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Abstract

The Web contains an enormous amount of structured data in the form of web

tables, and there is a great value in retrieving this data and harnessing it

for decision making and gain more insights. Finding the right data on the

Web and integrating it with the existing data within an organization can be

a very time-consuming task. To address this problem, this thesis studies the

problem of table expansion where given a query table and a corpus of tables,

the goal is to expand the query table with additional rows that are likely to

belong to the same table. Given the challenges of querying web tables, our

approach relies only on instances in the given query table and not on the

schema which may not be present or known for tables in the corpus. It uses

projections to split tables into entity-attribute binary relations (sets of key-

value pairs) and then leverages co-occurrence statistics to retrieve candidate

key-value pairs that are then combined into candidate rows. Our experiments

show that constraints required by alternative approaches, such as relying on

column labels and contextual information of a web page containing the table,

can negatively affect the results and, in some cases, makes them not suitable

for the task.
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Chapter 1

Introduction

A web table is an important structural unit that is used to represent informa-

tion in a logically structured way, allowing users to grasp the information with

ease compared to plain text.

The World Wide Web contains an enormous amount of structured data

in the form of web tables. Most of these tables are used for layout purposes,

however, a fraction of them, referred to as relational tables [9, 10], entity-

attribute tables [56] and 2-dimensional tables [54], contain structured data

describing a set of entities.

Compared to unstructured text of a web page, web tables have several fa-

vorable features. The structure of a web table informs its semantics by reflect-

ing logical relations between the data [24], which makes them less ambiguous

than free text and easier to process algorithmically [34]. Another advantage is

that they represent multiple similar entities with the same attributes, which

helps reduce extraction efforts. Because of these features, web tables have

gained an increasing attention by the research community.

In the last decade a significant amount of work has been developed around

exploiting web tables in many different settings such as concept expansion

[48], keyword-based searches [2, 38, 58] or table-as-a-query searches [16, 44],

knowledge extraction [37], table extension [9, 31, 32, 53, 57], filling missing

cell values [1], and entity linking [4].

In this thesis, we focus on the problem of table expansion, where the task

is to populate a seed table by discovering other rows that may semantically
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belong to the table, based on a corpus of web tables. The problem of table

expansion is similar to the problem of table extension in the sense that new

elements are added to the seed table, however, in table expansion we add rows

to the table, while in table extension we add columns [52].

A seed table is defined by a set of entities described by attributes, for

example a set of countries with attributes capital city and language. We refer

to a seed table as a query table and the rows (entities with their attributes) as

instances. The result of the query should then consist of other countries with

their capital city and language that have been automatically extracted from

the web table corpus.

The problem of table expansion is also related to Query-by-Example (QBE),

a language supported by multiple database management systems, such as Mi-

crosoft Access and Oracle. QBE is a graphical query language, where a user

uses visual tables to specify commands, example elements and conditions.

The QBE input is then converted into statements expressed in a database ma-

nipulation language, such as Structured Query Language (SQL). The crucial

difference of QBE from the problem of table expansion is that it requires table

schema information and web tables do not contain such information.

1.1 Motivation

Data-driven decision making has become an essential component of a growing

number of organizations [7]. Many such organizations aim to generate value

from all available data, not only from internal sources, but also from a growing

number of external sources. If traditionally the list of external sources mainly

included sensor measurements and application logs, today it also includes pub-

licly available web data.

The Web is considered to be a virtual gold mine of data for business [27] and

the web tables are the big part of it. The Web Data Commons project [52],

for example, extracts 233 million relational web tables that were contained

in the overall set of 11 billion HTML tables found in the repository of the
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Common Crawl data 1; Yakout et al. [53] reports 573 million relational web

tables extracted from a crawl of the Microsoft Bing search engine; Gatterbauer

et al. [24] identifies “visual” web tables that only appear as 2-dimensional grid

when a web page is rendered and the number of such tables is unestimated.

Being a rich and growing source of knowledge, web tables are used in

various applications such as data search [2, 38], knowledge-base construction

[18, 46] and table extension [31, 53, 57]. However, one of the overlooked

developments is table expansion.

Imagine a company in the game industry that wants to expand its mar-

ket. The company may want to learn about possible locations to host their

tournaments. To achieve that they need to get and analyze various publicly

available information about held tournaments around the world, such as loca-

tions, language, number of teams that participated, and team sizes.

Information about tournaments is posted in numerous web resources in

the form of web tables. To collect this information analysts of the company

have to perform three tasks: locate the web resources, retrieve web tables

about tournaments, and then convert into a common table schema for further

analysis. Those are laborious tasks that take many person-hours since they go

beyond capabilities of web search engines.

What if the company needs to perform the analysis every year for re-

assessment purposes? In a year, hundreds of new web tables in the domain

might have been added and some of already collected tables might have been

updated. The analysts have to start from scratch and may likely spend even

more time to process the grown dataset of the web tables.

Now imagine that the company had a table expansion system which takes

a query table as an input and expands it with additional rows “similar” to

the rows in the query table. In this case, the analysts only would have to

find several example entities with attributes they are interested in and create

a query table. The system would then return an expanded table ready for

further analysis.

Such system would be helpful not only for data-driven businesses but also

1http://commoncrawl.org/
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for data enthusiasts [36] like journalists who are looking to enrich their stories

and illustrations with relevant web data.

Developing such a system supporting table expansion queries, can provide

more efficient retrieval of relevant data and help businesses to use the vast

amount of relational data “locked” in the web, is the goal of this thesis.

1.2 Thesis Contribution

The contributions of this thesis can be summarized as follows:

• We formalize the problem of table expansion. Unlike the problem of set

expansion, the questions around a table expansion are not well studied

in the literature.

• We propose a relatedness score to select an attribute value for a candidate

key that relies only on tuples of a query table. Related work addresses

attribute value prediction with a scoring that leverages schema level

information, sometimes along with instance level information.

• We conduct experiments to evaluate our proposed system and compare it

with an alternative solution. As ground truth we use both curated, high-

quality web tables from Wikipedia, as well as tables that are randomly

selected from a table corpus extracted from the Common Crawl.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 introduces relational web tables and their characteristics. First,

we study the notion of a web table, look at different types of web tables,

and define relational web tables. Then we describe different characteristics

associated with relational web tables and make some simplifying assumptions.

Within Chapter 3, we review the literature closely related to ours. We give

an overview of the usage of web tables as data sources, look at the topic of

table relatedness, detail approaches to web table extension, and discuss entity

set expansion methods.
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Chapter 4 presents our approach to the problem of table expansion. First,

we present some preliminaries on schema-matching and a formal data model.

Next we show a naive approach that tries to apply an entity set expansion

method to the problem, before describing the proposed approach that over-

comes the limitations of the naive approach.

Having introduced the proposed approach, Chapter 5 presents its experi-

mental evaluation. During the experimentation phase, the goal was to evaluate

the proposed system by comparing its performance to alternative solutions.

Chapter 6 summarizes this thesis and discusses directions for future work.
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Chapter 2

Background on Web Tables

Tables provide a two-dimensional structure which enables a compact visual-

ization of data [55]. They are frequently found in both, printed documents

and digital resources, such as web pages. Tables also represent an important

concept in relational databases and spreadsheets. In this thesis, we focus on

tables that are found on web pages known as web tables.

In this chapter, we introduce relational web tables and their characteristics.

First, we study the notion of a web table, types of web tables and define

relational web tables. Then we describe different characteristics associated

with relational web tables and make some simplifying assumptions.

2.1 Web tables and their place in the Web

A web table is an important structural unit of a web page that represents

information in a logically structured format, allowing users to grasp the in-

formation with ease, compared to plain text. Lautert et al. [28] defined web

tables as follows:

Definition 2.1.1. A web table is a two-dimensional tabular structure found

on a web page that is composed of an ordered set of x rows and y columns.

Not all web tables contain a valuable content. A web table cell can con-

tain any number of other HTML elements, like images or other, nested web

tables. Additionally, a cell can span over several columns or rows, similar to

the merged cells functionality of a spreadsheet application. This flexibility has

6



made the table tag popular for positioning other elements on a web page. Ta-

bles used only for positioning other elements on a web page are called “layout”

tables.

The web tables that actually represent tabular data are sometimes referred

to as “genuine” web tables [41]. The value of a genuine web table cell is

an atomic value and does not contain complex structures such as other web

tables. Only a small amount of web tables on the Web are genuine web tables.

According to [10], about 99% of web tables define layout of web-pages. The

remaining 1% are genuine tables where rows and columns are syntactically

and semantically coherent [41]. We disregard layout web tables in this work.

Contextual Information. A web page containing a web table element

may include various contextual information related to that table such as web

page title, page URL, table caption and surrounding paragraphs.

Figure 2.1 illustrates the contextual information of a web table on aWikipedia

web page for 2008 Summer Olympics medal table. We have highlighted some

of them with reference numbers from below:

1. Page title - a required HTML tag that has a document title.

2. Page URL - hyperlink to the web page that has the table.

3. Section header - a header of a section from which the table was extracted.

4. Keywords - unique words extracted from text segments before table.

5. Table caption - value of an optional <caption> tag of the table.
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Table 2.1 where the key column is the club name and each club is described

by its home city, home stadium, capacity of the home stadium, and the head

of the club. Relational tables are also referred to as entity-attribute tables

[53], 2-dimensional tables [54], and horizontal tables [28].

Club City Stadium Capacity Head
1 Buffalo Bills Orchard Park, New York New Era Field 71608 Sean McDermott
2 Miami Dolphins Miami Gardens, Florida Hard Rock Stadium 64767 Vacant
3 New England Patriots Foxborough, Massachusetts Gillette Stadium 65878 Bill Belichick
4 New York Jets East Rutherford, New Jersey MetLife Stadium 82500 Vacant
5 Baltimore Ravens Baltimore, Maryland M&T Bank Stadium 71008 John Harbaugh
6 Cincinnati Bengals Cincinnati, Ohio Paul Brown Stadium 65515 Vacant
7 Cleveland Browns Cleveland, Ohio FirstEnergy Stadium 67895 Gregg Williams

Table 2.1: Example of a relational table.

Entity tables describe only one entity with one or more attributes. The

name of the entity is typically not in the table itself but may be found in

the web page that contains the table. An example would be a football player

web page that has an entity table describing the place of birth and the club

information of the player, as shown in Table 2.2.

Personal
Full name Cristiano Ronaldo dos Santos Aveiro

Date of birth 5 February 1985 (age 33)
Place of birth Funchal, Madeira, Portugal

Height 1.85 m (6 ft 1 in)
Playing position Forward

Club information
Current team Juventus

Number 7

Table 2.2: Example of an entity table.

Matrix tables are often used to describe statistical evaluation results and

the relations between entities. An example of this type is shown in Table 2.3

relating diet types to health data in a contingency table.

Diet Cancers Fatal Heart Disease Non-Fatal Heart Disease Healthy Total
AHA 15 (11.02) 24 (19.03) 25 (16.53) 239 (256.42) 303

Mediterranean 7 (10.98) 14 (18.97) 8 (16.47) 273 (255.58) 302
Total 22 38 33 512 605

Table 2.3: Example of a matrix table.

In this work we target relational web tables as a data source and refer to

them as web tables. Relational web tables account for about 38% of all genuine
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web tables [52] (see Table 2.4), and they describe sets of entities rather than

singe entities.

Type Number of tables % of genuine tables
Relational 90,266,223 38.37
Entity 139,687,207 59.94
Matrix 3,086,430 1.32
Sum 233,039,860 100

Table 2.4: Table types frequencies in genuine web tables.

2.3 Relational Web Tables

The term “relation”, in the data modeling sense, was first introduced by E.F.

Codd [13], as the central element of the relational database model, to describe

the logical structure of data. Conceptually, the relational model consists of

relations (tables) of tuples (objects). Each tuple contains one or more fields,

each taking atomic values.

Following the Relational model definition, we can formally define a web

table to be relational if the rows provide information about a set of entities

and the columns represent attributes that describe them. A relational web

table is an entity set, where the attributes of the table represent the entity

type.

We can look at a relational web table t with n rows and m columns as a

container that holds n entities described by m attributes. Each row i in the

table represents an entity with a name ki and a value vi,j for each attribute

aj.

Figure 2.2 illustrates a relational web table, along with the terminology

used in this thesis. The attribute that uniquely describe each entity is called

the key (subject) column. All other columns are called attribute columns and

contain data values. The key column is sometimes referred to as key attribute

and attribute columns as data attributes.
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of multiple columns. The headers might or might not be present and the

number of columns varies. Columns can contain any type of information, such

as number, date or text, and often several types at once, and multiple cells

can be merged into one. The lack of common schemas also leads to other

kinds of heterogeneities, such as different naming conventions for entities and

attributes including abbreviations and different choices in the visual design of

the table.

Noise. The content of the tables, in some cases, can have meaning only in

the context of the website or even web page, e.g. site map and visit statistics.

We consider such tables as “noise”. Moreover, widely-spread content gener-

ators create millions of pages every day, and many of them containing web

tables that sometimes add noise to the web data.

Lack of quality control. The absence of quality control mechanisms

means that the data is often incomplete and no guarantees for the correctness

can be made. This can lead to incorrect entries, missing labels, and duplicate

tables, among other issues. However, many web resources provide high-quality

content, e.g. Wikipedia, by having rules for content creation. The level of the

noise in such resources is low and they often become the main source of data

for table-as-a-query searches [16, 23], entity linking [4], and data expansion

[32].

Vast quantities and redundancy. Another challenge is posed by the

large and ever increasing number of web tables on the Web. Taking as many

web tables as possible into account in search allows having a broad topical

coverage. On the other hand, the missing quality control leads to an increased

level of noise and a low quality data. Additionally, web data is often copied

and slightly modified. As a result many web tables will be similar in the

structure and content [15, 33].

Small tables. The majority of tables contain only a very small number of

rows and columns. Web tables contain on average 14 entities, with a median

of 6 [52]. The number of attributes on average is 5, with a median of 4 [52].

As a result, individual tables provide on average only little content that can

be utilized to infer the semantics or match the tables to user queries or other
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tables.

Less-descriptive attribute labels. The descriptiveness of attribute la-

bels refers to how well the meaning behind an attribute (and, eventually, the

complete table) can be inferred from the label text. Unfortunately, about 20%

of tables on the Web miss headers entirely [42], and about 6.5% of all headers

are missing some of labels [52], so-called “implicit” labels [21]. In many cases

(around 80% of all headers [52]), the labels are very generic, so-called “non-

informative” labels, such as name or value. These types of labels provide little

to no information about the meaning of an attribute. Figure 2.3 shows that

such labels are among the most frequent on the Web.

Figure 2.3: Popular Column Headers.

2.5 Simplifying Assumptions

The problem of table expansion is very challenging due to the described char-

acteristics of web tables. To address some of the complexity and uncertainty,

we make the following simplifying assumptions:

• Consider only relational web tables. To reduce the structural am-

biguity, we only consider web tables that are relational.

• The key column is known and simple. We assume that key column

of each table is known, simple, and is the first attribute.

These assumptions has been made in many previous works on web tables

[10, 20, 32, 53]) and are satisfied by WDC Web Table Corpus 1 that we use

1http://webdatacommons.org/webtables/
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for evaluation purposes.
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Chapter 3

Related Work

A significant amount of research is done on issues surrounding web tables

including information extraction [37], concept expansion [48], table search [2,

16, 38, 58] and table extension [9, 31, 32, 53, 57].

The research closely related to ours can be grouped as follows:

• Table search is the task of returning a ranked list of web tables in response

to a query.

• Table expansion populates a given table with additional rows based on

a corpus of web tables.

• Table extension aims at extending a given table with additional columns

based on a corpus of web tables.

• Entity set expansion is the task of expanding a set of entities with addi-

tional entities.

In this chapter, we will first give an overview of early work on web tables

and its usage as data source, then we will review the related work on the topics

of web table search, web table expansion, web table extension, and entity set

expansion methods, which are closely related to our work.

3.1 Early Work

Some of the early work [11, 49] on web tables is focused on extraction and

structural analysis of web tables. These early approaches are focused on the
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recognition and analysis of different types of tables. Cafarella et al. [10] is

the first to extract a large scale corpus of tables from the Web and present an

application based on that corpus. One of their findings is that Google’s Web

Crawl contained around 14.1 billion HTML tables and about 154 million of

those tables contained useful relational data. They also introduce a method

for differentiating relational data tables from layout tables and present several

use cases for the corpus, such as table search, attribute synonym discovery, and

schema auto-completion. In the following years, more research related to the

use of web table corpora were published, including how to help answer specific

query types. For instance, FACTO [54] uses a corpus of web tables to answer

single fact keyword queries, whereas WWT [42] returns a multi-column table

in response to a query consisting of keywords. Other applications of web tables

include semantic understanding of web tables [34], identifying table relatedness

[16], and entity expansion [14].

3.2 Table Search

Search for web tables is one of the first steps in information retrieval tasks [3,

32, 56] and in contrast to table expansion, table search does not aim at further

integration of data from the relevant tables with a query table. The problem

of finding related tables has been studied for web tables using queries that are

keywords, attribute labels, table schemas, and table instances.

Search by keywords

Cafarella et al. [10] propose an approach for the web table search, called

WebTables, that performs a keyword search on top of a web search engine.

Particularly, given a keyword query, they use the top-ranked results returned

by the web search engine, and extract the top-k tables from those result pages.

Keyword-based search is also used in table extension methods. To find related

tables to keyword queries, Octopus [9], for example, introduces a search oper-

ator that takes a search-style keyword query and returns a set of web tables,

which are ranked based on relevance and clustered based on their similarities.
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Moreover, query keywords are used to discover web tables with attributes

relevant to the query. In this case, the keywords are referred to as query at-

tributes. Pimplikar and Sarawagi [42] propose a table search system, called

WWT, which takes a keyword query as description of table attributes and

returns a multi-column table satisfying those query attributes. Table exten-

sion methods also use query attributes to find related tables. For instance,

Infogather [53, 56] searches for web tables with an attribute matching a given

query attribute. Later on, to speed up search for web tables related to a query

attribute, table extension methods started to leverage an inverted index. REA

[20] and MSJ [32], for instance, build an inverted index over column headers

of tables from a corpus.

Search by table

A query for searching tables can also be a table, referred to as a query ta-

ble. The relatedness between tables is discovered by schema matching, which

is the task of identifying semantic correspondences between attributes of two

schemas. The task is sometimes also referred to as schema alignment. Schema

matching approaches can be classified into two main categories - schema-based

and instance-based [43]. Schema-based methods primarily use labels, column

data types, and other schema information to find similar attributes. In gen-

eral, a schema matching method finds all the possible matches, then for each

candidate table, a score function is usually defined to estimate the degree of

similarity. Instance-based methods exploit properties of the underlying data,

possibly in combination with attribute labels, to derive matches. Instances

could potentially provide a more insightful view on the semantics of the data,

especially in cases where the schema information is not available or is limited.

For detecting tables related in the Wikipedia table corpus, Das Sarma et

al. [16] propose an instance-based schema matching method which discovers

tables that can be either joined or unioned with the query table. The method

considers column headers, entities and attribute values to determine related-

ness between the tables. Another approach for establishing relations between

Wikipedia tables is proposed in TableNet [23]. To identify relatedness between
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two tables, in addition to column headers and attribute values, they also con-

sider the category of the article in Wikipedia containing the table and the text

of that article.

In DUMAS [5] the schema matching problem is approached by an instance-

based matching algorithm. The authors look for matching rows between two

tables to perform schema matching.

Ling et al. [35] define table stitching where identical schemas within a site

are merged into a union table. The authors propose a schmea-based matching

method, that relies on table headers and column headers, to determine if

two tables can be unioned. Lehmberg et al. [29] proposes an approach that

is built upon this work. First, they create union tables using the approach

from [35] and afterwards, these tables are matched between each other using

a hybrid matcher to determine if the tables can be stitched. The hybrid

matcher combines schema-based and instance-based matching techniques, and

it uses column labels, attribute values and table rows to determine relatedness

between tables.

3.3 Table Expansion

To the best of our knowledge, the problem of table expansion has not been

addressed in the literature. A similar definition to the problem of table expan-

sion is given in a survey [59] that describes a problem of row extension which

aims at extending a query table with more rows or row elements. Although

the definition of the problem is similar to the definition of the problem of table

expansion, the type of work they describe aims at unioning related tables [16],

expanding a subject column of a query table [25, 48, 57] or at prediction of

attribute values for a row of a query table that does not have the attribute

values [20, 32, 53]. By combining these basic operations, one may build a

table expansion operator. We compare our work to some of these baselines in

Section 5.

A method for detecting tables in a web table corpus that can be either

joined or unioned is proposed in [16]. The authors define two types of related-
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ness between two tables, entity complement and schema complement. When

two tables are entity complement, they can be unioned, and when they are

schema complement, they can be joined. The work is relevant to the problem

of table expansion as discovered tables can potentially be unioned (rows of

one table can be added to another table), however, there are several crucial

differences. First, the method discovers relatedness between “entire” tables in

the corpus and not with a query table containing small number of instances.

Second, it establishes entity complement relatedness between two tables only

if they have similar schemas. Finally, the work only discovers relatedness be-

tween two tables and does not aggregate rows from several related tables into

an expanded table.

In EntiTables, Zhang and Balog [57] propose smart assistance that helps

to extend a query table with additional entity names and column labels. To

discover candidate tables, the authors introduce a similarity function between

tables that considers overlap between entity names, column labels, and string

similarity of the table captions. To rank entities retrieved from candidate ta-

bles, the authors propose a multi-conditional probabilistic method that com-

bines entity similarity, column labels likelihood, and the caption likelihood.

The work is similar to table expansion as it aims at expanding of the subject

column of the query table with additional entities, however, they do not pop-

ulate attribute values. Populating entities in a subject column is also similar

to the problem of entity set expansion [25, 48], which expands a given seed set

of entities. We discuss entity set expansion methods in Section 3.5.

Populating attribute values for an entity, given a query table and a table

corpus, is addressed in some table extension methods, and referred to as en-

tity augmentation [20, 53]. Lehmberg et al. [32] propose an approach that

populates attribute values for a given query entity set and a query attribute.

It searches for tables describing query entities and merges columns with la-

bels matching the query attribute. The resulting column is joined with the

query entity set using left outer join operation. In InfoGather [53], the au-

thors present two operations that populate attribute values for an entity name

given a query attribute or a query table, namely augmentation-by-attribute
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and augmentation-by-example. Instead of scoring candidate tables based on

their schema matching with the query table, they propose a holistic matching

framework based on topic sensitive PageRank (TSP). They build a weighted

graph between all web tables in the corpus based on pairwise table similarity,

which uses schema-based and instance-based schema matching, and compute

personalized page rank. To predict values for a given entity name, they em-

ploy an augmentation framework that aggregates predictions from multiple

matched tables based on the tables relatedness scores. The scores are calcu-

lated based on a topically related set of tables, which, in case of augmentation-

by-attribute, is a set of tables in the corpus that overlap with the query table

keys and a column header that matches a query attribute, and in case of

augmentation-by-example, is a set of tables in the corpus that overlap with

the query table keys as well as the query table tuples. The main limitation of

the method is its computationally expensive prepossessing step (build graph

based on pairwise table similarity and compute scores) [59]. As an alternative,

Eberius et al. [20] present a top-k entity augmentation algorithm called REA.

Instead of returning a single augmentation for a given query attribute and

a query entity set, the approach returns multiple alternative augmentations.

They introduce a similarity function between tables, in addition to a scoring

function, which allows the construction of consistent augmentations that are

retrieved from a minimal number of sources and have a maximal score. Entity

augmentation is closely related to the problem table expansion as it predicts

attribute values for a given entity name based on a query table, however, it

does not expand the query table with additional rows.

3.4 Table Extension

A closely related type of work to ours is table extension, which is aimed at

extending an input table with additional columns based on a corpus of tables.

This line of work aims at collecting tables that contain the same entities but

cover complementary attributes of the entities, and integrate collected tables

by joining them on the same entities. For instance, a table describing countries
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can be extended to have columns containing the population, language, and the

capital of each country.

Table extension methods are usually implemented based on a corpus of

tables extracted from the Web. Such corpus typically contains tables in the

order of hundreds of millions [9, 20, 32, 56]. Those tables are indexed us-

ing an inverted index, like Apache Lucene 1, to enable search abilities based

on subject (entity) names, attribute titles, and auxiliary meta-data, such as

keywords surrounding the table and page title. A query, in this case, is a com-

bination of two elements - a set of entity names (query entities), for example,

a list of country names, and an attribute name (query attribute), that needs

to be discovered, for instance, “population”. To process a given query, all

candidate tables with at least one query entity and an attribute that matches

the query attribute name may be retrieved. Then, for each candidate table,

various schema and instance matching methods, such as a string edit distance

and a synonym databases, may be employed to calculate a mapping between

query entities and entities in a candidate table, as well as between the query

attribute and attributes of the candidate table. This process is repeated for

every candidate table in the table corpus, and the tables with a mapping are

used to compute values for the query attribute column.

One of the earliest publications related to table extension is Cafarella et al.

[10], which is concerned with automating the search for relevant web tables.

The approach does not automate table extension, but proposes a set of opera-

tors that can be used by a user to search for tables, extract their context, and

to extend a table schema with additional attributes.

In InfoGather [53], the authors develop a holistic matching and augmen-

tation framework that allows table extension. They address the problem of

spuriously matched tables by developing a holistic matching framework based

on topic sensitive PageRank (TSP). The authors present three operations, one

operation for attribute discovery, that aims at discovering attribute names for a

given set of entities, and two operation for entity augmentation (augmentation-

by-attribute and augmentation-by-example) that are covered in Section 3.4.

1https://lucene.apache.org/
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For the attribute discovery operation, table relatedness scores are calculated

based on topic set of tables which include tables that overlap with query enti-

ties. To discover attribute names, they aggregate column labels from multiple

matched tables based on the tables relatedness scores. Later, this work is

extended in InfoGather+ [56] to provide a better performance with numeric

and time-varying attributes. It first builds a semantic graph that annotates

attributes with meta-information such as unit, scale, and timestamp. Then,

the system uses this graph to compute matches between columns. A similar

operation to attribute discovery is presented in EntiTables [57]. The authors

propose smart assistance that helps to extend a query table with additional

column labels. To discover attribute names, the authors introduced a simi-

larity function between tables that considers overlap between entities, column

labels, and string similarity of the table captions. An improved version of this

approach is proposed in Table2Vec [17], where the probabilistic model for mea-

suring relevance is replaced with neural model which derives term embeddings

for row and column population tasks.

Bhagavatula et al. [3] introduce WikiTables, which, given a query table

and a corpus of tables extracted from Wikipedia, identifies columns from the

tables in the corpus that would make relevant additions to the query table.

They first identify a reference column in the query table to use for joining,

then find a corpus table with a column similar to the reference column, and

perform a left outer join to augment the query table with an automatically

selected column from the corpus table.

Lehmberg et al. [32] propose an approach, called Mannheim Search Join

Engine (MSJ), with the same goal as WikiTables but focused on handling

tens of millions of tables from heterogeneous sources. MSJ is a table extension

system that uses a corpus of web tables as a data source and automates the

search and integration tasks. The system accepts a set of query entities and

an optional query attribute as an input table. It searches for tables describing

query entities (search task), and then selects relevant columns from the top-k

candidate tables to merge (integration task). The candidate tables are joined

using a multi-join operation - a series of left outer join operations with the
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query table. As a result, the engine extends the input table with additional

attribute columns. The case, when a query attribute is provided, is described

in Section 3.4.

A more recent work that addresses the problem of extending a query table

with additional columns is presented in [45]. The authors propose to search for

candidate tables by looking for table columns that overlap with query table key

column, then, using the notion of functional dependency, select columns from

the candidate tables suitable for the table extension. As in MSJ [32], similar

columns are grouped and consolidated. The resulting columns are then ranked

using a relatedness score.

3.5 Entity Set Expansion

Informally, the goal of entity set expansion (ESE) is: given a small set of

entities referred to as seed set, find other entities that semantically belong to

the same set. For instance, having Washington, Beijing and Moscow as a

seed set, it can be expanded with other capital cities like London, Berlin,

Seoul and so on. Entity set expansion is closely related to table expansion as

it can be applied to expand subject column of a query table.

A considerable amount of research regarding ESE has been done in the

literature and multiple methods to perform ESE have been proposed. Set

expansion methods have been applied to textual data sources such as web

documents [6, 39], web search query logs [40], or lists [25] and tables [48]

extracted from web pages, among others.

SEAL (Set Expander for Any Language) [30, 50, 51] uses a technique to

automatically construct wrappers for retrieving “lists” of items on HTML

pages and is capable of handling various languages. SEAL uses the Google

search engine to retrieve web pages giving a seed set as search keywords. It

finds occurrences of seed entities in pages, builds a heterogeneous graph of

web pages, wrappers, seeds and candidates, and then uses the graph to define

a pattern for candidates extraction from the web pages (i.e. suffix and prefix

based extractors). Web pages, wrappers and candidate entities are modeled
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as nodes in a graph, and random walk techniques are used to rank candidates.

Chen et al. [12] improves this approach by leveraging a page-specific extractor

built in a supervised manner. SetExpan [47] also uses patterns to extract

candidate entities similarly to SEAL. It contains two steps, a context feature

selection step and an entity selection step. During the context feature selection,

top-ranked features are selected based on expanded entities set. Then, at the

entity selection step, these representative contexts are used to retrieve subsets

of entities, which are then used to construct a ranked list of entities.

STEP [22] is also based on SEAL, where the pattern generation is extended

to work with tuples of n-elements. The approach builds a query string from

seed set and uses a search engine to retrieve relevant web pages. Using the

same approach as SEAL, the authors propose to build a heterogeneous graph

of web pages, wrappers, seeds and candidates, and then use it to define a

pattern for candidates extraction. The main difference from SEAL is that the

pattern, in addition to suffix and prefix, also includes middle-contexts (text

patterns between elements of a tuple).

He et al. [25] propose the SEISA system that uses query logs along with

web lists. Instead of using random walk ranking, the authors design an iter-

ative similarity aggregation function. The similarity function is graph-based.

Entities and lists are viewed as nodes in a bipartite graph. The similarity

between two entities is established based on the set of list nodes that they are

connected to. The iterative technique of SEISA does not add a set of entities

in each iteration, instead, it expands the set in each iteration based on coher-

ence and relevance scores of each entity with the previously expanded set (or

a seed set in the first iteration).
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Chapter 4

Proposed Approach

This chapter presents our approach to the problem of table expansion. First,

we present some preliminaries on schema-matching and a formal data model.

Next we show a naive approach that tries to apply an entity set expansion

(ESE) method to the problem, before describing the proposed approach that

overcomes the limitations of the naive approach.

4.1 Preliminaries

A table schema of a set of entities may include a set of attributes that describe

those entities. We can infer that for an entity to semantically belong to a table

it should have the attributes of the table. For example, a table with medals

count for an Olympic game can have a column for a country name (key column)

and columns for gold, silver and bronze medals counts (attribute columns). In

order for a country to be in that table, it had to participate in that game

to have the relevant attributes. Thus, to expand a query table based on a

table corpus, entities can be obtained from tables with the same schema as a

query table. Entities that can be added to the query table are referred to as

candidate entities.

Schema matching

Consider tables in a corpus T , where each table has some schema. To expand

a query table tq, we can retrieve candidate entities from tables t ∈ T with a

schema that contains the attributes of the query table.
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However, web tables do not provide any information about their attributes

as their schema is unknown. Identifying semantic correspondences between

attributes of two schemas is the task of schema matching. Schema matching

approaches can be classified into two main types - schema-based and instance-

based [43]. Schema-based methods primarily use labels, column data types,

and other schema information to find similar attributes. Instance-based meth-

ods exploit properties of the underlying data, possibly in combination with

attribute labels, to derive matches.

The common approach for schema matching used in the related work (find-

ing related tables [42], table extension [17, 57], and entity augmentation [20,

32]) is to leverage schema level information along with table contextual infor-

mation related to a table. Entity augmentation [17, 57], for example, requires

knowledge of column labels and table meta-information to match it with an

augmentation attribute.

Although, schema level information and table meta-data are useful in many

cases, using them for schema matching poses several problems. First of all,

about 20% of tables on the Web miss headers entirely [42], and about 6.5%

of headers are missing some of labels [52], so-called “implicit” labels [21].

Moreover, header labels are often ambiguous as short headers (excluding the

empty string) are used in more than 80% of all headers [52]). Secondly, a web

table and its containing page might lack contextual information related to the

table, e.g. tables without a title and pages that contain only tables, such as

name or value. These types of labels provide little to no information about the

meaning of an attribute. Finally, schema-level approaches require additional

pre-processing (like identifying column type [32], building a semantic graph

[56]) and using external knowledge-bases to identify header label synonyms.

Instead of relying on schema level information, our approach exploits in-

stance level information to match table schemas. Instance-based schema match-

ing can be performed vertically and horizontally [5]. A vertical approach

matches each attribute of a schema separately by extracting properties about

the attributes. These properties include column data type, distribution of

characters, average string length, etc. Two attributes are matched when they
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have similar properties. A horizontal approach, on the other hand, checks for

“duplicate” rows across tables, i.e., rows with the same or similar values in dif-

ferent tables. This approach is considered to be more precise in differentiating

attributes with similar domains, as only attribute values from tuples describ-

ing the same real-world entity are compared [29]. Correspondence between

attributes is derived by checking for the same or similar data values among

the duplicate rows of an entity. A similar approach is proposed in SearchJoins

[32], where the existence of duplicates within data sets is exploited to identify

matching attributes.

Data model

We disregard the header part of tables, as our approach uses instance-based

schema matching, and define a table as a set of rows, t = {ri}. Rows r are

typically modeled as n-tuples from a cross product of the attribute domains of

the table, i.e., r ∈ A1× ...×An. This model implicitly imposes an order on the

attributes. Such an attribute order is arbitrary, and in a web table collection

one may have several tables representing similar entities, but with a different

order of the attributes.

With our assumption that the key of a table is a single attribute, say a1,

we can represent table t in a way that is independent of an attribute order as

follows: Let a1, ..., an be the n attributes of a table t with m rows, having n

associated attribute domains A1, ..., An. Then, the table can be represented as

a set e(t) 1 of triples (ki, aj, vij), where, for all 1 ≤ i ≤ m and all 2 ≤ j ≤ n:

• ki is the key of the i-th row, i.e., ki ∈ A1,

• aj is the j-th attribute with domain Aj, and

• vij is the value of the j-th attribute in row i, i.e., vij ∈ Aj.

The i-th row (tuple) of the original table corresponds then simply to the

set ri = {(ki, aj, vij) | 2 ≤ j ≤ m} ⊆ e(t). Thus, it is straightforward to

1We choose the letter e in e(t) to indicate that this representation is closer to a formal
representation of an entity set than a relational table, because of the independence of the
attribute order.
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reconstruct from a set e(t) the original table t, as well as any equivalent table,

which differs from t only by the the order of the attributes.

Note that this representation of a table can be further simplified if a table

has only a key column and one attribute column. In this case, we can drop

the attribute indicator and represent a table just as a set of key-value pairs.

We will make use of this simplification later in this chapter.

4.2 A Naive Approach

If we consider rows of tables as entities, a table t with n rows can be viewed

as a set of entities t = {e1, ..., en} and the table expansion problem becomes

similar to the entity set expansion (ESE) problem, which has been studied

in the literature [25, 47, 48]. The standard solution is to leverage inter-

dependencies that arise naturally in lists and tables by using co-occurrences

to find entities that belong to the same “concept”. The same solution could

be applied to the table expansion problem, if rows are considered as entities.

We will demonstrate the approach on a simple example where a query table

tq and three tables t1, t2 and t3 from table corpus T are provided, as shown in

Figure 4.1.

Query table tq has two attributes - “Country” and “City”, table t1 - “Coun-

try” and “Capital”, table t2 - “Country”, “Capital” and “Language”, and table

t3 - “Country”, “Language” and “Currency”. The first column of all tables is

the key column, and the other columns are attribute columns.
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Figure 4.1: Example 1 of the naive approach.

In this example, the row 〈USA,Washington〉 from the query table appears

only in table t1 and the row 〈Russia,Moscow〉 does not appear in any table.

It is notable that the row 〈Russia,Moscow,Russian〉 in table t2 partially

matches the query record 〈Russia,Moscow〉 but has an additional column,

and row 〈USA,English, USD〉 from table t3 only matches the key value in

the query record 〈USA,Washington〉. Since the row 〈China,Beijing〉 co-

occurs with rows from tq in table t1, it is counted as evidence that the row is

relevant, and the row 〈China,Beijing〉 can be a candidate entity.

Now, suppose the query table tq has three attributes - “Name”, “City” and

“Language”, and the other tables are the same as above, as shown in Figure

4.2.

Figure 4.2: Example 2 of the naive approach.
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In this case, row 〈Russia,Moscow,Russian〉 from table tq occurs in table

t2. Row 〈USA,Washington, English〉 from the query table tq does not appear

in any table from table corpus T , however, it has partially matching rows in

table t2 (row 〈USA,Washington〉) and in table t3 (row 〈USA,English〉). In

this example, the row 〈China,Beijing, Chinese〉 can be a candidate entity as

it co-occurs with row 〈Russia,Moscow,Russian〉 in table t2.

Consider another example, where query table tq has an attribute “Cur-

rency” instead of “Language”, illustrated in Figure 4.3.

Figure 4.3: Example 3 of the naive approach.

In this example, none of the rows of the query table tq occurs in any

of the tables from table corpus T . As a result, none of the rows in ta-

bles t1, t2 and t3 can be a candidate entity. Note, however, that the row

〈USA,Washington, USD〉 from query table tq has a partially matching row

〈USA,Washington〉 in table t1 and the row 〈USA,English, USD〉 in table

t3. These partially matching rows combined could represent a row 〈USA,

Washington, USD〉 that can be added to the query table. However, the naive

approach looks for occurrences of all values of a row and therefore cannot

leverage partial information. Due to this limitation, it becomes less likely to

find a matching row with every additional attribute in the query table.
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4.3 The T-REx System

The naive approach looks for entire rows of a query table in other tables, and

to find a matching row, a table has to have the same schema including the

order of attributes. Since tables on the web can be created in an arbitrary

way, most web tables will not have the same schema as the query table. To

overcome the limitation of the naive approach, we propose a solution where

each table is split into a set of sub-tables consisting of two columns each, a key

column and an attribute column. These tables referred to as entity-attribute

binary (EAB) relations [53].

For example, in Fig.4.3, we can split the query table into two binary relation

tables - one table with “Name” and “City” attributes, and another table with

“Name” and “Currency” attributes. We can also split other tables using the

same strategy. As a result, it would be possible to match rows of sub-tables

of the query table with sub-tables of tables in the table corpus. See Fig. 4.4.

Figure 4.4: Using binary relations.

We will first introduce the approach with the assumption that all web tables

contain only one attribute. Afterwards, we will remove this simplification and

describe the approach for tables with any number of attributes.
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Figure 4.5: Candidate tables.

4.3.1 Table expansion for tables with one attribute

Let’s look at the problem of table expansion when every table has only two

columns - a key column and an attribute column. Each table can be repre-

sented as a set of key-value pairs, i.e. t = {(k1, v1), ..., (kn, vn)} and schema-

matching is significantly simplified as only one attribute has to be matched.

If a table t has values in its key column that also occur in the query table

tq, this could indicate that the tables t and tq have matching schemas. We

refer to such tables as candidate tables [56], to keys of a candidate table that

are not query keys as candidate keys, and to tuples with a candidate key as

candidate pairs.

We illustrate an example of candidate tables in Fig. 4.5. Tables t1 and

t2 are candidate tables as they both have key “USA”, however, t3 is not a

candidate as it does not have any keys from the query table.

A candidate pair (k, v) represents a candidate entity, where key k is a name

of an entity and value v is a query attribute value of the entity. Thus, candidate

entities can be collected from candidate tables and added to the query table.

However, since schema matching is approximate, several candidate pairs with

the same key k can have different attribute values, i.e. a candidate key k

can be present in a pair (k, v1) in one table and in a pair (k, v2) in another.

32



This could happen, for instance, if the entity is described in the table corpus

with multiple attributes (each of which would be represented by an individual

table under our current simplifying assumption), duplicate tables with small

changes (e.g. Olympic Games medal counts updates after “doping” scandals),

or due to a data entry error in one of the tables of the table corpus.

To decide which value to choose for the query attribute of a particular

candidate key, we propose a score that measures the relevance of a given

candidate key-value pair to a query table.

Key-value pair relevance score

Let’s consider a situation, where in a set T1 of candidate tables a candidate pair

(k, v1) occurs, and in a set T2 of candidate tables a candidate pair (k, v2) occurs.

Then, key k can be associated either with attribute value v1 or attribute

value v2. To resolve this conflict, we can compare the number of tables that

contain candidate pair (k, v1) (|T1|) with the number of tables that contain

candidate pair (k, v2) (|T2|). However, the number of tables does not include

any information about the similarity between tables in the table corpus and the

query table. Since, an instance-based matching determines the correspondence

between schemas based on the size of overlap in content, we propose to count

co-occurrence of a given candidate pair with tuples of the query table in all

tables in a corpus.

We refer to the size of intersection between two tables as the number of

matches and define it as follows:

Definition 4.3.1. Matches (M+). Let tq be a query table and t be a table,

then the number of matches in table t with tuples from tq is defined as:

M+(tq, t) = |{(k, v) | (k, v) ∈ tq and (k, v) ∈ t}|. (4.1)

In Fig. 4.6, both query key-value pairs <USA, Washington > and <Russia,

Moscow > are found in a candidate table t1, therefore the number of matches

between tables will be equal 2.
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where α (α > 0) is a threshold on the number of matches over the number

of mismatches in a table. A high threshold will only allow non-zero match

scores for tables with high attribute similarity, but will reduce the tolerance

to possible data entry errors. In our experiments, we use a threshold of α = 1,

which means that any table with more matches than mismatches will receive

a non-zero match score. Match scores are used to calculate a key-value pair

relevance score for each candidate pair, as defined next.

Definition 4.3.4. Key-Value Pair Relevance Score (Scorepair). Let T

be a table corpus, K be the universe of candidate keys, V be the universe of

values, (k, v) be a tuple where k ∈ K and v ∈ V , and tq be a query table.

The relevance score of a candidate pair (k, v) to query table tq is defined as:

Scorepair((k, v), t
q) =

∑
M(tq, t)

{t | t∈T and (k,v)∈ t}

(4.4)

The relevance score of a candidate key-value pair sums match scores of

tables that contain the pair. A table that has more matches will proportionally

contribute more to the score of the pair than a table that has fewer matches,

as it has a higher chance representing the same concept as the query table

attribute.

Let’s consider an example illustrated on Fig. 4.9. Notice that table t1

contains candidate tuple 〈Brazil, Brasilia〉 and tables t2 and t3 contain can-

didate pair 〈Brazil, Sao Paulo〉. The key of both candidate pairs is “Brazil”

but associates query attribute value can be either “Brasilia” or “Sao Paulo”.

Tuples of the table t1 match all tuples from the query table and therefore

its match score, M , is equal to 3. Attribute “Capital” of the table t1 has high

similarity to attribute “City” of the query table. Since table t1 is the only

table that contains the pair 〈Brazil, Brasilia〉, the relevancy score of the pair

will be equal to 3.

The pair 〈Brazil, Sao Paulo〉 appears in the tables t2 and t3. Table t2 has

two matches and one mismatch, thus, its match score with the query table is

equal to 1. Table t2 contains all keys from the query table, meaning that the

table describes entities of the same concept, however, it has one mismatch with
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Figure 4.10: Projections of a query table.

{a1, ..., am} and a1 be the key attribute. The projection of the table t on

attribute a1 and aj (j = 2, ...,m) is written as Πj(t) and returns a set of tuples

of table t restricted to key attribute a1 and attribute aj.

Note that there can be m− 1 sub-tables of a table t with m columns, each

for an attribute column of the table.

In Fig. 4.10, we illustrated how a query table with two attributes can

be split into two sub-tables using projections. The initial query table on

the left side contain attributes “City” and “Currency” and on the right side

projections, one on attribute “City” and another on attribute “Currency”.

Projections turn a table with multiple attributes into a set of sub-tables

with a single attribute. This will allow us to apply attribute value selection

using a similar approach as described in the previous section.

To account for the fact that tables can have multiple columns which are

split into several projections, we have to adapt the calculation of the key-

value pair relevance score to make sure that from a given table, at most one

attribute (the most relevant attribute) contributes a non-zero match score to

a particular key value pair.

Key-Value Pair Relevance Score

The key-value pair relevance score, Scorepair, uses the match score M , which

computes a match score of a table with a single attribute. Let tq be a query

table with an attribute a and t be a candidate table with multiple attributes

b1, ..., bm. A projection on an attribute a of query table tq can, in principle,
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match with projections on several attributes of candidate table t, resulting in

several different, non-zero matching scores. That means that multiple columns

of the same table could contribute to a specific key-value pair relevance score,

when using the previous approach that would consider all projections indepen-

dently. Therefore, we make sure that for a given query attribute only the “best

matching” attribute of a multi-attribute table contributes to Scorepair calcu-

lations for this query attribute. To select a single, best matching, attribute

of a table with multiple attributes for the calculation of its match score with

the query table, we propose to use the highest match score M between all

projections of the candidate table.

Definition 4.3.6. Best Match Score (M∗). Let tqj be a projection on an

attribute j of a query table tq, and let t be a candidate table with m attribute

columns, then the best match score of a tqj and the table t is defined as:

M∗(tqj , (k, v), t) = max{M(tqj ,Πb(t))}
{b | b∈ attr(t) : (k,v)∈Πb(t)}

. (4.5)

For tables with multiple attributes, the key-value pair relevance score then

uses this best match score when calculating a key-value relevance score, as

defined below:

Definition 4.3.7. Key-Value Pair Relevance Score (Scorepair). Let T

be a table corpus, K be the universe of candidate keys, V be the universe of

values, (k, v) be a tuple where k ∈K and v ∈ V , and tqj be a projection on an

attribute j of a query table tq. The relevance score of a candidate pair (k, v)

to sub-table tqj of query table tq is defined as:

Scorepair((k, v), t
q
j) =

∑
M∗(tqj , (k, v), t)

{t | t∈T and ∃b∈ attr(t) : (k,v)∈Πb(t)}

(4.6)

The following sub-section will detail the pseudo-code of the framework.

4.3.3 Pseudo-code

In order to solve the table expansion, the proposed solution performs three

main tasks:
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1. Find a set of candidate tables T c in a table corpus T for the expansion

of a query table tq.

2. Retrieve candidate key-value pairs for each attribute of query table tq.

3. Form a set of candidate rows R to expand query table tq.

The pseudo-code of the system is shown in Algorithm 1. The input of the

algorithm is a set of relational web tables T and a query table tq.

keys(t) returns the set of keys of table t, and on line 1, Kq is initialized

to be the set of keys of query table tq. T c is initialized on line 2 and includes

all tables that contain at least one key k from the set of keys Kq of the query

table. K is initialized on line 3 and includes all keys that belong to a candidate

table t but are not among the keys Kq of the query table tq.

A candidate row r consists of a set of 3-tuples of the form (k, j, v) where

k is a candidate key, j is an attribute index of the query table tq, v is an

associated attribute value. The call attrs(tq) returns indexes of attributes of

table tq. The code from line 5 to line 23 retrieves the tuples to form candidate

rows and collects them into a set Q, which is initialized on line 4.

The tuples (k, j, v) are constructed for each attribute j of the query table

tq in two parts. First, candidate key-value pairs (k, v) are retrieved from

projections of candidate tables T c and stored in a set P on lines 7-14. Since

each key-attribute-value tuple of a candidate row must be associated with

an attribute j of the query table tq, the projection Πj(t
q) is used to find a

projection with the highest number of matches in each candidate table t ∈ T c.

The tuples (k, v) from those projections are collected in one set of tuples P .

In the second part, for each candidate key k, a pair (k, v) is selected from

all pairs in P associated with k, based on maximum Scorepair, and a tuple

(k, j, v) is added to the set Q on lines 15-22.

As a result, after line 23, the set Q will have tuples (k, j, v), where value

v belongs to a candidate table and has maximum Scorepair with the key k to

the projection Π(tq, j).
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On lines 25-28 tuples from Q are grouped into a set of candidate rows R

based on keys from K. On line 29, the set of candidate rows R is returned.

Algorithm 1: T-REx System

Data: T - set of relational web tables, tq - a query table
Result: Set of tuples

1 Kq ← keys(tq)
2 T c ← {t | t ∈ T and ∃k ∈ keys(t) : k ∈ Kq}
3 K ← {k | t ∈ T c and k ∈ keys(t) and k /∈ Kq}
4 Q← ∅
5 foreach j ∈ attrs(tq) do
6 P ← ∅
7 foreach t ∈ T c do
8 foreach b ∈ attrs(t) do
9 if M(Πj(t

q),Πb(t)) > α and M(Πj(t
q),Πb(t)) = M∗(Πj(t

q), t)
then

10 P ← {(k, v) ∈ Πb(t) | k /∈ Kq}
11 break

12 end

13 end

14 end
15 foreach k ∈ K do
16 foreach (k, v) ∈ P do
17 if (k, v) ∈ argmax

(k,v∗)∈P

Scorepair((k, v
∗),Πj(t

q)) then

18 Q← Q ∪ {(k, j, v)}
19 break

20 end

21 end

22 end

23 end
24 R← ∅
25 foreach k ∈ K do
26 r ← {(k, j, v) | (k, j, v) ∈ Q and j ∈ attrs(tq)}
27 R← R ∪ r

28 end
29 return R

4.3.4 Example

We will demonstrate the approach with an example, where a table corpus (see

Figure 4.11) contains five tables: table t1 - a table of capital cities, t2 - a table

of places where matches of an online championship took place including the
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language of the broadcasting, t3 - a table of languages and currencies, t4 - a

table of languages and t5 - a table of currencies.

Figure 4.11: Table Corpus T .

Assume, a user provided query table tq in Figure 4.12, which has three

columns and two rows. We can infer from the table that the user wants to

retrieve a list of countries with their capital cities and languages.

Figure 4.12: Query Table tq.

Task 1. Find a set of candidate tables.

Keys from the query table tq are used to filter tables from the table corpus T

to obtain tables that contain query keys in their key column. Tables t1, t2 and
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t3 have keys that match query table keys, and tables t4 and t5 do not have a

key that match any query table keys (see Figure 4.13). Therefore, only tables

t1, t2 and t3 are selected as candidate tables.

Figure 4.13: Tables filtered by appearance of keys of the query table. Matches
with query table keys are indicated with blue background, and excluded tables
are greyed out.

Task 2. Retrieve candidate key-value pairs.

After candidate tables have been found, the next step is to retrieve candi-

date keys and associated values for each attribute of the query table tq. The

query table tq has two attributes, “Capital” and “Language”, and the follow-

ing procedure is performed for each of them to retrieve candidate key-value

pairs.

Query attribute “Capital”

First, a projection of the left-most attribute “Capital” is created (See Figure

4.14).
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Figure 4.14: Projection of the first attribute of the query table tq.

To find matches between candidate tables and the projection Π1(t
q), each

candidate table is also considered as a set of projections. For instance, ta-

ble t1 has only one attribute column and therefore has only one projection.

The projection has matches with both key-value pairs <China, Beijing > and

<USA, Washington > from Π1(t
q). Since the column has two matches and is

the column with maximum number of matches, these candidate keys and asso-

ciated values (<Russia, Moscow > and <Spain, Madrid >) will be selected as

candidate pairs, giving an initial value of the relevance score Scorepair equal

to 2 (number of matches in t1) for each pair. The matches are highlighted in

the Figure 4.15.

Figure 4.15: Table columns matching projection Π1(t
q). Matches with query

table keys are indicated with blue background, matches with attribute values
are indicated with green background, and mismatches are indicated with red
background.

A summary of resulting Best Match Score M∗ and candidate key-value
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pairs of each candidate table is presented in Table 4.1. Both of the projections

of table t3 have negative Match Score M as they have mismatches and no

matches with Π1(t
q). As a result, none of them is used for retrieving candidate

key-value pairs.

Table Best Match Score M∗ Candidate key-value pairs
t1 2 {<Russia, Moscow>, <Spain, Madrid>}
t2 1 {<Russia, Moscow>, <Spain, Madrid>}
t3 0

Table 4.1: Best Match Score M∗ and candidate key-value pairs of candidate
tables for projection of query table on attribute “Capital”.

After collecting candidate pairs from all three candidate tables, two candi-

date pairs are found - <Russia, Moscow > and <Spain, Madrid >. Both pairs

have a score of 3, which represents several matches with pairs from Π1(t
q)

in candidate tables t1 and t2 with positive Match Score M in at least one

projection. See Table 4.2.

Candidate key-value pair Occurs in tables Relevance Score Scorepair
<Russia, Moscow> t1, t2 3 (2 + 1)
<Spain, Madrid> t1, t2 3 (2 + 1)

Table 4.2: Candidate key-value pairs their relevancy score for query attribute
“Capital”.

The keys in the candidate key-value pairs are all different from each other,

which means that each key has only one value that it can be associated with.

For illustration purposes, these pairs can be used to expand the query projec-

tion Π1(t
q) (Figure 4.16).

Figure 4.16: Resulting expanded projection Π1(t
q).

45



Query attribute “Language”

After retrieving candidate key-value pairs for projection Π1(t
q), the system

repeats the procedure for the projection of the next attribute (see Figure

4.17).

Figure 4.17: Projection of column 2 of the query table tq.

Table t1 does not have any matches with projection Π2(t
q), table t2 has

one match on attribute “Language” and table t3 has two matches on attribute

“Language”. The matches and mismatches are illustrated on Figure 4.18.

Figure 4.18: Table columns matching projection Π2(t
q). Matches with query

table keys are indicated with blue background, matches with attribute values
are indicated with green background, and mismatches are indicated with red
background.

A summary of resulting Best Match Score M∗ and candidate key-value

pairs of each candidate table is presented in Table 4.3. Attribute “Language”
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of table t2 has a Match Score M equal to one as it has one match and no

mismatches, and attribute “Language” of table t3 has two matches and no

mismatches as well.

Table Best Match Score M∗ Candidate key-value pairs
t1 0
t2 1 {<Russia, Russian>, <Spain, English>}
t3 2 {<Russia, Russian>, <Spain, Spanish>}

Table 4.3: Best Match Score M∗ and candidate key-value pairs of candidate
tables for projection of query table on attribute “Language”.

From all candidate tables, three candidate key-value pairs have been re-

trieved - <Russia, Russian >, <Spain, English > and <Spain, Spanish > (See

Table 4.4). Key Russia has only one value to be associated with and it has

Relevance Value Score Scorepair equal to 3. Key Spain, on the other hand,

has a conflict as it can be associated with two values - English and Spanish.

To resolve the conflict the pair with highest Relevance Value Score Scorepair

is chosen. In this example, pair <Spain, English > has a score equal to 1 and

<Spain, Spanish > - equal to 2. Therefore, pair <Spain, Spanish > is selected.

Candidate key-value pair Occurs in tables Relevance Score Scorepair
<Russia, Russian> t2, t3 3 (1 + 2)
<Spain, English> t2 1
<Spain, Spanish> t3 2

Table 4.4: Candidate key-value pairs their relevancy score for query attribute
“Language”.

For illustration purposes, these pairs can be used to expand the query

projection Π2(t
q) (Figure 4.19).

Figure 4.19: Resulting expanded projection Π2(t
q).
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Task 3. Form a set of candidate rows.

After candidate key-value pairs are retrieved for all attributes of the query ta-

ble tq, candidate rows can be formed based on candidate keys and associated

values for each attribute. For candidate key Russia, value Moscow has been

retrieved for projection Π1(t
q) on attribute “Capital” and value Russian for

projection Π2(t
q) on attribute “Language”. Therefore, a candidate row <Rus-

sia, Moscow, Russian > is formed. For candidate key Spain, values Madrid

and Spanish have been retrieved for projections Π1(t
q) and Π2(t

q), respec-

tively. As a result, a candidate row <Spain, Madrid, Spanish > is formed.

The candidate rows are then added to the given query table (see Figure 4.20).

Figure 4.20: Expanded Table.
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Chapter 5

Experimental Evaluation

In this chapter, we present an experimental evaluation of the proposed method.

During the experimentation phase, our goal was to evaluate the T-REx system

by comparing its performance to alternative solutions. We were interested in

conditions at which our system outperforms the alternatives, at which it falls

behind, and how the input influences the result. The goals of the evaluation

are:

• To compare the entity names (subject column) expansion of the system

with the result of an ESE approach.

• To compare the attribute value predictions of the system with those of

EA approaches.

• To study the sensitivity of results (precision and recall) with respect to

how frequent the key-value pairs of query tuples are in the table corpus.

• To study the sensitivity of results quality with respect to the number of

examples in a query table.

5.1 Dataset

We used the WDC Web Table Corpus [52] for our evaluation. It contains

Web tables extracted [19] from the Common Crawl 1 excluding layout HTML

1http://commoncrawl.org/
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tables. WDC Web Table Corpus is part of the Web Data Commons project 2

and contains 233 million Web tables.

In this work, the English-language relational web tables were used. Each

table has been accompanied by meta- and contextual information in the cor-

pus. Meta-information includes details such as table orientation, key-column

index, whether the table has a header row and its index. Contextual informa-

tion covers page title, page URL, table caption and page keywords, and were

described in Chapter 2.

5.2 Experimental setup

5.2.1 Ground truth tables

To evaluate the proposed system, two types of ground truth were used from

the table corpus: (1) a set of curated tables, and (2) a set of random tables.

During evaluations we used ground truth tables of both types.

Curated Tables. A set of 5 curated tables, as listed in Table 5.1, was

obtained from Wikipedia 3, The Guardian 4 and WikiData 5, representing

information from common domains. Tables generated from WikiData using

SPARQL 6 describe a class of objects with multiple attributes, for example,

all countries with their capital cities and currencies. In this case, to retrieve

all records, the methods have to find multiple tables from the corpus.

Title # of columns # of rows Source
Language, currency and region by country 4 236 WikiData
2008 Summer Olympics medal table 5 84 Wikipedia
World’s top 100 footballers 2012 6 100 TheGuardian.com
Top 100 best selling books of all time 6 100 TheGuardian.com
The greatest films of all time 8 25 TheGuardian.com

Table 5.1: Curated tables.

Random Tables. Random ground truth tables, which represent arbitrary

domains, are extracted from the table corpus. They are then removed from

2http://webdatacommons.org/webtables/
3https://www.wikipedia.org/
4https://www.theguardian.com/
5https://www.wikidata.org/
6https://query.wikidata.org/
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the corpus during search to ensure that these tables are not used in the ex-

periments. We ensure that each random ground truth table has at least 5

rows and 2 columns. Table 5.2 describes examples of random tables that were

selected as ground truth.

Title # of columns # of rows
1994 USMS Top 10 SCM for Women 45-49 7 11
CyberSports 16 17
Citizens Advice Bureau - Counselling & Advice Services in... 3 11
New Mexico vs Sacramento State (Oct 30, 2009) - Sacramento... 9 18
iTunes - Music - Shangaan Electro - New Wave Dance Music... 7 13
PHP: ingres connect - Manual 5 18

Table 5.2: Examples of random tables.

5.2.2 Query Tables

Query tables are generated by selecting a subset of tuples from the ground

truth tables. Depending on the purpose of an experiment, the query tuples

(examples) are either selected randomly or based on the frequency of their

key-value pairs in the table corpus. To select tuples by frequency, all tuples

of the ground truth table are sorted by the frequency of their occurrence in

the corpus. Tuples at the top of this sort order are referred to as “head”

tuples, at the bottom as “tail” tuples and in the middle as “mid” tuples. We

differentiate tuples by frequency in order to measure sensitivity with respect

to this characteristic since the key-value relevancy score in T-REx is based on

co-occurrence frequency of key-value pairs.

We intentionally limit the size of the query tables to 5 as the 90 million

relational tables in the Web Data Commons web tables corpus have a median

number of 6 rows [30, 52], and the majority of web tables are very small [29],

see Table 5.3 for table statistics of the WDC corpus.

min. max. average median
Columns Horizontal Tables (attributes) 2 18,106 5.20 4
Rows Horizontal Tables (entities) 2 17,033 14.45 6
Columns Vertical Tables (entities) 3 16,142 8.44 5
Rows Vertical Tables (attributes) 1 486 3.66 3

Table 5.3: Statistics about the columns and rows in the WDC 2015 Corpus.

51



5.2.3 Baseline Methods

The problem of table expansion is not addressed by any other work, however,

it can be conceptually divided into two separate tasks: subject column (entity

names) expansion and attribute value prediction. These tasks are illustrated

in Fig. 5.1. Given a query table, first, the entity names are expanded and

then values are predicated for attributes. Therefore, the problem can be ad-

dressed by combining an entity set expansion (ESE) method to expand entity

names with an entity augmentation (EA) method to predict values for query

attributes.

We compare the expansion of entity names (subject column) of T-REx

with SEISA as an ESE method. For the evaluation of predicted values for

attributes, we compare T-REx with REA and Search Joins.

SEISA. We have implemented SEISA based on the original publication

[25]. As an input, it accepts a seed set of subject names of a query table and

a parameter α that balances the emphasis between relevance and coherence

scores.

REA. An implementation of the system proposed in [20] is provided by

its authors 7 and is designed to work with numeric values. It includes a tool

to build a Lucene index over a web tables corpus and it uses Redis 8 for in-

memory caching functionality. The system’s input is a set of entity names as

well as keywords describing an attribute label. It has a limit of 100 on the

number of top augmentations that are returned.

MSJ. The implementation of the Mannheim Search Joins Engine was pro-

vided by its authors 9. The solution includes tables corpus indexing function-

ality that creates a Lucene index with a required structure, which was used

to index the data set. The engine accepts subject names as an input, and the

query can additionally be constrained to a specific column label (augmentation

attribute).

An additional configuration file is provided and allows adjusting various

7https://github.com/JulianEberius/REA
8https://redis.io/
9https://github.com/MannheimSearchJoinsEngine/MannheimSearchJoinsEngine
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in Scala, REA - in Java and Scala 10, and MSJ - in Java 11. The dataset

was indexed for each solution using Lucene Index 12 that allows searching for

documents (web tables) based on terms.

5.3 Evaluation methods

The expanded tables are evaluated with respect to precision and recall. Preci-

sion (5.1) answers the question of what fraction of retrieved items are actually

relevant (match ground truth). Recall (5.2) shows the fraction of the relevant

items that are retrieved.

P =
#correctly retrieved items

#retrieved items
(5.1)

R =
#correctly retrieved items

#ground truth items
(5.2)

Additionally, we use F-measure (5.3), which is the weighted harmonic mean

of precision and recall. The measure is helpful for evaluation as it combines

the other two scores into a single one.

F =
1

α 1
P
+ (1− α) 1

R

(5.3)

where α = [0, 1].

For this evaluation, we use balanced F-measure, which equally weights

precision and recall (α = 0.5).

Fα=0.5 =
2PR

P +R
(5.4)

The balanced F-measure does not emphasize either of the scores as we

assume that for the user both are equally important.

10https://github.com/JulianEberius/REA
11https://github.com/olehmberg/SearchJoin
12https://lucene.apache.org/
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5.4 Experimental Results

This section consists of two sub-sections. In the first subsection, we evaluate

the subject column expansion performance of T-Rex and compare it to SEISA

- showing the sensitivity of the methods with respect to the size of the query

table. In the second subsection, we compare the performance of the value

prediction for attributes between T-REx and EA methods (REA and Search

Joins). Additionally, we evaluate the sensitivity of T-REx with respect to

“head” vs “tail” query tuples.

5.4.1 Subject column expansion

To evaluate subject column expansion, we conduct multiple experiments to

evaluate the sensitivity of T-REx and SEISA with respect to the number of

examples in the query table and with respect to the relative frequency (head,

mid, tail) of query key-value pairs in the table corpus.

Sensitivity with respect to the size of a query table.

We look at the precision, recall and balanced F-measure obtained by the meth-

ods when increasing the size of the query tables. We provide the set of keys

(subject names) from the query tables as seeds for SEISA as it is an ESE

method, and we use query tables with all attribute columns for T-REx.

First we will look at the balanced F-measure shown in Fig. 5.2. We see that

T-REx has overall better results than SEISA on this score. The performance

measure is decreasing with increasing number of examples in the query tables

for both methods. The balanced F-measure combines precision and recall, we

will look at these measures below.

Figure 5.3 reports Recall of the methods when increasing the size of the

query tables. Both SEISA and T-REx, have a Recall value of over 0.86 and

the performance measure increases with increasing seed size, reaching over 0.95

with 5 examples. Each query tuple might co-occur with tuples from the ground

truth table, therefore, every additional example in the query table is likely to

bring additional relevant tuples. However, we can see that the increase slows
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One problem we experienced with EA methods is their sensitivity to the

provided augmentation attribute names. Web tables and context meta-information

vary greatly in quality, completeness and consistency in the data set. Espe-

cially column header labels prove to be a major challenge as they are often

“too generic” (this characteristic of web tables was described in Chapter 2). In

multiple cases, we were not able to get any results from REA or MSJ due the

their sensitivity to the provided attribute names. In comparison, our approach

does not require attribute labels or any other context information.

As an input for T-REx, we provided a query table with a single example

(tuple). Adding more examples would have been a significant advantage over

EA methods that take only an attribute name to predict an attribute value.

Since REA works only with numeric columns and MSJ can work with any

column data type, we first compare T-Rex with MSJ for all columns and then

with REA for numeric columns.

Comparing T-REx with MSJ.

The results are presented in Table 5.4. MSJ has much lower recall, precision

and F-score than T-REx mainly due to a smaller number of non-empty results

compared to T-REx. MSJ returned results for 41 columns out of 151 possible

(∼ 27%) and T-REx - 129 columns out of 151 possible (∼ 85%).

T-REx MSJ
Recall 0.63 0.19
Precision 0.66 0.21
F-Score 0.64 0.20

Table 5.4: Comparison of Precision, Recall and F-Score between T-REx and
MSJ.

Comparing T-REx with REA.

The results are presented in Table 5.5. Similarly to MSJ, REA has lower

recall, precision and F-score than T-REx mainly due to a smaller number of

non-empty results in T-REx. REA returned results for 17 columns out of 35

numeric columns (∼ 48%), T-REx - 27 columns out of 35 numeric columns

(∼ 77%).
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as frequency of the query key-value pairs, improve the Recall performance

of T-Rex for subject column expansion and attribute value prediction tasks.

However, the number of examples in the query table also results in lower

precision performance of T-Rex for the task of subject column expansion.
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Chapter 6

Conclusion and Future Work

In this chapter, we present some concluding remarks about our work and

discuss a few possible future directions.

6.1 Conclusion

This thesis focuses on the problem of table expansion, where given a corpus

of web tables, the task is to populate a query table by discovering other rows

that may semantically belong to the table. The main challenge of using web

tables as a data source is the lack of schema level information, which leads to

various problems during schema matching. To mitigate this challenge, we have

introduced an algorithm that does not consider schema-level information and

relies only on instance-level information. It uses projections to split tables into

entity-attribute binary relations - sets of key-value pairs, and then leverages

co-occurrence to retrieve candidate key-value pairs that are then combined

into candidate rows.

In an experimental evaluation, we compared the approach with an alterna-

tive solution to the problem of table expansion - an entity set expansion (ESE)

method for subject column expansion and entity augmentation (EA) methods

for attribute value prediction. We show that an alternative solution is not

suitable for the task, especially for cases when a query table is from an arbi-

trary domain. The correctness of EA methods greatly depends on the quality

of the web tables in the corpus and the accuracy of schema-level information.
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6.2 Future Work

We have identified several directions for future work. One direction is en-

hancing schema matching of the current approach by utilizing various table

pre-processing methods such as identifying attribute data types, unit conver-

sions, and holistic matching methods [56]. The system can also be extended

to support other scoring functions.

Another promising direction is related to broadening the application of the

system, such as support for complex keys, multiple attribute values, filling

missing values in a table and returning a ranked list of rows. Additionally,

the system can be modified to return partially filled candidate records instead

of predicting an attribute value for each query attribute of a candidate key.

Moreover, the system can return multiple possible attribute values for a given

query attribute of a candidate key with a confidence score assigned to each

attribute value.
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