequence in the 14-3-3σ gene promoter, potentially through its interaction 

with p53.  To verify this, we first performed electrophoretic mobility shift 

assays (EMSA) using MCF-10-2A nuclear extracts and a radioactively 

labeled probe that corresponded to the p53 consensus sequence 

(GTAGCATTAGCCCAGACATGTCC) in the 14-3-3σ gene promoter 

(Hermeking et al., 1997; Cai et al., 2009). MCF-10-2A cells were first used 

for these experiments because they express endogenous plakoglobin and 

wild-type p53 (Li et al., 2005; Lam et al., 2009). The results showed the 

formation of a distinct complex (Figure 4-6A, Lane 2) that was inhibited by 

the addition of a specific oligonucleotide competitor (unlabeled probe in 

50-fold excess; Figure 4-6A, Lane 6) but not by a non-specific  
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oligonucleotide (corresponding to the NFY gene; Figure 4-6A, Lane 7). 

The addition of p53 antibodies to the reaction mixture resulted in a 

reduction in specific DNA-protein complex formation, as demonstrated by 

a decrease in signal intensity (Figure 4-6A, Lane 3). When plakoglobin 

antibodies were added to the reaction mixture, a supershift was observed 

(Figure 4-6A, Lane 4), whereas the addition of IgG to the reaction mixtures 

had no effect on the band shift (Figure 4-6A, Lane 5). In contrast to 

plakoglobin antibodies, when β-catenin antibodies were added to the 

reaction mixtures, no effect was observed (Figure 4-6B, Lane 3). 

Similarly, in Figure 4-7, EMSA experiments using nuclear extracts from 

SCC9 and SCC9-PG cells and the same radioactively labeled probe 

resulted in the formation of a distinct complex (Figure 4-7, Lane 2) that 

was inhibited by the addition of a specific competitor but not by a non-

specific oligonucleotide (Figure 4-7, Lanes 7 and 8). When plakoglobin 

antibodies were added to the reaction mixtures, a supershift was observed 

in SCC9-PG but not in SCC9 cells (Figure 4-7, Lane 3). The addition of 

p53 antibodies to the reaction mixtures containing the SCC9-PG, but not 

SCC9 nuclear extracts resulted in a reduction in specific DNA-protein 

complex formation (Figure 4-7, Lane 4). The addition of β-catenin 

antibodies or IgG to the reaction mixtures had no effect on the band shift 

in either cell line (Figure 4-7, Lanes 5 and 6).  
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Figure 4-7. Plakoglobin and p53 bind to the p53 consensus sequence in the 14-3-3σ gene 
promoter in SCC9-PG cells. Nuclear extracts from SCC9 and SCC9-PG cells were incubated in the 
presence of radioactively labeled double stranded oligonucleotide probes corresponding to the p53 
consensus sequence in the 14-3-3σ gene promoter. To confirm the binding of plakoglobin, p53 or β-
catenin to the probe, antibodies corresponding to each protein were added to the reaction mixtures, 
which were then run on a 5% non-denaturing polyacrylamide gel and processed for autoradiography. 
NE, Nuclear Extract. PG, plakoglobin.  
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4.2.7. Plakoglobin promotes p53 transcriptional activity.  

The results from the ChIP experiments revealed that p53 associated 

with the 14-3-3σ gene promoter in SCC9-PG but not in SCC9 cells, 

suggesting that plakoglobin may play a role in regulating the 

transcriptional activity of p53. To investigate this further, we performed 

reporter gene assays, by transfecting SCC9 and SCC9-PG cells with 

constructs encoding the luciferase gene downstream of the wild type or 

mutant p53-binding sequence in the 14-3-3σ gene promoter (Hermeking et 

al., 1997; Table 2-4). SCC9 cells transfected with the control vector, wild-

type p53 or mutant p53 containing plasmids showed minimal luciferase 

activity regardless of the plasmid (Figure 4-8A, SCC9). However, in SCC9-

PG cells, while the luciferase activity of the control was similar to SCC9 

cells, it was significantly increased when these cells were transfected with 

either the wild-type (2.2-fold) or mutant (2.9-fold) plasmids, respectively 

(Figure 4-8A, SCC9-PG). This unexpected result suggested that perhaps 

regulation of the 14-3-3σ gene in SCC9-PG cells is independent of p53, 

since luciferase activity was induced from the mutant p53 sequence, to 

which p53 should not bind. To examine this possibility, we knocked down 

p53 in SCC9-PG cells using siRNA and examined the effect on luciferase 

reporter activity. We observed that knock down of p53 resulted in 

decreased 14-3-3σ protein in SCC9-PG cells and in almost a complete 

loss of luciferase reporter activity from both the wild-type and mutant  
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plasmids (Figure 4-8B, C), suggesting that mutant p53 could bind to both 

the wild type and mutant response element and was involved in regulating  

14-3-3σ gene expression in SCC9-PG cells. That mutant p53 proteins 

have the potential to activate gene expression from both wild-type and 

mutant p53 response elements is not cell specific and has been suggested 

previously (Muller and Vousden, 2013 and references therein). To this 

end, we verified that the induction of luciferase activity from the mutant 14-

3-3σ construct was not specific to SCC9-PG cells by performing the 

luciferase reporter assays in A431 cells, which express another p53 

mutant (Kwok et al., 1994). The results of these assays also showed a 

significant increase in the luciferase activity from both the wild-type (~7-

fold) and mutant (~3-fold) constructs (Figure 4-8D) in these cells.  

To verify that plakoglobin’s regulation of p53 transcriptional activity was 

not specific to the 14-3-3σ gene, we performed similar luciferase assays 

using luciferase constructs downstream of a wild-type and mutated 

consensus p53-binding sequence (Kern et al., 1992). The results showed 

that luciferase activity was induced from both the wild-type and mutant 

consensus p53 plasmids in SCC9-PG cells, whereas no induction was 

observed in SCC9 cells (Figure 4-8E). 

 We further performed the same experiments in MCF-7 cells, which 

express wild-type p53 (Li et al., 2005). We argued that since SCC9-PG 

and A431 cells express mutant p53, these mutant proteins may be able to 

induce luciferase activity from both the wild-type and mutant p53 
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promoters. On the other hand, activation from the mutant promoter would 

not be expected in MCF-7 cells with wild-type p53 expression. 

Additionally, to further confirm the role of plakoglobin in regulating the 

transcriptional activity of wild-type p53, we knocked down plakoglobin in 

MCF-7 cells using shRNA (Figure 4-9A) and assessed the effects on 

luciferase activity. When MCF-7 cells were transfected with the same 

constructs, we observed a significant induction of luciferase activity (nearly 

300-fold) when the wild-type construct was transfected, whereas the 

control and mutant constructs showed no activity (Figure 4-9B). In MCF-7 

cells, knock down of plakoglobin resulted in a significant (~21-fold) 

decrease in luciferase activity from the wild-type construct (Figure 4-9B, 

MCF-7-shPG), demonstrating that p53 transcriptional activity was 

enhanced in the presence of plakoglobin.  

Luciferase assays using the reporter constructs downstream of the wild-

type and mutated consensus p53-binding sequences demonstrated that 

luciferase activity was significantly induced only from the wild-type plasmid 

in MCF-7 cells (Figure 4-9C, MCF-7). Finally, knock down of plakoglobin in 

MCF-7 cells (MCF-7-shPG) resulted in significantly (~7-fold) decreased 

luciferase activity from the wild-type consensus p53 plasmid in these cells 

(Figure 4-9C, MCF-7-shPG).  

4.3. Discussion 

Our microarray studies identified several p53-target genes whose levels 

were altered upon plakoglobin expression in SCC9 cells. Among these  
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genes was the tumor suppressor 14-3-3σ. We chose to focus on 14-3-3σ 

because a) its mRNA levels were increased over 30-fold in SCC9-PG 

cells, one of the most notable increases in any of the identified p53-target 

genes, b) it is a well-documented tumor and metastasis suppressor 

(Lodygin and Hermeking, 2006; Lee and Lozano, 2006; Yi et al., 2009), c) 

members of the 14-3-3 family are known to interact with a wide range of 

cellular partners and regulate several biological processes (Obsilova et al., 

2008; Morrison, 2008; Van Heusden, 2009), d) 14-3-3σ itself has been 

shown to interact with plakophilin, a component of the desmosomal 

plaque, which also contains plakoglobin (Benzinger et al., 2005) and e) 

more recently it has been shown that various 14-3-3 proteins can regulate 

the Wnt pathway and β-catenin signaling (Li et al., 2008), functionally 

linking these proteins to catenin proteins. Furthermore, we and others 

have shown that plakoglobin also regulates β-catenin subcellular 

localization and in turn its transcriptional activity (Salomon et al., 1997; 

Klymkowsky et al., 1999; Zhurinsky et al., 2000a; Li et al., 2007a), thereby 

suggesting that both plakoglobin and 14-3-3σ act to regulate the Wnt 

signaling pathway in similar, albeit not identical ways. 

The change in the expression of several p53-target genes, including 14-

3-3σ, in SCC9-PG cells suggested that plakoglobin participated in p53-

mediated regulation of gene expression. Coimmunoprecipitation 

experiments determined that plakoglobin and p53 interacted with one 

another in both the nuclear and cytoplasmic pool of proteins. It is well 
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documented that p53 interacting proteins play important roles in regulating 

its stability and function (Boehme and Blattner, 2009; Collavin et al., 

2010). By identifying plakoglobin as a p53 interacting partner, we are, to 

the best of our knowledge, the first to show that a catenin protein interacts 

with p53. Although we did not observe an interaction between β-catenin 

and p53, a relationship between them exists whereby p53 regulates the 

stability of β-catenin, via the upregulation of the ubiquitin ligase Siah-1, 

which in turn degrades β-catenin. Furthermore, β-catenin overexpression 

has been shown to increase p53 levels via upregulation of p14/19 ARF, 

which sequesters Hdm2 and leads to increased p53 protein stability 

(Damalas et al., 1999; 2001; Harris and Levine, 2005).  

The observation that a number of p53 target genes, including SFN, 

were upregulated in SCC9-PG cells and that plakoglobin and p53 

interacted in both the cytoplasm and nucleus suggested that perhaps 

these proteins regulate gene expression concurrently. ChIP and EMSA 

experiments showed that plakoglobin and p53 were both associated with 

the 14-3-3σ gene promoter (Figures 4-5, 4-6, 4-7). These results suggest 

that plakoglobin and p53 are part of a transcriptional complex that 

regulates gene expression, which is novel when considering that reports 

linking plakoglobin to the regulation of gene expression are limited. 

Interestingly, previous studies implicating plakoglobin in the regulation of 

gene expression have shown that plakoglobin does so in conjunction with 

the TCF/LEF transcription factors (Simcha et al., 1999; Kolligs et al., 2000; 
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Zhurinsky et al., 2000a; Li et al., 2007a; Williamson et al., 2006). However, 

several of these studies have demonstrated that the plakoglobin-TCF 

complex is inefficient in binding to DNA (Simcha et al., 1999; Zhurinsky et 

al., 2000a; Li et al., 2007a; Kolligs et al., 2000) and suggest that 

plakoglobin’s ability to regulate gene expression may have more to do with 

its modulation of the signaling activity of β-catenin than with its own 

independent function. More recently, it has been shown that in addition to 

regulating the signaling activity of β-catenin itself, plakoglobin is also 

capable of regulating β-catenin oncogenic signaling by interacting with and 

promoting the nuclear export of the transcription factor SOX4, which 

interacts with β-catenin and promotes its transcriptional activity (Sinner et 

al., 2007; Scharer et al., 2009; Lai et al., 2011). However, a more direct 

mechanism of plakoglobin-mediated regulation of gene expression has 

been documented, as it has been shown that plakoglobin, in conjunction 

with LEF-1, is a repressor of oncogenic Myc, and that the loss of this 

repression is observed in pemphigus vulgaris (Williamson et al., 2006).  

The importance of our result lies in the fact that plakoglobin appears to 

be regulating gene expression through its association with non-TCF/LEF 

transcription factors, in this case, p53. Indeed, the 14-3-3σ gene promoter 

has no identified TCF/LEF binding sites and is not known to be a Wnt/β-

catenin target gene. In accordance, we previously showed that 

overexpressed/high levels of plakoglobin, by modulating the signaling 

activity of β-catenin, regulated the expression of the BCL2 gene in SCC9-
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PG cells and this regulation did not involve TCF (Li et al., 2007a). This 

suggests that plakoglobin can regulate gene expression and more 

importantly tumorigenesis and metastasis independent of TCF. Similarly, a 

previous report showed that plakoglobin may regulate the expression of 

the PML gene independent of TCF/LEF (Shtutman et al., 2002). 

Interestingly, the PML gene has recently been shown to be a p53-target 

gene (de Stanchina et al., 2004), which further supports the notion that 

plakoglobin may regulate gene expression in conjunction with p53. 

The experiments described in this study were all performed in the 

absence of cellular stressors such as staurosporine treatment or DNA 

damage. As such, it appears that plakoglobin and p53 regulate gene 

expression under steady state cellular conditions, implying that this activity 

is a basic function within cells. The disruption of this gene regulation 

function (as per the loss of plakoglobin expression in SCC9 cells) may 

contribute to tumorigenesis. In agreement, we observed plakoglobin-p53 

interactions in various epithelial and fibroblast cell lines that we examined, 

suggesting that this interaction occurs in cell lines expressing both 

proteins (either endogenously or exogenously). Furthermore, we observed 

that plakoglobin and p53 interacted in the cytoplasm as well as the 

nucleus (Figure 4-4), which suggests that the two proteins may associate 

with one another in the cytoplasm and then translocate into the nucleus. In 

addition, p53 is known to play non-genomic functions in the cytoplasm 

(particularly at the mitochondria; Mihara et al., 2003; Vaseva and Moll, 
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2009; Lindenboim et al., 2011) and since plakoglobin associated with p53 

in the cytoplasm, it is conceivable that plakoglobin may also play some 

role in the non-genomic functions of p53.  

Previous studies have identified p53 as being mutated in the DNA 

binding domains in SCC9 and A431 cells (Jung et al., 1992; Kwok et al., 

1994). Jung et al. (1992) showed that the TP53 gene in SCC9 cells 

contains a 32-base pair deletion starting at codon 274 which results in a 

premature stop codon and a truncated protein, whereas Kwok et al. (1994) 

showed that p53 contains a point mutation (R273H) in its DNA binding 

domain in A431 cells. However, we observed a p53 protein in SCC9 cells 

that appeared approximately 50 kDa and that accumulated in the nucleus 

(Figure 4-4). This discrepancy is most likely the result of the heterogeneity 

of the original isolated SCC9 cell line. We addressed this possibility by 

sequencing and characterizing the TP53 gene in our SCC9 cells. We 

observed not only the expected 32-base pair deletion, but also a number 

of single base pair deletions spanning nucleotides 906-1162 (Table 4-1). 

These deletions have eliminated the expected premature stop codon and 

generated a p53 protein slightly smaller than wild-type p53 in which the 

p53 protein sequence contains stretches of wild-type p53 amino acids 

interspersed with sequences unrelated to p53. We further characterized 

this mutant protein by expressing the p53 cDNA clone isolated from SCC9 

cells in the p53-null H1299 cell line (Lin and Chang, 1996; Wu et al., 

2011). Following its expression, the mutant p53 protein accumulated in  
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Table 4-1. p53 status in various cell lines used. 

 

 

 

 

 

 

 
 

  

Cell Line p53 Status p53 Mutation References 
MCF-10-2A Wild-type - Li et al., 2005 

MCF-7 Wild-type - Li et al., 2005 
SCC9 Mutant 

 
 

Mutant 

A 32-bp deletion in DNA binding 
domain (starting at codon 274) 

 
A 32-bp deletion in DNA binding 

domain (starting at codon 274) with 
further deletions at bp 906, 1039, 

1062, 1076, 1083, 1090, 1098, 1120, 
1121, 1152, 1153, and 1162 

 

Jung et al., 1992 
 
 

Current Study 

A431 Mutant R273H Kwok et al., 1994 
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these cells, localized to both the cytoplasm and the nucleus and 14-3-3σ 

protein levels were increased. ChIP experiments showed that the mutant 

p53 protein was associated with the 14-3-3σ promoter (Figure 4-10). 

Collectively, these results suggested that this mutant p53 was capable of 

regulating 14-3-3σ (SFN) expression.  

The ChIP results suggested that despite their p53 mutations, 

plakoglobin and the mutated p53 protein still associated with the 14-3-3σ 

gene promoter in SCC9-PG and A431 cells (Figure 4-5). This result, while 

unexpected, is not unparalleled, as a number of studies have shown that 

mutant p53 protein is capable of binding to its target gene sequences and 

regulating their expression (Pan and Haines, 2000; O’Farrell et al., 2004; 

Weisz et al., 2007; Chandrachud and Gal; 2009; Perez et al., 2010; Rasti 

et al., 2012). Since the mutant p53 did not associate with the 14-3-3σ 

promoter in the absence of plakoglobin (SCC9 cells), this suggests a role 

for plakoglobin in associating p53 with its target gene promoter(s). In 

agreement, luciferase reporter assays in SCC9 and SCC9-PG cells 

showed that the transcriptional activity of p53 was stimulated upon 

plakoglobin expression, as SCC9 cells showed minimal luciferase activity, 

whereas luciferase activity was significantly enhanced in SCC9-PG cells 

(Figure 4-8A, E). However, while we observed 2-3 fold increases in 

luciferase activity in SCC9-PG cells, the qRT-PCR results suggested a 

larger increase in 14-3-3σ gene expression in these same cells. This  
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discrepancy may be explained by the involvement of other factors that 

partake in regulating 14-3-3σ gene expression (e.g. p63, p73, BRCA1;  

Danilov et al., 2011; Sang et al., 2006; Aprelikova et al., 2001). Similarly, 

while knock down of plakoglobin in MCF-7 cells resulted in a 21-fold 

decrease in luciferase activity from the 14-3-3σ promoter, 14-3-3σ protein 

levels were decreased by 2-fold in these same cells. This may be due 

once again to the involvement of other proteins that regulate 14-3-3σ 

expression. In addition, while MCF-7 shPG transfectants had decreased 

p53 levels, p53 protein was still present in these cells and therefore may 

have been able to promote 14-3-3σ expression.  

Knock down of p53 in SCC9-PG cells also resulted in decreased 

luciferase activity from both the wild-type and mutant 14-3-3σ promoter 

constructs (Figure 4-8C), suggesting that the mutant p53 protein in these 

cells was directly involved in regulating 14-3-3σ gene expression. 

Furthermore, the decreased luciferase activity from the mutant promoter 

construct is further confirmation that the mutant p53 protein can promote 

gene expression from the mutant promoter. However, while knock down of 

p53 almost completely abrogated luciferase activity from the reporter 

constructs, minimal amounts of 14-3-3σ protein remained (Figure 4-8B). 

Collectively, our data suggest that p53 and plakoglobin are the primary 

regulators of 14-3-3σ expression although it is possible that other factors 

may also be involved.    
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The results from the luciferase assays suggested that in addition to 

wild-type p53-binding sequences, the mutant p53 protein in SCC9-PG 

cells could bind to and activate gene expression under the control of a 

mutant p53-binding sequence. However, the activation from mutant p53-

binding sequences required the presence of plakoglobin, since minimal 

luciferase activity was observed in SCC9 cells. That a mutant p53 

protein’s function can be modified following the introduction of an 

interacting partner is not unprecedented. It has been previously shown 

that another p53 interacting protein, ANKRD11, can interact with and 

restore the normal tumor/metastasis suppressor function and 

transcriptional activity of a mutant p53 in breast cancer cells (Neilsen et 

al., 2008; Noll et al., 2012). Our data suggests that in the presence of 

plakoglobin, mutant p53, which otherwise would not associate with its 

target gene promoters, may be capable of regulating the expression of its 

target genes (anti-tumor/metastasis genes). Similar to ANKDR11, it is 

possible that plakoglobin, as an interacting partner of p53, may be able to 

alter the conformation of the mutant p53 protein, thus allowing it to bind to 

its target gene promoters. This is a novel and important result with 

potentially significant therapeutic implications, since p53 is inactivated in 

half of all tumors (Rahman-Roblick et al., 2007; Goh et al., 2011; Junttila 

and Evan, 2009). As such, the relationship between p53 and plakoglobin 

is one that requires further investigation and could potentially lead to the 

identification of plakoglobin as a useful marker in the diagnosis and 
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prognosis of cancer. The ability of plakoglobin to interact with both wild-

type and mutant p53 and to activate the expression of tumor suppressor 

genes suggests that plakoglobin itself may be a useful target for 

therapeutic interventions in the treatment of tumors with mutated p53 

protein. 

When looking at wild-type p53 expressing cells (MCF-7), we showed 

that while luciferase activity was induced from the wild-type p53-binding 

sequence, no activity was observed from the mutant sequence (Figure 4-

9B, C), demonstrating that wild-type p53 can only activate gene 

expression from wild-type p53-binding sequences. Interestingly, knock 

down of plakoglobin in MCF-7 cells resulted in significantly decreased 

luciferase activity, suggesting that plakoglobin normally plays a role in 

regulating the transcriptional activity of p53. Plakoglobin may also regulate 

the levels of p53, as we observed significantly higher p53 levels in SCC9-

PG cells relative to SCC9 cells (Figure 4-2D). Furthermore, MCF-7-shPG 

transfectants had lower levels of p53 compared to parental MCF-7 cells 

(Figure 4-9A). These observations suggest that, as an interacting partner 

of p53, plakoglobin may be involved in p53 stability and that the increased 

p53 transcriptional activity in the presence of plakoglobin may be due, in 

part, to the increased amount of p53 protein in plakoglobin-expressing 

cells. However, plakoglobin most likely plays some other role in regulating 

p53 transcriptional activity, since the p53 in SCC9 cells, which is 

expressed to considerable amounts, did not associate with the 14-3-3σ 
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gene promoter (Figure 4-5A). Also, plakoglobin may play a role in 

regulating the subcellular distribution of p53 as was recently demonstrated 

for NPM (Lam et al., 2012), since there was considerably more p53 in the 

nuclear fractions of SCC9-PG cells compared to SCC9 cells (compare 

Figure 4-4, SCC9 and SCC9-PG, IB: p53).  

While the tumor and metastasis suppressor activity of plakoglobin has 

remained unclear, new reports are beginning to shed light on this topic. 

We recently showed that plakoglobin expression resulted in the increased 

levels (mRNA and protein) and membrane localization of the metastasis 

suppressors Nm23-H1 and H2 and that plakoglobin interacted with Nm23 

(Chapter Three; Aktary et al., 2010). Also, plakoglobin expression was 

shown to regulate cell motility through both cell-cell adhesion dependent 

and independent mechanisms (Yin et al., 2005). The formation of stable 

cell-cell junctional complexes is an intuitive way plakoglobin may regulate 

tumorigenesis and metastasis. However, plakoglobin may function as a 

tumor/metastasis suppressor independent of its adhesive function by 

modulating Rho, Fibronectin and Vitronectin-dependent Src signaling 

(Todorovic et al., 2010; Franzen et al. 2012), by acting as a transcriptional 

repressor of oncogenic Myc (Williamson et al., 2006) and by increasing 

the expression of metastasis suppressors such as Nm23 (Chapter Three; 

Aktary et al., 2010) and 14-3-3σ. These in vitro observations are 

supported by clinical studies that have shown decreased plakoglobin 

expression leads to tumorigenesis, increased risk of metastasis and poor 
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overall prognosis in various tumors (Pantel et al., 1998; Kanazawa et al., 

2008; Narkio-Makela et al., 2009; Nozoe et al., 2009; Aktary and Pasdar, 

2012, Holen et al., 2012). 

Overall, this chapter demonstrates, for the first time, the role of 

plakoglobin in the regulation of gene expression in conjunction with p53. 

By interacting with p53 and associating with the promoter of the 14-3-3σ 

(SFN) gene, plakoglobin appears to be playing an active role in the 

regulation of gene expression. The larger implication of this work is that 

plakoglobin has the potential to interact with transcription factors and to 

regulate the expression of various genes, including those that are involved 

in tumorigenesis and metastasis. 
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CHAPTER FIVE: PLAKOGLOBIN REGULATES THE EXPRESSION OF 
SATB1 AND SUPPRESSES IN VITRO PROLIFERATION, MIGRATION 

AND INVASION 
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5.1. Introduction1 

5.1.1. Rationale 

One of the differentially expressed genes identified in our microarray 

experiments was SATB1 (special AT-rich sequence binding protein 1).  

SATB1 is a global regulator of gene expression and an oncogene. We 

noted that SATB1 expression was decreased 3-fold in SCC9-PG cells 

relative to parental SCC9 cells. This suggested that plakoglobin may play 

a role in regulating the SATB1 gene and consequently have an effect on 

the expression of its target genes involved in tumorigenesis and 

metastasis. As such, we set out to characterize the effect of plakoglobin 

expression on the expression of SATB1 and whether plakoglobin 

expression altered the in vitro proliferation, migration and invasion of 

various cancer cell lines. 

5.1.2. SATB1 

SATB1 was initially identified as a DNA-binding protein that was highly 

expressed in the thymus (Dickinson et al., 1992; de Belle et al., 1998). 

This protein had a high affinity for binding to base-unpairing regions 

(BURs), which are genomic DNA sequences with high unfolding potential, 

containing clusters of sequences (approximately 20-40 base pairs long) 

with a bias in G and C distribution (i.e. one DNA strand contains only A, T 

and C residues; Dickinson et al., 1992; Kohwi-Shigematsu et al., 1990, 

2013; Bode et al., 1992). Importantly, since BUR sequences are thought to 

be found all throughout the genome and since SATB1 demonstrated a 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 A version of this chapter has been submitted for publication to PLoS One. 
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specificity for these BUR sequences, it became evident that SATB1 could, 

through its interactions with different BUR sequences in different gene 

promoters, cause the looping of chromatin (Cai et al., 2003, 2006; Kumar 

et al., 2007; Kohwi-Shigematsu et al., 2013). These chromatin loops could, 

in turn, potentially result in the close physical proximity and coordinated 

regulation of genes that would otherwise remain silent. In addition to 

forming these chromatin loops, SATB1 was shown to recruit different 

chromatin remodeling enzymes to the gene loci close to the BURs and as 

a result, altered gene expression (Yasui et al., 2002; Kumar et al., 2005; 

Wen et al., 2005; Han et al., 2008).  

SATB1 has been shown to promote tumorigenesis and metastasis in 

various tumor cell lines, including breast, lung, ovarian, colorectal, liver, 

laryngeal, glioma and melanoma (Han et al., 2008; Li et al., 2010; Zhao et 

al., 2010; Chen et al., 2011; Xiang et al., 2012; Tu et al., 2012; Nodin et 

al., 2012; Chu et al., 2012; Huang et al., 2013). Specifically, SATB1 has 

been shown to induce the expression of tumor and metastasis-promoting 

genes while suppressing the expression of metastasis suppressor genes 

(Han et al., 2008; Notani et al., 2010a; Tu et al., 2012).  

5.1.3. Specific aim and summary of results 

In this chapter, we examined the role of plakoglobin in regulating the 

expression of the SATB1 gene and one of its targets, NME1. We show 

that plakoglobin, in coordination with p53, interacted with the SATB1 

promoter and downregulated its expression. The decreased levels of 



	   128 

SATB1 mRNA were accompanied by its decreased protein levels in 

squamous and mammary carcinoma cell lines expressing plakoglobin. 

Furthermore, plakoglobin expression led to an increase and a decrease in 

the protein levels of a subset of SATB1 repressed and activated target 

genes, respectively. Concurrent with these transcriptional changes, 

plakoglobin expression resulted in decreased cell growth and in vitro 

migration and invasion. Taken together, our data suggests that 

plakoglobin suppresses tumorigenesis and metastasis (at least in vitro) 

through the regulation of genes involved in these processes. 

5.2. Results 

5.2.1. Plakoglobin regulates SATB1 expression.  

To confirm that SATB1 expression was decreased in SCC9 cells 

following plakoglobin expression, we first performed RT-PCR experiments 

and observed a notable decrease in SATB1 mRNA in SCC9-PG cells 

compared to SCC9 cells (Figure 5-1A, left). In agreement with this result, 

western blot analysis revealed that while SATB1 protein was expressed in 

SCC9 cells, its levels were significantly decreased and barely detectable 

in SCC9-PG cells (Figure 5-1A, right).  

To determine whether plakoglobin regulates the SATB1 gene, we 

performed chromatin immunoprecipitation (ChIP) experiments using 

plakoglobin antibodies and chromatin from SCC9 and SCC9-PG cells. The 

isolated DNA was then processed for PCR using primers specific to the 

SATB1 promoter (Table 2-2). These experiments showed that plakoglobin  
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associated with the SATB1 promoter in SCC9-PG cells, but not in SCC9 

cells (Figure 5-1B). ChIP experiments using control IgG antibodies 

produced negative results. Since we have shown that plakoglobin interacts 

with and regulates gene expression in conjunction with p53 (Chapter Four; 

Aktary et al., 2013), we also performed the ChIP experiments using p53 

antibodies, which showed the association of p53 with the SATB1 promoter 

in SCC9-PG cells but not in SCC9 cells (Figure 5-1B).  

The association of plakoglobin and p53 with the SATB1 promoter and 

the decreased levels of SATB1 mRNA and protein in SCC9-PG cells 

suggested that plakoglobin and p53 function as negative regulators of the 

SATB1 promoter. To test this hypothesis, luciferase reporter assays were 

conducted using luciferase reporter constructs downstream of a 1.2 kb 

SATB1 promoter fragment (Li et al., 2010). Consistent with the role of 

plakoglobin in the negative regulation of the SATB1 promoter, the 

luciferase activity of the reporter constructs was significantly decreased 

(over 5-fold) in SCC9-PG cells compared to SCC9 cells (Figure 5-1C). 

5.2.2. Plakoglobin regulates SATB1 in mammary epithelial cell lines.  

In addition to SCC9 cells, we also examined the role of plakoglobin on 

SATB1 expression in mammary epithelial cell lines, since it has been 

shown that SATB1 plays a major role in the regulation of breast cancer 

progression and metastasis (Han et al., 2008). As such, we set out to 

determine whether the results from SCC9-PG could be extended to breast 

cancer cell lines. To do so, we took two approaches: first, we knocked 
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down plakoglobin in MCF-7 cells (MCF-7-shPG), which express 

considerable levels of plakoglobin, and second, we expressed plakoglobin 

in MDA-231 cells (MDA-231-PG), which express very low levels of 

endogenous plakoglobin (Lam et al., 2012). RT-PCR and western blot 

experiments showed that knock down of plakoglobin in MCF-7 cells 

resulted in increased levels of both SATB1 mRNA and protein. In contrast, 

plakoglobin expression in MDA-231 cells resulted in a decrease in both 

SATB1 mRNA and protein, although SATB1 protein was still detectable in 

MDA-231-PG cells (Figure 5-2A).  

ChIP experiments showed that similar to SCC9-PG cells, both 

plakoglobin and p53 associated with the SATB1 promoter in MCF-7 cells. 

Furthermore, both proteins associated with the SATB1 promoter in MDA-

231-PG cells, but not MDA-231 cells (Figure 5-2B). To further demonstrate 

that plakoglobin and p53 negatively regulate the SATB1 promoter, we 

performed the same luciferase assay experiments using the SATB1-

luciferase reporter constructs in MCF-7, MCF-7-shPG, MDA-231 and 

MDA-231-PG cells. The results of these experiments were consistent with 

those from SCC9-PG cells: luciferase activity in MDA-231-PG cells was 

decreased (over 2-fold) compared to MDA-231 cells, whereas activity in 

MCF-7-shPG cells was induced (approximately 2-fold) compared to MCF-

7 cells (Figure 5-2C). Taken together, the results from these experiments 

suggest that plakoglobin and p53 negatively regulate SATB1 expression. 
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5.2.3. Plakoglobin associates with and activates the NME1 promoter. 

 It has been suggested that the metastasis suppressor Nm23-H1 is a 

potential target of SATB1 (Han et al., 2008). We previously identified the 

metastasis suppressors Nm23-H1 and -H2 as being differentially 

expressed in SCC9-PG cells and showed that plakoglobin expression 

resulted in increased Nm23-H1 and -H2 protein levels as well as 

increased Nm23-H1 (NME1), but not Nm23-H2 (NME2) gene expression 

(Chapter Three; Aktary et al., 2010). Therefore, we set out to determine if 

the increased levels of NME1 in SCC9-PG cells were simply due to 

decreased SATB1 expression or whether plakoglobin actively promoted 

the expression of NME1. In order to do so, we performed ChIP 

experiments using plakoglobin antibodies and primers specific to the 

NME1 promoter (Table 2-2). Plakoglobin associated with the NME1 

promoter in SCC9-PG cells, but not SCC9 cells (Figure 5-3A). Similar 

ChIP experiments were performed using p53 antibodies, which 

demonstrated that while p53 associated with the NME1 promoter in SCC9-

PG cells, this association was absent in SCC9 cells (Figure 5-3A). ChIP 

experiments using control IgG antibodies produced negative results. 

To confirm the role of plakoglobin in the regulation of NME1 expression, 

luciferase assays were done using luciferase reporter constructs 

downstream of a 2kb NME1 promoter fragment (Qu et al., 2008). In these 

experiments, luciferase activity was induced approximately 6-fold in 

SCC9-PG cells compared to SCC9 cells (Figure 5-3B), demonstrating that  
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plakoglobin expression resulted in increased NME1 promoter activity. 

Taken together, these data suggest that while plakoglobin downregulates 

SATB1 levels, which may in turn result in increased NME1 expression, 

plakoglobin also actively regulates NME1 gene expression through its 

associations with the NME1 promoter.  

5.2.4. Plakoglobin regulates NME1 in mammary epithelial cell lines. 

We subsequently performed RT-PCR and western blot experiments to 

examine the levels of Nm23-H1 mRNA and protein in the mammary 

epithelial cell lines to confirm that plakoglobin-mediated regulation of 

NME1 was not specific to squamous cell lines. Knockdown of plakoglobin 

in MCF-7 cells resulted in a notable decrease in Nm23-H1 mRNA, which 

was accompanied by a corresponding decrease in the levels of Nm23-H1 

and -H2 protein (Figure 5-4A). In contrast, the levels of both Nm23-H1 

mRNA and protein were increased considerably in MDA-231-PG cells 

compared to parental MDA-231 cells (Figure 5-4A). We also performed 

the RT-PCR experiments using primers specific to the Nm23-H2 (NME2) 

gene and observed that plakoglobin expression had no effect on NME2 

expression, since the levels of Nm23-H2 mRNA were not different 

between MCF-7 and MCF-7-shPG and MDA-231 and MDA-231-PG cells, 

respectively (Figure 5-4A). These results were consistent with the lack of 

NME2 induction following plakoglobin expression in SCC9-PG cells 

(Aktary et al., 2010). 
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Next, ChIP experiments were conducted with chromatin from MCF-7, 

MDA-231 and MDA-231-PG cells using plakoglobin and p53 antibodies. 

The results from these experiments showed that plakoglobin and p53 

associated with the NME1 promoter in both MCF-7 and MDA-231-PG 

cells, but not MDA-231 cells (Figure 5-4B). In addition, luciferase reporter 

assays using these cell lines were performed to determine the role of 

plakoglobin in the regulation of the NME1 promoter. While minimal 

luciferase activity was observed in MDA-231 cells, promoter activity was 

induced over 3-fold in MDA-231-PG cells (compared to parental MDA-231 

cells; Figure 5-4C). In contrast, luciferase activity was decreased by ~5-

fold in MCF-7-shPG cells compared to MCF-7 cells (Figure 5-4C). Taken 

together, these results suggest that plakoglobin and p53 positively 

regulate the expression of the NME1 gene and that plakoglobin 

expression has no effect on the NME2 gene.  

5.2.5. Changes in SATB1 target gene expression in response to 

plakoglobin levels. 

Since SATB1 is a major global regulator of gene expression, we argued 

that the alteration in SATB1 levels based on plakoglobin expression would 

result in alterations in the expression of various SATB1 target genes in 

addition to Nm23. More specifically, we focused on a select number of 

SATB1 target genes that are known to participate in tumorigenesis and 

metastasis (e.g. tumor/metastasis suppressors BRMS1, Kiss1, Claudin-1; 

tumor/metastasis promoters c-Abl, MMP3, ErbB2 and Snail). We 
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performed qRT-PCR experiments and observed that the levels of c-Abl, 

Snail, ErbB2 and MMP3 mRNA were all increased in MCF-7-shPG cells, 

compared to MCF-7 cells. Consistent with the increased mRNA levels, 

western blot experiments showed that protein levels of these 

tumor/metastasis promoters were also increased in MCF-7-shPG cells 

(Figure 5-5A-B, top). Furthermore, the mRNA and protein levels of 

tumor/metastasis suppressors BRMS1, Kiss1 and Claudin-1 were 

decreased in MCF-7-shPG cells relative to MCF-7 cells (Figure 5-5A-B, 

bottom). 

5.2.6. Plakoglobin suppresses cancer cell growth, migration and 

invasion.  

The results so far suggested that plakoglobin plays a role in promoting 

the expression of various genes involved in suppression of tumorigenesis/ 

metastasis, while suppressing the expression of those genes that promote 

these processes. In order to determine whether plakoglobin’s regulation of 

gene expression resulted in a biologically discernable effect on the in vitro 

growth and the migratory and invasive properties of cells, MCF-7 and 

MCF-7-shPG cells we processed for growth, migration and invasion 

assays (as described in Chapter Two). The results of the growth assay 

showed a significant increase (~2.5-fold) in the growth of MCF-7-shPG 

relative to MCF-7 cells (Figure 5-6A). As additional controls, we also 

assessed the growth rate of SCC9 and MDA -231 cells and their 

plakoglobin expressing transfectants SCC9-PG and MDA-231-PG  
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respectively. In contrast to MCF-7-shPG, the growth rate of SCC9-PG 

cells was reduced ~2.5-fold relative to parental SCC9 cells, whereas 

MDA-231-PG cells showed a 2-fold reduction in growth relative to parental 

MDA-231 cells, which was consistent with what we had observed 

previously (Figure 5-6A; Parker et al., 1998; Lam et al., 2012).  

We then used BrdU labeling to verify if the differences observed at the 

end of the 7-day growth assay among different cell lines with various 

levels of plakoglobin expression were due to differences in cell 

proliferation. Cells from various cell lines were plated and allowed to grow 

for 6 days at which time they were labeled with BrdU for 24 hours and 

processed for confocal microscopy as described in Materials and 

Methods. The results showed that SCC9 and MDA-231 cells were highly 

proliferative as almost all cells displayed BrdU incorporation. In contrast, 

we detected very little or no BrdU incorporation in the plakoglobin 

expressing MCF-7, SCC9-PG and MDA-231-PG cells (Figure 5-6B), 

whereas there was significant BrdU incorporation in the plakoglobin 

knockdown MCF-7-shPG cells (Figure 5-6B). 

The migratory properties of the various cell lines were assessed using 

transwell chambers. Cells were allowed to migrate through transwell filters 

for 48 hours, after which the migrated cells were fixed and counted.   



B 

SCC9 

SCC9-PG 

8.0 - 

7.0 - 

6.0 - 

5.0 - 

4.0 - 

3.0 - 

2.0 - 

1.0 - 

   0 - 

N
um

be
r o

f c
el

ls
(x

10
5 )

 

3 5 7 0 
Days in culture 

MDA-231 

MDA-231-PG 

3 5 7 0 

MCF-7 

MCF-7-shPG 

3 5 7 0 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Days in culture Days in culture 

A 

SCC9 

SCC9-PG 

MDA-231 

MDA-231-PG 

MCF-7 

MCF-7-shPG 

Figure 5-6. Plakoglobin decreases in vitro cell growth and proliferation. (A) Replicate cultures of SCC9, 
SCC9-PG, MDA-231, -231-PG, MCF-7 and MCF-7-shPG cells were established at single cell density and cells 
were counted at 3, 5 and 7 days. Each time point represents the average of three independent experiments. (B) 
The absence of error bars at some time points is due to the small differences among the experiments. SCC9, 
SCC9-PG, MDA-231, -231-PG, MCF-7 and MCF-7-shPG cells were plated on glass coverslips and allowed to 
grow for 6 days at which time BrdU was added to the cell cultures for 24 hours. BrdU incorporation was then 
assessed by immunofluorescence staining using BrdU antibodies. Nuclei were counterstained with DRAQ5 and 
cells viewed using a 63X objective of an LSM510 META (Zeiss) laser scanning confocal microscope. Bar, 20 µm. 
 

141 



	   142 

Consistent with our previous observations, MDA-231-PG cells 

displayed ~ 40% less migration than MDA-231 cells  (Figure 5-7A; Lam et 

al., 2012). Similarly, SCC9 cells were approximately 10-fold more 

migratory than SCC9-PG cells, whereas MCF-7-shPG cells showed a 4-

fold increase in migration compared to MCF-7 cells (Figure 5-7A). To rule 

out the possibility that the increased migration in SCC9, MDA-231 and 

MCF-7-shPG could be due to their higher cell proliferation rate, we 

repeated the migration assays for 12 hours, since our growth data showed 

that none of the cell lines had a doubling time less than 24 hours (Figure 

5-6A). The results of these experiments were consistent with those of the 

48 hours assays and showed that SCC9, MDA-231 and MCF-7-shPG cells 

were considerably more migratory than their plakoglobin-expressing 

counterparts (SCC9-PG, MDA-231-PG, MCF-7; Figure 5-7A).  

The invasive properties of the various cell lines were assessed using 

matrigel-coated transwell chambers. Similar to the migration experiments, 

cells were allowed to migrate through the matrigel matrix, after which the 

invaded cells were fixed and counted. These experiments showed that in 

addition to being more migratory, SCC9, MCF-7-shPG and MDA-231 cells 

were more invasive than SCC9-PG, MCF-7 and MDA-231-PG cells 

(approximately 6-, 7- and 2-fold, respectively; Figure 5-7B; Lam et al., 

2012).  Taken together, these results suggest that plakoglobin, regulates 

the expression of genes involved in cell growth, migration and invasion 

concurrent with a suppression of in vitro migration and invasion. 
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5.3. Discussion 

In the present study, we have further investigated the underlying 

mechanisms for plakoglobin’s role in tumorigenesis and metastasis (also 

see Lam et al., 2012; Aktary et al., 2013).  Our data showed that 

plakoglobin associated with the promoter of the oncogenic DNA binding 

protein SATB1 and downregulated its expression. The decreased 

expression of SATB1 following plakoglobin expression was associated 

with its decreased protein levels and in turn, altered expression of SATB1 

target genes with an overall effect of decreased cell growth and in vitro 

migration and invasion. Conversely, knockdown of plakoglobin in MCF-7 

cells resulted in the upregulation of SATB1 and increased cell proliferation, 

migration and invasion. 

SATB1’s ability to regulate gene expression was initially identified in the 

thymus, where several studies showed that it was essential for T-cell 

development and differentiation (de Belle et al., 1998; Alvarez et al., 2000; 

Kumar et al., 2007). These studies demonstrated that SATB1 regulates 

gene expression by organizing target gene loci into distinct 

domains/chromatin loop structures and by recruiting different chromatin 

remodeling enzymes to promote gene expression and T-cell 

differentiation. Since then, SATB1 has been established as a contributing 

factor to the development and progression of many different types of 

cancer, including breast, lung, prostate, colon and ovarian (Han et al., 

2008; Li et al., 2010; Zhao et al., 2010; Chen et al., 2011; Xiang et al., 



	   145 

2012; Tu et al., 2012; Nodin et al., 2012; Chu et al., 2012; Huang et al., 

2013). SATB1 has also been shown to participate in the epidermis 

differentiation as SATB1-/- mice showed defects in epidermal differentiation 

(Fessing et al., 2011). These defects were associated with the improper 

activation of genes found within the epidermal differentiation complex 

locus, to which SATB1 was shown to bind. Other studies have 

demonstrated that SATB1 regulates the expression of at least 10% of 

genes in both T-cells and non T-cells, including genes involved in 

apoptosis, cell-extracellular matrix attachment, cellular metabolism, 

calcium signaling and the Wnt, Notch, and TGF-β pathways, suggesting 

that it plays a role in the global regulation of gene expression (Kumar et 

al., 2005; Notani et al., 2011).  

SATB1 has been suggested to regulate gene expression in conjunction 

with β-catenin as part of the Wnt signaling pathway (Purbey et al., 2009; 

Notani et al., 2010; Burute et al., 2012), since during T-cell differentiation, 

SATB1 associates with and recruits p300/CBP histone acetyltransferase 

and β-catenin to the promoters of Wnt target genes, resulting in the 

increased expression of genes such as IL-2 and MYC (Notani et al., 

2010). SATB1 also associated with the major breakpoint region (mbr) in 

the 3’-UTR of the BCL2 gene and promoted the expression of this anti-

apoptotic protein, whose expression is also regulated by β-catenin, 

through the induction of c-Myc and E2F1 (Ramakrishnan et al., 2000; 

Zhang et al., 2006; Ma et al., 2007; Li et al., 2007b). We previously 
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showed that plakoglobin is also able to regulate the levels of Bcl-2 through 

the modulation of the signaling activity of β-catenin (Li et al., 2007a). The 

data presented here clearly demonstrates that plakoglobin associates with 

the SATB1 promoter and downregulates its expression. Taken together, 

these observations suggest that plakoglobin may regulate Wnt β-catenin 

and SATB1 signaling in multiple ways. First, plakoglobin downregulates 

the expression of SATB1, which would result in the decreased expression 

of SATB1 target genes. The decreased levels of SATB1 may also 

alter/reduce β-catenin recruitment to its target promoters and therefore 

reduce the expression of those genes. Second, nuclear plakoglobin 

decreases the interaction between β-catenin and TCF and results in 

inhibition of TCF/β-catenin signaling (Miravet et al., 2002; Li et al., 2007). 

Third, expression of physiological levels of plakoglobin results in 

decreased levels of β-catenin (Salomon et al., 1997; Parker et al., 1998).  

Finally, plakoglobin associates with and inhibits the expression of the MYC 

promoter (Williamson et al., 2006), a β-catenin and SATB1 target gene 

(He et al., 1998; MacDonald et al., 2009; Notani et al., 2010).   

More recent studies have suggested that SATB1 plays a role in breast 

tumorigenesis and metastasis. Indeed, SATB1 expression in SATB1 

deficient SKBR3 breast cancer cells resulted in increased tumor growth 

and a more migratory and invasive phenotype that was concurrent with 

increased expression of tumor/metastasis promoter genes such as c-Abl, 

Snail, MMP3, TGF-β1, ErbB2 and decreased expression of 
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tumor/metastasis suppressors including Nm23, Claudin-1, Kiss1, BRMS1, 

KAI1. Conversely, knockdown of SATB1 in the highly invasive MDA-231 

cells had the opposite effect: tumor/metastasis promoting genes were 

downregulated whereas inhibitors of these processes were upregulated 

(Han et al., 2008).  

Plakoglobin also appears to have a role in regulating tumorigenesis and 

metastasis through the modulation of gene expression. We recently 

showed that plakoglobin interacts with the transcription factor p53 and 

regulates the expression of the tumor suppressor SFN (14-3-3σ; Aktary et 

al., 2013). Furthermore, we showed that p53-transcriptional activity is 

enhanced in the presence of plakoglobin and that mutant p53 proteins 

may, in association with plakoglobin, be functional in regulating their wild-

type target genes. In the current study, we have identified SATB1 as 

another target gene of plakoglobin and p53, as ChIP experiments clearly 

demonstrated an association of both proteins with the SATB1 promoter 

(Figures 5-1, 5-2). However, as opposed to SFN, SATB1 is negatively 

regulated by p53 and plakoglobin. While we have shown that plakoglobin 

and p53 interact with one another (Aktary et al., 2013), whether these 

interactions are direct or involve other cofactors is not clear and warrants 

further investigation. Furthermore, although plakoglobin is known to 

associate with TCF/LEF and regulate gene expression (Zhurinsky et al., 

2000a, b; Miravet et al., 2002; Williamson et al., 2006), neither the human 

SATB1 nor the NME1 genes contain potential TCF/LEF binding sites, 
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therefore it is likely that plakoglobin-mediated regulation of these genes is 

independent of TCF/LEF. It was previously shown that p63 is a 

transcriptional activator of SATB1 during epidermal differentiation (Fessing 

et al., 2011), however, to the best of our knowledge, the present work is 

the first to show that p53 also regulates SATB1 expression, albeit opposite 

to p63.  What other co-factors are involved in the regulation of p53 and 

plakoglobin target genes and to what extent these co-factors differ based 

on whether the complex is activating or repressing gene expression 

remains unknown and warrants further investigation.  

Along with repressing SATB1 expression, plakoglobin increased the 

expression of NME1, a potential SATB1 target gene. We previously 

showed that Nm23-H1 mRNA and protein as well as Nm23-H2 protein 

were upregulated in SCC9-PG cells and that plakoglobin and Nm23 

interacted in both the soluble and cytoskeleton-associated pools of cellular 

proteins (Chapter Three; Aktary et al. 2010). In this chapter, we further 

characterized the role of plakoglobin in the regulation of the NME1 gene 

and showed that plakoglobin and p53 associated with the NME1 promoter 

and activated its expression (Figures 5-3, 5-4). While the association of 

plakoglobin with the NME1 promoter is novel, it is supported by a previous 

report that showed decreased Nm23-H1 mRNA levels following 

plakoglobin knock down in breast cancer cells (Holen et al., 2012), In 

addition, while it has been previously suggested that NME1 is a 

transcriptional target of p53 (Chen et al., 2003; Rahman-Roblick et al., 



	   149 

2007), our ChIP data unequivocally shows that p53 associated with the 

NME1 promoter and regulated its expression. Taken together, these data 

suggest that plakoglobin can alter the levels of its potential target genes 

through different mechanisms, including direct regulation of gene 

expression (e.g. SFN, NME1) and through protein-protein interactions that 

result in increased protein levels (e.g. Nm23-H2; Chapter Three; Aktary et 

al., 2010).  

In addition to NME1, we also observed alterations in the mRNA and 

protein levels of other SATB1 target genes. More specifically, knockdown 

of plakoglobin in MCF-7 cells resulted in the increased mRNA and protein 

levels of the tumor/metastasis promoters c-Abl, Snail, ErbB2 and MMP3 

and the decreased levels of tumor/metastasis suppressors BRMS1, Kiss1 

and Claudin-1 (Figure 5-5). Whether plakoglobin may alter the expression 

of these SATB1 target genes by altering the expression of SATB1 itself 

and/or by associating with the promoters of these target genes and 

promoting/repressing their expression requires further investigation. 

To confirm that the regulation of tumorigenesis and metastasis 

associated genes by plakoglobin had a biological consequence, we 

performed cell growth, migration and invasion assays and showed that 

plakoglobin suppressed cell growth as well as in vitro migration and 

invasion (Figures 5-6, 5-7). These results were in agreement with other 

studies that have previously shown that plakoglobin suppresses these 

processes and promotes a more “epithelial” phenotype, consistent with its 
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role as a tumor and metastasis suppressor (Holen et al., 2012; Bailey et 

al., 2012; Lam et al., 2012). 

Increasing evidence suggests that plakoglobin regulates tumorigenesis 

independent of its cell-cell adhesion function. Plakoglobin regulates the 

expression of genes such as MYC, DSC2 and SFN (Williamson et al., 

2006; Tokonzaba et al., 2013; Aktary et al., 2013) and also suppresses 

Ras-mediated oncogenesis through increased HDAC4 mRNA levels (Yim 

et al., 2013). In addition to regulation of gene expression, plakoglobin has 

been shown to act as a tumor/metastasis suppressor by modulating Rho, 

Fibronectin and Vitronectin-dependent Src signaling (Todorovic et al., 

2010; Franzen et al. 2012).  

Our findings are significant in that they clearly point to a role of 

plakoglobin in regulating a variety of genes that are involved in tumor 

development and progression. Our data also suggests that plakoglobin 

may regulate a number of genes (both positively and negatively) under 

normal cellular conditions (i.e. in the absence of cell stress or activation of 

different growth pathways), implying that plakoglobin may be a “basal” and 

more global type of regulator of gene expression. As such, our results 

have larger implications in that plakoglobin may have a potential as a new 

therapeutic target for the treatment of various cancers. 
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6.1. Summary of Research  

6.1.1. Overview 

Despite its initial discovery nearly thirty years ago and many studies that 

have suggested that plakoglobin acts as a suppressor of tumorigenesis 

and metastasis, the exact molecular mechanisms by which plakoglobin 

regulates these processes has, until recently, remained unclear. The focus 

of this thesis has been characterizing, at the molecular level, potential 

mechanisms by which plakoglobin may suppress tumor formation and 

metastatic progression. 

We expressed plakoglobin in the plakoglobin-null SCC9 cell line and 

examined the protein and RNA profiles of SCC9-PG transfectants in order 

to identify proteins and transcripts that were differentially expressed 

following plakoglobin expression. From these studies, we identified several 

growth and metastasis regulating proteins/genes as potential plakoglobin 

targets, some of which were characterized in this thesis. 

6.1.2. Nm23-H1 and Nm23-H2 

We observed that the levels of Nm23-H1 and -H2 protein were both 

significantly increased in SCC9-PG cells compared to SCC9 cells, with 

Nm23-H2 levels being more notably increased. Interestingly, while the 

levels of both Nm23-H1 and -H2 protein were increased, only the levels of 

Nm23-H1 mRNA were upregulated in SCC9-PG cells (Figure 3-1). We 

verified these observations using both MDA-231 cells and their 

plakoglobin expressing transfectants (MDA-231-PG) and MCF-7 cells 
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along with MCF-7 cells in which plakoglobin was knocked down (MCF-7-

shPG). These experiments showed that while the levels of both Nm23-H1 

and -H2 proteins were altered upon plakoglobin expression, only the 

NME1 gene was affected (Figure 5-3). Furthermore, plakoglobin interacted 

with both Nm23-H1 and -H2 in various epithelial cell lines and this 

interaction was dependent on α-catenin (Figures 3-4, 3-5). Finally, we 

showed that plakoglobin (in conjunction with p53) interacted with and 

increased the expression of the NME1 promoter (Figures 5-3, 5-4).  

6.1.3. p53 and 14-3-3σ 

We identified several p53-target genes (including the tumor suppressor 

14-3-3σ) that were differentially expressed in SCC9-PG cells, which led us 

to examine whether plakoglobin and p53 interact. We showed that 

plakoglobin and p53 interacted in both the cytoplasm and the nucleus 

(Figures 4-2, 4-3, 4-4) and that both proteins were associated with the 14-

3-3σ gene (SFN) promoter (Figure 4-5). We subsequently showed that 

both wild-type and mutant p53 transcriptional activity was increased in the 

presence of plakoglobin (Figures 4-8 and 4-9). Furthermore, we observed 

that mutant p53, only in the presence of plakoglobin, was able to associate 

with the SFN promoter and promote its expression  (Figure 4-5, 4-8). 

6.1.4. SATB1 

Our microarray experiments showed that SATB1, the chromatin 

remodeling factor and oncogene, was one of the genes whose levels were 

downregulated in SCC9-PG cells. We showed that plakoglobin expression 
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in both SCC9 and MDA-231 cells resulted in decreased SATB1 

expression and protein levels, whereas knockdown of plakoglobin in MCF-

7 cells resulted in increased SATB1 mRNA and protein. We also showed 

that plakoglobin and p53 associated with the SATB1 promoter and 

repressed its activity (Figures 5-1, 5-2). Finally, we showed that SCC9, 

MDA-231 and MCF-7-shPG cells displayed increased growth, migratory 

and invasive properties compared to their plakoglobin-expressing 

counterparts (Figure 5-5, 5-6, 5-7).   

6.1.5. Model for regulation of tumorigenesis and metastasis by 

plakoglobin 

The results of this thesis suggest that plakoglobin can regulate its 

potential targets in a variety of ways (Figure 6-1). First, plakoglobin can 

interact with various intracellular partners and alters their levels, 

localization or function. In support of this scenario, we recently showed 

that plakoglobin interacted with nucelophosmin (NPM), the nucleolar 

phosphoprotein whose role in tumorigenesis is largely dependent on its 

subcellular distribution (Grisendi et al., 2006; Brady et al., 2009; Falini et 

al., 2008; Shandilya et al., 2009). We showed that plakoglobin expression 

in MDA-231 cells resulted in increased NPM protein levels and its 

redistribution from the cytoplasm and nucleoplasm, where it is thought to 

function as an oncogene, (Brady et al., 2009; Falini et al., 2008; Shandilya 

et al., 2009) into the nucleolus, where it is typically localized in 

untransformed cells (Grisendi et al., 2006). Therefore, plakoglobin,  
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through its interactions with NPM, altered NPM protein levels and 

localization, which was concurrent with the decreased growth, invasive 

and migratory properties of MDA-231-PG cells (Lam et al., 2012). 

Furthermore, since plakoglobin expression resulted in increased Nm23-H2 

protein levels, but not increased mRNA, it is likely that plakoglobin’s 

interactions with Nm23-H2, which also resulted in the subsequent 

redistribution of Nm23-H2 to the membrane, contributed to its increased 

protein levels. 

Second, plakoglobin can interact with transcription factors, such as p53, 

and regulate the expression of various target genes. Plakoglobin and p53 

interact in the cytoplasm and then translocate into the nucleus, where they 

most likely associate with various other co-factors to regulate gene 

expression. In this case, plakoglobin-mediated transcriptional regulation 

can either be activating (in the case of the NME1 and SFN genes) or 

inhibitory (e.g. SATB1). Plakoglobin also appears to help recruit p53 to its 

target gene promoters and promotes p53 transcriptional activity. 

The work presented in this thesis suggests that plakoglobin regulates 

tumorigenesis and metastasis through at least two mechanisms: 

regulation of gene expression and interactions with different cellular 

partners. However, plakoglobin’s tumor and metastasis suppressor activity 

is likely not limited to these described mechanisms and further studies are 

needed to clearly define other functions of plakoglobin in regulation of 

these processes. 
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6.2. Future Studies 

6.2.1. In vivo corroboration of research findings 

While the data presented in this thesis clearly demonstrates that 

plakoglobin suppresses tumorigenesis and metastasis in vitro, these 

studies need to be expanded to examine the role of plakoglobin in 

regulating these processes in vivo. As such, different studies should be 

undertaken to compliment our in vitro findings. 

First, immunohistochemistry (IHC) experiments using tumor specimens 

from patients with tumors of different origins and stages should be 

examined for the expression and subcellular localization of plakoglobin, 

p53, Nm23, 14-3-3σ and SATB1. While the expression of these proteins 

has been examined in various independent studies, analysis of their levels 

and localization has not been performed in the same tumor samples. The 

results of the IHC experiments can then be analyzed together with patient 

clinicopathological parameters (e.g. recurrence, lymph node status, etc.) 

using different statistical and computing science techniques in order to 

identify potential markers that can be useful in the diagnosis and 

prognosis of different cancers. Recently using an autonomous machine 

learning technique and data from 66 primary invasive ductal breast 

carcinomas, we were able to generate a simple and efficient decision-tree 

prognostic classifier, based on the levels and subcellular distribution of 6 

junctional proteins, 8 standard clinical features and 4 diagnostic markers 

that could predict whether a novel breast cancer patient would relapse. 



	   158 

We showed that a decision-tree classifier, which incorporated a 

combination of only 4 features (nuclear α- and β-cat levels, the total level 

of the tumor suppressor PTEN, and the number of involved axillary lymph 

nodes), is able to correctly predict patient outcomes 80% of the time 

(Asgarian et al., 2010). 

Second, in vivo tumorigenesis and metastasis assays should be 

performed using transgenic animal models. While we were able to show 

that plakoglobin expressing cells were considerably less migratory and 

invasive and had decreased growth rates compared to their non-

plakoglobin expressing counterparts, these types experiments need to be 

performed using animal models in order to assess the role of plakoglobin 

in the regulation of tumorigenesis and metastasis in a more biological 

setting. As such, subcutaneous injection of cell lines expressing different 

levels of plakoglobin (e.g. MDA-231 and MDA-231-PG) in immunodeficient 

mice will be useful in assessing the growth suppressive effects of 

plakoglobin. In contrast, tail vein or intracardial injection of the same cell 

lines and examination of metastasis formation in organs such as the lungs, 

liver or brain will help to determine whether plakoglobin can suppress 

tumor cell migration and invasion (i.e. metastasis).  

6.2.2. Modulation of the metastasis suppressor activity of Nm23 by 

plakoglobin 

We have shown that plakoglobin interacted with the metastasis 

suppressors Nm23-H1 and -H2 and increased their expression (H1) and 
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protein levels (H1 and H2). These increases in Nm23-H1 and -H2 protein 

levels in plakoglobin expressing cell lines resulted in an overall decrease 

in in vitro migration and invasion, which most likely results (at least in part) 

from the increased levels of Nm23 proteins in these cells. However, the 

exact role of plakoglobin in regulating the metastasis suppressor activity of 

Nm23 remains unknown. 

Nm23-H1 interacts with h-prune, a nucleotide phosphodiesterase that 

inhibits Nm23’s metastasis suppressor activity and results in increased cell 

migration and invasion (D’Angelo et al., 2004; Galasso and Zollo, 2009). In 

our microarray experiments, we identified the h-prune gene as being 

downregulated in SCC9-PG cells. We have preliminary evidence showing 

that the levels of h-prune protein are decreased in SCC9-PG cells 

compared to SCC9 cells and that plakoglobin expression results in 

changes in h-prune subcellular distribution from cytoplasmic to what 

appears to be Golgi-localized. These findings suggest that perhaps 

plakoglobin not only interacts with Nm23 proteins, but that it also alters 

their intracellular interactions. Therefore, coimmunoprecipitation 

experiments examining the interactions between plakoglobin, Nm23 and 

h-prune will be an interesting next step to determine whether plakoglobin 

does in fact promote Nm23 metastasis suppressor activity by altering its 

interactions with h-prune. 
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6.2.3. Characterization of plakoglobin-p53 interactions 

We showed that plakoglobin and p53 interacted with one another, 

however we have yet to characterize which domains of each protein are 

necessary for these interactions. In order to do so, coimmunoprecipitation 

experiments will need to be (and currently are being) performed using cell 

lines expressing different mutants of either plakoglobin or p53. By 

expressing either mutant plakoglobin or mutant p53 proteins missing one 

specific domain in cell lines that express the other protein endogenously, 

we can accurately assess which domain of each protein is necessary for 

these interactions. 

To complement these coimmunoprecipitation experiments, we plan to 

perform 3-dimensional (3-D) modeling experiments based on the amino 

acid sequences of both plakoglobin and p53 and use these generated 

models to map the sequences between plakoglobin and p53 that mediate 

their interactions. Since we found that plakoglobin interacted with both 

wild-type and mutant p53 proteins, we can also use these 3-D modeling 

experiments to identify the amino acid sequences that mediate the 

interactions of plakoglobin with both wild-type and mutant p53. 

6.2.4. Activation of p53 transcriptional activity in cancer cell lines 

The observation that mutant p53, in the presence of plakoglobin, was 

recruited to the promoters of its target genes, suggests that plakoglobin 

can interact with a mutant p53 that does not function properly and allow it 

to regain some of its wild-type functions. This phenomenon has numerous 
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therapeutic possibilities. By identifying the minimum amino acid sequence 

in plakoglobin that potentiates its interaction with p53 (through the 3-D 

modeling experiments), we can use this sequence to activate mutant p53 

in various cancer cell lines.  

In order to accomplish this, we will need to design cell permeable 

peptides containing the identified plakoglobin sequence, as was recently 

accomplished for Nm23 (Lim et al., 2011). These cell permeable 

plakoglobin peptides can then be administered to various cancer cell lines 

(with low or no plakoglobin expression) and their interactions with p53 can 

be assessed. In addition, following administration of the plakoglobin 

peptides, p53 transcriptional activity and associations with its target gene 

promoters both in the absence and presence of cellular stressors (e.g. UV 

irradiation, staurosporine treatment, etc.) can be examined. Furthermore, 

the migratory, invasive and apoptosis-inducing properties of these cells 

should be determined. If these cell permeable plakoglobin peptides result 

in the increased transcriptional activity of p53 and a decreased 

transformed phenotype, their effectiveness in activating p53 and 

suppressing tumorigenesis and metastasis in vivo can be assessed.  

6.2.5. Role of plakoglobin in p53-mediated apoptosis 

Our studies describing the interactions between plakoglobin and p53 

were all done in the absence of cellular stressors and as such represent a 

more “basal” or normal cell function for these two proteins in the regulation 

of gene expression. However, multiple studies have suggested that 
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plakoglobin stimulates apoptosis in response to cell stressors (Charpentier 

et al., 2000; Hakimelahi et al., 2000; Dusek et al., 2007). While the 

mechanisms behind the apoptosis-promoting activity of plakoglobin remain 

unclear, Dusek et al. demonstrated that plakoglobin-null keratinocytes 

were deficient in apoptosis, which corresponded with decreased 

cytochrome c release from the mitochondria. Our results suggest that 

plakoglobin may promote apoptosis through its interactions with p53. 

Importantly, we observed plakoglobin-p53 interactions in both the nucleus 

and cytoplasm. Since p53 interacts with pro- and anti-apoptotic proteins at 

the mitochondria and regulates mitochondrial membrane permeabilization 

(Mihara et al., 2003; Green and Kroemer, 2009; Vaseva and Moll, 2009), it 

is possible that plakoglobin is involved in these interactions. To test this 

possibility, apoptosis can be induced in cells lacking and expressing 

plakoglobin (e.g. by UV irradiating the cells to induce DNA damage) and 

apoptosis induction can be measured. Furthermore, p53’s interactions with 

its apoptosis inducing target genes promoters can be assessed, as can its 

(and plakoglobin’s) interactions with pro- and anti-apoptotic proteins at the 

mitochondria.  

6.2.6. Plakoglobin-mediated regulation of gene expression 

Our data clearly demonstrates that plakoglobin regulates gene 

expression in collaboration with p53. While we have identified three 

plakoglobin-p53 target genes, further studies are necessary to identify a 
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larger subset of plakoglobin target genes. As such, ChIP-chip experiments 

will be valuable in identifying plakoglobin targets on a large scale.  

While our data shows that plakoglobin and p53 coordinately regulate 

gene expression, it is entirely possible that plakoglobin can regulate gene 

expression with other transcription factors either in conjunction with, or 

independent of, p53. For example, plakoglobin may regulate gene 

expression through its interactions with Nm23 proteins. A recent study 

showed that knockdown of Nm23-H1 in the NL9980 human large cell lung 

cancer cell line resulted in alterations in the expression of approximately 

1000 genes, many of which are involved in tumorigenesis and metastasis 

(Ma et al., 2008). Interestingly, comparison of the mRNA profiles of Nm23-

H1 knockdown cells with SCC9-PG cells revealed that several genes may 

potentially be regulated by both plakoglobin and Nm23. For example, the 

BCL2A1, CXCL2, JUN, and MMP1 genes were all decreased in SCC9-PG 

cells and were increased in NL9980-Nm23-H1 knockdown cells, whereas 

the BEX5, HDAC5 and NME1 genes were increased in SCC9-PG cells 

and decreased in NL9980-Nm23-H1 knockdown cells. Yet another study 

showed that overexpression of Nm23-H1 in the highly invasive and Nm23-

H1-deficient MDA-MB-435 cell line resulted in the downregulation of 

various genes involved in tumorigenesis and metastasis, including EDG2 

and PTN (Horak et al., 2007), both of which were downregulated in SCC9-

PG cells. 
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Considering that previous studies have shown that both Nm23-H1 and -

H2 can regulate gene expression by binding to DNA (Postel et al., 1993, 

2000; Ma et al., 2002; Postel, 2003; Cervoni et al., 2006; Thakur et al., 

2009; Choudhuri et al., 2010) and our observations of interactions 

between plakoglobin and Nm23-H1 and -H2 in SCC9-PG-NLS cells, it is 

possible that plakoglobin and Nm23 proteins regulate gene expression 

concurrently. Future studies aimed at determining whether plakoglobin 

and Nm23 associate with the same target gene promoters and identifying 

these potential target genes would be of great interest. 

6.3. Conclusions 

Overall, the studies described in this thesis are the first detailed 

analysis of mechanisms underlying plakoglobin’s growth/metastasis 

inhibitory function.  Our results clearly demonstrate that plakoglobin plays 

an active role in suppressing tumorigenesis and metastasis through both 

the regulation of gene expression and by interacting with and altering the 

levels, localization and function of various intracellular proteins involved in 

these processes. The larger implication of this work is that plakoglobin, as 

an important player in tumorigenesis and metastasis, may be a useful 

marker for diagnosis and prognosis as well as a therapeutic target for the 

treatment of various cancers.  
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