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Abstract 

Software-defined Networking (SDN) has risen as another worldview of networking that 

empowers network administrators, proprietors, vendors, and even third parties to improve and 

make new abilities at a quicker pace. The SDN worldview demonstrates the potential for all 

spaces of utilization, including service providers, organizations, homes and last but not the least, 

data centers.  

With the rise in SDN, there been a noticeable enhancement of different networking protocols to 

utilize SDN efficiently. BGP-LS is one of the great extensions to achieve services provided in 

networking. For instance, traffic engineering, Quality of Service (QoS), Segment routing, etc.  

This report provides a detailed explanation of how SDN is evolved from its existence to till date. 

It talks about basic techniques utilized for easier deployment of networks as compared to 

traditional networking by explaining architectural changes SDN had to go through. In addition to 

this, the report also gives the complete understanding of SDN operation.  

Adding more to it, the report helps to understand the need of extending traditional networking 

protocols and applying those extensions on already deployed networks to have centralized 

control instead of distributed control. i.e. ease of installation, configuration, lower OPEX, and 

CapEx, etc.   

Last but not the least, the report demonstrates how BGP-LS captures link-state attributes from 

previously deployed network underlying IGPs and forwards it to the centralized controller so that 

controller could have a complete view of the network and could control the network fully in a 

centralized manner. In simple words, it represents, the implementation of BGP-LS distribution 

Layer 3 topology of an existing network of an organization by utilizing SDN centralized approach 

with help of IOS-XR (supports OpenFlow) and OpenDayLight controller.  
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1. Introduction 

1.1. The Border Gateway Protocol (BGP) routes traffic between autonomous systems. An 

autonomous system is a network or group of networks under a common administration 

and with common routing policies. BGP exchanges routing data for the Internet and are 

the protocol utilized between ISPs. Customer networks, for example, universities and 

corporations, typically utilize an Interior Gateway Protocol (IGP) for example, RIP or 

OSPF, to exchange routing data inside their networks. Customers associate with ISPs, 

and ISPs utilize BGP to exchange customer and ISP routes. At the point when BGP is 

utilized between autonomous systems, the protocol is referred to as external BGP 

(eBGP). If a service provider is utilizing BGP to exchange routes within an autonomous 

system, the protocol is referred to as interior BGP (iBGP). 

BGP is an exceptionally robust and scalable routing protocol, as prove by the way that it is 

the routing protocol utilized on the Internet. To accomplish scalability at this level, BGP 

utilizes many route parameters, called attributes, to characterize routing policies and 

keep up a stable routing environment. BGP neighbors trade full routing data when the 

TCP connection between neighbors is initially settled. At the point when changes to the 

routing table are detected, the BGP routers send to their neighbors just those routes that 

have been changed. BGP routers don't send periodic routing updates, and BGP routing 

updates advertise just the optimal path to a destination network. 

1.2. BGP-LS is an expansion to Border Gateway Protocol (BGP) for dispersing the system's 

connection state (LS) topology model to outer substances, for example, the SDN 

controller. The system's connection state topology display comprises of hubs and 

connections that interface these switches together. For each connection, an 

arrangement of traits is additionally contained. These may incorporate interface 

addresses, different measurements, and each connection's aggregate and accessible 

transfer speed. BGP-LS characterizes its own more theoretical topology demonstrate 

and characterizes how to outline IGP models, (for example, OSPF and ISIS) to its own 

model. As the system topology is found by the IGPs, the progressions are reflected in the 

BGP-LS demonstrate too and are likewise circulated utilizing BGP-LS messages to any 

invested individual, for example, SDN controllers. In situations where SDN applications 

require the system topology display, BGP-LS is more secure because it doesn't affect the 

system's steering as it is controlled by hidden IGP's and BGP has a broad arrangement 

instrument that can control and shield this data. 

It works on basis of a mechanism which states that link state data can be gathered from 

systems and imparted to outside components utilizing the BGP routing protocol. They 

have characterized different TLV field in LS property called the node, link and prefix TLV 

attribute which are utilized to gather different data from the basic IGP, for example, link 

costs, metrics, interface IP addresses and so forth. At that point, this data is being 

imparted to the SDN controller which then has the total topological data about the whole 



network which is not the situation with IGP as it has data just about its own range. Thus, 

SDN controller has the total picture and it can perform Traffic-Engineering (TE) in a 

superior and productive manner than it would be without SDN.  

1.3. The Software Defined Networking (SDN) development offers more prominent 

advantages to make networks more customized, efficient, application-centric, and 

programmable. There is a wide range of ways to build SDN. OpenFlow and VXLAN 

conventions are increasing more footing in data center situations, while Segment 

Routing and PCEP/BGP-LS are carriers' SDN technology option for obvious reasons.  

2. Traditional Networking Approach Vs Software Defined Networking 

Designing and managing networks have turned out to be more creative during recent years 

with the help of SDN (software-defined networking). This innovation appears to have shown 

up all of a sudden, however, it is quite of a long history of attempting to make computer 

networks more programmable.  

Computer networks are mind boggling and hard to manage. They include numerous sorts of 

equipment from routers and switches to middle-boxes, for example, firewalls, network 

address translators, server load balancers, and intrusion-detection systems. Switches and 

routers run complex, distributed control software that is typically closed and proprietary. The 

software executes network protocols that experience years of standardization and 

interoperability testing. Network administrators configure individual network devices utilizing 

configuration interfaces that fluctuate amongst vendors and even between various products 

from the same vendor. Although some network-management tools offer a central vantage 

point for configuring the network, these systems still work at the level of individual protocols, 

components, and configuration interfaces. This method of operation has hindered 

advancement, expanded complexity, and swelled both the capital and the operational 

expenses of running a network.  

Network design and maintenance approaches have been changed because of SDN. It 

basically works in two ways to differentiate SDN from traditional networking.  First, the 

control plane (which resolves how to tackle traffic) is separated from data plane (which 

forwards traffic as per decisions made by control plane).  Second, consolidation of control 

plane as a single software program in such a way that multiple data-plane elements can be 

handled. The SDN control plane has direct co-ordination with network’s data-plane elements 

like routers, switches, middleboxes, etc. through a well-defined API, for example, OpenFlow. 

An OpenFlow switch can have more than one table of packet handling rules which is 

matched with a subset of traffic to perform certain actions on the traffic that matches a rule. 

It can perform actions like flooding, dropping or forwarding the packets. An OpenFlow switch 

can act as a firewall, network address translator, router or something in the middle which 

depends upon the rules installed by controller application.  



SDN has increased huge footing in the Information technology (IT) industry. Numerous 

commercial switches support the OpenFlow API. The big names of IT industry like HP, NEC, 

and Pronto was among the principal vendors to support OpenFlow. This rundown has since 

expanded significantly. A wide range of controller platforms has risen. Developers have 

utilized these platforms to make plenty of applications, for example, server load balancing, 

energy-efficient networking, dynamic access control, network virtualization, and seamless 

virtual machine migration and user mobility. Early commercial triumphs, for example, 

Google's wide-area traffic-management system and Nicira's Network Virtualization Platform, 

have collected noteworthy industry consideration. A hefty portion of the world's biggest 

information-technology companies (e.g., equipment vendors, carriers, cloud providers, and 

financial services firms) have joined SDN industry groups, for example, the Open Daylight 

initiative and the Open Networking Foundation.  

Although the excitement about SDN has turned out to be more tangible recently, large 

portions of the thoughts underlying the technology have developed during last 20 years or 

more. In some ways, SDN returns to thoughts from early telephony networks, which utilized 

a reasonable partition of control and data planes to simplify network management and the 

deployment of new services. However, open interfaces, for example, OpenFlow empower 

more innovation in controller platforms and applications than was conceivable on closed 

networks intended for a restricted scope of telephony services. In different ways, SDN looks 

like past research on active networking, which explained a vision for programmable 

networks, though with an emphasis on programmable data planes. SDN likewise identifies 

with past work on isolating the control and data planes in computer networks.  

3. Evolution of Software Defined Networking (SDN) 

The history of SDN started 20 years prior, similarly as the Internet was taking off when the 

Internet's stunning achievement exacerbated the difficulties of managing and advancing the 

network infrastructure. The emphasis here is on advancements in the networking community 

(regardless of whether by organizations, researchers, or standards bodies), although these 

developments in some cases were catalyzed by progress in different zones, including 

operating systems, distributed systems, and programming languages. The endeavors to make 

a programmable network infrastructure likewise obviously relate with the long string of work 

on supporting programmable packet processing at high speeds. 

Making computer networks more programmable makes advancement in network 

administration conceivable and brings down the obstruction to conveying new services. On 

basis of this principle, the history of SDN can be divided into three segments each with its 

own contributions.  

3.1. Active networks (the mid-1990s to the early 2000s) 

• presented programmable functions in the network, inciting to great innovation 

3.2. Control and data plane separation (around 2001 to 2007) 



• established open interfaces between the control and data planes  

3.3. The OpenFlow API and network operating systems (2007 to around 2010),  

• denoted the first extensive acceptance of an open interface and developed new 

approaches to make control and data plane separation scalable and practical. 

Apart from above three segments, Network virtualization also considered as a critical 

part all through the historical advancement of SDN, considerably originating before SDN 

yet flourishing as one of the principal noteworthy use cases for SDN. 

3.1 Active Networking 

The early to mid-1990s saw the Internet take off, with applications and appeal that far 

outpaced the early applications of file transfer and e-mail for scientists. More diverse 

applications and greater use by the public drew researchers who were eager to test and 

deploy new ideas for enhancing network services. To do as such, researchers designed 

and tested new network protocols in little lab settings and simulated behavior on larger 

networks. Most of the researchers were frustrated because approval by IETF (Internet 

Engineering Task Force) for their ideas was taking more than anticipated time even if 

they were motivated and funded by different organizations.  

As they were eager to innovate and did not want to wait for longer time. Some 

networking researchers sought an alternative approach to opening network control, 

generally based on the analogy of reprogramming a stand-alone PC without breaking a 

sweat. Conventional networks are not programmable in any meaningful feeling of the 

word. Active networking denoted a fundamental approach to network control by 

imagining a programming interface (or network API) that exposed resources (e.g., 

storage, packet queues and processing) on individual network nodes and upheld the 

development of custom functionality to apply to a subset of packets passing through the 

node.  

This approach was an abomination to numerous in the Internet community who pushed 

that straightforwardness in the network core was basic to Internet achievement. The 

active networks examine program explored radical contrasting options to the services 

provided by the traditional Internet stack by means of IP or ATM (Asynchronous Transfer 

Mode), the other predominant networking methodology of the mid-1990s. In this sense, 

active networking was the first in a progression of fresh start ways to deal with network 

architecture, therefore, sought after in projects like GENI (Global Environment for 

Network Innovations) and NSF FIND (Future Internet Design) in the United States, and EU 

FIRE (Future Internet Research and Experimentation Initiative) in the European Union. 

The active networking community followed two programming models: 

• The capsule model, where the code to execute at the nodes was stored in-band in 

data packets. 



• The programmable router/switch model, where the code to execute at the nodes 

was not stored in-band instead it was established by out-of-band mechanisms.  

The capsule model came to be most nearly connected with active networking. In logical 

connection to consequent endeavors, however, both models have an enduring legacy. 

Capsules proposed installation of new data-plane functionality over a network, carrying 

code in data packets (as in prior work on packet radio) and utilizing caching to enhance 

the throughput of code dispersion. Programmable routers set choices about extensibility 

specifically in the hands of the network administrator.  

3.1.1. Technology push and use pull 

Active networking approach incorporated a lessening in the cost of computing, 

permitting more processing in the network; propels in programming languages, for 

example, Java that offered platform portability and some code execution safety; and 

virtual machine technology that secured the host machine (for this situation the active 

node) and different procedures from misbehaving programs. Some active networking 

research projects also provided fast code compilation and formal techniques.   

 

An essential push in the active networking environment was funding agency interest, 

specifically the Active Networks program made and supported by DARPA (U.S. Resistance 

Advanced Research Projects Agency) from the mid-1990s into the early-2000s. Even 

though not all research into active networks was financed by DARPA, the funding 

program supported a collection of tasks and, maybe more vital, supported convergence 

on a terminology and set of active network segments with the goal that ventures could 

add to an entire intended to be more noteworthy than the sum of the parts. The Active 

Networks program underscored demonstrations and project interoperability, with a 

corresponding level of improvement exertion. The striking and purposeful push from a 

funding agency without near-term use cases may have likewise added to a level of 

community disbelief about active networking that was regularly sound however could 

verge on hostility, and it might have darkened a portion of the intellectual connections 

between that work and later efforts to give network programmability. 

The use pulls for this technology was mainly the issues like network service provider 

dissatisfaction with the time expected to create and deploy new network services (tagged 

as network ossification), third-party interest for value-added, fine-grained control to 

dynamically address the issues of specific applications or network conditions and 

researcher desire for a platform that would bolster experimentation at scale. 

Additionally, numerous early papers on active networking referred to the proliferation of 

middleboxes, including firewalls, proxies, and transcoders, each of which had to be 

deployed independently and involved a distinct (regularly vendor-specific) programming 

model. Active networking offered an idea of bound together control over these 

middleboxes that could eventually supplant the ad hoc, one-off ways to deal with 



managing and controlling these boxes. Adding more to it, NFV (network functions 

virtualization) likewise intends to give a unifying control structure to networks that have 

complex middlebox functions deployed all through.  

3.1.2. Logical Contribution of Active Networking to SDN 

Active networks presented intellectual contributions that relate to SDN. Important 

contributions are described below: 

• Network virtualization and the ability to demultiplex to software programs 

based on packet headers: 

The need to reinforce testing with different programming models prompted 

to take a shot at network virtualization. Active networking delivered a 

structural system that portrays the parts of such a platform. The key parts of 

this platform are a common NodeOS (node operating system) that oversees 

shared resources, an arrangement of EEs (execution environments), each of 

which characterizes a virtual machine for packet operations and an 

arrangement of AAs (active applications) that work inside an offered EE to 

give an end-to-end service. Guiding packets to a specific EE depends on a 

quick pattern identical on header fields and demultiplexing to the appropriate 

EE. Curiously, this model was conveyed forward in the PlanetLab design, 

whereby diverse investigations keep running in virtual execution 

environments and packets are demultiplexed into the suitable execution 

environment on their packet headers. Demultiplexing packets into various 

virtual execution environments have additionally been connected to the 

outline of virtualized programmable hardware data planes. 

• The vision of an integrated architecture for middlebox orchestration: 

Even though the vision was never completely acknowledged in the active 

networking research program, early outline reports referred to the 

requirement for unifying the extensive variety of middlebox capacities with a 

common, safe programming structure. Even though this vision might not have 

straightforwardly impacted the later work on NFV, different lessons from 

active networking research may demonstrate valuable as the application of 

SDN-based control and arrangement of middleboxes advances. 

• Programmable functions in the network that subordinate the barricade to 

revolution: 

Study of active networks spearheaded the thought of programmable 

networks as a method for bringing down the hindrance to network 

advancement. The thought that it is hard to improve in a production system 

and supplications for expanded programmability were normally referred to 

initial inspiration for SDN. A great part of the early vision for SDN 

concentrated on control-plane programmability, while active networks 



concentrated more on data plane programmability. All things considered, data 

plane programmability has kept on developing in parallel with control-plane 

efforts and data plane programmability is again going to the cutting edge in 

the rising NFV activity. Recent work on SDN is investigating the development 

of SDN protocols, for example, OpenFlow to support a more extensive scope 

of data-plane functions. Likewise, the ideas of detachment of experimental 

traffic from normal traffic which have their underlying foundations in active 

networking and seem up front in configuration archives for OpenFlow and 

other SDN technologies (e.g., FlowVisor). 

3.1.3 Myths about Active Networking 

Active networking incorporated the thought that a network API would be accessible to 

end users who send and receive packets, however, most in the research community 

completely perceived that end-users network programmers would be uncommon. The 

confusion that packets would fundamentally convey Java code composed by end users 

made it possible to expel active network research as too far expelled from genuine 

networks and inherently unsafe. Active networking was also censored at that time for its 

inability to offer practical performance and security. While performance was not a 

primary thought of the active networking research community (which concentrated on 

programming models, platforms, and architecture), a few efforts planned to manufacture 

high-performance active routers. Likewise, while security was under-tended to in a large 

portion of the early projects, the secure active network environment (SANE) architecture 

project was an eminent exemption. 

3.1.4. Practicality of invention 

Albeit active networks verbalized an idea of programmable networks, the technologies 

did not see broad deployment. Maybe one of the greatest stumbling pieces was the 

absence of an instantly compelling issue or an unambiguous way to deployment. A critical 

lesson from the active network research exertion was that executioner applications for 

the data plane are difficult to conceive. The community proffered different applications 

that could profit by in-network processing, including information fusion, caching and 

content distribution, network management, and application-specific quality of service. 

Tragically, even though performance advantages could be measured in the lab, none of 

these applications exhibited an adequately compelling answer for a pressing need. 

In subsequent endeavors, more concentration was on routing and configuration 

management. In addition to a narrower space, the following period of research 

developed technologies that drew an obvious distinction and detachment between the 

elements of the control and data planes. This partition, at last, made it conceivable to 

concentrate on advancements in the control plane, which required a critical redesign as 

well as, because it is normally executed in software, displayed a lower fence to 

development than the data plane. 



3.2 Control and Data plane separation 

In the mid-2000s, expanding traffic volumes and a more noteworthy attention on 

network reliability, predictability, and performance drove network administrators to look 

for better ways to deal with certain network management capacities, for example, 

control of the paths used to convey traffic (usually known as traffic engineering). The 

methods for traffic engineering utilizing traditional routing protocols were primitive, best 

case scenario. Administrators' disappointment with these methodologies was perceived 

by a little, well-situated community of researchers who either worked for or regularly 

collaborated with backbone network administrators. These researchers investigated 

realistic, near-term approaches that were either standards-driven or inevitably 

deployable utilizing existing protocols. 

 

Precisely, conventional routers and switches demonstrate a tight integration between 

the control and data planes. This coupling made different network management 

responsibilities, for example, debugging configuration problems and predicting or 

controlling routing behavior, exceedingly challenging. To address these difficulties, 

numerous efforts to isolate the data and control planes started to rise. 

 

3.2.1 Technology push and use pull 

As the Internet thrived in the 1990s, the connection speeds in backbone networks 

developed quickly, driving equipment vendors to execute packet-forwarding rationale 

directly in hardware, isolate from the control-plane software. Additionally, ISPs (Internet 

service providers) were attempting to deal with the expanding size and scope of their 

networks and also the requests for more prominent reliability and new services like 

virtual private networks. In parallel with these patterns, the fast advances in commodity 

computing platforms implied that servers regularly had considerably more memory and 

processing resources than the control-plane processor of a router installed only maybe a 

couple years prior. These patterns catalyzed two developments: 

• An open interface between the control and data planes, for example, the ForCES 

(Forwarding and Control Element Separation) interface standardized by the IETF 

and the Netlink interface to the kernel-level packet-forwarding functionality in 

Linux. 

• Logically centralized control of the network, as found in the RCP (Routing Control 

Platform) and SoftRouter designs, and in addition the PCEP (Path Computation 

Element protocol) at the IETF. 

These innovations were driven by industry's demands for technologies to oversee routing 

inside an ISP network. Some early suggestions for untying the data and control planes 

also originated from scholarly circles, in both ATM and active networks. 



In associated with previous research on active networking, these projects concentrated 

on squeezing issues in network management, with an emphasis on innovation by and for 

network administrators (instead of end users and researchers) programmability in the 

control plane (as opposed to the data plane) and network-wide visibility and control (as 

opposed to device-level configuration). 

Network management applications included choosing better network paths considering 

the present traffic load, limiting transient interruptions during arranged routing changes, 

giving customer networks more control over the flow of traffic, and redirecting or 

dropping suspected attack traffic. A few control applications kept running in operational 

ISP networks utilizing legacy routers, including the IRSCP (Intelligent Route Service 

Control Point) installed to offer value-added services for virtual private network 

customers in AT&T's level 1 backbone network. Albeit a great part of the work during this 

time concentrated on overseeing routing inside a solitary ISP, some work also proposed 

approaches to empower adaptable route control over various administrative domains. 

Moving control functionality from network equipment and into particular servers seemed 

well and good since network management is a network-wide movement. Logically 

centralized routing controllers were made conceivable by the rise of open-source routing 

software that brought down the hindrance to developing model implementations. The 

advances in server technology implied that a single server could store all the routing state 

and process all the routing decisions for a huge ISP network. This, thus, empowered 

straightforward primary-backup replication methodologies, where backup servers store a 

similar state and measure the same computation as the primary server, to guarantee 

controller reliability. 

3.2.2. Logical Contributions of Separation of Planes to SDN 

The underlying attempts to separate the control and data planes were generally 

pragmatic, yet they represented a significant reasonable takeoff from the Internet's 

traditional tight coupling of path computation and packet forwarding. The efforts to 

separate the network's control and data planes resulted in several concepts that have 

been conveyed forward in subsequent SDN designs: 

• Logically centralized control using an open interface to the data plane. 

The ForCES working group at the IETF projected a standard, open interface to the 

data plane to empower innovation in control-plane software. The SoftRouter 

utilized the ForCES API to permit a different controller to install forwarding table 

entries in the data plane, permitting the total exclusion of control functionality 

from the routers. Unfortunately, ForCES was not implemented by the major 

router vendors, which hampered incremental deployment. Rather than sitting 

tight for new, open APIs to rise, the RCP utilized a current standard control-plane 

protocol (BGP - Border Gateway Protocol) to install forwarding table entries in 



legacy routers, permitting prompt deployment. OpenFlow also confronted 

comparable recessive compatibility difficulties and constraints, specifically, the 

initial OpenFlow specification relied on in reverse compatibility with hardware 

capabilities of commodity switches. 

• Distributed state management 

Logically centralized route controllers confronted challenges including distributed 

state administration. A logically centralized controller must be duplicated to adapt 

to controller failure, however, replication presents the potential for conflicting 

state across imitations. Researchers investigated the possible failure situations 

and consistency necessities. In any event of routing control, the controller 

imitations did not require a general state management protocol, since every copy 

would finally compute similar routes (after taking in a similar topology and routing 

information), and transient interruptions during routing protocol convergence 

were satisfactory even with legacy protocols. For better scalability, every 

controller occurrence could be in charge of a different part of the topology. These 

controller occurrences could then trade routing data with each other to 

guarantee reliable decisions. The difficulties of building distributed controllers 

would emerge again several years later with regards to distributed SDN 

controllers. These controllers face the significantly general issue of supporting 

arbitrary controller applications, requiring more sophisticated resolutions for 

distributed state management. 

 

3.2.3. Myths about Separation of Control and Data plane 

At the point when these new architectures were proposed, critics saw them with solid 

incredulity, regularly vehemently contending that logically centralized route control 

would violate fate sharing since the controller might fail independently from the devices 

responsible for forwarding traffic. Many network administrators and researchers saw 

isolating the control and data planes as a characteristically awful thought, as at first there 

was no certain articulation of how these networks would keep on operating accurately if 

a controller failed. Cynics additionally stressed that logically centralized control moved far 

from the conceptually straightforward model of the routers accomplishing distributed 

accord, where they all (in the end) have a typical perspective of network state (e.g., 

through flooding). In logically centralized control, every router has just a simply local 

perspective of the result of the route determination process. 

 

When these projects flourished, even the traditional distributed routing solutions 

officially abused these principles. Moving packet-forwarding logic into hardware implied 

that a router's control plane software could fail autonomously from the data plane. 

Similarly, distributed routing protocols received scaling techniques, such as OSPF (Open 



Shortest Path First) areas and BGP (Border Gateway Protocol) route reflectors, where 

routers in one locale of a network had constrained visibility into the routing information 

in different regions. The separation of the control and data planes somewhat illogically 

empowered researchers to contemplate distributed state management, the decoupling 

of the control and data planes catalyzed the development of a state management layer 

that maintains a consistent view of the network state. 

3.2.4. Simplifying and digging more into SDN 

Leading equipment vendors had little incentive to receive standard data plane APIs, for 

example, ForCES, since open APIs could pull in new entrants into the marketplace. The 

resulting need to rely on existing routing protocols to control the data plane imposed 

significant restrictions on the range of applications that programmable controllers could 

support. Conventional IP routing protocols compute routes for destination IP address 

blocks, rather than providing a wider range of functionality (e.g., dropping, flooding, or 

modifying packets) based on a wider range of header fields (e.g., MAC and IP addresses, 

TCP and UDP port numbers), as OpenFlow does. At last, although the business prototypes 

and standardization efforts made some progress, widespread selection remained 

intangible. 

To widen the vision of control and data plane partition, researchers began investigating 

clean-slate architectures for logically centralized control. The 4D project upheld four 

fundamental layers: the data plane (for processing packets considering configurable 

rules); the discovery plane (for gathering topology and traffic measurements); the 

dissemination plane (for introducing packet processing rules); and a decision plane 

(comprising of logically centralized controllers that change over network-level aims into 

packet-handling state). A few groups continued to outline and construct systems that 

applied this high-level way to deal with new application ranges, beyond route control. 

Specifically, the Ethane venture (and its immediate antecedent, SANE) made a logically 

centralized, flow level solution for access control in enterprise networks. Ethane 

decreases the switches to flow tables that are populated by the controller considering 

high-level security policies. The Ethane venture and its operational deployment in the 

Stanford computer science department set the phase for the making of OpenFlow. 

Specifically, the simple switch design in Ethane turned into the premise of the first 

OpenFlow API. 

3.3 The OpenFlow API and network operating systems 

In the mid-2000s, researchers and funding agencies picked up enthusiasm for network 

experimentation at scale, energized by the accomplishment of experimental 

infrastructures (e.g., PlanetLab and Emulab), and the availability of separate government 

funding for expansive scale instrumentation already saved for different disciplines to 

manufacture costly, shared infrastructure, for example, colliders and telescopes. An 

outgrowth of this excitement was the making of GENI (Global Environment for 



Networking Innovations) with an NSF-funded GENI Project Office and the EU FIRE 

program. Critics of these infrastructure focused efforts called attention to that this 

extensive interest in infrastructure was not coordinated by well-conceived thoughts to 

utilize it. Amidst this, a gathering of researchers at Stanford made the Clean Slate 

Program and focused on experimentation at a more local and tractable scale i.e. campus 

networks. 

 

Prior to the development of OpenFlow, the thoughts hidden SDN confronted a strain 

between the vision of completely programmable networks and practicality that would 

empower real-world deployment. OpenFlow struck a balance between these two 

objectives by empowering a greater number of capacities than prior route controllers 

and expanding on existing switch hardware through the expanding utilization of 

merchant silicon chipsets in commodity switches. Even though depending on existing 

switch hardware did to some degree constrain flexibility, OpenFlow was very quickly 

deployable, permitting the SDN development to be both logical and bold. The formation 

of the OpenFlow API was taken after rapidly by the design of controller stages, for 

example, NOX that empowered the making of numerous new control applications. 

 

An OpenFlow switch has a table of packet handling rules, where each rule has a pattern 

(which matches on bits in the packet header), a rundown of actions like drop, flood, 

forward out a specific interface, modify a header field, or send the packet to the 

controller, a set of counters (to track the number of bytes and packets), and a priority (to 

disambiguate between rules with overlapping patterns). After receiving a packet, an 

OpenFlow switch identifies the highest priority matching rule, performs the associated 

actions, and increments the counters. 

 

3.3.1. Technology push and use pull 

Maybe the characterizing highlight of OpenFlow is its acceptance in the industry, 

particularly as contrasted with its intellectual predecessors. This achievement can be 

credited to an immaculate tempest of conditions among equipment vendors, chipset 

designers, network administrators, and networking researchers. Prior to OpenFlow's 

beginning, switch chipset vendors like Broadcom had as of now opened their APIs to 

permit programmers to control certain forwarding practices. The decision to open the 

chipset gave the vital driving force to an industry that was already clamoring for more 

control over network gadgets. The accessibility of these chipsets likewise empowered a 

considerably more extensive scope of organizations to build switches, without bringing 

the generous cost of designing and fabricating their own data-plane equipment. 

 

The underlying OpenFlow protocol standardized a data-plane model and a control plane 

API by expanding on technology that switches already upheld. Specifically, since network 

switches effectively bolstered fine-grained access control and flow checking, enabling 



OpenFlow's initial arrangement of capacities on a switch was as simple as playing out a 

firmware update. Vendors did not have to upgrade the equipment to make their switches 

OpenFlow proficient. 

 

OpenFlow's initial target deployment situation was campus networks, addressing the 

requirements of a networking research community that was effectively searching for 

approaches to direct trial deal with clean-slate network structures inside a research 

accommodating operational setting. In the late 2000s, the OpenFlow group at Stanford 

drove a push to send OpenFlow test beds crosswise over numerous campuses and show 

the abilities of the protocol both on a solitary campus network and over a wide-area 

backbone network traversing multiple campuses. 

 

As genuine SDN use cases appeared on these campuses, OpenFlow started to grab hold 

in different domains, for example, data-center networks, where there was a diverse need 

to manage network traffic at a substantial scale. In data centers, hiring engineers to 

compose advanced control programs to keep running over vast quantities of commodity 

switches ended up being more cost effective than keeping on obtaining closed, 

proprietary switches that couldn't bolster new elements without significant engagement 

with the equipment vendors. As vendors contended to offer both servers and switches 

for data centers, numerous littler players in the network equipment marketplace 

embraced the chance to rival the established router and switch vendors by supporting 

new capabilities like OpenFlow. 

 

3.3.2. Logical contributions of OpenFlow API and network operating systems to SDN 

Although OpenFlow typified large portions of the standards from prior work on the 

detachment of control and data planes, its ascent offered several extra intellectual 

commitments as described below: 

 

• Generalizing network devices and functions 

Past work on route control concentrated basically on coordinating traffic by 

destination IP prefix. Conversely, OpenFlow rules could characterize forwarding 

behavior on traffic flows in view of any arrangement of 13 diverse packet 

headers. Thusly, OpenFlow thoughtfully bound together with a wide range of 

different network devices that vary just as far as which header fields they match 

and which activities they perform. Router coordinates on destination IP prefix and 

forwards out a link, though a switch coordinates on a source MAC address (to 

perform MAC learning) and a destination MAC address (to forward), and either 

floods or forwards out a solitary link. Network address translators and firewalls 

coordinate on a 5-tuple (source and destination IP addresses, source and 

destination port numbers, and transport protocol) and either rewrite address and 

port fields or drop undesirable traffic. OpenFlow additionally summed up the rule 



installation techniques, permitting anything from the proactive establishment of 

coarse-grained rules (i.e., with "wild cards" for some header fields) to the 

responsive installation of fine-grained rules, depending upon the application. Still, 

OpenFlow does not offer data plane support for profound packet investigation or 

connection reassembly. All things considered, OpenFlow alone can't productively 

empower sophisticated middlebox functionality. 

 

• The vision of a network operating system 

In contrast to previous research on active networks that proposed a node 

operating system, the work on OpenFlow prompted to the idea of a network 

operating system. A network operating system is software that abstracts the 

installation of state in network switches from the logic and applications that 

control the conduct of the network. Even more, for the most part, the 

development of a network operating system offered a conceptual disintegration 

of network operation into three layers:  

(1) a data plane with an open interface 

(2) a state management layer whose responsibility is to maintain a consistent 

perspective of network state 

(3) control logic that performs different operations relying upon its perspective of 

the network state. 

 

• Distributed state management techniques 

Isolating the control and data planes presents new difficulties concerning state 

management. Running numerous controllers is urgent for scalability, reliability, 

and performance, yet these reproductions ought to cooperate to go about as a 

solitary, logically centralized controller. Past work on distributed route controllers 

tended to these issues just in the narrow context of route computation. To 

bolster arbitrary controller applications, the work on the Onix controller 

presented the possibility of a network information base, a portrayal of the 

network topology and other control state shared by all controller replicas. Onix 

additionally joined past work in distributed systems to fulfill the state consistency 

and durability requirements. For instance, Onix has a transactional persistent 

database supported by a duplicated state machine for gradually changing network 

state, as well as an in-memory distributed hash table for quickly changing state 

with weaker consistency requirements. In addition to this, recently, ONOS (Open 

Network Operating System) offers an open source controller with comparative 

functionality, utilizing existing open source software for keeping up consistency 

crosswise over distributed state and giving a network topology database to 

controller applications.  

 



3.3.3. Myths about the OpenFlow API and network operating systems 

One myth concerning SDN is that the primary packet of each traffic flow must go to the 

controller for handling. In fact, some early systems like Ethane worked thusly, since they 

were intended to support fine-grained policies in little networks. However, SDN in 

general, OpenFlow specifically, don't force any presumptions about the granularity of 

rules or whether the controller handles any data traffic. Some SDN applications react just 

to topology changes and coarse-grained traffic insights, and rarely to refresh rules in 

response to link failure or network congestion. Different applications may send the first 

packet of some bigger traffic total to the controller however not a packet from each TCP 

or UDP connection. 

Another myth about SDN is that the controller must be physically centralized. Actually, 

Onix and ONOS show that SDN controllers can and ought to be distributed. Wide-area 

deployments of SDN, as in Google's private backbone, have numerous controllers spread 

all through the network. 

Last but not the least, a normally held misconception is that SDN and OpenFlow are 

proportional. In fact, OpenFlow is simply one (widely popular) instantiation of SDN 

standards. Distinctive APIs could be utilized to control network wide forwarding behavior. 

Past work that concentrated on routing (utilizing BGP as an API) could be viewed as one 

instantiation of SDN, for instance, and architectures from different vendors (e.g., Cisco 

ONE and JunOS SDK) are different instantiations of SDN that vary from OpenFlow. 

3.3.4. SDN Use cases 

Despite the early excitement about SDN, it merits observing that it is merely a tool that 

empowers innovation in network control. SDN neither commands how that control ought 

to be designed nor takes care of a specific problem. Or maybe, researchers and network 

administrators now have a stage available to them to help address longstanding issues in 

dealing with their networks and deploying new services. Eventually, the achievement and 

reception of SDN will rely on upon whether it can be utilized to take care of squeezing 

issues in networking that were troublesome or difficult to tackle with prior protocols.  

Although SDN has appreciated some early practical accomplishments and unquestionably 

offers much needed technologies to bolster network virtualization, more work is required 

both to enhance the current infrastructure and to investigate SDN's capability to take 

care of issues for a considerably more extensive arrangement of use cases. Albeit early 

SDN arrangements focused on college campuses, data centers, and private backbones, 

recent work explores applications and extensions of SDN to a more extensive scope of 

network settings, including home networks, enterprise networks, Internet exchange 

points, cellular core networks, cellular and Wi-Fi radio access networks, and joint 

administration of end-host applications and the network. Each of these settings presents 



numerous new open doors and difficulties that the community will investigate in the 

years ahead. 

The possibility of a programmable network at first came to realization as active 

networking, which espoused a significant number of an identical ideas as SDN yet needed 

both a reasonable use case and an incremental deployment path. After the era of active-

networking research projects, the pendulum swung from vision to realism, through 

isolating the data and control planes to make the network easier to manage. This work 

focused mainly on better approaches to route network traffic, a much smaller vision than 

past work on active networking. 

As SDN keeps on building up, its history has vital lessons to instruct. To begin with, SDN 

technologies will live or die on use pulls. Although SDN is regularly proclaimed as the 

solution to all networking issues, it is worth recalling that it is only a tool for taking care of 

network management issues more effectively. SDN just gives developers the ability to 

make new applications and discover solutions for longstanding problems. In this regard, 

the work is quite recently starting. On the off chance that the past is any sign, the 

development of these new technologies will require innovation on various timescales, 

from long term bold visions, (for example, active networking) to near term inventive 

problem solving, (for example, the operationally focused work around isolating the 

control and data planes). 

4. Architecture and Operation of SDN 

A SDN architecture can be portrayed as a composition of distinctive layers, as shown in 

Figure below. Each layer has its own specific roles. While some of them are always present in 

a SDN deployment, for example, the southbound API, network operating systems, 

northbound API and network applications, others might be available in just specifically 

deployments, for example, hypervisor or language based virtualization. 

 

 

 



4.1. Layer 1 - Infrastructure  

A SDN infrastructure, similarly to a conventional network, is combination of different 

networking equipment like switches, routers and, middlebox appliances. The primary 

distinction lives in the fact that those traditional physical devices are currently basic 

forwarding components without implanted control or software to take independent 

decisions. The network intelligence is expelled from the data plane devices to a logically-

centralized control system, i.e., the network operating system and applications, as 

appeared in picture above. More essentially, these new networks are constructed 

conceptually on top of open and, standard interfaces (e.g., OpenFlow), a critical approach 

for guaranteeing configuration and communication compatibility and interoperability 

among various data and control plane devices. In other words, these open interfaces 

empower controller elements to dynamically program heterogeneous forwarding 

devices, something problematic in conventional networks, due to the huge variation of 

proprietary and closed interfaces, and the distributed nature of the control plane. 

In a SDN/OpenFlow architecture, there are two primary components, the controllers and 

the forwarding devices as described in picture below. A data plane device is a hardware 

or software component had some expertise in packet forwarding, while a controller is a 

software stack (the network brain) running on a commodity hardware platform. An 

OpenFlow empowered forwarding device depends on a pipeline of flow tables where 

every entry of a flow table has three sections: (1) a matching rule, (2) actions to be 

performed on matching packets, and (3) counters that keep information about 

corresponding packets. This high-level and simplified model got from OpenFlow is at 

present the most far reaching outline of SDN data plane devices. By and by, different 

specifications of SDN enabled forwarding devices are being sought after, including POF, 

and the Negotiable Datapath Models (NDMs) from the ONF Forwarding Abstractions 

Working Group (FAWG). 

 

             

 



Inside an OpenFlow device, a path through a sequence of flow tables characterizes how 

packets ought to be taken care of. At the point when new packet arrives, the query 

procedure begins in the first table and finishes either with a match in one of the tables of 

the pipeline or, with a miss (when no rule is found for that packet). A flow rule can be 

defined by consolidating distinctive matching fields, as outlined in Figure. If there is no 

default rule, the packet will be discarded. Nonetheless, the regular case is to introduce a 

default rule which advises the switch to send the packet to the controller or to the typical 

non-OpenFlow pipeline of the switch. The need of the rules trails the natural sequence 

number of the tables and the row arrangement in a flow table. Probable activities include 

(1) forward the packet to outgoing port(s), (2) encapsulate it and forward it to the 

controller, (3) drop it, (4) send it to the normal processing pipeline, (5) send it to the 

following flow table or to special tables, for example, group or metering tables presented 

in the most recent OpenFlow protocol. 

 

4.1.1. SDN Devices  

Several OpenFlow empowered forwarding devices are available on the market, both 

as business and open source items. There are many off-the-rack, ready to deploy, 

OpenFlow switches and routers, among different machines. Most of the switches, 

available have generally little Ternary Content-Addressable Memory (TCAMs), with 

up to 8K entries. However, this is changing at a quick pace. A few of the most recent 

devices released in the market go beyond that figure. For instance, Gigabit Ethernet 

(GbE) switches for normal business designs are as of now supporting up to 32K 

L2+L3 or 64K L2/L3 correct match flows. Enterprise class 10GbE switches are being 

deployed with more than 80K Layer 2 flow entries. Other switching devices utilizing 

high throughput chips (e.g., EZchip NP-4) give improved TCAM memory that 

supports from 125K up to 1000K flow table entries. This is a clear sign that the 

extent of the flow tables is developing at a pace intending to address the issues of 

future SDN deployments. 

Software switches are rising as a standout amongst the most promising solutions for 

data centers and virtualized network frameworks. Examples of software-based 

OpenFlow switch executions incorporate Switch Light, ofsoftswitch, open vSwitch, 

OpenFlow Reference, Pica, Pantou, and XorPlus. Recent reports demonstrate that 

the number of virtual access ports is officially bigger than physical access ports on 

data centers. Network virtualization has been one of the drivers behind this slant. 

Software switches, for example, Open vSwitch have been utilized for moving 

network functions to the edge (with the core performing conventional IP 

forwarding), thus empowering network virtualization.  

 

 



4.2. Layer 2 -- Southbound Interfaces 

Southbound interfaces (or southbound APIs) are the connecting bridges amongst control 

and forwarding components, subsequently being the essential instrument for clearly 

isolating control and data plane functionality. However, these APIs are still firmly 

attached to the forwarding components of the hidden physical or virtual infrastructure. 

Normally, new switch can take two years to be prepared for commercialization if built 

from scratch, with upgrade cycles that can take up to nine months. The software 

advancement for new product can take from six months to one year. The initial 

investment is high and risky. As a central part of its design the southbound APIs denotes 

one of the significant restrictions for the presentation and acknowledgment of any new 

networking technology. In this light, the development of SDN southbound API 

recommendations, for example, OpenFlow is viewed as welcome by numerous in the 

business. These standards promote interoperability, permitting the deployment of 

vendor skeptic network devices. This has as of now been shown by the interoperability 

between OpenFlow empowered equipment from various vendors.  

OpenFlow is the most generally acknowledged and deployed open southbound standard 

for SDN. It gives a common specification to implement OpenFlow empowered forwarding 

devices, and for the communication channel between data and control plane devices 

(e.g., switches and controllers). The OpenFlow protocol offers three data sources to 

network operating systems. First, event based messages are sent by forwarding devices 

to the controller when a link or port change is triggered. Second, flow statistics are 

created by the forwarding devices and gathered by the controller. Third, packet-in 

messages are sent by forwarding devices to the controller when they don't realize what 

to do with a new approaching flow or because there is an explicit "send to controller" 

activity in the matched entry of the flow table. These information channels are the 

essential means to give flow level data to the network operating system. 

OVSDB is another sort of southbound API, intended to give propelled management 

capabilities to Open vSwitches. Beyond OpenFlow's capabilities to configure the behavior 

of flows in a forwarding device, an Open vSwitch offers other networking functions. For 

example, it permits the control components to make various virtual switch instances, set 

QoS policies on interfaces, attach interfaces to the switches, configure tunnel interfaces 

on OpenFlow data paths, manage queues, and gather statistics. Thus, the OVSDB is a 

reciprocal protocol to OpenFlow for Open vSwitch.  

A recent southbound interface proposal is OpFlex. As opposed to OpenFlow (and like 

ForCES), one of the thoughts behind OpFlex is to distribute some portion of the 

complexity of managing the network back to the forwarding devices, with the point of 

enhancing scalability. Like OpenFlow, policies are logically centralized and abstracted 

from the fundamental implementation. The contrasts amongst OpenFlow and OpFlex are 



a clear representation of one of the essential inquiries to be addressed when conceiving 

a southbound interface: where to put each piece of the overall functionality. 

4.3. Layer 3 -- Network Hypervisors 

Virtualization is as of now a consolidated technology in modern computers. The quick 

advancements of the previous decade have made virtualization of computing platforms 

mainstream. Considering recent reports, the number of virtual servers has as of now 

surpassed the number of physical servers. 

Hypervisors enable distinct virtual machines to share the same hardware resources. In a 

cloud infrastructure-as-a-service (IaaS), each client can have its own virtual resources, 

from computing to storage. This enabled new revenue and business models where clients 

allocate resources on-demand, from a shared physical infrastructure, at a relatively 

minimal cost. At the same time, providers make better utilization of the capacity of their 

installed physical infrastructures, creating new revenue streams without significantly 

increasing their CAPEX and OPEX costs. One of the intriguing features of virtualization 

technologies today is the fact that virtual machines can be easily migrated starting with 

one physical server then onto the next and can be created and/or destroyed on-demand, 

enabling the provisioning of elastic services with adaptable and easy management. 

Unfortunately, virtualization has been just partially realized in practice. Notwithstanding 

the great advances in virtualizing computing and storage components, the network is still 

generally statically configured in a box- by-box manner.  

The primary network reequipments can be captured along two dimensions: network 

topology and address space. Diverse workloads require distinctive network topologies 

and services, for example, level L2 or L3 services, or much more intricate L4- L7 services 

for advanced functionality. As of now, it is extremely problematic for a solitary physical 

topology to support the different requests of applications and services. Correspondingly, 

address space is difficult to change in current networks. These days, virtualized workloads 

need to work in a similar address of the physical infrastructure. Accordingly, it is difficult 

to keep the original network configuration for a tenant, virtual machines cannot migrate 

to arbitrary areas, and the addressing scheme is fixed and difficult to change. For 

instance, IPv6 can't be utilized by the VMs of a tenant if the hidden physical forwarding 

devices support just IPv4. 

To deliver complete virtualization the network ought to give similar properties to the 

computing layer. The network infrastructure should have the capacity to support 

arbitrary network topologies and addressing schemes. Each tenant should be able to 

configure both the computing nodes and the network concurrently. Host migration 

should consequently trigger the migration of the corresponding virtual network. ports. 

One may surmise that long-standing virtualization primitives like VLANs (virtualized L2 

domain), NAT (Virtualized IP address space), and MPLS (virtualized path) are sufficient to 



deliver full and automated network virtualization. But, these innovations are secured on a 

box-by-box basis configuration, i.e., there is no single unifying abstraction that can be 

utilized to configure (or reconfigure) the network in a global way. Thus, current network 

provisioning can take months, while computing provisioning takes just minutes. 

There is an anticipation that this circumstance will change with SDN and the availability of 

new tunneling techniques (e.g., VXLAN, NVGRE). For example, solutions like FlowVisor, 

FlowN, NVP, OpenVirteX, IBM SDN VE, Radio-Visor, AutoVFlow, eXtensible Datapath 

Daemon (xDPd), optical transport network virtualization, and version-agnostic OpenFlow 

slicing mechanisms, have been recently proposed, evaluated and deployed in real 

situations for on-demand provisioning of virtual networks. 

Presently there are already a few network hypervisor proposals leveraging the advances 

of SDN. There are, however, still a few issues to be addressed. These include, among 

others, the advancement of virtual-to-physical mapping techniques, the meaning of the 

level of detail that ought to be exposed at the logical level, and the support for nested 

virtualization. We envision, nonetheless, this ecosystem to expand in near future since 

network virtualization will probably play a key role in future virtualized environments, 

comparably to the expansion we have been seeing in virtualized computing.  

4.4. Layer 4 -- Network Operating Systems / Controllers 

Conventional operating systems deliver abstractions (e.g., high-level programming APIs) 

for accessing lower-level devices, deal with the concurrent access to the basic resources 

(e.g., hard drive, network adapter, CPU, memory), and provide security assurance 

mechanisms. These functionalities and resources are key empowering influences for 

expanded productivity, making the life of system and application developers easier. Their 

far-reaching use has significantly added to the advancement of different ecosystems 

(e.g., programming languages) and the improvement of a myriad of applications. 

In contrast, networks have so far been managed and configured utilizing lower level, 

device-specific instruction sets and for the most part closed proprietary network 

operating systems (e.g., Cisco IOS and Juniper JunOS). Additionally, operating systems 

abstracting device-specific attributes and providing, straightforwardly, basic 

functionalities is still mostly absent in networks. For example, currently, designers of 

routing protocols need to manage complex distributed algorithms when resolving 

networking issues. Network practitioners have in this way been taking care of similar 

issues again and again. 

SDN is guaranteed to facilitate network management and ease the weight of solving 

networking issues by method for the logically-centralized control offered by a network 

operating system (NOS). Similarly, as with conventional operating systems, the vital role 

of a NOS is to give abstractions, fundamental services, and common application 

programming interfaces (APIs) to developers. Generic functionality as network state and 



network topology information, device discovery, and distribution of network 

configuration can be given as services of the NOS. With NOSs, to characterize network 

policies a designer no longer needs to think about the low-level details of data 

distribution among routing components, for example. Such systems can apparently make 

a new environment equipped for fostering innovation at a faster pace by decreasing the 

inherent complexity of making new network protocols and network applications. 

A NOS (or controller) is a critical component in a SDN architecture as it is the key 

supporting piece for the control logic (applications) to generate the network 

configuration considering the policies defined by the network administrator. Like a 

conventional operating system, the control platform abstracts the lower-level details of 

connecting and interacting with forwarding devices (i.e., of materializing the network 

policies). 

4.4.1. Architecture and design axes 

There is an extremely diverse set of controllers and control platforms with various 

design and architectural options. Existing controllers can be sorted in view of 

numerous aspects. From an architectural perspective, a standout amongst the 

most significant is whether they are centralized or distributed. This is one of the 

key design axes of SDN control platforms. Let’s see how it can be considered as 

key design axes. 

4.4.1.1. Centralized Vs. Distributed Approach  

A centralized controller is a solitary entity that manages all forwarding 

devices of the network. Normally, it represents a single point of failure and 

may have scaling restrictions. A single controller may not be sufficient to 

manage a network with many data plane components. Centralized 

controllers such as NOX-MT, Maestro, Beacon, and Floodlight have been 

designed as profoundly concurrent systems, to accomplish the throughput 

required by enterprise class networks and data centers. These controllers 

are based on multi-threaded designs to explore the parallelism of multi-

core computer architectures. For instance, Beacon can manage more than 

12 million flows per second by utilizing large size computing nodes of 

cloud providers such as Amazon. Other centralized controllers such as 

Trema, Ryu NOS, Meridian, and ProgrammableFlow, target specific 

environments such as data centers, cloud infrastructures, and carrier 

grade networks. Moreover, controllers such as Rosemary offer specific 

functionality and assurances, namely security and isolation of applications. 

By utilizing a container-based architecture called micro-NOS, it 

accomplishes its essential objective of separating applications and keeping 

the propagation of failures throughout the SDN stack.  

 



Contrary to centralized design, a distributed network operating system 

can be scaled up to meet the requirements of possibly any environment, 

from small to big scale networks. A distributed controller can be a 

centralized group of nodes or a physically distributed arrangement of 

components. While the first alternative can offer high throughput for 

extremely dense data centers, the latter can be more resilient to various 

types of logical and physical failures. A cloud provider that traverses 

different data centers interconnected by a wide area network may require 

a hybrid approach, with clusters of controllers inside every data center 

and distributed controller nodes in the distinctive sites. 

 

Onix, HyperFlow, HP VAN SDN, ONOS, DISCO, yanc, PANE, SMaRt-Light, 

and Fleet are examples of distributed controllers. Most distributed 

controllers offer poor consistency semantics, which implies that data 

updates on distinct nodes will ultimately be updated on all controller 

nodes. This implies there is a timeframe in which distinct nodes may read 

diverse values (old value or new value) for a same property. Strong 

consistency, alternatively, ensures that all controller nodes will read the 

most refreshed value after a write operation. Regardless of its effect on 

system performance, strong consistency offers an easier interface to 

application developers. To date, just Onix, ONOS, and SMaRtLight give this 

data consistency model.  

 

Another common property of distributed controllers is fault tolerance. 

When one node fails, another neighbor node ought to take over the 

obligations and devices of the failed node. Up until now, aside a few 

controllers tolerating crash failures, they don't tolerate arbitrary failures, 

which implies that any node with an irregular behavior won't be replaced 

by a potentially well behaved one. 

 

A single controller might be sufficient to manage a small network, but it 

describes a single point of failure. Essentially, autonomous controllers can 

be spread over the network, each of them dealing with a network 

segment, decreasing the effect of a single controller failure. However, if 

the control plane availability is critical, a group of controllers can be 

utilized to accomplish a higher level of availability and additionally to 

support more devices. Eventually, a distributed controller can enhance the 

control plane resilience, scalability and decrease the effect of issues 

instigated by network partition, for example. SDN resiliency in general can 

be considered as an open challenge. 

 



4.4.2. SDN Controller Platforms 

Most of the controller can three well-defined layers as per individual 

responsibility. Three layers are:  

i. The application, orchestration and services;  

ii. The core controller functions  

iii. The elements of southbound communications 

The connection at the upper-level layers depends on northbound interfaces such 

as REST APIs and programming languages, for example, FML, Frenetic and 

NetCore. On the lower-level part of a control platform, southbound APIs and 

protocol plugins interface the forwarding components. The core of a controller 

platform can be described as a blend of its base network service functions and the 

different interfaces. 

4.4.2.1. The Core controller functions 

The base network service functions are what we consider the essential 

functionality all controllers ought to provide. As an analogy, these 

functions are like base services of operating systems, for example, 

program execution, I/O operations control, communications, protection, 

and so on. These services are utilized by other operating system level 

services and user applications. Correspondingly, functions like topology, 

statistics, notifications and device management, together with shortest 

path forwarding and security mechanisms are essential network control 

functionalities that network applications may use in building its logic. For 

instance, the notification manager ought to be able to receive, process, 

and forward events (e.g., alarm notifications, security alarms, state 

changes). Security mechanisms are another example, as they are critical 

components to provide basic isolation and security enforcement between 

services and applications. For example, rules generated by high priority 

services ought not be overwritten with rules created by applications with a 

lower priority. 

4.4.2.2. Southbound 

On the lower-level of control platforms, the southbound APIs can be 

viewed as a layer of device drivers. They provide a common interface to 

the upper layers, while permitting a control platform to utilize diverse 

southbound APIs (e.g., OpenFlow, OVSDB, ForCES) and protocol plugins to 

manage existing or new physical or virtual devices (e.g., SNMP, BGP, 

NetConf). This is essential both for backward compatibility and 

heterogeneity, i.e., to permit different protocols and device management 

connectors. In this way, on the data plane, a blend of physical devices, 



virtual devices (e.g., Open vSwitch, vRouter) and a variety of device 

interfaces (e.g., OpenFlow, OVSDB, of-config, NetConf, and SNMP) can 

exist together. 

Most controllers support only OpenFlow as a southbound API. Still, a few 

of them, such as, OpenDaylight, Onix and HP VAN SDN Controller, offer a 

more extensive scope of southbound APIs and additionally protocol 

plugins. Onix supports both the OpenFlow and OVSDB protocols. The HP 

VAN SDN Controller has other southbound connectors such as L2 and L3 

agents.  

OpenDaylight goes a step beyond by providing a Service Layer Abstraction 

(SLA) that permits several southbound APIs and protocols to exist together 

in the control platform. For example, its unique architecture was intended 

to support no less than seven distinct protocols and plugins: OpenFlow, 

OVSDB, NETCONF, PCEP, SNMP, BGP and LISP Flow Mapping. Thus, 

OpenDaylight is one of the few control platforms being considered to 

support a more extensive coordination of technologies in a single control 

platform. 

 

4.4.2.3. Eastbound and Westbound 

East/westbound APIs, as represented in Figure below, are a special case of 

interfaces required by distributed controllers. As of now, every controller 

executes its own east/westbound API. The functions of these interfaces 

incorporate import/export data between controllers, algorithms for data 

consistency models, and monitoring/notification capabilities (e.g., check if 

a controller is up or advise a takeover on a set of forwarding devices).  



Correspondingly to southbound and northbound interfaces, 

east/westbound APIs are essential components of distributed controllers. 

To identify and provide common compatibility and interoperability 

between various controllers, it is required to have standard 

east/westbound interfaces. For example, SDNi characterizes common 

prerequisites to coordinate flow setup and trade reachability data over 

numerous domains. Fundamentally, such protocols can be utilized as a 

part of an orchestrated and interoperable approach to make more 

scalable and dependable distributed control platforms. Interoperability 

can be leveraged to expand the diversity of the control platform 

component. Undoubtedly, diversity expands the system robustness by 

diminishing the likelihood of common faults such as software issues. 

 

Different recommendations that attempt to characterize interfaces 

between controllers include Onix data import/export functions, ForCES 

CE-CE interface, ForCES Intra-NE cold-standby components for high 

availability, and distributed data stores. An east/westbound API requires 

advanced data distribution systems such as the Advanced Message 

Queuing Protocol (AMQP) utilized by DISCO, strategies for distributed 

concurrent and consistent policy creation, transactional databases and 

DHTs (as utilized in Onix), or advanced algorithms for strong consistency 

and fault tolerance.  

In a multi-domain setup, east/westbound APIs may require also more 

particular communication protocols between SDN domain controllers. 

Some of the essentials functions of such protocols are to arrange flow 

setup started by applications, trade reachability information to facilitate 

inter-SDN directing, reachability update to keep the network state steady, 

among others.  



Another important issue with respect to east/westbound interfaces is 

heterogeneity. For example, other than communicating with peer SDN 

controllers, controllers may likewise need to speak with subordinate 

controllers (in a pecking order of controllers) and non-SDN controllers, like 

the instance of Closed-Flow. To be interoperable, east/westbound 

interfaces along these lines need to suit distinctive controller interfaces, 

with their specific set of services, and the diverse attributes of the 

underlying framework, including the differences of technology, the 

geographic traverse and size of the network, and the division amongst 

WAN and LAN, possibly over administrative boundaries. In those cases, 

diverse information must be traded between controllers, including 

adjacency and capability discovery, topology information (to the degree of 

the agreed contracts between administrative domains), billing 

information, among numerous others. 

In conclusion, a "SDN compass" strategy recommends a better distinction 

amongst eastbound and westbound horizontal interfaces, referring to 

westbound interfaces as SDN-to-SDN protocols and controller APIs while 

eastbound interfaces would be utilized to refer to standard protocols used 

to communicate with legacy network control planes (e.g., PCEP, GMPLS).  

4.4.2.4. Northbound 

Current controllers offer a very expansive assortment of northbound APIs 

such as ad-hoc APIs, RESTful APIs, multi-level programming interfaces, file 

systems, among other more specialized APIs, for example, NVP NBAPI, and 

SDMN API. A second sort of northbound interfaces are those stemming 

out of SDN programming languages such as Frenetic, Nettle, NetCore, 

Procera, Pyretic, NetKAT and other query-based languages.  

4.4.3. Platforms comparison conclusion  

As we have seen, it can be said that most controllers are centralized and 

multithreaded. Inquisitively, the northbound API is exceptionally assorted. 

Specifically, five controllers (Onix, Floodlight, MuL, Meridian and SDN Unified 

Controller) consider this interface, as an announcement of its significance. 

Consistency models and fault tolerance are only present in Onix, HyperFlow, HP 

VAN SDN, ONOS and SMaRtLight. In conclusion, with regards to the OpenFlow 

standard as southbound API, just Ryu supports its three noteworthy versions 

(v1.0, v1.2 and v1.3).  

To finish up, it is necessary to stress that the control platform is one of the critical 

points for the accomplishment of SDN. One of the main issues that should be 

addressed in this regard is interoperability. This is somewhat intriguing, as it was 



the main problem that southbound APIs, (for example, OpenFlow) attempted to 

solve. For instance, while Wi-Fi and LTE (Long-Term Evolution) networks require 

specific control platforms such as MobileFlow or SoftRAN, data center networks 

have diverse requirements that can be met with platforms, for example, Onix or 

OpenDaylight. Thus, in conditions where diversity of networking infrastructures is 

a reality, coordination and cooperation between various controllers is vital. 

Standardized APIs for multi-controller and multi-domain deployments are 

consequently seen as an essential stride to accomplish this objective. 

4.5. Layer 5 -- Northbound Interfaces 

The Northbound and Southbound interfaces are two key abstractions of the SDN 

ecosystem. The southbound interface has already a widely-accepted proposal 

(OpenFlow), yet a common northbound interface is still an open issue. At this moment, it 

may in any case be a bit too soon to define a standard northbound interface, as use-cases 

are still being worked out. Anyway, it is to be expected a common (or a de facto) 

northbound interface to arise as SDN develops. An abstraction that would allow network 

applications not to depend on specific implementations is important to explore the 

maximum capacity of SDN.  

The northbound interface is generally a software ecosystem, not a hardware one as is the 

case of the southbound APIs. In these environments, the implementation is commonly 

the forefront driver, while standards rise later and are essentially driven by wide 

adoption. By and by, an initial and minimal standard for northbound interfaces can in any 

case play an important part for the future of SDN. Discussions about this issue have 

already started and a common agreement is that northbound APIs are indeed important 

however that it is indeed too early to define a solitary standard right at this point. The 

experience from the development of various controllers will certainly be the basis for 

coming up with a common application level interface. 

Open and standard northbound interfaces are crucial to promote application portability 

and interoperability among the distinctive the control platforms. A northbound API can 

be compared to the POSIX standard in operating frameworks, denoting an abstraction 

that ensures programming language and controller independence. NOSIX is one of the 

primary examples of an effort toward this path. It tries to define portable low-level (e.g., 

flow model) application interfaces, making southbound APIs such as OpenFlow resemble 

device drivers. In any case, NOSIX is not exactly a general purpose northbound interface, 

yet rather a higher-level abstraction for southbound interfaces. Indeed, it could be part 

of the common abstraction layer in a control platform.  

Existing controllers such as Floodlight, Trema, NOX, Onix, and OpenDaylight propose and 

define their own northbound APIs. Nonetheless, each of them has its own specific 

definitions. Programming languages, for example, Frenetic, Nettle, NetCore, Procera, 



Pyretic and NetKAT also abstract the internal details of the controller functions and data 

plane behavior from the application developers. Moreover, programming languages can 

provide a wide range of powerful abstractions and mechanisms such as application 

composition, transparent data plane fault tolerance, and a variety of basic building blocks 

to ease software module and application development. 

SFNet is another example of a northbound interface. It is a high-level state API that 

translates application requirements into lower level service requests. But, SFNet has a 

constrained scope, targeting inquiries to request the congestion state of the network and 

services such as bandwidth reservation and multicast.  

Different proposals use distinctive approaches to permit applications to interact with 

controllers. The yanc control platform explores this idea by proposing a general control 

platform based on Linux and abstractions such as the virtual document framework (VFS). 

This approach simplifies the development of SDN applications as programmers can utilize 

a traditional idea (files) to communicate with lower level devices and sub-systems. 

Eventually, it is unlikely that a single northbound interface develops as the winner, as the 

requirements for various network applications are unique. APIs for security applications 

are probably going to be unique in relation to those for routing or financial applications. 

One conceivable path of advancement for northbound APIs are vertically-oriented 

proposals, before any sort of standardization happens, a challenge the ONF has started to 

undertake in the NBI WG in parallel to open-source SDN developments. The ONF 

architectural work includes the likelihood of northbound APIs providing resources to 

enable dynamic and granular control of the network assets from client applications, 

eventually across various business and organizational boundaries.  

4.6. Layer 6 -- Language-based Virtualization 

Two essential characteristics of virtualization solutions are the capability of 

communicating modularity and of allowing distinctive levels of abstractions while yet 

guaranteeing desired properties such as protection. For instance, virtualization 

procedures can allow diverse perspectives of a solitary physical infrastructure. As an 

example, one virtual big switch could speak to a combination of several underlying 

forwarding devices. This intrinsically simplifies the task of application developers as they 

don't have to consider the arrangement of switches where forwarding rules must be 

installed, yet rather observe the network as a simple big switch. Such sort of abstraction 

significantly simplifies the development and deployment of complex network 

applications, for example, advanced security related services.  

 

Pyretic is an interesting example of a programming language that offers this kind of high-

level abstraction of network topology. It includes this idea of abstraction by presenting 

network objects. These objects comprise of an abstract network topology and the sets of 



policies applied to it. Network objects simultaneously hide information and offer the 

required services.  

 

Another form of language-based virtualization is static slicing. This a scheme where the 

network is sliced by a compiler, based on application layer definitions. The output of the 

compiler is a monolithic control program that has already slicing definitions and 

configuration guidelines for the network. In such a case, there is no requirement for a 

hypervisor to dynamically manage the network portions. Static slicing can be valuable for 

deployments with specific requirements, in particularly those where higher performance 

and straightforward isolation guarantees are preferable to dynamic slicing.  

 

Other solutions, for example, libNetVirt, attempt to integrate heterogeneous 

innovations for creating static network slices. libNetVirt is a library designed to provide 

an adaptable way to create and manage virtual networks in various computing 

situations. Its main idea is similar to the OpenStack Quantum project. While Quantum is 

designed for OpenStack (cloud environments), libNetVirt is a more general purpose 

library which can be used in various conditions. Additionally, it goes one level next to 

OpenStack Quantum by enabling QoS capabilities in virtual networks. The libNetVirt 

library has two layers: (1) a generic network interface; and (2) technology specific device 

drivers (e.g., VPN, MPLS, OpenFlow). On top of the layers are the network applications 

and virtual network descriptions. The OpenFlow driver uses a NOX controller to manage 

the underlying infrastructure, utilizing OpenFlow rule based flow tables to create 

isolated virtual networks. By supporting diverse technologies, it can be utilized as a 

bridging segment in heterogeneous networks. 

 

4.7. Layers 7 -- Programming languages 

Programming languages have been proliferating for decades. Both academia and industry 

have advanced from low-level hardware-specific machine languages, for example, 

assembly for x86 architectures, to high-level and powerful programming languages, for 

example, Java and Python. The improvements towards more portable and reusable code 

has driven a significant move on the computer industry.  

Similarly, programmability in networks is starting to move from low level machine 

languages, for example, OpenFlow ("assembly") to high-level programming languages. 

Assembly-like machine languages, for example, OpenFlow and POF, essentially copy the 

behavior of forwarding devices, forcing developers to invest too much time on low-level 

details rather than on the issue resolution. Raw OpenFlow programs must deal with 

hardware behavior details, for example, overlapping rules, the priority ordering of rules, 

and data-plane inconsistencies that arise from in-flight packets whose flow rules are 

under installation. The use of these low-level languages makes it hard to reuse software, 



to create modular and extensive code, and leads to a more error-inclined development 

process.  

Abstractions provided by high-level programming languages can significantly help 

address many of the challenges of these lower-level guideline sets. In SDNs, high-level 

programming languages can be designed and utilized to:  

• create higher level abstractions for simplifying the task of programming 

forwarding devices 

• enable more beneficial and problem focused atmospheres for network software 

programmers, accelerating development and innovation 

• advance software modularization and code reusability in the network control 

plane; 

• encourage the development of network virtualization. 

Several challenges can be better addressed by programming languages in SDNs. For 

instance, in pure OpenFlow-based SDNs, it is hard to guarantee that various tasks of a 

single application (e.g., routing, monitoring, access control) don't meddle with each 

other. For example, rules generated for one task ought not override the functionality of 

another task. Another scenario is the point at which different applications keep running 

on a single controller. Typically, each application produces rules based on its own needs 

and policies without further information about the rules generated by different 

applications. As an outcome, conflicting rules can be generated and installed in 

forwarding devices, which can create issues for network operation. Programming 

languages and runtime systems can take care of these issues that would be otherwise 

hard to prevent.  

Another key feature that programming language abstractions provide is the capability of 

creating and writing programs for virtual network topologies. This idea is similar to 

object-oriented programming, where objects abstract both data and specific functions 

for application developers, making it easier to concentrate on taking care of a particular 

issue without worrying about data structures and their management. For instance, in a 

SDN setting, instead of generating and installing rules in each forwarding device, one can 

consider creating improved virtual network topologies that outline the whole network, or 

a subset of it. For example, the application developer ought to have the capacity to 

abstract the network as an atomic big switch, rather than a combination of several 

underlying physical devices. The programming languages or runtime systems ought to 

oversee generating and installing the lower-level directions required at each forwarding 

device to enforce the user strategy across the network. With such sort of abstractions, 

developing a routing application turns into a simple procedure. Similarly, a single physical 

switch could be denoted as an arrangement of virtual switches, each of them belonging 

to a separate virtual network. These two examples of abstract network topologies would 



be substantially harder to execute with low-level guideline sets. In contrast, a 

programming language or runtime system can more easily provide abstractions for virtual 

network topologies, as has already been demonstrated by languages, for example, 

Pyretic. 

Programming languages proposed for SDNs are FatTire, Flog, FlowLog, FML, Frenetic, 

HFT, Maple, Merlin, nlog, NetCore, NetKAT, Nettle, Procera, Pyretic. Most of the 

proposed languages offer abstractions for OpenFlow-empowered networks. The 

predominant programming pattern is the declarative one, with a single exemption, 

Pyretic, which is an imperative language. Most declarative languages are functional, while 

however there are instances of the logic and reactive types. The purpose i.e., the specific 

issues they plan to address and the expressiveness control fluctuate from language to 

language, while the final objective is quite often the same which is to give higher-level 

abstractions to facilitate the improvement of network control logic.  

Programming languages, for example, FML, Nettle, and Procera are functional and 

reactive. Policies and applications written in these languages depend on reactive 

activities triggered by events (e.g., new host associated with the network, or the present 

network load). Such languages permit users to declaratively express distinct network 

configuration rules, for example, access control lists (ACLs), virtual LANs (VLANs), and 

numerous others. Rules are basically communicated as permit-or-deny policies, which 

are connected to the forwarding components to guarantee the desired network 

performance. 

Other SDN programming languages, for example, Frenetic, Hierarchical Flow Tables 

(HFT), NetCore, and Pyretic, were designed with the concurrent objective of proficiently 

representing packet-forwarding policies and managing overlapping rules of various 

applications, offering advanced operators for parallel and sequence composition of 

software modules. To abstain from overlapping conflicts, Frenetic disambiguates rules 

with overlapping designs by conveying various integer needs, while HFT utilizes 

hierarchical policies with upgraded conflict determination operators. 

FatTire is a case of a declarative language that intensely depends on normal expressions 

to permit software engineers to depict network paths with fault tolerance requirements. 

For example, each flow can have its own optional paths for managing failure of the 

primary paths. Interestingly, this feature is given in an extremely programmer friendly 

manner, with the application developer having just to utilize standard expressions with 

unique characters, for example, a reference bullet. Generally, Programming languages, 

for example, FlowLog and Flog bring diverse elements, for example, model checking, 

dynamic verification and stateful middleboxes. For example, utilizing a programming 

language such as Flog, it is possible to develop a stateful firewall application with just five 

lines of code. Curiously, Merlin is one of the main cases of unified framework for 

controlling distinctive network components such as forwarding devices, middleboxes, 



and end-hosts. An essential favorable position is backward compatibility with existing 

systems. To accomplish this objective, Merlin creates specific code for each kind of 

component. Taking an approach definition as input, Merlin's compiler decides forwarding 

paths, transformation placement, and bandwidth allocation. 

Other recent activities (e.g., systems programming languages) target issues such as 

identifying anomalies to enhance the security of network protocols (e.g., Open-Flow), 

and optimizing horizontal scalability for accomplishing high throughput in applications 

running on multicore architectures. By and by, there is still scope for further examination 

and development on programming languages. For example, one recent research has 

uncovered that policy compilers produce unnecessary (redundant) rule updates, the 

majority of which alter only the priority field. 

The greater part of the estimation of SDN will originate from the network managements 

applications based on top of the infrastructure. Progresses in high-level programming 

languages are a principal component to the achievement of a productive SDN application 

development environment. To this end, efforts are experiencing to shape imminent 

standard interfaces and towards the realization of integrated development environments 

(e.g., NetIDE) with the objective of encouraging the development of a myriad of SDN 

applications. 

4.8. Layer 8 -- Network Applications 

Network applications can be viewed as the "network brains". They implement the control 

logic that will be interpreted into instructions to be installed in the data plane, dictating 

the behavior of the forwarding devices. Take a basic application as routing for instance. 

The logic of this application is to define the path through which packets will flow out of a 

point A to a point B. To accomplish this objective a routing application needs to, in view 

of the topology input, decide on the path to utilize and instruct the controller to install 

the corresponding forwarding rules in all forwarding devices on the picked path, from A 

to B.  

Software-defined networks can be deployed on any conventional network environment, 

from home and enterprise networks to data centers and Internet exchange points. Such 

diversity of environments has prompted to a wide exhibit of network applications. 

Existing network applications perform traditional functionalities, for example, routing, 

load balancing, and security policy enforcement, additionally investigate novel 

methodologies such as reducing power consumption. Other cases include fail-over and 

reliability functionalities to the data plane, end-to-end QoS enforcement, network 

virtualization, mobility management in wireless networks, among numerous others. The 

assortment of network applications, combined with real use case deployments, is relied 

upon to be one of the significant strengths on fostering a wide adoption of SDN. 



Regardless of the wide assortment of use cases, most SDN applications can be gathered 

in one of five classes: traffic engineering, mobility and wireless, measurement and 

monitoring, security and dependability and data center networking.  

4.8.1. Debugging and troubleshooting 

Debugging and troubleshooting have been critical subjects in computing 

infrastructures, parallel and distributed systems, embedded systems, and desktop 

applications. The two predominant methodologies connected to debug and 

troubleshoot are runtime debugging (e.g., gdb-like tools) and post-mortem 

analysis (e.g., tracing, replay and visualization). Despite the consistent 

development and the rise of new techniques to enhance debugging and 

troubleshooting, there are yet a few open avenues and research questions.  

 

Debugging and troubleshooting in networking is at an extremely primitive stage. 

In conventional networks, engineers and developers need to utilize tools, for 

example, ping, traceroute, tcpdump, nmap, netflow, and SNMP statistics for 

debugging and troubleshooting. Debugging a complex network with such 

primitive tools is hard. Anyhow when one considers structures, for example, 

XTrace, Netreplay and NetCheck , which enhance debugging capabilities in 

networks, it is still hard to troubleshoot networking infrastructures. For instance, 

these systems require an enormous effort as far as network instrumentation. The 

extra complexity introduced by various sorts of devices, technologies and vendor 

specific components and feature make matters worse. Thus, these arrangements 

may find it difficult to be generally executed and deployed in current networks. 

 

SDN offers some hope in this regard. The hardware-agnostic software-based 

control capacities and the utilization of open standards for control 

communication can possibly make debug and troubleshoot less demanding. The 

flexibility and programmability introduced by SDN is indeed opening new avenues 

for developing better tools to debug, troubleshoot, verify and test networks. Early 

debugging tools for OpenFlow-empowered networks, for example, ndb, 

OFRewind and NetSight, make it less demanding to discover the source of 

network issues such as faulty device firmware, inconsistent or non-existing flow 

rules, lack of reachability and faulty routing. So also to the outstanding gdb 

software debugger, ndb gives essential debugging activities such as breakpoint, 

watch, backtrace, single-step, and continue. These primitives assist application 

developers with debugging networks in a comparable manner to traditional 

software. By using ndb's postcards (i.e., a unique packet identifier composed of a 

truncated duplicate of the packet's header, the matching flow entry, the switch, 

and the output port), for instance, a programmer can rapidly distinguish and 

separate a buggy OpenFlow switch with hardware or software issues. If the switch 



is presenting strange behavior, for example, corrupting parts of the packet 

header, by analyzing the problematic flow sequence with a debugging tool one 

can find (in a matter of few moments) where the packets of a flow are being 

corrupted, and take the essential activities to solve the issue. 

 

In spite of the accessibility of these debugging and confirmation tools, it is yet 

hard to answer questions like what is happening to my packets that are flowing 

from point A to point B? What path do they take follow? What header changes do 

they experience in transit? To answer some of these inquiries one could recur to 

the history of the packets. A packet's history relates to the paths it uses to 

traverse the network, and the header alterations in each hop of the path. 

NetSight is a platform whose primary objective is to permit applications that 

utilization the history of the packets to be built, with a specific end goal to find 

out issues in a network. This platform is a composition of three fundamental 

components: (1) NetSight, with its devoted servers that get and process the 

postcards for building the packet history, (2) the NetSigh-SwitchAssist, which can 

be utilized as a part of switches to diminish the processing burden on the 

dedicated servers, and (3) the NetSight-HostAssist to create and handle postcards 

on end hosts (e.g., in the hypervisor on a virtualized infrastructure). 

 

4.8.2. Testing and verification 

Tools utilized for testing and verification can supplement debugging and 

troubleshooting. Recent research has demonstrated that verification techniques 

can be connected to recognize and evade issues in SDN, for example, forwarding 

loops and black holes. Verification can be done at various layers (at the 

controllers, network applications, or network devices). Also, there are distinctive 

network properties, mostly topology-specific that can be formally verified, given a 

network model is accessible. Cases of such properties are connectivity, loop 

freedom, and access control. Various tools have additionally been proposed to 

assess the performance of OpenFlow controllers by emulating the load of large-

scale networks (e.g., Cbench, OFCBenchmark, PktBlaster). Thus, benchmarking 

tools for OpenFlow switches are also accessible (e.g., OFLOPS, FLOPS-Turbo). 

 

Tools like NICE produce sets of assorted streams of packets to test as many as 

possible events, exposing corner cases, for example, race conditions. Likewise, 

OFLOPS gives an arrangement of features and functions that permit the 

improvement and execution of a rich arrangement of tests on OpenFlow-

empowered devices. Its definitive objective is to measure the processing limit and 

bottlenecks of control applications and forwarding devices. With this tool, clients 

can observe and assess forwarding table consistency, flow setup latency, flow 

space granularity, packet modification types, and traffic monitoring capacities 



(e.g., counters). In addition to this, FlowChecker, OFTEN, and VeriFlow are three 

cases of tools to verify accuracy properties violation on the system. While the 

former two depend on offline analysis, the last is fit for online checking of 

network invariants. verification constraints include security and reachability 

issues, configuration on the network, loops, black holes, and so forth. 

 

Recently, tools like VeriCon have been intended to verify the accuracy of SDN 

applications in a large scope of network topologies and by analyzing a broad 

range of sequences of network events. Specifically, VeriCon verifies, or not, the 

right execution of the SDN program. One of the difficulties in testing and 

verification is to verify forwarding tables in large networks to find routing 

mistakes, which can bring about traffic losses and security breaches, as fast as 

could be expected under the circumstances. In large scale networks, it is 

unrealistic to accept that the network snapshot, anytime, is steady, because of 

the frequent changes in routing state. Therefore, solutions like HSA, Anteater, 

NetPlumber, Veri-Flow, and assertion languages are not suited for this kind of 

condition. Another critical issue is connected on how quick the verification 

procedure is done, particularly in present day data centers that have tight timing 

prerequisites. Libra denotes one of the primary efforts to address these  

specific difficulties of large scale networks. This tool gives the way to capturing 

stable and consistent previews of large scale network deployments, while likewise 

applying long prefix matching techniques to increase the scalability of the  

system. By using MapReduce calculations, Libra is fit for verifying the correctness 

of a network with up to 10k nodes within one minute. 

 

4.8.3. Simulation and Emulation 

Mininet is the principal system that gives a fast and simple approach to model 

and assess SDN protocols and applications. One of the key properties of Mininet is 

its utilization of software-based OpenFlow switches in virtualized containers, 

giving the same semantics of hardware-based OpenFlow switches. This implies 

controllers or applications created and tested in the emulated environment can 

be (in theory) deployed in an OpenFlow-empowered network with no change. 

Users can simply emulate an OpenFlow network with several nodes and many 

switches by utilizing a solitary PC. Mininet-Hi is an advancement of Mininet that 

improves the container-based (lightweight) virtualization with components to 

enforce performance isolation, resource provisioning, and accurate monitoring 

for performance fidelity. One of the primary objectives of Mininet-HiFi is to 

enhance the reproducibility of networking research.  

 

To simulate bigger scale network, Mininet has two augmentations called Mininet 

CE and SDN Cloud DC. Mininet CE joins groups of Mininet instances into one 



group of simulator instances to prototype global scale networks. SDN Cloud DC 

upgrades Mininet and POX to imitate a SDN-based intra-DC network by 

implementing new software modules, for example, data center topology 

discovery and network traffic generation. Recent simulation platform propositions 

that empower extensive scale tests following a distributed approach incorporate 

MaxiNet and CityFlow. The latter is a venture with the principle objective of 

building an emulated control plane for a city of one million occupants. Such 

activities are a beginning stage to give trial experiences to vast scale SDN 

deployments.  

 

The capacity of simulating OpenFlow devices has additionally been added to the 

well-known ns-3 simulator. Similarly, simulator called fs-sdn which develops the fs 

simulation engine by consolidating a controller and switching segments with 

OpenFlow support. Its principle objective is to give a more realistic and scalable 

simulation platform when contrasted with Mininet. At long last, STS is a test 

system intended to permit developers to determine and apply an assortment of 

experiments, while permitting them to intuitively inspect the state of the 

network. 

 

5. Utilization of traditional protocols to deploy SDN approach 

A traditional approach to enhance routing inside networks (for quick, robust, reliable and 

efficient communication) focus on distributed networking instead of centralized and try to 

make network devices more and more intelligent. However, this approach has made devices 

more complex and network less efficient. There are certain issues (as mentioned below) 

which SDN addresses in a better way.  

 

• Least or no interaction between various protocols causes problem of Black holing. For 

example, OSPF & LDP sync.  

• Partial network visibility results in inefficient use of resources. For example, 

implementing Traffic engineering between two autonomous system. 

• Interaction between devices is not efficient which causes troubles while scaling the 

network.  

• One service/functionality is achieved with the help of various protocols which makes 

it difficult to troubleshoot.  

To overcome from these problems, we have can have hybrid approach which is blend of both 

distributed and centralized techniques. Network device’s control plane i.e. some part of 

intelligence of network device (usually router) can be separated and give it to controller who 

has more visibility of network. Nowadays, commonly used techniques like Traffic Engineering, 

Segment routing, etc. is deployed with centralized (i.e. SDN approach) system for easier 

administration and better results.  



5.1. Interior Gateway Protocol (IGP) 

IGP is used to exchange routing information between networking devices within an 

Autonomous System(AS). It is divided into two types based on the method of computing 

the best path to a destination.  

• Link-state protocols—Advertise data about the network topology (directly 

connected links and the state of those links) to all routers utilizing multicast 

addresses and triggered routing updates until every one of the routers running 

the link-state protocol have indistinguishable data about the internetwork. The 

best path to a destination is computed in view of imperatives, for example, 

maximum delay, minimum available bandwidth, and resource class affinity. OSPF 

and IS-IS are cases of link-state protocols.  

• Distance vector protocols—Advertise complete routing table data to directly 

connected neighbors utilizing a broadcast address. The best path is computed in 

view of the number of hops to the final network. RIP is a case of a distance vector 

protocol. 

Previously, it was Internal gateway protocol (IGP) like OSPF, IS-IS used as underlying 

technology to transfer link-state, network topology information which enables features 

like TE - Traffic engineering, etc. IGP’s main role is to give routing connectivity within or 

internal to a given routing domain. An AS (Autonomous System) can comprise of various 

routing domains, where IGP capacities to advertise and learn network prefixes (routes) 

from neighboring routers to construct a route table that eventually contains entries for 

all sources advertising reachability for a given prefix. IGP executes a route selection 

algorithm to choose the best path between the local router and every destination, and 

gives full connectivity among the routers making up a routing domain. In addition to 

advertising internal network reachability, IGPs are frequently used to advertise routing 

data that is outside to that IGP's routing domain through a procedure known as route 

redistribution. Route redistribution is a method of trading routing data among distinct 

routing protocols to group different routing domains when intra-AS connectivity is 

sought.  

However, IGP has many limitations such as performance and scalability. Though IGP is 

utilized to distribute network topology information, but it only works until used for small 

scale networks. IGPs can autodetect neighbors, with which they obtain intra-area 

network topology data. In any case, the link-state database or a traffic engineering 

database has the extent of a solitary area or AS, accordingly restricting applications, for 

example, end-to-end traffic engineering, the advantage of having outside visibility to 

settle on better choices. Mostly traffic engineering techniques work in a single routing 

domain. For example, MPLS, GMPLS, etc. These arrangements don't work when a route 

from the ingress node to the egress node leaves the routing area or AS of the ingress 

node. In such cases, the path computation issue gets to be distinctly convoluted due to 



the inaccessibility of the entire routing data all through the network. This is because 

service providers usually decide not to spill routing data beyond the routing area or AS 

for scalability constraints and confidentially concerns. 

5.2. Border Gateway Protocol (a successor to Exterior Gateway Protocol) 

Usually referred as BGP, is routing protocol used to exchange routing and reachability 

information between two devices on different autonomous systems irrespective of IGP 

running within Autonomous systems. BGP is not just a more scalable vehicle for 

conveying multi-area and multi-AS topology data, however also gives the policy controls 

that can be valuable for multi-AS topology distribution. BGP is the only protocol which 

can carry all types of routes in Internet. It also compatible with TCP and utilize flow 

control feature of TCP whereas IGPs are not capable of doing it.  

 

6. Need of BGP-LS (Border Gateway Protocol – Link state) 

There are certain problems like optimal path computation, bin-packing with traditional traffic 

engineering approach when utilized for Multi-Area/Multi-AS traffic engineering. This is 

because of head end router has limited visibility of in single AS or single IGP area regardless 

of whether it's the quantity of LSPs in-flight (identified with bin-packing) or LSDB for different 

areas (AS or IGP Area). These issues are difficult to comprehend with distributed 

computation and it bodes well to move LSP path computation for these sorts of issues to a 

central controller which has visibility to the whole domain or more than one domain which 

permits it to calculate the paths effectively, which then can be signaled by the controller to 

the head-end node about the path which is end to end optimal. Even popular 

implementations like Segment Routing, Traffic engineering use the centralized path 

controller to calculate the path and then providing it to the head end node. However, to 

compute path and send it to node, a central controller usually relies on TED (traffic 

engineering database). Information about topology and about link like available bandwidth, 

link metric, TE metric, link bandwidth, etc. helps controller to construct TED.  

 

Generally, it can be achieved by implementing IGP as well as BGP. Initially, IGPs were utilized 

(as explained above). However, it had several problems. For instance, IGP is very chatty, 

therefore more resources and processing time was utilized by controller to handle updates. 

In addition to this, controller had to support both OSPF and IS-IS. Last but not the least, 

placement of controller in large-scale networks was another big issue. 

 

On the other hand, BGP does not alter underlying protocol for utilizing type, length, value 

(TLV) tuples and network layer reachability information (NLRI) that provide apparently 

limitless extensibility. Therefore, the basic idea was to extend BGP by developing new NLRI 

which could be utilized to carry all IGPs information over BGP.   

 



Hence, BGP-LS, Border gateway protocol – Link state was introduced to distribute link state 

information across various AS without breaching the security of ISPs. BGP speaker retrieves 

information from IGP Link-state databases (i.e. information about nodes and links which is 

local/remote IP addresses, local/remote interface identifiers, link metric and TE metric, link 

bandwidth, reservable bandwidth, per Class-of-Service (CoS) class reservation state, 

preemption, and Shared Risk Link Groups - SRLGs) and distribute it to a controller which 

could be done either directly or with the help of a peer.  There is an option to apply a policy 

to information which gets distributed by BGP Speaker. Physical topology captured from LSDB 

or TED maybe distributed directly or BGP speaker may create an abstracted topology where 

virtual, aggregated nodes are connected by virtual paths. Abstracted topology can consist of 

physical/virtual links and nodes. BGP speaker can also filter the information before 

forwarding it to the northbound of controller.   

 

Now, with BGP-LS, lesser resources and processing time utilized by controller as there are 

not much update because BGP is not too chatty. Moreover, controller needs to support only 

BGP. Lastly, forming BGP peers are easier than IGP peers which makes it more scalable than 

IGP based implementation. 

6.1. Carrying Link-State Information in BGP 

IGP comprises of topology and IP reachability data which is captured by BGP to update 

its own database so that BGP could forward information to centralized controller.  In this 

case, controller does not need to have deployment of any IGP (e.g. OSPF, IS-IS, etc.). This 

is achieved with the help of following two parts. 

• New BGP NLRI (describes links, nodes and prefixes comprising IGP link-state) 

• New BGP path attribute (carries attributes and properties of link, node and 

prefix) 



 

TLV Format 

Type/Length/Value triplets denote the information regarding new BGP Link-

state NLRIs and BGP attributes as shown in figure below. 

 

6.1.1. The Link-State NLRI 

Each NLRI represents one of following:  

• Node 

• Link 

• Prefix 

 

  Node - NLRI Type 1 

The format of Node NLRI (NLRI Type = 1) is shown in the figure beneath:  

 

  

 

NLRI’s format contains mainly three fields which are Protocol-ID, Identifier (which 

is of 64 bits) and Local Node Descriptors (variable length). 

 

 



 

Link - NLRI Type 2 

 

Format of Link NRLI (NRLI Type = 2) is as shown in the figure above and it contains 

five fields: Protocol – ID, Identifier which is same as NRLI = 1, 64bits. It has three 

fields with variable length and they are Local Node Descriptors, Remote Node 

Descriptors, and Link Descriptors.  

Prefix – NLRI Type 3/4 

Next is IPv4 Prefix NLRI (NLRI Type = 3) which has the same format as of IPv6 

Prefix NLRI (NLRI Type = 4) and it is shown in the following figure: 

 

Also, both NLRI Type = 3 and NLRI Type = 4 have the same format as of NRLI = 1 

except just one filed which is Prefix Descriptors with variable length.  

Moving Further, the Protocol-ID field has different values as shown below: 



 

At the point when BGP-LS is sourcing local information, then "Direct" and 'Static 

Configuration' protocols sorts ought to be utilized. ‘Direct’ Protocol-ID ought to 

be utilized as a part of the situation where BGP-LS has direct access to the 

interface data and it needs to promote a nearby connection. Also, "Static" 

Protocol-ID ought to be utilized as a part of the situation with virtual connections. 

“Routing Universes” can be characterized as the protocol instances in which 
protocols such as OSPF and IS-IS may run multiple protocol instances over the 
same link. As it is appeared in the figure, that the Identifier field is of 64-bits and it 
is used in order to identify these routing universe. It can be concluded from the 

‘Identifier’ field given by NRLIs that the link-state objects (nodes, links, or prefixes) 
belong to the same routing universe or not. For instance, if NRLI with same 
‘Identifier’ field value then link-state objects must be thought to be from same 
routing universe, however with different ‘Identifier’ field value, the link-objects 
belong to different routing universe. 

 
Besides, if any of the given protocol sets the Identifier field as indicated by Table 
underneath, then it implies that it does not support multiple routing universes.  

 
6.1.1.1. Node Descriptors 

A pair of Router-IDs are used by the underlying IGP for each link, for 
instance, for IS-IS there is a 48-bit ISO system-ID and 32-bit Router-ID for 
OSPFv2 and OSPFv3. In case of Traffic Engineering, an IGP may use more 
than one auxiliary Router-IDs. For example, IS-IS may has one or more 
IPV4 and IPV6 TE Router-IDs. 

 
It is attractive that the Router-ID assignments inside the Node Descriptor 
are all inclusive remarkable. There might be Router-ID spaces (e.g., ISO) 
where no worldwide registry exists, or more regrettable, Router-IDs have 



been designated following the private-IP distribution. BGP-LS utilizes the 
Autonomous System (AS) Number, furthermore, BGP-LS Identifier to 
disambiguate the Router-IDs. 

 
6.1.1.1.1. Globally Unique Node/Link/Prefix Identifiers 

One issue that should be tended to is the ability to recognize an 
IGP node comprehensively and this can be achieved with the 
following: 

• In order to prevent one node looks like two nodes, it should 
be noted that same node should not be represented by 
two keys. 

• This is the opposite case of I, two nodes will not look like 
one node so it must not be represented by the same key. 

 
We characterize an "IGP area" to be the arrangement of nodes 
inside which every node has a one of a kind IGP representation by 
utilizing the mix of Area-ID, Router-ID, Protocol ID, Multi-Topology 
ID, and Instance-ID. The issue is that BGP may get node/link/prefix 
data from numerous autonomous "IGP areas", and we must 
recognize them.  
In addition, we can't expect there is constantly one and just a 
single IGP area per AS. Amid IGP moves, it might happen that two 
repetitive IGPs are set up. 
 

6.1.1.1.2. Local Node Descriptors 
Node Descriptors are present in the Local Node Descriptors TLV 
which is responsible for the anchoring the nearby end of the 
connection. As there are three sorts of NLRIs (node, link, and 
prefix) and three of them requires TLV. As shown in the figure, the 

length of the TLV is variable and it has at least one Node Descriptor 
Sub-TLVs. 
 
 
 



6.1.1.1.3. Remote Node Descriptors 
Node Descriptors are present in the Remote Node Descriptors TLV 
which is responsible for the anchoring the remote end of the 

connection. This is a required TLV for link NLRIs. The length of this 
TLV is variable. The esteem contains at least one Node Descriptor  
Sub-TLVs characterized as in the figure above.  

     
6.1.1.1.4. Node Descriptor Sub-TLVs 

The Node Descriptor Sub-TLVs Code points, Description and 
Lengths are illustrated below: 

 

The Sub-TLVs Code points can be defined as follows: 

• Autonomous System: It has an opaque value with 32-bit AS 
Number. 

• BGP-LS Identifier: It has an opaque value with 32-bit ID. In 
conjunction with Autonomous System Number (ASN), 
exceptionally distinguishes the BGP-LS area. The mix of ASN 
and BGP-LS ID MUST be comprehensively extraordinary. All 
BGP-LS speakers inside an IGP flooding-set (arrangement of 
IGP nodes inside which a LSP/LSA is overwhelmed) MUST 
utilize the same ASN, BGP-LS ID tuple. If an IGP area 
comprises of numerous flooding-sets, then all BGP-LS 
speakers inside the IGP space ought to utilize the same 
ASN, BGP-LS ID tuple. 

• Area-ID: It is used to distinguish the 32-bit region to which 
the NLRI belongs. The Area Identifier permits diverse NLRIs 
of a similar router to be segregated. 



• IGP Router-ID: This is a compulsory TLV. For an IS-IS non-
pseudo-node, this contains a 6-octet ISO Node-ID. For an 
IS-IS pseudo-node comparing to a LAN, this contains the 6-
octet ISO Node-ID of the Designated Intermediate System 
(DIS) trailed by a 1-octet, nonzero PSN identifier (7 octets 
altogether).  
The TLV size in combination with the protocol identifier 
empowers the decoder to decide the sort of the node. 
There can be at most one example of each sub-TLV sort 
introduce in any Node Descriptor. The sub-TLVs inside a 
Node Descriptor must be masterminded in rising request 
by sub-TLV sort. This should be done with a specific end 
goal to look at NLRIs, notwithstanding when a usage 
experiences an obscure sub-TLV. Utilizing stable sorting, an 
execution can do parallel correlation of NLRIs and thus 
permit incremental organization of new key sub-TLVs. 

 
6.1.1.1.5. Multi-Topology ID 

The Multi-Topology ID (MT-ID) TLV carries one or more IS-IS or 
OSPF Multi-Topology IDs for a link, node, or prefix. The format is as 
shown in the figure below.   

The type of MT-IS is 263, Length is 2*n where n is the number of 
MT-IDs carried in the TLV. The MT-ID TLV may be present in a Link 
Descriptor (single MT-ID containing topology), a Prefix Descriptor, 
or the BGP-LS attribute (one MT-ID TLV which contains the array) 
of a Node NLRI. 

 
6.1.1.2. Link Descriptors 

The Link Descriptor field is an arrangement of Type/Length/Value 
(TLV)triplets. A connection depicted by the Link Descriptor TLVs really is a 
"half-link", a unidirectional portrayal of a logical link. In request to 
completely portray a solitary sensible connection, two originating routers 
promote a half-link each, i.e., two Link NLRIs are publicized for a given 
point-to-point interface. 
 



 
 

On the off chance that interface and neighbor addresses, either IPv4 or 
IPv6, are available, then the IP address TLVs are incorporated into the Link 
Descriptor yet not the connection link/remote Identifier TLV. The 
connection local/remote identifiers may be incorporated into the 
connection characteristics.  
 
If the interface and neighbor locations are absent and the connection 
nearby/remote identifiers are available, then the link local/remote 
Identifier TLV is incorporated into the Link Descriptor. The Multi-Topology 
Identifier TLV is incorporated into Link Descriptor if that data is available. 

 
6.1.1.3. Prefix Descriptors 

The Prefix Descriptor field is a set of Type/Length/Value (TLV) triplets. 
Prefix Descriptor TLVs uniquely identify an IPv4 or IPv6 prefix originated by 
a node. 

 

 
 

6.1.1.3.1. OSPF Route Type 
The OSPF Route Type TLV is a discretionary TLV that MAY be 
available in Prefix NLRIs. It is utilized to recognize the OSPF route 
type of the prefix. It is utilized when an OSPF prefix is publicized in 
an OSPF area with numerous route sorts. 



 
 

In the format shown above, the type of the OSPF route is defined 
in OSPF Protocol and they can be one of the listed following: 

• Intra-Area (0x1) 

• Inter-Area (0x2) 

• External 1 (0x3) 

• External 2 (0x4) 

• NSSA 1 (0x5) 

• NSSA 2 (0x6) 
 

6.1.1.3.2. IP Reachability Information 
It is mandatory TLV which consists one IP address prefix (IPv4 or 
IPv6) which could be advertised in the topology for IGP. IP 
Reachability format is as following: 

 
 
 
 
 
 

The Prefix Length field contains the length of the prefix in bits.  The 
IP Prefix field contains the most significant octets of the prefix, i.e., 
1 octet for prefix length 1 up to 8, 2 octets for prefix length 9 to 1, 
etc. 

 
6.1.2. BGP-LS Attribute 

The BGP-LS property is a discretionary, non-transitive BGP trait that is utilized to 
convey link, node, and prefix parameters and properties. It is characterized as an 
arrangement of Type/Length/Value (TLV) triplets. This property should just be 
incorporated with Link-State NLRIs. This characteristic must be disregarded for all 
different address families. 

 
6.1.2.1. Node Attribute TLVs 

These are the type of TLVs which are encoded in the BGP-LS attribute 
along Node NLRI as shown below: 

 



 
 

• Node Flag Bits TLV: It carries a bit mask which describes note 
attributes and it has a clue of variable length. 

 
 
Following picture shows how bits are defined:  

 
 

• IS-IS Area Identifier TLV: IS-IS TLVs are used to encode area addresses 
as an IS-IS node can be a part of one or more IS-IS areas. 

 
 



• Node Name TLV: This is an optional TLV in which the Value Feels 
identifies the symbolic name of the router node and the maximum 
length of the Node Name TLV is 255 octets. 

 
 

• Local IPV4/IPv6 Router-ID TLVs: These are the TLVs which are used for 
describing auxiliary Router-IDs, for instance: correlating a Node-ID 
between different protocols for Traffic Engineering. 

• Opaque Node Attribute TLV: It is a kind of envelope which helps in 
carrying optional Node Attribute TLVs which are advertised by a 
router. This TLV can be used for encoding information. Also, the 
primary task of this TLV is to bridge the document lag between 
routers. 

 
 

6.1.2.2. Link Attribute TLVs 
These are the type of TLVs that may be encoded in the BGP-LS attribute 
with a Link NLRI. It is in a triplet format of Type/Length/Value (TLV). 
Originally Link Attributes were defined for carrying IS-IS encoding but it 
can be used for OSPF as well. 
 



 
 

• IPv4/IPv6 Router-ID TLVs: These TLVs are used for auxiliary Router-
IDs that the IGP might be using. For instance, For Traffic 
Engineering. 

 

• MPLS Protocol Mask TLV: These TLVs are used for describing about 
enabled MPLS signaling protocols with the help of bit mask. The 
value and length of this TLV is 8flags and 1bit. 

 
 Bits are defined as picturized below:  

 



 

• TE Default Metric TLV: This TLV is responsible for efficient Traffic 
Engineering with the help of Metric. It has a fixed length which is 4 
octets and it offers padding as well to protocol with a metric width 
less than 32 bits. 

 
 

• IGP Metric TLV: This TLV has variable length which depends on the 
metric width of the protocol. Different protocols have different 
metric length, for instance IS-IS has a length of 1 and 3 octets and 
OSPF has 2 octets. 

 
  

 

• Shared Risk Link Group TLV: The Shared Risk Link Group TLV carries 
the Shared Risk Link Group Information. It consists of a data 
structure which has a list of SRLG values with elements having 4 
octets as depicted in the figure below: 

 
 
The length of this TLV is 4 (number of SRLG values). The way the 
SRLG values are being carried by TLVs are different for different 
protocols such as for IS-IS, it has been carried in two TLVs which 
are IPv4 TLV and IPv6 SRLG TLV. 

 

• Opaque Link Attribute TLV: The Opaque Link Attribute TLV is an 
envelope that straightforwardly conveys discretionary Link 



Attribute TLVs promoted by a switch/router. An originating 
switch/router should utilize this TLV for encoding data particular to 
the protocol promoted in the NLRI header Protocol-ID field. 

 
 
 

The essential utilization of the Opaque Link Attribute TLV is to 
connect the document lag between, e.g., a new IGP link-state 
attribute being defined and the 'protocol-impartial' BGP-LS 
extensions being published. 

 

• Link Name TLV: This TLV is an Optional TLV. In this the router link, 
can be defined by the Value Field as shown in the diagram. This 
Value field is encoded in 7-bit ASCII.  

 
 
This field gives User the functionality to applying Unicode 
Characters to ASCII in order to fulfill the criteria for correct format 
for transmission of display.  

 
6.1.2.3. Prefix Attribute TLVs 

Prefixes are gained from the IGP topology (IS-IS or OSPF) with a set of IGP 
properties (such as metric, route tags, etc.) that must be reflected into the 
BGP-LS attribute with a prefix NLRI. Prefix Attribute TLVs should be utilized 
when publicizing NLRI sorts 3 and 4only. 

 
 
 
 
 
 
 
 
 
 



• IGP Flags TLV: In IGP Flags TLV, the bits are assigned to prefix and it 
mainly comprises of IS-IS and OSPF flags. The process of encoding 
in IGP Flags TLV is as follows:  

 
 
And the Value Field is as following: 

 
 
 

• IGP Route Tag TLV: The encoded process is as following in the 
figure and this TLV contains original IGP Tags: 

  
 
The Value Field depends upon the IGP topology and it contains one 
or more route Tags. The length is always a multiple of 4. 
 

• Extended IGP Route Tag TLV: IS-IS Extended Route Tags have been 
carried by the Extended IGP Route Tag TLV and the encoding 
process is as follows: 

 
 
It consists of one or more Extended Route Tags with the help of 
IGP topology and the length of this TLV must be a multiple of 8. 



• Prefix Metric TLV: This is an optional TLV and if it appears it 
appears only once. With the help of IGP topology, it carries the 
metric of the prefix if it is present. Its format is as shown below: 

 
 
However, if it is not present the prefix is advertised without any 
reachability. The length of the Prefix TLV is 4. 

 

• OSPF Forwarding Address TLV: It is responsible for carrying OSPF 
forwarding address and it can be wither IPV4 or IPV6. The format 
of OSPF Forwarding Address TLV is as following: 

 
 
The length filed depends upon the Forwarding Address, for 
instance if the address is IPV4 the length is 4 and if it is IPV6 then it 
is 16. 

 

• Opaque Prefix Attribute TLV: The Opaque Prefix Attribute TLV is an 
envelope that straightforwardly conveys optional Prefix Attribute 
TLVs publicized by a switch. A beginning switch should utilize this 
TLV for encoding data particular to the protocol publicized in the 
NLRI header Protocol-ID field. The format of Opaque Prefix 
Attribute TLV is as follows: 

 
 
Length of Opaque Prefix Attribute TLV is variable. The essential 
utilization of the Opaque Prefix Attribute TLV is to connect the 
document lag between, e.g., another IGP connect state quality 
being characterized and the protocol unbiased BGP-LS 
augmentations being distributed. 



 
6.1.3. BGP Next-Hop Information 

BGP interface state data for both IPv4 and IPv6 systems can be persisted either an 
IPv4 BGP session or an IPv6 BGP session. If an IPv4 BGP session is utilized, then 
the following bounce in the MP_REACH_NLRI. 
 
Ought to be an IPv4 address. Likewise, if an IPv6 BGP session is utilized, then the 
following jump in the MP_REACH_NLRI SHOULD be an IPv6 address. Usually, the 
following hop will be set to the nearby endpoint address of the BGP session. The 
Length field of the following hop address will indicate the following hop address 
family. If the following hop length is 4, then the following hop is an IPv4 address; 
if the following hop length is 16, then it is a worldwide IPv6 address; and if the 
following hop length is 32, then there is one worldwide IPv6 address took after by 
a connection neighborhood IPv6 address. 

 
The BGP Next Hop property is utilized by each BGP-LS speaker to approve the 
NLRI it gets. If different NLRIs are sourced by numerous originators, the BGP Next 
Hop credit is utilized to tiebreak per the standard BGP way choice process. 
 

7. Utilizing IGPs and BGP-LS to deploy an SDN approach with OpenDayLight 
As we are already aware, most organizations utilize routing protocols like OSPF, IS-IS for 
routing and configure routers individually which is considered as Distributed control 
approach. However, to minimize the hassle of distributed system, we deploy a SDN network 
(i.e. Centralized approach) which can be accomplished by using APIs like BGP Link State (BGP-
LS), Segment Routing (SR), BGP FlowSec (BGP-FS), Path Computation Element Protocol 
(PCEP), and NETCONF/YANG or Controllers like Open Network Operation System (ONOS), 
OpenDaylight (ODL) and OpenStack. 



In this implementation, I am going to use BGP-LS for layer 3 topology discovery of traditional 
network running OSPF as well as IS-IS in two separate domains and forward it to the 
controller (OpenDayLight). Deployed network is shown in the picture above.  
 
7.1. Demo of an Organization’s Network running OSPF and IS-IS 

As shown in topology above, real-time network deployed in an organization to fulfill 
their needs by utilizing OSPF and IS-IS. Here is the basic configuration of these routers.  
 
R1#show running-config 
hostname R1 
! 
interface FastEthernet0/0 
 ip address 14.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1 
 ip address 13.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
interface FastEthernet3/0 
 ip address 11.1.1.2 255.255.255.0 
 duplex auto 
 speed auto 
router ospf 1 
 log-adjacency-changes 
 network 11.1.1.0 0.0.0.255 area 0 
 network 13.1.1.0 0.0.0.255 area 0 
 network 14.1.1.0 0.0.0.255 area 1 
end 
 
R2#show running-config 
hostname R2 
! 
interface FastEthernet0/0 
 ip address 15.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1 
 ip address 13.1.1.2 255.255.255.0 
 duplex auto 
 speed auto 



! 
interface FastEthernet3/0 
 ip address 12.1.1.2 255.255.255.0 
 duplex auto 
 speed auto 
! 
router ospf 1 
 log-adjacency-changes 
 network 12.1.1.0 0.0.0.255 area 0 
 network 13.1.1.0 0.0.0.255 area 0 
 network 15.1.1.0 0.0.0.255 area 2 
end 
 
R3#show running-config 
hostname R3 
! 
interface FastEthernet0/0 
 ip address 11.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1 
 ip address 10.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
interface FastEthernet3/0 
 ip address 12.1.1.1 255.255.255.0 
 duplex auto 
 speed auto 
! 
router ospf 1 
 log-adjacency-changes 
 network 10.1.1.0 0.0.0.255 area 0 
 network 11.1.1.0 0.0.0.255 area 0 
 network 12.1.1.0 0.0.0.255 area 0 
end 
 
R4#show running-config 
hostname R4 
! 
interface FastEthernet0/0 
 ip address 14.1.1.2 255.255.255.0 
 duplex auto 



 speed auto 
! 
router ospf 1 
 log-adjacency-changes 
 network 14.1.1.0 0.0.0.255 area 1 
end 
 
R5#show running-config 
hostname R5 
! 
interface FastEthernet0/0 
 ip address 15.1.1.2 255.255.255.0 
 duplex auto 
 speed auto 
! 
router ospf 1 
 log-adjacency-changes 
 network 15.1.1.0 0.0.0.255 area 2 
end 
 
R6#show running-config 
hostname R6 
! 
interface FastEthernet0/0 
 ip address 22.1.1.2 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1 
 ip address 24.1.1.1 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
router isis 0 
 net 49.0000.0000.0000.0002.00 
end 
 
R7#show running-config 
hostname R7 
! 
interface FastEthernet0/0 
 ip address 21.1.1.1 255.255.255.0 



 ip router isis 0 
 duplex auto 
 speed auto 
! 
interface FastEthernet0/1 
 ip address 22.1.1.1 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
interface FastEthernet3/0 
 ip address 23.1.1.1 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
router isis 0 
 net 49.0000.0000.0000.0001.00 
end 
 
R8#show running-config 
hostname R8 
! 
interface FastEthernet0/1 
 ip address 24.1.1.2 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
interface FastEthernet3/0 
 ip address 23.1.1.2 255.255.255.0 
 ip router isis 0 
 duplex auto 
 speed auto 
! 
router isis 0 
 net 49.0000.0000.0000.0003.00 
end 
 
 
 
 
 
 



7.2. BGP-LS Router Configuration 
To implement SDN approach, a router/switch is required which supports OpenFlow 
protocol. Cisco IOS-XR router (supports OpenFlow) is being used to capture link state 
attributes of network and forward it to the controller. Following is the configuration of 
BGP-LS router.  
 
RP/0/0/CPU0:IOS-XR#sh running-config 
hostname IOS-XR 
! 
interface GigabitEthernet0/0/0/1 
 ipv4 address 10.1.1.2 255.255.255.0 
! 
interface GigabitEthernet0/0/0/2 
 ipv4 address 21.1.1.2 255.255.255.0 
! 
interface GigabitEthernet0/0/0/3 
 ipv4 address 192.168.1.5 255.255.255.0 
! 
router isis 0 
 net 49.0000.0000.0000.0004.00 
 distribute bgp-ls 
 interface GigabitEthernet0/0/0/2 
  address-family ipv4 unicast 
  ! 
router ospf 1 
 distribute bgp-ls 
 area 0 
  interface GigabitEthernet0/0/0/1 
  ! 
router bgp 64520 
 bgp router-id 192.168.1.5 
 address-family ipv4 unicast 
 ! 
 address-family link-state link-state 
 ! 
 neighbor 192.168.1.1 
  remote-as 64520 
  update-source GigabitEthernet0/0/0/0 
  address-family link-state link-state 
  end 
 
 
 
 



7.3. OpenDayLight controller and BGP-LS feature Installation  
OpenDayLight controller setup can be downloaded from opendaylight.org. Boron is the 
latest update from OpenDayLight however, there are some difficulties in deploying this 
version. Therefore, Beryllium is being used instead which is one version lower than 
Boron. 
 
After installing the controller, we need to add features to it so that we could use BGP-LS 
capabilities. I have installed following features using command:  
feature: install <feature name>  
odl-bgppcep-bgp-all – to utilize BGP-LS  
odl-dlux-all -- graphical user interface of OpenDaylight 
odl-restconf – for accessing RESTCONF API 
odl-l2switch-switch – to enable network functionality like an Ethernet switch 
odl-mdsal-apidocs: for accessing Yang API 

 
➢ Starting ODL 

 
 

➢ Installing Features:  
Installed features on ODL can be verified using grep command as utilized on the 
following screenshots. Here are some examples of this command in action.  
Verification of odl-dlux-all feature: 

 



Verification of odl-bgpcep-bgp feature: 

 
 
Verification of odl-mdsal-apidocs feature: 

 
 
Verification of odl-restconf feature: 

 
 

7.4. Configuring the BGP on ODL 
To define BGP, we need to define BGP Autonomous System number, BGP peer and BGP 
id. 

➢ modified the local BGP RIB info i.e. AS 64520 with ID 192.168.1.1.  

 



➢ BGP Peer configured as 192.168.1.5 which is ID of IOS-XR router.  

 
 

➢ Utilized user defined port number (179) on which ODL will listen and communicate with 
IOS-XR. 

 
 

7.5. Verification of BGP-LS  
After the controller and IOS-XR are deployed as shown in network diagram above, 
forwarding of link-state attributes to the controller can be verified via different 
techniques. However, before verification of link-state distribution, following snapshots 
represent the successful connection between ODL and IOS-XR.  
 

➢ TCP Connection confirmation 

 
 

➢ BGP Session established between ODL and IOS-XR 

 



➢ BGP neighbors  

 



➢ BGP is running in STANDALONE mode. 

 
➢ Verification via OpenDayLight Graphical User Interface 

 



 
 

 
 



➢ Verification via IOS-XR command line 
RP/0/0/CPU0:IOS-XR#sh bgp link-state link-state 
Tue Mar 14 06:47:04.219 UTC 
BGP router identifier 192.168.1.5, local AS number 64520 
BGP generic scan interval 60 secs 
Non-stop routing is enabled 
BGP table state: Active 
Table ID: 0x0   RD version: 209 
BGP main routing table version 209 
BGP NSR Initial initsync version 8 (Reached) 
BGP NSR/ISSU Sync-Group versions 0/0 
BGP scan interval 60 secs 
 
Status codes: s suppressed, d damped, h history, * valid, > best 
              i - internal, r RIB-failure, S stale, N Nexthop-discard 
Origin codes: i - IGP, e - EGP, ? - incomplete 
Prefix codes: E link, V node, T IP reacheable route, u/U unknown 
              I Identifier, N local node, R remote node, L link, P prefix 
              L1/L2 ISIS level-1/level-2, O OSPF, D direct, S static/peer-node 
              a area-ID, l link-ID, t topology-ID, s ISO-ID, 
              c confed-ID/ASN, b bgp-identifier, r router-ID, 
              i if-address, n nbr-address, o OSPF Route-type, p IP-prefix 
              d designated router address 
   Network            Next Hop            Metric LocPrf Weight Path 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]]/336 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]]/336 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]]/336 
                      0.0.0.0                                0 i 
*> [V][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]]/336 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]]/328 
                      0.0.0.0                                0 i 



*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]]/328 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]]/336 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]]/336 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]]/336 
                      0.0.0.0                                0 i 
*> [V][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]]/336 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r10.1.1.2]]/376 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1]]/376 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1]]/376 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r15.1.1.1]]/376 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d10.1.1.1]]/408 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d11.1.1.1]]/408 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d12.1.1.1]]/408 
                      0.0.0.0                                0 i 
*> [V][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1d13.1.1.1]]/408 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.02]]/576 
                      0.0.0.0                                0 i 



*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]][R[c64520][b192.168.1.5][s0
000.0000.0004.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]][R[c64520][b192.168.1.5][s0
000.0000.0002.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]][R[c64520][b192.168.1.5][s0
000.0000.0003.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]][R[c64520][b192.168.1.5][s0
000.0000.0002.00]]/576 
                      0.0.0.0                                0 i 



*> 
[E][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]][R[c64520][b192.168.1.5][s0
000.0000.0003.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][R[c64520][b192.168.1.5][s0
000.0000.0003.02]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][R[c64520][b192.168.1.5][s0
000.0000.0001.01]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.01]][R[c64520][b192.168.1.5][s0
000.0000.0004.00]]/576 
                      0.0.0.0                                0 i 



*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.02]][R[c64520][b192.168.1.5][s0
000.0000.0002.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]][R[c64520][b192.168.1.5][s0
000.0000.0001.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.01]][R[c64520][b192.168.1.5][s0
000.0000.0003.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]][R[c64520][b192.168.1.5][s0
000.0000.0002.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.02]][R[c64520][b192.168.1.5][s0
000.0000.0003.00]]/576 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r10.1.1.2]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d10.1.1.1]][L[i10.1.1.2][n10.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d10.1.1.1]][L[i10.1.1.1][n10.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d11.1.1.1]][L[i11.1.1.1][n11.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d12.1.1.1]][L[i12.1.1.1][n12.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d11.1.1.1]][L[i11.1.1.2][n11.1.1.1]]/824 
                      0.0.0.0                                0 i 



*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r14.1.1.1d13.1.1.1]][L[i13.1.1.1][n13.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r15.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r12.1.1.1d12.1.1.1]][L[i12.1.1.2][n12.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r15.1.1.1]][R[c64520][b192.168.1.5][a0.0.
0.0][r14.1.1.1d13.1.1.1]][L[i13.1.1.2][n13.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d10.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r10.1.1.2]][L[i10.1.1.1][n10.1.1.2]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d10.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r12.1.1.1]][L[i10.1.1.1][n10.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d11.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r12.1.1.1]][L[i11.1.1.1][n11.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d11.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r14.1.1.1]][L[i11.1.1.1][n11.1.1.2]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d12.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r12.1.1.1]][L[i12.1.1.1][n12.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r12.1.1.1d12.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r15.1.1.1]][L[i12.1.1.1][n12.1.1.2]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1d13.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r14.1.1.1]][L[i13.1.1.1][n13.1.1.1]]/824 
                      0.0.0.0                                0 i 
*> 
[E][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1d13.1.1.1]][R[c64520][b192.168.
1.5][a0.0.0.0][r15.1.1.1]][L[i13.1.1.1][n13.1.1.2]]/824 
                      0.0.0.0                                0 i 



*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L1][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0001.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0002.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0003.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][P[p21.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][P[p22.1.1.0/24]]/392 
                      0.0.0.0                                0 i 



*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][P[p23.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> [T][L2][I0x0][N[c64520][b192.168.1.5][s0000.0000.0004.00]][P[p24.1.1.0/24]]/392 
                      0.0.0.0                                0 i 
*> 
[T][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r14.1.1.1]][P[o0x02][p14.1.1.0/24]]/480 
                      0.0.0.0                                0 i 
*> 
[T][O][I0x0][N[c64520][b192.168.1.5][a0.0.0.0][r15.1.1.1]][P[o0x02][p15.1.1.0/24]]/480 
                      0.0.0.0                                0 i 
 

8. Conclusion 
BGP-LS can encourages in gathering IGP topology of the network and sending out it to a 
central SDN Controller. BGP-LS is considered as a powerful tool when utilized with controllers 
and application. Along with extracting data from the network, it is also utilized to have a 
complete view of a network topology which diminishes the possibility of data getting lost and 
to decrease the number of hops to reach the destination. Moreover, with the centralized 
approach of SDN, controller quickly communicate update regarding link failure to all the 
nodes present in a network.  
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