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ABSTRACT

Plakoglobin (y-catenin) is a member of the Armadillo family of proteins
and a homolog of 3-catenin with similar dual adhesive and signaling
functions. The adhesive function of these proteins is mediated by their
interactions with cadherins and their signaling function by association with
various intracellular proteins, from signaling molecules to transcription
factors. However, while B-catenin has well-documented oncogenic
potential, plakoglobin signaling capabilities are typically associated with
tumor/metastasis suppression through mechanisms that have remained
unclear. The focus of this thesis was to elucidate the molecular
mechanisms by which plakoglobin regulates tumorigenesis and
metastasis. To this end, we expressed plakoglobin in plakoglobin-null
human carcinoma cells and compared the mRNA and protein profiles of
plakoglobin expressing cells with those of parental cells. We identified a
number of oncogenes and tumor/metastasis suppressors whose
mRNA/protein levels were decreased and increased, respectively, upon
plakoglobin expression. Extensive characterization of the plakoglobin
expressing cells showed that plakoglobin regulates tumorigenesis and
metastasis by interacting with and altering the levels, localization and/or
function of growth/metastasis regulating proteins and/or by associating
with transcription factors that regulate the expression of genes involved in

these processes.



Plakoglobin interacted with and increased both the protein and mRNA
levels of the metastasis suppressor Nm23-H1 while only increasing the
protein levels of Nm23-H2. Furthermore, in plakoglobin expressing cells,
Nm23-H1/H2 complex was redistributed from the cytoplasm to the
adherens junction at the membrane.

We also showed that plakoglobin interacted with p53 and together they
regulated the expression of a number of p53-target genes, including tumor
suppressors SFN and NME1 and the tumor promoter SATB1. Concurrent
with these changes, there was a significant decrease in cell proliferation
and in vitro migration and invasion of plakoglobin expressing cells.

These results clearly demonstrate that plakoglobin plays an active role
in suppressing tumorigenesis/metastasis through both the regulation of
gene expression and by interacting with and altering the levels,
localization and function of various intracellular proteins involved in these
processes. The larger implication of this work is that plakoglobin may be a
useful marker for diagnosis and prognosis as well as a therapeutic target

for the treatment of various cancers.
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CHAPTER ONE: INTRODUCTION



1.1. Cadherin-mediated cell adhesion’

Epithelial tissues cover the surface of the body and line the internal
cavities (McCaffrey and Macara, 2011). The structural integrity of these
tissues requires extensive cell-cell adhesion and interactions mediated by
the adhesive junctional complexes consisting of the adherens junction and
desmosomes (Halbleib and Nelson, 2006; Jeanes et al., 2008; Makrilia et
al., 2009; Yilmaz and Christofori, 2010, Saito et al., 2012; David and
Rajasekaran, 2012). Adherens junctions are a ubiquitous type of
intercellular junction and are present in both epithelial and non-epithelial
cells (Halbleib and Nelson, 2006; Jeanes et al., 2008; Yonemura, 2011),
whereas desmosomes are adhesive junctions that confer tensile strength
and resilience to cells and are present not only in epithelial cells but also in
non-epithelial cells that endure mechanical stress, such as cardiac muscle
and meninges (Garrod and Chidgey, 2008; Kowalczyk and Green, 2013).
Both adherens junctions and desmosomes are cadherin based. Cadherins
are single-pass transmembrane glycoproteins that form homotypic
interactions with cadherin proteins on neighboring cells and intracellularly
interact with proteins of the catenin family (Saito et al., 2012; David and
Rajasekaran, 2012). At the adherens junction, the C-terminal domain of E-
cadherin interacts, in a mutually exclusive manner, with B-catenin or y-
catenin (plakoglobin), which then interacts with a-catenin, an actin-binding

protein. A fourth catenin protein, p120-catenin, interacts with the

! A version of this chapter has been published in:
Aktary Z, Pasdar M (2012). Plakoglobin: role in tumorigenesis and metastasis.
International journal of cell biology 2012: 189521.



juxtamembrane domain of E-cadherin and stabilizes the cadherin dimers
at the membrane (Figure 1-1; Meng and Takeichi, 2009; Harris and
Tepass, 2010; Brieher and Yap, 2013). At the desmosome, the
desmosomal cadherins (desmocollins and desmogleins) interact
intracellularly with plakophilin and plakoglobin, which in turn are
associated with desmoplakin, an intermediate filament binding protein that
connects the complex to the cytoskeleton (Figure 1-1; Garrod and
Chidgey, 2008; Dusek and Attardi, 2011; Brooke et al., 2012).

Although originally identified as structural proteins with a “glue-like”
function, subsequent studies have shown significant interactions between
the cadherin-based cell adhesion complexes and elements of signal
transduction pathways regulating growth and morphogenesis (Qian et al.,
2004; Lilien and Balsamo, 2005; Nelson, 2008). More specifically,
cadherin-independent p-catenin, plakoglobin and p120 have been shown
to have signaling functions through their interactions with an array of
functionally diverse proteins including receptor tyrosine kinases and
phosphatases, tumor suppressors and transcription factors (Aktary and
Pasdar, 2012; Pieters et al., 2012; Kim et al., 2013).

1.2. Signaling through catenins

Catenin-mediated cell signaling has been the focus of many studies,

most of which have concentrated on B-catenin and p120-catenin,

overlooking both a-catenin and plakoglobin. These studies have
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suggested that both B-catenin and p120-catenin have oncogenic signaling
activities through well-defined pathways, whereas plakoglobin acts as a
tumor/metastasis suppressor through mechanisms that have just begun to
be deciphered. Unlike B-catenin and p120, the role of a-catenin in cell
signaling has not been examined to any significant detail. Only recently, a
few studies have suggested that a-catenin may regulate the MAPK,
Hedgehog and Hippo signaling pathways, although at this point it remains
unclear as to how this regulation may occur (Vasioukhin et al., 2001; Lien
et al., 2006; Schlegelmilch et al., 2011; Silvis et al., 2011; Maiden and
Hardin, 2011).

On the contrary, the oncogenic signaling potential of p120-catenin has
been well documented. Several studies have shown that cadherin-
independent p120-catenin can translocate into the nucleus and interact
with the transcription factor Kaiso, promoting the expression of tumor
promoters, e.g. Siamois, c-Fos, Myc, cyclin D1, MMP7 (Figure 1-2; Pieters
et al., 2012; Menke and Giehl, 2012). In addition, p120-catenin promotes
cell migration by activating the Rho GTPases Rac and Cdc42 and
inhibiting Rho, resulting in actin cytoskeleton remodeling and increased
cell motility, migration and invasion (Pieters et al., 2012; Menke and Giehl,
2012).

B-catenin is the most extensively studied component of the cadherin

catenin-complex with respect to signaling. B-catenin has a well-known
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oncogenic role as the terminal component of the Wnt signaling pathway
and will be discussed in further detail.
1.3. B-catenin and the Wnt signaling pathway

The Wnt pathway is a signaling cascade with fundamental roles in the
regulation of cell proliferation, cell polarity and cell fate determination
during embryonic development and in tissue homeostasis. Deregulation of
this pathway results in birth defects and various diseases, including cancer
(Clevers, 2006; MacDonald et al., 2009; Niehrs, 2012; Clevers and Nusse,
2012; Kim et al. 2013).

Under normal conditions and in the absence of Wnt, cytoplasmic,
cadherin-independent B-catenin levels are kept low through the action of
the destruction complex, which consists of the tumor suppressor
adenomatous polyposis coli (APC), the scaffolding protein Axin, and the
kinases casein kinase | (CKI) and glycogen synthase kinase (GSK)-3f3 .
The formation of this complex results in the phosphorylation of 3-catenin
and its subsequent degradation via the proteasome pathway (Figure 1-3;
Huang and He, 2008; MacDonald et al., 2009; Valenta et al., 2012; Kim et
al. 2013). During development and tumorigenesis, Wnt binds to its co-
receptors frizzled and low-density lipoprotein receptor-related protein
(LRP) 5/6. This binding leads to the activation of dishevelled protein and
the relocalization of the components of the destruction complex to the
membrane. As a result, the destruction complex does not form, which

allows [(B-catenin to accumulate in the cytoplasm and translocate into the
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nucleus where it interacts with the TCF/LEF family of transcription factors.
The B-catenin-TCF complex can then activate the expression of genes
involved in survival, proliferation, migration and invasion (Figure 1-3;
Huang and He, 2008; MacDonald et al., 2009; Valenta et al., 2012; Kim et
al. 2013).
1.4. B-catenin and plakoglobin: structural and functional homologs
Plakoglobin and B-catenin are structural and functional homologs and
members of the Armadillo family of proteins (Peifer et al., 1992). As such,
they share common intracellular partners, including classical cadherin, a-
catenin, Axin, APC and TCF/LEF (Figure 1-4; Butz et al., 1992; Shibata et
al., 1994; Kodama et al., 1999; Zhurinsky et al., 2000a; Aktary and
Pasdar, 2012). Despite their structural similarities and their common
interacting partners, plakoglobin and B-catenin appear to play opposite
roles with respect to cell signaling in tumorigenesis and metastasis. As
discussed above, (3-catenin has a well-defined oncogenic potential as the
terminal component of the Wnt signaling pathway, whereas plakoglobin
has been typically associated with tumor and metastasis suppressor
activities through mechanisms that have, up until recently, remained
unknown (Simcha et al., 1996; Parker et al., 1998; Pantel et al., 1998;
Charpentier et al., 2000; Winn et al., 2002; Rieger-Christ et al., 2005; Yin
et al., 2005; Kanazawa et al., 2008; Narkio-Makela et al., 2009; Todorovic

et al., 2010; Bailey et al., 2012; Holen et al., 2012; Franzen et al., 2012).
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This thesis is focused on characterizing the mechanisms by which
plakoglobin regulates tumorigenesis and metastasis.
1.5. Plakoglobin initial identification and early characterization
Plakoglobin was initially identified as an 83 kDa protein component of
the desmosomal plaque (Franke et al., 1983). Subsequently, experiments
using monoclonal antibodies, cDNA cloning and a combination of
biochemical, morphological and molecular approaches demonstrated that
this 83 kDa protein was present in both desmosomes and the adherens
junction and was given the name plakoglobin (Cowin et al., 1986).
Although plakoglobin was identified as a junctional protein, the role that
it played in junctional complexes was unclear, and the partners with which
plakoglobin interacted were not identified. It was not until several years
later that coimmunoprecipitation experiments showed that plakoglobin
interacted with the desmosomal cadherin desmoglein, thereby confirming
plakoglobin as a constituent of the desmosomes (Korman et al., 1989).
Around the same time, several groups showed that E-cadherin (initially
known as uvomorulin) immunoprecipitates contained three distinct
proteins, named a-, B- and y-catenin with molecular weights of
approximately 102, 88 and 80 kDa, respectively, which interacted with the
cytoplasmic domain of E-cadherin (Vestweber and Kemler, 1984;
Peyrieras et al., 1985; Ozawa and Kemler, 1992). Further work analyzing
the formation and stability of the E-cadherin-catenin complexes suggested

that the E-cadherin-3-catenin complex was formed immediately after E-
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cadherin synthesis and was very stable. Interestingly, it was also
determined that a-catenin could not be found in association with E-
cadherin independent of 3-catenin, suggesting that 3-catenin was a
physical link between E-cadherin and a-catenin. However, since y-catenin
was found to be only loosely associated with E-cadherin, it was suggested
that the main adhesive complexes consisted of E-cadherin, 3-catenin and
a-catenin, although the existence of a separate E-cadherin- y-catenin
complex could not be ruled out (Ozawa and Kemler, 1992).

Soon after this initial characterization, work from several groups
demonstrated that plakoglobin and y-catenin were the same E-cadherin
interacting protein and that this protein was homologous to, yet a different
protein from, B-catenin (McCrea et al., 1991; Knudsen and Wheelock,
1992; Piepenhagen and Nelson, 1993). Further studies demonstrated that
plakoglobin and B-catenin are homologues of the Drosophila Armadillo
protein with similar properties and together constituted the Armadillo
multigene family (Peifer et al., 1992).

Subsequent analysis of the kinetics of plakoglobin synthesis and
associations with cadherins demonstrated that following synthesis,
plakoglobin interacted with both desmoglein and E-cadherin in both the
soluble and cytoskeleton-associated pools of cellular proteins.
Furthermore, a distinct, cadherin-independent pool of plakoglobin was
observed, suggesting that in addition to cell-cell adhesion, plakoglobin

may have an adhesion-independent role in the cell (Pasdar et al., 1995).
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Finally, phosphorylation experiments revealed that whereas the insoluble
(cadherin-associated) pool of plakoglobin was serine phosphorylated, the
soluble pool was serine, threonine and tyrosine phosphorylated,
suggesting that these different pools of plakoglobin are differentially
regulated and perform varying functions (Pasdar et al., 1995). Collectively,
these studies demonstrated that plakoglobin is a homolog of B-catenin
and a unique protein in that it is the only component common to both the
adherens and desmosomal junctions.

1.6. Plakoglobin and cell-cell adhesion

The most documented role of plakoglobin within the cell is in cell-cell
adhesion. The identification of plakoglobin as a constituent of both the
adherens junction and desmosomes suggested that it plays an important
role in regulating cell-cell adhesion. However, the observation that the
adherens junctions could exist as a complex containing E-cadherin, 3-
catenin and a-catenin, independent of plakoglobin (Ozawa and Kemler,
1992), questioned the necessity of plakoglobin, at least at the adherens
junctions. Regardless, it soon became apparent that plakoglobin does
have an essential role in regulating cell-cell adhesion.

Earlier in vitro studies had shown that the disruption of E-cadherin
based cell-cell adhesion led to a transformed and/or invasive phenotype
while re-expression of E-cadherin in E-cadherin-null cells resulted in a
mesenchymal to epithelial phenotypic transition (Nagafuchi et al., 1987;

Nose et al., 1988; Mege et al., 1988; Behrens et al., 1989; Vieminckx et
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al., 1991; Chen and Obrink, 1991). Similarly, a number of in vivo studies
demonstrated that the reduced expression of E-cadherin was inversely
correlated with the differentiation grade of tumors (Shimoyama et al.,
1989; Schipper et al., 1991; Gamallo et al., 1993). Thus, while it was clear
that the E-cadherin based junctions were important for the maintenance of
an “epithelial” phenotype, the role of plakoglobin in this phenomenon was
not discerned until it was shown that the re-expression of E- or P-cadherin
in cadherin-null murine spindle cell carcinomas with very low levels of
plakoglobin was not sufficient to modify the morphology or tumorigenicity
of the cells (Navarro et al., 1993). In these cells, although the exogenously
expressed cadherins were localized to the cell membrane and interacted
with both a- and B-catenin, they did not interact with plakoglobin and there
was no desmosome formation. From this work, the authors concluded

that the presence of plakoglobin in the E-cadherin complex may

be necessary for proper cell-to-cell adhesion.

The role of plakoglobin in regulating junction formation was also
demonstrated when it was shown that A431 epithelial cells treated with
dexamethasone (which decreased E-cadherin and plakoglobin levels)
were unable to form adherens junctions and desmosomes and exhibited a
fibroblastic morphology. Following the expression of E-cadherin in these
cells, the adherens junction was formed but the fibroblastic morphology of
the cells remained unchanged. The authors then expressed an E-

cadherin-plakoglobin chimeric protein in these cells, which led to the
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formation of stable adherens junctions and desmosomes as well as an
induction of an epithelioid morphology. Together, these results suggested
that E-cadherin-plakoglobin interactions were necessary for the formation
of stable adhesive complexes and provided the first indication that
plakoglobin served as a molecule involved in cross-talk between the
adherens junctions and desmosomes (Lewis et al., 1997).

Following this study, our laboratory demonstrated the role of
plakoglobin in junction formation by expressing plakoglobin in SCC9 cells,
a human tongue squamous cell carcinoma cell line that lacks the
expression of both plakoglobin and E-cadherin but expresses N-cadherin
(Parker et al., 1998; Li et al., 1998). Transfectants expressing E-cadherin
(SCC9-E) or low/physiological levels of plakoglobin (SCC9-PG) or both
were generated and showed that the independent expression of either E-
cadherin or plakoglobin induced a mesenchymal (transformed) to
epidermoid (normal) phenotypic transition. This phenotypic transition was
associated with decreased cell proliferation and increased cell-cell
adhesion and only SCC9-PG cells were able to form desmosomes. E-
cadherin or plakoglobin expression also coincided with decreased soluble
B-catenin levels however, while E-cadherin expression downregulated N-
cadherin, plakoglobin expression increased N-cadherin levels and stability
(Li et al., 1998; Parker et al., 1998). Since then, numerous subsequent
studies identified the switch from E- to N-cadherin as a major contributing

factor in epithelial to mesenchymal phenotypic transition and metastatic
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progression. Significantly, our results clearly demonstrated that in the
absence of E-cadherin, plakoglobin was able to inhibit N-cadherin tumor
promoting activities and that the cadherin switch by itself cannot explain
the transformed phenotype of SCC9 cells. Furthermore, the induction of
the mesenchymal to epidermoid phenotype by E-cadherin and plakoglobin
may occur via a common pathway that also involves B-catenin (Li et al.,
1998; Parker et al., 1998).

Other studies have further characterized the role of plakoglobin in
desmosome assembly and function, demonstrating the essential role of
plakoglobin for the proper assembly of the desmosomal plaque and the
efficient binding of desmoplakins to the intermediate filaments (Palka and
Green, 1997; Acehan et al., 2008). Finally, work from Birchmeier’s
laboratory showed that plakoglobin double knockout mice died during
embryogenesis as a result of disrupted heart function due to the loss of
stable desmosomes in the intercalated discs of cardiac muscle, further
confirming the essential role of plakoglobin in desmosome formation and
the adhesive properties of cells (Ruiz et al., 1996; Ruiz and Birchmeier,
1998).

1.7. Plakoglobin and cell signaling

While the majority of plakoglobin is found in association with
desmosomes and adherens junction, there is a considerable amount (~
35%) of non-junctional plakoglobin that can potentially participate in cell

signaling (Pasdar et al., 1995). However, when studying the signaling
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activity of plakoglobin one must take into account the fact that due to its
structural and functional homology to (3-catenin, plakoglobin can
participate in cellular signaling in four ways (Figure 1-5). First, plakoglobin
may potentially displace p-catenin from the adherens junction, causing
increased cytoplasmic 3-catenin levels and its subsequent nuclear
translocation, ultimately leading to the activation of the Wnt pathway and
changes in the expression of TCF/B-catenin target genes. In this scenario,
plakoglobin would exhibit an oncogenic potential. Second, plakoglobin
may compete with B-catenin signaling by inhibiting TCF/B-catenin-DNA
interactions and Wnt target genes expression. Third, plakoglobin may
interact with transcription factors and regulate gene expression
independent of B-catenin. Finally, plakoglobin may interact with various
cellular partners involved in signaling and alter their levels, localization
and/or function (Figure 1-5). In the latter three cases, plakoglobin would
exhibit growth inhibitory function. Experimental evidence from our
laboratory and other groups suggests that plakoglobin participates in cell
signaling through all of these mechanisms (see below).
1.8. Plakoglobin oncogenic signaling

The first clue that plakoglobin might participate in cell signaling came
from studies of the exogenous expression of Wnt-1 in PC12 cells. In these
cells, plakoglobin levels were increased and it underwent membrane
redistribution, suggesting that in addition to B-catenin levels, Wnt-1 can

modulate plakoglobin levels and localization (Bradley et al., 1993).
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Subsequently, Karnovsky and Klymkowsky (1995) demonstrated
plakoglobin signaling activity by microinjecting mRNAs encoding
plakoglobin into fertilized Xenopus embryos, resulting in dorsalized
gastrulation and anterior axis duplication. In this study, the exogenously
expressed plakoglobin localized both at the plasma membrane and in
punctate nuclear aggregates. Furthermore, the co-injection of mMRNAs
encoding plakoglobin and the cytoplasmic domain of desmoglein
suppressed both dorsalized gastrulation and anterior axis duplication. In
these embryos, plakoglobin was localized primarily to the plasma
membrane with some peri-nuclear distribution. These results suggested
that plakoglobin has signaling ability similar to B-catenin, but when it is
sequestered at the plasma membrane (as part of junctional complexes),
plakoglobin is unable to participate in cell signaling.

Following these initial observations, the same group showed that this
outcome does not depend on the nuclear localization of plakoglobin, since
membrane-anchored forms of this protein produced the same axis
duplication (Merriam et al., 1997). This demonstrated that nuclear
plakoglobin was inconsequential in inducing a Wnt-like phenotype, since
this phenotype was induced even when plakoglobin was sequestered in
the cytoplasm.

Later on, Kolligs et al. (2000) proposed that plakoglobin has oncogenic
signaling activity and showed that the tumor suppressor adenomatous

polyposis coli (APC), which was already known to regulate the levels of 3-
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catenin, could also regulate plakoglobin protein levels. In this study, the
authors also showed that exogenous overexpression of plakoglobin in rat
RKS3E cells, which express considerable amounts of endogenous
plakoglobin and B-catenin (Kolligs et al., 2000; Bommer et al., 2005),
resulted in a transformed phenotype, which they suggested was
dependent on the upregulation of the oncogene c-Myc and activation of
TCF/LEF signaling. More recently, Pan et al. (2007) showed that the
exogenous expression of plakoglobin in HCT116 colon carcinoma cells,
which express a mutant 3-catenin protein that cannot be degraded (Morin
et al., 1997), resulted in genomic instability and increased invasion and
migration.

Although these studies concluded that plakoglobin possessed
oncogenic activity, evidence suggests that this activity may be indirectly
achieved, through modulation of 3-catenin protein levels and activation of
its signaling function (Figure 1-5A). Since plakoglobin and 3-catenin
interact with some of the same proteins and display high sequence
homology (Butz et al., 1992; Shibata et al., 1994; Kodama et al., 1999;
Zhurinsky et al., 2000a; also see Figure 1-4), overexpressed plakoglobin
may be able to promote tumorigenesis by interacting with proteins that
would normally sequester 3-catenin (e.g. E-cadherin, Axin, APC), resulting
in increased levels of cytoplasmic and nuclear B-catenin and in turn, its
enhanced signaling. Indeed, Salomon et al. (1997) showed that

overexpression of plakoglobin in HT1080 fibrosarcoma cells resulted in the
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replacement of B-catenin by plakoglobin in the cadherin-catenin
complexes and subsequent translocation of the excess cytoplasmic [3-
catenin into the nucleus. This was also supported by the overexpression of
plakoglobin in NIH3T3 cells, which resulted in the nuclear accumulation of
B-catenin (Simcha et al., 1998). Furthermore, overexpression of the Wnt
co-activator LEF-1 in MDCK cells resulted in its preferential interaction
with B-catenin (instead of plakoglobin) and the subsequent localization of
the B-catenin-LEF-1 complexes to the nucleus, suggesting that when both
plakoglobin and B-catenin were present within the cell, B-catenin-LEF-1
complexes were more readily formed and transcriptionally active (Simcha
et al., 1998). Additional studies examining the ability of plakoglobin and -
catenin to signal via interactions with the TCF/LEF family of transcription
factors showed that although plakoglobin interacted with LEF-1, this
complex was inefficient in binding to DNA, whereas (3-catenin-LEF-1
complexes were readily associated with DNA. Furthermore, B-catenin was
a much stronger activator of TCF/LEF target genes than plakoglobin and
overexpression of plakoglobin resulted in increased -catenin-LEF-1
complex formation and its activation (Zhurinsky et al., 2000b; Williams et
al., 2000). Consistent with these observation, work from our laboratory has
shown that while the expression of low/physiological levels of plakoglobin
in plakoglobin deficient SCC9 cells induced a mesenchymal to epidermoid
change in phenotype, its overexpression led to a more transformed

phenotype concurrent with upregulation of the pro-survival protein Bcl-2,
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foci formation and decreased apoptosis (Hakimelahi et al., 2000). Using
cDNAs encoding plakoglobin fused to nuclear localization (NLS) or nuclear
export (NES) signals, we subsequently showed that Bcl-2 levels were
upregulated in plakoglobin overexpressing-SCC9 cells regardless of
plakoglobin localization. Furthermore, in these cells, 3-catenin-N-cadherin
interactions were decreased, and B-catenin accumulated in the nucleus,
interacted with TCF and became transcriptionally active, confirming that
the overexpressed plakoglobin acted indirectly by enhancing the signaling
capability of B-catenin (Li et al., 2007a).

Finally, recent studies in leukemia cells have shown that plakoglobin
was overexpressed in both acute and chronic myeloid leukemias (AML
and CML, respectively) and that this overexpression resulted in the
increased stability and nuclear localization of B-catenin. In AML, TCF-
dependent reporter activity was increased in the presence of plakoglobin
and in CML, knock down of plakoglobin resulted in decreased [3-catenin
nuclear localization, suggesting that plakoglobin promoted tumorigenesis
in leukemia by increasing 3-catenin signaling activity (Morgan et al., 2012;
Niu et al., 2012).

The above studies support the notion that the oncogenic activity of
plakoglobin is indirect and mediated by B-catenin. Therefore, it is likely that
in the studies reported by Kolligs et al. (2000) and Pan et al. (2007), the
oncogenic potential of plakoglobin resulted from increased (3-catenin

signaling. In the Kolligs’s study where plakoglobin was overexpressed in
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RKS3E cells (which express endogenous B-catenin and plakoglobin;
Bommer et al., 2005), it was not determined if plakoglobin could activate c-
Myc expression in the absence of B-catenin or whether either of these
catenins was detected in the nucleus in association with the c-Myc
promoter. In Pan’s study in which HCT116 cells showed increased
genomic instability and migration and invasion upon plakoglobin
expression, the endogenous B-catenin was a mutant protein that was
unable to be degraded (Morin et al., 1997). Furthermore when these
HCT116 cells were induced to overexpress plakoglobin they showed
increased expression of the oncogenes securin and c-Myc and decreased
expression of E-cadherin, all of which are well-documented -catenin
target genes (He et al., 1998; Zhou et al., 2005; ten Berge et al., 2008).
Taken together, the evidence suggests that although plakoglobin
expression may lead to a transformed phenotype, it is highly likely that this
outcome is due to the increased levels of signaling competent B-catenin
rather than plakoglobin’s oncogenic activity (Figure 1-5A).
1.9. Plakoglobin tumor suppressor activity

The first demonstration of the tumor suppressor activity of plakoglobin
was when Simcha et al. (1996) found that plakoglobin expression in SV40-
transformed NIH3T3 cells decreased the ability of these cells to form
tumors in syngeneic mice. This growth suppressive effect of plakoglobin
was augmented by co-transfection with N-cadherin. The authors also

expressed plakoglobin in the tumorigenic renal carcinoma cell line KTCTL
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60, which lacks endogenous expression of E-cadherin and desmosomal
cadherins, a-catenin, p-catenin, plakoglobin and desmoplakin. Plakoglobin
expression in KTCTL 60 cells also inhibited the tumorigenicity of these
cells in syngeneic mice. Notably, the majority of the plakoglobin in these
cells was Triton X-100 soluble, suggesting that it was not junction
associated. This observation was clearly significant because it
demonstrated that plakoglobin could suppress tumorigenesis independent
of its role in cell-cell adhesion.

We previously showed that plakoglobin expression in plakoglobin-null
SCCO9 cells resulted in a mesenchymal to epidermoid phenotypic
transition. This phenotypic transition of plakoglobin-expressing SCC9 cells
was concurrent with the downregulation of $-catenin, stabilization of N-
cadherin, formation of desmosomes and decreased growth, migratory and
invasive properties of these cells (Parker et al., 1998, Aktary and Pasdar
2013). These results suggested that plakoglobin may act as a tumor and
potentially a metastasis suppressor protein.

The ability of plakoglobin to inhibit cell growth and proliferation was also
observed by tissue specific expression of plakoglobin in epidermal basal
cells and hair follicles of transgenic mice (Charpentier et al., 2000). In
these animals, plakoglobin expression reduced the proliferative potential
of the epidermal cells and the growth phase of the hair follicles and

furthermore, hairs were shorter by roughly 30%.
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Further evidence suggesting a growth suppressive activity for
plakoglobin was provided in lung cancer, when it was shown that while 3-
catenin was uniformly expressed in various Non-small cell lung cancer
(NSCLC) cell lines and lung primary tumors, plakoglobin expression was
very low or completely absent (Winn et al., 2002). The authors showed
that exogenous expression of plakoglobin in the low-plakoglobin
expressing NSCLC cells resulted in decreased B-catenin-TCF signaling,
which was concurrent with decreased cell and anchorage-independent
growth. This result also supported the idea that plakoglobin can act as a
tumor suppressor by inhibiting the oncogenic activity of 3-catenin.

Interestingly, when the authors treated these NSCLC cells with the DNA
methylation inhibitor 5-aza-2’-deoxycytidine (AZA) or the histone
deacetylase inhibitor trichostatin A (TSA), plakoglobin levels were
increased. Previous analysis of the plakoglobin promoter had described
CpG islands within the promoter (Potter et al., 2001), and while it had
been observed that inhibition of DNA methylation could result in increased
plakoglobin protein levels in at least one thyroid carcinoma cell line
(Husmark et al., 1999), this was the first indication that both DNA
methylation and histone deacetylation played important roles in regulating
plakoglobin expression.

The occurrence of methylated CpG islands within the plakoglobin
promoter as well as histone deacetylation has not been limited to NSCLC

cell lines. Various groups have shown that the plakoglobin promoter is
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methylated in prostate, bladder, trophoblastic and mammary carcinomas
(Shiina et al., 2005; Canes et al., 2005; Rahnama et al., 2006; Shafiei et
al., 2008), which is concurrent with a transformed phenotype. Canes et al.
(2005) have shown that treatment of bladder carcinoma cells with TSA
resulted in increased plakoglobin expression and a decreased ability of
these cells to form tumors in mice, once again suggesting a growth
inhibitory activity of plakoglobin. Similarly, when mammary carcinoma cell
lines were treated with AZA, plakoglobin levels were increased while soft
agar colony formation and overall cell growth were decreased (Shafiei et
al., 2008).

Consistent with its growth suppressor activity, several lines of evidence
suggest that plakoglobin plays a role in regulating apoptosis. In their work
describing the effects of plakoglobin on epithelial proliferation and hair
growth in transgenic mice, Charpentier et al. (2000) also showed that
plakoglobin expression resulted in premature apoptosis since the inner
root sheath of the plakoglobin-expressing transgenic follicles underwent
apoptosis two days earlier than in normal hair follicles. In agreement with
these findings, we have previously shown that SCC9 cells expressing
physiological levels of plakoglobin were more prone to undergo
staurosporine-induced apoptosis relative to parental SCC9 cells
(Hakimelahi et al., 2000). We have also observed that SCC9 cells
expressing plakoglobin exclusively in the nucleus (SCC9-PG-NLS)

showed decreased Bcl-2 levels compared to cells with overexpressed
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wild-type plakoglobin (Li et al., 2007a), which suggests that plakoglobin
may play a more direct role in regulating the expression of apoptotic
genes. More recently, it has been shown that mouse keratinocytes that
lack endogenous plakoglobin expression were protected from etoposide-
induced apoptosis, whereas plakoglobin-expressing keratinocytes readily
underwent apoptosis upon etoposide treatment (Dusek et al., 2007). In
this study, the authors demonstrated that plakoglobin-null keratinocytes
were unable to release cytochrome ¢ from the mitochondria and activate
caspase 3, suggesting that plakoglobin may play a role in regulating the
apoptotic cascade. Furthermore, the mRNA levels of the anti-apoptotic
protein Bcl-X. were higher in the plakoglobin-null keratinocytes, which
could potentially have prevented the translocation of cytochrome c from
the mitochondria. Finally, the expression of plakoglobin in the null
keratinocytes resulted in decreased Bcl-X, levels, caspase 3 activation
and apoptosis induction following etoposide treatment. Taken together,
these studies have demonstrated that plakoglobin does have some role in
apoptosis signaling and potentially may exert part of its tumor suppressor
activity through the modulation of apoptosis.
1.10. Plakoglobin metastasis suppressor activity

As the tumor suppressor activity of plakoglobin began to be revealed, it
soon became evident that in addition to inhibiting the growth properties of
carcinoma cell lines, plakoglobin also plays a role in regulating the

invasive and migratory properties of cancer cells. The initial observation of
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plakoglobin’s metastasis suppressor activity was documented in human
umbilical vascular endothelial (HUVEC) cells, where plakoglobin is
typically associated with sites of cell-cell contact (Nagashima et al., 1997).
Plakoglobin anti-sense oligonucleotides increased HUVEC migration,
suggesting that the loss of plakoglobin expression led to an increased
migratory phenotype. Concurrent with increased migration, the anti-sense
treated HUVEC cells also became more prone to forming tubular
structures in Matrigel, suggesting that plakoglobin knock down also
promoted angiogenesis.

The metastasis suppressor activity of plakoglobin was next described
using MCF-7 cells, which express membrane localized E-cadherin and
plakoglobin, and stable cell junctions. In this study, the authors treated
MCF-7 cells with human growth hormone (hGH) and observed a
downregulation of plakoglobin, a cytoplasmic distribution of E-cadherin
and an increased migratory and invasive phenotype, which was
accompanied by an increase in matrix metalloproteinase levels. They
demonstrated that hGH-mediated invasiveness was dependent on Src
kinase and that chemical inhibitors of Src resulted in increased plakoglobin
levels and in turn, decreased invasion and migration. To discern the
specific role of plakoglobin in these processes, the authors expressed
plakoglobin in the hGH-treated MCF-7 cells, which resulted in both the
decreased migration and invasiveness of these cells (Mukhina et al.,

2004). Similarly, knockdown of plakoglobin in MCF-7 and T47D breast
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cancer cells resulted in decreased cell-cell contact, increased in vitro
invasion and in vivo tumor formation and spread (Holen et al., 2012).

The metastasis suppressor activity of plakoglobin has also been
described in bladder carcinomas, where the expression of plakoglobin in
plakoglobin-null cell lines resulted not only in decreased growth and
tumorigenicity (as assessed by colony formation in soft agar and tumor
formation in nude mice, respectively), but also in decreased invasive and
migratory capabilities of the transfectants (Rieger-Christ et al., 2005).
Similarly, knock down of plakoglobin using siRNAs resulted in the
increased tumorigenic and invasive properties of bladder carcinoma cells
relative to their plakoglobin-expressing parental cell lines. This study
further demonstrated that plakoglobin expression did not affect Wnt/(3-
catenin signaling in these cells, which suggested that plakoglobin
possessed tumor and metastasis suppressor activities independent of -
catenin.

The ability of plakoglobin to act as a metastasis suppressor
independent of its role in cell-cell adhesion has been demonstrated using
plakoglobin-null keratinocytes (Yin et al., 2005), which were shown to be
less adherent and more migratory than plakoglobin expressing
keratinocytes. However, when plakoglobin-null keratinocytes were induced
to express plakoglobin, they became more adherent and less migratory.
Using colloidal gold-coated coverslips, the authors were able to assess the

migratory abilities of individual cells, and observed that individual
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plakoglobin-null keratinocytes were more migratory than their plakoglobin-
expressing counterparts. They also showed that plakoglobin may regulate
single keratinocyte migration by inhibition of Src signaling, which had been
previously shown to promote migration and invasion of mammary
carcinomas by downregulation of plakoglobin (see above; Mukhina et al.,
2004). These results suggested that plakoglobin could suppress migration
through the modulation of cell-cell adhesion, as had been previously
suggested. However, to determine whether plakoglobin could have an
effect in migration independent of its role in cell-cell adhesion, plakoglobin-
null keratinocytes were transfected with cONAs encoding mutant
plakoglobin, missing either its N- or C-terminus (a-catenin binding and
transactivation domain, respectively). The expression of either of these
mutant proteins resulted in increased keratinocyte adhesiveness when
compared to the plakoglobin-null cells, demonstrating that these domains
were dispensable for the adhesive function of plakoglobin. Importantly, the
authors showed that whereas individual keratinocytes expressing the N-
terminal deleted plakoglobin were not migratory, those that expressed the
C-terminal deleted plakoglobin were migratory. This showed that
plakoglobin could indeed suppress migration independent of its adhesive
function (since keratinocytes expressing C-terminal deleted plakoglobin
were as adhesive to one another as wild-type plakoglobin expressing
keratinocytes). Subsequent work using these same keratinocytes has

suggested that plakoglobin affected individual cell motility by regulating the
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deposition of the extracellular matrix (ECM) protein fibronectin, actin
cytoskeleton organization (which in turn regulates Src signaling) and
RhoGTPases (Todorovic et al., 2010).

More recently, the metastasis suppressor activity of plakoglobin was
demonstrated in a study that showed that plakoglobin expression was
repressed in triple negative breast cancer cells by the transcriptional
repressor slug. In this study, the authors showed that slug bound to the
plakoglobin gene (JUP) promoter and recruited the co-repressors CtBP
and HDACH1, resulting in the silencing of gene expression. Furthermore,
plakoglobin knock down in non-invasive MDA-MB-468 breast cancer cells
resulted in actin reorganization, formation of membrane extensions
(invadopodia) and increased cell migration, consistent with a migratory
phenotype (Bailey et al., 2012). Collectively, these observations clearly
demonstrate tumor/metastasis suppressor activity of plakoglobin
independent of its role in cell-to-cell adhesion.

1.11. Plakoglobin expression in human tumors

The initial characterization of JUP, the gene encoding plakoglobin,
mapped it to chromosome 17921, proximal to the BRCA1 gene (Aberle et
al., 1995). In this study, the authors also analyzed RNA isolated from
ovarian and breast cancer tumors and showed that loss of heterozygosity
in these tumors and low frequency mutations in the plakoglobin gene
predisposed patients to familial breast and ovarian cancer. Since then, the

loss of plakoglobin expression has been reported in a wide range of
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tumors, with the maijority of these reports examining plakoglobin in
conjunction with other adhesive junctional proteins. These studies have
demonstrated that loss of plakoglobin expression in conjunction with the
lack of expression of other cell-cell adhesion proteins such as E-cadherin,
a-catenin, B-catenin, desmoglein or desmoplakin resulted in increased
tumor formation and size and was correlated with increased tumor stage,
poor patient survival and increased metastasis in bladder, pituitary, oral,
pharyngeal, skin, prostate and NSCLC tumors (Syrigos et al., 1998;
Depondt et al., 1999; Morita et al., 1999; Lo Muzio et al., 1999; Tada et al.,
2000; Tziortzioti et al., 2001; Bremnes et al., 2002; Clairotte et al., 2006;
Ueda et al., 2006). However, several studies (described below) have
found that decreased levels of plakoglobin alone also occur in various
tumors.

The loss of plakoglobin expression has been observed in melanocytic
and thyroid tumors (Sanders et al., 1999; Cerrato et al., 1998). Cerrato et
al. (1998) found that nearly 90% of papillary and follicular tumors showed
decreased or loss of membrane plakoglobin localization. Decreased
expression of the plakoglobin gene was also observed in prostate tumors,
where methylation of the plakoglobin gene was prevalent in localized
prostate cancer relative to benign prostatic hyperplasia, suggesting that
loss of plakoglobin expression was an early step in prostate tumorigenesis
(Shiina et al., 2005). In oropharynx squamous cell carcinomas, decreased

plakoglobin expression and its abnormal cytoplasmic distribution was
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correlated with increased tumor size and poor clinical outcome
(Papagerakis et al., 2004).

In colon carcinomas, Lifschitz-Mercer et al. (2001) showed that -
catenin accumulated in the nuclei of cells of primary and metastatic
adenocarcinoma and adenoma lesions, while the levels of nuclear
plakoglobin were decreased in these tumors, suggesting that nuclear
plakoglobin did not promote tumorigenesis in the colon. In esophageal
cancers, while decreased levels of E-cadherin and plakoglobin were
associated with poor differentiation and decreased patient survival,
reduced plakoglobin levels alone correlated with lymph node metastasis
(Lin et al., 2004). The finding that reduced plakoglobin levels alone
correlated with increased metastasis was also observed in renal
carcinomas in which patients with tumors expressing plakoglobin showed
significantly higher survival rates than those that did not (Buchner et al.,
1998). Aberrant or decreased plakoglobin levels have also been reported
in Wilms’ tumors and soft tissue sarcomas, where the decrease in
plakoglobin levels were associated with increased risk of pulmonary
metastasis (Basta-Jovanovic et al., 2008; Kanazawa et al., 2008). In
endometrial tumors, the aberrant expression of plakoglobin was correlated
with myometrial invasion (Kim et al., 2002), whereas medulloblastoma
tumors expressing plakoglobin were non-metastatic, with no evidence of
subarachnoid or hematogenous metastasis (Misaki et al., 2005). Finally,

reduced plakoglobin expression was also correlated with increased lymph
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node metastasis in oral squamous cell and bladder tumors (Baumgart et
al., 2007; Narkio-Makela et al., 2009). Collectively, these observations
confirm the in vitro studies described earlier and suggest that lack or
decreased expression of plakoglobin due to genetic or epigenetic causes
in tumors of different origins is associated with poor clinical outcome and
increased tumor formation and metastasis.
1.12. Plakoglobin-mediated regulation of gene expression

When discussing roles for plakoglobin during tumorigenesis and
metastasis, it is important to consider that while plakoglobin may function
as both a regulator of cell-cell adhesion and an intracellular signaling
molecule, it may also affect these processes through the regulation of
gene expression. Evidence supporting plakoglobin-mediated regulation of
gene expression has started to emerge. Work from our laboratory and
several other groups has suggested that plakoglobin interacts with
transcription factors and regulates the expression of genes involved in
cell-cycle control, apoptosis, cell proliferation and invasion (Figure 1-5C).

Shtutman et al. (2002) showed that the exogenous expression of
plakoglobin in renal carcinoma cells lacking both 3-catenin and
plakoglobin resulted in the increased expression of the tumor suppressor
gene PML, a nuclear protein involved in the regulation of p53 activity.
Importantly, the increased PML levels due to plakoglobin expression were
independent of 3 catenin and TCF, since p-catenin was not detected in the

plakoglobin-expressing cells and deletion of TCF/LEF sites in the PML
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promoter did not affect the ability of plakoglobin to increase PML gene
expression. Together, these observations suggested that plakoglobin may
regulate gene expression independent of TCF/LEF.

Williamson et al. (2006) have shown that plakoglobin acts as a
repressor of the c-Myc (MYC) gene. Using mouse keratinocytes and
reporter assays, the authors of this study showed that plakoglobin
suppressed MYC expression in a LEF-1 dependent manner, suggesting
that when plakoglobin interacted with LEF-1, this complex was unable to
promote gene expression, confirming previous results demonstrating the
inefficiency of plakoglobin-TCF/LEF complexes in binding DNA (Simcha et
al., 1998; Zhurinsky et al., 2000b; Williams et al., 2000; Miravet et al.,
2002). This study further showed that the plakoglobin-mediated
suppression of MYC was similar in both wild-type and 3-catenin-null
keratinocytes, demonstrating that plakoglobin could regulate gene
expression independent of B-catenin. Finally, using chromatin
immunoprecipitation with plakoglobin antibodies, the authors
demonstrated that plakoglobin and LEF-1 associated with the MYC
promoter in keratinocytes undergoing growth arrest, which implicated the
downregulation of c-Myc gene expression as a possible reason for the
suppression of cell growth by plakoglobin.

As described earlier, Todorovic et al. (2010) have shown that
plakoglobin can regulate cell motility by regulating Fibronectin and Rho-

dependent Src signaling. This study also demonstrated that plakoglobin
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expression resulted in increased levels of Fibronectin mRNA without
increasing expression from the Fibronectin promoter. Using Actinomycin D
to inhibit transcription, the authors were able to demonstrate that
plakoglobin expression led to the increased stability of Fibronectin mRNA,
suggesting that in addition to its role in regulating gene expression at the
level of transcription, plakoglobin may also regulate gene expression post-
transcriptionally. However, how plakoglobin does so remains unclear.

Finally, a recent report demonstrated that plakoglobin regulates the
expression of the desmosomal cadherin desmocollin 2 in keratinocytes
through interactions with LEF-1 (Tokonzaba et al., 2013). The plakoglobin-
mediated activation of the desmocollin-2 gene (DSC2) promoter was
dependent on a functional LEF-1 binding site. Overall, these studies
suggest that plakoglobin regulates gene expression at the transcriptional,
and potentially at post-transcriptional levels.
1.13. Preliminary work and hypotheses

The focus of our lab is characterizing, at the molecular level, the
mechanisms by which plakoglobin suppresses tumorigenesis and
metastasis. We have developed two experimental model systems using
squamous and breast carcinoma cell lines with no or very low plakoglobin
expression and various degrees of transformation/invasiveness to
specifically assess the growth/metastasis inhibitory activities of
plakoglobin. Using a combination of molecular and cell biological

approaches, including proteomics and transcriptome analysis, we
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compared the protein and mRNA profiles of plakoglobin-deficient and
plakoglobin-expressing cell lines and their in vitro migration and
invasiveness. These analyses led to the identification of several growth
regulatory genes that were differentially expressed in plakoglobin-
expressing transfectants compared to their plakoglobin-deficient parental
cells.

Comparison of the proteomic profiles of the plakoglobin-null SCC9 cells
and their plakoglobin-expressing transfectants (SCC9-PG-WT) allowed us
to identify several tumor/metastasis regulating proteins, which were
differentially expressed in SCC9-PG-WT transfectants relative to parental
SCCO9 cells. Further RNA microarray experiments were performed to
determine whether changes in protein levels were associated with
changes in gene expression. To determine whether the subcellular
distribution of plakoglobin had an effect on gene expression, we also
compared the RNA profiles of SCC9 and SCC9-PG-WT cells with those of
SCCO9 cells expressing plakoglobin exclusively in the nucleus (SCC9-PG-
NLS) or in the cytoplasm (SCC9-PG-NES). From these experiments, we
identified three subsets of genes that were differentially expressed based
on plakoglobin expression and its subcellular distribution: those whose
differential expression required exclusively cytoplasmic plakoglobin, those
whose differential expression required nuclear plakoglobin, and those
whose differential expression required the ability of plakoglobin to shuttle

between the nucleus and the cytoplasm. Based on the results of these
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experiments and analysis of the expression patterns of plakoglobin-target
genes in relation to plakoglobin subcellular distribution, we proposed that
plakoglobin can regulate gene expression by three concurrent
mechanisms (Figure 1-6).

The first of these mechanisms involves the action of plakoglobin in the
cytoplasm, where it would sequester a protein involved in the regulation of
gene expression. In this case, plakoglobin would prevent an inhibitor of a
tumor suppressor gene or a promoter of an oncogenic gene from entering
the nucleus and affecting gene expression. Plakoglobin target genes
whose expression patterns were similar in SCC9-PG-WT and SCC9-PG-
NES cells and were opposite to SCC9-PG-NLS cells would be considered
part of this group.

The second mechanism involves nuclear localized plakoglobin, which
would directly associate with a nuclear factor and regulate gene
expression. In this case, plakoglobin would interact with a transcriptional
activator and promote gene expression, or conversely, it would interact
with a transcriptional repressor and silence gene expression. Plakoglobin
target genes whose expression patterns were similar in SCC9-PG-WT and
SCC9-PG-NLS cells and were opposite to SCC9-PG-NES cells would be
considered part of this group.

The vast majority of plakoglobin target genes, however, belonged to the
third group of genes: those whose differential expression depended on the

ability of plakoglobin to shuttle between the nucleus and the cytoplasm. In
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this case, plakoglobin would interact with some cytoplasmic cofactor,
translocate into the nucleus, and regulate gene expression. Plakoglobin
target genes whose expression patterns were similar in SCC9-PG-NES
and SCC9-PG-NLS cells and were opposite to SCC9-PG-WT cells would
be considered part of this group.

Based on these initial results, we hypothesized that plakoglobin
regulates tumorigenesis and metastasis by interacting with and
altering the levels, localization and/or function of various
growth/metastasis regulating proteins or by interacting with
transcription factors that regulate the expression of genes involved

in tumorigenesis and metastasis.

40



CHAPTER TWO: MATERIALS AND METHODS
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2.1. Cell culture and conditions

All tissue culture reagents were purchased from Invitrogen (Burlington,
ON, Canada) and all cell lines were obtained from the American Type
Culture Collection (ATCC, Manassas, VA). Growth media and supplement
specifications for culturing of each cell line are presented in Table 2-1.
2.2. Plakoglobin shRNA transfection

Scrambled shRNA (TR30013) and human plakoglobin shRNA
(combination of G1348173-6) plasmids were obtained from OriGene
(Rockville, MD, USA) and used to transfect MCF-7 cells according to the
manufacturer’s protocol. Puromycin-resistant stable cell lines expressing
the scrambled or plakoglobin shRNAs (shPG) were isolated and the
decreased expression of plakoglobin was verified by western blot. Single-
cell isolated clones were obtained by limiting dilution.
2.3. Generation of plakoglobin expressing MDA-231 cells

The construct containing the full-length PG cDNA (pBK-CMV-PG) has
been described (Parker et al., 1998). MDA-231 cells were transfected with
4 mgq of either pBK-CMV or pBK-CMV-PG using LipofectAMINE reagent
(Life Technologies, Inc., CA, USA; Lam et al., 2012) according to the
manufacturer’s protocol. G418-resistant colonies were selected and
screened for plakoglobin expression using immunofluorescence and
immunoblot assays. Positive colonies expressing plakoglobin were

subcloned by limiting dilution to obtain single-cell isolated clones.
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2.4. p53 knock down

p53 siRNA (sc-29435) was obtained from Santa Cruz Biotechnology
(Dallas, Texas, USA) and used to transfect SCC9-PG cells. Transfection
experiments were performed using Lipofectamine 2000 reagent following
the manufacturer’s instructions. Knock down was assayed by western blot
48 hours following transfection. For luciferase assays, both p53 siRNA and
luciferase reporter constructs were simultaneously transfected into SCC9-
PG cells and luciferase activity was measured 48 hours post transfection,
as described.
2.5. Cloning of SCC9 mutant p53 and transfection into H1299 cells

The mutant p53 from SCC9 cells was cloned from cDNA by PCR and
ligated into the pBK-CMV vector at Kpnl and Sacl sites, respectively.
Primers used for the cloning reaction were CAGTggtaccATGGAGGAG-
CCGCAGTCAGATCCT (forward, starting at p53 ORF codon 1) and
AGCTgagctcTCAGTCTGAGTCAGGCCCTTCTGT (reverse, ending at p53
ORF codon 394). Sequence accuracy was confirmed by DNA sequencing.
The p53 constructs were then transfected into H1299 cells using calcium
phosphate as previously described (Wu et al., 2011). Fourty-eight hours
after transfection, cells were processed for subcellular fractionation,
western blot, immunofluorescence and chromatin immunoprecipitation.
2.6. Construction of SATB1-luciferase reporter constructs

The SATB1 gene promoter was cloned from SCC9 genomic DNA by

PCR and ligated into the pBV-Luc vector at Kpnl and Sacl sites,
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respectively. The primer sequences used for the cloning reaction were
CAGTggtaccGCCA-GGGCGACTCTAGAG (forward, starting at base pair
14 in the SATB1 gene) and
AGCTgagctcCACTTCAAAACTTGACAGCACATA (reverse, ending at
base pair 1222 in the SATB1 gene). The plasmid was then used for
transfection (see below; Chapter Five).
2.7. RNA isolation and RT-PCR

RNA was isolated from 150 mm confluent cell cultures using the
RNeasy Plus Mini Kit (QIAGEN, Valencia, CA) according to the
manufacturer’s protocol. Following isolation, RNA was pre-treated with
RNase-free DNasel and reverse transcribed using the RevertAid H Minus
First Strand cDNA Synthesis Kit (Fermentas, Burlington, ON, Canada).
Polymerase chain reaction (PCR) was performed (Fermentas, Burlington,
ON, Canada) on the amplified cDNA. Primer sequences used for are
outlined in Table 2-2. RT-PCR products were resolved on 2% agarose
gels and visualized by ethidium bromide staining. gqRT-PCR was
performed using PerfeCta SYBR Green FastMix reagent (Quanta
Biosciences) as per the manufacturer’s instructions.
2.8. Microarray expression analysis

Total RNA isolated from SCC9 and SCC9-PG cells was quantified using
a NanoDrop 1000 Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and its integrity evaluated using a Bioanalyzer 2100

(Agilent Technologies, Santa Clara, CA, USA) according to the
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manufacturer’s protocols. RNA samples with RNA Integrity Numbers (RIN)
greater than 7.0 were used in this study. The RNA was subjected to linear
amplification and Cy3 labeling and hybridization to Agilent Whole Human
Genome Arrays using Agilent kits (One Color Low RNA Input Linear
Amplification Kit Plus, One Color RNA Spike-In Kit and Gene Expression
Hybridization Kit) according to the manufacturer’'s recommended
protocols. The arrays were scanned using an Agilent Scanner, the data
extracted and the quality evaluated using Feature Extraction Software 9.5
(Agilent). The data was normalized and analyzed using GeneSpring GX
7.3.1 (Agilent).
2.9. Antibodies

A list of antibodies and their respective dilutions in specific assays is
presented in Table 2-3.
2.10. Preparation of total cell extracts and western blotting

Confluent 150 mm culture dishes were washed twice with cold PBS,
solubilized in hot SDS sample buffer (10 mM Tris-HCI pH 6.8, 2% (w/v)
SDS, 50 mM dithiothreitol (DTT), 2 mM EDTA, 0.5 mM PMSF) and boiled
for 10 minutes. Protein determination was done using Bradford (Pierce)
assays according to the manufacturer’s instructions. Twenty-five
micrograms of total cellular protein were resolved by SDS-PAGE,
transferred to nitrocellulose membranes, processed for immunoblotting
and developed by standard ECL (Perkin EImer, Woodbridge, Canada)

procedures.
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2.11. Immunoprecipitation

Immunoprecipitation experiments were performed using one of two
different protocols.

For characterization of plakoglobin-Nm23 interactions (Chapter Three),
confluent cultures (100 mm) were washed twice (on ice) with cold PBS
containing 1mM NaF, Na3;VO,4 and CaCl, and extracted for 20 minutes
with a modified cytoskeleton extraction buffer (Pasdar and Nelson, 1988a;
10 mM PIPES pH 6.8, 100 mM NacCl, 300 mM sucrose, 3 mM MgCl,, 0.5%
NP-40, 1 mM NaF, 1 mM NazVO,4 and protease inhibitor cocktail). Cells
were removed from the plates and centrifuged at 20,000 rpm for 10
minutes. The resulting supernatant (soluble fraction) was separated from
the pellet (insoluble), which was solubilized in SDS immunoprecipitation
buffer (1% SDS, 10 mM Tris-HCI pH 7.5, 2 mM EDTA, 0.5 mM DTT and
PMSF) and boiled for 15 minutes. The SDS was diluted to 0.1% with
immunoprecipitation buffer. The soluble and insoluble fractions were split
equally and processed for immunoprecipitation.

To examine the interactions between plakoglobin and p53 (Chapter
Four), confluent cultures (150 mm) were washed twice (on ice) with cold
PBS containing 1mM NaF, NazVO4 and CaCl, and extracted for 15
minutes with a modified RIPA buffer (50 mM Tris-HCI pH 7.4, 1% NP-40,
0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1

mM NaF, 1 mM NazVO,4 and protease inhibitor cocktail) at 4°C. Cells were
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removed from the plates and centrifuged at 20,000 rpm for 10 minutes.
The resulting supernatant was divided into equal aliquots and processed
for immunoprecipitation (see below).

Antibodies and 40 ul protein A Sepharose CL-4B beads (Pierce,
Nepean, Canada) were then added to each respective extract, and
incubated overnight on a rocker-rotator at 4°C. To ensure complete
depletion, samples were centrifuged briefly and the resulting supernatants
were processed for another round of immunoprecipitation for 3 hours.
Beads from the two immunoprecipitations were combined, washed three
times with RIPA buffer and immune complexes separated by solubilization
in SDS sample buffer. Equivalent amounts of total cellular proteins
immunoprecipitated from each cell line were loaded onto SDS
polyacrylamide gels and processed for western blot as described above.

For immunoprecipitation of subcellular fractions (Chapter Three), cells
were separated into nuclear and cytoplasmic fractions as previously
described (Kim et al., 2009). Briefly, cells were lysed with cytoplasmic
extraction buffer (10 mM HEPES pH 7.9, 10 mM KCI, 0.1 mM EDTA,

1.5 mM MgCly, 1 mM DTT, 0.2% Nonidet P-40, 1 mM NaF, 1 mM NazVO4
and protease inhibitor cocktail) while rotating on a rocker-rotator at 4°C for
15 minutes. The cells were then centrifuged at 14,000 rpm at 4°C for

5 minutes and the resulting supernatant (cytoplasmic fraction) was
collected. The pellet was resuspended in nuclear extraction buffer (20 mM

HEPES pH 7.9, 420 mM NaCl, 0.1 mM EDTA, 1.5 mM MgCl,, 1 mM DTT,
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0.2% Triton X-100, 1 mM NaF, 1 mM Na3zVO4 and protease inhibitor
cocktail) and incubated at room temperature for 10 minutes, after which it
was centrifuged at 14,000 rpm at 4°C for 5 minutes. The resultant
supernatant (nuclear fraction) was removed from the pellet (cytoskeleton)
and the purity of each fraction was assessed by immunoblotting with
antibodies to tubulin and lamin, respectively, prior to immunoprecipitation.
Equal volumes of cytoplasmic and nuclear fractions corresponding to
equal cell numbers were processed for immunoprecipitation and western
blot.
2.12. Immunofluorescence analysis

For colocalization between Nm23 and cadherins/catenins (Chapter
Three), cells were plated on glass coverslips and grown to confluence,
after which they were rinsed twice with cold PBS, extracted with
cytoskeleton extraction (CSK; Pasdar and Nelson, 1988b) buffer (50 mM
NaCl, 300 mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgCl,, 0.5% Triton
X-100, 1.2 mM PMSF, and 1 pg/ml DNase and RNase) for 10 minutes and
fixed on ice with 1.75% formaldehyde for 15 minutes. Alternatively, cells
were fixed with formaldehyde first and then permeabilized with CSK buffer.

For characterization of p53 subcellular distribution in H1299-p53
transfected cells (Chapter Four), H1299 cells were plated on glass
coverslips and transfected with the SCC9 mutant p53 as described above.

Fourty-eight hours following transfection, the cells were rinsed twice with
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cold PBS (on ice), and fixed/extracted with ice-cold methanol for 5
minutes.

Coverslips were then blocked for 1 hour with 4.0% goat serum and 50
mM NH4Cl4 in PBS containing 0.2% BSA (PBS-BSA) and processed for
indirect immunofluorescence. One hour primary antibody incubation at
room temperature was followed by 20 minutes incubation with
fluorochrome-conjugated species-specific secondary antibodies. All
antibodies were diluted in PBS-BSA. Nuclei were counterstained for 5 min
with DAPI (1:2000 in PBS). Coverslips were mounted in elvanol containing
0.2% (w/v) paraphenylene diamine (PPD) and viewed using a 63X
objective of an LSM510 META (Zeiss) laser scanning confocal
microscope.

2.13. Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChlIP) experiments were performed as
previously described (Peng and Jahroudi, 2003). Confluent 150 mm
cultures were trypsinized and 2x10’ cells pelleted by centrifugation at
3,500 rpm for 10 minutes. The cell pellets were then resuspended in
growth media to which formaldehyde (Fisher) was added to a final
concentration of 1% and incubated at room temperature for 10 minutes.
To stop fixation, glycine was added to a final concentration of 125 mM.
The cell suspension was then centrifuged at 3,500 rpm at 4°C for 10
minutes. The resulting cell pellets were then washed twice with PBS

containing 1 pg/ml aprotinin and leupeptin and 1 mM PMSF, after which
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they were resuspended in cell lysis buffer (10 mM HEPES pH 7.9, 10 mM
KCI, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT and 0.49 mM PMSF) and
incubated on ice for 15 minutes. NP-40 was then added (final
concentration of 0.6%) after which the samples were vortexed for 10
seconds at high speed and subsequently centrifuged at 13,000 rpm for 30
seconds. The resulting pellets were then resuspended in sonication buffer
(1% SDS, 10 mM EDTA, 50 mM Tris pH 8, 0.49 mM DTT and 0.02 pg/ml
aprotinin and leupeptin) and left on ice for 10 minutes. The samples were
then sonicated (Branson Sonifier 450) for 1 minute at 20% output for a
total of four times.

The sonicated chromatin samples were then diluted ten-fold in
chromatin dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,
16.7 mM Tris pH 8, 167 mM NaCl) after which 50 ul was removed (Input).
Fourty pl Protein A/G Agarose beads (Calbiochem) were added and the
samples were pre-cleaned on a rocker-rotator at 4°C for 2 hours.
Following incubation, the samples were centrifuged briefly and the
resulting supernatant (pre-cleaned chromatin) was split into equal aliquots
and processed for immunoprecipitation. Each aliquot was incubated with 5
Mg antibodies and 40 ul pre-cleaned (by overnight incubation with 4 ug
Salmon Sperm DNA and BSA) Protein A/G Agarose beads overnight at
4°C on a rocker-rotator.

Following immunoprecipitation, the samples were centrifuged for 10

minutes at 2,000 rpm at 4°C, after which the resulting supernatants were
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removed. The beads were then subjected to six 5 minute washes in each
of the four following wash buffers: W1 (1% SDS, 1% Triton X-100, 2 mM
Tris pH 8, 167 mM NaCl), W2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA,
20 mM Tris pH 8, 500 mM NaCl), W3 (250 mM LiCl, 1% NP-40, 1%
sodium deoxycholate, 10 mM Tris pH 8, 1 mM EDTA) and W4 (10 mM Tris
pH 8 and 1 mM EDTA). Following the washes, the protein-DNA complexes
were eluted off the beads by incubation in elution buffer (1% SDS and 50
mM NaHCO3;) for 15 minutes at room temperature on a rocker-rotator.
Following elution, 1 ug RNase and NaCl (final concentration 300 mM)
were added to the samples, which were then incubated at 65°C for 4
hours. Next, Tris pH 6.8, EDTA (final concentrations of 40 mM and 10 mM,
respectively) and 4 ug proteinase K were added to the samples, which
were incubated at 45°C for 2 hours. The samples were then purified using
a PCR Purification Kit (QIAGEN, Valencia, CA) and processed for PCR.
2.14. Nuclear Extraction

Confluent 150 mm cell cultures were trypsinized and centrifuged at
3,500 rpm for 10 minutes. Following centrifugation, the cell pellets were
washed with PBS containing 1 mM NaF, NazVO4 and CaCl,, resuspended
in cytoplasmic extraction buffer (100 mM HEPES pH 7.9, 1 M KCI, 10 mM
EDTA, 10 mM EGTA, 1 mM DTT, 0.5 mM PMSF) and incubated on ice for
15 minutes. Next, NP-40 was added to a final concentration of 0.6% and
the samples were vortexed on high speed for 10 seconds and centrifuged

at 20,000 rpm for 30 seconds. Following centrifugation, the supernatant
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was removed and the pellet was resuspended in nuclear extraction buffer
(100 MM HEPES pH 7.9, 4 M NaCl, 10 mM EDTA, 10 mM EGTA, 1 mM
DTT, 1 mM PMSF) and incubated at 4°C on a rocker-rotator for 25
minutes. Following this incubation, the samples were centrifuged for 5
minutes at 20,000 rpm (4°C) and the supernatant (nuclear extract) was
stored.
2.15. Electrophoretic mobility shift assay

Electrophoretic mobility shift assay (EMSA) experiments were
performed as previously described (Schreiber et al., 1989; Wang et al.,
2004). Briefly, a double-stranded nucleotide corresponding to the p53
consensus sequence in the promoter of the 14-3-3c (SFN) gene
(Hermeking et al., 1997; Cai et al., 2009) was radioactively labeled with
use of *>P-ATP (adenosine 5'-triphosphate; Perkin Elmer). Nuclear
extracts (5 mg) were incubated with oligonucleotide probes (15,000 cpm)
on ice for 10 minutes in EMSA reaction buffer (50 mM HEPES pH 7.9, 250
mM KCI, 25 mM MgCl,, 5 mM EDTA, 5% glycerol and 1 mg poly (dI-dC)
(Sigma)). When antibodies were added, nuclear extracts were incubated
with 1 ug of each antibody in the EMSA reaction buffer for 20 minutes on
ice. The oligonucleotide probes were then added to the nuclear extract-
antibody mixtures for 10 minutes on ice. Complexes were resolved on 5%

non-denaturing polyacrylamide gels and exposed to film overnight.
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2.16. Luciferase reporter assay

Confluent 35 mm cultures were transfected with 4 ug of various
luciferase reporter plasmids. Regulation of p53 transcriptional activity was
determined through the use of reporter constructs downstream of either
the wild-type p53-binding sequence within the 14-3-3c (SFN) gene or a
consensus p53 sequence, mutants of these sequences, or control vectors
(Chapter Four; Table 2-4; Kern et al., 1992; Hermeking et al., 1997;
Addgene plasmids 16515, 16516, 16539, 16442 and 16443, which were a
kind gift of Dr. Bert Vogelstein), together with 1 ug of a plasmid encoding
B-galactosidase. To assess activity from the NME1 promoter, cells were
transfected with a reporter plasmid downstream of the NME1 promoter
(Qu et al., 2008; a kind gift of Dr. Shimian Qu; Chapter Five). SATB1
promoter activity was analyzed by using a reporter construct downstream
of the full SATB1 promoter (Lei et al., 2010; Chapter Five). Fourty-eight
hours post-transfection, luciferase and B-galactosidase activities were
measured. Each experiment was repeated at least 3 times and the mean
with standard deviation was calculated. Statistical analysis was performed
using a Student’s t-test.
2.17. Cell growth and proliferation assays
To measure growth, 5x10* cells for each cell line were plated in triplicate
in a 24-well plate. At 3, 5 and 7 days after plating, cultures were
trypsinized and the cells were counted. Cell proliferation was assessed by

performing BrdU incorporation experiments. For each cell line, 5x10* cells

53



were plated on glass coverslips and allowed to proliferate for 6 days at
which times they were incubated with BrdU (100 uM; Sigma B-5002) for
24 hours. To detect BrdU-labeled cells, coverslips were first prefixed by
the addition of 3.7% formaldehyde directly to the culture media at a 1:1
ratio (volume). Coverslips were then rinsed, fixed with 3.7% formaldehyde
for 15 minutes and permeabilized with 0.5% Triton X-100 for 5 minutes.
Coverslips were then washed with PBS and incubated in 2N HCI for 1
hour at room temperature followed by two 5-minute washes with 100 mM
sodium borate (pH 8.5). Subsequently, coverslips were processed for
immunofluorescence analysis using a mouse monoclonal anti-BrdU
antibody (Table 2-3) as described above.
2.18. Transwell cell migration and invasion assays

For cell migration assays, 2x10° cells were resuspended in 0.5 ml
serum-free media containing 0.1% BSA and plated in the upper chamber
of transwells (3 um pore, 6.5 ym diameter; BD Biosciences, MD, USA).
Normal media containing 10% FBS (0.75 ml) was added to the lower
chamber. Cultures were incubated at 37 C for 12 or 48 hours to allow cell
migration. The inserts were then removed from the chambers, gently
submerged in PBS to remove the unattached cells and then fixed and
stained using Diff Quick (IHC World, MD, USA). Following staining,
membranes were cut, mounted on slides using permount (Fisher,
Canada), viewed under an inverted microscope using a 20X objective and

photographed. The migrated cells on the underside of the membrane were
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counted in five random fields for each transwell filter from the
photographs.

Matrigel invasion assays were performed according to the
manufacturer’s protocol (BD Bioscience). For each cell line, 5x10° cells in
0.6 ml serum-free media containing 0.1% BSA were plated in the top
compartment of Matrigel-coated invasion chambers (8 um pore
membrane). Fibroblast conditioned media (0.75 ml) was added to the
bottom chambers and plates were incubated overnight at 37°C in 5% CO..
Forty-eight hours later, the membranes were recovered, fixed, stained with
Diff Quick, viewed under an inverted microscope using a 20X objective
and photographed. The invaded cells were counted in five random fields
for each membrane.

Each assay was repeated 3 independent times. The numbers of
migrated/invaded cells were calculated using the ImagedJ Cell Counter

program and averaged.
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Table 2-1. Growth conditions for various cell lines used.

Cell Line Origin | Growth Media Supplements Selection
A431 Vulva DMEM 10% FBS, 1% antibiotics -
H1299 Lung MEM 10% FBS, 1% antibiotics -

MCF-10-2A Breast DMEM/F12 5% Horse Serum, 20 ng/ml EGF, -
10 ng/ml insulin, 100 ng/ml cholera
toxin, 500 ng/ml hydrocortisone, 50
U/ml penicillin, 50 mg/ml
streptomycin and 1% antibiotics
MCF-7 Breast MEM 10% FBS, 1% antibiotics -
MCF-7-shPG Breast MEM 10% FBS, 1% antibiotics Puromycin,
0.5 ug/ml
MDA-231 Breast RPMI 10% FBS, 1% L-glutamine, Non- -
Essential Amino Acids, Sodium
Pyruvate, antibiotics
MDA-231-PG Breast RPMI 10% FBS, 1% L-glutamine, Non- Geneticin,
Essential Amino Acids, Sodium 500 pg/ml
Pyruvate, antibiotics
MDCK Kidney DMEM 10% FBS, 1% antibiotics -
PC3 Prostate F12K 10% FBS, 1% antibiotics -
SCC9 Tongue MEM 10% FBS, 1% antibiotics -
SCC9-PG Tongue MEM 10% FBS, 1% antibiotics Geneticin,
200 pg/mi
SCC9-PG-Flag-WT Tongue MEM 10% FBS, 1% antibiotics Geneticin,
200 pg/mi
SCC9-PG-Flag-AN122 | Tongue MEM 10% FBS, 1% antibiotics Geneticin,
200 pg/mi
SW620 Colon Leibovitz's/L15 10% FBS, 1% L-glutamine, -

antibiotics
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Table 2-2. Primer sequences and PCR conditions for reverse

transcribed genes.

Gene Primers Fragment | Annealing Reference
Size (bp)
RT-PCR
14-3-30 Sense: 5-GTGTGTCCCCAGAGCCATGG-3' 279 60°C Bhatia et al.,
Antisense: 5'-ACCTTCTCCCGGTACTCACG-3 2003
NME1 Sense: 5'-CGCAGTTCAAACCTAAGCAGCAGCTGG-3' 483 60°C Ayabe et al.,
Antisense: 5'-AGATCCAGTTCTGAGCACAGCTCG-3 2004
NME2 Sense: 5-TGACCTGAAAGACCGACCAT-3’ 193 55°C Syed et al.,
Antisense: 5-GAATGATGTTCCTGCCAACC-3 2005
SATB1 Sense: 5’- TGCAAAGGTTGCAGCAACCAAAAGC-3’ 156 60°C Han et al,,
Antisense: 5’- AACATGGATAATGTGGGGCGGCCT-3’ 2008
GAPDH Sense: 5-GAAGGTGAAGGTCGGAGTC-3’ 220 60°C Nakanishi et
Antisense: 5-GAAGATGGTGATGGGATTTC-3’ al., 2006
ChIP
14-3-30 Sense: 5-CATGAAAGGCGCCGTGGAGAA-3’ 474 58 4°C Pulukuri and
Antisense: 5-GCTGATGTCCATGGCCTCCTGG-3 Rao, 2006
MYC Sense: 5-GGGATCGCGCTGAGTATAAAA-3’ 173 55°C -
Antisense: 5-GAAGCCCCCTATTCGCTCC-3
NME1 Sense: 5-CAACTGTGAGCGTACCTTCAT-3’ 102 53.6°C -
Antisense: 5-AACAAGGCGGAATCCTTTCTG-3
SATB1 Sense: 5-GATCATTTGAACGAGGCAACTCA-3’ 157 53.6°C -
Antisense: 5-CCTGCATTTTTGCACCTGTACT-3’
VWF Sense: 5-GCTTGTGGCCAAGACCTTCATCTT-3’ 200 58.4°C -

Antisense: 5-AACAACACAGCTTCCTGATCCAGC-3’

For all primers, pre-denaturation was done at 95°C for 5 minutes. This was followed by

35 cycles of denaturation at 95°C for 30 seconds, annealing for 45 seconds, and
extension at 72°C for 45 seconds.
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Table 2-3. Antibodies and their respective dilutions in specific

assays.
Assay

Species| WB | IF | IP ChIP Source
1° Antibodies
14-3-30 (5D7) Mouse 1:500 - - - Santa Cruz, sc-100638
a-catenin Mouse - 1:100 1:100 Zymed, #18-0225
a-catenin Rabbit - - 1:100 Sigma, C-2081
B-Actin Mouse 1:2000 - - - Sigma, A-5441
B-catenin** Mouse 1:500 - 1:500 1:100 Sigma, C-7207
BrdU Mouse - 1:300 - - Sigma, B-5002
BRMS1 Mouse 1:200 - - - Santa Cruz, sc-101219
c-Abl Rabbit 1:1000 - - - Santa Cruz, sc-131
Claudin-1 Mouse 1:500 - - - Santa Cruz, sc-137121
Control IgG Goat - - 1:500 1:2000 Sigma, M-5899
E-cadherin Mouse 1:500 1:100 1:100 - Transduction Laboratories, 610182
E-cadherin (3G8) Mouse - Neat 1:20 - Warren Gallin, U of A
ErbB2 Rabbit 1:1000 - - - Upstate, 06-562
Flag Mouse 1:1000 1:100 1:100 - Sigma, F-3165
Kiss1 Rabbit 1:500 - - - Santa Cruz, sc-15400
Lamin B1 Rabbit 1:500 - - Santa Cruz, sc-20682
MMP3 Mouse 1:100 - - - Calbiochem, Ab-1
N-cadherin Mouse 1:1000 1:200 1:100 - Sigma, C-1821
N-cadherin Rabbit 1:1000 - 1:100 - (Li et al., 1998) Sigma, C-3678
Nm23-H1* Mouse - - 1:200 - Santa Cruz, sc-465
Nm23-H2* Goat - - 1:200 - Santa Cruz, sc-14789
Nm23-H1/H2 Rabbit 1:500 - - - Chemicon, CBL-446
Nm23-H1/H2/H3 Rabbit - 1:100 - - Santa Cruz, FL-152
p53 (DO-1)** Mouse 1:500 1:100 1:300 1:80 Santa Cruz, sc-126
p53 (FL-393) Rabbit 1:500 - 1:500 1:80 Santa Cruz, sc-6243
Plakoglobin Mouse 1:500 1:100 - 1:100 Transduction Laboratories, 610254
Plakoglobin** Rabbit - - 1:500 - Pasdar et al., 1995
SATB1 Rabbit 1:1000 - - - Cell Signaling, L745
Snail Rabbit 1:2000 - - - Abcam, ab17732
Tubulin/E7 Mouse 1:300 - - - DSHB***
2° Antibodies
Alexa Fluor 546 Goat - 1:750 - - Molecular Probes, A11029
Alexa Fluor 488 Goat - 1:750 - - Molecular Probes, A11035
Anti-mouse HRP Goat 1:5000 - - - Sigma, 054H-8914
Anti-mouse HRP, Goat 1:5000 - - - Jackson, 115-005-174
Light Chain specific
Anti-rabbit HRP Goat 1:5000 - - - Sigma, 054H-8918
Anti-rabbit HRP, Goat 1:5000 - - - Jackson, 211-002-177
Light Chain specific

*A cocktail of Nm23-H1 and Nm23-H2 were used for immunoprecipitation

** These antibodies were used for EMSA at a concentration of 1(antibody): 4(lysate)
***Developmental Studies Hybridoma Bank, NCI, USA
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Table 2-4. Sequences of p53-response elements used for luciferase
reporter assays.

Response Sequence Number Reference

Element of

Repeats

14-3-30 3 Hermeking et al.,

WT-p53 RE CCTGTAGCATTAGCCCAGACATGTCCCTACTCCGTACGGA 1997
GTAGGGACATGTCTGGGCTAATGCTACAGGGTAC

14-3-30 CCTGTAGAATTATCCCAGAAATTTCCCTACTCCGTAC 3 Hermeking et al.,
MT-p53 RE GGAGTAGGGAAATTTCTGGGATAATTCTACAGGGTAC 1997
Consensus 13 Kern et al., 1992
WT-p53 RE CCAGGCAAGTCCAGGCAGG
Consensus | CCTTAATGGACTTTAATGG 15 Kern et al., 1992
MT-p53 RE
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CHAPTER THREE: PLAKOGLOBIN INTERACTS WITH AND
INCREASES THE LEVELS OF NM23
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3.1. Introduction’
3.1.1. Rationale

The observed phenotypic transition upon plakoglobin expression in
SCCO9 cells suggested that plakoglobin may act as a tumor suppressor.
Therefore, in order to elucidate the molecular mechanism by which
plakoglobin may exert this function, our lab performed proteomic and
transcription microarray experiments to identify potential genes and
proteins that were differentially expressed in SCC9-PG cells compared to
SCCO9 cells. These experiments identified a number of growth/tumor
promoters whose expression and protein levels were decreased and
various growth/tumor suppressors whose expression and protein levels
were increased in SCC9-PG cells. Among these differentially expressed
genes and proteins, we identified the metastasis suppressors Nm23-H1
and Nm23-H2. Therefore, we began our studies by examining the
relationship between plakoglobin expression and the levels and
subcellular localization of Nm23.
3.1.2. Nm23

Nonmetastatic protein 23 (Nm23) proteins are a family of nucleoside
diphosphate kinases (NDPK) that are expressed from bacteria to
mammals (Tee et al., 2006). In humans, there are ten members of the

Nm23 family (Nm23-H1-10, respectively), with Nm23-H1 and -H2 being

" A version of this chapter has been published in: Aktary Z, Chapman K, Lam L, Lo A, Ji
C, Graham K, Cook L, Li L, Mackey JR, Pasdar M (2010). Plakoglobin interacts with and
increases the protein levels of metastasis suppressor Nm23-H2 and regulates the
expression of Nm23-H1. Oncogene 29: 2118-2129.
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the best studied and characterized (Thakur et al., 2011; Marino et al.,
2012). Nm23-H1 was the first metastasis suppressor identified, where its
decreased expression was observed in murine melanoma cells with
increased metastatic potential (Steeg et al., 1988). Since its initial
discovery, several studies have observed decreased levels of Nm23-H1 in
invasive/metastatic breast, melanoma, colon and oral squamous cell
carcinoma cell lines (MacDonald et al., 1993; Hartsough and Steeg, 1998;
Steeg et al., 2003; Marino et al., 2012). Nm23-H2, which was
subsequently identified as a gene with sequence homology (approximately
90%) to Nm23-H1 (Stahl et al., 1991), also has metastasis suppressor
activity and its decreased expression has been observed in a variety of
invasive/metastatic carcinoma cell lines, including squamous, breast,
ovarian and prostate (Hartsough and Steeg 2000; Ouatas et al. 2003).
Decreased levels of Nm23 proteins have also been correlated with
increased metastasis in various human tumors, including breast,
melanoma, prostate, gastric, hepatocellular, lung and oral squamous
(Muller et al., 1998; Pacifico et al., 2005; Hsu et al., 2007; Guo et al.,
2010; Dong et al., 2011; Andolfo et al., 2011).

Nm23 proteins interact with numerous intracellular partners and have a
wide variety of cellular functions (Marino et al., 2012). Nm23-H1 itself has
diverse biological functions including nucleoside diphosphate kinase
(NDPK), protein histidine kinase and 3’-5’ exonuclease activities, all of

which may potentially contribute to its metastasis suppressor function
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(Wagner et al., 1997; Lacombe et al., 2000; Fan et al., 2003; Steeg et al.,
2008; Novak et al., 2011). In addition, both Nm23-H1 and -H2, appear to
have DNA-binding ability (Postel et al., 1993, 2000; Ma et al., 2002;
Postel, 2003; Cervoni et al., 2006; Thakur et al., 2009; Choudhuri et al.,
2010). However, the exact mechanisms by which these Nm23 proteins
suppress migration, invasion and metastasis remain unclear.

Several studies have shown that the exogenous expression of Nm23 in
cells lacking its expression results not only in decreased migration and
invasion, but also in decreased cell proliferation and inhibition of
anchorage independent growth (Lee and Lee, 1999; Khan et al., 2001;
Suzuki et al., 2004; Jung et al., 2006; McDermott et al., 2008).
Furthermore, Nm23 proteins reduce telomerase activity (Kar et al., 2011),
promote cell-cell adhesion (Bago et al., 2009), cell-cycle arrest and
apoptosis (Choudhuri et al., 2010) and DNA-repair following U.V. and
ionizing radiation (Zhang et al., 2011; Jarrett et al., 2012). These results
suggest that Nm23 proteins may also suppress tumor formation in addition
to metastasis.

3.1.3. Specific aim and summary of results

In this chapter, we investigated the effect of plakoglobin expression on
Nm23 levels and localization. Our results show that plakoglobin
expression led to the increased levels of Nm23-H1 mRNA and increased
protein levels of both Nm23-H1 and -H2. We also show that upon

plakoglobin expression, Nm23 interacted not only with plakoglobin, but
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also with N-cadherin and a-catenin, and that these interactions occured at
the sites of cell-cell contacts. We further confirmed these results in a
number of non-epidermal epithelial cell lines. These results suggest that
plakoglobin may assert part of its tumor suppressive activity through
modulating the expression and subcellular localization of the metastasis
suppressor Nm23, and that a-catenin acts as a bridge between
plakoglobin and Nm23.

3.2. Results

3.2.1. Increased Nm23 levels and its membrane localization in SCC9-
PG cells.

Plakoglobin expression in SCC9 cells (SCC9-PG) induced a
mesenchymal to epidermoid phenotypic transition (Parker et al., 1998). To
identify the underlying molecular mechanism for this phenotypic
conversion, we examined the protein and mRNA profiles of SCC9 and
SCC9-PG cells. Various tumor suppressors were identified as being
increased upon plakoglobin expression, and among them were Nm23-H1
and -H2. Figure 3-1 provides evidence to confirm the results of our
proteomic and microarray studies. Upon plakoglobin expression, the levels
of both Nm23-H1 and -H2 protein were increased, although the levels of
Nm23-H2 were markedly higher than Nm23-H1 (Figure 3-1A), which was
in agreement with our proteomics results, where Nm23-H2 levels were
increased nearly 5-fold in SCC9-PG cells (unpublished data). To examine

plakoglobin’s effect on Nm23 at the level of transcription, we performed
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reverse-transcription experiments. Our data showed that while the levels
of Nm23-H1 mRNA were increased in SCC9-PG cells, the levels of Nm23-
H2 mRNA were unaltered (Figure 3-1B). These results were in agreement
with our microarray data, which also revealed a two-fold increase in the
level of Nm23-H1 mRNA, while -H2 levels remained unchanged.

3.2.2. Nm23 coprecipitates with plakoglobin and N-cadherin.

Figure 3-1C revealed that not only were Nm23 protein levels increased
in SCC9-PG cells, but some of it also appeared localized to the cell-cell
contact areas. This raised the question of whether the membrane
distribution of Nm23 was due to its associations with cell-cell junctions. To
address this possibility, soluble and insoluble (cytoskeleton-associated)
fractions from SCC9 and SCC9-PG cell extracts were processed for
coimmunoprecipitation with plakoglobin or N-cadherin antibodies followed
by immunoblotting with Nm23 antibodies. Plakoglobin antibodies
coprecipitated only Nm23-H2 from the soluble fraction, and both Nm23-H1
and -H2 from the insoluble fraction of SCC9-PG cells, although the
amount of Nm23-H2 coprecipitated was notably higher than -H1 (Figure 3-
2A, IP: PG). As expected, immunoprecipitation of plakoglobin yielded
negative results for association with Nm23 in SCC9 cells. In SCC9 cells,
N-cadherin antibodies coprecipitated very small amounts of Nm23-H1 and

-H2, mostly in the insoluble fraction. In SCC9-PG cells,
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plakoglobin expression increased the amount of Nm23 coprecipitated with
N-cadherin (Figure 3-2A, IP: N-cadherin). As with plakoglobin, more
Nm23-H2 than -H1 was coprecipitated with N-cadherin antibodies. Nm23
associations with plakoglobin and N-cadherin were further confirmed by
reciprocal coimmunoprecipitations in which cell extracts were
immunoprecipitated with Nm23 antibodies and blotted for plakoglobin and
N-cadherin (Figure 3-3B).

3.2.3. Nm23 colocalizes at the membrane with plakoglobin and N-
cadherin.

We further confirmed the results of our coimmunoprecipitation studies
with confocal microscopy using Nm23-H1/H2, plakoglobin and N-cadherin
antibodies in conjunction with two different extraction/fixation protocols. In
order to visualize the entire cellular pool of proteins, cells were first fixed
using formaldehyde and subsequently permeabilized using CSK extraction
buffer. Alternatively, CSK extraction buffer was used first to permeabilize
and extract the soluble pool of cellular proteins, followed by fixation with
formaldehyde, allowing for the visualization of the cytoskeleton-associated
pool of proteins (Pasdar and Nelson, 1988b; Pasdar et al., 1995),
including those stabilized by association with the adhesive complexes.

Staining of fixed/permeabilized SCC9 cells with N-cadherin and Nm23-
H1/H2 showed that Nm23 was distributed throughout the cell while N-
cadherin was primarily detected at the membrane (Figure 3-2B, D, SCC9,

Nm23/N-cadherin). Under similar conditions, SCC9-PG cells showed
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overlapping distributions of Nm23-H1/H2 and N-cadherin (Figure 3-2B and
D, SCC9-PG, Nm23/N-cadherin), as well as Nm23 and plakoglobin
(Figure 3-2B, D, SCC9-PG, Nm23/PG).

In SCC9 cells that were extracted before fixation, most of the staining
for both Nm23-H1/H2 and N-cadherin, which was observed when these
cells were fixed before extraction, was removed (Figure 3-2C, D). Under
these conditions, SCC9-PG cells showed colocalization between Nm23-
H1/H2 and N-cadherin, as well as Nm23-H1/H2 and plakoglobin;
furthermore, these codistributions were primarily at the membrane (Figure
3-2C, D, SCC9-PG). Thus, Nm23 colocalized with the cytoskeleton-
associated pool of plakoglobin and N-cadherin.

3.2.4. Nm23 interacts with a-catenin.

Increased levels of Nm23-H1 and -H2 associated with the insoluble N-
cadherin in SCC9-PG cells and its membrane codistribution with both
plakoglobin and N-cadherin in these cells suggested that plakoglobin
expression may have led to the association of Nm23 with the stable
cadherin-catenin complexes at the adherens junction. To this end, we
examined whether a-catenin, which mediates N-cadherin-plakoglobin
interactions with the actin cytoskeleton, also associated with Nm23-H1
and -H2. Figure 3-3A shows that in SCC9 cells only Nm23-H2 was
associated with a-catenin, mainly in the insoluble fraction (Figure 3-3A,
SCC9). In contrast, in SCC9-PG cells, a-catenin antibodies coprecipitated

Nm23-H2 and to a lesser extent -H1 from both the soluble and insoluble
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fractions (Figure 3-3A, SCC9-PG). Reciprocal coimmunoprecipitation with
Nm23 antibodies also detected a-catenin in the insoluble fraction of both
SCC9 and SCC9-PG cells, with significantly higher levels in the latter
(Figure 3-3B). These observations were further verified by
immunofluorescence assays, which clearly showed a-catenin
codistribution with Nm23-H1/H2 in SCC9-PG cells, while this
colocalization was barely detectable in SCC9 cells (Figure 3-3C).
Collectively, these results suggested that plakoglobin expression stabilized
Nm23-H1 and -H2 interactions with cadherin-catenin complexes at the
membrane.

3.2.5. The N-terminal domain of plakoglobin is necessary for
interaction with Nm23.

So far, our data suggested that Nm23-H1 and -H2, plakoglobin, a-
catenin and N-cadherin may be present in the same complex. We then
asked whether a-catenin could be a bridge between Nm23 and
plakoglobin-N-cadherin complexes. To clarify this point, we assessed the
interactions between Nm23, plakoglobin and N-cadherin in SCC9 cells
expressing Flag-tagged wild-type plakoglobin or a mutant plakoglobin with
a deletion in the N-terminal a-catenin binding domain (PG-AN123; Li et al.,
2007a; Kolligs et al., 2000). Soluble and insoluble cell extracts from PG-
Flag and PG-AN123 transfectants were processed for sequential
coimmunoprecipitation and immunoblotting with Flag and Nm23 antibodies

respectively.
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Plakoglobin coprecipitated Nm23-H2 from the insoluble fractions of PG-
Flag cells but not the PG-AN123 cells in which plakoglobin is unable to
bind a-catenin (Figure 3-4A, IP: Flag). No interaction between Nm23 and
plakoglobin was detected in the soluble fraction. Since plakoglobin
expression (SCC9-PG cells) increased the amount of Nm23 coprecipitated
with N-cadherin (Figure 3-2A), we examined the effects of deleting the N-
terminal domain of plakoglobin on the association between Nm23 and N-
cadherin. N-cadherin was also found to coprecipitate Nm23 in PG-Flag
cells and primarily in the insoluble fraction (Figure 3-4A, IP: N-cadherin).
Immunofluorescence experiments confirmed the coimmunoprecipitation
findings. Plakoglobin colocalized with Nm23-H1/H2 in PG-Flag cells,
however, in -AN123 cells, plakoglobin/Nm23 colocalization was lost
(Figure 3-4B, C, Nm23/Flag). Colocalization between Nm23-H1/H2 and N-
cadherin was observed in PG-Flag cells, whereas their codistribution was
reduced in the -AN123 transfectants (Figure 3-4B, C, Nm23/N-cadherin).
3.2.6. Nm23-plakoglobin interaction is dependent on a-catenin.

Upon showing that loss of the N-terminal domain of plakoglobin resulted
in the loss of its association with Nm23-H1 and -H2, we set out to
determine whether a-catenin was necessary for this interaction. To do so,
we used PC3 cells, a prostate carcinoma cell line which lacks a-catenin,
while expressing E-cadherin, plakoglobin and Nm23 (Morton et al., 1993;
Daniel and Reynolds, 1995; Igawa et al., 1994). We first confirmed, by

Western blot, that PC3 cells lacked a-catenin, and expressed E-cadherin,
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plakoglobin, and Nm23 (Figure 3-5A). Next, we performed
coimmunoprecipitation experiments using plakoglobin and a-catenin
antibodies, and showed that Nm23-H1 and -H2 were coprecipitated by
neither of these antibodies in neither the soluble nor insoluble fractions
(Figure 3-5B). Furthermore, the supernatants from the soluble and
insoluble a-catenin and plakoglobin immunoprecipitates were processed
for immunoblotting with Nm23. In these supernatants, Nm23-H1 and -H2
were detected in the soluble but not the insoluble fractions. Reciprocal
coimmunoprecipitation experiments confirmed our findings, showing that
plakoglobin was not coprecipitated with Nm23-H1 and -H2, but rather was
present in the supernatants from both soluble and insoluble Nm23
immunoprecipitates (Figure 3-5C).

To further confirm the coimmunoprecipitation study results, PC3 cells
were processed for immunofluorescence with anti-Nm23-H1/H2,
plakoglobin and a-catenin antibodies. Consistent with the lack of a-catenin
expression, there was no detectable staining for this protein in these cells.
Furthermore, in these cultures, Nm23-H1/H2 staining was detected
throughout the cells but was notably absent from the peripheries (Figure 3-
5D, Nm23/a-catenin). In contrast, plakoglobin’s localization was primarily
peripheral and membrane associated. Consistent with their distinct
localizations, no detectable Nm23/plakoglobin codistribution was observed

in these cells (Figure 3-5D, Nm23/PG).
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3.2.7. Nm23 interaction with plakoglobin, cadherin and a-catenin is
not cell line specific.

To confirm that Nm23’s interactions with the cadherin-catenin complex
were not N-cadherin or cell line specific, we examined Nm23’s
associations with plakoglobin, a-catenin and E-cadherin in several non-
epidermal cell lines. Soluble and insoluble fractions from the E-cadherin
and plakoglobin expressing MCF-10-2A, MCF-7, SW620 and MDCK cells
were processed for coimmunoprecipitation and confocal microscopy using
plakoglobin, E-cadherin, a-catenin and Nm23 antibodies. Nm23-H1 and -
H2 coprecipitated with plakoglobin and a-catenin in both the soluble and
insoluble pools, whereas they were associated with E-cadherin only in the
insoluble pool (Figure 3-6A). Reciprocal coimmunoprecipitation using
Nm23 antibodies further supported these results, where plakoglobin, E-
cadherin, and a-catenin coprecipitated with Nm23-H1 and -H2 from
insoluble fractions of all cell lines (Figure 3-6B). Immunofluorescence
experiments also showed distinct colocalization between Nm23-H1/H2
and plakoglobin, E-cadherin, and a-catenin in all cell lines (Figure 3-6C).
These observations showed that Nm23-H1 and -H2 interacted with both
N- and E-cadherin and furthermore, its associations with plakoglobin, a-

catenin and cadherins were not cell specific.
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3.3. Discussion

We identified Nm23 as a protein differentially expressed between
plakoglobin-deficient SCC9 cells and their plakoglobin-expressing
transfectants. Further analysis showed that plakoglobin expression led to
the membrane localization of Nm23-H1/H2 and its interactions with
plakoglobin, N-cadherin and a-catenin. Plakoglobin’s interaction with
Nm23-H1 and -H2 required the first 123 amino acids in the N-terminal
domain of plakoglobin, which mediates its interaction with a-catenin, and
furthermore, in cells lacking a-catenin, interactions between plakoglobin
and Nm23-H1 and -H2 were lost. Finally, we showed that the interactions
between Nm23 and plakoglobin, cadherin, and a-catenin are not cell line
specific.

Our proteomic and microarray analyses identified several tumor
suppressors whose levels were increased upon expression of plakoglobin
in SCC9 cells. We chose to focus on Nm23 for several reasons, the first of
which being that it in a variety of different cancers, both a decrease in
Nm23 and cadherin-mediated adhesion is observed while the genes
encoding these proteins remain unaltered (Chen et al., 2005; Che et al.,
2006). Previous studies have also shown that Nm23 is both targeted by
and regulates c-myc, which was the first identified target of the Wnt/B-
catenin signaling network (He et al., 1998; Schuldiner et al., 2002; Arnaud-
Dabernat et al., 2004). Additionally, we have shown that the levels and

subcellular localization of plakoglobin can modulate the amount of B-
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catenin and its signaling function in a cell context-dependent manner (Li et
al., 2007a).

Our results lend support to the observation made during our proteomic
studies, which identified Nm23-H2 as being increased nearly five-fold in
SCC9-PG cells as compared to parental SCC9 cells. Western blot
analysis revealed that whereas the levels of both Nm23-H1 and -H2 were
significantly increased upon plakoglobin expression, it was the levels of
Nm23-H2 that were more notably increased. Examination of the effect of
plakoglobin expression on the amount of Nm23-H1 and -H2 mRNA by RT-
PCR showed increased levels of Nm23-H1 mRNA only, consistent with
the microarray analysis, which revealed significantly increased NME1
(Nm23-H1) but not NME2 (Nm23-H2) expression in SCC9-PG cells.
These results together suggest that plakoglobin may regulate NME1 at the
level of transcription, and increases the levels of both Nm23-H1 but more
so Nm23-H2 protein. Plakoglobin may increase Nm23-H2 protein levels by
increasing its stability through their interactions, by inhibiting Nm23-H2’s
degradation, or by other post-translational mechanisms. Additionally, the
higher levels of Nm23-H1 transcripts that resulted in increased protein
levels (albeit not as notable as Nm23-H2) could promote interactions
between Nm23-H1 and -H2, resulting in its increased stability. Whether
plakoglobin acts directly as a transcriptional regulator of Nm23-H1
expression or alters the activity of other transcription factors is examined

in Chapter Five of this thesis. Furthermore, why plakoglobin regulates
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Nm23-H1 (NME1) gene expression and -H2 protein levels remains
unclear.

We observed Nm23-H1/H2 at the membrane in SCC9-PG cells, which
was concurrent with a mesenchymal to epidermoid transition and the
formation of stable junctional complexes and decided to further investigate
whether Nm23-H1/H2 localized to junctional complexes, taking into
account prior studies describing its membrane localization (Palacios et al.,
2002; Che et al., 2006). Immunofluorescence analysis revealed that
Nm23-H1/H2 colocalized with the total, as well as the cytoskeleton-
associated pool of plakoglobin and N-cadherin in SCC9-PG cells.

Reciprocal coimmunoprecipitation studies corroborated our
immunofluorescence results and further, allowed us to distinguish between
Nm23-H1 and -H2, and their respective interactions with the junctional
components, which could not be differentiated by microscopy because the
immunofluorescence antibodies recognized both Nm23-H1 and -H2. More
specifically, greater amounts of Nm23-H2 coprecipitated with plakoglobin
in insoluble fractions than Nm23-H1, while only Nm23-H2 coprecipitated
with plakoglobin in the soluble fraction of these cells, suggesting that
Nm23-H2-plakoglobin interactions may not require or precede Nm23-H1
associations. While Nm23-H1 and (primarily) -H2 also interacted with both
pools of N-cadherin in SCC9-PG cells, these interactions were significantly
increased in the insoluble pool. That Nm23 interacted with plakoglobin and

N-cadherin, and primarily in the cytoskeleton associated pool of proteins,
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suggested that plakoglobin may play a role in recruiting Nm23-H2, and to
a lesser extent, Nm23-H1, to the cadherin-catenin complex at the
adherens junction. Since, at this junction, a-catenin mediates the link
between the cadherin-catenin complex and the actin cytoskeleton, we
sought to determine whether Nm23-H1/H2 and a-catenin interact. We
found that they did interact, that the primary interaction was between
Nm23-H2 and a-catenin, and that these interactions were independent of
plakoglobin. Furthermore, we identified the N-terminal domain of
plakoglobin, which is essential for its interaction with a-catenin (Sacco et
al., 1995), as being necessary for its interaction with Nm23.

Recent studies have shown the existence of two distinct cellular pools
of a-catenin: one, composed of a-catenin monomers, that associates with
the B-catenin-E-cadherin complex at the membrane, and another,
composed of a-catenin dimers, that associates with the actin cytoskeleton
(Drees et al., 2005; Yamada et al., 2005). These distinct pools of a-catenin
may help to explain why so much more Nm23-H2 is associated with the
junctional components in the cytoskeleton-associated pool: it may be
possible that one pool of a-catenin associates with both Nm23-H1 and -
H2, while the other pool associates primarily with Nm23-H2.

Coimmunoprecipitation experiments in the a-catenin deficient PC3 cell
line were performed to further characterize the role that a-catenin plays in
mediating the interactions between plakoglobin and Nm23-H1 and -H2.

The results of these experiments confirmed that a-catenin is a critical
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component of the plakoglobin-Nm23-H1/H2 complex, as Nm23-H1 and -
H2 did not coprecipitate with plakoglobin antibodies in these cells.
Furthermore, all of Nm23 in PC3 cells was detected in the
immunoprecipitates supernatants from the soluble fractions only.
Consistent with these results, Nm23-H1 and -H2 were found in total cell
extracts from the soluble fraction of PC3 cells, but not the insoluble
fraction. These findings suggest that in cells that lack a-catenin, Nm23-H1
and -H2 do not interact with any junctional components that are
cytoskeleton-associated, and as a result remain exclusively in soluble
fractions. Reciprocal coimmunoprecipitation experiments using Nm23
antibodies further confirmed the absence of plakoglobin in Nm23
immunoprecipitates. In these cells, plakoglobin was detected in the
immunoprecipitates supernatants after Nm23 was removed. That Nm23-
H1/H2 and plakoglobin were not associated in PC3 cells also was
detected by confocal microscopy, which clearly showed the absence of
their membrane codistribution in these cells. Finally, examination of
additional cell lines expressing E-cadherin showed that Nm23-H1 and -H2
interact with both N- and E-cadherin and its associations with cadherins
and plakoglobin is neither tissue nor species specific.

Plakoglobin has often been associated with tumor suppressor activity,
although the mechanisms behind this activity remain unclear (Simcha et
al., 1996; Parker et al., 1998; Pantel et al., 1998; Winn et al., 2002;

Rieger-Christ et al., 2005). More recently, downregulation of plakoglobin
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also was shown to increase the risk of pulmonary metastasis in soft tissue
sarcomas (Kanazawa et al., 2008), further supporting the idea that
plakoglobin may act to suppress metastasis in addition to tumor formation.
Similarly, a number of studies have shown that in addition to its well-
documented role as a metastasis suppressor, Nm23-H1 and -H2 have
growth inhibitory activities (Lee et al., 2009; Jin et al., 2009). Our results
suggest that plakoglobin’s tumor/metastasis suppressor activity may be
mediated through the modulation of the levels, stability and subcellular
localization of Nm23. In particular, plakoglobin, at least in the context of
squamous cell oral carcinomas, exerts its effects more notably on Nm23-
H2. This result is supported by a previous study, which found that Nm23-
H2 plays a critical role as a metastasis/tumor suppressor in oral
carcinomas (Miyazaki et al., 1999). Collectively, these observations
suggest that plakoglobin and Nm23 may exert (at least part of) their anti-
tumor/metastasis activities in conjunction with one another. To this point,
no studies have been performed which have examined the (lack of)
expression of both Nm23 and plakoglobin in tumors.

In conclusion, although the exact roles that Nm23 plays in
tumorigenesis and metastasis remain unclear, our results and those of
others indicate that it is the interactions of Nm23 with other cellular
proteins that determine what type of a role it will play in these processes
(Kim et al., 2009). Here, we identified plakoglobin as a novel Nm23

interacting partner, an observation that also provides a potential

86



mechanism for the often-suggested role of plakoglobin as a tumor
suppressor. The larger implication of this novel observation is the role of
plakoglobin as a potential modulator of growth regulating proteins whose
expressions are compromised or altered during tumor progression and

metastasis.
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CHAPTER FOUR: PLAKOGLOBIN INTERACTS WITH P53 AND
REGULATES THE EXPRESSION OF 14-3-30
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4.1. Introduction’
4.1.1. Rationale

During the microarray experiments, we identified numerous tumor and
metastasis suppressor genes that were upregulated and oncogenes that
were downregulated in SCC9-PG cells (compared to SCC9 cells).
Intriguingly, we noticed that several p53-target genes (including the tumor
suppressor 14-3-30) were differentially expressed in SCC9-PG cells,
which suggested that perhaps plakoglobin regulates gene expression in
conjunction with p53. To address this possibility, we examined whether
plakoglobin and p53 interact and if they associate with the same target
gene promoters.
4.1.2. p53

The p53 tumor suppressor is regarded as one of the most important
tumor suppressors and plays essential roles in the regulation of cell
proliferation, senescence, survival, apoptosis and metabolism (Levine and
Oren, 2009; Maddocks and Vousden, 2011; Mirzayans et al., 2012). As a
tumor suppressor, the most documented role of p53 is that of a
transcription factor, regulating the expression of genes involved in cell-
cycle control, apoptosis, tumorigenesis and metastasis (Harris and Levine,
2005; Junttila and Evan, 2009; Menendez et al., 2009; Meek, 2009;
Cicalese et al., 2009; Goh et al., 2011). In addition to its role in regulating

gene expression, recent studies have demonstrated that p53 has non-

' A version of this chapter has been published in: Aktary Z, Kulak S, Mackey JR, Jahroudi
N, Pasdar M (2013). Plakogloin interacts with the transcription factor p53 and regulates
the expression of 14-3-30. Journal of cell science 126: 3031-3042.
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genomic functions in the cytoplasm, where it interacts with pro- and anti-
apoptotic proteins and promotes apoptosis by inducing mitochondrial outer
membrane permeabilization (Mihara et al., 2003; Green and Kroemer,
2009; Vaseva and Moll, 2009; Brady and Attardi, 2010; Golubovskaya and
Cance, 2011; Lindenboim et al., 2011; Stegh, 2012).

Inactivating mutations of p53 occur in half of all tumors, whereas in the
remaining tumors, mutations in other components of the p53 pathway
account for its functional inactivation (Junttila and Evan, 2009; Menendez
et al., 2009; Goh et al., 2011). Furthermore, some mutations in p53,
known as the “gain-of-function” mutations, endow this tumor suppressor
with oncogenic activities that lead to the increased expression of tumor
and metastasis promoting genes (O’Farrell et al., 2004; Tepper et al.,
2005; Brosh and Rotter, 2009; Oren and Rotter, 2010; Muller et al., 2012).

Normally, p53 protein levels are kept under tight control, with the
steady-state levels of the protein being quite low. Various studies have
suggested that p53 has a half-life of roughly 20-30 minutes in non-
stressed cells (Moll and Petrenko, 2003; Agrawal et al., 2006). The levels
of p53 are regulated by Hdm2, an E3 ubiquitin ligase, which under normal
conditions interacts with and ubiquitinates p53 (Collavin et al., 2010; Wang
and Jiang, 2012; Pei et al., 2012). Following ubiquitination, p53 is exported
out of the nucleus, where it is degraded via cytoplasmic proteasomes
(Figure 4-1A), although various studies have shown that it can be also be

degraded in the nucleus by nuclear proteasomes (Boehme and Blattner,
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2009; Collavin et al., 2010). When cells are stressed (e.g. exposed to UV
or ionizing radiation, hypoxic environment or oncogenic insults, etc.), the
levels of p53 are dramatically increased. Under these conditions, Hdm2-
mediated degradation of p53 is blocked, mainly through the actions of the
tumor suppressor ARF, which sequesters Hdm2 in the nucleolus and
liberates p53 (Figure 4-1B). Furthermore, under these conditions, various
kinases (e.g. ATM, Chk2, etc.) become activated and phosphorylate p53,
which inhibits its interaction with Hdm2. The stable p53 is then able to
regulate the expression of its target genes and promote cell-cycle arrest
and apoptosis (Boehme and Blattner, 2009; Collavin et al., 2010; Wang
and Jiang, 2012).

p53 protein stability is also regulated by several other post-translational
modifications, including phosphorylation, acetylation and sumoylation
(Boehme and Blattner, 2009; Collavin et al., 2010), and by its interactions
with different cytoplasmic and nuclear proteins, which also alter its activity
and function (Junttila and Evan, 2009; Menendez et al., 2009; Boehme
and Blattner, 2009; Collavin et al., 2010; Goh et al., 2011). One such
interacting protein that is known to activate the transcriptional activity of
p53 is the tumor suppressor 14-3-30 (Yang et al., 2003; Lee and Lozano,
2006).
4.1.3. 14-3-3 proteins

The 14-3-3 family of proteins are abundant acidic polypeptides that are

found in all eukaryotic organisms. Currently seven 14-3-3 isoforms have
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been identified, which can form homo- and heterodimers (Sluchanko and
Guseyv, 2012). These proteins have a wide variety of cellular functions,
ranging from cell survival and apoptosis to cell cycle control, and are
known to interact with a vast array of cellular proteins, including
transcription factors, cytoskeletal proteins, biosynthetic enzymes and
signaling molecules (Obsilova et al., 2008; Morrison, 2008; Van Heusden,
2009; Sluchanko and Guseyv, 2012).

14-3-30 (also called stratifin, encoded by the SFN gene) was originally
characterized as a human mammary epithelial-specific (HME1) marker
that was downregulated in mammary carcinoma cells (Prasad et al., 1992)
and is the only 14-3-3 isoform induced by p53 upon DNA damage
(Lodygin and Hermeking, 2006; Lee and Lozano, 2006). In accordance,
14-3-30 has a well-documented tumor suppressor activity through its
negative regulation of the cell cycle and positive regulation of p53
transcriptional activity. In addition, 14-3-30 downregulation is observed in
a variety of solid tumors including breast, squamous cell, lung, liver,
ovarian and prostate cancer and this downregulation has been associated
with increased tumor metastasis (Yang et al., 2003; Lodygin and
Hermeking, 2006; Lee and Lozano, 2006).

4.1.4. Specific aim and summary of results

In this chapter, we have identified plakoglobin as a novel p53-

interacting protein and examined the effect of plakoglobin expression on

the levels of the p53 target gene 14-3-30. We show that plakoglobin
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expression resulted in the induction of 14-3-3c mMRNA and protein.
Furthermore, we show that plakoglobin interacted with p53 in squamous
(SCC9-PG, A431) and mammary (MCF-10-2A, MCF-7) epithelial cell lines,
that plakoglobin and p53 both associated with the 14-3-3c gene (SFN)
promoter, and that plakoglobin promoted p53 transcriptional activity. Our
results show that plakoglobin interacts with p53 and suggest that together,
plakoglobin and p53 control the expression of tumor/metastasis regulating
genes, a function which also may account, in part, for plakoglobin’s often-
described tumor suppressor activity (Simcha et al., 1996; Pantel et al.,
1998; Charpentier et al., 2000; Winn et al., 2002; Reiger-Christ et al.,
2005; Yin et al., 2005; Kanazawa et al., 2008; Narkio-Makela et al., 2009;
Todorovic et al., 2010; Aktary et al., 2010).

4.2. Results

4.2.1. 14-3-30 levels are induced in SCC9-PG cells.

Our microarray experiments showed that the levels of several p53
target genes were altered in SCC9-PG cells compared to SCC9 cells. This
result, while intriguing, was surprising since it has been reported that in
SCCO9 cells, p53 carries a mutation in its DNA-binding domain (Jung et al.,
1992). Interestingly, SFN, the gene encoding the tumor suppressor 14-3-
30, was upregulated 30-fold in SCC9-PG cells and was chosen for further
investigation. To confirm the results of the microarray experiment, we
began by performing RT-PCR and qRT-PCR experiments using mRNA

from SCC9 and SCC9-PG cells and observed that while 14-3-30 mRNA
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was essentially undetectable in SCC9 cells, its levels were significantly
upregulated in SCC9-PG cells (Figure 4-2B, C). Subsequent Western blot
experiments verified that the expression of 14-3-3c mRNA was
accompanied by significant amounts of its protein in SCC9-PG cells, which
was undetectable in SCC9 cells (Figure 4-2A). We repeated these
experiments using different isolated clones of independent SCC9-PG
transfectants and observed similar results with upregulation of both 14-3-
30 mRNA and protein levels (data not shown).

4.2.2. Plakoglobin interacts with p53 in SCC9-PG cells.

The results from Figure 4-2A-C showed that plakoglobin expression
resulted in the induction of 14-3-3c mMRNA and protein, which suggested
that plakoglobin may regulate the expression of 14-3-30. Since 14-3-30 is
a well-known target of p53 (Obsilova et al., 2008; Morrison, 2008; Van
Heusden, 2009), we set out to determine whether plakoglobin and p53
interacted by performing reciprocal coimmunoprecipitation experiments
using plakoglobin and p53 antibodies. Plakoglobin antibodies
coprecipitated p53 in SCC9-PG cells and as expected, no interaction was
observed in SCC9 cells due to their lack of endogenous plakoglobin
expression (Figure 4-2D, IP: PG/IB: PG and p53). Reciprocal
coimmunoprecipitation experiments using p53 antibodies coprecipitated
plakoglobin from SCC9-PG cells but not SCC9 cells (Figure 4-2D, IP:
p53/IB: PG and p53). Since plakoglobin and 3-catenin have common

interacting partners (Peifer et al., 1992; Zhurinsky et al., 2000b; Stemmler,
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Figure 4-2. Plakoglobin interacts with p53 and its expression results in induction of 14-3-3c
mRNA and protein levels. (A) Equal amounts of total cellular proteins from SCC9 and SCC9-PG
cells were resolved by SDS-PAGE and processed for immunoblotting with antibodies to plakoglobin,
14-3-30 and Actin. (B) Total cellular RNA was isolated from SCC9 and SCC9-PG cells, reverse
transcribed and processed for PCR using primers specific to plakoglobin, Actin, 14-3-30 and
GAPDH. (C) Total cellular RNA was isolated from SCC9 and SCC9-PG cells, reverse transcribed and
processed for quantitative PCR using primers specific to 14-3-3¢ and the ribosomal protein RPL29.
The levels of 14-3-3c mMRNA were first normalized to the amount of RPL29 in each cell line and then to
SCC9 cells. (D-E) SCC9 and SCC9-PG cell extracts were processed for immunoprecipitation using
(D) plakoglobin or p53 or preimmune or (E) g-catenin or p53 or preimmune antibodies. Immune
complexes were resolved by SDS-PAGE and immunoblotted with antibodies to (D) plakoglobin and
p53 or (E) B-catenin and p53. p-cat, f-catenin; PG, plakoglobin.

96



2008), we also examined (3-catenin-p53 interactions in SCC9 and SCC9-
PG cells by reciprocal coimmunoprecipitation followed by immunoblotting
using B-catenin and p53 antibodies. These experiments demonstrated that
B-catenin did not interact with p53 (Figure 4-2E) and that the plakoglobin-
p53 interaction is specific to these two proteins.

4.2.3. Plakoglobin and p53 interaction is not cell line specific.

To confirm that the observed plakoglobin-p53 interaction is not specific
to SCC9-PG transfectants, we performed coimmunoprecipitation
experiments using MCF-10-2A, a normal mammary epithelial cell line,
MCF-7, a mammary carcinoma cell line, and A431, a vulvar carcinoma cell
line, which all express plakoglobin and p53 (Setzer et al., 2004; Li et al.,
2005; Kwok et al., 1994; Lam et al., 2009; Figure 4-3). We first confirmed
that these cell lines expressed 14-3-30 by Western blot analysis (Figure 4-
3A, TCL). Next, reciprocal coimmunoprecipitation experiments using
plakoglobin (Figure 4-3B), p53 (Figure 4-3C) and preimmune (Figure 4-
3D) antibodies followed by immunoblotting demonstrated that plakoglobin
and p53 were coprecipitated in non-epidermoid as well as epidermoid cell
lines by plakoglobin and p53 but not preimmune antibodies. We also
observed plakoglobin-p53 interactions in human and mouse fibroblast cell
lines, supporting that these interactions were not cell type specific (data
not shown). Finally, reciprocal coimmunoprecipitation experiments using

B-catenin and p53 antibodies in the non-epidermoid cell lines showed that
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Figure 4-3. Plakoglobin interacts with p53 in different epithelial cell lines. (A) Equal amounts of total
cellular proteins from SCC9, MCF-10-2A, MCF-7 and A431 cells were resolved by SDS-PAGE and processed
for immunoblotting with antibodies to 14-3-3c¢ and Actin. (B-D) SCC9, MCF-10-2A, MCF-7 and A431 cell
extracts were processed for immunoprecipitation using (B) plakoglobin, (C) p53 or (D) preimmune
antibodies. Immune complexes were resolved by SDS-PAGE and immunoblotted with antibodies to
plakoglobin and p53. (E) SCC9, MCF-10-2A, MCF-7 and A431 cell extracts were processed for reciprocal
immunoprecipitation using p-catenin and p53 antibodies. Immune complexes were resolved by SDS-PAGE
and immunoblotted with antibodies to B-catenin and p53. PG, plakoglobin. TCL, total cell lysate.
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these two proteins did not interact, further demonstrating the specificity of
the plakoglobin-p53 interaction (Figure 4-3E).

4.2.4. Plakoglobin and p53 interact in both the cytoplasm and
nucleus.

Figures 1 and 2 demonstrated that plakoglobin interacted with p53,
however, whether the interaction occurs in a specific subcellular
compartment remained unclear. Since p53 functions as a transcription
factor in the nucleus, we examined whether these two proteins interacted
in the nucleus. To that end, we performed subcellular fractionation
experiments in SCC9, SCC9-PG, A431, MCF-10-2A and MCF-7 cell lines
and obtained distinct cytoplasmic and nuclear fractions that were
processed for immunoprecipitation with p53 antibodies followed by
Western blot with plakoglobin and p53 antibodies (Figure 4-4A, B). The
results of these experiments confirmed the presence of p53 in both the
cytoplasmic and nuclear fractions of all cell lines and the presence of
plakoglobin in all cell lines except SCC9 (Figure 4-4A, B, IP: p53/IB: PG
and p53). Furthermore, plakoglobin was coprecipitated with p53 in both
the nuclear and cytoplasmic pools of protein in all cell lines except SCC9
(Figure 4-4A, B, IP: p53/IB: PG).

4.2.5. Plakoglobin and p53 associate with the 14-3-30 gene promoter.

Taken together, the results so far showed that plakoglobin expression
resulted in induction of 14-3-3c mMRNA and protein expression and that

plakoglobin and p53 interacted in the nucleus as well as in the cytoplasm.
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These results suggested that plakoglobin and p53 may coordinately
regulate gene expression. To examine this possibility, we performed
chromatin immunoprecipitation (ChlP) experiments using extracts from
SCC9 and SCC9-PG cells. We immunoprecipitated the chromatin with
plakoglobin and p53 antibodies, respectively, and isolated the DNA
associated with each protein. Subsequent PCR experiments using primers
to detect the 14-3-3c (SFN) promoter (Table 2-2) showed that both
plakoglobin and p53 associated with the 14-3-3c (SFN) promoter in
SCC9-PG cells only (Figure 4-5A, SCC9 and SCC9-PG). ChIP with control
IgG antibodies produced negative results.

Since we observed the plakoglobin-p53 interaction in MCF-10-2A,
MCF-7 and A431 cells, we performed the ChIP experiments using
chromatin from these cell lines. The results of these experiments were in
agreement with the ChIP experiments from SCC9-PG cells: both
plakoglobin and p53 associated with the 14-3-30 promoter in these cell
lines (Figure 4-5A, MCF-10-2A, MCF-7 and A431).

In addition, we performed ChIP experiments using B-catenin
antibodies and chromatin from SCC9, SCC9-PG, MCF-10-2A and SW620
cells. The colon carcinoma cell line SW620 was used because it
expresses p53 and transcriptionally active p-catenin (Lamy et al., 2010; EI-
Bahrawy et al., 2004; Li et al., 2007a). In agreement with the
coimmunoprecipitation data, we did not observe an association between

the 14-3-30 (SFN) gene promoter and -catenin in any cell line (Figure 4-
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Figure 4-5. Plakoglobin and p53 associate with the 14-3-3c gene promoter. SCC9, SCC9-PG,
MCF-10-2A, MCF-7, A431 and SW620 cells were formaldehyde fixed and processed for chromatin
immunoprecipitation. Following sonication, extracts were immunoprecipitated using control IgG, plakoglobin,
p53 or B-catenin antibodies. Following extensive washes, immunoprecipitated DNA was separated from the
immune complexes and purified using standard DNA purification protocols. The purified DNA was then
processed for PCR using 14-3-3c (A) 14-3-3c and MYC (B) or VWF and 14-3-3c (C) primers. As positive
control, total cellular DNA (Input) was amplified using the same primers. p-cat, p-catenin; PG, plakoglobin.
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5B). As a positive control, we examined if B-catenin was associated with
the MYC gene promoter, which is a well-known B-catenin target gene (He
et al., 1998). B-catenin was associated with the MYC promoter in SCC9
and SW620 cells, but not in SCC9-PG and MCF-10-2A cells. Finally,
plakoglobin and p53 ChIP samples were processed for PCR using primers
to the VWF gene (negative control), and no amplification was observed,
whereas the same p53 ChIP sample clearly amplified the 14-3-30 (SFN)
promoter in both SCC9-PG and MCF-10-2A cells (Figure 4-5C).

4.2.6. Plakoglobin binds the p53-consensus sequence in the 14-3-30
promoter.

Since plakoglobin interacted with p53 and regulated the 14-3-30 gene,
we hypothesized that plakoglobin may bind to the p53 consensus
sequence in the 14-3-30 gene promoter, potentially through its interaction
with p53. To verify this, we first performed electrophoretic mobility shift
assays (EMSA) using MCF-10-2A nuclear extracts and a radioactively
labeled probe that corresponded to the p53 consensus sequence
(GTAGCATTAGCCCAGACATGTCC) in the 14-3-30 gene promoter
(Hermeking et al., 1997; Cai et al., 2009). MCF-10-2A cells were first used
for these experiments because they express endogenous plakoglobin and
wild-type p53 (Li et al., 2005; Lam et al., 2009). The results showed the
formation of a distinct complex (Figure 4-6A, Lane 2) that was inhibited by
the addition of a specific oligonucleotide competitor (unlabeled probe in

50-fold excess; Figure 4-6A, Lane 6) but not by a non-specific
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oligonucleotide (corresponding to the NFY gene; Figure 4-6A, Lane 7).
The addition of p53 antibodies to the reaction mixture resulted in a
reduction in specific DNA-protein complex formation, as demonstrated by
a decrease in signal intensity (Figure 4-6A, Lane 3). When plakoglobin
antibodies were added to the reaction mixture, a supershift was observed
(Figure 4-6A, Lane 4), whereas the addition of IgG to the reaction mixtures
had no effect on the band shift (Figure 4-6A, Lane 5). In contrast to
plakoglobin antibodies, when B-catenin antibodies were added to the
reaction mixtures, no effect was observed (Figure 4-6B, Lane 3).

Similarly, in Figure 4-7, EMSA experiments using nuclear extracts from
SCC9 and SCC9-PG cells and the same radioactively labeled probe
resulted in the formation of a distinct complex (Figure 4-7, Lane 2) that
was inhibited by the addition of a specific competitor but not by a non-
specific oligonucleotide (Figure 4-7, Lanes 7 and 8). When plakoglobin
antibodies were added to the reaction mixtures, a supershift was observed
in SCC9-PG but not in SCC9 cells (Figure 4-7, Lane 3). The addition of
p53 antibodies to the reaction mixtures containing the SCC9-PG, but not
SCC9 nuclear extracts resulted in a reduction in specific DNA-protein
complex formation (Figure 4-7, Lane 4). The addition of B-catenin
antibodies or IgG to the reaction mixtures had no effect on the band shift

in either cell line (Figure 4-7, Lanes 5 and 6).
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Figure 4-7. Plakoglobin and p53 bind to the p53 consensus sequence in the 14-3-3c gene
promoter in SCC9-PG cells. Nuclear extracts from SCC9 and SCC9-PG cells were incubated in the
presence of radioactively labeled double stranded oligonucleotide probes corresponding to the p53
consensus sequence in the 14-3-3c gene promoter. To confirm the binding of plakoglobin, p53 or -
catenin to the probe, antibodies corresponding to each protein were added to the reaction mixtures,
which were then run on a 5% non-denaturing polyacrylamide gel and processed for autoradiography.
NE, Nuclear Extract. PG, plakoglobin.
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4.2.7. Plakoglobin promotes p53 transcriptional activity.

The results from the ChIP experiments revealed that p53 associated
with the 14-3-30 gene promoter in SCC9-PG but not in SCC9 cells,
suggesting that plakoglobin may play a role in regulating the
transcriptional activity of p53. To investigate this further, we performed
reporter gene assays, by transfecting SCC9 and SCC9-PG cells with
constructs encoding the luciferase gene downstream of the wild type or
mutant p53-binding sequence in the 14-3-3c gene promoter (Hermeking et
al., 1997; Table 2-4). SCC9 cells transfected with the control vector, wild-
type p53 or mutant p53 containing plasmids showed minimal luciferase
activity regardless of the plasmid (Figure 4-8A, SCC9). However, in SCC9-
PG cells, while the luciferase activity of the control was similar to SCC9
cells, it was significantly increased when these cells were transfected with
either the wild-type (2.2-fold) or mutant (2.9-fold) plasmids, respectively
(Figure 4-8A, SCC9-PG). This unexpected result suggested that perhaps
regulation of the 14-3-30 gene in SCC9-PG cells is independent of p53,
since luciferase activity was induced from the mutant p53 sequence, to
which p53 should not bind. To examine this possibility, we knocked down
p53 in SCC9-PG cells using siRNA and examined the effect on luciferase
reporter activity. We observed that knock down of p53 resulted in
decreased 14-3-30 protein in SCC9-PG cells and in almost a complete

loss of luciferase reporter activity from both the wild-type and mutant

107



801

"siuN Y617 eAneRY ‘NTY “ulqojBoxeld ‘Od “(piwseld

JOJO8A Y} YlIM pajoajsuel) s||89 L ey 10 6DDS 0} paledwod se ‘100 > d,) (W) ul paquosap se paulwislap alam saosuanbas Buipuiq ¢6d (an)
-1NIN £6d snsuasuod) jueinw pue (anj-LA £6d snsuasuod) adA)-piim (10399A) 10109A BY) WOI4 SBIIAIOE asela)ion| pue aouanbas Buipuiq
£G6d SnsSUBsUO0D B JO |0JjU0D By} Jopun S}oNJISU0D Jajodal aselalion| YlIMm pajoajsuel) aiam s|[99 Hd-609S pPue 699S (3) (v) ul pequosep se
SJONJISUOD Japuodal aselalion| Yjim pajoajsuel; atam 199 (a) LSy pue (9) aM-£5d-9d-6D0S (@-9) "wNY!s Buisn umop yoouy £6d Buimojjoy
S|199 ©d-609DS Ul S|oAd] 0g-¢- 1 pue £6d Jo uoneyjuenb pue sisAjeue 10|q ulaisapa (g) 10109 uoissaldxa asepisojoeleb-g e yym uonosjsuel)
-090 Ag Aousioiye uojos)suUel) 10} PazZIjewlou pue suonodajsued) Juspuadapul 93y} JO WNWIUIW B Wolj paulwialep alam saouanbas Buipuig-ggd
(on|-LNIN ©€-€-11) Jueinw pue (an|-LAM O¢-€-¥1) 9dA1-piim ‘(10399A) 10}08A BU) WO} SBINIAIOE SSBISHIN| JO S|9AS| 8] "uonosjsueli-isod sinoy
8¢ painseaw alam sallAloe aselajon auab (N4S) O¢-¢-| 8yl wodl sousnbas Buipuig-£Gd ay) Jo [01U0D By Jopun S1oNJSU0d Japodal
9SBIBJION| YJIM pajosjsuel) a1am |99 9d-600S Pue 690S (V) “AyAnoe jeuonduosuesy ¢gd Juenw saje|nbal uiqojboyeld "g- ainbi4

9d-600S  600S S0 LEYY aM-€5d-9d-600S
-0
-S0
) B
o z .
- c ['|o 2
-0z C £
* -§C -Gl
on-LAIN O¢-€-¥L -8
on-inwegdm | 0€ oM Og-c-pim ¥ NN O¢-€vLm
aNn-L M £6d | 10097 11 6 ONI-LM mmmmwvl -0z
* 10J09A 11 -g'¢ ROBAN
- 9d-600S 600S
og-e-vl egd . 9d-620S -0
+ - VNY!s £6d .
-20 unoy
> -0
-v0 S
5 ogeyl -Gl
o2 P
90 ¢ -0z C
= unoy
-80 [72] -G¢
*
oNl-LAN O€-€-pim |
-0l egd onp-Lm og-g-pim |~ 0°€
aX-€54-9d-600Sm 1 JopAr |- o

9d-600Sm m <



plasmids (Figure 4-8B, C), suggesting that mutant p53 could bind to both
the wild type and mutant response element and was involved in regulating
14-3-30 gene expression in SCC9-PG cells. That mutant p53 proteins
have the potential to activate gene expression from both wild-type and
mutant p53 response elements is not cell specific and has been suggested
previously (Muller and Vousden, 2013 and references therein). To this
end, we verified that the induction of luciferase activity from the mutant 14-
3-30 construct was not specific to SCC9-PG cells by performing the
luciferase reporter assays in A431 cells, which express another p53
mutant (Kwok et al., 1994). The results of these assays also showed a
significant increase in the luciferase activity from both the wild-type (~7-
fold) and mutant (~3-fold) constructs (Figure 4-8D) in these cells.

To verify that plakoglobin’s regulation of p53 transcriptional activity was
not specific to the 14-3-30 gene, we performed similar luciferase assays
using luciferase constructs downstream of a wild-type and mutated
consensus p53-binding sequence (Kern et al., 1992). The results showed
that luciferase activity was induced from both the wild-type and mutant
consensus p53 plasmids in SCC9-PG cells, whereas no induction was
observed in SCC9 cells (Figure 4-8E).

We further performed the same experiments in MCF-7 cells, which
express wild-type p53 (Li et al., 2005). We argued that since SCC9-PG
and A431 cells express mutant p53, these mutant proteins may be able to

induce luciferase activity from both the wild-type and mutant p53
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promoters. On the other hand, activation from the mutant promoter would
not be expected in MCF-7 cells with wild-type p53 expression.
Additionally, to further confirm the role of plakoglobin in regulating the
transcriptional activity of wild-type p53, we knocked down plakoglobin in
MCEF-7 cells using shRNA (Figure 4-9A) and assessed the effects on
luciferase activity. When MCF-7 cells were transfected with the same
constructs, we observed a significant induction of luciferase activity (nearly
300-fold) when the wild-type construct was transfected, whereas the
control and mutant constructs showed no activity (Figure 4-9B). In MCF-7
cells, knock down of plakoglobin resulted in a significant (~21-fold)
decrease in luciferase activity from the wild-type construct (Figure 4-9B,
MCF-7-shPG), demonstrating that p53 transcriptional activity was
enhanced in the presence of plakoglobin.

Luciferase assays using the reporter constructs downstream of the wild-
type and mutated consensus p53-binding sequences demonstrated that
luciferase activity was significantly induced only from the wild-type plasmid
in MCF-7 cells (Figure 4-9C, MCF-7). Finally, knock down of plakoglobin in
MCF-7 cells (MCF-7-shPG) resulted in significantly (~7-fold) decreased
luciferase activity from the wild-type consensus p53 plasmid in these cells
(Figure 4-9C, MCF-7-shPG).

4.3. Discussion
Our microarray studies identified several p53-target genes whose levels

were altered upon plakoglobin expression in SCC9 cells. Among these
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genes was the tumor suppressor 14-3-3c. We chose to focus on 14-3-30
because a) its MRNA levels were increased over 30-fold in SCC9-PG
cells, one of the most notable increases in any of the identified p53-target
genes, b) it is a well-documented tumor and metastasis suppressor
(Lodygin and Hermeking, 2006; Lee and Lozano, 2006; Yi et al., 2009), c)
members of the 14-3-3 family are known to interact with a wide range of
cellular partners and regulate several biological processes (Obsilova et al.,
2008; Morrison, 2008; Van Heusden, 2009), d) 14-3-30 itself has been
shown to interact with plakophilin, a component of the desmosomal
plaque, which also contains plakoglobin (Benzinger et al., 2005) and e)
more recently it has been shown that various 14-3-3 proteins can regulate
the Wnt pathway and B-catenin signaling (Li et al., 2008), functionally
linking these proteins to catenin proteins. Furthermore, we and others
have shown that plakoglobin also regulates (-catenin subcellular
localization and in turn its transcriptional activity (Salomon et al., 1997;
Klymkowsky et al., 1999; Zhurinsky et al., 2000a; Li et al., 2007a), thereby
suggesting that both plakoglobin and 14-3-30 act to regulate the Wnt
signaling pathway in similar, albeit not identical ways.

The change in the expression of several p53-target genes, including 14-
3-30, in SCC9-PG cells suggested that plakoglobin participated in p53-
mediated regulation of gene expression. Coimmunoprecipitation
experiments determined that plakoglobin and p53 interacted with one

another in both the nuclear and cytoplasmic pool of proteins. It is well
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documented that p53 interacting proteins play important roles in regulating
its stability and function (Boehme and Blattner, 2009; Collavin et al.,
2010). By identifying plakoglobin as a p53 interacting partner, we are, to
the best of our knowledge, the first to show that a catenin protein interacts
with p53. Although we did not observe an interaction between B-catenin
and p53, a relationship between them exists whereby p53 regulates the
stability of p-catenin, via the upregulation of the ubiquitin ligase Siah-1,
which in turn degrades (-catenin. Furthermore, p-catenin overexpression
has been shown to increase p53 levels via upregulation of p14/19 ARF,
which sequesters Hdm2 and leads to increased p53 protein stability
(Damalas et al., 1999; 2001; Harris and Levine, 2005).

The observation that a number of p53 target genes, including SFN,
were upregulated in SCC9-PG cells and that plakoglobin and p53
interacted in both the cytoplasm and nucleus suggested that perhaps
these proteins regulate gene expression concurrently. ChlP and EMSA
experiments showed that plakoglobin and p53 were both associated with
the 14-3-30 gene promoter (Figures 4-5, 4-6, 4-7). These results suggest
that plakoglobin and p53 are part of a transcriptional complex that
regulates gene expression, which is novel when considering that reports
linking plakoglobin to the regulation of gene expression are limited.
Interestingly, previous studies implicating plakoglobin in the regulation of
gene expression have shown that plakoglobin does so in conjunction with

the TCF/LEF transcription factors (Simcha et al., 1999; Kolligs et al., 2000;
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Zhurinsky et al., 2000a; Li et al., 2007a; Williamson et al., 2006). However,
several of these studies have demonstrated that the plakoglobin-TCF
complex is inefficient in binding to DNA (Simcha et al., 1999; Zhurinsky et
al., 2000a; Li et al., 2007a; Kolligs et al., 2000) and suggest that
plakoglobin’s ability to regulate gene expression may have more to do with
its modulation of the signaling activity of B-catenin than with its own
independent function. More recently, it has been shown that in addition to
regulating the signaling activity of p-catenin itself, plakoglobin is also
capable of regulating B-catenin oncogenic signaling by interacting with and
promoting the nuclear export of the transcription factor SOX4, which
interacts with B-catenin and promotes its transcriptional activity (Sinner et
al., 2007; Scharer et al., 2009; Lai et al., 2011). However, a more direct
mechanism of plakoglobin-mediated regulation of gene expression has
been documented, as it has been shown that plakoglobin, in conjunction
with LEF-1, is a repressor of oncogenic Myc, and that the loss of this
repression is observed in pemphigus vulgaris (Williamson et al., 2006).
The importance of our result lies in the fact that plakoglobin appears to
be regulating gene expression through its association with non-TCF/LEF
transcription factors, in this case, p53. Indeed, the 14-3-30 gene promoter
has no identified TCF/LEF binding sites and is not known to be a Wnt/B-
catenin target gene. In accordance, we previously showed that
overexpressed/high levels of plakoglobin, by modulating the signaling

activity of p-catenin, regulated the expression of the BCL2 gene in SCC9-
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PG cells and this regulation did not involve TCF (Li et al., 2007a). This
suggests that plakoglobin can regulate gene expression and more
importantly tumorigenesis and metastasis independent of TCF. Similarly, a
previous report showed that plakoglobin may regulate the expression of
the PML gene independent of TCF/LEF (Shtutman et al., 2002).
Interestingly, the PML gene has recently been shown to be a p53-target
gene (de Stanchina et al., 2004), which further supports the notion that
plakoglobin may regulate gene expression in conjunction with p53.

The experiments described in this study were all performed in the
absence of cellular stressors such as staurosporine treatment or DNA
damage. As such, it appears that plakoglobin and p53 regulate gene
expression under steady state cellular conditions, implying that this activity
is a basic function within cells. The disruption of this gene regulation
function (as per the loss of plakoglobin expression in SCC9 cells) may
contribute to tumorigenesis. In agreement, we observed plakoglobin-p53
interactions in various epithelial and fibroblast cell lines that we examined,
suggesting that this interaction occurs in cell lines expressing both
proteins (either endogenously or exogenously). Furthermore, we observed
that plakoglobin and p53 interacted in the cytoplasm as well as the
nucleus (Figure 4-4), which suggests that the two proteins may associate
with one another in the cytoplasm and then translocate into the nucleus. In
addition, p53 is known to play non-genomic functions in the cytoplasm

(particularly at the mitochondria; Mihara et al., 2003; Vaseva and Moll,
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2009; Lindenboim et al., 2011) and since plakoglobin associated with p53
in the cytoplasm, it is conceivable that plakoglobin may also play some
role in the non-genomic functions of p53.

Previous studies have identified p53 as being mutated in the DNA
binding domains in SCC9 and A431 cells (Jung et al., 1992; Kwok et al.,
1994). Jung et al. (1992) showed that the TP53 gene in SCC9 cells
contains a 32-base pair deletion starting at codon 274 which results in a
premature stop codon and a truncated protein, whereas Kwok et al. (1994)
showed that p53 contains a point mutation (R273H) in its DNA binding
domain in A431 cells. However, we observed a p53 protein in SCC9 cells
that appeared approximately 50 kDa and that accumulated in the nucleus
(Figure 4-4). This discrepancy is most likely the result of the heterogeneity
of the original isolated SCC9 cell line. We addressed this possibility by
sequencing and characterizing the TP53 gene in our SCC9 cells. We
observed not only the expected 32-base pair deletion, but also a number
of single base pair deletions spanning nucleotides 906-1162 (Table 4-1).
These deletions have eliminated the expected premature stop codon and
generated a p53 protein slightly smaller than wild-type p53 in which the
p53 protein sequence contains stretches of wild-type p53 amino acids
interspersed with sequences unrelated to p53. We further characterized
this mutant protein by expressing the p53 cDNA clone isolated from SCC9
cells in the p53-null H1299 cell line (Lin and Chang, 1996; Wu et al.,

2011). Following its expression, the mutant p53 protein accumulated in
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Table 4-1. p53 status in various cell lines used.

Cell Line p53 Status p53 Mutation References
MCF-10-2A Wild-type - Li et al., 2005
MCF-7 Wild-type - Li et al., 2005
SCC9 Mutant A 32-bp deletion in DNA binding Jung et al., 1992
domain (starting at codon 274)
Mutant A 32-bp deletion in DNA binding Current Study
domain (starting at codon 274) with
further deletions at bp 906, 1039,
1062, 1076, 1083, 1090, 1098, 1120,
1121, 1152, 1153, and 1162
A431 Mutant R273H Kwok et al., 1994
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these cells, localized to both the cytoplasm and the nucleus and 14-3-30
protein levels were increased. ChlIP experiments showed that the mutant
p53 protein was associated with the 14-3-3c promoter (Figure 4-10).
Collectively, these results suggested that this mutant p53 was capable of
regulating 14-3-30 (SFN) expression.

The ChIP results suggested that despite their p53 mutations,
plakoglobin and the mutated p53 protein still associated with the 14-3-30
gene promoter in SCC9-PG and A431 cells (Figure 4-5). This result, while
unexpected, is not unparalleled, as a number of studies have shown that
mutant p53 protein is capable of binding to its target gene sequences and
regulating their expression (Pan and Haines, 2000; O’Farrell et al., 2004;
Weisz et al., 2007; Chandrachud and Gal; 2009; Perez et al., 2010; Rasti
et al., 2012). Since the mutant p53 did not associate with the 14-3-3c
promoter in the absence of plakoglobin (SCC9 cells), this suggests a role
for plakoglobin in associating p53 with its target gene promoter(s). In
agreement, luciferase reporter assays in SCC9 and SCC9-PG cells
showed that the transcriptional activity of p53 was stimulated upon
plakoglobin expression, as SCC9 cells showed minimal luciferase activity,
whereas luciferase activity was significantly enhanced in SCC9-PG cells
(Figure 4-8A, E). However, while we observed 2-3 fold increases in
luciferase activity in SCC9-PG cells, the gRT-PCR results suggested a

larger increase in 14-3-30 gene expression in these same cells. This
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discrepancy may be explained by the involvement of other factors that
partake in regulating 14-3-30 gene expression (e.g. p63, p73, BRCA1;
Danilov et al., 2011; Sang et al., 2006; Aprelikova et al., 2001). Similarly,
while knock down of plakoglobin in MCF-7 cells resulted in a 21-fold
decrease in luciferase activity from the 14-3-3oc promoter, 14-3-30 protein
levels were decreased by 2-fold in these same cells. This may be due
once again to the involvement of other proteins that regulate 14-3-30
expression. In addition, while MCF-7 shPG transfectants had decreased
p53 levels, p53 protein was still present in these cells and therefore may
have been able to promote 14-3-30 expression.

Knock down of p53 in SCC9-PG cells also resulted in decreased
luciferase activity from both the wild-type and mutant 14-3-3c promoter
constructs (Figure 4-8C), suggesting that the mutant p53 protein in these
cells was directly involved in regulating 14-3-30 gene expression.
Furthermore, the decreased luciferase activity from the mutant promoter
construct is further confirmation that the mutant p53 protein can promote
gene expression from the mutant promoter. However, while knock down of
p53 almost completely abrogated luciferase activity from the reporter
constructs, minimal amounts of 14-3-3c protein remained (Figure 4-8B).
Collectively, our data suggest that p53 and plakoglobin are the primary
regulators of 14-3-30 expression although it is possible that other factors

may also be involved.
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The results from the luciferase assays suggested that in addition to
wild-type p53-binding sequences, the mutant p53 protein in SCC9-PG
cells could bind to and activate gene expression under the control of a
mutant p53-binding sequence. However, the activation from mutant p53-
binding sequences required the presence of plakoglobin, since minimal
luciferase activity was observed in SCC9 cells. That a mutant p53
protein’s function can be modified following the introduction of an
interacting partner is not unprecedented. It has been previously shown
that another p53 interacting protein, ANKRD11, can interact with and
restore the normal tumor/metastasis suppressor function and
transcriptional activity of a mutant p53 in breast cancer cells (Neilsen et
al., 2008; Noll et al., 2012). Our data suggests that in the presence of
plakoglobin, mutant p53, which otherwise would not associate with its
target gene promoters, may be capable of regulating the expression of its
target genes (anti-tumor/metastasis genes). Similar to ANKDR11, it is
possible that plakoglobin, as an interacting partner of p53, may be able to
alter the conformation of the mutant p53 protein, thus allowing it to bind to
its target gene promoters. This is a novel and important result with
potentially significant therapeutic implications, since p53 is inactivated in
half of all tumors (Rahman-Roblick et al., 2007; Goh et al., 2011; Junttila
and Evan, 2009). As such, the relationship between p53 and plakoglobin
is one that requires further investigation and could potentially lead to the

identification of plakoglobin as a useful marker in the diagnosis and
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prognosis of cancer. The ability of plakoglobin to interact with both wild-
type and mutant p53 and to activate the expression of tumor suppressor
genes suggests that plakoglobin itself may be a useful target for
therapeutic interventions in the treatment of tumors with mutated p53
protein.

When looking at wild-type p53 expressing cells (MCF-7), we showed
that while luciferase activity was induced from the wild-type p53-binding
sequence, no activity was observed from the mutant sequence (Figure 4-
9B, C), demonstrating that wild-type p53 can only activate gene
expression from wild-type p53-binding sequences. Interestingly, knock
down of plakoglobin in MCF-7 cells resulted in significantly decreased
luciferase activity, suggesting that plakoglobin normally plays a role in
regulating the transcriptional activity of p53. Plakoglobin may also regulate
the levels of p53, as we observed significantly higher p53 levels in SCC9-
PG cells relative to SCC9 cells (Figure 4-2D). Furthermore, MCF-7-shPG
transfectants had lower levels of p53 compared to parental MCF-7 cells
(Figure 4-9A). These observations suggest that, as an interacting partner
of p53, plakoglobin may be involved in p53 stability and that the increased
p53 transcriptional activity in the presence of plakoglobin may be due, in
part, to the increased amount of p53 protein in plakoglobin-expressing
cells. However, plakoglobin most likely plays some other role in regulating
p53 transcriptional activity, since the p53 in SCC9 cells, which is

expressed to considerable amounts, did not associate with the 14-3-30
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gene promoter (Figure 4-5A). Also, plakoglobin may play a role in
regulating the subcellular distribution of p53 as was recently demonstrated
for NPM (Lam et al., 2012), since there was considerably more p53 in the
nuclear fractions of SCC9-PG cells compared to SCC9 cells (compare
Figure 4-4, SCC9 and SCC9-PG, IB: p53).

While the tumor and metastasis suppressor activity of plakoglobin has
remained unclear, new reports are beginning to shed light on this topic.
We recently showed that plakoglobin expression resulted in the increased
levels (MRNA and protein) and membrane localization of the metastasis
suppressors Nm23-H1 and H2 and that plakoglobin interacted with Nm23
(Chapter Three; Aktary et al., 2010). Also, plakoglobin expression was
shown to regulate cell motility through both cell-cell adhesion dependent
and independent mechanisms (Yin et al., 2005). The formation of stable
cell-cell junctional complexes is an intuitive way plakoglobin may regulate
tumorigenesis and metastasis. However, plakoglobin may function as a
tumor/metastasis suppressor independent of its adhesive function by
modulating Rho, Fibronectin and Vitronectin-dependent Src signaling
(Todorovic et al., 2010; Franzen et al. 2012), by acting as a transcriptional
repressor of oncogenic Myc (Williamson et al., 2006) and by increasing
the expression of metastasis suppressors such as Nm23 (Chapter Three;
Aktary et al., 2010) and 14-3-3c. These in vitro observations are
supported by clinical studies that have shown decreased plakoglobin

expression leads to tumorigenesis, increased risk of metastasis and poor
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overall prognosis in various tumors (Pantel et al., 1998; Kanazawa et al.,
2008; Narkio-Makela et al., 2009; Nozoe et al., 2009; Aktary and Pasdar,
2012, Holen et al., 2012).

Overall, this chapter demonstrates, for the first time, the role of
plakoglobin in the regulation of gene expression in conjunction with p53.
By interacting with p53 and associating with the promoter of the 14-3-30
(SFN) gene, plakoglobin appears to be playing an active role in the
regulation of gene expression. The larger implication of this work is that
plakoglobin has the potential to interact with transcription factors and to
regulate the expression of various genes, including those that are involved

in tumorigenesis and metastasis.
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CHAPTER FIVE: PLAKOGLOBIN REGULATES THE EXPRESSION OF
SATB1 AND SUPPRESSES IN VITRO PROLIFERATION, MIGRATION
AND INVASION
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5.1. Introduction’
5.1.1. Rationale

One of the differentially expressed genes identified in our microarray
experiments was SATB1 (special AT-rich sequence binding protein 1).
SATB1 is a global regulator of gene expression and an oncogene. We
noted that SATB1 expression was decreased 3-fold in SCC9-PG cells
relative to parental SCC9 cells. This suggested that plakoglobin may play
a role in regulating the SATB1 gene and consequently have an effect on
the expression of its target genes involved in tumorigenesis and
metastasis. As such, we set out to characterize the effect of plakoglobin
expression on the expression of SATB1 and whether plakoglobin
expression altered the in vitro proliferation, migration and invasion of
various cancer cell lines.
5.1.2. SATB1

SATB1 was initially identified as a DNA-binding protein that was highly
expressed in the thymus (Dickinson et al., 1992; de Belle et al., 1998).
This protein had a high affinity for binding to base-unpairing regions
(BURs), which are genomic DNA sequences with high unfolding potential,
containing clusters of sequences (approximately 20-40 base pairs long)
with a bias in G and C distribution (i.e. one DNA strand contains only A, T
and C residues; Dickinson et al., 1992; Kohwi-Shigematsu et al., 1990,
2013; Bode et al., 1992). Importantly, since BUR sequences are thought to

be found all throughout the genome and since SATB1 demonstrated a

' A version of this chapter has been submitted for publication to PLoS One.
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specificity for these BUR sequences, it became evident that SATB1 could,
through its interactions with different BUR sequences in different gene
promoters, cause the looping of chromatin (Cai et al., 2003, 2006; Kumar
et al., 2007; Kohwi-Shigematsu et al., 2013). These chromatin loops could,
in turn, potentially result in the close physical proximity and coordinated
regulation of genes that would otherwise remain silent. In addition to
forming these chromatin loops, SATB1 was shown to recruit different
chromatin remodeling enzymes to the gene loci close to the BURs and as
a result, altered gene expression (Yasui et al., 2002; Kumar et al., 2005;
Wen et al., 2005; Han et al., 2008).

SATB1 has been shown to promote tumorigenesis and metastasis in
various tumor cell lines, including breast, lung, ovarian, colorectal, liver,
laryngeal, glioma and melanoma (Han et al., 2008; Li et al., 2010; Zhao et
al., 2010; Chen et al., 2011; Xiang et al., 2012; Tu et al., 2012; Nodin et
al., 2012; Chu et al., 2012; Huang et al., 2013). Specifically, SATB1 has
been shown to induce the expression of tumor and metastasis-promoting
genes while suppressing the expression of metastasis suppressor genes
(Han et al., 2008; Notani et al., 2010a; Tu et al., 2012).

5.1.3. Specific aim and summary of results

In this chapter, we examined the role of plakoglobin in regulating the
expression of the SATB1 gene and one of its targets, NME1. We show
that plakoglobin, in coordination with p53, interacted with the SATB1

promoter and downregulated its expression. The decreased levels of
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SATB1 mRNA were accompanied by its decreased protein levels in
squamous and mammary carcinoma cell lines expressing plakoglobin.
Furthermore, plakoglobin expression led to an increase and a decrease in
the protein levels of a subset of SATB1 repressed and activated target
genes, respectively. Concurrent with these transcriptional changes,
plakoglobin expression resulted in decreased cell growth and in vitro
migration and invasion. Taken together, our data suggests that
plakoglobin suppresses tumorigenesis and metastasis (at least in vitro)
through the regulation of genes involved in these processes.

5.2. Results

5.2.1. Plakoglobin regulates SATB1 expression.

To confirm that SATB1 expression was decreased in SCC9 cells
following plakoglobin expression, we first performed RT-PCR experiments
and observed a notable decrease in SATB1 mRNA in SCC9-PG cells
compared to SCC9 cells (Figure 5-1A, left). In agreement with this result,
western blot analysis revealed that while SATB1 protein was expressed in
SCCO9 cells, its levels were significantly decreased and barely detectable
in SCC9-PG cells (Figure 5-1A, right).

To determine whether plakoglobin regulates the SATB1 gene, we
performed chromatin immunoprecipitation (ChIP) experiments using
plakoglobin antibodies and chromatin from SCC9 and SCC9-PG cells. The
isolated DNA was then processed for PCR using primers specific to the

SATB1 promoter (Table 2-2). These experiments showed that plakoglobin
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associated with the SATB17 promoter in SCC9-PG cells, but notin SCC9
cells (Figure 5-1B). ChIP experiments using control IgG antibodies
produced negative results. Since we have shown that plakoglobin interacts
with and regulates gene expression in conjunction with p53 (Chapter Four;
Aktary et al., 2013), we also performed the ChlIP experiments using p53
antibodies, which showed the association of p53 with the SATB7 promoter
in SCC9-PG cells but not in SCC9 cells (Figure 5-1B).

The association of plakoglobin and p53 with the SATB1 promoter and
the decreased levels of SATB1 mRNA and protein in SCC9-PG cells
suggested that plakoglobin and p53 function as negative regulators of the
SATB1 promoter. To test this hypothesis, luciferase reporter assays were
conducted using luciferase reporter constructs downstream of a 1.2 kb
SATB1 promoter fragment (Li et al., 2010). Consistent with the role of
plakoglobin in the negative regulation of the SATB1 promoter, the
luciferase activity of the reporter constructs was significantly decreased
(over 5-fold) in SCC9-PG cells compared to SCC9 cells (Figure 5-1C).
5.2.2. Plakoglobin regulates SATB7 in mammary epithelial cell lines.

In addition to SCC9 cells, we also examined the role of plakoglobin on
SATB1 expression in mammary epithelial cell lines, since it has been
shown that SATB1 plays a major role in the regulation of breast cancer
progression and metastasis (Han et al., 2008). As such, we set out to
determine whether the results from SCC9-PG could be extended to breast

cancer cell lines. To do so, we took two approaches: first, we knocked
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down plakoglobin in MCF-7 cells (MCF-7-shPG), which express
considerable levels of plakoglobin, and second, we expressed plakoglobin
in MDA-231 cells (MDA-231-PG), which express very low levels of
endogenous plakoglobin (Lam et al., 2012). RT-PCR and western blot
experiments showed that knock down of plakoglobin in MCF-7 cells
resulted in increased levels of both SATB1 mRNA and protein. In contrast,
plakoglobin expression in MDA-231 cells resulted in a decrease in both
SATB1 mRNA and protein, although SATB1 protein was still detectable in
MDA-231-PG cells (Figure 5-2A).

ChIP experiments showed that similar to SCC9-PG cells, both
plakoglobin and p53 associated with the SATB1 promoter in MCF-7 cells.
Furthermore, both proteins associated with the SATB7 promoter in MDA-
231-PG cells, but not MDA-231 cells (Figure 5-2B). To further demonstrate
that plakoglobin and p53 negatively regulate the SATB17 promoter, we
performed the same luciferase assay experiments using the SATB1-
luciferase reporter constructs in MCF-7, MCF-7-shPG, MDA-231 and
MDA-231-PG cells. The results of these experiments were consistent with
those from SCC9-PG cells: luciferase activity in MDA-231-PG cells was
decreased (over 2-fold) compared to MDA-231 cells, whereas activity in
MCF-7-shPG cells was induced (approximately 2-fold) compared to MCF-
7 cells (Figure 5-2C). Taken together, the results from these experiments

suggest that plakoglobin and p53 negatively regulate SATB1 expression.
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5.2.3. Plakoglobin associates with and activates the NME1 promoter.
It has been suggested that the metastasis suppressor Nm23-H1 is a
potential target of SATB1 (Han et al., 2008). We previously identified the
metastasis suppressors Nm23-H1 and -H2 as being differentially
expressed in SCC9-PG cells and showed that plakoglobin expression
resulted in increased Nm23-H1 and -H2 protein levels as well as
increased Nm23-H1 (NMET), but not Nm23-H2 (NME2) gene expression
(Chapter Three; Aktary et al., 2010). Therefore, we set out to determine if
the increased levels of NME1 in SCC9-PG cells were simply due to
decreased SATB1 expression or whether plakoglobin actively promoted
the expression of NME1. In order to do so, we performed ChIP
experiments using plakoglobin antibodies and primers specific to the
NME1 promoter (Table 2-2). Plakoglobin associated with the NME1
promoter in SCC9-PG cells, but not SCC9 cells (Figure 5-3A). Similar
ChIP experiments were performed using p53 antibodies, which
demonstrated that while p53 associated with the NME1 promoter in SCC9-
PG cells, this association was absent in SCC9 cells (Figure 5-3A). ChIP
experiments using control IgG antibodies produced negative results.

To confirm the role of plakoglobin in the regulation of NME1 expression,
luciferase assays were done using luciferase reporter constructs
downstream of a 2kb NME1 promoter fragment (Qu et al., 2008). In these
experiments, luciferase activity was induced approximately 6-fold in

SCC9-PG cells compared to SCC9 cells (Figure 5-3B), demonstrating that
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plakoglobin expression resulted in increased NME1 promoter activity.
Taken together, these data suggest that while plakoglobin downregulates
SATB1 levels, which may in turn result in increased NME1 expression,
plakoglobin also actively regulates NME1 gene expression through its
associations with the NME1 promoter.
5.2.4. Plakoglobin regulates NME1 in mammary epithelial cell lines.
We subsequently performed RT-PCR and western blot experiments to
examine the levels of Nm23-H1 mRNA and protein in the mammary
epithelial cell lines to confirm that plakoglobin-mediated regulation of
NME1 was not specific to squamous cell lines. Knockdown of plakoglobin
in MCF-7 cells resulted in a notable decrease in Nm23-H1 mRNA, which
was accompanied by a corresponding decrease in the levels of Nm23-H1
and -H2 protein (Figure 5-4A). In contrast, the levels of both Nm23-H1
mRNA and protein were increased considerably in MDA-231-PG cells
compared to parental MDA-231 cells (Figure 5-4A). We also performed
the RT-PCR experiments using primers specific to the Nm23-H2 (NME2)
gene and observed that plakoglobin expression had no effect on NME2
expression, since the levels of Nm23-H2 mRNA were not different
between MCF-7 and MCF-7-shPG and MDA-231 and MDA-231-PG cells,
respectively (Figure 5-4A). These results were consistent with the lack of
NME2 induction following plakoglobin expression in SCC9-PG cells

(Aktary et al., 2010).
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Next, ChIP experiments were conducted with chromatin from MCF-7,
MDA-231 and MDA-231-PG cells using plakoglobin and p53 antibodies.
The results from these experiments showed that plakoglobin and p53
associated with the NME1 promoter in both MCF-7 and MDA-231-PG
cells, but not MDA-231 cells (Figure 5-4B). In addition, luciferase reporter
assays using these cell lines were performed to determine the role of
plakoglobin in the regulation of the NME1 promoter. While minimal
luciferase activity was observed in MDA-231 cells, promoter activity was
induced over 3-fold in MDA-231-PG cells (compared to parental MDA-231
cells; Figure 5-4C). In contrast, luciferase activity was decreased by ~5-
fold in MCF-7-shPG cells compared to MCF-7 cells (Figure 5-4C). Taken
together, these results suggest that plakoglobin and p53 positively
regulate the expression of the NMET1 gene and that plakoglobin
expression has no effect on the NME2 gene.

5.2.5. Changes in SATB1 target gene expression in response to
plakoglobin levels.

Since SATB1 is a major global regulator of gene expression, we argued
that the alteration in SATB1 levels based on plakoglobin expression would
result in alterations in the expression of various SATB1 target genes in
addition to Nm23. More specifically, we focused on a select number of
SATB1 target genes that are known to participate in tumorigenesis and
metastasis (e.g. tumor/metastasis suppressors BRMS1, Kiss1, Claudin-1;

tumor/metastasis promoters c-Abl, MMP3, ErbB2 and Snail). We

137



performed qRT-PCR experiments and observed that the levels of c-Abl,
Snail, ErbB2 and MMP3 mRNA were all increased in MCF-7-shPG cells,
compared to MCF-7 cells. Consistent with the increased mRNA levels,
western blot experiments showed that protein levels of these
tumor/metastasis promoters were also increased in MCF-7-shPG cells
(Figure 5-5A-B, top). Furthermore, the mRNA and protein levels of
tumor/metastasis suppressors BRMS1, Kiss1 and Claudin-1 were
decreased in MCF-7-shPG cells relative to MCF-7 cells (Figure 5-5A-B,
bottom).

5.2.6. Plakoglobin suppresses cancer cell growth, migration and
invasion.

The results so far suggested that plakoglobin plays a role in promoting
the expression of various genes involved in suppression of tumorigenesis/
metastasis, while suppressing the expression of those genes that promote
these processes. In order to determine whether plakoglobin’s regulation of
gene expression resulted in a biologically discernable effect on the in vitro
growth and the migratory and invasive properties of cells, MCF-7 and
MCF-7-shPG cells we processed for growth, migration and invasion
assays (as described in Chapter Two). The results of the growth assay
showed a significant increase (~2.5-fold) in the growth of MCF-7-shPG
relative to MCF-7 cells (Figure 5-6A). As additional controls, we also
assessed the growth rate of SCC9 and MDA -231 cells and their

plakoglobin expressing transfectants SCC9-PG and MDA-231-PG
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respectively. In contrast to MCF-7-shPG, the growth rate of SCC9-PG
cells was reduced ~2.5-fold relative to parental SCC9 cells, whereas
MDA-231-PG cells showed a 2-fold reduction in growth relative to parental
MDA-231 cells, which was consistent with what we had observed
previously (Figure 5-6A; Parker et al., 1998; Lam et al., 2012).

We then used BrdU labeling to verify if the differences observed at the
end of the 7-day growth assay among different cell lines with various
levels of plakoglobin expression were due to differences in cell
proliferation. Cells from various cell lines were plated and allowed to grow
for 6 days at which time they were labeled with BrdU for 24 hours and
processed for confocal microscopy as described in Materials and
Methods. The results showed that SCC9 and MDA-231 cells were highly
proliferative as almost all cells displayed BrdU incorporation. In contrast,
we detected very little or no BrdU incorporation in the plakoglobin
expressing MCF-7, SCC9-PG and MDA-231-PG cells (Figure 5-6B),
whereas there was significant BrdU incorporation in the plakoglobin
knockdown MCF-7-shPG cells (Figure 5-6B).

The migratory properties of the various cell lines were assessed using
transwell chambers. Cells were allowed to migrate through transwell filters

for 48 hours, after which the migrated cells were fixed and counted.
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Figure 5-6. Plakoglobin decreases in vitro cell growth and proliferation. (A) Replicate cultures of SCC9,
SCC9-PG, MDA-231, -231-PG, MCF-7 and MCF-7-shPG cells were established at single cell density and cells
were counted at 3, 5 and 7 days. Each time point represents the average of three independent experiments. (B)
The absence of error bars at some time points is due to the small differences among the experiments. SCC9,
SCC9-PG, MDA-231, -231-PG, MCF-7 and MCF-7-shPG cells were plated on glass coverslips and allowed to
grow for 6 days at which time BrdU was added to the cell cultures for 24 hours. BrdU incorporation was then
assessed by immunofluorescence staining using BrdU antibodies. Nuclei were counterstained with DRAQ5 and
cells viewed using a 63X objective of an LSM510 META (Zeiss) laser scanning confocal microscope. Bar, 20 ym.
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Consistent with our previous observations, MDA-231-PG cells
displayed ~ 40% less migration than MDA-231 cells (Figure 5-7A; Lam et
al., 2012). Similarly, SCC9 cells were approximately 10-fold more
migratory than SCC9-PG cells, whereas MCF-7-shPG cells showed a 4-
fold increase in migration compared to MCF-7 cells (Figure 5-7A). To rule
out the possibility that the increased migration in SCC9, MDA-231 and
MCF-7-shPG could be due to their higher cell proliferation rate, we
repeated the migration assays for 12 hours, since our growth data showed
that none of the cell lines had a doubling time less than 24 hours (Figure
5-6A). The results of these experiments were consistent with those of the
48 hours assays and showed that SCC9, MDA-231 and MCF-7-shPG cells
were considerably more migratory than their plakoglobin-expressing
counterparts (SCC9-PG, MDA-231-PG, MCF-7; Figure 5-7A).

The invasive properties of the various cell lines were assessed using
matrigel-coated transwell chambers. Similar to the migration experiments,
cells were allowed to migrate through the matrigel matrix, after which the
invaded cells were fixed and counted. These experiments showed that in
addition to being more migratory, SCC9, MCF-7-shPG and MDA-231 cells
were more invasive than SCC9-PG, MCF-7 and MDA-231-PG cells
(approximately 6-, 7- and 2-fold, respectively; Figure 5-7B; Lam et al.,
2012). Taken together, these results suggest that plakoglobin, regulates
the expression of genes involved in cell growth, migration and invasion

concurrent with a suppression of in vitro migration and invasion.
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5.3. Discussion

In the present study, we have further investigated the underlying
mechanisms for plakoglobin’s role in tumorigenesis and metastasis (also
see Lam et al., 2012; Aktary et al., 2013). Our data showed that
plakoglobin associated with the promoter of the oncogenic DNA binding
protein SATB1 and downregulated its expression. The decreased
expression of SATB1 following plakoglobin expression was associated
with its decreased protein levels and in turn, altered expression of SATB1
target genes with an overall effect of decreased cell growth and in vitro
migration and invasion. Conversely, knockdown of plakoglobin in MCF-7
cells resulted in the upregulation of SATB1 and increased cell proliferation,
migration and invasion.

SATB1’s ability to regulate gene expression was initially identified in the
thymus, where several studies showed that it was essential for T-cell
development and differentiation (de Belle et al., 1998; Alvarez et al., 2000;
Kumar et al., 2007). These studies demonstrated that SATB1 regulates
gene expression by organizing target gene loci into distinct
domains/chromatin loop structures and by recruiting different chromatin
remodeling enzymes to promote gene expression and T-cell
differentiation. Since then, SATB1 has been established as a contributing
factor to the development and progression of many different types of
cancer, including breast, lung, prostate, colon and ovarian (Han et al.,

2008; Li et al., 2010; Zhao et al., 2010; Chen et al., 2011; Xiang et al.,
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2012; Tu et al., 2012; Nodin et al., 2012; Chu et al., 2012; Huang et al.,
2013). SATB1 has also been shown to participate in the epidermis
differentiation as SATB1”" mice showed defects in epidermal differentiation
(Fessing et al., 2011). These defects were associated with the improper
activation of genes found within the epidermal differentiation complex
locus, to which SATB1 was shown to bind. Other studies have
demonstrated that SATB1 regulates the expression of at least 10% of
genes in both T-cells and non T-cells, including genes involved in
apoptosis, cell-extracellular matrix attachment, cellular metabolism,
calcium signaling and the Wnt, Notch, and TGF-3 pathways, suggesting
that it plays a role in the global regulation of gene expression (Kumar et
al., 2005; Notani et al., 2011).

SATB1 has been suggested to regulate gene expression in conjunction
with B-catenin as part of the Wnt signaling pathway (Purbey et al., 2009;
Notani et al., 2010; Burute et al., 2012), since during T-cell differentiation,
SATB1 associates with and recruits p300/CBP histone acetyltransferase
and B-catenin to the promoters of Wnt target genes, resulting in the
increased expression of genes such as IL-2 and MYC (Notani et al.,
2010). SATB1 also associated with the major breakpoint region (mbr) in
the 3’-UTR of the BCL2 gene and promoted the expression of this anti-
apoptotic protein, whose expression is also regulated by 3-catenin,
through the induction of c-Myc and E2F1 (Ramakrishnan et al., 2000;

Zhang et al., 2006; Ma et al., 2007; Li et al., 2007b). We previously
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showed that plakoglobin is also able to regulate the levels of Bcl-2 through
the modulation of the signaling activity of B-catenin (Li et al., 2007a). The
data presented here clearly demonstrates that plakoglobin associates with
the SATB1 promoter and downregulates its expression. Taken together,
these observations suggest that plakoglobin may regulate Wnt 3-catenin
and SATB1 signaling in multiple ways. First, plakoglobin downregulates
the expression of SATB1, which would result in the decreased expression
of SATB1 target genes. The decreased levels of SATB1 may also
alter/reduce B-catenin recruitment to its target promoters and therefore
reduce the expression of those genes. Second, nuclear plakoglobin
decreases the interaction between 3-catenin and TCF and results in
inhibition of TCF/B-catenin signaling (Miravet et al., 2002; Li et al., 2007).
Third, expression of physiological levels of plakoglobin results in
decreased levels of B-catenin (Salomon et al., 1997; Parker et al., 1998).
Finally, plakoglobin associates with and inhibits the expression of the MYC
promoter (Williamson et al., 2006), a B-catenin and SATB1 target gene
(He et al., 1998; MacDonald et al., 2009; Notani et al., 2010).

More recent studies have suggested that SATB1 plays a role in breast
tumorigenesis and metastasis. Indeed, SATB1 expression in SATB1
deficient SKBR3 breast cancer cells resulted in increased tumor growth
and a more migratory and invasive phenotype that was concurrent with
increased expression of tumor/metastasis promoter genes such as c-Abl,

Snail, MMP3, TGF-31, ErbB2 and decreased expression of
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tumor/metastasis suppressors including Nm23, Claudin-1, Kiss1, BRMS1,
KAI1. Conversely, knockdown of SATB1 in the highly invasive MDA-231
cells had the opposite effect: tumor/metastasis promoting genes were
downregulated whereas inhibitors of these processes were upregulated
(Han et al., 2008).

Plakoglobin also appears to have a role in regulating tumorigenesis and
metastasis through the modulation of gene expression. We recently
showed that plakoglobin interacts with the transcription factor p53 and
regulates the expression of the tumor suppressor SFN (14-3-30; Aktary et
al., 2013). Furthermore, we showed that p53-transcriptional activity is
enhanced in the presence of plakoglobin and that mutant p53 proteins
may, in association with plakoglobin, be functional in regulating their wild-
type target genes. In the current study, we have identified SATBT as
another target gene of plakoglobin and p53, as ChIP experiments clearly
demonstrated an association of both proteins with the SATB1 promoter
(Figures 5-1, 5-2). However, as opposed to SFN, SATB1 is negatively
regulated by p53 and plakoglobin. While we have shown that plakoglobin
and p53 interact with one another (Aktary et al., 2013), whether these
interactions are direct or involve other cofactors is not clear and warrants
further investigation. Furthermore, although plakoglobin is known to
associate with TCF/LEF and regulate gene expression (Zhurinsky et al.,
2000a, b; Miravet et al., 2002; Williamson et al., 2006), neither the human

SATB1 nor the NME1 genes contain potential TCF/LEF binding sites,
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therefore it is likely that plakoglobin-mediated regulation of these genes is
independent of TCF/LEF. It was previously shown that p63 is a
transcriptional activator of SATB1 during epidermal differentiation (Fessing
et al., 2011), however, to the best of our knowledge, the present work is
the first to show that p53 also regulates SATB1 expression, albeit opposite
to p63. What other co-factors are involved in the regulation of p53 and
plakoglobin target genes and to what extent these co-factors differ based
on whether the complex is activating or repressing gene expression
remains unknown and warrants further investigation.

Along with repressing SATB1 expression, plakoglobin increased the
expression of NME1, a potential SATB1 target gene. We previously
showed that Nm23-H1 mRNA and protein as well as Nm23-H2 protein
were upregulated in SCC9-PG cells and that plakoglobin and Nm23
interacted in both the soluble and cytoskeleton-associated pools of cellular
proteins (Chapter Three; Aktary et al. 2010). In this chapter, we further
characterized the role of plakoglobin in the regulation of the NME1 gene
and showed that plakoglobin and p53 associated with the NME1 promoter
and activated its expression (Figures 5-3, 5-4). While the association of
plakoglobin with the NME1 promoter is novel, it is supported by a previous
report that showed decreased Nm23-H1 mRNA levels following
plakoglobin knock down in breast cancer cells (Holen et al., 2012), In
addition, while it has been previously suggested that NME1 is a

transcriptional target of p53 (Chen et al., 2003; Rahman-Roblick et al.,
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2007), our ChIP data unequivocally shows that p53 associated with the
NME1 promoter and regulated its expression. Taken together, these data
suggest that plakoglobin can alter the levels of its potential target genes
through different mechanisms, including direct regulation of gene
expression (e.g. SFN, NME1) and through protein-protein interactions that
result in increased protein levels (e.g. Nm23-H2; Chapter Three; Aktary et
al., 2010).

In addition to NME1, we also observed alterations in the mRNA and
protein levels of other SATB1 target genes. More specifically, knockdown
of plakoglobin in MCF-7 cells resulted in the increased mRNA and protein
levels of the tumor/metastasis promoters c-Abl, Snail, EroB2 and MMP3
and the decreased levels of tumor/metastasis suppressors BRMS1, Kiss1
and Claudin-1 (Figure 5-5). Whether plakoglobin may alter the expression
of these SATB1 target genes by altering the expression of SATB1 itself
and/or by associating with the promoters of these target genes and
promoting/repressing their expression requires further investigation.

To confirm that the regulation of tumorigenesis and metastasis
associated genes by plakoglobin had a biological consequence, we
performed cell growth, migration and invasion assays and showed that
plakoglobin suppressed cell growth as well as in vitro migration and
invasion (Figures 5-6, 5-7). These results were in agreement with other
studies that have previously shown that plakoglobin suppresses these

processes and promotes a more “epithelial” phenotype, consistent with its
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role as a tumor and metastasis suppressor (Holen et al., 2012; Bailey et
al., 2012; Lam et al., 2012).

Increasing evidence suggests that plakoglobin regulates tumorigenesis
independent of its cell-cell adhesion function. Plakoglobin regulates the
expression of genes such as MYC, DSC2 and SFN (Williamson et al.,
2006; Tokonzaba et al., 2013; Aktary et al., 2013) and also suppresses
Ras-mediated oncogenesis through increased HDAC4 mRNA levels (Yim
et al., 2013). In addition to regulation of gene expression, plakoglobin has
been shown to act as a tumor/metastasis suppressor by modulating Rho,
Fibronectin and Vitronectin-dependent Src signaling (Todorovic et al.,
2010; Franzen et al. 2012).

Our findings are significant in that they clearly point to a role of
plakoglobin in regulating a variety of genes that are involved in tumor
development and progression. Our data also suggests that plakoglobin
may regulate a number of genes (both positively and negatively) under
normal cellular conditions (i.e. in the absence of cell stress or activation of
different growth pathways), implying that plakoglobin may be a “basal” and
more global type of regulator of gene expression. As such, our results
have larger implications in that plakoglobin may have a potential as a new

therapeutic target for the treatment of various cancers.
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CHAPTER SIX: GENERAL DISCUSSION AND FUTURE STUDIES
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6.1. Summary of Research
6.1.1. Overview

Despite its initial discovery nearly thirty years ago and many studies that
have suggested that plakoglobin acts as a suppressor of tumorigenesis
and metastasis, the exact molecular mechanisms by which plakoglobin
regulates these processes has, until recently, remained unclear. The focus
of this thesis has been characterizing, at the molecular level, potential
mechanisms by which plakoglobin may suppress tumor formation and
metastatic progression.

We expressed plakoglobin in the plakoglobin-null SCC9 cell line and
examined the protein and RNA profiles of SCC9-PG transfectants in order
to identify proteins and transcripts that were differentially expressed
following plakoglobin expression. From these studies, we identified several
growth and metastasis regulating proteins/genes as potential plakoglobin
targets, some of which were characterized in this thesis.

6.1.2. Nm23-H1 and Nm23-H2

We observed that the levels of Nm23-H1 and -H2 protein were both
significantly increased in SCC9-PG cells compared to SCC9 cells, with
Nm23-H2 levels being more notably increased. Interestingly, while the
levels of both Nm23-H1 and -H2 protein were increased, only the levels of
Nm23-H1 mRNA were upregulated in SCC9-PG cells (Figure 3-1). We
verified these observations using both MDA-231 cells and their

plakoglobin expressing transfectants (MDA-231-PG) and MCF-7 cells
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along with MCF-7 cells in which plakoglobin was knocked down (MCF-7-
shPG). These experiments showed that while the levels of both Nm23-H1
and -H2 proteins were altered upon plakoglobin expression, only the
NME1 gene was affected (Figure 5-3). Furthermore, plakoglobin interacted
with both Nm23-H1 and -H2 in various epithelial cell lines and this
interaction was dependent on a-catenin (Figures 3-4, 3-5). Finally, we
showed that plakoglobin (in conjunction with p53) interacted with and
increased the expression of the NME1 promoter (Figures 5-3, 5-4).
6.1.3. p53 and 14-3-30

We identified several p53-target genes (including the tumor suppressor
14-3-30) that were differentially expressed in SCC9-PG cells, which led us
to examine whether plakoglobin and p53 interact. We showed that
plakoglobin and p53 interacted in both the cytoplasm and the nucleus
(Figures 4-2, 4-3, 4-4) and that both proteins were associated with the 14-
3-30 gene (SFN) promoter (Figure 4-5). We subsequently showed that
both wild-type and mutant p53 transcriptional activity was increased in the
presence of plakoglobin (Figures 4-8 and 4-9). Furthermore, we observed
that mutant p53, only in the presence of plakoglobin, was able to associate
with the SFN promoter and promote its expression (Figure 4-5, 4-8).
6.1.4. SATB1

Our microarray experiments showed that SATB1, the chromatin
remodeling factor and oncogene, was one of the genes whose levels were

downregulated in SCC9-PG cells. We showed that plakoglobin expression
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in both SCC9 and MDA-231 cells resulted in decreased SATB1
expression and protein levels, whereas knockdown of plakoglobin in MCF-
7 cells resulted in increased SATB1 mRNA and protein. We also showed
that plakoglobin and p53 associated with the SATB7 promoter and
repressed its activity (Figures 5-1, 5-2). Finally, we showed that SCC9,
MDA-231 and MCF-7-shPG cells displayed increased growth, migratory
and invasive properties compared to their plakoglobin-expressing
counterparts (Figure 5-5, 5-6, 5-7).
6.1.5. Model for regulation of tumorigenesis and metastasis by
plakoglobin

The results of this thesis suggest that plakoglobin can regulate its
potential targets in a variety of ways (Figure 6-1). First, plakoglobin can
interact with various intracellular partners and alters their levels,
localization or function. In support of this scenario, we recently showed
that plakoglobin interacted with nucelophosmin (NPM), the nucleolar
phosphoprotein whose role in tumorigenesis is largely dependent on its
subcellular distribution (Grisendi et al., 2006; Brady et al., 2009; Falini et
al., 2008; Shandilya et al., 2009). We showed that plakoglobin expression
in MDA-231 cells resulted in increased NPM protein levels and its
redistribution from the cytoplasm and nucleoplasm, where it is thought to
function as an oncogene, (Brady et al., 2009; Falini et al., 2008; Shandilya
et al., 2009) into the nucleolus, where it is typically localized in

untransformed cells (Grisendi et al., 2006). Therefore, plakoglobin,
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through its interactions with NPM, altered NPM protein levels and
localization, which was concurrent with the decreased growth, invasive
and migratory properties of MDA-231-PG cells (Lam et al., 2012).
Furthermore, since plakoglobin expression resulted in increased Nm23-H2
protein levels, but not increased mRNA, it is likely that plakoglobin’s
interactions with Nm23-H2, which also resulted in the subsequent
redistribution of Nm23-H2 to the membrane, contributed to its increased
protein levels.

Second, plakoglobin can interact with transcription factors, such as p53,
and regulate the expression of various target genes. Plakoglobin and p53
interact in the cytoplasm and then translocate into the nucleus, where they
most likely associate with various other co-factors to regulate gene
expression. In this case, plakoglobin-mediated transcriptional regulation
can either be activating (in the case of the NME1 and SFN genes) or
inhibitory (e.g. SATB1). Plakoglobin also appears to help recruit p53 to its
target gene promoters and promotes p53 transcriptional activity.

The work presented in this thesis suggests that plakoglobin regulates
tumorigenesis and metastasis through at least two mechanisms:
regulation of gene expression and interactions with different cellular
partners. However, plakoglobin’s tumor and metastasis suppressor activity
is likely not limited to these described mechanisms and further studies are
needed to clearly define other functions of plakoglobin in regulation of

these processes.
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6.2. Future Studies
6.2.1. In vivo corroboration of research findings

While the data presented in this thesis clearly demonstrates that
plakoglobin suppresses tumorigenesis and metastasis in vitro, these
studies need to be expanded to examine the role of plakoglobin in
regulating these processes in vivo. As such, different studies should be
undertaken to compliment our in vitro findings.

First, immunohistochemistry (IHC) experiments using tumor specimens
from patients with tumors of different origins and stages should be
examined for the expression and subcellular localization of plakoglobin,
p53, Nm23, 14-3-30 and SATB1. While the expression of these proteins
has been examined in various independent studies, analysis of their levels
and localization has not been performed in the same tumor samples. The
results of the IHC experiments can then be analyzed together with patient
clinicopathological parameters (e.g. recurrence, lymph node status, etc.)
using different statistical and computing science techniques in order to
identify potential markers that can be useful in the diagnosis and
prognosis of different cancers. Recently using an autonomous machine
learning technique and data from 66 primary invasive ductal breast
carcinomas, we were able to generate a simple and efficient decision-tree
prognostic classifier, based on the levels and subcellular distribution of 6
junctional proteins, 8 standard clinical features and 4 diagnostic markers

that could predict whether a novel breast cancer patient would relapse.
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We showed that a decision-tree classifier, which incorporated a
combination of only 4 features (nuclear a- and B-cat levels, the total level
of the tumor suppressor PTEN, and the number of involved axillary lymph
nodes), is able to correctly predict patient outcomes 80% of the time
(Asgarian et al., 2010).

Second, in vivo tumorigenesis and metastasis assays should be
performed using transgenic animal models. While we were able to show
that plakoglobin expressing cells were considerably less migratory and
invasive and had decreased growth rates compared to their non-
plakoglobin expressing counterparts, these types experiments need to be
performed using animal models in order to assess the role of plakoglobin
in the regulation of tumorigenesis and metastasis in a more biological
setting. As such, subcutaneous injection of cell lines expressing different
levels of plakoglobin (e.g. MDA-231 and MDA-231-PG) in immunodeficient
mice will be useful in assessing the growth suppressive effects of
plakoglobin. In contrast, tail vein or intracardial injection of the same cell
lines and examination of metastasis formation in organs such as the lungs,
liver or brain will help to determine whether plakoglobin can suppress
tumor cell migration and invasion (i.e. metastasis).

6.2.2. Modulation of the metastasis suppressor activity of Nm23 by
plakoglobin

We have shown that plakoglobin interacted with the metastasis

suppressors Nm23-H1 and -H2 and increased their expression (H1) and
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protein levels (H1 and H2). These increases in Nm23-H1 and -H2 protein
levels in plakoglobin expressing cell lines resulted in an overall decrease
in in vitro migration and invasion, which most likely results (at least in part)
from the increased levels of Nm23 proteins in these cells. However, the
exact role of plakoglobin in regulating the metastasis suppressor activity of
Nm23 remains unknown.

Nm23-H1 interacts with h-prune, a nucleotide phosphodiesterase that
inhibits Nm23’s metastasis suppressor activity and results in increased cell
migration and invasion (D’Angelo et al., 2004; Galasso and Zollo, 2009). In
our microarray experiments, we identified the h-prune gene as being
downregulated in SCC9-PG cells. We have preliminary evidence showing
that the levels of h-prune protein are decreased in SCC9-PG cells
compared to SCC9 cells and that plakoglobin expression results in
changes in h-prune subcellular distribution from cytoplasmic to what
appears to be Golgi-localized. These findings suggest that perhaps
plakoglobin not only interacts with Nm23 proteins, but that it also alters
their intracellular interactions. Therefore, coimmunoprecipitation
experiments examining the interactions between plakoglobin, Nm23 and
h-prune will be an interesting next step to determine whether plakoglobin
does in fact promote Nm23 metastasis suppressor activity by altering its

interactions with h-prune.
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6.2.3. Characterization of plakoglobin-p53 interactions

We showed that plakoglobin and p53 interacted with one another,
however we have yet to characterize which domains of each protein are
necessary for these interactions. In order to do so, coimmunoprecipitation
experiments will need to be (and currently are being) performed using cell
lines expressing different mutants of either plakoglobin or p53. By
expressing either mutant plakoglobin or mutant p53 proteins missing one
specific domain in cell lines that express the other protein endogenously,
we can accurately assess which domain of each protein is necessary for
these interactions.

To complement these coimmunoprecipitation experiments, we plan to
perform 3-dimensional (3-D) modeling experiments based on the amino
acid sequences of both plakoglobin and p53 and use these generated
models to map the sequences between plakoglobin and p53 that mediate
their interactions. Since we found that plakoglobin interacted with both
wild-type and mutant p53 proteins, we can also use these 3-D modeling
experiments to identify the amino acid sequences that mediate the
interactions of plakoglobin with both wild-type and mutant p53.

6.2.4. Activation of p53 transcriptional activity in cancer cell lines

The observation that mutant p53, in the presence of plakoglobin, was
recruited to the promoters of its target genes, suggests that plakoglobin
can interact with a mutant p53 that does not function properly and allow it

to regain some of its wild-type functions. This phenomenon has numerous
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therapeutic possibilities. By identifying the minimum amino acid sequence
in plakoglobin that potentiates its interaction with p53 (through the 3-D
modeling experiments), we can use this sequence to activate mutant p53
in various cancer cell lines.

In order to accomplish this, we will need to design cell permeable
peptides containing the identified plakoglobin sequence, as was recently
accomplished for Nm23 (Lim et al., 2011). These cell permeable
plakoglobin peptides can then be administered to various cancer cell lines
(with low or no plakoglobin expression) and their interactions with p53 can
be assessed. In addition, following administration of the plakoglobin
peptides, p53 transcriptional activity and associations with its target gene
promoters both in the absence and presence of cellular stressors (e.g. UV
irradiation, staurosporine treatment, etc.) can be examined. Furthermore,
the migratory, invasive and apoptosis-inducing properties of these cells
should be determined. If these cell permeable plakoglobin peptides result
in the increased transcriptional activity of p53 and a decreased
transformed phenotype, their effectiveness in activating p53 and
suppressing tumorigenesis and metastasis in vivo can be assessed.
6.2.5. Role of plakoglobin in p53-mediated apoptosis

Our studies describing the interactions between plakoglobin and p53
were all done in the absence of cellular stressors and as such represent a
more “basal” or normal cell function for these two proteins in the regulation

of gene expression. However, multiple studies have suggested that
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plakoglobin stimulates apoptosis in response to cell stressors (Charpentier
et al., 2000; Hakimelahi et al., 2000; Dusek et al., 2007). While the
mechanisms behind the apoptosis-promoting activity of plakoglobin remain
unclear, Dusek et al. demonstrated that plakoglobin-null keratinocytes
were deficient in apoptosis, which corresponded with decreased
cytochrome c release from the mitochondria. Our results suggest that
plakoglobin may promote apoptosis through its interactions with p53.
Importantly, we observed plakoglobin-p53 interactions in both the nucleus
and cytoplasm. Since p53 interacts with pro- and anti-apoptotic proteins at
the mitochondria and regulates mitochondrial membrane permeabilization
(Mihara et al., 2003; Green and Kroemer, 2009; Vaseva and Moll, 2009), it
is possible that plakoglobin is involved in these interactions. To test this
possibility, apoptosis can be induced in cells lacking and expressing
plakoglobin (e.g. by UV irradiating the cells to induce DNA damage) and
apoptosis induction can be measured. Furthermore, p53’s interactions with
its apoptosis inducing target genes promoters can be assessed, as can its
(and plakoglobin’s) interactions with pro- and anti-apoptotic proteins at the
mitochondria.
6.2.6. Plakoglobin-mediated regulation of gene expression

Our data clearly demonstrates that plakoglobin regulates gene
expression in collaboration with p53. While we have identified three

plakoglobin-p53 target genes, further studies are necessary to identify a
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larger subset of plakoglobin target genes. As such, ChIP-chip experiments
will be valuable in identifying plakoglobin targets on a large scale.

While our data shows that plakoglobin and p53 coordinately regulate
gene expression, it is entirely possible that plakoglobin can regulate gene
expression with other transcription factors either in conjunction with, or
independent of, p53. For example, plakoglobin may regulate gene
expression through its interactions with Nm23 proteins. A recent study
showed that knockdown of Nm23-H1 in the NL9980 human large cell lung
cancer cell line resulted in alterations in the expression of approximately
1000 genes, many of which are involved in tumorigenesis and metastasis
(Ma et al., 2008). Interestingly, comparison of the mRNA profiles of Nm23-
H1 knockdown cells with SCC9-PG cells revealed that several genes may
potentially be regulated by both plakoglobin and Nm23. For example, the
BCL2A1, CXCL2, JUN, and MMP1 genes were all decreased in SCC9-PG
cells and were increased in NL9980-Nm23-H1 knockdown cells, whereas
the BEX5, HDAC5 and NME1 genes were increased in SCC9-PG cells
and decreased in NL9980-Nm23-H1 knockdown cells. Yet another study
showed that overexpression of Nm23-H1 in the highly invasive and Nm23-
H1-deficient MDA-MB-435 cell line resulted in the downregulation of
various genes involved in tumorigenesis and metastasis, including EDG2
and PTN (Horak et al., 2007), both of which were downregulated in SCC9-

PG cells.
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Considering that previous studies have shown that both Nm23-H1 and -
H2 can regulate gene expression by binding to DNA (Postel et al., 1993,
2000; Ma et al., 2002; Postel, 2003; Cervoni et al., 2006; Thakur et al.,
2009; Choudhuri et al., 2010) and our observations of interactions
between plakoglobin and Nm23-H1 and -H2 in SCC9-PG-NLS cells, it is
possible that plakoglobin and Nm23 proteins regulate gene expression
concurrently. Future studies aimed at determining whether plakoglobin
and Nm23 associate with the same target gene promoters and identifying
these potential target genes would be of great interest.

6.3. Conclusions

Overall, the studies described in this thesis are the first detailed
analysis of mechanisms underlying plakoglobin’s growth/metastasis
inhibitory function. Our results clearly demonstrate that plakoglobin plays
an active role in suppressing tumorigenesis and metastasis through both
the regulation of gene expression and by interacting with and altering the
levels, localization and function of various intracellular proteins involved in
these processes. The larger implication of this work is that plakoglobin, as
an important player in tumorigenesis and metastasis, may be a useful
marker for diagnosis and prognosis as well as a therapeutic target for the

treatment of various cancers.
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