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Abstract 

Walking is a locomotor task that integrates information from all over the nervous system. The 

lumbosacral spinal cord houses neural networks that contribute to locomotion. These networks 

dominate locomotor activity during development and may provide suitable targets for restoring 

function after injury.  

 

Motor activity of the developing spinal cord under electrical or pharmacological activation has 

been extensively used to study locomotor networks, leading to various models of the central 

pattern generator. Spontaneous activity of the developing spinal cord, which represents the 

locomotor networks at rest, may also contribute to understanding of the development of these 

networks. In the postnatal rodent spinal cord, it is characterized by stochastic and complex 

patterns of activity, which correspond to kicking-like movements. Spontaneous activity has been 

challenging to characterize as there are no current analysis methods. I developed a software tool 

to characterize and classify episodes of spontaneous activity from developing spinal networks of 

the neonatal mouse using supervised machine learning. I tested the software’s ability to detect 

changes in activity by increasing network excitability with KCl. Supervised machine learning-

based classification revealed global and class-specific changes after increasing excitability. This 

software will add to the toolbox of methods used to study developing locomotor networks under 

varying conditions. 

 

After a SCI, spinal neural networks and their connections to the leg muscles remain intact. An 

incomplete SCI causes partial paralysis. To restore walking after an incomplete SCI, residual 

function needs to be augmented. Intraspinal microstimulation (ISMS) entails implanting 
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electrodes into the ventral horn of the lumbosacral enlargement to activate the muscles of the 

legs. I used ISMS to restore walking in a model of hemisection SCI, which affects one hind-

limb. Anaesthetized cats with an intact cord were implanted with ISMS unilaterally and the 

voluntary movements of one hind-limb were mimicked by a person moving that limb. Feedback 

from external sensors on the person-moved limb, representing residual function, was used to 

move the other limb to the opposite phase of the gait cycle using ISMS.  

 

The first demonstration of augmenting remaining function was performed in cats on a split-belt 

treadmill. The belt ipsilateral to the ISMS-controlled limb remained stationary, while the other 

turned at varying speeds. Sensors measuring residual function of the person-moved limb were 

used to anticipate changes of the walking phases, and triggered ISMS to move the other limb to 

the opposite phase. At faster speeds of stepping, the feedback-initiated transitions were 

insufficient causing a loss of weight-bearing. Four different supervised machine learning 

methods were used to predict the step period of the person-moved limb. If the prediction 

indicated a faster step, the control strategy changed to feed-forward, using the predicted value to 

determine the time spent in each phase of the cycle. Three of the four prediction methods 

resulted in improved weight-bearing, and maintained alternation at varying speeds. This control 

strategy augmented remaining function, while allowing the user to step at a self-selected speed 

through automatic adaptation using supervised machine learning. 

 

For more personalized control of walking, other machine learning methods were employed. 

Commercially available walking systems use the same open-loop control strategy for each user, 

forcing them to accommodate to the control system. Feedback from external sensors can improve 
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control strategies; however, with a large burden of tuning, as each person walks differently from 

others as well as among themselves. I propose that machine learning can reduce the burden of 

tuning and demonstrate this using ISMS in a feline model of hemisection SCI. Reinforcement 

learning generated predictions for sensors measuring residual function during walking. 

Thresholds on the predictions indicated phases of the walking cycle and produced fixed 

responses in the ISMS output to move the other limb to the opposite phase (Pavlovian control). 

Learning parameters were either initialized to zero or built upon learned predictions from 

previous walking trials. Predictions were quickly learned and initiated changes between the 

phases of the walking cycle to produce alternating over-ground walking. Learning was able to 

adapt to different people walking the limb and between different cats. Furthermore, learning was 

able to recover from mistakes made during walking. This work demonstrated that Pavlovian 

control using reinforcement learning can adapt to different subjects walking without the need for 

retuning. It allowed for personalized walking that augmented remaining function.  
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Chapter 1: Introduction 

This thesis work demonstrates the utility of machine learning in solving neuroscience problems, 

specifically related to the characterization and restoration of locomotion at the spinal level. 

Interdisciplinary work brings ideas and concepts from multiple fields together. Machine learning 

itself is highly interdisciplinary. The concepts used in machine learning are derived from the 

knowledge of biological learning. It aims to mimic or replicate natural learning processes. This 

can be in the form of modeling neurons and how they form connections to each other, to 

emulating broader concepts in learning, such as reinforcement, demonstration, association, 

repetition, and memory. As machine learning is biologically-inspired, using machine learning to 

characterize complex locomotor signals or to control a neural prosthesis to restore walking is a 

step towards more biologically-relevant solutions. 

 

Walking is a multifaceted locomotor task that integrates information from many regions in the 

nervous system. The basic goal of walking is to enable a being to travel from one place to 

another using their limbs. Although walking is a seemingly periodical task, especially when 

compared to the variety of movements performed by the upper limbs, there are intricate central 

mechanisms to consider. The spinal cord is part of the central nervous system and plays a critical 

role in walking. It houses tracts between the peripheral and autonomic nervous systems to the 

cortex, cerebellum, and brainstem (Kandel 2013). These tracts enable balance and voluntary 

movement, and relay pain and sensory information. Additionally, the spinal cord houses neurons 

that integrate information from descending tracts, afferent inputs from the periphery, and inputs 

from propriospinal neurons. Injuries to these tracts and neurons results in motor and sensory 

deficits, as well as autonomic dysfunction. A spinal cord injury (SCI) results in drastic lifestyle 

changes including loss of independence. The degree of paralysis and dysfunction depends on the 

level and extent of damage to the spinal cord. Injuries can be complete or incomplete according 

to the extent of the deficits. The level of the injury defines whether a person is tetraplegic 

(cervical level) or paraplegic (thoracic, lumbar, or sacral level).  

 

One common method used to study the developing spinal cord is fictive locomotion. Fictive 

locomotion entails inducing alternating, locomotor-like activity in an in vitro spinal cord using 

electrical or pharmacological activation (Kiehn and Dougherty 2013). Through manipulating and 
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modeling activity produced during fictive locomotion, much of the structure and outputs of the 

spinal central pattern generator (CPG) have been uncovered (McCrea and Rybak 2008). 

However, there is still much to learn regarding the structure and function of the CPG, especially 

in larger mammals and during development.  

 

Motoneurons and spinal networks can be activated after a SCI using electrical stimulation, 

enabling the restoration of walking. Stimulation of the peripheral nerves can produce direct 

motor outputs as well as motor responses through reflex activity (Pierrot-Deseilligny and 

Mazevet 2000; Lou et al. 2017). Spinal networks can be more directly targeted using epidural 

electrical stimulation (Angeli et al. 2018; Wagner et al. 2018), transcutaneous electrical 

stimulation (Hofstoetter et al. 2015; Inanici et al. 2018), or intraspinal microstimulation (Saigal 

et al. 2004; Holinski et al. 2016) to assist with or to restore walking. However, control methods 

for these electrical stimulation techniques are needed in order to provide a more integrated and 

personalized neural prosthesis. Commercially available systems using peripheral electrical 

stimulation such as the Parastep initiate open loop, or pre-timed, walking movements using 

manual push buttons on a walker (Chaplin 1996). Exoskeletons also employ an open loop control 

strategy initiated by tilt sensors (Chang et al. 2015; Ekelem and Goldfarb 2018). These systems 

force the users to adapt their walking to the control strategy of the device. One approach to 

improving the control methods includes adding feedback. For example, feedback from sensors 

can be used to interrupt the open loop timing, detect the intent of the user to step, or to track joint 

movements (Popović 1993; Guevremont et al. 2007; Dutta et al. 2008; Nekoukar and Erfanian 

2012; Holinski et al. 2016). 

 

Machine learning may also be a viable option for improving control strategies. Machine learning 

methods are capable of analyzing complex data, are suitable for noisy or missing data, and are 

fast, automatic, and powerful. Examples of uses for machine learning methods span from 

labelling emails as spam (Cormack 2008) to self-driving cars (Bojarski et al. 2016) to medical 

diagnoses including skin cancer classification (Esteva et al. 2017). Machine learning methods 

have also been used to study walking, including to analyze electromyography (EMG) signals 

recording during walking (Miller et al. 2013), to diagnose gait deficits in Parkinson’s disease 

(Zeng et al. 2016), for joint tracking (Abbas and Triolo 1997), or to predict the phases of the gait 
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cycle (Kirkwood et al. 1989). Machine learning methods have also been used to detect the 

intention to step (Kirkwood and Andrews 1989; Kostov et al. 1992, 1995; Tong and Granat 

1999; Sepulveda et al. 1997), control joint angles (Chen et al. 2004), for finite state control 

(Popović 1993), to switch between gait types such as sitting to standing to walking (Graupe and 

Kordylewski 1995), and even to produce walking in robots (Endo et al. 2008; Li et al. 2013). 

 

This work details the use of machine learning to characterize spontaneous motor activity 

recorded from the developing spinal cord. Spontaneous activity differs from fictive locomotion 

as it is the activity produced by the spinal cord in its more natural state. The activity produced 

during different stages of development is unique and may provide additional information about 

the developing spinal locomotor networks. This work also demonstrates different methods of 

machine learning to control walking by targeting the spinal cord. The control strategies aim to 

augment remaining function in a model of incomplete SCI, as well as adapt the walking through 

speed-adaptability and automatic personalization using learned predictions. Together this work 

strives to demonstrate how the spinal cord and machine learning can be used to understand 

locomotion and to restore locomotion.  

 

1.1 Spinal Cord Development 

1.1.1 Spontaneous Activity 

Spontaneous activity is a common feature of developing neural networks throughout the central 

nervous system. It is present during development in several regions of the nervous system 

including the spinal cord (O’Donovan and Landmesser 1987; Jiang et al. 1999; Whelan et al. 

2000), retina (Galli and Maffei 1988; Torborg and Feller 2005), hippocampus (de la Prida et al. 

1996; Garaschuk et al. 1998; Sipilä et al. 2006), cerebellum (Watt et al. 2009), and thalamus 

(Pangratz-Fuehrer et al. 2016; Mooney et al. 1996). It plays an important role in network 

development and consolidation. Specifically, spontaneous activity has been shown to guide 

axons (Hanson and Landmesser 2004; Cang et al. 2005) and refine synaptic transmission (Yu et 

al. 2004).  

 

In the spinal cord, spontaneous activity can be recorded in the absence of pharmacological or 

electrical activation. Spontaneous activity in the spinal cord leads to the emergence of 
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locomotor-like movements during development, including kicking in utero and postnatally, 

which eventually develops into locomotion (Hernandez et al. 1991; Whelan et al. 2000). 

Studying spontaneous activity throughout development can facilitate the understanding of how 

the movements develop as the central nervous system matures.  

 

Much of the work has been performed in chick, mouse, and rat models (Fellippa-Marques et al. 

2000; Hanson and Landmesser 2003; Landmesser and O’Donovan 1984; O’Donovan 1999; Ren 

and Greer 2003; Whelan et al. 2000); however, specific time points described throughout refer to 

mouse development. The chick model is most often used to study embryonic development as the 

fetus is encapsulated in an egg outside of the mother’s body, allowing in ovo (Landmesser and 

O’Donovan 1984) or in vitro (Nishimaru et al. 1996) access to the fetus. The rat and mouse 

models have been used to record prenatal (Nakayama et al. 1999; Hanson and Landmesser 2003) 

and postnatal (Smith and Feldman 1987) activity. The neonatal mouse spinal cord preparation is 

advantageous as it is smaller, allowing for study in vitro at later time points as the tissue can 

remain viable for longer (Jiang et al. 1999). Furthermore, genetic manipulations can be applied 

to mice to further investigate the development of spinal locomotor networks (Cazalets et al. 

2000; Smith et al. 1993). These animals all have very small spinal cords, allowing for in vitro 

preparations to be used. In vitro preparations allow for neurophysiological measurements directly 

on the spinal cord and roots, as well as the application of drugs without the need to cross the 

blood-brain barrier (BBB).  

 

Recordings of spinal cord spontaneous activity are typically obtained through extracellular 

suction electrodes placed at the proximal stump of the ventral roots (Nishimaru et al. 1996). The 

raw neurograms include subthreshold network activity as well as suprathreshold spiking activity 

(Figure 1.1). 

 

Recording spontaneous activity perinatally has facilitated the understanding of the development 

of spinal motor networks. However, spontaneous activity is complex, making it difficult to study 

in detail. Much of the analysis of spontaneous activity generated by spinal circuits have used 

high-pass filtered or AC-coupled recordings as they provide a simpler presentation of the 

activity.  
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Figure 1.1. Example of spontaneous activity recorded from the left L2 ventral root from a neonatal mouse (P0-P3). 

 

1.1.2 Embryonic Development 

In the spinal cord, spontaneous activity first appears before supraspinal and afferent inputs reach 

the lumbar spinal cord (Kudo et al. 1993; Kudo and Yamada 1987). The earliest spontaneous 

motor activity embryonically is comprised of infrequent and brief bursts of action potentials 

(O’Donovan and Landmesser 1987) that increase in frequency and regularity (embryonic day (E) 

12-18) (Nakayama et al. 1999; Yvert et al. 2004). At this stage (E12.5), the genesis of 

spontaneous activity is dependent on electrical transmission through gap junctions (Hanson and 

Landmesser 2003; Whelan 2003), as well as by glycine and GABA, which are functionally 

excitatory at this stage in development (Nishimaru et al. 1996). Glycine and GABA are 

excitatory early in development due to higher concentrations of chloride in the motor neurons. 

As a result, chloride moves out of the cell upon activation of glycine and GABA receptors, 

leading to depolarization of the post-synaptic membrane. Around E18.5, spontaneous activity 

transitions from glycine to glutamate-dependent mechanisms (Nishimaru et al. 1996). This is due 

to the increased expression of the potassium-chloride-co-transporter 2 (KCC2) (Delpy et al. 

2008) which results in chloride-dependent synaptic transmission becoming functionally 

inhibitory. There is also a loss of GABAergic interneurons in the ventral horn (Antal et al. 1994). 

In addition to changes in intrinsic network function, there are also changes in the efferent 

pathways. Some descending pathways from the brainstem to the spinal cord begin to emerge, 
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including reticulospinal, vestibulospinal, serotonergic, and noradrenergic pathways (Clarac et al. 

1998; Kudo et al. 1993; Ballion et al. 2002). As a consequence, spontaneous activity becomes 

more complex and variable (O’Donovan and Landmesser 1987; O’Donovan et al. 1998; 

Branchereau et al. 2002).  

 

1.1.3 Post-Natal Activity 

In the presence of olfactory or cutaneous stimulation, neonatal rodents are capable of generating 

stepping movements as soon as a few hours after birth; however, the gait is ataxic and weight-

bearing is largely absent (Fady et al. 1998; Jamon and Clarac 1998; Hernandez et al. 1991). 

During the first few days of life, the majority of movements occur spontaneously and can be 

recorded in vitro. During this time, episodes of spontaneous activity are highly irregular and are 

often accompanied with superimposed rhythms that are synchronous or alternating across 

different ventral roots (Whelan et al. 2000). This is attributed to incomplete propriospinal and 

corticospinal innervations and immature synapses, even at post-natal day (P) 4 (Hernandez et al. 

1991; Stelzner et al. 1986).  

 

Posture and locomotion develops rostro-caudally, with the forelimbs making locomotor 

movements before the hind-limbs (Nakayama et al. 1999; Clarac et al. 1998). At about one week 

old rodents begin to bear weight and present postural-related reflexes, coinciding with the 

corticospinal pathways reaching the lumbar levels (Clarac et al. 1998; Whelan 2003). Mice at 

this stage are considered functionally motor mature as weight-bearing occurs in the presence of 

sensory stimulation (Jiang et al. 1999). From P10-13 the eyes begin to open and the mice can 

achieve weight-bearing, albeit slow, quadrupedal locomotion (Clarac et al. 1998; Westerga and 

Gramsbergen 1990). Serotonergic pathways continue to develop during the first two weeks after 

birth. Walking subsequently becomes faster and more complex behaviours emerge, including 

rearing and sitting, corresponding to the maturation of sensory afferent pathways (Clarac et al. 

1998). Between two and three weeks, descending innervation is fully developed (Westerga and 

Gramsbergen 1990).  

 

The early post-natal activity has been described as either alternating, unilateral, or synchronous 

across ventral roots (Whelan et al. 2000) However, these descriptions refer to AC-coupled or 
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high-pass filtered recordings of spontaneous activity. The low-pass filtered or DC-coupled 

recordings retain the fine details of the episodes of activity. Although the activity is often 

synchronous between roots, the intra-episode activity is different between roots, each with 

varying rhythmicity and patterns. These intra-episode patterns have not been studied as the 

details have been difficult to characterize. However, these patterns may reveal important 

components of neural activity that are necessary for the development of rhythmic movements 

such as locomotion.  

 

1.2 Walking 

1.2.1 Early Walking in Humans 

Humans are unable to walk at birth; however, infants display stepping behaviour independent of 

volitional control (Forssberg 1985). Because the motor tracts and cortex are immature at birth 

with undeveloped myelin (Altman and Bayer 2001), this locomotion behaviour in infants is 

thought to be of spinal origin up to one year of age (Yang et al. 2004). Furthermore, sensory 

input can initiate stepping in infants. When held to stand on a flat surface and tilted forward, 

infants will take a couple of steps. When held over a treadmill belt, infants could step with some 

weight-bearing, with better stepping ability correlated with more weight-support. As the 

treadmill belt speed increased, the infants continued to alternate their legs (Vasudevan et al. 

2016). 

 

When infants step, they make contact with the forefoot instead of the heel (Forssberg 1985). The 

initiation of stepping in infants requires weight-support as well as rapid extension of the hip 

(Pang and Yang 2000). In infants younger than a year, flexion and extension movements occur 

together in the hip, knee and ankle joints, with foot drag frequently occurring at the beginning of 

the swing phase (Yang et al. 2004). The foot drag may be due to the immaturity of the central 

and peripheral nervous systems.  

 

Studies in developing nervous systems, such as those of prenatal and neonatal animals, as well as 

infants, provide understanding and evidence for the organization of the spinal networks that 

contribute to locomotion. These networks may be taken advantage of after the loss of voluntary 

movements, such as with a SCI, by targeting them with therapies or stimulation. 
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1.2.2 The Gait Cycle 

Generally, walking consists of the legs alternating between swing and stance phases, with 

periods of double-limb support to transition the body weight from one leg to the other. The gait 

cycle of one leg can be divided into 4 phases indicating flexion and extension movements: F, E1, 

E2, and E3 (Goslow et al. 1973; Engberg and Lundberg 1969). These correspond to toe-off to 

early swing, late swing to heel strike, heel strike to mid-stance, and mid-stance to toe-off, 

respectively. The swing phase includes F and E1 and correspond to the acceleration (flexion) and 

deceleration (extension 1) of the leg as it swings forward; the stance phase includes E2 and E3, 

which correspond to weight-bearing and propulsive extension movements, respectively. 

Typically, 60% of the gait cycle is spent in stance. As the speed of walking increases, the 

proportion of time spent in stance decreases (Liu et al. 2014; Hebenstreit et al. 2015). The 

alternation of the swing and stance phase is mediated by networks in the spinal cord: the central 

pattern generator.  

 

1.2.3 Spinal Central Pattern Generator 

A locomotion central pattern generator (CPG) is defined as a neural network that is capable of 

producing coordinated and rhythmic alternation of flexor and extensor motoneurons in the 

absence of descending drive or afferent input (Guertin 2009; McCrea and Rybak 2008). It resides 

in the spinal cord and has been shown to exist in invertebrates such as crayfish (Stein 1971) and 

leeches (Kristan and Weeks 1983), and in vertebrates including lamprey (Wallén and Williams 

1984; Messina et al. 2017) and cats (Brown 1911; Jankowska et al. 1967; Pearson and Rossignol 

1991). There is evidence that the CPG may also exist in humans (Calancie et al. 1994; Bussel et 

al. 1996; Dimitrijevic et al. 1998; Yang et al. 2004; Minassian et al. 2007). The CPG produces 

the basic motor commands for walking: coordinated flexion and extension within a limb as well 

as left-right alternation. Over the past century, various models of the CPG network have been 

theorized, stemming from experiments performed frequently in cats.  

 

1.2.3.1 Half-Center Model 

The half-center model was proposed by T. Graham Brown in the early 1900s. He demonstrated 

that basic stepping movements could be produced by the spinal cord in the absence of 

descending motor control and afferent feedback in spinalized, decerebrate cats (Brown 1911). 
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The half-center model is the most basic description of flexion-extension alternation. In this 

model, interneurons directly activate either flexion or extension motoneurons, and through 

inhibitory interneurons, suppress the motoneurons of the opposite function through reciprocal 

inhibition (Brown 1914).  

 

During activation of extensors for the stance phase in the gait cycle, reciprocal inhibition is 

accomplished through two mechanisms: first by inhibiting the flexor motoneuron pools directly, 

and second, by inhibiting the neurons that directly activate flexor motoneuron pools. Switching 

from extension to flexion was thought to occur through a fatigue mechanism (Brown 1914), 

whereby the drive from the extension neurons would slowly decrease, or fatigue. Once below a 

threshold, the inhibition of the flexors would cease and the flexors would now be active, and 

inhibit the extensors. The exact mechanism of alternation has been debated (Miller and Scott 

1977; Guertin 2009), and still remains to be determined. One theory is that there is calcium-

mediated adaptation of the excitatory interneurons that releases the reciprocal inhibition to allow 

the other function to take over (Kiehn and Dougherty 2013).  

 

There is also alternation between the two hind-limbs through similar reciprocal inhibition via 

inhibitory commissural interneurons. Reciprocal inhibition for left-right alternation occurs 

through two main groups of commissural interneurons: inhibitory commissural interneurons that 

act on motoneurons and excitatory commissural interneurons that act on premotor inhibitory 

interneurons. These dual actions may have a role in regulating left-right alternation at different 

speeds of locomotion (Talpalar et al. 2013). 

 

1.2.3.2 Unit Burst Generators 

The concepts behind unit burst generators builds upon the half-center model. It was developed in 

an effort to explain why some motoneuronal pools are active during both flexion and extension 

phases of the gait cycle (Rossignol et al. 1996). Unit burst generators are separate modules made 

of oscillators (half-centers) that control subsets of motoneurons, and the modules are coupled 

together to produce more complex patterns (Grillner 1981). In this scheme, each joint has its own 

module, and the modules communicate through excitatory and inhibitory synapses. However, the 

unit burst generator still failed to explain the multitude of patterns that can occur during 
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locomotion. For example, the unpredictable phenomenon of deletions, in which a silencing of 

motoneurons for one function (for example, extension) is accompanied by continued rhythmic 

activation of the flexor motoneurons, with the rhythm of the extensor motoneurons resuming 

after the deletion (Guertin 2009; Lafreniere-Roula and McCrea 2005). The continuation of 

rhythmic activity following a deletion implies that there is a separate mechanism for generating 

the basic rhythmic output.  

 

1.2.3.3 Two-Layer Model 

Various two-layer models have been proposed by numerous research groups (Orsal et al. 1990; 

Rybak et al. 2006a; Rybak et al. 2006b; McCrea and Rybak 2007, 2008; Koshland and Smith 

1989; Kriellaars et al. 1994). In each case, the top layer is the rhythm generator network. A 

rhythm generator behaves much like a clock timer function, and is responsible for the alternation 

between flexion and extension. The second layer is the pattern formation network, which is 

responsible for the selection of the motoneuron populations that produce muscle contractions.  

 

McCrea and Rybak (2008) proposed a hierarchical two-layer model. The rhythm generator and 

pattern formation networks receive inputs from peripheral afferents (Ia and Ib sensory fibers), as 

well as descending drive from the mesencephalic locomotor region (MLR) in the brainstem and 

other cortical areas. These inputs can modify the timing and/or the pattern of walking, such as 

changing the speed of locomotion or when walking on difficult terrain. The pattern formation 

network makes connections with a motoneuron level, including flexor and extensor 

motoneurons. This local neural network also has afferent feedback mechanisms, including Ia 

inhibitory interneurons and Renshaw cells, and is involved in reciprocal and non-reciprocal 

interactions between antagonistic muscles. 

 

1.2.4 Descending Inputs 

The initiation of gait and skilled locomotion originate supraspinally. Stimulation of the MLR in 

the brainstem can elicit locomotion (Whelan 1996) and even modify the cadence according to 

stimulation intensity (Shik et al. 1966). The MLR projects to other brainstem nuclei that then 

project to interneurons in the spinal cord (Noga et al. 1988; Steeves and Jordan 1984). Other 

regions, such as the subthalamic locomotor region, medullary reticular formation and the 
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pontomedullary locomotor strip can initiate locomotion as well (Armstrong 1988; Nga et al. 

1988; Mori et al. 1977). These brainstem regions receive inputs from the basal ganglia and the 

forebrain to modulate locomotor patterns. 

 

Descending inputs also play a large role in the execution of skilled locomotion, such as over 

uneven terrain or around obstacles. Volitional control originates in the motor cortex. The primary 

motor cortex primarily projects directly to the spinal cord via the corticospinal tract (Takakusaki 

2013). Other cortical regions including the premotor area and supplementary motor area project 

to the primary motor cortex, but also have corticoreticular projections to the brainstem. The 

cortex integrates sensory signals including vision and proprioception to perform skilled, 

volitional walking (Drew 1988). The cerebellum contributes to walking by recalibrating the gait 

pattern using predictions of the motor outcomes. It makes corrections to the output if there are 

discrepancies between the efferent copy from the motor cortex and the afferent copy from the 

spinocerebellar tract (Pisotta and Molinari 2014; Takakusaki 2013; Shadmehr et al. 2010). The 

corrections made by the cerebellum are anticipatory (Morton and Bastian 2006).  

 

1.2.5 Afferent Inputs 

Sherrington proposed that spinal reflexes were responsible for producing gait (Sherrington 

1910). He suggested that proprioceptive stimuli were responsible for an alternating reflex 

composed of flexion and extension, and that alternation was achieved through a refractory period 

of the responses. He believed that the flexion phase was equivalent to the nociceptive-induced 

flexor withdrawal response and the contralateral limb’s extension phase equivalent to the 

crossed-extension part of the reflex. However, stronger evidence supporting the existence of 

inherent spinal circuitry for locomotion led to the pursuit of the CPG (Brown 1911; Lundberg 

1965; Jankowska et al. 1965; Grillner and Wallen 1985). 

 

Although the CPG can produce alternation in the absence of afferent input, there is evidence for 

afferent inputs playing important roles during locomotion. Afferent inputs facilitate loading and 

posture during certain states, influence state transitions, and provide a corrective response to 

perturbations during locomotion. Specifically, the stretch reflex, which is triggered by Ia 

afferents in the muscle spindle, has been shown to provide load compensation during the stance 
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phase of gait in cats (Akazawa et al. 1982) and humans (Capaday and Stein 1986). Ib afferents 

from Golgi tendon organs carry muscle tension information and have been shown to reverse their 

role of inhibition to excitation during locomotion in the cat (Pearson and Collins 1993; Pearson 

1995) and humans (Stephens and Yang 1996). These data suggest that Ia and Ib afferents largely 

contribute to weight support and postural responses during stance (Zehr and Stein 1999). 

Afferent input is also believed to gate the excitation of motoneurons according to the phase of 

the walking cycle (McCrea and Rybak 2008). Additionally, afferent input can influence the 

timing of the transitions between the phases of the walking cycle. For example, to transition from 

swing to stance, two sensory-based conditions must occur: hip flexion and unloading of ankle 

extensors (Duysens and Pearson, 1980; Ekeberg and Pearson, 2005; Grillner and Rossignol, 

1978). If the ankle extensors are loaded during stance, their Ib afferents inhibit flexor burst 

activity (Duysens and Pearson 1980). Electrical stimulation of the Ib afferents has a similar 

effect, prolonging the stance phase (Whelan and Pearson 1997; Whelan et al. 1995) and 

inhibiting flexor activity (Conway et al. 1987; Guertin et al. 1995). Flexion can be initiated by 

stretching hip flexor muscles, activating Ia and II muscle spindle afferents (Grillner and 

Rossignol 1978; Hiebert et al. 1995; Kriellaars et al. 1994). The importance of these two sensory 

signals was demonstrated in cats (McVea et al. 2005) and in a computer simulation (Ekeberg and 

Pearson 2005; Prochazka and Yakovenko 2007). The conditions prescribed by these sensory 

signals can be utilized in control systems for restoring walking (Prochazka 1993; Guevremont et 

al. 2007; Holinski et al. 2011; Mazurek et al. 2012; Prochazka 2011).  

 

Afferent input can be used to make corrections during walking. Forssberg (1979) was the first to 

assess the functional role of cutaneous reflexes during locomotion by combining kinematics and 

neural responses. He electrically and mechanically stimulated the dorsum of a cat’s paw during 

the swing phase of locomotion, and observed a stumbling corrective response, where the 

perturbed limb continued past the obstacle in order to maintain stability. It was later 

demonstrated that the origin of the response is the cutaneous afferents (Prochazka et al. 1978; 

Wand et al. 1980). This response was also elicited in people by stimulating the superficial 

peroneal nerve, which innervates the dorsum of the foot (Van Wezel et al. 1997; Zehr et al. 

1997).  
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Further investigations into the role of cutaneous reflexes on locomotion used electrical 

stimulation of various nerves in order to activate cutaneous afferents of the foot in humans (Zehr 

et al. 1997; Zehr et al. 1998). During the stance to swing transition, tibial nerve (innervating the 

plantar surface of the foot) stimulation elicited a withdrawal response, which allowed for the 

continuance of the intended swing phase. However, during late swing, the same stimulus 

generated a placing response, ensuring stability during the weight-transfer. During early swing, 

stimulation of the superficial peroneal nerve generated a stumble corrective response 

characterized by knee flexion, as if the limb was clearing an obstacle that made contact with the 

dorsum of the foot. Stimulation of the sural nerve has different effects for the swing and stance 

phases of gait (Duysens et al. 1992). During swing, a withdrawal of the foot occurs through knee 

flexion and ankle dorsiflexion for an avoidance movement, whereas during stance the 

withdrawal is characterized by hip and knee flexion and ankle dorsiflexion, transferring the body 

weight to the unperturbed limb. The absence of cutaneous input can be detrimental to gait, 

particularly during skilled walking (Bouyer and Rossignol 2003a, 2003b). However, the deficits 

can largely be compensated for, even after spinalization.  

 

1.3 Spinal Cord Injury 

1.3.1 Epidemiology and Costs 

According to the Rick Hansen Foundation, there are 86,000 people in Canada living with a SCI, 

with 4,300 new cases per year (Noonan et al. 2012; Farry 2011). Over half of all SCIs occur in 

young adults between 16 and 30 years of age, 81% of them being males (“Spinal Cord Injury 

(SCI) 2017 Facts and Figures at a Glance” 2017; Farry 2011). With a vast portion of the 

population incurring the injury in their prime working years, there is a large financial burden on 

society due to medical costs and lost earnings, totaling $2.7 billion per year for newly injured 

Canadians (Farry 2011).  

 

The most common causes for traumatic SCIs are motor vehicle collisions and falls (“Spinal Cord 

Injury (SCI) 2017 Facts and Figures at a Glance” 2017; Noonan et al. 2012). The most frequent 

type of SCI is incomplete, affecting more than 60% of the SCI population. The survey conducted 

by Andersen et al. 2004) revealed that people with paraplegia prioritize regaining walking 

movements, ranking it first or second nearly 40% of the time, to improve their quality of life.  
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Additionally, people with SCI experience numerous secondary complications, largely spawning 

from limited mobility. Secondary complications from a SCI include spasticity (Rekand et al. 

2012), bone density loss (Dolbow et al. 2011), muscle atrophy (Moore et al. 2015), pressure 

ulcers (DeJong et al. 2014), infections (Garcia-Arguello et al. 2017), diabetes (Lai et al. 2014), 

autonomic dysreflexia (Cowan 2015), chronic pain (Saulino 2014), and cardiovascular 

dysfunction (Hagen et al. 2012). 

 

1.3.2 Stages of Injury 

SCI can be separated into two stages of injury: primary and secondary (Kim et al. 2017). The 

primary injury consists of the initial mechanical insult to the spinal cord. This results in axonal 

damage and compromises the BBB. The secondary injury exacerbates the injury through acute 

and chronic immune responses. The secondary injury can be divided into three sub-phases 

according to their time of onset and duration.  

 

The acute phase of the secondary injury lasts up to 48 hours after the initial injury (Tator and 

Fehlings 1991; Kwon et al. 2004). Vascular disruption causes both hemorrhage and ischemia 

throughout the spinal cord. Damage to the BBB results in increased permeability of 

inflammatory factors such as TNF-α and IL-1β (Pineau and Lacroix 2007). Inflammatory 

reactions from incoming macrophages and T-cells and resident astrocytes and microglia are 

initiated to clear the damaged tissue. Damage to cell membranes causes cell lysis and 

dysfunction of organelles, as well as the production of reactive oxygen species (Donnelly and 

Popovich 2008). There is an increased activation of excitatory neurotransmitters which act on 

receptors on intact cell membranes. These cells become over-excited, causing high levels of Ca2+ 

to enter the cell and activate enzymes that cause damage to the cell structure. This process is 

known as excitotoxicity (Li and Stys 2000). Excitotoxicity leads to apoptosis of neurons and 

glial cells; oligodendrocytes, responsible for neuron myelination, are especially susceptible to 

excitotoxicity (Park et al. 2004). Demyelination peaks at 24 hours after the injury in rats (Totoiu 

and Keirstead 2005). 

 

The sub-acute phase occurs between 2 days and up to 2 weeks after the initial injury and is also 

called the phagocytic phase (Kim et al. 2017). Astrocytes proliferate to begin to form the glial 
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scar around the injury, which also creates a barrier for axonal regeneration (Faulkner et al. 2004). 

There is a reduction in edema and the infiltration of immune cells is limited as the integrity of the 

BBB is being re-established (Herrmann et al. 2008). There are also growth factors produced, 

which aim to facilitate oligodendrocyte-precursor cell migration, proliferation, and 

differentiation. The chronic phase of the secondary injury lasts more than 6 months after the 

initial injury. In this stage the lesion matures, with the glial scar present. Finally, the syrinx 

develops, which is a fluid-filled cavity within the lesion (Kim et al. 2017). 

 

1.3.3 Impairments in Walking 

Muscle paralysis can lead to complete lack of function or muscle weakness, resulting in reduced 

stride length and joint range of motion, lack of coordination, and abnormal muscle activity 

(Pépin et al. 2003; Awai and Curt 2014; Dietz et al. 1995; van der Salm et al. 2005; Grasso et al. 

2004). Also contributing to impaired walking is compromised balance control (Scivoletto et al. 

2008). Often, people with an incomplete SCI rely on assistive devices and compensatory 

strategies to ambulate, including limping and leaning (Arazpour et al. 2016; Behrman et al. 

2012). Individuals with hemiparalysis, which affects one side more than the other, depend on the 

stronger leg for support, reducing the stance time of the affected leg (Balasubramanian et al. 

2007). 

 

Spasticity can also interfere with walking performance after a SCI as it causes involuntary and 

abnormal muscle activity (Adams and Hicks 2005). Clonus can make gait unstable as it causes 

phasic flexion/extension movements at the affected joint (Gross et al. 2012). Co-contraction of 

muscles can reduce joint mobility, restricting the generation of walking movements (Ekelem and 

Goldfarb 2018). Furthermore, spasticity reduces the velocity of the knee and ankle joints, 

limiting their range of motion during walking (Krawetz and Nance 1996). However, moderate 

spasticity can be beneficial with respect to performing transfers, reducing muscle atrophy, and 

preventing thromboses (Adams and Hicks 2005; Ekelem and Goldfarb 2018). 

 

1.3.4 Treatments after Spinal Cord Injury 

As there is no cure for a SCI, there are three primary streams of research aiming to improve 

function after SCI: neuroprotection, regeneration, and rehabilitation. These streams target the 
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different phases of the secondary injury: neuroprotection targets the acute phase, whereas 

regeneration and rehabilitation target the sub-acute to chronic phases.  

 

1.3.4.1 Neuroprotection 

The goal of neuroprotection is to reduce the size of the secondary injury by preventing any 

further damage from occurring near the lesion in the acute phase of a SCI (Kwon et al. 2004). 

Decompression surgery shortly after injury has been shown to improve motor recovery and 

reduce the length of stay in hospital (Dvorak et al. 2015). Another common, but controversial, 

neuroprotective approach is administering a high dose of methylprednisolone, an anti-

inflammatory corticosteroid (Kwon et al. 2004). This treatment is accompanied by severe side 

effects such as gastrointestinal hemorrhage, pulmonary embolism, pneumonia and death, and has 

not been shown to have any neurological improvements in clinical trials. It is not recommended 

by the Congress of Neurological Surgeons (Kim et al. 2017; Hurlbert et al. 2015).  

 

Other therapies that have been shown to be neuroprotective and led to improved motor function 

include GM-1 and minocycline (Geisler et al. 2001; Casha et al. 2012). Other neuroprotective 

approaches include administering erythropoietin (Boran et al. 2005), or by targeting 

excitotoxicity through NMDA or AMPA antagonists (Feldblum et al. 2000; Wrathall et al. 

1997), blocking Ca2+ channels (Fehlings et al. 1989), or by restoring the conductance of action 

potentials by blocking K+ channels exposed from demyelination (Cardenas et al. 2007). 

Hypothermia has also been explored as a neuroprotective treatment (Dididze et al. 2013; Ahmad 

et al. 2014; Ok et al. 2012). However, many of these approaches are plagued by conflicting 

evidence, adverse effects, or a lack of subsequent clinical studies. 

 

1.3.4.2 Regeneration 

The ultimate treatment is regeneration of damaged axons. Several techniques investigated for 

neuroregeneration include replacement or remyelination therapies using stem cells (Assinck et al. 

2017; Nistor et al. 2005; Biernaskie et al. 2007; Ramer et al. 2004), bridging the lesion site with 

a physical scaffold (Jian et al. 2015), introducing growth factors to facilitate a supportive growth 

environment (Fortun et al. 2009; Vavrek et al. 2006; Romero et al. 2000), or inhibiting or 

eliminating anti-growth factors near the injury site (Bradbury et al. 2002; Zörner and Schwab 
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2010). Although tremendous advances have been made in spinal cord regeneration research 

(Murray and Fischer 2001, Raisman 2001, Davies et al 1997, Novikova et al 2017), human trials 

to date have failed to produce functional benefits (Hulseboch et al 2000, Kim et al 2017). An 

important aspect of regeneration is ensuring that the regenerated axons innervate functionally 

relevant targets. If misguided growth occurs and the axons synapse on inappropriate targets, 

complications including spasticity, chronic pain, and autonomic dysreflexia may arise (Romero 

et al. 2000; Finnerup 2013; D’Amico et al. 2014). Rehabilitation combined with regenerative 

methods may help regenerating axons reach relevant targets, improving function and reducing 

undesired consequences (Ying et al. 2008; Lu et al. 2012).  

 

1.3.4.3 Rehabilitation 

Traditional rehabilitative strategies aim to develop and improve compensatory skills required to 

perform tasks of daily living utilizing remaining function. Such approaches include strength 

training, acquiring new motor strategies, and using assistive devices such as wheelchairs and 

braces (Behrman et al. 2012; Harkema et al. 2012). A relatively newer approach to rehabilitation 

focuses on training to promote plasticity and recover function. An example of this is gait 

training, which involves large repetitions of stepping movements (Behrman et al. 2012; Harkema 

et al. 2012). Body-weight supported treadmill training (BWSTT) is a very common gait training 

paradigm that allows for a large number of step repetitions even before patients can bear weight 

(Wessels et al. 2010; Barbeau 2003; Gardner et al. 1998; Dietz et al. 1994). It entails suspending 

a person using a harness over a moving treadmill belt. Often assistance is required to properly 

step and place the foot during training by a physical therapist. There are also systems that use 

robots for assisting the stepping over the treadmill belt (Lam et al. 2015; Alcobendas-Maestro et 

al. 2012). As the stepping improves, the support of the body-weight is gradually reduced. 

BWSTT has been shown to improve balance and walking in people with a chronic incomplete 

SCI (Dietz et al. 1994; Wessels et al. 2010; Harkema et al. 2012). Over-ground and skilled 

walking training has also been implemented, aiming to enhance function through more conscious 

effort by the individual to perform the task. Skilled walking training has been shown to improve 

walking function, however; to a lesser extent than BWSTT, possibly due to a fewer number of 

steps taken during training (Yang et al. 2014). BWSTT with and without robotic assistance can 
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also be combined with functional electrical stimulation (FES) to assist with leg movements and 

prevent muscle atrophy (Laursen et al. 2016; Field-Fote 2001).  

 

1.4 Functional Electrical Stimulation 

FES is a broad term for a technique that uses electrical stimulation to produce or restore a 

function. Peripheral FES refers to peripheral activation of motor units, either through surface or 

implanted electrodes. After a SCI, the spinal networks below the lesion and their connections to 

muscles remain intact (Hunter and Ashby 1984). This is the basis for many rehabilitative 

interventions that activate the remaining motor units using peripheral FES. The motor units are 

activated extracellularly by the stimulating current, causing the nerve fibers to depolarize and 

activate the muscles (Merrill et al. 2005; Gater et al. 2011). The activation of motor units has 

been characterized as disorderly and synchronous with limited spatial-activation favouring fast 

fatigable motor units (Gregory and Bickel 2005; Bickel et al. 2011; Maffiuletti 2010). Larger 

motor units have a lower impedance and are therefore easier to depolarize with externally-

applied currents (Gregory and Bickel 2005; Henneman et al. 1965). These units are more 

fatigable than smaller, more fatigue-resistant motor units. However, the larger fibered fast 

fatigable and fast fatigue-resistant motor units produce a larger force than slow fatigue-resistant 

fibers. The large force production by peripheral FES has been utilized in many applications for 

exercise and rehabilitation after SCI; however, the use of peripheral FES systems is limited by 

the rapid fatigue caused by the reversed recruitment order (Peckham and Knutson 2005; 

Maffiuletti 2010; Triolo et al. 2012). Nonetheless, peripheral FES has been used for a variety of 

rehabilitative applications including improving bone and muscle health (Bélanger et al. 2000), 

reduce spasticity (Braun et al. 1985; Stefanovska et al. 1988, 1989; Mirbagheri et al. 2002), 

increase circulatory function (Rangappa et al. 2010), and restore functions including respiration 

(Talonen et al. 1983), bladder evacuation (Brindley 1977; Tanagho et al. 1989), grasping (Gan et 

al. 2012; Ajiboye et al. 2017), standing (Bajd et al. 1981; Vette et al. 2009; Triolo et al. 2012), 

and even walking (Strojnik et al. 1987; Kobetic et al. 1999; Guiraud et al. 2006).  

 

1.4.1 FES Uses in Walking 

The first use of peripheral FES to restore function during walking was in the early ‘60s to correct 

foot drop by stimulating the peroneal nerve during the swing phase (Liberson et al. 1961). 
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Similar systems have been developed and commercialized (O’Dell et al. 2014; Everaert et al. 

2013).  

 

An example of a surface peripheral FES system is the Parastep (Sigmedics, Inc., Northfield, IL, 

USA) (Chaplin 1996), which is the only FDA approved walking peripheral FES system. The 

Parastep activates knee and hip extensors for the stance phase, and peroneal nerves to induce the 

flexor withdrawal reflex for the swing phase. With adequate training, walking distances achieved 

ranged from 30 feet to 1 mile (Graupe and Kohn 1998). In a study with 16 Parastep users, an 

average of 120m of walking was achieved after 11 weeks of training (Klose et al. 1997). Large 

metabolic costs were reported, limiting this system to an exercise tool rather than a solution for 

walking (Spadone et al. 2003). 

 

Peripheral FES systems that use implanted electrodes were developed for use in people with both 

complete (Kobetic et al. 1999; R. Davis et al. 1999; Johnston et al. 2005; Guiraud et al. 2006) 

and incomplete (Hardin et al. 2007; Dutta et al. 2008) SCIs. Implanted electrodes have the 

benefit of reaching deeper muscles and do not require daily placement of electrodes. Each 

system used between 8 and 22 channels, distributed throughout the legs and trunk muscles for 

stability. Results demonstrated standing times from 3 minutes to over 60 minutes (R. Davis et al. 

1999; J. Davis et al. 2001) and walking up to 100 m (Guiraud et al. 2006) and 300 m (Hardin et 

al. 2007) for complete and incomplete SCI, respectively. Dutta and colleagues (2008) added 

surface electromyographic (EMG) recordings as feedback signals to trigger the stimulation to 

restore walking. However, a study done by Triolo and colleagues (2012) involving 15 

participants found that their system was used primarily for exercise. Despite the tremendous 

outcomes of peripheral FES systems, people who use them experience rapid fatigue of their 

muscles and plateaus in strength (Peckham and Knutson 2005); thus limiting the use of these 

systems for accomplishing daily activities. However, modifying stimulation parameters (Zheng 

and Hu 2018; Lou et al. 2017) and targeting reflexive activation of muscles (Bergquist et al. 

2014) have been shown to reduce muscle fatigue and may increase the longevity of peripheral 

FES use.  
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1.5 Spinal Cord Stimulation 

Spinal cord stimulation is a type of FES, and can be achieved through several different 

modalities, varying in their targets and location with respect to the spinal cord. Specifically, 

spinal cord stimulation can be achieved by placing surface electrodes over the spinal cord, 

implanting electrodes epidurally or intraspinally, or recently, using magnetic stimulation over the 

lower back.  

 

1.5.1 Magnetic Spinal Cord Stimulation 

Recently, a non-invasive approach to stimulating the spinal cord to produce leg movements has 

emerged. Magnetic stimulation over the lumbar vertebrae, in combination with surface electrical 

stimulation of the sural nerve, has been shown to produce walking movements in healthy 

participants in a lateral recumbent position (Sasada et al. 2014). At 47% body weight support, the 

participants moved forward using walking-like movements. EMG activity recorded from either 

the posterior deltoid during arm swing or the first dorsal interosseous during hand grip were used 

to control the frequency of the magnetic pulses delivered to the spinal cord as well as the 

frequency and amplitude of the sural nerve. The participants showed variation in the optimal 

stimulation site over the vertebrae: T12-L1, L1-L2, or over L2-L3. The reason for individual 

differences is unknown at this time and is of interest since these participants had an intact 

nervous system. The authors speculate that it may be due to differences in the participants’ 

posture or gait strategy.  

 

The mechanism of magnetic spinal cord stimulation has yet to be elucidated; however, the 

authors propose that it likely activates spinal circuits in addition to non-selective activation of 

afferents in the dorsal roots through the eddy currents produced by the coil. Specifically, they 

believe that large diameter propriospinal and cutaneous afferents are activated and drive the 

locomotor CPG. Stimulating the sural nerve activates the flexor-crossed extension reflex to 

enhance the walking movements. 

 

1.5.2 Transcutaneous Electrical Stimulation 

Transcutaneous electrical stimulation entails activation of spinal networks via tonic (30 Hz) 

stimulation through surface electrodes applied over the lumbar spine (Hofstoetter et al. 2015; 
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Minassian et al. 2016) or cervical spine (Inanici et al. 2018). In participants with an incomplete 

SCI, the stimulation produced a tingling sensation in the lower limbs, but was not strong enough 

for eliciting muscle reflexes (Hofstoetter et al. 2015). It was proposed that transcutaneous 

electrical stimulation provided a general increase in spinal excitability through activation of the 

dorsal roots (Minassian et al. 2016). When combined with BWSTT in participants with an 

incomplete SCI, transcutaneous stimulation augmented stepping, especially facilitating hip 

flexion during swing (Hofstoetter et al. 2015). In complete SCI participants, in combination with 

BWSTT and robotic-assistance, the number of rhythmically active muscles was increased 

(Minassian et al. 2016). Transcutaneous stimulation may augment rehabilitation training through 

reflexive activation of the spinal cord in a non-invasive manner.  

 

1.5.3 Epidural Spinal Cord Stimulation  

Epidural spinal cord stimulation (SCS) entails delivering electrical pulses to the dorsal surface of 

the spinal cord through electrodes that are implanted exterior to the dura mater. It was originally 

developed for the treatment of chronic pain (Shealy et al. 1967), and is now a widely used 

clinical neuromodulation tool to treat pain (Raslan et al. 2007; Tator et al. 2012). It has also been 

explored as a possible treatment for spasticity (Richardson and McLone 1978; Barolat et al. 

1988; Pinter et al. 2000; Dekopov et al. 2015).  

 

1.5.3.1 Mechanism of Epidural Spinal Cord Stimulation  

Many theories on the mechanism of epidural SCS have been proposed, primarily based on the 

concept that the stimulation increases the excitability of the spinal cord, similar to the 

mechanism proposed for transcutaneous spinal cord stimulation (Hofstoetter et al. 2015). Several 

studies proposed that epidural SCS could be activating intrinsic spinal networks, such as a CPG 

for locomotion (Iwahara et al. 1992; Dimitrijevic et al. 1998; Gerasimenko et al. 2002; 

Gerasimenko et al. 2003; Huang et al. 2006; Minassian et al. 2007; Courtine et al. 2009) or for 

standing (Rejc et al. 2015). It has also been proposed that the stimulation enhances the response 

of spinal networks to sensory input associated with weight-bearing (Ichiyama et al. 2005), 

especially proprioceptive feedback (Minassian et al. 2007; Musienko et al. 2012) to control 

stepping-like patterns. Lavrov (2006) suggested that after an acute SCI, epidural SCS assisted 

with the return of spinal reflexes, and only then could stepping be initiated. It is also possible that 
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the increased spinal excitability in combination with training reactivates spared neural networks 

and enhances plasticity (Herman et al. 2002; Harkema et al. 2011; Capogrosso et al. 2016). In 

fact, remodeling of corticospinal projections and the formation of intraspinal and supraspinal 

relays that detoured an injury were identified after a dual hemisection SCI and volitional effort-

based training (van den Brand et al. 2012). However, a recent modelling study corroborated with 

in vivo experiments suggests that epidural SCS indirectly activates motoneurons and 

interneurons through the recruitment of Group I and II afferents (Capogrosso et al. 2013), 

supporting a previous modelling study (Holsheimer 1998). This was supported by a study 

comparing the neural activation of epidural and transcutaneous SCS, concluding that both 

stimulation methods activate the spinal cord via afferent fibers (Hofstoetter et al. 2018).  

 

1.5.3.2 Use in Rehabilitation of Walking 

A study by Iwahara and colleagues (1992) demonstrated that epidural SCS in the decerebrate cat 

could elicit locomotion over a moving treadmill. Specifically, stimulation over the cervical 

enlargement elicited stepping in all four limbs, and stimulation of the lumbosacral enlargement 

elicited stepping in the hind-limbs only. Locomotor activity over a moving treadmill in the 

chronically spinalized cat was demonstrated using epidural SCS between the L4 and L5 spinal 

segments (Gerasimenko et al. 2002; Gerasimenko et al. 2003). In spinalized rats, rhythmic 

activity could be elicited, but typically only in a single limb for a short duration of time (<10 s) 

and required at least 5% of body weight support (Ichiyama et al. 2005). After an acute SCI, only 

weak rhythmic movements that were not weight-bearing were generated in cats (Musienko et al. 

2007). Similar results were seen in the acute spinalized rat, where stepping could only be 

achieved 3 weeks after the injury, and improved up to 6 weeks post-injury (Lavrov et al. 2006). 

Epidural SCS in hemiparetic monkeys was able to restore weight-bearing treadmill and over-

ground locomotion within 6 days post-injury (Capogrosso et al. 2016). 

 

Epidural SCS over the lumbar enlargement could generate rhythmic flexion and extension 

muscle activity in individuals with a chronic SCI in the supine position (Calancie et al. 1994; 

Dimitrijevic et al. 1998; Gerasimenko et al. 2002; Minassian et al. 2007; Danner et al. 2015). 

Enhanced muscle activity and walking function resulted from epidural SCS in combination with 
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BWSTT in chronic incomplete SCI participants (Herman et al. 2002; Carhart et al. 2004; Huang 

et al. 2006).  

 

Studies in human participants with SCI have shown remarkable results where, after training with 

epidural SCS, some voluntary function returns. A subject with an injury classified as ASIA-B 

(motor complete, sensory incomplete) underwent 7 months of stand training in combination with 

epidural SCS (Harkema et al. 2011). At the end of the 7-month period, the subject was able to 

stand with minimal assistance for at least 4 minutes, and had recovered the ability to perform 

some toe extension, and ankle and hip flexion. This led to follow-up studies with additional 

participants (1 ASIA B, 2 ASIA A) (Angeli et al. 2014; Rejc et al. 2015). All participants 

underwent at least 80 locomotor training sessions before receiving an implant, then underwent 

standing followed by step training with epidural SCS after receiving the implant (Angeli et al. 

2014). By the end of training, 3 out of 4 participants were able to oscillate their leg between 

flexion and extension, and modulate the force produced during leg movement (one individual 

could not perform these tasks due to severe clonus). All participants achieved full weight-bearing 

with minimal assistance (Rejc et al. 2015). Interestingly, the ASIA A (motor and sensory 

complete) participants required less assistance for standing than the ASIA B participants 

(holding onto horizontal bars for balance versus elastic bands attached to a frame for assistance 

with hip extension).  

 

Earlier this year, 3 studies reported the restoration of over-ground walking in people with a SCI 

using epidural SCS with an extensive rehabilitation program. One study described an ASIA A 

subject who, after 43 weeks of multi-modal training, was able to walk over-ground with epidural 

SCS and assistance from a trainer for hip support (Gill et al. 2018). This person was able to walk 

at 0.2 m/s, with a step period of 4 s, and a maximum distance of 102 m. One study included 

ASIA A and B participants (Angeli et al. 2018). The ASIA A participants were only able to 

achieve treadmill locomotion with body-weight support. However, the ASIA B participants were 

able to accomplish over-ground walking with an assistive device or by holding onto poles held 

by trainers. This study reported a maximum walking speed of 0.19 m/s and 90.5 m of continuous 

walking. The most recent study used targeted epidural SCS, which activated the motoneuron 

pools by selecting the appropriate dorsal roots (Wagner et al. 2018). After 5 months of locomotor 
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training using targeted epidural SCS, an ASIA C (motor and sensory incomplete) and an ASIA D 

(less severe motor and sensory incomplete) participants were able to walk over-ground with 35% 

body-weight support at the hips. A different ASIA C participant required only a walker to 

locomote over-ground. The over-ground distances and walking speeds were not reported. All 

participants were able make 1200 steps over a treadmill with 15% body-weight support in 1 

hour, corresponding to a distance of 1 km and step period of 3 s.  

 

1.5.3.3 Combined with Pharmacological Activation 

Recent studies in completely spinalized rats have demonstrated that training combined with 

epidural SCS and amine agonists can restore weight-bearing stepping over a treadmill in the 

presence of stimulation (Courtine et al. 2009; Musienko et al. 2012). Rats with staggered 

hemisection SCIs that were trained using a transition from treadmill stepping to intentional over-

ground stepping in addition to the electrical and chemical stimulation regained full weight-

bearing bipedal locomotion after 5 to 6 weeks (van den Brand et al. 2012). Furthermore, an 

additional 2 to 3 weeks of training, the rats were able to avoid obstacles and climb stairs in the 

presence of stimulation.  

 

By increasing the excitability of spinal networks through afferent activation, epidural SCS has 

improved walking function after incomplete and complete SCI. It presents as a powerful 

rehabilitative tool for rehabilitation after severe SCI. However, specificity of activation in the 

spinal cord is limited as much of the current spreads in the cerebrospinal fluid (Holsheimer 

1998). 

 

1.5.4 Intraspinal microstimulation  

Intraspinal microstimulation (ISMS) entails implanting fine microwires into the grey matter of 

the spinal cord (Figure 1.2). It originated as a research tool to study spinal networks. Renshaw 

(1940) stimulated in the spinal cord to measure the synaptic delay in reflex pathways. Later, 

mapping experiments were performed to investigate the connections between interneurons 

mediating reciprocal inhibition (Jankowska and Roberts 1972). ISMS in cats showed that 

motoneurons can be activated directly if the tip of the electrode was adjacent to the initial 

segment of the motoneuron axon, or the soma itself (Gustafsson and Jankowska 1976). ISMS 
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was used to study the organization of spinal circuitry in the intermediate grey matter of bull frogs 

(Bizzi et al. 1991; Giszter et al. 1993). More recently, ISMS in the ventral horn of the spinal cord 

grey matter has been explored as a possible intervention to restore walking after injury or 

disease. ISMS has been tested in various animal models including rats, cats, pigs, and monkeys. 

The majority of work investigating the use of ISMS to produce walking has been tested in cat 

and rat models.  

 

Figure 1.2. ISMS implant. Microwires are implanted into the ventral horn of the lumbosacral enlargement. 

 

1.5.4.1 Mechanism of Intraspinal Microstimulation  

ISMS can selectively generate movements in muscles of the hind-limbs as well as produce multi-

joint synergies necessary for walking (Mushahwar and Horch 2000) using very low currents (on 

the order of μA) through a single electrode (Mushahwar and Horch 1998; Saigal et al. 2004; 

Holinski et al. 2011). Selective activation of muscle groups is possible because the electrodes are 

implanted into lamina IX of the ventral horn of the lumbosacral enlargement in the spinal cord 

(Vanderhorst and Holstege 1997; Mushahwar and Horch 2000). This region contains the 

motoneuron pools for the lower limb muscles. Despite the close proximity to the motoneuron 

pools, ISMS likely activates them indirectly through networks of afferent projections, 

propriospinal, and other interneuronal pathways (Mushahwar et al. 2003; Bamford et al. 2005; 

Gaunt et al. 2006; Bhumbra and Beato 2018).  
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1.5.4.2 Advantages of Intraspinal Microstimulation  

There are three main advantages of ISMS: The ISMS implant is distant from moving muscles; 

the ISMS implant is small and contained within a localized region; and ISMS preferentially 

recruits fatigue-resistant muscle fibers.  

 

Peripheral FES systems activate peripheral nerve axons by stimulating through surface or 

implanted electrodes. Surface peripheral FES systems require much effort donning and doffing 

the electrodes, while implanted systems are susceptible to lead breakage and dislodgement or 

shifting from the implant site due to the contractions of the muscles surrounding them (Kilgore et 

al. 2003). However, an intraspinal implant, which is contained within the spinal cord, may be 

less susceptible to dislodgement or lead breakage because it is distant from contracting muscles 

and moving joints (Mushahwar et al. 2000). There is the possibility of some shifting of the 

electrode locations due to extreme trunk movements and the relative motion between the spinal 

cord and the fixation point on the vertebral body; however, this possibility can be avoided by 

using strain-relief mechanisms such as coiling of the lead wires (Toossi et al. 2017).  

 

The lumbar enlargement, which is the implant region, is only 3 cm long in cats and 5 cm long in 

humans. The number of implanted electrodes required to produce walking movements can be as 

few as 4 (Saigal et al. 2004); however, it is advantageous to implant more electrodes to achieve 

redundancy in responses, higher selectivity (Holinski et al. 2011), and to deliver the stimulation 

in an interleaved manner (Mushahwar and Horch 1997; Lau et al. 2007; Bamford et al. 2011). 

Interleaved stimulation entails stimulating through two electrodes targeting the same function at 

half of the desired frequency such that the combined frequency will be the desired frequency. 

This has the advantage of recruiting motor units at a lower frequency, thereby reducing fatigue of 

the muscles.  

 

The entire ISMS system is implantable. Specifically, implantable wireless stimulators have been 

developed that can be fixed onto the same spinous process that the electrode lead wires are 

adhered to (Troyk et al. 2012; Grahn et al. 2014). They communicate and receive power via 

radio frequency to an external coil that lies on the surface of the skin over the implant area. 
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Additionally, ISMS control strategies have been successfully implemented on an implantable 

microchip (Mazurek et al. 2010) that was used in vivo to produce walking (Mazurek et al. 2016).  

 

ISMS preferentially recruits fatigue-resistant muscle fibers. ISMS has been shown to activate 

motor units in a near-normal recruitment order (Bamford et al. 2005) to produce graded 

responses after a complete SCI (Saigal et al. 2004). This may be due to the implant’s location in 

the central nervous system facilitating trans-synaptic activation of motor units (Gaunt et al. 2006; 

Mushahwar et al. 2003).  

 

1.5.4.3 Disadvantages of Intraspinal Microstimulation  

The implant procedure is invasive, especially compared to the other FES methods described. It 

requires a laminectomy over two spinal segments to expose the lumbar enlargement (Bamford et 

al. 2016). Furthermore, in humans, the dura mater will need to be opened in order to access the 

spinal cord for implanting the electrodes. However, with the increase in invasiveness, ISMS 

offers higher selectivity in the responses that are evoked (Mushahwar and Horch 1998; 

Guevremont et al. 2006). Furthermore, laminectomies are not uncommon procedures (Tohidi et 

al. 2018). Further development of the implant array may allow for a faster procedure with 

smaller and fewer components. Additionally, collaborations with neurosurgeons may assist with 

developing methods that are more suitable for clinical implementation.  

 

ISMS for standing and walking has yet to be tested in humans. Although the development of the 

technology and surgical techniques is underway, this limits the comparisons of the results of 

ISMS with other FES techniques. For example, a recent study demonstrated that anaesthetized 

cats were able to walk between 609 and 835 m using ISMS (Holinski et al. 2016). These are long 

distances; however, similar distances have been reported in humans using peripheral FES 

(Graupe and Kohn 1998). It is difficult to compare these distances as cats and humans have 

different step periods and stride lengths.  

 

Furthermore, little work has been done using ISMS to restore walking after a chronic SCI. One 

study demonstrated that stepping over a stationary treadmill belt could be achieved using ISMS 2 

to 4 weeks after a complete SCI (Saigal et al. 2004). However, follow-up studies demonstrating 
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over-ground walking using ISMS after a chronic SCI are needed. Additionally, further 

demonstration of the efficacy of chronic ISMS implants is needed. Chronic ISMS implants from 

2 to 24 weeks in intact cats have shown that the responses remained consistent in 67% of the 

electrodes (Mushahwar et al. 2000). More studies are needed to repeat these results as well as to 

extend the testing period to further assess the longevity of ISMS implants.  

 

1.5.4.4 Restoring Other Functions 

1.5.4.4.1 Reaching and Grasping 

ISMS is also being investigated in the cervical enlargement to restore reaching and grasping after 

a SCI in both rat (Kasten et al. 2013; Sunshine et al. 2013) and non-human primate models 

(Moritz et al. 2007; Zimmermann et al. 2011; Zimmermann and Jackson 2014). Zimmerman and 

Jackson (2014) induced hand paralysis by injecting a temporary paralytic muscimol in the 

primary motor cortex, and used signals from an implant located in the ventral pre-motor area to 

control the rate of stimulation delivered to the spinal cord to achieve a grasping task. In some 

cases, the muscimol did not fully paralyze the hand muscles, mimicking an incomplete SCI. In 

those cases, residual voluntary muscle activity was used to control the stimulation. Cervical 

ISMS has also been shown to improved motor function, with benefits lasting beyond the 

stimulation trial (Kasten et al. 2013). Cervical ISMS after incomplete SCI may promote long-

term recovery of function, possibly attributed to axonal growth and elongation regulated by 

neural activity, synaptogenesis, and dendrite stability (Mondello et al. 2014). 

 

1.5.4.4.2 Respiration 

Recently, ISMS implants in the cervical and high thoracic spinal cord has been shown to activate 

the diaphragm and intercostal muscles in intact (Sunshine et al. 2018) and hemisected (Mercier 

et al. 2017) rats. It was found that intact medullary drive modulated the muscle activation 

differently during inspiration and expiration (Sunshine et al. 2018). Furthermore, tongue muscle 

activity during inspiration was used to trigger ISMS targeting the phrenic motor pool, 

demonstrating a possible closed loop method for restoring breathing (Mercier et al. 2017). 

 

 

 



29 

 

1.5.4.4.3 Micturition 

The sacral spinal cord contains motoneurons innervating the external urethral sphincter and the 

detrusor muscle (Gaunt and Prochazka 2006). For successful micturition, the detrusor muscle 

contracts the bladder and the external urethral sphincter is relaxed. Intraspinal electrodes 

implanted in the intermediolateral grey matter of the sacral spinal cord was able to increase 

bladder pressure and cause bladder voiding in approximately half of implanted animals 

(Friedman et al. 1972; Nashold et al. 1971). Based on the results from these studies, 27 people 

were implanted with penetrating electrodes in the sacral spinal cord (Nashold et al. 1972; 

Nashold et al. 1981). Adequate voiding was achieved in 10 of the 13 females but only in 5 of the 

14 males. The males often experienced a spastic urethral sphincter during stimulation (Nashold 

et al. 1981) which was sometimes resolved with a partial transurethral sphincterotomy. Overall, 

the sacral implants had about a 60% success rate for bladder voiding. This may be due to the 

difficulty in targeting in the small sacral cord, as well as current spread (Gaunt and Prochazka 

2006). Later work utilized smaller electrodes, limiting bladder and sphincter co-contractions 

(Carter et al. 1995; Grill et al. 1999). However, possible interneuron activation may have 

prevented voiding due to contraction of the external urethral sphincter (Buss and Shefchyk 2003; 

Gaunt and Prochazka 2006). As smaller electrode arrays and stimulation protocols are 

developed, intraspinal solutions for restoring micturition may have better results in the future.  

 

By targeting the motor regions of the spinal cord, various functions may be restored after neural 

injury or disease. However, activation of these regions must be coordinated to successfully 

restore more natural function. Many control methods have been developed to restore walking in 

SCI models using various forms of FES, targeting the periphery and the spinal cord. Some of the 

control methods include a machine learning approach.  

 

1.6 Machine Learning 

Machine learning techniques learn from data to make predictions or find trends. There are 

several fields within machine learning, each modelled after different aspects of biological 

learning. Machine learning can be applied to large and noisy data sets, with both offline and 

online capabilities. It may a valuable tool to study spinal locomotor networks and to restore 

function after a SCI.  
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1.6.1 Supervised Machine Learning 

Supervised machine learning uses pre-labelled data to obtain generalizations between paired 

inputs and outputs. The inputs are features or attributes that describe or represent the data, and 

the outputs can be classification or numerical values (Witten et al. 2016). The biological 

equivalent is concept learning, which entails using previous experiences to form associations or 

recognize resemblances to categorize objects or respond to stimuli (Zentall et al. 2014). Learning 

is achieved by providing examples which are used to form a new concept from the 

generalizations made about the examples. For example, suppose you are presented with 

examples of fruits such as an apple, orange, banana, and pineapple as well as examples of 

vegetables including carrots, broccoli, asparagus, and potatoes. Then you are presented a beet, of 

which you have never seen before, and are asked to classify it as a fruit or a vegetable. You 

would likely approach this task by visually comparing it to the fruits and vegetables that you 

have seen before. You may also consider other attributes, such as taste, smell, or colour to come 

to a conclusion. In supervised machine learning, the attributes are used as inputs, and the output 

is the classification of fruit or vegetable. A generalization of the attributes to either a fruit or 

vegetable has been learned by experiencing different fruits and vegetables. Using those 

generalizations, an estimate of which class the new piece of produce belongs to can be made.  

 

The stage of presenting an algorithm with known examples to obtain a generalization is referred 

to as training. Once an algorithm has been sufficiently trained, new input data is presented. The 

predicted output can be compared to the known output to determine the testing accuracy. This 

demonstrates how well the algorithm generalized the training data to make effective predictions 

on unseen data. Ideally, the generalizations are broad enough to perform well at classifying new 

data, and does not over-fit to the training data.  

 

1.6.1.1 Typical Procedures 

General terminology: inputs are referred to as features or attributes. Each example, or instance, 

can have a set (or vector) of attributes to each output. The output can be either a class value or a 

numeric value. 
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A large set of pre-labelled data is split into two sets: the training data set and the testing data set. 

Often, 80-90% of the data are assigned to the training data set, with the remainder in the testing 

data set (Witten et al. 2016). The sets of data should comprise of randomly assigned and 

proportional distributions of the defined classes. 

 

During the training process, to avoid over-fitting to the training data, it is recommended to 

perform cross-validation. Often, 10-fold cross-validation is performed during training. Each fold 

consists of partitioning the training data into two sets: 90% into the validation-training set and 

10% into the validation set. The function is trained using the validation-training set and the 

validation set is used to test the performance of the generalization. This process is repeated ten 

times (equal to the number of folds) with different partitions of the data. The final generalization 

consists of an average of the results over the multiple folds. The process of cross-validation is 

similar to the standard partitioning of the entire data set into training and testing sets, but allows 

for the validation sets to be used repeatedly throughout training. It rigorously tests for 

generalizability and performance, as the training accuracy can be calculated for each fold, while 

utilizing the available data maximally for training.  

 

Following training, the inputs for each instance in the testing data set, of which the algorithm has 

never seen before, is presented. The output from the algorithm for each instance is compared to 

the actual output in order to determine the testing accuracy. To generalize appropriately, the 

algorithm must be presented with many examples with variability similar to the data it is 

designed to predict. Sufficient generalizability is acquired when there is a high training and 

testing accuracy, meaning that the algorithm did not over-fit to the training data. What is 

considered to be high accuracy is problem-dependent and must be determined by the problem 

designer.  

 

There are dozens of different supervised machine learning algorithms, each with their own 

strengths and weaknesses. Choosing the algorithm that is appropriate for the problem may not be 

straightforward. Software such as Weka (Frank et al. 2016) enables users to try various 

algorithms to determine which is most suitable for solving their problem.  
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1.6.1.2 Relevant Algorithms 

1.6.1.2.1 Multilayer Perceptron 

A multilayer perceptron (MLP) is type of feed-forward artificial neural network (ANN). Its 

structure is modeled after biological neural networks (Minsky et al. 2017). An MLP consists of 

three layers of nodes, or neurons, which are linked through weighted connections (Figure 1.3). 

These layers are in the input, hidden, and output layers. The number of nodes in the input and 

output layers are defined by the number of features and classes, respectively. The input and 

hidden layers contain a bias unit of 1 that connects to the nodes in the following layer.  

 

Figure 1.3. Example of multilayer perceptron (MLP). It consists of three layers connected by weights. 

 

The weights connecting the nodes of the input layer to hidden layer, and hidden layer to output 

layer, are learned through back-propagation during training. The MLP was popularized by the 

addition of backpropagation, which uses gradient descent to update the weights by minimizing 

errors, enabling the MLP to separate non-linear data (Rumelhart et al. 1986). Although gradient 

descent only finds the local minimum, MLPs trained using backpropagation are powerful and 

have been widely used. How quickly gradient descent converges depends on the learning rate, or 

step size (Witten et al. 2016). If the learning rate is too large, it may overshoot and fail to 

converge; if the learning rate is too small, convergence is very time-consuming. The learning 

process can be accelerated by adding a momentum term while updating the weights. The 
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momentum adds a portion of the update value from the previous update to the new weight. These 

are parameters that should be tuned when training an MLP.  

 

During testing, the input layer receives normalized values of the inputs, or features, which are 

relayed to the hidden layer by multiplying them by their corresponding weights. The activation 

of the hidden layer is done using a sigmoid function, a mathematically-convenient substitution 

for a step function.  

 𝑦 =  
1

(1+ 𝑒−𝑥)
 (1.1) 

 

This enables the MLP to separate non-linear data. Activation of the output layer is also done 

using a sigmoid function, taking in the outputs from the hidden layer multiplied by their weights. 

Classification is finalized at the output layer; the output node with the greatest activation 

corresponds to the class to which the instance of data belongs.  

 

MLPs are capable of representing complex expressions. The weights can be updated online, 

meaning that the network can continue training as new data become available. Albeit, this 

process may be time-consuming and computationally expensive. A disadvantage of MLPs is the 

structure is difficult to interpret; the impact of the values of the weights is often unclear because 

of the hidden layer (Witten et al. 2016). Additionally, MLPs are susceptible to over-fitting to the 

training data, especially if the network is too large. Methods to reduce over-fitting include early 

stopping, weight decay, or 10-fold cross-validation. An advantage of MLPs includes being able 

to form generalizations to perform both numeric and class prediction. The predictions can be 

made on non-linear data and complex systems, making them applicable to real-world problems. 

MLPs are not restricted to the types of inputs; they can still generalize with noisy or missing 

values. Additionally, MLPs are simple to implement as they require only simple linear algebra 

for the inputs and weights, and use a sigmoid function for node activation.  

 

1.6.1.2.2 Linear Regression 

Linear regression can be used for numeric prediction using numeric attributes (Witten et al. 

2016). The prediction is formed by linearly combining the input attributes with weights, which 

are learned during training: 
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 𝑥 =  𝑤0 + 𝑤1𝑎1 + 𝑤2𝑎2 + ⋯ + 𝑤𝑛𝑎𝑛 (1.2) 

 

The weights are calculated by minimizing the sum of squares of the differences between the 

actual and predicted values of the output (cost function):  

 

 𝐽𝑛 =
1

𝑛
∑ (𝑦𝑖 − 𝒘𝑇𝒙𝑖)2𝑛

𝑖=1  (1.3) 

 

Minimization is often done using gradient descent (Ng 2012). The result of linear regression is a 

linear approximation of the data, often referred to as the line of best fit. This technique is very 

simple and commonly used, but is limited by its linearity.  

 

1.6.1.2.3 Model Tree 

A model tree is a combination of a decision tree with a linear model to obtain a numeric 

prediction (Witten et al. 2016; Quinlan 1992). To build the tree, during training, attributes are 

tested to determine which one best maximized the expected error reduction (Witten et al. 2016). 

That attribute is chosen to form the splitting criterion at that particular node of the tree. 

Additional nodes are added to the tree until the error reduction is very small or there are very few 

instances remaining. The final leaf of the decision tree contains the linear model, which is found 

using linear regression. During testing, attribute values are compared to the splitting criterion at 

the nodes to by routed down a branch of the tree towards a leaf with a linear regression model.  

 

Model trees can grow substantially during training and over-fit to the training data. Over-fitting 

can be reduced through pruning the tree. Starting from the leaf, the expected error at each node is 

calculated. If the expected error is reduced, then the tree is pruned to that node. This process 

continues until the expected error is no longer decreasing. An advantage of model trees is that 

they have clear and interpretable rules for partitioning the data and indicating which attributes 

are important for classification. They can handle continuous, discrete, noisy, or missing data. 

They are not limited to linear data as is regression. Additionally, they are easy to implement as 

the calculations at each node and leaf are simple comparisons.  
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1.6.1.3 Uses and Limitations 

Supervised machine learning can be a powerful tool in interpreting large volumes of data and 

learning relationships between variables. It can also find and use trends or patterns in the data 

that are not obvious to the human users. Supervised machine learning algorithms are limited to 

the data they train on. For example, if a new class arises that was previously unknown, then it 

will be misclassified to one of the classes identified during training. For training an algorithm, 

intimate knowledge of the data is necessary for accurate labelling of examples. The training 

process often requires a lot of computation time, so it is usually done offline. However, 

compared to unsupervised machine learning methods, which do not use pre-labelled data to find 

relationships in data, supervised methods have a higher accuracy and are more reliable.  

 

Supervised methods also have the advantage when interpreting results and accuracy, as 

unsupervised methods require no prior knowledge and have no answers to compare the results to.  

Supervised machine learning allows experts to teach an algorithm by providing it with many 

examples to create a model or function relating the data. In tasks where the outputs are known 

but manual labelling is time-consuming, supervised methods can be employed to automatically 

perform tasks quickly and reliably. Supervised machine learning is also useful for prediction 

problems, where an output needs to be calculated from available information in order to make a 

decision. Other machine learning algorithms are capable of learning without the need for pre-

labelled data, which is beneficial if pre-labelled examples do not exist or are difficult to 

accurately acquire. 

 

1.6.2 Reinforcement Learning 

Reinforcement learning (RL) is an area of machine learning concerned with achieving a goal by 

maximizing future reward (Sutton and Barto 2018). Traditional RL is analogous to operant 

conditioning (Skinner 1963; Staddon and Cerutti 2003). The consequences of a behaviour lead to 

a reinforcing stimulus, either to reward or punish the behaviour. The dopaminergic reward 

system in the nucleus accumbens, which is the region of the brain concerned with pleasure-

seeking (du Hoffmann and Nicola 2014), provides a biological model for many RL algorithms 

(Sutton and Barto 2018).  
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1.6.2.1 RL Framework 

The RL framework is formalized as a Markov decision process (MDP): a learning agent interacts 

with its environment by taking certain actions (A) defined by a policy (π) (Figure 1.4; Sutton and 

Barto 2018). The environment supplies the agent with information regarding the agent’s state in 

the environment (S) and the value of the reward corresponding to the state (R). The goal of the 

agent is to maximize the reward over the long-term. The return, Gt, is defined as the discounted 

sum of future rewards:  

 

 𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0  (1.4) 

 

where γ is the discounting factor, and ranges from (0, 1]. Future rewards are discounted because 

they represent the present value of the future rewards. Upon each iteration, the agent selects an 

action according to a distribution from its policy, and receives the new state and reward from the 

environment. The reward is used by the agent to compute or estimate the value of the current 

state (state value function, vπ) or of the action taken from that state (action value function, qπ).  

 

 𝑣𝜋(𝑠) ≝ ∑ 𝜋(𝑎|𝑠)𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′𝑟 [𝑟(𝑠′) +  𝛾𝑣𝜋(𝑠′)] (1.5) 

 

 𝑣𝜋(𝑠) =  𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] (1.6) 

 

Equation 1.5 is the Bellman equation for the state value function, which defines that the value of 

a state is the discounted value of the next state and the reward expected at that next state 

following a policy π. This is the recursive relationship between the value of a state s and the 

value of the next state s’. Equation 1.6 denotes the expected return when starting in state s and 

following a policy π. The estimate of the value function is updated, or learned, through 

interaction with the environment: 

 

 𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 +  𝛼(𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) (1.7) 

 

where α is the step size, or learning rate. The return, Gt, is the target; the difference between the 

return and the old estimate for the value function is the error in the estimate. 
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Figure 1.4. Reinforcement learning framework as a Markov decision process. The agent interacts with its 

environment and receive state and reward information. 

 

The policy defines the probability of an action being selected given a current state. The policy is 

updated by the agent based on experience. There are two main types of policies: greedy and ε-

greedy. Greedy refers to the agent always taking the action that leads to the state with the highest 

estimated value function. This maximizes the immediate reward by exploiting the current 

knowledge. ε-greedy refers to a greedy policy where the greedy action is taken (1 −  𝜀) × 100 

percent of the time, and a different action the other times. An ε-greedy policy promotes 

exploration, which may lead the agent to discovering more optimal actions to states with greater 

value, maximizing the long-term reward. The learning task is solved by interacting with the 

environment to obtain the optimal policy (𝜋∗), which is the policy with the largest expected 

return for all states. Policies can be updated using policy gradient, which uses gradient descent to 

update the policy in the direction of optimality.  

 

1.6.2.2 Temporal Difference Learning 

Temporal difference (TD) learning is a method for estimating the value function using 

previously obtained estimates (Sutton 1988; van Seijen et al. 2015; Sutton and Barto 2018). This 

is known as bootstrapping. TD does not require a model of the environment as it learns only 

from interactions with the environment. By bootstrapping on previous estimates, TD methods 

update the current estimate of the value function on the following time step: 

 

 𝑉(𝑆𝑡)  ← 𝑉(𝑆𝑡) +  𝛼(𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) ) (1.8) 
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From the previous update equation (1.7), the target of the return, Gt, is replaced by 𝑅𝑡+1 +

𝛾𝑉(𝑆𝑡+1), which denotes the current reward and the discounted estimate of the future value 

function. The term comprising of the target compared to the old estimate of the value function is 

referred to as the temporal difference error (𝛿𝑡), as it uses successive estimates in the update: 

 

 𝛿𝑡 =  𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)  (1.9) 

 

By updating the value function using other estimates, TD learning can learn faster than other 

methods (van Seijen et al. 2015). The updates presented so far occur over one time step, as they 

use an estimate from only the successive time step. 

 

1.6.2.3 Natural Temporal Difference Learning 

Reinforcement learning has many properties in common with the dopaminergic reward system. 

One region where dopamine is produced is by neurons in the ventral tegmental area (Glimcher 

2011). These neurons project to other brain regions related to learning, decision making, and 

motivation. The dopaminergic reward system in the nucleus accumbens uses predictions of a cue 

or event to alter the excitation of neurons (McGinty et al. 2013; Nicola et al. 2004; Roitman et al. 

2005). The neural activity in the nucleus accumbens is stronger when a reward is more available 

and is in closer proximity (McGinty et al. 2013). This results in reward-seeking behaviour and is 

pivotal for survival.  

 

The reinforcement signal for TD learning is the TD error (δ), which is the discrepancy between 

the current and earlier expectations of reward over the long term (Sutton and Barto 2018). The 

reward prediction error hypothesis of dopamine neuron activity postulates that the phasic 

activity of dopaminergic neurons deliver an error between the old and new estimates of expected 

future reward (Montague et al. 1996; Schultz et al. 1997). In early learning, upon receiving an 

unexpected reward, a TD error occurs, reinforcing the events that lead to receiving that reward. If 

a task is repeated and a reward is repeatedly given upon task completion, then the TD error 

decreases as there is now an expectation for reward. Experiments in monkeys have demonstrated 

that there is a shift in neuronal firing from receiving the reward (TD error) to the predictive 

stimuli of the reward (expectation) during training (Ljungberg et al. 1992). If the monkey pressed 
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the wrong lever, resulting in no reward being delivered, there was a decrease in the firing rate of 

the neurons (TD error). Furthermore, neurons related to movement initiation increased their 

firing rate upon the expectation of food reward, rather than the movements to retrieve the food or 

to the sensory stimuli upon retrieving the food (Romo and Schultz 1987). Natural and 

computational approaches to RL and TD learning continue to inform the other (Ludvig et al. 

2008, 2012). 

 

1.6.2.4 State Representation 

Sensor signals inform the agent about the state of the environment. They are complex with a 

wide range of possible values. It is computationally useful to represent the state space of sensor 

signals such that the value function can be approximated. Linear function approximation of the 

state value function is executed by multiplying a weight vector, w, by a feature vector, x: 

 

 𝑣 = 𝒘T𝒙(𝑠) (1.10) 

 

The feature vector is a binary representation of the state space. The weight vector is updated and 

learned. The linear combination of the learned weight vector and the state-dependent feature 

vector results in the estimation of the value function. The following sections will describe a 

common form of state representation, as well as the state representation method used in this 

work.  

 

1.6.2.4.1 Tile Coding  

Tile coding entails partitioning the state space into grid-like tilings. Each block element is called 

a tile. If the current sensor values fall within a tile, that tile is active, set to one; all other tiles in 

this tiling are zero. The size of the tiling, number of tiles, and layering of many tilings can be 

customized for both coarse and fine representation of the state space. For example, there may be 

sensor values in the state space that are very unlikely to be active, so there are large, coarse tiles 

in that region of the state space. On the contrary, there may be a region where fine discrimination 

of the state space is necessary for learning, in which case there may be smaller tiles or 

overlapping tilings in that region. Overlapping tilings are common as they provide both coarse 
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and fine representation. The size of the binary feature vector is the number of tiles in all the 

tilings; however, many of the values are equal to zero at one time.  

 

1.6.2.4.2 Selective Kanerva Coding 

This method of state representation builds off of the work of Pentti Kanerva (Kanerva 1988). 

Kanerva formulated a model of sparse distributed memory, which is conceptually similar to 

long-term memory in humans. It postulates that a high-dimensional binary state space can be 

represented by a set number of randomly placed points, referred to as prototypes. Kanerva 

coding finds the number of prototypes within a set radius from the current state and activates 

those prototypes. All other prototypes are set to zero, resulting in a binary feature vector. The 

number of features in the feature vector does not increase with the addition of sensors; therefore, 

this method is not susceptible to the dimensionality issues that plague tile coding. An analogy for 

Kanerva coding is if our galaxy were the state space (3-dimensional for the purpose of this 

example) and the prototypes were the stars. If the Earth indicates our current location in the state 

space, then Kanerva coding would define our location by the stars with a set radius, say 20 light-

years. Depending on where we are in the state space, a different number of stars will fall within 

that radius, resulting in a different number of ones in the feature vector, possibly leading to 

uneven learning according to the locations.  

 

Selective Kanerva coding (SKC) activates the c closest prototypes to the current state according 

to their Euclidean distance, rather than using the activation radius. This ensures that the same 

number of features are active for every timestep, which is an advantage in common with tile 

coding. Furthermore, SKC is not affected by the distribution of the prototypes, which can largely 

affect the performance using traditional Kanerva coding (Travnik and Pilarski 2017). This is 

analogous to using the, for example, 10 closest stars to our current state, to define the feature 

vector.  

 

1.6.2.5 Eligibility Traces 

Eligibility traces allow for TD learning to occur using estimates of value functions for more than 

one time step. An eligibility trace (e) is a temporary record of which states were recently visited 

by the agent. Recency is determined by the factor 𝛾𝜆, where 𝛾 is the discounting factor and 𝜆 is 
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the trace decay parameter (Sutton and Barto 2018). When a temporal difference error occurs, 

only the recently visited states are eligible for undergoing learning. The most recently visited 

states are assigned the highest credit for the TD error. The presence of an eligibility trace in TD 

learning is referred to as TD(λ) and can make learning more efficient. The update equation for 

the weight vector using an eligibility trace is: 

 

𝒘𝑡+1  ← 𝒘𝑡 +  𝛼𝛿𝑡𝒆𝑡  (1.11) 

where  

𝒆𝑡 ← 𝛾𝜆𝒆𝑡−1 + 𝒙(𝑠𝑡) (1.12) 

 

This is one example of an eligibility trace, referred to as an accumulating trace, as it accumulates 

credit each time a state is visited.  

 

1.6.2.6 General Value Functions 

Up to now I have discussed primarily state value functions, which describe ‘how good it is’ to be 

in a particular state. The ‘goodness’ of a state is continually learned and updated from interacting 

with the environment and estimating the future value of that state. The same RL methods can be 

used to learn the future values other signals of interest (Sutton et al. 2011). The goal is no longer 

to maximize future rewards, but to predict future values of arbitrary signals. An arbitrary signal 

of interest is referred to as a cumulant (Z), and is predicted using a general value function (GVF). 

GVFs of a cumulant signal can be learned using methods such as TD learning. The goal is no 

longer to maximize the future value of the signal of interest, rather the target accumulates and 

therefore summarizes future values of the cumulant signal. The equation for the target, which 

was previously denoted the return (Gt) is now: 

 

 𝐺𝑡 = ∑ 𝛾𝑘𝑍𝑡+𝑘+1
∞
𝑘=0  (1.13) 

 

where γ is now referred to as the termination signal (White 2015). The termination signal can be 

used to define events of interest in the cumulant signal that are desirable to predict within a 

particular time-frame: 

 𝛾 = 1 −
1

𝑇
 (1.14) 



42 

 

where T is the number of timesteps. As the GVF is the discounted sum of the future values of the 

cumulant, the prediction does not exactly follow the same shape of the cumulant signal. Instead, 

it is the convolution of the cumulant with a decaying exponential due to γ. Putting these concepts 

together: using TD learning and an eligibility trace to obtain a GVF for a cumulant signal, 

represented using linear function approximation: 

 

Algorithm 1.1 TD(λ) with GVFs 

Input α, λ, γ  

Initialize w, e, s, x 
 

Repeat every timestep: 
 

Obtain s' and cumulant z' from environment 

get x' from state representation method 

V ← wT x old general value function 

V' ← wT x' new general value function 

δ ← Z + γV' – V  TD error 

e ← γλe + x accumulating eligibility trace 

w ← w + αδe  update/learn weight vector 

x ← x' replace feature vector 

 

1.6.3 Pavlovian Control 

Pavlovian control refers to the use of concepts from classical conditioning to produce a control 

output.  

 

1.6.3.1 Classical Conditioning 

Classical conditioning, also referred to as Pavlovian conditioning, is a type of learning where a 

learned prediction of a stimulus is paired with a fixed response (Modayil and Sutton 2014). 

Unlike reinforcement learning, there is no reward signal. An example of classical conditioning 

includes the work of the well-known Ivan Pavlov in the late 1800s. In his experiments, Pavlov 

noticed that when dogs were presented with food, they would salivate (Pavlov 1883; Rehman 

and Rehman 2018). Later, the dogs salivated slightly before they were presented with food. He 

realized that the dogs were associating noises that preceded the food arrival with the food 
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arriving. To formally test his theory, he performed experiments where he rang a bell prior to 

presenting the dogs with food. At first, the dogs only salivated when the food arrived; however, 

later the dogs began to salivate when the bell rang. In formal classical conditioning terms, the 

unconditioned stimulus (US) is the food, which leads to the unconditioned response (UR) of 

salivating. The UR automatically responds to the US and is not under control of the dogs. A 

conditioned stimulus (CS), in this case the ringing of the bell, is a stimulus that the dogs learn to 

associate with the conditioned response (CR) of salivating. Since the UR and CR are often the 

same, the term response (R) will be used to refer to them.  

 

The learned association of the CS with the R requires that the CS arrive before the US. In other 

words, the bell must ring before the food arrives for the dog to associate the bell with the arrival 

of food and begin salivating. Animals learn to predict the onset of a stimulus and respond 

accordingly. The interval between the onset of the CS and the onset of the CR is very important. 

The optimal interval between the stimuli varies according to the scenario and the delay between 

the onset of the CS and the onset of the response. For example, rabbits learn to predict a puff of 

air directed at the eye (US) from a tone (CS) and blink (R) within tens of milliseconds before the 

arrival of the US. In this case, the optimal interval between the US and the CS was 250 ms 

(Kehoe and Macrae 2002). However, conditioning over a longer interval has been demonstrated 

in taste aversion learning (Garcia et al. 1966; Schafe et al. 1995). The CS was flavoured water 

and the US was a nausea-inducing agent and were separated by hours, but still produced a strong 

aversion to the flavoured water.  

 

The cerebellum is responsible for the learning of the timing relationships between the CS, US, 

and R (Jirenhed and Hesslow 2011). Normally, climbing fibers carry afferent sensory 

information from the spinal cord and brainstem, which is used by the Purkinje cells to generate a 

motor response (Xu et al. 2006). Climbing fibers synapse directly onto Purkinje cells. Mossy 

fibers indirectly relay sensory information to the Purkinje cells through connections with the 

parallel fibers and therefore have a longer latency and smaller effect on Purkinje cells. The role 

of the cerebellum in classical conditioning is well known for the eye-blink conditioning reflex 

(McCormick and Thompson 1984; Christian and Thompson 2003; Thompson and Steinmetz 

2009). Specifically, the Purkinje cells in the eye-blink controlling area fired (R) to electrical 
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stimulation of the mossy fibers (CS) and the climbing fibers (US). Most often the Purkinje cells 

developed a conditioned R with an interval of 200 ms between the CS and US (Jirenhed and 

Hesslow 2011).  

 

1.6.3.2 Machine Learning in Pavlovian Control 

Biologically, classical conditioning relates a predicted sensory stimulus to a particular motor 

response. This concept can be translated into control problems. In particular, predictions can be 

formulated from available sensor data, and used to trigger a pre-defined output, or response. The 

control output is defined to specify the desired behaviour or movement. The predictions can be 

learned through machine learning methods such as GVFs and TD learning, as detailed in the 

previous section on RL. TD is an appropriate algorithm to generate predictions for Pavlovian 

control as it is inherently structured to do so. Specifically, the TD model infers that the CS is 

used to predict the US through temporally-successive prediction errors (Ludvig et al. 2012). The 

prediction error strengthens or weakens the association between the CS to the US.  

 

Using machine learning-derived predictions to produce a fixed control output is a relatively new 

concept in the field. There are two streams of using predictions for control purposes: prosthetic 

arms and a mobile robot. GFVs can be used to predict switching events of a prosthetic arm 

controlled by EMG signals, which determine which joint of the arm to control (Pilarski et al. 

2012; Pilarski et al. 2013a, 2013b). The prediction of switching events was tested in a robot arm 

controlled by able-bodied participants (Edwards et al. 2013) and amputees (Edwards et al. 2016). 

Adaptive control using the learned predictions significantly decreased the number of switch 

events and switching time compared to a set order of switching. Although not explicitly stated, in 

these studies the switching events were the US, the new joint to actuate is the R, and the CS is 

the prediction of switching event determined by the GVFs of the servo motors for each joint.  

 

Work in a mobile robot formalized the concept of nexting: the ability to continually predict the 

immediate future (Modayil et al. 2014). To next requires knowledge of the environment, which 

can be learned and predicted. Large scale predictions of on-board sensor signals at multiple time-

scales has been demonstrated using TD learning of GVFs (Modayil et al. 2012; Modayil et al. 

2014) and used to trigger fixed responses in the robots (Modayil and Sutton 2014). A GVF of the 
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over-current signal of the motor was used to predict motor stalls (US). If the prediction reached a 

pre-defined threshold (CS), indicating a high probability of an impending motor stall, the motors 

were shut off (R). Pavlovian control reduced the number of over-current events, which were 

potentially damaging to the robot. This work also explored the prediction of human-provided 

commands to steer a robot (Modayil and Sutton 2014). Specifically, the position of the left elbow 

joint (US) was predicted (CS) to initiate the robot to spin left (R). All of the described work used 

tile coding for function approximation of the state space.  

 

The association of the environment with a fixed response can be formed through repetitive 

behaviour, and is the foundation for habit learning (Renaudo et al. 2014). Although this work did 

not learn predictions to trigger the fixed response, as in Pavlovian control, they demonstrated that 

more accurate selection of actions in a habitual simulated robot. However, habit learning 

struggled with adapting to changes in the environment. Therefore, the combination of online 

learned predictions with a fixed response is needed to produce adaptive behaviour.  

 

Pavlovian control allows the integration of expert knowledge through the design of the CS 

leading to the desired R. It outperformed reactive control of prosthetic arms (Edwards et al. 

2016) and mobile robots (Modayil and Sutton 2014) by more efficiently selecting the joint to 

actuate and predicting dangerous events and control commands, respectively. As walking is a 

repetitive task that requires precise control for safety purposes, Pavlovian control may be an 

appropriate approach to achieve adaptive control of walking in a SCI model. 

 

1.7 Control of Walking 

To restore walking using electrical stimulation, either targeting the periphery or the spinal cord, 

control strategies need coordinate the activation of the muscles and movements. For more 

seamless and natural-like control, the strategies should aim to replicate how the nervous system 

naturally controls locomotion. However, this is not a straightforward task as motor control is 

very complex and the mechanisms are still being investigated. Therefore, the control strategies 

that have been developed range from simple and limited control to strategies that attempt to 

incorporate concepts from natural motor control. 
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1.7.1 Feed-Forward Control 

Feed-forward control, or open-loop control, entails delivering stimulation in a pre-timed pattern 

with pre-set amplitudes to produce the desired movements. This is much like the concept of the 

CPG without sensory feedback, where there is an inherent timing mechanism that drives 

activation of muscles to move the limbs. Feed-forward control can dictate the timing and 

grouping of muscle activations with phases of walking or control the trajectory of the limb. 

 

The simplest way to implement feed-forward control is to alternate between flexion and 

extension movements, which act as the swing and stance phases, respectively. This has been 

accomplished by placing surface electrodes over the quadriceps, for knee extension, and the 

peroneal nerve, to produce a flexor-withdrawal response (Bajd et al. 1985). This is also the same 

strategy used by the Parastep and Praxis systems, in which users press buttons on a walker to 

initiate each step (Chaplin 1996; Johnston et al. 2005). Some Parastep units also include extra 

channels on the glutei and/or paraspinal muscles for hip and lower back extension. However, 

habituation of the common peroneal nerve stimulation has shown to attenuate movements such 

as hip flexion (Granat et al. 1993). The alternation between flexion and extension has been 

accomplished using IMS in cats (Guevremont et al. 2007) as well as using ISMS with as little as 

2 electrodes per side of the spinal cord in intact cats (Mushahwar et al. 2002) and 4 electrodes 

per side in spinalized cats (Saigal et al. 2004). 

 

A different method of producing walking is to replicate the timing of the muscle activation as 

closely as possible to natural walking (Popović et al. 2003). Coarse movements using 6 

intramuscular electrodes were produced in cats through open-loop stimulation of hip, knee, and 

ankle flexor and extensor muscles (Guevremont et al. 2007). For finer control of individual 

muscles, a combination of up to 16 implanted and surface electrodes has produced walking in 

people with complete (Kobetic et al. 1997; Guiraud et al. 2006) and incomplete (Hardin et al. 

2007) SCI. The systems used by humans are initiated by push buttons by the users (Chaplin 

1996; Kobetic et al. 1997; Johnston et al. 2005; Guiraud et al. 2006; Hardin et al. 2007), which 

can become quite cumbersome (Braz et al. 2009). 
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Another method of feed-forward control involves dividing the walking cycle for cats into 4 

phases: F, E1, E2, and E3 (Engberg and Lundberg 1969; Goslow et al. 1973), which correspond 

to lift off to early swing, late swing to touch down, touch down to mid-stance, and mid-stance to 

push-off and constitute 20%, 20%, 20%, and 40% of the step cycle, respectively. Partitioning the 

gait cycle in this way is similar to the two-level CPG model, where there is still an inherent 

timing mechanism but the pattern of movements is separately produced. Each phase of the gait 

cycle can be produced separately by stimulating through a combination of ISMS electrodes, 

depending on their function. Once each phase is constructed, they can be concatenated in a 

cyclical manner to produce a gait cycle (Holinski et al. 2011; Mazurek et al. 2012). However, 

hyperextension during the push-off phase was noted in these studies, causing loss of weight-

bearing. Since this was a feed-forward controller, it was not possible adapt the stimulation output 

to make corrections to the walking produced.  

 

1.7.2 Feedback Control 

Feed-forward control systems lack the ability to adapt their output to disturbances or alterations 

in terrain or muscle activation. Since FES is prone to produce muscle fatigue, instances such as 

knee buckling during walking have contributed to the development of feedback, or closed-loop, 

control systems (Mulder et al. 1990; Braz et al. 2009). Feedback from sensors allows for 

modifications to the stimulation output. The sensors used for feedback range from measuring 

biological signals such as EMG or EEG activity, to artificial signals from force-sensitive 

resistors, force plates, goniometers, gyroscopes, and accelerometers measuring force or joint 

angles and positions. A simple use of a sensor signal to detect the subject’s intention to step can 

be utilized to initiate open-loop stimulation of a step cycle (Dutta et al. 2008; Sweeney et al. 

2000). This replaces the need for users to press a button for each step they wish to take.  

 

Aside from feedback used to indicate user intent, feedback can also be used to initiate transitions 

between the phases of the walking cycle using finite state control (Popović 1993). Sensor 

feedback is used to transition between states. The states can be different modes, such as sitting, 

standing, or stepping (Braz et al. 2009), or they may be the different states of the gait cycle 

(Andrews et al. 1988; Sweeney et al. 2000; Guevremont et al. 2007). Phase transitions can be 
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accomplished using IF-THEN rules to using information from force plates and accelerometers 

(Guevremont et al. 2007). 

 

State transitions using similar rules have also been implemented for IMS on a neuromorphic 

silicon chip was developed to mimic the function of the half-center CPG (Vogelstein et al. 2008). 

Sensory inputs conveying information about the cats’ hip angle and limb loading were relayed to 

the CPG network and used to initiate transitions between the swing and stance states. In both 

studies, pure feedback control was not very successful as the thresholds used to initiate state 

transitions were highly sensitive. Reasons for failure included slips and misses that resulted in 

the paw losing traction with the walkway, double-unloaded stance where both limbs were fully 

extended behind the animal, standing, stepping in place (no forward progression), and poor limb 

movements (Guevremont, et al. 2007). Control using the neuromorphic chip produced walking 

that differed from normal (Vogelstein et al. 2008). Specifically, the swing-stance ratio was much 

smaller than in normal walking, and because there were only flexion and extension states, the 

timing of the onset of different muscles was different from normal walking. Nonetheless, the 

stimulation was still able to propel the animal across the walkway. Within a state, feedback may 

be used to make modifications to ensure safety. For example, if knee buckling occurs, as 

measured by goniometers, then the stimulation amplitude must be increased through the channel 

delivering current to the quadriceps (Davis et al. 1999).  

 

1.7.3 Combined Feed-Forward and Feedback Control 

Mammals are constantly processing sensory information to accommodate their gait. Moreover, 

the CPG, which by itself is a feed-forward system, integrates sensory information from 

proprioceptive and cutaneous afferents, as well as descending information from visual centers 

and the cerebellum, to adjust the timing and pattern of walking. Therefore, it is logical to 

replicate physiological control mechanisms to control walking using ISMS. Guevremont and 

colleagues (2007) proposed and tested this concept initially using IMS, and it was further 

developed and tested in simulation (Mazurek et al. 2010) as well as using both IMS (Mazurek et 

al. 2012) and ISMS (Holinski et al. 2011; Holinski et al. 2013, 2016) in cats. Each controller 

implemented a feed-forward control by generating intrinsically-timed walking. Feedback signals 

from force plates, gyroscopes, and accelerometers were then used to monitor the walking using 
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various IF-THEN rules that interrupt and modify the feed-forward control. In one study, 

feedback from recordings from an implant in the dorsal root ganglia (DRG) at the L6 and L7 

spinal levels were used to adapt ISMS-controlled unilateral stepping. The interrupt rules adjusted 

the transition times between the phases of the step cycle, as well as adapt the stimulation output 

to ensure sufficient weight-bearing.  

 

1.7.4 Joint Tracking 

More traditional control methods, such as proportional-integral-derivative (PID) controllers have 

also been implemented. These types of controllers modify the stimulation output in order to track 

a target, which could be a joint angle or limb trajectory (Quintern et al. 1997; Kurosawa et al. 

2005). Non-linear control methods have also been implemented for joint tracking. Non-linear 

control methods are more robust and accurate than linear methods, which may be advantageous 

for control. 

 

1.7.4.1 Fuzzy Logic Control 

Fuzzy logic is a method of using values ranging between 0 and 1 as logical probabilities, 

depicting the inexact way of the world, making it closer to human thinking. In the context of 

control, fuzzy logic can incorporate expert knowledge (Lee 1990; Kovacic and Bogdan 2005). 

There are four main components to fuzzy logic control: fuzzification, fuzzy rules, implication, 

and defuzzification (Roshani and Erfanian 2013b). Fuzzification entails modifying the inputs by 

converting them from a numerical value into a linguistic value by association with a membership 

function so that they can be interpreted in the rule base. The fuzzy rules are a set of IF-THEN 

rules, and this is where the prior knowledge is stored. Fuzzy implication uses an inference engine 

to decide which rules are currently relevant and what the input should be. Defuzzification 

converts the fuzzy decisions to control actions.  

 

Fuzzy logic control has been used to control the ankle joint using ISMS in a rat model, with 

separate fuzzy controllers for dorsiflexion and plantarflexion (Roshani and Erfanian 2013a, 

2013b) aimed to track a target trajectory. Each controller controlled two electrodes, for a total of 

four electrodes controlling ankle movements measured by a motion tracking system. The authors 

noted a 200 ms time delay in the neuromusculoskeletal response to the stimulation in the spinal 
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cord. To improve the transient response of the controller, a lag compensator was incorporated 

into the fuzzy logic control system (Roshani and Erfanian 2013b). A different study used fuzzy 

logic to trigger the onset of the flexion phase of the gait cycle using ISMS (Saigal et al. 2004). 

 

1.7.4.2 Sliding Mode Control 

Sliding mode control (SMC) is a non-linear control method known for its accuracy, robustness to 

uncertainty, perturbation rejection, and simple implementation (Utkin 2009). The goal of the 

control system is to track a desired trajectory or target by driving the system states onto a surface 

in the state space, known as the sliding surface (Vecchio 2008). Once the states reach the sliding 

surface, SMC forces the states to stay within a boundary along the sliding surface. 

 

Initial control strategies utilizing SMC were tested using surface electrical stimulation over leg 

muscles at the level of a single joint (Ajoudani and Erfanian 2007; Kobravi and Erfanian 2009; 

Nekoukar and Erfanian 2010), for standing (Kobravi and Erfanian 2012) and to produce walking 

(Nekoukar and Erfanian 2012). Only later was it tested using ISMS (Asadi and Erfanian 2012; 

Asadi 2014) and epidural SCS (Khazaei and Erfanian 2016).  

 

The SMC controller developed by Kobravi and Erfanian (2009) was used to control ankle joint 

movement in paraplegic participants during quiet standing using surface FES (Kobravi and 

Erfanian 2012). The goal of this work was to replicate the ankle strategy used to maintain 

posture in intact individuals, thereby eliminating the need for the paraplegic participants to hold 

on to an assistive device and freeing their arms for other tasks. The participants were suspended 

in a harness system for safety and placed in a body brace to lock the joints above the ankles. The 

body’s inclination angle was measured by placing a motion tracking sensor over the 3rd lumbar 

vertebrae and was used as a feedback signal for the controller. Center of pressure was also 

measured and used as for stability analysis. During independent quiet standing, the controller 

rapidly switched stimulation between ankle flexors and extensors to correct for body sway, 

maintaining a safe center of pressure. After a few trials, participants were able to stand for about 

10 minutes before falling.  
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As seen with approaches such as the Parastep (Chaplin 1996) and IMS walking systems (Triolo 

et al. 2012) discussed above, users rely on their upper body for support and fatigue quickly. This 

motivated the development of new closed-loop control strategies for controlling the legs during 

walker-assisted FES (Nekoukar and Erfanian 2012), whereby the walking pattern followed a 

target trajectory to minimize the effort exerted on the upper body. A walking reference for trunk, 

hip, knee, and ankle trajectories were obtained from a healthy male subject that walked slowly 

with the walker. The controllers were tested in complete SCI participants. Surface electrodes 

were placed over the quadriceps, gluteus maximus/minimus, soleus and gastrocnemius, and 

iliacus muscles as well as over the common peroneal nerve. Feedback measurements included 

trunk, hip, knee, and ankle joint angles, ground reaction force, and handle reaction force for a 

single hand. Trajectory matching was aimed to be within one standard deviation of the reference 

joint angles. During swing there was ample foot clearance. The participants only exerted an 

average of 12.05% of their body weight on the walker for stability, and could walk at 

approximately 0.55 m/s (the target speed).  

 

Control of knee and ankle joints using ISMS in rats was realized using SMC (Asadi and Erfanian 

2012). Trajectory tracking for each joint resulted in trials lasting 7 minutes, demonstrating 

robustness of the tracking to fatigue by adjusting the stimulation amplitudes accordingly. This 

SMC controller was further tested using ISMS in the intermediate spinal cord of the rat to target 

movement primitives (Asadi 2014; Giszter 2015). The tracking was not as accurate as with ISMS 

in the ventral horn of the grey matter. SMC using ISMS electrodes implanted in both the ventral 

and intermediate spinal cord to track joint angles produced air and treadmill stepping in 

anaesthetized cats (Rouhani and Erfanian 2018). SMC was also used to control epidural SCS for 

multi-joint tracking to create extension and flexion movements in cats, with separate controllers 

for each function (Khazaei and Erfanian 2016).  

 

SMC-based controllers have been shown to be accurate in tracking joint trajectories using 

surface stimulation, ISMS, and epidural SCS. They are also robust to external disturbances as 

well as to muscle fatigue. However, this control method requires that a target trajectory to be 

known and available. To acquire a target requires much knowledge of the system or an example 

of a desired limb trajectory, for example, from an intact individual. This could be difficult to 
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implement clinically since each individual would need a reference from a person that is of 

similar height and weight. This requires much trial and error for tuning (Matjacić et al. 2003). 

Additionally, the users would need to have goniometers and possibly other sensors placed on 

their legs to provide feedback to the controllers.  

 

1.7.5 Machine Learning Control of FES 

There has been much work, primarily in the 1990’s, investigating machine learning methods to 

control FES to restore walking. Various supervised machine learning methods were implemented 

in computer simulation and in participants with a SCI.  

 

Three main algorithms have been used in various capacities to control FES: inductive learning, 

artificial neural networks, and adaptive logic networks. Briefly, inductive learning (IL) produces 

a decision tree, which consists of sequential decision rules to partition the input data to obtain the 

desired output (Kirkwood et al. 1989). An adaptive logic network (ALN) is a type of artificial 

neural network (ANN) (Kostov et al. 1995). A common ANN is an MLP, which is feed-forward, 

as opposed to recurrent ANNS in which nodes have successively and recurrent connections. 

Conversely, ALNs encode continuous values into Boolean vectors (containing 0s and 1s only) 

and uses logical operators (AND, OR, LEFT, or RIGHT) to connect the layers (Kostov et al. 

1992, 1995; Supynuk and Armstrong 1992). Computationally ALNs are simpler and faster to 

execute (Kostov et al. 1995). These three algorithms have been implemented repeatedly to 

control FES in various ways. 

 

Just as traditional control methods may be used to control FES to track joint angles, machine 

learning methods have also been tested for this purpose. An ANN was used to track the knee 

torque during an FES-induced isometric contraction of the quadriceps muscles in people with a 

SCI (Abbas and Triolo 1997). The knee joint angle and muscle activity of knee flexor muscles 

was predicted in a simulation of FES-walking in SCI participants (Popović et al. 1999) using two 

types of ANNs and IL (Jonić et al. 1999). These methods may be useful for controlling the knee 

torque during stand-sit transfers or during standing or walking. Control of the ankle joint during 

walking is also very important. ANNs were used to control the ankle joint by tracking a desired 

trajectory in computer-simulated cats (Qi et al. 1999) and people with stroke (Chen et al. 2004).  
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One way to reduce the burden on an FES user is to replace the use of hand-switches controlling a 

step initiation with an automated method. For example, all 3 of the aforementioned machine 

learning algorithms have been used to predict the participant’s intention to take a step and trigger 

stimulation for the flexor-withdrawal reflex for the swing phase in participants with a SCI 

(Kirkwood and Andrews 1989; Kostov et al. 1992, 1995; Tong and Granat 1999; Sepulveda et al. 

1997). A study comparing the performance of IL versus an ALN found that IL was faster, but the 

ALN had a smaller test error. One study used machine learning to control the hip and knee joints 

during walking in a subject with complete SCI using a combination of inductive learning and an 

ANN (Fisekovic and Popovic 2001). They reported faster walking with less effort with automatic 

control compared to hand-control of FES. Similarly, ANNs have been used to trigger the onset of 

FES in a foot-drop device in people with a stroke (Shimada et al. 2005; Hansen et al. 2004).  

 

Different states of the gait cycle have been predicted using IL (Kirkwood and Andrews 1989) 

and an ALN (Williamson and Andrews 2000) in able-bodied participants; however, the utility of 

the predictions were not tested using FES. Heller et al. (1993) compared IL with an ANN in 

reconstructing muscle activation during walking in able-bodied participants, with no clear 

superior method and was not utilized in an FES system. A type of ANN was used for finite state 

control of FES walking in intact participants with restrictive braces and a participant with a 

complete SCI (Popović 1993).  

 

Switching between gait types such as standing, sitting, and stepping using the Parastep system in 

people with a SCI was accomplished using a type of ANN (Graupe and Kordylewski 1995). A 

similar approach to predicting gait types attempted to use EMG activity from an intact subject to 

train an ANN to control FES in participants with cerebral palsy (Sepulveda and Cliquet Júnior 

1995). This study demonstrated the importance of training the algorithms with data from the 

intended population. Numerous networks were tested and struggled to produce the desired EMG 

output in the cerebral palsy population because they were trained in intact individuals.  

 

1.7.6 Reinforcement Learning Methods for Walking 

Much of the research employing RL methods to produce walking occurs in simulated 

environments or in robots. One RL method that has been tested in Nao humanoid robots is actor-



54 

 

critic (Endo et al. 2008; Li et al. 2013). Actor-critic is a TD method that separates the action 

selection (by the actor based on a policy) and the estimation of value functions and policy 

updates (performed by the critic using TD learning). In these studies, the actor controlled the 

output to a central pattern generator CPG model to either control joint trajectories. The critic 

used sensor values and reward signals to evaluate the walking and update the policy using 

gradient descent. Reward signals included falling, distance moved forward (Li et al. 2013), the 

height of the pelvis, and forward velocity (Endo et al. 2008). Both approaches reduced the state 

space to include only relevant sensor signals, rather than using function approximation. Stable 

walking was achieved in 200 trials (Endo et al. 2008) and 10 trials (Li et al. 2013), even after 

starting from learned parameters in simulation (Endo et al. 2008).  

 

Starting from a simulation is common as it can more quickly learn without damaging robot 

hardware. Even so, learning a map for limb trajectory from a simulator to a bipedal robot with no 

ankle joint still needed 100 trials of 30 steps to walk successfully (Morimoto and Atkeson 2007). 

A different study controlled only the hip joint of a robot and took 20 minutes of continuous 

learning to walk, after 15 hours of simulation (Schuitema et al. 2005). This study rewarded the 

agent for taking steps, resulting in shuffling, asymmetrical stepping, and marching in early 

learning trials.  

 

More skilled walking was also achieved using RL methods. Fast walking was achieved in a robot 

using policy gradient to select the next walking motion within 10 trials (Li et al. 2011). This 

robot lacked a knee joint and was very unstable. By shaping the reward to favour stability over 

velocity, fewer falls occurred but required more trials for learning. A robot without knee joints 

and a single hip joint walked up a 5º incline within 20 episodes using a greedy policy to select 

the joint movements (Salatian et al. 1997). The joint trajectories were executed by a 

proportional-integral (PI) controller. 

 

Reinforcement learning performs well in stochastic, non-stationary walking, making it a 

reasonable choice for a control algorithm to produce walking. Applying various RL methods to 

produce walking in robots has been successful; however, there are many limitations and 

assumptions to consider. Many of the robots used did not have hip, knee, and ankle joints 
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(Salatian et al. 1997; Schuitema et al. 2005; Morimoto and Atkeson 2007; Li et al. 2011). While 

this makes the problem simpler, it is not realistic for applications in rehabilitation. Many studies 

assumed symmetry of the limbs to decrease computation time and simplify the control problem 

(Endo et al. 2008; Schuitema et al. 2005; Salatian et al. 1997). However, this may not be a 

feasible approach in rehabilitation applications, as the injuries that are being compensated for 

may not be symmetrical. Finally, many of these methods demonstrated slow learning, even after 

hours of simulations. This can be affected by the computations needed to execute joint 

trajectories (Endo et al. 2008) or because the reward signal must prioritize stability over speed 

(Li et al. 2011). It could also be due to the chosen RL method and how often learning occurred. 

RL can be slow because learning requires trying many options in a large state space 

(exploration). Restricting the state space to relevant regions is one method to try and speed up 

learning (Endo et al. 2008; Li et al. 2013).  

 

There are several methods that have been investigated to restore walking after a SCI. The studies 

collectively demonstrate the importance of sensor feedback to make corrections to the output. All 

the control strategy development to date has focused on restoring walking in a model of 

complete SCI. This means that the control strategy and stimulation were entirely responsible for 

the walking produced. However, approximately half of all SCIs are incomplete, with varying 

degrees of residual function. For a neuroprosthesis to be truly effective in a SCI population, 

augmentation of residual function needs to occur. Furthermore, the aim of control strategies 

should be to adapt to the individual as stimulation requirements may change over time. 

Reinforcement learning and Pavlovian control may offer the needed adaptability for restoring 

walking after an incomplete SCI.  

 

1.8 Thesis Outline 

There were three primary aims of my thesis work. My first aim was to characterize motor 

activity from the developing spinal cord. Next, I tapped into spinal networks in order to augment 

remaining function in a model of incomplete SCI. Specifically, I adapted the control of walking 

to walking speed. Finally, I developed a personalized control strategy that automatically adapted 

to given subjects. These aims contributed to the overall goal of this work which was to 

characterize motor activity and restore function after neural injury. 
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The work outlined in chapters 2 and 3 demonstrate the utility of supervised machine learning in 

real-world, neuroscience problems. The work in chapter 2 poses a classification task, where 

experts label examples of episodes of spontaneous activity recorded from the developing spinal 

cord to train MLPs. Manual classification of the episodes is extremely time-consuming. Three 

experts transfer their combined knowledge and expertise to the MLPs for fast and automatic 

classification of episodes of activity. The software encompassing the feature detection and 

classification for spontaneous activity enables the investigation of DC-coupled recordings, 

revealing the fine details of neural network activity during development.  

  

The work in chapter 3 details how numeric prediction of the stepping speed using regressions 

and model trees can be used to select the control strategy for ISMS in a hemisection SCI model. 

These algorithms were trained to predict the step period of a person-moved limb using timing 

information from a portion of the step taken. The predicted step period value was then used to 

select a control strategy appropriate for the walking speed, and was also used to calculate the 

stimulation times for the other limb for faster steps. This presents the first control strategies 

aimed at augmenting remaining function to produce stepping in a model of incomplete SCI. Both 

bodies of work demonstrate the power of supervised machine learning methods to learn and 

perform tasks. 

 

Supervised methods are not appropriate for all problems. The work in chapter 4 demonstrates 

how predictions learned using RL can be used for Pavlovian control of over-ground walking. 

Prediction-initiated transitions between the phases of the walking cycle had fewer errors than 

reaction-based control. Furthermore, RL was able to acclimate to different people walking the 

limb and to different cats, eliminating the need for tuning of individual parameters within and 

between experiments. Pavlovian control allows personalized control that augments remaining 

function in a model of incomplete SCI by quickly and automatically adapting to different 

individuals.  
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Chapter 2: A Supervised Machine Learning Approach to 

Characterize Spinal Network Function1 

2.1 Introduction 

For decades, isolated embryonic or neonatal spinal cord preparations have been used to study 

sensorimotor integration (Kudo and Yamada 1987; O’Donovan and Landmesser 1987; Smith 

and Feldman 1987; Clemens and Hochman 2004; Mentis et al. 2011) and to examine patterns of 

movement-related network activity (Smith and Feldman 1987; Cowley and Schmidt 1997; 

Whelan et al. 2000). Neonatal mice generate stepping movements when exposed to olfactory or 

cutaneous stimulation (Fady et al. 1998; Jamon and Clarac 1998) and patterns of locomotor-like 

activity can be generated in vitro by inducing a high excitability state in the network through 

electrical, optical, or neurochemical stimulation (Gordon and Whelan 2006; Gordon et al. 2008; 

Hägglund et al. 2010; Kiehn 2016). However, the vast majority of hind-limb movements 

produced by neonatal rodents are sporadic ataxic episodes of uncoordinated rhythmic action 

(Jamon and Clarac 1998). A fictive correlate of these movements is recognizable in vitro as 

spontaneous activity, which represents the motor output of the developing spinal networks in a 

more natural activity state. Spontaneous activity plays a critical role in the development of motor 

networks, in synaptic and receptor plasticity, and in guiding the innervation of descending motor 

and ascending sensory afferents, both of which are sparse at birth. 

 

The qualitative complexity and stochastic nature of spontaneous activity patterns make them 

challenging to study. Previous work investigating spontaneous network behaviour has primarily 

focused on quantifying AC-coupled or high-pass filtered activity (for examples, see Fellippa-

Marques et al. 2000; Hanson and Landmesser 2003), which can detect activity peaks but may 

miss finer details such as intra-episode spiking and rhythmicity. In contrast, DC-coupled 

recordings detect extraordinarily rich and detailed sub-threshold information (O’Donovan 1987; 

Whelan et al. 2000; Figure 2.1), which provides important clues about network dynamics that 

could be used as biomarkers for developmental disorders, such as cerebral palsy. 

                                                
Dalrymple, A.N.1, Sharples, S.A.2,3, Osachoff, N.4, and Whelan, P.J.2,3,4 

1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; 2 Hotchkiss Brain Institute, 
University of Calgary, Calgary, AB, Canada; 3 Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada; 
4 Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada. 
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To enable the examination of such activity including the sub-threshold components, we created a 

software tool which uses machine learning to classify episodes of spontaneous patterns of motor 

activity recorded from isolated mouse neonatal spinal cords in vitro. Using Matlab (MathWorks 

Inc., Natick, MA, USA), we developed the software in a graphical user interface (GUI) that 

allows users to detect, visualize, and characterize episodes of spontaneous motor activity. This 

tool, called SpontaneousClassification, quickly and automatically extracted features and 

classified episodes using supervised machine learning. This approach is substantially faster and 

easier than manual classification. In addition, it detected changes in stochastic spontaneous 

network activity after an induced increase in spinal network excitability.  

 

Figure 2.1. Spontaneous network activity recorded from the lumbar spinal cord. A) Experimental setup: suction 

electrodes recorded activity from the L2 and L5 ventral roots of neonatal mice (P0–P3). B) DC-coupled neurogram; 

grey bars highlight episodes detected in AC-coupled neurogram. C) High-pass filtered (100 Hz) neurogram; grey 

bars highlight episodes detected in AC-coupled neurogram. Da and Db) Enlarged regions: Top traces depict DC-

coupled neurograms, bottom traces depict AC-coupled neurograms. 



59 

 

SpontaneousClassification may facilitate investigations of spinal network function in a different 

manner than currently available techniques, expanding the toolbox of methods used to 

investigate spinal neural networks. 

 

2.2 Methods 

2.2.1 Tissue Preparation 

Experiments were performed in neonatal C57BL/6 mice (P0–P3; n = 16) obtained from timed-

pregnant females housed in the animal care facility at the University of Calgary until they gave 

birth. Neonates were anaesthetized by cooling, then decapitated and eviscerated to expose the 

vertebral column. The remaining tissue was placed ventral side up in a dissection chamber filled 

with room-temperature carbogenated (95% O2, 5% CO2) artificial cerebrospinal fluid (aCSF) 

(128 mM NaCl, 4 mM KCl, 1.5 mM CaCl2, 1 mM MgSO4, 0.5 mM Na2HPO4, 21 mM NaHCO3, 

30 mM D-glucose). A ventral laminectomy exposed the spinal cord. We cut the dorsal and 

ventral roots, removed and transferred the spinal cord to a recording chamber, ventral side up, 

with recirculating carbogenated aCSF at a flow rate of 20 mL/min, and gradually heated them 

from room temperature to 27ºC. This temperature is closer to the physiological neonatal core 

temperature (32ºC, (Goodrich, 1977)), is above room temperature, which tends to fluctuate, and 

is known to produce more reliable activity in our experience. 

 

2.2.2 Electrophysiological Recordings 

Using Clampex software (Molecular Devices, Sunnyvale, CA), we acquired DC-coupled 

neurograms from the isolated spinal cords (i.e., spontaneous motor activity) by drawing the 

ventral roots from the bilateral second and fifth lumbar segments (L2, L5) into tight-fitting 

suction electrodes filled with aCSF (Figure 2.1A). Neurograms were amplified 1000 times, 

digitized using a 2.5 kHz sampling frequency (Digidata 1440, Molecular Devices), and analyzed 

with our custom-designed Matlab program SpontaneousClassification on a laboratory computer. 

The recordings from each root were treated independently for analysis.  

 

2.2.3 Classification Software 

SpontaneousClassification has three modules: visualization, data preparation and feature 

extraction, and classification. The classification module includes two supervised machine 
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learning classifiers trained on spontaneous motor activity episodes recorded from the isolated 

spinal cords. A user manual and video describing SpontaneousClassification is available as 

supplementary files. 

 

2.2.4 Visualization Module 

This module displays a trace from the loaded neurogram file in the GUI where users can access 

multiple zooming, shifting, and sliding options that operate along the x- and y-axes. Traces can 

also be split into multiple files for further analysis. See the user manual in the supplementary 

documents for further details. 

 

2.2.5 Data Preparation and Feature Extraction Module 

This module prepares the data for further stages of analysis and extracts features of interest from 

the episodes. 

 

2.2.5.1 Episode Detection 

Episode detection first requires the trace to be detrended to remove the drift acquired during the 

recording. After detrending the trace, thresholds must be selected for each trace to separate the 

episodes. Episode threshold was determined by first sorting all data points from each trial into 

bins of ascending amplitude. Figure 2.2B depicts the highest amplitude data points, which likely 

represent bursting activity, on the right side of the x-axis, and a flat region to their left, with 

lower amplitude, non-bursting activity. The flat region’s limits can be determined by viewing the 

bins, and will likely need to be tuned for each different trace, based on variation in recording 

quality (i.e., signal to noise) and amplitude range, which depends on the amount of spontaneous 

activity. To determine the episode threshold, we added a multiple of the standard deviation of 

non-bursting baseline data points to the mean of the data points within a selected region of the 

non-bursting baseline. We found that a multiple of four times the standard deviation optimized 

results. We then used the episode threshold to determine temporal criteria for episode onset and 

offset boundaries (time required above threshold and time required below episode threshold, 

respectively). In our experiments, we defined episode onset as the recording spending 0.25 s 

above threshold and episode offset as the recording spending 0.25 s below threshold. For some 
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traces, the automatic separation of episodes did not correctly capture all the episodes; therefore, 

some episodes were separated manually.  

 

SpontaneousClassification allows for both automatic and manual episode separation. Displaying 

the detected episodes in the SpontaneousClassification GUI can be helpful when tuning detection 

parameters (Figure 2.2C). 

 

 

Figure 2.2. Detecting episodes of spontaneous activity. A) DC-coupled neurogram. B) Amplitude of data points 

from (A) sorted in ascending order. Threshold reflects user-defined upper and lower limit values of the sorted 

amplitudes within the flat region. The average amplitude of the data points plus a user-defined standard deviation of 

the data points within this region is then set as the episode detection threshold. C) Boundaries of detected episodes 

are highlighted in grey. 

 

2.2.5.2 Feature extraction 

SpontaneousClassification identified 902 episodes of spontaneous activity in 40 traces recorded 

from the 17 spinal cords. Twelve episodes from one animal were excluded from analysis due to 

aberrant multi-spike activity that was extremely low frequency and long in duration. The 

remaining 890 episodes were categorized into one of five classes. 

 

From each episode, SpontaneousClassification extracted four time-, two amplitude-, and three 

frequency-related features (Figure 2.3Aa). Time-related features for a given episode e include (1) 

the start and end times for the episode, (2) the time from the previous episode’s offset to e’s  
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Figure 2.3. Features extracted from each episode of spontaneous activity. Aa) Time- and amplitude-based features 

extracted from each episode: (1) start and end times (2) time from the previous episode, (3) start-start time, (4) 

duration, (5) maximum amplitude and (6) average amplitude; both amplitudes expressed as raw voltage and 

percentage of largest amplitude in the trace. Ab) Fourier transform of the episode to extract frequency-related 

features; (7) largest non-zero frequency component; (8) bandwidth of peak components, excluding zero and 

frequency components larger than 10 Hz; and (9) power at most prominent non-zero frequency component. B, C) 

Examples of classes of spontaneous activity: Ba) Small, Bb) Large, not rhythmic, Bc) Large, rhythmic, Ca) Multi-

burst, not rhythmic, and Cb) Multi-burst, rhythmic.  
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onset (time from previous), (3) the time from the previous episode’s onset to e’s onset (start-start 

time), and (4) the duration of e. Amplitude-related features included the maximum and the 

average amplitude, expressed as both raw voltage and as a percentage of the absolute maximum 

in a trace. The frequency-related features (Figure 2.3Ab), obtained using a discrete Fourier 

transform, include the largest frequency component (peak frequency), the bandwidth, and the 

power at the largest frequency component (peak power). To focus on features related to activities 

of interest, such as locomotion or scratching, we limited the frequency components to those 

below 10 Hz. We defined bandwidth as the highest frequency component (limited to 10 Hz) 

minus the lowest (non-zero) frequency component.  

 

2.2.6 Classification module 

After automatically extracting features from each episode of spontaneous motor activity, the 

classification module uses those features to classify episodes according to generalizations 

obtained from a trained supervised machine learning algorithm programmed into 

SpontaneousClassification. SpontaneousClassification comes with pre-trained machine learning 

classifiers. The following sections describe how we trained and tested them. 

 

2.2.6.1 Supervised machine learning 

Supervised machine learning entails using pre-labelled data to derive generalizations about the 

relationship between inputs and outputs. Features that describe or quantify the data serve as 

inputs, and the outputs may be classification or numerical values (also referred to as supervisory 

signals; Witten et al., 2016). The inferred function from training with pre-labelled examples is 

then presented with new, unlabelled data, and tested for how well it can generalize on novel data. 

To determine the accuracy of the generalization on a testing data set, predicted outputs are 

compared to actual outputs. Ideally, the generalizations are broad enough to properly classify 

new data without over-fitting the inference function to the training data. 

 

2.2.6.2 Supervised classification procedure 

The episodes in the training dataset were classified by the experts in two batches; batch one 

contained 576 episodes and batch two contained 253 episodes. Three individuals classified each 

episode of activity as either rhythmic, not rhythmic, multi-burst and rhythmic, or multi-burst and 
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not rhythmic. The final classes also indicated whether an episode’s amplitude was larger or 

smaller than 50% of the maximum amplitude of a single trace. Therefore, five classes were 

derived based on the following descriptors: small amplitude; large amplitude, not rhythmic; large 

amplitude, rhythmic; multi-burst, not rhythmic; and multi-burst, rhythmic (Figure 2.3Ba-c, Ca-

b). Further segregation of small amplitude classes was not necessary as they were non-rhythmic 

and not multi-burst.  

 

For the first batch, each expert classified the episodes independently. Any episodes that did not 

have 100% agreement were reclassified by all three experts as a group. We added the second 

batch of episodes to increase the representation in each class; those episodes were classified by 

the same individuals as a group. After classification, the episodes were divided into a training 

set, consisting of 90% of the episodes (n = 735), and a testing set, consisting of the remaining 

10% of the episodes (n = 82). The episodes in the testing set were selected proportionally 

according to class. We used a random number generator to assign episodes within each class to 

the training or testing set. A third batch (73 episodes) was used as an additional independent test 

set. The classes assigned by the experts were considered to be true and used to train and compare 

supervised machine learning algorithms. 

 

2.2.6.3 Training procedure  

To train the machine learning algorithms, we matched the eight automatically extracted features 

related to time, amplitude, and frequency (inputs) to the class labelled by experts (output) for 

each episode in the training data set (735 episodes). Using the data mining platform Weka 3.8.0 

(Frank et al., 2016) and the training data set from the first batch of episodes we swept through 

numerous supervised machine learning algorithms, using varied parameters. The second batch of 

episodes were added after this initial sweep through the algorithms. Each run of the training data 

set through an algorithm and parameter setting was 10-fold cross-validated. We tested 13 

classifying algorithms: Bayesian network, naïve Bayes, multilayer perceptron (MLP), simple 

logistic model, k-nearest neighbour, sequential minimal optimization (SMO; for training a 

support vector classifier), instance-based learning (K*), J48 (a decision tree), reduced error 

pruning (REP) tree, decision stump, Hoeffding tree, logistic model tree, and random tree. We 
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selected the best algorithms, and parameters within algorithms, for further testing, based on the 

cross-validated classification accuracy results. 

 

Across all classification methods tested, we executed a total of 2,947 sweeps through algorithms 

and parameters. Initially, classification to one of the five classes was performed by a single 

algorithm; the best training accuracy achieved was 56.5% using an MLP. An MLP is a type of 

feed-forward artificial neural network modelled after biological neural networks (Minsky et al. 

2017). The neurons, or nodes, in an MLP are connected by weights, forming a network capable 

of representing complex expressions. Additional hidden layers, such as those in deep neural 

networks, can further increase the complexity of the representations (see Figure 2.4). This 

technique has been applied to face recognition (Sun et al. 2015; Parkhi et al. 2015), speech 

recognition (Hinton et al. 2012; Amodei et al. 2015), and medical diagnostics (Lu et al. 2018; 

Burt et al. 2018; Song et al. 2018). 

 

Figure 2.4. Structure of multilayer perceptron (MLP) used for classifying episodes as rhythmic or not. The input 

layer (x, blue) receives normalized values of the features extracted from each episode. The weights between the 

input layer and the hidden layer (h, red), and the hidden layer and the output layer (y, green) were determined during 

training. The output layer consists of two binary nodes: 0 = not rhythmic, 1 = rhythmic. The hidden layer and output 

layer nodes are activated using the sigmoid function. The MLP for classifying episodes as multi-burst or not has a 

similar structure, with a different number of nodes in the hidden layer and different learning parameters (learning 

rate and momentum) used during training to obtain the weight values. 
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Since the episodes could be separated by their descriptors, two binary classifiers were found to 

have the best overall classification performance. One binary classifier determined if episodes 

were rhythmic or not, and the other determined if episodes were multi-burst or not. The 

normalized maximum amplitude determined the size of each episode. According to classification 

performance, the top contenders for binary classification during training for rhythmicity were an 

MLP and a Bayesian network; an MLP was the top choice for determining if an episode was 

multi-burst or not. 

 

2.2.6.4 Testing procedure  

After determining the final classifying algorithms, we used the testing data sets to evaluate 

performance of the trained algorithms on new data. The first testing data set included the 10% 

hold-out set from the initial two batches of episodes (n = 82 episodes). A third, independent 

batch of episodes was also included to test the performance of the MLPs (n = 73 episodes). 

Performance metrics for training and testing were used to compare algorithms for the binary 

classifications. 

 

Accuracy describes the number of episodes for which class was correctly predicted by the 

algorithm: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) × 100 (2.1) 

 

where TP = the number of true positive classifications, TN = the number of true negative 

classifications, FP = the number of false positive classifications, and FN = the number of false 

negative classifications. For example, for the rhythmicity classifier, positive refers to a rhythmic 

episode, while negative refers to a non-rhythmic episode. 

 

Specificity indicates the number of correctly predicted negative episodes, calculated as follows: 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  (
𝑇𝑁

𝑇𝑁+𝐹𝑃
) × 100 (2.2) 

 

Sensitivity measures the number of positive class episodes correctly identified: 
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 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) × 100 (2.3) 

 

Finally, precision measures the number of positive episodes correctly classified: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) × 100 (2.4) 

 

We selected the supervised machine learning algorithms implemented in 

SpontaneousClassification based on a balance between training performance and testing 

performance. The same performance metrics were used to assess agreement between the experts 

who initially classified the episodes. 

 

During testing of the final algorithms, the MLP had a higher accuracy, specificity, and precision 

than the Bayesian network for training and testing rhythmicity (see Table 2.1) and thus, we 

implemented the MLP in SpontaneousClassification. The MLP during testing had a relatively 

smaller sensitivity to rhythmicity due to higher false negative classifications, but had a moderate 

precision and very high accuracy and specificity due to a large number of true negative and 

satisfactory true positive identifications. 

 

Rhythmic Expert A Expert B Expert C MLP 

Train 

MLP 

Test 

Bayes 

Train 

Bayes 

Test 

Accuracy (%) 94 87 83 84 78 78 71 

Specificity (%) 91 77 97 91 91 80 76 

Sensitivity (%) 98 98 69 39 44 70 42 

Precision (%) 91 79 95 43 66 37 23 

Multi-burst 
       

Accuracy (%) 97 93 90 86 83 
  

Specificity (%) 97 100 89 92 89 
  

Sensitivity (%) 98 78 92 74 73 
  

Precision (%) 92 98 78 83 82 
  

 

Table 2.1. Classification performance for each expert who labelled episodes for training and for the final supervised 

machine learning algorithms chosen for testing. Classification included labelling episodes as rhythmic or not and 

multi-burst or not. 
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2.2.6.5 Multilayer perceptrons (MLP) 

As mentioned earlier, an MLP, such as those we chose to implement in 

SpontaneousClassification, is a feed-forward artificial neural network with an input layer, a 

hidden layer, and an output layer, each with nodes that represent neurons. Figure 2.4 depicts a 

schematic of an MLP for rhythmic binary classification. 

 

For our MLPs, the number of nodes in the input and output layers was defined by the number of 

features and classes, respectively. Therefore, each MLP has eight input nodes, one for each 

normalized feature, and two output nodes, 0 (false, or non-rhythmic) and 1 (true, or rhythmic). 

The number of nodes in the hidden layer was based on performance during training. The MLP 

trained for classifying rhythmic and non-rhythmic episodes has five nodes in the hidden layer 

(Figure 2.4). The MLP for classifying whether or not episodes are multi-burst has 10 nodes in the 

hidden layer. The input and hidden layers also contain a bias unit of 1 that connect to the nodes 

in the following layer.  

 

The weights connecting the nodes of the input layer to the hidden layer, and the hidden layer to 

the output layer, were learned through back-propagation during training in Weka (ver. 3.8.0; 

Frank et al. 2016). Back-propagation uses gradient descent to update the weights by minimizing 

errors (Witten et al. 2016). The step size for gradient descent and learning momentum were 

determined based on training performance. We obtained the best results using a learning rate 

equal to 0.7 and a momentum equal to 0.5 for the rhythmic or not MLP, and a learning rate of 0.1 

and momentum of 0.4 for the multi-burst or not MLP. The hidden and output layers are activated 

using a sigmoid function. The binary classification is finalized at the output layer, where the 

node with the greatest activation determines an episode’s class. 

 

2.2.7 GUI Capability Summary 

Figure 2.5 depicts the final classification procedure implemented in the GUI. It includes the two 

MLPs (one to classify episodes for rhythmicity and the other for whether it is multi-burst or not) 

that use weights and parameters obtained through training, features extracted from the data 

preparation and feature extraction module, the output of the MLPs, and the normalized 

maximum amplitude to automatically classify each episode into one of the five classes (c.f. 
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Figure 2.3B). The entire process of episode detection, feature extraction, and classification takes 

a matter of minutes to perform. The automated classification process is completed in seconds or 

less, significantly reducing the analysis process from manual classification, and conveniently 

compiling everything into a spreadsheet. 

 

Figure 2.5. Final classification procedure. Two multilayer perceptrons were used to classify episodes, one as 

rhythmic or not, and the other as multi-burst or not. The results from these two binary classifiers combine to label 

episodes into classes: large rhythmic, multi-burst not rhythmic, multi-burst rhythmic. Amplitude information serves 

to further classify episodes as large non-rhythmic and small amplitude. 

 

2.2.8 Statistics 

We used Χ2 tests to compare performance measures from three expert (human) classifiers, with 

cross tabulations generated for all pairwise combinations. We compared episode features, before 

and after inducing excitation with KCl, via paired t tests. We used Wilcoxon (W) signed-rank 

tests whenever data failed tests of normality or equal variance. The proportion of episodes within 

each class between the two excitability states were compared using the Χ2 test, with cross-

tabulations generated all pairwise combinations. P ≤ 0.05 was used to indicate significance for all 

tests. 

 

2.3 Results 

Values for each feature extracted from the episodes of activity are listed in Table 2.2. On 

average, episodes were 18.2 s (SD = 17.6) long, had the largest frequency component near 1 Hz 
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(0.9 Hz, SD = 1.4), and had a wide range of amplitudes, averaging 654.1 μV (SD = 414.3). The 

remarkable diversity with respect to the qualitative nature of the recorded episodes was well-

suited to inform supervised machine learning approaches to classify the different types of 

episodes we observed. 

 

Class Total 

(#, %) 

Train

-ing 

(#) 

Test-

ing 

(#) 

Time 

from 

Prev (s) 

St-st 

Time 

(s) 

Dur-

ation 

(s) 

Peak 

Freq.    

(Hz) 

Band-

width 

(Hz) 

Peak 

Power 

(V) 

Max. 

Amp.  

(μV) 

Avg. 

Amp.  

(μV) 

S 367 

(44.9%) 

330 48 15.4 

(19.2) 

34.9 

(27.5) 

7.5 

(7.2) 

1.6 

(1.7) 

8.7 

(1.3) 

23.6 

(30.9) 

371.9 

(180.2) 

156.2 

(76.5) 

LnR 124 

(15.2%) 

112 24 20.2 

(26.2) 

36.6 

(30.9) 

16.5  

(13.8) 

0.8 

(1.0) 

9.3 

(0.7) 

79.1 

(169.1) 

807.5 

(428.2) 

282.5 

(154.6) 

LR 42  

(5.1%) 

38 19 14.3 

(15.8) 

28.1 

(23.9) 

20.2  

(12.8) 

0.8 

(0.9) 

9.6 

(0.3) 

78.3 

(142.5) 

876.4 

(367.9) 

312.1 

(129.4) 

MnR 77  

(9.4%) 

69 27 15.9 

(24.3) 

30.1 

(29.5) 

33.6  

(18.1) 

0.2 

(0.4) 

9.8 

(0.2) 

90.1 

(82.2) 

944.6 

(416.4) 

324.0 

(142.5) 

MR 207 

(25.3%) 

186 37 15.8 

(25.0) 

33.1 

(31.5) 

30.3  

(20.3) 

0.3 

(0.5) 

9.7 

(0.4) 

87.3 

(82.4) 

856.9 

(414.5) 

304.3 

(142.5) 

Over

-all 

890 735 155 16.2 

(22.3) 

33.8 

(29.1) 

18.2  

(17.6) 

0.9 

(1.4) 

9.2 

(1.0) 

58.7 

(96.8) 

654.1 

(414.3) 

240.7 

(140.7) 

 

Table 2.2. The number and proportion of episodes within each class and overall, along with the average (± standard 

deviation) value for each feature. Episodes were classified as small (S), large nonrhythmic (LnR), large rhythmic 

(LR), multi-burst not rhythmic (MnR) or multi-burst rhythmic (MR). 

 

The expert individuals who classified the first batch of episodes reached majority consensus for 

95.3% of the episodes (55.4% [319/576] unanimous agreement, 39.9% [230/576] two of three 

agreed; 4.7% [27/576] no agreement). Of the episodes where two of three experts agreed, experts 

A and B agreed 53.0% of the time, experts B and C agreed 10.9% of the time, and experts A and 

C agreed 36.1% of the time. Table 2.1 presents a more detailed assessment of the experts’ 
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agreement and human error, evaluated using the metrics described above. Each individual was 

compared to the consensus of the other two experts to demonstrate the consistency among the 

experts as they were considered to be the gold standard for the algorithms. Overall, all experts 

had high accuracy. Expert A performed well at labelling episodes as rhythmic and multi-burst. 

Expert B had high specificity for labelling episodes as multi-burst or not (P ≤ 0.001; Χ2), but not 

rhythmic or not (P < 0.0001; Χ2). Expert C was not very sensitive to labelling episodes as 

rhythmic or not (P < 0.0001; Χ2) but was for multi-burst or not (P < 0.0001; Χ2). Expert B was 

less precise at labelling episodes as rhythmic or not (P ≤ 0.001; Χ2), while expert C was less 

precise at labelling episodes as multi-burst or not (P < 0.0001; Χ2). Since the second and third 

batches was classified as a group or pair, these metrics could not be calculated for classifying 

those episodes. 

 

We first determined the accuracy of episode classification by the algorithms (for an overview of 

classes see Figure 2.3B, C), as that information was required to form the training set for the 

machine learning aspect of the software and to reveal the value of classifying spontaneous 

activity. As can be seen in Table 2.2, the data are rich with detail. We found that a majority of 

the episodes were small in amplitude and duration (44.9%). While large episodes were most 

often not rhythmic (15.2%), multi-burst episodes were most often rhythmic (25.3%). Multi-burst, 

non-rhythmic episodes had the largest maximum and average amplitudes, suggesting that larger 

amplitudes may not correlate with the probability of rhythmic activity. The duration of multi-

burst non-rhythmic episodes was longer than all other classes. Notably, frequency-related 

features extracted from each episode and analyzed using traditional approaches, such as peak 

frequency, bandwidth, and peak power, were similar for rhythmic and non-rhythmic episodes. 

This implies that rhythmicity within an episode cannot be detected simply using extracted 

features and thresholds. Therefore, the data were used to train and test two multilayer 

perceptrons to classify episodes as rhythmic or not, and multi-burst or not. 

SpontaneousClassification also used the normalized amplitude to classify episodes into one of 

five classes (see methods and Figs. 2.3 and 2.5). The ability to discriminate between rhythmic 

episodes using a combination of all of the features demonstrates the power of machine learning 

methods to make inferences and predictions using data beyond simple time- and frequency-

domain based analyses. 
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We next tested the ability of SpontaneousClassification to detect changes in spontaneous 

network activity following an increase in excitability. This allowed us to compare normal 

network features with features of a perturbed network. Increasing the extracellular concentration 

of KCl from 4 mM to 8 mM (for n = 8 spinal cord preparations) resulted in a robust 

depolarization of the DC potential in the ventral roots of the lumbar spinal cord (ΔVoltage = 

2100 [SD = 2183] µV). An overall increase in the number of episodes (baseline: 271 episodes, 

KCl: 387 episodes; t(7) = 4.1; P = 0.005) accompanied the depolarization, but the increase was 

not uniform across classes; only small amplitude (baseline: 137 episodes, KCl: 203 episodes; t(7) 

= 2.3; P = 0.05) and multi-burst, rhythmic (baseline: 89 episodes, KCl: 132 episodes; t(7) = 3.1; P 

= 0.02) episodes increased significantly in number (Figure 2.6 Ca.). Of note, while the number of 

episodes changed, the relative proportion of each episode class when normalized to the total 

number of episodes remained unchanged compared to baseline (P = 0.429, Χ2). 

 

In some cases, global episode features changed, due to changes in their assigned episode classes. 

For example, globally, episodes were shorter (duration, baseline: 24.0 s (SD = 3.5), KCl: 19.0 s 

(SD = 3.4) ; t(7) = 3.40; P = 0.01; Figure 2.6 Da) and had smaller mean and maximum amplitudes 

(mean amplitude, baseline: 252.2 µV (SD = 156.7), KCl: 112.3 µV (SD = 79.7); t(7) = 6.7; P = 

0.0003; maximum amplitude, baseline: 819.4 µV (SD = 546.3), KCl: 547.3 µV (SD = 334.4); t(7) 

= 5.8; P = 0.00065; see Figure 2.6 Db, Dc). A reduction in duration was only significant in the 

small amplitude episode class (baseline: 9.9 s (SD=3.4), KCl: 6.6 s (1.8); t(7) = 2.9; P = 0.02) and 

a reduction in amplitude only in the small amplitude (maximum amplitude, baseline: 451.3 µV 

(SD=112.8), KCl: 340.7 µV (SD=86.1); t(7) = 4.4, P = 0.003; average amplitude, baseline: 150.3 

µV (SD=38.7), KCl: 67.6 µV(SD=22.5); t(7) = 7.3, P = 0.0002) and multi-burst rhythmic classes 

(maximum amplitude, baseline: 1167 µV (SD=422), KCl: 736 µV (SD=268); Wilcoxon signed-

rank test (W) = −36, T+ = 0.00; T− = −36, P = 0.008; average amplitude, baseline: 353 µV 

(SD=126), KCl: 155 µV (SD=53); t(7) = 4.7, P = 0.003). 

 

In other instances, we observed no change in global episode features, but did find changes for 

some features within a specific episode class. For example, global peak frequency (Figure 2.6 

Ea; t(7) = 0.5, P = 0.6) and bandwidth (Figure 2.6 Ec; W = −10, T+ = 13, T− = −23; P = 0.5) were 

comparable before and after exciting the network; however, for the multi-burst rhythmic episode 
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class, the peak frequency increased (t(7) = 3.3, P = 0.01) and its mean bandwidth decreased (t(7) = 

2.7, P = 0.03). Our approach, therefore, affords the capacity to account for changes in global 

episode features in specific episode classes, and to tease out more subtle changes in episode 

features within a class that might be missed when considering the population of all episodes. 

 

2.4 Discussion 

In vitro preparation of neonatal rodent spinal cords are a powerful tool for understanding how 

spinal networks generate the rhythmic activity that enables mammals to walk (Gordon and 

Whelan 2006; Gordon et al. 2008; Hägglund et al. 2010). In the past, investigations involved 

evoking in vitro patterns of fictive locomotor-like rhythmicity consistent with walking. Although 

newborn rodents can air-step at birth (Jamon and Clarac 1998), the vast majority of movements 

observed in neonates are sporadic and ataxic. In vitro recordings of neuronal activity underlying 

those sporadic, ataxic movements reveal spontaneous activity, which is critical for maturation of 

spinal network function (Yu et al. 2004; Hanson and Landmesser 2004; Cang et al. 2005). 

However, the qualitatively rich and diverse nature of the spontaneous activity makes it 

challenging to study. We developed SpontaneousClassification, a software tool to detect 

episodes of spontaneous activity and use supervised machine learning to identify five distinct 

episode classes based on quantitative and qualitative features of neuronal recordings.  

 

SpontaneousClassification enables evaluation of subtle components of DC-coupled traces by 

detrending without the use of high-pass filters. Furthermore, SpontaneousClassification 

automatically characterizes episodes of spontaneous activity based on their features and then 

groups them into one of five classes of episodes. This automated classification process is 

extremely fast, enabling large volumes of data to be analyzed quickly. Analyzing DC-coupled 

neurograms through machine learning classification enables researchers to investigate the nature 

and development of spontaneous activity in finer detail and with a new outlook than previously 

available techniques. 

 

2.4.1 When Should this Tool be Used? 

SpontaneousClassification was designed to discriminate subtleties in stochastic, DC-coupled 

neurograms recorded from neonatal mouse spinal cords. Because its classifiers were trained on 
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episodes of this specific type of recording, they are only appropriate for similarly acquired and 

structured data. SpontaneousClassification should not be used on AC-coupled or high-pass 

filtered neurograms, nor on very high-frequency episodes (i.e., > 10 Hz). However, the feature 

extraction methods employed in SpontaneousClassification may be of interest for analyzing AC-

coupled data. After the features are extracted, they can help determine if the classifiers are 

appropriate for the data and if the classification is working correctly. All investigators should 

have intimate knowledge of their data. If the class distributions seem odd considering the 

appearance of the data, researchers should re-check the feature extraction and consider other 

methods. 

 

2.4.2 Classification of Other Biological Signals 

A similar machine learning approach could be applied to other types of activity. Supervised 

machine learning has been used to detect abnormalities in the electrocardiogram characteristic 

waveforms to automatically diagnose arrhythmias (Gao et al. 2004; Khazaee and Ebrahimzadeh 

2010; Li et al. 2014), ischaemic events (Papadimitriou et al. 2001; Papaloukas et al. 2003; Choi 

et al. 2017), and acute coronary syndromes (Harrison and Kennedy 2005; Myers et al. 2005). It 

can also predict brain disorders such as epilepsy (Diambra 2002; Subasi and Ismail Gursoy 2010) 

and schizophrenia (Sabeti et al. 2007) from electroencephalography (EEG) signals. MLPs are 

often used to classify electrical activity recorded from muscles (electromyography; EMG) for the 

control of myoelectric prostheses (Kelly et al. 1990; Hiraiwa et al. 1992; Hargrove et al. 2007; 

Karlık 2014). 

 

These methods differ from spike sorting (Lewicki 1998), which uses clustering methods to 

separate, or sort, waveforms. Clustering in this manner is unsupervised learning; features of the 

waveform are compared to values defining individual clusters, sorting the waveforms into one of 

the clusters. Clustering methods have been used to classify AC-coupled potentials recorded from 

the dorsum of the lumbosacral spinal cord (Martin et al. 2015); episodes were detected based on 

their peak and selected a set time surrounding the peak, but this selection method is useful only 

when episode duration varies little. This method replaced template matching, which was 

previously used by the same group (Chávez et al. 2012), but they noted that it was time-

consuming and required constant supervision. 
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Figure 2.6. Alterations in spontaneous episode class activity under conditions of enhanced excitability by increased 

KCl concentration. A) DC-coupled neurogram recorded from lumbar ventral roots at baseline and after increasing 

the concentration of KCl from 4 mM to 8 mM (green bar). The traditionally analyzed high-pass filtered (100 Hz) 
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neurogram is below the DC-coupled recording (purple). B) Enlargement of regions at baseline (Ba) and at the higher 

concentration of KCl (Bb). The addition of KCl increased the excitation of network activity, depolarizing the DC 

potential, and altered several features extracted from each episode (C–E). Episode features were compared overall 

and for each of the five episode classes (small [S], large non-rhythmic [LnR], large rhythmic [LR], multi-burst not 

rhythmic [MnR] or multi-burst rhythmic [MR]). Box-and-whisker plots display interquartile range (boxes), median 

(horizontal black lines), maximum and minimum values in data range (whiskers). Means were compared using 

paired t tests. Asterisks denote significant differences before and after increasing KCl *P < 0.05, **P < 0.01, ***P < 

0.001. 

In the present study, episodes of activity recorded from the ventral root were too variable in 

shape and duration to apply template matching. Furthermore, we attempted several clustering 

methods and they failed to produce the classes previously defined (results not shown). Therefore, 

visual identification of classes and training with supervised machine learning prevailed as the 

most viable option for classifying episodes of spontaneous activity. 

 

2.4.3 Limitations 

Detrending each trace is unique to the DC-drift in the recording and must be customized by the 

user. Selecting thresholds for episode detection is also a subjective process. After choosing 

threshold values to detect episodes, users can view them to ensure they were detected correctly. 

There may be some variability in settings between traces, especially if background excitability or 

noise show large fluctuations. Future work may explore a more automated detection process. 

 

Supervised machine learning is guided by the experts classifying the data. It allows experts to 

relay their knowledge to an algorithm to perform tasks more quickly and automatically. 

Therefore, the algorithm is limited by the class labels it trains on. To reduce subjectivity as much 

as possible, we had three expert individuals classify episodes of activity and used those data to 

train the algorithm. Initial classification of the first batch of episodes resulted in 95.3% 

agreement between at least two of three experts. Despite this high percentage, initial training 

accuracy was low. This prompted the experts to refine their criteria for rhythmicity. Revising the 

visual criteria for rhythmicity increased the experts’ confidence in labelling the episodes as 

rhythmic or not, as well as their classification performance. Although this introduced some 

subjectivity to the class labels, it was a necessary step that clarified what was considered to be 

rhythmic. The classification accuracy achieved with the revised criteria confirmed that the 
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individuals and the program classified episodes similarly. This was further corroborated by the 

high accuracy obtained during classification of novel episodes during the testing phase, which 

presented the algorithms with fresh data. This demonstrated that the individuals were able to 

relay their expertise to the program for fast, automatic, and accurate classification. 

 

Increasing the number of episodes in the training dataset would increase the representation of 

each class and may help the algorithm generalize more effectively. However, the process of 

manual classification is time-consuming and there is no universal criterion for the number of 

instances of data that are needed. A balance between data availability and training accuracy must 

be attained. 

 

2.5 Conclusions 

This work provides and demonstrates a software tool (SpontaneousClassification) for 

characterizing and classifying episodes of spontaneous activity from the lumbar spinal cord. 

Supervised machine learning classification of episodes allowed for the analysis of DC-coupled 

neurograms. We demonstrated the utility of SpontaneousClassification by comparing the features 

and class distributions between episodes of two different activity states. The data reconfirmed 

that the addition of KCl non-specifically excites spinal motor networks, resulting in a similar 

proportion of episodes in each class, even with an increase in overall number. This is an 

interesting result in of itself as it points to the fact that although the rhythm may appear 

stochastic, the overall composition is quite robust and resistant to perturbations. While it is 

difficult to speculate, this may be accomplished by a decrease in calcium-activated potassium 

conductances, or other voltage-gated potassium conductances. SpontaneousClassification is easy 

to use and enables fast and automatic characterization of spontaneous activity. Furthermore, no 

knowledge of machine learning is needed to use SpontaneousClassification. Future applications 

for SpontaneousClassification may include characterization of spontaneous activity from other 

regions of the spinal cord, such as the cervical and thoracic regions, throughout different 

timepoints in development, or with the addition of neuromodulators, as we can now investigate 

and analyze features of spontaneous activity quickly and automatically. This analysis may be 

used to further reveal the cellular components and network structure of the spinal cord during 

development, complimenting other methods of studying spinal motor activity.  
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Chapter 3: A Speed-Adaptive Intraspinal Microstimulation 

Controller to Restore Weight-Bearing Stepping in a Spinal Cord 

Hemisection Model2 

3.1 Introduction 

A spinal cord injury (SCI) results in severe motor and sensory paralysis, as well as autonomic 

dysfunction. Incomplete injuries account for two-thirds of all SCIs (“Spinal Cord Injury (SCI) 

2017 Facts and Figures at a Glance” 2017). Regaining the ability to walk is a high priority for 

people with paraplegia (Brown-Triolo et al. 2002; Anderson 2004). Although tremendous 

advances have been made in spinal cord regeneration (Murray and Fischer 2001; Raisman 2001; 

Davies et al. 1997; Novikova et al. 2017), human trials to date have failed to produce functional 

benefits (Hulsebosch et al. 2000; Kim et al. 2017). If regeneration succeeds in the future, it will 

likely require additional rehabilitation interventions. 

 

To date, several interventions using functional electrical stimulation (FES) have been developed 

to restore walking after SCI (Chaplin 1996; Kobetic et al. 1999; Hardin et al. 2007; Guiraud et al. 

2006). FES of peripheral nerves and muscles produces large forces that enable multiple tasks 

(e.g., standing, walking, reaching, grasping). However, this technique is limited by rapid fatigue 

(Peckham and Knutson 2005), thus restricting its use to short distances of walking (< 100m 

(Thrasher and Popovic 2008)). An alternative approach is to target the spinal cord to activate the 

muscles of the legs. Epidural stimulation of the dorsal surface of the spinal cord has been shown 

to aid in the generation of voluntary leg movements (Angeli et al. 2014; Barolat et al. 1986). 

Alongside body-weight-supported treadmill training (BWSTT), epidural stimulation could 

achieve standing with minimal assistance in participants with a chronic motor complete SCI 

(Rejc et al. 2015). Epidural stimulation applied with BWSTT in people with incomplete SCI 

improved over-ground walking capacity (Carhart et al. 2004). In animal models of SCI, epidural 

stimulation in combination with intensive BWSTT and pharmacological activation has been 

shown to restore locomotion (Courtine et al. 2009; Musienko et al. 2012; van den Brand et al. 
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2012; Capogrosso et al. 2016). Epidural stimulation may have assisted with endogenously 

occurring spinal cord plasticity by increasing the basal activity of neurons, as has also been 

demonstrated through transcutaneous spinal cord stimulation in individuals with SCI (Hofstoetter 

et al. 2015; Inanici et al. 2018; Minassian et al. 2016). However, it is unclear if the epidural 

stimulation alone is able to produce functional, weight-bearing over-ground walking.  

Intraspinal microstimulation (ISMS) produces large forces in the leg muscles that are fatigue 

resistant (Bamford et al. 2005; Saigal et al. 2004; Mushahwar and Horch 1997). By implanting 

fine microwires (30 to 50 µm diameter) into the ventral horn of the lumbosacral enlargement, 

ISMS activates individual muscles as well as produce multi-joint synergies (Mushahwar and 

Horch 1998, 2000; Saigal et al. 2004; Holinski et al. 2011). ISMS has been used to restore 

standing (Lau et al. 2007) and walking in anaesthetized cats (Holinski et al. 2013, 2016), as well 

as cats with a complete SCI (Saigal et al. 2004). In a recent study, ISMS produced nearly 1 km of 

over-ground, weight-bearing walking in anaesthetized cats (Holinski et al. 2016).  

 

ISMS has also been used to produce reaching and grasping movements by implanting electrodes 

in the cervical enlargement in rats with a contusion SCI (Kasten et al. 2013; Sunshine et al. 

2013) as well as monkeys (Moritz et al. 2007; Zimmermann et al. 2011; Zimmermann and 

Jackson 2014). Recently, ISMS in the cervical and high thoracic spinal cord has been shown to 

activate the diaphragm and intercostal muscles in intact (Sunshine et al. 2018) and hemisected 

(Mercier et al. 2017) rats. Taken together, studies in both the lumbar and cervical enlargements 

demonstrate that ISMS can activate muscles and muscle synergies to restore function in a 

fatigue-resistant manner in models of complete and incomplete SCI.  

 

A number of control strategies have been implemented for ISMS to restore walking (Dalrymple 

and Mushahwar, 2017). To date, these control strategies focused on models with complete SCI. 

Open loop stimulation patterns were initially developed to achieve alternation of swing and 

stance (Mushahwar et al. 2002) but lacked the ability to adapt the stepping to changes in terrain 

or fatigue. Conversely, a purely feedback-driven approach utilizing sensor information to 

transition the limbs between swing and stance phases has been tested in cats (Guevremont et al. 

2007; Vogelstein et al. 2008). Later studies combined feed-forward and feedback control to 

produce functional walking. Specifically, feed-forward, intrinsically-timed transitions between 
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states of the gait cycle were implemented. Feedback from external sensors (Guevremont et al. 

2007; Mazurek et al. 2012; Holinski et al. 2016) or from recordings from the dorsal root ganglia 

(Holinski et al. 2013) interrupted the intrinsic timing using pre-defined rules to improve over-

ground walking and ensure safe stepping. Other studies have explored the use of fuzzy logic or 

sliding mode control to produce single joint movements using ISMS (Roshani and Erfanian 

2013a, 2013b; Asadi and Erfanian 2012) or to trigger the onset of the flexion phase of the gait 

cycle (Saigal et al. 2004). 

 

Earlier work in the field of FES and locomotion has explored numerous machine learning 

algorithms to control various aspects of the step cycle. Supervised machine learning uses 

previously obtained data to train an algorithm, which develops a generalization between inputs 

and outputs. The accuracy of the generalization is then tested using new data, where the real 

outputs are compared to the outputs predicted by the algorithm. Often, machine learning 

algorithms were used to predict the subject’s intention to take a step and trigger stimulation of 

the flexor-withdrawal reflex to initiate the swing phase (Kirkwood et al. 1989; Kostov et al. 

1992; Tong and Granat 1999; Sepulveda et al. 1997). These algorithms were used to produce 

stepping in an open-loop manner (Graupe and Kordylewski 1995) and for triggering IF-THEN 

control rules (Popović 1993). Adapting the stimulation output to muscle fatigue has also been 

explored (Graupe and Kordylewski 1995; Abbas and Triolo 1997).  

 

In this study, we developed control strategies to produce weight-bearing stepping using ISMS in 

a hemisection SCI model. This presents the first application of supervised machine learning to 

control stimulation in the spinal cord. The control strategy used information from external 

sensors regarding the movements of the “unaffected” hind-limb to control the “affected” hind-

limb. Moreover, supervised machine learning was employed to ensure weight-bearing at 

different stepping speeds. Specifically, multiple machine learning algorithms were trained to 

predict the stepping speed using data from external sensors from previous ISMS experiments and 

tested in later ISMS experiments in the study. This resulted in a unique combination of 

supervised machine learning and FES, since the learned predictions were used to select a control 

strategy based on the stepping speed, and within that strategy, the predicted value was used to 

control the stimulation output. 
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3.2 Methods 

3.2.1 ISMS Implant Procedure and Stimulation Protocol 

Six adult male cats (4.5 to 6.9 kg) were used in acute, non-recovery experiments. All 

experimental procedures were approved by the University of Alberta Animal Care and Use 

Committee. The surgery and experiments were conducted under sodium pentobarbital anesthesia. 

A laminectomy was performed to remove the L4 to L6 vertebrae to expose the lumbosacral 

enlargement.  

 

A custom-made electrode array comprised of 12 micro-wires was implanted unilaterally 

throughout the lumbosacral enlargement. The wires were 50 µm in diameter, 80/20 % Pt-Ir, and 

insulated with 4 µm polyimide except for the tip, which had approximately 400 µm of exposure. 

The implant was performed according to established procedures (Mushahwar et al. 2000; Saigal 

et al. 2004; Holinski et al. 2016; Bamford et al. 2016), targeting lamina IX in the ventral horn 

based on maps of motoneuronal pools (Vanderhorst and Holstege 1997; Mushahwar and Horch 

1998, 2000). In addition to the motoneuronal pools, this region contains neural networks that 

produce single joint and coordinated multi-joint synergistic movements of the leg when 

stimulated (Kiehn 2006; Bhumbra and Beato 2018). The stimuli comprised of asymmetric, 

biphasic, charge-balanced pulses 290 µs in duration delivered at a rate of 50 Hz. Stimulation was 

delivered using a current-controlled stimulator and was controlled through a custom graphical 

user interface designed in MATLAB (MathWorks Inc., Natick, MA, USA). Stimulation 

amplitudes typically ranged from threshold (<20 µA) to levels that produced weight-bearing 

movements (60 to 80 µA). Stimulation amplitudes did not exceed 110 µA through any electrode. 

Trains of stimuli were delivered as a trapezoidal waveform; the ramping occurred over 3 time-

steps, with a time-step occurring every 40 ms. The movements achieved by stimulation through 

single electrodes were hip flexion, knee extension, ankle dorsiflexion, ankle plantarflexion, and a 

backward extensor synergy. Simultaneous stimulation through electrodes with desired evoked 

movements was used to construct synergies corresponding to the phases of the step cycle. Of the 

twelve electrodes implanted, only six to eight were needed to generate the desired stepping 

movements and included some redundancy in the functional targets.  
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3.2.2 Experimental Setup 

After implantation of the ISMS array, the cats were transferred to a custom-built split-belt 

treadmill (Figure 3.1a). The cats were partially suspended in a sling and remained anaesthetized 

for the duration of the experiment. The sling supported the head, forelimbs, and trunk, allowing 

the hind-limbs to move freely. Reflective motion-tracking markers were placed on the iliac crest, 

hip, knee, ankle, and metatarsophalangeal (MTP) joints of both hind-limbs. Bilateral kinematics 

were recorded using two cameras (120fps, JVC Americas Corp., Wayne, NJ, USA), with the lens 

positioned parallel to the hind-limbs and 1.8 m away from the center of the treadmill. Marker 

positions were digitized using custom MATLAB software (MotionTracker2D) written by Dr. 

Douglas Weber (University of Pittsburgh, Pittsburgh, PA, USA). Gyroscopes were placed on the 

tarsals of each hind-limb to measure angular velocity. Vertical ground reaction forces were 

measured for each hind-limb by force transducers mounted underneath each of the treadmill 

belts. The sensor signals were filtered using a hardware second-order Butterworth filter (fC = 3 

Hz) and digitized at 1 kHz using the Grapevine Neural Interface Processor (Ripple, Salt Lake 

City, UT, USA) and streamed into MATLAB.  

 

3.2.3 Control Strategy 

The functional consequences of a hemisection SCI were simulated in the anaesthetized cats by an 

experimenter manually moving one hind-limb through the stepping cycle (Figure 3.1a). This 

injury model is similar to Brown-Sequard syndrome in humans, where one limb is paralyzed and 

the other remains motor-intact (Hayes et al. 2000; Bosch et al. 1971; Gil-Agudo et al. 2013). 

Three different experimenters took turns to move the limb through the gait cycle. Each 

experimenter moved the hind-limb over a moving treadmill belt and was given a target for 

downward force production. This limb represented the limb on the intact side of the spinal cord, 

and the experimenter simulated voluntary control of the limb. The other limb, ipsilateral to the 

ISMS implant, moved only through ISMS and represented the limb that would be paralyzed by a 

hemisection SCI. This stimulation-controlled limb (SCL) moved over a stationary treadmill belt; 

therefore, all movements of that limb were entirely produced by the stimulation in the spinal 

cord. Because the cat was anaesthetized, no reflexive responses were produced either by the 

moving treadmill belt ipsilateral to the EML nor by the movements produced by ISMS of the 

SCL. 
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Figure 3.1. Experimental setup. (A) An experimenter moved one hind-limb through the gait cycle over the 

ipsilateral moving belt of a split-belt treadmill. Sensor signals from force plates under the treadmill belt and a 

gyroscope on the tarsals were converted to digital signals and used by a custom algorithm to control the stimulation 

to the spinal cord such that the other limb was in the opposite state of the gait cycle over a stationary treadmill belt. 

(B) States of the gait cycle. (C) Sample data from the force plates (ground reaction force) and gyroscopes (angular 

velocity) from the EML (experimenter-moved limb).  

 

The stepping cycle was divided into 4 states indicating flexion and extension movements: F, E1, 

E2, and E3 (Goslow et al. 1973; Engberg and Lundberg 1969). These corresponded to toe-off to 

early swing, late swing to paw-touch, paw-touch to mid-stance, and mid-stance to propulsion, 

respectively (Figure 3.1b). The goal of the controller was for the legs to step reciprocally; the 

state of the experimenter-moved limb (EML) was used to control the stimulation to the spinal 

cord such that the SCL was in the opposite state (Figure 3.2a). The states of the gait cycle were 

discriminated using ground reaction force and angular velocity of the foot (Figure 3.2b).  



84 

 

 

Figure 3.2. Control strategy. EML = experimenter-moved limb; SCL = stimulation-controlled limb. (A) Transitions 

between states of the gait cycle for the SCL, opposite to the state of the gait cycle of the EML. Transitions between 

states for the SCL were done by ramping down stimulus amplitude through the channels for the previous state, and 

ramping up the amplitude for the current state, indicated by the trapezoids. (B) Time when states of the gait cycle 

occurred relative to the ground reaction force and angular velocity of the EML. F = early swing, E1 = late swing to 

paw touch-down, E2 = mid-stance, and E3 = propulsion. (C) Anticipation of states to account for an 

electromechanical delay of 200ms. Thresholds were used to define the voltage values to which the signals were 

compared. (D) Algorithm used to anticipate states of the gait cycle using thresholds from C.  

 

Specifically, the ground reaction force was used to detect E2 (onset of loading to peak force 

production), E3 (peak force to unloading), and F (unloading of limb). Angular velocity measured 

by a gyroscope at the tarsals was used to detect the onset of E1 (peak angular velocity). By using 

only 2 sensors per limb, all four states of the stepping cycle were detected. However, the 

stimulation needed to be delivered prior to the onset of a state to account for electromechanical 

delay between the stimulation delivered to the spinal cord to the time that a forceful movement 

was produced, which was up to 200 ms across all cats. It was comprised of the filter delay (~16 

ms), computational delay (40 ms), and the delay from the stimulation command to the production 

of a movement in the limb (~120 ms). A 200 ms neuromusculoskeletal delay to produce a 
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movement around the ankle joint using ISMS has been previously reported (Roshani and 

Erfanian 2013a). Therefore, states were anticipated using pre-defined thresholds for the force and 

angular velocity signals that were approximately 200 ms before the onset of a given state (Figure 

3.2c). The threshold-based control rules for anticipating each state of the gait cycle are described 

in Figure 3.2d. 

 

The previous state information was used to ensure that the anticipated state was the current or 

next state in the gait cycle, forcing a forward trajectory through the gait cycle. The direction of 

the slope for each signal was used in combination with the voltage value to define threshold. The 

thresholds were tuned and remained constant throughout all experiments. 

 

An additional control rule was implemented to ensure weight-bearing as needed. Since E3 is 

proportionally a longer phase of the gait cycle compared to E1, when the EML was in E3 and the 

SCL in E1 the SCL would spend a proportionally long time in E1. This caused the SCL to 

remain in the final position of E1, extended towards paw touch-down and partially loaded. This 

was followed by an increase in loading when the SCL transitioned into E2, but often the 

transition would result in a loss of over-all weight-bearing. This was ameliorated by the swing-

to-stance rule (Mazurek et al. 2012): if the SCL was in E1 and the limb achieved partial weight-

bearing, then transition the SCL to E2. This improved overall weight-bearing. The pseudo-code 

for this rule was as follows: 

IF force > threshold,  

THEN transition from E1 to E2 

 

3.2.3.1 Speed Adaptability 

The speed of the treadmill belt was varied within a single stepping trial (treadmill belt speed: 

0.09 to 0.42 m/s). A stepping trial consisted of 10 to 24 steps. Although these are relatively slow 

speeds of stepping, they correspond to treadmill belt speeds at which cats with a complete spinal 

transection were able to step at in the early stages to full recovery (Bélanger et al. 1996). During 

the speed-varying stepping trials, it was noted that at faster speeds (defined by step period of 

EML < 1.95s), there was a loss of weight-bearing at the onset of loading for the SCL. This was 

due to the states themselves having a shorter duration than the electromechanical delay. 
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Therefore, further adaptations needed to be made to the stimulation output for the faster steps. A 

step-by-step feed-forward method was implemented to adapt the stimulation output for faster 

steps based on the step period. The step period of the EML, the measurable analogue of speed, 

was defined as the onset of limb loading to the onset of limb loading of the next step in the EML. 

Feed-forward refers to open-loop transitions between states of the step cycle in the SCL. The 

amount of time spent in each state was calculated from the predicted value of the step period for 

the EML using a variation of an equation derived from (Kirtley, Whittle, and Jefferson 1985) 

(3.1). The time spent in stance was split evenly between E2 and E3 (stance phases), and the 

remaining time was split evenly between F and E1 (swing phases).  

 

𝑇𝑠𝑡𝑎𝑛𝑐𝑒 =  −0.073 × (
60

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑
) + 67 (3.1) 

 

This allowed for a realistic adaptation of the amount of time spent in each state according to the 

step period. This process was repeated for each fast step. If the step period prediction indicated a 

slower step, then the state transitions were controlled individually according to the state-

anticipation method.  

 

The feed-forward stimulation to control the SCL started in E1. This state was chosen since it is 

the state just prior to primary limb loading, E2, and the goal was to increase the number of 

weight-bearing steps at faster speeds. Therefore, the step period of the EML had to be predicted 

prior to the anticipation of E3 (opposite to E1 in the SCL) in order to calculate the feed-forward 

times for the step. 

 

3.2.3.2 Step Period Prediction  

To adapt the stimulation output using the step-by-step feed-forward control strategy for the faster 

steps only, the speed was indirectly predicted and measured using the step period of the EML. 

Supervised machine learning methods were used to predict the step period. A total of 1721 steps 

from the first two cats were used for the training data set. All training steps were from one 

experimenter moving the hind-limb. The features used by the prediction algorithms were: 
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time spent in F; is time spent in E1; time spent in E2; time spent in F and E1; time spent in E1 

and E2; time spent in F and E2; time spent in F, E1, and E2; angular acceleration shortly after the 

onset of E1; angular acceleration shortly after the onset of E2; and the slope of force shortly after 

the onset of E2. 

 

Using the data mining platform Weka 3.8.0 (Witten et al. 2016), 66 combinations of these 

features were tested using linear regression to narrow down the set. Many of the combinations 

produced identical or near identical correlation coefficients and mean absolute errors; therefore, 

the parameter combinations that were chosen for further testing were selected based on their 

reliability and ease of measurement. The final three parameter combinations were the (i) time 

spent in F, time spent in E1, time spent in E2, and slope of force as individual parameters; (ii) 

time spent in F, time spent in E1, time spent in E2 as individual parameters; and (iii) time spent 

in F, E1, and E2 as a single parameter. Using these combinations, various supervised machine 

learning algorithms were tested using Weka to provide a numeric prediction of the step period.  

 

The supervised machine learning algorithms we tested included simple linear regression, 

multivariate linear regression, least mean squares linear regression, model tree, k-nearest 

neighbor, artificial neural network, and support vector machine. In total, 397 combinations of 

features and algorithm parameters were tested. Results from 10-fold cross-validation were used 

to compare algorithms. Based on the mean absolute error and ease of implementation, simple 

linear regression, multivariate linear regression, and two different model trees were employed to 

predict the step period during stepping trials. 

 

Simple (univariate) linear regression used the sum of the times spent in F, E1, and E2 as a single 

parameter to predict the step period. During training, the prediction was formed by linearly 

combining the features (in this case the sum of the state times) with weights, which were 

calculated from the training data, and minimizing the sum of squares of the differences between 

the predicted and actual values over all training instances (Witten et al. 2016). The resulting 

relationship from training the univariate linear regression model to predict the step period was: 

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 1.642(𝑇𝐹 + 𝑇𝐸1 + 𝑇𝐸2) − 0.0185 (3.2) 
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Multivariate linear regression used the times spent in F, E1, and E2 as individual parameters. The 

algorithm training procedure was identical to that described for simple linear regression. The 

resulting equation from the multivariate linear regression was: 

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 1.314 × 𝑇𝐹 + 2.3647 × 𝑇𝐸1 + 2.4025 × 𝑇𝐸2 − 0.3605 (3.3) 

 

Finally, two different model trees were implemented. A model tree is a combination of a 

decision tree and a linear model, where the linear relationship is the final leaf in the tree. The 

splitting criterion at each node was formed by testing each feature and determining the one that 

best maximized the expected reduction in error (Witten et al. 2016). The first model tree used 

only the time spent in F as a predictor to both make the routing decision (Figure 3.3a) and in the 

linear models 1 to 3 (3.4-3.6). The second model tree used each of the time spent in F for the 

routing decision (Figure 3.3b), and all three state times (time in F, E1, and E2) as individual 

parameters in linear models 4 and 5 (3.7-3.8). The linear models for each tree were: 

 

Linear Model 1: 

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 2.9401 × 𝑇𝐹 + 0.6944 (3.4) 

 

Linear Model 2:  

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 3.3862 × 𝑇𝐹 + 0.5214 (3.5) 

 

Linear Model 3:  

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 0.9397 × 𝑇𝐹 + 2.1271 (3.6) 

 

Linear Model 4:  

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 1.9605 × 𝑇𝐹 + 2.0345 × 𝑇𝐸1 + 1.1872 × 𝑇𝐸2 − 0.1384 (3.7) 

 

Linear Model 5:  

 

𝑆𝑡𝑒𝑝𝑃𝑒𝑟𝑖𝑜𝑑 = 0.9547 × 𝑇𝐹 + 2.549 × 𝑇𝐸1 + 2.6454 × 𝑇𝐸2 − 0.158 (3.8) 



89 

 

 

Figure 3.3. Trained model trees for numeric prediction. (A) Univariate model tree used the time spent in F to make 

routing decisions leading to one of three linear models. Linear models 1 – 3 used only the time spent in F as a 

variable. (B) Multivariate model tree used the time spent in F to make a routing decision to one of two linear 

models. Each of the linear models utilized three state times (time spent in F, E1, and E2).  

 

3.2.4 Outcome Measures 

Since the primary goal was to achieve alternating, weight-bearing stepping in the hind-limbs, 

several measures were developed to determine if the goal was met. All measures were calculated 

on a step-by-step basis.  

 

Alternation was defined using two different measures. First, the ground reaction forces produced 

by each limb were used to verify if the limbs were 180º out of phase with each other. 

Specifically, the time each limb spent in loading was measured and converted into degrees of a 

circle, such that the onset of loading for the EML was equal to 0º, and the onset of loading of the 

EML for the next step was equal to 360º (Figure 3.4a). The half-way points of loading were 

calculated for each limb (TE1/2, TS1/2), converted to degrees, and the difference calculated. For 

perfect alternation, a phase difference of 180º would be seen between the forces from the limbs.  

The second measure of alternation was determined based on limb angle obtained from motion-

capture. The limb angle was the angle between the vertical axis at the hip and the segment 

between the hip and the MTP joint. The limb angle was positive when the endpoint (MTP joint) 

was in front of the hip, and negative when it was behind the hip (Figure 3.4b). For each step, the 

point in time when the EML was at the largest positive limb angle (TE), and the time when the 

SCL was at the largest negative limb angle (TS) were determined. The time difference (ΔT = TE - 

TS) was normalized by dividing by the step period of the EML. During perfect alternation, these 

two times would be equal resulting in an alternation measure of zero. 
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Ideally, the time spent in swing and stance would be equal for the two hind-limbs in a single step 

cycle. The time spent in swing and stance for each limb was calculated and normalized to the 

step period of the EML (Figure 3.4c). The stance symmetry and swing symmetry were calculated 

by taking the ratio of the normalized times in stance (3.9) and swing (3.10), respectively. A ratio 

of 1 for both measures would indicate that the both limbs spent the same amount of time in 

stance and swing.  

𝑆𝑡𝑎𝑛𝑐𝑒 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  
𝑇𝑆𝑡𝐸𝑀𝐿

𝑇𝑆𝑡𝑆𝐶𝐿

(3.9) 

𝑆𝑤𝑖𝑛𝑔 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  
𝑇𝑆𝑤𝐸𝑀𝐿

𝑇𝑆𝑤𝑆𝐶𝐿

(3.10) 

 

Figure 3.4. Outcome measures. EML = experimenter-moved limb; SCL = stimulation-controlled limb. (A) Force 

alternation and weight-bearing. The force produced by the EML was scaled down to match the SCL. Each limb 

exceeded the target force of 12.5% of body-weight, indicated by the horizontal dashed line. One step cycle of the 

EML was converted into the degrees of a circle (0° - 360°), indicated by the black vertical lines with the degree 

markers. The midway point of loading is indicated by the dashed vertical lines and marked by TE½, TS½ for the EML 

and SCL, respectively. These time-points were converted to degrees, and the difference between them was the phase 

difference of the two hind-limbs (ideally = 180°). (B) Limb angle alternation. The limb angle was measured as the 

angle between the vertical line from the hip and the segment between the hip and the MTP (metatarsophalangeal) 

joint, as demonstrated by the inset of the cat hind-limbs. Limb angle was negative when the foot was behind the hip, 

and positive when the foot was in front of the hip. Alternation of limb movements was measured by taking the time 

difference between when the foot of the EML was at the furthest point in front of the hip, and the foot of the SCL 

was furthest behind the limb (ΔT = TE - TS), normalized by the step period of the EML. (C) Step symmetry. The 

time spent in stance and swing for the EML and SCL were labelled as TSt_EML, TSw_EML, TSt_SCL, TSw_SCL, 

respectively. The stance symmetry was calculated by taking the ratio of the stance times, normalized by the step 

period of the EML; the swing symmetry used the ratio of the normalized swing times. Dashed trace: EML; Solid 

trace: SCL.  
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To determine if the stepping was weight-bearing, the forces produced by each hind-limb were 

summated and compared to a threshold that defines body-weight support in the setup (12.5% of 

body weight for each limb (Lau et al. 2007)) (Figure 3.4a). The force produced by the EML was 

scaled down by the maximal value of force achieved in a stepping trial to avoid possible bias 

from the experimenter. The force produced by the SCL was not scaled since it demonstrates the 

true output of the stimulation in the spinal cord.  

 

The accuracy of the step period predictions by the supervised machine learning algorithms was 

determined by comparing the predicted step period with the actual, measured step period for 

each step. From these, the mean absolute error for each prediction method was calculated. Even 

though the step period was only used to adapt to the faster steps, the prediction accuracy was 

calculated for all speeds.  

 

3.2.5 Experimental Protocol 

Trials were conducted with the EML moved through the gait cycle over a moving belt of a split-

belt treadmill at a constant speed (treadmill belt speed: 0.17 to 0.2 m/s). The belt on the side of 

the SCL remained off throughout the experimental protocol. To test the limits of the controller, 

and to be more realistic of a SCI rehabilitation scenario, trials were conducted where the speed of 

the treadmill belt on the EML side was varied within a single stepping trial (0.09 to 0.42 m/s). 

The experimenter moving the EML adjusted their cadence to match the speed of the treadmill 

belt. The speed was limited by the abilities of the experimenters moving the EML. For the speed-

varying trials, the experimenter was blinded to the type of step period prediction method (or lack 

thereof) tested. Stepping trials were between 30 and 60 s in duration. 

 

The steps from the speed-varying trials were divided into two groups for analysis: slower (step 

period ≥1.95 s) and faster (step period < 1.95 s) steps. The slower steps did not require 

adaptation and were all grouped together. This allowed the measures from the faster steps 

without adaptation to be compared to the faster steps that used the step period prediction 

measures for the feed-forward adaptation.  
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3.2.6 Statistics 

One-way analysis of variance (ANOVA) was used to test the difference between population 

means for each of the trial types for force alternation, limb angle alternation, stance and swing 

symmetry ratio, and step period prediction accuracy. Homogeneity of variance was tested using 

the Levene’s test, and normality was tested using the Kolmogorov-Smirnov statistic. Tamhane 

T2 corrected post-hoc tests were reported if the Levene’s test was significant. A p-value ≤ 0.05 

was used to indicate significance. The Χ2 test was used to compare the success of weight-bearing 

between trial types. Cross-tabulations were generated for all pair-wise combinations. Χ2 with 

continuity correction was reported for 2x2 contingency tables, and the α-level was adjusted using 

the modified Bonferroni correction for multiple comparisons.  

 

3.3 Results 

A total of 6177 steps from 429 trials in 6 cats were recorded. Some steps were excluded from 

analysis if not all outcome measures could be calculated for a particular step, such as the first or 

final step in a trial (n = 209). Therefore, 5968 steps were used to calculate all outcome measures.  

 

3.3.1 Stepping at a Constant Speed with No Speed Adaptation 

The EML was moved at a constant speed (treadmill belt speed: 0.17 to 0.2 m/s; step period of 

EML: 2.03 ± 0.28 s) for 852 steps in 66 trials. The mean phase difference in forces between the 

EML and SCL in these steps was 177° (± 5.6°), and the mean absolute deviation from 180° was 

4.37° (± 4.35°). This deviation from 180° was small, amounting to < 20 ms of shifting to the left 

or right. An example of the ground reaction forces produced by the hind-limbs is shown in 

Figure 5a, and a histogram of the alternating phase differences is shown in Figure 3.5c. 

 

Raw data for limb angle alternation are shown in Figure 3.5b. The average time difference 

between when the EML was furthest in front of the hip and when the SCL was furthest behind 

the hip normalized to the step period for all steps was -0.03 ± 0.06. The negative value indicates 

that the SCL reached its furthest extension before the EML was at its furthest point in front of the 

hip (SCL leads the EML). The normalized time difference for all steps had a large variation. 

Even though the average normalized time difference was negative, for 272 (33.5%) steps the 

difference was positive (Figure 3.5d). 
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Figure 3.5. Results for stepping at a single speed (n = 852 steps). EML = experimenter-moved limb; SCL = 

stimulation-controlled limb. (A) Raw ground reaction forces. The force produced by the EML was scaled down to 



94 

 

match the SCL. Each limb exceeded the target force of 12.5% of body-weight, indicated by the horizontal dashed 

line. Dashed trace: EML; Solid trace: SCL. (B) Motion tracking of hind-limbs. (i) stick figure of EML. (ii) stick 

figure of SCL. (iii) Limb angle alternation. The movements produced by the experimenter were often larger than 

normal stepping and were scaled down for this figure. (C) Distribution of phase differences from force alternation. 

(D) Distribution of the normalized time differences obtained for the limb angle alternation. (E) Distribution of the 

stance symmetry ratio and swing symmetry ratio. (F) Phase difference of force alternation versus stance (circles) and 

swing (squares) symmetry. The diamonds indicate the medians for the phase difference and symmetry measures 

(upper = swing, lower = stance). 

 

The stance and swing ratios for the steps in these trials were 0.99 ± 0.09 and 1.07 ± 0.15, 

respectively, indicating that the hind-limbs spent similar amounts of time in stance, but the EML 

on average spent more time in swing than the SCL. The swing ratio had a large variability 

compared to the stance ratio (Figure 3.5e). Figure 3.5f demonstrates that the steps had median 

values for the alternation phase difference and symmetry ratios close to their ideal values, with 

the stance ratio being closer to 1 than the swing ratio.  

 

All 852 steps were weight-bearing. This meant that there were no steps where the sum of the 

forces produced by the two hind-limbs was below the weight-bearing threshold (12.5% of body 

weight for each limb).  

 

3.3.2 Stepping at Varying Speed with No Speed Adaptability 

Stepping metrics produced by the basic control algorithm were also obtained for varying 

stepping speeds of the EML. In these trials, the speed of the treadmill belt on the EML side was 

initially set between 0.09 and 0.15 m/s and increased twice during the trials to values between 

0.19 and 0.42 m/s, with the EML moved at a matching speed.  

 

In 363 trials, 1506 steps were at a slower speed (treadmill belt speed: approximately 0.09 to 0.25 

m/s; step period of EML: 2.70 ± 0.44 s) and 1845 steps were at a faster speed (treadmill belt 

speed: approximately 0.26 to 0.42 m/s; step period of EML: 1.51 ± 0.25 s). On average, the 

phase for the slower steps had a significantly larger deviation from 180° than the faster steps 

(slower: 19.9° ± 11.9°; faster: 5.24° ± 5.83°; p < 0.001). The slower steps had a phase difference 

of 161° ± 12.9° which was significantly lower than that in the trials at the single speed (177° ± 
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5.6°; p < 0.001; Figure 3.6a). This meant that the force produced by the SCL was shifted earlier 

compared to the center of the forces produced by the EML. This was due to the swing-to-stance 

rule, which triggered an early transition into E2 if the limb stayed in E1 long enough to reach its 

endpoint, partially loaded. The faster steps had a phase difference of 181° ± 7.8°, which was 

significantly higher and closer to 180° than in the trials at a single speed (p < 0.001; Figure 3.6a).  

The time difference of the limb angle alternation for the slower steps was -0.016 ± 0.05, which is 

significantly closer to zero than steps at a single speed (p < 0.001). The time difference for the 

faster steps were also closer to zero (-0.004 ± 0.07, p < 0.001) than the steps at a single speed. 

For both speed ranges, the SCL reached its maximal backwards extension before the EML 

reached its maximal forward extension, the same as in the steps at a single speed.  

 

Figure 3.6. Outcome measures for all trial types. Steps with no feed-forward adaptations used only state-

anticipation to control the SCL (stimulation-controlled limb). (A) The phase difference from the force alternation of 

the two hind-limbs (left y-axis) and the number of weight-bearing steps as a percent of the total steps in a trial (right 

y- axis). The horizontal dashed lines indicate the target for their corresponding outcome measure. The bars indicated 

by the supervised machine learning methods represent faster steps only. * p < 0.05, phase difference; # p ≤ 0.002, 

both measures; % p < 0.04, weight-bearing, fast no adaptation versus others. (B) Stance and swing symmetry ratios 

for all trial types. * p < 0.04, stance symmetry; # p < 0.001, swing symmetry; % p < 0.005, swing symmetry, fast no 

adaptation versus others. 



96 

 

Slower steps had a stance ratio of 1.02 ± 0.10, which was significantly higher than steps at a 

constant speed (stance ratio = 0.99 ± 0.09; p < 0.001; Figure 6b) and steps at a faster speed 

(stance ratio = 0.99 ± 0.07), although this difference is unlikely be meaningful. Faster steps did 

not have a significantly different stance ratio than steps at a constant speed (p = 0.97). However, 

the swing ratio for both slower steps (1.11 ± 0.20) and faster steps (1.13 ± 0.15) were both 

significantly higher than that at a constant speed (1.07 ± 0.15; p < 0.001), indicating that at 

varying speeds the SCL spent less time in swing than at a constant speed.  

 

Even though the faster steps had a phase difference closer to 180°, they were more likely to lose 

weight-bearing than slower steps (slower: 14/1506 steps, faster: 44/1845 steps, p = 0.002). The 

reasons for the loss of ground reaction force produced by the SCL were investigated and 

summarized in four categories (Figure 3.7): (i) the onset of force production was too late; (ii) the 

profile of the ground reaction force at loading was uneven; (iii) slipping during propulsion; and 

(iv) initiating the stimulation for swing too early. A breakdown of how often these occurred is 

presented in Table 3.1. 

 

Figure 3.7. Examples of unloading. EML = experimenter-moved limb; SCL = stimulation-controlled limb. (A) 

Stimulation for F (early swing) started too early, prematurely lifting the SCL into swing. This occurred if the 

predicted step period was less than the actual step period of the EML, terminating E3 (propulsion) too soon in the 

SCL, or if during the anticipation of E2 (mid-stance), the timing of when the angular velocity signal crossed the 
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threshold was too early. (B) Stimulation for E2 started too late, resulting in a phase difference > 180°. (C) Loading 

started but with an uneven profile, possibly due to friction over the stationary treadmill belt. (D) Slipping during the 

propulsion phase of the SCL. This occurred if the movement was strong enough to propel the cat, but the body was 

unable to move because it was held in the sling and the ipsilateral treadmill belt was stationary, resulting in a phase 

difference < 180°. 

 

Loss of Weight-Bearing 

  Occurrences by Trial Type By Cat 

  

S - 

NA 

F - 

NA 

LR - 

Uni 

LR - 

Multi 

MT - 

Uni 

MT - 

Multi Steps: # % 

Loading of SCL             Cat 1 8 1.31 

Too late 2 28 1 0 0 0 Cat 2 27 2.91 

Slip, irregular 0 8 0 0 1 0 Cat 3 9 2.15 

Unloading of SCL       Cat 4 12 1.01 

Slipping 5 5 4 0 0 0 Cat 5 18 1.30 

Swing too early 7 3 0 2 8 1 Cat 6 1 0.07 

Number of steps 14/ 44/ 5/ 2/ 9/ 1/      

(loss WB/total) 1506 1845 618 673 372 399      

Number of steps 
0.93 2.38 0.81 0.53 2.42 0.25 

     

(percent)      

Duration (ms): 127.8 72.0 33.0 124.0 120.7 9.0      

M (± SD) (75.1) (45.3) (21.4) (162.6) (47.8)       

Loss of force   8.03 3.30 4.15 14.26 6.59 10.29      

(%BW): M (± SD) (4.90) (2.56) (5.66) (8.82) (3.46)         
 

Table 3.1. Breakdown of occurrences of unloading by trial type and by cat. The causes of the loss of weight-bearing 

(WB) are listed on the left, along with the incidence, the duration, and extent of unloading. SCL = stimulation-

controlled limb; BW = body-weight; S-NA = slow - no adaptation; F-NA = fast - no adaptation; LR-Uni = linear 

regression - univariate; LR-Multi = linear regression - multivariate; MT-Uni = model tree - univariate; MT-Multi = 

model tree - multivariate. 

 

For the slower steps, half of the instances of loss of weight-bearing were due to initiating the 

stimulation for F too early (Figure 3.7a). The stimulation for F occurs when E2 was anticipated 

in the EML, which depended largely on the angular velocity of that limb (Figure 3.2c). When the 

experimenter moving the EML caused a change in the slope of the angular velocity early in the 

swing phase, this caused the SCL to transition into early swing, leading to double-unloading. 

This led to a loss in force production (8.0 ± 4.9% BW loss) for a relatively long time (128 ± 75 

ms). The faster steps were more prone to insufficient force production at the onset of loading 
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(Figure 3.7b), which caused a large deviation from 180° in some instances by up to 45.9°. The 

insufficient force was at times due to abnormal, uneven force production (Figure 3.7c), likely 

due to the paw of the SCL slipping over the stationary surface of the treadmill belt while pushing 

down. However, when the faster steps lost weight-bearing, it was often for a short duration (72 ± 

45 ms), and for a lower amplitude relative to body weight (3.3 ± 2.6% loss) than in the slower 

steps. Because in most of the faster steps with a loss of weight-bearing the loss was due to the 

timing of the states and the onset of loading, a step-by-step feed-forward method was 

implemented for the faster steps.  

 

3.3.3 Stepping at Varying Speeds with Speed Adaptability 

Since the faster steps had significantly more steps that were below the weight-bearing threshold 

compared to steps at single and slower speeds (p = 0.002), the step-by-step feed-forward 

adaptation was implemented. Table 3.2 denotes the correlation coefficient and mean absolute 

error from training the linear regression and model tree algorithms. Using multiple features 

resulted in slightly higher performance than using a single feature for prediction during training.  

 

Training of supervised machine learning algorithms 
Linear Regression  Model Tree 

Features Performance measure 
 T

F
, T

E1
, T

E2
  Correlation coefficient 0.901 0.911 

 (multivariate)  Mean absolute error 0.206 0.195 
 T

F, E1, E2
  Correlation coefficient 0.894 0.910 

 (univariate)  Mean absolute error 0.208 0.196 
 

Table 3.2. Training of supervised machine learning algorithms to predict the step period. The features used to train 

the algorithms were combinations of the time spent in F (TF), time spent in E1 (TE1), time spent in E2 (TE2). TF, E1, E2 

is a single term comprised of the sum of the state times. 

 

A comparison of the predicted step period with the actual step period for each of the four 

methods is shown in Figure 3.8a-d. The accuracy of prediction for all methods was higher for the 

smaller step periods (faster steps). The univariate linear regression and multivariate model tree 

methods had significantly lower prediction error than the multivariate linear regression and 

univariate model tree methods (p < 0.001; Figure 3.8e). On average, all four methods predicted a 

larger step period.  
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Figure 3.8. Accuracy of step period prediction. Comparing the step period predicted by the trained machine learning 

algorithm to the actual step period of the EML (experimenter-moved limb). Circles represent the data points from 

the stepping trials; the line indicates prediction unity; and the diamonds indicate when unloading occurred. (A) 

Univariate linear regression model predicting the step period. (B) Multivariate linear regression. (C) Univariate 

model tree. (D) Multivariate linear regression. (E) Comparison of the accuracy of each prediction method. MAE: 

mean absolute error of the prediction accuracy for steps at all speeds. *p ≤ 0.001. 

 

Examples of the ground reaction forces for the speed-varying stepping trials with no adaptation 

and trials from each of the four prediction methods are displayed in Figure 3.9. The relationship 

between the phase difference of the hind-limbs and the number of weight-bearing steps for all 

trials is demonstrated in Figure 3.6a. Of the four prediction methods, the multivariate model tree 

was the only one without a significantly different phase difference (p = 0.602) from the faster 

steps without adaptation. This is good since the faster steps without adaption had an average 
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phase difference very close to 180° (181° ± 7.8°). The justification for switching to speed-

adaptive control was to increase the number of weight-bearing steps, as many faster steps 

without adaptation had insufficient weight-bearing. However, maintaining alternation close to 

180° is also important, and the multivariate model tree method achieved that.  

 

The univariate linear regression had a similar limb angle alternation time difference as the faster 

steps without adaptation (-0.003 ± 0.103; p = 1.00). The other three methods all had a 

significantly higher time difference than the faster steps without adaptation (p < 0.001), with the 

EML moving forward now leading the SCL moving backward.  
 

 

Figure 3.9. Ground reaction forces at varying speeds.EML = experimenter-moved limb; SCL = stimulation-

controlled limb. Raw ground reaction forces for the EML (dashed) and SCL (solid) for an entire trial transitioning 

from very slow to faster speeds. The faster steps (step period < 1.95) are highlighted at the end of each trace. (A) No 

adaptation. (B) Adaptation with univariate linear regression numeric prediction of the step period for step-by-step 

feed-forward control strategy for faster steps. (C) Adaptation with multivariate linear regression. (D) Adaptation 

with univariate model tree. (E) Adaptation with multivariate model tree. 
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The stance ratio for both univariate and multivariate linear regression, as well as the univariate 

model tree were all significantly lower than the stance ratio for the faster steps without 

adaptation (stance ratio, faster = 0.99 ± 0.07; univariate and multivariate linear regression, 

univariate model tree = 0.98 ± 0.06; p < 0.04; Figure 3.6b). The stance ratio for the multivariate 

model tree (0.99 ± 0.06) was not significantly different from the stance ratio of the faster steps 

without adaptation (p = 1.00), which is a positive outcome because both values were very close 

to the ideal value of 1. However, the swing ratio for all methods except the univariate model tree 

(univariate linear regression = 1.10 ± 0.14; multivariate linear regression = 1.07 ± 0.15; 

univariate model tree = 1.13 ± 0.18; multivariate model tree = 1.08 ± 0.13) was significantly 

lower than that for faster steps without adaptation (1.13 ± 0.15; p < 0.005), bringing the swing 

ratio closer to 1. This improvement in the swing ratio means that three of the four adaptation 

methods elongated the swing phase of the SCL to be proportionally closer to the duration of the 

swing phase of the EML. The multivariate model tree method was the only method to both 

maintain the stance ratio very close to 1 and bring the swing ratio closer to 1, followed by 

multivariate linear regression.  

 

The univariate model tree was the only prediction method that was unable to achieve a 

significantly higher number of weight-bearing steps relative to no adaptation (p = 1.00). In fact, 

it had the same percentage of steps that did not achieve weight-bearing as the no adaptation 

method (97.6%). Using feed-forward control for faster steps resulted in a total of 17/1765 steps 

with a loss of weight-bearing, with the majority (9/17) occurring when using the univariate 

model tree prediction method.  

 

Incorrect step period prediction was the cause for loss in weight-bearing in 9 of the 17 fast feed-

forward steps, and was seen to some extent in all methods. In one of those instances, the 

predicted step period was much larger than the actual step period (error = 26.6%, univariate 

linear regression), resulting in the stimulation for E1 lasting too long, and a delayed start to the 

stimulation for E2 (Figure 3.7b). This resulted in a phase difference of 224°. When the predicted 

step period was lower than the actual step period, the E3 phase terminated too early, triggering 

an earlier transition into F, which caused unloading (Figure 3.7a). This often resulted in a phase 

difference as low as 143° and was prevalent in steps using both model trees and the multivariate 
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linear regression method. In 7 of the 17 instances of decreased weight-bearing the cause was 

slipping of the SCL at the end of the step (Figure 3.7d, univariate linear regression and model 

tree). This occurred because the setup with the cat suspended in a sling over a treadmill allowed 

only in-place stepping on the stationary belt for the SCL. These instances saw a reduction in the 

phase difference by up to 137°. One of the 17 instances was due to an abnormal, uneven loading 

profile (Figure 3.7c, univariate model tree) and may be due to slipping during loading. The faster 

steps with insufficient weight-bearing caused by erroneous step period predictions had error 

values from 11.0 % to 26.6%. These were large prediction errors relative to the small step 

periods of the faster steps. If the predicted value of the step period for the faster steps was more 

than 200 ms from the actual step period, the result was incorrectly timed state transitions and 

unloading during feed-forward control. Table I also lists the instances of insufficient weight-

bearing by individual cats. Cat 2 had the most instances, whereas cat 6 only had 1 instance. Two-

thirds of the instances from cat 2 were from faster steps with no adaptation, caused by a late 

transition into E2. 

 

In summary, the multivariate model tree method outperformed the other three prediction 

methods tested. It resulted in significantly less loss of weight-bearing, a stance symmetry 

remaining close to the ideal value of 1, a swing symmetry closer to 1, and maintained alternation 

near 180°.  

 

3.4 Discussion 

The goal of this study was to produce, for the first time, bilateral alternating, weight-bearing 

stepping of the hind-limbs in a model of incomplete SCI using ISMS. We developed control 

strategies to take advantage of residual function in a model of hemisection SCI to restore weight-

bearing stepping in anaesthetized cats over a split-belt treadmill. We also employed adaptive 

control strategies to ensure weight-bearing at different speeds of stepping. The speed of stepping 

was predicted based on generalizations obtained through supervised machine learning relating 

external sensor information to the step period. The predicted step period was then used to adapt 

the control strategy to step-by-step feed-forward control for fast steps. Through the adaptive 

control strategies, we were able to restore weight-bearing and maintain alternation and step 

symmetry in three of the four supervised machine learning numeric prediction methods. The best 
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method according to alternation, weight-bearing, and step symmetry was a multivariate model 

tree algorithm. 

 

3.4.1 Comparison to Natural Walking 

During normal walking, the movements of the legs are controlled by integrating input from 

various sources. The brain contributes initiation commands and coordinates complex walking 

tasks, such as avoiding expected obstacles and walking on difficult terrain (Takakusaki et al. 

2008; Cinelli and Patla 2008; Marigold and Patla 2005). Brainstem regions, such as the 

mesencephalic locomotor region (MLR), generate excitatory drive to the spinal cord and affect 

the rate and pattern of hind-limb movements (Grillner and Shik 1973; Orlovskiĭ et al. 1966; 

Ryczko and Dubuc 2013; Mori et al. 1992; Shik et al. 1966). The cerebellum makes anticipatory 

corrections to the gait pattern if the limb movements differ from the intended movements 

(Morton and Bastian 2006). In the lumbar spinal cord, the central pattern generator (CPG) is a 

neural network that can produce alternating movements of the hind-limbs in the absence of 

phasic sensory afferent information (Grillner and Wallen 1985; Guertin 2009). However, afferent 

feedback does play a critical role in controlling the transition from stance to swing (Duysens and 

Pearson 1980; Ekeberg and Pearson 2005; Grillner and Rossignol 1978) and reacting to 

perturbations (Forssberg 1979; Hiebert et al. 1995).  

 

The CPG has been shown to exist in invertebrates such as crayfish (Stein 1971) and leeches 

(Kristan and Weeks 1983) and vertebrates including lamprey (Wallén and Williams 1984; 

Messina et al. 2017) and cats (Brown 1911; Jankowska et al. 1967; Pearson and Rossignol 1991). 

There is evidence that the CPG may also exist in humans (Dimitrijevic et al. 1998; Calancie et al. 

1994; Minassian et al. 2007; Bussel et al. 1996). A prominent model of the CPG proposes that 

movements are generated by a two-layer network for rhythm generation and pattern formation 

(McCrea and Rybak 2008); each limb has its own CPG that mutually inhibits the other. The 

rhythm generating network is responsible for alternation of flexion and extension; the pattern 

formation network is responsible for coordinating limb movements. Sensory afferents from the 

limbs can modulate both the timing and pattern of the CPG to adjust walking. The CPG receives 

inputs from the brain, brainstem, and sensory afferents. Together, these afferents, efferents, and 

intraspinal networks interact to produce walking (Guertin 2012).  
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After a spinal cord injury, the spinal cord no longer receives descending drive from the brain and 

brainstem. In chronically injured cats locomotor stepping on the moving belt of a treadmill can 

be restored by activation of the CPG through sensory afferents (Pearson and Rossignol 1991). 

Tonic excitation of the lumbar spinal cord, such as with epidural stimulation or transcutaneous 

spinal cord stimulation, can produce flexion-extension alternation of the legs in the supine 

position (Dimitrijevic et al. 1998; Calancie et al. 1994) or in combination with BWSTT (Angeli 

et al. 2014; Carhart et al. 2004; Dietz et al. 1994; Harkema et al. 2011; Hofstoetter et al. 2015). 

Additionally, epidural stimulation in supine humans with complete SCI has produced other 

rhythmic motor patterns including synchronized and reciprocal activation of muscles (Danner et 

al. 2015), suggesting a flexible organization of the pattern formation network.  

 

The current control strategy anticipated the state of the EML and activated the SCL to be in an 

opposite state, resulting in a feedback-driven mutual inhibition of flexion and extension between 

the two limbs. All anticipations of state transition utilized limb loading information. Limb 

loading information provided by Golgi tendon organs is critical for biological walking as well, 

particularly for the transition from stance to swing. To initiate the swing phase, unloading of 

ankle extensor muscles must occur along with hip extension (Duysens and Pearson 1980; 

Ekeberg and Pearson 2005). A gyroscope, which provided angular velocity, and its slope (i.e. 

angular acceleration), does not have a direct biological equivalent. However, information such as 

muscle length and velocity are measured by Ia and II muscle spindle afferents (Boyd 1980), and 

indicate hip extension during the stretching of the hip muscles, assisting the aforementioned 

transition from stance to swing (Grillner and Rossignol 1978).  

 

 The change in control strategy from reactive to predictive feed-forward control is comparable to 

the role of the cerebellum in walking. Sensor information was used to predict the speed of 

walking as well as adjust the time spent in each state during feed-forward control. The 

cerebellum contributes to walking by recalibrating the gait pattern using predictions of the motor 

outcomes. It makes corrections to the output if there are discrepancies between the efferent copy 

from the motor cortex and the afferent input from the spinocerebellar tract (Pisotta and Molinari 

2014; Shadmehr et al. 2010; Takakusaki 2013).  
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3.4.2 Comparison to other Control Strategies 

Control strategies developed for ISMS to restore walking in a complete SCI model were CPG-

inspired (Vogelstein et al. 2008; Saigal et al. 2004; Guevremont et al. 2007; Mazurek et al. 2012; 

Holinski et al. 2013, 2016). More traditional control approaches have also been used to control 

ISMS. Fuzzy logic control to generate ankle movements aimed to track a desired trajectory 

(Roshani and Erfanian 2013a, 2013b). Trajectory tracking of knee and ankle movements was 

also performed using sliding mode control of ISMS (Asadi and Erfanian 2012). However, 

trajectory tracking may prove difficult as each individual has different joint targets to match, 

along with numerous body-worn sensors for a feedback system to ensure accurate tracking.  

 

Control strategies for peripheral FES often include the detection of the user’s intention to step, 

initiating an open-loop control strategy. Walking can be produced by stimulating the peroneal 

nerve to trigger the flexor-withdrawal reflex (Kirkwood and Andrews 1989; Kostov et al. 1992; 

Tong and Granat 1999) and the quadriceps muscles for knee extension (Bajd et al. 1985; 

Andrews et al. 1988; Chaplin 1996) through surface electrodes. It can also be produced by 

stimulating flexor and extensor muscles through implanted epimysial or intramuscular electrodes 

(Popović 1993; Kobetic et al. 1999; Hardin et al. 2007; Guiraud et al. 2006; Dutta et al. 2008). 

The initiation of movements can be triggered by a hand-switch (Kobetic et al. 1999; Hardin et al. 

2007; Guiraud et al. 2006) or triggered by the user’s intention to step as determined from EMG 

activity (Dutta et al. 2008) or ground reaction forces (Kostov et al. 1992).  

 

Using sensory information from an intact limb to control the movements of an affected limb was 

used in this study; it is similar to control strategies developed for restoring walking in stroke 

patients using an exoskeleton (Murray et al. 2014). This may also be a viable approach to lower 

limb prosthetic control for people with amputations in the future.  

 

3.4.3 Signals for Control Strategies of ISMS 

Feedback of sensory information is necessary for control strategies to adapt to their 

surroundings. This study employed external sensors as feedback signals for the controller, as 

they are easy and reliable to use for proof-of-concept testing of control strategies. The 

gyroscopes were small devices place on the tarsals. The force plates were mounted underneath 
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the treadmill belts, but there are commercially available force sensitive resistors that can be 

placed on the insoles of shoes and have been used as feedback sensors in other work (Kirkwood 

et al. 1989; Kostov et al. 1992; Lovse et al. 2012). Previous studies also used accelerometers in 

combination with gyroscopes to represent limb angle (Lovse et al. 2012; Mazurek et al. 2012; 

Holinski et al. 2016). Conversely, neural recordings could also be used as feedback signals for 

control. Extracellular recordings from the dorsal root ganglia have been used as a feedback 

signal to control ISMS in a model of complete SCI (Holinski et al. 2013); however, the reliability 

of the recordings degrade over times as the implants are encapsulated by glial tissue (Weber et 

al. 2007).  

 

Neural recordings could also be obtained from the pre-motor or motor cortex and used as an 

input to ISMS. Using cortical recordings from the cortex to control ISMS enables 

communication between the brain and spinal cord, restoring voluntary control of paralyzed 

muscles (Mushahwar et al. 2006; Shahdoost et al. 2014). Cortical recordings have been used to 

control cervical ISMS in monkeys to control grasping (Zimmermann and Jackson 2014). They 

have also been used to control flexor and extensor activations in the hind-limb during treadmill 

stepping with epidural stimulation in monkeys (Capogrosso et al. 2016), and control prosthetic 

arms in humans (Collinger et al. 2013; Hotson et al. 2016; Fetz 1999; Wang et al. 2013). EEG 

(electroencephalography) signals have been used to control movements of an upper-limb 

prosthesis (Bright et al. 2016; Müller-Putz et al. 2010) and an upper-limb exoskeleton (Sullivan 

et al. 2017).  

 

For restoring walking after an incomplete SCI electromyography (EMG) activity may be a useful 

control signal as it can be used to detect the intentions of the user to step, and also informs the 

controller about residual muscle activity. EMG has been used to control implanted intramuscular 

stimulation systems for walking (Dutta et al. 2008) as well as to control the rate of stimulation in 

the spinal cord during cervical ISMS to control grasp (Zimmermann and Jackson 2014). 

Adaptive control of walking would likely require a variety of sensor signals to indicate intention, 

limb position, force production, muscle activity, and the presence of obstacles, just as the brain 

and spinal cord receive input and feedback from a variety of sensory streams.  
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3.4.4 ISMS and Incomplete SCI 

For restoring walking after a complete SCI, all limb movements were produced by electrical 

stimulation. After an incomplete SCI, some descending voluntary control remains, and varies 

depending on the severity and level of the injury. The best approach for a neural prosthesis after 

an incomplete SCI is to augment the remaining function by providing stimulation only to 

compensate for the deficits from the injury. Residual voluntary activity must therefore be 

measured and used as input to the controller. In the current study, residual voluntary function 

was simulated by an experimenter manually moving one hind-limb. To control the affected limb, 

information regarding the movements of the unaffected limb were utilized.  

 

After an incomplete SCI, it is possible to achieve functional improvements with training and 

exercise (Field-Fote 2001; Barbeau and Rossignol 1987; Thrasher et al. 2006), or through the 

activation of spinal networks using electrical stimulation (Angeli et al. 2014; Barolat et al. 1986; 

Capogrosso et al. 2016; Carhart et al. 2004; Mondello et al. 2014). A recent study in non-human 

primates with a unilateral corticospinal tract lesion, similar to the hemisection model described 

here, demonstrated that treadmill and over-ground walking could be restored in as early as 6 days 

post-injury using epidural stimulation (Capogrosso et al. 2016). More longitudinal stimulation 

with rehabilitation in a staggered hemisection model showed extensive intraspinal remodeling 

and restoration of over-ground walking in the presence of the stimulation (van den Brand et al. 

2012). 

 

Chronic ISMS may amplify spinal cord plasticity through at least 3 mechanisms: 1) stimulation 

in the ventral horn could strengthen nearby locomotor networks, specifically, interneurons that 

synapse on motoneuronal pools, 2) limb movements could strengthen sensory afferents to the 

spinal cord, and reinforce motor networks through natural feedback mechanisms, and 3) 

descending connections could be strengthened by volitional control during walking (Mondello et 

al. 2014). Cervical ISMS after a contusion SCI showed improved forelimb function that lasted 

beyond the stimulation trial, suggesting it may be a viable method for enhancing spinal plasticity 

(Kasten et al. 2013).  
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3.4.5 Experimental Limitations 

A limitation of the experimental setup is that it required an experimenter to move one hind-limb 

(EML) through the gait cycle. Nonetheless, this study demonstrated a proof-of-concept testing of 

the controller. Furthermore, the speeds of the treadmill used in the experiments (0.09 to 0.42 

m/s) represent relatively slow speeds and corresponded to treadmill belt speeds at which cats 

with a complete SCI were able to step at in the early to late stages of recovery on a treadmill 

(Bélanger et al. 1996). Interestingly, by adapting to different walking speeds, the controller was 

indifferent to which experimenter moved the limb through the gait cycle, even though the 

supervised machine learning algorithms used to predict step period were trained using data from 

only one of the three experimenters. This suggests that the algorithms sufficiently generalized to 

the training data.  

 

Since the cat was suspended in a sling over the split-belt treadmill, it was unable to propel itself 

forward and displace its position, resulting in in-place stepping as opposed to walking. During 

the propulsive phase (E3), the cat was physically prevented from moving forward. This created a 

large resistance between the stationary treadmill belt and the paw of the SCL during E3. To 

avoid kicking movements as the SCL overcame static friction, stimulation amplitudes through 

the channels comprising E3 were decreased, but were still high enough to lift the cat out of the 

sling. This led to a decreased range of motion during extension of the SCL. Full weight-bearing 

and range of motion of the SCL was achieved by turning the treadmill belt on. These trials were 

not included in the analysis since we wanted to ensure all movements were due to ISMS and not 

external forces. Future experiments will be performed on a walkway such that the cat is able to 

displace its position (Holinski et al. 2016, 2013; Mazurek et al. 2012; Guevremont et al. 2007). 

 

With the experimental setup, it was difficult to conclude if the instances of decreased weight-

bearing would be detrimental to walking since the cat’s body was supported by the sling, 

especially those instances of short duration and small amounts of decreased weight-bearing. 

Realistically, if a person were to have an ISMS implant, they would require a walking-aid such 

as crutches or a walker to help with balance and trunk control. Small amounts of insufficient 

weight-bearing could be alleviated through partial upper-body support on the walking-aid. 

However, other studies using peripheral FES to restore walking with assistance from a walking-
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aid have reported rapid fatigue of the arms and a large sense of effort if the legs were not 

producing stable and sufficient forces (Kobetic et al. 1999; Triolo et al. 2012). Relying on the 

arms for partial weight-bearing prohibits the users from reaching for objects while standing. 

Therefore, we aim for reliable and continuous body-weight support using ISMS. ISMS is more 

resistant to muscle fatigue (Bamford et al. 2005; Lau et al. 2007), and weight-bearing can be 

achieved for very long durations and distances compared to peripheral FES systems (Holinski et 

al. 2016).  

 

The feed-forward steps that had instances of insufficient weight-bearing were largely affected by 

incorrect predictions of the step period. Generally, the accuracy of the step period prediction 

increased as speed increased. Most often the unloaded steps resulted from the predicted step 

period being too small, which resulted in early unloading. Although the ability of the controller 

to detect the states of the gait cycle was unaffected by which experimenter was moving the EML, 

subtle timing differences of when the states were detected occurred. State anticipation thresholds 

were held constant throughout all trials; therefore, even the step-by-step feed-forward control 

strategy was prone to errors stemming from variation in stepping patterns, since it used the state 

times to predict the step period. Adaptive thresholds for the state detections may provide further 

accuracy of step period predictions and increase the number of weight-bearing steps.  

 

3.4.6 Future Considerations 

Further speed adaptation for the slower steps using similar speed-prediction methods may 

improve alternation at those speeds. Specifically, the swing-to-stance rule may be disabled for 

the slower steps, correcting the early onset of force production by the SCL. 

 

Expanding the application of ISMS to bilateral contusion SCIs, which leaves varying levels of 

residual voluntary drive, necessitates a control strategy that can adapt to the variability of deficits 

seen from these injuries. One approach could be to use machine learning to predict the state 

changes and learn the predictions over many steps. Since the predictions would be continuously 

learned and updated, the controller would be adaptable during walking. This may perform better 

than using rigid thresholds since walking patterns vary within and between people. Pavlovian 

control (Modayil et al. 2014; Modayil and Sutton 2014) may be a viable option for adaptable and 
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safe control of walking. Pavlovian control could use reinforcement learning to learn predictions 

about the gait cycle, and use those predictions to elicit a fixed stimulation response to produce 

consistent walking. EMG activity may be a useful input for Pavlovian control of ISMS as it can 

indicate movement intentions and residual muscle function. 
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Chapter 4: Pavlovian Control of Intraspinal Microstimulation to 

Produce Walking3 

 

4.1 Introduction 

After a spinal cord injury (SCI), people experience motor and sensory paralysis to varying 

degrees, depending on the severity and level of the injury. Two-thirds of all SCIs in the USA are 

incomplete (“Spinal Cord Injury (SCI) 2017 Facts and Figures at a Glance” 2017). For people 

with paraplegia, regaining the ability to walk is a high priority, ranking first or second nearly 

40% of the time (Anderson 2004). Currently, SCI has no cure; therefore, regaining the ability to 

walk has been pursued through other means such as rehabilitation (Musselman et al. 2009; Lam 

et al. 2015; Morrison et al. 2018), neural interfaces (Kobetic et al. 1997; Hardin et al. 2007; 

Holinski et al. 2016), or a combinatorial approach (Angeli et al. 2018b; Gill et al. 2018; Carhart 

et al. 2004).  

 

Current commercially available devices for restoring walking after SCI, such as the Parastep, 

Praxis, and various exoskeletons, have limited control options. The Parastep and Praxis systems 

use surface and implanted functional electrical stimulation (FES) electrodes, respectively 

(Chaplin 1996; Johnston et al. 2005). Walking is accomplished using open loop alternation 

between stimulation of the quadriceps muscles and the peroneal nerve, with each step initiated 

using push-buttons on a walker. Powered exoskeletons initiate open-loop walking initiated by the 

user leaning forward (Chang et al. 2015; Ekelem and Goldfarb 2018). The users are expected to 

adapt their walking to accommodate the control strategy of the device. 

 

Substantial work has been dedicated to improving the control strategies for walking such as 

incorporating feedback from sensors. Walking using finite state control can be described as a set 

of IF-THEN rules (Popović 1993; Prochazka 1996). Finite state controllers designed to transition 
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the legs through the phases of the walking cycle used feedback signals including ground reaction 

force and hip angle (Andrews et al. 1988; Guevremont et al. 2007), which represent important 

physiological signals in defining phase transitions (Grillner and Rossignol 1978; McVea et al. 

2005; Figueiredo et al. 2018). Proportional-integral-derivative (PID) controllers have been 

implemented to track joint or limb trajectory during FES walking (Quintern et al. 1997; 

Kurosawa et al. 2005). Non-linear methods such as sliding mode control have also been used to 

track joint angles (Nekoukar and Erfanian 2012). New control strategies for exoskeletons include 

joint tracking (Quintero et al. 2012) and supplementing movements and torques during open loop 

control through gravity compensation and impedance-based assistance (Murray et al. 2014; 

Marchal-Crespo and Reinkensmeyer 2009). However, tracking joint targets requires extensive 

knowledge of the system and often involves trial and error for tuning the control parameters 

(Matjacić et al. 2003). 

 

This study focused on developing a predictive control strategy for restoring walking using 

intraspinal microstimulation (ISMS). ISMS entails implanting fine microwires in the ventral horn 

of the lumbosacral enlargement. Stimulation in this region produces graded single joint 

movements as well as coordinated multi-joint synergies (Mushahwar and Horch 1998, 2000; 

Saigal et al. 2004; Holinski et al. 2011). ISMS has been used to restore walking in anaesthetized 

(Holinski et al. 2013, 2016) and spinalized cats (Saigal et al. 2004).  

 

Controllers developed for ISMS have primarily focused on restoring walking in complete SCI 

models (Dalrymple and Mushahwar 2017). Open loop control was used to alternate between 

flexion and extension movements (Mushahwar et al. 2002; Saigal et al. 2004). Feedback, such as 

ground reaction forces, hip angle, or activity of neurons from the dorsal root ganglia, was 

introduced to modify the inherent timing of the transitions between the phases of the gait cycle 

(Saigal et al. 2004; Holinski et al. 2011; Holinski et al. 2013, 2016).  

 

To restore walking after incomplete SCI, the control strategy needs to utilize residual function 

and deliver stimulation to compensate for the deficits. A recent paper depicted the first control 

strategies developed for ISMS in a model of incomplete SCI (Dalrymple et al. 2018). There, 

supervised machine learning was used to adapt the control strategy for different speeds of 
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walking. However, as people with SCI experience varying levels of paralysis, each person would 

require their own custom stimulation settings to restore walking. Manual tuning of settings could 

be burdensome, especially if the settings require frequent tuning. Ideally, stimulation settings 

would be tuned once during the initial set-up for each person, and thereafter automatically adjust 

to any daily gait changes. Control strategies utilizing machine learning may be needed for 

automatic adaptation of stimulation settings to restore walking.  

 

Supervised machine learning has been used to control surface FES systems in people with SCI to 

track joint angles (Abbas and Triolo 1997; Popović et al. 1999; Qi et al. 1999), initiate the swing 

phase (Kirkwood and Andrews 1989; Kostov et al. 1992, 1995; Tong and Granat 1999; 

Sepulveda et al. 1997), control FES over multiple joints (Fisekovic and Popovic 2001), predict 

different phases of the gait cycle in able-bodied participants (Kirkwood and Andrews 1989; 

Williamson and Andrews 2000), and in finite control of FES walking after complete SCI 

(Popović 1993). However, supervised learning requires manual labelling of data and is limited 

by the data set used for training. Many examples with sufficient variability are needed in the 

training data set to obtain an accurate generalization yet avoid overfitting to the training data. 

Furthermore, it is often difficult and computationally expensive to learn online.  

 

The present study proposes using reinforcement learning (RL) to learn predictions during 

walking to control electrical stimulation. Similar to operant conditioning, RL is an area of 

machine learning that accomplishes a goal by maximizing future reward (Skinner 1963; Staddon 

and Cerutti 2003; Sutton and Barto 2018). RL can also estimate, or predict, the future values of 

signals other than reward. General value functions (GVFs) can be learned to predict arbitrary 

signals of interest, called cumulants (Z) (White 2015). Many GVFs can be learned 

simultaneously to produce predictions of many cumulants. The GVF is formulated using the 

discounted sum of future values of the cumulant, using a discounting factor γ. The result is a 

prediction signal that is larger in amplitude than the cumulant and follows the shape of the 

cumulant convoluted with a decaying exponential. Temporal difference (TD) learning is a 

method that can be used to estimate the GVFs using previously obtained estimates, called 

bootstrapping (Sutton 1988; van Seijen et al. 2015; Sutton and Barto 2018). Learning speed 
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improves further with the addition of eligibility traces, which are a temporary record of recently 

visited states, as in TD(λ) (Sutton and Barto 2018).  

 

Work using RL to produce walking has been primarily performed in simulations and robots. RL 

has been used to control joint trajectories in Nao humanoid robots to produce stable walking in 

10 (Li et al. 2013) to 200 (Endo et al. 2008) trials. Mapping a limb trajectory from a simulation 

to a bipedal robot required 100 trials consisting of 30 steps each to walk successfully (Morimoto 

and Atkeson 2007). Another study that controlled the hip joint of a robot required 15 hours of 

simulation and 20 minutes of continuous learning to walk (Schuitema et al. 2005). RL performs 

well in non-stationary, stochastic environments, which includes walking. However, learning is 

often slow and requires many iterations to find the optimal (or near-optimal) control solution. 

Nevertheless, RL is a powerful tool that can be employed in many ways, such as providing 

predictions online that can then be used to produce control decisions. 

 

Predictions from RL can be used for Pavlovian control. Pavlovian control refers to using learned 

predictions to trigger fixed or pre-defined outputs, such as a stimulation output (Modayil and 

Sutton 2014). These concepts are inspired by classical, or Pavlovian, conditioning and the well-

known work of Ivan Pavlov. When Pavlov presented his dogs with food (unconditioned 

stimulus; US) they would salivate (response; R) (Pavlov 1883; Rehman and Rehman 2018). If a 

bell preceded the presentation of food, over time, the dogs salivated at the sound of the bell 

(conditioned stimulus; CS), as they associated the bell with the expectation of food. The R is a 

fixed, automatic response to the US and was not under the dogs’ volition. These concepts can be 

applied to control problems including robotics and rehabilitation. GVFs from TD-learning 

predicted joint switching events of an upper-limb myoelectric prosthesis (Pilarski et al. 2012; 

Pilarski et al. 2013a; 2013b) and were successfully tested in able-bodied participants (Edwards et 

al. 2013) and persons with amputation (Edwards et al. 2016). In a mobile robot, large-scale 

online predictions over multiple time-scales using GVFs from TD learning were feasible 

(Modayil et al. 2012; Modayil et al. 2014). Learned predictions of the robot’s motor stalling and 

human-delivered commands were used to trigger fixed responses including shutting off the 

motor and spinning left, respectively. Pavlovian control combines expert knowledge of a control 

problem with the flexibility and adaptability provided by RL.  
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In this study, we compared more traditional control methods with Pavlovian control to produce 

over-ground, alternating walking in a model of hemisection SCI. Specifically, we assessed the 

need for manual tuning of control settings between reaction-based control and Pavlovian control 

over several cat experiments and with different people participating to move one limb through 

the walking cycle and after perturbations. This presents the first application of Pavlovian control 

to produce walking. It is also the first known application of RL techniques in a spinal neural 

interface. By learning predictions using RL and using those predictions for Pavlovian control, we 

demonstrate that alternating over-ground walking can be achieved quickly, and that the 

thresholds for Pavlovian control do not require re-tuning across different conditions.  

 

4.2 Methods 

4.2.1 Implant Procedure and Stimulation Protocol 

All experimental procedures were approved by the University of Alberta Animal Care and Use 

Committee. Acute, non-recovery experiments were performed in eight adult male cats (3.96 to 

5.22 kg). Surgical procedures and data collections were performed under sodium pentobarbital 

anesthesia. A laminectomy removing the L4 at L5 vertebrae was performed to expose the 

lumbosacral enlargement.  

 

A custom 12 electrode array was made from Pt-Ir (80/20) wires 50 µm in diameter, insulated 

with 4 µm polyimide except for approximately 400 µm exposure at the tip. The wires were 

implanted unilaterally throughout the lumbosacral enlargement according to established 

procedures (Mushahwar et al. 2000; Bamford et al. 2016), targeting lamina IX in the ventral horn 

based on functional maps of the motoneuron pools (Vanderhorst and Holstege 1997; Mushahwar 

and Horch 1998, 2000). This region also contains neural networks that, when stimulated, 

produce movements around a single joint as well as coordinated multi-joint synergistic 

movements of the leg (Kiehn 2006; Bhumbra and Beato 2018). Trains of stimuli were delivered 

using a current-controlled stimulator and consisted of a trapezoidal waveform that ramped from 

threshold to chosen amplitude over 3 time-steps (time-step = 40 ms). The stimulus pulses in the 

trains were 290 µs in duration, biphasic, charge-balanced and delivered at a rate of 50 Hz.  

Stimulation amplitudes ranged from threshold (<20 µA) to amplitudes that produced weight-

bearing movements (60 to 80 µA) and did not exceed 130 µA through any electrode.  
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The movements elicited by stimulation through single electrodes were hip flexion, hip extension, 

knee extension, ankle dorsiflexion, ankle plantarflexion, and a backward extensor synergy, 

which were combined to construct a full walking cycle. Of the twelve electrodes implanted 

unilaterally, between 5 and 9 were needed to produce the desired walking movements and 

included redundancy in the functional targets. A combination of stimulation channels with 

particular functions were used to construct the four phases of the walking cycle: F (early swing), 

E1 (late swing to paw-touch), E2 (mid-stance), and E3 (propulsion) (Engberg and Lundberg 

1969; Goslow et al. 1973).  

 

4.2.2 Experimental Setup 

Following the implantation of the ISMS array, the cats were partially suspended in a sling, 

supporting the weight of the head, forelimbs, and trunk, allowing the hind-limbs to move freely 

over a custom-built walkway (Figure4.1). The cats remained anaesthetized for the duration of the 

experiment. The sling was fixed on a cart that moved with the cat over the walkway. The cart 

was partially unloaded to offset the weight of the recording and stimulating equipment.  

 

Reflective markers were placed on the iliac crest, hip, knee, ankle, and metatarsophalangeal 

(MTP) joints of the right hind-limb. Kinematics of this limb were recorded using a camera 

(120fps, JVC Americas Corp., Wayne, NJ, USA) positioned 4.5 m away from the center of the 

walkway. Marker positions were tracked using MotionTracker2D, custom Matlab software 

(MathWorks, Inc., Natick, MA, USA) written by Dr. Douglas Weber (University of Pittsburgh, 

Pittsburgh, PA, USA).  

 

Gyroscopes were placed on the tarsals of each hind-limb to measure angular velocity. Three-

dimensional force plates were mounted underneath the walkway and used to measure vertical 

ground reaction forces of each limb. The sensor signals were filtered using a hardware 

Butterworth filter (fC = 3 Hz, 2nd order) and digitized at 1 kHz using the Grapevine Neural 

Interface Processor (Ripple, Salt Lake City, UT, USA) and streamed into Matlab during walking. 
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Figure 4.1. Experimental setup for over-ground walking. A person moved one hind-limb through the walking cycle. 

Sensor signals from force plates under the walkway and a gyroscope on the tarsals from both hind-limbs were 

converted to digital signals by the DAQ and streamed into Matlab. In Matlab, a custom control algorithm was used 

to control the stimulation to the spinal cord to move the other hind-limb to the opposite phase of the walking cycle. 

 

4.2.3 Control Strategies 

A hemisection SCI was modeled in the anaesthetized cats with an intact spinal cord. A person 

manually moved one hind-limb through the walking cycle (person-moved limb (PML); to 

represents the intact leg), while the other limb was moved using ISMS (stimulation-controlled 

limb (SCL); and represented the paralyzed leg; Figure 4.1). This hemisection SCI model is 

similar to Brown-Sequard syndrome in humans, where one leg is paralyzed and the other is 

motor-intact (Kunam et al. 2018).  

 



118 

 

The walking cycle was divided into 4 phases for finite state control: F, E1, E2, and E3, which 

corresponded to toe-off to early swing, late swing to paw-touch, paw-touch to mid-stance, and 

mid-stance to propulsion, respectively (Engberg and Lundberg 1969; Goslow et al. 1973); Figure 

4.2a). The goal of the control strategies were to transition the SCL through the walking cycle 

such that the phase of the SCL was opposite to the phase of the PML. Each control strategy 

determined when the SCL transitioned from one phase to the next based on sensor information 

from the PML.  

 

Figure 4.2. Controller decisions. (A) Phases of the walking cycle, lined up with phases marked in (B). (B) 

Threshold settings for person A on raw data from the PML (person-moved limb). (C) Thresholds on predictions of 

sensor signals from the PML. AU = arbitrary units. Shaded regions indicate the phase of the walking cycle detected 

on the PML. Horizontal lines mark the threshold values for corresponding phase. Arrows indicate the direction of 

the slope of the signal required by the algorithm.  



119 

 

4.2.3.1 Reaction-Based Control Strategy 

Reaction-based control entailed placing thresholds on the sensor signals recorded from the PML 

during walking to trigger transitions between the phases of the walking cycle in the SCL. The 

transitions were controlled by rules involving: the current phase in the walking cycle, comparing 

the sensor values with threshold values, and the direction of the slope of the sensor values. The 

sensor signals used for defining the transitions between phases of the walking cycle were ground 

reaction force and angular velocity of the PML (Figure 4.2b). The thresholds were placed on the 

sensor signals such that they anticipated when the transitions would normally occur to account 

for the electromechanical delay of approximately 200 ms (Dalrymple et al. 2018).  

 

4.2.3.2 Pavlovian Control Strategy 

Pavlovian control also used thresholds to transition the SCL from one phase of the walking cycle 

to the next; however, the thresholds were placed on the output of the GVFs, or learned 

predictions, of walking-relevant signals of the PML, rather than the raw signal values (Figure 

4.2c). The signals of interest were the ground reaction force, angular velocity, and unloading of 

the PML. Unloading was defined as the weight-bearing threshold (equal to 12.5% of the cat’s 

body weight in this setup (Lau et al. 2007)) minus the ground reaction force. Unloading differs 

from ground reaction force as it informs when the PML is below or above a weight-bearing 

threshold. The GVFs were generated using RL and the phase transitions were triggered by the 

learned predictions crossing a threshold value, initiating a fixed output (i.e. Pavlovian control).  

 

4.2.3.3 State Representation of Sensor Signals 

Sensor signals are complex with a wide range of possible values. Learning requires a 

combination of sensor values to be visited multiple times. With highly sampled, broad ranges of 

values for multiple sensors, exact duplicates of overlapping sensor values are unlikely to occur, 

making learning slow. Therefore, it is necessary to generalize the state space of sensor signals by 

function approximation. This process converts the complex high-dimensional sensor data into a 

binary vector representation of the state space, named the feature vector, x.  

 

Six sensors were used to form the state space: left ground reaction force, right ground reaction 

force, the sum of left and right ground reaction forces, left angular velocity, right angular 
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velocity, and the exponential moving average of the left ground reaction force. The exponential 

moving average gives a history of the force signal. The values of the sensor signals were first 

normalized from their usable range to values between 0 and 1. Selective Kanerva coding 

(Travnik and Pilarski 2017) was used in this work to represent the normalized sensor values as a 

binary vector.  

 

   

Figure 4.3. A depiction of selective Kanerva coding (SKC). Prototypes closest to the current state within the state 

space are activated.  

 

Over the entire normalized, 6-dimensional state space (n = 6 sensors), K = 5000 specific states, 

called prototypes, were randomly distributed and held constant for all experiments (Figure 4.3). 

Hoare’s quickselect was used to find the c closest prototypes to the current state according to 

their Euclidean distance. Three values of c were used, determined by choosing small ratios, η, 

such that c = Kη. The c values used were 500, 125, and 25, corresponding to η values of 0.1, 

0.025, and 0.005, respectively. Using multiple c values is similar to the use of overlapping tilings 

in tile coding (Sutton and Barto 2018); it allows for coarse and fine representation of the state in 

the feature vector. When a combination of sensors values occurred, defining the current state in 

the state space, the c-closest features were activated (set equal to one) in the feature vector, while 

the rest were equal to zero. The total number of features was 3K, of which 650 (c1 + c2 + c3) 

were active at each time. The pseudocode for selective Kanerva coding as used in this work is 

given in Algorithm 4.1. Bolded variables refer to vectors or matrices. Italicized variables refer to 

constants with values that pertain to this work.  
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Algorithm 4.1 Selective Kanerva Coding 
Parameters provided: K, n, c1, c2, c3 

Initialize prototypes P randomly once ever  

Input new state S  
Reset D = zeros(K,1)  
For i = 1 to K  

For j = 1 to n  

Di ← d(P
i,j
, Sj) d = Euclidean distance 

I ← Quickselect(D) indices of sorted distances 

For m = 1 to 3  
indm← I(1 to cm)  

x
indm

 ← 1 offset by (m-1) x K 

Output x  
 

4.2.3.4 True Online Temporal Difference Learning 

In the theoretical forward view of TD(λ), at each time-step the estimate is moved toward a target, 

called the λ-return (van Seijen and Sutton 2014; Sutton and Barto 2018). The λ-return requires 

the subsequent cumulant values and expected return. These can only be known at the end of an 

episode and can only be approximated during online learning. True online temporal difference 

(TOTD) learning matches the forward view online exactly by adding terms to the eligibility trace 

and weight update equations (van Seijen and Sutton 2014; van Seijen et al. 2015).  

 

During walking, TOTD was used to estimate future values of three signals recorded from the 

PML: unloading, ground reaction force, and angular velocity. Specifically, the returns of the 

cumulants were estimated online by the inner product of the weight vector (updated during 

TOTD) and the feature vector from function approximation, to produce the GVF for that 

cumulant (Algorithm 4.2). The learning step-size (α), which constrains the speed of learning by 

controlling the magnitude of the update was set to 0.001 as determined empirically during bench 

testing. The bootstrapping parameter for the eligibility trace (λ) was set to 0.9 as is often 

standard. Different termination signals (γ) for each cumulant were determined empirically, and 
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were set to 0.9 for unloading, 0.71 for ground reaction force, and 0.75 for the angular velocity. 

As γ = 1 - 
1

𝑇
 , where T = 40 ms (one time step), these values correspond to timescales of 400 ms, 

138 ms, and 160 ms, respectively.  

 

Algorithm 4.2 True Online TD(λ) 

initialize w, e, Vold, S, x 
 

Repeat every timestep: 
 

Generate next state S' and cumulant Z' 
 

x' ← SKC(S') 
 

V ← wT x 
 

V' ← wT x' 
 

δ ← Z + γV' – V  
 

e ← γλe + x – αγλ(eTx)x  dutch trace 

w ← w + α(δ + V – Vold)e - α(V – Vold)x  

Vold ← V', x ← x' 
 

 

Thresholds that were placed on the GVFs, the direction of the slope of the GVF, and the current 

phase of the walking cycle of the PML, triggered transitions between the phases of the walking 

cycle of the SCL to be in the opposite state of the PML (Figure 4.2c). These thresholds were 

chosen based on the past experience of the designer to mark the best transition points to achieve 

alternation. The prediction of a sensor value produced a fixed stimulation response (as the 

stimulation parameters did not vary during walking), thus utilizing Pavlovian control to produce 

over-ground walking. The phase transitions were triggered by the raw sensor values crossing a 

threshold (US) if the predicted value (CS) did not elicit a response. These are referred to as back-

up reactions. The thresholds for the back-up reactions were held constant throughout all walking 

trials. 

 

4.2.4 Experimental Protocol 

A walking trial consisted of one trip across the walkway (~ 3 m). An experimenter manually 

moved the PML through the walking cycle and the SCL pushed the cat and cart across the 



123 

 

walkway. Up to four different people moved the limb through the walking cycle in each 

experiment. The control method (reaction-based or Pavlovian) used for each walking trial was 

determined randomly by a different person than the one walking the PML, or by a random 

number generator. The person moving the limb was blinded to the control method driving ISMS 

for each trial. For some trials, experimenters were told to purposefully make a mistake during 

walking. A mistake was never defined and was left to the discretion of the person. Mistakes that 

were purposefully made included elongating the stance or the swing phases, shaking the limb in 

the air, or slipping forward or backward.  

 

4.2.4.1 Reaction-Based Control Trials 

Phase transition thresholds were acquired for each individual based on sensor values they 

produced during 2 consecutive walking trials. The person-specific thresholds remained constant 

throughout all cat experiments. Each person performed walking trials using the customized 

thresholds from the three other people in addition to trials with their own thresholds. 

 

4.2.4.2 Pavlovian Control Trials 

Several different trial types were run to investigate early learning, continued learning, and how 

the learning adapted or recovered after changes in cat experiments and people walking the PML. 

Early learning was evaluated by initializing the learning weights, eligibility trace, and GVFs to 

zero at the beginning of a walking trial. In these trials, learning began anew with no prior 

knowledge. These early learning trials were repeated in every cat experiment with different 

people walking the PML. Learning was also continued across several walking trials in each cat 

experiment. Throughout these trials within the experiment, multiple people took turns to walk 

the PML through the walking cycle. Furthermore, the carry-over of learning from one cat 

experiment to the next was tested over 5 cats. Repeating these carry-over trials in a new cat 

experiment allowed repeated investigation of the transfer of learning between experiments with 

different cats and people walking the PML. There was also a set of trials where learning 

continued throughout all 5 cat experiments, where multiple people took turns to walk the PML 

within each experiment. These trials investigated the long-term learning and the adaptation to 

changes in cats and people walking the PML.  
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4.2.5 Statistics 

A one-sample t-test was used to compare the alternation phase differences with the target of 

180°. A p-value ⩽ 0.05 was used to indicate significance. Cohen’s d was used to determine the 

effect size. 

 

A Χ2 test was used to compare the proportion of GVF-triggered phase transitions between 

different Pavlovian control walking trial types (early, within one cat, carry-over, and continued), 

as well as for comparing the proportion of missed steps across control methods. Cross-

tabulations were generated for all pair-wise combinations. Χ2 with the continuity correction was 

reported for 2 × 2 contingency tables, with the α-level adjusted using the modified Bonferroni 

correction for multiple comparisons. 

 

4.3 Results 

A total of 7943 steps from 770 trials were recorded from 8 cats. On average, the step period was 

1.32 s (SD = 0.26 s) and ranged from 0.44 s to 2.82 s.  

 

4.3.1 Walking with Reaction-Based Control 

Reaction-based control was tested in all eight cats, resulting in 264 walking trials. Figure 4.4a 

shows an example of the variation in force production and angular velocity across the 4 people 

during a walking trial. Because thresholds on these 2 sensor signals were used to transition the 

SCL through the walking cycle, the dissimilarity in these sensor values during walking 

necessitated individualized thresholds. Each individual’s thresholds were used during walking 

trials for all other individuals to test the translatability of the thresholds. Table 4.1 outlines the 

percentage of steps that failed to transition due to inappropriate thresholds for each combination 

of threshold settings and person walking the PML. For each threshold setting more than 40% of 

the steps failed when another person walked the PML. In total, 18.7% (680/3645) of the total 

number of steps in all walking trials under rule-based control were missed due to the inability of 

the sensor values to cross thresholds.  
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Figure 4.4. Walking using reaction-based control (n = 264 trials). (A) Ground reaction forces and angular velocities 

produced by each of the 4 people walking the PML (person-moved limb). (B) Alternation phase differences of the 

hind-limbs for each person walking the PML with threshold settings tuned for each person. * p < 0.0001. 

 

The phase difference between the PML and SCL was calculated based on previously defined 

methods (Dalrymple et al 2018). Briefly, the time spent loading in the two limbs was converted 

to a circle for each step in which alternation results in a phase difference of 180°. Figure 4.4b 

displays the phase differences for each combination of threshold settings and person walking the 

PML. Most trials had sufficient alternation despite missing many steps. Interestingly, for trials 

with settings for person C where persons A and D walked the PML had the fewest percentage of 

missed steps, walking had the worst alternation. This is because A and D made larger 

movements with larger sensor values than required for the settings tuned for person C, triggering 
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phase transitions between the phases of the gait cycle earlier than required to produce alternating 

walking. This produced a phase difference significantly less than 180° with very large effect 

sizes (phase difference for A = 155.0°; phase difference for D = 155.9°; p < 0.0001; df = 173, 46; 

one-sample t-test; Cohen’s d = 0.64, 1.97).  

 

 

Table 4.1. Proportion of missed steps for combinations of people walking the PML using customized threshold 

settings for each person. 

 

4.3.2 Walking with Pavlovian Control 

Of the eight cat experiments conducted in this study, the first 3 had one set of thresholds on the 

GVFs, while the remaining 5 had a different set of thresholds. The learning parameters and 

methods remained constant throughout the study.  

 

4.3.2.1 Thresholds on predictions are important for Pavlovian control 

The initial thresholds for Pavlovian control were chosen based on testing on previously collected 

data from treadmill stepping (Dalrymple et al 2018) and bench testing on the walkway without a 

cat. These thresholds were tested in the first three cat experiments, resulting in 1384 steps from 

184 trials. Pavlovian control trials in these experiments included early learning where the 

weights, eligibility trace, and GVFs were initialized to zero, as well as trials that had learning 

continue throughout each individual cat. The phase difference achieved with these thresholds 

was 186.3° (SD = 18.5°). In early learning trials, 50.4% of the steps included at least one back-

up reaction for a phase transition, with 16 steps (2.3%) failing to walk. In trials where learning 

continued within each cat experiment, 60.6% of steps included a back-up reaction for a phase 
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transition and 11 steps failed to walk (1.6%). Of the steps with phase transitions initiated by a 

back-up reaction, 83.8% were for the phase E2, or mid-stance. Therefore, for the following 

experiments the thresholds for E2 were placed on the ground reaction force, rather than on the 

prediction of limb unloading. Additionally, the thresholds for phases F and E1 were shifted to 

occur earlier on the GVFs for unloading and angular velocity, respectively. These revised 

thresholds remained constant throughout the following 5 experiments. The back-up reaction 

thresholds were unchanged. 

 

4.3.2.2 Learning to predict sensor signals occurs quickly to produce over-ground walking 

Early learning trials with the improved thresholds, where the weights, eligibility trace, and GVFs 

were initialized to zero at the beginning of the trial, were repeated for 5 cat experiments with all 

4 people moving the PML to produce over-ground walking via Pavlovian control. Figure 4.5a-c 

displays the cumulants and the GVFs during walking, along with the alternating ground reaction 

forces and movements produced by the SCL. Early learning trials had an average phase 

difference of 181.9° which was significantly different from 180° but with a very small effect size 

(SD = 7.8°; p = 0.027; df = 87; one-sample t-test; Cohen’s d = 0.24; Figure 4.5d). Back-up 

reactions for phase transitions most commonly occurred within the first step compared to later 

steps (Table 4.2), indicating that learning the predicted signals occurred quickly to initiate phase 

transitions. Within a maximum of 4 steps, predictions became the only signals that initiated 

phase transitions. Throughout all 1036 steps in the early learning trials, 3 failed to transition 

through the walking cycle. In 87.2% of the steps taken, the phase transitions were initiated by the 

GVFs crossing the thresholds (Figure 4.5e). Person B had the highest proportion of GVF-

triggered transitions (92.0%), whereas person D had the lowest proportion of GVF-triggered 

transitions (72.5%).  

 

For each early learning trial, the ideal return, which is the actual discounted sum of future values 

of the cumulant, was calculated post-hoc. The estimated return (GVF), computed online, was 

compared to the ideal return by calculating the mean squared error for each of the three signals 

of interest (Figure 4.6a-c). This figure depicts the average mean squared error over all 88 early 

learning trials. The fluctuation in the first 2 seconds is due to the person walking the PML 

starting in swing for some trials and starting in stance for others. Figure 4.6d shows an example 
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of the raw signals along with the ideal and estimated returns. The ideal and estimated returns 

overlapped quite well during walking, and improved over time, as demonstrated by the reduction 

in the mean squared error over time.  

 

 
Reactions in Early Learning Trials 

 1 Step 2 Steps 3 Steps More 

A 92.3% 3.8% 3.8% 0.0% 

B 97.1% 2.9% 0.0% 0.0% 

C 69.6% 8.7% 17.4% 4.3% 

D 20.0% 0.0% 40.0% 40.0% 

All 84.1% 4.5% 8.0% 3.4% 

 

Table 4.2. Back-up reactions in early learning trials. Within how many steps at the beginning of a walking trials was 

a back-up reaction triggered broken down by person walking the PML.  

 

4.3.2.3 Learning that continued within a cat experiment produced better Pavlovian control 

The number of walking trials in which learning continued within a single cat experiment ranged 

from 7 (cat 7) to 40 (cat 4) trials, for a total of 99 trials and 1180 steps across 5 cats. The raw and 

predicted cumulants are shown in figure 4.7a. The GVFs became smoother and more regular 

with time, showing a rising and falling prior to the rising and falling of the raw signal. Indeed, 

the proportion of steps with phase transitions triggered by only GVFs crossing thresholds was 

significantly higher than the proportion of steps that transitioned due to a back-up reaction when 

compared to early learning trials (percent of GVF-triggered steps = 94.6%; p < 0.0001, Χ2 test). 

Person B had the highest proportion of GVF-triggered transitions (98.3%); while person D had 

the lowest proportion (89.4%). No steps were missed during these walking trials. The phase 

difference achieved in these trials was 181.1° and was not significantly different from the target 

of 180° (SD = 5.9°; p = 0.077; df = 98; one-sample t-test; Figure 4.7d).  
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Figure 4.5. Walking during early learning using Pavlovian control (n = 88 trials). (A) Cumulants for unloading, 

ground reaction force, and angular velocity of the PML (person-moved limb) and their corresponding GVFs (general 

value functions, predicted using reinforcement learning). Back-up reactions indicated by vertical dashed lines; 

prediction-initiated transitions indicated by solid vertical lines. (B) Ground reaction forces produced by the PML 

(dashed trace) and SCL (stimulation-controlled limb; solid trace). (C) Stick figure of SCL. (D) Proportion of steps 

with phase transitions initiated by the predicted GVFs crossing the threshold or by the back-up reaction for all 

people walking the PML. (E) Average (arrow) and standard deviation (shaded) of the alternation phase difference of 

the hind-limbs. * p = 0.027. 
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Figure 4.6. Characterizing speed of early learning (n = 88 trials). (A) Learning curve depicting the average (solid 

line) and standard deviation (shaded region) of the mean squared error of the unloading signal over time. (B) 

Learning curve for ground reaction force. (C) Learning curve for angular velocity. (D) Example of the actual 

cumulant signals, online estimated return (GVF), and the ideal return (actual discounted sum of future values of the 

cumulant).  
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4.3.2.4 Learning continued to initiate prediction-based Pavlovian control at the transition 

between cat experiments 

For cat experiments 4 through 8, the carry-over of learning from one experiment to the next was 

repeated, resulting in 61 walking trials and 758 steps. Upon the transition between cat 

experiments, 83.3% of trials did not have a back-up reaction, and 10.0% of trials had a back-up 

reaction in the first step. This demonstrates fast adaptation to the new environment and was 

repeated several times for each carry-over between experiments as well as between different 

people walking the PML. Across all people who walked the PML, more than 91% of the steps 

were carried-over using the GVFs for all cats, with no missed steps. The steps in these walking 

trials were alternating, with an average phase difference of 179.1°, which was significantly 

different from 180° but with a small effect size (SD = 3.2°; p = 0.026; df = 60; one-sample t-test; 

Cohen’s d = 0.29; Figure 4.8). Moreover, the phase difference did not significantly differ from 

180° in each carry-over according to the cat (p = 0.075; one-sample t-test). 

 

4.3.2.5 Learning continued across several cats and people to produce over-ground walking 

One stream of trials continued to learn throughout cat experiments 4 through 8, with all 4 people 

taking turns walking the PML throughout. The stream of continued learning included 1394 steps 

in 115 walking trials. On average, these continuing walking trials had a phase difference of 

180.8°, which was not significantly different from the target of 180° (SD = 5.5°; p = 0.113; df = 

114; one-sample t-test; Figure 4.9b). The learned GVFs triggered phase transitions in more than 

91% of the steps taken for all people walking the PML, with up to 98.7% of steps for person B 

(Figure 4.9c).  

 

4.3.2.6 Pavlovian control recovered from mistakes 

Varying types of mistakes were made by the people walking the PML throughout various stages 

of learning in the final 5 cat experiments. An example of the cumulants and GVFs during a trial 

with a mistake are shown in figure 4.10, as well as the ground reaction forces of the limbs. The 

GVFs displayed adaptation to the new and unexpected values of the cumulants when the 

repeated movements of walking ceased. Furthermore, the GVFs for all cumulants changed when 

the person picked up the limb, causing a change in the angular velocity, which occurred at 
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around 7 seconds in the trial. Following a mistake, 94.4% (51/54) of the steps that followed had 

phase transitions triggered by the predicted return (Figure 4.10c).  

 

Figure 4.7. Walking with continued learning within a cat (n = 99 trials). (A) Cumulants for unloading, ground 

reaction force, and angular velocity of the PML (person-moved limb) and their corresponding GVFs (general value 

functions, predicted using reinforcement learning). Prediction-initiated transitions are indicated by solid vertical 

lines. (B) Ground reaction forces produced by the PML (dashed trace) and SCL (stimulation-controlled limb; solid 

trace). (C) Stick figure of SCL. (D) Proportion of steps with phase transitions initiated by the predicted GVFs 

crossing the threshold or by the back-up reaction for all people walking the PML. (E) Average (arrow) and standard 

deviation (shaded) of the alternation phase difference of the hind-limbs. 
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Figure 4.8. Walking produced by Pavlovian control using carry-over learning between cats (n = 61 trials). The 

phase difference of the hind-limbs is indicated by the left axis. The proportion of steps with phase transitions 

initiated by the predicted GVFs crossing the threshold or by the back-up reaction for each cat and overall. * p = 

0.026. 

 

 

Figure 4.9. Summary of walking produced by Pavlovian control across 5 cat experiments and 4 people walking the 

PML (person-moved limb) (n = 115 trials). (A) Ground reaction forces produced by the PML (dashed trace) and 

SCL (stimulation-controlled limb; solid trace). (B) Proportion of steps with phase transitions initiated by the 

predicted GVFs (general value functions, predicted using reinforcement learning) crossing the threshold or by the 

back-up reaction for all people walking the PML. (C) Average (arrow) and standard deviation (shaded) of the 

alternation phase difference of the hind-limbs. 
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4.3.2.7 Pavlovian control successfully produced alternating, over-ground walking that 

acclimated to different people walking 

Pavlovian control produced alternating, over-ground walking with very few errors. Three steps 

were missed during Pavlovian control with the optimized thresholds, all of which were limited to 

early learning trials. This is a significant reduction from trials using Pavlovian control with the 

initial thresholds (p < 0.0001; Χ2 test) and trials with reaction-based control (p < 0.0001; Χ2 test; 

Figure 4.11a). Furthermore, these trials were alternating, with a phase difference of the limbs 

equal to 180.4° (SD = 5.7°; p = 0.272; one-sample t-test; Figure 4.11a). As learning continued 

throughout the walking trials, the proportion of prediction-triggered transitions between the 

phases of the gait cycle significantly increased from the early learning trials (p < 0.0001; Χ2 test; 

Figure 4.11b).  

 

 

Figure 4.10. Example of a purposeful mistake (n = 54 steps). (A) Cumulants for unloading, ground reaction force, 

and angular velocity of the PML (person-moved limb) and their corresponding GVFs (general value functions, 

predicted using reinforcement learning). Prediction-initiated transitions are indicated by solid vertical lines. The 

mistake begins at approximately 5 s and ends near 7.5 s. (B) Ground reaction forces produced by the PML (dashed 

trace) and SCL (stimulation-controlled limb; solid trace). (C) Proportion of steps with phase transitions initiated by 

the predicted GVFs crossing the threshold or by the back-up reaction following a mistake.  
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As different people took turns to move the PML through the walking cycle (Figure 4.11c), 

TOTD quickly acclimated to the new person and their preferred style of walking. Of the 84 

transition points between people, 64 of them did not require a back-up reaction to transition the 

SCL through the walking cycle. Only 5 trials required more than 1 step to adjust to the new 

person walking the PML until only GVF-triggered transitions occurred (Figure 4.11d).  

 

 

Figure 4.11. Comparison of outcomes using reaction-based and Pavlovian control strategies. (A) Phase difference of 

the hind-limbs and the number of failed steps for each control method: reaction-based control (RBC), Pavlovian 

control with the initial thresholds (cats 1-3), and Pavlovian control with the improved threshold selection (cats 4-8). 

(B) Proportion of steps with phase transitions initiated by the predicted GVFs (general value functions, predicted 

using reinforcement learning) crossing the threshold or by the back-up reaction at various stages of learning. (C) 

Direction and number of transitions between each of the 4 people walking the PML (person-moved limb). (D) 

Number of steps with a back-up reaction following a transition to a new person walking the PML. * p < 0.0001. 
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4.4 Discussion 

The goal of this study was to produce, for the first time, predictive, versatile, alternating, over-

ground walking in a model of hemisection SCI using ISMS. We used machine learning to take 

advantage of “residual function” and restore over-ground walking in anaesthetized cats. 

Reinforcement learning was used to learn predictions of walking-relevant sensor values, and 

Pavlovian control used the predicted sensor values. Threshold crossings on these predictions 

were used to control ISMS such that the “affected limb” is moved to the opposite phase of the 

walking cycle as the “unaffected limb” in the walking cycle. We demonstrated that Pavlovian 

control can be used across different people walking the “unaffected limb” and throughout 

different cat experiments without requiring adjustments to the threshold settings. Learning 

occurred very quickly and consistently produced prediction-driven transitions between the 

phases of the gait cycle. Pavlovian control was able to recover from intentional mistakes 

imposed during walking of the “unaffected limb”, continuing with prediction-driven transitions 

between the phases of the gait cycle following the mistake. Personalized walking was possible 

for the first time because reinforcement learning acclimated to different people moving the 

“unaffected limb” and different and cats. This comes in contrast to other approaches where the 

pattern of walking by the user is dictated by the control algorithm.  

 

4.4.1 Learning Methods 

This study used TOTD to learn GVFs for three cumulants during walking that were used for 

Pavlovian control. When a GVF crossed a pre-defined threshold, a stimulation response was 

delivered to move the SCL to the opposite phase of the walking cycle as the PML. The selective 

Kanerva function approximation method, predictions using GVFs, learning through TOTD, and 

Pavlovian control are relatively recent advancements made in the field of computing science 

(Travnik and Pilarski 2017; Sutton et al. 2011; van Seijen et al. 2015; Modayil and Sutton 2014). 

Selective Kanerva coding was chosen as it has proven to perform well online with a large 

number of sensors (Travnik and Pilarski 2017). It is also simple to implement and conceptualize. 

GVFs have proven to be a valuable tool in RL. GVFs allow the prediction of arbitrary signals, 

which makes RL more powerful and applicable to more problems. In the field of rehabilitation, 

TD(λ) has been used to produce GVFs for upper-limb prostheses (Pilarski et al. 2012; Pilarski et 

al. 2013a; 2013b; Sherstan and Pilarski 2014; Edwards et al. 2016). TOTD offers an equivalence 
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to the theoretical forward view of TD learning with negligible increase in computational cost 

(van Seijen et al. 2015) and has been used to predict the shoulder angle of an upper-limb 

prosthesis (Travnik and Pilarski 2017). Pavlovian control has successively been used to control 

switching events of an upper-limb prosthesis in able-bodied study participants (Edwards et al. 

2013) and participants with an amputations (Edwards et al. 2016). It has also been used to 

control the turning off and spinning of a mobile robot (Modayil and Sutton 2014).  

 

Pavlovian control is an appropriate approach to restoring walking in a SCI model because 

learning the GVFs can occur very rapidly. Since the control strategy only requires the prediction 

to cross a threshold, online control can be initiated quickly. The learned predictions do not 

fluctuate nor are largely affected by sudden changes in the raw data, making them more reliable 

for placing thresholds on for control than the raw signals. Additionally, Pavlovian control does 

not require exploration of the state space, which is necessary in traditional RL control methods. 

This is beneficial during walking because exploration of the state space could pose a danger to 

the user. For example, exploration may produce unsafe movement combinations such as double 

limb unloading. The state space could be restricted to avoid these dangerous situations, but this 

would limit the capacity of RL and negate its usefulness. Therefore, Pavlovian control, which 

uses predictions to drive a fixed stimulation response, is suitable for a repetitive task such as 

walking.  

 

Pavlovian control also allows for the knowledge of the expert designer to be incorporated into 

the rules that define the uses of the predictions and the output. This study, for the first time, 

combined all of these methods and used them to control a neural interface to produce over-

ground walking in vivo. 

 

4.4.2 Biological Parallels 

Making predictions during a functional task is very useful and is commonly done naturally. For 

example, during walking, the central nervous system is continuously integrating sensory input 

from cutaneous receptors on the feet, stretch and loading sensors in the muscles and tendons, as 

well as visual and vestibular information to maneuver through the environment effectively and 

safely (Zehr et al. 1997; Zehr and Stein 1999; Donelan and Pearson 2004; Marigold 2008; 
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Mathews et al. 2017). These sensory streams can be used to form short-term predictions that can 

be used in turn to adapt the gait pattern. Unexpected sensory stimuli result in reflexive changes, 

and with repetition, adaptation to the sensory stimuli occurs. For example, if an obstacle is 

placed in front of a cat’s hindlimb during the swing phase causing activation of cutaneous 

receptors on the dorsum of the paw, the knee will flex further to clear the obstacle (McVea and 

Pearson 2007). This is a reflexive, or automatic response to the sensory stimulus, which is 

mediated by the spinal cord. If the obstacle is present for 20 stimuli, the foot will lift higher 

during swing in anticipation of the obstacle. These effects last over 24 hours in some cases. This 

long-term adaptation of the gait pattern may be mediated by the cerebellum (Xu et al. 2006). 

Although this is not exactly an example of Pavlovian control, it demonstrates the usefulness of 

predictions and how they can be utilized by the nervous system.  

 

Pavlovian control is modelled after classical conditioning. An earlier example described Pavlov’s 

experiments in dogs where the dogs would salivate when a bell is rung because the ringing 

became associated with the presentation of food (Pavlov 1883). Another example of classical 

conditioning is the eye-blink reflex, which has been characterized extensively in rabbits (Kehoe 

and Macrae 2002; Lepora et al. 2007). In response to a noxious stimulus, such as a puff of air 

(US), the eye blinks (R). If the puff of air is preceded by a tone (CS), the rabbit blinks just prior 

to the arrival of the air, protecting the eye. This work is somewhat different from these examples 

of Pavlovian control because natural movements of one limb do not always dictate the 

movements of the other limb. However, this concept has similarities to the half-center concept 

from central pattern generators (Brown 1914). The half-center model of the central pattern 

generator proposed that the left and right limbs mutually inhibit each other such that when one 

limb is in flexion, the other must be in extension, and vice versa. The current work incorporated 

concepts from classical conditioning by also utilizing the sensor information for back-up 

reactions in the event that the prediction did not reach the threshold in time.  

 

4.4.3 Relation to Other Control Strategies 

Once the thresholds for Pavlovian control were modified after the initial cat experiments, they 

did not require further modification. Pavlovian control performed significantly better than 
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reaction-based control, providing fewer missed steps and requiring no tuning between transitions 

different people walking the PML or different cats.  

Both the Pavlovian and reaction-based controllers were finite state controllers, which is a 

concept that has been used previously to produce walking in models of SCI. Finite state control 

has the advantage of incorporating expert knowledge in a straight-forward manner to define the 

rules for walking (Popović 1993; Sweeney et al. 2000). Finite state control of surface (Andrews 

et al. 1988) and intramuscular (Guevremont et al. 2007) FES of the leg muscles used information 

from ground reaction forces and hip angle to control the transition between the phases of the gait 

cycle. Previous controllers for ISMS in a model of complete SCI used ground reaction forces and 

hip angle (Saigal et al. 2004; Holinski et al. 2011; Holinski et al. 2016) or recordings from the 

dorsal root ganglia (Holinski et al. 2013) to transition the hind-limbs through the different phases 

(Dalrymple and Mushahwar 2017). Control of epidural stimulation of the spinal cord also 

utilized electroencephalography recordings from the motor cortex to deliver regional stimulation 

to the spinal cord to assist with flexion and extension movements in hemisected monkeys 

(Capogrosso et al. 2016) and people with incomplete SCI (Wagner et al. 2018).  

 

The current study demonstrated that predictions can be learned to initiate transitions between the 

phases of the gait cycle using only two sensor signals: ground reaction force and angular 

velocity. These sensors can easily be integrated into a wearable system, as gyroscopes are small 

microchips and force sensitive resistors can be placed in the soles of shoes (Kirkwood et al. 

1989; Kostov et al. 1992). Recent work has demonstrated that kinematic data can be used to 

identify the phases of the gait cycle during walking (Drnach et al. 2018). They used switched 

linear dynamical systems (SLDS) to model the joint angle kinematics in healthy people walking 

on a treadmill. The offline SLDS models were able to label the correct phase of the gait cycle 

with 84% precision. Future work may incorporate more portable sensors such as goniometers 

along with online models to build predictions of gait phases.  

 

4.4.4 Experimental Limitations 

A limitation of these experiments is that they were performed in anaesthetized cats with an intact 

spinal cord. This necessitated voluntary control of one hind-limb to be mimicked by a person 

moving the limb through the walking cycle. This was the first testing of these control strategies, 
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and the outcomes served as a proof-of-concept implementation. Further work may test these 

control strategies in chronically injured cats, either decerebrate or awake.  

A hemisection SCI has more stereotypic functional deficits compared to other injuries such as 

bilateral contusion SCIs. Although these SCIs are rare, e.g., Brown-Sequard syndrome (Roth et 

al. 1991; Wirz et al. 2010), the control strategies may be extended to hemiplegia in general, 

which includes stroke and traumatic brain injury.  

 

The thresholds for Pavlovian control did not require tuning for different people and cats, because 

the learned predictions acclimated to the changes. However, it may be beneficial to introduce 

adaptive thresholds in the future, especially if these strategies were to be employed in more 

variable injury models. Furthermore, the stimulation amplitudes and channels that produced the 

functional responses remained constant during a walking trial. Future work may introduce a 

learning strategy that aims to optimize and adapt the stimulation channels and amplitudes in 

addition to a strategy that controls the timing.  

 

4.4.5 Conclusions 

Pavlovian control of walking augmented function in a hemisection SCI model. Using predictions 

of sensor signals during walking, Pavlovian control was resilient to transitions between people 

walking the limb, between cat experiments, and recovered from mistakes made during walking.  

Pavlovian control of ISMS has the potential to enhance ambulation capacity greatly, generating 

alternating, over-ground walking with step periods ranging from 0.44 s to 2.82 s (average 1.32 s). 

This control strategy can also be extended to other injury models and other interventions such as 

peripheral FES, lower-limb prostheses, and exoskeletons.  
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Chapter 5: General Discussion 

5.1 Summary and Significance 

5.1.1 Thesis Summary and Significance 

The work outlined in this thesis demonstrates the use of various machine learning approaches to 

real-life, neuroscience problems, including to characterize motor activity and restore function 

after neural injury. Specifically, this thesis aimed to characterize motor activity from the 

developing spinal cord, and to augment remaining function in a model of incomplete SCI using 

adaptive and predictive control strategies.  

 

5.1.1.1 Classifying Spontaneous Activity 

The goal of the work in chapter 2 was to develop a software tool for characterizing and 

classifying episodes of spontaneous activity. This work detailed the development and 

demonstration of a graphical user interface in Matlab that analyzed and classified episodes of 

DC-coupled spontaneous activity from the lumbar spinal cord using supervised machine 

learning. Spontaneous activity plays an important role in the development of neuronal networks 

in the central nervous system. Often, spontaneous activity is high-pass filtered for analysis, 

removing the fine details of the network activity that are present in DC-coupled recordings. Two 

multilayer perceptrons were trained to classify episodes as rhythmic or not, and multi-burst or 

not. Final classification also used the relative amplitude, resulting in 5 classes. The classification 

software was demonstrated in a preparation with increased KCl, which increased spinal 

excitability. The software revealed more episodes overall along with global and class-specific 

changes in feature values with the increase in excitability due to the addition of KCl. The 

machine learning-based classification provides a method of analysis of these detail-rich episodes 

of activity, allowing investigators to characterize these signals with a new perspective.  

 

5.1.1.2 Speed-Adaptive Control 

The goal of chapter 3 was to produce alternating, weight-bearing stepping in a hemisection 

model of spinal cord injury (SCI) using ISMS. This work is the first to demonstrate the use of 

ISMS for the restoration of walking in a model of incomplete SCI. Furthermore, it is the first use 

of machine learning to control spinal cord stimulation. Supervised machine learning was 

employed to first predict the step period of walking. Four different prediction methods were 
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compared. For slow walking, a simple IF-THEN algorithm transitioned the stimulation-

controlled limb through the stepping cycle, opposite to the phase of the experimenter-moved 

limb. If the walking was predicted to be fast, then the predicted step period was used to modify 

the time spent in each phase of the step cycle in a feed-forward manner. Predictions were made 

on each step; hence, the control strategy was adapted on each step according to the predicted step 

period. Through the adaptive control strategies guided by supervised machine learning, weight-

bearing was restored, and alternation and step symmetry were maintained at varying stepping 

speeds. 

 

5.1.1.3 Pavlovian Control 

The goal of chapter 4 project was to develop a predictive and versatile controller for using ISMS 

in a hemisection SCI model to produce alternating, over-ground walking. Versatility was 

achieved using Pavlovian control, which utilized reinforcement learning (RL) to learn 

predictions for walking-related signals. Using those predictions, transitions between the phases 

of the walking cycle were triggered using thresholds to produce over-ground walking in 

anaesthetized cats with an ISMS implant. Four people took turns to move one hind-limb through 

the walking cycle in 8 different cats to mimic various walking patterns in a model of hemisection 

SCI. The Pavlovian controller did not require any tuning of thresholds to achieve walking across 

the 4 people and 8 cats. Pavlovian control resumed walking after purposeful mistakes were 

made, continuing to have transitions between the phases of the gait cycle initiated by the learned 

predictions crossing the thresholds. This project combined the newest RL methods for Pavlovian 

control with a novel neuroprosthesis to produce a versatile and personalized approach to 

restoring alternating, over-ground walking after a hemisection SCI. 

 

5.1.2 Limitations 

5.1.2.1 Classifying Spontaneous Activity 

Supervised machine learning was guided by the individuals classifying the data for the training 

set, and was limited to the class labels it trained on. Therefore, it is important to provide the 

algorithm with a training data set that includes many examples with variability and features 

representative of the full data of interest. The goal of a classifier is to generalize adequately on 

the training data set, as well as generalize to fresh, new data, to classify instances of data. In 
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order to train a classifier to generalize well, many examples of consistently labelled data need to 

be used for training. Several individuals should be involved in the initial labelling of data. 

Furthermore, the individuals should standardize their criteria and agree on the class labels. The 

individuals that classified the episodes of activity in chapter 2 had high agreement with each 

other. However, the individuals needed to revise their criteria for rhythmicity, stemming from the 

inability of any classifiers to generalize well, even after the addition of more episodes. Once a 

visual criterion was established, the new class labels were able to be generalized adequately with 

several classifiers. The classifying process should have been discussed further prior to initial 

training of classifiers. Future versions of the software may include many more episodes with 

more individuals responsible for manual classification for re-training. It is anticipated that this 

will increase accuracy further and reduce subjectivity by increasing the representation of each 

class, confirmed by more individuals.  

 

5.1.2.2 Restoring Walking in a Hemisection Model 

All experiments using ISMS to produce walking were done in anaesthetized cats with an intact 

spinal cord (chapters 3 and 4). This model was chosen to test the control strategies developed 

and provided a proof-of-concept for their implementation. To test the controllers further, 

experiments should be conducted in cats with a chronic hemisection SCI. These experiments 

would require a pre-mammillary decerebration to produce spontaneous walking in the intact limb 

free from extensor rigidity (Whelan 1996).  

 

Alternating walking was the goal of the controllers used in chapters 3 and 4; therefore, a 4-phase 

breakdown of the gait cycle was used. The phases comprised F, E1, E2, and E3, corresponding to 

toe-off to early swing, late swing to paw-touch, paw-touch to mid-stance, and mid-stance to 

propulsion, respectively. To achieve alternation, the control strategies aimed for the limbs to be 

in the opposite phases (F opposite of E2, E1 opposite of E3). The methods by which the phase of 

the experimenter-moved limb was determined and the timing of when the phase transitions 

occurred varied between control strategies. However, more realistic walking is more complex 

and smoother than 4 phases. Furthermore, there is more overlap between the phases to ensure 

complete transfer of the body-weight during double-limb support (Holinski et al. 2011; Mazurek 
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et al. 2012). Nonetheless, alternating weight-bearing was achieved using the simplified 4-phase 

model of the step cycle.  

 

5.1.2.3 Speed-Adaptive Control 

Because the cat was suspended in a sling over the split-belt treadmill (chapter 3), it was unable to 

displace its position during propulsion. This resulted in in-place stepping as opposed to walking. 

During the propulsive phase, there was a large resistance between the stationary treadmill belt 

and the paw. Overcoming this resistance required large backward forces that resulted in kicking 

movements because the cat was physically prevented from moving forward. To avoid these 

abnormal movements, stimulation amplitudes for the channels producing propulsion were 

reduced, but were still sufficient for weight-bearing. This led to a decreased range of motion 

during extension. The subsequent study (chapter 4) avoided these issues by testing the control 

strategies in a cat moving over a walk-way. 

 

5.1.2.4 Pavlovian Control 

RL was used to predict cumulants using general value functions (GVFs). Using the GVFs, 

thresholds were used to transition the stimulation-controlled limb through the phases of the 

walking cycle. These thresholds were manually placed by using expert knowledge about walking 

and the sensor signals that were recorded. Once the best thresholds were found from earlier 

experiments, they did not require tuning between different people moving the experimenter-

moved limb or between different cats. However, with more variable paralysis, some individual 

tuning may be required, especially with the initial setup of the thresholds and stimulation 

parameters. Because Pavlovian control utilized RL to learn the GVFs online, automatic 

adaptation to step-by-step and day-to-day variability is very likely. 

 

5.1.3 Future Directions 

5.1.3.1 Classifying Spontaneous Activity 

Although the multilayer perceptrons (MLPs) from chapter 2 were trained on episodes of 

spontaneous activity recorded from the lumbar spinal cord of neonatal mice, they may be 

generalizable to other recordings from the nervous system, given that the data have similar 

features and are acquired using DC-coupling.  
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Recording from other ventral roots, such as from thoracic or sacral levels, may be used in 

combination with the lumbar recordings to investigate the propagation of activity through the 

spinal cord (Nakayama et al. 1999). This could reveal the origin of the activity and how 

recruitment of subsequent networks at other levels occurs. Additionally, a coincidence of 

particular classes of episodes between roots may occur, indicating root activity coordination. 

Further investigation may reveal a pattern of class order or particular class combinations between 

roots.  

 

This study demonstrated the simplicity of characterizing changes in spontaneous activity after 

increasing the network excitability using KCl. Increasing concentrations of extracellular K+ has 

previously been shown to excite spinal motor networks non-specifically (Sharples and Whelan 

2017; Walton and Chesler 1988; Bracci et al. 1998). Manipulation of spinal cord excitability, 

such as with other neuromodulators, or through changes in temperature or pH, could further be 

used to study the development of spontaneous activity and tease out the role of spontaneous 

activity in the development of spinal locomotor networks (Hernandez et al. 1991; Nishimaru et 

al. 1996; Bonnot et al. 1998). Changes in spontaneous activity with genetic manipulations could 

also be used to investigate the development of locomotor networks and possibly locate the origin 

of spontaneous activity (Bonnot et al. 1998; Lapointe et al. 2009; Francius et al. 2013; Borgius et 

al. 2014; Myers et al. 2005; Sharples et al. 2015). 

 

The current data were restricted to P0-P3; however, it may be interesting to track the changes in 

the distribution of classes and class composition throughout development, especially as the role 

of GABA changes and as innervation from descending and peripheral neural structures develop. 

Changes of spontaneous activity to pathological conditions, such as cerebral palsy, may provide 

clues to the changes that occur in the spinal cord after insult to the brain during development. 

Furthermore, removing regions such as the dorsal horn may provide understanding of the 

function of the networks producing the spontaneous activity. Removing regions while recording 

spontaneous activity could also help localize the origin of the activity, or allude to the 

distribution of the components of the network.  
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5.1.3.2 Adaptive Control 

The speed-adaptive controller in chapter 3 used predictions from supervised machine learning to 

change the control strategy for faster steps. This concept of adaptive switching using supervised 

machine learning could be applied to other forms of locomotion. For example, it could be used to 

switch between control methods for walking, running, cycling, stand-to-sit transfers, stair 

climbing, slopes, etc. Adaptive switching using RL has been demonstrated previously in an 

upper-limb prosthesis (Edwards et al. 2013; Edwards et al. 2016). In those studies, RL was used 

to learn GVFs which represented the prediction of a subject’s intention using electromyography 

(EMG) signals. The predictions were used to select the joint to control, rather than cycling 

through a set order. A similar prediction-driven switching method could be applied to the control 

of walking as well. 

 

5.1.3.3 Machine Learning to Restore Walking in Other Injury Models 

Both the speed-adaptable and Pavlovian controllers were tested in a model of hemisection SCI. 

Brown-Sequard syndrome is the human presentation of a hemisection SCI and does not occur 

frequently (Roth et al. 1991; Wirz et al. 2010). However, this model represents hemiparalysis, 

which also occurs after a stroke or traumatic brain injury. Therefore, ISMS controlled by either 

controller could also be used to restore walking after these conditions, with the Pavlovian 

controller providing further adaptability and universality. The concept of using information from 

an intact limb to control a paralyzed limb could also be extended to the control of lower limb 

prostheses or exoskeletons. 

 

This work outlines the first use of machine learning to control an implanted neuroprosthesis. 

Further development using machine learning could also extend this work to restore walking after 

a bilateral injury, affecting both legs variably (e.g. contusion injury). Spasticity may interfere 

with the desired movements or create noisy and unreliable sensor recordings during walking. 

Other sensors such as EMG or accelerometers may be useful in addition to force sensors and 

gyroscopes to predict and adapt to spastic episodes during walking. RL is particularly well-suited 

for non-stationary environments. It may provide the solution of true adaptable control to restore 

walking in highly variable and changing levels of paresis. This study presents the first step 

towards that goal. However, care will have to be taken to ensure safe stepping at all times. For 
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RL, this means that the exploration of new states may have to be constricted to avoid unsafe leg 

positions, such as double limb unloading.  

 

5.1.3.4 Machine Learning for More Predictions 

The Pavlovian controller in chapter 4 learned predictions for ground reaction force and angular 

velocity signals; however, other sensor signals could also be used to provide more information 

about the environment. For example, muscle activity recorded using EMG, joint angles provided 

by goniometers, or visual information through cameras or infrared sensors could all be recorded 

and used to acquire more predictions. The addition of sensors (e.g. EMG, goniometers) could be 

useful to restore walking after variable injuries or to provide information regarding the walking 

terrain (visual, infrared) to adapt the control strategy. Additional sensors could also be used to 

provide stability information such as loss of balance, fatigue, and the reliance on the upper body 

for support. Additional control rules could be incorporated to predict and correct these safe 

situations. Furthermore, the addition of sensors is feasible if a state representation method such 

as selective Kanerva coding is used, as was the case in this work, because it is not affected by the 

increase in dimensions that plagues traditional tile coding (Travnik and Pilarski 2017).  
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