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Abstract 

The dynamic response of osseointegrated implant systems 

can be used to evaluate the condition of the bone-implant 

interface (BII) and implant stability. The primary objective of 

this work is to develop a simplified dynamic 1D finite element 

(FE) model of the OPL transfemoral amputation (TFA) bone-

implant system. The model’s intended clinical use is to 

compare the collected acceleration response generated from 

impact with the percutaneous adapter to the model’s prediction 

and solve for the unknown BII stiffness. The model utilizes 

linear vibration theory and thus should accurately capture the 

natural frequencies and mode shapes of interest. A simply 

supported uniform beam was modelled using Euler-Bernoulli, 

Rayleigh, and Timoshenko FE beam formulations and 

compared with the analytical solution for validation. 

Additionally, a 3D ABAQUS® model was developed and it 

showed that Timoshenko’s formulation is the most appropriate 

model due to the significant shearing effects of the higher 

modes. Afterwards, a simply supported TFA implant system 

was modelled with the 1D FE code and compared to the 3D 

ABAQUS® model. The results indicated that the 1D FE 

model accurately predicted the natural frequencies of interest 

with a maximum difference of 3.08 %. The interface stiffness 

was then introduced as a series of springs distributed over the 

effective length of the stem. The stiffness’ magnitude was 

controlled by k which was the total stiffness normalized with 

respect to the volume of the stem’s effective length. The 

matching between the 1D and 3D models was based on 

manipulating the k to match the first mode frequency and 

comparing the results for the remaining modes. This yielded 

highly similar natural frequencies and mode shapes for a short 

stem (effective length=115 (mm)) with two extreme interface 

conditions. The same values of k found for the short stem were 

then used to perform modal analysis for a long stem (effective 

length=160 (mm)) and it yielded highly similar results 

between the 1D and 3D models which indicates that k is 

independent from the implant’s geometry. The numerical 

analysis performed in this investigation sets the groundwork 

for a series of additional in-vitro and in-vivo analysis of TFA 

systems and ultimately the development of a non-invasive 

vibration-based stability measurement system. 
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I.  INTRODUCTION  

Traditionally, patients with lower limb amputations undergo 

rehabilitation using socket prosthesis which can be associated 

with skin irritation, higher degrees of discomfort, frequent 

need for refitting, and improper sizing issues for a short 

residual stump [1]–[3]. Since the 1990s, osseointegrated 

transfemoral amputation (TFA) implant systems have been 

introduced as an alternative to socket prosthesis [1], [3]. To 

date, there are three TFA systems that have passed the clinical 

trial phase and are being used in various parts of the world: (1) 

the  OPRA, (2) ILP and (3) the OPL systems [1], [2]. The 

OPRA system achieves primary (mechanical) stability using a 

screw fixated intramedullary stem while ILP and OPL systems 

rely on press fitting the stem into the femoral canal [3]. All 

implant systems achieve secondary stability through 

osseointegration in which osseous material is directly 

deposited on the stem’s surface by bone growth and 

remodeling, leading to the formation of the bone-implant 

interface (BII) [3], [4]. 

 

Assessing osseointegrated implant stability is critical to 

determining the success of the surgery, early failure detection, 

and designing patient specific rehabilitation programs [4], [5]. 

Vibration based methods rely on analyzing the dynamic 

response of the bone-implant system and correlating implant 

stability to a system parameter such as the natural frequency 

[4], [5]. Such methods have demonstrated great potential for 

osseointegrated dental implants and hearing aids due to their 

non-invasive and quantitative nature [5]–[8]. As for TFA 

systems, in-vitro vibration analyses of the OPRA system have 

shown promise in detecting BII condition changes  [9]–[11]. 

The primary limitation of relying on the natural frequency 

as an implant stability metric, is that the natural frequency is 



   

not solely dependent on the BII; it is also influenced by other 

parameters such as the implant geometry and thus cannot be 

used as an absolute stability metric [12], [13]. Coupling the 

dynamic response of the implant system with a mathematical 

model can overcome this limitation and allows for the 

estimation of the BII condition directly [8], [13]. There are 

different approaches to mathematically modelling a dynamic 

bone-implant system. For example, simple systems can be 

modelled as rigid bodies connected with linear springs and 

analyzed using the discrete form of Newton’s 2nd law [13]. 

Systems can also be modelled as continuous systems using 

partial differential equations (PDEs). Analytical solutions of 

PDEs exist however, major assumptions are required 

regarding the geometry and boundary conditions. The finite 

element (FE) method is a numerical approach for satisfying 

the weak form of the PDE in a weighted residual sense and 

can be used for problems with complex geometries and 

boundary conditions [14]. 

 

The primary goal of this investigation is to develop a 

mathematical model that can capture the dynamic behavior of 

the OPL implant system accurately yet is computationally 

efficient in assessing the BII condition in a clinical setting.  

Preliminary testing involved exciting the system using 

transverse impact loads and measuring the response at the 

percutaneous adapter using an ADXL 1004 accelerometer 

(Analog Devices), revealed that the acceleration response is 

dominated by several (five at most) bending modes. Therefore, 

it is required that the model captures the first five bending 

modes accurately or covers the measurement bandwidth of the 

accelerometer (24 KHz) for a wide range of BII conditions. It 

is hypothesized that constructing a 1D FE model of the bone-

implant system using an appropriate beam formulation under 

dynamic loading will satisfy those requirements.  

 

The objective of this work is to develop a 1D FE code 

that performs modal analysis of the bone-implant system and 

report its capabilities and limitations. The first step in this 

investigation involves validating the FE code by comparing it 

to the analytical solution of a simply supported uniform beam 

with the same length to diameter (L/D) of a TFA implant. 

Moreover, the results are compared to a 3D FE model 

constructed on ABAQUS® (Dassault Systèmes). Afterwards, 

the 1D FE code is compared to a 3D FE ABAQUS® model 

for an actual TFA implant geometry. Finally, the interface 

stiffness is introduced to the model and the eigenvalues and 

eigenmodes are compared between the 1D FE code and 3D FE 

model for two implant geometries (short and long) and two 

extreme interface conditions (fibrous and healthy bone). It 

should be noted that this study focuses on mathematically 

analyzing the dynamic behavior of the bone-implant system as 

an eigenvalue problem. It sets the foundation for further 

mathematical, in-vitro and in-vivo time domain analysis, since 

the time domain response is the linear superposition of several 

modes of vibration according to linear vibration theory [15]. 

II. METHODS 

A. Mathematical basis for the 1D FE Code. 

A beam is a planar structure subjected to transverse loads 

and has a length that is larger than the other two dimensions 

[14]. There are different beam formulations that can be used to 

predict its dynamic response. Equation 1 shows the governing 

equation of a uniform beam undergoing free vibration 

according to Timoshenko’s beam theory [15]. Timoshenko 

theory accounts for both the bending and shear deflections. If 

only the first two terms of the PDE are considered, the PDE 

predicts the beam behavior according to Euler-Bernoulli’s 

theory (which ignores shearing and rotary inertia) [15]. If only 

the first three terms are considered, the PDE predicts the 

behavior according to Rayleigh’s theory (which ignores shear 

deflection) [15].  

 

 

 
 

Where  are the deflection, tensile 

elastic modulus, second moment of area, cross sectional area, 

density, shear elastic modulus, shear shape factor, position 

coordinate and time coordinate respectively [15]. 

 

1D FE formulations have been developed for the three 

beam formulations in the literature [14]–[16]. One of the 

approaches of deriving the FE formulation, involves reducing 

the dimension of the PDE using separation of variables 

knowing that it is an eigenvalue problem and that the time 

function has a harmonic form [14]. The reduced PDE can be 

then transformed to the integral weak form by adding a test 

function and using integration by parts [14]. Afterwards, 

appropriate shape functions (that satisfy elements boundary 

condition and interpolation requirements) can be used to 

determine the element-wise mass and stiffness matrices  [14], 

[15].  

 

The 1D FE code developed in this investigation is 

constructed on MATLAB® (MathWorks). It first discretizes 

the domain according to the required number of elements and 

computes the element-wise stiffness and mass matrices 

(according to the elements geometric, elastic and mass 

properties). It then computes the global mass and stiffness 

matrices according to their nodal connectivity then applies the 

boundary conditions where appropriate and finally computes 

the eigenvalues and eigenmodes. The mode shapes are 

normalized and plotted over the undeformed configuration. 

B. Modal Analysis of a simply supported uniform beam. 

To validate the developed 1D FE code, the code is tested 

against an abstract case of a simply supported uniform 

cylindrical beam with the same length to diameter ratio as a 

TFA system (L/D=14.29 where L is the combined length of 

the shortest possible adapter-stem assembly and D is the 

diameter of the intramedullary portion of the stem) where 



   

analytical solutions exist for three beam formulations. 

Equation 2 shows an example of these analytical solutions for 

a Timoshenko beam [15]. 

 

  (2) 

Where  is the  mode frequency,   and   

respectively [15]. 

 

  Additionally, a 3D ABAQUS® model of the uniform 

beam is developed. The 3D model treats the beam as a linear 

isotropic structure made from titanium and uses first order full 

integration hexahedral elements (C3D8) for the mesh. The 3D 

model extracts the eigenvalues and eigenmodes using the 

Lanczos algorithm. This model allows for estimating the out 

of plane effects and is used to determine if the 1D model has 

enough approximation power to model the more accurate (3D) 

implant geometry. Both the 1D and 3D models underwent h-

refinement, and the convergence criteria was set to changes of 

less than 2% for the first five natural frequencies upon at least 

doubling the number of elements. All the results presented in 

the next section are for the refined mesh.  

 

C. Modal Analysis of a simply supported TFA system. 

After validating the code using a uniform beam, modal 

analysis of a simply supported TFA system composed of an 

adapter (protruding part of the system) and the stem is 

performed using the 1D FE code and 3D ABAQUS® models. 

It should be noted that both models ignore the slight curvature 

and porous layer of the stem, however the rest of the 

dimensions were based on measurements of the physical OPL 

systems. The 1D FE code relied on discretizing the domain 

into 7 geometric regions as shown in Figure 1. The 3D solid 

geometry of the adapter and the stem are generated on 

Solidworks® (Dassault Systems). Physically, the stem and the 

adapter are connected by a threaded screw, however, to 

simplify the analysis the two surfaces were tied (where the 

nodes are inhibited from experiencing relative motion) at the 

interacting region.  

 
Figure 1. Implant Adapter geometry divided into 7 regions 

D. Modal Analysis of an Osseointegrated TFA system. 

The BII condition is dependent on several factors such as 

the bone-implant contact area, the material and mass 

properties of the interface, and the surrounding bone [4].  

Previous in-vitro and FE models simplify the interface as a 

thin uniform layer (0.5-1 mm) with a variable elastic modulus 

to simulate different healing stages [9], [17]. While this is an 

oversimplification of the interface condition, it is a reasonable 

way to control the BII quality in the model using a single 

parameter. In the current 3D FE model, the interface is 

simulated using a 0.5 (mm) thick cylindrical layer that is tied 

from the inside to the stem and from the outside to a thicker 

cylinder that simulates cortical bone (Figure 2). The material 

properties of the different components of the model are 

summarized in Table 1. The cortical bone is fully fixed from 

the outer side, since it is expected that the amplitude of 

vibration of the stem-BII region is much more significant than 

the vibration of the bone which is surrounded by tissues and 

muscles. This assumption on the boundary condition allows 

for only modelling the cortical femoral canal region and 

excluding the femoral head from the model. 

 
Figure 2. Schematic of the bone-implant system. 

Table 1. Material Properties for the different components of the 
system [18], [19] 

Component Material  Elastic 
Modulus 

( ) 

Poisson 
Ratio 

Density 

 

Adapter Titanium 105,000 0.31 4400 

BII Bone 0.5/9600  0.36 1900 

Bone Bone  16,000 0.36 1900 

Stem Titanium 105,000 0.31 4400 
 

The interface is introduced to the 1D FE model as a 

set of linear (translational) springs equally distributed at the 

nodes of R2 which is the implant’s effective length. The spring 

stiffness is calculated by integrating the stiffness per unit area 

(k) with respect to the cross-sectional area and length over  R2 

and then divided by the total number of springs (Equation 3). 

Therefore, k can be viewed as a stability metric that is 

independent of geometric properties R2. The matching 

between the 1D and 3D FE model is first performed for an 

implant with a short stem (effective length=115 mm) by 

varying the k until the 1st mode matches and then the natural 

frequency and mode shapes of the remaining modes are 

compared to the FE model for two extreme interface 

conditions (E=0.5 and 9600 MPa). The same k that was 

determined for the shorter stem is used for computing the 

frequencies and mode shapes for the two extreme interface 

conditions for a longer implant (effective length = 160 mm) 

and compared with the 3D FE model. This allows one to check 

if k has the potential to act as a stability metric that is 

independent of the geometry. 

 

 



   

Where  are the spring stiffness, number of 

springs, stiffness per unit area, radial position coordinate, 

radius and length of  R2  respectively.  

III. RESULTS AND DISCUSSION 

A. Modal Analysis of a simply supported uniform beam. 

 

The natural frequencies of a simply supported uniform 

beam using different beam formulations are summarized in 

Figure 3. The reported results are for a mesh of 24 elements 

(1D model), which satisfied the convergence criteria. As it can 

be observed, the 1D FE code reaches the analytical prediction 

for the three beam formulations. This indicates that the 1D FE 

code is working properly since the mass and stiffness matrices 

are derived from the governing PDE of each beam formulation 

and as the number of elements increases, the FE model’s 

approximation power increases and converges to the 

theoretical solution [15]. Additionally, comparing the three 

formulations to the 3D ABAQUS® model, shows that the 

three 1D beam models can estimate the first three modes 

accurately (difference < 5%). However, from the fourth mode 

onwards more prominent differences between the 3D 

ABAQUS® model and Euler-Bernoulli and Rayleigh theories 

start to emerge. Euler-Bernoulli and Rayleigh theories 

overpredict the fifth mode by 13.1% and 9.1% respectively 

while the Timoshenko model is only different by 1.4% from 

the 3D model. This behavior is expected since Euler-Bernoulli 

theorem ignores both shear deformation and rotary inertia and 

Rayleigh’s theorem ignores shear deformation [15] and both 

effects are prominent for the higher order modes. Therefore, 

the Timoshenko formulation is adopted for the remaining 

results of the investigation. 

 

 

 
 

Figure 3. Natural Frequency of a simply supported uniform beam 
using the three FE beam models, analytical solutions, and 3D 

ABAQUS® model. 

B. Modal analysis of a simply supported TFA implant 

system. 

The first five modes of a simply supported TFA implant 

system (excluding the BII and the bone) using the 1D FE code 

and the 3D ABAQUS model are summarized in Table 2.  The 

1D FE model accurately predicts the dynamic behavior of the 

stem-adapter, despite its complex geometry, supporting the 

hypothesis that using an appropriate 1D beam formulation can 

be used to model the dynamic behavior of the OPL implant 

systems. 

 
Table 2. Natural Frequency of a Simply Supported TFA system. 

 
1D FE  
Model 

3D ABAQUS 
 Model 

Difference 

Mode 
  

% 

1 622.8 620.51 0.37% 

2 2711.4 2646.6 2.45% 

3 6133.2 6030 1.71% 

4 9825.6 9638.1 1.95% 

5 15163 14710 3.08% 

 

C.  Modal analysis of an Osseointegrated TFA implant. 

 

The 3D ABAQUS® model was first used to extract the 

natural frequency and mode shapes of the first five bending 

modes, or up until exceeding the 24 (KHz) measurement 

threshold by one mode, for the short stem for two extreme 

interface conditions of E=0.5 (MPa) and E=9600 (MPa) which 

are denoted as LOW and HIGH respectively. The value of 

interface stiffness in the 1D model (k) was iteratively changed 

until the first mode matched the 3D ABAQUS® model within 

±0.2%. The k values were found to be k=8.2×1010 (N/m3) and 

5.5×1014 (N/m3) for the LOW and HIGH BII conditions 

respectively. Figure 4 summarizes the LOW and HIGH 

interface cases for the short stem using the 1D and 3D FE 

models. Using the k found based on the first mode of vibration 

yields highly accurate results for the LOW interface situation. 

The results (except for the third mode) are also accurate for 

the high interface situation. In terms of the mode shapes, the 

1D FE model captured highly similar deformation patterns 

(mode shapes) for all the modes of vibration. Figure 5 and 

Figure 6 are selected excerpts of the first and fourth mode of 

vibration (the BII and bone were suppressed for visualization) 

for the LOW stiffness case. Even the relatively complex 

bending behavior of the fourth mode was captured 

appropriately using the 1D model. The third mode of the 

HIGH stiffness had the highest difference of 9.2% is shown in 

Figure 7. The 3D ABAQUS® model reveals that the behavior 

for this mode is not strictly bending (with significant axial and 

out of plane effects) and this is a plausible explanation for the 

higher difference between the 1D and 3D models. However, 

the initial conditions are not expected to trigger this mode, 

since the loading is transverse and so the effect of this mode is 

not expected to be significant on the time domain response. 

Additionally, this mode is mostly contained within  R1 where 

the BII does not develop and is believed to have little effect on 

the structural stability of the OPL bone-implant system [20].  

This work was supported by the Department of Defense, FY20 Peer Reviewed Orthopaedic Research Program (W81XWH-21-1-0857), Glenrose Rehabilitation 

Research Innovation and Technology (GRRIT), Mathematics of Information Technology and Complex Systems (Mitacs IT15524) and the Natural Sciences and 

Engineering Research Council of Canada (NSERC).  



   

 
Figure 4. Natural Frequencies of the short TFA stem for LOW (E=0.5 
MPa & k=8.2×1010 N/m3 ) and HIGH BII conditions (E=9600 MPa & 

k=5.5×1014 N/m3 ) 

 
Figure 5. First mode of a short stem for LOW (E=0.5 MPa & 

k=8.2×1010 N/m3 )  condition using the 1D (left) and 3D (right) FE 
models 

  

 
Figure 6. Fourth mode of a short stem for LOW (E=0.5 MPa & 

k=8.2×1010 N/m3 )  BII condition using the 1D (left) and 3D (right) FE 
models 

Figure 7. Third mode of a short stem for HIGH (E=9600 MPa & k=5.5 
×1014 N/m3)  BII condition using the 1D (left) and 3D (right) FE 

models 

Using the same values of k found for the short stem, the 1D 

FE model was used to extract the natural frequencies and 

mode shapes for the long stem and the results were compared 

to the 3D ABAQUS® model. The results are shown in Figure 

8 for both interface conditions. There is excellent agreement 

between the 1D and 3D FE models with an average and 

maximum difference of 1.3% and 2.5% respectively for the 

LOW interface condition. While the higher BII condition had 

an average and maximum difference of 3.9%  and 7.6% 

(excluding the fourth mode as it exceeds 24 (KHz) ) 

respectively.  

The results presented here indicate that the k can be used as 

an absolute metric to compare between implants of different 

geometries since the same k of the short stem genereated a 

similar dynamic response between the 1D and 3D ABAQUS® 

models for the long stem for the same values of E. The 

sensitivity of the natural frequency to the implant geometry 

has been a major limitation to implant stabillity assessment 

using vibration methods [12], [21].  It has been proposed that 

using torsional modes of vibration can be more sensitive to the 

interface conditions and less dependent on the system’s 

goemetry for dental implants [22], however torsional modes 

can subject the implant to danegrous loads and lead to 

loosening. Mathematical modelling of hearing aids and natural 

teeth using the ASIST to estimate the stiffness of the BII 

directly has demonstrated that this approach increases the 

sensitivity towards the BII and is less sensitive to the system’s 

geometry compared to the natural frequency without 

subjecting the bone-implant system to torsional modes [7], [8], 

[13]. 

 

 
Figure 8. Natural Frequencies of  the long TFA stem for LOW (E=0.5 
MPa & k=8.2×1010 N/m3 ) and HIGH BII conditions (E=9600 MPa & 

k=5.5×1014 N/m3 ) 

There are two main limitations of the current mathematical 

representation of the bone-implant system that may arise when 

extending the model to the time domain . First, the model uses 

linear vibration theory. The implant is physically excited using 

impact and contact can generate non-linear effects [23], 

previous work with bone anchored hearing aids involved 

modelling contact analytically using a linear spring that 

defined the contact stiffness between the impact rod and the 

implant system [13]. Similar approaches will be utilised and 

the accuracy of these approaches will be tested with in-vitro 

experiments and time integration ABAQUS® models capable 

of modelling non-linear contact behavior. The second 

limitation is that the model simplified: (1) the BII by assuming 

it was uniformly distributed over R2 and (2) simplified the 

interaction between the adapter and the implant by assuming 

they were tied. The effect of varying the distribution of the BII 

and degree of implant-abutment relative motion will be both 

tested using experiments and 3D ABAQUS® models. 

BII: LOW 

Difference= {0.1, 1.9,0.5,1.6,2.5} %  

BII: HIGH 

Difference= {0.7, 3.5,7.6} % 

BII: LOW 

Difference= {0, 1.3,0.2,2.0,2.5} %  

BII: HIGH 

Difference= {0.2, 3.3,9.2} % 



   

IV. CONCLUSION 

In this investigation, a 1D FE model of the OPL TFA bone-
implant system was developed based on Timoshenko’s beam 
formulation. Modal analysis of a simply supported uniform 
beam (same L/D ratio of a TFA implant configuration) showed 
that the code’s solution converged with the analytical solutions 
of Euler, Rayleigh, and Timoshenko theories. It also showed 
that Timoshenko is the most appropriate formulation since 
shearing effects can be significant for the higher order modes.    
Furthermore, modal analysis of a simply supported 1D TFA 
implant system showed that the 1D model captured the bending 
modes of interest accurately with a maximum difference of 
3.08% when compared to a 3D ABAQUS® model. Finally, the 
BII was introduced to the 1D model as a series of linear springs 
distributed over the stem’s effective length. The analysis was 
first carried out for a short stem (effective length of 115 (mm)) 
and the k, in (N/m3), of the BII was found by matching the first 
mode frequency with the 3D Model for two extreme interface 
conditions. The natural frequencies and mode shapes of the 
remaining modes were highly similar to the 3D model. The 
same values of k found for the short stem, were used to 
compute the natural frequency and mode shapes for a long 
stem (effective length of 160 mm) and they matched the 3D FE 
model. This indicates that the k was not influenced by the 
stem’s length and has the potential to be an absolute stability 
metric. 

Accurate prediction of the natural frequencies and mode 
shapes sets the foundation for the accurate prediction of the 
time domain response of the system. The numerical analysis 
laid out in this work thus formulates the basis for a series of 
additional mathematical, in-vitro and in-vivo analysis of 
osseointegrated TFA implant systems and the development of a 
stability measurement system. Future work involves: (1) using 
the 1D model to evaluate the time domain response of the 
system, (2) validating the response experimentally (in-vitro and 
in-vivo) and to a 3D FE time integration model,  (3) replacing 
the tied interaction with springs that can model screws, (4) 
optimizing the measurement and loading protocols and (5) 
performing parametric studies on the effect of the material, 
surface properties and distribution of the BII on the response. 
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