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Abstract 5 

Fuzzy inference systems (FISs) are a predictive modeling technique based on fuzzy sets that utilize 6 

approximate reasoning to mimic the decision-making process of human experts. There are several 7 

expert- and data-driven methods for developing FISs, among which fuzzy clustering algorithms 8 

are the most frequently used data-driven methods. This paper introduces a new fuzzy clustering 9 

algorithm for developing FISs in construction applications that addresses two limitations of 10 

existing fuzzy clustering algorithms: the lack of capacity to determine the number of clusters 11 

automatically from the characteristics of the data, and the poor performance in predictive modeling 12 

of highly dimensional problems. Existing fuzzy clustering algorithms are limited in construction 13 

applications since determining the number of clusters based on subjective expert judgement 14 

reduces the accuracy of the resulting FIS, and construction systems are often highly dimensional 15 

with a large number of inputs affecting the system outputs. The fuzzy clustering algorithm 16 

proposed in this paper determines the number of clusters automatically based on the characteristics 17 

of the data, specifically the non-linearity observed within clusters, and assigns weights to the rules 18 
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of FISs to improve their accuracy in highly dimensional problems. This paper advances the state-19 

of-the-art of fuzzy clustering and contributes to construction modeling by providing a new data-20 

driven technique for developing FISs that suits the characteristics of construction problems.  21 

Keywords: Predictive modeling; fuzzy inference systems; fuzzy clustering; machine learning; 22 

construction modeling 23 

1. Introduction 24 

The introduction of fuzzy sets [1] provided an alternative way to address uncertainties originating 25 

from the subjectivity, imprecision, or linguistic expression of information (i.e., non-probabilistic 26 

uncertainties). Moreover, the introduction of fuzzy sets offered a means of addressing two 27 

challenges involved with modeling construction systems. First, many variables influencing 28 

construction systems exhibit non-probabilistic uncertainty (e.g., construction projects, 29 

construction operations, etc.), including those variables assessed by linguistic terms (e.g., high 30 

crew motivation). Second, the modeling of construction systems is hindered by limited data 31 

availability in construction contexts. The application of fuzzy sets can address these challenges by 32 

enabling modelers to acquire and process expert-knowledge where historical data is not available 33 

for the system. One of the applications of fuzzy sets in construction problems is in the development 34 

of fuzzy inference systems (FIS), which are a type of predictive modeling technique that map 35 

inputs to outputs using a fuzzy rule-based system. 36 

There are several expert- and data-driven techniques for developing FISs. Expert-driven 37 

techniques rely on experts’ knowledge regarding the interactions between the input and output 38 

variables, and data-driven techniques rely on historical data to map the input variables to the 39 

outputs. Since experts need to understand the structure of the system prior to defining the 40 

interactions between input and output variables by a set of rules (i.e., rule base), expert-driven 41 
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methods can only be applied to those problems that have a small number of input and output 42 

variables (i.e., low dimensionality) [2]. According to Zadeh’s principle of incompatibility [2], the 43 

dimensionality of a system has an inverse relationship with experts’ understanding of system 44 

structure. Therefore, in highly dimensional construction systems, where system outputs (e.g., 45 

productivity) are predicted by a large number of input variables (e.g., factors influencing 46 

productivity), FISs developed by expert-driven methods may have poor predictive performance 47 

[3,4]. In contrast, data-driven methods rely on historical data to identify a system’s structure, which 48 

makes them preferable to expert-driven methods for developing FISs in highly dimensional 49 

problems if historical data are available. 50 

Among the different data-driven methods introduced in the literature for developing FISs [5–8], 51 

fuzzy clustering algorithms are the most commonly used techniques in engineering applications 52 

[9–13]. Various fuzzy clustering algorithms have been proposed in the literature for data 53 

partitioning and developing FISs, including fuzzy c-means (FCM) clustering [14], Gustafson-54 

Kessel’s algorithm (GK algorithm) [15], and subtractive clustering [16]. Existing fuzzy clustering 55 

algorithms have two limitations for developing FISs in construction applications. First, the 56 

majority of these algorithms do not have the capacity to determine the number of clusters 57 

automatically based on the characteristics of the data [4]. Accordingly, modelers need to decide 58 

on the number of clusters subjectively, though information about the appropriate number of 59 

clusters needed to represent a subjective variable may not be available in many applications of 60 

FISs. FCM clustering and GK algorithm both rely on the subjective knowledge of the modeler to 61 

specify the number of clusters and therefore disregard the characteristics of the data. Moreover, 62 

subtractive clustering determines the number of clusters based on the subjective judgment of the 63 

modeler regarding the minimum distance between two given cluster centers. Thus, subtractive 64 
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clustering ignores the existence of non-linearity within each cluster, despite the fact that it is an 65 

important characteristic of the data, which can reduce the accuracy of the resulting FIS. Second, 66 

fuzzy clustering algorithms lack the capacity to assign weights to the rules of FISs, such that all 67 

input and output variables are equally weighted in the resulting FISs [17]. This issue decreases the 68 

accuracy of the resulting FISs in highly dimensional problems [17]. These two limitations are 69 

addressed in the present work through the development of a new fuzzy clustering algorithm. The 70 

proposed algorithm advances the state of the art of fuzzy clustering by determining the number of 71 

clusters automatically based on the non-linearity observed within clusters and assigning weights 72 

to the rules of FISs to improve their accuracy in highly dimensional problems. In the proposed 73 

fuzzy clustering algorithm, the number of clusters is determined by a novel iterative algorithm that 74 

increases the number of clusters by one in each iteration to reduce the amount of non-linearity 75 

within each cluster below a prespecified threshold. Moreover, Adam optimization, a 76 

gradient-based optimization algorithm with several applications in machine learning [18], is used 77 

to assign weights to the rules of the FISs. This paper also contributes to the existing body of 78 

knowledge on construction modeling by introducing a new data-driven method for developing 79 

FISs that is appropriate for modeling highly dimensional construction systems. 80 

The remainder of the paper is organized as follows: Section 2 presents a brief review of the 81 

applications of fuzzy clustering algorithms in the construction domain, in addition to discussing 82 

FCM clustering and GK algorithm. Section 3 presents the proposed fuzzy clustering algorithm for 83 

developing predictive models in construction applications. Section 4 presents a numerical example 84 

to illustrate the proposed fuzzy clustering algorithm, and Section 5 tests the applicability of the 85 

proposed algorithm to construction problems by modeling construction labor productivity (CLP). 86 
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Finally, Section 6 presents final remarks and explores areas for future research. To improve the 87 

readability of this paper, the nomenclature of symbols used in the paper are presented in Table 1. 88 

Table 1. Nomenclature of symbols. 89 

Symbol Description 

𝑈 = [𝑢𝑖𝑗] Partition matrix 

𝜈𝑖
𝑇 = (𝜈𝑖1, … , 𝜈𝑖𝑝) The centroid of cluster i 

𝐴𝑖 = [𝑎𝑘𝑙
(𝑖) ]

𝑛×𝑛
 Norm-inducing matrix for cluster i 

𝜌𝑖 Volume constraints for norm-inducing matrix of cluster i 

𝜇𝜈,𝐴
(𝑖)

(𝑧𝑗) Membership degree of a point 𝑧𝑗 in cluster 𝑖 

ℎ𝑖(. ) The link function of rule i 

𝑓(. ) The link function of FIS 

𝜆 The percentage of the data points located in cluster tails 

⌈. ⌉ Ceiling function 

𝛽𝑖 First parameter for linear state function of cluster i 

𝛼 Angle between two linear state functions 

𝛿 Intra-cluster non-linearity threshold 

𝜔𝜖(0,1) Step size 

𝜑1, 𝜑2 ∈ (0,1] Exponential decay rates for momentum estimates 

𝜖 Numerical stabilization constant 

𝑚, 𝑣 Momentum vectors 

2. Related Work 90 

There are two main types of FISs, Mamdani FISs (M-FIS) [19,20] and Takagi-Sugeno FISs (TS-91 

FIS) [21]. M-FISs use fuzzy membership functions to represent the input and the output variables 92 

of the system, which results in prediction of system outputs as fuzzy sets rather than crisp numbers. 93 

In the case of M-FISs, a defuzzification step is often required to determine the system output as a 94 

crisp number, since decisions are often made in practice based on crisp numbers rather than fuzzy 95 
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sets. Since there are a wide range of defuzzification operators, the selection of a proper operator 96 

can significantly affect the accuracy of the system. In contrast, TS-FISs use a set of crisp functions 97 

of inputs (i.e., state functions) to predict the output of the system. In the case of TS-FISs, it was 98 

first assumed that the state functions were linear in nature [21]. Later, a general form of TS-FISs 99 

was introduced, in which the state functions can be any non-linear local model. In current 100 

applications of TS-FISs, state functions are often k-order polynomial functions [22]. By using a 101 

set of local models, TS-FISs are able to capture the complexity of construction systems with high 102 

accuracy and predict their behavior with robust calculation efficiency [3]. Moreover, since the 103 

state functions of TS-FISs are crisp functions, their outputs are predicted as crisp numbers and no 104 

defuzzification is required. Fuzzy clustering algorithms are capable of developing both M-FISs 105 

and TK-FISs using historical data. Given the aforementioned advantages of TS-FISs over M-FISs, 106 

the new fuzzy clustering algorithm introduced in this paper is focused on developing TS-FISs. 107 

Clustering algorithms are traditionally used to create classes of data based on their similarities 108 

[23]. Unlike crisp clustering algorithms, fuzzy clustering algorithms can also be used for 109 

developing predictive models (i.e., FISs) by projecting fuzzy clusters into the input and output 110 

spaces [24,25]. Fuzzy clustering algorithms for predictive modeling have been applied in a number 111 

of engineering contexts, including civil engineering and construction engineering and 112 

management. Examples include FISs for controlling pendulum cranes [26], aircraft motion control 113 

models [27], stock trading forecasts [28], predicting the progress rate of road headers (i.e., an 114 

automated tunneling machinery) in tunneling projects [3], predicting the penetration index of 115 

tunnel boring machines (TBM) [29], and predicting CLP [4]. The use of fuzzy clustering 116 

algorithms in these applications allows the modeler to capture the non-probabilistic uncertainty of 117 

the system variables (i.e., input and output variables). These algorithms also enable the modeling 118 
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of complex and non-linear relationships between the inputs and outputs effectively and accurately 119 

using a number of local functions [3,4,29]. 120 

Despite the extended use of fuzzy clustering algorithms in engineering applications, the reliance 121 

of these algorithms on user-defined parameters (e.g., number of clusters) can limit their 122 

applications, since the optimum values for such parameters may not be known by the modeler. To 123 

address this limitation, efforts have been made to determine the optimum value of user-defined 124 

parameters, either manually [3,4,29–31], or automatically, by combining fuzzy clustering 125 

algorithms with evolutionary optimization algorithms [32,33]. However, the manual optimization 126 

of such parameters may not always lead to optimum value, since the optimization process relies 127 

on the subjective judgment of modelers. Combining fuzzy clustering algorithms with evolutionary 128 

algorithms can also add significant computational costs to the modeling process [25]. These 129 

algorithms also have another shortcoming, in that fuzzy clustering algorithms often weight all 130 

input and output variables of the system equally. As the dimensionality of the system increases, 131 

the accuracy of the FISs developed by these algorithms decreases [17]. To remedy this issue, 132 

weights need to be assigned to the rules of FISs [32]. Since the introduction of traditional fuzzy 133 

clustering algorithms, such as FCM clustering in 1984 [14], GK algorithm in 1979 [15], and 134 

subtractive clustering in 1994 [16], efforts have been made to remedy the limitations of these 135 

algorithms and improve their accuracy. Some of the recent efforts are discussed in this section. For 136 

a more comprehensive review of common fuzzy clustering algorithms, the reader may refer to 137 

[34,35]. 138 

New fuzzy clustering algorithms to consider the data characteristics for developing FISs and 139 

reducing the reliance of the algorithms on user-defined parameters have been recently proposed in 140 

the literature [25,31,36–39]. Askari [25] introduced a fuzzy clustering algorithm based on FCM 141 
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clustering technique that visualizes the data structure prior to clustering and locates the cluster 142 

centers inside the dense areas of the input space, thus improving the interpretability of FISs and 143 

avoiding redundancy in the rule base. Since the projections of clusters on each input/output space 144 

are normal but non-convex and irregularly shaped fuzzy membership functions, Askari [25] 145 

transforms the resulting membership functions to a Gaussian shape for improved interpretability 146 

of the FISs. There are also a variety of fuzzy clustering algorithms based on FCM clustering and 147 

possibilistic theory, which combine the concepts of entropy, typicality, and belongingness with 148 

traditional FCM clustering to avoid the high impact of noisy data on the results. Generally, in 149 

possibilistic fuzzy clustering algorithms, the impact of the noisy data on developing clusters is 150 

reduced by changing the distance function in FCM clustering to help identify the noisy data points 151 

and reduce their membership values in all clusters [37]. Examples of such fuzzy clustering 152 

algorithms are possibilistic c-means (PCM) clustering [39], fuzzy possibilistic c-means (FPCM) 153 

clustering [40], possibilistic fuzzy c-means (PFCM) clustering [38], and the generalized 154 

possibilistic fuzzy c-means (GPFCM) clustering introduced by Askari et al [37]. Previous studies 155 

show that considering the different characteristics of the data, such as the density of the data on 156 

the input space or noise in the data, can improve the performance of fuzzy clustering algorithms. 157 

In a similar manner, this paper introduces the use of another data characteristic,  the non-linearity 158 

of data, to improve the accuracy and efficiency of fuzzy clustering algorithms by automatically 159 

detecting the number of clusters. The algorithm proposed in this paper can improve the accuracy 160 

of fuzzy clustering algorithms, since the non-linearity of data is an important characteristic when 161 

predicting the complex and non-linear behavior of systems using a set of linear state functions in 162 

TS-FISs. Moreover, since fuzzy clustering algorithms are computationally expensive, especially 163 
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in highly dimensional problems, determining the number of clusters automatically avoids multiple 164 

runs of the algorithm and improves its efficiency. 165 

Previous research has attempted to address the second limitation of fuzzy clustering algorithms, 166 

assigning equal weights to all the rules of the resulting FISs, which leads to low accuracy of these 167 

algorithms for predicting the behavior of highly dimensional systems. Various optimization 168 

techniques have been used to determine the optimum rule weights for FISs, including heuristic 169 

search methods [41], evolutionary and artificial swarm optimization algorithms [42], and gradient-170 

decent algorithms [43]. In this paper, Adam optimization is used to determine the optimum rule 171 

weights of FISs. Due to its high computational efficiency, Adam optimization is well-suited for 172 

handling highly dimensional problems (e.g., modeling construction systems) or problems with a 173 

large number of data points [18]. Accordingly, the use of Adam optimization improves the 174 

accuracy of FISs in highly dimensional problems and with less computational cost, as compared 175 

to the use of evolutionary or artificial swarm optimization techniques [42]. 176 

Though there are a number of fuzzy clustering algorithms that have been introduced in the 177 

literature, FCM clustering is among the most commonly used in engineering applications [44]. 178 

Similar to other fuzzy clustering algorithms, FCM clustering allows a point to simultaneously 179 

belong to different clusters at different degrees of membership; therefore, clusters might have non-180 

sharp boundaries. The sharpness of the boundaries of clusters is determined by the modeler using 181 

a parameter called the fuzzification coefficient 𝑚 ∈ (1,∞), where the value of m has an inverse 182 

correlation with the sharpness of the boundaries of a cluster [14]. Moreover, the modeler must 183 

specify the number of clusters as an integer number C, where 2 ≤ 𝐶 < 𝑛 and n stands for the 184 

sample size of the input data. Once the two aforementioned parameters are determined for the 185 

sample of 𝑥 =  {𝑥1, … , 𝑥𝑛}, where 𝑥𝑖
𝑇 = (𝑥𝑖1, … , 𝑥𝑖𝑝 ), 𝑖 = 1,… , 𝑛, where n represents the sample 186 
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size and p stands for the dimension of the input data, the FCM clustering algorithm seeks to 187 

minimize the objective function, which is presented below in Equation 1. 188 

 min 𝐽𝑚(𝑈, 𝜈) =  ∑∑𝑢𝑖𝑗
𝑚(𝑥𝑗 − 𝜈𝑖)

𝑇
𝐵(𝑥𝑗 − 𝜈𝑖)

𝑛

𝑗=1

𝐶

𝑖=1

 1 

where 𝐵 stands for a positive-definite matrix, which is fixed for all clusters; 𝜈𝑇 = (𝜈1, … , 𝜈𝐶) 189 

stands for the vector of the centroids; and 𝜈𝑖
𝑇 = (𝜈𝑖1, … , 𝜈𝑖𝑝) is the centroid of cluster 𝑖. Finally, 190 

𝑈 = [𝑢𝑖𝑗] is the partition matrix satisfying the following three conditions. 191 

𝑢𝑖𝑗 ∈ [0,1], ∀𝑖 = 1,… , 𝐶 and 𝑗 = 1,… , 𝑛; 192 

∑𝑢𝑖𝑗 = 1

𝐶

𝑖=1

, ∀𝑗 = 1,… , 𝑛; 193 

0 < ∑ 𝑢𝑖𝑗 < 𝑛𝑛
𝑗=1 , ∀𝑖 = 1, … , 𝐶. 194 

By using a fixed positive-definite matrix for all clusters (referring to 𝐵 in Equation 1), FCM 195 

clustering ignores the fact that different clusters may have different structures (e.g., dispersion of 196 

data within each cluster). In order to capture the variant of the structures of different clusters, the 197 

GK algorithm, can be used. GK algorithm is the generalized form of the FCM clustering algorithm, 198 

and it allows for the use of different norm-inducing matrices 𝐴𝑖  for different clusters. The objective 199 

function of GK algorithm is defined as shown in Equation 2. 200 

 min 𝐽𝑚(𝑈, 𝜈, 𝐴) = ∑∑𝑢𝑖𝑗
𝑚(𝑥𝑗 − 𝜈𝑖)

𝑇
𝐴𝑖(𝑥𝑗 − 𝜈𝑖)

𝑛

𝑗=1

𝐶

𝑖=1

 2 

where 𝐴 = (𝐴1, … , 𝐴𝐶) is the vector of the norm-inducing matrices, and 𝐴𝑖 = [𝑎𝑘𝑙
(𝑖) ]

𝑛×𝑛
is a 201 

positive-definite matrix associated with cluster 𝑖. The fuzzy clustering algorithm proposed in this 202 
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paper is based on GK algorithm, where the initial form of the clusters and the FIS is determined 203 

by this algorithm. The cluster number and rule weights are determined using the algorithms 204 

presented in Section 3. 205 

3. Proposed Fuzzy Clustering Algorithm for Predictive Modeling 206 

This section discusses the proposed fuzzy clustering algorithm for developing FISs in construction 207 

applications. Figure 1 presents the flowchart of the proposed fuzzy clustering algorithm, which 208 

consists of three major steps: (1) generating the FIS from data with GK algorithm; (2) determining 209 

the number of clusters; and (3) assigning rule weights using Adam optimization. The three steps 210 

of the methodology are further discussed in the following subsections. 211 

 212 

Figure 1. Flowchart of the proposed methodology for developing the FIS. 213 
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3.1. Generating Fuzzy Inference System from Data Using Gustafson-Kessel’s Algorithm 214 

The initial FIS was developed by clustering the sample data using GK algorithm [15], where the 215 

number of clusters is set to its minimum, 𝐶 = 2, and the fuzzification coefficient 𝑚 ∈ (1,∞) is 216 

specified by the modeler. It is notable that for modeling a linear system, in which the relationships 217 

between the inputs and outputs are perfectly linear, the number of clusters needs to be set to 𝐶 =218 

1. However, such linear systems can be modeled more efficiently using statistical regression. In 219 

contrast, the fuzzy clustering algorithm proposed in this paper is suitable for modeling complex 220 

systems with non-linear relationships between the inputs and outputs. Accordingly, the minimum 221 

number of clusters is set to 𝐶 = 2. Next, the clusters were projected into the input and output 222 

spaces, and the initial FIS was developed. 223 

To introduce the clustering steps, let 𝑧 denote the sample data with n data points, which consist of 224 

input data 𝑥 ∈ ℝ𝑝  and output data 𝑦 ∈ ℝ𝑞, i.e., 𝑧𝑇 = ((𝑥1, y1), … , (𝑥𝑛, 𝑦𝑛)). Let 𝑧1  =225 

 (𝑥1, 𝑦1), … , 𝑧𝑛 = (𝑥𝑛, 𝑦𝑛) be n sample data points with the dimension of 𝑝 + 𝑞, where 𝑝 is the 226 

dimension of the inputs and 𝑞 is the dimension of the outputs. The clustering of the sample data is 227 

accomplished through the six following steps: 228 

Step 1. Initialize the partition matrix 𝑈(0). 229 

𝑈 = [𝑢𝑖𝑗], 𝑢𝑖𝑗 ∈ [0,1], ∀𝑖 = 1,… , 𝐶 and 𝑗 = 1,… , 𝑛; 230 

Step 2. Update the cluster centers. 231 

𝜈𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑧𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1  
, 𝑖 = 1,… , 𝐶 232 

Step 3. Update the fuzzy scatter matrices. 233 
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𝑆𝑖 = ∑𝑢𝑖𝑗
𝑚

𝑛

𝑗=1

(𝑧𝑗 − 𝜈𝑖)(𝑧𝑗 − 𝜈𝑖)
𝑇
 234 

Step 4. Update the norm-inducing matrices. 235 

𝐴𝑖 = [𝜌𝑖 det(𝑆𝑖)]
1

𝑝+𝑞𝑆𝑖
−1 236 

where 𝜌𝑖 is the volume constraint for the norm-inducing matrix for cluster i. The volume 237 

constraints for the norm-inducing matrices constrain the determinants to constant real numbers 238 

(i.e., det(𝐴𝑖) = 𝜌𝑖 , 𝜌𝑖 ∈ ℝ). 239 

Step 5. Update 𝑈, as shown in Equation 3: 240 

 𝑢𝑖𝑗 = [∑ (
(𝑧𝑗 − 𝜈𝑖)

𝑇
𝐴𝑖(𝑧𝑗 − 𝜈𝑖)

(𝑧𝑗 − 𝜈𝑐)
𝑇
𝐴𝑐(𝑧𝑗 − 𝜈𝑐)

)

1
𝑚−1

   

𝐶

𝑐=1

]

−1

 3 

Step 6. Repeat Steps 2 through 5 until the stopping criteria are met. Examples of stopping criteria 241 

are a maximum number of iterations and small changes in the objective function J. 242 

Next, let 𝑑𝑖𝑗
2 = (𝑧𝑗 − 𝜈𝑖)

𝑇
𝐴𝑖(𝑧𝑗 − 𝜈𝑖). If ∃𝑖, 𝑗: 𝑑𝑖𝑗

2 = 0, then Equation 3 is undefined. In such cases, 243 

an alternative approach is necessary to obtain the membership degrees, which must satisfy the 244 

requirements presented in Equation 4 [14]: 245 

 

𝑢𝑖𝑗 = 0, ∀𝑖: 𝑑𝑖𝑗
2 ≠ 0 

∑ 𝑢𝑖𝑗 = 1

𝑖:𝑑𝑖𝑗
2 =0

 
4 

The two conditions presented in Equation 4 imply that if there is a point that perfectly matches one 246 

or more cluster prototypes, the membership degree of this point is fully shared among these 247 
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clusters, resulting in zero membership of the point in other clusters. Once GK algorithm converges, 248 

the centroids of the final cluster 𝜈 and the norm-inducing matrices 𝐴 are used to calculate the 249 

membership degree of any data point in the universe of discourse. For a given vector of centroid ν 250 

and norm-inducing matrices 𝐴, the membership degree of a point 𝑧𝑗 in cluster 𝑖 is determined by 251 

Equation 5. 252 

 𝜇𝜈,𝐴
(𝑖)

(𝑧𝑗) = [∑ (
(𝑧𝑗 − 𝜈𝑖)

𝑇
𝐴𝑖(𝑧𝑗 − 𝜈𝑖)

(𝑧𝑗 − 𝜈𝑐)
𝑇
𝐴𝑐(𝑧𝑗 − 𝜈𝑐)

)

1
𝑚−1

   

𝐶

𝑐=1

]

−1

 5 

By implementing GK algorithm on the sample data 𝑧 (i.e., considering both inputs and outputs), 253 

𝐶 clusters will be developed, each of which represent the membership function of one rule. 254 

Considering the rule represented by cluster i for a fixed input 𝑥∗, the surface 𝜇𝜈,𝐴
(𝑖) (x∗, y) =255 

𝜇𝜈,𝐴
(i) (𝑧∗) as a function of y only, denoted by 𝜇𝜈,𝐴

(𝑖) (𝑦|𝑥∗), is the membership function of the output 256 

for rule i and input x∗, where 𝑧∗ = (𝑥1
∗, … , 𝑥𝑝

∗ , 𝑦1, … , 𝑦𝑞). In existing fuzzy clustering algorithms, 257 

relationships between the output variables are often ignored, since during the development of rule 258 

i, cluster i is projected onto each output axis independently. In the proposed algorithm, such 259 

relationships between the outputs were considered, since cluster i is projected onto the whole 260 

output space (i.e., all output axes) at once. Next, a monotone differentiable link function is applied 261 

to the linear state function of each rule to obtain the rule output. 262 

Once the output of the GK algorithm is produced, the state function value of rule i for an input 𝑥, 263 

𝑦 is defined, such that the point (𝑥, 𝑦) is the closest to the centroid of the 𝑖th cluster, according to 264 

the norm-inducing matrix 𝐴𝑖, where the centroids and the norm-inducing matrices are provided by 265 

the GK algorithm. Consider the partitioning of 𝐴𝑖 and 𝜈𝑖 as presented in Equations 6 and 7, 266 

respectively. 267 
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= [
𝑥
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Then, 268 

𝜃𝑖(𝑥) = argy min  (𝑧 – 𝜈𝑖)
𝑇 𝐴𝑖 (𝑧 – 𝜈𝑖) 269 

= arg𝑦 min [(𝑑𝑥
(𝑖))

𝑇
𝐴𝑥

(𝑖)𝑑𝑥 + (𝑑𝑦
(𝑖))

𝑇
(𝐴𝑥,𝑦

(𝑖) )
𝑇
𝑑𝑥 + (𝑑𝑥

(𝑖))
𝑇
(𝐴𝑥,𝑦

(𝑖) ) 𝑑𝑦 + (𝑑𝑦
(𝑖))

𝑇
(𝐴𝑦

(𝑖)) 𝑑𝑦] 270 

= 𝜈𝑦
(𝑖) − (𝐴𝑦

(𝑖))
−1

(𝐴𝑥,𝑦
(𝑖) )

𝑇
(𝑥 − 𝜈𝑥

(𝑖)) 271 

where 𝑑𝑥
(𝑖) = (𝑥 − 𝜈𝑥

(𝑖)); 𝑑𝑦
(𝑖) = (𝑦 − 𝜈𝑦

(𝑖)), and 𝜃𝑖(𝑥) is the value of the linear state function of 272 

rule i for input 𝑥. The outputs of rule i are given by Equation 8. 273 

 �̂�𝑥
(𝑖) = ℎ𝑖(𝜃𝑖(𝑥)) 8 

where ℎ𝑖: ℝ
𝑞 → ℝ𝑞, 𝑖 = 1,… , 𝐶, is a monotone differentiable function of any desired form. Once 274 

the output of all rules for an input x are determined, the output of the FIS is calculated, as shown 275 

in Equation 9. 276 
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 �̂�𝑥 = 𝑓 (
1

∑ 𝑤𝑖𝜇𝜈𝑥,𝐴𝑥

(𝑖) (𝑥)𝐶
𝑖=1

∑�̂�𝑥
(𝑖)𝑤𝑖𝜇𝜈𝑥,𝐴𝑥

(𝑖) (𝑥)

𝐶

𝑖=1

) 9 

where 𝜇𝜈𝑥,𝐴𝑥

(𝑖) (𝑥) is the membership value of point x in cluster i, which is determined based on its 277 

projection onto the input space (i.e., removing the coordinates of the output), and 𝑤𝑖 > 0 is the 278 

weight of rule I, such that ∑ 𝑤𝑖 = 1𝐶
𝑖=1 . The clustering of the sample data and projection of the 279 

clusters onto the input and output spaces can be accomplished through the steps discussed in this 280 

section. However, determining the optimum number of clusters 𝐶 is still challenging, as the 281 

optimum number of clusters need to be determined based on the characteristics of the sample data. 282 

A methodology is presented in the next section, which will help to address this challenge. 283 

3.2. Determining the Number of Clusters 284 

The proposed fuzzy clustering algorithm uses hierarchical clustering in order to determine the 285 

optimum number of clusters [45]. Fuzzy clustering is initiated with the minimum number of 286 

clusters 𝐶 = 1, then those clusters where non-linearity is observed are divided into subclusters. 287 

Hierarchical clustering [45] refers to those fuzzy clustering algorithms where clusters are 288 

subdivided in order to improve a certain performance index. Let 𝒛1, 𝒛2, … , 𝒛𝑛  be a set of training 289 

data and let 𝐶 be the number of clusters. For a specific cluster 𝑐, 𝑐 ∈ {1,… , 𝐶}, let 𝒛1
(𝑐)

,290 

𝒛2
(𝑐)

, … ,  𝒛𝑛𝑐

(𝑐)
 be all the training points that belong to cluster 𝑐, (i.e., max

𝑗
𝜇(𝑗) (𝒛𝑖

(𝑐)
) =291 

𝜇(𝑐) (𝒛𝑖
(𝑐)

) ,  𝑖 = 1,… , 𝑛𝑐). Next, the points are ordered based on their distance to the cluster 292 

centroid. Let 𝒛(1)
(𝑐)

, 𝒛(2)
(𝑐)

, … ,  𝒛(𝑛𝑐)
(𝑐)

 denote the training data ordered in such a way that ‖𝒛(1)
(𝑐)

− 𝝂𝑐‖ >293 

‖𝒛(2)
(𝑐)

− 𝝂𝑐‖ > ⋯ > ‖𝒛(𝑛𝑐)
(𝑐)

− 𝝂𝑐‖. The sample is then restricted by discarding the points that are 294 

closest to the centroid of cluster c, such that the points in the tails of the cluster are retained. Let 295 
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𝒛(1)
(𝑐)

, 𝒛(2)
(𝑐)

, … ,  𝒛(⌈𝑛𝑐⌉)
(𝑐)

 be the restricted sample for the cluster 𝑐 with ⌈𝜆𝑛𝑐⌉ points that have the lowest 296 

membership degrees, where 𝜆 ∈ (0,1) is the percentage of the data points located in the tails of the 297 

cluster, the value of which is specified by the user, and ⌈. ⌉ is the ceiling function. Next, GK 298 

algorithm is applied on the restricted sample data, where the number of clusters is fixed to 𝐶 = 2 299 

to obtain the clusters of the tails. The process of developing the restricted sample data and the 300 

clustering of the data points located on the two tails of each cluster is further illustrated using a 301 

numerical example presented by Ren & Irwin [9]. Let 𝑦 = ℎ(𝑥) = 𝑠𝑖𝑛(1.6𝑥3 − 4𝑥2 + 1) be the 302 

function to be approximated, and suppose a sample size of 41 is given as 𝑧1 = (−1, ℎ(−1)), 𝑧2 =303 

(−0.95, ℎ(−0.95)),… , 𝑧41 = (1, ℎ(1)). Next, using the GK algorithm, a TS-FIS is developed to 304 

approximate the function ℎ(𝑥) = 𝑠𝑖𝑛(1.6𝑥3 − 4𝑥2 + 1), where 𝐶 = 4 and 𝑚 = 2. Figure 2 305 

presents the scatter plot of the sample data and the resulting FIS developed by the GK algorithm. 306 

 307 
Figure 2. Subdivision of cluster 3 for non-linearity (centroids of subclusters are shown in red). 308 

Next, to determine if cluster C3 needed to be divided into two clusters, the non-linearity within this 309 

cluster (i.e., C3) was tested by comparing the linear model of each subcluster to the linear model 310 

of the parent cluster. Let 𝛽1
(𝑐)

 and 𝛽2
(𝑐)

 be the parameters of the linear models of the first and second 311 

subcluster of cluster c, and let 𝛽(𝑐) be the parameters of the linear model of the parent cluster, 312 
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cluster 𝑐. The angle between the linear models of the parent clusters and the subclusters 1 and 2 313 

(𝛼𝑖
(𝑐)

) can be calculated using Equation 10. 314 

 cos (𝛼𝑖
(𝑐)

) =
(𝛽𝑖

(𝑐)
)
𝑇
𝛽(𝑐)

‖𝛽
𝑖

(𝑐)
‖‖𝛽

(𝑐)
‖

, 𝑖 = 1, 2 10 

A large angle (e.g., 𝛼𝑖
(𝑐)

>45◦) between the linear models of the subclusters and the linear model of 315 

the parent cluster indicates the presence of non-linearity within that cluster. Accordingly, the 316 

parent cluster must be divided into two clusters by increasing the number of clusters 𝐶 by one and 317 

re-implementing GK algorithm (refer to Section 3.1). However, small angles between linear 318 

models indicate that a low degree of non-linearity exists within the cluster, which can be modelled 319 

by the smooth transition between the clusters. Therefore, if 𝛼1
(𝑐)

> 𝛿 and/or 𝛼2
(𝑐)

> 𝛿, where 𝛿 is 320 

the threshold, there is evidence of non-linearity, and the cluster must be divided into two. In special 321 

cases, if the parameter vector of the subcluster is rotating towards the model in the closest 322 

neighboring cluster, the cluster will not be divided, even if 𝛼1
(𝑐)

> 𝛿, since the FIS is able to 323 

smoothly transition between rules and is in turn able to model the non-linear region well. It is 324 

worth noting that if the number of data points in a cluster is too small, the approach of dividing 325 

clusters into subclusters becomes unstable, since the linear models are not representative of the 326 

data points. Therefore, the number of points in each cluster should be monitored before the 327 

subdivision to make sure that the two linear models of the subclusters are truly representative of 328 

the data points in the tails of the cluster. Once the optimum number of clusters is determined using 329 

the methodology presented in this section, rule weights must be adjusted. 330 
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3.3. Assigning Rule Weights by Adam Optimization 331 

The adjustment of rule weights is critical to the development of FISs in construction applications, 332 

since it can improve the accuracy of the system in highly dimensional problems. Fuzzy clustering 333 

algorithms naturally weight all the input and output variables equally. In the case of multi-334 

dimensional problems, this equal weighting variables can decrease the accuracy of FISs, due to 335 

the underweighting of the output variables. This problem can be remedied by assigning weights to 336 

the rules of the FISs. Moreover, assigning weights to rules becomes especially critical in 337 

applications of GK algorithm, due to the use of different norm-inducing matrices. The use of 338 

different norm-inducing matrices for clusters allows the development of clusters with distinctive 339 

structures that capture the characteristics of the sample data more accurately. However, these 340 

structures result in issues when they are projected onto input and output spaces for the development 341 

of FISs, as those clusters with the highest dispersion of data on the input space will dominate the 342 

output function of the model. To illustrate this problem, consider the example discussed by Ren & 343 

Irwin [9]. Let 𝑦 = ℎ(𝑥) = 𝑠𝑖𝑛(1.6𝑥3 − 4𝑥2 + 1) be the function to be approximated, and suppose 344 

we have a sample size of 41 given as 𝑧1 = (−1, ℎ(−1)), 𝑧2 = (−0.95, ℎ(−0.95)),… , 𝑧41 = (1,345 

ℎ(1)). The results of GK algorithm for 𝐶 = 4 and 𝑚 = 2 are shown below in Tables 2 and 3. 346 

Figure 3 shows the scatter plot of the sample and the clusters’ centers. 347 

Table 2. Cluster centers obtained using the GK algorithm. 348 

Cluster 𝑥  𝑦 

𝝂1 -0.8751 0.0168 

𝝂𝟐 0.0031 0.7939 

𝝂𝟑 -0.4945 -0.2009 

𝝂𝟒 0.6628 -0.2565 
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Table 3. Norm-inducing matrices obtained using the GK algorithm. 349 

𝑨𝟏 𝑨𝟐 

73.3151 8.7370 0.3572 -0.0128 

8.7370 1.0548 -0.0128 2.7996 

𝑨𝟑 𝑨𝟒 

40.5957 -9.5978 25.5036 9.9792 

-9.5978 2.2938 9.9792 3.9440 

 350 
Figure 3. Scatter plot of the sample (left) and centers of the clusters (right). 351 

Figure 3 illustrates how the second cluster (i.e., C2) is more dispersed on the input space (x axis), 352 

as compared to the other three clusters. Next, consider the sample point 𝑧7 = (−0.7, −0.9981), 353 

where the Euclidean distances of point 𝑧7 to the four cluster centers 𝐶1 to 𝐶4 are 0.2292, 9.1341, 354 

0.0274, and 69.7022. Since the sample point 𝑧7 has the smallest distance to the cluster center 𝐶3, 355 

it also has the highest membership degree to cluster 𝐶3, where 𝑢3,7 = 0.8905. Although the norm-356 

inducing matrices 𝐴𝑖 capture the behavior of the variables locally (i.e., the variation among 357 

variables and the relation between variables in a region of the function), the level of activation of 358 

each rule is solely determined by the input. Each rule is activated to the level equal to the 359 

membership value of the data point in the input space.  As shown in Table 2, when projecting the 360 

cluster centers onto the input space (i.e., x-axis), cluster 𝐶1  is penalized for its small dispersion of 361 
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data. On the other hand, Cluster 𝐶2 presents a higher variation of x, so the difference between the 362 

dispersion of data in these two clusters is reflected in the distance measure (note that the coefficient 363 

of 𝑥 in 𝐴2 is only 0.3572). When considering only the input spaces between clusters, cluster 𝐶2 364 

presents a smaller distance to most of the data points in the universe of discourse; as a result, the 365 

rule that corresponds to cluster 𝐶2  will dominate the output function, except for those data points 366 

that are very close to the other cluster centers. For example, consider 𝑥7 = −0.7, where the 367 

distance of 𝑥7 to the four cluster centers 𝐶1 to 𝐶4 are 2.2483, 0.1766, 1.7139, and 47.36. Thus, 368 

the rule that corresponds to 𝐶2 will be fired with the highest degree, as compared to the other rules. 369 

In order to further clarify the dominance of 𝐶2 on the input space, Figure 4 shows the membership 370 

of cluster 𝐶2  for any given value of x in the universe of discourse. 371 

 372 
Figure 4. Membership function of cluster 𝐶2. 373 

Figure 4 further illustrates this phenomenon, where the cluster with the highest dispersion of data 374 

on the input space dominates the output of the FIS. As shown in Figure 4, even a small deviation 375 

from the other cluster centers (𝐶1, 𝐶3, and 𝐶4) causes a rapid increment in the membership function 376 

of cluster 𝐶2. Accordingly, the weights shown in Equation 9 determine the relative importance of 377 

the rules and play a crucial role in counterbalancing the dominance of 𝐶2. These rules also help to 378 

improve the accuracy of the FIS as a predictive model. 379 
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The fuzzy clustering algorithm proposed in this paper is integrated with the Adam optimization 380 

algorithm [18]  in order to tune the link functions (referring to 𝑓 in Equation 9) of the FISs by 381 

assigning weights to their rules. Adam optimization is a first-order, stochastic, gradient-based 382 

optimization algorithm with a wide application in different machine learning techniques [46–51]. 383 

The objective of optimization is to minimize the stochastic error of predictions made by the FIS, 384 

where the stochastic nature of the error arises from the random selection of data points for training, 385 

or from the inherent noise of the error of the outputs [18]. The naming of the “Adam” optimization 386 

algorithm refers to “adaptive momentum”, indicating that the momentum parameters used in the 387 

Adam algorithm are updated during the process of optimization [52]. The momentum parameters 388 

were introduced to the iterative learning algorithms by Polyak [53] in order to increase the speed 389 

of convergence. The adjustment of the rule weights 𝑊 = [𝑤𝑖] for improving the accuracy of the 390 

FIS using Adam optimization was completed through the following steps: 391 

Step 1. Fix the optimization parameters, including step size 𝜔𝜖(0,1), exponential decay rates for 392 

momentum estimates 𝜑1, 𝜑2 ∈ (0,1], and the numerical stabilization constant 𝜖. In this paper, the 393 

values of the optimization parameters are set using the suggested default setting proposed by 394 

Kingma and Ba [18] as follows: 𝜔 = 0.001, 𝜑1 = 0.9, 𝜑2 = 0.999, and 𝜖 = 10−8. 395 

Step 2. Initialize the rule weights matrix 𝑊 = [𝑤𝑖], the first and second momentum vectors 𝑚0 396 

and 𝑣0, and the time step 𝑡0 = 0. 397 

Step 3. Create m samples from the training set randomly. 398 

Step 4. Compute the gradient using Equation 11. 399 

 𝑔𝑡+1 ←
1

𝑚
∇𝑤 ∑𝐿 (𝑓 (

1

∑ 𝑤𝑖𝜇𝜈𝑥,𝐴𝑥

(𝑖) (𝑥)𝐶
𝑖=1

∑�̂�𝑥
(𝑖)𝑤𝑖𝜇𝜈𝑥,𝐴𝑥

(𝑖) (𝑥)

𝐶

𝑖=1

) , 𝑦𝑖)

𝑚

𝑖=1

 11 
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where ∇𝑤 stands for the gradient of function 𝑓 based on 𝑤; 𝑓 stands for the transfer function that 400 

determines the output of the FIS (refer to Equation 9); 𝑦𝑖 stands for the actual output for data point 401 

𝑖; and 𝐿 stands for any distance measure function. 402 

Step 5. For the time step 𝑡 + 1, update the first and second momentum: 403 

𝑚𝑡+1 ← 𝜑1𝑚𝑡 + (1 − 𝜑1
𝑡)𝑔𝑡 404 

𝑣𝑡+1 ← 𝜑2𝑣𝑡 + (1 − 𝜑2
𝑡)𝑔𝑡

2 405 

where 𝜑1
𝑡  and 𝜑2

𝑡  denote the values of 𝜑1 and 𝜑2 to the power of t respectively. 406 

Step 6. Correct the bias in the first and second momentum: 407 

�̂�𝑡 ←
𝑚𝑡

1 − 𝜑1
𝑡 408 

�̂�𝑡 ←
𝑣𝑡

1 − 𝜑2
𝑡 409 

Step 7. Update the weights using Equation 12. 410 

 𝑤𝑡+1 ← 𝑤𝑡 −
𝜔�̂�𝑡

√�̂�𝑡 + 𝜖
 12 

Step 8. Repeat Steps 3 through 7 until the stop criteria are met. 411 

The use of the Adam optimization algorithm for adjusting the rule weights can counterbalance the 412 

dominance of those clusters with a high dispersion of data on the input space; it also helps to 413 

improve the accuracy of FISs in multi-dimensional problems. Once the rule weights are 414 

determined by the Adam optimization algorithm, the development of the FIS is complete, and the 415 

FIS can be used as a predictive model. This process is illustrated in the next section using a 416 
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numerical example. The applicability of this algorithm for modeling construction systems is also 417 

tested through the modeling of CLP. 418 

3.4. Numerical Example 419 

To illustrate the process of developing FISs using the proposed algorithm, the numerical example 420 

introduced by Ren & Irwin [9] is solved in this sub-section. Let 𝑦 = ℎ(𝑥) = 𝑠𝑖𝑛(1.6𝑥3 − 4𝑥2 +421 

1) be the function to be approximated, and suppose a sample size of 41 is given as 𝑧1 =422 

(−1, ℎ(−1)), 𝑧2 = (−0.95, ℎ(−0.95)),… , 𝑧41 = (1, ℎ(1)). In the first step, the number of 423 

clusters are fixed to one (𝐶 = 2), and a two-rule TS-FIS is developed to predict the function 𝑓(𝑥). 424 

Figure 5 presents the scatter plot of the input data, as well as the prediction made by the FIS with 425 

one cluster and the cluster center. GK algorithm Figure 7 presents the scatter plot of the input data 426 

points and the results of fuzzy clustering, including the cluster centers and the predictions made 427 

by the TS-FIS for 𝐶 = 2. The FIS developed at this stage has two rules, which are equally weighted 428 

(𝑤1 = 𝑤2 = 0.5). 429 

 430 
Figure 7. Scatter plot for input data and the two-cluster FIS predictive model. 431 
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The data points located on the tails of the two clusters are used to form the subclusters, and the 432 

angle between the linear predictors of the subclusters and their parent clusters are determined. This 433 

process is implemented for the two clusters shown in Figure 7, and the results show that 434 

non-linearity exists within cluster 1, as presented in Figure 8. 435 

 436 
Figure 8. Determining the angle between the linear predictors of the subclusters and  437 

core clusters. 438 

The angle between subcluster 1 and its parent cluster (C1) is 𝛼1 = 136.60°, while the angle 439 

between subcluster 2 and its parent cluster (C1) is 𝛼2 = 11.31°. Accordingly, non-linearity exists 440 

within cluster 1, where 𝛼1 > 45°. In this case, the number of clusters must be increased by one 441 

and GK algorithm is re-implemented. Figure 9 illustrates the resulting three-cluster FIS that has 442 

been developed. 443 
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 444 
Figure 9. Scatter plot for input data and the three-cluster FIS predictive model. 445 

These results show that non-linearity is not present in any of the three clusters. The FIS presented 446 

in Figure 9 has three rules, which are equally weighted (𝑤1 = 𝑤2 = 𝑤3 = 0.33). Although the 447 

inclusion of three rules in the FIS enables the model to predict the non-linearity of the transitions 448 

between clusters, the accuracy of the FIS is not yet maximized, since the rules weights are not 449 

adjusted. In order to improve the accuracy of the FIS, the rule weights are adjusted using Adam 450 

optimization and the final FIS is developed, as presented graphically in Figure 10 and illustrated 451 

in Table 4. 452 
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 453 

Figure 10. Scatter plot for input data and the final three-cluster FIS predictive model. 454 

Table 4. Parameters of final FIS developed using the proposed algorithm. 455 

Cluster 
Cluster Center 

Linear State Function Rule Weight 
x y 

1 -0.87 -0.02 𝑦 = −10.42𝑥 − 9.10 0.23 

2 -0.27 0.66 𝑦 = 1.90𝑥 + 1.16 0.30 

3 0.65 -0.26 𝑦 = −2.91𝑥 + 1.62 0.47 

As show in Figure 10 and Table 4, implementing Adam optimization improves the accuracy of the 456 

FIS by decreasing the rule weights for clusters 1 and 2 and increasing the rule weight for cluster 3. 457 

4. Predictive Model of Construction Labor Productivity 458 

In this section, the applicability of the proposed algorithm in construction problems was tested by 459 

developing a TS-FIS to predict CLP. The accuracy of the FIS was then compared to predictive 460 

models developed using the FCM clustering technique, as proposed by Tsehayae and Fayek [4]. 461 

Modeling CLP is a highly dimensional problem, since there are numerous factors that affect its 462 

value. In addition, the optimum number of clusters for modeling CLP is unknown. Accordingly, 463 
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the capacity of the proposed fuzzy clustering algorithm for determining the number of clusters 464 

automatically and assigning weights to the rules of FISs can be tested by modeling CLP. The 465 

accuracy of the results from the proposed algorithm can then be compared to that existing fuzzy 466 

clustering algorithms, which lack the aforementioned two capabilities. 467 

Modeling CLP has been a major research interest within the construction domain for the last few 468 

decades. While the construction industry is labor intensive [54], CLP significantly impacts the cost 469 

and time of construction projects. Therefore, construction researchers and practitioners are 470 

constantly searching for ways to improve CLP outcomes. Predictive models can improve CLP by 471 

helping construction practitioners to identify the most critical factors and practices affecting it in 472 

order to facilitate improved project cost estimation, scheduling, and decision making [55,56]. A 473 

number of different models have been developed for the purpose of predicting CLP; for example, 474 

Tsehayae and Fayek [4] developed a M-FIS using FCM clustering algorithm to predict CLP for 475 

concrete placing activities. Similarly, Heravi and Eslamdoost [57] implemented the artificial 476 

neural network (ANN) algorithm to predict CLP in power plant construction projects, and El-477 

Gohary et al. [58] applied the ANN algorithm to predict the CLP of carpenters. 478 

In this paper, the proposed fuzzy clustering algorithm is used to develop a TS-FIS for predicting 479 

the CLP of concrete placing activities using the empirical data collected in a previous study by 480 

Tsehayae and Fayek [4]. Next, an M-FIS and a TS-FIS were developed using the FCM clustering 481 

algorithm. Three FISs were then compared based on their accuracy for predicting actual CLP field 482 

data and the results of extreme condition analysis. The empirical data for concrete placing activities 483 

were collected in Alberta, Canada on four different construction project contexts: industrial 484 

buildings, residential and commercial warehouse buildings, residential and commercial high-rise 485 

buildings, and institutional buildings. The data were collected by documenting the value of the 486 
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factors influencing CLP and value of CLP on a daily basis at the construction site. A total of 93 487 

data points are used for developing the predictive model of CLP in this paper; the details of the 488 

data collection intervals and proportions of data collected from each construction project context 489 

are provided in [4]. The input variables of the three FISs were selected based on the previous 490 

research conducted by Tsehayae and Fayek [59], where 169 factors influencing CLP were 491 

identified through an extensive literature review. Next, the number of input variables was reduced 492 

by feature selection in order to increase the accuracy of the predictive model [60]. Feature selection 493 

techniques search for a subset of input variables, which predict the output of the system with the 494 

highest accuracy. There are various techniques available for feature selection, such as correlation-495 

based methods and wrapper methods. Ahmad and Pedrycz [60] propose the use of the wrapper 496 

method in applications where the predictive model is developed in the form of an FIS. In this 497 

problem, the wrapper method and the entire sample of 93 data points are used for feature selection 498 

and 20 input variables were selected out of the 169 initial input variables for developing the FIS. 499 

Table 5 presents the selected input variables. 500 

Table 5. Input factors for the FIS of CLP. 501 

Input Factor Scale of Measure 

Crew size Integer (total number of crew members) 

Craftsperson on job training Real number (no. training sessions attended x duration 

of training, hrs) 

Crew composition Proportion (ratio journeyman to apprentice to helper) 

Co-operation among craftspeople 1–5 predetermined rating 

Craftsperson motivation 1–5 predetermined rating 

Fairness of work assignment 1–5 predetermined rating 

Location of work scope (distance) Real number (distance, m) 

Location of work scope (elevation) Real number (elevation, m) 

Congestion of work area Real number (ratio of actual peak manpower to actual 

average manpower) 
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Input Factor Scale of Measure 

Fairness in performance review of 

crew by foreman 

1–5 predetermined rating 

Site congestion Real number (ratio free site space to total site area) 

Treatment of foremen by 

superintendent and project manager 

1–5 predetermined rating 

Uniformity of work rules by 

superintendent 

1–5 predetermined rating 

Out-of-sequence inspection or survey 

work 

Real number (number of occurrences per week) 

Safety training Real number (no. training sessions attended x duration 

of training, hrs) 

Oil price fluctuation Real number (fluctuations of global oil price, $) 

Natural gas price Real number ($/GJ) 

Concrete placement technique Categorical: pump (1), crane and bucket (2), direct 

chute (3) 

Structural element Categorical: columns (1), footings (2), grade beams (3), 

pile caps (4), slabs (5), walls (6) 

Safety inspections Real number (number of inspections per month) 

For the development of the two TS-FISs, the number of clusters is determined by the algorithm to 502 

be equal to 3 (𝐶 = 3), where the threshold for the angle between the two linear models is 𝛿 = 45 503 

degrees. The outputs of the rules of M-FISs are not modeled as linear state models; thus, the cluster 504 

number of the M-FIS cannot be determined automatically using the angle between such models.  505 

Tsehayae and Fayek [4] suggest that the number of clusters of the M-FIS should be optimized 506 

manually by changing the number of clusters within the range of 𝐶 ∈ [1, 10] and selecting the 507 

value of 𝐶 that creates the M-FIS with the minimum RMSE. For the development of all FISs, the 508 

fuzzification coefficient m was considered to be equal to 𝑚 = 2, as suggested by Pedrycz and 509 

Gomide [22]. Min and max fuzzy operators were used for AND and OR operations between the 510 

input and output variables. The center of area (COA) defuzzification technique was used to 511 

defuzzify the outputs of the M-FIS. Next, the accuracy of the three FISs was measured by 512 
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comparing their predictions to the actual field data and calculating two error measures, which are 513 

commonly used for evaluating predictive models (i.e., mean absolute error (MAE) and root mean 514 

square error (RMSE)). For this purpose, the sample data are divided into training and testing sets 515 

using the same approach utilized by Tsehayae and Fayek [4], in which 70% of the data are used 516 

for training and 30% is used for testing. The results are presented below in Table 6. 517 

Table 6. The accuracy for the three FISs for predicting CLP. 518 

 M-FIS  

(FCM clustering) 

TS-FIS  

(FCM clustering) 

TS-FIS  

(Proposed Algorithm) 

Testing Error MAE 1.94 MAE 0.79 MAE 0.07 

RMSE 2.21 RMSE 0.98 RMSE 0.22 

Training Error RMSE 2.00 RMSE 0.90 RMSE 0.06 

According to these results, the TS-FIS developed by the proposed fuzzy clustering algorithm had 519 

the highest accuracy among the three FISs, with an MAE and RMSE of 0.07 and 0.22. The second 520 

most accurate algorithm was the TS-FIS developed by FCM clustering, with an MAE and RMSE 521 

of 0.79 and 0.98. Finally, the third most accurate algorithm was the M-FIS developed by FCM 522 

clustering, with an MAE and RMSE of 1.94 and 2.21. Accordingly, the results of comparison show 523 

that the proposed algorithm can create more accurate FISs, as compared to the FCM clustering 524 

technique. 525 

Next, the performance of the three FISs for predicting the behavior of the model in extreme 526 

conditions (i.e., where CLP is extremely low or extremely high) was tested. Predicting the behavior 527 

of systems in extreme conditions is an important function of predictive models in engineering 528 

applications and control systems, since decisions in these contexts are often made when the outputs 529 

of a system surpass or fall below a pre-determined threshold. To visualize the behaviour of the 530 

three FISs in the extreme conditions, a scatter plot of the results was developed by showing the 531 

actual field data on the horizontal axis and the predictions of the three FISs on the vertical axis. As 532 
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presented in Figure 11, the perfect prediction results (i.e., 𝑀𝐴𝐸 = 𝑅𝑀𝑆𝐸 = 0) are located on the 533 

straight line of 𝑦 = 𝑥; thus, a smaller distance between the predictions of each FIS to the straight 534 

line of 𝑦 = 𝑥 indicate more accurate predictions of the CLP. Due to confidentiality considerations, 535 

the value of CLP was normalized using the following equation 𝑥𝑛
𝑖 =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
, where 𝑥𝑛

𝑖  536 

stands for the normalized value of CLP for data point i and 𝑥𝑖 stands for the original value of CLP. 537 

 538 
Figure 11. Scatter plot of prediction results vs. actual field data. 539 

The results presented in Figure 11 shows that among the three FISs tested, the TS-FIS developed 540 

by the proposed algorithm has the closest predictions to the straight line of 𝑦 = 𝑥 in extreme 541 

conditions. In order to further investigate the performance of the three FISs in predicting the value 542 

of CLP in extreme conditions, the empirical data points were divided into 10 categories, based on 543 

the region where the actual value of CLP was located on the x-axis in Figure 11. Next, the accuracy 544 

of the three FISs was determined by calculating the MAE and RMSE for each category of the 545 

results, as presented in Table 7. 546 
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Table 7. Results of the analysis of extreme conditions. 547 

Category 
Actual Data 

CLP Range 

M-FIS  

(FCM Clustering) 

TS-FIS  

(FCM Clustering) 

TS-FIS  

(Proposed Algorithm) 

MAE RMSE MAE RMSE MAE RMSE 

C1 [0,0.1) 0.427 0.428 0.027 0.027 0.009 0.012 

C2 [0.1,0.2) 0.300 0.306 0.099 0.115 0.005 0.007 

C3 [0.2,0.3) 0.226 0.229 0.071 0.081 0.003 0.003 

C4 [0.3,0.4) 0.093 0.105 0.095 0.114 0.003 0.004 

C5 [0.4,0.5) 0.111 0.113 0.096 0.098 0.017 0.023 

C6 [0.5,0.6) 0.151 0.160 0.105 0.115 0.060 0.065 

C7 [0.6,0.7) NA NA NA NA NA NA 

C8 [0.7,0.8) NA NA NA NA NA NA 

C9 [0.8,0.9) NA NA NA NA NA NA 

C10 [0.9,10) 0.523 0.523 0.323 0.323 0.137 0.137 

Note: No data points are located in those categories, for which the value of error measures is NA. 548 

As shown in Table 7, the TS-FIS developed by the proposed algorithm has the highest accuracy 549 

for predicting CLP in extreme conditions, with an MAE and RMSE of 0.009 and 0.012 for C1, and 550 

0.137 and 0.137 for C10. However, the accuracy significantly decreases in extreme conditions (i.e., 551 

C1 and C10), as compared to conditions where CLP is closer to its median value (i.e., C3, C4). This 552 

phenomenon (i.e., reduction of accuracy in extreme conditions) can also be observed in the results 553 

produced by the TS-FIS and the M-FIS developed using the FCM clustering technique.  554 

The results of comparison of the three FISs confirms that use of Adam optimization to assign 555 

weights to rules of FISs improves the accuracy of these models for predicting the behavior of 556 

highly dimensional systems. Moreover, the algorithm proposed for automatic determination of 557 

cluster numbers can improve the efficiency of the fuzzy clustering algorithms, where cluster 558 

numbers are typically optimized manually. The extreme conditions test shows that the TS-FIS 559 

developed using the proposed algorithm outperforms those FISs developed using the FCM 560 

clustering algorithm. However, in extreme conditions, the accuracy of all the three FISs decreases, 561 

as compared to conditions where the output is closer to its median value. 562 
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5. Conclusions and Future Research 563 

Fuzzy clustering algorithms are one of the most common techniques for developing data-driven 564 

FISs in engineering applications. Despite their wide application in predictive modeling for 565 

engineering problems, fuzzy clustering algorithms have two limitations in this area. First, the 566 

majority of fuzzy clustering algorithms rely on the modeler’s judgment for determining the 567 

appropriate number of clusters. Such knowledge may not be accessible to the modeler in many 568 

engineering applications. Second, fuzzy clustering algorithms equally weight all the input and 569 

output variables of the system being modeled; this approach can decrease the accuracy of these 570 

algorithms for developing FISs in highly dimensional problems. In this paper, a new fuzzy 571 

algorithm was introduced to address these limitations by integrating GK algorithm with Adam 572 

optimization. A novel approach was developed to determine the number of clusters, based on the 573 

non-linearity observed within each cluster. This new algorithm was then used to predict CLP for 574 

concrete placing activities, and the results were compared to those of two FISs developed by the 575 

FCM clustering algorithm. A comparison of the result showed that automatic determination of the 576 

number of clusters improves the efficiency of fuzzy clustering algorithms, and helps to avoid 577 

reliance on the subjective judgment of the modeler. Moreover, the use of Adam optimization for 578 

assigning weights to the rules of the FIS significantly improves their accuracy in highly 579 

dimensional problems. 580 

Although the proposed algorithm outperformed the FCM clustering algorithm in predicting system 581 

behavior in extreme conditions, the accuracy of the FIS developed using this algorithm 582 

significantly decreased in extreme conditions, as compared to those conditions where the output 583 

of the model was close to its median value. In future research, efforts will be made to address this 584 

limitation by increasing the significance of the data points located on the two extremes of the 585 
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universe of discourse for developing fuzzy clusters and/or for determining the rule weights. 586 

Moreover, the proposed fuzzy clustering algorithm may provide non-convex membership 587 

functions for rule activation, which makes it more difficult to interpret the reasoning process of 588 

the FIS. Converting the membership functions in the input space to one of the widely used convex 589 

shapes (e.g., trapezoidal, exponential, Gaussian) would increase the interpretability of the model. 590 

Finally, in future research the proposed method will be used to develop predictive models for 591 

different construction applications, such as modeling the production rate of construction 592 

equipment, modeling organizational competency, and predicting the performance of construction 593 

projects and organizations. 594 
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