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Abstract

Alarm systems are critical assets in process industries to ensure process

safety and efficiency. However, the number of alarms has grown exponentially

in the past decades due to easy alarm configuration in computerized systems

and lack of proper alarm rationalization. As a consequence, the presence

of nuisance alarms and alarm floods severely compromise the performance

of alarm systems: nuisance alarms could distract operators with incorrect

indications of abnormalities; while alarm floods lead to increased operational

risks as operators are overwhelmed by massive alarms and thus may overlook

critical alarms. Motivated by this, this thesis focuses on the development of

data-driven methods for alarm monitoring and alarm flood analysis.

Three research topics are considered. First, to address nuisance alarms

during the start-up operations of industrial equipment, a new alarm monitor-

ing method is proposed, which comprises an offline design stage to capture

equipment dynamics during start-ups and an online algorithm for alarm mon-

itoring. Second, a systematic pattern matching method is proposed to capture

similar alarm floods across different processes, where the alarms are associ-

ated with the same fault types, but configured with different tag names. The

obtained results could facilitate root cause analysis and lead to generalized so-

lutions. Last, a pattern mining method is proposed to extract compact alarm

sequential patterns from Alarm & Event (A&E) logs with the incorporation of

time stamps, tolerance of alarm order switchings, and distillation of compact
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results. Therefore, the proposed method is capable of avoiding influences of

order ambiguities and also minimizing the redundancy of extracted patterns.

The effectiveness and practicality of the proposed methods are demon-

strated by case studies using alarm data from a large-scale industrial facility.

Based on the proposed methods, equipment start-ups are effectively monitored

while nuisance alarms are significantly reduced; notable alarm sequential pat-

terns are discovered from historical alarm data, which could facilitate alarm

suppression, root cause analysis, and decision support for operators.
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Chapter 1

Introduction

In this chapter, the research background for alarm systems and alarm man-

agement is introduced and a literature survey is provided to summarize the

recent development of alarm management methods. Thereafter, the contribu-

tions of the thesis are listed, followed by thesis outline.

1.1 Research Background

Alarm systems are core assets for complex industrial facilities to ensure

process safety and efficiency. The development and applications of new digi-

tal technologies make traditional process industries much improved in terms

of productivity, safety, and operational costs in the era of industry 4.0 [90].

However, due to easy alarm configuration in computerized systems and lack of

proper alarm rationalization, the number of alarms has grown exponentially

in the past decades, causing many practical problems for alarm management,

such as nuisance alarms and alarm floods. In practice, the key functionality of

alarm systems is to help monitor process operations by clearly indicating ab-

normalities to operators. But the efficiency of alarm systems could be severely

impaired by nuisance alarms, which are annunciated excessively, unnecessar-

ily, or even do not return to normal after correct responses are taken [49].

Moreover, alarm floods are regarded as the most challenging issue among the

problems for alarm management. According to industrial standards [32, 49],

an alarm flood is a situation that the number of annunciated alarms is more

1



than what an operator can effectively manage. As a result, alarm floods lead

to increased operational risks as operators are overwhelmed by massive alarms

and thus may overlook critical alarms. For instance, alarm floods were iden-

tified as the main culprits for accidents in Texaco Refinery [37] and Three

Mile Island Nuclear Plant [76], which ended up with huge losses in economy,

health, environment, and reputation. To increase the safety of industrial pro-

cess operations with better alarm performance, data-driven methods for alarm

monitoring and alarm flood analysis are developed in this thesis.

1.1.1 Alarm Systems and Alarm Management

With the advancement of Distributed Control Systems (DCS) and Super-

visory Control and Data Acquisition (SCADA) systems over the past decades,

configurations of complicated alarm systems in process industry become fea-

sible, making alarm systems critical components in modern industrial facili-

ties. For advanced control and monitoring of industrial facilities, abnormal-

ities in process operations are indicated to plant operators by corresponding

alarms in audible and/or visible means based on the configured alarm sys-

tems, which have many sensors for process measurement and different thresh-

olds/mechanisms for abnormality detection. As a result, an alarm system

is comprised of a complex collection of hardware and software that are in-

terconnected hierarchically. The typical configuration of an alarm system is

shown in Fig. 1.1 [49], where the major components are: 1) Basic Process

Control System (BPCS) and Safety Instrumented System (SIS) that generate

alarm signals based on sensor measurements and associated logic conditions;

2) Human-Machine Interface (HMI) that presents the generated alarm signals

and receives the operation commands from operators; and 3) alarm logs that

record the historical alarms and events, which are extensively used for data

analysis to evaluate alarm system performance and design better alarming

techniques.

However, many industrial alarm systems suffer from poor performance in

2
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Figure 1.1: Alarm system dataflow [49].

Table 1.1: Alarm system performance survey [75].

Performance Measurement EEMUA Oil & Gas Petrochemical Power
Average alarms per hour 6 36 54 48
Average standing alarms 9 50 100 65

Peak alarms per hour 60 1320 1080 2100
Priority distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 25/40/35

practice, as reported in a comprehensive survey [75] (page 125) that covers 39

industrial plants ranging from oil and gas, petrochemical, power, and other

industries; for further demonstration, the list of several basic performance met-

rics of alarm systems are summarized in Table 1.1. This table clearly indicates

that there still exist significant gaps in alarm performance metrics between the

studied industrial systems and the benchmark provided by industrial standard

EEMUA-191 [32].

Moreover, due to the practical requirement for process operation and high

expectations for safety and efficiency of industrial facilities, effective manage-

ment of alarm systems becomes sophisticated and time-consuming. Therefore,

the complicated problems for alarm management are usually divided into sev-

eral smaller stages, so as to determine clarified objectives with reduced com-

plexity. To capture the comprehensive stages for alarm system management
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associated with different objectives and necessary resources, the typical life-

cycle of alarm management is summarized in Fig. 1.2 [49], where these stages

are connected with directed arrows that indicate work flow. In this alarm

management lifecycle, many useful stages are covered, such as rationalization,

detailed design, monitoring and assessment, and management of change. Fol-

lowing such divided stages in the provided lifecycle, the complicated tasks of

alarm management become more handy and easier to achieve. For instance,

in the design stage, more attentions could be paid to problems associated

with alarm configurations using basic or advanced alarming techniques, and

the improvement of HMI for alarm presentation. In addition, alarm systems

are highly associated with safe and efficient operations of industrial facilities,

and thus the performance evaluation and functionality improvement of alarm

systems should be performed regularly. For this purpose, historical opera-

tional data (including alarm data and process data) are commonly used to

help with comprehensive analysis, such that better alarming strategies could

be identified and meaningful alarm patterns could be discovered.

1.1.2 Current Status of Alarm Management

Alarm systems with satisfactory performance must promptly detect abnor-

malities in process operation and effectively send out warning information to

operators while such information should not mislead, overload, or distract the

operators [75]. However, nuisance alarms and alarm floods commonly exist in

industrial facilities, severely compromising the performance of alarm systems

and causing many challenging problems for alarm management [12, 38].

Nuisance alarms are general descriptions for alarms that annunciate ex-

cessively, unnecessarily, or even do not return to normal after the correct re-

sponses are taken [49]. Consequently, nuisance alarms are taken as one of the

major culprits for alarm overloading and thus severely compromise the per-

formance of alarm systems [96]. In practice, nuisance alarms could be caused

by many factors, such as process noises, operational disturbances, incorrect

4
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alarm configurations, and correlation of process variables [11, 96]. Accord-

ingly, the typical types of nuisance alarms include chattering alarms, fleeting

alarms, standing alarms, and correlated alarms [32, 49]. Chattering alarms are

defined as alarms that are repeatedly triggered within a short period of time.

According to the industrial standard ANSI/ISA-18.2 [49], an alarm becomes

chattering, if it is triggered more than three times in a time interval of one

minute. It is reported that chattering alarms commonly exist in many modern

industrial facilities. For instance, the number of chattering alarms takes up

10– 60% of all alarm occurrences [75], and may even be more than 70% as

mentioned in [38]. As another type of nuisance alarms, fleeting alarms are

analogous to chattering alarms but do not necessarily repeat within a short

time period. In addition, standing alarms refer to alarms that stay in active

alarm states for a long time period, and thus cause distractions to operators

as no new information indicating process abnormalities is presented by such
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alarms. As for correlated alarms, they are treated as nuisance alarms based

on the concept that each abnormality should be indicated by only one alarm.

In addition, alarm floods could lead to severe reduction of alarm system

functionalities, and even tally loose such functionalities. Two major factors

are counted for alarm floods. First, modern industrial facilities are usually in

large scales, involving many equipment connected with information flow and

material flow paths. Second, with the advancement in alarm configurations,

many process variables are monitored with different alarm signals. Conse-

quently, when a fault occurs in the process, it is likely that a huge number of

alarms would be triggered due to the propagation of abnormality along the

information flow and material flow channels. Therefore, alarm floods are con-

sidered as the most difficult situations for alarm management. As mentioned

in industrial standards [32, 49], an alarm flood is a situation that the number

of annunciated alarms is more than what an operator can effectively manage.

A more specific definition is [49]: An alarm flood is a situation that starts

when the alarm rate is more than 10 alarms in 10 minutes and lasts until

it drops below 5 alarms in 10 minutes. During alarm floods, operators are

overwhelmed by a large number of alarms and may fail to respond to critical

alarms; and thus the risks of having accidents in industrial facilities are signif-

icantly increased. According to a survey in [82], alarm floods were identified

as the major culprits of many industrial accidents, such as the Three Mile

Island accident, Bhopal gas tragedy, Texaco Refinery explosion, and Channel

Tunnel fire. Such accidents ended up with disastrous outcomes and caused

huge losses in economy, environment, reputation, and even human life.

Motivated by the above practical problems for alarm management, this

thesis proposes several data-driven methods to reduce nuisance alarms and

mitigate alarm floods based on industrial process data and alarm data.

6



1.2 Literature Survey

To improve the efficiency of alarm monitoring, signal processing and data

mining technologies have been commonly exploited to detect nuisance alarms,

restrain alarm overloading, and cope with alarm floods [34, 96]. This sec-

tion presents a detailed literature survey on the recent development of such

methods.

1.2.1 Methods to Reduce Nuisance Alarms

Aiming at reducing nuisance alarms and achieving better alarm monitor-

ing, many effective methods have been proposed. Based on their objectives,

these methods are classified into three major categories, including the ratio-

nalization of alarm systems, the implementation of basic reduction techniques,

and the utilization of advanced alarm monitoring methods.

First, nuisance alarms are identified based on historical data, where chat-

tering alarms were reported to take up a huge portion of nuisance alarms [38,

75]. To facilitate the identification of chattering alarms based on the calcu-

lation of alarm run length, chattering indexes were proposed in [56, 70]. In

addition, the detection of chattering alarms was further extended to online

cases with the advancement in distinguishing chattering alarms caused by

process oscillations [93, 94]. Thereafter, alarm systems were rationalized by

giving better design of alarm limits, which are critical parameters for indus-

trial alarm systems. To help evaluate the performance of alarm systems, False

Alarm Rate (FAR), Missed Alarm Rate (MAR), and Averaged Alarm Delay

(AAD) were proposed as evaluation indexes [103, 105]. Specifically, the false

alarm rate and missed alarm rate are indications of alarm system accuracy

in detecting abnormalities, whereas averaged alarm delay measures the sensi-

tivity, namely, the time difference between the occurrence of an abnormality

and the instant when it is detected. To achieve improved alarm performance,

many effective approaches were proposed for the design of alarm limits, such

as evidence theory [104], Markov chain [112], multidimensional kernel density
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estimation [115], and alarm probability plot [112].

Second, many basic but effective techniques were adapted to reduce nui-

sance alarms in complex industrial facilities, and such techniques include delay

timers, filters, deadbands [32, 46, 49]. Based on the alarm performance in-

dexes, namely, FAR, MAR, and AAD, the design of filters in various forms was

studied, such as rank order filters [86], median filters [85], and filters in gen-

eralized configurations [20]. Similarly, many strategies were developed to give

optimal design of delay timers [116] and deadbands [2] to effectively minimize

the occurrences of chattering alarms. For demonstration of effectiveness, delay

timers and deadbands were applied to a nonlinear chemical process [87, 88].

Moreover, to help select suitable alarm reduction techniques, a decision index

was proposed to determine the suitability of using deadbands [99]. It is worth

mentioning that the above mentioned techniques to reduce chattering alarms

are naturally applicable to mitigated fleeting alarms, which are essentially

a special case of chattering alarms, namely, not necessarily with repetitions

within a short time period.

Last, various advanced methods were exploited aiming at the discovery of

correlated alarms, the suppression of alarms based on system dynamics and

operation mode changes, and the analysis of historical data. For the discovery

of correlated alarms and consequential alarms, similarity coefficients were pro-

posed [109, 110]. To improve identification of correlated alarms and events,

operator actions were incorporated [71]. Thereafter, the design of alarm limits

was tackled with the incorporation of correlated alarms [36, 102], such that

the alarm signals were generated based on mutual information from multi-

ple process variables. Moreover, dynamic alarming, state-based alarming, and

alarm shelving mechanisms were reported as effective approaches to cope with

nuisance alarms caused by system dynamics and operation mode changes [50].

Dynamic alarm limits were exploited to mitigate alarm overloading during

process transitions [118]. The design of delay-timers was generalized to cope

with system dynamics [1, 53] and multiple operation modes [3, 84]. Alarm
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latches [4] and alarm shelving mechanisms [64] were adapted with consider-

ations of system dynamics and operation mode changes. An alarm moni-

toring strategy based on hidden Markov models was proposed to handle the

multimodality of process data and capture the restrictions for mode switch-

ings [5]. Mode-based alarms were detected from historical Alarm & Event

(A&E) logs by association rule mining [41]. Thereafter, mode-based alarming

strategies were implemented for a hybrid process system, achieving effective

alarm reduction [45]. Targeting at alarm suppression, standing alarms were

suppressed by a state-based strategy [95] and false alarms were reduced by a

dynamic Bayesian network [24]. In addition, to help evaluate alarm system

performance and analyze historical operation data, many advanced tools were

developed for distributed parallel alarm management [62], decision support

with better data visualization [7, 39], and smart data analysis [42].

1.2.2 Techniques to Mitigate Alarm Floods

Addressing alarm floods is of great importance for industrial alarm sys-

tems. In the past decades, this topic has been drawing increasing attentions

and a variety of methods have been proposed targeting at different directions,

including the reduction of alarm rates to inhibit alarm floods, the comparison

of alarm floods to facilitate analysis, the extraction of alarm flood patterns, the

analysis of root causes, and the assistance of operators for enhanced situation

awareness.

First, to inhibit alarm floods by reducing alarm rates, false alarms and

missed alarms were minimized based on various approaches, such as the ra-

tionalization of alarm limits [63, 111], and the utilization of alarm reduction

techniques, such as filters [101], deadbands [99], and delay timers [97]. There-

after, the identification of alarm floods was studied in [98], where detection

criteria were proposed to determine alarm floods for online applications and

offline analysis.

Second, similarity analysis was conducted to compare historical alarm

9



floods, which is a fundamental step towards the diagnosis and prediction of

alarm floods. In [6], the similarity of alarm floods was compared based on

historical alarm data. Sequence alignment was adapted to extract meaning-

ful alarm sequential patterns as templates for fault diagnosis [19]. With the

advancement to incorporate time stamps and allow gapped alignment, a mod-

ified Smith-Waterman algorithm was developed [21]. Based on improved local

sequence alignment, the computation efficiency for similarity analysis was ac-

celerated [43]. The alignment of alarm floods was also extended, such as

alignment of multiple alarm flood sequences [61] and incremental calculation

for online applications [59].

Third, data mining techniques were exploited to discover interesting alarm

flood patterns, which are helpful for alarm suppression and decision sup-

port. For this purpose, alarm flood patterns were discovered based on item-

set mining [40], sequential pattern mining [28, 72], association rules calcu-

lation [55, 89], and alarm data clustering [15, 100]. Plant hierarchy was

integrated for pattern extraction [54]. Moreover, to determine alarms as-

sociated with certain root causes, correlated alarms [91] and mode-dependent

alarms [41] were identified. Statistical comparisons of alarms and operator

responses were conducted to identify potential solutions from historical oper-

ation strategies [73, 113]. Databases comprised of alarm flood patterns were

prepared for online diagnosis of alarm floods using weighted dissimilarity in-

dex [18] and alarm coactivations [66].

Fourth, the analysis of root causes provides promising guidelines to im-

prove alarm systems with discovery of potential solutions. For this purpose,

causal relationships of process variables were captured using various causality

inference methods, such as transfer entropy [69], direct causality [30], Granger

causality [92], and transfer zero-entropy [31]. To improve detection accuracy

and enhance applicability to practical situations, problems for the fusion of

process data, alarm data, and plant connectivity were studied [71, 78, 108,

110]. For instance, pseudo-continuous time series were generated from binary
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alarm data to capture the causalities of alarm variables [44, 109]. Moreover,

the localization of root causes was tackled with the identification of abnor-

mality propagation paths [8, 9]. To determine alarms associated with process

oscillations, methods were proposed based on the adjacency matrix [51] and

comprehensive analysis of process data in temporal and spectral domains [29].

Last, operator assistance was achieved from different aspects, including the

prediction, classification, diagnosis, and suppression of alarms/alarm floods.

To achieve alarm prediction and then provide early warning, deep learn-

ing [14, 27], Bayesian estimators [107], alarm grouping strategies based on

plant connectivity [78], and Shewhart control chart [47] were exploited. For

the classification and diagnosis of alarm floods, incremental sequence align-

ment [60], alarm range normalization [67], similarity calculation [18], exponen-

tially attenuated component analysis [80], alarm coactivations [65] and time

series analysis [66] were adapted. Moreover, alarms were suppressed using

a multi-temporal sequence mining-based algorithm [26]. To achieve operator

decision support with increased situation awareness, many approaches were

proposed, such as the design of improved alarm summary displays [13, 58, 77],

utilization of integrated alarm monitoring frameworks [35], and fusion of his-

torical data [106].

1.2.3 Applications to Industrial Facilities

In practice, many effective methods have been implemented in complex

industrial facilities, leading to satisfactory results for alarm system improve-

ment. More specifically, Bayesian filters were utilized to achieve effective alarm

monitoring for electrical pumps in a thermal power plant [101]. The design of

delay timers [87] and deadbands [88] were generalized with relaxed assump-

tions about process data distributions, so as to reduce nuisance alarms for a

chemical reactor with a high degree of nonlinearity. Various alarm reduction

techniques were applied to the alarm system in a thermal power plant over

a long time period, where the obtained results indicated significant improve-
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ment in alarm system performance [97]. Dynamic alarm limits were designed

to mitigate alarm floods during operation state transitions for a large-scale

industrial process [118]. To reduce consequential alarms and standing alarms

due to changes of operation modes, mode-based alarming strategies were de-

ployed in an oil sands extraction plant [10], a power plant [96], and a chem-

ical plant [38]. Comprehensive alarm information processing technology was

adapted in a petrochemical plant [16]. For root cause analysis, an analytic

model was developed for a power system [117].

1.3 Thesis Contributions

To improve process safety and achieve better alarm performance, this thesis

proposes a variety of data-driven methods for alarm monitoring and alarm

flood analysis, where both process data and alarm data are utilized. The

major contributions in this thesis that distinguish it from other work are

summarized as follows:

1. Proposed a new method for monitoring equipment start-up operations

with applications to pumps in real industrial facilities. More specifi-

cally, an offline design framework is provided to detect the maximum

unsuppression delay time and formulate dynamic alarm limits based on

data associated with normal start-up operations; an online algorithm

for alarm monitoring of equipment start-ups is designed based on the

designed dynamic alarm limits and the calculation of an exact unsup-

pression delay time.

2. Proposed a systematic pattern matching method to compare alarm floods

across different processes, such that alarm floods from different processes

but associated with the same fault type are discovered and grouped, and

the obtained results could be utilized to identify common root causes and

give generalized solutions. To achieve this, a word processing approach is

formulated to distill key words from textural alarm attributes and recon-
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struct abstracted alarm descriptors, so as to generalize representations

for alarms from different processes; a pattern matching approach is pro-

vided to compare alarm floods across different processes through three

steps, including the unit-based extraction, the set-based pre-matching,

and the sequence-based comparison.

3. Proposed a new method to extract compact alarm flood patterns from

historical alarm flood sequences; the method is capable of avoiding the

influences of order switchings caused by small time differences on pat-

tern extraction, and also minimizing the redundancy of extracted alarm

sequential patterns. More specifically, a closed alarm sequence mining

approach is formulated to incorporate time stamps and tolerate alarm

order switchings; a pattern distillation strategy is designed to merge

similar alarm sequences and export more compact alarm sequential pat-

terns, so as to cope with irrelevant alarms and different lengths of alarm

flood sequences.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, a method to reduce nuisance alarms and achieve effective

alarm monitoring for equipment start-ups is presented. Section 2.1 gives an

overview of the research work in this chapter. Section 2.3 presents the offline

design steps, including the determination of the data associated with normal

equipment start-ups, the detection of the maximum delay time for alarm un-

suppression, and the formulation of dynamic alarm limits. Section 2.4 presents

the online monitoring methods, including the determination of alarm unsup-

pression and an algorithm for alarm monitoring based on designed dynamic

alarm limits. An industrial case study is provided in Section 2.5 to illustrate

the effectiveness of the method, followed by concluding remarks in Section 2.6.

In Chapter 3, a systematic pattern matching method is proposed to com-

pare alarm floods across different processes, so as to facilitate the analysis
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of alarm floods across different processes by capturing common patterns and

give general solutions. Section 3.1 gives an overview of the research work in

this chapter. Section 3.2 formulates the problem of cross-process alarm flood

pattern matching in detail. Section 3.3 proposes the method to generalize

alarm representations from textural alarm attributes. Section 3.4 presents the

pattern matching of alarm floods across different processes. An industrial case

study is given in Section 3.5. Conclusions are provided in Section 3.6.

In Chapter 4, a method to extract alarm flood patterns from historical

alarm flood sequences is proposed with improvement to incorporate time

stamps, tolerate alarm order switchings, and distill compact results. Sec-

tion 4.1 gives an overview of the research work in this chapter. Section 4.2

describes the problem of alarm flood pattern extraction. Section 4.3 proposes

the detailed method for calculation. Section 4.4 gives an industrial case study.

Section 4.5 concludes this chapter.

In Chapter 5, concluding remarks and some potential directions of future

work are provided.
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Chapter 2

Alarm Monitoring of Equipment
Start-Up Operations*

2.1 Overview

In this chapter, a new method to monitor equipment start-up operations

is proposed. The development of this method is motivated by the practi-

cal demand to prevent nuisance alarms during equipment start-up operations.

More specifically, during equipment start-up operations, alarms configured for

steady operating states fail to indicate true abnormalities and thus become

nuisance. As a consequence, such nuisance alarms do not only distract plant

operators, but may also cause equipment trips. In practice, alarm suppression

can be used to eliminate standing alarms caused by equipment on-off switch-

ing. However, while the equipment is switched on, a question is when should

a suppressed alarm be unsuppressed? Early unsuppression usually causes nui-

sance alarms during start-ups whereas late unsuppression may delay alarm

monitoring in steady operating states. Moreover, the conventional constant

limit based alarming mechanism is not able to indicate abnormalities during

equipment start-ups, regardless of alarm suppression. A further related ques-

tion is: how could equipment start-up operations be effectively monitored?

To address the above practical problems, this study proposed a new method

*A version of this chapter has been published as: Boyuan Zhou, Wenkai Hu, and Tongwen
Chen, A new method for alarm monitoring of equipment start-up operations with applica-
tions to pumps. Industrial & Engineering Chemistry Research, 58(26), 11251–11260, 2019.
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for monitoring of equipment start-up operations with applications to pumps

in real industrial facilities. The method includes two key stages, including

1) an offline design stage to detect the maximum unsuppression delay time

and formulate dynamic alarm limits based on data associated with normal

start-up operations, and 2) an online alarm monitoring of equipment start-

ups based on the designed dynamic alarm limits and the calculation of an

exact unsuppression delay time.

2.2 Alarm Monitoring for Start-Ups

2.2.1 Monitoring Requirement

In modern industrial facilities, alarm systems are deployed to monitor pro-

cess operations. Alarms are presented to plant operators as audible and/or

visible means to indicate abnormalities. An alarm signal is generated by com-

paring a process signal with its constant valued alarm limit, i.e., an alarm

is annunciated whenever the value of its process variable is lower (or higher)

than its low (or high) alarm limit. The signal form of a low limit alarm a(t)

is given by

a(t) =

{
1, if x(t) ≤ xtp,

0, otherwise,
(2.1)

where xtp is the low limit of a process variable x.

However, the alarm generation mechanism in eqn. (2.1) works only for

steady operating states, and may cause nuisance alarms or standing alarms

due to switching on or off of equipment, such as pumps, motors, and valves.

In practice, a state based alarm suppression strategy can be used to eliminate

such nuisance alarms, i.e., an alarm is suppressed when the equipment is

switched off, and unsuppressed when it is switched on. The alarm signal with

the state based alarm suppression is given by

ā(t) =

{
1, if x(t) ≤ xtp & z(t) = 1,

0, otherwise,
(2.2)

where z(t) the equipment state signal. z(t) = 1 & z(t − 1) = 0 indicates the
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equipment is switched on by an operator. By contrast, z(t) = 0 & z(t− 1) = 1

represents switching off.

Based on eqn. (2.2), the alarm is unsuppressed when the equipment is

switched on. However, due to the initial low process value, the alarm is annun-

ciated inevitably during the equipment start-up operation. The consequences

are twofolds:

1. Such an alarm annunciated during the equipment start-up operation

does not indicate any abnormality and thus distracts the plant operator.

2. Such an alarm may also cause an equipment trip, such as a pump trip,

due to the extremely low process value.

An example of the electrical pump is given as follows to explain the occurrence

of such a nuisance alarm.

Taking a Variable Frequency Drive (VFD) controlled pump as an example,

the pressure difference x(t) is up to the pump speed, which is manipulated by

a VFD. To monitor the pump operation, a low limit alarm is configured for

x(t). Figure 2.1.(a) displays the measured pressure difference x(t) (blue curve)

with its alarm limit xtp (red line). The pump was switched off and on at time

instant ta and t0, respectively, as indicated by the state signal (yellow line).

Figure 2.1.(b) displays the alarm signal generated by eqn. (2.1). It can be

seen that standing alarms were present during pump off-states, namely, in the

period between tb and tc, when x(t) was below the low limit xtp. Obviously,

such a standing alarm would not be cleared until the pump was switched

on. The solid line in Figure 2.1.(c) displays the alarm signal generated by

eqn. (2.2). The alarm was suppressed during the pump off-state, leading to

elimination of the standing alarm. However, there was still a short period

from t0 to tc, when a nuisance alarm was present. It is obvious that this alarm

did not indicate any abnormality, but was caused by the initial low value of

x(t) during the pump start-up operation.

The question is: how could such nuisance alarms during the pump start-up

operation be prevented? An effective solution is to delay the alarm unsup-
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Figure 2.1: An example of alarms generated based on different alarming mech-
anisms for a pump pressure difference: (a) the process signal x(t) (blue curve),
state signal z(t) (yellow line) and low alarm limit xtp (red line), (b) the alarm
signal a(t) based on eqn. (2.1), (c) the alarm signal ā(t) eqn. (2.2), as well as
(d) the alarm signal ã(t) based on eqn. (2.3).

pression until the pump reaches a steady state. Applying a delay time to the

alarm unsupression, the alarm signal is generated by

ã(t) =

{
1, if x(t) ≤ xtp & z(t) = 1 & t ≥ t0 + ∆ts,

0, otherwise,
(2.3)

where t0 is the time instant when the equipment is switched on, and ∆ts is

the unsuppression delay time, which is formally defined as follows.

Definition 1. An unsuppression delay time is a time duration from the time

instant when the equipment is switched on (the alarm is supposed to be un-

suppressed right away as presented in eqn. (2.2)) to the time instant when the

alarm is actually unsuppressed.

Then, the alarm configured for steady state will be kept suppressed until
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a delay time ∆ts is reached after t0. Figure 2.1.(d) displays the alarm signal

generated based on eqn. (2.3) with a proper delay time ∆ts applied. As a

result, the nuisance alarm during the pump start-up operation was eliminated.

Further, what is a proper delay time to unsuppress an alarm during equipment

start-up operations? Due to different operating states or set points, the time

for a process to reach a steady state from the initial start-up could be different.

Thus, a fixed delay time ∆ts might not be applicable to all scenarios. To design

the delay time ∆ts, the following two requirements should be considered:

1. The delay time ∆ts should be set within a proper range. A short delay

time is not able to prevent nuisance alarms during equipment start-up

operations, whereas a long one may lead to long detection delay of true

abnormalities.

2. The delay time ∆ts should be accommodated to different operating

states or set points during equipment start-up operations.

A further question is: now that the alarm configured for steady operat-

ing states is not applicable and thus suppressed during equipment start-ups,

how could abnormal start-up operations be effectively monitored? A poten-

tial solution is to design an additional alarm working only during equipment

start-up operations to indicate abnormal start-up situations. Eventually, the

equipment start-up operation can be monitored using such a designed alarm

until the delay time is reached, while the steady operation is still monitored

by the original alarm with a constant alarm limit. As a result, the nuisance

alarms are eliminated and the equipment start-up can be effectively moni-

tored. Therefore, this work is going to address two problems: 1) to determine

when to unsuppress an alarm during equipment start-up operations, and 2)

to design a new alarm for effective monitoring of start-up operations.

2.2.2 Framework of the Method

This subsection presents a framework of the proposed method, which con-

sists of two key stages, including an offline design stage and an online moni-
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toring stage. In the offline design stage, there are four main steps:

1. Process datasets associated with equipment start-ups over different pe-

riods are collected. Each dataset is indexed by s ∈ S, s = 1, 2, · · · , N ,

where S indicates the index set of the data collection and N is the num-

ber of collected datasets. Each individual dataset includes time series

of m process signals xi(t) (i = 1, 2, · · · ,m) related to the equipment

operation.

2. Datasets associated with normal start-up operations are selected. A

method based on the Local Outlier Probability (LoOP) algorithm and

the Kernel Density Estimation (KDE) is presented to determine the

index set S̃ ⊆ S of such normal datasets.

3. Given the normal datasets indexed by s ∈ S̃, the maximum delay time

∆t̃ to unsuppress an alarm is designed based on the Principal Component

Analysis (PCA).

4. The upper and lower bounds of the monitored process signal xi(t) are

captured based on the normal data, and formulated as the dynamic

alarm limits f i(t) and f
i
(t).

In the online monitoring stage, there are two main steps:

1. The alarm unsuppression is determined online. The exact delay time to

unsuppress an alarm is calculated as ∆ts = min(∆t̃s,∆ťs), where ∆t̃s

is the maximum delay time designed in the offline stage, and ∆ťs is the

delay time calculated in an online manner based on a moving window

PCA method.

2. A systematic online algorithm is developed to monitor the start-up op-

eration based on the designed dynamic alarm limits until the delay time

is reached, namely, t = t0+∆ts, where t0 is the switching on time instant

of the equipment.
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It should be noticed that the method is designed for single equipment, such

as pumps, motors, fans, and valves, and may not work for multiple equipment

assets or a unit. This restriction should be considered in real applications.

Details of the offline design and the online monitoring methods are presented

in the Offline Design section and the Online Monitoring for Equipment Start-

Ups section, respectively.

2.3 Offline Design

This section presents the offline design methods, including the determi-

nation of the data associated with normal start-up operations, the detection

of the maximum delay time for alarm unsuppression, and the formulation of

dynamic alarm limits.

2.3.1 Determination of Normal Data

Process datasets associated with equipment start-ups over different peri-

ods are collected. Each dataset has m process variables xi, i = 1, 2, . . . ,m,

related to the equipment operation and contains enough samples to cover

the whole start-up operation. The datasets are aligned to have the same

switching on sample instant and trimmed to contain the same number of sam-

ples. Denote the numeric index of each dataset as s and the index set as

S = {s|s = 1, 2, · · · , N}, where N is the total number of datasets. Given a

monitored process variable xi, its corresponding alarm variable is denoted by

ai. Assuming that xi has an increasing trend during the start-up operation,

ai is therefore a low limit alarm.

A practical observation of historical data is that the time series during ab-

normal start-up operations may have very different trends deviating away from

the cluster of normal ones. As a result, such time series can be treated as ab-

normal data and discarded. It should be noticed that only normal equipment

start-up data is needed to calculate unsuppression delay time and capture dy-

namic alarm limits. If abnormal data is used, the obtained dynamic alarm
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limits will contain the trajectories of abnormal start-ups. As a result, based

on such limits, it may fail to detect abnormalities in start-up operations. The

determination of the abnormal data is based on four steps:

1. Assign a score Pis for variable xi in the sub-dataset s, to evaluate the

probability of being abnormal. The Local Outlier Probability (LoOP)

algorithm is utilized.

2. Estimate the Probability Density Function (PDF) fi(p) of the score Pis

by Kernel Density Estimation (KDE). Given a significance level α0, the

index set Ωi for xi being taken as normal is calculated based on fi(p).

Any sub-dataset s with xi not in Ωi is abnormal. The index dataset of

abnormal start-ups is Si = {s|s /∈ Ωi}.

3. Repeat Steps 1) and 2) to obtain the index set of abnormal data for all

m process variables as S1, S2, · · · , Sm.

4. Obtain the index set S̃ of normal data by excluding the index set of all

abnormal ones as S̃ = S \ {S1 ∪ S2 ∪ · · · ∪ Sm}.

The detailed calculations are as follows.

For process variable xi, combining all its time series from N datasets forms

a data matrix Xi ∈ RM×N

Xi = [Xi1, Xi2, . . . , XiN ], (2.4)

where Xis is the time series of xi in sub-dataset s, and M is number of samples.

Each time series Xis is denoted by

Xis = [xis(t0), xis(t1), . . . , xis(tM−1)]
T , (2.5)

where xis(t) is a sample of xi in the sub-dataset s at time instant t, and t0

denotes the switching on time instant of the equipment.

The index set Si that indicates abnormal start-up operations is obtained

as follows. A score Pis for the time series Xis is calculated based on the Local
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Outlier Probability (LoOP) algorithm [57], to evaluate the probability of Xis

being an outlier time series associated with an abnormal start-up operation.

Given the data matrix Xi ∈ RM×N for xi, a distance metric between Xis and

its k-nearest neighbours is given by

ζ(Xis,N (Xis)) =

√√√√ ∑
Xik∈N (Xis)

d2(Xis, Xik)

|N (Xis)|
, (2.6)

where N (Xis) is a set containing the k-nearest neighbours of Xis; it can be

obtained by ranking the distances d(Xis, Xik) (s 6= k) and choosing the Xik’s

corresponding to the k nearest ones. The Manhattan distance d(Xis, Xik) is

used, i.e.,

d(Xis, Xik) =

tM−1∑
t=t0

|xis(t)− xik(t)|, (2.7)

where | · | denotes the absolute value.

A probabilistic set distance for Xis and N (Xis) with a significance level λ

is

D(λ,Xis,N (Xis)) = λζ(Xis,N (Xis)). (2.8)

The Probabilistic Local Outlier Factor (PLOF) for Xis ∈ Xi with respect to

a significance level λ is

ψis =
|N (Xis)| ·D(λ,Xis,N (Xis))∑
Xik∈N (Xis)

[D(λ,Xik,N (Xik))]
− 1, (2.9)

where N (Xis) and N (Xik) are the sets of k-nearest neighbours of Xis and Xik,

respectively. The aggregate value for all time series of xi is

Ψi = λ

√√√√ 1

N

N∑
s=1

ψ2
is. (2.10)

The Local Outlier Probability (LoOP) value is given by

Pis = max

(
0, erf(

ψis√
2Ψi

)

)
, (2.11)

where erf(·) is the Gaussian error function.
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The Probability Density Function (PDF) fi(p) of Pis is estimated by the

Kernel Density Estimation (KDE) [81], i.e.,

fi(p) =
1

Nh

N∑
s=1

φ(
p− Pis
h

), (2.12)

where φ(·) is the kernel function and h is the kernel bandwidth. Here, the

Gaussian kernel φ(x) is used, i.e.,

φ(x) =
1√
2π
e−

x2

2 . (2.13)

An optimal choice of h is given by [81]

h =

(
4σ̂5

3N

) 1
5

≈ 1.06σ̂N−
1
5 , (2.14)

where σ̂ is the standard deviation of Pis’s.

A decision value is defined as

Fi(p|s) =

∫ Pis

−∞
fi(p)dp. (2.15)

The times series for xi in sub-dataset s is determined to be normal, if Fi(p|s) ≤

1− α0. Therefore, the index set of the normal time series is obtained

Ωi = {s|Fi(p|s) ≤ (1− α0)}, (2.16)

where α0 is the significance level. Then, the index set of abnormal time series

is

Si = {s|s /∈ Ωi}. (2.17)

Repeat the calculations from eqn. (2.4) to eqn. (2.17) for all m process vari-

ables and get their index sets of abnormal time series as S1, S2, · · · , Sm. Then,

the index set S̃ for all time series associated with normal start-up operation

is obtained by excluding all sets with abnormal ones, i.e,

S̃ = S \ {S1 ∪ S2 ∪ · · · ∪ Sm}, (2.18)

The datasets in S̃ can be treated as data associated with normal start-ups, and

they will be used for the design of the maximum delay time ∆t̃ and dynamic

alarm limits. To ensure robustness, sufficient data associated with normal

start-ups should be collected.
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Remark 1. The above method to determine normal data has two major ad-

vantages: First, since the start-up operation is non-stationary, it is hard to

describe it using a certain distribution. Thus, any distribution based outlier

detection method is not applicable. By contrast, the LoOP is a local density

based outlier detection method, which does not assume any data distribu-

tion [57] and thus is applicable in this case. Second, this method is completely

data driven and does not require any prior knowledge. Thus, it is easy for

implementation and can save time and resources compared to determining the

normal data manually based on the experience from plant operators or process

engineers.

2.3.2 Detection of the Maximum Unsuppression Delay
Time

This subsection proposes a method to find the maximum delay time for

alarm unsuppression. It is based on how much time is required for the opera-

tion to reach a steady state from the switching on time instant. The Principal

Component Analysis (PCA) is applied. In each dataset s from the normal

data collection S̃, a data matrix X ∈ RM×m containing m process variables is

X = [X1, X2, . . . , Xm], (2.19)

whereXi = [xi(t0), xi(t1), · · · , xi(tM−1)]T is the time series of xi, i = 1, 2, · · · ,m.

The matrix X is normalized as

X̃ = (X− IM) Ξ−1, (2.20)

where M = diag(µ) and Ξ = diag(σ) are diagonal matrices containing the

mean and the standard deviation of each column of X, respectively, i.e., µ =

[µ1, µ2, . . . , µm] and σ = [σ1, σ2, . . . , σm]. The symbol I represents an all one

matrix of size M ×m.

The matrix X̃ is decomposed by the Principal Component Analysis (PCA) [52]

as

X̃ = TPT + E, (2.21)
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where T ∈ RM×l is the score matrix, P ∈ Rm×l is the loading matrix, E is the

residual matrix, and l is the number of principal components. The T 2 statistic

is given by

T 2(t) = X̃(t)PΛ−1PT X̃(t)T , (2.22)

where X̃(t) ∈ R1×m indicates one sample of m process variables at time instant

t, and Λ is the diagonal matrix containing the l eigenvalues of the covariance

matrix of X̃. The statistical confidence limit for T 2 statistics is

J =
l(M − 1)

M − l
Fα1(l,M − l), (2.23)

where Fα1(df1, df2) denotes the critical value of the F -distribution with two

degrees of freedom df1 and df2 at the significance level α1.

For each dataset s ∈ S̃, the delay time ∆t̃s to unsuppress an alarm is

essentially the period for the operation to reach its steady state from the

switching on time instant t0, and is formulated as

∆t̃s = min
t>t0,T 2(t)≤J

(t− t0). (2.24)

Then, the maximum delay time to unsuppress an alarm during equipment

start-up operations is

∆t̃ = max(∆t̃s|s ∈ S̃). (2.25)

This delay time ∆t̃ can be used as a conservative value to determine alarm

unsuppression. However, in view of some cases with faster start-ups, it is

necessary to determine the alarm unsuppression in an online manner. Then,

[0,∆t̃ ] is the proper range of the delay time to unsuppress an alarm, and will

be used in the online monitoring stage in the Online Monitoring for Equipment

Start-Ups section to determine the exact time instant for alarm unsuppression.

Remark 2. Instead of detecting faults, the PCA method is used to identify

the time instant when process variables reach steady states, based on the T 2

statistic. Process signals are stationary in both initial states (before start-

up) and steady states, while they are non-stationary in start-up periods and

contribute most of the variations. Such a feature makes PCA applicable to
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detect start-up periods. The conventional PCA works well for linear processes.

However, some equipment start-up might be involved with strongly nonlinear

processes. In such cases, the kernel PCA method [79] can be applied.

2.3.3 Formulation of Dynamic Alarm Limits

This subsection designs dynamic alarm limits for the monitored process

variable xi based on the normal data collection S̃. They are formulated based

on the upper and lower bounds of time series in s ∈ S̃. The upper and lower

bounds for xi at time instant t are given by

xi(t) = max(xis(t)|s ∈ S̃, t0 ≤ t ≤ t0 + ∆t̃), (2.26)

xi(t) = min(xis(t)|s ∈ S̃, t0 ≤ t ≤ t0 + ∆t̃), (2.27)

where xis(t) is the time series of xi at time instant t in the sub-dataset s ∈ S̃.

In view of that the sampling rate for online monitoring could be faster

than that of the historical data, it is necessary to formulate the upper and

lower bounds as models with respect to the time. Here, the cubic spline

interpolation [25] is applied. Then, the upper bound xi(t) and the lower

bound xi(t) are converted to piecewise cubic functions with respect to time.

Given a time duration t ∈ [t1, t2], the dynamic alarm limits are formulated as

f i(t|t1, t2) = B
T

i|t1,t2T (t), (2.28)

f
i
(t|t1, t2) = BT

i|t1,t2T (t), (2.29)

where t1 and t2 indicate two consecutive sampling instants and t0 ≤ t1 <

t2 ≤ t0 + ∆t̃. Bi|t1,t2 and Bi|t1,t2 are the coefficient vectors of f i(t|t1, t2) and

f
i
(t|t1, t2), respectively. T (t) = [(t− t1)3, (t− t1)2, (t− t1), 1]T . The models in

Eq . (2.28) and eqn. (2.29) represent the boundaries of the time series for xi

during normal operations, and thus can be used as dynamic alarm limits to

monitor the equipment start-up operation.
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2.4 Online Monitoring for Equipment Start-

Ups

This section presents the online monitoring method, including the deter-

mination of alarm unsuppression for real-time applications, and the algorithm

of alarm monitoring based on the designed dynamic alarm limits.

2.4.1 Determination of Alarm Unsuppression

Due to the change of operating conditions or set points, the process may

take different time to reach a steady state. Thus, a fixed delay time for

alarm unsuppression would not be applicable for all cases. It is necessary to

determine alarm unsuppression in an online manner. A moving window PCA

method [74] is used to calculate the online delay time ∆ťs, i.e., to determine

when the alarm should be exactly unsuppressed. Such a delay time ∆ťs must

be smaller than ∆t̃, so as to avoid long detection delay of true abnormalities

during steady operations.

Denote the data matrix consisting of m process variables from time instant

t0 to t as

X(t) =

x1(t0) x2(t0) . . . xm(t0)
...

...
...

x1(t) x2(t) . . . xm(t)

 , (2.30)

where t0 indicates the time instant when the equipment is switched on and t

is the current time instant. The moving window PCA gets the T 2 statistics

based on the current matrix X(t) and the PCA model is trained from the

matrix X(t) over a time window of w samples at L samples ago, i.e.,

Xw = X(t− L− w + 1 : t− L), (2.31)

where X(ta : tb) denotes the matrix containing the samples from time instant

ta to tb (t0 ≤ ta ≤ tb) for all m process variables. The matrix Xw is normalized

as

X̃w = (Xw − IwMw) Ξ−1w , (2.32)
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where Mw = diag(µw) ∈ Rm×m and Ξw = diag(σw) ∈ Rm×m are diagonal

matrices containing the mean µw = [µw1, µw2, . . . , µwm] and the standard de-

viation σw = [σw1, σw2, . . . , σwm] of each column of Xw, respectively. The

symbol Iw represents an all one matrix of size w ×m.

The rest calculations are analogous to the convectional PCA in the Offline

Design section. The matrix X̃w is decomposed to be

X̃w = TwPT
w + Ew. (2.33)

The T 2
w statistics at time instant t is

T 2
w(t) = X̃(t)PwΛ−1w PT

wX̃(t)T , (2.34)

where X̃(t) ∈ R1×m indicates one sample of m process variables at time instant

t, and Λw is the diagonal matrix containing the lw eigenvalues of the covariance

matrix of X̃w. The statistical confidence limit for the online calculated T 2
w

statistic is

Jw =
lw(w − 1)

w − lw
Fα2(lw, w − lw). (2.35)

The operation is said to reach its steady state if T 2
w(t) ≤ Jw. The period

for the operation to reach its steady state from the switching on time instant

t0 is

∆ťs = min
t>t0,T 2

w(t)≤Jw
(t− t0). (2.36)

The exact delay time for alarm unsuppression is eventually taken as

∆ts = min(∆t̃s,∆ťs). (2.37)

The alarm is not unsuppressed until ∆ts is reached after t0. Accordingly, it

guarantees the delay time for alarm unsuppression as short as possible to avoid

long detection delay of true abnormalities during steady operating states.

Remark 3. The delay time calculated in the offline stage is called the max-

imum unsupressed delay time ∆t̃s, which is essentially the longest time for

the process variable to reach its steady state in normal start-ups. It can be

used as a conservative option of unsuppression delay time. Due to different
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operating conditions or set points, the start-up operation may take different

time to reach its steady state. To cope with this, the unsupressed delay time

∆ťs is calculated online. Then, the exact time delay ∆ts of a new start-up

is determined by eqn. (2.37). This can avoid long detection delay of true

abnormalities in steady states.

2.4.2 Alarm Monitoring Based on the Dynamic Alarm
Limits

To monitor the start-up operations based on the designed dynamic alarm

limits and the calculation of unsuppression delay time, an online alarm mon-

itoring algorithm is developed in this subsection. A new alarm ã∗i is designed

for the monitored process variable xi; this alarm works only during the pe-

riod from the switching on time instant t0 to the delayed unsuppression time

instant t0 + ∆ts. Meanwhile, the original alarm ãi configured for steady oper-

ating states is suppressed during this period. After t0 + ∆ts, the alarm ãi is

unsuppressed to work normally in the steady state, while the designed alarm

ã∗i is then suppressed at the same time. The signal form of the designed new

alarm ã∗i is given by

ã∗i (t) =

{
0, if f

i
(t) ≤ xi(t) ≤ f i(t),

1, otherwise.
(2.38)

where t0 ≤ t ≤ t0+∆ts. Whenever there is an abnormality during the start-up

operation, this new alarm will be annunciated to notify the operator.

The alarm monitoring for equipment start-up operations is formulated as

Algorithm 2. The inputs include the maximum delay time ∆t̃ for alarm un-

suppression, the dynamic alarm limits, and the online updated data matrix

X(t). The outputs are the alarm signals ã∗i (t) and ãi(t). The variable Θ is

an indicator for the switching of alarm monitoring strategies and initially set

to 0. The moving window PCA model is recursively calculated to obtain the

delay time ∆ťs in lines 8 − 16. The equipment start-up operation is moni-

tored by ã∗i (t) in lines 21 − 25. The exact delay time ∆ts to unsuppress ãi is
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Algorithm 1 Online alarm monitoring for equipment start-up operations.

1: Input Arguments: ∆t̃, f i(t), f i(t), X(t).
2: Output Arguments: ã∗i (t), ãi(t).
3: Set Θ = 0;
4: Set ∆ťs =∞;
5: while z(t) = 1 do
6: if Θ = 0 then
7: ãi(t) = 0;
8: Xw = X(t− L− w + 1 : t− L);
9: X̃w = (Xw − 1Mw) Ξ−1w ;

10: X̃w = TwPT
w + Ew;

11: X̃(t) = (X(t)− µw)Ξ−1w ;
12: T 2

w(t) = X̃(t)PwΛ−1w PT
wX̃(t)T ;

13: Jw = lw(w−1)
w−lw Fα2(lw, w − lw);

14: if T 2
w(t) ≤ Jw then

15: ∆ťs = mint>t0,T 2
w(t)≤Jw(t− t0);

16: end if
17: ∆ts = min(∆t̃s,∆ťs);
18: if t ≥ t0 + ∆ts then
19: Set Θ = 1;
20: end if
21: if f

i
(t) ≤ xi(t) ≤ f i(t) then

22: ã∗i (t) = 0;
23: else
24: ã∗i (t) = 1;
25: end if
26: Update X(t);
27: else
28: ã∗i (t) = 0;
29: if xi(t) ≤ xtp then
30: ãi(t) = 1;
31: else
32: ãi(t) = 0;
33: end if
34: end if
35: end while
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determined in line 17. It should be noted that ∆ťs is initially set to ∞, such

that the exact delay time ∆ts is no more than ∆t̃s. When the delay time is

reached, i.e., t ≥ t0 +∆ts, the alarm monitoring is switched from ã∗i (t) to ãi(t)

by setting Θ = 1 as in lines 18−20. Thereafter, the alarm ã∗i is suppressed and

the calculation of the moving window PCA model stops, while the alarm ãi

is unsuppressed to continue monitoring the equipment operation in its steady

state as presented in lines 28− 33.

The obtained dynamic alarm limits in eqn. (2.28) and (2.29) are used to

detect abnormalities in equipment start-ups. Without such dynamic limits, it

is impossible to indicate true abnormalities in start-ups, since constant based

alarms only work for steady states and become useless in the start-up opera-

tion. The dynamic thresholds are captured offline and used online. The major

calculation is to obtain a dynamic threshold from a large amount of historical

data and this is done in the offline design stage. Thus, the computational

complexity is not a problem. As for the online monitoring stage, there is not

much calculation involved since the calculation is just to compare the current

process value with the obtained dynamic limits.

2.5 Industrial Case Study

This section presents an industrial case study involving real process data

to demonstrate the effectiveness of the proposed method. The studied equip-

ment is a booster pump, which transfers liquids from an upstream process to

a downstream one and increases the pressure to meet supply requirements.

Based on the historical data, the offline design results are presented first,

followed by two cases of online monitoring. Comparisons of different alarm

monitoring strategies are given through more online monitoring scenarios.

Offline Design

At first, N = 30 datasets associated with pump start-up operations over

different periods were collected. The sampling period was 1 sec. These
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Figure 2.2: Histogram of scores P1s’s for the pressure difference variable x1.

datasets were aligned to have the same switching on time instant at t0 = 61

sec, and trimmed to contain the same number of samples. The variables re-

lated to the pump operation include the pressure difference, pump speed and

pump motor current denoted by x1, x2 and x3, respectively. The pressure

difference x1 indicates the difference between the discharge pressure and the

suction pressure. It is the monitored process variable with a low limit alarm

configured. In the offline stage, the maximum alarm unsuppression delay and

the dynamic alarm limits for x1 during pump start-up operations are deter-

mined.

The index set S̃ of datasets associated with abnormal pump start-up op-

erations are obtained using the method in the Determination of Normal Data

subsection. Taking the pressure difference x1 for example, the scores P1s’s

are calculated from eqn. (2.11), and the histogram of P1s’s is shown in Fig-

ure 2.2. The PDF f1(p) is estimated using eqn. (2.12), and the index set S1 of

abnormal start-ups of process variable x1 is calculated from eqn. (2.17). The

determination of abnormal data is shown in Figure 2.3, where the bold dashed

curves are abnormal time series of x1, namely s ∈ S1. Analogously, the index

sets S2 and S3 for process variables x2 and x3 are obtained. Therefore, the

index set for normal pump start-ups is S̃ = S \ {S1 ∪ S2 ∪ S3}. The column

∈ S̃ of Table 2.1 tells whether the dataset s is associated with normal (1) or

abnormal (0) pump start-up operations.
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Figure 2.3: The historical time series of x1(t). The normal and abnormal
ones are indicated by solid thin curves and bold dashed curves. The designed
dynamic alarm limits are captured and represented by two bold red curves.

Based on S̃, the maximum alarm unsuppression delay ∆t̃ and the dynamic

alarm limits are designed following the procedures in the Detection of the Max-

imum Unsuppression Delay Time subsection and the Formulation of Dynamic

Alarm Limits subsection, respectively. The time duration to reach steady

states from the initial start-ups are shown in the column ∆t̃s of Table 2.1.

The maximum delay time ∆t̃ for alarm unsuppression is finally obtained as

∆t̃ = 34 sec. The designed dynamic alarm limits of the pressure difference

x1 are captured and shown as two bold red curves in Figure 2.3. Based on

∆t̃ and the dynamic alarm limits, the pump operation is monitored in an

online manner following Algorithm 2. Two cases including both normal and

abnormal pump start-up operations are given as follows.
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Table 2.1: Determination of normal data and detection of time to reach steady
states from initial start-ups.

Index s ∈ S̃ ∆t̃s Index s ∈ S̃ ∆t̃s
1 1 21 sec 16 1 31 sec
2 1 34 sec 17 1 17 sec
3 1 32 sec 18 1 11 sec
4 1 33 sec 19 1 26 sec
5 0 / 20 1 17 sec
6 1 11 sec 21 0 /
7 1 13 sec 22 1 17 sec
8 1 27 sec 23 1 11 sec
9 1 12 sec 24 1 26 sec
10 1 20 sec 25 1 17 sec
11 1 26 sec 26 1 30 sec
12 1 11 sec 27 0 /
13 1 27 sec 28 1 12 sec
14 1 26 sec 29 1 16 sec
15 1 15 sec 30 1 26 sec

Online Monitoring of a Normal Pump Start-Up Case

The data associated with a normal pump start-up operation was collected

to validate the proposed online monitoring method. The sampling period was

1 sec. The pressure difference signal x1(t) and its alarm signals are shown

in Figure 2.4. It can be found that the online calculated delay time ∆ť was

shorter than the maximum delay time ∆t̃. Thus, the original alarm ã1 was kept

suppressed until ∆ts = min(∆t̃s,∆ťs) = 28 sec later. Meanwhile, the designed

new alarm ã∗1 was used to monitor the start-up operation by comparing x1(t)

with the dynamic alarm limits (two red curves in Figure 2.4(a)) captured from

normal data in the offline stage. The pressure difference did not exceed the

dynamic limits, and thus there was no alarm annunciated during the start-up

operation from t0 = 61 sec to t0 + ∆ts = 79 sec. Starting from t0 + ∆ts = 79

sec, the alarm ã∗1 was suppressed and the original alarm ã1 was unsuppressed.

The alarm monitoring strategy was switched to ã1 to continue monitoring the

pump operation in its steady state. It can be seen that the nuisance alarm

was successfully prevented in this case. As a comparison, the alarm signal

35



ā(t) based on eqn. (2.2) is given in Figure 2.4(d); it can be found that there

was a nuisance alarm from 61 sec to 75 sec, due to the low initial value of the

pressure difference signal x1(t). Therefore, if the alarm signal ā(t) is used to

monitor the booster pump, operators would be distracted by such nuisance

alarms, whenever it is switched on.

Online Monitoring of an Abnormal Pump Start-Up Case

The data associated with an abnormal pump start-up operation was col-

lected. Figure 2.5 presents signals of the pressure difference x1(t), the designed

new alarm ã∗1 (eqn. (2.38)), the original alarm ã1 (eqn. (2.3)), and the conven-

tional alarm ā1 (eqn. (2.2)) that has no unsuppression delay time. It can be

found that the pump operation did not reach its steady state at the maximum

delay time ∆t̃ = 34 sec from the switching on time instant t0 = 61 sec. It

was also detected that the pressure difference x1(t) dropped below the lower

bound at the 70th time instant. The designed alarm ã∗1 was annunciated to

indicate this abnormal start-up operation. Starting from t0+∆ts = 95 sec, the

alarm ã∗1 was suppressed and the original alarm ã1 was unsuppressed. Since

the pressure difference was still lower than the constant alarm limit xtp, the

original alarm ã1 was annunciated to indicate the abnormality. It can be seen

that an abnormal start-up operation was successfully reported in this case.

However, the conventional alarm ā1 was annunciated immediately after the

pump was switched on at time instant t0 = 61 sec. Between 61 sec and 70 sec,

ā1 was a nuisance alarm, because the pressure difference x1(t) was still within

its normal range.

As shown in Figures 2.4 and 2.5, no matter the start-up was normal or

abnormal, nuisance alarms were always triggered based on the conventional

alarming mechanism ā1. However, the proposed method can effectively remove

such nuisance alarms, and indicate abnormalities in start-ups based on ã∗1 and

ã1.
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Figure 2.4: Example of a normal pump start-up operation. (a) The pressure
difference signal x1(t) (blue curve), dynamic alarm limits (solid red curve),
and original constant alarm limit xtp (dashed red line). (b) The alarm signal
ã∗1(t) based on eqn. (2.38) for start-up operation. (c) The alarm signal ã1(t)
based on eqn. (2.3) for steady operation. (d) The alarm signal ā(t) based on
eqn. (2.2).

Comparison of Different Alarm Monitoring Mechanisms

The data of a longer operation period for the booster pump, was used to

test and compare the three alarm monitoring methods, including the conven-

tional method based on eqn. (2.1), the method with an alarm suppression

strategy based on eqn. (2.2), and the proposed method based on Algorithm 2.
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Figure 2.5: Example of an abnormal pump start-up operation.

The data included 8 normal pump start-up operations. Table 2.2 presents the

alarm count and alarm duration for each method. The conventional method

gave 20 alarm occurrences and long alarm durations (more than 4787 sec in

total), due to the changes of pump operating states and the occurrences of

real faults. Using the method with an alarm suppression strategy, all standing

alarms were removed. As a result, the alarm count and alarm duration were

reduced to 12 and 406 sec, respectively. Among the 12 alarm occurrences, 8

were caused by initial low values during the pump start-ups. Thus, using the

proposed method based on Algorithm 2, all these 8 false alarms were removed,
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Table 2.2: Performance comparison of different alarm monitoring methods.

Method
Alarm Alarm
Count Duration (sec)

Conventional method based on eqn. (2.1) 20 > 4787
Method with suppression based on eqn. (2.2) 12 406
Proposed method based on Algorithm 2 4 270

leading to a further reduction of the alarm count and alarm duration. The

remaining 4 alarm occurrences were associated with 4 real faults during the

pump operation. Thus, the comparison results demonstrate that the proposed

method is capable of preventing nuisance alarms during equipment start-up

operations.

The methods were also compared on two abnormal start-up operations.

Using the proposed method based on Algorithm 2, the process signal was de-

tected to exceed the dynamic alarm limits in a few seconds after the switching

on of the booster pump. Thus, the proposed method successfully detected

the abnormalities during the two start-up operations. By contrast, neither

the conventional method nor the method with an alarm suppression strategy

was able to indicate such abnormalities, since the alarms were active from the

beginning (switching on time instant) of the pump start-up operations. There-

fore, the comparison results demonstrate that the proposed method is capable

of achieving effective alarm monitoring for equipment start-up operations.

The proposed method involves three parameters, namely, α0 in eqn. (2.16),

α1 in eqn. (4.2), and α2 in eqn. (2.35) which represent significance levels to

determine abnormal data and to determine the T 2 statistic threshold. The

influences of the two parameters are very limited to the final results. Thus,

there is no need to tune the parameters.

2.6 Summary

The study in this chapter is motivated by a practical problem that nui-

sance alarms appear commonly in equipment start-up operations. To solve
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this problem, a new method for the alarm monitoring of equipment start-up

operations is proposed. The method includes an offline design stage and an

online monitoring stage. The offline stage detects how much time in maxi-

mum an equipment operation needs to reach its steady state from the initial

switching on time instant. This time period is used as the maximum delay

time for alarm unsuppression. Meanwhile, dynamic alarm limits are formu-

lated based on the data associated with normal start-up operations. In the

online stage, these two outcomes are used for alarm monitoring of the equip-

ment start-up operations. First, the unsuppression of the original alarm is

determined using a moving window PCA method, i.e., the original alarm will

not be unsuppressed until a delay time is reached and this delay time must be

no more than the maximum one detected in the offline stage. Meanwhile, a

systematic algorithm is proposed to achieve effective alarm monitoring based

on the dynamic alarm limits and online calculation of the unsuppression delay

time. Results from an industrial case study demonstrate that the proposed

method is capable of preventing nuisance alarms as well as achieving effective

alarm monitoring for equipment start-up operations.
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Chapter 3

Generalized Pattern Matching
of Alarm Flood Sequences*

3.1 Overview

Addressing alarm floods in a large-scale industrial facility is not easy, ow-

ing to disparate fault types in many different locations and a variety of conse-

quential alarm flood sequences; therefore, analyzing alarm floods individually

would be a large undertaking. If alarm floods from different processes but

associated with the same fault type are discovered and grouped, the obtained

results could be utilized to identify common root causes and give generalized

solutions. To our best knowledge, the above problem is open and unsolved.

Motivated by such a practical problem, a systematic pattern matching method

is proposed in this chapter to compare alarm floods across different processes.

There are two major contributions:

1. A word processing approach is proposed to distill key words from tex-

tural alarm attributes and reconstruct abstracted alarm descriptors, so

as to generalize representations for alarms from different processes;

*A version of this chapter has been published as: Boyuan Zhou, Wenkai Hu, Kevin Brown,
and Tongwen Chen, Generalized pattern matching of industrial alarm flood sequences via
word processing and sequence alignment. IEEE Transactions on Industrial Electronics,
early access. A short version has been published as Boyuan Zhou, Wenkai Hu, and Tongwen
Chen, Cross-process alarm flood similarity analysis based on abstracted alarm descriptors.
28th IEEE International Symposium on Industrial Electronics (ISIE), 1749–1754, Vancou-
ver, Canada, 2019.
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2. A pattern matching approach is proposed to compare alarm floods across

different processes through three steps, including the unit-based extrac-

tion, the set-based pre-matching, and the sequence-based comparison.

3.2 Framework of the Method

Alarm floods are the most difficult situations for industrial alarm man-

agement. Pattern analysis is reorganized as one of the potential ways that

can effectively address alarm floods as investigated in the literature, includ-

ing similarity comparisons [18, 19, 21, 43, 59, 61, 66] and data mining tech-

niques [15, 40, 54, 72, 89, 100]. Further, the obtained results can be used

to facilitate the root cause analysis of similar alarm floods and to predict in-

coming alarm floods for online applications. However, this analysis becomes

sophisticated and time-consuming when the process is very complex and there

exist many types of faults leading to all kinds of alarm floods.

Modern industrial facilities, such as petroleum refineries, power stations,

chemical plants, and pipeline systems, are usually in very large scales and

comprised of numerous processes or units, which may contain the same types

of equipment or have similar functionalities. For instance, a thermal power

station may contain multiple coal storages to supply fuels or have several

power units to generate electricity; an oil & gas pipeline system is made up of

a series of pump stations, which could be built with identical architectures. In

such circumstances, similar processes or units are susceptible to the same type

of faults. Consequently, generated alarm floods may have analogous series of

consequential alarms, which are of the same types but assigned with different

tag names. If such similar alarm floods across different processes could be

discovered and grouped, the obtained results would significantly increase the

efficiency in alarm flood analysis by giving generalized solutions.

However, the existing methods in [15, 18, 19, 21, 40, 43, 54, 59, 61, 66, 72,

89, 100] are not applicable for the above problem, because they all compare

alarm floods based on tag names, which give unique representations of alarms.
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Figure 3.1: Framework for the cross-process alarm flood pattern matching.

In other words, alarms in different processes or units have different tag names,

and thus make them not directly comparable. Consequently, alarm floods from

different processes or units are typically treated as different situations, even if

they are associated with the same type of fault.

Motivated by such a practical problem, a systematic method for cross-

process alarm flood pattern matching is proposed. The framework of the

proposed method is shown in Fig. 3.1. First, alarm floods in each process

unit are extracted from the historical Alarm & Event log. Second, cross-

43



process alarm flood pattern matching is conducted in two stages, including

the generalization of alarm representations and the similarity analysis of alarm

floods. Last, the clusters of similar alarm floods are obtained. Details of the

proposed method are presented in Sections 3.3 and 3.4 with respect to the

two stages for cross-process alarm flood pattern matching. In this work, the

usage of the term “pattern matching” follows the study in [21] to represent

sequence alignment based similarity analysis between alarm floods, but the

meaning is also extended to cover the first step, namely, the generalization of

alarm representations.

3.3 Generalization of Alarm Representations

This section presents the generalization of alarm representations, which

includes three major steps, namely, the distillation of key words, the determi-

nation and removal of stop words, and the reconstruction of abstracted alarm

descriptors.

3.3.1 Alarm Descriptions

The analysis of alarm floods is based on the structured textual data, known

as Alarm & Event (A&E) logs. According to [38], there are two categories

of alarm information recorded in A&E logs, including alarm configurations

and alarm events. Alarm configurations are referred to as alarm descriptive

attributes, such as tag names, process units, and detailed descriptions. Denote

the finite set of alarms by A. An alarm a ∈ A is described by a few descriptive

attributes as

a = (εa, ζa, χa), (3.1)

where εa represents the tag name, namely, a unique label of an alarm a; ζa

indicates the process unit, namely, the location where the alarm is configured;

χa denotes the detailed description, which provides detailed information about

a, such as the tag name, process name, equipment name, alarm type, process

type, and process measurement.
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Figure 3.2: Reconstruction of an abstracted alarm descriptor based on frequent
key words distilled from detailed alarm descriptions.

Alarm events are referred to as real-time events recorded to indicate tran-

sitions of alarm states, such as occurrences or clearances of alarms, and their

corresponding time stamps. An event record for a ∈ A at time instant t is

given by

E = (a, t, s), (3.2)

where t ∈ T denotes the time stamp and T represents the time period of

the studied data; s ∈ S indicates the transition of alarm states; S is a set

representing alarm state transitions, e.g., S = {0, 1} with 1 and 0 standing

for alarm occurrence and clearance, respectively.

An A&E log is essentially a sequence of chronologically ordered alarm

events. In an A&E log, each alarm is uniquely identified by its tag name.

Therefore, distinct alarms in different processes have different tag names, even

if they are associated with the same type of fault. To compare alarm floods

across different processes, it is necessary to overcome the restrictions caused

by the difference in tag names. In this section, a systematic method is pro-

posed to generalize alarm representations by reconstructing abstracted alarm

descriptors based on key words distilled from detailed alarm descriptions. The

reconstruction of abstracted alarm descriptor is illustrated by an example in
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Fig. 3.2: the three alarms have different tag names, but indicate the same type

of abnormality, namely, high pump discharge pressure. Based on key words

distilled from alarm descriptions, the abstracted alarm descriptor “Pump Pres-

sure High” is reconstructed to represented these alarms identically.

To generalize alarm representations from detailed alarm descriptions in his-

torical A&E log, a word preprocessing method consisting of three major steps

is proposed in the following subsections. The proposed method to generalize

alarm representations is based on [17, 23, 68, 114], but it is not a simple com-

bination of these techniques. The main contributions are: 1) A two-step word

conversion principle is proposed by adapting the bag-of-words model in [23]

based on actual problems on textual records in historical Alarm & Event logs.

2) The criteria for the determination and removal of stop words are specifi-

cally designed for the studied problem, and are critical in the generalization

of alarm representations, so as to reduce differences caused by useless words.

3.3.2 Distillation of Key Words

At first, key words are distilled from detailed alarm descriptions. For alarm

a ∈ A, its detailed description χa is converted into a bag-of-words model [23]

and denoted as χ̃a = {x̃1, x̃2, · · · , x̃|χ̃a|}, which is essentially a set of words

contained in χa. Here, x̃j represents the jth word in χ̃a, j = 1, 2, · · · , |χ̃a|,

and |χ̃a| is the number of words. A two-step word conversion principle is

proposed by adapting the bag-of-words model in [23] based on actual problems

on textual records in historical Alarm & Event logs as follows:

1. Extract words without considering the orders : This step purifies detailed

descriptions by removing the orders of words and discarding meaningless

connection symbols, such as space, comma, and special characters (e.g., -

and /). It should be noticed that repeated words in χa are also excluded.

2. Unify words with different spellings but the same meaning : It is common

to see that words with different spellings may have the same meaning.

For example, the plural form of a noun could be different from its singular
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form. The abbreviation or a portion of a word is used instead of its

full spelling. Unifying such words can be based on alarm management

manuals and basic lexicons.

Thereafter, the set containing bag-of-words models for all alarms in A is ob-

tained as

X̃ = {χ̃a1 , χ̃a2 , · · · , χ̃a|A|}, (3.3)

where χ̃ai denotes the bag-of-words model for alarm ai ∈ A, i = 1, 2, · · · , |A|.

Then, the complete set of words from all bag-of-words models is collected as

Ψ =
⋃|A|
i=1 χ̃ai .

3.3.3 Determination and Removal of Stop Words

In the extracted bag-of-words models, there are a variety of useless words

(or known as stop words in [17]) that should be removed. In this subsection,

three criteria are proposed to determine and exclude stop words.

Criterion 1 by the Unit-Based Occurrence Frequency

A unit-specific word is determined as a stop word based on how frequently

it appears in bag-of-words models. Denote the set of all process units by

Z = {ζk|k = 1, 2, · · · , |Z|}, where ζk denotes the kth process unit and |Z| is

the number of process units. The set comprised by the bag-of-words models

of alarms from unit ζk ∈ Z is

X̃(ζk) = {χ̃a|χ̃a ∈ X̃, ζa = ζk, a ∈ A}, (3.4)

where χ̃a and ζa are the bag-of-words model and the process unit of alarm

a, respectively. Then, the set of words from X̃(ζk) is obtained as Ψ(ζk) =⋃
χ̃a∈X̃(ζk) χ̃a.

Denote x as a unique word in Ψ and βk as the presence of x in the kth unit.

Then, βk = 1, if x ∈ Ψ(ζk); otherwise, βk = 0. The unit-based occurrence

frequency of x ∈ Ψ is calculated as Ωu(x) =
∑|Z|

k=1 βk, which indicates the
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number of process units having x in their bag-of-words models. With the

unit-based occurrence frequency, the set of stop words is determined as

ξ1 = {x|x ∈ Ψ,Ωu(x) ≤ Ωu,th}, (3.5)

where the user-defined threshold Ωu,th is set as 1 by default, such that all

unit-specific words are captured as stop words.

Criterion 2 by the Tag-Based Occurrence Frequency

The remained key words to describe an alarm should be neither too general,

such as prepositions and conjunctions, nor too specific, such as the tag name

of a device. The former is usually frequent while the latter is relatively rare.

Both of them should be taken as stop words, which can be determined by the

tag-based occurrence frequency. Denote γi as the presence of one word x in

χ̃ai for ai ∈ A, where i = 1, 2, · · · , |A|. Then, γi = 1, if x ∈ χ̃ai ; otherwise,

γi = 0. Thus, the tag-based occurrence frequency of x ∈ Ψ is calculated as

Ωa(x) =
∑|A|

i=1 γi, which denotes the number of alarms having x in their bag-

of-words models. With the tag-based occurrence frequency, the set of stop

words is determined as

ξ2 ={x|x ∈ Ψ,Ωa(x) ≥ Ωa or Ωa(x) ≤ Ωa}, (3.6)

where the two thresholds Ωa and Ωa are user-defined upper and lower bounds

of the tag-based occurrence frequency, and they can be set as |A| and 1 by

default, respectively, where |A| represents the number of unique alarms. For

improvement, the two thresholds can also be determined by the Zipf curve [68];

or industrial document and process knowledge can be incorporated to ensure

that no key words to distinguish alarms are determined as stop words. The

reason for setting the two thresholds is that the key words to describe an alarm

should be neither too general nor too specific, where the former is usually very

frequent while the latter is relatively rare.
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Criterion 3 by the Word Length

In alarm descriptions, there may exist short words that are of little value

to distinguish alarms. Therefore, more stop words can be determined by word

length and obtained as

ξ3 = {x|x ∈ Ψ, L(x) ≤ Lth}, (3.7)

where L(x) denotes the number of letters in x; Lth is a user-defined threshold

for word length, which can be set as 2 by default, so as to remove short words,

such as “a”, “is”, and “as”, which are useless in distinguishing alarms.

Eventually, all bag-of-words models in X̃ are purified by removing stop

words determined in ξ1, ξ2, and ξ3 based on Criteria 1, 2, and 3, respectively.

The set of purified bag-of-words models is

X̄ = {χ̄a1 , χ̄a2 , · · · , χ̄a|A|}, (3.8)

where χ̄ai = χ̃ai \ {ξ1 ∪ ξ2 ∪ ξ3}, i = 1, 2, · · · , |A|. The operator \ denotes the

exclusion of elements from a set.

Remark 4. For applications in different industrial systems, the settings for

the generalization of alarm representations should be changed accordingly.

More specifically, it should be decided at first based on process knowledge

what data attributes to be selected from the historical Alarm & Event log,

since different systems may have different data formats. In some systems,

selecting one attribute providing the full alarm descriptions is enough; whereas

in other systems multiple attributes, such as alarm types, process types, and

tag names, might be needed if there is no such attribute containing the full

descriptions.

3.3.4 Reconstruction of Abstracted Alarm Descriptors

In this subsection, abstracted alarm descriptors are reconstructed from the

purified set X̄ through a closed itemset mining algorithm [114]. Following the

concept in [114], Abstracted Alarm Descriptors are mathematically defined as

follows.
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Definition 2. An abstracted alarm descriptor E is a set of key words satisfying

the following conditions:

1. E = {x̄p|x̄p ∈ Ψ̄, p = 1, 2, · · · , |E|} with its support σ(E) ≥ σth;

2. There exists no E ′ = {x̄q|x̄q ∈ Ψ̄, q = 1, 2, · · · , |E ′|}, such that E ⊂ E ′

and σ(E) = σ(E ′).

Here, set I(E) = {a|a ∈ A, E ⊆ χ̄a} is comprised of all alarms represented

by E . The support σ(E) = |I(E)| is the size of I(E). The minimum support

σth is used to guarantee that all abstracted alarm descriptors are frequent and

Ψ̄ = Ψ \ {ξ1 ∪ ξ2 ∪ ξ3} is the complete set of words with stop words removed.

�

Given the set of alarms and their corresponding bag-of-words models as

Θ = {(a, χ̄a)|a ∈ A, χ̄a ∈ X̄}. The closed itemset mining algorithm [114] is

applied to Θ to obtain a finite set containing abstracted alarm descriptors,

which are given together with their corresponding alarms as

C = {Ep × I(Ep)|p = 1, 2, · · · , |C|}, (3.9)

where the operator × denotes the pair of the pth abstracted alarm descriptor

Ep and its corresponding set I(Ep) of alarms that can be generally repre-

sented by Ep. Obviously, all alarms should have their abstracted alarm de-

scriptors, so that the union of all I(Ep)’s gives the complete set of alarms, i.e,

A = ∪p=1,2,··· ,|C|I(Ep). Besides, each alarm can only be represented by one

abstracted alarm descriptor; and thus the sets I(Ep) and I(Eq) are disjoint,

i.e., I(Ep) ∩ I(Eq) = ∅ if p 6= q, where ∅ denotes the empty set.

For an alarm a ∈ A, its abstracted alarm descriptor is Ea = {E|a ∈

I(E)}. Then, the tuple of alarm a in eqn. (3.1) is augmented by the abstracted

alarm descriptor Ea as a∗ = (εa, ζa, χa, Ea), and its corresponding record E in

eqn. (3.2) is replaced by E∗ = (a∗, t, s). Finally, alarm representations are

generalized, such that alarms indicating the same type of abnormalities are

represented identically. Thereafter, similarity analysis is conducted to discover
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similar alarm floods across different processes based on such abstracted alarm

descriptors.

For the generalization of alarm representations, other alternative approaches

may be exploited. For example, tag names could be utilized to quickly gen-

eralize alarm descriptions, if the tag structures are clearly known such that

alarms are distinguishable based on the prefix, postfix, and certain letters in

tag names. Besides, other natural language processing techniques, such as

grammar induction, terminology extraction, and part-of-speech tagging [48],

may also be applied to obtain abstracted alarm descriptors, and thus deserve

further studies.

3.4 Cross-Process Similarity Analysis of Alarm

Floods

To capture similar alarm floods across different processes, a systematic

similarity analysis method is proposed in this section; three main steps are

involved, including the unit-based sequence extraction, the set-based pre-

matching, and the sequence-based comparison.

3.4.1 Unit-Based Sequence Extraction

Based on an A&E log, alarm flood sequences are extracted. To avoid

false identification of alarm floods caused by chattering alarms, delay timers

should be applied first [97]. Moreover, to compare alarm floods across different

processes, the extraction of alarm flood sequences must consider the process

unit information. In different systems, the grouping of alarms based on sub-

units or sub-processes could be different; therefore, prior process knowledge

should be incorporated to decide the sub-units or sub-processes in the step

of unit-based alarm flood extraction. For instance, to compare alarm floods

among several coal mills in a power plant, a unit is a coal mill system; while a

unit becomes a pump station when the comparison is conducted for pipeline

systems.
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For a process unit ζk ∈ Z, its A&E log is given by

D(ζk) = 〈Eζk

1 , E
ζk

2 , · · · , E
ζk

|D(ζk)|〉, (3.10)

where 〈·〉 denotes a sequence and Eζk

i is the ith event record in D(ζk), i =

1, 2, · · · , |D(ζk)|. Here, D(ζk) is utilized to extract alarm floods following the

definition in ANSI/ISA-18.2 [49]. Thereafter, the set of alarm floods from all

process units is

F =

|Z|⋃
k=1

F(ζk), (3.11)

where F(ζk) gives all alarm floods from process unit ζk.

Later, similarity analysis for alarm floods across different processes is con-

ducted through the set-based pre-matching and the sequence-based compari-

son.

3.4.2 Set-Based Pre-Matching

Set-based pre-matching is a critical step to efficiently exclude dissimilar

floods. Alarm floods are pre-matched without considering the orders of alarms

prior to the sequence-based comparison. The latter yields to more accurate

similarity analysis but has higher computational complexity.

An alarm flood is a sequence of alarms and denoted by

F = 〈a1, a2, · · · , a|F|〉, (3.12)

where ai is the ith alarm in F ∈ F, i = 1, 2, · · · , |F|. Given a pair of alarm

floods Fi, Fj ∈ F, their set-based similarity score is calculated based on the

Szymkiewicz-Simpson coefficient [22] as

Φ0 =
|ΓFi
∩ ΓFj

|
min(|ΓFi

|, |ΓFj
|)
, (3.13)

where ΓF = {Ea|a ∈ F} denotes the set of abstracted alarm descriptors for all

alarms in F . The operator ∩ stands for set intersection and min(·) gives the

minimum of input values.
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The computation proceeds to the sequence-based comparison between alarm

floods Fi and Fj, if and only if they have enough abstracted alarm descriptors

in common, i.e., Φ0 ≥ Φ0,th, where Φ0,th is a user defined threshold to exclude

dissimilar alarm flood pairs. Generally, selecting a larger value of Φ0,th would

lead to the exclusion of more alarm floods from the sequence-based compar-

ison, and vice versa. By default, set Φ0,th = 0, such that the alarm floods

without common abstracted alarm descriptors are excluded [43].

3.4.3 Sequence-Based Comparison

In this subsection, alarm floods passing the set-based pre-matching are

compared based on sequences of alarms. A sequence alignment method,

namely, the Smith-Waterman algorithm [83], is exploited and adapted to

achieve comparisons between alarm floods across different processes. To make

this algorithm more compatible with the alignment of alarm flood sequences,

time stamps of alarm events are incorporated [21]. The algorithm in [21] is

further adapted by revising the scoring function based on abstracted alarm

descriptors, so as to achieve cross-process alarm flood pattern matching.

Given a flood sequence F , its time weighting matrix is

WF = [w1,w2, · · · ,w|F|], (3.14)

where wi = [w1
i , w

2
i , · · · , w

|C|
i ] denotes the time weighting vector for ai ∈ F ;

the pth element of wi is wpi = f(dpi ), p = 1, 2, · · · , |C|; f(·) is the weight-

ing function; dpi represents the time interval between ai and the alarm with

abstracted alarm descriptor Ep in F . The time interval dpi is obtained as

dpi =


min
aj∈F
{|ti − tj| : Eaj = Ep, Ep ∈ C},

if the set is not empty,

∞, otherwise,

(3.15)

where ti and Eai (tj and Eaj) are the time stamp and abstracted alarm de-

scriptor of alarm ai (aj) in F , respectively.

Given alarm floods Fi, Fj ∈ F, consisting of abstracted alarm descriptors,

the sequence-based similarity score Φ and the score matrix H are calculated
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Algorithm 2 [Φs,L] = Fcn Sqc(Fi,Fj, µ, δ): Sequence-Based Alarm Flood
Comparison

1: Input Arguments: Fi, Fj, µ, δ
2: Output Arguments: Φs, L
3: Calculate ΦFiFj

and HFiFj
based on Fi,Fj, µ, δ

4: Calculate ΦFjFi
and HFjFi

based on Fj,Fi, µ, δ
5: Φs = max(ΦFiFj

,ΦFjFi
)/min(|Fi|, |Fj|)

6: if ΦFiFj
≥ ΦFjFi

then
7: H = HFiFj

8: else
9: H = HFjFi

10: end if
11: Initialize (p, q) = arg max H(p, q), k = 1
12: while H(p, q) 6= 0 do
13: Record L(k) = (p, q)
14: H0 = max(H(p− 1, q),H(p− 1, q − 1),H(p, q − 1))

15: (p, q) =


(p− 1, q), if H0 = H(p− 1, q)

(p, q − 1), if H0 = H(p, q − 1)

(p− 1, q − 1), otherwise
16: k = k + 1
17: end while

using the modified Smith-Waterman algorithm [21]. First, the time weighting

matrices WFi
and WFj

for Fi and Fj are computed by eqn. (3.14), using

different weighting functions f1(·) and f2(·). Here, f1(x) = e−x/2η
2
, where η

is the scaling parameter; f2(x) = 1, iff x = 0; otherwise, f2(x) = 0. Second,

H is initialized as an all-zero matrix with |Fi|+ 1 rows and |Fj|+ 1 columns.

Third, H is recursively updated as H(m + 1, n + 1) = max(H1, H2, H3, 0),

where m = 1, · · · , |Fi|, n = 1, · · · , |Fj|, H1 = H(m,n+1)+δ, H2 = H(m,n)+

φ(aim, a
j
n), and H3 = H(m + 1, n) + δ. The match score between aim and ajn

is φ(aim, a
j
n) = max{WFi

(m) ◦WFj
(n)}(1 − µ) + µ, where ◦ indicates the

element-wise product of two vectors and WFi
(m) (WFj

(n)) represents the

corresponding column in the time weighting matrix for the mth (nth) alarm

aim ∈ Fi (ajn ∈ Fj). The parameters µ and δ are mismatch penalty and gap

penalty, respectively. By default, select −1 < µ < 2δ < 0 to prefer gapped

alignment instead of mismatch. Last, the final similarity score is the maximum

54



element of H, i.e., Φ = max(H).

Due to the selection of weighting functions f1(·) and f2(·), the obtained

alarm flood similarity score Φ is asymmetric. Therefore, to deal with such a

problem, the comparison of alarm floods is conducted in two ways as in lines

3-4 of Algorithm 2, which eventually gives the optimal normalized similarity

score as Φs ∈ [0, 1] in line 5, and its corresponding score matrix H in lines

6-10. Thereafter, the optimal alignment L of Fi and Fj is determined in lines

11-17 through the recursive search of the index pair (p, q) that yields to the

optimal alignment in each updating step.

It should be noted that even though the idea is based on the methods

in [21, 43], the proposed method in this section is different from [21, 43] in

three aspects: the incorporation of process unit information for alarm flood

extraction, the set-based pre-matching by Szymkiewicz-Simpson coefficients

with abstracted alarm descriptors, and the generalized sequence alignment to

capture similar alarm floods across different processes.

3.4.4 Implementation and Discussions

For implementation, the complete procedures of cross-process alarm flood

pattern matching are summarized in Algorithm 3. The input is the A&E log

D, and the outputs are the similarity matrix S and the set of alignments L.

There are two main calculation stages, including the generalization of alarm

representations (lines 3-6) and the similarity analysis of alarm floods (lines

7-15).

As for the computational complexity, the proposed method for generalized

alarm flood pattern matching is conducted in an offline manner; its com-

putational complexity is mainly comprised of two parts, namely, C1 for the

generalization of alarm representations and C2 for the comparison of alarm

floods. More specifically, C1 = O (|A|maxa∈A |χ̃a|) and C2 = O (|F|2MN |C|),

where O(·) is the big-O notation of computational complexity, |A| denotes

the number of alarms, |χ̃a| is the number of key words in the bag-of-words
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Algorithm 3 [S,L] = Fcn Main(D): Cross-Process Alarm Flood Pattern
Matching

1: Input Argument: D
2: Output Arguments: S, L
3: Obtain the set of bag-of-words models X̃ by eqn. (3.3)
4: Determine sets of stop words as ξ1, ξ2, and ξ3 by eqns. (3.5), (3.6), and

(3.7), respectively
5: Purify the set of bag-of-words models X̄ by eqn. (3.8)
6: Reconstruct abstracted alarm descriptors C by eqn. (3.9)
7: Collect alarm floods into set F by eqn. (4.1)
8: for ∀Fi, Fj ∈ F do
9: Calculate set-based similarity score Φ0 by eqn. (3.13)

10: if Φ0 ≥ Φ0,th then
11: [Φs,L] = Fcn Sqc(Fi,Fj, µ, δ)
12: S(i, j) = S(j, i) = Φs

13: L(i, j) = L(j, i) = {L}
14: end if
15: end for

model for alarm a ∈ A, |F| indicates the number of alarm flood sequences,

M and N represent the lengths of two alarm flood sequences for comparison,

and |C| is the number of abstracted alarm descriptors. It can be seen that

the computational complexity is mainly related to the number of alarms, the

number of key words, and the number of alarm floods. The computational

complexity C2 for the second part, namely, the comparison of alarm floods, is

almost the same as that of the method in [21]. Since the proposed method is

offline, there is no strict requirement for computational efficiency.

Remark 5. The applicability of the proposed method is based on two con-

ditions: 1) The studied large-scale industrial facility must be comprised of

similar sub-systems or sub-processes that resemble each other in functional-

ities or architectures, e.g., a thermal power plant with multiple coal mills or

a pipeline system with many pump stations, such that these sub-systems or

sub-processes have the same types of faults accompanied by certain alarm

floods. 2) The analyzed historical alarm and event data must contain in-

tegrated textual information for each alarm rather than unexplainable code
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names or abbreviations such that key words can be extracted to construct

abstracted alarm descriptors.

3.5 Industrial Case Study

The proposed method was tested in a real large-scale industrial facility.

Details of the application results are presented in the following subsections.

3.5.1 Comparison of Pattern Matching Results

The studied industrial facility is comprised of quite a few similar process

units with the same architecture and analogous functionalities. Alarm floods

were found to appear commonly in these units, compromising the efficiency of

the alarm system. The proposed method was applied to compare alarm floods,

so as to figure out a generalized solution for similar alarm floods caused by

the same fault but from different process units. Delay timers were applied to

reduce chattering alarms, so as to avoid false identification of alarm floods.

Then, alarm floods were extracted and collected into a set F, where 5, 7, and

6 alarm flood sequences were found from three different units, respectively.

The numerical indices of alarm floods in Unit 1 are 1, 2, · · · , 5; for Unit 2, the

indices are 6, 7, · · · , 12; for Unit 3, the indices are 13, 14, · · · , 18. In total, 18

alarm flood sequences were extracted from the three units.

The obtained results using both the proposed method and the method

in [21] were compared. The similarity color map in Fig. 3.3 displays the pattern

matching results using the method in [21], where alarms are represented by

exact tag names. Each number on the vertical and horizon axes represents

the numerical index of an alarm flood, and the color gradation in each cell

indicates the similarity score between an alarm flood on the horizontal axis

and the other one on the vertical axis. Here, similarity scores for alarm floods

from three different units are highlighted by solid red squares. Clusters of

similar floods are detected and highlighted by dashed red rectangles.

Then, the proposed method was applied to the same A&E log. First,
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Figure 3.3: Alarm flood similarity color map based on exact alarm tags.

abstracted alarm descriptors were reconstructed to generalize alarm represen-

tations, following the steps in lines 3-6 of Algorithm 3. There were 388 unique

alarms from the A&E log, and 155 key words were distilled from their detailed

descriptions, such as “valve”, “motor”, and “level”. In total, 100 unique ab-

stracted alarm descriptors were obtained from the purified key words. Then,

the similarity scores of alarm floods were recursively calculated based on ab-

stracted alarm descriptors through lines 7-15 of Algorithm 3. The obtained

results of similarity scores between alarm floods are shown in Fig. 3.4. To

make it easier to compare, these alarm floods are sorted in the same order as

that in Fig. 3.3.

Comparing Figs. 3.3 and 3.4, we have that the obtained similarity scores

within each unit were almost identical by both methods. However, the sim-
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Figure 3.4: Alarm flood similarity color map based on abstract alarm descrip-
tors.

ilarity scores between alarm floods across different units were significantly

different using the two methods. More specifically, the proposed method dis-

covered several clusters of similar alarm floods across different units, while the

method in [21] did not find any of them. Eventually, three clusters are formed

and highlighted by dashed red rectangles: cluster A is comprised of areas A1,

A2, · · · , and A6 associated with three different units; cluster B consists of

areas B1, B2, and B3 associated with units 2 and 3; cluster C only contains

alarm floods from unit 2.
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Time Tag Abstracted Alarm Descriptor

15:59:05 U3.Tag.1 bypass valve local

15:59:05 U3.Tag.2 bypass valve auto

15:59:19 U3.Tag.108 suction valve travel open

15:59:24 U3.Tag.109 suction valve open

15:59:29 U3.Tag.110 suction valve travel close

15:59:35 U3.Tag.114 suction valve close

15:59:39 U3.Tag.115 discharge valve travel open

15:59:44 U3.Tag.116 discharge valve open

15:59:49 U3.Tag.117 discharge valve travel close

15:59:54 U3.Tag.121 discharge valve close

16:00:09 U3.Tag.122 discharge valve open

16:00:19 U3.Tag.123 discharge valve close

16:00:24 U3.Tag.124 suction valve travel open

16:00:29 U3.Tag.127 suction valve open

16:00:39 U3.Tag.128 suction valve close

16:02:38 U3.Tag.129 discharge valve travel close

Alarm Flood Sequence #15 (from Unit 3)
Time Tag Abstracted Alarm Descriptor
21:18:20 U1.Tag.1 discharge valve travel open

21:21:57 U1.Tag.2 bypass valve auto

21:21:57 U1.Tag.58 bypass valve local

21:22:20 U1.Tag.62 suction valve open

21:22:25 U1.Tag.63 suction valve travel close

21:22:32 U1.Tag.64 suction valve close

21:22:42 U1.Tag.68 discharge valve open

21:22:55 U1.Tag.69 discharge valve close

21:23:10 U1.Tag.70 discharge valve open

21:23:15 U1.Tag.71 discharge valve travel close

21:23:25 U1.Tag.76 discharge valve close

21:23:27 U1.Tag.77 suction valve travel open

21:23:32 U1.Tag.78 suction valve open

21:23:40 U1.Tag.82 discharge valve travel close

21:23:45 U1.Tag.83 suction valve close

Alarm Flood Sequence #5 (from Unit 1)

Figure 3.5: Sequence alignment of alarm floods #5 and #15 from cluster
A. The two alarm floods were from two different units (Units 1 and 3), but
associated with the same root cause, namely, the unusual valve operation
mode.

Time Tag Abstracted Alarm Descriptor

10:21:05 U3.Tag.16 unit lockout

10:21:05 U3.Tag.17 unit power fail

10:21:41 U3.Tag.30 unit lockout

10:21:41 U3.Tag.46 unit power fail

10:22:27 U3.Tag.49 unit lockout

10:22:27 U3.Tag.57 unit power fail

10:23:20 U3.Tag.62 unit trouble

10:23:20 U3.Tag.72 unit lockout

10:23:20 U3.Tag.76 suction valve status unkown

10:23:20 U3.Tag.111 suction valve local

10:23:20 U3.Tag.112 suction valve status unkown

10:23:20 U3.Tag.118 suction valve local

10:23:20 U3.Tag.119 discharge valve status unkown

10:23:20 U3.Tag.125 discharge valve local

10:23:20 U3.Tag.126 discharge valve status unkown

10:23:20 U3.Tag.130 discharge valve local

Alarm Flood Sequence #16 (from Unit 3)
Time Tag Abstracted Alarm Descriptor
2:29:08 U2.Tag.41 unit lockout

2:29:08 U2.Tag.42 unit power fail

2:29:08 U2.Tag.45 unit power fail

2:29:08 U2.Tag.46 unit power fail

2:29:08 U2.Tag.50 suction valve status unknown

2:29:08 U2.Tag.55 suction valve local

2:29:08 U2.Tag.61 suction valve status unknown

2:29:08 U2.Tag.66 suction valve local

2:29:08 U2.Tag.67 discharge valve status unknown

2:29:08 U2.Tag.72 discharge valve local

2:29:08 U2.Tag.74 discharge valve status unknown

2:29:08 U2.Tag.80 discharge valve local

2:29:38 U2.Tag.91 power monitor communication fail

Alarm Flood Sequence #6 (from Unit 2)
Time Tag Abstracted Alarm Descriptor

10:21:05 U3.Tag.16 unit lockout

10:21:05 U3.Tag.17 unit power fail

10:21:41 U3.Tag.30 unit lockout

10:21:41 U3.Tag.46 unit power fail

10:22:27 U3.Tag.49 unit lockout

10:22:27 U3.Tag.57 unit power fail

10:23:20 U3.Tag.62 unit trouble

10:23:20 U3.Tag.72 unit lockout

10:23:20 U3.Tag.76 suction valve status unkown

10:23:20 U3.Tag.111 suction valve local

10:23:20 U3.Tag.112 suction valve status unkown

10:23:20 U3.Tag.118 suction valve local

10:23:20 U3.Tag.119 discharge valve status unkown

10:23:20 U3.Tag.125 discharge valve local

10:23:20 U3.Tag.126 discharge valve status unkown

10:23:20 U3.Tag.130 discharge valve local

Alarm Flood Sequence #16 (from Unit 3)
Time Tag Abstracted Alarm Descriptor
2:29:08 U2.Tag.41 unit lockout

2:29:08 U2.Tag.42 unit power fail

2:29:08 U2.Tag.45 unit power fail

2:29:08 U2.Tag.46 unit power fail

2:29:08 U2.Tag.50 suction valve status unknown

2:29:08 U2.Tag.55 suction valve local

2:29:08 U2.Tag.61 suction valve status unknown

2:29:08 U2.Tag.66 suction valve local

2:29:08 U2.Tag.67 discharge valve status unknown

2:29:08 U2.Tag.72 discharge valve local

2:29:08 U2.Tag.74 discharge valve status unknown

2:29:08 U2.Tag.80 discharge valve local

2:29:38 U2.Tag.91 power monitor communication fail

Alarm Flood Sequence #6 (from Unit 2)

Figure 3.6: Sequence alignment of alarm floods #6 and #16 from cluster
B. The two alarm floods were from two different units (Units 2 and 3), but
associated with the same root cause, namely, the power failure.

3.5.2 Clusters of Alarm Flood Sequences

The three clusters of alarm floods are presented with more detailed expla-

nations as follows.
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Time Tag Abstracted Alarm Descriptor

15:20:22 U2.Tag.48 block valve travel open

15:20:28 U2.Tag.51 sump pump run

15:20:38 U2.Tag.56 block valve open

15:20:38 U2.Tag.62 discharge valve travel trap

15:20:38 U2.Tag.68 suction valve travel trap 

15:20:42 U2.Tag.69 discharge valve trap 

15:20:46 U2.Tag.71 suction valve trap 

15:20:46 U2.Tag.76 valve trap command unknown

15:20:46 U2.Tag.83 discharge valve travel trap 

15:20:52 U2.Tag.89 discharge valve trap

Alarm Flood Sequence #7 (from Unit 2)
Time Tag Abstracted Alarm Descriptor

6:38:52 U2.Tag.48 block valve travel open

6:38:52 U2.Tag.51 sump pump run

6:38:52 U2.Tag.56 block valve open

6:38:52 U2.Tag.62 discharge valve travel trap

6:38:56 U2.Tag.69 discharge valve trap 

6:38:56 U2.Tag.71 suction valve trap 

6:38:56 U2.Tag.76 valve trap command unknown

6:39:01 U2.Tag.83 discharge valve travel trap 

6:39:01 U2.Tag.85 discharge valve travel trap 

6:39:11 U2.Tag.89 discharge valve trap

Alarm Flood Sequence #11 (from Unit 2)

Figure 3.7: Sequence alignment of alarm floods #7 and #11 from cluster C.
The two alarm floods were from the same unit (Unit 2), and associated with
the same root cause, namely, the valve trap.

Cluster A

Alarm floods in this cluster were from three different units. Fig. 3.5

presents an example of the sequence alignment of two alarm floods (#5 and

#15) across units 1 and 3. Matched alarms between the two alarm flood se-

quences are connected by red lines. It can be seen that the matched alarms are

identical in abstracted alarm descriptors but different in tag names. There-

fore, only the proposed method discovered such similar alarm floods across

different process units, while the method in [21] based on tag names failed.

From the abstracted alarm descriptors, all these alarms were associated with

valves and appeared almost in the same sequential order. In fact, the alarm

floods in cluster A were all associated with the same root cause, namely, the

unusual valve operation mode.

Cluster B

Alarm floods in this cluster were from units 2 and 3. Fig. 3.6 presents an

example of the sequence alignment of two alarm floods (#6 and #16) across

two different units. Matched alarms are found to appear in the same sequential

order. This pair of similar alarm floods was also detected by the proposed

method, while the similarity between them was zero using the method in [21].

In fact, the alarm floods in cluster B were all associated with the same root
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cause, namely, the power failure.

Cluster C

Alarm floods in this cluster were all from unit 2. Fig. 3.7 presents an

example of the sequence alignment of two alarm floods (#7 and #11). Since

the alarm floods were from the same process unit, the matched alarms have the

same tag names and abstracted alarm descriptors. Thus, both the proposed

method and the method in [21] succeeded in discovering such pair of similar

alarm floods. In fact, the alarm floods in this cluster were all associated with

the same root cause, namely, the valve trap in unit 2.

In summary, the results from clusters A and B show that the proposed

method can discover similar alarm floods across different processes without

the restriction of common tag names, whereas the method in [21] based on

exact alarm tag names is not able to identify these similar alarm floods. The

results from cluster C show that the proposed method leads to almost the

same conclusions of sequence alignments as those detected using the method

in [21]. Similar alarm floods across different units were discovered using the

proposed method, where such alarm floods were associated with the same type

of abnormalities. The obtained results could lead to generalized solutions to

address such similar alarm floods together.

However, it is possible that strong similarities of alarm floods may arise

due to the reduction of the informative contents in alarm descriptors, if such

constructed alarm descriptors are too general, e.g., different process types or

alarm types are ignored. To cope with the problem, the proposed general-

ization method of alarm representations makes sure that some key words are

reserved. However, as shown in the industrial case study, some similarities

for alarms within the same unit also increased. Since the proposed method is

specifically designed for cross-process analysis of alarm floods, such increased

similarities within the same unit are not desirable. To avoid such problems

for similarity analysis within one process or unit, the method in reference [21]

rather than the proposed method should be used.
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3.6 Summary

To capture similar alarm floods across different processes, a systematic

pattern matching method is proposed in this chapter. The method consists of

two major steps, including the generalization of alarm representations and the

similarity analysis of alarm floods. The effectiveness of the proposed method is

demonstrated by a case study using alarm data from a real industrial facility.

As shown in the case study, the generalization of alarm representations by

abstracted alarm descriptors is critical for cross-process alarm flood pattern

matching. The discovered clusters of similar floods can help to find common

root causes, which lead to generalized solutions to address alarm floods from

different processes all at once. As a result, the efficiency of alarm flood analysis

can be significantly improved.

63



Chapter 4

Pattern Extraction from
Industrial Alarm Flood
Sequences*

4.1 Overview

As a fundamental step for alarm flood analysis, pattern extraction can

effectively distill useful information from historical alarm & event data, and

use the results for many purposes, such as configuration of alarm suppres-

sion modules, root cause analysis, and decision support for real-time alarm

monitoring. However, due to complicated combinations of alarms across dif-

ferent alarm floods, the extraction of alarm patterns is not easy. Methods

based on similarity calculations [19, 21, 43, 61] are capable of identifying sim-

ilar alarm floods, but not straightforward in pattern extraction. For methods

based on data mining [28, 40, 72, 89], alarm patterns are extracted directly

from alarm floods without comparing them. However, these methods still

have some shortcomings, such as lack of consideration for orders and time

stamps [40] and incapability of handling order switchings caused by small

time differences [28, 72, 89]. As a result, either alarm orders are not consid-

ered or critical alarms could be missing in the extracted patterns, which may

*A version of this chapter has been submitted for publication as: Boyuan Zhou, Wenkai Hu,
and Tongwen Chen, Pattern extraction from industrial alarm flood sequences by a modified
CloFAST algorithm. IEEE Transactions on Industrial Informatics.
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impair the usability of extracted alarm patterns. Motivated by the above dis-

cussion, this chapter proposes a new method to extract alarm flood patterns

from historical alarm flood sequences. The main contributions are twofold:

1. A closed alarm sequence mining approach is proposed based on the Clo-

FAST method in [33] with improvement to incorporate time stamps and

tolerate alarm order switchings.

2. A pattern distillation strategy is designed to merge similar alarm se-

quences and export more compact alarm sequential patterns, so as to

cope with irrelevant alarms and different lengths of alarm flood se-

quences.

The proposed method is capable of avoiding the influences of order switchings

caused by small time differences to pattern extraction, and also minimizing

the redundancy of extracted alarm sequential patterns.

4.2 Framework of Pattern Extraction

In the industrial standard ANSI/ISA-18.2 [49], a detailed definition of an

alarm flood is: “The start of an alarm flood is indicated by the first regular

10 minutes interval with an alarm rate that exceeds 10 alarms per 10 minutes.

The end of an alarm flood is indicated by the first regular 10 minutes interval

with an alarm rate of less than 5 alarms per 10 minutes.” Accordingly, by

calculating alarm rate and comparing it with the two thresholds, alarm floods

can be identified from historical Alarm & Event (A&E) logs, which are essen-

tially textural datasets comprised by a series of chronologically ordered alarm

events. Thereafter, the alarm flood sequences are collected into a set as

F = {F1,F2, · · · ,F|F|}, (4.1)

where Fi = 〈E1, E2, · · · , E|Fi|〉 is the ith alarm flood, i = 1, 2, · · · , |F|. The

operator 〈·〉 indicates a sequence, and | · | stands for the size of a sequence,

set, or list. Denote an alarm event in Fi as E = (a, t), where a ∈ A is the
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tag name of a unique alarm, and time stamp t ∈ T indicates when this alarm

occurs. Here, A is the finite set of all configured alarms in an alarm system

and T denotes the studied time period. Thereafter, alarm sequential patterns

are extracted from F, so as to distill useful information that can help with

alarm system improvement, such as root cause analysis, alarm suppression,

and decision support for real-time alarm monitoring.

For this objective, a systematic alarm flood pattern extraction method is

proposed based on a closed sequential pattern mining method called the Clo-

FAST algorithm [33] with improvement in three major aspects, including the

incorporation of time stamps, the tolerance of alarm order switchings, and the

distillation of compact alarm sequential patterns. For better understanding,

some relevant concepts are defined as follows.

Alarm Itemset

An alarm itemset is a set of alarms that have identical time stamps in each

of the analyzed alarm floods. Denote an alarm itemset as I = {a1, a2, · · · , a|I|},

where ai ∈ A is the ith alarm in I, i = 1, 2, · · · , |I|. The support of I is de-

fined as the number of alarm floods containing I, i.e., σ(I) = |{F|∀a ∈ I, E =

(a, t) ∈ F}|. It should be noticed that, for each alarm flood F ∈ F, it is always

satisfied that ti = tj, ∀ai, aj ∈ I, where ti (tj) denotes the time stamp of ai

(aj) in F . As a result, the basic components of alarm floods are captured as

alarm itemsets. To ensure the compactness of such basic components, it is

desired that alarm itemsets are closed. Following the concept in [33], a closed

alarm itemset is defined as follows.

Definition 3. Alarm itemset I is a closed itemset, iff

1. I is frequent, i.e., σ(I) ≥ σ̄I , and

2. I is closed, i.e., there exists no super itemset I ′, such that I ⊂ I ′ and

σ(I ′) = σ(I).

Here, σ̄I is a user-defined threshold called minimum itemset support. �
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Alarm Sequence

An alarm sequence is comprised by a collection of closed alarm itemsets,

which are sequentially ordered based on time stamps. Denote an alarm se-

quence as S = 〈I1, I2, · · · , I|S|〉, where ∀Ii, Ij ∈ S, ti ≺ tj, if i ≤ j. Here,

ti (tj) is the time stamp of Ii (Ij). The operator ≺ denotes a relaxed com-

parison of time stamps, where ti ≺ tj holds, iff ti ≤ tj − ∆t and ∆t is small

nonnegative value. Therefore, as inspired by [33], but with further modifica-

tions to tolerate order switchings of alarms, a closed alarm sequence is defined

as follows.

Definition 4. Alarm sequence S is a closed sequence, iff

1. S is frequent, i.e., σ(S) ≥ σ̄S , and

2. S is closed, i.e., there exists no super sequence S ′, such that S @ S ′ and

σ(S ′) = σ(S).

Here, σ̄S is a user-defined threshold called minimum sequence support. By

default, set σ̄S = σ̄I . The support of S is denoted as σ(S), which indicates

the occurrence frequency of S across the analyzed alarm floods. The operator

@ denotes that S is the subsequence of S ′, i.e., S ′ captures all alarm itemsets

in S with identical sequential orders. More specifically, for ∀Ii, Ij ∈ S, there

exist I ′i, I ′j ∈ S ′, such that Ii = I ′i and Ij = I ′j, while both ti ≺ tj and t′i ≺ t′j

hold. �

Accordingly, the problem in this study is then formulated as: given the

dataset F of alarm flood sequences, the objective is to extract alarm sequential

patterns of interest. The framework of the proposed method for the extraction

of alarm flood patterns is summarized in Fig. 4.1, where the calculation is

conducted in four major stages, including 1) the set-based pre-matching to

facilitate calculation by excluding irrelevant alarm flood sequences, 2) the

determination of closed alarm itemsets to give basic components of alarm

floods by incorporating time stamps, 3) the discovery of closed alarm sequences

67



Figure 4.1: Framework of the proposed method to extract alarm sequential
patterns.

to identify typical representations of alarm floods with the tolerance of alarm

order switchings, and 4) the distillation of alarm sequential patterns to reduce

the impact of irrelevant alarms and different lengths of alarm flood sequences.

Detailed calculations and procedures regarding the four stages are presented

in the next section.

4.3 Methodology

This section proposes a systematic method for the extraction of alarm

sequential patterns. Four major steps are involved, including the set-based

pre-matching, the determination of closed alarm itemsets, the discovery of

closed alarm sequences, and the distillation of alarm sequential patterns.
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4.3.1 Set-Based Pre-Matching

As the first step, a set-based pre-matching mechanism is exploited to sepa-

rate alarm flood sequences into groups for pattern extraction and also exclude

the irrelevant alarm floods. Given historical alarm flood sequences in F, a

binary matrix J is calculated with each element given by

Ji,j =

{
1, if |Γ(Fi) ∩ Γ(Fj)| ≥ Lth,

0, otherwise,
(4.2)

where Γ(F) = {a|E = (a, t) ∈ F} gives the set of alarms contained in F ∈ F,

and Ji,j represents the element in the ith row and jth column of the matrix.

Ji,j = 1, if Fi and Fj have enough common alarms; otherwise, Ji,j = 0. Here,

Lth is a user-defined threshold called minimum pattern length. By default, a

rule of thumb is to set the threshold Lth = 5, since the industrial standard

ANSI/ISA-18.2 [49] defines the end of an alarm flood as when the alarm rate

drops below 5 alarms over a period of 10 minutes.

Thereafter, by clustering the alarm floods with Ji,j = 1, alarm floods are

separated into different collections; in each collection Fk = {Fk1 ,Fk2 , · · · ,Fk|Fk|},

any two alarm floods Fki and Fkj must have at least Lth alarms in common

(i.e., Ji,j = 1). As a result, irrelevant sequences are excluded from pattern ex-

traction for Fk, such that unnecessary calculations can be avoided. Eventually,

the set of alarm floods is divided into K collections, i.e., F =
⋃K
k=1 Fk, where

pattern extraction is recursively conducted for each collection of alarm floods.

It is worth mentioning that the set-based pre-matching is robust to irrelevant

alarms and different lengths of alarm flood sequences because the calculation

only measures the number of common alarms. In addition, set-based pre-

matching can help with the selection of proper values of σ̄I and σ̄S based on

the number of alarm floods in each collection. Next, closed alarm itemsets

are determined from each collection Fk of alarm floods by incorporating time

stamps.
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4.3.2 Determination of Closed Alarm Itemsets

For the determination of closed alarm itemsets, a list data structure (called

itemset time-list) is utilized to represent the time stamps of alarms in an

itemset. Specifically, given an alarm itemset I, its itemset time-list is given

by

Ψ(I) = [ψ1, ψ2, · · · , ψ|F|], (4.3)

where ψi = {t1, t2, · · · , t|ψi|} is a set composed of all time stamps corresponding

to alarm occurrences of I in the ith alarm flood Fi ∈ F, which contains all

alarms in I; otherwise ψi = ∅, and ∅ denotes an empty set. Then, the support

value of I, namely, the number of alarm flood sequences containing I, is

calculated as the number of non-empty sets in Ψ(I), i.e.,

σ(I) = |{ψ|ψ 6= ∅ and ψ ∈ Ψ(I)}|. (4.4)

For initialization, the values of I and Ψ(I) are assigned based on alarm tag

names and time stamps, respectively. Each alarm itemset is initialized as a

set comprised by a single alarm, i.e., I = {a}, a ∈ A, and then ψi ∈ Ψ(I) is

ψi = {t|E = (a, t) ∈ Fi,Fi ∈ F}. (4.5)

It is noteworthy that ψi = ∅, if a ∈ A is not in the ith alarm flood Fi,

i = 1, 2, · · · , |F|.

Thereafter, itemset extension is recursively performed to determine closed

alarm itemset. Given two alarm itemsets I and I ′, an extended alarm itemset

is obtained as

Ĩ = I ∪ I ′, (4.6)

where ∪ stands for the set union. The itemset time-list of Ĩ is represented by

Ψ(Ĩ) = [ψ̃1, ψ̃2, · · · , ψ̃|F|] with each element obtained by

ψ̃i = ψi ∩ ψ′i, (4.7)

where ∩ denotes set intersection, and ψi and ψ′i are the ith sets in Ψ(I) and

Ψ(I ′), respectively, i = 1, 2, · · · , |F|. Then, it is determined that if Ĩ gives a
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Algorithm 4 H̃I = g(HI , Ĩ, σ̄I): Update discovered closed alarm itemsets

1: Input Arguments: HI , Ĩ
2: Output Argument: H̃I
3: if σ(Ĩ) ≥ σ̄I then
4: if ∃(σ ×Nσ) ∈ HI , s.t. σ = σ(Ĩ) then
5: for I ∈ Nσ do
6: if Ĩ ⊆ I and Ψ(Ĩ) = Ψ(I) then
7: H̃I = HI , return . Early termination
8: else if I ⊂ Ĩ and Ψ(I) = Ψ(Ĩ) then
9: HI = HI 	 I

10: end if
11: end for
12: end if
13: H̃I = HI ⊕ Ĩ
14: else
15: H̃I = HI
16: end if

closed alarm itemset based on a hash table, which is comprised by a collection

of key-value pairs as HI = (σ × Nσ), where the key is σ and the value is

Nσ that contains discovered closed alarm itemsets having the same support

σ. The procedures to update hash table are summarized by Algorithm 4,

which is inspired by [33] but further revised with set operations to facilitate

the calculation. In Algorithm 4, HI (H̃I) represents the existing (updated)

hash table, which stores the discovered closed alarm itemsets. The operator

⊕ (	) means to update hash table by adding (removing) alarm itemset into

(from) Nσ. The condition Ψ(Ĩ) = Ψ(I) holds, iff ψ̃i = ψi, ∀i = 1, 2, · · · , |F|.

Itemset extension is recursively performed until no more closed alarm

itemsets could be discovered. Then, the obtained results are collected into

a set as C = {I1, I2, · · · , I|C|}, where Ii is the ith closed alarm itemset,

i = 1, 2, · · · , |C|. To implement such recursive calculation for itemset exten-

sion, the depth-first strategy in [33] is adapted in this work. As a result, given

F and σ̄I , closed alarm itemsets are determined and collected into a set by

C = fI(F, σ̄I), (4.8)

where fI(·) denotes the function to determine closed alarm itemsets. Further,
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closed alarm sequences are discovered by sequentially assembling the obtained

closed alarm itemsets based on their time stamps.

4.3.3 Discovery of Closed Alarm Sequences

An alarm sequence is comprised by a collection of closed alarm itemsets

that are sequentially ordered by time stamps. Thus, a sequence time-list is

used. Given an alarm sequence S = 〈I1, I2, · · · , I|S|〉, its sequence time-list is

given by

Ω(S) = [ω1, ω2, · · · , ω|F|], (4.9)

where ωi = 〈t1, t2, · · · , t|S|〉 is a sequence of time stamps corresponding to

the closed alarm itemsets of S in the ith alarm flood, i = 1, 2, · · · , |F|. For

instance, given that the jth closed alarm itemset Ij ∈ S, j = 1, 2, · · · , |S|,

exists in alarm flood Fi ∈ F at time instant t̃, the time stamp is then recorded

in ωi with tj = t̃. For initialization, the values of S and Ω(S) are determined

based on I and Ψ(I), respectively. Each alarm sequence is initialized with a

single closed alarm itemset, i.e., S = 〈I〉, I ∈ C. Then, ωi ∈ Ω(S) is obtained

as

ωi =

{
min(ψi), if ψi 6= ∅, ψi ∈ Ψ(I),

∞, otherwise,
(4.10)

where ∞ denotes an empty element in sequence time-list. The support of S

is calculated as

σ(S) = |{ω|ω 6=∞ and ω ∈ Ω(S)}|, (4.11)

which indicates the occurrence frequency of S, namely, how many alarm floods

contain S.

Thereafter, closed alarm sequences are discovered by sequence extension,

which is to recursively attach a closed alarm itemset to the end of an alarm

sequence. Given an alarm sequence S = 〈I1, I2, · · · , I|S|〉 and a closed alarm

itemset I ∈ C, an extended alarm sequence S̃ is obtained by

S̃ = S t I = 〈I1, I2, · · · , I|S|, I〉, (4.12)
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where the operator t indicates merging an element at the end of a sequence.

The sequence time-list of S̃ is given by Ω(S̃) = [ω̃1, ω̃2, · · · , ω̃|F|]. To achieve

relaxed comparison of time stamps such that order switchings of alarms could

be tolerated in sequence extension, ω̃i is calculated by

ω̃i =

{
ωi tmin(θ), if θ 6= ∅,
∞, otherwise,

(4.13)

where θ = {t|t ≥ max(ωi) − ∆t, t ∈ ψi, ψi ∈ Ψ(I)} gives the set of time

stamps associated with I for sequence extension. Depending on θ, the value

of ω̃i is assigned with two options: if θ 6= ∅, i.e., the sequence extension

is feasible, ω̃i = ωi t min(θ) = 〈t1, t2, · · · , t|S|,min(θ)〉; otherwise, ω̃i = ∞,

which indicates that S̃ does not exist in alarm flood Fi ∈ F, i = 1, 2, · · · , |F|.

The values of ψi and ωi are determined using the ith elements in Ψ(I) and

Ω(S), respectively. Here, ∆t is a user-defined threshold to tolerate alarm order

switchings and it should be a small nonnegative value. A smaller ∆t leads to

reduced tolerance of alarm order switchings across different alarm floods; given

∆t = 0, alarm sequential patterns are extracted with exact alarm occurrence

orders. By contrast, a larger ∆t increases such tolerance but also enlarges the

search space for pattern extraction.

After sequence extension, it is decided that if S̃ gives a closed alarm se-

quence based on a hash table, which is comprised by a collection of key-value

pairs for support values and the corresponding closed alarm sequences. The

detailed procedures are summarized in Algorithm 5, where HS (H̃S) denotes

the existing (updated) hash table. Moreover, to update the hash table, the se-

quential orders of alarms should be further considered, and thus the condition

Ω(S̃) v Ω(S) holds, iff ω̃i v ωi, ∀i = 1, 2, · · · , |F|.

Sequence extension is recursively performed until no more closed alarm

sequences could be discovered. Then, the obtained results are put into a

set as S = {S1,S2, · · · ,S|S|}, where Si is the ith closed alarm sequence,

i = 1, 2, · · · , |S|. Such recursive calculation for the discovery of closed alarm

sequences is implemented by the depth-first strategy. Therefore, given C and
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Algorithm 5 H̃S = h(HS , S̃, σ̄S): Update discovered closed alarm sequences

1: Input Arguments: HS , S̃
2: Output Argument: H̃S
3: if σ(S̃) ≥ σ̄S then
4: if ∃(σ ×Nσ) ∈ HS , s.t. σ = σ(S̃) then
5: for S ∈ Nσ do
6: if S̃ v S and Ω(S̃) v Ω(S) then
7: H̃S = HS , return . Early termination
8: else if S @ S̃ and Ω(S) @ Ω(S̃) then
9: HS = HS 	 S

10: end if
11: end for
12: end if
13: H̃S = HS ⊕ S̃
14: else
15: H̃S = HS
16: end if

σ̄S , closed alarm sequences are discovered and collected into a set by

S = fS(C, σ̄S), (4.14)

where fS(·) is the function to discover closed alarm sequences. It is noteworthy

that in the obtained results, there may exist some closed alarm sequences that

resemble each other with most alarms the same and only a few alarms distinct,

leading to redundancy of extracted patterns. Thus, it is necessary to merge

such similar closed alarm sequences to obtain more compact results. This is

achieved by a pattern distillation step in the next subsection.

4.3.4 Distillation of Alarm Sequential Patterns

The closed alarm sequences collected in S should be further distilled, so as

to reduce the redundancy of the obtained results and export compact alarm

sequential patterns. The distillation is conducted by the following three major

steps.

First, the groups of closed alarm sequences for pattern distillation are

identified based on the proportion of shared common alarms. For this purpose,
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a binary matrix Ξ is calculated with each element given by

Ξi,j =

{
1, if ρ(Si,Sj) ≥ ρ̄,

0, otherwise,
(4.15)

where ρ̄ denotes a user-defined threshold for pattern distillation and Ξi,j stands

for the element in the ith row and jth column of the matrix. Function ρ(·)

measures the proportion of identical alarms between Si and Sj in S, where the

compared alarms are taken as identical, iff they have the same tag names and

equal time stamps. Therefore, ρ(Si,Sj) is calculated by

ρ(Si,Sj) =
|X (Si,Sj)}|

min(|Φ(Si)|, |Φ(Sj)|)
, (4.16)

where min(·) gives the minimum of input values. Φ(S) = {a|Ẽ = (a,Γ(a)) ∈

S} stands for a set captures all alarms in S ∈ S and Γ(a) = [γ1, γ2, · · · , γ|F|]

denotes the time-list of alarm a. The value of γi ∈ Γ(a) is determined based on

ωi ∈ Ω(S), i.e., γi is assigned with the time stamp of I ∈ S that is found from

ωi, where a ∈ I, i = 1, 2, · · · , |F|. X (Si,Sj) = {Ẽp = Ẽq|Ẽp = (ap,Γ(ap)) ∈

Si, Ẽq = (aq,Γ(aq)) ∈ Sj} identifies the identical alarms between Si and Sj. It

should be noticed that the condition Ẽp = Ẽq holds, iff ap = aq and γpi = γqi ,

∀i = 1, 2, · · · , |F|, where γpi ∈ Γ(ap), γqi ∈ Γ(aq).

Second, by clustering closed alarm sequences with Ξi,j = 1, the collec-

tions of closed alarm sequences for pattern distillation are identified. Such

collections are put into a set as

Z = {Z1,Z2, · · · ,Z|Z|}, (4.17)

where Zn = {Sn1 ,Sn2 , · · · Sn|Zn|} is the nth collection of closed alarm sequences,

n = 1, 2, · · · , |Z|. For any two closed alarm sequences Sni and Snj in Zn they

are similar in the captured alarms, i.e., Ξi,j = 1.

Last, a compact alarm sequential pattern is distilled from Zn by combining

the corresponding closed alarm sequences as Pn = Sn1 ] Sn2 ] · · · Sn|Zn|, where

] indicates the distillation of compact alarm sequential pattern, i.e., the cap-

tured alarms are sequentially ordered based on their average time stamps.
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Here, the compact alarm sequential pattern is given by

Pn = 〈Ē1, Ē2, · · · , Ē|Pn|〉, (4.18)

where Ēj = (a, t̄) stands for the jth captured alarm event in Pn, j = 1, 2, · · · , |Pn|,

and the tuple gives tag name a and average time t̄. More specifically, the av-

erage time stamp is calculated by

t̄ = fm(Υ(a)), (4.19)

where fm(·) calculates the mean of the inputs and Υ(a) = {t|E = (a, t, r(F)) ∈

E(a)} gives a set of proper time stamps to determine t̄. Here, E(a) = {E1, E2,

· · · , E|E|} represents the set of historical occurrences for alarm a, where E =

(a, t, r(F)) is a tuple comprised by tag name a, time stamp t, and alarm flood

index r(F) (namely, a numerical label to uniquely identify an alarm flood).

The value of E is assigned based on Γ(a) using the associated time stamps and

alarm floods. It is satisfied that ∀Ei, Ej ∈ E(a), they have identical tag names

as a and similar sequential orders, i.e., {t|ti−∆t ≤ t ≤ ti + ∆t}∩{t|tj−∆t ≤

t ≤ tj + ∆t} 6= ∅, where ti (tj) is the time stamp of Ei (Ej). In addition, to

ensure that E is correctly determined, alarm time stamps should be properly

shifted based on an anchor point, which could be selected as the time stamp

of an alarm that occurs across the closed alarm sequences to be distilled. In

practice, such anchor point is not hard to find as the associated closed alarm

sequences involve many identical alarms.

Eventually, all obtained compact alarm sequential patterns are collected

into a set as

P = {P1,P2, · · · ,P|Z|}, (4.20)

where pattern Pn is distilled from Zn, n = 1, 2, · · · , |Z|. It is noteworthy that

the distillation is based on closed alarm sequences rather than original alarm

floods, such that the impact due to irrelevant alarms and different lengths of

alarm flood sequences are avoided.
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Algorithm 6 P = f(F, λ): Alarm Flood Pattern Extraction

1: Input Arguments: F, λ
2: Output Argument: P̄
3: Divide F into K collections of alarm floods as Fk, k = 1, 2, · · · , K, by

set-based pre-matching
4: for Fk ⊂ F do
5: Calculate Ck = fI(Fk, σ̄I) by eqn. (4.8) to determine closed alarm

itemsets
6: Calculate Sk = fS(Ck, σ̄S) by eqn. (4.14) to discover closed alarm se-

quences
7: for Si,Sj ∈ Sk do
8: Calculate Ξi,j by eqn. (4.15)
9: end for

10: Determine Z = {Z1,Z2, · · · ,Z|Z|} by eqn. (4.17)
11: Calculate Pn by eqn. (4.18), ∀Zn ∈ Z
12: Get Pk = {P1,P2, · · · ,P|Z|} by eqn. (4.20)
13: end for
14: Obtain P̄ =

⋃K
k=1 Pk by eqn. (4.21)

4.3.5 Implementation Procedures

To improve calculation efficiency, the extraction of alarm sequential pat-

terns is conducted based on the alarm flood collections determined by set-

based pre-matching. Given the kth collection Fk ⊂ F, k = 1, 2, · · · , K, com-

pact alarm sequential patterns are extracted, and then collected into a set Pk
by eqn. (4.20). Eventually, after recursively performing such calculations for

pattern extraction, the set collecting all discovered alarm sequential patterns

is obtained as

P̄ =
K⋃
k=1

Pk. (4.21)

Detailed procedures of the proposed method for alarm flood pattern ex-

traction are summarized in Algorithm 6, where the inputs are alarm floods

in dataset F and the vector λ = [σ̄I , σ̄S ,∆t, ρ̄, Lth] contains all predefined pa-

rameters; the output is P̄ giving the set of extracted compact alarm sequential

patterns. Specifically, the calculation is performed as follows:

1. Set-based pre-matching is conducted in line 3 to separate alarm flood

77



sequences into multiple collections.

2. Closed alarm itemsets are determined in line 5 by recursively calling

Algorithm 1.

3. Closed alarm sequences are discovered in line 6 by recursively calling

Algorithm 2.

4. Compact alarm sequential patterns are distilled for each collection of

alarm floods in lines 7-12.

As a result, all extracted compact alarm sequential patterns are collected into

P̄.

4.4 Industrial Case Study

In this section, an industrial case study is presented to demonstrate the

effectiveness of the proposed method based on real A&E data.

4.4.1 Overall Results

The A&E data was collected from a large-scale industrial process, over a

long period of one year and eight months. First, alarm floods were identi-

fied from the data based on the definition in industrial standard ANSI/ISA-

18.2 [49]. Off-delay timers were applied to reduce chattering alarms prior to

alarm flood extraction. In total, 178 alarm floods were extracted, involving 933

alarm tags. To distinguish these alarm floods, unique numerical labels were

assigned as 1, 2, · · · , 178. Then, 32 collections of alarm floods were obtained

by set-based pre-matching. Next, alarm flood pattern extractions were recur-

sively performed for each collection of alarm floods. As a result, 34 compact

alarm sequential patterns were obtained.

It is worth mentioning that the search space for alarm flood pattern ex-

traction was effectively reduced by the set-based pre-matching, such that the

maximum number of alarms to be examined for the discovery of an alarm
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flood pattern was reduced to 36. Without set-based pre-matching, all the 933

alarms would have to be examined together, causing many redundant alarm

combinations. Therefore, the proposed method is capable of extracting alarm

sequential patterns based on very low support values (e.g., pairwise alignment

of alarm flood sequences, i.e., σ̄I = 2 and σ̄S = 2).

A summary of the discovered closed alarm itemsets and sequences is shown

in Fig. 4.2, where these alarm itemsets and sequences are intermediate results

for alarm flood pattern extraction. In this figure, the numerical indexes on

the horizontal axis stand for different collections of alarm floods, while the

vertical axis presents the numbers of closed alarm itemsets, closed alarm se-

quences, and compact alarm sequential patterns. Based on the determination

of closed alarm itemsets, complicated alarm combinations were reduced in the

latter calculation stage for the discovery of closed alarm sequences. For exam-

ple, in alarm flood collections #16, #27, and #30, alarm sequential patterns

were effectively extracted by getting closed alarm itemsets, as all alarms in

the corresponding flood sequences were triggered simultaneously. As a re-

sult, the calculations to discover closed alarm sequences were totally avoided.

Eventually, by pattern distillation to significantly reduce pattern redundancy,

there were only 34 compact alarm sequential patterns, whereas without pat-

tern distillation, there were 109 closed alarm sequences, among which many

of them were similar. Thus, the pattern distillation step is necessary to avoid

redundant results and output meaningful compact alarm sequential patterns.

4.4.2 Extracted Alarm Flood Patterns

For further demonstration, three alarm sequential patterns extracted using

the proposed method are presented as follows.

Alarm Flood Pattern #1

This pattern was extracted from four alarm floods, namely, #117, #137,

#161, and #173. Based on expert evaluation with process knowledge, this

pattern was caused by the control power failure. The details associated with

79



Figure 4.2: The numbers of closed alarm itemsets, closed alarm sequences,
and compact alarm sequential patterns obtained from the 32 collections of
alarm flood sequences.

Pattern 
Extraction

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description
Tag59.ACTIVE 0.0 Unit 1 Control Power Fail

Tag60.ACTIVE 0.0 Unit 2 Control Power Fail

Tag55.ACTIVE 0.5 Unit Valves in Local

Tag62.ACTIVE 0.5 Discharge Valve in Local

Tag63.ACTIVE 0.5 Suction Valve in Local

Tag57.ACTIVE 0.8 Unit Trouble

Tag56.ACTIVE 1.0 Pressure Control Valve Fail

Tag61.ACTIVE 1.0 Unit 3 Control Power Fail

Tag53.ACTIVE 24.8 Generator On

Tag55.CLEARED 24.8 Unit Valves in Local

Tag62.CLEARED 24.8 Discharge Valve in Local

Tag63.CLEARED 24.8 Suction Valve in Local

Extracted Alarm Sequential Pattern
Alarm Tag Time (sec) Alarm Description

Tag59.ACTIVE 0.0 Unit 1 Control Power Fail

Tag60.ACTIVE 0.0 Unit 2 Control Power Fail

Tag55.ACTIVE 0.5 Unit Valves in Local

Tag62.ACTIVE 0.5 Discharge Valve in Local

Tag63.ACTIVE 0.5 Suction Valve in Local

Tag57.ACTIVE 0.8 Unit Trouble

Tag56.ACTIVE 1.0 Pressure Control Valve Fail

Tag61.ACTIVE 1.0 Unit 3 Control Power Fail

Tag53.ACTIVE 24.8 Generator On

Tag55.CLEARED 24.8 Unit Valves in Local

Tag62.CLEARED 24.8 Discharge Valve in Local

Tag63.CLEARED 24.8 Suction Valve in Local

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

23:24:01 Tag57.ACTIVE

23:24:01 Tag55.ACTIVE

23:24:01 Tag63.ACTIVE

23:24:01 Tag62.ACTIVE

23:24:03 Tag59.ACTIVE

23:24:03 Tag60.ACTIVE

23:24:03 Tag61.ACTIVE

23:24:03 Tag56.ACTIVE

23:24:26 Tag55.CLEARED

23:24:26 Tag63.CLEARED

23:24:26 Tag62.CLEARED

23:24:26 Tag53.ACTIVE

23:24:38 Tag56.CLEARED

23:33:32 Tag55.ACTIVE

23:33:32 Tag56.ACTIVE

Alarm Flood #117

Time Alarm Tag
7:20:30 Tag59.ACTIVE

7:20:30 Tag60.ACTIVE

7:20:30 Tag61.ACTIVE

7:20:30 Tag55.ACTIVE

7:20:30 Tag56.ACTIVE

7:20:30 Tag63.ACTIVE

7:20:30 Tag62.ACTIVE

7:20:41 Tag54.ACTIVE

7:20:53 Tag55.CLEARED

7:20:53 Tag63.CLEARED

7:20:53 Tag62.CLEARED

7:20:53 Tag53.ACTIVE

Alarm Flood #137

Time Alarm Tag

3:46:18 Tag59.ACTIVE

3:46:18 Tag60.ACTIVE

3:46:18 Tag61.ACTIVE

3:46:18 Tag57.ACTIVE

3:46:18 Tag55.ACTIVE

3:46:18 Tag56.ACTIVE

3:46:18 Tag63.ACTIVE

3:46:18 Tag62.ACTIVE

3:46:27 Tag54.ACTIVE

3:46:45 Tag55.CLEARED

3:46:45 Tag63.CLEARED

3:46:45 Tag62.CLEARED

3:46:45 Tag53.ACTIVE

3:46:52 Tag56.CLEARED

Alarm Flood #161

Time Alarm Tag
12:50:12 Tag59.ACTIVE

12:50:12 Tag60.ACTIVE

12:50:16 Tag61.ACTIVE

12:50:16 Tag57.ACTIVE

12:50:16 Tag55.ACTIVE

12:50:16 Tag56.ACTIVE

12:50:16 Tag63.ACTIVE

12:50:16 Tag62.ACTIVE

12:50:38 Tag55.CLEARED

12:50:38 Tag63.CLEARED

12:50:38 Tag62.CLEARED

12:50:38 Tag53.ACTIVE

Alarm Flood #173

Time Alarm Tag

23:24:01 Tag57.ACTIVE

23:24:01 Tag55.ACTIVE

23:24:01 Tag63.ACTIVE

23:24:01 Tag62.ACTIVE

23:24:03 Tag59.ACTIVE

23:24:03 Tag60.ACTIVE

23:24:03 Tag61.ACTIVE

23:24:03 Tag56.ACTIVE

23:24:26 Tag55.CLEARED

23:24:26 Tag63.CLEARED

23:24:26 Tag62.CLEARED

23:24:26 Tag53.ACTIVE

23:24:38 Tag56.CLEARED

23:33:32 Tag55.ACTIVE

23:33:32 Tag56.ACTIVE

Alarm Flood #117

Time Alarm Tag
7:20:30 Tag59.ACTIVE

7:20:30 Tag60.ACTIVE

7:20:30 Tag61.ACTIVE

7:20:30 Tag55.ACTIVE

7:20:30 Tag56.ACTIVE

7:20:30 Tag63.ACTIVE

7:20:30 Tag62.ACTIVE

7:20:41 Tag54.ACTIVE

7:20:53 Tag55.CLEARED

7:20:53 Tag63.CLEARED

7:20:53 Tag62.CLEARED

7:20:53 Tag53.ACTIVE

Alarm Flood #137

Time Alarm Tag

3:46:18 Tag59.ACTIVE

3:46:18 Tag60.ACTIVE

3:46:18 Tag61.ACTIVE

3:46:18 Tag57.ACTIVE

3:46:18 Tag55.ACTIVE

3:46:18 Tag56.ACTIVE

3:46:18 Tag63.ACTIVE

3:46:18 Tag62.ACTIVE

3:46:27 Tag54.ACTIVE

3:46:45 Tag55.CLEARED

3:46:45 Tag63.CLEARED

3:46:45 Tag62.CLEARED

3:46:45 Tag53.ACTIVE

3:46:52 Tag56.CLEARED

Alarm Flood #161

Time Alarm Tag
12:50:12 Tag59.ACTIVE

12:50:12 Tag60.ACTIVE

12:50:16 Tag61.ACTIVE

12:50:16 Tag57.ACTIVE

12:50:16 Tag55.ACTIVE

12:50:16 Tag56.ACTIVE

12:50:16 Tag63.ACTIVE

12:50:16 Tag62.ACTIVE

12:50:38 Tag55.CLEARED

12:50:38 Tag63.CLEARED

12:50:38 Tag62.CLEARED

12:50:38 Tag53.ACTIVE

Alarm Flood #173

Time Alarm Tag

23:24:01 Tag57.ACTIVE

23:24:01 Tag55.ACTIVE

23:24:01 Tag63.ACTIVE

23:24:01 Tag62.ACTIVE

23:24:03 Tag59.ACTIVE

23:24:03 Tag60.ACTIVE

23:24:03 Tag61.ACTIVE

23:24:03 Tag56.ACTIVE

23:24:26 Tag55.CLEARED

23:24:26 Tag63.CLEARED

23:24:26 Tag62.CLEARED

23:24:26 Tag53.ACTIVE

23:24:38 Tag56.CLEARED

23:33:32 Tag55.ACTIVE

23:33:32 Tag56.ACTIVE

Alarm Flood #117

Time Alarm Tag
7:20:30 Tag59.ACTIVE

7:20:30 Tag60.ACTIVE

7:20:30 Tag61.ACTIVE

7:20:30 Tag55.ACTIVE

7:20:30 Tag56.ACTIVE

7:20:30 Tag63.ACTIVE

7:20:30 Tag62.ACTIVE

7:20:41 Tag54.ACTIVE

7:20:53 Tag55.CLEARED

7:20:53 Tag63.CLEARED

7:20:53 Tag62.CLEARED

7:20:53 Tag53.ACTIVE

Alarm Flood #137

Time Alarm Tag

3:46:18 Tag59.ACTIVE

3:46:18 Tag60.ACTIVE

3:46:18 Tag61.ACTIVE

3:46:18 Tag57.ACTIVE

3:46:18 Tag55.ACTIVE

3:46:18 Tag56.ACTIVE

3:46:18 Tag63.ACTIVE

3:46:18 Tag62.ACTIVE

3:46:27 Tag54.ACTIVE

3:46:45 Tag55.CLEARED

3:46:45 Tag63.CLEARED

3:46:45 Tag62.CLEARED

3:46:45 Tag53.ACTIVE

3:46:52 Tag56.CLEARED

Alarm Flood #161

Time Alarm Tag
12:50:12 Tag59.ACTIVE

12:50:12 Tag60.ACTIVE

12:50:16 Tag61.ACTIVE

12:50:16 Tag57.ACTIVE

12:50:16 Tag55.ACTIVE

12:50:16 Tag56.ACTIVE

12:50:16 Tag63.ACTIVE

12:50:16 Tag62.ACTIVE

12:50:38 Tag55.CLEARED

12:50:38 Tag63.CLEARED

12:50:38 Tag62.CLEARED

12:50:38 Tag53.ACTIVE

Alarm Flood #173

Subsequences in Original Alarm Floods

Time Alarm Tag

23:24:01 Tag57.ACTIVE

23:24:01 Tag55.ACTIVE

23:24:01 Tag63.ACTIVE

23:24:01 Tag62.ACTIVE

23:24:03 Tag59.ACTIVE

23:24:03 Tag60.ACTIVE

23:24:03 Tag61.ACTIVE

23:24:03 Tag56.ACTIVE

23:24:26 Tag55.CLEARED

23:24:26 Tag63.CLEARED

23:24:26 Tag62.CLEARED

23:24:26 Tag53.ACTIVE

23:24:38 Tag56.CLEARED

23:33:32 Tag55.ACTIVE

23:33:32 Tag56.ACTIVE

Alarm Flood #117

Time Alarm Tag
7:20:30 Tag59.ACTIVE

7:20:30 Tag60.ACTIVE

7:20:30 Tag61.ACTIVE

7:20:30 Tag55.ACTIVE

7:20:30 Tag56.ACTIVE

7:20:30 Tag63.ACTIVE

7:20:30 Tag62.ACTIVE

7:20:41 Tag54.ACTIVE

7:20:53 Tag55.CLEARED

7:20:53 Tag63.CLEARED

7:20:53 Tag62.CLEARED

7:20:53 Tag53.ACTIVE

Alarm Flood #137

Time Alarm Tag

3:46:18 Tag59.ACTIVE

3:46:18 Tag60.ACTIVE

3:46:18 Tag61.ACTIVE

3:46:18 Tag57.ACTIVE

3:46:18 Tag55.ACTIVE

3:46:18 Tag56.ACTIVE

3:46:18 Tag63.ACTIVE

3:46:18 Tag62.ACTIVE

3:46:27 Tag54.ACTIVE

3:46:45 Tag55.CLEARED

3:46:45 Tag63.CLEARED

3:46:45 Tag62.CLEARED

3:46:45 Tag53.ACTIVE

3:46:52 Tag56.CLEARED

Alarm Flood #161

Time Alarm Tag
12:50:12 Tag59.ACTIVE

12:50:12 Tag60.ACTIVE

12:50:16 Tag61.ACTIVE

12:50:16 Tag57.ACTIVE

12:50:16 Tag55.ACTIVE

12:50:16 Tag56.ACTIVE

12:50:16 Tag63.ACTIVE

12:50:16 Tag62.ACTIVE

12:50:38 Tag55.CLEARED

12:50:38 Tag63.CLEARED

12:50:38 Tag62.CLEARED

12:50:38 Tag53.ACTIVE

Alarm Flood #173

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description
Tag59.ACTIVE 0.0 Unit 1 Control Power Fail

Tag60.ACTIVE 0.0 Unit 2 Control Power Fail

Tag55.ACTIVE 0.5 Unit Valves in Local

Tag62.ACTIVE 0.5 Discharge Valve in Local

Tag63.ACTIVE 0.5 Suction Valve in Local

Tag57.ACTIVE 0.8 Unit Trouble

Tag56.ACTIVE 1.0 Pressure Control Valve Fail

Tag61.ACTIVE 1.0 Unit 3 Control Power Fail

Tag53.ACTIVE 24.8 Generator On

Tag55.CLEARED 24.8 Unit Valves in Local

Tag62.CLEARED 24.8 Discharge Valve in Local

Tag63.CLEARED 24.8 Suction Valve in Local

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

23:24:01 Tag57.ACTIVE

23:24:01 Tag55.ACTIVE

23:24:01 Tag63.ACTIVE

23:24:01 Tag62.ACTIVE

23:24:03 Tag59.ACTIVE

23:24:03 Tag60.ACTIVE

23:24:03 Tag61.ACTIVE

23:24:03 Tag56.ACTIVE

23:24:26 Tag55.CLEARED

23:24:26 Tag63.CLEARED

23:24:26 Tag62.CLEARED

23:24:26 Tag53.ACTIVE

23:24:38 Tag56.CLEARED

23:33:32 Tag55.ACTIVE

23:33:32 Tag56.ACTIVE

Alarm Flood #117

Time Alarm Tag
7:20:30 Tag59.ACTIVE

7:20:30 Tag60.ACTIVE

7:20:30 Tag61.ACTIVE

7:20:30 Tag55.ACTIVE

7:20:30 Tag56.ACTIVE

7:20:30 Tag63.ACTIVE

7:20:30 Tag62.ACTIVE

7:20:41 Tag54.ACTIVE

7:20:53 Tag55.CLEARED

7:20:53 Tag63.CLEARED

7:20:53 Tag62.CLEARED

7:20:53 Tag53.ACTIVE

Alarm Flood #137

Time Alarm Tag

3:46:18 Tag59.ACTIVE

3:46:18 Tag60.ACTIVE

3:46:18 Tag61.ACTIVE

3:46:18 Tag57.ACTIVE

3:46:18 Tag55.ACTIVE

3:46:18 Tag56.ACTIVE

3:46:18 Tag63.ACTIVE

3:46:18 Tag62.ACTIVE

3:46:27 Tag54.ACTIVE

3:46:45 Tag55.CLEARED

3:46:45 Tag63.CLEARED

3:46:45 Tag62.CLEARED

3:46:45 Tag53.ACTIVE

3:46:52 Tag56.CLEARED

Alarm Flood #161

Time Alarm Tag
12:50:12 Tag59.ACTIVE

12:50:12 Tag60.ACTIVE

12:50:16 Tag61.ACTIVE

12:50:16 Tag57.ACTIVE

12:50:16 Tag55.ACTIVE

12:50:16 Tag56.ACTIVE

12:50:16 Tag63.ACTIVE

12:50:16 Tag62.ACTIVE

12:50:38 Tag55.CLEARED

12:50:38 Tag63.CLEARED

12:50:38 Tag62.CLEARED

12:50:38 Tag53.ACTIVE

Alarm Flood #173

Figure 4.3: Alarm flood pattern #1 was extracted from alarm floods #117,
#137, #161, and #173. This pattern was caused by the power failure.

this pattern are shown in Fig. 4.3, where the subsequences in original alarm

floods are provided in the dashed red rectangle and the captured alarms by this

pattern are highlighted in blue. There are three columns describing the ex-

tracted alarm sequential pattern, including the alarm tag, average time stamp,

and alarm description. For better presentation, the average time stamps were

shifted such that alarms occurred at the beginning of a sequential pattern have

their average time stamps as 0’s. To reduce the impact of irrelevant alarms,

it is required that the captured alarms in a pattern should have occurred at

least in three alarm flood sequences.

80



Pattern 
Extraction

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description
Tag225.ACTIVE 0.0 Unit Valves in Local

Tag257.ACTIVE 0.0 Bypass Valve in Local

Tag258.ACTIVE 0.0 Discharge Valve in Local

Tag259.ACTIVE 0.0 Bypass Valve in Local

Tag260.ACTIVE 0.0 Inlet Valve in Local

Tag261.ACTIVE 0.0 Suction Valve in Local

Tag258.CLEARED 4.0 Discharge Valve in Local

Tag225.CLEARED 4.3 Unit Valves in Local

Tag257.CLEARED 4.3 Bypass Valve in Local

Tag259.CLEARED 4.3 Bypass Valve in Local

Tag260.CLEARED 4.3 Inlet Valve in Local

Tag261.CLEARED 4.3 Suction Valve in Local

Extracted Alarm Sequential Pattern
Alarm Tag Time (sec) Alarm Description

Tag225.ACTIVE 0.0 Unit Valves in Local

Tag257.ACTIVE 0.0 Bypass Valve in Local

Tag258.ACTIVE 0.0 Discharge Valve in Local

Tag259.ACTIVE 0.0 Bypass Valve in Local

Tag260.ACTIVE 0.0 Inlet Valve in Local

Tag261.ACTIVE 0.0 Suction Valve in Local

Tag258.CLEARED 4.0 Discharge Valve in Local

Tag225.CLEARED 4.3 Unit Valves in Local

Tag257.CLEARED 4.3 Bypass Valve in Local

Tag259.CLEARED 4.3 Bypass Valve in Local

Tag260.CLEARED 4.3 Inlet Valve in Local

Tag261.CLEARED 4.3 Suction Valve in Local

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

12:49:43 Tag230.ACTIVE

12:49:43 Tag225.ACTIVE

12:49:43 Tag261.ACTIVE

12:49:43 Tag257.ACTIVE

12:49:43 Tag258.ACTIVE

12:49:43 Tag260.ACTIVE

12:49:43 Tag259.ACTIVE

12:49:48 Tag225.CLEARED

12:49:48 Tag261.CLEARED

12:49:48 Tag257.CLEARED

12:49:48 Tag258.CLEARED

12:49:48 Tag260.CLEARED

12:49:48 Tag259.CLEARED

12:49:58 Tag230.CLEARED

Alarm Flood #12

Time Alarm Tag
20:55:11 Tag225.ACTIVE

20:55:11 Tag261.ACTIVE

20:55:11 Tag257.ACTIVE

20:55:11 Tag258.ACTIVE

20:55:11 Tag260.ACTIVE

20:55:11 Tag259.ACTIVE

20:55:14 Tag225.CLEARED

20:55:14 Tag261.CLEARED

20:55:14 Tag257.CLEARED

20:55:14 Tag258.CLEARED

20:55:14 Tag260.CLEARED

20:55:14 Tag259.CLEARED

Alarm Flood #72

Time Alarm Tag

7:58:59 Tag225.ACTIVE

7:58:59 Tag261.ACTIVE

7:58:59 Tag257.ACTIVE

7:58:59 Tag258.ACTIVE

7:58:59 Tag260.ACTIVE

7:58:59 Tag259.ACTIVE

7:59:04 Tag225.CLEARED

7:59:04 Tag261.CLEARED

7:59:04 Tag257.CLEARED

7:59:04 Tag260.CLEARED

7:59:04 Tag259.CLEARED

Alarm Flood #100

Time Alarm Tag
5:42:48 Tag225.ACTIVE

5:42:48 Tag261.ACTIVE

5:42:48 Tag257.ACTIVE

5:42:48 Tag258.ACTIVE

5:42:48 Tag260.ACTIVE

5:42:48 Tag259.ACTIVE

5:42:52 Tag225.CLEARED

5:42:52 Tag261.CLEARED

5:42:52 Tag257.CLEARED

5:42:52 Tag258.CLEARED

5:42:52 Tag260.CLEARED

5:42:52 Tag259.CLEARED

Alarm Flood #148

Time Alarm Tag

12:49:43 Tag230.ACTIVE

12:49:43 Tag225.ACTIVE

12:49:43 Tag261.ACTIVE

12:49:43 Tag257.ACTIVE

12:49:43 Tag258.ACTIVE

12:49:43 Tag260.ACTIVE

12:49:43 Tag259.ACTIVE

12:49:48 Tag225.CLEARED

12:49:48 Tag261.CLEARED

12:49:48 Tag257.CLEARED

12:49:48 Tag258.CLEARED

12:49:48 Tag260.CLEARED

12:49:48 Tag259.CLEARED

12:49:58 Tag230.CLEARED

Alarm Flood #12

Time Alarm Tag
20:55:11 Tag225.ACTIVE

20:55:11 Tag261.ACTIVE

20:55:11 Tag257.ACTIVE

20:55:11 Tag258.ACTIVE

20:55:11 Tag260.ACTIVE

20:55:11 Tag259.ACTIVE

20:55:14 Tag225.CLEARED

20:55:14 Tag261.CLEARED

20:55:14 Tag257.CLEARED

20:55:14 Tag258.CLEARED

20:55:14 Tag260.CLEARED

20:55:14 Tag259.CLEARED

Alarm Flood #72

Time Alarm Tag

7:58:59 Tag225.ACTIVE

7:58:59 Tag261.ACTIVE

7:58:59 Tag257.ACTIVE

7:58:59 Tag258.ACTIVE

7:58:59 Tag260.ACTIVE

7:58:59 Tag259.ACTIVE

7:59:04 Tag225.CLEARED

7:59:04 Tag261.CLEARED

7:59:04 Tag257.CLEARED

7:59:04 Tag260.CLEARED

7:59:04 Tag259.CLEARED

Alarm Flood #100

Time Alarm Tag
5:42:48 Tag225.ACTIVE

5:42:48 Tag261.ACTIVE

5:42:48 Tag257.ACTIVE

5:42:48 Tag258.ACTIVE

5:42:48 Tag260.ACTIVE

5:42:48 Tag259.ACTIVE

5:42:52 Tag225.CLEARED

5:42:52 Tag261.CLEARED

5:42:52 Tag257.CLEARED

5:42:52 Tag258.CLEARED

5:42:52 Tag260.CLEARED

5:42:52 Tag259.CLEARED

Alarm Flood #148

Time Alarm Tag

12:49:43 Tag230.ACTIVE

12:49:43 Tag225.ACTIVE

12:49:43 Tag261.ACTIVE

12:49:43 Tag257.ACTIVE

12:49:43 Tag258.ACTIVE

12:49:43 Tag260.ACTIVE

12:49:43 Tag259.ACTIVE

12:49:48 Tag225.CLEARED

12:49:48 Tag261.CLEARED

12:49:48 Tag257.CLEARED

12:49:48 Tag258.CLEARED

12:49:48 Tag260.CLEARED

12:49:48 Tag259.CLEARED

12:49:58 Tag230.CLEARED

Alarm Flood #12

Time Alarm Tag
20:55:11 Tag225.ACTIVE

20:55:11 Tag261.ACTIVE

20:55:11 Tag257.ACTIVE

20:55:11 Tag258.ACTIVE

20:55:11 Tag260.ACTIVE

20:55:11 Tag259.ACTIVE

20:55:14 Tag225.CLEARED

20:55:14 Tag261.CLEARED

20:55:14 Tag257.CLEARED

20:55:14 Tag258.CLEARED

20:55:14 Tag260.CLEARED

20:55:14 Tag259.CLEARED

Alarm Flood #72

Time Alarm Tag

7:58:59 Tag225.ACTIVE

7:58:59 Tag261.ACTIVE

7:58:59 Tag257.ACTIVE

7:58:59 Tag258.ACTIVE

7:58:59 Tag260.ACTIVE

7:58:59 Tag259.ACTIVE

7:59:04 Tag225.CLEARED

7:59:04 Tag261.CLEARED

7:59:04 Tag257.CLEARED

7:59:04 Tag260.CLEARED

7:59:04 Tag259.CLEARED

Alarm Flood #100

Time Alarm Tag
5:42:48 Tag225.ACTIVE

5:42:48 Tag261.ACTIVE

5:42:48 Tag257.ACTIVE

5:42:48 Tag258.ACTIVE

5:42:48 Tag260.ACTIVE

5:42:48 Tag259.ACTIVE

5:42:52 Tag225.CLEARED

5:42:52 Tag261.CLEARED

5:42:52 Tag257.CLEARED

5:42:52 Tag258.CLEARED

5:42:52 Tag260.CLEARED

5:42:52 Tag259.CLEARED

Alarm Flood #148

Subsequences in Original Alarm Floods

Time Alarm Tag

12:49:43 Tag230.ACTIVE

12:49:43 Tag225.ACTIVE

12:49:43 Tag261.ACTIVE

12:49:43 Tag257.ACTIVE

12:49:43 Tag258.ACTIVE

12:49:43 Tag260.ACTIVE

12:49:43 Tag259.ACTIVE

12:49:48 Tag225.CLEARED

12:49:48 Tag261.CLEARED

12:49:48 Tag257.CLEARED

12:49:48 Tag258.CLEARED

12:49:48 Tag260.CLEARED

12:49:48 Tag259.CLEARED

12:49:58 Tag230.CLEARED

Alarm Flood #12

Time Alarm Tag
20:55:11 Tag225.ACTIVE

20:55:11 Tag261.ACTIVE

20:55:11 Tag257.ACTIVE

20:55:11 Tag258.ACTIVE

20:55:11 Tag260.ACTIVE

20:55:11 Tag259.ACTIVE

20:55:14 Tag225.CLEARED

20:55:14 Tag261.CLEARED

20:55:14 Tag257.CLEARED

20:55:14 Tag258.CLEARED

20:55:14 Tag260.CLEARED

20:55:14 Tag259.CLEARED

Alarm Flood #72

Time Alarm Tag

7:58:59 Tag225.ACTIVE

7:58:59 Tag261.ACTIVE

7:58:59 Tag257.ACTIVE

7:58:59 Tag258.ACTIVE

7:58:59 Tag260.ACTIVE

7:58:59 Tag259.ACTIVE

7:59:04 Tag225.CLEARED

7:59:04 Tag261.CLEARED

7:59:04 Tag257.CLEARED

7:59:04 Tag260.CLEARED

7:59:04 Tag259.CLEARED

Alarm Flood #100

Time Alarm Tag
5:42:48 Tag225.ACTIVE

5:42:48 Tag261.ACTIVE

5:42:48 Tag257.ACTIVE

5:42:48 Tag258.ACTIVE

5:42:48 Tag260.ACTIVE

5:42:48 Tag259.ACTIVE

5:42:52 Tag225.CLEARED

5:42:52 Tag261.CLEARED

5:42:52 Tag257.CLEARED

5:42:52 Tag258.CLEARED

5:42:52 Tag260.CLEARED

5:42:52 Tag259.CLEARED

Alarm Flood #148

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description
Tag225.ACTIVE 0.0 Unit Valves in Local

Tag257.ACTIVE 0.0 Bypass Valve in Local

Tag258.ACTIVE 0.0 Discharge Valve in Local

Tag259.ACTIVE 0.0 Bypass Valve in Local

Tag260.ACTIVE 0.0 Inlet Valve in Local

Tag261.ACTIVE 0.0 Suction Valve in Local

Tag258.CLEARED 4.0 Discharge Valve in Local

Tag225.CLEARED 4.3 Unit Valves in Local

Tag257.CLEARED 4.3 Bypass Valve in Local

Tag259.CLEARED 4.3 Bypass Valve in Local

Tag260.CLEARED 4.3 Inlet Valve in Local

Tag261.CLEARED 4.3 Suction Valve in Local

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

12:49:43 Tag230.ACTIVE

12:49:43 Tag225.ACTIVE

12:49:43 Tag261.ACTIVE

12:49:43 Tag257.ACTIVE

12:49:43 Tag258.ACTIVE

12:49:43 Tag260.ACTIVE

12:49:43 Tag259.ACTIVE

12:49:48 Tag225.CLEARED

12:49:48 Tag261.CLEARED

12:49:48 Tag257.CLEARED

12:49:48 Tag258.CLEARED

12:49:48 Tag260.CLEARED

12:49:48 Tag259.CLEARED

12:49:58 Tag230.CLEARED

Alarm Flood #12

Time Alarm Tag
20:55:11 Tag225.ACTIVE

20:55:11 Tag261.ACTIVE

20:55:11 Tag257.ACTIVE

20:55:11 Tag258.ACTIVE

20:55:11 Tag260.ACTIVE

20:55:11 Tag259.ACTIVE

20:55:14 Tag225.CLEARED

20:55:14 Tag261.CLEARED

20:55:14 Tag257.CLEARED

20:55:14 Tag258.CLEARED

20:55:14 Tag260.CLEARED

20:55:14 Tag259.CLEARED

Alarm Flood #72

Time Alarm Tag

7:58:59 Tag225.ACTIVE

7:58:59 Tag261.ACTIVE

7:58:59 Tag257.ACTIVE

7:58:59 Tag258.ACTIVE

7:58:59 Tag260.ACTIVE

7:58:59 Tag259.ACTIVE

7:59:04 Tag225.CLEARED

7:59:04 Tag261.CLEARED

7:59:04 Tag257.CLEARED

7:59:04 Tag260.CLEARED

7:59:04 Tag259.CLEARED

Alarm Flood #100

Time Alarm Tag
5:42:48 Tag225.ACTIVE

5:42:48 Tag261.ACTIVE

5:42:48 Tag257.ACTIVE

5:42:48 Tag258.ACTIVE

5:42:48 Tag260.ACTIVE

5:42:48 Tag259.ACTIVE

5:42:52 Tag225.CLEARED

5:42:52 Tag261.CLEARED

5:42:52 Tag257.CLEARED

5:42:52 Tag258.CLEARED

5:42:52 Tag260.CLEARED

5:42:52 Tag259.CLEARED

Alarm Flood #148

Figure 4.4: Alarm flood pattern #2 was extracted from alarm floods #12,
#72, #100, and #148. This pattern was caused by the unusual valve operation
mode.

Pattern 
Extraction

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description

Tag171.ACTIVE 0.0 VFD Fail

Tag154.ACTIVE 11.3 Pump 2 Motor Relay Fail

Tag164.ACTIVE 13.0 Pump 4 Motor Relay Fail

Tag160.ACTIVE 14.0 Pump 3 Motor Relay Fail

Tag146.ACTIVE 53.3 Pump 1 Lockout

Tag162.ACTIVE 92.3 Pump 4 Lockout

Tag132.ACTIVE 92.5 Main Breaker Tripped

Tag152.ACTIVE 92.8 Pump 2 Lockout

Tag169.ACTIVE 93.5 VFD Lockout

Tag158.ACTIVE 94.8 Pump 3 Lockout

Extracted Alarm Sequential Pattern
Alarm Tag Time (sec) Alarm Description

Tag171.ACTIVE 0.0 VFD Fail

Tag154.ACTIVE 11.3 Pump 2 Motor Relay Fail

Tag164.ACTIVE 13.0 Pump 4 Motor Relay Fail

Tag160.ACTIVE 14.0 Pump 3 Motor Relay Fail

Tag146.ACTIVE 53.3 Pump 1 Lockout

Tag162.ACTIVE 92.3 Pump 4 Lockout

Tag132.ACTIVE 92.5 Main Breaker Tripped

Tag152.ACTIVE 92.8 Pump 2 Lockout

Tag169.ACTIVE 93.5 VFD Lockout

Tag158.ACTIVE 94.8 Pump 3 Lockout

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

13:26:23 Tag152.ACTIVE

13:26:23 Tag158.ACTIVE

13:26:23 Tag162.ACTIVE

13:26:23 Tag164.ACTIVE

13:26:23 Tag132.ACTIVE

13:26:25 Tag169.ACTIVE

13:26:25 Tag171.ACTIVE

13:26:25 Tag146.ACTIVE

13:26:25 Tag148.ACTIVE

13:26:25 Tag154.ACTIVE

13:26:26 Tag160.ACTIVE

Alarm Flood #36

Time Alarm Tag

6:08:39 Tag130.ACTIVE

6:08:39 Tag175.ACTIVE

6:11:13 Tag171.ACTIVE

6:15:51 Tag146.ACTIVE

6:15:51 Tag152.ACTIVE

6:15:52 Tag158.ACTIVE

6:15:52 Tag162.ACTIVE

6:15:52 Tag132.ACTIVE

6:15:52 Tag140.ACTIVE

6:15:53 Tag169.ACTIVE

6:16:06 Tag138.ACTIVE

6:16:06 Tag134.ACTIVE

6:16:31 Tag128.ACTIVE

6:20:11 Tag136.ACTIVE

Alarm Flood #112

Time Alarm Tag
9:19:07 Tag162.ACTIVE

9:19:08 Tag132.ACTIVE

9:19:12 Tag146.ACTIVE

9:19:12 Tag152.ACTIVE

9:19:12 Tag148.ACTIVE

9:19:12 Tag154.ACTIVE

9:19:12 Tag169.ACTIVE

9:19:17 Tag158.ACTIVE

9:19:17 Tag160.ACTIVE

9:19:17 Tag164.ACTIVE

9:20:08 Tag138.ACTIVE

9:20:09 Tag134.ACTIVE

9:20:29 Tag128.ACTIVE

Alarm Flood #115

Time Alarm Tag
13:37:53 Tag131.ACTIVE

13:39:56 Tag171.ACTIVE

13:42:58 Tag169.ACTIVE

13:42:59 Tag152.ACTIVE

13:42:59 Tag154.ACTIVE

13:43:01 Tag158.ACTIVE

13:43:01 Tag162.ACTIVE

13:43:01 Tag160.ACTIVE

13:43:01 Tag164.ACTIVE

13:43:01 Tag132.ACTIVE

Alarm Flood #119

Time Alarm Tag

13:26:23 Tag152.ACTIVE

13:26:23 Tag158.ACTIVE

13:26:23 Tag162.ACTIVE

13:26:23 Tag164.ACTIVE

13:26:23 Tag132.ACTIVE

13:26:25 Tag169.ACTIVE

13:26:25 Tag171.ACTIVE

13:26:25 Tag146.ACTIVE

13:26:25 Tag148.ACTIVE

13:26:25 Tag154.ACTIVE

13:26:26 Tag160.ACTIVE

Alarm Flood #36

Time Alarm Tag

6:08:39 Tag130.ACTIVE

6:08:39 Tag175.ACTIVE

6:11:13 Tag171.ACTIVE

6:15:51 Tag146.ACTIVE

6:15:51 Tag152.ACTIVE

6:15:52 Tag158.ACTIVE

6:15:52 Tag162.ACTIVE

6:15:52 Tag132.ACTIVE

6:15:52 Tag140.ACTIVE

6:15:53 Tag169.ACTIVE

6:16:06 Tag138.ACTIVE

6:16:06 Tag134.ACTIVE

6:16:31 Tag128.ACTIVE

6:20:11 Tag136.ACTIVE

Alarm Flood #112

Time Alarm Tag
9:19:07 Tag162.ACTIVE

9:19:08 Tag132.ACTIVE

9:19:12 Tag146.ACTIVE

9:19:12 Tag152.ACTIVE

9:19:12 Tag148.ACTIVE

9:19:12 Tag154.ACTIVE

9:19:12 Tag169.ACTIVE

9:19:17 Tag158.ACTIVE

9:19:17 Tag160.ACTIVE

9:19:17 Tag164.ACTIVE

9:20:08 Tag138.ACTIVE

9:20:09 Tag134.ACTIVE

9:20:29 Tag128.ACTIVE

Alarm Flood #115

Time Alarm Tag
13:37:53 Tag131.ACTIVE

13:39:56 Tag171.ACTIVE

13:42:58 Tag169.ACTIVE

13:42:59 Tag152.ACTIVE

13:42:59 Tag154.ACTIVE

13:43:01 Tag158.ACTIVE

13:43:01 Tag162.ACTIVE

13:43:01 Tag160.ACTIVE

13:43:01 Tag164.ACTIVE

13:43:01 Tag132.ACTIVE

Alarm Flood #119

Time Alarm Tag

13:26:23 Tag152.ACTIVE

13:26:23 Tag158.ACTIVE

13:26:23 Tag162.ACTIVE

13:26:23 Tag164.ACTIVE

13:26:23 Tag132.ACTIVE

13:26:25 Tag169.ACTIVE

13:26:25 Tag171.ACTIVE

13:26:25 Tag146.ACTIVE

13:26:25 Tag148.ACTIVE

13:26:25 Tag154.ACTIVE

13:26:26 Tag160.ACTIVE

Alarm Flood #36

Time Alarm Tag

6:08:39 Tag130.ACTIVE

6:08:39 Tag175.ACTIVE

6:11:13 Tag171.ACTIVE

6:15:51 Tag146.ACTIVE

6:15:51 Tag152.ACTIVE

6:15:52 Tag158.ACTIVE

6:15:52 Tag162.ACTIVE

6:15:52 Tag132.ACTIVE

6:15:52 Tag140.ACTIVE

6:15:53 Tag169.ACTIVE

6:16:06 Tag138.ACTIVE

6:16:06 Tag134.ACTIVE

6:16:31 Tag128.ACTIVE

6:20:11 Tag136.ACTIVE

Alarm Flood #112

Time Alarm Tag
9:19:07 Tag162.ACTIVE

9:19:08 Tag132.ACTIVE

9:19:12 Tag146.ACTIVE

9:19:12 Tag152.ACTIVE

9:19:12 Tag148.ACTIVE

9:19:12 Tag154.ACTIVE

9:19:12 Tag169.ACTIVE

9:19:17 Tag158.ACTIVE

9:19:17 Tag160.ACTIVE

9:19:17 Tag164.ACTIVE

9:20:08 Tag138.ACTIVE

9:20:09 Tag134.ACTIVE

9:20:29 Tag128.ACTIVE

Alarm Flood #115

Time Alarm Tag
13:37:53 Tag131.ACTIVE

13:39:56 Tag171.ACTIVE

13:42:58 Tag169.ACTIVE

13:42:59 Tag152.ACTIVE

13:42:59 Tag154.ACTIVE

13:43:01 Tag158.ACTIVE

13:43:01 Tag162.ACTIVE

13:43:01 Tag160.ACTIVE

13:43:01 Tag164.ACTIVE

13:43:01 Tag132.ACTIVE

Alarm Flood #119

Subsequences in Original Alarm Floods

Time Alarm Tag

13:26:23 Tag152.ACTIVE

13:26:23 Tag158.ACTIVE

13:26:23 Tag162.ACTIVE

13:26:23 Tag164.ACTIVE

13:26:23 Tag132.ACTIVE

13:26:25 Tag169.ACTIVE

13:26:25 Tag171.ACTIVE

13:26:25 Tag146.ACTIVE

13:26:25 Tag148.ACTIVE

13:26:25 Tag154.ACTIVE

13:26:26 Tag160.ACTIVE

Alarm Flood #36

Time Alarm Tag

6:08:39 Tag130.ACTIVE

6:08:39 Tag175.ACTIVE

6:11:13 Tag171.ACTIVE

6:15:51 Tag146.ACTIVE

6:15:51 Tag152.ACTIVE

6:15:52 Tag158.ACTIVE

6:15:52 Tag162.ACTIVE

6:15:52 Tag132.ACTIVE

6:15:52 Tag140.ACTIVE

6:15:53 Tag169.ACTIVE

6:16:06 Tag138.ACTIVE

6:16:06 Tag134.ACTIVE

6:16:31 Tag128.ACTIVE

6:20:11 Tag136.ACTIVE

Alarm Flood #112

Time Alarm Tag
9:19:07 Tag162.ACTIVE

9:19:08 Tag132.ACTIVE

9:19:12 Tag146.ACTIVE

9:19:12 Tag152.ACTIVE

9:19:12 Tag148.ACTIVE

9:19:12 Tag154.ACTIVE

9:19:12 Tag169.ACTIVE

9:19:17 Tag158.ACTIVE

9:19:17 Tag160.ACTIVE

9:19:17 Tag164.ACTIVE

9:20:08 Tag138.ACTIVE

9:20:09 Tag134.ACTIVE

9:20:29 Tag128.ACTIVE

Alarm Flood #115

Time Alarm Tag
13:37:53 Tag131.ACTIVE

13:39:56 Tag171.ACTIVE

13:42:58 Tag169.ACTIVE

13:42:59 Tag152.ACTIVE

13:42:59 Tag154.ACTIVE

13:43:01 Tag158.ACTIVE

13:43:01 Tag162.ACTIVE

13:43:01 Tag160.ACTIVE

13:43:01 Tag164.ACTIVE

13:43:01 Tag132.ACTIVE

Alarm Flood #119

Pattern 
Extraction

Alarm Tag Time (sec) Alarm Description

Tag171.ACTIVE 0.0 VFD Fail

Tag154.ACTIVE 11.3 Pump 2 Motor Relay Fail

Tag164.ACTIVE 13.0 Pump 4 Motor Relay Fail

Tag160.ACTIVE 14.0 Pump 3 Motor Relay Fail

Tag146.ACTIVE 53.3 Pump 1 Lockout

Tag162.ACTIVE 92.3 Pump 4 Lockout

Tag132.ACTIVE 92.5 Main Breaker Tripped

Tag152.ACTIVE 92.8 Pump 2 Lockout

Tag169.ACTIVE 93.5 VFD Lockout

Tag158.ACTIVE 94.8 Pump 3 Lockout

Extracted Alarm Sequential Pattern

Subsequences in Original Alarm Floods

Time Alarm Tag

13:26:23 Tag152.ACTIVE

13:26:23 Tag158.ACTIVE

13:26:23 Tag162.ACTIVE

13:26:23 Tag164.ACTIVE

13:26:23 Tag132.ACTIVE

13:26:25 Tag169.ACTIVE

13:26:25 Tag171.ACTIVE

13:26:25 Tag146.ACTIVE

13:26:25 Tag148.ACTIVE

13:26:25 Tag154.ACTIVE

13:26:26 Tag160.ACTIVE

Alarm Flood #36

Time Alarm Tag

6:08:39 Tag130.ACTIVE

6:08:39 Tag175.ACTIVE

6:11:13 Tag171.ACTIVE

6:15:51 Tag146.ACTIVE

6:15:51 Tag152.ACTIVE

6:15:52 Tag158.ACTIVE

6:15:52 Tag162.ACTIVE

6:15:52 Tag132.ACTIVE

6:15:52 Tag140.ACTIVE

6:15:53 Tag169.ACTIVE

6:16:06 Tag138.ACTIVE

6:16:06 Tag134.ACTIVE

6:16:31 Tag128.ACTIVE

6:20:11 Tag136.ACTIVE

Alarm Flood #112

Time Alarm Tag
9:19:07 Tag162.ACTIVE

9:19:08 Tag132.ACTIVE

9:19:12 Tag146.ACTIVE

9:19:12 Tag152.ACTIVE

9:19:12 Tag148.ACTIVE

9:19:12 Tag154.ACTIVE

9:19:12 Tag169.ACTIVE

9:19:17 Tag158.ACTIVE

9:19:17 Tag160.ACTIVE

9:19:17 Tag164.ACTIVE

9:20:08 Tag138.ACTIVE

9:20:09 Tag134.ACTIVE

9:20:29 Tag128.ACTIVE

Alarm Flood #115

Time Alarm Tag
13:37:53 Tag131.ACTIVE

13:39:56 Tag171.ACTIVE

13:42:58 Tag169.ACTIVE

13:42:59 Tag152.ACTIVE

13:42:59 Tag154.ACTIVE

13:43:01 Tag158.ACTIVE

13:43:01 Tag162.ACTIVE

13:43:01 Tag160.ACTIVE

13:43:01 Tag164.ACTIVE

13:43:01 Tag132.ACTIVE

Alarm Flood #119

Figure 4.5: Alarm flood pattern #3 was extracted from alarm floods #36,
#112, #115, and #119. This pattern was caused by the pump lockout.

In this pattern, the three alarms “Tag59.ACTIVE”, “Tag60.ACTIVE”,

and “Tag61.ACTIVE” were directly associated with the control power failure,

while the remaining ones were consequential alarms of this abnormality. More

specifically, once the control power was lost, the alarms for “active” status

of valves (e.g., “Tag55.ACTIVE”) were triggered. About 25 seconds later, a

generator was automatically turned on as the backup electrical power source,

and thus the alarms for “cleared” status of valves (e.g., “Tag55.CLEARED”)

were annunciated, indicating that the process was recovering from this ab-

normality. Therefore, this alarm flood pattern is meaningful as it effectively

reveals the associated abnormality.
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Alarm Flood Pattern #2

This pattern was extracted from four alarm floods, namely, #12, #72,

#100, and #148. The details of this pattern are shown in Fig. 4.4. Based

on expert evaluation with process knowledge, this pattern was caused by the

unusual valve operation mode. In this pattern, the captured alarms, namely,

“Tag225.ACTIVE”, “Tag257.ACTIVE”, “Tag258.ACTIVE”, “Tag259.ACT-

IVE”, “Tag260.ACTIVE”, and “Tag261.ACTIVE”, were triggered simulta-

neously because their associated valves were changed to unusual operation

modes. About 4 seconds later, such valves were switched back to the normal

modes, and thus triggered the remaining alarms in this pattern. Therefore,

this pattern is meaningful because all alarms associated with the abnormality

are captured.

Alarm Flood Pattern #3

This pattern was extracted from four alarm floods, namely, #36, #112,

#115, and #119. The details associated with this pattern are shown in

Fig. 4.5. Based on expert evaluation with process knowledge, this pattern

was caused by the pump lockout. As the pumps were controlled by a shared

Variable Frequency Drive (VFD), the lockout abnormality happened in one

pump could quickly propagate, leading to more lockout of pumps in the same

process unit. Therefore, this pattern is meaningful; based on the result, a

dynamic alarm suppression module could be configured to suppress the asso-

ciated alarm floods.

4.5 Summary

To facilitate the analysis of alarm floods by discovering alarm sequential

patterns, this chapter proposes a systematic alarm flood pattern extraction

method, which is comprised by four major calculation stages, namely, the set-

based pre-matching, the determination of closed alarm itemsets, the discovery

of closed alarm sequences, and the distillation of compact alarm sequential pat-
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terns. To demonstrate the effectiveness of the proposed method, case studies

were presented based on alarm data from a complex industrial facility. As

shown in the obtained results, compact alarm sequential patterns were effec-

tively extracted with the incorporation of time stamps and tolerance of alarm

order switchings. The extracted results were validated to be meaningful based

on expert evaluation with process knowledge.
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Chapter 5

Conclusions and Future Work

In this chapter, remarks are provided to conclude this thesis, and then

some potential research directions are pointed out for future work.

5.1 Conclusions

This thesis proposes a variety of data-driven methods for alarm monitor-

ing and alarm flood pattern extraction, aiming at improving alarm system

performance of complex industrial facilities. The outcomes of the studies in

this thesis are summarized as follows:

1. A new method for monitoring equipment start-up operations is devel-

oped. The method is comprised of an offline design stage and an online

monitoring stage. In the offline stage, the maximum delay time for alarm

unsuppression is determined and dynamic alarm limits are formulated

based on the data associated with normal start-up operations. In the on-

line stage, a systematic algorithm is proposed to achieve effective alarm

monitoring based on the dynamic alarm limits and online calculation of

the unsuppression delay time. The proposed method is capable of pre-

venting nuisance alarms as well as achieving effective alarm monitoring

for equipment start-up operations.

2. A systematic pattern matching method is proposed to compare alarm

floods across different processes. The method consists of two major
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steps, including the generalization of alarm representations based on

the distillation of key words from textural alarm attributes and recon-

struction of abstracted alarm descriptors, and the similarity analysis to

compare alarm floods across different processes. Based on this method,

the efficiency of alarm flood analysis can be significantly improved as

clusters of similar floods are discovered to help find common root causes,

which lead to generalized solutions to address alarm floods from different

processes all at once.

3. A new method to extract compact alarm flood patterns from histori-

cal alarm flood data is proposed with the incorporation of time stamps,

tolerance of alarm order switchings, and a distillation strategy. The

proposed method is capable of effectively extracting compact alarm se-

quential patterns while avoiding the influences of order switchings caused

by small time differences on pattern extraction, and also minimizing the

redundancy of extracted alarm sequential patterns.

The effectiveness and applicability of the proposed methods are validated by

case studies using alarm data from complex industrial facilities.

5.2 Future Work

For the improvement of alarm system performance, the thesis proposed

effective methods to address nuisance alarms and alarm floods, which are two

major practical problems for alarm management. However, alarm manage-

ment is sophisticated and time-consuming, as it is usually associated with

large-scale industrial facilities. Consequently, various problems and unex-

pected challenges may arise in the lifecycle of alarm management. For in-

stance, the design and configuration of alarm systems become critical for new

industrial facilities, whereas maintenance and improvement are more empha-

sized for existing alarm systems. In addition, with the aging of hardware, some

equipment should be updated or replaced, introducing another layer of com-
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plexity for alarm management, especially during the transitions for hardware

replacement. To meet the demands in the complete lifecycle of alarm man-

agement, the following promising directions deserve efforts for future work.

Alarm Monitoring for System with Complex Dynamics

The basic but critical functionality of alarm systems is to achieve effec-

tive process minoring for complex industrial facilities. However, the operation

of industrial processes involves many dynamics, such as start-up/shut-down,

change of operation mode, and manufacture of products in different types.

Such dynamics are usually complicated and could even vary case by case. In

such situations, alarms configured based on steady state could fail, causing

many nuisance alarms and even alarm floods. Chapter 2 in this thesis only

studies the problem of alarm monitoring on the level of single equipment,

namely, pump start-up operations. In practice, there exist many other kinds of

state transitions with increased complexities, such as setpoint changes and feed

property changes. Such situations may also present similar alarm monitoring

problems deserving further studies. Therefore, for effective alarm monitoring

to cope with system dynamics, the future work includes various extensions of

the proposed method to more general and complicated cases. In addition, as

a plant could be operated under different modes, the causal relationships for

operator actions and alarms may change accordingly, leading to the opportu-

nities to design some advanced logic-based alarm suppression rules for each

operation mode. Moreover, for the discovery of optimal operation strategies

to mitigate various alarm situations, work flow models could be established

based on historical alarm data and the corresponding operator responses.

Extension and Generalization of Alarm Flood Analysis

Data-driven methods are proposed in Chapters 3 and 4 to generalize and

facilitate the extraction of alarm flood patterns and such studies could be

further generalized with extended applicability to different alarm management
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scenarios. The analysis of alarm floods is sophisticated and time-consuming,

and one major reason is that the obtained alarm flood patterns have to be

analyzed manually based on expert evaluations with process knowledge to

identify the root causes and then design corresponding solutions. To help

with such analysis with improved efficiency and accuracy, data-driven methods

for the validation and labeling of obtained alarm flood patterns with root

causes could be studied. For instance, to identify potential solutions to handle

alarm floods, operator responses could be incorporated for alarm flood pattern

extraction as a means of validation based on historical operations. Moreover,

studies could be conducted to obtain databases with labeled alarm floods,

leading to opportunities for advanced online applications, such as prediction,

classification, and diagnosis of alarm floods.

Improvement for Implementation

For alarm management in practice, there always exist some limitations in

resources, such as computational capacity, size of datasets, and incomplete

historical data. To ensure the analysis of historical data is correct and the im-

plementation of alarm improvement techniques gives satisfactory results, the

following practical problems could be studied. To cope with large databases

and online calculations, methods to improve computational efficiency are de-

sired and deserve further research. Some potential directions include efficient

computation algorithms and resources, such as parallel algorithms, cluster

computing, and cloud computing. In many existing studies based on his-

torical data, the procedures for data preprocessing are not well documented.

However, as those methods heavily rely on the quality of historical data, it

is critical to use reasonable data preprocessing methods. For instance, to re-

duce the data size for efficient storage, the historical process data could be

compressed, leading to undesired distortion of data properties (e.g., data dis-

tribution). As a result, a data recovery strategy should be applied first before

the process data is used for alarm design. The management of alarm systems
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is a sophisticated task with a long-lasting lifecycle. Therefore, it is desired

that better interactive alarm management tools could be developed, such that

alarm system configurations could be improved in a more user-friendly way

and with increased efficiency.
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[57] Hans Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek.

Loop: local outlier probabilities. In The 18th ACM conference on In-

formation and knowledge management, pages 1649–1652. ACM, 2009.

[58] Jason C Laberge, Peter Bullemer, Mischa Tolsma, and C Reising

Dal Vernon. Addressing alarm flood situations in the process industries

95



through alarm summary display design and alarm response strategy.

International Journal of Industrial Ergonomics, 44(3):395–406, 2014.

[59] Shiqi Lai and Tongwen Chen. A method for pattern mining in multi-

ple alarm flood sequences. Chemical Engineering Research and Design,

117:831–839, 2017.

[60] Shiqi Lai, Fan Yang, and Tongwen Chen. Online pattern matching and

prediction of incoming alarm floods. Journal of Process Control, 56:69–

78, 2017.

[61] Shiqi Lai, Fan Yang, Tongwen Chen, and Liang Cao. Accelerated mul-

tiple alarm flood sequence alignment for abnormality pattern mining.

Journal of Process Control, 82:44–57, 2019.

[62] Dewen Li, Jinghong Hu, Hao Wang, and Wenjun Huang. A distributed

parallel alarm management strategy for alarm reduction in chemical

plants. Journal of Process Control, 34:117–125, 2015.

[63] Yupeng Li, Weihua Cao, Wenkai Hu, and Min Wu. Abnormality de-

tection for drilling processes based on Jensen-Shannon divergence and

adaptive alarm limits. IEEE Transactions on Industrial Informatics, in

press.

[64] Jun Liu, Khiang Wee Lim, Weng Khuen Ho, Kay Chen Tan, Ra-

jagopalan Srinivasan, and Arthur Tay. The intelligent alarm manage-

ment system. IEEE Software, 20(2):66–71, 2003.

[65] Matthieu Lucke, Moncef Chioua, Chriss Grimholt, Martin Hollender,

and Nina F Thornhill. Online alarm flood classification using alarm

coactivations. IFAC PapersOnLine, 51(18):345–350, 2018.

[66] Matthieu Lucke, Moncef Chioua, Chriss Grimholt, Martin Hollender,

and Nina F Thornhill. Advances in alarm data analysis with a practi-

96



cal application to online alarm flood classification. Journal of Process

Control, 79:56–71, 2019.

[67] Matthieu Lucke, Moncef Chioua, Chriss Grimholt, Martin Hollender,

and Nina F Thornhill. Integration of alarm design in fault detection

and diagnosis through alarm-range normalization. Control Engineering

Practice, 98:104388, 2020.

[68] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to information retrieval. Natural Language Engineering,

16(1):100–103, 2010.

[69] Qianqian Meng, Qunxiong Zhu, Huihui Gao, Yanlin He, and Yuan Xu.

A novel scoring function based on family transfer entropy for Bayesian

networks learning and its application to industrial alarm systems. Jour-

nal of Process Control, 76:122–132, 2019.

[70] Elham Naghoosi, Iman Izadi, and Tongwen Chen. Estimation of alarm

chattering. Journal of Process Control, 21(9):1243–1249, 2011.

[71] Junya Nishiguchi and Tsutomu Takai. IPL2 and 3 performance im-

provement method for process safety using event correlation analysis.

Computers & Chemical Engineering, 34(12):2007–2013, 2010.

[72] Tahereh Niyazmand and Iman Izadi. Pattern mining in alarm flood

sequences using a modified prefixspan algorithm. ISA Transactions,

90:287–293, 2019.

[73] Masaru Noda, Fumitaka Higuchi, Tsutomu Takai, and Hirokazu Nishi-

tani. Event correlation analysis for alarm system rationalization. Asia-

Pacific Journal of Chemical Engineering, 6(3):497–502, 2011.

[74] Mark Rafferty, Xueqin Liu, David M Laverty, and Sean McLoone. Real-

time multiple event detection and classification using moving window

PCA. IEEE Transactions on Smart Grid, 7(5):2537–2548, 2016.

97



[75] Douglas H Rothenberg. Alarm Management for Process Control: a Best-

Practice Guide for Design, Implementation, and Use of Industrial Alarm

Systems. Momentum Press, NY, USA, 2009.

[76] Ellis Rubinstein and John F Mason. An analysis of Three Mile Island:

the accident that shouldn’t have happened. IEEE Spectrum, 16(11):33–

42, 1979.

[77] Eduardo Navarra Satuf, Eugenius Kaszkurewicz, Roberto Schirru, and

Mario Cesar Mello Massa de Campos. Situation awareness measure-

ment of an ecological interface designed to operator support during

alarm floods. International Journal of Industrial Ergonomics, 53:179–

192, 2016.

[78] Markus Schleburg, Lars Christiansen, Nina F Thornhill, and Alexander

Fay. A combined analysis of plant connectivity and alarm logs to re-

duce the number of alerts in an automation system. Journal of Process

Control, 23(6):839–851, 2013.

[79] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Non-

linear component analysis as a kernel eigenvalue problem. Neural Com-

putation, 10(5):1299–1319, 1998.

[80] Jun Shang and Tongwen Chen. Early classification of alarm floods via

exponentially attenuated component analysis. IEEE Transactions on

Industrial Electronics, 67(10):8702–8712, 2019.

[81] Bernard W Silverman. Density Estimation for Statistics and Data Anal-

ysis. CRC Press: Chapman & Hall, 1986.

[82] Harry Smith, Colin Howard, and Tony Foord. Alarms management pri-

ority, floods, tears or gain? introduction to the “problem”. Measurement

and Control, 36(4):109–113, 2003.

98



[83] Temple Ferris Smith and Michael Spencer Waterman. Identification

of common molecular subsequences. Journal of Molecular Biology,

147(1):195–197, 1981.

[84] Jianjun Su, Cen Guo, Hao Zang, Fan Yang, Dexian Huang, Xiaoyong

Gao, and Yan Zhao. A multi-setpoint delay-timer alarming strategy for

industrial alarm monitoring. Journal of Loss Prevention in the Process

Industries, 54:1–9, 2018.

[85] Yongkui Sun, Wen Tan, and Tongwen Chen. A method to remove chat-

tering alarms using median filters. ISA Transactions, 2017.

[86] Wen Tan, Yongkui Sun, Ishtiza Ibne Azad, and Tongwen Chen. Design

of univariate alarm systems via rank order filters. Control Engineering

Practice, 59:55–63, 2017.

[87] Aditya Tulsyan, Feras Alrowaie, and Bhushan Gopaluni. Design and as-

sessment of delay timer alarm systems for nonlinear chemical processes.

AIChE Journal, 64(1):77–90, 2018.

[88] Aditya Tulsyan and R Bhushan Gopaluni. Univariate model-based dead-

band alarm design for nonlinear processes. Industrial & Engineering

Chemistry Research, 58(26):11295–11302, 2019.

[89] Birgit Vogel-Heuser, Daniel Schütz, and Jens Folmer. Criteria-based

alarm flood pattern recognition using historical data from automated

production systems (aPS). Mechatronics, 31:89–100, 2015.

[90] Thumeera R Wanasinghe, Raymond G Gosine, Lesley Anne James,

George KI Mann, Oscar de Silva, and Peter J Warrian. The internet of

things in the oil and gas industry: a systematic review. IEEE Internet

of Things Journal, 7(9):8654–8673, 2020.

[91] Jia Wang, Hongguang Li, Jingwen Huang, and Chong Su. Association

rules mining based analysis of consequential alarm sequences in chemical

99



processes. Journal of Loss Prevention in the Process Industries, 41:178–

185, 2016.

[92] Jia Wang, Hongguang Li, Jinwen Huang, and Chong Su. A data sim-

ilarity based analysis to consequential alarms of industrial processes.

Journal of Loss Prevention in the Process Industries, 35:29–34, 2015.

[93] Jiandong Wang and Tongwen Chen. An online method for detection and

reduction of chattering alarms due to oscillation. Computers & Chemical

Engineering, 54:140–150, 2013.

[94] Jiandong Wang and Tongwen Chen. An online method to remove chat-

tering and repeating alarms based on alarm durations and intervals.

Computers & Chemical Engineering, 67:43–52, 2014.

[95] Jiandong Wang and Tongwen Chen. Main causes of long-standing alarms

and their removal by dynamic state-based alarm systems. Journal of

Loss Prevention in the Process Industries, 43:106–119, 2016.

[96] Jiandong Wang, Fan Yang, Tongwen Chen, and Sirish L Shah. An

overview of industrial alarm systems: main causes for alarm overloading,

research status, and open problems. IEEE Transactions on Automation

Science and Engineering, 13(2):1045–1061, 2016.

[97] Jiandong Wang, Zijiang Yang, Kuang Chen, and Donghua Zhou. Prac-

tices of detecting and removing nuisance alarms for alarm overloading

in thermal power plants. Control Engineering Practice, 67:21–30, 2017.

[98] Jiandong Wang, Yan Zhao, and Zhenfu Bi. Criteria and algorithms for

online and offline detections of industrial alarm floods. IEEE Transac-

tions on Control Systems Technology, 26(5):1722–1731, 2018.

[99] Zhen Wang, Xingzhen Bai, Jiandong Wang, and Zijiang Yang. Indexing

and designing deadbands for industrial alarm signals. IEEE Transac-

tions on Industrial Electronics, 66(10):8093–8103, 2018.

100



[100] Iris Weiß, Jakob Kinghorst, Thomas Kröger, Mina Fahimi Pirehgalin,
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